
Red Hat Fuse 7.0

Integrating Applications with Ignite

User's guide to integrating applications with Ignite

Last Updated: 2020-03-11

Red Hat Fuse 7.0 Integrating Applications with Ignite

User's guide to integrating applications with Ignite

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Ignite provides integration as a service.

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. UNDERSTANDING IGNITE
1.1. HOW IGNITE WORKS
1.2. WHO IGNITE IS FOR
1.3. BENEFITS OF IGNITE
1.4. UNDERSTANDING IGNITE TERMS

1.4.1. About integrations
1.4.2. About Ignite connectors
1.4.3. About Ignite connections
1.4.4. About actions
1.4.5. About steps

1.5. PLANNING INTEGRATIONS
1.6. WORKFLOW FOR CREATING AN INTEGRATION
1.7. HOW YOU USE IGNITE
1.8. ABOUT THE PRODUCT NAME

CHAPTER 2. LOGGING IN TO IGNITE

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE
3.1. OVERVIEW OF CREATING CONNECTIONS

3.1.1. About creating connections
3.1.2. Obtaining authorization to access applications

3.1.2.1. General procedure for obtaining authorization
3.1.2.2. About connection validation

3.1.3. About adding connections to integrations
3.1.4. Viewing and editing connection information
3.1.5. Creating connections from custom connectors

3.2. SPECIFYING CONNECTION INPUT OR OUTPUT TYPES
3.3. CONNECTING TO AMAZON S3

3.3.1. Prerequisites for creating an Amazon S3 connection
3.3.2. Create an Amazon S3 connection
3.3.3. Adding an Amazon S3 connection to an integration

3.3.3.1. Starting an integration by obtaining data from Amazon S3
3.3.3.2. Finishing an integration by adding data to Amazon S3
3.3.3.3. Adding data to Amazon S3 in the middle of an integration

3.4. CONNECTING TO AMQ
3.4.1. Create an AMQ connection
3.4.2. Adding an AMQ connection to an integration

3.4.2.1. Starting an integration based on receiving AMQ messages
3.4.2.2. Finishing an integration by publishing AMQ messages
3.4.2.3. Publishing AMQ messages in the middle of an integration

3.5. CONNECTING TO AMQP
3.5.1. Create an AMQP connection
3.5.2. Adding an AMQP connection to an integration

3.5.2.1. Starting an integration based on receiving AMQP messages
3.5.2.2. Finishing an integration by publishing AMQP messages
3.5.2.3. Publishing messages to AMQP in the middle of an integration

3.6. CONNECTING TO DROPBOX
3.6.1. Register Ignite as a Dropbox client
3.6.2. Create a Dropbox connection
3.6.3. Adding a Dropbox connection to an integration

5

6
6
6
7
7
7
8
8
8
8
9

10
10
11

12

13
13
13
14
14
15
15
16
16
17
17
18
18
19
19

20
21
21
21
22
23
23
23
24
25
26
26
27
27
28
28
29
30

Table of Contents

1

. .

3.6.3.1. Starting an integration by obtaining files from Dropbox
3.6.3.2. Finishing an integration by adding files to Dropbox
3.6.3.3. Accessing Dropbox in the middle of an integration

3.7. CONNECTING TO AN FTP OR SFTP SERVER
3.7.1. Creating an FTP or SFTP connection
3.7.2. Adding an FTP or SFTP connection to an integration

3.7.2.1. Obtaining files from an FTP or SFTP server
3.7.2.2. Uploading files to an FTP or SFTP server

3.8. CONNECTING TO HTTP AND HTTPS ENDPOINTS
3.8.1. Create a connection to an HTTP or HTTPS endpoint
3.8.2. Add an HTTP or HTTPS connection to an integration

3.9. CONNECTING TO MQTT
3.9.1. Create a connection to an MQTT broker
3.9.2. Adding an MQTT connection to an integration

3.9.2.1. Obtain a message from an MQTT broker
3.9.2.2. Publishing a message to an MQTT broker

3.10. CONNECTING TO REST APIS
3.10.1. Register Ignite as an API client
3.10.2. Create an API client connection
3.10.3. Add an API client connection to an integration

3.11. CONNECTING TO SALESFORCE
3.11.1. Register Ignite as a Salesforce client
3.11.2. Create a Salesforce connection
3.11.3. Adding a Salesforce connection to an integration

3.12. CONNECTING TO SLACK
3.12.1. Create a Slack connection
3.12.2. Adding a Slack connection to an integration

3.13. CONNECTING TO SQL DATABASES
3.13.1. Create a database connection
3.13.2. Add a database connection to an integration

3.13.2.1. Starting an integration by accessing a database
3.13.2.2. Accessing a database in the middle or to complete an integration

3.13.3. Connecting to proprietary databases
3.14. CONNECTING TO TWITTER

3.14.1. Register Ignite as a Twitter client
3.14.2. Create a Twitter connection
3.14.3. Adding a Twitter connection to an integration

CHAPTER 4. ADDING AND MANAGING CUSTOMIZATIONS
4.1. ADDING REST API CLIENT CONNECTORS

4.1.1. Requirements for API client connectors
4.1.2. About Swagger specification content

4.1.2.1. Guidelines for Swagger specifications
4.1.2.2. Providing client credentials in parameters
4.1.2.3. Automatically refreshing access tokens

4.1.3. Creating API client connectors
4.1.4. Updating API client connectors
4.1.5. Deleting API client connectors

4.2. ADDING EXTENSIONS
4.2.1. About extensions
4.2.2. Making custom features available
4.2.3. Managing extensions

4.2.3.1. Identifying integrations that use extensions

30
31
31
32
32
34
34
34
36
36
36
37
37
38
38
39
39
40
40
41
41
41

43
43
44
44
45
45
46
47
47
48
49
49
49
50
51

52
52
52
52
53
53
54
54
56
56
56
56
57
58
58

Red Hat Fuse 7.0 Integrating Applications with Ignite

2

. .

. .

. .

. .

4.2.3.2. Updating extensions
4.2.3.3. Deleting extensions

4.2.4. Creating JDBC driver library extensions

CHAPTER 5. CREATING INTEGRATIONS
5.1. PREPARING TO CREATE AN INTEGRATION
5.2. PROCEDURE FOR CREATING AN INTEGRATION
5.3. ADDING STEPS BETWEEN CONNECTIONS

5.3.1. Add a data mapping step
5.3.2. Add a basic filter step
5.3.3. Add an advanced filter step
5.3.4. Add a log step
5.3.5. Add a custom step

CHAPTER 6. MAPPING DATA TO FIELDS FOR THE NEXT CONNECTION
6.1. ABOUT MAPPING DATA
6.2. FINDING THE DATA FIELD YOU WANT TO MAP
6.3. IDENTIFYING WHERE DATA MAPPING IS NEEDED
6.4. MAPPING ONE SOURCE FIELD TO ONE TARGET FIELD
6.5. COMBINING MULTIPLE SOURCE FIELDS INTO ONE TARGET FIELD
6.6. SEPARATING ONE SOURCE FIELD INTO MULTIPLE TARGET FIELDS
6.7. TRANSFORMING TARGET DATA
6.8. DESCRIPTIONS OF AVAILABLE TRANSFORMATIONS
6.9. VIEWING THE MAPPINGS IN A STEP

CHAPTER 7. MANAGING INTEGRATIONS
7.1. ABOUT INTEGRATION LIFECYCLE HANDLING

7.1.1. Understanding integration versions
7.1.2. Understanding integration states
7.1.3. Viewing integration history

7.2. PUBLISHING INTEGRATIONS
7.3. UNPUBLISHING INTEGRATIONS
7.4. REPUBLISHING OLDER INTEGRATION VERSIONS
7.5. VIEWING INTEGRATION LOG INFORMATION
7.6. VIEWING INTEGRATION METRICS
7.7. VIEWING SYSTEM METRICS
7.8. TESTING INTEGRATIONS
7.9. TROUBLESHOOTING INTEGRATION EXECUTION
7.10. UPDATING INTEGRATIONS
7.11. COPYING INTEGRATIONS TO OTHER ENVIRONMENTS

7.11.1. About copying integrations
7.11.2. Exporting integrations
7.11.3. Importing integrations

7.12. DELETING INTEGRATIONS

CHAPTER 8. INSTALLING IGNITE ON OPENSHIFT CONTAINER PLATFORM

58
59
59

61
61
61

62
63
63
64
64
65

67
67
67
68
68
69
70
71
71

79

80
80
80
81
81

82
82
83
83
84
84
85
85
85
86
86
87
87
88

89

Table of Contents

3

Red Hat Fuse 7.0 Integrating Applications with Ignite

4

PREFACE
This guide provides information and instructions for using Ignite’s web interface to integrate
applications. The content is organized as follows:

Chapter 1, Understanding Ignite

Chapter 2, Logging in to Ignite

Chapter 3, Connecting to applications that you want to integrate

Chapter 4, Adding and managing customizations

Chapter 5, Creating integrations

Chapter 6, Mapping data to fields for the next connection

Chapter 7, Managing integrations

Chapter 8, Installing Ignite on OpenShift Container Platform

To learn how to use Ignite by creating sample integrations, see the sample integration tutorials.

In this release, consider the names Red Hat Fuse Online and Ignite as interchangeable.

To obtain support, in Ignite, in the upper right, click and then select Support.

PREFACE

5

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.0/html-single/ignite_sample_integration_tutorials/

CHAPTER 1. UNDERSTANDING IGNITE
Ignite is an integration platform. With Ignite, you can obtain data from an application or service, operate
on that data if you need to, and then send the data to a completely different application or service. No
coding is required to accomplish this.

For a high-level overview of Ignite, see:

Section 1.1, “How Ignite works”

Section 1.2, “Who Ignite is for”

Section 1.3, “Benefits of Ignite”

Section 1.4, “Understanding Ignite terms”

Section 1.5, “Planning integrations”

Section 1.6, “Workflow for creating an integration”

Section 1.7, “How you use Ignite”

Section 1.8, “About the product name”

1.1. HOW IGNITE WORKS

Ignite lets you enable data transfer between different applications. For example, each time a customer is
mentioned in Twitter, you might want to capture that mention in your Salesforce account for that
customer. Another example is a service that makes stock trade recommendations. You can capture
recommendations of interest and forward them to a service that automates stock transfers.

Ignite provides a web browser interface that lets you integrate two or more different applications or
services without writing code. It also provides features that allow you to introduce code if it is needed
for complex use cases.

To create and run a simple integration, the main steps are:

1. Create a connection to each application that you want to integrate.

2. Select the start connection. This connection is to the application that contains the data that you
want to share with another application.

3. Select the finish connection. This connection is to the application that receives data from the
start connection and that completes the integration.

4. Map data fields from the start connection to data fields in the finish connection.

5. Give the integration a name.

6. Click Publish to start running the integration.

The Ignite dashboard lets you monitor and manage integrations. You can see which integrations are
running, start, stop, and edit integrations.

1.2. WHO IGNITE IS FOR

Red Hat Fuse 7.0 Integrating Applications with Ignite

6

Ignite is for business experts in, for example, finance, human resources, or marketing, who do not want to
write code in order to share data between two different applications. Their use of a variety of software-
as-a-service (SaaS) applications gives them an understanding of business requirements, workflows, and
relevant data.

1.3. BENEFITS OF IGNITE

With Ignite, you can:

Integrate data from different applications or services without writing code.

Run the integration on OpenShift in the public cloud or on site.

Use the visual data mapper to map data fields in one application to data fields in another
application.

Leverage all the benefits of open source software. You can extend features, and customize
interfaces. If Ignite does not provide a connector for an application or service that you want to
integrate then a developer can create the connector that you need.

1.4. UNDERSTANDING IGNITE TERMS

When you integrate applications with Ignite, you create an integration by working with connectors,
connections, actions, and steps. See the following sections to learn about each of these constructs.

Section 1.4.1, “About integrations”

Section 1.4.2, “About Ignite connectors”

Section 1.4.3, “About Ignite connections”

Section 1.4.4, “About actions”

Section 1.4.5, “About steps”

1.4.1. About integrations

To set up data integration between applications, you create an integration. An integration is set of
ordered steps. This set includes:

A step that connects to an application to start the integration. This connection provides the
initial source data that the integration operates on. A subsequent connection can provide
additional source data.

A step that connects to an application to complete the integration. This connection receives any
data that was output from previous steps and finishes the integration.

Optional additional steps that connect to applications between the start and finish connections.
Depending on the position of the additional connection in the sequence of integration steps, an
additional connection can do any or all of the following:

Provide additional source data for the integration to operate on

Process the integration data

Output processing results to the integration

CHAPTER 1. UNDERSTANDING IGNITE

7

Optional steps that operate on data between connections to applications. Typically, there is a
step that maps data fields from the previous connection to data fields that the next connection
uses.

In an integration, each step can operate on the data that is output from the previous steps. To
determine the steps that you need in an integration, see Section 1.5, “Planning integrations” .

1.4.2. About Ignite connectors

Ignite provides a set of connectors. A connector represents a specific application that you want to
obtain data from or send data to. Each connector is a template for creating a connection to that specific
application. For example, you use the Salesforce connector to create a connection to Salesforce.

If Ignite does not provide a connector you need, a developer can create the needed connector.

1.4.3. About Ignite connections

Before you can create an integration, you must create a connection to each application or service that
you want to obtain data from or send data to. To create a connection, you select a connector and add
configuration information. For example, to create an AMQ connection, you select the AMQ connector
and then follow prompts to identify the broker to connect to and the account to use for the connection.

A connection is one specific instance of the connector that it is created from. While you can create any
number of connections from one connector, doing so does not always make sense. For example, you can
use the AMQ connector to create three AMQ connections where each connection accesses a different
broker. However any connector for an application that uses OAuth requires authorization from that
application for access to a particular user account. Consequently, each connection that you create from
that connector would have the same configuration. There is no need for more than one connection to an
application that uses OAuth.

To create an integraton, you select a connection to start the integration, a connection to end the
integration, and optionally one or more connections for accessing additional applications. Any number of
integrations can use the same connection.

For details, see Chapter 3, Connecting to applications that you want to integrate .

1.4.4. About actions

In an integration, each connection performs one action. As you create an integration, you choose a
connection to add to the integration and then you choose the action that the connection performs. For
example, when you create an integration that uses a Salesforce connection, you choose from a set of
actions that includes, but is not limited to, creating a Salesforce account, updating a Salesforce account,
and searching Salesforce.

Some actions require additional configuration and Ignite prompts you for this information if it is needed.

1.4.5. About steps

An integration is a set of ordered steps. Each step operates on data. Some steps operate on data while
connected to an application or service outside Ignite. These steps are connections. Between
connections, there can be other steps that operate on data in Ignite. Typically, an integraton includes a
step that maps data fields used in a connection to data fields used in the next connection. Except for
the start connection, each step operates on data it receives from the previous steps.

To operate on data between connections, Ignite provides steps for:

Red Hat Fuse 7.0 Integrating Applications with Ignite

8

Mapping data fields in one application to data fields in another application.

Filtering data so that the integration continues only when it meets criteria that you define.

Logging information in addition to the default logging that Ignite automatically provides.

See also Section 5.3, “Adding steps between connections” and Section 1.6, “Workflow for creating an
integration”.

To operate on data between connections in a way that is not built into Ignite, you can upload an
extension that provides a custom step. See Section 4.2, “Adding extensions” .

1.5. PLANNING INTEGRATIONS

Some planning so that you have answers to the following questions is helpful before you create an
integration.

To start the integration:

Which application should the integration obtain data from?

In that application, what triggers the action that obtains the data? For example, an integration
that starts by obtaining data from Twitter might trigger on a Twitter mention.

What are the data fields of interest?

What credentials does Ignite use to access this application?

To finish the integration:

Which application receives the data?

In that application, what action does the integration perform?

What are the data fields of interest?

What credentials does Ignite use to access this application?

Between the start and finish applications:

Do you need to access any other applications? For any other applications the integration
accesses:

Which application does the integration need to connect to?

What action should the integration perform?

What are the data fields of interest?

What credentials should the integration use to connect to this application?

Does the integration need to operate on the data between connections? For example:

Should the integration filter the data it operates on?

Do field names differ between source and target applications? If they do then data mapping
is required.

CHAPTER 1. UNDERSTANDING IGNITE

9

Does the integration need to operate on the data in some customized way?

1.6. WORKFLOW FOR CREATING AN INTEGRATION

After you log in to the Ignite console, the general steps for integrating applications are:

1. For each application that you want to integrate and that uses the OAuth protocol, register
Ignite as a client of that application.

2. For each application that you want to integrate, create a connection.

3. Create the integration:

a. Select the start connection. This connection starts the integration by accessing the
application you want to obtain data from.

b. Select the action that you want the start connection to perform.

c. Optionally, depending on the connection, enter some configuration information, for
example, you might indicate whether to operate on a Salesforce contact or a Salesforce
lead.

d. Select the finish connection. This connection completes the integration by accessing the
application that uses the data from the start connection.

e. Select the action you want the finish connection to perform.

f. Optionally, depending on the connection, enter some configuration details.

g. Optionally, between the start connection and the finish connection, add one or more
connections to other applications.

h. Optionally, between connections, add additional steps, such as filtering data, mapping data
fields, or logging that is in addition to the automatically-provided logging. Typical
integrations require data mapping.

4. Click Publish to start running your integration.

1.7. HOW YOU USE IGNITE

The best way to learn about how to use Ignite is to create the sample integrations by following the
instructions in the sample integration tutorials. Following is an abbreviated description of one of the
samples to provide an overview of how you use Ignite. These steps omit details so you should not try to
follow them.

NOTE

If you already created a sample integration then you can skip this section.

1. Register your installation of Ignite as an application that can access Salesforce. You need to do
this only once to be able to create any number of integrations that connect to Salesforce.

2. Create a Salesforce connection. To configure this connection, Ignite prompts you to log in to
the Salesforce account you used to register Ignite. You can use the same Salesforce connection
in any number of integrations.

Red Hat Fuse 7.0 Integrating Applications with Ignite

10

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.0/html-single/ignite_sample_integration_tutorials/

3. Choose your Salesforce connection as the connection that starts the integration.

4. Choose the action that you want the Salesforce connection to perform. In the sample
integration, you choose the On create action for the Lead object. After connecting to
Salesforce, the integration watches for notifications that a Salesforce lead was created. When
the integration finds such a notification, it passes the new lead’s data to the next step in the
integration. However, before you can add the next step, you must choose the integration’s finish
connection.

5. Choose the PostgresDB connection as the connection that completes the integration.

6. Choose the action that you want the PostgresDB connection to perform. In the sample
integration, you choose add_lead as the procedure you want to invoke. This is a provided stored
procedure that runs in the sample database. This procedure determines the requirements for
mapping Salesforce data fields to database fields.

7. Add a step between the Salesforce connection and the database connection. This step maps
Salesforce data fields to database fields.

8. Give the integration a name. Optionally, enter a description of what the integration does.

9. Click Publish to start running the integration.

10. On the Ignite dashboard, confirm that the Salesforce to database integration is designated as
Published, which means that it is running.

11. Confirm that the integration is working as expected by creating a new lead in Salesforce.

12. For this sample integration, in a browser, insert todo- in front of the URL for your Ignite
installation. This displays the notification that a new lead was created in the database.

1.8. ABOUT THE PRODUCT NAME

Ignite is Red Hat’s web-based integration platform. Syndesis is the open source project for Ignite.

Ignite runs in two environments:

Product Name Host Installation

Fuse Online OpenShift Online Red Hat installs and provisions
Ignite on Red Hat infrastructure.

Ignite OpenShift Container Platform Customer installs and manages.

In user documentation, consider the names Fuse Online and Ignite as interchangeable.

CHAPTER 1. UNDERSTANDING IGNITE

11

CHAPTER 2. LOGGING IN TO IGNITE
In this release, you receive a link for accessing Ignite. Clicking this link displays the Red Hat OpenShift
Online Log In page, which prompts you to log in by using your Red Hat account. Logging in prompts you
to authorize Ignite to access to your account:

Click Allow selected permissions. You need to do this only once. The next time you log in, Ignite
immediately appears.

Red Hat supports using Ignite in the following browsers:

Chrome

Firefox

Microsoft Edge

Red Hat Fuse 7.0 Integrating Applications with Ignite

12

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU
WANT TO INTEGRATE

When you create an integration you add a connection to each application that you want to integrate. The
following topics provide details for creating connections and adding them to integrations:

Section 3.1, “Overview of creating connections”

Section 3.2, “Specifying connection input or output types”

Section 3.3, “Connecting to Amazon S3”

Section 3.4, “Connecting to AMQ”

Section 3.5, “Connecting to AMQP”

Section 3.6, “Connecting to Dropbox”

Section 3.7, “Connecting to an FTP or SFTP server”

Section 3.8, “Connecting to HTTP and HTTPS endpoints”

Section 3.9, “Connecting to MQTT”

Section 3.10, “Connecting to REST APIs”

Section 3.11, “Connecting to Salesforce”

Section 3.12, “Connecting to Slack”

Section 3.13, “Connecting to SQL databases”

Section 3.14, “Connecting to Twitter”

3.1. OVERVIEW OF CREATING CONNECTIONS

You must create a connection to each application that you want to integrate. The procedure for creating
a connection varies for each application. The following topics provide an overview of the workflow:

Section 3.1.1, “About creating connections”

Section 3.1.2, “Obtaining authorization to access applications”

Section 3.1.3, “About adding connections to integrations”

Section 3.1.4, “Viewing and editing connection information”

Section 3.1.5, “Creating connections from custom connectors”

3.1.1. About creating connections

To create a connection, you select the connector for the application that you want to connect to and
respond to prompts to configure the connection to that application. The configuration details that you
need to provide vary for each application. After configuring the connection, you give it a name that
helps you distinguish it from any other connections to the same application. Optionally, you can specify a
description of the connection.

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

13

You can use the same connector to create any number of connections to that application. For example,
you might use the AMQ connector to create three different connections. Each AMQ connection could
specify a different broker.

For examples, see:

Section 3.4.1, “Create an AMQ connection”

Section 3.8.1, “Create a connection to an HTTP or HTTPS endpoint”

Section 3.12.1, “Create a Slack connection”

3.1.2. Obtaining authorization to access applications

In an integration, you might want to connect to an application that uses the OAuth protocol to
authenticate access requests. To do this, you must register your installation of Ignite for access to that
application. Registration authorizes all connections from your Ignite installation to a given application.
For example, if you register your Ignite installation with Salesforce, all connections from your Ignite
installation to Salesforce use the same client ID and the same client secret.

In each Ignite environment, for each application that uses OAuth, only one registration of Ignite as a
client is required. This registration lets you create multiple connections and each connection can use
different user credentials.

NOTE

For information about using custom connectors that let you access applications that use
the OAuth protocol, see Section 3.1.5, “Creating connections from custom connectors” .

For details, see the following topics:

Section 3.1.2.1, “General procedure for obtaining authorization”

Section 3.1.2.2, “About connection validation”

3.1.2.1. General procedure for obtaining authorization

To integrate applications that use OAuth, you must register with that application before you can create a
connection to the application. For example, after you register your installation of Ignite as an application
that can access Salesforce, then you can create a Salesforce connection.

While the specific steps vary for each OAuth application that you want to connect to, registration always
provides your installation of Ignite with a client ID and a client secret. Some applications use other labels
for the client ID and client secret. For example, Salesforce generates a consumer key and a consumer
secret.

For some OAuth applications, Ignite provides an entry in its Settings page that makes it easy to register
with the application. To see which applications this applies to, in the left panel of Ignite, click Settings.

For an application that has an entry in the Ignite Settings page, to register Ignite with that application,
the main steps are:

1. In the Ignite OAuth Application Management page, in the entry for the application with which
you want to register Ignite, click Register to display the Client ID and Client Secret fields.

2. Near the top of the OAuth Application Management page, where you see During

Red Hat Fuse 7.0 Integrating Applications with Ignite

14

2. Near the top of the OAuth Application Management page, where you see During
registration, enter this callback URL:, copy that URL to the clipboard.

3. In another browser tab, go to the web site for the application that you want to register with and
perform the steps required to obtain a client ID and secret. One of these steps requires you to
enter the callback URL for your installation of Ignite. Paste the URL that you copied to the
clipboard in the second step.

4. On your Ignite installation Settings page, paste the client ID and client secret and save the
settings.

For examples, see

Section 3.11.1, “Register Ignite as a Salesforce client”

Section 3.14.1, “Register Ignite as a Twitter client”

For an example of registering with an application that does not have an entry in the Ignite Settings
page, see: Section 3.6.1, “Register Ignite as a Dropbox client” .

3.1.2.2. About connection validation

After obtaining authorization for Ignite to access an application that uses OAuth, you can create one or
more connections to that application. When you create a connection to an OAuth application, Ignite
validates it to confirm that authorization is in place. At any time, you can validate the connection again to
ensure that authorization is still in place.

Some OAuth applications grant access tokens that have an expiration data. If the access token expires,
you can reconnect to the application to obtain a new acess token.

To validate a connection that uses OAuth or to obtain a new access token for an OAuth application:

1. In the left panel, click Connections.

2. Click the connection you want to validate or for which you want to obtain a new access token.

3. In the connection’s details page, click Validate or click Reconnect.

If validation or reconnection fails, then check with the application/service provider to determine if the
application’s OAuth keys, IDs, tokens, or secrets are still valid. It is possible that an item has expired or
been revoked.

If you find that an OAuth item is invalid, has expired, or been revoked, obtain new values and paste them
into the Ignite settings for the application. See the instructions in this guide for registering the
application whose connection did not validate. With the updated settings in place, follow the instructions
above to try to validate the updated connection. If validation is successful, and there is a running
integration that is using this connection, republish the integration. To republish an integration, stop it
and restart it.

If validation fails and reconnection fails but everything appears to be valid at the service provider, then
try reregistering your Ignite environment with the application and then recreate the connection. Ignite
validates the connection when you recreate it. If you recreate the connection, and there is an integration
that is using the connection, then you must edit the integration to delete the old connection and add the
new connection. If the integration is running, then you must stop it and restart it.

3.1.3. About adding connections to integrations

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

15

When you add a connection to an integration, Ignite displays a list of the actions that the connection can
perform when it connects to the application. You must select exactly one action. In a running integration,
each connection performs only the action you choose. For example, when you add a Twitter connection
as an integration’s start connection, you might choose the Mention action, which monitors Twitter for
tweets that mention your Twitter handle.

Selection of some actions prompts you to specify one or more parameters. For example, if you add a
Salesforce connection to an integration and choose the On create action then you must indicate the
type of object whose creation you are interested in, such as a lead or a contact.

3.1.4. Viewing and editing connection information

After you create a connection, Ignite assigns an internal identifier to the connection. This identifier does
not change. You can change the connection’s name, description, or configuration values and Ignite
recognizes it as the same connection.

There are two ways to view and edit information about a connection:

In the left panel, click Connections and then click any connection to view its details.

In the left panel, click Integrations and then click any integration to view its details. In the
Integration Summary page, in the flow diagram of the integration, click a connection icon to
view that connection’s details.

On the Connection Details page, for the connection you want to edit, click next to a field to edit
that field. Or, for some connections, below the configuration fields, click Edit to change configuration
values. If you change any values, be sure to click Save.

If you update a connection that is used in an integration that is running, you must republish the
integration by stopping it and publishing it again.

For connections to applications that use the OAuth protocol to authorize access, you cannot change the
login credentials that the connection uses. To connect to the application and use different login
credentials, you must create a new connection.

3.1.5. Creating connections from custom connectors

After you upload an extension that defines a custom connector, the custom connector is available for
use. You use custom connectors to create connections in the same way that you use Ignite-provided
connectors to create connections.

A custom connector might be for an application that uses the OAuth protocol. Before you create a
connection from this kind of connector, you must register your installation of Ignite for access to the
application that the connector is for. You do this in the interface for the application that the connector is
for. The details for how to register your installation of Ignite vary for each application.

For example, suppose the custom connector is for creating connections to Yammer. You would need to
register your installation of Ignite by creating a new application within Yammer. Registration provides a
Yammer client ID for Ignite and a Yammer client secret value for Ignite A connection from your Ignite
installation to Yammer must provide these two values.

Note that an application might use different names for these values, such as consumer ID or consumer
secret.

After you register your installation of Ignite, you can create a connection to the application. When you

Red Hat Fuse 7.0 Integrating Applications with Ignite

16

configure the connection, there should be parameters for entering the client ID and the client secret. If
these parameters are not available, you need to talk with the extension developer and ask for an
updated extension that lets you specify the client ID and client secret.

For more information, see Section 3.1, “Overview of creating connections”.

3.2. SPECIFYING CONNECTION INPUT OR OUTPUT TYPES

To process data from the start connection through the finish connection, sometimes you need to
specify input/output types when you configure a connection’s action. Type specifications let Ignite alert
you when a data mapping step is required. A data mapping step ensures that the next integration step
can process the data it receives.

After you configure an Amazon S3, AMQ, AMQP, Dropbox, or FTP/SFTP connection, Ignite prompts
you to specify input and/or output data types as follows:

1. In the Select Type field, if the data type does not need to be known, accept Type specification
not required and then, at the bottom, click Done. You do not need to follow the rest of these
instructions.
Otherwise, select one of the following as the schema type:

JSON schema is a document that describes the structure of JSON data. The document’s
media type is application/schema+json.

JSON instance is a document that contains JSON data. The document’s media type is
application/json.

XML schema is a document that describes the structure of XML data. The document’s file
extension is .xsd.

XML instance is a document that contains XML data. The document’s file extension is .xml.

2. In the Definition input box, paste a definition that conforms to the schema type you selected.
For example, if you select JSON schema then you would paste the content of a JSON schema
file, which has a media type of application/schema+json.

3. In the Data Type Name field, enter a name that you choose for the data type. For example,
suppose you are specifying a JSON schema for vendors. You can specify Vendor as the data
type name.
You will see this data type name when you are creating or editing an integration that uses the
connection for which you are specifying this type. Ignite displays the type name in the
integration visualization panel and in the data mapper.

4. In the Data Type Description field, provide information that helps you distinguish this type. This
description appears in the data mapper when you hover over the step that processes this type.

5. Click Done.

3.3. CONNECTING TO AMAZON S3

In an integration, to retrieve data from an Amazon S3 bucket or copy data into an Amazon S3 bucket,
you create an Amazon S3 connection. You then add that Amazon S3 connection to an integration. For
details, see:

Section 3.3.1, “Prerequisites for creating an Amazon S3 connection”

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

17

Section 3.3.2, “Create an Amazon S3 connection”

Section 3.3.3, “Adding an Amazon S3 connection to an integration”

3.3.1. Prerequisites for creating an Amazon S3 connection

To create an Amazon S3 connection, you must know the following:

Amazon S3 access key ID that is associated with the Amazon Web Services (AWS) account that
created, or will create, the bucket that you want the connection to access.
You can create a connection that accesses a bucket that does not yet exist. In this case, when
the integration starts running then it use the AWS account associated with this access key ID to
try to create the bucket.

Amazon S3 secret access key that is associated with the AWS account that created or will try to
create (when the integration starts running) the bucket that you want the connection to access.

Name of the bucket that you want to access or its Amazon Resource Name (ARN).
If the bucket you specify does not yet exist then the connection tries to create a bucket with the
name that you specify. Because S3 allows a bucket to be used as a URL that can be accessed
publicly, the bucket name that you specify must be globally unique. Also, it must meet S3 bucket
naming requirements.

If the bucket you specify does not exist in the AWS account that is associated with the Amazon
S3 access key ID, but it does exist in another AWS account, then the connection does not create
the bucket and an integration that uses this connection cannot start running.

Region in which the bucket is located or the region in which you want the connection to create
the bucket.

A user with the login credentials for the AWS account that created or will create the bucket obtains the
Amazon S3 keys as follows:

1. Go to https://aws.amazon.com/s3/.

2. Sign in to the console with the AWS account that created the bucket that you want to access or
with the account that you want the connection to use to create the bucket.

3. In the console, in the upper right, click the down arrow next to the user name and click My
Security Credentials.

4. Expand Access Keys and click Create New Access Keys.

5. Follow the prompts to obtain the keys.

3.3.2. Create an Amazon S3 connection

To create an Amazon S3 connection:

1. In Ignite, in the left panel, click Connections to display any available connections.

2. In the upper right, click Create Connection to display Ignite connectors.

3. Click the Amazon S3 connector.

4. In the Access Key field, enter the Amazon S3 access key ID, provided by AWS, for the AWS

Red Hat Fuse 7.0 Integrating Applications with Ignite

18

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-s3-bucket-naming-requirements.html
https://aws.amazon.com/s3/

account that created the bucket that you want this connection to access. If the bucket you want
the connection to access does not already exist then when Ignite tries to start running the
integration, it uses the AWS account associated with this access key to create the bucket.
However, if the bucket already exists in some other AWS account, then the connection cannot
create the bucket and the integration cannot start.

5. In the Bucket Name or Amazon Resource Name field, enter the name of the bucket that you
want this connection to access or enter the bucket’s ARN. If the bucket does not already exist in
either the AWS account being used or in any other AWS account, then the connection creates
it. For details about bucket name requirements, see Section 3.3.1, “Prerequisites for creating an
Amazon S3 connection”.

6. In the Region field, select the AWS region in which the bucket resides. If the connection creates
the bucket, then it creates it in the selected region.

7. In the Secret Key field, enter the Amazon S3 secret access key, provided by AWS, for the
account that created, or will create, the bucket that you want this connection to access.

8. Click Validate. Ignite immediately tries to validate the connection and displays a message that
indicates whether or not validation is successful. If validation fails, revise the configuration
details as needed and try again.

9. When validation is successful, click Next.

10. In the Connection Name field, enter your choice of a name that helps you distinguish this
connection from any other connections. For example, enter Obtain S3 Data.

11. In the Description field, optionally enter any information that is helpful to know about this
connection. For example, enter Sample S3 connection that obtains data from the northeast
bucket.

12. In the upper right, click Create to see that the connection you created is now available. If you
entered the example name, you would see that Obtain S3 Data is now available.

3.3.3. Adding an Amazon S3 connection to an integration

You must create an Amazon S3 connection before you can add an Amazon S3 connection to an
integration. If you did not already create an Amazon S3 connection, see Section 3.3.1, “Prerequisites for
creating an Amazon S3 connection”.

The procedure for adding an Amazon S3 connection to an integration varies according to whether you
want to use the S3 connection to start the integration, finish the integration, or access data in the
middle of the integration. See the following topics:

Section 3.3.3.1, “Starting an integration by obtaining data from Amazon S3”

Section 3.3.3.2, “Finishing an integration by adding data to Amazon S3”

Section 3.3.3.3, “Adding data to Amazon S3 in the middle of an integration”

3.3.3.1. Starting an integration by obtaining data from Amazon S3

To start an integration by obtaining data from an Amazon S3 bucket, add an Amazon S3 connection as
the start connection:

1. In the Ignite panel on the left, click Integrations.

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

19

2. Click Create Integration.

3. On the Choose a Start Connection page, click the Amazon S3 connection that you want to use
to start the integration.

4. On the Choose an Action page, click one of these actions:

Get Object to obtain a file from the bucket that the connection accesses. To configure this
action:

a. In the File Name field, enter the name of the file that you want to obtain.

b. To obtain a file and then delete it from the bucket, select Delete After Read.

Poll an Amazon S3 Bucket to periodically obtain files from the bucket that the connection
accesses. To configure this action:

a. In the Delay field, accept the default of 500 milliseconds as the time that elapses
between polls. Or, to specify a different polling interval, enter a number and select its
time unit.

b. In the Maximum Objects to Retrieve field, enter the largest number of files that one
poll operation can obtain. The default is 10.
To have no limit on the number of files that can be obtained, specify 0 or a negative
integer. When Maximum Objects to Retrieve is unlimited, the poll action obtains all
files in the bucket.

If the bucket contains more than the specified maximum number of files then the action
obtains the files that were most recently modified or created.

c. In the Prefix field, optionally specify a regular expression that evaluates to a string. If
you specify a prefix then this action retrieves a file only when its name starts with that
string.

d. Indicate whether you want to Obtain files and then delete them from the bucket.

5. Click Done to specify the action’s output type. See Section 3.2, “Specifying connection input or
output types”.

3.3.3.2. Finishing an integration by adding data to Amazon S3

To finish an integration by copying data to Amazon S3, add an Amazon S3 connection as the finish
connection:

1. Start creating the integration.

2. Add and configure the start connection.

3. On the Choose a Finish Connection page, click the Amazon S3 connection that you want to
use to finish the integration.

4. On the Choose an Action page, click the Copy Object action to copy one or more objects into
the bucket that the connection accesses. The integration obtains the objects to be added to the
bucket from the previous integration step(s).

5. Click Next to specify the action’s input type. See Section 3.2, “Specifying connection input or
output types”.

Red Hat Fuse 7.0 Integrating Applications with Ignite

20

3.3.3.3. Adding data to Amazon S3 in the middle of an integration

In the middle of an integration, to add data to Amazon S3, add an Amazon S3 connection between the
start and finish connections:

1. Add the start and finish connections.

2. In the left panel, hover over the plus sign that is in the location where you want to add the
Amazon S3 connection.

3. In the popup, click Add a Connection.

4. Click the Amazon S3 connection that you want to use as a middle connection in the integration.

5. Click the Copy Object action. The integration obtains the objects to be added to the bucket
from the previous integration step(s).

6. Click Next to specify the action’s input type. See Section 3.2, “Specifying connection input or
output types”.

3.4. CONNECTING TO AMQ

In an integration, you can obtain messages from an ApacheMQ (AMQ) broker or publish messages to an
AMQ broker. AMQ uses the OpenWire protocol for communication between clients and message
brokers. To communicate with the following broker types, use the AMQ connector to create a
connection to the broker of interest:

Apache ActiveMQ broker that does not support AMQP

AMQ 6 broker

To communicate with one of the following broker types, use the AMQP connector to create a
connection to the broker of interest:

Apache ActiveMQ broker that supports AMQP

Apache ActiveMQ Artemis

AMQ 7 broker

EnMasse, which is an open source messaging platform

See Section 3.5, “Connecting to AMQP” .

To use the AMQ connector, see:

Section 3.4.1, “Create an AMQ connection”

Section 3.4.2, “Adding an AMQ connection to an integration”

3.4.1. Create an AMQ connection

To create an AMQ connection:

1. In Ignite, in the left panel, click Connections to display any available connections.

2. In the upper right, click Create Connection to display connectors.

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

21

3. Click the AMQ connector.

4. Configure the connection by entering:

a. In the Broker URL field, enter the location that you want to send data to or obtain data
from, for example, tcp://localhost:61616.

b. In the User Name field, enter the user name for the account that you want to use to access
this broker.

c. In the Password field, enter the password for the account that you want to use to access
this broker.

d. In the Client ID field, enter the ID that allows connections to close and reopen without
missing messages. The destination type must be a topic.

e. If this connection will be used in a development environment, you can save some time by
disabling Check Certificates. Disabling the checking of certificates is a convenience for
development environments. For secure production environments, always enable Check
Certificates.

f. In the Broker Certificate field, paste the broker’s PEM certificate text. This is required
except when you disable checking the certificates.

g. In the Client Certificate field, paste the client’s PEM certificate text. Content in this field is
always optional.

5. Click Validate. Ignite immediately tries to validate the connection and displays a message that
indicates whether validation is successful. If validation fails, revise the configuration details as
needed and try again.

6. If validation is successful, click Next.

7. In the Connection Name field, enter your choice of a name that helps you distinguish this
connection from any other connections. For example, you might enter AMQ 1.

8. In the Description field, optionally enter any information that is helpful to know about this
connection. For example, enter Sample AMQ connection that uses a provided broker.

9. In the upper right, click Create to see that the connection you created is now available. If you
entered the example name, you would see that AMQ 1 is now available.

3.4.2. Adding an AMQ connection to an integration

You must create an AMQ connection before you can add it to an integration. If you did not already
create an AMQ connection, see Section 3.4.1, “Create an AMQ connection” .

The procedure for adding an AMQ connection to an integration varies according to whether you want to
use the AMQ connection to start the integration, finish the integration, or publish messages in the
middle of an integration. See the following topics:

Section 3.4.2.1, “Starting an integration based on receiving AMQ messages”

Section 3.4.2.2, “Finishing an integration by publishing AMQ messages”

Section 3.4.2.3, “Publishing AMQ messages in the middle of an integration”

Red Hat Fuse 7.0 Integrating Applications with Ignite

22

3.4.2.1. Starting an integration based on receiving AMQ messages

To trigger execution of an integration based on receiving a message from an AMQ broker, add an AMQ
connection as the start connection:

1. In the Ignite panel on the left, click Integrations.

2. Click Create Integration.

3. On the Choose a Start Connection page, click the AMQ connection that you want to use to
start the integration.

4. On the Choose an Action page, click the Subscribe for messages action to receive messages
from the queue or topic you specify.

5. To configure the action:

a. In the Destination Name field, enter the name of the queue or topic to receive data from.

b. For the Destination Type, accept Queue or select Topic.

c. In the Durable Subscription ID field, to allow connections to close and reopen without
missing messages, enter the durable subscription ID. The destination type must be a topic.

d. In the Message Selector field, if you want to receive only data that satisfies a particular
condition, enter a filter expression.

6. Click Next to specify the action’s output type. See Section 3.2, “Specifying connection input or
output types”.

3.4.2.2. Finishing an integration by publishing AMQ messages

To finish an integration by publishing messages to an AMQ broker, add an AMQ connection as the finish
connection:

1. Start creating the integration by adding and configuring the start connection.

2. On the Choose a Finish Connection page, click the AMQ connection that you want to use to
finish the integration.

3. On the Choose an Action page, click the Publish messages action to publish messages to the
queue or topic you specify.

4. In the Destination Name field, enter the name of the queue or topic to send messages to.

5. For the Destination Type, accept Queue or select Topic.

6. Select Persistent to guarantee message delivery even if a connection fails.

7. Click Next to specify the action’s input/output type. See Section 3.2, “Specifying connection
input or output types”.

3.4.2.3. Publishing AMQ messages in the middle of an integration

In the middle of an integration, to publish messages to an AMQ broker, add an AMQ connection between
the start and finish connections. You must be creating or editing an integration. The integratation’s start
and finish connections must have already been added.

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

23

To add an AMQ connection as a middle connection:

1. In the integration visualization panel on the left, click the plus sign that is in the location where
you want to add the connection.

2. Click Add a connection.

3. On the Choose a Connection page, click the AMQ connection that you want the integration to
use after the start connection and before the finish connection.

4. On the Choose an Action page, select one of the following actions:

Publish messages action to publish messages to the queue or topic you specify. To
configure this action:

a. In the Destination Name field, enter the name of the queue or topic to send messages
to.

b. For the Destination Type, accept Queue or select Topic.

c. Select Persistent to guarantee message delivery even if a connection fails.

Request response using messages to send messages to the JMS destination you specify
and receive a response. To configure this action:

a. In the Destination Name field, enter the name of the queue or topic to send messages
to.

b. For the Destination Type, accept Queue or select Topic.

c. In the Message Selector field, if you want to receive only responses that satisfy a
particular condition, enter a filter expression.

d. In the Named Reply To field, enter the name of a queue or topic. The destination sends
its response to this queue or topic.

e. Select Persistent to guarantee message delivery even if a connection fails.

f. In the Response Time Out field, specify the number of milliseconds that this connection
waits for a response message before throwing a runtime exception. The default is 5000
milliseconds (5 seconds).

5. Click Next to specify the action’s input type and then the action’s output type. See Section 3.2,
“Specifying connection input or output types”.

3.5. CONNECTING TO AMQP

In an integration, you can obtain messages from or publish messages to an Advanced Message Queue
Protocol (AMQP) broker. AMQP defines communication between clients and message brokers. To
communicate with the following broker types, use the AMQP connector to create a connection to the
broker of interest:

Apache ActiveMQ broker that supports AMQP

Apache ActiveMQ Artemis

AMQ 7 broker

Red Hat Fuse 7.0 Integrating Applications with Ignite

24

EnMasse, which is an open source messaging platform

To communicate with one of the following broker types, use the AMQ connector to create a connection
to the broker of interest:

Apache ActiveMQ broker that does not support AMQP

AMQ 6 broker

See Section 3.4, “Connecting to AMQ” .

NOTE

It is possible to use the AMQP connector to create a connection to an Apache ActiveMQ
broker that does not support AMQP or to an AMQ 6 broker. Doing this requires transport
configuration in the broker. For information about configuring the broker, see Red Hat
JBoss A-MQ Managing and Monitoring Brokers, Adding Client Connection Points. For
information about the configuration values to specify, see Red Hat JBoss A-MQ
Connection Reference, Advanced Message Queueing Protocol (AMQP).

To use the AMQP connector, see:

Section 3.5.1, “Create an AMQP connection”

Section 3.5.2, “Adding an AMQP connection to an integration”

3.5.1. Create an AMQP connection

To create an AMQP connection:

1. In Ignite, in the left panel, click Connections to display any available connections.

2. In the upper right, click Create Connection to display connectors.

3. Click the AMQP connector.

4. Configure the connection by entering:

a. In the Connection URI field, enter the location you want to send data to or obtain data
from.

b. In the User Name field, enter the user name for the account that you want to use to access
this broker.

c. In the Password field, enter the password for the account that you want to use to access
this broker.

d. In the Client ID field, enter the ID that allows connections to close and reopen without
missing messages. The destination type must be a topic.

e. If this connection will be used in a development environment, you can save some time by
disabling Check Certificates. Disabling the checking of certificates is a convenience for
development environments. For secure production environments, always enable Check
Certificates.

f. In the Broker Certificate field, paste the broker’s PEM certificate text. This is required

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

25

https://access.redhat.com/documentation/en-us/red_hat_jboss_a-mq/6.3/html/managing_and_monitoring_a_broker/fmqadmintransportconnectors
https://access.redhat.com/documentation/en-us/red_hat_jboss_a-mq/6.3/html-single/connection_reference/index#AMQP

f. In the Broker Certificate field, paste the broker’s PEM certificate text. This is required
except when disable checking the certificates.

g. In the Client Certificate field, paste the client’s PEM certificate text. Content in this field is
always optional.

5. Click Validate. Ignite immediately tries to validate the connection and displays a message that
indicates whether validation is successful. If validation fails, revise the configuration details as
needed and try again.

6. If validation is successful, click Next.

7. In the Connection Name field, enter your choice of a name that helps you distinguish this
connection from any other connections. For example, you might enter AMQP 1.

8. In the Description field, optionally enter any information that is helpful to know about this
connection. For example, enter Sample AMQP connection

9. In the upper right, click Create to see that the connection you created is now available. If you
entered the example name, you would see that AMQP 1 is now available.

3.5.2. Adding an AMQP connection to an integration

You must create an AMQP connection before you can add an AMQP connection to an integration. If you
did not already create an AMQP connection, see Section 3.5.1, “Create an AMQP connection” .

The procedure for adding an AMQP connection to an integration varies according to whether you want
to use the connection to start an integration, finish an integration, or publish messages in the middle of
an integration. See the following topics:

Section 3.5.2.1, “Starting an integration based on receiving AMQP messages”

Section 3.5.2.2, “Finishing an integration by publishing AMQP messages”

Section 3.5.2.3, “Publishing messages to AMQP in the middle of an integration”

3.5.2.1. Starting an integration based on receiving AMQP messages

To trigger execution of an integration based on receiving messages from an AMQP broker, add an
AMQP connection as the start connection:

1. In the Ignite panel on the left, click Integrations.

2. Click Create Integration.

3. On the Choose a Start Connection page, click the AMQP connection that you want to use to
start the integration.

4. On the Choose an Action page, click the Subscribe for messages action to receive messages
from the queue or topic you specify.

5. To configure the action:

a. In the Destination Name field, enter the name of the queue or topic to receive data from.

b. For the Destination Type, accept Queue or select Topic.

c. In the Durable Subscription ID field, to allow connections to close and reopen without

Red Hat Fuse 7.0 Integrating Applications with Ignite

26

c. In the Durable Subscription ID field, to allow connections to close and reopen without
missing messages, enter the durable subscription ID. The destination type must be a topic.

d. In the Message Selector field, if you want to receive only data that satisfies a particular
condition, enter a filter expression.

6. Click Next to specify the action’s output type. See Section 3.2, “Specifying connection input or
output types”.

3.5.2.2. Finishing an integration by publishing AMQP messages

To finish an integration by publishing messages to an AMQP broker, add an AMQP connection as the
finish connection. You must be creating or editing an integration. You must have already added the start
connection. Follow these instructions:

1. On the Choose a Finish Connection page, click the AMQP connection that you want to use to
finish the integration.

2. On the Choose an Action page, click Publish messages to publish messages to the queue or
topic you specify.

3. In the Destination Name field, enter the name of the queue or topic to send messages to.

4. For the Destination Type, accept Queue or select Topic.

5. Select Persistent to guarantee message delivery even if a connection fails.

6. Click Next to specify the action’s input and output type. See Section 3.2, “Specifying
connection input or output types”.

3.5.2.3. Publishing messages to AMQP in the middle of an integration

In the middle of an integration, to publish messages to an AMQP broker, add an AMQP connection
between the start and finish connections. You must be creating or editing an integration. You must have
already added the start and finish connections to the integration. Follow these instructions:

1. In the integration visualization panel on the left, click the plus sign in the location where you want
to add the connection.

2. Click Add a connection.

3. On the Choose a Connection page, click the AMQP connection that you want the integration to
use after the start connection and before the finish connection.

4. On the Choose an Action page, select one of the following actions:

Publish messages to publish messages to the queue or topic you specify. To configure this
action:

a. In the Destination Name field, enter the name of the queue or topic to send messages
to.

b. For the Destination Type, accept Queue or select Topic.

c. Select Persistent to guarantee message delivery even if a connection fails.

Request response using messages to send messages to the JMS destination you specify

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

27

Request response using messages to send messages to the JMS destination you specify
and receive a response. To configure this action:

a. In the Destination Name field, enter the name of the queue or topic to send messages
to.

b. For the Destination Type, accept Queue or select Topic.

c. In the Message Selector field, if you want to receive only responses that satisfy a
particular condition, enter a filter expression.

d. In the Named Reply To field, enter the name of a queue or topic. The destination sends
its response to this queue or topic.

e. Select Persistent to guarantee message delivery even if a connection fails.

f. In the Response Time Out field, specify the number of milliseconds that this connection
waits for a response message before throwing a runtime exception. The default is 5000
milliseconds (5 seconds).

5. Click Next to specify the action’s input and output type. See Section 3.2, “Specifying
connection input or output types”.

3.6. CONNECTING TO DROPBOX

In an integration, you can download files from Dropbox or upload files to Dropbox. The following topics
provide the details:

Section 3.6.1, “Register Ignite as a Dropbox client”

Section 3.6.2, “Create a Dropbox connection”

Section 3.6.3, “Adding a Dropbox connection to an integration”

3.6.1. Register Ignite as a Dropbox client

You must register your installation of Ignite as an application that can access Dropbox. This lets you
create any number of integrations that connect to Dropbox. In other words, you need to register a
particular installation of Ignite with Dropbox only once.

In each Ignite environment, there can be only one registration of Ignite as a Dropbox client. However,
while each Dropbox connection uses the same registration, it can use different user credentials.

Perform these steps:

1. In Ignite:

a. In the left panel, click Settings.

b. Near the top of the page, in the sentence that starts with During registration, enter this
callback URL:, copy the URL at the end of that sentence to the clipboard. For example, the
URL is something like this: https://app-proj9128.7b63.fuse-
ignite.openshiftapps.com/api/v1/credentials/callback.

2. In another browser tab, go to https://www.dropbox.com and do the following:

a. Sign in to the Dropbox account that has the data that you want to access in an integration.

Red Hat Fuse 7.0 Integrating Applications with Ignite

28

https://www.dropbox.com

b. After signing in, go to https://www.dropbox.com/developers/apps.

c. Click Create App.

d. Select Dropbox API.

e. Choose whether Ignite can access a single folder or all of the folders and files.

f. Specify a name for your Dropbox app. For example, you might specify Ignite Access From
Aslan LLC. The name you specify must be unique in the set of Dropbox app names.

g. Check the box to indicate that you agree to Dropbox API terms and conditions.

h. Click Create App.

i. In the Dropbox Settings page for your new app, in the input field for OAuth2 Redirect
URIs, paste your Ignite URL, which you copied to the clipboard at the beginning of this
procedure.

j. Click Add.

Your installation of Ignite is now registered as a Dropbox client, which means that Ignite can access
content in the Dropbox account that you signed into.

3.6.2. Create a Dropbox connection

A connection to Dropbox requires registration of Ignite as an application that can access Dropbox. If you
did not already register Ignite, see Section 3.6.1, “Register Ignite as a Dropbox client” .

Follow the instructions below to create a Dropbox connection. You can use the same Dropbox
connection in multiple integrations.

To create a Dropbox connection:

1. In a new browser tab, go to https://www.dropbox.com and do the following:

a. Sign in to the Dropbox account in which you created the app that registers access from your
Ignite installation.

b. Go to https://www.dropbox.com/developers/apps.

c. Click the Ignite app to display its settings.

2. In another browser tab, in Ignite, do the following:

a. In the left panel, click Connections to display any available connections.

b. In the upper right, click Create Connection to display the available connectors.

c. Click the Dropbox connector.

3. Go back to the Dropbox settings display for your app and do the following:

a. Scroll down to see Generated Access Token.

b. Click Generate.

c. Copy the generated access token to the clipboard.

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

29

https://www.dropbox.com/developers/apps
https://www.dropbox.com
https://www.dropbox.com/developers/apps

4. Back in Ignite, in the Configure Connection page, in the Access Token field, paste the
generated access token.

5. In the Client Identifier field, enter the name that you specified when you created the Dropbox
app.

6. Click Validate. Ignite displays a message that indicates whether it can validate this connection.
If validation fails, try again and be sure to enter the correct values.

7. When validation is successful, in the upper right, click Next.

8. In the Connection Name field, enter your choice of a name that helps you distinguish this
connection from any other connections. For example, enter Dropbox Connect 1.

9. In the Description field, optionally enter any information that is helpful to know about this
connection. For example, enter Sample Dropbox connection that can access all content in
our company Dropbox account.

10. In the upper right, click Create to see that the connection you created is now available. If you
entered the example name, you would see that Dropbox Connect 1 is now available.

3.6.3. Adding a Dropbox connection to an integration

You must create a Dropbox connection before you can add a Dropbox connection to an integration. If
you did not already create a Dropbox connection, see Section 3.6.2, “Create a Dropbox connection” .

You must be creating an integration or updating an integration to add a connection to that integration. If
you need to, see Section 5.2, “Procedure for creating an integration” or Section 7.10, “Updating
integrations”.

The procedure for adding a Dropbox connection to an integration varies according to whether you want
to use the connection to start an integration, finish an integration, or access Dropbox in the middle of an
integration. See the following topics:

Section 3.6.3.1, “Starting an integration by obtaining files from Dropbox”

Section 3.6.3.2, “Finishing an integration by adding files to Dropbox”

Section 3.6.3.3, “Accessing Dropbox in the middle of an integration”

3.6.3.1. Starting an integration by obtaining files from Dropbox

To start an integration by downloading files from Dropbox, add a Dropbox connection as the start
connection:

1. In the Ignite panel on the left, click Integrations.

2. Click Create Integration.

3. On the Choose a Start Connection page, click the Dropbox connection that you want to use to
start the integration.

4. On the Choose an Action page, click the Download from Dropbox action to obtain one or
more files from the Dropbox account that this connection accesses.

5. To configure the action, in the Folder or file name path to download field, specify the filename

Red Hat Fuse 7.0 Integrating Applications with Ignite

30

5. To configure the action, in the Folder or file name path to download field, specify the filename
path for the content that you want the integration to obtain. In this release, you can download
only a single file.

6. Click Next to specify the action’s output type. See Section 3.2, “Specifying connection input or
output types”.

3.6.3.2. Finishing an integration by adding files to Dropbox

To finish an integration by uploading files to Dropbox, add a Dropbox connection as the finish
connection:

1. Start creating the integration, add and configure the start connection.

2. On the Choose a Finish Connection page, click the Dropbox connection that you want to use
to finish the integration.

3. On the Choose an Action page, click the Upload a file to Dropbox action to add the current
integration data to the Dropbox account that this connection accesses.

4. In the Remote Path field, enter the local filename path for file that you want to upload. Dropbox
stores the file with the same path and name. In this release, you can upload only a single file.

5. For the Upload mode,

Select Add to upload a file only when a file with the same name is not already in the same
Dropbox folder. If a file with the same name is already in the same Dropbox folder, then the
file is not uploaded and the integration continues. This is the behavior regardless of whether
the content in the file you are trying to upload has been updated.

Select Force to ensure that the file is uploaded even if a file with the same name is present
in the same Dropbox folder. Dropbox overwrites the file that it already has with the file that
you are uploading.

6. Click Next to specify the action’s input type. See Section 3.2, “Specifying connection input or
output types”.

3.6.3.3. Accessing Dropbox in the middle of an integration

To download or upload Dropbox files in the middle of an integration, add a Dropbox connection between
the start and finish connections. You must be creating or editing an integration. You must add the start
and finish connections first. Follow these instructions:

1. In the integration visualization panel on the left, hover over the plus sign that is in the location
where you want to add a Dropbox connection.

2. In the popup, click Add a connection.

3. On the Choose a Connection page, click the Dropbox connection that you want the integration
to use.

4. On the Choose an Action page, select one of the following actions:

Upload a file to Dropbox to add the current integration data to the Dropbox account that
this connection accesses. To configure this action:

a. In the Remote Path field, specify the local path and file name of the file you want to
upload. Dropbox stores the file with the same path and name. In this release, you can

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

31

upload. Dropbox stores the file with the same path and name. In this release, you can
upload only a single file.

b. For the Upload mode,

Select Add to upload a file only when a file with the same name is not already in the
same Dropbox folder. If a file with the same name is already in the same Dropbox
folder, then the file is not uploaded and the integration continues. This is the
behavior regardless of whether the content in the file you are trying to upload has
been updated.

Select Force to ensure that the file is uploaded even if a file with the same name is
present in the same Dropbox folder. Dropbox overwrites the file that it already has
with the file that you are uploading.

Download from Dropbox to obtain one file from the Dropbox account that this connection
accesses. To configure this action, in the Folder or filename path to download field, enter
the Dropbox filename path of the file you want to obtain. In this release, you can download
only a single file.

5. Click Next to specify the action’s input and output type. See Section 3.2, “Specifying
connection input or output types”.

3.7. CONNECTING TO AN FTP OR SFTP SERVER

In an integration, you can connect to an FTP or SFTP server to download or upload files by creating an
FTP or SFTP connection. You can then add this connection to any number of integrations. The following
topics provide details:

Section 3.7.1, “Creating an FTP or SFTP connection”

Section 3.7.2, “Adding an FTP or SFTP connection to an integration”

3.7.1. Creating an FTP or SFTP connection

To create a connection to an FTP server or an SFTP server:

1. In Ignite, in the left panel, click Connections to display any available connections.

2. In the upper right, click Create Connection to display Ignite connectors.

3. To create a connection that uses File Transfer Protocol, click the FTP connector.
Or, to create a connection that uses Secure File Transfer Protocol, click the SFTP connector.

4. Configure the connection.

For an FTP connection:

Host is the only parameter that you must specify. Enter the host name of the server
that you want to connect to. For example, if the name of your FTP host is FTP.WEST,
then you would enter exactly that, FTP.WEST. Do not specify the protocol, for example,
you should not specify something like this: ftp://FTP.WEST.

Port is required and has a default value of 21. This is the port that the FTP server is
listening on.

All other parameters are either not required or have default values. The defaults are

Red Hat Fuse 7.0 Integrating Applications with Ignite

32

ftp://ftp.west

All other parameters are either not required or have default values. The defaults are
suitable for most integrations. Descriptions of these parameters are after this
procedure.

For an SFTP connection, there must be values for these parameters:

Host is the host name of the SFTP server that you want to connect to. For example, if
the name of your SFTP host is SFTP.EAST, then you would enter exactly that,
SFTP.EAST. Do not specify the protocol, for example, you should not specify
something like this: sftp://SFTP.EAST.

Port has a default of 22. This is the port that the SFTP server is listening on.

User name of the account that you want to use to access the SFTP server.

Password that is associated with that user name.

All other parameters have default values. The defaults are suitable for most
integrations. Descriptions of these parameters are after this procedure.

5. Click Validate. Ignite immediately tries to validate the connection and displays a message that
indicates whether or not validation is successful. If validation fails, revise the configuration
details as needed and try again.

6. When validation is successful, click Next.

7. In the Connection Name field, enter your choice of a name that helps you distinguish this
connection from any other connections. For example, enter XLight FTP Server.

8. In the Description field, optionally enter any information that is helpful to know about this
connection.

9. In the upper right, click Create to see that the connection you created is now available. If you
entered the example name, you would see that XLight FTP Server is now available.

Descriptions of other parameters

Connect timeout defaults to 10000 milliseconds and indicates a maximum wait of 10 seconds
to establish the connection. If 10 seconds elapse without a connection then Ignite waits for the
number of milliseconds defined by Reconnect delay and then tries to reconnect.

Reconnect delay defaults to 1000 milliseconds and indicates the wait time before trying to
reconnect again.

Maximum reconnect attempts defaults to 3. Ignite tries as many as 3 times to establish a
connection.

Binary file transfer mode is used by default. Select No for ASCII transfer mode.

Passive connection mode defaults to Yes, which is usually the preferred mode. In passive
mode, the client opens communication channels with the server as a way to avoid firewall issues.
If you select No then active mode is used.

Disconnect from the server after use defaults to No. The connection remains established after
it performs the action. Select Yes if you want to disconnect from the server after the
connection performs the upload or download.

Data timeout defaults to 30000 milliseconds and indicates the maximum length of time that

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

33

Data timeout defaults to 30000 milliseconds and indicates the maximum length of time that
Ignite waits for a reply.

3.7.2. Adding an FTP or SFTP connection to an integration

After you create an FTP connection or an SFTP connection, you can add it to any number of
integrations. See the following topics:

Section 3.7.2.1, “Obtaining files from an FTP or SFTP server”

Section 3.7.2.2, “Uploading files to an FTP or SFTP server”

3.7.2.1. Obtaining files from an FTP or SFTP server

To trigger integration execution when an FTP or SFTP connection finds the file(s) you are interested in,
you must add an FTP or SFTP connection as an integration’s start connection.

To add an FTP or SFTP connection as a start connection:

1. In the Ignite panel on the left, click Integrations.

2. Click Create Integration.

3. On the Choose a Start Connection page, click the FTP or SFTP connection that you want to
use to poll an FTP or SFTP server.

4. On the Choose an Action page, click Download.

5. In the File name expression field, if you are interested in a single file, then enter an Apache
Camel Simple language expression that resolves to a file name. You cannot specify a regular
expression. The connection polls (periodically checks) the server for this file and downloads it
when it is found. Leave this field blank if you want to download more than one file.

6. In the FTP directory field, enter the absolute or relative path of the server directory to poll. The
connection watches this directory for any content and downloads all files when it finds any
content.

7. In the Milliseconds before polling starts field, accept the default of 1000 milliseconds or
change the number of milliseconds.

8. In the Milliseconds before the next poll field, accept the default of 500 milliseconds or change
the number of milliseconds. This is the interval between polls.

9. In the Delete after download field, accept the default of No or select Yes to download the
file(s) and then delete it(them) from the server.

10. Click Next to specify the action’s output type. See Section 3.2, “Specifying connection input or
output types”.

3.7.2.2. Uploading files to an FTP or SFTP server

To finish an integration by uploading files to an FTP or SFTP server, you add an FTP or SFTP connection
as the finish connection. You can also upload files to an FTP or SFTP server in the middle of an
integration. To do this, you add an FTP or SFTP connection as a middle connection.

To add an FTP or SFTP connection that uploads files:

Red Hat Fuse 7.0 Integrating Applications with Ignite

34

http://camel.apache.org/simple.html

1. Start creating the integration.

2. Add and configure the start connection.

3. On the Choose a Finish Connection page, do one of the following:

To finish an integration by uploading files, click the FTP or SFTP connection that you want
to use.

To upload files in the middle of an integration, click the connection you want to use to finish
the integration. Configure that connection. When the finish connection is part of the
integration, in the left panel, hover over the plus sign where you want to add an FTP or SFTP
connection and click Add a connection. Click the FTP or SFTP connection that you want to
use to upload files in the middle of an integration.

4. On the Choose an Action page, click Upload.

5. In the File name expression field, if you want to upload only one particular file, then enter an
Apache Camel Simple language expression that resolves to a file name. This is the name of the
file that the action uploads to the server. You cannot specify a regular expression. To upload
more than one file, leave this field blank.

6. In the FTP directory field, enter the absolute or relative name of a server directory. If the File
name expression field contains an expression, then the connection stores the specified file in
this directory. If the File name expression field is blank, then the connection uploads to this
directory all files that were received from the previous integration step.

7. In the If file exists field, indicate the behavior when you are uploading a file that has the same
path and name as a file that is on the server. Accept the default, Override, to overwrite the file
that is on the server with the file that you are uploading. Or, select one of the following:

Append adds the content in the file being uploaded to the file that is on the server.

Fail throws GenericFileOperationException. The integration does not enter an error state.

Ignore does not upload the file. The integration continues running under the assumption
that everything is okay.

Move renames one of the files.

TryRename uploads the file with a temporary name and renames the file to the desired
name. This operation does not check for the existence of a file with the desired name, which
makes the operation faster on most servers than when existence checks are done.

8. In the Temporary file prefix while copying field, specify a string. The connection prepends this
string to the name of a file while it is being uploaded. This enables the connection to write to a
temporary file on the server and then rename that temporary file to have the correct name. This
is useful for reducing locks when uploading very large files.

9. In the Temporary file name while copying field, specify a string. The connection renames a file
being uploaded to have this name while it is being uploaded. This enables the connection to
write to a temporary file on the server and then rename that temporary file to have the correct
name. This is useful for reducing locks when uploading very large files.

10. Click Next to specify the action’s input type. See Section 3.2, “Specifying connection input or
output types”.

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

35

http://camel.apache.org/simple.html

3.8. CONNECTING TO HTTP AND HTTPS ENDPOINTS

In an integration, you can connect to HTTP and HTTPS endpoints to execute the GET, PUT, POST,
DELETE, HEAD, OPTIONS, TRACE, or PATCH method. To do this, create an HTTP or HTTPS
connection and then add it to an integration. The following topics provide details:

Section 3.8.1, “Create a connection to an HTTP or HTTPS endpoint”

Section 3.8.2, “Add an HTTP or HTTPS connection to an integration”

3.8.1. Create a connection to an HTTP or HTTPS endpoint

To create a connection to an HTTP or HTTPS endpoint:

1. In Ignite, in the left panel, click Connections to display any available connections.

2. In the upper right, click Create Connection to display Ignite connectors.

3. If you want to use Hyper Text Transfer Protocol to connect to the endpoint, then click the
HTTP connector. If you want to use Secure Hyper Text Transfer protocol, then click the HTTPS
connector.

4. In the Base URL field, enter the endpoint path. For example, www.mycompany.com/sales.

5. Click Validate. Ignite immediately tries to validate the connection and displays a message that
indicates whether validation is successful. If validation fails, revise specification of the base URL
and try again.

6. If validation is successful, click Next.

7. In the Connection Name field, enter your choice of a name that helps you distinguish this
connection from any other connections. For example, enter HTTPS My Company Sales.

8. In the Description field, optionally enter any information that is helpful to know about this
connection.

9. In the upper right, click Create to see that the connection you created is now available. If you
entered the example name, you would see that HTTPS My Company Sales is now available.

3.8.2. Add an HTTP or HTTPS connection to an integration

After you create an HTTP or HTTPS connection, you can use it in any number of integrations as follows:

To start an integration by periodically invoking an HTTP or HTTPS endpoint, add an HTTP or
HTTPS connection as the integration’s start connection.

To finish an integration by invoking an HTTP or HTTPS endpoint once, add an HTTP or HTTPS
connection as the integration’s finish connection.

In the middle of an integration, to invoke an HTTP or HTTPS endpoint once, add an HTTP or
HTTPS connection after the start connection and before the finish connection.

If you are creating an integration, Ignite prompts you to choose and configure the start connection, and
then choose and configure the finish connection. To add a middle connection, hover over the plus sign in
the left panel at the location where you want to add the connection, and select Add a connection.

In all of these situations, Ignite displays the available connections. To add an HTTP or HTTPS

Red Hat Fuse 7.0 Integrating Applications with Ignite

36

In all of these situations, Ignite displays the available connections. To add an HTTP or HTTPS
connection:

1. Click the HTTP or HTTPS connection that you want to add to the integration.

2. Select the action that you want the connection to perform:

If you are adding a start connection, then Periodic invoke URL is the only available action.
This action invokes the endpoint at intervals that you specify and triggers the integration if
the endpoint returns any data.

If you are adding a finish or middle connection, then Invoke URL is the only available action.
This action invokes the endpoint once.

3. In the URL Path field, specify the location of the endpoint that you want to invoke.

4. In the HTTP Method field, select the method that you want the connection to perform. The
default method is GET.

GET obtains the content at the URL path.

PUT replaces the content at the URL path with the integration data.

POST stores the integration data at the URL path to create new content.

DELETE removes content at the URL path.

HEAD obtains metadata about the content at the URL path.

OPTIONS obtains communication option settings at the URL path.

TRACE obtains information for testing and diagnostic purposes.

PATCH partially updates the content at the URL path according to the integration data.

5. If you are adding a start connection, which periodically invokes the URL, then in the Period field,
accept the default interval of 1 second or specify a number and its unit (milliseconds, seconds,
minutes, or hours) to indicate how long to wait between invocations.

6. Click Done to specify the action’s input or output type. See Section 3.2, “Specifying connection
input or output types”.

3.9. CONNECTING TO MQTT

MQ Telemetry Transport (MQTT) is a lightweight, machine-to-machine, internet of things, connectivity
protocol. In an integration, you can obtain messages from or publish messages to an MQTT broker. To do
this, create a connection to the MQTT broker of interest and then add that connection to an integration.
Details are in the following topics:

Section 3.9.1, “Create a connection to an MQTT broker”

Section 3.9.2, “Adding an MQTT connection to an integration”

3.9.1. Create a connection to an MQTT broker

To create an MQTT connection:

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

37

1. In Ignite, in the left panel, click Connections to display any available connections.

2. In the upper right, click Create Connection to display connectors.

3. Click the MQTT connector.

4. To configure the connection:

a. In the MQTT broker URL field, enter the location of the MQTT broker that you want to
send data to or obtain data from. This is the only required field.

b. In the User Name field, optionally enter the user name for the MQTT account whose
credentials you want to use to access the broker.

c. In the Password field, if you specified a user name, then specify the password associated
with that account.

d. In the Client ID field, optionally enter the ID that allows connections to close and reopen
without missing messages. The connection must subscribe to or publish to a topic.

5. Click Validate. Ignite immediately tries to validate the connection and displays a message that
indicates whether validation is successful. If validation fails, revise the input parameters and try
again.

6. If validation is successful, click Next.

7. In the Connection Name field, enter your choice of a name that helps you distinguish this
connection from any other connections. For example, you might enter MQTT West.

8. In the Description field, optionally enter any information that is helpful to know about this
connection.

9. In the upper right, click Create to see that the connection you created is now available. If you
entered the example name, you would see that MQTT West now available.

3.9.2. Adding an MQTT connection to an integration

You must create an MQTT connection before you can add it to an integration. If you did not already
create an MQTT connection, see Section 3.9.1, “Create a connection to an MQTT broker” .

The procedure for adding an MQTT connection to an integration varies according to whether you want
to use the MQTT connection to obtain a message or publish a message. See the following topics:

Section 3.9.2.1, “Obtain a message from an MQTT broker”

Section 3.9.2.2, “Publishing a message to an MQTT broker”

3.9.2.1. Obtain a message from an MQTT broker

To trigger execution of an integration based on receiving a message from an MQTT broker, add an
MQTT connection as the start connection. When you publish the integration, the MQTT connection
continuously watches for messages on the MQTT queue or topic that you specify. When the connection
finds a message, it passes it to the next step in the integration. An MQTT connection handles one
message at a time.

To start an integration when a message from an MQTT broker is found:

Red Hat Fuse 7.0 Integrating Applications with Ignite

38

1. In the Ignite panel on the left, click Integrations.

2. Click Create Integration.

3. On the Choose a Start Connection page, click the MQTT connection that you want to use to
start the integration.

4. On the Choose an Action page, click the Subscribe action to receive messages from the queue
or topic you specify.

5. In the MQTT queue/topic name field, enter the name of the queue or topic to subscribe to in
order to receive data.

6. Click Done to add the start connection.

3.9.2.2. Publishing a message to an MQTT broker

In an integration, you can publish a message to an MQTT broker to finish an integration. To do this, add
an MQTT connection as the integration’s finish connection. To publish a message to an MQTT broker in
the middle of integration, add an MQTT connection to an integration after the start connection and
before the finish connection.

To add an MQTT connection that publishes a message:

1. Start creating the integration.

2. Add and configure the start connection.

3. On the Choose a Finish Connection page, do one of the following:

To finish an integration by publishing a message, click the MQTT connection that you want
to use.

To publish a message in the middle of an integration, click the connection you want to use to
finish the integration. Configure that connection. When the finish connection is part of the
integration, in the left panel, hover over the plus sign where you want to add an MQTT
connection and click Add a connection. Click the MQTT connection that you want to use to
publish a message in the middle of an integration.

4. On the Choose an Action page, click Publish.

5. In the MQTT queue/topic name field, specify the name of he queue or topic to publish the
message to.

6. Click Done to add the connection to the integration.

3.10. CONNECTING TO REST APIS

In an integration, to connect to a REST API, you must have created a connector for that API by
uploading a Swagger specification that describes the API. See Section 4.1, “Adding REST API client
connectors”.

When a connector for the REST API you want to connect to is available in Ignite, the steps for
connecting to that REST API are:

Section 3.10.1, “Register Ignite as an API client” if required

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

39

Section 3.10.2, “Create an API client connection”

Section 3.10.3, “Add an API client connection to an integration”

3.10.1. Register Ignite as an API client

Before Ignite creates an API client connector, it prompts you to indicate the API’s security requirements.
For APIs that use OAuth, when Ignite creates the connector it also adds an entry for the API to the
Ignite Settings page. This is where you provide the API client ID and the API client secret that authorize
Ignite to access the API.

If the API you want to connect to does not use OAuth, skip this section and see Section 3.10.2, “Create
an API client connection”.

To register Ignite as an authorized API client:

1. In Ignite:

a. In the left panel, click Settings.

b. Near the top of the OAuth Application Management page, where you see During
registration, enter this callback URL:, copy that URL to the clipboard.

c. Look for the name of the API you want to connect to and click its Register button to display
its client ID and client secret fields.

2. In another browser window, you must register Ignite as an OAuth client of the API you want to
connect to. The exact steps for doing this vary for each API service. Typically, the API service
provides an OAuth custom application setting page. Go to that page.

3. On that page:

a. Provide the Ignite callback URL, which you copied at the beginning of this procedure.

b. Obtain the client ID and client secret that the API service assigns to your installation of
Ignite.

4. In the Ignite Settings page, in the entry for the API service you are registering with, paste the
assigned client ID and the client secret.

5. Click Save.

3.10.2. Create an API client connection

To create a connection to a REST API:

1. In Ignite, in the left panel, click Connections to display any available connections.

2. In the upper right, click Create Connection to display available connectors.

3. Click the connector for the API that you want to create a connection for.

4. Respond to prompts for additional information. The definition of the API determines what Ignite
prompts for. For example, for an API that uses HTTP Basic Authorization, Ignite prompts for the
user name and password to use to access the API. For an API that uses OAuth, Ignite displays a
button for you to click so that Ignite can verify its registration credentials for connecting to the
API.

Red Hat Fuse 7.0 Integrating Applications with Ignite

40

5. In the Connection Name field, enter your choice of a name that helps you distinguish this
connection from any other connections.

6. In the Description field, optionally enter any information that is helpful to know about this
connection.

7. In the upper right, click Create to see that the connection you created is now available.

3.10.3. Add an API client connection to an integration

Before you can add an API connection to an integration, you must create a connection to that API. See
Section 3.10.2, “Create an API client connection” .

In this release, in an integration, a connection to an API can be the finish connection or a middle
connection. It cannot be the start connection. The instructions below assume that Ignite is prompting
you to select a finish connection or a connection that is not the start connection.

To add an API connection to an integraton:

1. On the page that displays available connections, click the API connection that you want to add
to the integration.

2. Click the action that you want the connection to perform. The actions that are available are
based on the resource operations specified in the Swagger file that was uploaded to Ignite and
that describes the API you are connecting to.

3. Depending on the action you select, enter any parameters that Ignite prompts for.

4. Click Done.

3.11. CONNECTING TO SALESFORCE

To connect to Salesforce in an integration, see the following topics:

Section 3.11.1, “Register Ignite as a Salesforce client”

Section 3.11.2, “Create a Salesforce connection”

Section 3.11.3, “Adding a Salesforce connection to an integration”

3.11.1. Register Ignite as a Salesforce client

You must register your installation of Ignite as an application that can access Salesforce. This lets you
create any number of integrations that connect to Salesforce. In other words, you need to register a
particular installation of Ignite with Salesforce only once.

In each Ignite environment, there can be only one registration of Ignite as a Salesforce client. However,
while each Salesforce connection uses the same registration, it can use different user credentials.

Perform these steps to register Ignite as a Salesforce client:

1. In Ignite:

a. In the left panel, click Settings.

b. Near the top of the OAuth Application Management page, where you see During

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

41

b. Near the top of the OAuth Application Management page, where you see During
registration, enter this callback URL:, copy that URL to the clipboard.

c. To the right of the Salesforce entry, click Register to display the Client ID and Client
Secret fields.

2. In another browser tab, log in to your Salesforce account and follow the steps below to create a
connected app. These instructions assume that you are using the Salesforce Classic user
interface. To switch from the Salesforce Lightning Experience interface, click your profile icon
and select Switch to Salesforce Classic. For additional information, see the Salesforce
documentation for Create a Connected App .

a. In Salesforce, in the upper right, click Setup.

b. In the left panel, select Build > Create > Apps.

c. Scroll down to Connected Apps and click New.

d. Enter the required information and then select Enable OAuth Settings.

e. In the Callback URL field, paste your Ignite URL, which you copied at the beginning of this
procedure. For example: https://app-proj9128.7b63.fuse-
ignite.openshiftapps.com/api/v1/credentials/callback.

f. For OAuth Scopes, add:

Access and manage your data

Allow access to your unique identifier

Perform requests on your behalf at any time

g. Select Include ID token and then Include Standard Claims.

h. Scroll down and click Save.

i. Scroll up to see that Salesforce indicates a short wait:

j. Click Continue.

k. Copy the consumer key that Salesforce provides.

3. Return to your Ignite installation Settings page and paste the Salesforce-provided consumer
key into the Salesforce Client ID field.

4. Back in Salesforce, copy the consumer secret that Salesforce provides.

5. Return to your Ignite installation Settings page and paste the Salesforce-provided consumer
secret into the Salesforce Client Secret field.

6. Click Save and then click Ok.

Red Hat Fuse 7.0 Integrating Applications with Ignite

42

https://help.salesforce.com/articleView?id=connected_app_create.htm

3.11.2. Create a Salesforce connection

A connection to Salesforce requires registration of Ignite as an application that can access Salesforce.

Be sure to wait 2 - 10 minutes after registering your Ignite installation as a Salesforce client before you
try to create a Salesforce connection. After you create a Salesforce connection, you can use it in
multiple integrations.

To create a Salesforce connection:

1. In the left panel, click Connections to display available connections.

2. In the upper right, click Create Connection to display the available connectors. A connector is a
template for creating one or more connections.

3. Click the Salesforce connector.

4. Click Connect Salesforce to display a Salesforce authorization page. You might need to log in
to Salesforce before you see the authorization page.

NOTE

The following error indicates that Salesforce does not have the correct Ignite
callback URL:

error=redirect_uri_mismatch&error_description=redirect_uri%20must%20m
atch%20configuration

If you get this error message, then in Salesforce, ensure that the Ignite callback
URL is specified according to the instructions in Section 3.11.1, “Register Ignite as
a Salesforce client”.

5. Click Allow to return to Ignite.

6. In the Connection Name field, enter your choice of a name that helps you distinguish this
connection from any other connections. For example, enter SF Connect 1.

7. In the Description field, optionally enter any information that is helpful to know about this
connection. For example, enter Sample Salesforce connection that uses my Salesforce
login credentials.

8. In the upper right, click Create to see that the connection you created is now available. If you
entered the example name, you would see that SF Connect 1 is now available.

3.11.3. Adding a Salesforce connection to an integration

You must create a Salesforce connection before you can add a Salesforce connection to an integration.
If you did not already create a Salesforce connection, see Section 3.11.2, “Create a Salesforce
connection”.

You must be creating an integration or updating an integration to add a connection to that integration. If
you need to, see Section 5.2, “Procedure for creating an integration” or Section 7.10, “Updating
integrations”.

The instructions below assume that Ignite is prompting you to select a start connection, a finish
connection or a middle connection.

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

43

To add a Salesforce connection to an integraton:

1. On the page that displays available connections, click the Salesforce connection that you want
to add to the integration. When the integration uses the connection you select to connect to
Salesforce, Ignite uses the credentials defined in that connection.

2. Click the action that you want the selected connection to perform. Each Salesforce connection
that you add to an integration performs only the action you choose.

3. Specify the Salesforce object that the action operates on, for example, it might be a contact,
lead or price book entry. Click in the Object field to select from a list of Salesforce objects or
enter the name of the object.

4. Click Done to add the connection to the integration.

3.12. CONNECTING TO SLACK

In an integration, you can connect to an instance of Slack and deliver a message to a particular user or to
a channel. For example, this is useful when an integration downloads a file from an FTP server and
processes it in some way. You can finish an integration by notifying a Slack channel or user that the
process was successful.

To connect to Slack in an integration, create a Slack connection. You can then add that same
connection to any number of integrations. Details are in the following topics:

Section 3.12.1, “Create a Slack connection”

Section 3.12.2, “Adding a Slack connection to an integration”

3.12.1. Create a Slack connection

To create a connection to an instance of Slack:

1. In Ignite, in the left panel, click Connections to display any available connections.

2. In the upper right, click Create Connection to display Ignite connectors.

3. Click the Slack connector.

4. In the Slack webhook URL field, enter the webhook URL of the Slack instance to send
messages to. This is the only required parameter.

5. Optionally, enter values for additional parameters:

a. In the Sending user name for messages field, enter the user name that the bot has when it
sends messages to Slack.

b. In the Message avatar emoji field, specify the emoji that the bot uses as the message
avatar when it sends a message.

c. In the Message avatar icon URL field, specify the URL of the avatar that the bot uses when
it sends messages to Slack.

If you specify an emoji and an icon URL, then the integration uses the icon URL.

6. Click Validate. Ignite immediately tries to validate the connection and displays a message that

Red Hat Fuse 7.0 Integrating Applications with Ignite

44

6. Click Validate. Ignite immediately tries to validate the connection and displays a message that
indicates whether validation is successful. If validation fails, revise the connection configuration
values and try again.

7. If validation is successful, click Next.

8. In the Connection Name field, enter your choice of a name that helps you distinguish this
connection from any other connections. For example, enter Slack for Company Sales.

9. In the Description field, optionally enter any information that is helpful to know about this
connection.

10. In the upper right, click Create to see that the connection you created is now available. If you
entered the example name, you would see that Slack for Company Sales is now available.

3.12.2. Adding a Slack connection to an integration

In an integration, to send a message to a Slack channel or user, first create a Slack connection. You can
then add that connection to any number of integrations as a finish connection or as a middle connection.
It does not make sense to add a Slack connection that starts an integration because you must map the
message content from a previous step to a Slack connection field. In other words, a data mapping step
must be in the integration just before the Slack connection.

To add a Slack connection to an integration, you must be creating or editing an integration. If you are
creating an integration, then Ignite might be prompting you to choose a finish connection. To add a
middle connection, hover over the plus sign in the left panel in the location where you want to add the
connection and select Add a connection.

To add a Slack connection:

1. Click the Slack connection that you want to add to the integration.

2. Select the action that you want the connection to perform.

Click User name to send a message to one user. To configure this action, in the User name
field, specify the name of the user to send the message to.

Click Channel to publish a message on a channel. To configure this action, in the Channel
field, specify the channel to publish the message to. The integration sends the integration
data in a message to that channel.

3. Click Next to add the connection to the integration.

4. After you add all connections to the integration, add a data mapping step just before the Slack
connection. In the mapping step, map a string from a previous step to the Slack message field.
This string should contain the message that you want to send to the Slack user or channel. See
Section 5.3.1, “Add a data mapping step” .

3.13. CONNECTING TO SQL DATABASES

In an integration, you can connect to any of the following types of SQL databases:

Apache Derby

MySQL

PostgreSQL

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

45

You create a connection to the database that you want to access in an integration and then you add that
connection to an integration.

To connect to other types of databases, you must upload a JDBC driver for that database.

See the following topics for details:

Section 3.13.1, “Create a database connection”

Section 3.13.2, “Add a database connection to an integration”

Section 3.13.3, “Connecting to proprietary databases”

3.13.1. Create a database connection

You create a separate connection for each database that you want to connect to in an integration. You
can use the same connection in multiple integrations.

A database connection operates on a database table that you specify or invokes a stored procedure that
you specify. The database table or the stored procedure must exist when an integration connects to the
database.

To create a database connection:

1. Ensure that the JDBC driver for the database that you want to connect to is on your classpath.
If you uploaded a JDBC driver library extension to connect to a proprietary database, then the
upload process puts the driver on your classpath. See Section 4.2.4, “Creating JDBC driver
library extensions”.

2. In Ignite, in the left panel, click Connections to display any available connections.

3. In the upper right, click Create Connection to display Ignite connectors.

4. Click the Database connector.

5. Configure the connection by entering:

a. In the Password field, enter the password associated with the user account you want to use
to access the database.

b. In the Schema field, enter the name of the schema for the database. If the connection URL
specifies the schema, ensure that this field indicates the same schema as the connection
URL. For example, enter sampledb.

c. In the Connection URL field, enter the JDBC URL for the database that you want to
connect to. For example, enter jdbc:postgresql://ignite-db1234/sampledb.

d. In the Username field, enter the name of the account that you want to use to access the
database. Ensure that the specified password and user name are for the same account.

6. Click Validate. Ignite tries to validate the connection and displays a message that indicates
whether validation is successful. If validation fails, revise the configuration details as needed and
try again.

7. If validation is successful, click Next.

8. In the Connection Name field, enter your choice of a name that helps you distinguish this

Red Hat Fuse 7.0 Integrating Applications with Ignite

46

8. In the Connection Name field, enter your choice of a name that helps you distinguish this
connection from any other connections. For example, enter PostgreSQL DB 1.

9. In the Description field, optionally enter any information that is helpful to know about this
connection. For example, enter Sample PostgreSQL connection that uses my login
credentials.

10. In the upper right, click Create to see that the connection you created is now available. If you
entered the example name, you would see that PostgreSQL DB 1 is available.

3.13.2. Add a database connection to an integration

You must create a database connection before you can add a database connection to an integration. If
you did not already create the database connection, see Section 3.13.1, “Create a database connection” .

See the instructions for where in the integration you want to access the database:

Section 3.13.2.1, “Starting an integration by accessing a database”

Section 3.13.2.2, “Accessing a database in the middle or to complete an integration”

3.13.2.1. Starting an integration by accessing a database

To start an integration by accessing a database:

1. In the Ignite panel on the left, click Integrations.

2. Click Create Integration.

3. On the Choose a Start Connection page, click the database connection that you want to use to
start an integration.

4. On the Choose an Action page, click one of the following:

Periodic SQL Invocation obtains data by periodically invoking the SQL query you specify.

Periodic Stored Procedure obtains data by periodically invoking the stored procedure you
specify or select.

5. If you selected Periodic SQL Invocation, in the Query field, enter a SQL SELECT statement to
obtain one or more records. For example: SELECT * from my_db_table. The database table
that contains the data you want must already exist.
If you selected Periodic Stored Procedure, in the Stored Procedure field, select or enter the
stored procedure to invoke to obtain the data of interest. The stored procedure you specify
must already exist. The database administrator should have created any stored procedures you
need to use in an integration.

6. In the Period field, enter an integer and indicate whether the unit is minutes, hours, or days. For
example, if you specify 5 minutes then the connection invokes the specified query or stored
procedure every five minutes.

7. Click Done.

Ignite tries to validate the connection, which includes checking that a specified SQL query is
syntactically correct and confirming that the query or stored procedure target data exists. If verfication
is successful then Ignite adds the start connection to the integration. If verification fails then Ignite
displays a message about the problem. Update your input as needed and try again.

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

47

3.13.2.2. Accessing a database in the middle or to complete an integration

To finish an integration by accessing a database, add a database connection as the finish connection. To
access a database in the middle of an integration, add a database connection between the start and
finish connections. The instructions below assume that you are on the Ignite Choose a Finish
Connection page or the Choose a Connection page.

To add a database connection:

1. Click the database connection for the database you want to access.

2. On the Choose an Action page, click one of the following:

Invoke SQL operates on data by executing the SQL statement you specify.

Invoke Stored Procedure operates on data by invoking the stored procedure you specify or
select.

3. If you selected Invoke SQL, in the SQL Statement field:

For a middle connection, enter a SQL SELECT statement that obtains one record or enter
a SQL INSERT, UPDATE, or DELETE statement that operates on one or more records. The
database table that contains the data must already exist.
In this release, when a database connection is a middle connection, a SELECT statement
can obtain only one record. You should define the SELECT statement so that it obtains one
record.

For a finish connection, enter a SQL INSERT, UPDATE or DELETE statement to operate
on one or more records.

If you selected Invoke Stored Procedure, in the Stored Procedure field, select or enter the
name of the stored procedure to invoke to operate on the data of interest. The stored
procedure you specify must already exist. The database administrator should have created any
stored procedures you need to use in an integration.

See the information below about specifying placeholder parameters in queries.

4. Click Done.

Ignite tries to validate the connection, which includes checking that a specified SQL query is
syntactically correct and confirming that the query or stored procedure target data exists. If verfication
is successful then Ignite adds the connection to the integration. If verification fails then Ignite displays a
message about the problem. Update your input as needed and try again.

Specifying parameters in queries

When you access a database in the middle of an integration or to complete an integration, you can
specify placeholder parameters in the SQL query or there can be placeholders in the stored procedure.
For example:

INSERT INTO TODO(task, completed) VALUES(:#param_1, :#param_2)
DELETE FROM TODO WHERE task LIKE :#param_3

To specify the values of these placeholders, add a data mapping step to your integration before the
database connection. In the data mapping step, map the appropriate source data fields to the target
data fields, for example, map source data to the :#param_1, :#param_2, and :#param_3 target fields.
See Section 5.3.1, “Add a data mapping step” .

Red Hat Fuse 7.0 Integrating Applications with Ignite

48

3.13.3. Connecting to proprietary databases

To connect to a proprietary SQL database, the main tasks that must be accomplished are as follows:

1. A developer creates a library extension that contains the JDBC driver for the database that you
want to access in an integration. See Section 4.2.4, “Creating JDBC driver library extensions” .

2. The developer provides a .jar file that contains the library extension.

3. You upload that .jar file to Ignite. See Section 4.2.2, “Making custom features available” .

4. You create a connection to your database by selecting the Ignite Database connector and
specifying the connection URL for your database. See Section 3.13.1, “Create a database
connection”.

5. In an integration, you add the connection to your database. See Section 3.13.2, “Add a database
connection to an integration”.

3.14. CONNECTING TO TWITTER

To connect to Twitter in an integration, see the following topics:

Section 3.14.1, “Register Ignite as a Twitter client”

Section 3.14.2, “Create a Twitter connection”

Section 3.14.3, “Adding a Twitter connection to an integration”

3.14.1. Register Ignite as a Twitter client

You must register your installation of Ignite as an application that can access Twitter. This lets you
create any number of integrations that connect to Twitter. In other words, you need to register a
particular installation of Ignite with Twitter only once.

In each Ignite environment, there can be only one registration of Ignite as a Twitter client. However,
while each Twitter connection uses the same registration, it can use different user credentials.

Perform these steps:

1. In Ignite:

a. In the left panel, click Settings.

b. Near the top of the OAuth Application Management page, where you see During
registration, enter this callback URL:, copy the URL at the end of the sentence to the
clipboard.

c. To the right of the Twitter entry, click Register to display the Client ID and Client Secret
fields.

2. In another browser tab, go to the Twitter Application Management web site at
https://apps.twitter.com and do the following:

a. Confirm that the URL is apps.twitter.com and not just twitter.com.

b. If you are not already logged in to the Twitter Application Management site, log in.

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

49

https://apps.twitter.com

c. Click Create New App.

d. In the Name field, enter a name for your new app. This name must be unique among all
names of apps registered with Twitter.

e. In the Description field, enter helpful information. Twitter requires some input in this field.

f. In the Website field, paste the URL that you copied at the beginning of this procedure and
remove api/v1/credentials/callback from the end of the URL.

g. In the Callback URL field, paste the URL again. It should be something like this: https://app-
proj9128.7b63.fuse-ignite.openshiftapps.com/api/v1/credentials/callback.

h. Click Yes to agree to the Twitter developer agreement.

i. Click Create your Twitter application.

j. Click the Keys and Access Tokens tab.

k. Copy the Consumer Key.

3. On your Ignite installation Settings page, paste the Twitter consumer key into the Twitter
Client ID field.

4. On the Twitter Keys and Access Tokens tab, copy the Consumer Secret and paste it into the
Ignite Twitter Client Secret field.

5. Click Save and then click Ok.

3.14.2. Create a Twitter connection

A connection to Twitter requires registration of Ignite as an application that can access Twitter. If you did
not already register Ignite, see Section 3.14.1, “Register Ignite as a Twitter client” .

After you create a Twitter connection, you can use it in multiple integrations.

To create a Twitter connection:

1. In Ignite, in the left panel, click Connections to display any available connections.

2. In the upper right, click Create Connection to display the available connectors. A connector is a
template that you use to create one or more connections.

3. Click the Twitter connector.

4. Click Connect Twitter to display a Twitter authorization page. You might need to log in to
Twitter before you see the authorization page.

5. Click Authorize app to return to Ignite.

6. In the Connection Name field, enter your choice of a name that helps you distinguish this
connection from any other connections. For example, enter Twitter Connect 1.

7. In the Description field, optionally enter any information that is helpful to know about this
connection. For example, enter Sample Twitter connection that uses my Twitter login
credentials.

8. In the upper right, click Create to see that the connection you created is now available. If you

Red Hat Fuse 7.0 Integrating Applications with Ignite

50

8. In the upper right, click Create to see that the connection you created is now available. If you
entered the example name, you would see that Twitter Connect 1 is now available.

3.14.3. Adding a Twitter connection to an integration

You must create a Twitter connection before you can add a Twitter connection to an integration. If you
did not already create a Twitter connection, see Section 3.14.2, “Create a Twitter connection” .

You must be creating an integration or updating an integration to add a connection to that integration. If
you need to, see Section 5.2, “Procedure for creating an integration” or Section 7.10, “Updating
integrations”.

The instructions below assume that Ignite is prompting you to select a start connection, a finish
connection or a middle connection.

To add a Twitter connection to an integraton:

1. On the page that displays available connections, click the Twitter connection that you want to
add to the integration. When the integration uses the selected connection to connect to
Twitter, Ignite uses the credentials defined in that connection.

2. Click the action that you want the selected connection to perform. Each Twitter connection that
you add to an integration performs only the action you choose.

3. Optionally, enter the configuration information that Ignite prompts for. For example, the Search
action prompts you to specify how often to search and keywords to search for.

4. Click Done to add the connection to the integration.

CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE

51

CHAPTER 4. ADDING AND MANAGING CUSTOMIZATIONS
Ignite lets you add API client connectors and custom steps to integrations. A custom step operates on
integration data between connections. See the following topics for details:

Section 4.1, “Adding REST API client connectors”

Section 4.2, “Adding extensions”

4.1. ADDING REST API CLIENT CONNECTORS

Ignite can create connectors for Representational State Transfer Application Programming Interfaces
(REST APIs) that support Hypertext Transfer Protocol (HTTP). To do this, Ignite requires a valid
Swagger 2.0 specification that describes a REST API that you want to connect to. If the API service
provider does not make a Swagger specification available then you must create the Swagger
specification.

The following topics provide information and instructions for adding REST API connectors:

Section 4.1.1, “Requirements for API client connectors”

Section 4.1.2, “About Swagger specification content”

Section 4.1.3, “Creating API client connectors”

Section 4.1.4, “Updating API client connectors”

Section 4.1.5, “Deleting API client connectors”

After you create a REST API client connector, for details about using that connector in an integration,
see Section 3.10, “Connecting to REST APIs” .

4.1.1. Requirements for API client connectors

After you upload a Swagger specification to Ignite, a connector to the API becomes available. An
integrator can select the connector, create an API client connection, and then add that connection to an
integration.

When Ignite creates an API client connector, it maps each resource operation in the Swagger
specification to an action. The action name and action description comes from documentation in the
Swagger specification.

Ignite connectors support OAuth 2.0 and HTTP Basic Authorization. If access to the API requires
Transport Layer Security (TLS) then the API needs to use a valid certificate that is issued by a
recognized Certificate Authority (CA).

An API that uses OAuth must have an authorization URL that takes a client callback URL as input. For
Ignite to obtain authorization to access an API that uses OAuth, you provide the Ignite callback URL at
the client API authorization URL. The details for doing this are described in Section 3.10.1, “Register
Ignite as an API client”.

Ignite cannot create connectors for APIs that support the HTTP 2.0 protocol.

4.1.2. About Swagger specification content

The following topics provide information about the content of the Swagger specification that Ignite

Red Hat Fuse 7.0 Integrating Applications with Ignite

52

The following topics provide information about the content of the Swagger specification that Ignite
uses to create a connector to a REST API:

Section 4.1.2.1, “Guidelines for Swagger specifications”

Section 4.1.2.2, “Providing client credentials in parameters”

Section 4.1.2.3, “Automatically refreshing access tokens”

4.1.2.1. Guidelines for Swagger specifications

The more detail that the Swagger specification provides, the more support Ignite can offer when
connecting to the API. For example, the API definition is not required to declare data types for requests
and responses. Without type declarations, Ignite defines the corresponding connection action as
typeless. However, in an integration, you cannot add a data mapping step immediately before or
immediately after an API connection that performs a typeless action.

One remedy for this is to add more information to the Swagger specification before you upload it to
Ignite. Identify the Swagger resource operations that will map to the actions you want the API
connection to perform. In the Swagger specification, ensure that there is a JSON schema that specifies
each operation’s request and response types.

If the Swagger specification for the API declares support for application/json content type and also
application/xml content type then the connector uses the JSON format. If the Swagger specification
specifies consumes or produces parameters that define both application/json and application/xml,
then the connector uses the JSON format.

4.1.2.2. Providing client credentials in parameters

When Ignite tries to obtain authorization to access an OAuth2 application, it uses HTTP basic
authentication to provide client credentials. If you need to, you can change this default behavior so that
Ignite passes client credentials to the provider as parameters instead of using HTTP basic
authentication. This affects the use of the tokenUrl endpoint that is used to obtain an OAuth access
token.

IMPORTANT

This is a Technology Preview feature.

To specify that Ignite should pass client credentials as parameters, in the securityDefinitions section of
the Swagger specification, add the x-authorize-using-parameters vendor extension with a setting of
true. In the example below, the last line specifies x-authorize-using-parameters:

securityDefinitions:
 concur_oauth2:
 type: 'oauth2'
 flow: 'accessCode'
 authorizationUrl: 'https://example.com/oauth/authorize'
 tokenUrl: 'https://example.com/oauth/token'
 scopes:
 LIST: Access List API
 x-authorize-using-parameters: true

The setting of the x-authorize-using-parameters vendor extension is true or false:

CHAPTER 4. ADDING AND MANAGING CUSTOMIZATIONS

53

https://access.redhat.com/support/offerings/techpreview/

true indicates that client credentials are in parameters.

false, the default, indicates that Ignite uses HTTP basic authentication to provide client
credentials.

4.1.2.3. Automatically refreshing access tokens

If an access token has an expiration date, then Ignite integrations that use that token to connect to an
application stop running successfully when the taken expires. To obtain a new access token, you must
either reconnect to the application or re-register with the application.

If you need to, you can change this default behavior so that Ignite automatically requests a new access
token in the following situations:

When the expiration date has been reached.

When HTTP response status codes that you specify are received.

IMPORTANT

This is a Technology Preview feature.

To specify that Ignite should automatically try to obtain a new access token in the situations described,
in the securityDefinitions section of the Swagger specification, add the x-refresh-token-retry-
statuses vendor extension. The setting of this extension is a comma separated list that specifies HTTP
response status codes. When an access token’s expiration date is reached or when Ignite receives a
message from an OAuth2 provider and the message has one of these response status codes, then Ignite
automatically tries to obtain a new access token. In the example below, the last line specifies x-refresh-
token-retry-statuses:

securityDefinitions:
 concur_oauth2:
 type: 'oauth2'
 flow: 'accessCode'
 authorizationUrl: 'https://example.com/oauth/authorize'
 tokenUrl: 'https://example.com/oauth/token'
 scopes:
 LIST: Access List API
 x-refresh-token-retry-statuses: 401,402,403

NOTE

Sometimes, an API operation fails and a side effect of that failure is that the access token
is refreshed. In this situation, even when obtaining a new access token is successful, the
API operation still fails. In other words, Ignite does not retry the failed API operation after
it receives the new access token.

4.1.3. Creating API client connectors

To create an API client connector:

1. In the Ignite navigation panel, click Customizations to display the API Client Connectors tab.
Any API client connectors that are already available are listed here.

Red Hat Fuse 7.0 Integrating Applications with Ignite

54

https://access.redhat.com/support/offerings/techpreview/

2. Click Create API Connector.

3. On the Create API Client Connector page, do one of the following:

Click Browse and select the Swagger file that you want to upload.

Select Use a URL and paste the URL for your Swagger specification in the input field.

4. Click Next. If there is invalid or missing content, Ignite displays information about what needs to
be corrected. Select a different Swagger file to upload or click Cancel, revise the Swagger file,
and upload the updated file.
If the specification is valid and complete, Ignite displays a summary of the actions that the
connector will provide. This might include errors and warnings about the action specifications.

5. To revise the Swagger file, click Cancel, revise the Swagger file, and upload the updated file.
If you are satisfied with the action summary, click Next.

6. Indicate the API’s security requirements by selecting one of the following:

a. No Security

b. HTTP Basic Authorization — Enter the user name and password you want to use to access
the API.

c. OAuth — Ignite prompts you to enter:

i. Authorization URL is the location for registering Ignite as a client of the API.
Registration authorizes Ignite to access the API. See Section 3.10.1, “Register Ignite as
an API client”. The Swagger specification or other documentation for the API should
specify this URL. If it does not then you must contact the service provider to obtain this
URL.

ii. Access Token URL is required for OAuth authorization. Again, the Swagger
specification or other documentation for the API should provide this URL. If it does not
then you must contact the service provider.

7. Click Next. Ignite displays the connector’s name, description, host, and base URL as indicated
by the Swagger file. For connections that you create from this connector,

Ignite concatenates the host and base URL values to define the endpoint for the
connection. For example, if the host is https://example.com and the base URL is /api/v1
then the connection endpoint is https://example.com/api/v1.

Ignite applies the schema specified in the Swagger file to data mapping steps. If the
Swagger file supports more than one schema then Ignite uses the TLS (HTTPS) schema.

8. Review the connector details and optionally upload an icon for the connector. If you do not
upload an icon, Ignite generates one. You can upload an icon at a later time. When Ignite
displays the flow of an integration, it displays a connector’s icon to represent connections that
are created from that connector.
To override a value obtained from the Swagger file, edit the field value that you want to change.
After Ignite creates a connector, you cannot change it. To effect a change, you need to upload
an updated Swagger file so that Ignite can create a new connector.

9. When you are satisfied with the connector details, click Create API Connector.

For details about using your new API connector, see Section 3.10, “Connecting to REST APIs” .

CHAPTER 4. ADDING AND MANAGING CUSTOMIZATIONS

55

https://example.com
https://example.com/api/v1

4.1.4. Updating API client connectors

You cannot update an API client connector. If there is an update to the API’s Swagger specification, then
you must upload an updated Swagger file and create a new API client connector.

To update integrations to use connections based on the updated Swagger specification:

1. Create a new API client connector based on the updated Swagger specification.

2. Create a new connection from the new connector.

3. Edit the integration to remove the old connection and add the new connection.

4. Publish the updated integration.

4.1.5. Deleting API client connectors

You cannot delete a connector when there is a connection that was created from that connector and
this connection is being used in an integration. After you delete an API client connector, you cannot use
a connection that was created from that connector.

To delete an API client connector:

1. In the left panel, click Customizations.

2. In the API Client Connectors tab, to the right of the name of the connector that you want to
delete, click Delete.

3. Read the confirmation popup to be sure that you want to click Delete.

4.2. ADDING EXTENSIONS

Extensions let you add customizations to Ignite so you can integrate applications the way you want to.

The following topics provide details:

Section 4.2.1, “About extensions”

Section 4.2.2, “Making custom features available”

Section 4.2.3, “Managing extensions”

Section 4.2.4, “Creating JDBC driver library extensions”

4.2.1. About extensions

If Ignite does not provide a feature that you need, then a developer can code an extension that lets you
integrate data the way you need to. An extension defines one of the following:

A single custom connector for creating connections to a particular application or service that
you want to integrate.

One or more custom steps that operate on integration data between connections.

A JDBC driver for connecting to a proprietary SQL database, such as Oracle.

Share your requirements with a developer who codes the extension. The developer gives you a .jar file

Red Hat Fuse 7.0 Integrating Applications with Ignite

56

Share your requirements with a developer who codes the extension. The developer gives you a .jar file
that contains the extension. You then upload the .jar file in Ignite to make the custom connector,
custom step(s), or JDBC driver available for use within Ignite.

An extension .jar file that you upload to Ignite always contains exactly one extension.

For an example of uploading and using an extension that provides a step that operates on data between
connections, see the AMQ to REST API sample integration tutorial .

For custom connectors and custom steps, information about coding the extension and creating the .jar
file is in the Tooling User Guide .

For information about creating extensions that provides JDBC drivers, see Section 4.2.4, “Creating
JDBC driver library extensions”.

4.2.2. Making custom features available

To make a custom feature available for use in an integration, you upload the extension to Ignite as
follows:

1. In the left Ignite panel, click Customizations.

2. At the top, click Extensions.

3. Click Import Extension.

4. Drag and drop, or choose, the .jar file that contains the extension that you want to upload.
A developer needs to make this file available to you. Ignite immediately tries to validate that the
file contains an extension. If there is a problem, Ignite displays a message about the error. You
must coordinate with the extension developer to obtain an updated .jar file, which you can then
try to upload.

5. Review the extension details.
After Ignite validates the file, it extracts and displays the extension’s name, ID, description, and
type. The type indicates whether the extension defines a custom connector, or one or more
custom steps for operating on data between connections, or a JDBC driver for a proprietary
database. An extension that provides a JDBC driver is referred to as a library extension.

For a connector extension, Ignite displays the actions that are available to a connection that is
created from this custom connector. In the extension, the developer might have provided an
icon that Ignite can use to represent the application connections created from this connector.
While you do not see this icon in the extension details page, it appears when you create
connections from the custom connector. If the extension developer did not provide an icon in
the extension, then Ignite generates an icon.

For a step extension, Ignite displays the name of each custom step that the extension defines.

For a library extension, if this extension contains a newer version of a JDBC driver that you
previously uploaded, then you must remove the older version from your classpath. Ensure that
your classpath has only one version of this driver and that the reference is to the newer driver
you are uploading. Integrations that are running and that use connections based on the older
driver are not affected. New connections that you create will use the new driver. If you publish an
integration that has a connection that was created with the older driver, Ignite automatically
uses the new driver instead.

6. Click Import Extension. Ignite makes the custom connector or custom step(s) available and
displays the extension’s details page.

CHAPTER 4. ADDING AND MANAGING CUSTOMIZATIONS

57

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.0/html-single/ignite_sample_integration_tutorials/#amq-to-rest-api
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.0/html-single/tooling_user_guide/index

See also:

Section 3.1.5, “Creating connections from custom connectors”

Section 5.3.5, “Add a custom step”

Section 3.13.3, “Connecting to proprietary databases”

4.2.3. Managing extensions

After you start using customizations provided in extensions, you can identify the integrations that use
those customizations. This is helpful to do before you update or delete an extension.

For details, see:

Section 4.2.3.1, “Identifying integrations that use extensions”

Section 4.2.3.2, “Updating extensions”

Section 4.2.3.3, “Deleting extensions”

4.2.3.1. Identifying integrations that use extensions

Before you update or delete an extension, you should identify the integrations that use customizations
provided by that extension. To do this:

1. In the left Ignite panel, click Customizations.

2. At the top, click Extensions.

3. In the list of extensions, find the entry for the extension that you want to update or delete and
click it.

Ignite displays details about the extension including a list of any integrations that use a customization
provided by the extension.

4.2.3.2. Updating extensions

To update an extension:

1. Obtain an updated .jar file for the extension from the developer.

2. In Ignite, in the left panel, click Customizations.

3. Click the Extensions tab.

4. At the right of the entry for the extension that you want to update, click Update.

5. Click Browse, select the updated .jar file, and click Open.

6. Confirm that the extension details are correct and click Update.

7. In the details page for the updated extension, determine which integrations use the connector
or custom step(s) defined in the extension.

It is up to you to know exactly what is required to update each integration that uses a custom connector
or a custom step from the updated extension. At the very least, you must stop (click Unpublish) and

Red Hat Fuse 7.0 Integrating Applications with Ignite

58

restart (click Publish) each integration that uses a customization defined in the updated extension. See
Section 7.3, “Unpublishing integrations” .

In some cases, you might need to edit the integration to change or add configuration details for a
customization. You must communicate with the extension developer to understand how to update
integrations.

4.2.3.3. Deleting extensions

You can delete an extension even if a running integration uses a step that is provided by that extension
or uses a connection that was created from a connector that was provided by that extension. After you
delete an extension, you cannot publish an integration that uses a customization that was provided by
that extension.

To delete an extension:

1. In the left Ignite panel, click Customizations.

2. At the top, click Extensions.

3. In the list of extensions, find the entry for the extension that you want to delete and click
Delete, which appears at the right of the entry.

There might be unpublished or draft integrations that use a customization provided by an extension that
you delete. To publish one of these integrations, you will need to edit the integration to remove the
customization. See Section 4.2.3.1, “Identifying integrations that use extensions” and Section 7.10,
“Updating integrations”.

4.2.4. Creating JDBC driver library extensions

To connect to a SQL database other than Apache Derby, MySQL, and PostgreSQL, a developer creates
an extension that wraps a JDBC driver for the database you want to connect to. After uploading this
extension to Ignite, the Ignite-provided Database connector can access the driver to validate and
create connections to the proprietary database.

The Syndesis open source community provides a project for creating an extension that wraps a JDBC
driver. This kind of extension is referred to as a library extension because the result of uploading the
extension is that you can use the built-in Database connector to create connections to your proprietary
database. You do not create a new connector for your particular database.

Package one driver only in an extension. This makes it easier to manage the extension as part of
managing your particular database. However, it is possible to create a library extension that wraps more
than one driver.

To use the Syndesis project, you must have a GitHub account.

To create a JDBC driver library extension:

1. Ensure access to the JDBC driver for the database you want to connect to by doing one of the
following:

a. Confirm that the driver is in a Maven repository.

b. Download the driver.

2. In a browser tab, go to https://github.com/syndesisio/syndesis-extensions

CHAPTER 4. ADDING AND MANAGING CUSTOMIZATIONS

59

https://github.com/syndesisio/syndesis-extensions

3. Fork the syndesis-extensions repository to your GitHub account.

4. Create a local clone from your fork.

5. In your syndesis-extensions clone:

a. If the driver is not in a Maven repository, copy the driver into the syndesis-library-jdbc-
driver/lib folder.

b. Edit the syndesis-library-jdbc-driver/pom.xml file:

i. Update the value of the Name element to be a name that you choose for this extension.

ii. Update the value of the Description element to provide helpful information about this
extension.

iii. If the driver is in a Maven repository, ensure that a reference to that Maven repository
is in the pom.xml file.

iv. Examine the rest of the content of the pom.xml file and change any relevant metadata
as needed.

c. In the syndesis-library-jdbc-driver folder, execute mvn clean package to build the
extension.

The generated .jar file is in the syndesis-library-jdbc-driver/target folder. Provide this .jar file for
uploading to Ignite.

Red Hat Fuse 7.0 Integrating Applications with Ignite

60

CHAPTER 5. CREATING INTEGRATIONS
After some planning and preparation, you are ready to create an integration. In the Ignite web interface,
when you click Create Integration, Ignite guides you through the procedure to create an integration.

It is assumed that you are familiar with the information in these topics:

Section 1.5, “Planning integrations”

Section 1.6, “Workflow for creating an integration”

The following topics provide information and instructions for creating an integration:

Section 5.1, “Preparing to create an integration”

Section 5.2, “Procedure for creating an integration”

Section 5.3, “Adding steps between connections”

5.1. PREPARING TO CREATE AN INTEGRATION

Preparation for creating an integration starts with answers to the questions listed in Section 1.5,
“Planning integrations”. After you have a plan for the integration, you need to do the following before
you can create the integration:

1. Determine whether an application that you want to connect to uses the OAuth protocol. For
each application that uses OAuth, register Ignite as a client that is authorized to access that
application. See Section 3.1.2, “Obtaining authorization to access applications” .

2. Determine whether an application that you want to connect to uses HTTP basic authentication.
For each application that does, identify the user name and password for accessing that
application. You need to provide this information when you create the integration.

3. For each application that you want to integrate, create a connection. See Section 3.1.1, “About
creating connections”.

5.2. PROCEDURE FOR CREATING AN INTEGRATION

To create an integration:

1. In the left panel in Ignite, click Integrations.

2. In the upper right, click Create Integration.

3. Choose and configure the start connection:

a. On the Choose a Start Connection page, click the connection you want to use to start the
integration. When this integration is running, Ignite will connect to this application and
obtain data that you want the integration to operate on.

b. On the Choose an Action page, click the action you want this connection to perform. The
available actions vary for each connection.

c. On the page for configuring the action, enter values in the fields.

d. Click Done to add the start connection.

CHAPTER 5. CREATING INTEGRATIONS

61

4. Choose and configure the finish connection:

a. On the Choose a Finish Connection page, click the connection you want to use to
complete the integration. When this integration is running, Ignite will connect to this
application with the data that the integration has been operating on.

b. On the Choose an Action page, click the action you want this connection to perform. The
available actions vary for each connection.

c. On the page for configuring the action, enter values in the fields.

d. Click Done to add the finish connection.

5. Optionally, add one or more connections between the start connection and the finish
connections. For each connection, choose its action and enter any required configuration
details.

6. Optionally, add one or more steps that operate on integration data between connections. See
Section 5.3, “Adding steps between connections” .

7. When the integration contains all needed steps, click Save as Draft or Publish according to
whether you want to start running the integration.

8. In the Integration Name field, enter a name that distinguishes this integration from any other
integrations.

9. In the Description field, enter a description, for example, you can indicate what this integration
does.

10. If you are ready to start running the integration, in the upper right, click Publish. Otherwise, click
Save as Draft.

In the Ignite Integrations page, you can see your new integration in the list of integrations. If you
published the integration, then you can see that Ignite is in the process of publishing it. It may take a few
moments for the status of the integration to become Published, which means that it is running. If you
saved the integration as a draft, then Draft appears on the integration’s entry.

Click the integration’s entry to see a summary of the integration, including its version history, logs for
each execution, and aggregate execution metrics.

5.3. ADDING STEPS BETWEEN CONNECTIONS

After you add connections to an integration, you can optionally add steps between connections. Each
step operates on data obtained from the previous connection(s) and any other previous steps and
makes the data available to the next step in the integration.

Often, you must map data fields that are received from a connection to data fields that the next
connection in the integration can operate on. After you add all connections to your integration, check the
integration visualization panel on the left. For each connection that requires data mapping before it can

operate on the input data, Ignite displays . Click this icon to see Data Type Mismatch: Add a data
mapping step before this connection to resolve the difference. Click the link in the message to
display the Configure Mapper page in which you specify the data mapping step.

For details about adding additional steps, see the following topics:

Section 5.3.1, “Add a data mapping step”

Red Hat Fuse 7.0 Integrating Applications with Ignite

62

Section 5.3.2, “Add a basic filter step”

Section 5.3.3, “Add an advanced filter step”

Section 5.3.4, “Add a log step”

Section 5.3.5, “Add a custom step”

5.3.1. Add a data mapping step

You can add a step to an integration to map data from the previous connection(s) and any other steps
to the next connection. For example, suppose the integration data contains a Name field and the next
connection in the integration has a CustomerName field. You need to map the source Name field to the
target CustomerName field.

When you add a data mapper step you might be creating a new integration or editing an integration. The
flow of the integration appears in the left panel.

To add a data mapper step:

1. In the left panel, where you want to add a data mapper step, hover over the .

2. In the popup that appears, click Add a Step.

3. On the Choose a Step page, click Data Mapper.

For details, see Chapter 6, Mapping data to fields for the next connection .

5.3.2. Add a basic filter step

You can add a step to an integration to filter the data that the integration operates on. In a filter step,
Ignite inspects the data and continues the integration only if the content meets criteria that you define.
For example, in an integration that obtains data from Twitter, you can specify that you want to continue
the integration by operating only on tweets that contain "Red Hat".

Add all connections to your integration before you add additional steps. When you add a step, Ignite
operates on the data it receives from the previous connection(s) and any other previous step(s).

If you cannot define the filter you need in a basic filter step, see Section 5.3.3, “Add an advanced filter
step”.

You can add a step when you are creating an integration or editing an integration. The flow of the
integration appears in the left panel. To add a filter step:

1. In the left panel, where you want to add a filter step to the integration, hover over the and
in the popup that appears, click Add a Step.

2. On the Add a Step page, click Basic Filter.

3. On the Configure Basic Filter Step page, in the Continue only if incoming data match field,
select one of the following options:

Accept the default that all defined rules must be satisfied.

CHAPTER 5. CREATING INTEGRATIONS

63

Indicate that only one rule must be satisfied by selecting ANY of the following.

4. Define the filter rule:

a. For this field: In the field on the left, enter the name of the field that contains the content
you want the filter to evaluate. For example, suppose the data coming in to the step
consists of tweets that mention your Twitter handle. You want to continue the integration
only when the tweet contains certain content. The tweet is in a field named text so you
enter or select text as the value in the first field.
You can define the field value in the following ways:

Start typing. The data name field has a typeahead feature that provides a list of
possible completions for you in a pop-up box. Select the correct one from the box.

Click in the text field. A dropdown box appears with a list of available fields. Select the
field of interest from the list.

b. This condition must be satisfied: In the middle field, select a condition from the dropdown
box. The setting defaults to Contains. For the integration to continue, the condition that
you select in this field must be true for the value that you enter in the third field.

c. For this value: In the third field, enter a value to filter on. For example, if you want to operate
on mentions of a certain product from the Twitter feed, you would enter the product name
here.

5. Optionally, click + Add another rule and define another rule.
You can delete a rule by clicking the trash can icon next to the entry.

6. When the filter step is complete, click Done to add it to the integration.

5.3.3. Add an advanced filter step

In a filter step, Ignite inspects the data and continues the integration only if the content meets criteria
that you define. If the basic filter step does not let you define the exact filter you need, then add an
advanced filter step.

Add all connections to your integration before you add additional steps. When you add a step, Ignite
operates on the data it receives from the previous connections and any additional step(s).

When you add a step you might be creating a new integration or editing an integration. The flow of the
integration appears in the left panel.

To add an advanced filter step:

1. In the left panel, where you want to add an advanced filter step to the integration, hover over

the and in the popup that appears, click Add a Step.

2. Select Advanced Filter.

3. In the edit box, use the Camel Simple Expression language to specify a filter expression.

4. Click Done.

5.3.4. Add a log step

Ignite provides log information for each integration version that it executes. To learn what information is

Red Hat Fuse 7.0 Integrating Applications with Ignite

64

http://camel.apache.org/simple.html

Ignite provides log information for each integration version that it executes. To learn what information is
automatically logged, see Section 7.5, “Viewing integration log information” .

To log additional information between any two steps, add a log step to the integration. For each
message that it receives, a log step can provide one or more of the following:

The message’s header, which provides metadata about the message.

The message’s body, which provides the content of the message.

Text that you specify either explicitly or through evaluation of an Apache Camel Simple
language expression.

To add a log step, you must be creating a new integration or editing an integration. The integration must
already have its start and finish connections.

To add a log step:

1. In the integration visualization panel on the left, hover over the at the location where you
want to add a log step.

2. In the popup, click Add a Step.

3. On the Choose a Step page, click Log.

4. On the Configure Log Step page, select the content that you want to log. If you select Custom
text, then in the text input field, enter one of the following:

The text that you want to log

A Camel Simple language expression

If you enter an expression, Ignite resolves the expression and logs the resulting text.

5. When log step configuration is complete, click Done.

6. When the integration is complete, publish it to start seeing output from the new log step.

After an integration that has a log step has been executed, output from its log step appears in the
integration’s Activity tab. See Section 7.5, “Viewing integration log information” .

5.3.5. Add a custom step

If Ignite does not provide a step that you need in an integration, a developer can define one or more
custom steps in an extension. A custom step operates on integration data between connections. See
Section 4.2.2, “Making custom features available” .

You add a custom step to an integration in the same way that you add a built-in step. Create an
integration, choose the start and finish connections, add other connections as needed and then add
additional steps. When you add a step, Ignite operates on the data it receives from the previous step(s).

When you click Add a Step, the list of available steps includes any custom steps that are defined in
extensions that were uploaded to your installation of Ignite.

At the top of the list of steps, in the Name field, you can select Custom Steps to display only custom
steps.

CHAPTER 5. CREATING INTEGRATIONS

65

http://camel.apache.org/simple.html

Click the custom step that you want to add to the integration. Ignite prompts you for any information
required to perform the step. This information varies for each custom step.

Red Hat Fuse 7.0 Integrating Applications with Ignite

66

CHAPTER 6. MAPPING DATA TO FIELDS FOR THE NEXT
CONNECTION

In most integrations, you need to map data fields that have been obtained or processed to data fields
that the next connection can process. Ignite provides a data mapper to simplify doing this. In an
integration, at each point where you need to map data fields, add a data mapper step. Details for
mapping data fields are in the following topics:

Section 6.1, “About mapping data”

Section 6.2, “Finding the data field you want to map”

Section 6.3, “Identifying where data mapping is needed”

Section 6.4, “Mapping one source field to one target field”

Section 6.5, “Combining multiple source fields into one target field”

Section 6.6, “Separating one source field into multiple target fields”

Section 6.7, “Transforming target data”

Section 6.8, “Descriptions of available transformations”

Section 6.9, “Viewing the mappings in a step”

6.1. ABOUT MAPPING DATA

The data mapper displays:

Sources - a list of the data fields that are obtained or processed in each previous step

Target - a list of the data fields that are processed in the next connection

According to the needs of your integration, you can:

Map one source field to one target field. This is the default mapping behavior. For example, map
the Name field to the CustomerName field.

Combine multiple source fields into one target field. For example, map the FirstName and
LastName fields to the CustomerName field.

Separate a source field into multiple target fields. For example, map the Name field to the
FirstName and LastName fields.

Transform the target field to specify how Ignite stores it. For example, pad or trim the target
field value, capitalize the first letter in a string, or create a time stamp.

6.2. FINDING THE DATA FIELD YOU WANT TO MAP

In an integration that has a few steps or that operates on a small set of data, it is probably easy to find
the data field you want to map. But in an integration that has many steps, or that has a step that
accesses a large set of data, the list of data fields might be very long. To quickly find the data field you
want to map, you can:

Search for it. The Sources panel and the Target panel each have a search field at the top. If the

CHAPTER 6. MAPPING DATA TO FIELDS FOR THE NEXT CONNECTION

67

Search for it. The Sources panel and the Target panel each have a search field at the top. If the

search field is not visible, click at the top right of the Sources or Target panel.

Enter the names of the fields that you want to map. To do this, in the upper right of the
Configure Mapper page, click the plus sign to display the Mapping Details panel. In the
Sources section, enter the name of the source field. In the Action section, accept the default
Map, which maps one field to one other field. Or, select Combine or Separate. In the Target
section, enter the name of the field that you want to map to.

Expand and collapse folders to limit the visible fields. To view the data fields available in a
particular step, expand the folder for that step.
As you add steps to an integration, Ignite numbers and renumbers them to indicate the order in
which the integration processes the steps. When you are creating or editing an integration,
these numbers are visible in the integration visualization panel on the left. When you add a data
mapping step, the step numbers appear in the folder labels in the Sources panel and in the
Target panel.

The folder label also displays the name of the data type that is output by that step. Connections
to applications such as Twitter, Salesforce, and SQL define their own data types. For connecting
to applications such as Amazon S3, AMQ, AMQP, Dropbox, and FTP/SFTP, you define the
connection’s input and/or output type when you add the connection to an integration and select
the action that the connection performs. When you specify the data type, you also give the type
a name. The type name you specify appears as the name of a folder in the data mapper. If you
specified a description when you declared the data type, then the type description appears
when you hover over the step folder in the mapper.

6.3. IDENTIFYING WHERE DATA MAPPING IS NEEDED

To identify where data mapping is needed:

1. When you are creating or editing an integration, add all connections to the integration.

2. In the integration visualization panel on the left, look for any icons.

3. Click the icon to see the message. A Data Type Mismatch notification indicates that you need
to add a data mapper step before that connection.

To see the input type or output type for a particular connection:

1. In the Ignite left panel, click Integrations.

2. In the list of integrations, identify the integration that has the connection whose input type or
output type you want to know.

3. At the right of that integration’s entry click .

4. Select Edit.

5. In the integration’s visualization panel, to the right of a connection, click to display
information about that connection, including its input and/or output type.

6.4. MAPPING ONE SOURCE FIELD TO ONE TARGET FIELD

Red Hat Fuse 7.0 Integrating Applications with Ignite

68

The default mapping behavior maps one source field to one target field. To do this:

1. In the Sources panel, click the data field you want to map from.
You might need to expand an integration step to see the data fields that it provides.

When there are many source fields, you can search for the field of interest by clicking the
and entering the name of the data field in the search field.

2. In the Target panel, click the data field you want to map to.

The data mapper displays a line that connects the two fields you just selected.

To confirm that the mapping is defined, in the upper right, click to display the defined mappings.

Click again to display the data field panels.

Here is another way to map a single source field to a single target field:

1. In the Configure Mapper page, in the upper right, click the plus sign to display the Mapping
Details panel.

2. In the Sources section, enter the name of the source field.

3. In the Action section, accept the default Map action.

4. In the Target section, enter the name of the field that you want to map to and click Enter.

6.5. COMBINING MULTIPLE SOURCE FIELDS INTO ONE TARGET
FIELD

To combine the content from multiple source fields into one target field:

1. In the Target panel, click the field into which you want to map more than one source field.

2. In the Mapping Details panel, under Action, select Combine.

3. In the Mapping Details panel, under Source, start to overtype [None] with the name of the first
source field that you want to map into the target field.

4. When the name of the first source field appears, click it. The data mapper displays a line from
the first source field to the target field.

5. For each additional source field:

a. In the Mapping Details panel, click Add Source.

b. Start to overtype Search with the name of the next source field.

c. When the name of the next source field appears, click it. The data mapper displays another
line to the target field but this line is from this source field.

6. In the Mapping Details panel, in the Separator field, accept or select the character that the
data mapper inserts in the target field between the source fields. The default is a space.

CHAPTER 6. MAPPING DATA TO FIELDS FOR THE NEXT CONNECTION

69

In the data mapper, blue lines indicates the current focus.

To confirm that the mapping is correctly defined, click to display the mappings defined in this step.
A mapping that combines the values of more than one source field into one target field looks like this:

.

6.6. SEPARATING ONE SOURCE FIELD INTO MULTIPLE TARGET
FIELDS

To separate and map the content in one source field to multiple target fields:

1. In the Sources panel, click the field you want to map.

2. If the Mapping Details panel is not already visible to the right of the Target panel, in the upper
right, click the plust sign to display it.

3. In the Mapping Details panel, under Action, click the down caret and select Separate.

4. Below that, under Targets, click in Search and start to type the name of the first target data
field.

5. When the name of the first target data field appears, click it. The data mapper displays a line
from the source field to the first target field.

6. For each additional target field:

a. In the lower right, click Add Target.

b. In the new target, click in Search and start to type the name of the next target field.

c. When the name of the next target data field appears, click it. The data mapper displays
another line from the same source field, but this time it goes to this target data field.

7. In the Mapping Details panel, in the Separator field, accept or select the character that
indicates where to separate the source data field value. The default is a space.

In the data mapper, blue lines indicates the current focus.

To confirm that the mapping is correctly defined, click to display the mappings defined in this step.
A mapping that separates the value of a source field into multiple target fields looks like this:

Red Hat Fuse 7.0 Integrating Applications with Ignite

70

.

6.7. TRANSFORMING TARGET DATA

After you define a mapping, you can transform the data in the target field to define how you want to
store the date. For example, you could specify the Capitalize transformation to ensure that the first
letter of a data value is uppercase.

To transform a target field:

1. Create the mapping whose target you want to transform.

2. In that mapping, click the target field you want to transform.

3. In the Mapping Details panel, click Add Transformation.

4. Click the down caret to display the list of transformations.

5. Click the transformation you want to perform.

6. If the transformation requires any input parameters, specify them in the appropriate input fields.

See Section 6.8, “Descriptions of available transformations” .

6.8. DESCRIPTIONS OF AVAILABLE TRANSFORMATIONS

The following table describes the available transformations. The date and number types refer generically
to any of the various forms of these concepts. That is, number includes, for example, integer, long,
double. Date includes, for example, date, Time, ZonedDateTime.

Transformation Input Type Output Type Parameter (* =
required)

Description

AbsoluteValue number number None Return the
absolute value of a
number.

AddDays date date days Add days to a
date. The default
is 0 days.

CHAPTER 6. MAPPING DATA TO FIELDS FOR THE NEXT CONNECTION

71

AddSeconds date date seconds Add seconds to a
date. The default
is 0 seconds.

Append string string string Append a string to
the end of a string.
The default is to
append nothing.

Camelize string string None Convert a phrase
to a camelized
string by removing
whitespace,
making the first
word lowercase,
and capitalizing
the first letter of
each subsequent
word.

Capitalize string string None Capitalize the first
character in a
string.

Ceiling number number None Return the whole
number ceiling of
a number.

Contains any Boolean value Return true if a
field contains the
specified value.

ConvertAreaUni
t

number number fromUnit*

toUnit *

Convert a number
that represents an
area to another
unit. For each of
the fromUnit and
toUnit
parameters,
specify a string
whose value is
Square Foot,
Square Meter, or
Square Mile.

Transformation Input Type Output Type Parameter (* =
required)

Description

Red Hat Fuse 7.0 Integrating Applications with Ignite

72

ConvertDistanc
eUnit

number number fromUnit *

toUnit *

Convert a number
that represents a
distance to
another unit. For
each of the
fromUnit and
toUnit
parameters,
specify a string
whose value is
Foot, Inch,
Meter, Mile, or
Yard.

ConvertMassUn
it

number number fromUnit *

toUnit *

Convert a number
that represents
mass to another
unit. For each of
the fromUnit and
toUnit
parameters,
specify a string
whose value is
Kilo Gram or
Pound.

ConvertVolume
Unit

number number fromUnit *

toUnit *

Convert a number
that represents
volume to another
unit. For each of
the fromUnit and
toUnit
parameters,
specify a string
whose value is
Cubic Foot,
Cubic Meter,
Gallon US Fluid,
or Liter.

DayOfWeek date number None Return the day of
the week (1
through 7) that
corresponds to the
date.

Transformation Input Type Output Type Parameter (* =
required)

Description

CHAPTER 6. MAPPING DATA TO FIELDS FOR THE NEXT CONNECTION

73

DayOfYear date number None Return the day of
the year (1 through
366) that
corresponds to the
date.

EndsWith string Boolean string Return true if a
string ends with
the specified
string, including
case.

Equals any Boolean value Return true if a
field is equal to
the specified
value, including
case.

FileExtension string string None From a string that
represents a file
name, return the
file extension
without the dot.

Floor number number None Return the whole
number floor of a
number.

Format any string template * In template,
replace each
placeholder (such
as %s) with the
value of the input
field and return a
string that
contains the
result. This is
similar to
mechanisms that
are available in
programming
languages such as
Java and C.

Transformation Input Type Output Type Parameter (* =
required)

Description

Red Hat Fuse 7.0 Integrating Applications with Ignite

74

IndexOf string number string In a string, starting
at 0, return the
first index of the
specified string.
Return -1 if it is not
found.

IsNull any Boolean None Return true if a
field is null.

LastIndexOf string number string In a string, starting
at 0, return the
last index of the
specified string.
Return -1 if it is not
found.

Length any number None Return the length
of the field, or -1 if
the field is null.

Lowercase string string None Convert a string to
lowercase.

Normalize string string None Replace
consecutive
whitespace
characters with a
single space and
trim leading and
trailing whitespace
from a string.

PadStringLeft string string padCharacter *

padCount *

Insert the
character supplied
in padCharacter
at the beginning of
a string. Do this
the number of
times specified in
padCount.

Transformation Input Type Output Type Parameter (* =
required)

Description

CHAPTER 6. MAPPING DATA TO FIELDS FOR THE NEXT CONNECTION

75

PadStringRight string string padCharacter *

padCount *

Insert the
character supplied
in padCharacter
at the end of a
string. Do this the
number of times
specified in
padCount.

Prepend string string string Prefix string to
the beginning of a
string. the default
is to prepend
nothing.

ReplaceAll string string match *

newString

In a string, replace
all occurrences of
the supplied
matching string
with the supplied
newString. The
default
newString is an
empty string.

ReplaceFirst string string match *

newString *

In a string, replace
the first
occurrence of the
specified match
string with the
specified
newString. The
default
newString is an
empty string.

Round number number None Return the
rounded whole
number of a
number.

Transformation Input Type Output Type Parameter (* =
required)

Description

Red Hat Fuse 7.0 Integrating Applications with Ignite

76

SeparateByDas
h

string string None Replace each
occurrence of
whitespace, colon
(:), underscore (_),
plus (+), and
equals (=) with a
hyphen (-).

SeparateByUnd
erscore

string string None Replace each
occurrence of
whitespace, colon
(:), hyphen (-), plus
(+), and equals (=)
with an underscore
(_).

StartsWith string Boolean string Return true if a
string starts with
the specified
string (including
case).

Substring string string startIndex *

endIndex

Retrieve a
segment of a
string from the
specified inclusive
startIndex to the
specified exclusive
endIndex. Both
indexes start at
zero. startIndex
is inclusive.
endIndex is
exclusive. The
default value of
endIndex is the
length of the
string.

Transformation Input Type Output Type Parameter (* =
required)

Description

CHAPTER 6. MAPPING DATA TO FIELDS FOR THE NEXT CONNECTION

77

SubstringAfter string string startIndex *

endIndex

match *

Retrieve the
segment of a
string after the
specified match
string from the
specified inclusive
startIndex to the
specified exclusive
endIndex. Both
indexes start at
zero. The default
value of
endIndex is the
length of the
string after the
supplied match
string.

SubstringBefor
e

string string startIndex *

endIndex

match *

Retrieve a
segment of a
string before the
supplied match
string from the
supplied inclusive
startIndex to the
supplied exclusive
endIndex. Both
indexes start at
zero. The default
value of
endIndex is the
length of the
string before the
supplied match
string.

Trim string string None Trim leading and
trailing whitespace
from a string.

TrimLeft string string None Trim leading
whitespace from a
string.

TrimRight string string None Trim trailing
whitespace from a
string.

Transformation Input Type Output Type Parameter (* =
required)

Description

Red Hat Fuse 7.0 Integrating Applications with Ignite

78

Uppercase string string None Convert a string to
uppercase.

Transformation Input Type Output Type Parameter (* =
required)

Description

6.9. VIEWING THE MAPPINGS IN A STEP

While you are adding or editing a data mapper step, you can view the mappings already defined in this
step. This lets you check whether the correct mappings are in place.

To view mappings when you are already in the data mapper, in the upper right, click .

To dismiss the list of mappings and redisplay the source and target fields, click again.

To view mappings when you are editing an integration but you are not adding or editing a data mapper
step:

1. In the integration visualization panel on the left, click the data mapper step for which you want
view the defined mappings.

2. In the data mapper, in the upper right, click .

To view mappings when you are not editing a data mapper step:

1. In the left panel, click Integrations.

2. In the entry for the integration whose data mappings you want to view, on the right, click the
.

3. In the popup menu, click Edit.

4. In the integration visualization panel on the left, click the data mapper step for which you want
view the defined mappings.

5. In the data mapper, in the upper right, click .

CHAPTER 6. MAPPING DATA TO FIELDS FOR THE NEXT CONNECTION

79

CHAPTER 7. MANAGING INTEGRATIONS
The following topics provide information to help you manage your integrations:

Section 7.1, “About integration lifecycle handling”

Section 7.2, “Publishing integrations”

Section 7.3, “Unpublishing integrations”

Section 7.4, “Republishing older integration versions”

Section 7.5, “Viewing integration log information”

Section 7.6, “Viewing integration metrics”

Section 7.7, “Viewing system metrics”

Section 7.8, “Testing integrations”

Section 7.9, “Troubleshooting integration execution”

Section 7.10, “Updating integrations”

Section 7.11, “Copying integrations to other environments”

Section 7.12, “Deleting integrations”

7.1. ABOUT INTEGRATION LIFECYCLE HANDLING

After you create and publish an integration, you might want to update what the integration does. You can
edit a draft of the published integration and then replace the initial running version with the updated
version. To facilitate this, for each integration, Ignite maintains multiple versions as well as each version’s
state. The following topics provide an understanding of the behavior to help you manage your
integrations.

Section 7.1.1, “Understanding integration versions”

Section 7.1.2, “Understanding integration states”

Section 7.1.3, “Viewing integration history”

7.1.1. Understanding integration versions

In each Ignite environment, each integration can have multiple versions. The benefit of multiple
integration versions is that if you publish a version that does not work correctly, then you can return to
running a correct integration. To do that, you unpublish (stop) the incorrect version and republish a
version that runs the way you want it to.

Ignite assigns a new version number each time it publishes a new version of an integration. For example,
suppose you publish the Twitter to Salesforce sample integration. After it has been running, you update
the integration to use a different account to connect to Twitter. You then publish the updated
integration. Ignite unpublishes the running integration, which stops it, and publishes the updated
integration with an incremented version number.

The initial integration that was running is version 1. The updated integration that is now running is version

Red Hat Fuse 7.0 Integrating Applications with Ignite

80

The initial integration that was running is version 1. The updated integration that is now running is version
2. If you edit version 2, for example to use a different account to connect to Salesforce, and you publish
that version then it becomes version 3 of the integration.

See also: Section 7.2, “Publishing integrations” and Section 7.4, “Republishing older integration
versions”.

7.1.2. Understanding integration states

For a given integration:

There can be exactly one draft version.

There can be exactly one published version. A published version is running.

Each version of an integration is always in one of the following states:

State Description

Draft Draft is always the initial state of a new version of an
integration. Only one version of an integration can be
in the Draft state. That is, you can update one version
of an integration at a time.

Published A Published version is running. When you publish an
integration, Ignite builds the integration and starts
running it. Only one version of an integration can be
running. That is, only one version at a time can be in
the Published state.

Unpublished An Unpublished version is not running. It might have
been published and then unpublished, but it also
might never have been published. If no version of this
integration is in the Published state, then you can
publish an unpublished version to run it. If you publish
a previously published version, then the newly
published version has the same version number as
when the integration was previously published. If you
publish a previously unpublished version, then the
published integration gets the next available version
number.

Error An integration version that is in the Error state
encountered an error while being published or while
running. The error suspended publication or
execution. If this happens, try publishing an earlier
integration version that ran correctly. Alternatively,
you can contact technical support for help. To do
that, in any Ignite page, in the upper right, click the

 icon and select Support.

7.1.3. Viewing integration history

CHAPTER 7. MANAGING INTEGRATIONS

81

To view a list of the versions of an integration:

1. In the left panel, click Integrations to display a list of the integrations in your environment.

2. Click the entry for the integration whose versions you want to see.

In the page that appears, the History section lists the versions of the integration. The icon
identifies the current version, which is the most recently, successfully published version. For each
version, you can also see the date on which it was last published.

To edit or publish a particular version, click the to the right of the version’s entry. Select the
operation you want to perform.

7.2. PUBLISHING INTEGRATIONS

Publishing an integration builds and deploys the integration runtime. The integration starts running.
Exactly one version of an integration can be running at one time.

To publish an integration, do one of the following:

At the end of the procedure in which you create or edit the integration, in the upper right, click
Publish.

Publish the draft version or an undeployed version of an integration:

1. In the left Ignite panel, click Integrations.

2. In the list of integrations, click the entry for an integration whose status is Draft or
Unpublished.

3. On the integration’s summary page, in the Details tab, identify the integration version that
you want to publish.

4. On the right of that entry, click and select Publish.

7.3. UNPUBLISHING INTEGRATIONS

Each integration can have exactly one version that is running. A running version is in the Published state.
To stop running an integration, you unpublish it.

To unpublish an integration:

1. In the left Ignite panel, click Integrations.

2. In the list of integrations, identify the entry for the integration that you want to stop running.
The entry shows that this integration Published.

3. At the far right of this integration’s entry, click and select Unpublish.

Ignite stops running the integration. Unpublished appears in the integration’s entry in the list of
integrations.

Red Hat Fuse 7.0 Integrating Applications with Ignite

82

7.4. REPUBLISHING OLDER INTEGRATION VERSIONS

You might publish an integration that does not work the way you want it to. In this situation, you can stop
the incorrect version and replace it with a version that you published previously and that runs correctly.

To republish an older integration version:

1. In the left panel, click Integrations to display a list of the the integrations in this environment.

2. Click the entry for the integration for which you want to publish an older version. Ignite displays a
list of the versions of the integration.

3. In the entry for the version that is running, at the far right, click and select Unpublish.

4. Click OK to confirm that you want to stop running this version.

5. Wait for Unpublished to appear to the right of the integration name near the top of the page.

6. Optionally, before you publish the older version, you can update it:

a. In the entry for the integration version that you want to update, at the far right, click and
select Replace Draft.

b. Update the integration as needed. For details, see Section 7.10, “Updating integrations” .

c. When updates are complete, in the upper right, click Publish, and then click OK to confirm.
This takes the place of the next two steps.

7. To publish the older version as is, in the entry for the integration version that you want to start

running again, at the far right, click and select Publish.

8. Click OK to confirm that you want to publish this version of the integration.

Ignite publishes the integration, which takes a few minutes. When the integration is running, then
Published version n appears to the right of the integration’s name.

7.5. VIEWING INTEGRATION LOG INFORMATION

Ignite provides log information for each integration version that it executes. To see this information:

1. In the left panel, click Integrations.

2. Click the entry for the integration for which you want to view log information.

3. In the integration’s summary page, click the Activity tab.

4. Optionally, enter date and/or keyword filters to limit the versions listed.

5. Click the integration version for which you want to view log information.

For each integration step, Ignite provides:

The date and time that the step was executed

How long it took to execute the step

CHAPTER 7. MANAGING INTEGRATIONS

83

Whether execution was successful

The error message if execution was not successful

To log additional information between any two steps, you can add a log step to the integration. A log
step provides information about each message it receives and can provide custom text that you specify.
If you add a log step, then it appears as one of the integration’s steps when you expand the integration
version that you want to view log information for. You view Ignite information for a log step in the same
way that you view Ignite information for any other step.

To add a log step, see Section 5.3.4, “Add a log step” .

7.6. VIEWING INTEGRATION METRICS

To view integration metrics:

1. In the left panel, click Integrations.

2. Click the entry for the integration for which you want to view metrics.

3. In the integration’s summary page, click Metrics.

Ignite provides the following metrics:

Total Errors indicates the number of runtime errors that all executions of this integration
encountered during the past 30 days.

Last Processed displays the most recent date and time that this integration processed a
message. The message might have been successfully processed or there might have been an
error.

Total Messages is the number of messages that all executions of this integration processed in
the last 30 days. This includes message failures.

Uptime indicates when this integration started running and how long it has been running
without an error.

7.7. VIEWING SYSTEM METRICS

System metrics appear on the Ignite home page. To see them, click Home in the left panel. Ignite
updates the following metrics every 5 seconds:

The number of integrations that are defined in this environment regardless of the integration
state. A red cross indicates any integrations that were running but that encountered an error
that suspended execution.

The number of connections that are defined in this environment.

Total number of messages that have been processed by integrations in this environment in the
last 30 days. This includes messages that were processed by integrations that might no longer
be running or that might have been deleted from this environment.

Uptime indicates how long there has been at least one integration that is running. The date and
time when uptime started appears as well.

Red Hat Fuse 7.0 Integrating Applications with Ignite

84

7.8. TESTING INTEGRATIONS

After you create an integration and it is running correctly in a development environment, you might want
to run it in a different environment to test it.

To test an integration in a different Ignite environment:

1. See Section 7.11.1, “About copying integrations” .

2. Export the integration from the development environment. See Section 7.11.2, “Exporting
integrations”.

3. Import the integration into the test environment. See Section 7.11.3, “Importing integrations” .

7.9. TROUBLESHOOTING INTEGRATION EXECUTION

If an integration stops working, check its logs and activity details. See Section 7.5, “Viewing integration
log information” and Section 7.1.3, “Viewing integration history” .

For a connection to an application that uses OAuth, you might see an error message that indicates that
the access token for the application has expired. Sometimes, you might get a less explicit 403 - Access
denied message. The information in the message depends on the application that the integration is
connecting to. In this situation, try reconnecting to the application and then republishing the integration:

1. In the left panel, click Integrations.

2. In the list of integrations, click the entry for the integration that stopped running.

3. In the integration’s summary page, in the visual integration flow, click the icon for the application
that you want to reconnect to.

4. In the connection’s details page, click Reconnect.

5. Respond to that application’s OAuth workflow prompts.
Ignite displays a message to indicate that its access to that application has been authorized. For
some applications, this takes a few seconds but it can take longer for other applications.

6. After reconnecting to the application, republish the integration.

If reconnection is not successful, try this:

1. Re-register Ignite as a client of the application. See Section 3.1.2, “Obtaining authorization to
access applications”.

2. Create a new connection.

3. Edit each integration that was using the old connection:

a. Remove the old connection.

b. Replace it with the new connection.

4. Publish each updated integration.

7.10. UPDATING INTEGRATIONS

After you create an integration, you might need to update it to add, edit or remove a step. To update an

CHAPTER 7. MANAGING INTEGRATIONS

85

After you create an integration, you might need to update it to add, edit or remove a step. To update an
integration:

1. In the left Ignite panel, click Integrations.

2. In the list of integrations, click the entry for the integration that you want to update.

3. On the integration’s summary page, in the upper right corner, click Edit Integration.

In the left panel, you can see that each step in the integration is represented by an icon that indicates
whether it is a connection or a data operation between connections. Update the integration as needed:

To add a step, in the left panel, hover over the plus sign that is in the location where you want to
add it. Click Add a Connection or Add a Step.

To delete a step, in the left panel, click to the right of the step that you want to delete.

To change the configuration of a step, in the left panel, click the step that you want to update. In
the configuration page, update the parameter settings as needed.

See also: Section 7.2, “Publishing integrations” .

7.11. COPYING INTEGRATIONS TO OTHER ENVIRONMENTS

To publish integrations across development, staging and production environments, you can export and
import integrations. The environments can all be on a single OpenShift cluster, or they can be spread
out across multiple OpenShift clusters. See the following topics:

Section 7.11.1, “About copying integrations”

Section 7.11.2, “Exporting integrations”

Section 7.11.3, “Importing integrations”

7.11.1. About copying integrations

Each Ignite installation is an environment from which you can export an integration. Exporting an
integration downloads a zip file that contains the information needed to recreate the integration in a
different Ignite environment.

In an environment, each integration can have only one Draft version.

The result of importing an integration depends on:

Whether the integration was previously imported

Whether a connection that the integration uses was previously imported

Ignite uses an internal identifier for each integration and each connection to determine whether it
already exists in the environment that it is being imported into. If you change the name of an integration
or connection Ignite recognizes it as the same integration or connection, which just has a different name.

The following table describes the possible results of importing an integration:

Red Hat Fuse 7.0 Integrating Applications with Ignite

86

In the importing environment: What the import operation does:

The integration has not been previously imported. Creates the integration. The integration is in the
Draft state.

The integration has been previously imported. Ignite updates the integration. The updated
integration is in the Draft state. If there was a Draft
version of this integration, it is lost.

The imported integration uses a connection that did
not exist in the environment before the import
operation.

Ignite creates a connection that has the same
settings except for secrets. You must review each
new connection. If a connection is not completely
configured for its new environment then you must
add the missing settings. For example, you might
need to obtain secret settings by registering this
installation of Ignite as a client of the application that
this connection accesses.

7.11.2. Exporting integrations

To export an integration:

1. In the left panel of Ignite, click Integrations.

2. In the list of integrations, identify the entry for the integration that you want to export.

3. At the right of the entry, click and select Export.

Ignite downloads a zip file to your local Downloads folder. To import the integration into another Ignite
environment, open that environment and import this zip file.

Exporting an integration is also a way to have a backup of the integration. However, Ignite maintains the
versions of an integration so exporting an integration is not required for having a backup copy.

7.11.3. Importing integrations

To import an integration:

1. Open the Ignite environment that you want to import the integration into.

2. In the left panel, click Integrations.

3. In the upper right, click Import.

4. Drag and drop one or more exported integration zip files, or navigate to a zip file that contains
an exported integration and select it.

5. After Ignite imports the file(s), click Done. Ignite displays information about imported
integrations.

6. In the left panel, click Connections.

If an imported integration uses a connection that requires configuration, then there is a

CHAPTER 7. MANAGING INTEGRATIONS

87

If an imported integration uses a connection that requires configuration, then there is a
Configuration Required message at the bottom of the connection’s card.

7. For each connection that requires configuration:

a. Click it to display its details.

b. Enter or change connection details as needed. It is possible that every field on this page is
correct and that only security configuration is required.

c. If you updated any fields, click Save.

d. In the left panel, click Settings.
The Settings page displays entries for applications that use the OAuth protocol.

8. For each connection that requires configuration and that accesses an application that uses the
OAuth protocol, register this installation of Ignite with the application. The steps vary for each
application. See the appropriate topic:

Section 3.6.1, “Register Ignite as a Dropbox client”

Section 3.10.1, “Register Ignite as an API client”

Section 3.11.1, “Register Ignite as a Salesforce client”

Section 3.14.1, “Register Ignite as a Twitter client”

9. In the left panel, click Connections and confirm that there are no longer any connections that
require configuration.

10. In the left panel, click Integrations.

11. In the list of integrations, at the right of the entry for the integration that you imported, click
and select Edit.

12. In the upper right, click Save as Draft or, if you want to start running the imported integration,
click Publish. Regardless of whether you save the integration as a draft or you publish the
integration, Ignite updates the integration to use the updated connections.

7.12. DELETING INTEGRATIONS

To delete an integration:

1. In the left Ignite panel, click Integrations.

2. In the list of integrations, at the right of the entry for the integration that you want to delete,

click and select Delete.

3. In the popup, click OK to confirm that you want to delete the integration.

After you delete an integration, Ignite still has the history of that integration. If you import a version of
the deleted integration, then Ignite associates the history of the deleted integration with the imported
integration.

Red Hat Fuse 7.0 Integrating Applications with Ignite

88

CHAPTER 8. INSTALLING IGNITE ON OPENSHIFT CONTAINER
PLATFORM

This topic provides information and instructions for installing Ignite on OpenShift Container Platform
(OCP) on premise. The main steps are:

1. Ensure that you meet the prerequisites.

2. Decide how you want to install Ignite with regard to the OpenShift project to install into, the
OpenShift route for Ignite, and the level of accessibility of OpenShift logs.

3. Download the installation script.

4. Invoke the installation script with the command that implements your decisions.

5. Confirm that Ignite is running.

Prerequisites

You must be running OCP on premise.

You must be connected to the OCP cluster in which you want to install Ignite.

Decisions

To correctly specify the installation command, you need to decide on the answers to these questions:

Into which OpenShift project do you want to install Ignite?
The default is that the installation script installs Ignite into the current project.

If the project into which you want to install Ignite

Exists
The installation script will prompt you to confirm that it is okay to delete the project’s
content before installing Ignite. You must confirm deletion of the project’s content for the
installation script to continue.

Does not exist
You can create it now so that it is the current project. Alternatively, when you run the
installation script, you can specify a project name and the script will create the project.

Do you want to install Ignite into the current OpenShift project or do you want to specify the
project into which you want to install Ignite in the command that you invoke to do the
installation?

Do you want the installation script to calculate the OpenShift route by which Ignite can be
reached or do you want to specify the OpenShift route in the installation command?
The default is that the installation script calculates the route.

Do you want to be able to access OpenShift log information for Ignite integrations by clicking a
link in the Ignite user interface?
While you can always access OpenShift logs manually, you might want to enable direct access
by means of a link in the Ignite user interface.

The default is that the installation script does not enable this link.

Download

CHAPTER 8. INSTALLING IGNITE ON OPENSHIFT CONTAINER PLATFORM

89

Download the Ignite installation script to the current local directory by invoking the following command:

$ wget https://raw.githubusercontent.com/syndesisio/fuse-ignite-install/1.3/install_ocp.sh

Installation

To install Ignite into the current project, under the OpenShift route chosen by the installation script,
without enabling the link from Ignite to OpenShift logs, invoke the following commands:

1. Ensure that the current project is the project into which you want to install Ignite:
$ oc project

2. In the directory in which you downloaded the installation script, invoke the installation script as
follows:
$ bash install_ocp.sh

To install Ignite into a project that you specify, under an OpenShift route that you specify, and also
enable the link from Ignite to OpenShift logs, invoke a command such as the following:

$ bash install_ocp.sh \
 --project ignite \
 --route ignite.6a63.fuse-ignite.openshiftapps.com \
 --console https://console.fuse-ignite.openshift.com/console

According to how you want to install Ignite, you can specify

All three options

Any two options

Any one of the options

No options

The installation script uses the default for an option that you do not specify.

Confirm installation

To confirm that installation was successful:

1. Display the OpenShift OAuth proxy log-in page at https://openshift-route
If you specified the --route option when you ran the installation script, replace openshift-route
with the route name that you specified. If you chose to let the installation script calculate the
OpenShift route, then the the script displays the calculated route near the end of its execution.
Replace openshift-route with the value that the script provided.

2. If you are not already logged in to the OpenShift console, its log-in page appears. Enter your
OpenShift user name and password to log in.

The Ignite home page appears either immediately or after you log in to the OpenShift console.

Deleting your Ignite project

If you want to delete your Ignite project, invoke the delete project command. For example, to delete a
project whose name is ignite, enter the following command:

$ oc delete project ignite

Red Hat Fuse 7.0 Integrating Applications with Ignite

90

https://raw.githubusercontent.com/syndesisio/fuse-ignite-install/1.3/install_ocp.sh
https://openshift-route

CHAPTER 8. INSTALLING IGNITE ON OPENSHIFT CONTAINER PLATFORM

91

	Table of Contents
	PREFACE
	CHAPTER 1. UNDERSTANDING IGNITE
	1.1. HOW IGNITE WORKS
	1.2. WHO IGNITE IS FOR
	1.3. BENEFITS OF IGNITE
	1.4. UNDERSTANDING IGNITE TERMS
	1.4.1. About integrations
	1.4.2. About Ignite connectors
	1.4.3. About Ignite connections
	1.4.4. About actions
	1.4.5. About steps

	1.5. PLANNING INTEGRATIONS
	1.6. WORKFLOW FOR CREATING AN INTEGRATION
	1.7. HOW YOU USE IGNITE
	1.8. ABOUT THE PRODUCT NAME

	CHAPTER 2. LOGGING IN TO IGNITE
	CHAPTER 3. CONNECTING TO APPLICATIONS THAT YOU WANT TO INTEGRATE
	3.1. OVERVIEW OF CREATING CONNECTIONS
	3.1.1. About creating connections
	3.1.2. Obtaining authorization to access applications
	3.1.2.1. General procedure for obtaining authorization
	3.1.2.2. About connection validation

	3.1.3. About adding connections to integrations
	3.1.4. Viewing and editing connection information
	3.1.5. Creating connections from custom connectors

	3.2. SPECIFYING CONNECTION INPUT OR OUTPUT TYPES
	3.3. CONNECTING TO AMAZON S3
	3.3.1. Prerequisites for creating an Amazon S3 connection
	3.3.2. Create an Amazon S3 connection
	3.3.3. Adding an Amazon S3 connection to an integration
	3.3.3.1. Starting an integration by obtaining data from Amazon S3
	3.3.3.2. Finishing an integration by adding data to Amazon S3
	3.3.3.3. Adding data to Amazon S3 in the middle of an integration

	3.4. CONNECTING TO AMQ
	3.4.1. Create an AMQ connection
	3.4.2. Adding an AMQ connection to an integration
	3.4.2.1. Starting an integration based on receiving AMQ messages
	3.4.2.2. Finishing an integration by publishing AMQ messages
	3.4.2.3. Publishing AMQ messages in the middle of an integration

	3.5. CONNECTING TO AMQP
	3.5.1. Create an AMQP connection
	3.5.2. Adding an AMQP connection to an integration
	3.5.2.1. Starting an integration based on receiving AMQP messages
	3.5.2.2. Finishing an integration by publishing AMQP messages
	3.5.2.3. Publishing messages to AMQP in the middle of an integration

	3.6. CONNECTING TO DROPBOX
	3.6.1. Register Ignite as a Dropbox client
	3.6.2. Create a Dropbox connection
	3.6.3. Adding a Dropbox connection to an integration
	3.6.3.1. Starting an integration by obtaining files from Dropbox
	3.6.3.2. Finishing an integration by adding files to Dropbox
	3.6.3.3. Accessing Dropbox in the middle of an integration

	3.7. CONNECTING TO AN FTP OR SFTP SERVER
	3.7.1. Creating an FTP or SFTP connection
	3.7.2. Adding an FTP or SFTP connection to an integration
	3.7.2.1. Obtaining files from an FTP or SFTP server
	3.7.2.2. Uploading files to an FTP or SFTP server

	3.8. CONNECTING TO HTTP AND HTTPS ENDPOINTS
	3.8.1. Create a connection to an HTTP or HTTPS endpoint
	3.8.2. Add an HTTP or HTTPS connection to an integration

	3.9. CONNECTING TO MQTT
	3.9.1. Create a connection to an MQTT broker
	3.9.2. Adding an MQTT connection to an integration
	3.9.2.1. Obtain a message from an MQTT broker
	3.9.2.2. Publishing a message to an MQTT broker

	3.10. CONNECTING TO REST APIS
	3.10.1. Register Ignite as an API client
	3.10.2. Create an API client connection
	3.10.3. Add an API client connection to an integration

	3.11. CONNECTING TO SALESFORCE
	3.11.1. Register Ignite as a Salesforce client
	3.11.2. Create a Salesforce connection
	3.11.3. Adding a Salesforce connection to an integration

	3.12. CONNECTING TO SLACK
	3.12.1. Create a Slack connection
	3.12.2. Adding a Slack connection to an integration

	3.13. CONNECTING TO SQL DATABASES
	3.13.1. Create a database connection
	3.13.2. Add a database connection to an integration
	3.13.2.1. Starting an integration by accessing a database
	3.13.2.2. Accessing a database in the middle or to complete an integration

	3.13.3. Connecting to proprietary databases

	3.14. CONNECTING TO TWITTER
	3.14.1. Register Ignite as a Twitter client
	3.14.2. Create a Twitter connection
	3.14.3. Adding a Twitter connection to an integration

	CHAPTER 4. ADDING AND MANAGING CUSTOMIZATIONS
	4.1. ADDING REST API CLIENT CONNECTORS
	4.1.1. Requirements for API client connectors
	4.1.2. About Swagger specification content
	4.1.2.1. Guidelines for Swagger specifications
	4.1.2.2. Providing client credentials in parameters
	4.1.2.3. Automatically refreshing access tokens

	4.1.3. Creating API client connectors
	4.1.4. Updating API client connectors
	4.1.5. Deleting API client connectors

	4.2. ADDING EXTENSIONS
	4.2.1. About extensions
	4.2.2. Making custom features available
	4.2.3. Managing extensions
	4.2.3.1. Identifying integrations that use extensions
	4.2.3.2. Updating extensions
	4.2.3.3. Deleting extensions

	4.2.4. Creating JDBC driver library extensions

	CHAPTER 5. CREATING INTEGRATIONS
	5.1. PREPARING TO CREATE AN INTEGRATION
	5.2. PROCEDURE FOR CREATING AN INTEGRATION
	5.3. ADDING STEPS BETWEEN CONNECTIONS
	5.3.1. Add a data mapping step
	5.3.2. Add a basic filter step
	5.3.3. Add an advanced filter step
	5.3.4. Add a log step
	5.3.5. Add a custom step

	CHAPTER 6. MAPPING DATA TO FIELDS FOR THE NEXT CONNECTION
	6.1. ABOUT MAPPING DATA
	6.2. FINDING THE DATA FIELD YOU WANT TO MAP
	6.3. IDENTIFYING WHERE DATA MAPPING IS NEEDED
	6.4. MAPPING ONE SOURCE FIELD TO ONE TARGET FIELD
	6.5. COMBINING MULTIPLE SOURCE FIELDS INTO ONE TARGET FIELD
	6.6. SEPARATING ONE SOURCE FIELD INTO MULTIPLE TARGET FIELDS
	6.7. TRANSFORMING TARGET DATA
	6.8. DESCRIPTIONS OF AVAILABLE TRANSFORMATIONS
	6.9. VIEWING THE MAPPINGS IN A STEP

	CHAPTER 7. MANAGING INTEGRATIONS
	7.1. ABOUT INTEGRATION LIFECYCLE HANDLING
	7.1.1. Understanding integration versions
	7.1.2. Understanding integration states
	7.1.3. Viewing integration history

	7.2. PUBLISHING INTEGRATIONS
	7.3. UNPUBLISHING INTEGRATIONS
	7.4. REPUBLISHING OLDER INTEGRATION VERSIONS
	7.5. VIEWING INTEGRATION LOG INFORMATION
	7.6. VIEWING INTEGRATION METRICS
	7.7. VIEWING SYSTEM METRICS
	7.8. TESTING INTEGRATIONS
	7.9. TROUBLESHOOTING INTEGRATION EXECUTION
	7.10. UPDATING INTEGRATIONS
	7.11. COPYING INTEGRATIONS TO OTHER ENVIRONMENTS
	7.11.1. About copying integrations
	7.11.2. Exporting integrations
	7.11.3. Importing integrations

	7.12. DELETING INTEGRATIONS

	CHAPTER 8. INSTALLING IGNITE ON OPENSHIFT CONTAINER PLATFORM

