& RedHat

Red Hat JBoss Enterprise Application
Platform 7.3

Getting Started with JBoss EAP for OpenShift
Online

Guide to developing with Red Hat JBoss Enterprise Application Platform for
OpenShift Online

Last Updated: 2021-12-27

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with
JBoss EAP for OpenShift Online

Guide to developing with Red Hat JBoss Enterprise Application Platform for OpenShift Online

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to using Red Hat JBoss Enterprise Application Platform for OpenShift Online

Table of Contents

Table of Contents

CHAPTER LLINTRODUGCTION ittt ittt ettt ettt et eaeeaneeeaneenaneeannesaneeeaneennneenns 5
1.1. WHAT IS RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM (JBOSS EAP)? 5
1.2. HOW DOES JBOSS EAP WORK ON OPENSHIFT? 5
1.3. COMPARISON: JBOSS EAP AND JBOSS EAP FOR OPENSHIFT 5
1.4. VERSION COMPATIBILITY AND SUPPORT 6

JDK 8 Images 7
JDK 11 Images 7
Eclipse Opend9 Images 7
1.4.1. OpenShift 4.x Support 8
1.4.2.1BM Z and IBM Power Systems Support 8
1.4.3. Upgrades from JBoss EAP 7.1to JBoss EAP 7.3 on OpenShift 8
1.5. DEPLOYMENT OPTIONS 8

CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE JBOSS EAP FOR OPENSHIFT IMAGE 10
2.1. PREREQUISITES 10
2.2. PREPARE OPENSHIFT FOR APPLICATION DEPLOYMENT 10
2.3. IMPORT THE LATEST JBOSS EAP FOR OPENSHIFT IMAGESTREAMS AND TEMPLATES n

Import command for JDK 8 n
Import command for JDK 11 12
Import command for Eclipse OpenJ9 on IBM Z and IBM Power Systems 12
2.4. DEPLOY A UBOSS EAP SOURCE-TO-IMAGE (521) APPLICATION TO OPENSHIFT 13
2.5.POST DEPLOYMENT TASKS 15
2.6. CHAINED BUILD SUPPORT IN JBOSS EAP FOR OPENSHIFT 16

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION 17

3.1. HOW THE JBOSS EAP FOR OPENSHIFT S2I PROCESS WORKS 17
3.2. CONFIGURING JBOSS EAP FOR OPENSHIFT USING ENVIRONMENT VARIABLES 18
3.2.1. JVM Memory Configuration 19
3.2.1.1. JVM Default Memory Settings 19
3.2.1.2. JVM Garbage Collection Settings 19
3.2.1.3. Resource Limits in Default Settings 20
3.2.1.4. JVM Environment Variables 20
3.3. BUILD EXTENSIONS AND PROJECT ARTIFACTS 27
3.3.1. S2I Artifacts 28
3.3.1.1. Modules, Drivers, and Generic Deployments 29
3.3.2. Runtime Artifacts 31
3.3.2.1. Datasources 31
3.3.2.2. Resource Adapters 32
3.4. RESULTS OF USING JBOSS EAP TEMPLATES FOR OPENSHIFT 33
3.5. 550 CONFIGURATION OF RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM FOR OPENSHIFT
IMAGES 34
3.6. DEFAULT DATASOURCE 34
3.7. DEPLOYMENT CONSIDERATIONS FOR THE JBOSS EAP FOR OPENSHIFT IMAGE 34
3.7.1. Scaling Up and Persistent Storage Partitioning 34
3.7.2. Scaling Down and Transaction Recovery 35
CHAPTER 4. CAPABILITY TRIMMING IN JBOSS EAP FOROPENSHIFTttt iiiiiiie e, 36
4.1. PROVISION A CUSTOM JBOSS EAP SERVER 36
4.2. AVAILABLE JBOSS EAP LAYERS 36
4.2.1. Base Layers 36
datasources-web-server 36
jaxrs-server 37

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

cloud-server 38
4.2.2. Decorator Layers 38
Sso 38
observability 38
web-clustering 39

4.3. PROVISIONING USER-DEVELOPED LAYERS IN JBOSS EAP 39
4.3.1. Building Custom Layers for JBoss EAP 39
4.3.2. Custom Provisioning Files for JBoss EAP 41
4.3.3. Building an Application Provisioned with User-developed Layers 42

CHAPTER 5. MIGRATION OF APPLICATIONS FROM JBOSS EAP IMAGESTREAMS ON OPENSHIFT 4 TO

EAP 73 IMAGE S T REAMS ittt ettt ettt et ettt et eaaeeeaneeeaneennneeaneeeaneennns 44
5.1. UPDATES TO LIVENESS AND READINESS PROBE CONFIGURATION FOR EAP73 IMAGESTREAMS 44
5.2. DEFAULT DATASOURCE REMOVED 45
5.3. UPDATES TO STANDALONE-OPENSHIFT.XML WHEN UPGRADING JBOSS EAP 71 TO JBOSS EAP 7.3
ON OPENSHIFT 45

CHAPTER 6. TROUBLESHOOTING ... ittttttttttttteetteeiteeaeeeaneeeneeeaneeeaneennneeanneeaneenn 47
6.1. TROUBLESHOOTING POD RESTARTS 47
6.2. TROUBLESHOOTING USING THE JBOSS EAP MANAGEMENT CLI 47

CHAPTER 7. EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIFT 49
7.1. INSTALLING EAP OPERATOR USING THE WEB CONSOLE 49
7.2. INSTALLING EAP OPERATOR USING THE CLI 51
7.3. JAVA APPLICATION DEPLOYMENT ON OPENSHIFT USING THE EAP OPERATOR 52

7.3.1. The eap-s2i-build template for creating application images 52
7.3.2. Building an application image using eap-s2i-build template 53
7.3.3. Bootable JAR for packaging JBoss EAP server and a Java application 55
7.3.4. Deploying a Java application using the EAP operator: Completing the mandatory configurations 55
7.3.5. Deploying a Java application using the EAP operator: Completing the optional configurations 57
7.3.6. Creating a Secret 59
7.3.7. Creating a ConfigMap 60
7.3.8. Creating a ConfigMap from a standalone.xml File 60
7.3.9. Configuring Persistent Storage for Applications 60
7.4.VIEWING METRICS OF AN APPLICATION USING THE EAP OPERATOR 61
7.5. UNINSTALLING EAP OPERATOR USING WEB CONSOLE 61
7.6. UNINSTALLING EAP OPERATOR USING THE CLI 62
7.7. EAP OPERATOR FOR SAFE TRANSACTION RECOVERY 63
7.7.1. StatefulSets for Stable Network Host Names 63
7.7.2. Monitoring the Scaledown Process 64
7.7.2.1. Pod Status During Scaledown 64
7.7.3. Scaling Down During Transactions with Heuristic Outcomes 65
7.7.4. Configuring the transactions subsystem to use the JDBC storage for transaction log 65
7.8. EJB REMOTING ON OPENSHIFT 67
7.8.1. Configuring EJB on OpenShift 68

CHAPTER 8. REFERENCE INFORMATION ...ttt it tae et eeeeennneeaneenaneennneenn 70
8.1. PERSISTENT TEMPLATES 70
8.2. INFORMATION ENVIRONMENT VARIABLES 70
8.3. CONFIGURATION ENVIRONMENT VARIABLES 71
8.4. APPLICATION TEMPLATES 77
8.5. EXPOSED PORTS 77
8.6. DATASOURCES 77

8.6.1. JNDI Mappings for Datasources 77

8.6.1.1. Datasource Configuration Environment Variables
8.6.1.2. Examples
8.6.1.2.1. Single Mapping
8.6.1.2.2. Multiple Mappings
8.7. CLUSTERING
8.7.1. Configuring a JGroups Discovery Mechanism
8.7.1.1. Configuring KUBE_PING
8.7.1.2. Configuring DNS_PING
8.7.2. Configuring JGroups to Encrypt Cluster Traffic
8.7.2.1. Configuring SYM_ENCRYPT
8.7.2.2. Configuring ASYM_ENCRYPT
8.8. HEALTH CHECKS
8.9. MESSAGING
8.9.1. Configuring External Red Hat AMQ Brokers
Example OpenShift Application Definition
8.10. SECURITY DOMAINS
8.11. HTTPS ENVIRONMENT VARIABLES
8.12. ADMINISTRATION ENVIRONMENT VARIABLES
8.13. 52l
8.13.1. Custom Configuration
8.13.1.1. Custom Modules
8.13.2. Deployment Artifacts
8.13.3. Artifact Repository Mirrors
8.13.3.1. Secure Artifact Repository Mirror URLs
8.13.4. Scripts
8.13.5. Custom Scripts
8.13.5.1. Mounting a configmap to execute custom scripts
8.13.5.2. Using install.sh to execute custom scripts
8.13.6. Environment Variables
8.14. SINGLE SIGN-ON IMAGE
8.15. TRANSACTION RECOVERY
8.15.1. Unsupported Transaction Recovery Scenarios
8.15.2. Manual Transaction Recovery Process
8.15.2.1. Caveats
8.15.2.2. Prerequisite
8.15.2.3. Procedure
8.15.2.3.1. Resolving In-doubt Branches

8.15.2.3.2. Extract the Global Transaction ID and Node Identifier from Each XID

Table of Contents

78
80
80

81

81

81

81
82
83
84
85
85
85
85
86
86
87
87
88
88
88
88
88
89
89
89
89
90

91
92
94
94
94
94
95
95
96
97

8.15.2.3.3. Obtain the List of Node Identifiers of All Running JBoss EAP Instances in Any Cluster that Can

Contact the Resource Managers
8.15.2.3.4. Find the Transaction Logs

8.15.2.3.5. Cleaning Up the Transaction Logs for Reconciled In-doubt Branches

8.16. INCLUDED JBOSS MODULES
8.17. EAP OPERATOR: API INFORMATION
8.17.1. WildFlyServer
8.17.2. WildFlyServerList
8.17.3. WildFlyServerSpec
8.17.4. StorageSpec
8.17.5. StandaloneConfigMapSpec
8.17.6. WildFlyServerStatus
8.17.7. PodStatus

99
99
100
101
101
101
101
102
103
104
104
105

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

CHAPTER 1. INTRODUCTION

CHAPTER 1. INTRODUCTION

1. WHAT IS RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM
(JBOSS EAP)?

Red Hat JBoss Enterprise Application Platform 7 (JBoss EAP) is a middleware platform built on open
standards and compliant with the Java Enterprise Edition 7 specification. It provides preconfigured
options for features such as high-availability clustering, messaging, and distributed caching. It includes a
modular structure that allows you to enable services only when required, which results in improved
startup speed.

The web-based management console and management command line interface (CLI) make editing
XML configuration files unnecessary and add the ability to script and automate tasks. In addition, JBoss
EAP includes APIs and development frameworks that allow you to quickly develop, deploy, and run
secure and scalable Jakarta EE applications. JBoss EAP 7 is a Jakarta EE 8 compatible implementation
for both Web Profile and Full Platform specifications and also a certified implementation of the Java EE
8 Full Platform and Web Profile specifications.

1.2. HOW DOES JBOSS EAP WORK ON OPENSHIFT?

Red Hat offers a containerized image for JBoss EAP that is designed for use with OpenShift. Using this
image, developers can quickly and easily build, scale, and test applications that are deployed across
hybrid environments.

1.3. COMPARISON: JBOSS EAP AND JBOSS EAP FOR OPENSHIFT

There are some notable differences when comparing the JBoss EAP product with the JBoss EAP for
OpenShift image. The following table describes these differences and notes which features are included
or supported in the current version of JBoss EAP for OpenShift.

Table 1.1. Differences between JBoss EAP and JBoss EAP for OpenShift

JBoss EAP Feature Status in JBoss EAP for Description

OpenShift
JBoss EAP Not included The JBoss EAP management console is not included
management console in this release of JBoss EAP for OpenShift.
JBoss EAP Not recommended The JBoss EAP management CLI is not
management CLI recommended for use with JBoss EAP runningin a

containerized environment. Any configuration
changes made using the management CLlI in a
running container will be lost when the container
restarts. The management CLlI is accessible from
within a pod for troubleshooting purposes.

Managed domain Not supported Although a JBoss EAP managed domain is not
supported, creation and distribution of applications
are managed in the containers on OpenShift.

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

JBoss EAP Feature Status in JBoss EAP for Description
OpenShift
Default root page Disabled The default root page is disabled, but you can deploy
your own application to the root context as
ROOT.war.
Remote messaging Supported Red Hat AMQ for inter-pod and remote messaging is

supported. ActiveMQ Artemis is only supported for
messaging within a single pod with JBoss EAP
instances, and is only enabled when Red Hat AMQ is
absent.

Transaction recovery Partially supported There are some unsupported transaction recovery
scenarios and caveats when undertaking transaction
recovery with the JBoss EAP for OpenShift image.

The EAP operator is the only tested and supported
option of transaction recovery in OpenShift 4. For
more information about recovering transactions
using the EAP operator, see EAP Operator for Safe
Transaction Recovery.

Embedded messaging Deprecated The use of an embedded messaging broker in
broker OpenShift containers is deprecated. Support for an
embedded broker will be removed in a future release.

If a container is configured to use an embedded
messaging broker, and if no remote broker is
configured, a warning is logged.

If the container configuration does not include
messaging destinations, set the
DISABLE_EMBEDDED_JMS BROKER
environment variable to true to disable the ability to
configure an embedded messaging broker.

1.4. VERSION COMPATIBILITY AND SUPPORT

JBoss EAP for OpenShift provides images for JDK 8, JDK 11, and Eclipse OpenJ9.

Two variants of each image are available: an S2I builder image and a runtime image. The S2I builder
image contains a complete JBoss EAP server with tooling needed during S2I build. The runtime image
contains dependencies needed to run JBoss EAP but does not contain a server. The server is installed in
the runtime image during a chained build.

The following modifications have been applied to images in JBoss EAP for OpenShift 7.3.

® Default drivers and modules have been removed.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#eap-operator-for-safe-transaction-recovery_default

CHAPTER 1. INTRODUCTION

® Templates for MySQL and PostgreSQL have been removed. You can provision these

capabilities with a custom layer.

® The Hawkular agent is not active in these images. If configured, it is ignored.

® The default datasource, ExampleDS, is no longer added by default at container startup. If you

need the default datasource, use the environment variable
ENABLE_GENERATE_DEFAULT_DATASOURCE with a value of true
(ENABLE_GENERATE_DEFAULT_DATASOURCE=true) to include it.

NOTE

The following discovery mechanism protocols are deprecated and have been replaced by
other protocols:

® The openshift.DNS_PING protocol was deprecated and is replaced with the
dns.DNS_PING protocol. If you referenced the openshift. DNS_PING protocol
in a customized standalone-openshift.xml file, replace the protocol with the
dns.DNS_PING protocol.

® The openshift. KUBE_PING discovery mechanism protocol was deprecated and
is replaced with the kubernetes.KUBE_PING protocol.

JDK 8 Images

Red Hat Universal Base Image: 7
Prefix for template names: eap73-*

Builder Image: https://access.redhat.com/containers/#/registry.access.redhat.com/jboss-eap-
7/eap73-openjdk8-openshift-rhel7

Runtime Image: https://access.redhat.com/containers/#/registry.access.redhat.com/jboss-
eap-7/eap73-openjdk8-runtime-openshift-rhel7

NOTE

A JDK 8 image for JBoss EAP is not provided for IBM Z and IBM Power Systems.

JDK 11 Images

Red Hat Universal Base Image: 8
Prefix for template names: eap73-openjdkil-*

Builder Image: https://access.redhat.com/containers/#/registry.access.redhat.com/jboss-eap-
7/eap73-openjdkll-openshift-rhel3

Runtime Image: https://access.redhat.com/containers/#/registry.access.redhat.com/jboss-
eap-7/eap73-openjdkll-runtime-openshift-rhel8

Eclipse OpenJ9 Images

Red Hat Universal Base Image: 8

Prefix for template names: eap73-*

https://access.redhat.com/containers/#/registry.access.redhat.com/jboss-eap-7/eap73-openjdk8-openshift-rhel7
https://access.redhat.com/containers/#/registry.access.redhat.com/jboss-eap-7/eap73-openjdk8-runtime-openshift-rhel7
https://access.redhat.com/containers/#/registry.access.redhat.com/jboss-eap-7/eap73-openjdk11-openshift-rhel8
https://access.redhat.com/containers/#/registry.access.redhat.com/jboss-eap-7/eap73-openjdk11-runtime-openshift-rhel8

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

® Builder Image: https://access.redhat.com/containers/#/registry.access.redhat.com/jboss-eap-
7/eap73-openj9-11-openshift-rhel8

® Runtime Image: https://access.redhat.com/containers/#/registry.access.redhat.com/jboss-
eap-7/eap73-openj9-11-runtime-openshift-rhel8

JBoss EAP for OpenShift is updated frequently. Therefore, it is important to understand which versions
of the images are compatible with which versions of OpenShift. See OpenShift and Atomic Platform
Tested Integrations on the Red Hat Customer Portal for more information on version compatibility and
support.

Additional Resources

Capability Trimming in JBoss EAP for OpenShift

1.4.1. OpenShift 4.x Support

Changes in OpenShift 4.1 affect access to Jolokia, and the Open Java Console is no longer available in
the OpenShift 4.x web console.

In previous releases of OpenShift, certain kube-apiserver proxied requests were authenticated and
passed through to the cluster. This behavior is now considered insecure, and so, accessing Jolokia in this

manner is no longer supported.

Due to changes in codebase for the OpenShift console, the link to the Open Java Console is no longer
available.

1.4.2.IBM Z and IBM Power Systems Support

The s390x and ppc64le variant of libartemis-native is not included in the image. Thus, any settings
related to AlO will not be taken into account.

® journal-type: Setting the journal-type to ASYNCIO has no effect. The value of this attribute
defaults to NIO at runtime.

e journal-max-io: This attribute has no effect.

® journal-store-enable-async-io: This attribute has no effect.

1.4.3. Upgrades from JBoss EAP 7.1 to JBoss EAP 7.3 on OpenShift

The file standalone-openshift.xml installed with JBoss EAP 7.1 on OpenShift is not compatible with
JBoss EAP 7.3 and later. You must modify a standalone-openshift.xml file installed with JBoss EAP 7.1
before you use it to start a JBoss EAP 7.3 or later container for OpenShift.

Additional resources

Updates to standalone-openshift.xml when upgrading JBoss EAP 7.1to JBoss EAP 7.3 on OpenShift

1.5. DEPLOYMENT OPTIONS
You can deploy the JBoss EAP Java applications on OpenShift using one of the following options:

® A JBoss EAP for OpenShift template. For more information, see Build and Run a Java
Application on the JBoss EAP CD for OpenShift Image.

https://access.redhat.com/containers/#/registry.access.redhat.com/jboss-eap-7/eap73-openj9-11-openshift-rhel8
https://access.redhat.com/containers/#/registry.access.redhat.com/jboss-eap-7/eap73-openj9-11-runtime-openshift-rhel8
https://access.redhat.com/articles/4763741
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#capability-trimming-eap-foropenshift_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#updates-standalone-openshift-upgrade-eap-71-to-73_default
https://github.com/jboss-container-images/jboss-eap-7-openshift-image/tree/eap73/templates
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#build_run_java_app_s2i

CHAPTER 1. INTRODUCTION

® The EAP operator, a JBoss EAP-specific controller that extends the OpenShift API to create,
configure, and manage instances of complex stateful applications on behalf of an OpenShift

user. For more information, see EAP Operator for Automating Application Deployment on
OpenShift.

NOTE

The EAP operator is supported only on OpenShift 4 and later versions.

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#eap-operator-for-automating-application-deployment-on-openshift_default

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE
JBOSS EAP FOR OPENSHIFT IMAGE

The following workflow demonstrates using the Source-to-Image (S2l) process to build and run a Java
application on the JBoss EAP for OpenShift image.

As an example, the kitchensink quickstart is used in this procedure. It demonstrates a Jakarta EE web-

enabled database application using JSF, CDI, EJB, JPA, and Bean Validation. See the kitchensink
quickstart that ships with JBoss EAP 7 for more information.

2.1. PREREQUISITES

This workflow assumes that you already have an active OpenShift Online subscription and that you have
installed the OpenShift CLI.

2.2. PREPARE OPENSHIFT FOR APPLICATION DEPLOYMENT
1. Login to your OpenShift instance using the oc login command.

2. Create a new project in OpenShift.
A project allows a group of users to organize and manage content separately from other groups.
You can create a project in OpenShift using the following command.

I $ oc new-project PROJECT_NAME

For example, for the kitchensink quickstart, create a new project named eap-demo using the
following command.

I $ oc new-project eap-demo

3. Optional: Create a keystore and a secret.

NOTE

Creating a keystore and a secret is required if you are using any HTTPS-enabled
features in your OpenShift project. For example, if you are using the eap73-
https-s2i template (for JDK 8) or the eap73-openjdk11-https-s2i template (for
JDK11), you must create a keystore and secret.

This workflow demonstration for the kitchensink quickstart does not use an
HTTPS template, so a keystore and secret are not required.

a. Create a keystore.

10

https://docs.openshift.com/online/getting_started/getting-started-choose-a-plan
https://docs.openshift.com/online/getting_started/getting-started-beyond-the-basics#btb-installing-the-openshift-cli

CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE JBOSS EAP FOR OPENSHIFT IMAGE

' WARNING
A The following commands generate a self-signed certificate, but for

production environments Red Hat recommends that you use your own
SSL certificate purchased from a verified Certificate Authority (CA) for
SSL-encrypted connections (HTTPS).

You can use the Java keytool command to generate a keystore using the following
command.

$ keytool -genkey -keyalg RSA -alias ALIAS_NAME -keystore
KEYSTORE_FILENAME.jks -validity 360 -keysize 2048

For example, for the kitchensink quickstart, use the following command to generate a
keystore.

$ keytool -genkey -keyalg RSA -alias eapdemo-selfsigned -keystore keystore.jks -validity
360 -keysize 2048

b. Create a secret from the keystore.
Create a secret from the previously created keystore using the following command.

I $ oc create secret SECRET_NAME KEYSTORE_FILENAME jks

For example, for the kitchensink quickstart, use the following command to create a secret.

I $ oc create secret eap7-app-secret keystore.jks

2.3.IMPORT THE LATEST JBOSS EAP FOR OPENSHIFT
IMAGESTREAMS AND TEMPLATES

You must import the latest JBoss EAP for OpenShift imagestreams and templates for your JDK into
the namespace of your OpenShift project.

NOTE

Log in to the Red Hat Container Registry using your Customer Portal credentials to
import the JBoss EAP imagestreams and templates. For more information, see Red Hat
Container Registry Authentication.

Import command for JDK 8

for resource in \
eap73-amq-persistent-s2i.json \
eap73-amg-s2i.json \
eap73-basic-s2i.json \
eap73-https-s2i.json \

1

https://access.redhat.com/RegistryAuthentication

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

eap73-image-stream.json \

eap73-sso-s2i.json \

eap73-starter-s2i.json \
do

oc replace --force -f \
https://raw.githubusercontent.com/jboss-container-images/jboss-eap-7-openshift-
image/eap73/templates/${resource}
done

This command imports the following imagestreams and templates.
® The JDK 8 builder imagestream: jpboss-eap73-openshift
® The JDK 8 runtime imagestream: jboss-eap73-runtime-openshift
e All templates specified in the command.

Import command for JDK 11

for resource in \
eap73-openjdk11-amqg-persistent-s2i.json \
eap73-openjdk11-amqg-s2i.json \
eap73-openjdk11-basic-s2i.json \
eap73-openjdk11-https-s2i.json \
eap73-openjdk11-image-stream.json \
eap73-openjdk11-sso-s2i.json \
eap73-openjdk11-starter-s2i.json \

do
oc replace --force -f \

https://raw.githubusercontent.com/jboss-container-images/jboss-eap-7-openshift-

image/eap73/templates/${resource}

done

This command imports the following imagestreams and templates.
® The JDK 11 builder imagestream: jpboss-eap73-openjdk11-openshift
® The JDK 11 runtime imagestream: jboss-eap73-openjdk11-runtime-openshift
e All templates specified in the command.

Import command for Eclipse Opend9 on IBM Z and IBM Power Systems

oc replace --force -f \
https://raw.githubusercontent.com/jboss-container-images/jooss-eap-openshift-
templates/eap73/eap73-openj9-image-stream.json

for resource in \
eap73-amq-persistent-s2i.json \
eap73-amg-s2i.json \
eap73-basic-s2i.json \
eap73-https-s2i.json \
eap73-sso-s2i.json \

do
oc replace --force -f \

12

CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE JBOSS EAP FOR OPENSHIFT IMAGE

https://raw.githubusercontent.com/jboss-container-images/jboss-eap-openshift-
templates/eap73/templates/${resource}
done

This command imports the following imagestreams and templates.
® The Eclipse Opend9 builder imagestream: jpboss-eap-7-openj9-11-openshift
® The Eclipse Opend9 runtime imagestream: jpboss-eap-7-openj9-11-runtime-openshift

e All templates specified in the command.

NOTE

The JBoss EAP imagestreams and templates imported using these commands are only
available within that OpenShift project.

If you want to import the image streams and templates into a different project, add the -
n PROJECT_NAME to the oc replace line of the command. For example:

oc replace -n PROJECT_NAME --force -f

If you use the cluster-samples-operator, refer to the OpenShift documentation on configuring the
cluster samples operator. See Configuring the Samples Operator for details about configuring the
cluster samples operator.

2.4. DEPLOY A JBOSS EAP SOURCE-TO-IMAGE (S2I) APPLICATION
TO OPENSHIFT

After you import the images and templates, you can deploy applications to OpenShift.

OpenJDK 8 and Eclipse OpendJ9 template names use the prefix eap73-*; for example, eap73-https-s2i.
OpenJDK 11 template names use the prefix eap73-openjdk11-*; for example, eap73-openjdk11-https-
s2i.

Prerequisites

Optional: A template can specify default values for many template parameters, and you might have to
override some, or all, of the defaults. To see template information, including a list of parameters and any
default values, use the command oc describe template TEMPLATE_NAME.

Procedure

1. Create a new OpenShift application that uses the JBoss EAP for OpenShift image and the
source code of your Java application. You can use one of the provided JBoss EAP for
OpenShift templates for S2I builds. You can also choose to provision a trimmed server.

For example, to deploy the kitchensink quickstart using the JDK 8 builder image, enter the
following command to use the eap73-basic-s2i template in the eap-demo project, created in
Prepare OpenShift for Application Deployment, with the kitchensink source code on GitHub.
This quickstart does not support the trimming capability.

I oc new-app --template=eap73-basic-s2i \0

13

https://docs.openshift.com/container-platform/latest/openshift_images/configuring-samples-operator.html

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

14

-p IMAGE_STREAM_NAMESPACE=eap-demo \@)
-p SOURCE_REPOSITORY_URL=https://github.com/jboss-developer/jboss-eap-quickstarts

(3
-p SOURCE_REPOSITORY_REF=7.3.x-openshift)
-p CONTEXT_DIR=kitchensink@

ﬂ The template to use. The eap73 prefix specifies the JDK 8 template.
The latest imagestreams and templates were imported into the project’'s namespace, so
you must specify the namespace where to find the imagestream. This is usually the
project’s name
URL to the repository containing the application source code.

Q The Git repository reference to use for the source code. This can be a Git branch or tag
reference.

The directory within the source repository to build.

NOTE

Use a modified version of this command for the Eclipse OpenJ9 builder image on
IBM Z and IBM Power Systems. Include the following image name parameters in
the command. The JDK environment uses default values for these parameters.

e EAP_IMAGE_NAME=jboss-eap-7-openj9-11-openshift \

e EAP_RUNTIME_IMAGE_NAME=jboss-eap-7-openj9-11-runtime-openshift \

As another example, to deploy the helloworld-html5 quickstart using the JDK 11 runtime image
and trimming JBoss EAP to include only the jaxrs-server layer, enter the following command.
The command uses the eap73-openjdk1i-basic-s2i template in the eap-demo project,
created in Prepare OpenShift for Application Deployment, with the helloworld-html5 source
code on GitHub.

oc new-app --template=eap73-openjdk11-basic-s2i \ﬂ

-p IMAGE_STREAM_NAMESPACE=eap-demo \9

-p SOURCE_REPOSITORY_URL=https://github.com/jboss-developer/jpboss-eap-quickstarts
3]

-p SOURCE_REPOSITORY_REF=7.3.x-openshift \

-p GALLEON_PROVISION_LAYERS=jaxrs-server \

-p CONTEXT_DIR=hel|owor|d-htm|5@

The template to use. The eap73-openjdk11 prefix specifies the JDK 11 template.

The latest imagestreams and templates were imported into the project’'s namespace, so
you must specify the namespace where to find the imagestream. This is usually the
project’s name.

9 URL to the repository containing the application source code.

The Git repository reference to use for the source code. This can be a Git branch or tag
reference.

CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE JBOSS EAP FOR OPENSHIFT IMAGE

6 Provision a trimmed server with only the jaxrs-server layer.

6 The directory within the source repository to build.

NOTE

You might also want to configure environment variables when creating your new
OpenShift application.

For example, if you are using an HTTPS template such as eap73-https-s2i, you
must specify the required HTTPS environment variables HTTPS_NAME,
HTTPS_PASSWORD, and HTTPS_KEYSTORE to match your keystore details.

NOTE

If the template uses AMQ, you must include the AMQ_IMAGE_NAME parameter
with the appropriate value.

If the template uses SSO, you must include the SSO_IMAGE_NAME parameter
with the appropriate value.

2. Retrieve the name of the build configuration.
I $ oc get bc -0 name

3. Use the name of the build configuration from the previous step to view the Maven progress of
the build.

I $ oc logs -f buildconfig/BUILD _CONFIG_NAME

For example, for the kitchensink quickstart, the following command shows the progress of the
Maven build.

I $ oc logs -f buildconfig/eap-app

Additional Resources

Capability Trimming in JBoss EAP for OpenShift

2.5. POST DEPLOYMENT TASKS

Depending on your application, some tasks might need to be performed after your OpenShift
application has been built and deployed. This might include exposing a service so that the application is
viewable from outside of OpenShift, or scaling your application to a specific number of replicas.

1. Get the service name of your application using the following command.
I $ oc get service

2. Expose the main service as a route so you can access your application from outside of
OpenShift. For example, for the kitchensink quickstart, use the following command to expose
the required service and port.

15

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#capability-trimming-eap-foropenshift_default

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online
I $ oc expose service/eap-app --port=8080

NOTE

If you used a template to create the application, the route might already exist. If it
does, continue on to the next step.

3. Get the URL of the route.

I $ oc get route

4. Access the application in your web browser using the URL. The URL is the value of the
HOST/PORT field from previous command’s output.
If your application does not use the JBoss EAP root context, append the context of the
application to the URL. For example, for the kitchensink quickstart, the URL might be
http://HOST_PORT_VALUE/kitchensink/.

5. Optionally, you can also scale up the application instance by running the following command.
This increases the number of replicas to 3.

I $ oc scale deploymentconfig DEPLOYMENTCONFIG_NAME --replicas=3

For example, for the kitchensink quickstart, use the following command to scale up the
application.

I $ oc scale deploymentconfig eap-app --replicas=3

2.6. CHAINED BUILD SUPPORT IN JBOSS EAP FOR OPENSHIFT
JBoss EAP for OpenShift supports chained builds in OpenShift.

JBoss EAP for OpenShift templates employ chained builds. When you use these templates, two builds
result:

® Anintermediate image named [application name]-build-artifacts
e The final image, [application name]
For details about chained builds, see the OpenShift documentation.

Additional Resources

OpenShift Chained build documentation

16

https://docs.openshift.com/container-platform/4.3/builds/advanced-build-operations.html#builds-chaining-builds_advanced-build-operations

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATIOM

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT
IMAGE FOR YOUR JAVA APPLICATION

The JBoss EAP for OpenShift image is preconfigured for basic use with your Java applications.
However, you can configure the JBoss EAP instance inside the image. The recommended method is to
use the OpenShift S2I process, together with application template parameters and environment
variables.

IMPORTANT

Any configuration changes made on a running container will be lost when the container is
restarted or terminated.

This includes any configuration changes made using scripts that are included with a
traditional JBoss EAP installation, for example add-user.sh or the management CLI.

It is strongly recommended that you use the OpenShift S2| process, together with
application template parameters and environment variables, to make any configuration
changes to the JBoss EAP instance inside the JBoss EAP for OpenShift image.

3.1. HOW THE JBOSS EAP FOR OPENSHIFT S21 PROCESS WORKS

Flowchart illustrating the S2I process for JBoss EAP:

JBoss EAP for OpenShift Container Platform

ARTIFACT_DIR
(Environment variable)

Maven build

MAVEN_ARGS MAVEN_ARGS_APPEND
(Environment variable) (Environment variable)

vy

Source code repository

pom.xml JAR WAR EAR

Module source

directory
OpenShiftimage
e EAP_HOME directory
Configuration source v
it direct:
repostiery directony > modules configurations deployments

A A

standalone_openshift.xml

1. If a pom.xml file is present in the source code repository, the S2I builder image initiates a
Maven build process. The Maven build uses the contents of SMAVEN_ARGS.
If a pom.xml file is not present in the source code repository, the S2I builder image initiates a
binary type build.

17

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

To add custom Maven arguments or options, use SMAVEN_ARGS_APPEND. The
$MAVEN_ARGS_APPEND variable appends options to $MAVEN_ARGS.

By default, the OpenShift profile uses the Maven package goal, which includes system
properties for skipping tests (-DskipTests) and enabling the Red Hat GA repository (-
Dcom.redhat.xpaas.repo).

The results of a successful Maven build are copied to the
EAP_HOME/standalone/deployments/ directory inside the JBoss EAP for OpenShift image.
This includes all JAR, WAR, and EAR files from the source repository specified by the
$ARTIFACT_DIR environmental variable. The default value of ARTIFACT_DIR is the Maven
target directory.

NOTE

To use Maven behind a proxy on JBoss EAP for OpenShift image, set the
$HTTP_PROXY_HOST and $HTTP_PROXY_PORT environment variables.
Optionally, you can also set the $SHTTP_PROXY_USERNAME,
$HTTP_PROXY_PASSWORD, and $HTTP_PROXY_NONPROXYHOSTS
variables.

2. Allfiles in the modules source repository directory are copied to the EAP_HOME/modules/
directory in the JBoss EAP for OpenShift image.

3. Allfiles in the configuration source repository directory are copied to the
EAP_HOME/standalone/configuration/ directory in the JBoss EAP for OpenShift image. If you
want to use a custom JBoss EAP configuration file, name the file standalone-openshift.xmi.

Additional Resources

® See Binary (local) source on the OpenShift 4.2 documentation for additional information on
binary type builds.

® See Artifact Repository Mirrors for additional guidance on how to instruct the S2I process to use
the custom Maven artifacts repository mirror.

3.2. CONFIGURING JBOSS EAP FOR OPENSHIFT USING
ENVIRONMENT VARIABLES

Using environment variables is the recommended method of configuring the JBoss EAP for OpenShift
image. See the OpenShift documentation for instructions on specifying environment variables for
application containers and build containers.

For example, you can set the JBoss EAP instance’s management username and password using
environment variables when creating your OpenShift application:

oc new-app --template=eap73-basic-s2i \

-p IMAGE_STREAM_NAMESPACE=eap-demo \

-p SOURCE_REPOSITORY_URL=https://github.com/jooss-developer/jboss-eap-quickstarts \
-p SOURCE_REPOSITORY_REF=7.3.x-openshift \

-p CONTEXT_DIR=kitchensink \

-e ADMIN_USERNAME=myspecialuser \

-e ADMIN_PASSWORD=myspecialp@sswOrd

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/builds/creating-build-inputs#builds-binary-source_creating-build-inputs
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#eap-artifact-repository-mirrors-section
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-environment-variables#set-environment-variables

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATIOM

NOTE

This example uses the JDK 8 template. For JDK 11, use the eap73-openjdk11-basic-s2i
template.

Available environment variables for the JBoss EAP for OpenShift image are listed in Reference
Information.

3.2.1. JVM Memory Configuration

The OpenShift EAP image has a mechanism to automatically calculate the default JVM memory
settings based on the current environment, but you can also configure the JVM memory settings using
environment variables.

3.2.1.1. JVM Default Memory Settings

If a memory limit is defined for the current container, and the limit is lower than the total available
memory, the default JVM memory settings are calculated automatically. Otherwise, the default JVM
memory settings are the default defined in the standalone.conf file of the EAP version used as the
base server for the image.

The container memory limit is retrieved from the file /sys/fs/cgroup/memory/memory.limit_in_bytes.
The total available memory is retrieved using the /proc/meminfo command.

When memory settings are calculated automatically, the following formulas are used:
® Maximum heap size (-Xmx): fifty percent (50%) of user memory
® Initial heap size (-Xms): twenty-five percent (25%) of the calculated maximum heap size.

For example, the defined memory limit is 1 GB, and this limit is lower than the total available memory
reported by /proc/meminfo, then the memory settings will be: -Xms128m -Xmx512

You can use the following environment variables to modify the JVM settings calculated automatically.
Note that these variables are only used when default memory size is calculated automatically (in other
words, when a valid container memory limit is defined).

e JAVA MAX_MEM_RATIO

e JAVA_INITIAL_MEM_RATIO

e JAVA MAX_INITIAL_MEM

You can disable automatic memory calculation by setting the value of the following two environment
variables to O.

e JAVA_INITIAL_MEM_RATIO

e JAVA_MAX_MEM_RATIO

3.2.1.2. JVM Garbage Collection Settings

The EAP image for OpenShift includes settings for both garbage collection and garbage collection
logging

Garbage Collection Settings

19

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

-XX:+UseParallelOIdGC -XX:MinHeapFreeRatio=10 -XX:MaxHeapFreeRatio=20 -XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeight=90 -XX:+ExitOnOutOfMemoryError

Garbage Collection Logging Settings for Java 8 (non-modular JVM)

-verbose:gc -Xloggc:/opt/eap/standalone/log/gc.log -XX:+PrintGCDetails -XX:+PrintGCDateStamps
-XX:+#UseGCLogFileRotation -XX:NumberOfGCLogFiles=5 -XX:GCLogFileSize=3M -XX:-
TraceClassUnloading

Garbage Collection Logging Settings for Java 11 (modular JVM)

-Xlog:gc*:file=/opt/eap/standalone/log/gc.log:time,uptimemillis:filecount=5,filesize=3M

3.2.1.3. Resource Limits in Default Settings

If set, additional default settings are included in the image.

-XX:ParallelGCThreads={core-limit} -Djava.util.concurrent.ForkJoinPool.common.parallelism={core-
limit} -XX:CICompilerCount=2

The value of {core-limit} is defined using the JAVA_CORE_LIMIT environment variable, or by the CPU
core limit imposed by the container.

The value of CICompilerCount is always fixed as 2.

3.2.1.4. JVM Environment Variables

Use these environment variables to configure the JVM in the EAP for OpenShift image.

Table 3.1. JVM Environment Variables

Variable Name Example Default Value JVM Settings Description

JAVA_OPTS -verbose:class No default Multiple JVM options to
pass to the java
command.

Use

JAVA OPTS_A
PPEND to
configure
additional JVM
settings. If you use
JAVA OPTS,
some
unconfigurable
defaults are not
added to the
server JVM
settings. You must
explicitly add
these settings.

Using

JAVA OPTS
disables certain

20

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATIOM

Variable Name Default Value JVM Settings

JAVA_OPTS_APP
END

Dsome.property=v
alue

No default

Multiple

Description

contalner scripts.
Disabled settings
include

. -
XX:Metas
paceSize
=96M

. -
Djava.net.
preferlPv
4Stack=tr
ue

‘ -
Djboss.m
odules.sy
stem.pkg
s=org.jbo
ss.logman
ager,jdk.n
ashorn..a
pi,com.su
n.crypto.
provider

‘ -
Djava.awt.
headless=
true

In addition, if
automatic memory
calculation is not
enabled, the inital
Java memory (-
Xms) and
maximum Java
memory (-Xmx)
are not defined.

Add these defaults
if you use

JAVA OPTS to
configure
additional settings.

User-specified
Java options to
append to
generated options
inJAVA_OPTS.

21

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

22

Variable Name

JAVA_MAX_MEM_
RATIO

Example

50

Default Value

50

JVM Settings

-Xmx

Description

Use this variable
when the -Xmx
optionis not
specified in
JAVA OPTS.
The value of this
variable is used to
calculate a default
maximum heap
memory size
based on the
restrictions of the
container. If this
variable is used in
a container
without a memory
constraint, the
variable has no
effect. If this
variable is used in
a container that
does have a
memory
constraint, the
value of -Xmx is
set to the
specified ratio of
the container’s
available memory.
The default value,
50 means that
50% of the
available memory
is used as an
upper boundary.
To skip calculation
of maximum
memory, set the
value of this
variable to 0. No-
Xmx option will be
added to

JAVA OPTS.

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATIOM

Variable Name

JAVA_INITIAL_ME
M_RATIO

Example

25

Default Value

25

JVM Settings

-Xms

Description

Use this variable
when the -Xms
optionis not
specified in
JAVA OPTS.
The value of this
variable is used to
calculate the
default initial heap
memory size
based on the
maximum heap
memory. If this
variable is used in
a container
without a memory
constraint, the
variable has no
effect. If this
variable is used in
a container that
does have a
memory
constraint, the
value of -Xms is
set to the
specified ratio of
the -Xmx
memory. The
default value, 25
means that 25% of
the maximum
memory is used as
the initial heap
size. To skip
calculation of
initial memory, set
the value of this
variable to 0. No~-
Xms option will be
added to

JAVA OPTS.

23

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

Variable Name Example Default Value JVM Settings Description

JAVA_MAX_INITIA 4096 4096 -Xms Use this variable

L_MEM when the -Xms
optionis not
specified in
JAVA_ OPTS.

The value of this
variable is used to
calculate the
maximum size of
the initial memory
heap. The value is
expressed in
megabytes (MB).
If this variable is
used in a container
without a memory
constraint, the
variable has no
effect. If this
variable is used in
a container that
does have a
memory
constraint, the
value of -Xms is
set to the value
specified in the
variable. The
default value,
4096, specifies
that the maximum
initial heap will
never be larger
than 4096MB.

24

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATIOM

Variable Name

JAVA_DIAGNOSTI
CS

DEBUG

DEBUG_PORT

Example

true

true

8787

Default Value

false (disabled)

false

8787

JVM Settings

The settings
depend on the
JDK used by the
container.

e OpendDK
8: -
XX:Native
MemoryT
racking=s
ummary -
XX:+Print
GC -
XX:+Print
GCDateS
tamps -
XX:+Print
GCTimeS
tamps -
XX:+Unlo
ckDiagno
sticVMO
ptions

e OpendDK
1: -
Xlog:gc:u
tctime -
XX:Native
MemoryT
racking=s
ummary

agentlib:;jdwp=tran
sport=dt_socket,a

ddress=$DEBUG_
PORT server=y,sus
pend=n

agentlib:;jdwp=tran
sport=dt_socket,a
ddress=$DEBUG_
PORT server=y,sus
pend=n

Description

Set the value of
this variable to
true to include
diagnostic
information in
standard output
when events
occur. If this
variable is defined
as true in an
environment
where

JAVA DIAGNO
STICS has
already been
defined as true,
diagnostics are
still included.

Enables remote
debugging.

Specifies the port
used for
debugging.

25

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

26

Variable Name

JAVA_CORE_LIMI
T

GC_MIN_HEAP_F
REE_RATIO

GC_MAX_HEAP_F
REE_RATIO

GC_TIME_RATIO

Example

20

40

4

Default Value

Undefined

20

JVM Settings

XX:parallelGCThre
ads -

Djava.util.concurre
nt.ForkJoinPool.c
ommon.parallelism

XX:ClCompilerCou
nt

XX:MinHeapFreeR
atio

XX:MaxHeapFree
Ratio

-XX:GCTimeRatio

Description

A user-defined
limit on the
number of cores. If
the container
reports a limit
constraint, the
value of the JVM
settings is limited
to the container
core limit. The
value of -
XXCICompilerCou
ntis always 2. By
default, this
variable is
undefined. In that
case, if a limitis
not defined on the
container, the
JVM settings are
not set.

Minimum
percentage of
heap free after
garbage collection
to avoid
expansion.

Maximum
percentage of
heap free after
garbage collection
to avoid shrinking.

Specifies the ratio
of the time spent
outside of garbage
collection (for
example, time
spentin
application
execution) to the
time spentin
garbage
collection.

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATIOM

Variable Name

GC_ADAPTIVE_S|
ZE_POLICY_WEIG
HT

GC_METASPACE_

SIZE

GC_MAX_METAS
PACE_SIZE

GC_CONTAINER_
OPTIONS

Example

90

20

100

-XX:+UserG1GC

Default Value

90

96

256

-XX:-
UseParallelOIdGC

The following environment variables are deprecated:

e JAVA OPTIONS: Use JAVA_OPTS.

JVM Settings

XX:AdaptiveSizeP
olicyWeight

XX:MetaspaceSize

XX:MaxMetaspace
Size

-XX:-
UseParallelOIdGC

e INITIAL_HEAP_PERCENT: Use JAVA_INITIAL_MEM_RATIO.

e CONTAINER_HEAP_PERCENT: Use JAVA_MAX_MEM_RATIO.

3.3. BUILD EXTENSIONS AND PROJECT ARTIFACTS

Description

The weighting
given to the
current garbage
collection time
versus the
previous garbage
collection times.

The initial
metaspace size.

The maximum
metaspace size.

Specifies the Java
garbage collection
to use. The value
of the variable
should be the JRE
command-line
options to specify
the required
garbage
collection. The
JRE command
specified overrides
the default.

The JBoss EAP for OpenShift image extends database support in OpenShift using various artifacts.
These artifacts are included in the built image through different mechanisms:

® S?|artifacts that are injected into the image during the S2I process.

® Runtime artifacts from environment files provided through the OpenShift Secret mechanism.

27

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

Docker build

(from rhel7/rhel8)
(from jboss-eap73-runtime-openshift)

S2l artifact ! Extension images 52l artifact :

for example, Jakarta EE Maven project 1 extensions |
i |

i . . i

¢ ! Client Client !

! image 1 image 2 :

. 1 I

S21 build Inject 1 i

(from jboss-eap73-openshift) ' i
¢ H Client C:sto.m !

i image N extension :

! image Push S2I build i

i |

! |

! |

lPush

Deploy Mount Runtime artifact
’ OpensShift Secret mechanism

Container image

IMPORTANT

Support for using the Red Hat-provided internal datasource drivers with the JBoss EAP
for OpenShift image is now deprecated. Red Hat recommends that you use JDBC drivers
obtained from your database vendor for your JBoss EAP applications.

The following internal datasources are no longer provided with the JBoss EAP for
OpenShift image:

o MySQL

® PostgreSQL

For more information about installing drivers, see Modules, Drivers, and Generic Deployments.

For more information on configuring JDBC drivers with JBoss EAP, see JDBC drivers in the JBoss EAP
Configuration Guide.

Note that you can also create a custom layer to install these drivers and datasources if you want to add
them to a provisioned server.

Additional Resources

Capability Trimming in JBoss EAP for OpenShift

3.3.1. S2| Artifacts

The S2l artifacts include modules, drivers, and additional generic deployments that provide the
necessary configuration infrastructure required for the deployment. This configuration is built into the
image during the S2I process so that only the datasources and associated resource adapters need to be
configured at runtime.

See Artifact Repository Mirrors for additional guidance on how to instruct the S2I process to utilize the
custom Maven artifacts repository mirror.

28

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#jdbc_drivers
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#capability-trimming-eap-foropenshift_default

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATIOM

3.3.1.1. Modules, Drivers, and Generic Deployments

There are a few options for including these S2I artifacts in the JBoss EAP for OpenShift image:

1. Include the artifact in the application source deployment directory. The artifact is downloaded
during the build and injected into the image. This is similar to deploying an application on the
JBoss EAP for OpenShift image.

2. Include the CUSTOM_INSTALL_DIRECTORIES environment variable, a list of comma-
separated list of directories used for installation and configuration of artifacts for the image
during the S2I process. There are two methods for including this information in the S2I:

® Aninstall.sh script in the nominated installation directory. The install script executes during
the S2I process and operates with impunity.

install.sh Script Example

#!/bin/bash

injected_dir=$1

source /usr/local/s2i/install-common.sh

install_deployments ${injected_dir}/injected-deployments.war
install_modules ${injected_dir}/modules

configure_drivers ${injected_dir}/drivers.env

The install.sh script is responsible for customizing the base image using APIs provided by
install-common.sh. install-common.sh contains functions that are used by the install.sh
script to install and configure the modules, drivers, and generic deployments.

Functions contained within install-common.sh:

(o}

(o}

(o}

install_modules
configure_drivers
install_deployments

Modules

A module is a logical grouping of classes used for class loading and dependency
management. Modules are defined in the EAP_HOME/modules/ directory of the
application server. Each module exists as a subdirectory, for example
EAP_HOME/modules/org/apache/. Each module directory then contains a slot
subdirectory, which defaults to main and contains the module.xml configuration file
and any required JAR files.

For more information about configuring module.xml files for MySQL and PostgreSQL
JDBC drivers, see the Datasource Configuration Examples in the JBoss EAP
Configuration Guide.

Example module.xml File for PostgreSQL Datasource

<?xml version="1.0" encoding="UTF-8"7?>

<module xmiIns="urn:jboss:module:1.0" name="org.postgresql">
<resources>

<resource-root path="postgresql-jdbc.jar"/>

29

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#example_datasource_configurations

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

30

</resources>

<dependencies>

<module name="javax.api"/>

<module name="javax.transaction.api"/>
</dependencies>

</module>

Example module.xml File for MySQL Connect/J 8 Datasource

<?xml version="1.0" encoding="UTF-8"7?>

<module xmiIns="urn:jboss:module:1.0" name="com.mysql">
<resources>

<resource-root path="mysql-connector-java-8.0.Z.jar" />
</resources>

<dependencies>

<module name="javax.api"/>

<module name="javax.transaction.api"/>

</dependencies>

</module>

NOTE

The ".Z" in mysql-connector-java-8.0.Z.jar indicates the version of the
JAR file downloaded. The file can be renamed, but the name must match
A the name in the module.xml file.

The install_modules function in install.sh copies the respective JAR files to the
modules directory in JBoss EAP, along with the module.xml.

Drivers

Drivers are installed as modules. The driver is then configured in install.sh by the
configure_drivers function, the configuration properties for which are defined in a
runtime artifact environment file.

Adding Datasource Drivers

The MySQL and PostgreSQL datasources are no longer provided as pre-configured
internal datasources. You can still install these drivers as modules; see the description in
Modules, Drivers, and Generic Deployments. You can obtain these JDBC drivers from
the database vendor for your JBoss EAP applications.

Create a drivers.env file for each datasource to be installed.

Example drivers.env File for MySQL Datasource

#DRIVER

DRIVERS=MYSQL
MYSQL_DRIVER_NAME=mysq|
MYSQL_DRIVER_MODULE=0rg.mysq|
MYSQL_DRIVER_CLASS=com.mysql.cj.jdbc.Driver

MYSQL_XA_DATASOURCE_CLASS=com.mysql.jdbc.jdbc2.optional.MysqglXADataSoL

rce

Example drivers.env File for PostgreSQL Datasource

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATIOM

#DRIVER

DRIVERS=POSTGRES

POSTGRES_DRIVER_NAME=postgresq|
POSTGRES_DRIVER_MODULE=org.postgresq|
POSTGRES_DRIVER_CLASS=org.postgresql.Driver
POSTGRES_XA_DATASOURCE_CLASS=org.postgresqgl.xa.PGXADataSource

For information about download locations for various drivers, such as MySQL or
PostgreSQL, see JDBC Driver Download Locations in the Configuration Guide.

Generic Deployments

Deployable archive files, such as JARs, WARs, RARs, or EARs, can be deployed from an injected image
using the install_deployments function supplied by the APl in install-common.sh.

e |f the CUSTOM_INSTALL_DIRECTORIES environment variable has been declared but no
install.sh scripts are found in the custom installation directories, the following artifact
directories will be copied to their respective destinations in the built image:

o modules/* copied to $JBOSS_HOME/modules/system/layers/openshift
o configuration/* copied to $JBOSS_HOME/standalone/configuration
o deployments/* copied to $JBOSS_HOME/standalone/deployments

This is a basic configuration approach compared to the install.sh alternative, and requires the
artifacts to be structured appropriately.

3.3.2. Runtime Artifacts

3.3.2.1. Datasources

There are two types of datasources:

1. Internal datasources. These datasources run on OpenShift, but are not available by default
through the Red Hat Registry. Configuration of these datasources is provided by environment
files added to OpenShift Secrets.

2. External datasources. These datasources do not run on OpenShift. Configuration of external
datasources is provided by environment files added to OpenShift Secrets.

Example: Datasource Environment File

DB_SERVICE_PREFIX_MAPPING=PostgresXA-POSTGRES=DS1
DS1_JNDI=java:jboss/datasources/pgds
DS1_DRIVER=postgresql-42.2.5.jar

DS1_USERNAME=postgres

DS1_PASSWORD=postgres

DS1_MAX_POOL_SIZE=20

DS1_MIN_POOL_SIZE=20

DS1_CONNECTION_CHECKER=o0rg.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLValidCo

nnectionChecker

DS1_EXCEPTION_SORTER=o0rg.jboss.jca.adapters.jdbc.extensions.postgres.Postgre SQLExceptionSc

rter

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#jdbc_driver_download_locations

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

The DB_SERVICE_PREFIX_MAPPING property is a comma-separated list of datasource property
prefixes. These prefixes are then appended to all properties for that datasource. Multiple datasources
can then be included in a single environment file. Alternatively, each datasource can be provided in
separate environment files.

Datasources contain two types of properties: connection pool-specific properties and database driver-
specific properties. The connection pool-specific properties produce a connection to a datasource.
Database driver-specific properties determine the driver for a datasource and are configured as a driver
S2l artifact.

In the above example, DS1 is the datasource prefix, CONNECTION_CHECKER specifies a connection
checker class used to validate connections for a database, and EXCEPTION_SORTER specifies the
exception sorter class used to detect fatal database connection exceptions.

The datasources environment files are added to the OpenShift Secret for the project. These
environment files are then called within the template using the ENV_FILES environment property, the
value of which is a comma-separated list of fully qualified environment files as shown below.

{
“Name”: “ENV_FILES”,

“Value”: “/etc/extensions/datasourcesi.env,/etc/extensions/datasources2.env”

3.3.2.2. Resource Adapters

Configuration of resource adapters is provided by environment files added to OpenShift Secrets.

Table 3.2. Resource Adapter Properties

Attribute Description

PREFIX_ID The identifier of the resource adapter as specified in the server
configuration file.

PREFIX_ARCHIVE The resource adapter archive.

PREFIX_MODULE_SLOT The slot subdirectory, which contains the module.xml
configuration file and any required JAR files.

PREFIX_MODULE_ID The JBoss Module ID where the object factory Java class can be
loaded from.
PREFIX_CONNECTION_CLASS The fully qualified class name of a managed connection factory

or admin object.

PREFIX_CONNECTION_JNDI The JNDI name for the connection factory.

PREFIX_PROPERTY_ParentDirectory Directory where the data files are stored.

PREFIX_PROPERTY_AllowParentPaths Set AllowParentPaths to false to disallow .. in paths. This
prevents requesting files that are not contained in the parent
directory.

32

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATIOM

Attribute Description

PREFIX_POOL_MAX_SIZE The maximum number of connections for a pool. No more
connections will be created in each sub-pool.

PREFIX_POOL_MIN_SIZE The minimum number of connections for a pool.

PREFIX_POOL_PREFILL Specifies if the pool should be prefilled. Changing this value
requires a server restart.

PREFIX_POOL_FLUSH_STRATEGY How the pool should be flushed in case of an error. Valid values
are: FailingConnectionOnly (default), IdleConnections,
and EntirePool.

The RESOURCE_ADAPTERS property is a comma-separated list of resource adapter property
prefixes. These prefixes are then appended to all properties for that resource adapter. Multiple resource
adapter can then be included in a single environment file. In the example below, MYRA is used as the
prefix for a resource adapter. Alternatively, each resource adapter can be provided in separate
environment files.

Example: Resource Adapter Environment File

#RESOURCE_ADAPTER

RESOURCE_ADAPTERS=MYRA

MYRA_ID=myra

MYRA_ARCHIVE=myra.rar
MYRA_CONNECTION_CLASS=o0rg.javaee?.jca.connector.simple.connector.outbound.MyManagedCo
nnectionFactory

MYRA_CONNECTION_JNDI=java:/eis/MySimpleMFC

The resource adapter environment files are added to the OpenShift Secret for the project namespace.
These environment files are then called within the template using the ENV_FILES environment
property, the value of which is a comma-separated list of fully qualified environment files as shown
below.

{
"Name": "ENV_FILES",

"Value": "/etc/extensions/resourceadapteri.env,/etc/extensions/resourceadapter2.env”

}

3.4.RESULTS OF USING JBOSS EAP TEMPLATES FOR OPENSHIFT

When you use JBoss EAP templates to compile your application, two images might be generated.

An intermediate image named [application name]-build-artifacts might be generated before the final
image, [application name], is created.

You can remove the [application name]-build-artifacts image after your application has been
deployed.

33

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

3.5.SSO CONFIGURATION OF RED HAT JBOSS ENTERPRISE
APPLICATION PLATFORM FOR OPENSHIFT IMAGES

In Red Hat JBoss Enterprise Application Platform for OpenShift images, SSO is configured to use the
legacy security subsystem.

The environmment variable SSO_FORCE_LEGACY_SECURITY is set to true in these images.

If you want to use the elytron subsystem for SSO security, update the value of the
SSO_FORCE_LEGACY_SECURITY environment variable to false.

3.6. DEFAULT DATASOURCE
In JBoss EAP 7.3, the default datasource, ExampleDS, is removed.
Some quickstarts require this datasource:
e cmt
e thread-racing
Applications developed by customers might also require the default datasource.

If you need the default datasource, use the GENERATE_DEFAULT_DATASOURCE environment
variable to include it when provisioning a JBoss EAP server.

I ENABLE_GENERATE_DEFAULT_DATASOURCE=true

3.7.DEPLOYMENT CONSIDERATIONS FOR THE JBOSS EAP FOR
OPENSHIFT IMAGE

3.7.1. Scaling Up and Persistent Storage Partitioning

There are two methods for deploying JBoss EAP with persistent storage: single-node partitioning, and
multi-node partitioning.

Single-node partitioning stores the JBoss EAP data store directory, including transaction data, in the
storage volume.

Multi-node partitioning creates additional, independent split-n directories to store the transaction data
for each JBoss EAP pod, where nis an incremental integer. This communication is not altered if a JBoss
EAP pod is updated, goes down unexpectedly, or is redeployed. When the JBoss EAP pod is operational
again, it reconnects to the associated split directory and continues as before. If a new JBoss EAP pod is
added, a corresponding split-n directory is created for that pod.

To enable the multi-node configuration you must set the SPLIT_DATA parameter to true. This results

in the server creating independent split-n directories for each instance within the persistent volume
which are used as their data store.

34

CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATIOM

' WARNING
A Using the environment variables like SPLIT_DATA while using the EAP operator

can cause consistency issues. You must use the EAP operator to manage
transaction discovery in OpenShift 4 and later versions.

IMPORTANT

Due to the different storage methods of single-node and multi-node partitioning,
changing a deployment from single-node to multi-node results in the application losing all
data previously stored in the data directory, including messages, transaction logs, and so
on. This is also true if changing a deployment from multi-node to single-node, as the
storage paths will not match.

3.7.2. Scaling Down and Transaction Recovery

When the JBoss EAP for OpenShift image is deployed using a multi-node configuration, it is possible for
unexpectedly terminated transactions to be left in the data directory of a terminating pod if the cluster
is scaled down.

See manual transaction recovery to complete these branches.

35

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

CHAPTER 4. CAPABILITY TRIMMING IN JBOSS EAP FOR
OPENSHIFT

When building an image that includes JBoss EAP, you can control the JBoss EAP features and
subsystems to include in the image.

The default JBoss EAP server included in S2I images includes the complete server and all features. You
might want to trim the capabilities included in the provisioned server. For example, you might want to

reduce the security exposure of the provisioned server, or you might want to reduce the memory
footprint so it is more appropriate for a microservice container.

4.1. PROVISION A CUSTOM JBOSS EAP SERVER

To provision a custom server with trimmed capabilities, pass the GALLEON_PROVISION_LAYERS
environment variable during the S2I build phase.

The value of the environment variable is a comma-separated list of the layers to provision to build the
server.

For example, if you specify the environment variable as GALLEON_PROVISION_LAYERS=jaxrs-
server,sso, a JBoss EAP server is provisioned with the following capabilities:

® Aservlet container
® The ability to configure a datasource
® The jaxrs, weld, and jpa subsystems

® RedHat SSO integration

4.2. AVAILABLE JBOSS EAP LAYERS
Red Hat makes available six layers to customize provisioning of the JBoss EAP server in OpenShift.

Three layers are base layers that provide core functionality. Three are decorator layers that enhance the
base layers.

The following Jakarta EE specifications are not supported in any provisioning layer:
® Jakarta Server Faces 2.3
® Jakarta Enterprise Beans 3.2

e Jakarta XML Web Services 2.3

4.2.1. Base Layers

Each base layer includes core functionality for a typical server user case.

datasources-web-server
This layer includes a servlet container and the ability to configure a datasource.

This layer does not include MicroProfile capabilities.

The following are the JBoss EAP subsystems included by default in the datasources-web-server:

36

CHAPTER 4. CAPABILITY TRIMMING IN JBOSS EAP FOR OPENSHIF1

e core-management
e datasources
e deployment-scanner
® ee
e elytron
® jo
® jca
® jmx
® logging
® naming
e request-controller
® security-manager
e t{ransactions
® undertow
The following Jakarta EE specifications are supported in this layer:
® Jakarta JSON Processing 1.1
® Jakarta JSON Binding 1.0
® Jakarta Servlet 4.0
® Jakarta Expression Language 3.0
® Jakarta Server Pages 2.3
® Jakarta Standard Tag Library 1.2
® Jakarta Concurrency 1.1
® Jakarta Annotations 1.3
® Jakarta XML Binding 2.3
e Jakarta Debugging Support for Other Languages 1.0
® Jakarta Transactions 1.3
® Jakarta Connectors 1.7

jaxrs-server
This layer enhances the datasources-web-server layer with the following JBoss EAP subsystems:

® jaxrs

37

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

e weld

® jpa
This layer also adds Infinispan-based second-level entity caching locally in the container.
The following MicroProfile capability is included in this layer:

® MicroProfile REST Client

The following Jakarta EE specifications are supported in this layer in addition to those supported in the
datasources-web-server layer:

® Jakarta Contexts and Dependency Injection 2.0
® Jakarta Bean Validation 2.0

® Jakarta Interceptors 1.2

e Jakarta RESTful Web Services 2.1

® Jakarta Persistence 2.2

cloud-server
This layer enhances the jaxrs-server layer with the following JBoss EAP subsystems:

® resource-adapters

® messaging-activemq (remote broker messaging, not embedded messaging)
This layer also adds the following observability features to the jaxrs-server layer:

® MicroProfile Health

® MicroProfile Metrics

® MicroProfile Config

® MicroProfile OpenTracing

The following Jakarta EE specification is supported in this layer in addition to those supported in the
jaxrs-server layer:

® Jakarta Security 1.0

4.2.2. Decorator Layers

Decorator layers are not used alone. You can configure one or more decorator layers with a base layer to
deliver additional functionality.

Sso
This decorator layer adds Red Hat Single Sign-On integration to the provisioned server.

observability
This decorator layer adds the following observability features to the provisioned server:

® MicroProfile Health

38

CHAPTER 4. CAPABILITY TRIMMING IN JBOSS EAP FOR OPENSHIF1

® MicroProfile Metrics
® MicroProfile Config

® MicroProfile OpenTracing

NOTE

This layer is built in to the cloud-server layer. You do not need to add this layer to the
- cloud-server layer.

web-clustering
This layer adds embedded Infinispan-based web session clustering to the provisioned server.

4.3. PROVISIONING USER-DEVELOPED LAYERS IN JBOSS EAP

In addition to provisioning layers available from Red Hat, you can provision custom layers you develop.

Procedure

1. Build a custom layer using the Galleon Maven plugin.
For more information, see Building Custom Layers for JBoss EAP..

2. Deploy the custom layer to an accessible Maven repository.

3. Create a custom provisioning file to reference the user-defined layer and supported JBoss EAP
layers and store it in your application directory.
For more information, see Custom Provisioning Files for JBoss EAP .

4. Run the S2I process to provision a JBoss EAP server in OpenShift.
For more information, see Building an Application Provisioned with User-developed Layers .

4.3.1. Building Custom Layers for JBoss EAP

Create your custom layer feature pack as a Maven project.

1. Custom layers depend on at least a base layer. Select the base layer that provides the
capabilities you need for your custom layer.

2. Within the Maven project, create your layer content in the directory src/main/resources.
For example, to create layers to provision support for PostgreSQL and a PostgreSQL
datasource, in the directory src/main/resources create the layers/standalone subdirectories.
The standalone subdirectory includes the following content.

e postgresql-driver
This directory contains a layer-spec.xml file with the following content.

<?xml version="1.0" 7>
<layer-spec xmins="urn:jboss:galleon:layer-spec:1.0" name="postgresql-driver">
<feature spec="subsystem.datasources">
<feature spec="subsystem.datasources.jdbc-driver">
<param name="driver-name" value="postgresql"/>
<param name="jdbc-driver" value="postgresql"/>
<param name="driver-xa-datasource-class-name"

39

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#building-custom-layers_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#custom-provisioning-files-jboss-eap_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#building-application-provisioned-user-developed-layers_default

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

value="org.postgresqgl.xa.PGXADataSource"/>
<param name="driver-module-name" value="org.postgresql.jdbc"/>
</feature>
</feature>
<packages>
<package name="org.postgresql.jdbc"/>
</packages>
</layer-spec>

e postgresql-datasource
This directory contains a layer-spec.xml file with the following content.

<?xml version="1.0" 7>
<layer-spec xmins="urn:jboss:galleon:layer-spec:1.0" name="postgresql-datasource">
<dependencies>
<layer name="postgresql-driver"/>
</dependencies>
<feature spec="subsystem.datasources.data-source">
<param name="use-ccm" value="true"/>
<param name="data-source" value="PostgreSQLDS"/>
<param name="enabled" value="true"/>
<param name="use-java-context" value="true"/>
<param name="jndi-name"
value="java:jboss/datasources/${env.POSTGRESQL_DATASOURCE,env.OPENSHIFT_P
OSTGRESQL_DATASOURCE:PostgreSQLDS}"/>
<param name="connection-url"
value="jdbc:postgresql://${env.POSTGRESQL_SERVICE_HOST,\
env.OPENSHIFT_POSTGRESQL_DB_HOST}:${env.POSTGRESQL_SERVICE_PORT,\

env.OPENSHIFT_POSTGRESQL_DB_PORT}/${env.POSTGRESQL_DATABASE,
env.OPENSHIFT_POSTGRESQL_DB_NAME}"/>

<param name="driver-name" value="postgresql"/>

<param name="user-name" value="${env.POSTGRESQL_USER,
env.OPENSHIFT_POSTGRESQL_DB_USERNAME}"/>

<param name="password" value="${env.POSTGRESQL_ PASSWORD,
env.OPENSHIFT_POSTGRESQL_DB_PASSWORD}"/>

<param name="check-valid-connection-sql" value="SELECT 1"/>

<param name="background-validation" value="true"/>

<param name="background-validation-millis" value="60000"/>

<param name="flush-strategy" value="IdleConnections"/>

<param name="statistics-enabled" value="${wildfly.datasources.statistics-
enabled:${wildfly.statistics-enabled:false}}" />

</feature>

3. In the pom.xml file used to build your custom feature pack, refer to the JBoss EAP
dependencies.

<dependency>
<groupld>org.jboss.eap</groupld>
<artifact|d>wiIdey-ee-gaIIeon-pack</artifactld>ﬂ
<version>7.3.0.GA-redhat-00004</version>
<type>zip</type>

</dependency>

40

CHAPTER 4. CAPABILITY TRIMMING IN JBOSS EAP FOR OPENSHIF1

When using the JBoss EAP expansion pack (JBoss EAP XP), the value of this element
should be wildfly-galleon-pack.

These dependencies are available in the Red Hat Maven repository:
https://maven.repository.redhat.com/ga/

4. Use the build-user-feature-pack goal in the Galleon Maven plugin to build custom layers.

Additional Resources

Base Layers
WildFly Galleon Maven Plugin Documentation

Example illustrating packaging of drivers and datasources as Galleon layers

4.3.2. Custom Provisioning Files for JBoss EAP

Custom provisioning files are XML files with the file name provisioning.xml that are stored in the
galleon subdirectory.

The following code illustrates a custom provisioning file.

<?xml version="1.0" ?>
<installation xmlns="urn:jboss:galleon:provisioning:3.0">
<feature-pack Iocation=”eap-52i@maven(org.jboss.universe:32i-universe)">ﬂ
<default-configs inherit=”false"/>9
<packages inherit=”false"/>6
</feature-pack>
<feature-pack location="com.example.demo:my-galleon-feature-pack:1.0
">
<default-configs inherit="false"/>
<packages inherit="false"/>
</feature-pack>
<config model="standalone" name=”standalone.me”>6
<layers>
<include name="cloud-server"/>
<include name="my-custom-driver"/>
<include name="my-custom-datasource"/>
</layers>
</config>
<options>
<option name="optional-packages" value="passive+"/>
</options>
</installation>

This element instructs the provisioning process to provision the current eap-s2i feature-pack. Note
that a builder image includes only one feature pack.

9 This element instructs the provisioning process to exclude default configurations.

9 This element instructs the provisioning process to exclude default packages.

o

41

https://maven.repository.redhat.com/ga/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#base-provisioning-layers_default
https://docs.wildfly.org/galleon-plugins
https://github.com/wildfly-extras/wildfly-datasources-galleon-pack

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

This element instructs the provisioning process to provision the com.example.demo:my-galleon-
feature-pack:1.0 feature pack. The child elements instruct the process to exclude default

9 This element instructs the provisioning process to create a custom standalone configuration. The
configuration includes the cloud-server base layer and the my-custom-driver and my-custom-
datasource custom layers from the com.example.demo:my-galleon-feature-pack:1.0 feature
pack.

6 This element instructs the provisioning process to optimize provisioning of JBoss EAP modules.

4.3.3. Building an Application Provisioned with User-developed Layers

When you build an application from a directory that includes a custom provisioning file, the S2I build
process detects the provisioning file and provisions the JBoss EAP server as instructed.

Prerequisites

® The user-developed layers must exist in an accessible Maven repository.

® The application directory must contain a valid provisioning file that refers to the user-developed
layers and the feature pack that contains them.

Procedure

® Enter astandard S2I build command to build the application.
For example, assume you create the following custom provisioning file in your application
directory.

<?xml version="1.0" 7>
<installation xmIns="urn:jboss:galleon:provisioning:3.0">
<feature-pack location="eap-s2i@maven(org.jboss.universe:s2i-universe)">
<default-configs inherit="false"/>
<packages inherit="false"/>
</feature-pack>
<feature-pack location="com.example.demo:my-galleon-feature-pack:1.0">
<default-configs inherit="false"/>
<packages inherit="false"/>
</feature-pack>
<config model="standalone" name="standalone.xml">
<layers>
<include name="cloud-server"/>
<include name="my-custom-driver"/>
<include name="my-custom-datasource"/>
</layers>
</config>
<options>
<option name="optional-packages" value="passive+"/>
</options>
</installation>

The following command builds an application using the com.example.demo:my-galleon-
feature-pack:1.0 feature pack, which includes the my-custom-driver and my-custom-
datasource layers. The resulting application is named eap-my-custom-db. The connection to
the database is configured using environment variables.

42

CHAPTER 4. CAPABILITY TRIMMING IN JBOSS EAP FOR OPENSHIF1

oc build my-app \

-e DEMO_DB=demo\

-e DEMO_PASSWORD=demo \
-e DEMO_HOST=127.0.0.1 \
-e DEMO_PORT=5432\

-e DEMO_USER=demo \
eap-my-custom-db

You can log in to the database on port 5432 with the user demo and the password demo.

Additional Resources

Custom Provisioning Files for JBoss EAP

43

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#custom-provisioning-files-jboss-eap_default

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

CHAPTER 5. MIGRATION OF APPLICATIONS FROM JBOSS
EAP IMAGESTREAMS ON OPENSHIFT 4 TO EAP73
IMAGESTREAMS

Applications developed for the eap71 and eap72 imagestreams require changes to function correctly in
the eap73 imagestream.

5.1. UPDATES TO LIVENESS AND READINESS PROBE
CONFIGURATION FOR EAP73 IMAGESTREAMS

The YAML configuration of probes must be adjusted when migrating from the eap72 image running on
OpenShift 3.11 to any eap73 image.

On the eap72 image, the default YAML configuration for a liveness probe is similar to the following
code example:

Example YAML Configuration for eap72 Image on OpenShift 3.11 Liveness Probe

livenessProbe:
exec:
command:
- /bin/bash
-'-c
- /opt/eap/bin/livenessProbe.sh
initialDelaySeconds: 60
periodSeconds: 10
successThreshold: 1
failureThreshold: 3

In this example, the liveness probe is located at /opt/eap/bin/livenessProbe.sh within the JBoss EAP
image. The probe is triggered the first time after a 60 second initial delay and then every 10 seconds
after a pod is started on the JBoss EAP server.

After three unsuccessful probes, the container is deemed unhealthy and OpenShift restarts the
container in its pod.

On the eap72 image, a single call lasts 5 seconds before it returns as a success or failure. The call is
followed by a 10 second waiting period. This means that 3 calls last approximately 35 seconds before the
container inside the pod is restarted if the JBoss EAP image is unhealthy.

On any eap73 image, a single call lasts less than 1second. Three calls last approximately 23 seconds.
The configuration of the probe for eap73 images should be adjusted in the YAML configuration as
follows:

Example YAML Configuration for any eap73 Imagestream Liveness Probe

livenessProbe:
exec:
command:
- /bin/bash
-'-Cc
- /opt/eap/bin/livenessProbe.sh
initialDelaySeconds: 60

44

GRATION OF APPLICATIONS FROM JBOSS EAP IMAGESTREAMS ON OPENSHIFT 4 TO EAP73 IMAGESTREAM!

periodSeconds: 16
successThreshold: 1
failureThreshold: 3

In this example, periodSeconds has been increased by 6 seconds. Now the first call lasts 1 second,
followed by a 16 second waiting period. Three calls would last approximately 34 seconds, which is nearly
equivalent to the eap72 image behavior of the probe.

In the readiness probe, update periodSeconds in the YAML configuration with a similar value.

Example YAML Configuration for any eap73 Imagestream Readiness Probe

readinessProbe:
exec:
command:
- /bin/bash

-'-C
- /opt/eap/bin/readinessProbe.sh
initialDelaySeconds: 10
periodSeconds: 16
successThreshold: 1
failureThreshold: 3

Additional Resources
Monitoring Container Health on OpenShift 4

Liveness and Readiness Probes on OpenShift 3.11

5.2. DEFAULT DATASOURCE REMOVED
In JBoss EAP 7.3, the default datasource is removed from JBoss EAP imagestreams.
If you developed custom applications that use the default datasource, you can include it when

provisioning a server. Use the ENABLE_GENERATE_DEFAULT_DATASOURCE environment variable
with a value of true.

I ENABLE_GENERATE_DEFAULT_DATASOURCE=true

5.3. UPDATES TO sTANDALONE-OPENSHIFT.XML WHEN UPGRADING JBOSS
EAP 71TO JBOSS EAP 7.3 ON OPENSHIFT

The configuration file standalone-openshift.xml installed with JBoss EAP 7.1is not compatible with
JBoss EAP 7.3 and later.

If you want to use the standalone-openshift.xml file after upgrading from JBoss EAP 7.1 to JBoss
EAP 7.3, you must make the following changes to the file:

e Update the version of the logging subsystem.
Replace

I <subsystem xmlns="urn:jboss:domain:logging:3.0">

45

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/nodes/index#nodes-nodes-health
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-application-health#container-health-checks-using-probes

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

with
I <subsystem xmlns="urn:jboss:domain:logging:8.0">

e Update the log formatter in the logging subsystem configuration.
Replace

<custom-formatter module="org.jboss.logmanager.ext"
class="org.jboss.logmanager.ext.formatters.LogstashFormatter">
<properties>
<property name="metaData" value="log-handler=CONSOLE"/>
</properties>
</custom-formatter>

with

<json-formatter>
<exception-output-type value="formatted"/>
<key-overrides timestamp="@timestamp"/>
<meta-data>
<property name="@version" value="1"/>
</meta-data>
</ijson-formatter>

46

CHAPTER 6. TROUBLESHOOTING

CHAPTER 6. TROUBLESHOOTING

6.1. TROUBLESHOOTING POD RESTARTS

Pods can restart for a number of reasons, but a common cause of JBoss EAP pod restarts might include
OpenShift resource constraints, especially out-of-memory issues. See the OpenShift documentation for
more information on OpenShift pod eviction.

By default, JBoss EAP for OpenShift templates are configured to automatically restart affected
containers when they encounter situations like out-of-memory issues. The following steps can help you

diagnose and troubleshoot out-of-memory and other pod restart issues.

1. Get the name of the pod that has been having trouble.
You can see pod names, as well as the number times each pod has restarted with the following
command.

I $ oc get pods

2. To diagnose why a pod has restarted, you can examine the JBoss EAP logs of the previous pod,
or the OpenShift events.

a. Tosee the JBoss EAP logs of the previous pod, use the following command.
I oc logs --previous POD_NAME

b. To see the OpenShift events, use the following command.
I $ oc get events

3. If a pod has restarted because of a resource issue, you can attempt to modify your OpenShift
pod configuration to increase its resource requests and limits. See the OpenShift
documentation for more information on configuring pod compute resources.

6.2. TROUBLESHOOTING USING THE JBOSS EAP MANAGEMENT CLI

The JBoss EAP management CLI, EAP_HOME/bin/jboss-cli.sh, is accessible from within a container
for troubleshooting purposes.

IMPORTANT

It is not recommended to make configuration changes in a running pod using the JBoss
EAP management CLI. Any configuration changes made using the management CLIin a
running container will be lost when the container restarts.

To make configuration changes to JBoss EAP for OpenShift, see Configuring the JBoss
EAP for OpenShift Image for Your Java Application.

1. First open a remote shell session to the running pod.

I $ oc rsh POD _NAME

47

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/cluster_administration/admin-guide-handling-out-of-resource-errors#out-of-resource-eviction-of-pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/cluster_administration/admin-guide-quota#requests-vs-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/developer_guide/index#dev-compute-resources

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

2. Run the following command from the remote shell session to launch the JBoss EAP
management CLI:

I $ /opt/eap/bin/jboss-cli.sh

48

CHAPTER 7. EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIF1

CHAPTER 7. EAP OPERATOR FOR AUTOMATING
APPLICATION DEPLOYMENT ON OPENSHIFT

EAP operator is a JBoss EAP-specific controller that extends the OpenShift API. You can use the EAP
operator to create, configure, manage, and seamlessly upgrade instances of complex stateful
applications.

The EAP operator manages multiple JBoss EAP Java application instances across the cluster. It also
ensures safe transaction recovery in your application cluster by verifying all transactions are completed
before scaling down the replicas and marking a pod as clean for termination. The EAP operator uses
StatefulSet for the appropriate handling of EJB remoting and transaction recovery processing. The
StatefulSet ensures persistent storage and network hostname stability even after pods are restarted.

You must install the EAP operator using OperatorHub, which can be used by OpenShift cluster
administrators to discover, install, and upgrade operators.

In OpenShift Container Platform 4, you can use the Operator Lifecycle Manager (OLM) to install,
update, and manage the lifecycle of all operators and their associated services running across multiple
clusters.

The OLM runs by default in OpenShift Container Platform 4. It aids cluster administrators in installing,
upgrading, and granting access to operators running on their cluster. The OpenShift Container Platform
web console provides management screens for cluster administrators to install operators, as well as
grant specific projects access to use the catalog of operators available on the cluster.

For more information about operators and the OLM, see the OpenShift documentation.

7.1. INSTALLING EAP OPERATOR USING THE WEB CONSOLE

As a JBoss EAP cluster administrator, you can install an EAP operator from Red Hat OperatorHub using
the OpenShift Container Platform web console. You can then subscribe the EAP operator to one or
more namespaces to make it available for developers on your cluster.

Here are a few points you must be aware of before installing the EAP operator using the web console:

® |nstallation Mode: Choose All namespaces on the cluster (default)to have the operator
installed on all namespaces or choose individual namespaces, if available, to install the operator
only on selected namespaces.

e Update Channel: If the EAP operator is available through multiple channels, you can choose
which channel you want to subscribe to. For example, to deploy from the stable channel, if
available, select it from the list.

® Approval Strategy: You can choose automatic or manual updates. If you choose automatic
updates for the EAP operator, when a new version of the operator is available, the Operator
Lifecycle Manager (OLM) automatically upgrades the running instance of EAP operator. If you
choose manual updates, when a newer version of the operator is available, the OLM creates an
update request. You must then manually approve the update request to have the operator
updated to the new version.

49

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/operators/index

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

NOTE

The following procedure might change in accordance with the modifications in the
OpenShift Container Platform web console. For the latest and most accurate procedure,
see the Installing from the OperatorHub using the web console section in the latest
version of the Working with Operators in OpenShift Container Platform guide.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators— OperatorHub.
2. Scroll down or type EAP into the Filter by keyword box to find the EAP operator.
3. Select JBoss EAP operator and click Install.

4. On the Create Operator Subscription page:
a. Select one of the following:

® All namespaces on the cluster (default)installs the operator in the default openshift-
operators namespace to watch and be made available to all namespaces in the cluster.
This option is not always available.

® A specific namespace on the clusterinstalls the operator in a specific, single
namespace that you choose. The operator is made available for use only in this single
namespace.

b. Select an Update Channel.
c. Select Automatic or Manual approval strategy, as described earlier.

5. Click Subscribe to make the EAP operator available to the selected namespaces on this
OpenShift Container Platform cluster.

a. If you selected a manual approval strategy, the subscription’s upgrade status remains
Upgrading until you review and approve its install plan. After you approve the install plan on
the Install Plan page, the subscription upgrade status moves to Up to date.

b. If you selected an automatic approval strategy, the upgrade status moves to Up to date
without intervention.

6. After the subscription’s upgrade status is Up to date, select Operators = Installed Operators
to verify that the EAP ClusterServiceVersion (CSV) shows up and its Status changes to
InstallSucceeded in the relevant namespace.

NOTE

For the All namespaces... installation mode, the status displayed is
InstallSucceeded in the openshift-operators namespace. In other namespaces
the status displayed is Copied.

50

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html/operators/olm-adding-operators-to-a-cluster#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster

CHAPTER 7. EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIF1

7. If the Status field does not change to InstallSucceeded, check the logs in any pod in the
openshift-operators project (or other relevant namespace if A specific namespace...
installation mode was selected) on the Workloads — Pods page that are reporting issues to
troubleshoot further.

7.2. INSTALLING EAP OPERATOR USING THE CLI

As a JBoss EAP cluster administrator, you can install an EAP operator from Red Hat OperatorHub using
the OpenShift Container Platform CLI. You can then subscribe the EAP operator to one or more
namespaces to make it available for developers on your cluster.

When installing the EAP operator from the OperatorHub using the CLI, use the oc command to create a
Subscription object.

Prerequisites

® You have access to an OpenShift Container Platform cluster using an account with cluster-
admin permissions.

® You have installed the oc tool in your local system.

Procedure

1. View the list of operators available to the cluster from the OperatorHub:

$ oc get packagemanifests -n openshift-marketplace | grep eap
NAME CATALOG AGE

eap Red Hat Operators 43d

2. Create a Subscription object YAML file (for example, eap-operator-sub.yaml) to subscribe a
namespace to your EAP operator. The following is an example Subscription object YAML file:

apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: eap
namespace: openshift-operators
spec:
channel: alpha
installPlanApproval: Automatic
name: eap
source: redhat-operatorsg
sourceNamespace: openshift-marketplace

ﬂ Name of the operator to subscribe to.

9 The EAP operator is provided by the redhat-operators CatalogSource.

For information about channels and approval strategy, see the web console version of this
procedure.

3. Create the Subscription object from the YAML file:

51

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#installing-eap-operator-using-webconsole_default

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

$ oc apply -f eap-operator-sub.yaml

$ oc get csv -n openshift-operators

NAME DISPLAY VERSION REPLACES PHASE
eap-operator.v1.0.0 JBoss EAP 1.0.0 Succeeded

The EAP operator is successfully installed. At this point, the OLM is aware of the EAP operator.
A ClusterServiceVersion (CSV) for the operator appears in the target namespace, and APls
provided by the EAP operator is available for creation.

7.3. JAVA APPLICATION DEPLOYMENT ON OPENSHIFT USING THE
EAP OPERATOR

With the EAP operator, you can automate Java application deployment on OpenShift. For information
about the EAP operator APIs, see EAP Operator: APl Information.

You can choose one of the following application image types for deploying your Java application on
OpenShift:

® An application image based on a builder image or a runtime image. You can use the eap-s2i-
build template to prepare such an image.

® Abootable JAR application image based on the base image
registry.access.redhat.com/ubi8/openjdk-11 or any other Red Hat ubi8 that supplies a higher
JDK version.

Some configurations are mandatory while deploying a Java application on OpenShift using the EAP
operator. Some other configurations are required only if the EAP operator CustomResource (CR) for
your application references a Secret object or a ConfigMap.

Additional resources

e Forinformation about the eap-s2i-build template, see The eap-s2i-build template for creating
application images.

® For more information about building an application image using the eap-s2i-build template, see
Building an application image using eap-s2i-build template.

e Forinformation about using the bootable JAR application image, see Bootable JAR for
packaging EAP server and a Java application.

e Forinformation about packaging your application image as a bootable JAR, see Using a
bootable JAR on a JBoss EAP OpenShift platform.

e Forinformation about completing the mandatory configurations while deploying your Java
application on OpenShift, see Deploying a Java application using the EAP operator: Completing
mandatory configurations.

e Forinformation about completing the optional configurations while deploying your Java

application on OpenShift, see Deploying a Java application using the EAP operator:Completing
the optional configurations.

7.3.1. The eap-s2i-build template for creating application images

52

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#eap-operator-api-information_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#the-eap-s2i-build-template-for-creating-application-images_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#building-an-application-image-using-eap-s2i-build-template_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#bootable-jar-for-packaging-eap-server-and-a-java-application_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/using_eclipse_microprofile_with_jboss_eap_xp_2.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#deploying-a-java-application-on-openshift-using-the-eap-operator_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#completing-the-optional-configurations-for-application-deployment_default

CHAPTER 7. EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIF1

Use the eap-s2i-build template to create your application images. The eap-s2i-build template adds
several parameters to configure the location of the application source repository and the EAP S2|
images to use to build your application.

The APPLICATION_IMAGE parameter in the eap-s2i-build template specifies the name of the
imagestream corresponding to the application image. For example, if you created an application image
named my-app from the eap-s2i-build template, you can use the my-app:latest imagestreamtag from
the my-app imagestream to deploy your application. For more information about the parameters used
in the eap-s2i-build template, see Building an application image using eap-s2i-build template .

With this template, the EAP operator can seamlessly upgrade your applications deployed on OpenShift.
To enable seamless upgrades, you must configure a webhook in your GitHub repository and specify the
webhook in the build configuration. The webhook notifies OpenShift when your repository is updated
and a new build is triggered.

You can use this template to build an application image using an imagestream for any JBoss EAP
version, such as JBoss EAP 7.3, JBoss EAP XP, or JBoss EAP CD.

Additional resources

® Building an application image using eap-s2i-build template.

7.3.2. Building an application image using eap-s2i-build template

The eap-s2i-build template adds several parameters to configure the location of your application
source repository and the EAP S2I images to use to build the application. With this template, you can
use an imagestream for any JBoss EAP version, such as JBoss EAP 7.3, JBoss EAP XP, or JBoss EAP
CD.

Procedure

1. Import EAP images in OpenShift. For more information, see Importing the latest OpenShift
image streams and templates for JBoss EAP XP.

2. Configure the imagestream to receive updates about the changes in the application
imagestream and to trigger new builds. For more information, see Configuring periodic
importing of imagestreamtags.

3. Create the eap-s2i-build template for building the application image using EAP S2l images:

$ oc replace --force -f https://raw.githubusercontent.com/jboss-container-images/jboss-eap-
openshift-templates/master/eap-s2i-build.yaml

This eap-s2i-build template creates two build configurations and two imagestreams
corresponding to the intermediate build artifacts and the final application image.

4. Process the eap-s2i-build template with parameters to create the resources for the final
application image. The following example creates an application image, my-app:

$ oc process eap-s2i-build \
-p APPLICATION_IMAGE=my-app \)
\
-p EAP_IMAGE=jboss-eap-xp1-openjdk11-openshift:1.0 \ €3
-p EAP_RUNTIME_IMAGE-=jboss-eap-xp1-openjdk11-runtime-openshift:1.0 \ €}
-p EAP_IMAGESTREAM_NAMESPACE=$(oc project -) \ ()

53

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#building-an-application-image-using-eap-s2i-build-template_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#building-an-application-image-using-eap-s2i-build-template_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/using_eclipse_microprofile_in_jboss_eap/index/#importing-the-latest-openshift-image-streams-and-templates-for-jboss-eap-xp_default
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html/images/managing-image-streams#images-imagestreams-import_image-streams-managing

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

\
-p SOURCE_REPOSITORY_URL=https://github.com/jboss-developer/jboss-eap-

quickstarts.git \ 9
-p SOURCE_REPOSITORY_REF=xp-1.0.x\)

-p CONTEXT_DIR=microprofile-config | oc create -f -)

The name for the application imagestream. The application image is tagged with the latest
tag.

The imagestreamtag for EAP builder image.

The imagestreamtag for EAP runtime image.

The namespace in which the imagestreams for Red Hat Middleware images are installed. If
omitted, the openshift namespace is used. Modify this only if you have installed the
imagestreams in a namespace other than openshift.

The Git source URL of your application.

The Git branch or tag reference

OS9® 600600 O

The path within the Git repository that contains the application to build.

5. Prepare the application image for deployment using the EAP operator.

a. Configure the WildFlyServer resource:

$ cat > my-app.yaml<<EOF

apiVersion: wildfly.org/vialphat
kind: WildFlyServer
metadata:
name: my-app
spec:
applicationlmage: 'my-app:latest'
replicas: 1
EOF

b. Apply the settings and let the EAP operator create a new WildFlyServer resource that
references this application image:

I $ oc apply -f my-app.yami
c. View the WildFlyServer resource with the following command:

I $ oc get wfly my-app

Additional resources

® For more information about importing an application imagestream, see Importing the
latest OpenShift image streams and templates for JBoss EAP XP.

® For more information about periodic importing of imagestreams, see Configuring
periodic importing of imagestreamtags.

54

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/using_eclipse_microprofile_in_jboss_eap/index/#importing-the-latest-openshift-image-streams-and-templates-for-jboss-eap-xp_default
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html/images/managing-image-streams#images-imagestreams-import_image-streams-managing

CHAPTER 7. EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIF1

7.3.3. Bootable JAR for packaging JBoss EAP server and a Java application

You can package a JBoss EAP server and your Java application as an executable JAR file, also known as
a bootable JAR. This bootable JAR can be used to build a bootable JAR application image, which
contains a server, a packaged application, and the runtime required to launch the server. A bootable JAR
application image built in this manner can be deployed on OpenShift using the EAP operator.

To be able to deploy a bootable JAR image on OpenShift using the EAP operator, you must use the
base image registry.access.redhat.com/ubi8/openjdk-11 or any other Red Hat ubi8 that supplies a
higher JDK version.

The bootable JAR must be built for a server configured for the cloud environment. You can configure a
server for the cloud environment by enabling it in the wildfly-jar-maven-plugin configuration.

Complete steps 1through 6 of the Using a bootable JAR on a JBoss EAP OpenShift platform section to
build a bootable JAR application image. After completing these steps, your bootable JAR application
image is available as an imagestream in OpenShift and you can use the imagestreamtag in the EAP
operator configuration.

NOTE

The EAP operator does not recover transactions when a pod running a bootable JAR
application image is scaled down. The EAP operator logs a trace describing the inability
to recover the transaction when a pod is scaled down.

-

Additional resources

® For more information about the bootable JAR, see About the bootable JAR.

® For more information about configuring a server for cloud environment, see Configure the
bootable JAR for OpenShift.

e Forinformation about deploying your bootable JAR application image on OpenShift, see
Deploying a Java application using the EAP operator: Completing mandatory configurations .

7.3.4. Deploying a Java application using the EAP operator: Completing the
mandatory configurations

The following configurations are mandatory when you use the EAP operator to deploy a Java application
on OpenShift.

Prerequisites

® You have installed EAP operator. For more information about installing the EAP operator, see
Installing EAP Operator Using the Webconsole and Installing EAP Operator Using the CLI.

If you built your application image with the eap-s2i-build template:

® You have built a Docker image of the user application using JBoss EAP for OpenShift Source-
to-lmage (S2l) builder image.

® The APPLICATION_IMAGE parameter in your eap-s2i-build template has an imagestream, if
you want to enable automatic upgrade of your application after it is deployed on OpenShift. For
more information about building your application image using the eap-s2i-build template, see
Building an application image using eap-s2i-build template .

55

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/using_eclipse_microprofile_with_jboss_eap_xp_2.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/using_eclipse_microprofile_with_jboss_eap_xp_2.0.0/index#about-bootable-jar_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/using_eclipse_microprofile_with_jboss_eap_xp_2.0.0/index#configure-bootable-jar-openshift_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#deploying-a-java-application-on-openshift-using-the-eap-operator_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#installing-eap-operator-using-the-webconsole_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#installing-eap-operator-using-the-cli_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#building-an-application-image-using-eap-s2i-build-template_default

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

If you use a bootable JAR application image:
® You have built the bootable JAR application image using the base image
registry.access.redhat.com/ubi8/openjdk-11 or any other Red Hat ubi8 that supplies a higher

JDK version.

® You have configured the server for cloud environment.

Procedure

1. Open your web browser and log on to OperatorHub.

2. Select the Project or namespace you want to use for your Java application.
3. Navigate to Installed Operator and select JBoss EAP operator.

4. On the Overview tab, click the Create Instance link.

5. Specify the application image details.
The application image specifies the Docker image that contains the Java application. If the
applicationlmage field corresponds to an imagestreamtag, any change to the image triggers an
automatic upgrade of the application.

You can provide any of the references of the JBoss EAP for OpenShift application image as
shown in the following example:

® The name of the image: mycomp/myapp
® A tag: mycomp/myapp:1.0

® Adigest:
mycomp/myapp:@sha256:0af38bc38be93116b6a1d86a9¢78bd14cd527121970899d719baf78e¢

® Animagestreamtag: my-app:latest

® Animage hash: quay.io/bootable-
jar/myapp@sha256:47c06c96e80d0defb777686cdb468c636d9b3b7081a35b784330a050¢

6. Specify the size of the application. For example:

spec:
replicas:2

® Optional: If you used the bootable JAR for packaging the application, indicate so as shown
in the following example:

spec:
bootabledar: true

7. Configure the application environment using the env spec. The environment variables can
come directly from values, such as POSTGRESQL_SERVICE_HOST or from Secret objects,
such as POSTGRESQL_USER. For example:

spec:
env:
- name: POSTGRESQL_SERVICE_HOST

56

CHAPTER 7. EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIF1

value: postgresql
- name: POSTGRESQL_SERVICE_PORT
value: '5432'
- name: POSTGRESQL DATABASE
valueFrom:
secretKeyRef:
key: database-name
name: postgresql
- name: POSTGRESQL_USER
valueFrom:
secretKeyRef:
key: database-user
name: postgresql
- name: POSTGRESQL_PASSWORD
valueFrom:
secretKeyRef:
key: database-password
name: postgresql

Additional resources

® For more information about completing the optional configurations while deploying your
Java application on OpenShift, see Deploying a Java application using the EAP operator:
Completing the optional configurations.

® For more information about building your application image with eap-s2i-build template,
see Building an application image using eap-s2i-build template.

® For more information about packaging your application image as a bootable JAR, see Using
a bootable JAR on a JBoss EAP OpenShift platform.

® Foralist of environment variables, see Environment Variables.
7.3.5. Deploying a Java application using the EAP operator: Completing the optional
configurations
If the EAP operator CustomResource (CR) for your application references a Secret object or a

ConfigMap, complete the following optional configurations while deploying the application on
OpenShift using the EAP operator.

NOTE

Providing a standalone.xml file from the ConfigMap is not supported in JBoss EAP 7.

Prerequisites

® You have installed EAP operator. For more information about installing the EAP operator, see
Installing EAP Operator Using the Webconsole and Installing EAP Operator Using the CLI.

® You have completed the mandatory configurations for deploying a Java application on
OpenShift.

® You have created a Secret object, if the EAP operator CR for your application references one.
For information about creating a Secret object, see Creating a Secret.

57

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#completing-the-optional-configurations-for-application-deployment_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#building-an-application-image-using-eap-s2i-build-template_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/using_eclipse_microprofile_with_jboss_eap_xp_2.0.0/index#using-bootable-jar-jboss-eap-openshift-platform_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#environment_variables-1
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#installing-eap-operator-using-the-webconsole_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#installing-eap-operator-using-the-cli_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#creating-a-secret_default

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

® You have created a ConfigMap, if if the EAP operator CR for your application references one.
For information about creating a ConfigMap, see Creating a ConfigMap.

® Optional: You have created a ConfigMap from the standalone.xml file. For information about
creating a ConfigMap from the standalone.xml file, see Creating a ConfigMap from a
standalone.xml File.

Procedure

58

e Complete the following optional configurations that are relevant to your application
deployment:

a. Specify the storage requirements for the server data directory.

b. Specify the name of the Secret you created in WildFlyServerSpec, so you can mount the
Secret object as a volume in the pods running the application. For example:

spec:
secrets:
- my-secret

The Secret is mounted at /etc/secrets/<secret names and each key/value is stored as a
file. The name of the file is the key and the content is the value. The Secret is mounted as a
volume inside the pod. The following example demonstrates commands that you can use to
find key values:

$ Is /etc/secrets/my-secret/

my-key my-password

$ cat /etc/secrets/my-secret/my-key
devuser

$ cat /etc/secrets/my-secret/my-password
my-very-secure-pasword

NOTE

Modifying a Secret object might lead to project inconsistencies. To avoid
project inconsistencies, create a new Secret object with the same content as
that of the old object. You can then update the content as required and
change the reference in the EAP operator custom resource (CR) from old to
new. This is considered a new CR update and the pods are reloaded.

c. Specify the name of the ConfigMap you created in WildFlyServerSpec to mount it as a
volume in the pods running the application. For example:

spec:
configMaps:
- my-config

The ConfigMap is mounted at /etc/configmaps/<configmap name> and each key/value is
stored as a file. The name of the file is the key and the content is the value. The ConfigMap
is mounted as a volume inside the pod. To find the key values:

$ Is /etc/configmaps/my-config/
key1 key2

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#creating-a-configmap_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#creating-a-configmap-from-standalone-xml-file_default

CHAPTER 7. EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIF1

$ cat /etc/configmaps/my-config/key 1
valuel
$ cat /etc/configmaps/my-config/key?2
value?2

NOTE

Modifying a ConfigMap might lead to project inconsistencies.To avoid
project inconsistencies, create a new ConfigMap with the same content as
that of the old one. You can then update the content as required and change
the reference in the EAP operator custom resource (CR) from old to new.
This is considered a new CR update and the pods are reloaded.

d. If you choose to have your own standalone ConfigMap, provide the name of the
ConfigMap as well as the key for the standalone.xml file:

standaloneConfigMap:
name: clusterbench-config-map
key: standalone-openshift.xml

NOTE

Creating a ConfigMap from the standalone.xml file is not supported in
JBoss EAP 7.

e. If you want to disable the default HTTP route creation in OpenShift, set disableHTTPRoute
to true:

spec:
disableHTTPRoute: true

Additional resources

e For more information about specifying the storage requirements for the server data directory,
see Configuring Persistent Storage for Applications.

® For more information about completing the mandatory configurations while deploying your Java

application on OpenShift, see Deploying a Java application on OpenShift using the EAP
operator.

7.3.6. Creating a Secret

If the EAP operator CustomResource (CR) for your application references a Secret, you must create the
Secret object before deploying your application on OpenShift using the EAP operator.

Procedure

® To create a Secret:

$ oc create secret generic my-secret --from-literal=my-key=devuser --from-literal=my-password="my-
very-secure-pasword'

59

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#configuring-persistent-storage-for-applications_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#deploying-a-java-application-on-openshift-using-the-eap-operator_default

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

7.3.7. Creating a ConfigMap

If the EAP operator CustomResource (CR) for your application references a ConfigMap in the
spec.ConfigMaps field, you must create the ConfigMap before deploying your application on
OpenShift using the EAP operator.

Procedure

® To create a configmap:

$ oc create configmap my-config --from-literal=key1=value1 --from-literal=key2=value2
configmap/my-config created

7.3.8. Creating a ConfigMap from a standalone.xml File

You can create your own JBoss EAP standalone configuration instead of using the one in the application
image that comes from JBoss EAP for OpenShift Source-to-Image (S2l). The standalone.xml file must
be putin a ConfigMap that is accessible by the operator.

NOTE

NOTE: Providing a standalone.xml file from the ConfigMap is not supported in JBoss
EAP 7.

Procedure

® To create a ConfigMap from the standalone.xml file:

$ oc create configmap clusterbench-config-map --from-file examples/clustering/config/standalone-
openshift.xml
configmap/clusterbench-config-map created

7.3.9. Configuring Persistent Storage for Applications

If your application requires persistent storage for some data, such as, transaction or messaging logs that
must persist across pod restarts, configure the storage spec. If the storage spec is empty, an EmptyDir
volume is used by each pod of the application. However, this volume does not persist after its
corresponding pod is stopped.

Procedure

1. Specify volumeClaimTemplate to configure resources requirements to store the JBoss EAP
standalone data directory. The name of the template is derived from the name of JBoss EAP.
The corresponding volume is mounted in ReadWriteOnce access mode.

spec:
storage:
volumeClaimTemplate:
spec:
resources:
requests:
storage: 3Gi

60

CHAPTER 7. EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIF1

The persistent volume that meets this storage requirement is mounted on the
/eap/standalone/data directory.

7.4. VIEWING METRICS OF AN APPLICATION USING THE EAP
OPERATOR

You can view the metrics of an application deployed on OpenShift using the EAP operator.

When your cluster administrator enables metrics monitoring in your project, the EAP operator
automatically displays the metrics on the OpenShift console.

Prerequisites

® Your cluster administrator has enabled monitoring for your project. For more information, see
Enabling monitoring for user-defined projects.

Procedure

1. In the OpenShift Container Platform web console, navigate to Monitoring— Metrics.

2. On the Metrics screen, type the name of your application in the text box to select your
application. The metrics for your application appear on the screen.

NOTE

All metrics related to JBoss EAP application server are prefixed with jboss. For example,
jboss_undertow_request_count_total.

7.5. UNINSTALLING EAP OPERATOR USING WEB CONSOLE

To delete, or uninstall, EAP operator from your cluster, you can delete the subscription to remove it from
the subscribed namespace. You can also remove the EAP operator’s ClusterServiceVersion (CSV) and
deployment.

NOTE

To ensure data consistency and safety, scale down the number of pods in your cluster to
0 before uninstalling the EAP operator.

You can uninstall the EAP operator using the web console.

' WARNING
A If you decide to delete the entire wildflyserver definition (oc delete wildflyserver

<deployment_names>), then no transaction recovery process is started and the pod
is terminated regardless of unfinished transactions. The unfinished work that results
from this operation might block the data changes that you later initiate. The data
changes for other JBoss EAP instances involved in transactional EJB remote calls
with this wildflyserver might also be blocked.

61

https://docs.openshift.com/container-platform/4.6/monitoring/enabling-monitoring-for-user-defined-projects.html#enabling-monitoring-for-user-defined-projects_enabling-monitoring-for-user-defined-projects

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

Procedure

1. From the Operators— Installed Operators page, select JBoss EAP.

2. On the right-hand side of the Operator Details page, select Uninstall Operator from the
Actions drop-down menu.

3. When prompted by the Remove Operator Subscription window, optionally select the Also
completely remove the Operator from the selected namespace check box if you want all
components related to the installation to be removed. This removes the CSV, which in turn
removes the pods, deployments, custom resource definitions (CRDs), and custom resources
(CRs) associated with the operator.

4. Click Remove. The EAP operator stops running and no longer receives updates.

7.6. UNINSTALLING EAP OPERATOR USING THE CLI

To delete, or uninstall, the EAP operator from your cluster, you can delete the subscription to remove it
from the subscribed namespace. You can also remove the EAP operator’s ClusterServiceVersion (CSV)
and deployment.

NOTE

To ensure data consistency and safety, scale down the number of pods in your cluster to
0 before uninstalling the EAP operator.

You can uninstall the EAP operator using the command line.

When using the command line, you uninstall the operator by deleting the subscription and CSV from the
target namespace.

' WARNING
A If you decide to delete the entire wildflyserver definition (oc delete wildflyserver

<deployment_name>), then no transaction recovery process is started and the pod
is terminated regardless of unfinished transactions. The unfinished work that results
from this operation might block the data changes that you later initiate. The data
changes for other JBoss EAP instances involved in transactional EJB remote calls
with this wildflyserver might also be blocked.

Procedure

1. Check the current version of the EAP operator subscription in the currentCSV field:

$ oc get subscription eap-operator -n openshift-operators -o yaml | grep currentCSV
currentCSV: eap-operator.v1.0.0

2. Delete the EAP operator’s subscription:

62

CHAPTER 7. EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIF1

$ oc delete subscription eap-operator -n openshift-operators
subscription.operators.coreos.com "eap-operator” deleted

3. Delete the CSV for the EAP operator in the target namespace using the currentCSV value from
the previous step:

$ oc delete clusterserviceversion eap-operator.v1.0.0 -n openshift-operators
clusterserviceversion.operators.coreos.com "eap-operator.v1.0.0" deleted

7.7. EAP OPERATOR FOR SAFE TRANSACTION RECOVERY

EAP operator ensures data consistency before terminating your application cluster by verifying that all
transactions are completed before scaling down the replicas and marking a pod as clean for termination.

This means that if you want to remove the deployment safely without data inconsistencies, you must
first scale down the number of pods to O, wait until all pods are terminated, and only then delete the
wildflyserver instance.

' WARNING
A If you decide to delete the entire wildflyserver definition (oc delete wildflyserver

<deployment_names>), then no transaction recovery process is started and the pod
is terminated regardless of unfinished transactions. The unfinished work that results
from this operation might block the data changes that you later initiate. The data
changes for other JBoss EAP instances involved in transactional EJB remote calls
with this wildflyserver might also be blocked.

When the scaledown process begins the pod state (oc get pod <pod_names>) is still marked as
Running, because the pod must complete all the unfinished transactions, including the remote EJB calls
that target it.

If you want to monitor the state of the scaledown process, observe the status of the wildflyserver
instance. For more information, see Monitoring the Scaledown Process. For information about pod
statuses during scaledown, see Pod Status During Scaledown.

NOTE

The EAP operator does not recover transactions when a pod running a bootable JAR
application image is scaled down. The EAP operator logs a trace describing the inability
to recover the transaction when a pod is scaled down.

7.7.1. StatefulSets for Stable Network Host Names

The EAP operator that manages the wildflyserver creates a StatefulSet as an underlying object
managing the JBoss EAP pods.

A StatefulSet is the workload API object that manages stateful applications. It manages the deployment
and scaling of a set of pods, and provides guarantees about the ordering and uniqueness of these pods.

63

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#monitoring-scaledown-process_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#pod-status-during-scaledown_default

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

The StatefulSet ensures that the pods in a cluster are named in a predefined order. It also ensures that
pod termination follows the same order. For example, let us say, pod-1has a transaction with heuristic
outcome, and so is in the state of SCALING_DOWN_RECOVERY_DIRTY. Even if pod-0 is in the state
of SCALING_DOWN_CLEAN, it is not terminated before pod-1. Until pod-1is clean and is terminated,
pod-0 remains in the SCALING_DOWN_CLEAN state. However, even if pod-0 is in the
SCALING_DOWN_CLEAN state, it does not receive any new request and is practically idle.

NOTE

Decreasing the replica size of the StatefulSet or deleting the pod itself has no effect and
such changes are reverted.

7.7.2. Monitoring the Scaledown Process

If you want to monitor the state of the scaledown process, you must observe the status of the
wildflyserver instance. For more information about the different pod statuses during scaledown, see
Pod Status During Scaledown.

Procedure

® To observe the state of the scaledown process:
I oc describe wildflyserver <name>

o The WildFlyServer.Status.Scalingdown Pods and WildFlyServer.Status.Replicas fields
shows the overall state of the active and non-active pods.

© The Scalingdown Pods field shows the number of pods which are about to be terminated
when all the unfinished transactions are complete.

o The WildFlyServer.Status.Replicas field shows the current number of running pods.
o The WildFlyServer.Spec.Replicas field shows the number of pods in ACTIVE state.

o If there are no pods in scaledown process the numbers of pods in the
WildFlyServer.Status.Replicas and WildFlyServer.Spec.Replicas fields are equal.

7.7.2.1. Pod Status During Scaledown

The following table describes the different pod statuses during scaledown:

Table 7.1. Pod Status Description
Pod Status Description
ACTIVE The pod is active and processing requests.

SCALING_DOWN_RECOVERY_INVESTIGATION The pod is about to be scaled down. The scale-down
process is under investigation about the state of
transactions in JBoss EAP.

64

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#pod-status-during-scaledown_default

CHAPTER 7. EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIF1

Pod Status Description

SCALING_DOWN_RECOVERY_DIRTY JBoss EAP contains some incomplete transactions.
The pod cannot be terminated until they are cleaned.
The transaction recovery process is periodically run
at JBoss EAP and it waits until the transactions are
completed

SCALING_DOWN_CLEAN The pod is processed by transaction scaled down
processing and is marked as clean to be removed
from the cluster.

7.7.3. Scaling Down During Transactions with Heuristic Outcomes

When the outcome of a transaction is unknown, automatic transaction recovery is impossible. You must
then manually recover your transactions.

Prerequisites

® The status of your pod is stuck at SCALING_DOWN_RECOVERY_DIRTY.

Procedure

1. Access your JBoss EAP instance using CLI.

2. Resolve all the heuristics transaction records in the transaction object store. For more
information, see Recovering Heuristic Outcomes in the Managing Transactions on JBoss EAP .

3. Remove all records from the EJB client recovery folder.

a. Remove all files from the pod EJB client recovery directory:

$JBOSS_HOME/standalone/data/ejb-xa-recovery
oc exec <podname> rm -rf $JBOSS_HOME/standalone/data/ejb-xa-recovery

4. The status of your pod changes to SCALING_DOWN_CLEAN and the pod is terminated.
7.7.4. Configuring the transactions subsystem to use the JDBC storage for
transaction log

In cases where the system does not provide a file system to store transaction logs, use the JBoss EAP
S2limage to configure the JDBC object store.

IMPORTANT

S2l environment variables are not usable when JBoss EAP is deployed as a bootable JAR.
In this case, you must create a Galleon layer or configure a CLI script to make the
necessary configuration changes.

65

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/managing_transactions_on_jboss_eap/#recovering_heuristic_outcomes

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

The JDBC object store can be set up with the environment variable
TX_DATABASE_PREFIX_MAPPING. This variable has the same structure as
DB_SERVICE_PREFIX_MAPPING.

Prerequisite

® You have created a datasource based on the value of the environment variables.

® You have ensured consistent data reads and writes permissions exist between the database and
the transaction manager communicating over the JDBC object store. For more information
see configuring JDBC data sources

Procedure

® Set up and configure the JDBC object store through the S2I environment variable.

Example

Narayana JDBC objectstore configuration via s2i env variables
- name: TX_DATABASE_PREFIX_MAPPING
value: 'PostgresJdbcObjectStore-postgresql=PG_OBJECTSTORE'
- name: POSTGRESJDBCOBJECTSTORE_POSTGRESQL_SERVICE_HOST
value: 'postgresql'
- name: POSTGRESJDBCOBJECTSTORE_POSTGRESQL_SERVICE_PORT
value: '5432'
- name: PG_OBJECTSTORE_JNDI
value: 'java:jboss/datasources/PostgresJdbc’
- name: PG_OBJECTSTORE_DRIVER
value: 'postgresql’
- name: PG_OBJECTSTORE_DATABASE
value: 'sampledb'
- name: PG_OBJECTSTORE_USERNAME
value: 'admin’
- name: PG_OBJECTSTORE_PASSWORD
value: 'admin’

Verification

® You can verify both the datasource configuration and transaction subsystem configuration by
checking the standalone-openshift.xml configuration file oc rsh <podname> cat
/opt/eap/standalone/configuration/standalone-openshift.xml.
Expected output:

<datasource jta="false" jndi-name="java:jboss/datasources/PostgresJdbcObjectStore" pool-
name="postgresjdbcobjectstore_postgresqlObjectStorePool"
enabled="true" use-java-context="true" statistics-enabled="${wildfly.datasources.statistics-
enabled:${wildfly.statistics-enabled:false}}">
<connection-url>jdbc:postgresql://postgresql:5432/sampledb</connection-url>
<driver>postgresqgl</driver>
<security>
<user-name>admin</user-name>
<password>admin</password>
</security>
</datasource>

66

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.0/html/transaction_guide/using-jdbc-data-sources#configuring-jdbc-data-sources

CHAPTER 7. EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIF1

<!-- under subsystem urn:jboss:domain:transactions -->
<jdbc-store datasource-jndi-name="java:jboss/datasources/PostgresJdbcObjectStore">
<!-- the pod name was named transactions-xa-0 -->
<action table-prefix="ostransactionsxa0"/>
<communication table-prefix="ostransactionsxa0"/>
<state table-prefix="ostransactionsxa0"/>
</jdbc-store>

Additional resources

® For more information about creating datasources by using either the management console or
the management CLI, see Creating Datasources in the JBoss EAP Configuration Guide.

7.8. EJB REMOTING ON OPENSHIFT

For JBoss EAP to work correctly with EJB remoting calls between different JBoss EAP clusters on
OpenShift, you must understand the EJB remoting configuration options on OpenShift.

NOTE

When deploying on OpenShift, consider the use of the EAP operator. The EAP operator
uses StatefulSet for the appropriate handling of EJB remoting and transaction recovery
processing. The StatefulSet ensures persistent storage and network hostname stability

even after pods are restarted.

Network hostname stability is required when the JBoss EAP instance is contacted using an EJB remote
call with transaction propagation. The JBoss EAP instance must be reachable under the same hostname
even if the pod restarts. The transaction manager, which is a stateful component, binds the persisted
transaction data to a particular JBoss EAP instance. Because the transaction log is bound to a specific
JBoss EAP instance, it must be completed in the same instance.

To prevent data loss when the JDBC transaction log store is used, make sure your database provides
data-consistent reads and writes. Consistent data reads and writes are important when the database is
scaled horizontally with multiple instances.

An EJB remote caller has two options to configure the remote calls:

e Define a remote outbound connection. For more information, see Configuring a Remote
Outbound Connection.

® Use a programmatic JNDI lookup for the bean at the remote server. For more information, see
Using Remote EJB Clients.

You must reconfigure the value representing the address of the target node depending on the EJB
remote call configuration method.

NOTE

The name of the target EJB for the remote call must be the DNS address of the first pod.

The StatefulSet behaviour depends on the ordering of the pods. The pods are named in a predefined
order. For example, if you scale your application to three replicas, your pods have names such as eap-
server-0, eap-server-1, and eap-server-2.

67

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#adding_datasources
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#remoting_remote_outbound_connection
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/developing_ejb_applications/#using_ejb_client

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

The EAP operator also uses a headless service that ensures a specific DNS hostname is assigned to the
pod. If the application uses the EAP operator, a headless service is created with a name such as eap-
server-headless. In this case, the DNS name of the first pod is eap-server-0.eap-server-headless.

The use of the hostname eap-server-0.eap-server-headless ensures that the EJB call reaches any
EAP instance connected to the cluster. A bootstrap connection is used to initialize the EJB client, which
gathers the structure of the EAP cluster as the next step.

7.8.1. Configuring EJB on OpenShift

You must configure the JBoss EAP servers that act as callers for EJB remoting. The target server must
configure a user with permission to receive the EJB remote calls.

Prerequisites

® You have used the EAP operator and the supported JBoss EAP for OpenShift S2l image for
deploying and managing the JBoss EAP application instances on OpenShift.

® The clustering is set correctly. For more information about JBoss EAP clustering, see the
Clustering section.

Procedure

1. Create a user in the target server with permission to receive the EJB remote calls:

I $JBOSS_HOME/bin/add-user.sh

2. Configure the caller JBoss EAP application server.

a. Create the eap-config.xml file in $JBOSS_HOME/standalone/configuration using the
custom configuration functionality. For more information, see Custom Configuration.

b. Configure the caller JBoss EAP application server with the wildfly.config.url property:

JAVA_OPTS_APPEND="-
Dwildfly.config.url=$JBOSS_HOME/standalone/configuration/eap-config.xml"

NOTE

If you use the following example for your configuration, replace the
>>PASTE_... HERE<< with user and password you configured.

Example Configuration

<configuration>
<authentication-client xmins="urn:elytron:1.0">
<authentication-rules>
<rule use-configuration="jta">
<match-abstract-type name="jta" authority="jboss"/>
</rule>
</authentication-rules>
<authentication-configurations>
<configuration name="jta">
<sasl-mechanism-selector selector="DIGEST-MD5"/>

68

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#headless-services
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#reference_clustering
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#custom_configuration

CHAPTER 7. EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIF1

<providers>
<use-service-loader />
</providers>
<set-user-name name=">>PASTE _USER NAME HERE<<"/>
<credentials>
<clear-password password=">>PASTE_PASSWORD_HERE<<"/>
</credentials>
<set-mechanism-realm name="ApplicationRealm" />
</configuration>
</authentication-configurations>
</authentication-client>
</configuration>

69

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

CHAPTER 8. REFERENCE INFORMATION

NOTE

The content in this section is derived from the engineering documentation for this image.
It is provided for reference as it can be useful for development purposes and for testing
beyond the scope of the product documentation.

8.1. PERSISTENT TEMPLATES

The JBoss EAP database templates, which deploy JBoss EAP and database pods, have both ephemeral
and persistent variations.

Persistent templates include an environment variable to provision a persistent volume claim, which binds
with an available persistent volume to be used as a storage volume for the JBoss EAP for OpenShift
deployment. Information, such as timer schema, log handling, or data updates, is stored on the storage
volume, rather than in ephemeral container memory. This information persists if the pod goes down for
any reason, such as project upgrade, deployment rollback, or an unexpected error.

Without a persistent storage volume for the deployment, this information is stored in the container
memory only, and is lost if the pod goes down for any reason.

For example, an EE timer backed by persistent storage continues to run if the pod is restarted. Any
events triggered by the timer during the restart process are enacted when the application is running
again.

Conversely, if the EE timer is running in the container memory, the timer status is lost if the pod is
restarted, and starts from the beginning when the pod is running again.

8.2. INFORMATION ENVIRONMENT VARIABLES

The following environment variables are designed to provide information to the image and should not be
modified by the user:

Table 8.1. Information Environment Variables

Variable Name Description and Value

JBOSS_IMAGE_NAME The image names.
Values:

e jboss-eap-7/eap73-openjdk8-openshift-rhel7
(JDK 8/ RHEL 7)

e jboss-eap-7/eap73-openjdk11-openshift-rhel8
(JDK 11/ RHEL 8)

70

CHAPTER 8. REFERENCE INFORMATION

Variable Name Description and Value

JBOSS_IMAGE_VERSION The image version.

Value: This is the image version number. See the Red Hat
Container Catalog for the latest values:

e JUDK8/RHEL7

e JUDKT1M/RHELS8

JBOSS_MODULES_SYSTEM_PKGS A comma-separated list of JBoss EAP system modules
packages that are available to applications.

Value: org.jboss.logmanager, jdk.nashorn.api

STI_BUILDER Provides OpenShift S2I support for jee project types.

Value: jee

8.3. CONFIGURATION ENVIRONMENT VARIABLES

You can configure the following environment variables to adjust the image without requiring a rebuild.

NOTE

See the JBoss EAP documentation for other environment variables that are not listed
here.

Table 8.2. Configuration environment variables

Variable Name Description

AB_JOLOKIA_AUTH_OPENSHIFT Switch on client authentication for OpenShift TLS
communication. The value of this parameter can be true, false,
or a relative distinguished name, which must be contained in a
presented client’s certificate. The default CA certis set to
/var/run/secrets/kubernetes.io/serviceaccount/ca.crt.

® Setto false to disable client authentication for
OpenShift TLS communication.

® Set to true to enable client authentication for
OpenShift TLS communication using the default CA
certificate and client principal.

® Set to arelative distinguished name, for example
ch=someSystem, to enable client authentication for
OpenShift TLS communication but override the client
principal. This distinguished name must be contained in
a presented client’s certificate.

71

https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/jboss-eap-7/eap73-openjdk8-openshift-rhel7
https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/jboss-eap-7/eap73-openjdk11-openshift-rhel8
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

Variable Name Description

AB_JOLOKIA_CONFIG If set, uses this fully qualified file path for the Jolokia JVM agent
properties, which are described in the Jolokia reference
documentation. If you set your own Jolokia properties config file,
the rest of the Jolokia settings in this document are ignored.

If not set, /opt/jolokia/etc/jolokia.properties is created using
the settings as defined in the Jolokia reference documentation.

Example value: /opt/jolokia/custom.properties

AB_JOLOKIA_DISCOVERY_ENABLED Enable Jolokia discovery.

Defaults to false.

AB_JOLOKIA_HOST Host address to bind to.
Defaults to 0.0.0.0.

Example value: 127.0.0.1

AB_JOLOKIA_HTTPS Switch on secure communication with HTTPS.

By default self-signed server certificates are generated if no
serverCert configuration is given in AB_JOLOKIA_OPTS.

Example value: true

AB_JOLOKIA_ID Agent ID to use.

The default value is the SBHOSTNAME, which is the container
id.

Example value: openjdk-app-1-xqlsj

AB_JOLOKIA_OFF If set to true, disables activation of Jolokia, which echos an
empty value.

Jolokia is enabled by default.

AB_JOLOKIA_OPTS Additional options to be appended to the agent configuration.
They should be given in the format key=value, key=value,

Example value: backlog=20

AB_JOLOKIA_PASSWORD The password for basic authentication.
By default, authentication is switched off.

Example value: mypassword

72

https://jolokia.org/reference/html/agents.html#agents-jvm

AB_JOLOKIA_PASSWORD_RANDOM

AB_JOLOKIA_PORT

AB_JOLOKIA_USER

AB_PROMETHEUS_ENABLE

AB_PROMETHEUS_JMX_EXPORTER_C
ONFIG

AB_PROMETHEUS_JMX_EXPORTER_P
ORT

CLI_GRACEFUL_SHUTDOWN

CHAPTER 8. REFERENCE INFORMATION

Variable Name Description

Determines if a random AB_JOLOKIA_PASSWORD should
be generated.

Set to true to generate a random password. The generated
value is saved in the /opt/jolokia/etc/jolokia.pw file.

The port to listen to.
Defaults to 8778.

Example value: 5432

The name of the user to use for basic authentication.
Defaults to jolokia.

Example value: myusername

If set to true, this variable activates thejmx-exporter java
agent that exposes Prometheus format metrics. Default is set to
false.

NOTE

The MicroProfile Metrics subsystem is the

preferred method to expose data in the

Prometheus format. For more information

about the MicroProfile Metrics susbsystem, see

Eclipse MicroProfile in the Configuration Guide
~ for JBoss EAP.

The path within the container to a user-specified
configuration.yaml for the jmx-exporter agent to use
instead of the default configuration.yaml file. To find out
more about the S2I mechanism to incorporate additional
configuration files, see S2| Artifacts.

The port on which the jmx-exporter agent listens for scrapes
from the Prometheus server. Default is 9799. The agent listens
on localhost. Metrics can be made available outside of the
container by configuring the DeploymentConfig file for the
application to include the service exposing this endpoint.

If set to any non-zero length value, the image will prevent
shutdown with the TERM signal and will require execution of the
shutdown command using the JBoss EAP management CLI.

Example value: true

73

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#eclipse_microprofile

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

Variable Name Description

CONTAINER_HEAP_PERCENT Set the maximum Java heap size, as a percentage of available
container memory.

Example value: 0.5

CUSTOM_INSTALL_DIRECTORIES A list of comma-separated directories used for installation and
configuration of artifacts for the image during the S2I process.

Example value: custom,shared

DEFAULT_JMS_CONNECTION_FACTOR This value is used to specify the default JNDI binding for the
Y JMS connection factory, for example jms-connection-
factory='java:jboss/DefaultdMSConnectionFactory’.

Example value: java:jboss/DefaultdMSConnectionFactory

DISABLE_EMBEDDED_JMS_BROKER The use of an embedded messaging broker in OpenShift
containers is deprecated. Support for an embedded broker will
be removed in a future release.

If the following conditions are true, a warning is logged.

® A container is configured to use an embedded
messaging broker.

o Aremote broker is not configured for the container.
e This variable is not set or is set with a value of false.

If this variable is included with the value set to true, the
embedded messaging broker is disabled, and no warning is
logged.

Include this variable set to true for any container that is not
configured with remote messaging destinations.

ENABLE_ACCESS_LOG Enable logging of access messages to the standard output
channel.

Logging of access messages is implemented using following
methods:

® The JBoss EAP 6.4 OpenShift image uses a custom
JBoss Web Access Log Valve.

® The JBoss EAP for OpenShift image uses the
Undertow AccessLogHandler.

Defaults to false.

74

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/development_guide/#accessloghandler

CHAPTER 8. REFERENCE INFORMATION

Variable Name Description

INITIAL_HEAP_PERCENT Set the initial Java heap size, as a percentage of the maximum
heap size.

Example value: 0.5

JAVA_OPTS_APPEND Server startup options.

Example value: -Dfoo=bar

JBOSS_MODULES_SYSTEM_PKGS_APP A comma-separated list of package names that will be
END appended to the JBOSS_MODULES_SYSTEM_PKGS

environment variable.

Example value: org.jboss.byteman

JGROUPS_CLUSTER_PASSWORD Password used to authenticate the node so it is allowed to join
the JGroups cluster. Required, when using ASYM_ENCRYPT
JGroups cluster traffic encryption protocol. If not set,
authentication is disabled, cluster communication is not
encrypted and a warning is issued. Optional, when using
SYM_ENCRYPT JGroups cluster traffic encryption protocol.

Example value: mypassword

JGROUPS_ENCRYPT_KEYSTORE Name of the keystore file within the secret specified via
JGROUPS_ENCRYPT_SECRET variable, when using
SYM_ENCRYPT JGroups cluster traffic encryption protocol. If
not set, cluster communication is not encrypted and a warning is
issued.

Example value: jgroups.jceks

JGROUPS_ENCRYPT_KEYSTORE_DIR Directory path of the keystore file within the secret specified via
JGROUPS_ENCRYPT_SECRET variable, when using
SYM_ENCRYPT JGroups cluster traffic encryption protocol. If
not set, cluster communication is not encrypted and a warning is
issued.

Example value: /etc/jgroups-encrypt-secret-volume

JGROUPS_ENCRYPT_NAME Name associated with the server’s certificate, when using
SYM_ENCRYPT JGroups cluster traffic encryption protocol. If
not set, cluster communication is not encrypted and a warning is
issued.

Example value: jgroups

75

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

Variable Name Description

JGROUPS_ENCRYPT_PASSWORD Password used to access the keystore and the certificate, when
using SYM_ENCRYPT JUGroups cluster traffic encryption
protocol. If not set, cluster communication is not encrypted and
a warning is issued.

Example value: mypassword

JGROUPS_ENCRYPT_PROTOCOL JGroups protocol to use for encryption of cluster traffic. Can be
either SYM_ENCRYPT or ASYM_ENCRYPT.

Defaults to SYM_ENCRYPT.

Example value: ASYM_ENCRYPT

JGROUPS_ENCRYPT_SECRET Name of the secret that contains the JGroups keystore file
used for securing the JGroups communications when using
SYM_ENCRYPT JGroups cluster traffic encryption protocol. If
not set, cluster communication is not encrypted and a warning is
issued.

Example value: eap7-app-secret

JGROUPS_PING_PROTOCOL JGroups protocol to use for node discovery. Can be either
dns.DNS_PING orkubernetes.KUBE_PING.

MQ_SIMPLE_DEFAULT_PHYSICAL_DES For backwards compatibility, set to true to use MyQueue and
TINATION MyTopic as physical destination name defaults instead of
queue/MyQueue and topic/MyTopic.

OPENSHIFT_DNS_PING_SERVICE_NAM Name of the service exposing the ping port on the servers for
E the DNS discovery mechanism.

Example value: eap-app-ping

OPENSHIFT_DNS_PING_SERVICE_POR The port number of the ping port for the DNS discovery

T mechanism. If not specified, an attempt is made to discover the
port number from the SRV records for the service, otherwise the
default 8888 is used.

Defaults to 8888.

OPENSHIFT_KUBE_PING_LABELS Clustering labels selector for the Kubernetes discovery
mechanism.

Example value: app=eap-app

76

CHAPTER 8. REFERENCE INFORMATION

Variable Name Description

OPENSHIFT_KUBE_PING_NAMESPACE Clustering project namespace for the Kubernetes discovery
mechanism.

Example value: myproject

SCRIPT_DEBUG If set to true, ensures that the Bash scripts are executed with
the =X option, printing the commands and their arguments as
they are executed.

8.4. APPLICATION TEMPLATES

Table 8.3. Application Templates

Variable Name Description

AUTO_DEPLOY_EXPLODED Controls whether exploded deployment content should be
automatically deployed.

Example value: false

8.5. EXPOSED PORTS

Table 8.4. Exposed Ports

Port Number Description

8443 HTTPS

8778 Jolokia Monitoring

8.6. DATASOURCES

Datasources are automatically created based on the value of some of the environment variables.
The most important environment variable is DB_SERVICE_PREFIX_MAPPING, as it defines JNDI
mappings for the datasources. The allowed value for this variable is a comma-separated list of
POOLNAME-DATABASETYPE=PREFIX triplets, where:

® POOLNAME is used as the pool-name in the datasource.

® DATABASETYPE is the database driver to use.

® PREFIX s the prefix used in the names of environment variables that are used to configure the
datasource.

8.6.1. JNDI Mappings for Datasources

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

For each POOLNAME-DATABASETYPE=PREFIX triplet defined in the
DB_SERVICE_PREFIX_MAPPING environment variable, the launch script creates a separate
datasource, which is executed when running the image.

NOTE

The first part (before the equal sign) of the DB_SERVICE_PREFIX_MAPPING should be
lowercase.

The DATABASETYPE determines the driver for the datasource.

For more information about configuring a driver, see Modules, Drivers, and Generic Deployments. The
JDK 8 image has drivers for postgresql and mysql configured by default.

' WARNING
A Do not use any special characters for the POOLNAME parameter.

DATABASE DRIVERS

Support for using the Red Hat-provided internal datasource drivers with the JBoss EAP
for OpenShift image is now deprecated. Red Hat recommends that you use JDBC drivers
obtained from your database vendor for your JBoss EAP applications.

The following internal datasources are no longer provided with the JBoss EAP for
OpenShift image:

o MySQL

® PostgreSQL

For more information about installing drivers, see Modules, Drivers, and Generic Deployments.

For more information on configuring JDBC drivers with JBoss EAP, see JDBC drivers in the JBoss EAP
Configuration Guide.

Note that you can also create a custom layer to install these drivers and datasources if you want to add
them to a provisioned server.
8.6.1.1. Datasource Configuration Environment Variables

To configure other datasource properties, use the following environment variables.

IMPORTANT

Be sure to replace the values for POOLNAME, DATABASETYPE, and PREFIX in the
following variable names with the appropriate values. These replaceable values are
described in this section and in the Datasources section.

78

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#jdbc_drivers

CHAPTER 8. REFERENCE INFORMATION

Variable Name Description

POOLNAME_DATABASETYPE _SERVICE Defines the database server’'s host name or IP address to be
_HOST used in the datasource’s connection-url property.

Example value: 192.168.1.3

POOLNAME_DATABASETYPE _SERVICE Defines the database server’s port for the datasource.

_PORT
Example value: 5432

PREFIX_BACKGROUND_VALIDATION When set to true database connections are validated
periodically in a background thread prior to use. Defaults to
false, meaning the validate-on-match method is enabled by
default instead.

PREFIX_BACKGROUND_VALIDATION_M Specifies frequency of the validation, in milliseconds, when the
ILLIS background-validation database connection validation
mechanism is enabled

(PREFIX_BACKGROUND_VALIDATION variable is set to
true). Defaults to 10000.

PREFIX_CONNECTION_CHECKER Specifies a connection checker class that is used to validate
connections for the particular database in use.

Example value:
org.jboss.jca.adapters.jdbc.extensions.postgres.Postg
reSQLValidConnectionChecker

PREFIX_DATABASE Defines the database name for the datasource.

Example value: myDatabase

PREFIX_DRIVER Defines Java database driver for the datasource.

Example value: postgresql

PREFIX_EXCEPTION_SORTER Specifies the exception sorter class that is used to properly
detect and clean up after fatal database connection exceptions.

Example value:
org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLE
xceptionSorter

PREFIX_JNDI Defines the JNDI name for the datasource. Defaults to
java:jboss/datasources/ POOLNAME_DATABASETYPE,
where POOLNAME and DATABASETYPE are taken from
the triplet described above. This setting is useful if you want to
override the default generated JNDI name.

Example value: java:jboss/datasources/test-postgresql

79

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

Variable Name Description

PREFIX_JTA Defines Jakarta Transactions option for the non-XA datasource.
The XA datasources are already Jakarta Transactions capable by
default.

Defaults to true.

PREFIX_MAX_POOL_SIZE Defines the maximum pool size option for the datasource.

Example value: 20

PREFIX_MIN_POOL_SIZE Defines the minimum pool size option for the datasource.

Example value: 1

PREFIX_NONXA Defines the datasource as a non-XA datasource. Defaults to
false.
PREFIX_PASSWORD Defines the password for the datasource.

Example value: password

PREFIX_TX_ISOLATION Defines the java.sql.Connection transaction isolation level for
the datasource.

Example value: TRANSACTION_READ_UNCOMMITTED

PREFIX_URL Defines connection URL for the datasource.

Example value:

jdbc:postgresql://localhost:5432/postgresdb

PREFIX_USERNAME Defines the username for the datasource.

Example value: admin

When running this image in OpenShift, the POOLNAME_DATABASETYPE SERVICE_HOST and
POOLNAME_DATABASETYPE SERVICE_PORT environment variables are set up automatically from
the database service definition in the OpenShift application template, while the others are configured in
the template directly as env entries in container definitions under each pod template.

8.6.1.2. Examples

These examples show how value of the DB_SERVICE_PREFIX_MAPPING environment variable
influences datasource creation.

8.6.1.2.1. Single Mapping

Consider value test-postgresql=TEST.

80

CHAPTER 8. REFERENCE INFORMATION

This creates a datasource with java:jboss/datasources/test_postgresql name. Additionally, all the
required settings like password and username are expected to be provided as environment variables
with the TEST_ prefix, for example TEST_USERNAME and TEST_PASSWORD.

8.6.1.2.2. Multiple Mappings

You can specify multiple datasource mappings.

% NOTE

x?};\x,’ Always separate multiple datasource mappings with a comma.

Consider the following value for the DB_SERVICE_PREFIX_MAPPING environment variable: cloud-
postgresql=CLOUD,test-mysql=TEST_MYSQL.

This creates the following two datasources:
1. java:jboss/datasources/test_mysql
2. java:jboss/datasources/cloud_postgresql

Then you can use TEST_MYSQL prefix for configuring things like the username and password for the
MySQL datasource, for example TEST_MYSQL_USERNAME. And for the PostgreSQL datasource, use
the CLOUD _ prefix, for example CLOUD_USERNAME.

8.7. CLUSTERING

8.7.1. Configuring a JGroups Discovery Mechanism

To enable JBoss EAP clustering on OpenShift, configure the JGroups protocol stack in your JBoss EAP
configuration to use either the kubernetes.KUBE_PING or the dns.DNS_PING discovery mechanism.

Although you can use a custom standalone-openshift.xml configuration file, it is recommended that
you use environment variables to configure JGroups in your image build.

The instructions below use environment variables to configure the discovery mechanism for the JBoss
EAP for OpenShift image.

IMPORTANT

If you use one of the available application templates to deploy an application on top of
the JBoss EAP for OpenShift image, the default discovery mechanism is dns.DNS_PING.

The dns.DNS_PING and kubernetes.KUBE_PING discovery mechanisms are not
compatible with each other. It is not possible to form a supercluster out of two
independent child clusters, with one using the dns.DNS_PING mechanism for discovery
and the other using the kubernetes.KUBE_PING mechanism. Similarly, when performing
a rolling upgrade, the discovery mechanism needs to be identical for both the source and
the target clusters.

8.7.1.1. Configuring KUBE_PING

To use the KUBE_PING JGroups discovery mechanism:

81

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

1. The JGroups protocol stack must be configured to use KUBE_PING as the discovery
mechanism.
You can do this by setting the JGROUPS_PING_PROTOCOL environment variable to
kubernetes.KUBE_PING:

I JGROUPS_PING_PROTOCOL=kubernetes.KUBE_PING

2. The KUBERNETES_NAMESPACE environment variable must be set to your OpenShift project
name. If not set, the server behaves as a single-node cluster (a "cluster of one"). For example:

I KUBERNETES_NAMESPACE=PROJECT_NAME

3. The KUBERNETES_LABELS environment variable should be set. This should match the label
set at the service level. If not set, pods outside of your application (albeit in your namespace) will
try to join. For example:

I KUBERNETES_LABELS=application=APP_NAME

4. Authorization must be granted to the service account the pod is running under to be allowed to
access Kubernetes' REST API. This is done using the OpenShift CLI. The following example uses
the default service account in the current project’s namespace:

I oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default -n $(oc project
-q)

Using the eap-service-account in the project namespace:

oc policy add-role-to-user view system:serviceaccount:$(oc project -q):eap-service-account -
n $(oc project -q)

NOTE

See Prepare OpenShift for Application Deployment for more information on
adding policies to service accounts.

8.7.1.2. Configuring DNS_PING

To use the DNS_PING JGroups discovery mechanism:

1. The JGroups protocol stack must be configured to use DNS_PING as the discovery mechanism.
You can do this by setting the JGROUPS_PING_PROTOCOL environment variable to
dns.DNS_PING:

I JGROUPS_PING_PROTOCOL=dns.DNS_PING

2. The OPENSHIFT_DNS_PING_SERVICE_NAME environment variable must be set to the name
of the ping service for the cluster.

I OPENSHIFT_DNS_PING_SERVICE_NAME=PING_SERVICE_NAME

82

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#labels
https://docs.openshift.com/container-platform/3.11/dev_guide/service_accounts.html#default-service-accounts-and-roles

CHAPTER 8. REFERENCE INFORMATION

3. The OPENSHIFT_DNS_PING_SERVICE_PORT environment variable should be set to the port
number on which the ping service is exposed. The DNS_PING protocol attempts to discern the
port from the SRV records, otherwise it defaults to 8888.

I OPENSHIFT_DNS_PING_SERVICE_PORT=PING_PORT

4. A ping service which exposes the ping port must be defined. This service should be headless
(ClusterlP=None) and must have the following:

a. The port must be named.

b. The service must be annotated with the service.alpha.kubernetes.io/tolerate-unready-
endpoints and the publishNotReadyAddresses properties, both set to true.

NOTE

® Use both the service.alpha.kubernetes.io/tolerate-unready-endpoints
and the publishNotReadyAddresses properties to ensure that the ping
service works in both the older and newer OpenShift releases.

e Omitting these annotations result in each node forming its own "cluster
of one" during startup. Each node then merges its cluster into the other
nodes' clusters after startup, because the other nodes are not detected
until after they have started.

kind: Service
apiVersion: vi
spec:
publishNotReadyAddresses: true
clusterlP: None
ports:
- hame: ping
port: 8888
selector:
deploymentConfig: eap-app
metadata:
name: eap-app-ping
annotations:
service.alpha.kubernetes.io/tolerate-unready-endpoints: "true"
description: "The JGroups ping port for clustering.”

NOTE

DNS_PING does not require any modifications to the service account and works using the
default permissions.

8.7.2. Configuring JGroups to Encrypt Cluster Traffic

To encrypt cluster traffic for JBoss EAP on OpenShift, you must configure the JGroups protocol stack
in your JBoss EAP configuration to use either the SYM_ENCRYPT or ASYM_ENCRYPT protocol.

Although you can use a custom standalone-openshift.xml configuration file, it is recommended that
you use environment variables to configure JGroups in your image build.

83

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

The instructions below use environment variables to configure the protocol for cluster traffic encryption
for the JBoss EAP for OpenShift image.

IMPORTANT

The SYM_ENCRYPT and ASYM_ENCRYPT protocols are not compatible with each
other. Itis not possible to form a supercluster out of two independent child clusters, with
one using the SYM_ENCRYPT protocol for the encryption of cluster traffic and the other
using the ASYM_ENCRYPT protocol. Similarly, when performing a rolling upgrade, the
protocol needs to be identical for both the source and the target clusters.

8.7.2.1. Configuring SYM_ENCRYPT

To use the SYM_ENCRYPT protocol to encrypt JGroups cluster traffic:

1.

84

The JGroups protocol stack must be configured to use SYM_ENCRYPT as the encryption
protocol.

You can do this by setting the JGROUPS_ENCRYPT_PROTOCOL environment variable to
SYM_ENCRYPT:

I JGROUPS_ENCRYPT_PROTOCOL=SYM_ENCRYPT

. The JGROUPS_ENCRYPT_SECRET environment variable must be set to the name of the

secret containing the JGroups keystore file used for securing the JGroups communications. If
not set, cluster communication is not encrypted and a warning is issued. For example:

I JGROUPS_ENCRYPT_SECRET=eap7-app-secret

The JGROUPS_ENCRYPT_KEYSTORE_DIR environment variable must be set to the
directory path of the keystore file within the secret specified via
JGROUPS_ENCRYPT_SECRET variable. If not set, cluster communication is not encrypted
and a warning is issued. For example:

I JGROUPS_ENCRYPT_KEYSTORE_DIR=/etc/jgroups-encrypt-secret-volume

The JGROUPS_ENCRYPT_KEYSTORE environment variable must be set to the name of the
keystore file within the secret specified via JGROUPS_ENCRYPT_SECRET variable. If not set,
cluster communication is not encrypted and a warning is issued. For example:

I JGROUPS _ENCRYPT KEYSTORE=jgroups.jceks

The JGROUPS_ENCRYPT_NAME environment variable must be set to the name associated
with the server’s certificate. If not set, cluster communication is not encrypted and a warning is
issued. For example:

I JGROUPS_ENCRYPT_NAME=jgroups

The JGROUPS_ENCRYPT_PASSWORD environment variable must be set to the password
used to access the keystore and the certificate. If not set, cluster communication is not
encrypted and a warning is issued. For example:

I JGROUPS_ENCRYPT_PASSWORD=mypassword

CHAPTER 8. REFERENCE INFORMATION

8.7.2.2. Configuring ASYM_ENCRYPT

NOTE

JBoss EAP 7.3 includes a new version of the ASYM_ENCRYPT protocol. The previous
version of the protocol is deprecated. If you specify the
JGROUPS_CLUSTER_PASSWORD environment variable, the deprecated version of
the protocol is used and a warning is printed in the pod log.

To use the ASYM_ENCRYPT protocol to encrypt JGroups cluster traffic, specify ASYM_ENCRYPT as
the encryption protocol, and configure it to use a keystore configured in the elytron subsystem.

-e JGROUPS_ENCRYPT_PROTOCOL="ASYM_ENCRYPT" \
-e JGROUPS_ENCRYPT_SECRET="encrypt_secret"\

-e JGROUPS_ENCRYPT_NAME="encrypt_name" \

-e JGROUPS_ENCRYPT_PASSWORD="encrypt_password" \
-e JGROUPS_ENCRYPT_KEYSTORE="encrypt_keystore" \
-e JGROUPS_CLUSTER_PASSWORD-="cluster_password"

8.8. HEALTH CHECKS

The JBoss EAP for OpenShift image utilizes the liveness and readiness probes included in OpenShift by
default. In addition, this image includes Eclipse MicroProfile Health, as discussed in the Configuration
Guide.

The following table demonstrates the values necessary for these health checks to pass. If the status is
anything other than the values found below, then the check is failed and the image is restarted per the

image's restart policy.

Table 8.5. Liveness and Readiness Checks

Performed Test Liveness Readiness

Server Status Any status Running

Boot Errors None None

Deployment Status [2] N/A or no failed entries N/A or no failed entries
Eclipse MicroProfile Health [P] N/A or UP N/A or UP

[a]N/Ais only a valid state when no deployments are present.

[b] N/A'is only a valid state when the microprofile-health-smallrye subsystem has been disabled.

8.9. MESSAGING

8.9.1. Configuring External Red Hat AMQ Brokers

85

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-application-health#container-health-checks-using-probes
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/configuration_guide/#microprofile_health_check

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

You can configure the JBoss EAP for OpenShift image with environment variables to connect to
external Red Hat AMQ brokers.

Example OpenShift Application Definition
The following example uses a template to create a JBoss EAP application connected to an external Red
Hat AMQ 7 broker.

Example: JDK 8

oc new-app eap73-amqg-s2i \

-p APPLICATION_NAME=eap73-mqg\
-p MQ_USERNAME=MY_USERNAME\
-p MQ_PASSWORD=MY_PASSWORD

Example: JDK 11

oc new-app eap73-openjdki1-amg-s2i\
-p APPLICATION_NAME=eap73-mqg\

-p MQ_USERNAME=MY_USERNAME\
-p MQ_PASSWORD=MY_PASSWORD

IMPORTANT

The template used in this example provides valid default values for the required
parameters. If you do not use a template and provide your own parameters, be aware that
the MQ_SERVICE_PREFIX_MAPPING name must match the APPLICATION_NAME
name, appended with "-amq7=MQ".

8.10. SECURITY DOMAINS

To configure a new Security Domain, the user must define the SECDOMAIN_NAME environment
variable.

This results in the creation of a security domain named after the environment variable. The user may
also define the following environment variables to customize the domain:

Table 8.6. Security Domains

Variable name Description

SECDOMAIN_NAME Defines an additional security domain.

Example value: myDomain

SECDOMAIN_PASSWORD_STACKING If defined, the password-stacking module option is enabled
and set to the value useFirstPass.

Example value: true

SECDOMAIN_LOGIN_MODULE The login module to be used.

Defaults to UsersRoles

86

CHAPTER 8. REFERENCE INFORMATION

Variable name Description

SECDOMAIN_USERS_PROPERTIES The name of the properties file containing user definitions.

Defaults to users.properties

SECDOMAIN_ROLES_PROPERTIES The name of the properties file containing role definitions.

Defaults to roles.properties

8.11. HTTPS ENVIRONMENT VARIABLES

Variable name Description

HTTPS_NAME If defined along with HTTPS_PASSWORD and
HTTPS_KEYSTORE, enables HTTPS and sets the SSL name.

This should be the value specified as the alias name of your
keystore if you created it with the keytool -genkey command.

Example value: example.com

HTTPS_PASSWORD If defined along with HTTPS_NAME and
HTTPS_KEYSTORE, enables HTTPS and sets the SSL key
password.

Example value: passwOrd

HTTPS_KEYSTORE If defined along with HTTPS_PASSWORD and
HTTPS_NAME, enables HTTPS and sets the SSL certificate
key file to a relative path under
EAP_HOME/standalone/configuration

Example value: ssl.key

8.12. ADMINISTRATION ENVIRONMENT VARIABLES

Table 8.7. Administration Environment Variables

Variable name Description

ADMIN_USERNAME If both this and ADMIN_PASSWORD are defined, used for the
JBoss EAP management user name.

Example value: eapadmin

ADMIN_PASSWORD The password for the specified ADMIN_USERNAME.

Example value: passwOrd

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

8.13. S2|
The image includes S2I scripts and Maven.

Maven is currently only supported as a build tool for applications that are supposed to be deployed on
JBoss EAP-based containers (or related/descendant images) on OpenShift.

Only WAR deployments are supported at this time.

8.13.1. Custom Configuration

It is possible to add custom configuration files for the image. All files put into configuration/ directory
will be copied into EAP_HOME/standalone/configuration/. For example to override the default
configuration used in the image, just add a custom standalone-openshift.xml into the configuration/
directory. See example for such a deployment.

8.13.1.1. Custom Modules

It is possible to add custom modules. All files from the modules/ directory will be copied into
EAP_HOME/modules/. See example for such a deployment.

8.13.2. Deployment Artifacts

By default, artifacts from the source target directory will be deployed. To deploy from different
directories set the ARTIFACT_DIR environment variable in the BuildConfig definition. ARTIFACT_DIR
is a comma-delimited list. For example: ARTIFACT_DIR=app1/target,app2/target,app3/target

8.13.3. Artifact Repository Mirrors

A repository in Maven holds build artifacts and dependencies of various types, for example, all of the
project JARs, library JARs, plug-ins, or any other project specific artifacts. It also specifies locations
from where to download artifacts while performing the S2I build. Besides using central repositories, it is a
common practice for organizations to deploy a local custom mirror repository.
Benefits of using a mirror are:

® Availability of a synchronized mirror, which is geographically closer and faster.

® Ability to have greater control over the repository content.

® Possibility to share artifacts across different teams (developers, Cl), without the need to rely on
public servers and repositories.

® |mproved build times.
Often, a repository manager can serve as local cache to a mirror. Assuming that the repository manager
is already deployed and reachable externally at https://10.0.0.1:8443/repository/internal/, the S2I build
can then use this manager by supplying the MAVEN_MIRROR_URL environment variable to the build

configuration of the application as follows:

1. ldentify the name of the build configuration to apply MAVEN_MIRROR_URL variable against.

oc get bc -0 name
buildconfig/eap

88

https://github.com/goldmann/openshift-eap-examples/tree/master/custom-configuration
https://github.com/goldmann/openshift-eap-examples/tree/master/custom-module

CHAPTER 8. REFERENCE INFORMATION

2. Update build configuration of eap with a MAVEN_MIRROR_URL environment variable.

oc env bc/eap MAVEN_MIRROR_URL="https://10.0.0.1:8443/repository/internal/"
buildconfig "eap" updated

3. Verify the setting.

oc env bc/eap --list
buildconfigs eap
MAVEN_MIRROR_URL=https://10.0.0.1:8443/repository/internal/

4. Schedule new build of the application.

NOTE
During application build, you will notice that Maven dependencies are pulled from the
repository manager, instead of the default public repositories. Also, after the build is

finished, you will see that the mirror is filled with all the dependencies that were retrieved
and used during the build.

L

8.13.3.1. Secure Artifact Repository Mirror URLs

To prevent "man-in-the-middle" attacks through the Maven repository, JBoss EAP requires the use of
secure URLs for artifact repository mirror URLSs.

The URL should specify a secure http ("https") and a secure port.

By default, if you specify an unsecure URL, an error will be returned. You can override this behavior using
the the property -Dinsecure.repositories=WARN.

8.13.4. Scripts

run

This script uses the openshift-launch.sh script that configures and starts JBoss EAP with the
standalone-openshift.xml configuration.

assemble

This script uses Maven to build the source, create a package (WAR), and move it to the
EAP_HOME/standalone/deployments directory.

8.13.5. Custom Scripts

You can add custom scripts to run when starting a pod, before JBoss EAP is started.

You can add any script valid to run when starting a pod, including CLI scripts.

Two options are available for including scripts when starting JBoss EAP from an image:
® Mount a configmap to be executed as postconfigure.sh

® Add aninstall.sh script in the nominated installation directory

8.13.5.1. Mounting a configmap to execute custom scripts

89

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

Mount a configmap when you want to mount a custom script at runtime to an existing image (in other
words, an image that has already been built).

To mount a configmap:

1. Create a configmap with content you want to include in the postconfigure.sh.
For example, create a directory called extensions in the project root directory to include the
scripts postconfigure.sh and extensions.cli and run the following command:

$ oc create configmap jboss-cli --from-file=postconfigure.sh=extensions/postconfigure.sh --
from-file=extensions.cli=extensions/extensions.cli

2. Mount the configmap into the pods via the deployment controller (dc).

$ oc set volume dc/eap-app --add --name=jboss-cli -m /opt/eap/extensions -t configmap --
configmap-name=jboss-cli --default-mode='0755" --overwrite

Example postconfigure.sh

#!/usr/bin/env bash

set -x

echo "Executing postconfigure.sh”

$JBOSS_HOME/bin/jboss-cli.sh --file=$JBOSS_HOME/extensions/extensions.cli

Example extensions.cli

embed-server --std-out=echo --server-config=standalone-openshift.xmi
:‘whoami
quit

8.13.5.2. Using install.sh to execute custom scripts

Use install.sh when you want to include the script as part of the image when it is built.
To execute custom scripts using install.sh:

1. In the git repository of the project that will be used during s2i build, create a directory called
.S2i.

2. Inside the s2i directory, add a file called environment, with the following content:

$ cat .s2i/environment
CUSTOM _INSTALL DIRECTORIES=extensions

3. Create a directory called extensions.

4. In the extensions directory, create the file postconfigure.sh with contents similar to the
following (replace placeholder code with appropriate code for your environment):

$ cat extensions/postconfigure.sh

#!/usr/bin/env bash

echo "Executing patch.cli"

$JBOSS_HOME/bin/jboss-cli.sh --file=$JBOSS_HOME/extensions/some-cli-example.cli

90

CHAPTER 8. REFERENCE INFORMATION

5. In the extensions directory, create the file install.sh with contents similar to the following
(replace placeholder code with appropriate code for your environment):

$ cat extensions/install.sh

#!/usr/bin/env bash

set -X

echo "Running $PWD/install.sh"

injected_dir=$1

copy any needed files into the target build.

cp -rf ${injected_dir} $JBOSS_HOME/extensions

8.13.6. Environment Variables

You can influence the way the build is executed by supplying environment variables to the s2i build
command. The environment variables that can be supplied are:

Table 8.8. s2i Environment Variables

Variable name Description

ARTIFACT_DIR The .war, .ear, and .jar files from this directory will be copied
into the deployments/ directory.

Example value: target

ENABLE_GENERATE_DEFAULT_DATAS Optional. When included with the value true, the server is
OURCE provisioned with the default datasource. Otherwise, the default
datasource is not included.

GALLEON_PROVISION_DEFAULT_FAT_ Optional. When included with the value true, and no galleon
SERVER layers have been set, a default JBoss EAP server is provisioned.

GALLEON_PROVISION_LAYERS Optional. Instructs the S2I process to provision the specified
layers. The value is a comma-separated list of layers to
provision, including one base layer and any number of decorator
layers.

Example value: jaxrs, sso

HTTP_PROXY_HOST Host name or IP address of a HTTP proxy for Maven to use.

Example value: 192.168.1.1

HTTP_PROXY_PORT TCP Port of a HTTP proxy for Maven to use.

Example value: 8080

HTTP_PROXY_USERNAME If supplied with HTTP_PROXY_PASSWORD, use credentials
for HTTP proxy.

Example value: myusername

o1

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

Variable name Description

HTTP_PROXY_PASSWORD If supplied with HTTP_PROXY_USERNAME, use credentials
for HTTP proxy.

Example value: mypassword

HTTP_PROXY_NONPROXYHOSTS If supplied, a configured HTTP proxy will ignore these hosts.

Example value: some.example.org|*.example.net

MAVEN_ARGS Overrides the arguments supplied to Maven during build.

Example value: -e -Popenshift -DskipTests -
Dcom.redhat.xpaas.repo.redhatga package

MAVEN_ARGS_APPEND Appends user arguments supplied to Maven during build.

Example value: -Dfoo=bar

MAVEN_MIRROR_URL URL of a Maven Mirror/repository manager to configure.
Example value: https://10.0.0.1:8443/repository/internal/

Note that the specified URL should be secure. For details see
Section 8.13.3.1, “Secure Artifact Repository Mirror URLs"

MAVEN_CLEAR_REPO Optionally clear the local Maven repository after the build.

If the server present in the image is strongly coupled to the local
cache, the cache is not deleted and a warning is printed.

Example value: true

APP_DATADIR If defined, directory in the source from where data files are
copied.

Example value: mydata

DATA_DIR Directory in the image where data from $APP_DATADIR will
be copied.

Example value: EAP_HOME/data

NOTE

For more information, see Build and Run a Java Application on the JBoss EAP for
OpenShift Image, which uses Maven and the S2I scripts included in the JBoss EAP for
OpenShift image.

8.14. SINGLE SIGN-ON IMAGE

This image includes the Red Hat Single Sign-On-enabled applications.

92

CHAPTER 8. REFERENCE INFORMATION

For more information on deploying the Red Hat Single Sign-On for OpenShift image with the JBoss
EAP for OpenShift image, see Deploy the Red Hat Single Sign-On-enabled JBoss EAP Image on the
Red Hat Single Sign-On for OpenShift guide.

Table 8.9. Single Sign-On environment variables

Variable name Description

SSO_URL URL of the Single Sign-On server.
SSO_REALM Single Sign-On realm for the deployed applications.
SSO_PUBLIC_KEY Public key of the Single Sign-On realm. This field is optional but

if omitted can leave the applications vulnerable to man-in-
middle attacks.

SSO_USERNAME Single Sign-On user required to access the Single Sign-On
REST API.

Example value: mySsoUser

SSO_PASSWORD Password for the Single Sign-On user defined by the
SSO_USERNAME variable.

Example value: 6fedmL3P

SSO_SAML_KEYSTORE

SSO_SAML_KEYSTORE_PASSWORD

SSO_SAML_CERTIFICATE_NAME

SSO_BEARER_ONLY

SSO_CLIENT

SSO_ENABLE_CORS

SSO_SECRET

SSO_DISABLE_SSL_CERTIFICATE_VALI

DATION

Keystore location for SAML. Defaults to /etc/sso-saml-
secret-volume/keystore.jks.

Keystore password for SAML. Defaults to mykeystorepass.

Alias for keys/certificate to use for SAML. Defaults to jboss.

Single Sign-On client access type. (Optional)

Example value: true

Path for Single Sign-On redirects back to the application.
Defaults to match module-name.

If true, enable CORS for Single Sign-On applications. (Optional)

The Single Sign-On client secret for confidential access.

Example value: KZ1Qylq4

If true the SSL/TLS communication between JBoss EAP and
the RH Single Sign-On server is unsecure, for example, the
certificate validation is disabled with curl. Not set by default.

Example value: true

93

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.3/html-single/red_hat_single_sign-on_for_openshift/index#deploy_the_red_hat_single_sign_on_enabled_jboss_eap_image

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

8.15. TRANSACTION RECOVERY

When a cluster is scaled down, it is possible for transaction branches to be in doubt. In these cases,
manual transaction recovery might be necessary.

IMPORTANT

The Automated Transaction Recovery feature is only supported for OpenShift 3 and the
feature is provided as Technology Preview only.

For OpenShift 4 you can use the EAP Operator to safely recovery transactions. See EAP
Operator for Safe Transaction Recovery.

8.15.1. Unsupported Transaction Recovery Scenarios

® JTS transactions
Because the network endpoint of the parent is encoded in recovery coordinator IORs, recovery
cannot work reliably if either the child or parent node recovers with either a new IP address, or if
it is intended to be accessed using a virtualized IP address.

® XTS transactions
XTS does not work in a clustered scenario for recovery purposes. See JBTM-2742 for details.

® Transactions propagated over JBoss Remoting is unsupported with OpenShift 3.

NOTE

Transactions propagated over JBoss Remoting is supported with OpenShift 4 and the
EAP operator.

® Transactions propagated over XATerminator
Because the EIS is intended to be connected to a single instance of a Java EE application server,
there are no well-defined ways to couple these processes.

8.15.2. Manual Transaction Recovery Process

8.15.2.1. Caveats

This procedure only describes how to manually recover transactions that were wholly self-contained
within a single JVM. The procedure does not describe how to recover JTA transactions that have been
propagated to other JVMs.

IMPORTANT

There are various network partition scenarios in which OpenShift might start multiple
instances of the same pod with the same IP address and same node name and where,
due to the partition, the old pod is still running. During manual recovery, this might result
in a situation where you might be connected to a pod that has a stale view of the object
store. If you think you are in this scenario, it is recommended that all JBoss EAP pods be
shut down to ensure that none of the resource managers or object stores are in use.

When you enlist a resource in an XA transaction, it is your responsibility to ensure that each resource
type is supported for recovery. For example, it is known that PostgreSQL and MySQL are well-behaved

94

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/index#eap-operator-for-safe-transaction-recovery_default
https://issues.jboss.org/browse/JBTM-2742
http://jbossremoting.jboss.org/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#ejb-remoting-on-openshift_default

CHAPTER 8. REFERENCE INFORMATION

with respect to recovery, but for others, such as A-MQ and JDV resource managers, you should check
documentation of the specific OpenShift release.

The deployment must use a JDBC object store.

IMPORTANT

The transaction manager relies on the uniqueness of node identifiers. The maximum byte
length of an XID is set by the XA specification and cannot be changed. Due to the data
that the JBoss EAP for OpenShift image must include in the XID, this leaves room for 23
bytes in the node identifier.

OpenShift coerces the node identifier to fit this 23 byte limit:

® For all node names, even those under 23 bytes, the - (dash) character is stripped
out.

e |f the name is still over 23 bytes, characters are truncated from the beginning of
the name until length of the name is within the 23 byte limit.

However, this process might impact the uniqueness of the identifier. For example, the
names aaa123456789012345678m0jwh and bbb123456789012345678m0jwh are both
truncated to 123456789012345678mO0jwh, which breaks the uniqueness of the names
that are expected. In another example, this-pod-is-m0jwh and thispod-is-m0Ojwh are
both truncated to thispodismOjwh, again breaking the uniqueness of the names.

It is your responsibility to ensure that the node names you configure are unique, keeping
in mind the above truncation process.

8.15.2.2. Prerequisite

It is assumed the OpenShift instance has been configured with a JDBC store, and that the store tables
are partitioned using a table prefix corresponding to the pod name. This should be automatic whenever
a JBoss EAP deployment is in use. You can verify that the JBoss EAP instance is using a JDBC object
store by looking at the configuration of the transactions subsystem in a running pod:

1. Determine if the /opt/eap/standalone/configuration/openshift-standalone.xml configuration
file contains an element for the transaction subsystem:

I <subsystem xmlns="urn:jboss:domain:transactions:3.0">
2. If the JDBC object store is in use, then there is an entry similar to the following:

I <jdbc-store datasource-jndi-name="java:jboss/datasources/jdbcstore_postgresql"/>

‘ Y NOTE

*

LA ™

ééx - The JNDI name identifies the datasource used to store the transaction logs.

8.15.2.3. Procedure

95

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

IMPORTANT

The following procedure details the process of manual transaction recovery solely for
datasources.

1. Use the database vendor tooling to list the XIDs (transaction branch identifiers) for in-doubt
branches. It is necessary to list XIDs for all datasources that were in use by any deployments
running on the pod that failed or was scaled down. Refer to the vendor documentation for the
database product in use.

2. For each such XID, determine which pod created the transaction and check to see if that pod is
still running.

a. Ifitis running, then leave the branch alone.
b. If the pod is not running, assume it was removed from the cluster and you must apply the

manual resolution procedure described here. Look in the transaction log storage that was
used by the failed pod to see if there is a corresponding transaction log:

i. If thereis a log, then manually commit the XID using the vendor tooling.

ii. Ifthereis not alog, assume itis an orphaned branch and roll back the XID using the
vendor tooling.

The rest of this procedure explains in detail how to carry out each of these steps.

8.15.2.3.1. Resolving In-doubt Branches

First, find all the resources that the deployment is using.

It is recommended that you do this using the JBoss EAP managagement CLI. Although the resources
should be defined in the JBoss EAP standalone-openshift.xml configuration file, there are other ways
they can be made available to the transaction subsystem within the application server. For example, this
can be done using a file in a deployment, or dynamically using the management CLI at runtime.

1. Open a terminal on a pod running a JBoss EAP instance in the cluster of the failed pod. If there
is no such pod, scale up to one.

2. Create a management user using the /opt/eap/bin/add-user.sh script.
3. Loginto the management CLI using the /opt/eap/bin/jboss-cli.sh script.

4. List the datasources configured on the server. These are the ones that may contain in-doubt
transaction branches.

/subsystem=datasources:read-resource

{
"outcome" => "success",
"result" => {
"data-source" => {
"ExampleDS" => undefined,
1,
1

96

CHAPTER 8. REFERENCE INFORMATION

5. Once you have the list, find the connection URL for each of the datasources. For example:

/subsystem=datasources/data-source=ExampleDS:read-attribute(name=connection-url)

{
"outcome" => "success",
"result" => "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE",
"response-headers" => {"process-state" => "restart-required"}

}

6. Connect to each datasource and list any in-doubt transaction branches.

NOTE

The table name that stores in-doubt branches will be different for each
datasource vendor.

JBoss EAP has a default SQL query tool (H2) that you can use to check each database. For
example:

java -cp /opt/eap/modules/system/layers/base/com/h2database/h2/main/h2-1.3.173.jar \
-url "jdbc:postgresql://localhost:5432/postgres” \

-user sa\

-password sa \

-sql "select gid from pg_prepared_xacts;"

Alternatively, you can use the resource’s native tooling. For example, for a PostGreSQL
datasource called sampledb, you can use the OpenShift client tools to remotely log in to the
pod and query the in-doubt transaction table:

$ oc rsh postgresql-2-vwf9n # rsh to the named pod
sh-4.2$ psql sampledb

psql (9.5.7)

Type "help" for help.

sampledb=# select gid from pg_prepared_xacts;
131077_AAAAAAAAAAAAAP//rBEAB440GK1aJ720AAAAGHAtanRhLWNyYXNoLXJIYy0zLXA
Y2N3_AAAAAAAAAAAAAP//'BEAB440GK1aJ720AAAAGgAAAAEAAAAA

8.15.2.3.2. Extract the Global Transaction ID and Node Identifier from Each XID

When all XIDs for in-doubt branches are identified, convert the XIDs into a format that you can compare
to the logs stored in the transaction tables of the transaction manager.

For example, the following Bash script can be used to perform this conversion. Assuming that $PG_XID
holds the XID from the select statement above, then the JBoss EAP transaction ID can be obtained as
follows:

PG_XID="¢$1"

IFS=''read -ra lines <<< "$PG_XID"

[["${lines[0]}" = 131077 1] || exit 0; # this script only works for our own FORMAT ID
PG_TID=%{lines[1]}

a=($(echo "$PG_TID"| base64 -d | xxd -ps |tr -d "\n' | while read -N16 i ; do echo 0x$i ; done))

97

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

b=($(echo "$PG_TID"| base64 -d | xxd -ps |tr -d "\n' | while read -N8 i ; do echo 0x$i ; done))
c=("${b[@]:4}") # put the last 3 32-bit hexadecimal numbers into array ¢
the negative elements of ¢ need special handling since printf below only works with positive
hexadecimal numbers
for i in "${!c[@]}"; do
arg=${c[$il}
inspect the MSB to see if arg is negative - if so convert it from a 2’s complement number
[[$(($arg>>31)) = 1]] && x=$(echo "obase=16; $(($arg - 0x100000000))" | bc) || x=$arg
if [[${x:0:1} =\-]] ; then # see if the first character is a minus sign
neg[$il="-";
c[$i]=0x${x:1} # strip the minus sign and make it hex for use with printf below
else
neg[$i]=""
c[$i]=$x
fi
done
EAP_TID=$(printf %x:%x:${neg[0]}%x:${neg[1]}%x:${neg[2]}%x ${a[0]} ${a[1]} ${c[O]} ${c[1]} ${c[2]})

After completion, the $EAP_TID variable holds the global transaction ID of the transaction that created
this XID. The node identifier of the pod that started the transaction is given by the output of the
following bash command:

I echo "$PG_TID"| base64 -d | tail -c +29

NOTE

The node identifier starts from the 29th character of the PostgreSQL global transaction
ID field.

e |f this pod is still running, then leave this in-doubt branch alone since the transaction is still in
flight.

® [f this pod is not running, then you need to search the relevant transaction log storage for the
transaction log. The log storage is located in a JDBC table, which is named following the
os<node-identifier>jbosststxtable pattern.

o |[f there is no such table, leave the branch alone as it is owned by some other transaction
manager. The URL for the datasource containing this table is defined in the transaction
subsystem description shown below.

o If there is such a table, look for an entry that matches the global transaction ID.

® |f there is an entry in the table that matches the global transaction ID, then the in-doubt
branch needs to be committed using the datasource vendor tooling as described below.

® [f there is no such entry, then the branch is an orphan and can safely be rolled back.

An example of how to commit an in-doubt PostgreSQL branch is shown below:

$ oc rsh postgresql-2-vwf9n
sh-4.2$ psql sampledb

psql (9.5.7)

Type "help" for help.

psql sampledb

98

CHAPTER 8. REFERENCE INFORMATION

commit prepared '131077_AAAAAAAAAAAAAP//rBEAB440GK1adJ720AAAAGHAtanRh

LWNyYXNoLXJIYy0zLXAyY2N3_AAAAAAAAAAAAAP//fBEAB440GK1aJ720AAAAGgAAAAEAAAAA';

IMPORTANT

Repeat this procedure for all datasources and in-doubt branches.

8.15.2.3.3. Obtain the List of Node Identifiers of All Running JBoss EAP Instances in Any Cluster
that Can Contact the Resource Managers

Node identifiers are configured to be the same name as the pod name. You can obtain the pod names in
use using the oc command. Use the following command to list the running pods:

$ oc get pods | grep Running
eap-manual-tx-recovery-app-4-26p4r 1/1 Running 0 23m
postgresql-2-vwfn 11 Running 0 41m

For each running pod, look in the output of the pod’s log and obtain the node name. For example, for
first pod shown in the above output, use the following command:

$ oc logs eap-manual-tx-recovery-app-4-26p4r | grep "jposs.node.name" | head -1
jboss.node.name = tx-recovery-app-4-26p4r

IMPORTANT

The aforementioned JBoss node name identifier will always be truncated to the
maximum length of 23 characters in total by removing characters from the beginning and
retaining the trailing characters until the maximum length of 23 characters is reached.

8.15.2.3.4. Find the Transaction Logs

1. The transaction logs reside in a JDBC-backed object store. The JNDI name of this store is
defined in the transaction subsystem definition of the JBoss EAP configuration file.

2. Lookin the configuration file to find the datasource definition corresponding to the above JNDI
name.

3. Use the JNDI name to derive the connection URL.

4. You can use the URL to connect to the database and issue a select query on the relevant in-
doubt transaction table.
Alternatively, if you know which pod the database is running on, and you know the name of the
database, it might be easier to open an OpenShift remote shell into the pod and use the
database tooling directly.

For example, if the JDBC store is hosted by a PostgreSQL database called sampledb running

on pod postgresql-2-vwfIn, then you can find the transaction logs using the following
commands:

99

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

NOTE

The ostxrecoveryapp426p4rjbosststxtable table name listed in the following
command has been chosen since it follows the pattern for JDBC table names
holding the log storage entries. In your environment the table name will have
similar form:

® Starting with os prefix.

® The partin the middle is derived from the JBoss node name above, possibly

deleting the "-" (dash) character if present.

e Finally the jbosststxtable suffix is appended to create the final name of the
table.

$ oc rsh postgresql-2-vwf9n
sh-4.2$ psql sampledb

psql (9.5.7)

Type "help" for help.

sampledb=# select uidstring from ostxrecoveryapp426p4rjbosststxtable where
TYPENAME-='StateManager/BasicAction/TwoPhaseCoordinator/AtomicAction'

’

uidstring

0:ffff0a81009d:33789827:5a68b2bf:40
(1 row)

8.15.2.3.5. Cleaning Up the Transaction Logs for Reconciled In-doubt Branches

' WARNING
A Do not delete the log unless you are certain that there are no remaining in-doubt

branches.

When all the branches for a given transaction are complete, and all potential resources managers have
been checked, including A-MQ and JDV, it is safe to delete the transaction log.

Issue the following command, specify the transaction log to be removed using the appropriate
uidstring:

I DELETE FROM ostxrecoveryapp426p4rjbosststxtable where uidstring = UIDSTRING

IMPORTANT

If you do not delete the log, then completed transactions which failed after prepare, but
which have now been resolved, will never be removed from the transaction log storage.
The consequence of this is that unnecessary storage is used and future manual
reconciliation will be more difficult.

100

CHAPTER 8. REFERENCE INFORMATION

8.16. INCLUDED JBOSS MODULES
The table below lists included JBoss Modules in the JBoss EAP for OpenShift image.

Table 8.10. Included JBoss Modules

JBoss Module

org.jboss.as.clustering.common
org.jboss.as.clustering.jgroups
org.jboss.as.ee
org.jboss.logmanager.ext
org.jgroups

org.openshift.ping

net.oauth.core

8.17. EAP OPERATOR: API INFORMATION

The EAP operator introduces the following APls:

8.17.1. WildFlyServer

WildFlyServer defines a custom JBoss EAP resource.

Table 8.11. WildFlyServer

Field Description Scheme Required

metadata Standard object'’s ObjectMeta vl meta false
metadata

spec Specification of the WildFlyServerSpec true

desired behaviour of the
JBoss EAP deployment.

status Most recent observed WildFlyServerStatus false
status of the JBoss EAP
deployment. Read-only.

8.17.2. WildFlyServerList

WildFlyServerList defines a list of JBoss EAP deployments.

101

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#objectmeta-v1-meta
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#wildflyserverspec_default
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#spec-and-status#spec-and-status
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#wildflyserverstatus_default

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

Table 8.12. Table

Field Scheme

Description

Required

metadata Standard list's metadata metavl.ListMeta false

items List of WildFlyServer WildFlyServer true

8.17.3. WildFlyServerSpec

WildFlyServerSpec is a specification of the desired behavior of the JBoss EAP resource.

It uses a StatefulSet with a pod spec that mounts the volume specified by storage on
/opt/jboss/wildfly/standalone/data.

Table 8.13. WildFlyServerSpec

Field

applicationlmage

replicas

standaloneConfigMa
p

storage

serviceAccountNam
e

envFrom

102

Description

Name of the application
image to be deployed

the desired number of
replicas for the
application

Spec to specify how a
standalone
configuration can be
read from a

ConfigMap.

Storage spec to specify
how storage should be
used. If omitted, an
EmptyDir is used (that
does not persist data
across pod restart)

Name of the
ServiceAccount to use
to run the JBoss EAP
pods

List of environment
variables present in the
containers from
configMap or secret

Scheme

string

int32]

StandaloneConfigMa

pSpec

StorageSpec

string

corevi.EnvFromSou
rce

Required

false

true

false

false

false

false

{https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#listmeta-v1-meta}
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#wildflyserver_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#standaloneconfigmapspec_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#storagespec_default
{https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#envfromsource-v1-core}

CHAPTER 8. REFERENCE INFORMATION

Field Description Scheme Required
env List of environment corevl.EnvVar false
variable present in the
containers
secrets List of secret names to string false

mount as volumes in the
containers. Each secret
is mounted as a read-
only volume at
/etc/secrets/<secret
name>

configMaps List of ConfigMap string false
names to mount as
volumes in the
containers. Each
ConfigMap is mounted
as a read-only volume
under
/etc/configmaps/<co
nfig map name>

disableHTTPRoute Disable the creation a boolean false
route to the HTTP port
of the application
service (false if omitted)

sessionAffinity If connections from the boolean false
same client IP are
passed to the same
JBoss EAP
instance/pod each time
(false if omitted)

8.17.4. StorageSpec

StorageSpec defines the configured storage for a WildFlyServer resource. If neither an EmptyDir nor a
volumeClaimTemplate is defined, a default EmptyDir is used.

The EAP Operator configures the StatefulSet using information from this StorageSpec to mount a
volume dedicated to the standalone/data directory used by JBoss EAP to persist its own data. For
example, transaction log). If an EmptyDir is used, the data does not survive a pod restart. If the
application deployed on JBoss EAP relies on transaction, specify a volumeClaimTemplate, so that the
same persistent volume can be reused upon pod restarts.

Table 8.14. Table

103

{https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#envvar-v1-core}

Red Hat JBoss Enterprise Application Platform 7.3 Getting Started with JBoss EAP for OpenShift Online

Field Description Scheme Required
emptyDir EmptyDirVolumeSou corevliEmptyDirVolume false
rce to be used by the Source

JBoss EAP StatefulSet

volumeClaimTempla A corevl.PersistentVolume false
te PersistentVolumeClaim Claim

spec to configure

Resources

requirements to store
JBoss EAP standalone
data directory. The
name of the template is
derived from the
WildFlyServer name.
The corresponding
volume is mounted in
ReadWriteOnce
access mode.

8.17.5. StandaloneConfigMapSpec

StandaloneConfigMapSpec defines how JBoss EAP standalone configuration can be read from a
ConfigMap. If omitted, JBoss EAP uses its standalone.xml configuration from its image.

Table 8.15. StandaloneConfigMapSpec

Field Description Scheme Required

hame Name of the string true
ConfigMap containing
the standalone
configuration XML file.

key Key of the ConfigMap string false
whose value is the
standalone
configuration XML file.
If omitted, the spec finds
the standalone.xml
key.

8.17.6. WildFlyServerStatus

WildFlyServerStatus is the most recent observed status of the JBoss EAP deployment. Read-only.

Table 8.16. WildFlyServerStatus

104

{https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#emptydirvolumesource-v1-core}
{https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#persistentvolumeclaim-v1-core}

CHAPTER 8. REFERENCE INFORMATION

Field Description Scheme Required
replicas The actual number of int32 true
replicas for the
application
hosts Hosts that route to the string true
application HTTP
service
pods Status of the pods PodStatus true
scalingdownPods Number of pods thatare int32 true

under scale down
cleaning process

8.17.7. PodStatus

PodStatus is the most recent observed status of a pod running the JBoss EAP application.

Table 8.17. PodStatus

Field Description Scheme Required

hame Name of the pod string true

podIP IP address allocated to string true
the pod

state State of the podin the string false

scale down process. The
state is ACTIVE by
default, which means it
serves requests.

Revised on 2021-12-27 11:43:17 UTC

105

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/#podstatus_default

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. WHAT IS RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM (JBOSS EAP)?
	1.2. HOW DOES JBOSS EAP WORK ON OPENSHIFT?
	1.3. COMPARISON: JBOSS EAP AND JBOSS EAP FOR OPENSHIFT
	1.4. VERSION COMPATIBILITY AND SUPPORT
	JDK 8 Images
	JDK 11 Images
	Eclipse OpenJ9 Images
	1.4.1. OpenShift 4.x Support
	1.4.2. IBM Z and IBM Power Systems Support
	1.4.3. Upgrades from JBoss EAP 7.1 to JBoss EAP 7.3 on OpenShift

	1.5. DEPLOYMENT OPTIONS

	CHAPTER 2. BUILD AND RUN A JAVA APPLICATION ON THE JBOSS EAP FOR OPENSHIFT IMAGE
	2.1. PREREQUISITES
	2.2. PREPARE OPENSHIFT FOR APPLICATION DEPLOYMENT
	2.3. IMPORT THE LATEST JBOSS EAP FOR OPENSHIFT IMAGESTREAMS AND TEMPLATES
	Import command for JDK 8
	Import command for JDK 11
	Import command for Eclipse OpenJ9 on IBM Z and IBM Power Systems

	2.4. DEPLOY A JBOSS EAP SOURCE-TO-IMAGE (S2I) APPLICATION TO OPENSHIFT
	2.5. POST DEPLOYMENT TASKS
	2.6. CHAINED BUILD SUPPORT IN JBOSS EAP FOR OPENSHIFT

	CHAPTER 3. CONFIGURING THE JBOSS EAP FOR OPENSHIFT IMAGE FOR YOUR JAVA APPLICATION
	3.1. HOW THE JBOSS EAP FOR OPENSHIFT S2I PROCESS WORKS
	3.2. CONFIGURING JBOSS EAP FOR OPENSHIFT USING ENVIRONMENT VARIABLES
	3.2.1. JVM Memory Configuration
	3.2.1.1. JVM Default Memory Settings
	3.2.1.2. JVM Garbage Collection Settings
	3.2.1.3. Resource Limits in Default Settings
	3.2.1.4. JVM Environment Variables

	3.3. BUILD EXTENSIONS AND PROJECT ARTIFACTS
	3.3.1. S2I Artifacts
	3.3.1.1. Modules, Drivers, and Generic Deployments

	3.3.2. Runtime Artifacts
	3.3.2.1. Datasources
	3.3.2.2. Resource Adapters

	3.4. RESULTS OF USING JBOSS EAP TEMPLATES FOR OPENSHIFT
	3.5. SSO CONFIGURATION OF RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM FOR OPENSHIFT IMAGES
	3.6. DEFAULT DATASOURCE
	3.7. DEPLOYMENT CONSIDERATIONS FOR THE JBOSS EAP FOR OPENSHIFT IMAGE
	3.7.1. Scaling Up and Persistent Storage Partitioning
	3.7.2. Scaling Down and Transaction Recovery

	CHAPTER 4. CAPABILITY TRIMMING IN JBOSS EAP FOR OPENSHIFT
	4.1. PROVISION A CUSTOM JBOSS EAP SERVER
	4.2. AVAILABLE JBOSS EAP LAYERS
	4.2.1. Base Layers
	datasources-web-server
	jaxrs-server
	cloud-server

	4.2.2. Decorator Layers
	sso
	observability
	web-clustering

	4.3. PROVISIONING USER-DEVELOPED LAYERS IN JBOSS EAP
	4.3.1. Building Custom Layers for JBoss EAP
	4.3.2. Custom Provisioning Files for JBoss EAP
	4.3.3. Building an Application Provisioned with User-developed Layers

	CHAPTER 5. MIGRATION OF APPLICATIONS FROM JBOSS EAP IMAGESTREAMS ON OPENSHIFT 4 TO EAP73 IMAGESTREAMS
	5.1. UPDATES TO LIVENESS AND READINESS PROBE CONFIGURATION FOR EAP73 IMAGESTREAMS
	5.2. DEFAULT DATASOURCE REMOVED
	5.3. UPDATES TO STANDALONE-OPENSHIFT.XML WHEN UPGRADING JBOSS EAP 7.1 TO JBOSS EAP 7.3 ON OPENSHIFT

	CHAPTER 6. TROUBLESHOOTING
	6.1. TROUBLESHOOTING POD RESTARTS
	6.2. TROUBLESHOOTING USING THE JBOSS EAP MANAGEMENT CLI

	CHAPTER 7. EAP OPERATOR FOR AUTOMATING APPLICATION DEPLOYMENT ON OPENSHIFT
	7.1. INSTALLING EAP OPERATOR USING THE WEB CONSOLE
	7.2. INSTALLING EAP OPERATOR USING THE CLI
	7.3. JAVA APPLICATION DEPLOYMENT ON OPENSHIFT USING THE EAP OPERATOR
	7.3.1. The eap-s2i-build template for creating application images
	7.3.2. Building an application image using eap-s2i-build template
	7.3.3. Bootable JAR for packaging JBoss EAP server and a Java application
	7.3.4. Deploying a Java application using the EAP operator: Completing the mandatory configurations
	7.3.5. Deploying a Java application using the EAP operator: Completing the optional configurations
	7.3.6. Creating a Secret
	7.3.7. Creating a ConfigMap
	7.3.8. Creating a ConfigMap from a standalone.xml File
	7.3.9. Configuring Persistent Storage for Applications

	7.4. VIEWING METRICS OF AN APPLICATION USING THE EAP OPERATOR
	7.5. UNINSTALLING EAP OPERATOR USING WEB CONSOLE
	7.6. UNINSTALLING EAP OPERATOR USING THE CLI
	7.7. EAP OPERATOR FOR SAFE TRANSACTION RECOVERY
	7.7.1. StatefulSets for Stable Network Host Names
	7.7.2. Monitoring the Scaledown Process
	7.7.2.1. Pod Status During Scaledown

	7.7.3. Scaling Down During Transactions with Heuristic Outcomes
	7.7.4. Configuring the transactions subsystem to use the JDBC storage for transaction log

	7.8. EJB REMOTING ON OPENSHIFT
	7.8.1. Configuring EJB on OpenShift

	CHAPTER 8. REFERENCE INFORMATION
	8.1. PERSISTENT TEMPLATES
	8.2. INFORMATION ENVIRONMENT VARIABLES
	8.3. CONFIGURATION ENVIRONMENT VARIABLES
	8.4. APPLICATION TEMPLATES
	8.5. EXPOSED PORTS
	8.6. DATASOURCES
	8.6.1. JNDI Mappings for Datasources
	8.6.1.1. Datasource Configuration Environment Variables
	8.6.1.2. Examples

	8.7. CLUSTERING
	8.7.1. Configuring a JGroups Discovery Mechanism
	8.7.1.1. Configuring KUBE_PING
	8.7.1.2. Configuring DNS_PING

	8.7.2. Configuring JGroups to Encrypt Cluster Traffic
	8.7.2.1. Configuring SYM_ENCRYPT
	8.7.2.2. Configuring ASYM_ENCRYPT

	8.8. HEALTH CHECKS
	8.9. MESSAGING
	8.9.1. Configuring External Red Hat AMQ Brokers
	Example OpenShift Application Definition

	8.10. SECURITY DOMAINS
	8.11. HTTPS ENVIRONMENT VARIABLES
	8.12. ADMINISTRATION ENVIRONMENT VARIABLES
	8.13. S2I
	8.13.1. Custom Configuration
	8.13.1.1. Custom Modules

	8.13.2. Deployment Artifacts
	8.13.3. Artifact Repository Mirrors
	8.13.3.1. Secure Artifact Repository Mirror URLs

	8.13.4. Scripts
	8.13.5. Custom Scripts
	8.13.5.1. Mounting a configmap to execute custom scripts
	8.13.5.2. Using install.sh to execute custom scripts

	8.13.6. Environment Variables

	8.14. SINGLE SIGN-ON IMAGE
	8.15. TRANSACTION RECOVERY
	8.15.1. Unsupported Transaction Recovery Scenarios
	8.15.2. Manual Transaction Recovery Process
	8.15.2.1. Caveats
	8.15.2.2. Prerequisite
	8.15.2.3. Procedure

	8.16. INCLUDED JBOSS MODULES
	8.17. EAP OPERATOR: API INFORMATION
	8.17.1. WildFlyServer
	8.17.2. WildFlyServerList
	8.17.3. WildFlyServerSpec
	8.17.4. StorageSpec
	8.17.5. StandaloneConfigMapSpec
	8.17.6. WildFlyServerStatus
	8.17.7. PodStatus

