
Red Hat Enterprise Linux 9

Security hardening

Enhancing security of Red Hat Enterprise Linux 9 systems

Last Updated: 2024-04-03

Red Hat Enterprise Linux 9 Security hardening

Enhancing security of Red Hat Enterprise Linux 9 systems

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn the processes and practices for securing Red Hat Enterprise Linux servers and workstations
against local and remote intrusion, exploitation, and malicious activity. By using these approaches
and tools, you can create a more secure computing environment for the data center, workplace, and
home.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. SECURING RHEL DURING INSTALLATION
1.1. BIOS AND UEFI SECURITY

1.1.1. BIOS passwords
1.1.2. Non-BIOS-based systems security

1.2. DISK PARTITIONING
1.3. RESTRICTING NETWORK CONNECTIVITY DURING THE INSTALLATION PROCESS
1.4. INSTALLING THE MINIMUM AMOUNT OF PACKAGES REQUIRED
1.5. POST-INSTALLATION PROCEDURES

CHAPTER 2. INSTALLING THE SYSTEM IN FIPS MODE
2.1. FEDERAL INFORMATION PROCESSING STANDARDS 140 AND FIPS MODE
2.2. INSTALLING THE SYSTEM WITH FIPS MODE ENABLED
2.3. ADDITIONAL RESOURCES

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES
3.1. SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

Tool for managing the cryptographic policies
Strong cryptographic defaults by removing insecure cipher suites and protocols
Algorithms disabled in all policy levels
Algorithms enabled in the cryptographic policies

3.2. SWITCHING THE SYSTEM-WIDE CRYPTOGRAPHIC POLICY TO MODE COMPATIBLE WITH EARLIER
RELEASES
3.3. SETTING UP SYSTEM-WIDE CRYPTOGRAPHIC POLICIES IN THE WEB CONSOLE
3.4. SWITCHING THE SYSTEM TO FIPS MODE
3.5. ENABLING FIPS MODE IN A CONTAINER
3.6. LIST OF RHEL APPLICATIONS USING CRYPTOGRAPHY THAT IS NOT COMPLIANT WITH FIPS 140-3
3.7. EXCLUDING AN APPLICATION FROM FOLLOWING SYSTEM-WIDE CRYPTO POLICIES

3.7.1. Examples of opting out of system-wide crypto policies
3.8. CUSTOMIZING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES WITH SUBPOLICIES
3.9. RE-ENABLING SHA-1
3.10. CREATING AND SETTING A CUSTOM SYSTEM-WIDE CRYPTOGRAPHIC POLICY

CHAPTER 4. SETTING A CUSTOM CRYPTOGRAPHIC POLICY BY USING THE CRYPTO-POLICIES RHEL
SYSTEM ROLE

4.1. VARIABLES AND FACTS OF THE CRYPTO_POLICIES SYSTEM ROLE
4.2. SETTING A CUSTOM CRYPTOGRAPHIC POLICY BY USING THE CRYPTO_POLICIES SYSTEM ROLE

CHAPTER 5. CONFIGURING APPLICATIONS TO USE CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11

5.1. CRYPTOGRAPHIC HARDWARE SUPPORT THROUGH PKCS #11
5.2. USING SSH KEYS STORED ON A SMART CARD
5.3. CONFIGURING APPLICATIONS FOR AUTHENTICATION WITH CERTIFICATES ON SMART CARDS
5.4. USING HSMS PROTECTING PRIVATE KEYS IN APACHE
5.5. USING HSMS PROTECTING PRIVATE KEYS IN NGINX
5.6. ADDITIONAL RESOURCES

CHAPTER 6. CONTROLLING ACCESS TO SMART CARDS BY USING POLKIT
6.1. SMART-CARD ACCESS CONTROL THROUGH POLKIT
6.2. TROUBLESHOOTING PROBLEMS RELATED TO PC/SC AND POLKIT
6.3. DISPLAYING MORE DETAILED INFORMATION ABOUT POLKIT AUTHORIZATION TO PC/SC

6

7

8
8
8
8
8
9
9

10

11
11

12
13

14
14
15
15
15
16

17
17
19

20
21
23
23
24
25
26

28
28
28

31
31
31

33
33
34
34

35
35
35
37

Table of Contents

1

. .

. .

. .

. .

6.4. ADDITIONAL RESOURCES

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES
7.1. CONFIGURATION COMPLIANCE TOOLS IN RHEL
7.2. VULNERABILITY SCANNING

7.2.1. Red Hat Security Advisories OVAL feed
7.2.2. Scanning the system for vulnerabilities
7.2.3. Scanning remote systems for vulnerabilities

7.3. CONFIGURATION COMPLIANCE SCANNING
7.3.1. Configuration compliance in RHEL
7.3.2. Possible results of an OpenSCAP scan
7.3.3. Viewing profiles for configuration compliance
7.3.4. Assessing configuration compliance with a specific baseline

7.4. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC BASELINE
7.5. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC BASELINE USING AN SSG ANSIBLE
PLAYBOOK
7.6. CREATING A REMEDIATION ANSIBLE PLAYBOOK TO ALIGN THE SYSTEM WITH A SPECIFIC BASELINE

7.7. CREATING A REMEDIATION BASH SCRIPT FOR A LATER APPLICATION
7.8. SCANNING THE SYSTEM WITH A CUSTOMIZED PROFILE USING SCAP WORKBENCH

7.8.1. Using SCAP Workbench to scan and remediate the system
7.8.2. Customizing a security profile with SCAP Workbench
7.8.3. Additional resources

7.9. DEPLOYING SYSTEMS THAT ARE COMPLIANT WITH A SECURITY PROFILE IMMEDIATELY AFTER AN
INSTALLATION

7.9.1. Profiles not compatible with Server with GUI
7.9.2. Deploying baseline-compliant RHEL systems using the graphical installation
7.9.3. Deploying baseline-compliant RHEL systems using Kickstart

7.10. SCANNING CONTAINER AND CONTAINER IMAGES FOR VULNERABILITIES
7.11. ASSESSING SECURITY COMPLIANCE OF A CONTAINER OR A CONTAINER IMAGE WITH A SPECIFIC
BASELINE
7.12. SCAP SECURITY GUIDE PROFILES SUPPORTED IN RHEL 9
7.13. ADDITIONAL RESOURCES

CHAPTER 8. ENSURING SYSTEM INTEGRITY WITH KEYLIME
8.1. HOW KEYLIME WORKS
8.2. CONFIGURING KEYLIME VERIFIER
8.3. CONFIGURING KEYLIME REGISTRAR
8.4. SETTING UP A KEYLIME SERVER BY USING SYSTEM ROLES
8.5. VARIABLES FOR THE KEYLIME_SERVER RHEL SYSTEM ROLE
8.6. CONFIGURING KEYLIME TENANT
8.7. CONFIGURING KEYLIME AGENT
8.8. DEPLOYING KEYLIME FOR RUNTIME MONITORING
8.9. DEPLOYING KEYLIME FOR MEASURED BOOT ATTESTATION

CHAPTER 9. CHECKING INTEGRITY WITH AIDE
9.1. INSTALLING AIDE
9.2. PERFORMING INTEGRITY CHECKS WITH AIDE
9.3. UPDATING AN AIDE DATABASE
9.4. FILE-INTEGRITY TOOLS: AIDE AND IMA
9.5. ADDITIONAL RESOURCES

CHAPTER 10. ENCRYPTING BLOCK DEVICES USING LUKS
10.1. LUKS DISK ENCRYPTION

38

39
39
40
40
41

42
42
42
43
44
45
45

46

48
49
49
49
51

53

53
53
54
55
56

57
58
64

66
66
68
71
73
75
76
78
82
85

88
88
88
89
89
90

91
91

Red Hat Enterprise Linux 9 Security hardening

2

. .

. .

. .

10.2. LUKS VERSIONS IN RHEL
10.3. OPTIONS FOR DATA PROTECTION DURING LUKS2 RE-ENCRYPTION
10.4. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2
10.5. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2 WITH A DETACHED HEADER
10.6. ENCRYPTING A BLANK BLOCK DEVICE USING LUKS2
10.7. CREATING A LUKS2 ENCRYPTED VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE

CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-
BASED DECRYPTION

11.1. NETWORK-BOUND DISK ENCRYPTION
11.2. INSTALLING AN ENCRYPTION CLIENT - CLEVIS
11.3. DEPLOYING A TANG SERVER WITH SELINUX IN ENFORCING MODE
11.4. ROTATING TANG SERVER KEYS AND UPDATING BINDINGS ON CLIENTS
11.5. CONFIGURING AUTOMATED UNLOCKING BY USING A TANG KEY IN THE WEB CONSOLE
11.6. BASIC NBDE AND TPM2 ENCRYPTION-CLIENT OPERATIONS
11.7. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED VOLUMES
11.8. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED VOLUMES BY USING A TPM 2.0 POLICY

11.9. REMOVING A CLEVIS PIN FROM A LUKS-ENCRYPTED VOLUME MANUALLY
11.10. CONFIGURING AUTOMATED ENROLLMENT OF LUKS-ENCRYPTED VOLUMES BY USING KICKSTART

11.11. CONFIGURING AUTOMATED UNLOCKING OF A LUKS-ENCRYPTED REMOVABLE STORAGE DEVICE

11.12. DEPLOYING HIGH-AVAILABILITY NBDE SYSTEMS
High-available NBDE using Shamir’s Secret Sharing

Example 1: Redundancy with two Tang servers
Example 2: Shared secret on a Tang server and a TPM device

11.13. DEPLOYMENT OF VIRTUAL MACHINES IN A NBDE NETWORK
11.14. BUILDING AUTOMATICALLY-ENROLLABLE VM IMAGES FOR CLOUD ENVIRONMENTS BY USING
NBDE
11.15. DEPLOYING TANG AS A CONTAINER
11.16. INTRODUCTION TO THE NBDE_CLIENT AND NBDE_SERVER SYSTEM ROLES (CLEVIS AND TANG)
11.17. USING THE NBDE_SERVER SYSTEM ROLE FOR SETTING UP MULTIPLE TANG SERVERS
11.18. SETTING UP MULTIPLE CLEVIS CLIENTS BY USING THE NBDE_CLIENT RHEL SYSTEM ROLE

CHAPTER 12. AUDITING THE SYSTEM
12.1. LINUX AUDIT
12.2. AUDIT SYSTEM ARCHITECTURE
12.3. CONFIGURING AUDITD FOR A SECURE ENVIRONMENT
12.4. STARTING AND CONTROLLING AUDITD
12.5. UNDERSTANDING AUDIT LOG FILES
12.6. USING AUDITCTL FOR DEFINING AND EXECUTING AUDIT RULES
12.7. DEFINING PERSISTENT AUDIT RULES
12.8. PRE-CONFIGURED AUDIT RULES FILES FOR COMPLIANCE WITH STANDARDS
12.9. USING AUGENRULES TO DEFINE PERSISTENT RULES
12.10. DISABLING AUGENRULES
12.11. SETTING UP AUDIT TO MONITOR SOFTWARE UPDATES
12.12. MONITORING USER LOGIN TIMES WITH AUDIT
12.13. ADDITIONAL RESOURCES

CHAPTER 13. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD
13.1. INTRODUCTION TO FAPOLICYD
13.2. DEPLOYING FAPOLICYD
13.3. MARKING FILES AS TRUSTED USING AN ADDITIONAL SOURCE OF TRUST

92
93
93
96
98
99

102
102
104
104
106
107
110
112

114
116

117

119
120
120
120
120
121

121
122
123
124
125

128
128
129
130
131
132
136
137
137
138
139
140
141

142

144
144
145
146

Table of Contents

3

. .

. .

. .

13.4. ADDING CUSTOM ALLOW AND DENY RULES FOR FAPOLICYD
13.5. ENABLING FAPOLICYD INTEGRITY CHECKS
13.6. TROUBLESHOOTING PROBLEMS RELATED TO FAPOLICYD
13.7. ADDITIONAL RESOURCES

CHAPTER 14. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES
14.1. USBGUARD
14.2. INSTALLING USBGUARD
14.3. BLOCKING AND AUTHORIZING A USB DEVICE BY USING CLI
14.4. PERMANENTLY BLOCKING AND AUTHORIZING A USB DEVICE
14.5. CREATING A CUSTOM POLICY FOR USB DEVICES
14.6. CREATING A STRUCTURED CUSTOM POLICY FOR USB DEVICES
14.7. AUTHORIZING USERS AND GROUPS TO USE THE USBGUARD IPC INTERFACE
14.8. LOGGING USBGUARD AUTHORIZATION EVENTS TO THE LINUX AUDIT LOG
14.9. ADDITIONAL RESOURCES

CHAPTER 15. CONFIGURING A REMOTE LOGGING SOLUTION
15.1. THE RSYSLOG LOGGING SERVICE
15.2. INSTALLING RSYSLOG DOCUMENTATION
15.3. CONFIGURING A SERVER FOR REMOTE LOGGING OVER TCP
15.4. CONFIGURING REMOTE LOGGING TO A SERVER OVER TCP
15.5. CONFIGURING TLS-ENCRYPTED REMOTE LOGGING
15.6. CONFIGURING A SERVER FOR RECEIVING REMOTE LOGGING INFORMATION OVER UDP
15.7. CONFIGURING REMOTE LOGGING TO A SERVER OVER UDP
15.8. LOAD BALANCING HELPER IN RSYSLOG
15.9. CONFIGURING RELIABLE REMOTE LOGGING
15.10. SUPPORTED RSYSLOG MODULES
15.11. CONFIGURING THE NETCONSOLE SERVICE TO LOG KERNEL MESSAGES TO A REMOTE HOST
15.12. ADDITIONAL RESOURCES

CHAPTER 16. USING THE LOGGING SYSTEM ROLE
16.1. THE LOGGING SYSTEM ROLE
16.2. VARIABLES OF THE LOGGING SYSTEM ROLE
16.3. APPLYING A LOCAL LOGGING SYSTEM ROLE
16.4. FILTERING LOGS IN A LOCAL LOGGING SYSTEM ROLE
16.5. APPLYING A REMOTE LOGGING SOLUTION BY USING THE LOGGING SYSTEM ROLE
16.6. USING THE LOGGING SYSTEM ROLE WITH TLS

16.6.1. Configuring client logging with TLS
16.6.2. Configuring server logging with TLS

16.7. USING THE LOGGING SYSTEM ROLES WITH RELP
16.7.1. Configuring client logging with RELP
16.7.2. Configuring server logging with RELP

16.8. ADDITIONAL RESOURCES

147
150
151

153

154
154
154
155
156
157
158
160
161
161

162
162
162
163
165
166
170
171

173
173
175
175
176

177
177
177
179
180
182
184
184
187
189
190
192
194

Red Hat Enterprise Linux 9 Security hardening

4

Table of Contents

5

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Enterprise Linux 9 Security hardening

6

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

7

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. SECURING RHEL DURING INSTALLATION
Security begins even before you start the installation of Red Hat Enterprise Linux. Configuring your
system securely from the beginning makes it easier to implement additional security settings later.

1.1. BIOS AND UEFI SECURITY

Password protection for the BIOS (or BIOS equivalent) and the boot loader can prevent unauthorized
users who have physical access to systems from booting using removable media or obtaining root
privileges through single user mode. The security measures you should take to protect against such
attacks depends both on the sensitivity of the information about the workstation and the location of the
machine.

For example, if a machine is used in a trade show and contains no sensitive information, then it may not
be critical to prevent such attacks. However, if an employee’s laptop with private, unencrypted SSH keys
for the corporate network is left unattended at that same trade show, it could lead to a major security
breach with ramifications for the entire company.

If the workstation is located in a place where only authorized or trusted people have access, however,
then securing the BIOS or the boot loader may not be necessary.

1.1.1. BIOS passwords

The two primary reasons for password protecting the BIOS of a computer are[1]:

Preventing changes to BIOS settings

If an intruder has access to the BIOS, they can set it to boot from a CD-ROM or a flash drive. This
makes it possible for them to enter rescue mode or single user mode, which in turn allows them to
start arbitrary processes on the system or copy sensitive data.

Preventing system booting

Some BIOSes allow password protection of the boot process. When activated, an attacker is forced
to enter a password before the BIOS launches the boot loader.

Because the methods for setting a BIOS password vary between computer manufacturers, consult the
computer’s manual for specific instructions.

If you forget the BIOS password, it can either be reset with jumpers on the motherboard or by
disconnecting the CMOS battery. For this reason, it is good practice to lock the computer case if
possible. However, consult the manual for the computer or motherboard before attempting to
disconnect the CMOS battery.

1.1.2. Non-BIOS-based systems security

Other systems and architectures use different programs to perform low-level tasks roughly equivalent
to those of the BIOS on x86 systems. For example, the Unified Extensible Firmware Interface (UEFI)
shell.

For instructions on password protecting BIOS-like programs, see the manufacturer’s instructions.

1.2. DISK PARTITIONING

The recommended practices for disk partitioning differ for installations on bare-metal machines and for

Red Hat Enterprise Linux 9 Security hardening

8

The recommended practices for disk partitioning differ for installations on bare-metal machines and for
virtualized or cloud environments that support adjusting virtual disk hardware and file systems
containing already-installed operating systems.

To ensure separation and protection of data on bare-metal installations, create separate partitions for
the /boot, /, /home, /tmp, and /var/tmp/ directories:

/boot

This partition is the first partition that is read by the system during boot up. The boot loader and
kernel images that are used to boot your system into Red Hat Enterprise Linux 9 are stored in this
partition. This partition should not be encrypted. If this partition is included in / and that partition is
encrypted or otherwise becomes unavailable then your system is not able to boot.

/home

When user data (/home) is stored in / instead of in a separate partition, the partition can fill up
causing the operating system to become unstable. Also, when upgrading your system to the next
version of Red Hat Enterprise Linux 9 it is a lot easier when you can keep your data in the /home
partition as it is not be overwritten during installation. If the root partition (/) becomes corrupt your
data could be lost forever. By using a separate partition there is slightly more protection against data
loss. You can also target this partition for frequent backups.

/tmp and /var/tmp/

Both the /tmp and /var/tmp/ directories are used to store data that does not need to be stored for a
long period of time. However, if a lot of data floods one of these directories it can consume all of your
storage space. If this happens and these directories are stored within / then your system could
become unstable and crash. For this reason, moving these directories into their own partitions is a
good idea.

For virtual machines or cloud instances, the separate /boot, /home, /tmp, and /var/tmp partitions are
optional because you can increase the virtual disk size and the / partition if it begins to fill up. Set up
monitoring to regularly check the / partition usage so that it does not fill up before you increase the
virtual disk size accordingly.

NOTE

During the installation process, you have an option to encrypt partitions. You must supply
a passphrase. This passphrase serves as a key to unlock the bulk encryption key, which is
used to secure the partition’s data.

1.3. RESTRICTING NETWORK CONNECTIVITY DURING THE
INSTALLATION PROCESS

When installing Red Hat Enterprise Linux 9, the installation medium represents a snapshot of the system
at a particular time. Because of this, it may not be up-to-date with the latest security fixes and may be
vulnerable to certain issues that were fixed only after the system provided by the installation medium
was released.

When installing a potentially vulnerable operating system, always limit exposure only to the closest
necessary network zone. The safest choice is the “no network” zone, which means to leave your machine
disconnected during the installation process. In some cases, a LAN or intranet connection is sufficient
while the Internet connection is the riskiest. To follow the best security practices, choose the closest
zone with your repository while installing Red Hat Enterprise Linux 9 from a network.

1.4. INSTALLING THE MINIMUM AMOUNT OF PACKAGES REQUIRED

CHAPTER 1. SECURING RHEL DURING INSTALLATION

9

It is best practice to install only the packages you will use because each piece of software on your
computer could possibly contain a vulnerability. If you are installing from the DVD media, take the
opportunity to select exactly what packages you want to install during the installation. If you find you
need another package, you can always add it to the system later.

1.5. POST-INSTALLATION PROCEDURES

The following steps are the security-related procedures that should be performed immediately after
installation of Red Hat Enterprise Linux 9.

Update your system. Enter the following command as root:

dnf update

Even though the firewall service, firewalld, is automatically enabled with the installation of
Red Hat Enterprise Linux, it might be explicitly disabled, for example, in the Kickstart
configuration. In such a case, re-enable the firewall.
To start firewalld enter the following commands as root:

systemctl start firewalld
systemctl enable firewalld

To enhance security, disable services you do not need. For example, if no printers are installed
on your computer, disable the cups service by using the following command:

systemctl disable cups

To review active services, enter the following command:

$ systemctl list-units | grep service

[1] Because system BIOSes differ between manufacturers, some may not support password protection of either
type, while others may support one type but not the other.

Red Hat Enterprise Linux 9 Security hardening

10

CHAPTER 2. INSTALLING THE SYSTEM IN FIPS MODE
To enable the cryptographic module self-checks mandated by the Federal Information Processing
Standard (FIPS) 140-3, you must operate RHEL 9 in FIPS mode. Starting the installation in FIPS mode is
the recommended method if you aim for FIPS compliance.

NOTE

The cryptographic modules of RHEL 9 are not yet certified for the FIPS 140-3
requirements.

2.1. FEDERAL INFORMATION PROCESSING STANDARDS 140 AND FIPS
MODE

The Federal Information Processing Standards (FIPS) Publication 140 is a series of computer security
standards developed by the National Institute of Standards and Technology (NIST) to ensure the quality
of cryptographic modules. The FIPS 140 standard ensures that cryptographic tools implement their
algorithms correctly. Runtime cryptographic algorithm and integrity self-tests are some of the
mechanisms to ensure a system uses cryptography that meets the requirements of the standard.

To ensure that your RHEL system generates and uses all cryptographic keys only with FIPS-approved
algorithms, you must switch RHEL to FIPS mode.

You can enable FIPS mode by using one of the following methods:

Starting the installation in FIPS mode

Switching the system into FIPS mode after the installation

If you aim for FIPS compliance, start the installation in FIPS mode. This avoids cryptographic key
material regeneration and reevaluation of the compliance of the resulting system associated with
converting already deployed systems.

To operate a FIPS-compliant system, create all cryptographic key material in FIPS mode. Furthermore,
the cryptographic key material must never leave the FIPS environment unless it is securely wrapped and
never unwrapped in non-FIPS environments.

Switching the system to FIPS mode by using the fips-mode-setup tool does not guarantee compliance
with the FIPS 140 standard. Re-generating all cryptographic keys after setting the system to FIPS mode
may not be possible. For example, in the case of an existing IdM realm with users' cryptographic keys you
cannot re-generate all the keys. If you cannot start the installation in FIPS mode, always enable FIPS
mode as the first step after the installation, before you make any post-installation configuration steps or
install any workloads.

The fips-mode-setup tool also uses the FIPS system-wide cryptographic policy internally. But on top of
what the update-crypto-policies --set FIPS command does, fips-mode-setup ensures the installation
of the FIPS dracut module by using the fips-finish-install tool, it also adds the fips=1 boot option to the
kernel command line and regenerates the initial RAM disk.

Furthermore, enforcement of restrictions required in FIPS mode depends on the contents of the
/proc/sys/crypto/fips_enabled file. If the file contains 1, RHEL core cryptographic components switch
to mode, in which they use only FIPS-approved implementations of cryptographic algorithms. If
/proc/sys/crypto/fips_enabled contains 0, the cryptographic components do not enable their FIPS
mode.

CHAPTER 2. INSTALLING THE SYSTEM IN FIPS MODE

11

The FIPS system-wide cryptographic policy helps to configure higher-level restrictions. Therefore,
communication protocols supporting cryptographic agility do not announce ciphers that the system
refuses when selected. For example, the ChaCha20 algorithm is not FIPS-approved, and the FIPS
cryptographic policy ensures that TLS servers and clients do not announce the
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 TLS cipher suite, because any attempt
to use such a cipher fails.

If you operate RHEL in FIPS mode and use an application providing it’s own FIPS-mode-related
configuration options, ignore these options and the corresponding application guidance. The system
running in FIPS mode and the system-wide cryptographic policies enforce only FIPS-compliant
cryptography. For example, the Node.js configuration option --enable-fips is ignored if the system runs
in FIPS mode. If you use the --enable-fips option on a system not running in FIPS mode, you do not
meet the FIPS-140 compliance requirements.

NOTE

The cryptographic modules of RHEL 9 are not yet certified for the FIPS 140-3
requirements by the National Institute of Standards and Technology (NIST)
Cryptographic Module Validation Program (CMVP). You can see the validation status of
cryptographic modules FIPS 140-2 and FIPS 140-3 section in the Compliance Activities
and Government Standards Knowledgebase article.

WARNING

A RHEL 9.2 and later system running in FIPS mode enforces that any TLS 1.2
connection must use the Extended Master Secret (EMS) extension (RFC 7627) as
requires the FIPS 140-3 standard. Thus, legacy clients not supporting EMS or TLS
1.3 cannot connect to RHEL 9 servers running in FIPS mode, RHEL 9 clients in FIPS
mode cannot connect to servers that support only TLS 1.2 without EMS. See TLS
Extension "Extended Master Secret" enforced with Red Hat Enterprise Linux 9.2

Additional resources

FIPS 140-2 and FIPS 140-3 section in the Compliance Activities and Government Standards
Knowledgebase article.

RHEL system-wide cryptographic policies

FIPS publications at NIST Computer Security Resource Center .

Federal Information Processing Standards Publication: FIPS 140-3

2.2. INSTALLING THE SYSTEM WITH FIPS MODE ENABLED

To enable the cryptographic module self-checks mandated by the Federal Information Processing
Standard (FIPS) 140, enable FIPS mode during the system installation.

IMPORTANT



Red Hat Enterprise Linux 9 Security hardening

12

https://access.redhat.com/articles/2918071#fips-140-2-and-fips-140-3-2
https://access.redhat.com/articles/2918071
https://access.redhat.com/solutions/7018256
https://access.redhat.com/articles/2918071#fips-140-2-and-fips-140-3-2
https://access.redhat.com/articles/2918071
https://csrc.nist.gov/publications/fips
https://doi.org/10.6028/NIST.FIPS.140-3

IMPORTANT

Only enabling FIPS mode during the RHEL installation ensures that the system generates
all keys with FIPS-approved algorithms and continuous monitoring tests in place.

Procedure

1. Add the fips=1 option to the kernel command line during the system installation.

2. During the software selection stage, do not install any third-party software.

3. After the installation, the system starts in FIPS mode automatically.

Verification

After the system starts, check that FIPS mode is enabled:

$ fips-mode-setup --check
FIPS mode is enabled.

Additional resources

Editing boot options section in the Boot options for RHEL Installer document

2.3. ADDITIONAL RESOURCES

Switching the system to FIPS mode

Enabling FIPS mode in a container

List of RHEL 9 applications using cryptography that is not compliant with FIPS 140-3

CHAPTER 2. INSTALLING THE SYSTEM IN FIPS MODE

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/boot_options_for_rhel_installer/kickstart-and-advanced-boot-options_boot-options-for-rhel-installer#assembly_editing-boot-options_kickstart-and-advanced-boot-options
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#switching-the-system-to-fips-mode_using-the-system-wide-cryptographic-policies
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#enabling-fips-mode-in-a-container_using-the-system-wide-cryptographic-policies
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#ref_list-of-rhel-applications-using-cryptography-that-is-not-compliant-with-fips-140-3_using-the-system-wide-cryptographic-policies

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC
POLICIES

The system-wide cryptographic policies is a system component that configures the core cryptographic
subsystems, covering the TLS, IPsec, SSH, DNSSec, and Kerberos protocols. It provides a small set of
policies, which the administrator can select.

3.1. SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

When a system-wide policy is set up, applications in RHEL follow it and refuse to use algorithms and
protocols that do not meet the policy, unless you explicitly request the application to do so. That is, the
policy applies to the default behavior of applications when running with the system-provided
configuration but you can override it if required.

RHEL 9 contains the following predefined policies:

DEFAULT

The default system-wide cryptographic policy level offers secure settings for current threat models.
It allows the TLS 1.2 and 1.3 protocols, as well as the IKEv2 and SSH2 protocols. The RSA keys and
Diffie-Hellman parameters are accepted if they are at least 2048 bits long.

LEGACY

Ensures maximum compatibility with Red Hat Enterprise Linux 6 and earlier; it is less secure due to an
increased attack surface. SHA-1 is allowed to be used as TLS hash, signature, and algorithm. CBC-
mode ciphers are allowed to be used with SSH. Applications using GnuTLS allow certificates signed
with SHA-1. It allows the TLS 1.2 and 1.3 protocols, as well as the IKEv2 and SSH2 protocols. The RSA
keys and Diffie-Hellman parameters are accepted if they are at least 2048 bits long.

FUTURE

A stricter forward-looking security level intended for testing a possible future policy. This policy does
not allow the use of SHA-1 in DNSSec or as an HMAC. SHA2-224 and SHA3-224 hashes are
rejected. 128-bit ciphers are disabled. CBC-mode ciphers are disabled except in Kerberos. It allows
the TLS 1.2 and 1.3 protocols, as well as the IKEv2 and SSH2 protocols. The RSA keys and Diffie-
Hellman parameters are accepted if they are at least 3072 bits long. If your system communicates on
the public internet, you might face interoperability problems.

FIPS

Conforms with the FIPS 140 requirements. The fips-mode-setup tool, which switches the RHEL
system into FIPS mode, uses this policy internally. Switching to the FIPS policy does not guarantee
compliance with the FIPS 140 standard. You also must re-generate all cryptographic keys after you
set the system to FIPS mode. This is not possible in many scenarios.

Red Hat continuously adjusts all policy levels so that all libraries provide secure defaults, except when
using the LEGACY policy. Even though the LEGACY profile does not provide secure defaults, it does
not include any algorithms that are easily exploitable. As such, the set of enabled algorithms or
acceptable key sizes in any provided policy may change during the lifetime of Red Hat Enterprise Linux.

Such changes reflect new security standards and new security research. If you must ensure
interoperability with a specific system for the whole lifetime of Red Hat Enterprise Linux, you should
opt-out from the system-wide cryptographic policies for components that interact with that system or
re-enable specific algorithms using custom cryptographic policies.

IMPORTANT

Red Hat Enterprise Linux 9 Security hardening

14

IMPORTANT

Because a cryptographic key used by a certificate on the Customer Portal API does not
meet the requirements by the FUTURE system-wide cryptographic policy, the redhat-
support-tool utility does not work with this policy level at the moment.

To work around this problem, use the DEFAULT cryptographic policy while connecting to
the Customer Portal API.

NOTE

The specific algorithms and ciphers described as allowed in the policy levels are available
only if an application supports them.

Tool for managing the cryptographic policies
To view or change the current system-wide cryptographic policy, use the update-crypto-policies tool,
for example:

$ update-crypto-policies --show
DEFAULT
update-crypto-policies --set FUTURE
Setting system policy to FUTURE

To ensure that the change of the cryptographic policy is applied, restart the system.

Strong cryptographic defaults by removing insecure cipher suites and protocols
The following list contains cipher suites and protocols removed from the core cryptographic libraries in
RHEL. Because they are not present in the sources, or their support is disabled during the build,
applications cannot use them.

DES (since RHEL 7)

All export grade cipher suites (since RHEL 7)

MD5 in signatures (since RHEL 7)

SSLv2 (since RHEL 7)

SSLv3 (since RHEL 8)

All ECC curves < 224 bits (since RHEL 6)

All binary field ECC curves (since RHEL 6)

Algorithms disabled in all policy levels
The following algorithms are disabled in LEGACY, DEFAULT, FUTURE, and FIPS cryptographic policies
included in RHEL 9. They can be enabled only by applying a custom cryptographic policy or by an explicit
configuration of individual applications, but the resulting configuration falls outside of the Production
Support Scope of Coverage.

TLS older than version 1.2 (since RHEL 9, was < 1.0 in RHEL 8)

DTLS older than version 1.2 (since RHEL 9, was < 1.0 in RHEL 8)

DH with parameters < 2048 bits (since RHEL 9, was < 1024 bits in RHEL 8)

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

15

https://access.redhat.com/support/offerings/production/soc/

RSA with key size < 2048 bits (since RHEL 9, was < 1024 bits in RHEL 8)

DSA (since RHEL 9, was < 1024 bits in RHEL 8)

3DES (since RHEL 9)

RC4 (since RHEL 9)

FFDHE-1024 (since RHEL 9)

DHE-DSS (since RHEL 9)

Camellia (since RHEL 9)

ARIA

IKEv1 (since RHEL 8)

Algorithms enabled in the cryptographic policies
Each cryptographic policy enables specific cipher suites and protocols:

 LEGACY DEFAULT FIPS FUTURE

IKEv1 no no no no

3DES no no no no

RC4 no no no no

DH min. 2048-bit min. 2048-bit min. 2048-bit min. 3072-bit

RSA min. 2048-bit min. 2048-bit min. 2048-bit min. 3072-bit

DSA no no no no

TLS v1.1 and older no no no no

TLS v1.2 and
newer

yes yes yes yes

SHA-1 in digital
signatures and
certificates

yes no no no

CBC mode
ciphers

yes no[a] no[b] no[c]

Symmetric
ciphers with keys
< 256 bits

yes yes yes no

Red Hat Enterprise Linux 9 Security hardening

16

[a] CBC ciphers are disabled for SSH

[b] CBC ciphers are disabled for all protocols except Kerberos

[c] CBC ciphers are disabled for all protocols except Kerberos

 LEGACY DEFAULT FIPS FUTURE

Additional resources

update-crypto-policies(8) man page

3.2. SWITCHING THE SYSTEM-WIDE CRYPTOGRAPHIC POLICY TO
MODE COMPATIBLE WITH EARLIER RELEASES

The default system-wide cryptographic policy in Red Hat Enterprise Linux 9 does not allow
communication using older, insecure protocols. For environments that require to be compatible with
Red Hat Enterprise Linux 6 and in some cases also with earlier releases, the less secure LEGACY policy
level is available.

WARNING

Switching to the LEGACY policy level results in a less secure system and
applications.

Procedure

1. To switch the system-wide cryptographic policy to the LEGACY level, enter the following
command as root:

update-crypto-policies --set LEGACY
Setting system policy to LEGACY

Additional resources

For the list of available cryptographic policy levels, see the update-crypto-policies(8) man
page.

For defining custom cryptographic policies, see the Custom Policies section in the update-
crypto-policies(8) man page and the Crypto Policy Definition Format section in the crypto-
policies(7) man page.

3.3. SETTING UP SYSTEM-WIDE CRYPTOGRAPHIC POLICIES IN THE
WEB CONSOLE

You can set one of system-wide cryptographic policies and subpolicies directly in the RHEL web



CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

17

You can set one of system-wide cryptographic policies and subpolicies directly in the RHEL web
console interface. Besides the four predefined system-wide cryptographic policies, you can also apply
the following combinations of policies and subpolicies through the graphical interface now:

DEFAULT:SHA1

The DEFAULT policy with the SHA-1 algorithm enabled.

LEGACY:AD-SUPPORT

The LEGACY policy with less secure settings that improve interoperability for Active Directory
services.

FIPS:OSPP

The FIPS policy with further restrictions inspired by the Common Criteria for Information Technology
Security Evaluation standard.

Prerequisites

The RHEL 9 web console has been installed. For details, see Installing and enabling the web
console.

You have root privileges or permissions to enter administrative commands with sudo.

Procedure

1. Log in to the web console. For more information, see Logging in to the web console .

2. In the Configuration card of the Overview page, click your current policy value next to Crypto
policy.

3. In the Change crypto policy dialog window, click on the policy you want to start using on your
system.

Red Hat Enterprise Linux 9 Security hardening

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-9-web-console

4. Click the Apply and reboot button.

Verification

After the restart, log back in to web console, and check that the Crypto policy value
corresponds to the one you selected. Alternatively, you can enter the update-crypto-policies --
show command to display the current system-wide cryptographic policy in your terminal.

3.4. SWITCHING THE SYSTEM TO FIPS MODE

The system-wide cryptographic policies contain a policy level that enables cryptographic algorithms in
accordance with the requirements by the Federal Information Processing Standard (FIPS) Publication
140. The fips-mode-setup tool that enables or disables FIPS mode internally uses the FIPS system-
wide cryptographic policy.

Switching the system to FIPS mode by using the FIPS system-wide cryptographic policy does not
guarantee compliance with the FIPS 140 standard. Re-generating all cryptographic keys after setting
the system to FIPS mode may not be possible. For example, in the case of an existing IdM realm with
users' cryptographic keys you cannot re-generate all the keys.

The fips-mode-setup tool uses the FIPS policy internally. But on top of what the update-crypto-
policies command with the --set FIPS option does, fips-mode-setup ensures the installation of the
FIPS dracut module by using the fips-finish-install tool, it also adds the fips=1 boot option to the kernel
command line and regenerates the initial RAM disk.

IMPORTANT

Only enabling FIPS mode during the RHEL installation ensures that the system
generates all keys with FIPS-approved algorithms and continuous monitoring tests in
place.

NOTE

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

19

NOTE

The cryptographic modules of RHEL 9 are not yet certified for the FIPS 140-3
requirements.

Procedure

1. To switch the system to FIPS mode:

fips-mode-setup --enable
Kernel initramdisks are being regenerated. This might take some time.
Setting system policy to FIPS
Note: System-wide crypto policies are applied on application start-up.
It is recommended to restart the system for the change of policies
to fully take place.
FIPS mode will be enabled.
Please reboot the system for the setting to take effect.

2. Restart your system to allow the kernel to switch to FIPS mode:

reboot

Verification

After the restart, you can check the current state of FIPS mode:

fips-mode-setup --check
FIPS mode is enabled.

Additional resources

fips-mode-setup(8) man page

Installing the system in FIPS mode

Security Requirements for Cryptographic Modules on the National Institute of Standards and
Technology (NIST) web site.

3.5. ENABLING FIPS MODE IN A CONTAINER

To enable the full set of cryptographic module self-checks mandated by the Federal Information
Processing Standard Publication 140-2 (FIPS mode), the host system kernel must be running in FIPS
mode. The podman utility automatically enables FIPS mode on supported containers.

NOTE

The fips-mode-setup command does not work correctly in containers, and it cannot be
used to enable or check FIPS mode in this scenario.

NOTE

The cryptographic modules of RHEL 9 are not yet certified for the FIPS 140-3
requirements.

Red Hat Enterprise Linux 9 Security hardening

20

https://csrc.nist.gov/publications/detail/fips/140/3/final

Prerequisites

The host system must be in FIPS mode.

Procedure

On systems with FIPS mode enabled, the podman utility automatically enables FIPS mode on
supported containers.

Additional resources

Switching the system to FIPS mode .

Installing the system in FIPS mode

3.6. LIST OF RHEL APPLICATIONS USING CRYPTOGRAPHY THAT IS
NOT COMPLIANT WITH FIPS 140-3

To pass all relevant cryptographic certifications, such as FIPS 140-3, use libraries from the core
cryptographic components set. These libraries, except from libgcrypt, also follow the RHEL system-
wide cryptographic policies.

See the RHEL core cryptographic components article for an overview of the core cryptographic
components, the information on how are they selected, how are they integrated into the operating
system, how do they support hardware security modules and smart cards, and how do cryptographic
certifications apply to them.

List of RHEL 9 applications using cryptography that is not compliant with FIPS 140-3

Bacula

Implements the CRAM-MD5 authentication protocol.

Cyrus SASL

Uses the SCRAM-SHA-1 authentication method.

Dovecot

Uses SCRAM-SHA-1.

Emacs

Uses SCRAM-SHA-1.

FreeRADIUS

Uses MD5 and SHA-1 for authentication protocols.

Ghostscript

Custom cryptography implementation (MD5, RC4, SHA-2, AES) to encrypt and decrypt documents.

GRUB2

Supports legacy firmware protocols requiring SHA-1 and includes the libgcrypt library.

iPXE

Implements TLS stack.

Kerberos

Preserves support for SHA-1 (interoperability with Windows).

Lasso

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

21

https://access.redhat.com/articles/3655361

The lasso_wsse_username_token_derive_key() key derivation function (KDF) uses SHA-1.

MariaDB, MariaDB Connector

The mysql_native_password authentication plugin uses SHA-1.

MySQL

mysql_native_password uses SHA-1.

OpenIPMI

The RAKP-HMAC-MD5 authentication method is not approved for FIPS usage and does not work in
FIPS mode.

Ovmf (UEFI firmware), Edk2, shim

Full cryptographic stack (an embedded copy of the OpenSSL library).

Perl

Uses HMAC, HMAC-SHA1, HMAC-MD5, SHA-1, SHA-224,….

Pidgin

Implements DES and RC4 ciphers.

PKCS #12 file processing (OpenSSL, GnuTLS, NSS, Firefox, Java)

All uses of PKCS #12 are not FIPS-compliant, because the Key Derivation Function (KDF) used for
calculating the whole-file HMAC is not FIPS-approved. As such, PKCS #12 files are considered to be
plain text for the purposes of FIPS compliance. For key-transport purposes, wrap PKCS #12 (.p12)
files using a FIPS-approved encryption scheme.

Poppler

Can save PDFs with signatures, passwords, and encryption based on non-allowed algorithms if they
are present in the original PDF (for example MD5, RC4, and SHA-1).

PostgreSQL

Implements Blowfish, DES, and MD5. A KDF uses SHA-1.

QAT Engine

Mixed hardware and software implementation of cryptographic primitives (RSA, EC, DH, AES,…)

Ruby

Provides insecure MD5 and SHA-1 library functions.

Samba

Preserves support for RC4 and DES (interoperability with Windows).

Syslinux

BIOS passwords use SHA-1.

Unbound

DNS specification requires that DNSSEC resolvers use a SHA-1-based algorithm in DNSKEY records
for validation.

Valgrind

AES, SHA hashes.[2]

Additional resources

FIPS 140-2 and FIPS 140-3 section in the Compliance Activities and Government Standards
Knowledgebase article

RHEL core cryptographic components Knowledgebase article

Red Hat Enterprise Linux 9 Security hardening

22

https://access.redhat.com/articles/2918071#fips-140-2-and-fips-140-3-2
https://access.redhat.com/articles/2918071
https://access.redhat.com/articles/3655361

3.7. EXCLUDING AN APPLICATION FROM FOLLOWING SYSTEM-WIDE
CRYPTO POLICIES

You can customize cryptographic settings used by your application preferably by configuring supported
cipher suites and protocols directly in the application.

You can also remove a symlink related to your application from the /etc/crypto-policies/back-ends
directory and replace it with your customized cryptographic settings. This configuration prevents the
use of system-wide cryptographic policies for applications that use the excluded back end.
Furthermore, this modification is not supported by Red Hat.

3.7.1. Examples of opting out of system-wide crypto policies

wget

To customize cryptographic settings used by the wget network downloader, use --secure-protocol and
--ciphers options. For example:

$ wget --secure-protocol=TLSv1_1 --ciphers="SECURE128" https://example.com

See the HTTPS (SSL/TLS) Options section of the wget(1) man page for more information.

curl

To specify ciphers used by the curl tool, use the --ciphers option and provide a colon-separated list of
ciphers as a value. For example:

$ curl https://example.com --ciphers '@SECLEVEL=0:DES-CBC3-SHA:RSA-DES-CBC3-SHA'

See the curl(1) man page for more information.

Firefox

Even though you cannot opt out of system-wide cryptographic policies in the Firefox web browser, you
can further restrict supported ciphers and TLS versions in Firefox’s Configuration Editor. Type
about:config in the address bar and change the value of the security.tls.version.min option as
required. Setting security.tls.version.min to 1 allows TLS 1.0 as the minimum required,
security.tls.version.min 2 enables TLS 1.1, and so on.

OpenSSH

To opt out of the system-wide cryptographic policies for your OpenSSH server, specify the
cryptographic policy in a drop-in configuration file located in the /etc/ssh/sshd_config.d/ directory,
with a two-digit number prefix smaller than 50, so that it lexicographically precedes the 50-redhat.conf
file, and with a .conf suffix, for example, 49-crypto-policy-override.conf.

See the sshd_config(5) man page for more information.

To opt out of system-wide cryptographic policies for your OpenSSH client, perform one of the following
tasks:

For a given user, override the global ssh_config with a user-specific configuration in the
~/.ssh/config file.

For the entire system, specify the cryptographic policy in a drop-in configuration file located in
the /etc/ssh/ssh_config.d/ directory, with a two-digit number prefix smaller than 50, so that it

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

23

lexicographically precedes the 50-redhat.conf file, and with a .conf suffix, for example, 49-
crypto-policy-override.conf.

See the ssh_config(5) man page for more information.

Libreswan

See the Configuring IPsec connections that opt out of the system-wide crypto policies in the Securing
networks document for detailed information.

Additional resources

update-crypto-policies(8) man page

3.8. CUSTOMIZING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES WITH
SUBPOLICIES

Use this procedure to adjust the set of enabled cryptographic algorithms or protocols.

You can either apply custom subpolicies on top of an existing system-wide cryptographic policy or
define such a policy from scratch.

The concept of scoped policies allows enabling different sets of algorithms for different back ends. You
can limit each configuration directive to specific protocols, libraries, or services.

Furthermore, directives can use asterisks for specifying multiple values using wildcards.

The /etc/crypto-policies/state/CURRENT.pol file lists all settings in the currently applied system-wide
cryptographic policy after wildcard expansion. To make your cryptographic policy more strict, consider
using values listed in the /usr/share/crypto-policies/policies/FUTURE.pol file.

You can find example subpolicies in the /usr/share/crypto-policies/policies/modules/ directory. The
subpolicy files in this directory contain also descriptions in lines that are commented out.

Procedure

1. Checkout to the /etc/crypto-policies/policies/modules/ directory:

cd /etc/crypto-policies/policies/modules/

2. Create subpolicies for your adjustments, for example:

touch MYCRYPTO-1.pmod
touch SCOPES-AND-WILDCARDS.pmod

IMPORTANT

Use upper-case letters in file names of policy modules.

3. Open the policy modules in a text editor of your choice and insert options that modify the
system-wide cryptographic policy, for example:

vi MYCRYPTO-1.pmod

Red Hat Enterprise Linux 9 Security hardening

24

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/configuring-a-vpn-with-ipsec_securing-networks#configuring-ipsec-connections-that-opt-out-of-the-system-wide-crypto-policies_configuring-a-vpn-with-ipsec
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/

min_rsa_size = 3072
hash = SHA2-384 SHA2-512 SHA3-384 SHA3-512

vi SCOPES-AND-WILDCARDS.pmod

Disable the AES-128 cipher, all modes
cipher = -AES-128-*

Disable CHACHA20-POLY1305 for the TLS protocol (OpenSSL, GnuTLS, NSS, and
OpenJDK)
cipher@TLS = -CHACHA20-POLY1305

Allow using the FFDHE-1024 group with the SSH protocol (libssh and OpenSSH)
group@SSH = FFDHE-1024+

Disable all CBC mode ciphers for the SSH protocol (libssh and OpenSSH)
cipher@SSH = -*-CBC

Allow the AES-256-CBC cipher in applications using libssh
cipher@libssh = AES-256-CBC+

4. Save the changes in the module files.

5. Apply your policy adjustments to the DEFAULT system-wide cryptographic policy level:

update-crypto-policies --set DEFAULT:MYCRYPTO-1:SCOPES-AND-WILDCARDS

6. To make your cryptographic settings effective for already running services and applications,
restart the system:

reboot

Verification

Check that the /etc/crypto-policies/state/CURRENT.pol file contains your changes, for
example:

$ cat /etc/crypto-policies/state/CURRENT.pol | grep rsa_size
min_rsa_size = 3072

Additional resources

Custom Policies section in the update-crypto-policies(8) man page

Crypto Policy Definition Format section in the crypto-policies(7) man page

How to customize crypto policies in RHEL 8.2 Red Hat blog article

3.9. RE-ENABLING SHA-1

The use of the SHA-1 algorithm for creating and verifying signatures is restricted in the DEFAULT
cryptographic policy. If your scenario requires the use of SHA-1 for verifying existing or third-party

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

25

https://www.redhat.com/en/blog/how-customize-crypto-policies-rhel-82

cryptographic signatures, you can enable it by applying the SHA1 subpolicy, which RHEL 9 provides by
default. Note that it weakens the security of the system.

Prerequisites

The system uses the DEFAULT system-wide cryptographic policy.

Procedure

1. Apply the SHA1 subpolicy to the DEFAULT cryptographic policy:

update-crypto-policies --set DEFAULT:SHA1
Setting system policy to DEFAULT:SHA1
Note: System-wide crypto policies are applied on application start-up.
It is recommended to restart the system for the change of policies
to fully take place.

2. Restart the system:

reboot

Verification

Display the current cryptographic policy:

update-crypto-policies --show
DEFAULT:SHA1

IMPORTANT

Switching to the LEGACY cryptographic policy by using the update-crypto-policies --
set LEGACY command also enables SHA-1 for signatures. However, the LEGACY
cryptographic policy makes your system much more vulnerable by also enabling other
weak cryptographic algorithms. Use this workaround only for scenarios that require the
enablement of other legacy cryptographic algorithms than SHA-1 signatures.

Additional resources

SSH from RHEL 9 to RHEL 6 systems does not work KCS article

Packages signed with SHA-1 cannot be installed or upgraded KCS article

3.10. CREATING AND SETTING A CUSTOM SYSTEM-WIDE
CRYPTOGRAPHIC POLICY

The following steps demonstrate customizing the system-wide cryptographic policies by a complete
policy file.

Procedure

1. Create a policy file for your customizations:

Red Hat Enterprise Linux 9 Security hardening

26

https://access.redhat.com/solutions/6816771
https://access.redhat.com/solutions/6868611

cd /etc/crypto-policies/policies/
touch MYPOLICY.pol

Alternatively, start by copying one of the four predefined policy levels:

cp /usr/share/crypto-policies/policies/DEFAULT.pol /etc/crypto-
policies/policies/MYPOLICY.pol

2. Edit the file with your custom cryptographic policy in a text editor of your choice to fit your
requirements, for example:

vi /etc/crypto-policies/policies/MYPOLICY.pol

3. Switch the system-wide cryptographic policy to your custom level:

update-crypto-policies --set MYPOLICY

4. To make your cryptographic settings effective for already running services and applications,
restart the system:

reboot

Additional resources

Custom Policies section in the update-crypto-policies(8) man page and the Crypto Policy
Definition Format section in the crypto-policies(7) man page

How to customize crypto policies in RHEL Red Hat blog article

[2] Re-implements in software hardware-offload operations, such as AES-NI or SHA-1 and SHA-2 on ARM.

CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES

27

https://www.redhat.com/en/blog/how-customize-crypto-policies-rhel-82

CHAPTER 4. SETTING A CUSTOM CRYPTOGRAPHIC POLICY
BY USING THE CRYPTO-POLICIES RHEL SYSTEM ROLE

As an administrator, you can use the crypto_policies RHEL System Role to quickly and consistently
configure custom cryptographic policies across many different systems using the Ansible Core package.

4.1. VARIABLES AND FACTS OF THE CRYPTO_POLICIES SYSTEM ROLE

In a crypto_policies System Role playbook, you can define the parameters for the crypto_policies
configuration file according to your preferences and limitations.

If you do not configure any variables, the System Role does not configure the system and only reports
the facts.

Selected variables for the crypto_policies System Role

crypto_policies_policy

Determines the cryptographic policy the System Role applies to the managed nodes. For details
about the different crypto policies, see System-wide cryptographic policies .

crypto_policies_reload

If set to yes, the affected services, currently the ipsec, bind, and sshd services, reload after
applying a crypto policy. Defaults to yes.

crypto_policies_reboot_ok

If set to yes, and a reboot is necessary after the System Role changes the crypto policy, it sets
crypto_policies_reboot_required to yes. Defaults to no.

Facts set by the crypto_policies System Role

crypto_policies_active

Lists the currently selected policy.

crypto_policies_available_policies

Lists all available policies available on the system.

crypto_policies_available_subpolicies

Lists all available subpolicies available on the system.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.crypto_policies/README.md file

/usr/share/doc/rhel-system-roles/crypto_policies/ directory

Creating and setting a custom system-wide cryptographic policy

4.2. SETTING A CUSTOM CRYPTOGRAPHIC POLICY BY USING THE
CRYPTO_POLICIES SYSTEM ROLE

You can use the crypto_policies System Role to configure a large number of managed nodes
consistently from a single control node.

Prerequisites

Red Hat Enterprise Linux 9 Security hardening

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#creating-and-setting-a-custom-system-wide-cryptographic-policy_using-the-system-wide-cryptographic-policies

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

You can replace the FUTURE value with your preferred crypto policy, for example: DEFAULT,
LEGACY, and FIPS:OSPP.

The crypto_policies_reboot_ok: true setting causes the system to reboot after the System
Role changes the cryptographic policy.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

1. On the control node, create another playbook named, for example, verify_playbook.yml:

2. Validate the playbook syntax:

- name: Configure crypto policies
 hosts: managed-node-01.example.com
 tasks:
 - name: Configure crypto policies
 ansible.builtin.include_role:
 name: rhel-system-roles.crypto_policies
 vars:
 - crypto_policies_policy: FUTURE
 - crypto_policies_reboot_ok: true

- name: Verification
 hosts: managed-node-01.example.com
 tasks:
 - name: Verify active crypto policy
 ansible.builtin.include_role:
 name: rhel-system-roles.crypto_policies
 - debug:
 var: crypto_policies_active

CHAPTER 4. SETTING A CUSTOM CRYPTOGRAPHIC POLICY BY USING THE CRYPTO-POLICIES RHEL SYSTEM ROLE

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

$ ansible-playbook --syntax-check ~/verify_playbook.yml

3. Run the playbook:

$ ansible-playbook ~/verify_playbook.yml
TASK [debug] **************************
ok: [host] => {
 "crypto_policies_active": "FUTURE"
}

The crypto_policies_active variable shows the policy active on the managed node.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.crypto_policies/README.md file

/usr/share/doc/rhel-system-roles/crypto_policies/ directory

Red Hat Enterprise Linux 9 Security hardening

30

CHAPTER 5. CONFIGURING APPLICATIONS TO USE
CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11

Separating parts of your secret information about dedicated cryptographic devices, such as smart cards
and cryptographic tokens for end-user authentication and hardware security modules (HSM) for server
applications, provides an additional layer of security. In RHEL, support for cryptographic hardware
through the PKCS #11 API is consistent across different applications, and the isolation of secrets on
cryptographic hardware is not a complicated task.

5.1. CRYPTOGRAPHIC HARDWARE SUPPORT THROUGH PKCS #11

Public-Key Cryptography Standard (PKCS) #11 defines an application programming interface (API) to
cryptographic devices that hold cryptographic information and perform cryptographic functions.

PKCS #11 introduces the cryptographic token , an object that presents each hardware or software device
to applications in a unified manner. Therefore, applications view devices such as smart cards, which are
typically used by persons, and hardware security modules, which are typically used by computers, as
PKCS #11 cryptographic tokens.

A PKCS #11 token can store various object types including a certificate; a data object; and a public,
private, or secret key. These objects are uniquely identifiable through the PKCS #11 Uniform Resource
Identifier (URI) scheme.

A PKCS #11 URI is a standard way to identify a specific object in a PKCS #11 module according to the
object attributes. This enables you to configure all libraries and applications with the same configuration
string in the form of a URI.

RHEL provides the OpenSC PKCS #11 driver for smart cards by default. However, hardware tokens and
HSMs can have their own PKCS #11 modules that do not have their counterpart in the system. You can
register such PKCS #11 modules with the p11-kit tool, which acts as a wrapper over the registered smart-
card drivers in the system.

To make your own PKCS #11 module work on the system, add a new text file to the
/etc/pkcs11/modules/ directory

You can add your own PKCS #11 module into the system by creating a new text file in the
/etc/pkcs11/modules/ directory. For example, the OpenSC configuration file in p11-kit looks as follows:

$ cat /usr/share/p11-kit/modules/opensc.module
module: opensc-pkcs11.so

Additional resources

The PKCS #11 URI Scheme

Controlling access to smart cards

5.2. USING SSH KEYS STORED ON A SMART CARD

Red Hat Enterprise Linux enables you to use RSA and ECDSA keys stored on a smart card on OpenSSH
clients. Use this procedure to enable authentication using a smart card instead of using a password.

Prerequisites

CHAPTER 5. CONFIGURING APPLICATIONS TO USE CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11

31

https://tools.ietf.org/html/rfc7512
https://access.redhat.com/blogs/766093/posts/1976313

On the client side, the opensc package is installed and the pcscd service is running.

Procedure

1. List all keys provided by the OpenSC PKCS #11 module including their PKCS #11 URIs and save
the output to the keys.pub file:

$ ssh-keygen -D pkcs11: > keys.pub
$ ssh-keygen -D pkcs11:
ssh-rsa AAAAB3NzaC1yc2E...KKZMzcQZzx
pkcs11:id=%02;object=SIGN%20pubkey;token=SSH%20key;manufacturer=piv_II?module-
path=/usr/lib64/pkcs11/opensc-pkcs11.so
ecdsa-sha2-nistp256 AAA...J0hkYnnsM=
pkcs11:id=%01;object=PIV%20AUTH%20pubkey;token=SSH%20key;manufacturer=piv_II?
module-path=/usr/lib64/pkcs11/opensc-pkcs11.so

2. To enable authentication using a smart card on a remote server (example.com), transfer the
public key to the remote server. Use the ssh-copy-id command with keys.pub created in the
previous step:

$ ssh-copy-id -f -i keys.pub username@example.com

3. To connect to example.com using the ECDSA key from the output of the ssh-keygen -D
command in step 1, you can use just a subset of the URI, which uniquely references your key, for
example:

$ ssh -i "pkcs11:id=%01?module-path=/usr/lib64/pkcs11/opensc-pkcs11.so" example.com
Enter PIN for 'SSH key':
[example.com] $

4. You can use the same URI string in the ~/.ssh/config file to make the configuration permanent:

$ cat ~/.ssh/config
IdentityFile "pkcs11:id=%01?module-path=/usr/lib64/pkcs11/opensc-pkcs11.so"
$ ssh example.com
Enter PIN for 'SSH key':
[example.com] $

Because OpenSSH uses the p11-kit-proxy wrapper and the OpenSC PKCS #11 module is
registered to PKCS#11 Kit, you can simplify the previous commands:

$ ssh -i "pkcs11:id=%01" example.com
Enter PIN for 'SSH key':
[example.com] $

If you skip the id= part of a PKCS #11 URI, OpenSSH loads all keys that are available in the proxy module.
This can reduce the amount of typing required:

$ ssh -i pkcs11: example.com
Enter PIN for 'SSH key':
[example.com] $

Additional resources

Red Hat Enterprise Linux 9 Security hardening

32

Fedora 28: Better smart card support in OpenSSH

p11-kit(8), opensc.conf(5), pcscd(8), ssh(1), and ssh-keygen(1) man pages

5.3. CONFIGURING APPLICATIONS FOR AUTHENTICATION WITH
CERTIFICATES ON SMART CARDS

Authentication by using smart cards in applications may increase security and simplify automation. You
can integrate the Public Key Cryptography Standard (PKCS) #11 URIs into your application by using the
following methods:

The Firefox web browser automatically loads the p11-kit-proxy PKCS #11 module. This means
that every supported smart card in the system is automatically detected. For using TLS client
authentication, no additional setup is required and keys and certificates from a smart card are
automatically used when a server requests them.

If your application uses the GnuTLS or NSS library, it already supports PKCS #11 URIs. Also,
applications that rely on the OpenSSL library can access cryptographic hardware modules,
including smart cards, through the pkcs11 engine provided provided by the openssl-pkcs11
package.

Applications that require working with private keys on smart cards and that do not use NSS,
GnuTLS, nor OpenSSL can use the p11-kit API directly to work with cryptographic hardware
modules, including smart cards, rather than using the PKCS #11 API of specific PKCS #11
modules.

With the the wget network downloader, you can specify PKCS #11 URIs instead of paths to
locally stored private keys and certificates. This might simplify creation of scripts for tasks that
require safely stored private keys and certificates. For example:

$ wget --private-key 'pkcs11:token=softhsm;id=%01;type=private?pin-value=111111' --
certificate 'pkcs11:token=softhsm;id=%01;type=cert' https://example.com/

You can also specify PKCS #11 URI when using the curl tool:

$ curl --key 'pkcs11:token=softhsm;id=%01;type=private?pin-value=111111' --cert
'pkcs11:token=softhsm;id=%01;type=cert' https://example.com/

NOTE

Because a PIN is a security measure that controls access to keys stored on a
smart card and the configuration file contains the PIN in the plain-text form,
consider additional protection to prevent an attacker from reading the PIN. For
example, you can use the pin-source attribute and provide a file: URI for reading
the PIN from a file. See RFC 7512: PKCS #11 URI Scheme Query Attribute
Semantics for more information. Note that using a command path as a value of
the pin-source attribute is not supported.

Additional resources

curl(1), wget(1), and p11-kit(8) man pages

5.4. USING HSMS PROTECTING PRIVATE KEYS IN APACHE

CHAPTER 5. CONFIGURING APPLICATIONS TO USE CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11

33

https://fedoramagazine.org/fedora-28-better-smart-card-support-openssh/
https://datatracker.ietf.org/doc/html/rfc7512#section-2.4

The Apache HTTP server can work with private keys stored on hardware security modules (HSMs),
which helps to prevent the keys' disclosure and man-in-the-middle attacks. Note that this usually
requires high-performance HSMs for busy servers.

For secure communication in the form of the HTTPS protocol, the Apache HTTP server (httpd) uses
the OpenSSL library. OpenSSL does not support PKCS #11 natively. To use HSMs, you have to install the
openssl-pkcs11 package, which provides access to PKCS #11 modules through the engine interface.
You can use a PKCS #11 URI instead of a regular file name to specify a server key and a certificate in the
/etc/httpd/conf.d/ssl.conf configuration file, for example:

SSLCertificateFile "pkcs11:id=%01;token=softhsm;type=cert"
SSLCertificateKeyFile "pkcs11:id=%01;token=softhsm;type=private?pin-value=111111"

Install the httpd-manual package to obtain complete documentation for the Apache HTTP Server,
including TLS configuration. The directives available in the /etc/httpd/conf.d/ssl.conf configuration file
are described in detail in the /usr/share/httpd/manual/mod/mod_ssl.html file.

5.5. USING HSMS PROTECTING PRIVATE KEYS IN NGINX

The Nginx HTTP server can work with private keys stored on hardware security modules (HSMs), which
helps to prevent the keys' disclosure and man-in-the-middle attacks. Note that this usually requires
high-performance HSMs for busy servers.

Because Nginx also uses the OpenSSL for cryptographic operations, support for PKCS #11 must go
through the openssl-pkcs11 engine. Nginx currently supports only loading private keys from an HSM,
and a certificate must be provided separately as a regular file. Modify the ssl_certificate and
ssl_certificate_key options in the server section of the /etc/nginx/nginx.conf configuration file:

ssl_certificate /path/to/cert.pem
ssl_certificate_key "engine:pkcs11:pkcs11:token=softhsm;id=%01;type=private?pin-value=111111";

Note that the engine:pkcs11: prefix is needed for the PKCS #11 URI in the Nginx configuration file.
This is because the other pkcs11 prefix refers to the engine name.

5.6. ADDITIONAL RESOURCES

pkcs11.conf(5) man page.

Red Hat Enterprise Linux 9 Security hardening

34

CHAPTER 6. CONTROLLING ACCESS TO SMART CARDS BY
USING POLKIT

To cover possible threats that cannot be prevented by mechanisms built into smart cards, such as PINs,
PIN pads, and biometrics, and for more fine-grained control, RHEL uses the polkit framework for
controlling access control to smart cards.

System administrators can configure polkit to fit specific scenarios, such as smart-card access for non-
privileged or non-local users or services.

6.1. SMART-CARD ACCESS CONTROL THROUGH POLKIT

The Personal Computer/Smart Card (PC/SC) protocol specifies a standard for integrating smart cards
and their readers into computing systems. In RHEL, the pcsc-lite package provides middleware to
access smart cards that use the PC/SC API. A part of this package, the pcscd (PC/SC Smart Card)
daemon, ensures that the system can access a smart card using the PC/SC protocol.

Because access-control mechanisms built into smart cards, such as PINs, PIN pads, and biometrics, do
not cover all possible threats, RHEL uses the polkit framework for more robust access control. The
polkit authorization manager can grant access to privileged operations. In addition to granting access to
disks, you can use polkit also to specify policies for securing smart cards. For example, you can define
which users can perform which operations with a smart card.

After installing the pcsc-lite package and starting the pcscd daemon, the system enforces policies
defined in the /usr/share/polkit-1/actions/ directory. The default system-wide policy is in the
/usr/share/polkit-1/actions/org.debian.pcsc-lite.policy file. Polkit policy files use the XML format and
the syntax is described in the polkit(8) man page.

The polkitd service monitors the /etc/polkit-1/rules.d/ and /usr/share/polkit-1/rules.d/ directories for
any changes in rule files stored in these directories. The files contain authorization rules in JavaScript
format. System administrators can add custom rule files in both directories, and polkitd reads them in
lexical order based on their file name. If two files have the same names, then the file in /etc/polkit-
1/rules.d/ is read first.

Additional resources

polkit(8), polkitd(8), and pcscd(8) man pages.

6.2. TROUBLESHOOTING PROBLEMS RELATED TO PC/SC AND
POLKIT

Polkit policies that are automatically enforced after you install the pcsc-lite package and start the
pcscd daemon may ask for authentication in the user’s session even if the user does not directly
interact with a smart card. In GNOME, you can see the following error message:

Authentication is required to access the PC/SC daemon

Note that the system can install the pcsc-lite package as a dependency when you install other packages
related to smart cards such as opensc.

If your scenario does not require any interaction with smart cards and you want to prevent displaying
authorization requests for the PC/SC daemon, you can remove the pcsc-lite package. Keeping the
minimum of necessary packages is a good security practice anyway.

CHAPTER 6. CONTROLLING ACCESS TO SMART CARDS BY USING POLKIT

35

If you use smart cards, start troubleshooting by checking the rules in the system-provided policy file at
/usr/share/polkit-1/actions/org.debian.pcsc-lite.policy. You can add your custom rule files to the
policy in the /etc/polkit-1/rules.d/ directory, for example, 03-allow-pcscd.rules. Note that the rule files
use the JavaScript syntax, the policy file is in the XML format.

To understand what authorization requests the system displays, check the Journal log, for example:

$ journalctl -b | grep pcsc
...
Process 3087 (user: 1001) is NOT authorized for action: access_pcsc
...

The previous log entry means that the user is not authorized to perform an action by the policy. You can
solve this denial by adding a corresponding rule to /etc/polkit-1/rules.d/.

You can search also for log entries related to the polkitd unit, for example:

$ journalctl -u polkit
...
polkitd[NNN]: Error compiling script /etc/polkit-1/rules.d/00-debug-pcscd.rules
...
polkitd[NNN]: Operator of unix-session:c2 FAILED to authenticate to gain authorization for action
org.debian.pcsc-lite.access_pcsc for unix-process:4800:14441 [/usr/libexec/gsd-smartcard] (owned
by unix-user:group)
...

In the previous output, the first entry means that the rule file contains some syntax error. The second
entry means that the user failed to gain the access to pcscd.

You can also list all applications that use the PC/SC protocol by a short script. Create an executable file,
for example, pcsc-apps.sh, and insert the following code:

#!/bin/bash

cd /proc

for p in [0-9]*
do
 if grep libpcsclite.so.1.0.0 $p/maps &> /dev/null
 then
 echo -n "process: "
 cat $p/cmdline
 echo " ($p)"
 fi
done

Run the script as root:

./pcsc-apps.sh
process: /usr/libexec/gsd-smartcard (3048)
enable-sync --auto-ssl-client-auth --enable-crashpad (4828)
...

Additional resources

Red Hat Enterprise Linux 9 Security hardening

36

journalctl, polkit(8), polkitd(8), and pcscd(8) man pages.

6.3. DISPLAYING MORE DETAILED INFORMATION ABOUT POLKIT
AUTHORIZATION TO PC/SC

In the default configuration, the polkit authorization framework sends only limited information to the
Journal log. You can extend polkit log entries related to the PC/SC protocol by adding new rules.

Prerequisites

You have installed the pcsc-lite package on your system.

The pcscd daemon is running.

Procedure

1. Create a new file in the /etc/polkit-1/rules.d/ directory:

touch /etc/polkit-1/rules.d/00-test.rules

2. Edit the file in an editor of your choice, for example:

vi /etc/polkit-1/rules.d/00-test.rules

3. Insert the following lines:

polkit.addRule(function(action, subject) {
 if (action.id == "org.debian.pcsc-lite.access_pcsc" ||
 action.id == "org.debian.pcsc-lite.access_card") {
 polkit.log("action=" + action);
 polkit.log("subject=" + subject);
 }
});

Save the file, and exit the editor.

4. Restart the pcscd and polkit services:

systemctl restart pcscd.service pcscd.socket polkit.service

Verification

1. Make an authorization request for pcscd. For example, open the Firefox web browser or use the
pkcs11-tool -L command provided by the opensc package.

2. Display the extended log entries, for example:

journalctl -u polkit --since "1 hour ago"
polkitd[1224]: <no filename>:4: action=[Action id='org.debian.pcsc-lite.access_pcsc']
polkitd[1224]: <no filename>:5: subject=[Subject pid=2020481 user=user'
groups=user,wheel,mock,wireshark seat=null session=null local=true active=true]

CHAPTER 6. CONTROLLING ACCESS TO SMART CARDS BY USING POLKIT

37

Additional resources

polkit(8) and polkitd(8) man pages.

6.4. ADDITIONAL RESOURCES

Controlling access to smart cards Red Hat Blog article.

Red Hat Enterprise Linux 9 Security hardening

38

https://www.redhat.com/en/blog/controlling-access-smart-cards

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION
COMPLIANCE AND VULNERABILITIES

A compliance audit is a process of determining whether a given object follows all the rules specified in a
compliance policy. The compliance policy is defined by security professionals who specify the required
settings, often in the form of a checklist, that a computing environment should use.

Compliance policies can vary substantially across organizations and even across different systems within
the same organization. Differences among these policies are based on the purpose of each system and
its importance for the organization. Custom software settings and deployment characteristics also raise
a need for custom policy checklists.

7.1. CONFIGURATION COMPLIANCE TOOLS IN RHEL

You can perform a fully automated compliance audit in Red Hat Enterprise Linux by using the following
configuration compliance tools. These tools are based on the Security Content Automation Protocol
(SCAP) standard and are designed for automated tailoring of compliance policies.

SCAP Workbench

The scap-workbench graphical utility is designed to perform configuration and vulnerability scans
on a single local or remote system. You can also use it to generate security reports based on these
scans and evaluations.

OpenSCAP

The OpenSCAP library, with the accompanying oscap command-line utility, is designed to perform
configuration and vulnerability scans on a local system, to validate configuration compliance content,
and to generate reports and guides based on these scans and evaluations.

IMPORTANT

You can experience memory-consumption problems while using OpenSCAP, which
can cause stopping the program prematurely and prevent generating any result files.
See the OpenSCAP memory-consumption problems Knowledgebase article for
details.

SCAP Security Guide (SSG)

The scap-security-guide package provides collections of security policies for Linux systems. The
guidance consists of a catalog of practical hardening advice, linked to government requirements
where applicable. The project bridges the gap between generalized policy requirements and specific
implementation guidelines.

Script Check Engine (SCE)

With SCE, which is an extension to the SCAP protocol, administrators can write their security content
by using a scripting language, such as Bash, Python, and Ruby. The SCE extension is provided in the
openscap-engine-sce package. The SCE itself is not part of the SCAP standard.

To perform automated compliance audits on multiple systems remotely, you can use the OpenSCAP
solution for Red Hat Satellite.

Additional resources

oscap(8), scap-workbench(8), and scap-security-guide(8) man pages

Red Hat Security Demos: Creating Customized Security Policy Content to Automate Security

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

39

https://access.redhat.com/articles/6999111

Red Hat Security Demos: Creating Customized Security Policy Content to Automate Security
Compliance

Red Hat Security Demos: Defend Yourself with RHEL Security Technologies

Security Compliance Management in the Administering Red Hat Satellite Guide .

7.2. VULNERABILITY SCANNING

7.2.1. Red Hat Security Advisories OVAL feed

Red Hat Enterprise Linux security auditing capabilities are based on the Security Content Automation
Protocol (SCAP) standard. SCAP is a multi-purpose framework of specifications that supports
automated configuration, vulnerability and patch checking, technical control compliance activities, and
security measurement.

SCAP specifications create an ecosystem where the format of security content is well-known and
standardized although the implementation of the scanner or policy editor is not mandated. This enables
organizations to build their security policy (SCAP content) once, no matter how many security vendors
they employ.

The Open Vulnerability Assessment Language (OVAL) is the essential and oldest component of SCAP.
Unlike other tools and custom scripts, OVAL describes a required state of resources in a declarative
manner. OVAL code is never executed directly but using an OVAL interpreter tool called scanner. The
declarative nature of OVAL ensures that the state of the assessed system is not accidentally modified.

Like all other SCAP components, OVAL is based on XML. The SCAP standard defines several document
formats. Each of them includes a different kind of information and serves a different purpose.

Red Hat Product Security helps customers evaluate and manage risk by tracking and investigating all
security issues affecting Red Hat customers. It provides timely and concise patches and security
advisories on the Red Hat Customer Portal. Red Hat creates and supports OVAL patch definitions,
providing machine-readable versions of our security advisories.

Because of differences between platforms, versions, and other factors, Red Hat Product Security
qualitative severity ratings of vulnerabilities do not directly align with the Common Vulnerability Scoring
System (CVSS) baseline ratings provided by third parties. Therefore, we recommend that you use the
RHSA OVAL definitions instead of those provided by third parties.

The RHSA OVAL definitions are available individually and as a complete package, and are updated within
an hour of a new security advisory being made available on the Red Hat Customer Portal.

Each OVAL patch definition maps one-to-one to a Red Hat Security Advisory (RHSA). Because an
RHSA can contain fixes for multiple vulnerabilities, each vulnerability is listed separately by its Common
Vulnerabilities and Exposures (CVE) name and has a link to its entry in our public bug database.

The RHSA OVAL definitions are designed to check for vulnerable versions of RPM packages installed on
a system. It is possible to extend these definitions to include further checks, for example, to find out if
the packages are being used in a vulnerable configuration. These definitions are designed to cover
software and updates shipped by Red Hat. Additional definitions are required to detect the patch status
of third-party software.

NOTE

Red Hat Enterprise Linux 9 Security hardening

40

https://2020-summit-labs.gitlab.io/rhel-custom-security-content/
https://github.com/RedHatDemos/SecurityDemos/blob/master/2020Labs/RHELSecurity/documentation/README.adoc
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.12/html/administering_red_hat_satellite/managing_security_compliance_admin
https://access.redhat.com/security/team/
https://www.redhat.com/security/data/oval/v2/

NOTE

The Red Hat Insights for Red Hat Enterprise Linux compliance service helps IT security
and compliance administrators to assess, monitor, and report on the security policy
compliance of Red Hat Enterprise Linux systems. You can also create and manage your
SCAP security policies entirely within the compliance service UI.

Additional resources

Red Hat and OVAL compatibility

Red Hat and CVE compatibility

Notifications and Advisories in the Product Security Overview

Security Data Metrics

7.2.2. Scanning the system for vulnerabilities

The oscap command-line utility enables you to scan local systems, validate configuration compliance
content, and generate reports and guides based on these scans and evaluations. This utility serves as a
front end to the OpenSCAP library and groups its functionalities to modules (sub-commands) based on
the type of SCAP content it processes.

Prerequisites

The openscap-scanner and bzip2 packages are installed.

Procedure

1. Download the latest RHSA OVAL definitions for your system:

wget -O - https://www.redhat.com/security/data/oval/v2/RHEL9/rhel-9.oval.xml.bz2 | bzip2 -
-decompress > rhel-9.oval.xml

2. Scan the system for vulnerabilities and save results to the vulnerability.html file:

oscap oval eval --report vulnerability.html rhel-9.oval.xml

Verification

Check the results in a browser of your choice, for example:

$ firefox vulnerability.html &

Additional resources

oscap(8) man page

Red Hat OVAL definitions

OpenSCAP memory consumption problems

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

41

https://access.redhat.com/documentation/en-us/red_hat_insights/2022/html/assessing_and_monitoring_security_policy_compliance_of_rhel_systems/con-compl-assess-managing-scap-security-policies_compl-manage-scap-security-policies
https://access.redhat.com/articles/221883
https://access.redhat.com/articles/2123171
https://access.redhat.com/security/updates/advisory
https://access.redhat.com/security/overview
https://www.redhat.com/security/data/metrics/
https://www.redhat.com/security/data/oval/v2/RHEL9/
https://access.redhat.com/articles/6999111

7.2.3. Scanning remote systems for vulnerabilities

You can check also remote systems for vulnerabilities with the OpenSCAP scanner using the oscap-ssh
tool over the SSH protocol.

Prerequisites

The openscap-utils and bzip2 packages are installed on the system you use for scanning.

The openscap-scanner package is installed on the remote systems.

The SSH server is running on the remote systems.

Procedure

1. Download the latest RHSA OVAL definitions for your system:

wget -O - https://www.redhat.com/security/data/oval/v2/RHEL9/rhel-9.oval.xml.bz2 | bzip2 -
-decompress > rhel-9.oval.xml

2. Scan a remote system with the machine1 host name, SSH running on port 22, and the joesec
user name for vulnerabilities and save results to the remote-vulnerability.html file:

oscap-ssh joesec@machine1 22 oval eval --report remote-vulnerability.html rhel-9.oval.xml

Additional resources

oscap-ssh(8)

Red Hat OVAL definitions

OpenSCAP memory consumption problems

7.3. CONFIGURATION COMPLIANCE SCANNING

7.3.1. Configuration compliance in RHEL

You can use configuration compliance scanning to conform to a baseline defined by a specific
organization. For example, if you work with the US government, you might have to align your systems
with the Operating System Protection Profile (OSPP), and if you are a payment processor, you might
have to align your systems with the Payment Card Industry Data Security Standard (PCI-DSS). You can
also perform configuration compliance scanning to harden your system security.

Red Hat recommends you follow the Security Content Automation Protocol (SCAP) content provided
in the SCAP Security Guide package because it is in line with Red Hat best practices for affected
components.

The SCAP Security Guide package provides content which conforms to the SCAP 1.2 and SCAP 1.3
standards. The openscap scanner utility is compatible with both SCAP 1.2 and SCAP 1.3 content
provided in the SCAP Security Guide package.

IMPORTANT

Red Hat Enterprise Linux 9 Security hardening

42

https://www.redhat.com/security/data/oval/v2/RHEL9/
https://access.redhat.com/articles/6999111

IMPORTANT

Performing a configuration compliance scanning does not guarantee the system is
compliant.

The SCAP Security Guide suite provides profiles for several platforms in a form of data stream
documents. A data stream is a file that contains definitions, benchmarks, profiles, and individual rules.
Each rule specifies the applicability and requirements for compliance. RHEL provides several profiles for
compliance with security policies. In addition to the industry standard, Red Hat data streams also contain
information for remediation of failed rules.

Structure of compliance scanning resources

Data stream
 ├── xccdf
 | ├── benchmark
 | ├── profile
 | | ├──rule reference
 | | └──variable
 | ├── rule
 | ├── human readable data
 | ├── oval reference
 ├── oval ├── ocil reference
 ├── ocil ├── cpe reference
 └── cpe └── remediation

A profile is a set of rules based on a security policy, such as OSPP, PCI-DSS, and Health Insurance
Portability and Accountability Act (HIPAA). This enables you to audit the system in an automated way
for compliance with security standards.

You can modify (tailor) a profile to customize certain rules, for example, password length. For more
information about profile tailoring, see Customizing a security profile with SCAP Workbench .

7.3.2. Possible results of an OpenSCAP scan

Depending on the data stream and profile applied to an OpenSCAP scan, as well as various properties of
your system, each rule may produce a specific result. These are the possible results with brief
explanations of their meanings:

Pass

The scan did not find any conflicts with this rule.

Fail

The scan found a conflict with this rule.

Not checked

OpenSCAP does not perform an automatic evaluation of this rule. Check whether your system
conforms to this rule manually.

Not applicable

This rule does not apply to the current configuration.

Not selected

This rule is not part of the profile. OpenSCAP does not evaluate this rule and does not display these
rules in the results.

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

43

Error

The scan encountered an error. For additional information, you can enter the oscap command with
the --verbose DEVEL option. Consider opening a bug report.

Unknown

The scan encountered an unexpected situation. For additional information, you can enter the oscap
command with the `--verbose DEVEL option. Consider opening a bug report.

7.3.3. Viewing profiles for configuration compliance

Before you decide to use profiles for scanning or remediation, you can list them and check their detailed
descriptions using the oscap info subcommand.

Prerequisites

The openscap-scanner and scap-security-guide packages are installed.

Procedure

1. List all available files with security compliance profiles provided by the SCAP Security Guide
project:

$ ls /usr/share/xml/scap/ssg/content/
ssg-rhel9-ds.xml

2. Display detailed information about a selected data stream using the oscap info subcommand.
XML files containing data streams are indicated by the -ds string in their names. In the Profiles
section, you can find a list of available profiles and their IDs:

$ oscap info /usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml
Profiles:
...
 Title: Australian Cyber Security Centre (ACSC) Essential Eight
 Id: xccdf_org.ssgproject.content_profile_e8
 Title: Health Insurance Portability and Accountability Act (HIPAA)
 Id: xccdf_org.ssgproject.content_profile_hipaa
 Title: PCI-DSS v3.2.1 Control Baseline for Red Hat Enterprise Linux 9
 Id: xccdf_org.ssgproject.content_profile_pci-dss
...

3. Select a profile from the data stream file and display additional details about the selected
profile. To do so, use oscap info with the --profile option followed by the last section of the ID
displayed in the output of the previous command. For example, the ID of the HIPPA profile is:
xccdf_org.ssgproject.content_profile_hipaa, and the value for the --profile option is hipaa:

$ oscap info --profile hipaa /usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml
...
Profile
 Title: [RHEL9 DRAFT] Health Insurance Portability and Accountability Act (HIPAA)
 Id: xccdf_org.ssgproject.content_profile_hipaa

 Description: The HIPAA Security Rule establishes U.S. national standards to protect
individuals’ electronic personal health information that is created, received, used, or
maintained by a covered entity. The Security Rule requires appropriate administrative,

Red Hat Enterprise Linux 9 Security hardening

44

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 8
https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 8

physical and technical safeguards to ensure the confidentiality, integrity, and security of
electronic protected health information. This profile configures Red Hat Enterprise Linux 9 to
the HIPAA Security Rule identified for securing of electronic protected health information.
Use of this profile in no way guarantees or makes claims against legal compliance against
the HIPAA Security Rule(s).

Additional resources

scap-security-guide(8) man page

OpenSCAP memory consumption problems

7.3.4. Assessing configuration compliance with a specific baseline

To determine whether your system conforms to a specific baseline, follow these steps.

Prerequisites

The openscap-scanner and scap-security-guide packages are installed

You know the ID of the profile within the baseline with which the system should comply. To find
the ID, see Viewing Profiles for Configuration Compliance.

Procedure

1. Evaluate the compliance of the system with the selected profile and save the scan results in the
report.html HTML file, for example:

$ oscap xccdf eval --report report.html --profile hipaa /usr/share/xml/scap/ssg/content/ssg-
rhel9-ds.xml

2. Optional: Scan a remote system with the machine1 host name, SSH running on port 22, and the
joesec user name for compliance and save results to the remote-report.html file:

$ oscap-ssh joesec@machine1 22 xccdf eval --report remote_report.html --profile hipaa
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

Additional resources

scap-security-guide(8) man page

SCAP Security Guide documentation in the /usr/share/doc/scap-security-guide/ directory

/usr/share/doc/scap-security-guide/guides/ssg-rhel9-guide-index.html - [Guide to the
Secure Configuration of Red Hat Enterprise Linux 9] installed with the scap-security-guide-
doc package

OpenSCAP memory consumption problems

7.4. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC
BASELINE

You can remediate the RHEL system to align with a specific baseline. This example uses the Health

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

45

https://access.redhat.com/articles/6999111
https://access.redhat.com/articles/6999111

Insurance Portability and Accountability Act (HIPAA) profile, but you can remediate to align with any
other profile provided by the SCAP Security Guide. For the details on listing the available profiles, see
the Viewing profiles for configuration compliance section.

WARNING

If not used carefully, running the system evaluation with the Remediate option
enabled might render the system non-functional. Red Hat does not provide any
automated method to revert changes made by security-hardening remediations.
Remediations are supported on RHEL systems in the default configuration. If your
system has been altered after the installation, running remediation might not make
it compliant with the required security profile.

Prerequisites

The scap-security-guide package is installed on your RHEL system.

Procedure

1. Use the oscap command with the --remediate option:

oscap xccdf eval --profile hipaa --remediate /usr/share/xml/scap/ssg/content/ssg-rhel9-
ds.xml

2. Restart your system.

Verification

1. Evaluate compliance of the system with the HIPAA profile, and save scan results in the
hipaa_report.html file:

$ oscap xccdf eval --report hipaa_report.html --profile hipaa
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

Additional resources

scap-security-guide(8) and oscap(8) man pages

7.5. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC
BASELINE USING AN SSG ANSIBLE PLAYBOOK

You can remediate your system to align with a specific baseline by using an Ansible playbook file from
the SCAP Security Guide project. This example uses the Health Insurance Portability and Accountability
Act (HIPAA) profile, but you can remediate to align with any other profile provided by the SCAP Security
Guide. For the details on listing the available profiles, see the Viewing profiles for configuration
compliance section.



Red Hat Enterprise Linux 9 Security hardening

46

WARNING

If not used carefully, running the system evaluation with the Remediate option
enabled might render the system non-functional. Red Hat does not provide any
automated method to revert changes made by security-hardening remediations.
Remediations are supported on RHEL systems in the default configuration. If your
system has been altered after the installation, running remediation might not make
it compliant with the required security profile.

Prerequisites

The scap-security-guide package is installed.

The ansible-core package is installed. See the Ansible Installation Guide for more information.

NOTE

In RHEL 8.6 and later, Ansible Engine is replaced by the ansible-core package, which
contains only built-in modules. Note that many Ansible remediations use modules from
the community and Portable Operating System Interface (POSIX) collections, which are
not included in the built-in modules. In this case, you can use Bash remediations as a
substitute to Ansible remediations. The Red Hat Connector in RHEL 9 includes the
necessary Ansible modules to enable the remediation playbooks to function with Ansible
Core.

Procedure

1. Remediate your system to align with HIPAA using Ansible:

ansible-playbook -i localhost, -c local /usr/share/scap-security-guide/ansible/rhel9-
playbook-hipaa.yml

2. Restart the system.

Verification

1. Evaluate compliance of the system with the HIPAA profile, and save scan results in the
hipaa_report.html file:

oscap xccdf eval --profile hipaa --report hipaa_report.html
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

Additional resources

scap-security-guide(8) and oscap(8) man pages

Ansible Documentation

7.6. CREATING A REMEDIATION ANSIBLE PLAYBOOK TO ALIGN THE



CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

47

https://docs.ansible.com/ansible/latest/installation_guide/
https://docs.ansible.com/

7.6. CREATING A REMEDIATION ANSIBLE PLAYBOOK TO ALIGN THE
SYSTEM WITH A SPECIFIC BASELINE

You can create an Ansible playbook containing only the remediations that are required to align your
system with a specific baseline. This example uses the Health Insurance Portability and Accountability
Act (HIPAA) profile. With this procedure, you create a smaller playbook that does not cover already
satisfied requirements. By following these steps, you do not modify your system in any way, you only
prepare a file for later application.

NOTE

In RHEL 9, Ansible Engine is replaced by the ansible-core package, which contains only
built-in modules. Note that many Ansible remediations use modules from the community
and Portable Operating System Interface (POSIX) collections, which are not included in
the built-in modules. In this case, you can use Bash remediations as a substitute for
Ansible remediations. The Red Hat Connector in RHEL 9.0 includes the necessary
Ansible modules to enable the remediation playbooks to function with Ansible Core.

Prerequisites

The scap-security-guide package is installed.

Procedure

1. Scan the system and save the results:

oscap xccdf eval --profile hipaa --results <hipaa-results.xml>
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

2. Find the value of the result ID in the file with the results:

oscap info <hipaa-results.xml>

3. Generate an Ansible playbook based on the file generated in step 1:

oscap xccdf generate fix --fix-type ansible --result-id <xccdf_org.open-
scap_testresult_xccdf_org.ssgproject.content_profile_hipaa> --output <hipaa-
remediations.yml> <hipaa-results.xml>

4. Review the generated file, which contains the Ansible remediations for rules that failed during
the scan performed in step 1. After reviewing this generated file, you can apply it by using the
ansible-playbook <hipaa-remediations.yml> command.

Verification

In a text editor of your choice, review that the generated <hipaa-remediations.yml> file
contains rules that failed in the scan performed in step 1.

Additional resources

scap-security-guide(8) and oscap(8) man pages

Ansible Documentation

Red Hat Enterprise Linux 9 Security hardening

48

https://docs.ansible.com/

7.7. CREATING A REMEDIATION BASH SCRIPT FOR A LATER
APPLICATION

Use this procedure to create a Bash script containing remediations that align your system with a security
profile such as HIPAA. Using the following steps, you do not do any modifications to your system, you
only prepare a file for later application.

Prerequisites

The scap-security-guide package is installed on your RHEL system.

Procedure

1. Use the oscap command to scan the system and to save the results to an XML file. In the
following example, oscap evaluates the system against the hipaa profile:

oscap xccdf eval --profile hipaa --results <hipaa-results.xml>
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

2. Find the value of the result ID in the file with the results:

oscap info <hipaa-results.xml>

3. Generate a Bash script based on the results file generated in step 1:

oscap xccdf generate fix --fix-type bash --result-id <xccdf_org.open-
scap_testresult_xccdf_org.ssgproject.content_profile_hipaa> --output <hipaa-
remediations.sh> <hipaa-results.xml>

4. The <hipaa-remediations.sh> file contains remediations for rules that failed during the scan
performed in step 1. After reviewing this generated file, you can apply it with the ./<hipaa-
remediations.sh> command when you are in the same directory as this file.

Verification

In a text editor of your choice, review that the <hipaa-remediations.sh> file contains rules that
failed in the scan performed in step 1.

Additional resources

scap-security-guide(8), oscap(8), and bash(1) man pages

7.8. SCANNING THE SYSTEM WITH A CUSTOMIZED PROFILE USING
SCAP WORKBENCH

SCAP Workbench, which is contained in the scap-workbench package, is a graphical utility that
enables users to perform configuration and vulnerability scans on a single local or a remote system,
perform remediation of the system, and generate reports based on scan evaluations. Note that SCAP
Workbench has limited functionality compared with the oscap command-line utility. SCAP
Workbench processes security content in the form of data stream files.

7.8.1. Using SCAP Workbench to scan and remediate the system

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

49

To evaluate your system against the selected security policy, use the following procedure.

Prerequisites

The scap-workbench package is installed on your system.

Procedure

1. To run SCAP Workbench from the GNOME Classic desktop environment, press the Super
key to enter the Activities Overview, type scap-workbench, and then press Enter.
Alternatively, use:

$ scap-workbench &

2. Select a security policy using either of the following options:

Load Content button on the starting window

Open content from SCAP Security Guide

Open Other Content in the File menu, and search the respective XCCDF, SCAP RPM, or
data stream file.

3. You can allow automatic correction of the system configuration by selecting the Remediate
check box. With this option enabled, SCAP Workbench attempts to change the system
configuration in accordance with the security rules applied by the policy. This process should fix
the related checks that fail during the system scan.

WARNING

If not used carefully, running the system evaluation with the Remediate
option enabled might render the system non-functional. Red Hat does not
provide any automated method to revert changes made by security-
hardening remediations. Remediations are supported on RHEL systems in
the default configuration. If your system has been altered after the
installation, running remediation might not make it compliant with the
required security profile.



Red Hat Enterprise Linux 9 Security hardening

50

4. Scan your system with the selected profile by clicking the Scan button.

5. To store the scan results in form of an XCCDF, ARF, or HTML file, click the Save Results
combo box. Choose the HTML Report option to generate the scan report in human-readable
format. The XCCDF and ARF (data stream) formats are suitable for further automatic
processing. You can repeatedly choose all three options.

6. To export results-based remediations to a file, use the Generate remediation role pop-up
menu.

7.8.2. Customizing a security profile with SCAP Workbench

You can customize a security profile by changing parameters in certain rules (for example, minimum
password length), removing rules that you cover in a different way, and selecting additional rules, to
implement internal policies. You cannot define new rules by customizing a profile.

The following procedure demonstrates the use of SCAP Workbench for customizing (tailoring) a
profile. You can also save the tailored profile for use with the oscap command-line utility.

Prerequisites

The scap-workbench package is installed on your system.

Procedure

1. Run SCAP Workbench, and select the profile to customize by using either Open content from

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

51

1. Run SCAP Workbench, and select the profile to customize by using either Open content from
SCAP Security Guide or Open Other Content in the File menu.

2. To adjust the selected security profile according to your needs, click the Customize button.
This opens the new Customization window that enables you to modify the currently selected
profile without changing the original data stream file. Choose a new profile ID.

3. Find a rule to modify using either the tree structure with rules organized into logical groups or
the Search field.

4. Include or exclude rules using check boxes in the tree structure, or modify values in rules where
applicable.

5. Confirm the changes by clicking the OK button.

6. To store your changes permanently, use one of the following options:

Save a customization file separately by using Save Customization Only in the File menu.

Red Hat Enterprise Linux 9 Security hardening

52

Save all security content at once by Save All in the File menu.
If you select the Into a directory option, SCAP Workbench saves both the data stream file
and the customization file to the specified location. You can use this as a backup solution.

By selecting the As RPM option, you can instruct SCAP Workbench to create an RPM
package containing the data stream file and the customization file. This is useful for
distributing the security content to systems that cannot be scanned remotely, and for
delivering the content for further processing.

NOTE

Because SCAP Workbench does not support results-based remediations for tailored
profiles, use the exported remediations with the oscap command-line utility.

7.8.3. Additional resources

scap-workbench(8) man page

/usr/share/doc/scap-workbench/user_manual.html file provided by the scap-workbench
package

Deploy customized SCAP policies with Satellite 6.x KCS article

7.9. DEPLOYING SYSTEMS THAT ARE COMPLIANT WITH A SECURITY
PROFILE IMMEDIATELY AFTER AN INSTALLATION

You can use the OpenSCAP suite to deploy RHEL systems that are compliant with a security profile,
such as OSPP, PCI-DSS, and HIPAA profile, immediately after the installation process. Using this
deployment method, you can apply specific rules that cannot be applied later using remediation scripts,
for example, a rule for password strength and partitioning.

7.9.1. Profiles not compatible with Server with GUI

Certain security profiles provided as part of the SCAP Security Guide are not compatible with the
extended package set included in the Server with GUI base environment. Therefore, do not select
Server with GUI when installing systems compliant with one of the following profiles:

Table 7.1. Profiles not compatible with Server with GUI

Profile name Profile ID Justification Notes

[DRAFT] CIS Red Hat
Enterprise Linux 9
Benchmark for Level 2 -
Server

xccdf_org.ssgprojec
t.content_profile_cis

Packages xorg-x11-
server-Xorg, xorg-
x11-server-common,
xorg-x11-server-
utils, and xorg-x11-
server-Xwayland are
part of the Server with
GUI package set, but the
policy requires their
removal.

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

53

https://access.redhat.com/solutions/2377951

[DRAFT] CIS Red Hat
Enterprise Linux 9
Benchmark for Level 1 -
Server

xccdf_org.ssgprojec
t.content_profile_cis
_server_l1

Packages xorg-x11-
server-Xorg, xorg-
x11-server-common,
xorg-x11-server-
utils, and xorg-x11-
server-Xwayland are
part of the Server with
GUI package set, but the
policy requires their
removal.

DISA STIG for Red Hat
Enterprise Linux 9

xccdf_org.ssgprojec
t.content_profile_sti
g

Packages xorg-x11-
server-Xorg, xorg-
x11-server-common,
xorg-x11-server-
utils, and xorg-x11-
server-Xwayland are
part of the Server with
GUI package set, but the
policy requires their
removal.

To install a RHEL system
as a Server with GUI
aligned with DISA STIG,
you can use the DISA
STIG with GUI profile
BZ#1648162

Profile name Profile ID Justification Notes

7.9.2. Deploying baseline-compliant RHEL systems using the graphical installation

Use this procedure to deploy a RHEL system that is aligned with a specific baseline. This example uses
Protection Profile for General Purpose Operating System (OSPP).

WARNING

Certain security profiles provided as part of the SCAP Security Guide are not
compatible with the extended package set included in the Server with GUI base
environment. For additional details, see Profiles not compatible with a GUI server .

Prerequisites

You have booted into the graphical installation program. Note that the OSCAP Anaconda
Add-on does not support interactive text-only installation.

You have accessed the Installation Summary window.

Procedure

1. From the Installation Summary window, click Software Selection. The Software Selection
window opens.



Red Hat Enterprise Linux 9 Security hardening

54

https://bugzilla.redhat.com/show_bug.cgi?id=1648162
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/scanning-the-system-for-configuration-compliance-and-vulnerabilities_security-hardening#ref_profiles-not-compatible-with-server-with-gui_deploying-systems-that-are-compliant-with-a-security-profile-immediately-after-an-installation

2. From the Base Environment pane, select the Server environment. You can select only one
base environment.

3. Click Done to apply the setting and return to the Installation Summary window.

4. Because OSPP has strict partitioning requirements that must be met, create separate partitions
for /boot, /home, /var, /tmp, /var/log, /var/tmp, and /var/log/audit.

5. Click Security Policy. The Security Policy window opens.

6. To enable security policies on the system, toggle the Apply security policy switch to ON.

7. Select Protection Profile for General Purpose Operating Systems from the profile pane.

8. Click Select Profile to confirm the selection.

9. Confirm the changes in the Changes that were done or need to be done pane that is
displayed at the bottom of the window. Complete any remaining manual changes.

10. Complete the graphical installation process.

NOTE

The graphical installation program automatically creates a corresponding
Kickstart file after a successful installation. You can use the /root/anaconda-
ks.cfg file to automatically install OSPP-compliant systems.

Verification

To check the current status of the system after installation is complete, reboot the system and
start a new scan:

oscap xccdf eval --profile ospp --report eval_postinstall_report.html
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

Additional resources

Configuring manual partitioning

7.9.3. Deploying baseline-compliant RHEL systems using Kickstart

Use this procedure to deploy RHEL systems that are aligned with a specific baseline. This example uses
Protection Profile for General Purpose Operating System (OSPP).

Prerequisites

The scap-security-guide package is installed on your RHEL 9 system.

Procedure

1. Open the /usr/share/scap-security-guide/kickstart/ssg-rhel9-ospp-ks.cfg Kickstart file in an
editor of your choice.

2. Update the partitioning scheme to fit your configuration requirements. For OSPP compliance,

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/performing_a_standard_rhel_9_installation/graphical-installation_graphical-installation#manual-partitioning_graphical-installation

2. Update the partitioning scheme to fit your configuration requirements. For OSPP compliance,
the separate partitions for /boot, /home, /var, /tmp, /var/log, /var/tmp, and /var/log/audit must
be preserved, and you can only change the size of the partitions.

3. Start a Kickstart installation as described in Performing an automated installation using
Kickstart.

IMPORTANT

Passwords in Kickstart files are not checked for OSPP requirements.

Verification

1. To check the current status of the system after installation is complete, reboot the system and
start a new scan:

oscap xccdf eval --profile ospp --report eval_postinstall_report.html
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

Additional resources

OSCAP Anaconda Add-on

7.10. SCANNING CONTAINER AND CONTAINER IMAGES FOR
VULNERABILITIES

Use this procedure to find security vulnerabilities in a container or a container image.

Prerequisites

The openscap-utils and bzip2 packages are installed.

Procedure

1. Download the latest RHSA OVAL definitions for your system:

wget -O - https://www.redhat.com/security/data/oval/v2/RHEL9/rhel-9.oval.xml.bz2 | bzip2 -
-decompress > rhel-9.oval.xml

2. Get the ID of a container or a container image, for example:

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi9/ubi latest 096cae65a207 7 weeks ago 239 MB

3. Scan the container or the container image for vulnerabilities and save results to the
vulnerability.html file:

oscap-podman 096cae65a207 oval eval --report vulnerability.html rhel-9.oval.xml

Note that the oscap-podman command requires root privileges, and the ID of a container is the
first argument.

Red Hat Enterprise Linux 9 Security hardening

56

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/performing_an_advanced_rhel_9_installation/starting-kickstart-installations_installing-rhel-as-an-experienced-user
https://www.open-scap.org/tools/oscap-anaconda-addon/

Verification

Check the results in a browser of your choice, for example:

$ firefox vulnerability.html &

Additional resources

For more information, see the oscap-podman(8) and oscap(8) man pages.

7.11. ASSESSING SECURITY COMPLIANCE OF A CONTAINER OR A
CONTAINER IMAGE WITH A SPECIFIC BASELINE

Follow these steps to assess compliance of your container or a container image with a specific security
baseline, such as Operating System Protection Profile (OSPP), Payment Card Industry Data Security
Standard (PCI-DSS), and Health Insurance Portability and Accountability Act (HIPAA).

Prerequisites

The openscap-utils and scap-security-guide packages are installed.

Procedure

1. Get the ID of a container or a container image, for example:

podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.access.redhat.com/ubi9/ubi latest 096cae65a207 7 weeks ago 239 MB

2. Evaluate the compliance of the container image with the HIPAA profile and save scan results
into the report.html HTML file

oscap-podman 096cae65a207 xccdf eval --report report.html --profile hipaa
/usr/share/xml/scap/ssg/content/ssg-rhel9-ds.xml

Replace 096cae65a207 with the ID of your container image and the hipaa value with ospp or
pci-dss if you assess security compliance with the OSPP or PCI-DSS baseline. Note that the
oscap-podman command requires root privileges.

Verification

Check the results in a browser of your choice, for example:

$ firefox report.html &

NOTE

The rules marked as notapplicable are rules that do not apply to containerized systems.
These rules apply only to bare-metal and virtualized systems.

Additional resources

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

57

oscap-podman(8) and scap-security-guide(8) man pages.

/usr/share/doc/scap-security-guide/ directory.

7.12. SCAP SECURITY GUIDE PROFILES SUPPORTED IN RHEL 9

Use only the SCAP content provided in the particular minor release of RHEL. This is because
components that participate in hardening are sometimes updated with new capabilities. SCAP content
changes to reflect these updates, but it is not always backward compatible.

In the following tables, you can find the profiles provided in RHEL 9, together with the version of the
policy with which the profile aligns.

Table 7.2. SCAP Security Guide profiles supported in RHEL 9.3

Profile name Profile ID Policy version

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

2.0

CCN Red Hat Enterprise Linux 9 -
Advanced

xccdf_org.ssgproject.conten
t_profile_ccn_advanced

2022-10

CCN Red Hat Enterprise Linux 9 -
Basic

xccdf_org.ssgproject.conten
t_profile_ccn_basic

2022-10

CCN Red Hat Enterprise Linux 9 -
Intermediate

xccdf_org.ssgproject.conten
t_profile_ccn_intermediate

2022-10

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

1.0.0

Red Hat Enterprise Linux 9 Security hardening

58

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

1.0.0

[DRAFT] Unclassified Information
in Non-federal Information
Systems and Organizations (NIST
800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r2

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

not versioned

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

not versioned

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.3

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_pci-dss

RHEL 9.3.0 to RHEL 9.3.2:3.2.1
RHEL 9.3.3:4.0

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 9

xccdf_org.ssgproject.conten
t_profile_stig

RHEL 9.3.0: DRAFT[a]

RHEL 9.3.2:V1R1
RHEL 9.3.3 and later:V1R2

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_stig_gui

RHEL 9.3.0: DRAFT[a]

RHEL 9.3.2:V1R1
RHEL 9.3.3 and later:V1R2

CCN Red Hat Enterprise Linux 9 -
Basic

xccdf_org.ssgproject.conten
t_profile_ccn_basic

2022-10

CCN Red Hat Enterprise Linux 9 -
Intermediate

xccdf_org.ssgproject.conten
t_profile_ccn_intermediate

2022-10

CCN Red Hat Enterprise Linux 9 -
Advanced

xccdf_org.ssgproject.conten
t_profile_ccn_advanced

2022-10

Profile name Profile ID Policy version

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

59

[a] DISA has not yet published an official benchmark for RHEL 9

Profile name Profile ID Policy version

Table 7.3. SCAP Security Guide profiles supported in RHEL 9.2

Profile name Profile ID Policy version

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

RHEL 9.2.0 to RHEL 9.2.2:1.2
RHEL 9.2.3 and later:2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

RHEL 9.2.0 to RHEL 9.2.2:1.2
RHEL 9.2.3 and later:2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

RHEL 9.2.0 to RHEL 9.2.2:1.2
RHEL 9.2.3 and later:2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

RHEL 9.2.0 to RHEL 9.2.2:1.2
RHEL 9.2.3 and later:2.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

1.0.0

[DRAFT] Unclassified Information
in Non-federal Information
Systems and Organizations (NIST
800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r2

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

not versioned

Red Hat Enterprise Linux 9 Security hardening

60

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

not versioned

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_pci-dss

RHEL 9.2.0 to RHEL 9.2.5:3.2.1
RHEL 9.2.6 and later:4.0

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 9

xccdf_org.ssgproject.conten
t_profile_stig

RHEL 9.2.0 to RHEL 9.2.4:

DRAFT[a]

RHEL 9.2.5:V1R1
RHEL 9.2.6 and later:V1R2

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_stig_gui

RHEL 9.2.0 to 9.2.4: DRAFT[a]

RHEL 9.2.5:V1R1
RHEL 9.2.6 and later:V1R2

CCN Red Hat Enterprise Linux 9 -
Basic

xccdf_org.ssgproject.conten
t_profile_ccn_basic

2022-10

CCN Red Hat Enterprise Linux 9 -
Intermediate

xccdf_org.ssgproject.conten
t_profile_ccn_intermediate

2022-10

CCN Red Hat Enterprise Linux 9 -
Advanced

xccdf_org.ssgproject.conten
t_profile_ccn_advanced

2022-10

Profile name Profile ID Policy version

Table 7.4. SCAP Security Guide profiles supported in RHEL 9.1

Profile name Profile ID Policy version

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

1.2

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

1.2

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

61

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

1.2

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

RHEL 9.1.0 and RHEL
9.1.1:DRAFT[a]

RHEL 9.1.2 and later:1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

RHEL 9.1.0 and RHEL

9.1.1:DRAFT[a]

RHEL 9.1.2 and later:1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

RHEL 9.1.0 and RHEL

9.1.1:DRAFT[a]

RHEL 9.1.2 and later:1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

RHEL 9.1.0 and RHEL

9.1.1:DRAFT[a]

RHEL 9.1.2 and later:1.0.0

[DRAFT] Unclassified Information
in Non-federal Information
Systems and Organizations (NIST
800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r2

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

not versioned

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

not versioned

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_pci-dss

3.2.1

[DRAFT] The Defense
Information Systems Agency
Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 9

xccdf_org.ssgproject.conten
t_profile_stig

DRAFT[a]

Profile name Profile ID Policy version

Red Hat Enterprise Linux 9 Security hardening

62

[DRAFT] The Defense
Information Systems Agency
Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_stig_gui

DRAFT[a]

[a] CIS has not yet published an official benchmark for RHEL 9

Profile name Profile ID Policy version

Table 7.5. SCAP Security Guide profiles supported in RHEL 9.0

Profile name Profile ID Policy version

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Enhanced Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_enhan
ced

RHEL 9.0.0 to RHEL 9.0.10:1.2
RHEL 9.0.11 and later:2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 High Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_high

RHEL 9.0.0 to RHEL 9.0.10:1.2
RHEL 9.0.11 and later:2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Intermediary
Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_interm
ediary

RHEL 9.0.0 to RHEL 9.0.10:1.2
RHEL 9.0.11 and later:2.0

French National Agency for the
Security of Information Systems
(ANSSI) BP-028 Minimal Level

xccdf_org.ssgproject.conten
t_profile_anssi_bp28_minim
al

RHEL 9.0.0 to RHEL 9.0.10:1.2
RHEL 9.0.11 and later:2.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 - Server

xccdf_org.ssgproject.conten
t_profile_cis

RHEL 9.0.0 to RHEL

9.0.6:DRAFT[a]

RHEL 9.0.7 and later:1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 - Server

xccdf_org.ssgproject.conten
t_profile_cis_server_l1

RHEL 9.0.0 to RHEL

9.0.6:DRAFT[a]

RHEL 9.0.7 and later:1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 1 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l1

RHEL 9.0.0 to RHEL

9.0.6:DRAFT[a]

RHEL 9.0.7 and later:1.0.0

CIS Red Hat Enterprise Linux 9
Benchmark for Level 2 -
Workstation

xccdf_org.ssgproject.conten
t_profile_cis_workstation_l2

RHEL 9.0.0 to RHEL

9.0.6:DRAFT[a]

RHEL 9.0.7 and later:1.0.0

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

63

[DRAFT] Unclassified Information
in Non-federal Information
Systems and Organizations (NIST
800-171)

xccdf_org.ssgproject.conten
t_profile_cui

r2

Australian Cyber Security Centre
(ACSC) Essential Eight

xccdf_org.ssgproject.conten
t_profile_e8

not versioned

Health Insurance Portability and
Accountability Act (HIPAA)

xccdf_org.ssgproject.conten
t_profile_hipaa

not versioned

Australian Cyber Security Centre
(ACSC) ISM Official

xccdf_org.ssgproject.conten
t_profile_ism_o

not versioned

Protection Profile for General
Purpose Operating Systems

xccdf_org.ssgproject.conten
t_profile_ospp

RHEL 9.0.0 to RHEL 9.0.2:DRAFT
RHEL 9.0.3 and later:4.2.1

PCI-DSS v3.2.1 Control Baseline
for Red Hat Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_pci-dss

RHEL 9.0.0 to RHEL 9.0.14:3.2.1
RHEL 9.0.15:4.0

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) for Red Hat Enterprise
Linux 9

xccdf_org.ssgproject.conten
t_profile_stig

RHEL 9.0.0 to RHEL 9.0.13:

DRAFT[a]

RHEL 9.0.14:V1R1
RHEL 9.0.15 and later:V1R2

The Defense Information Systems
Agency Security Technical
Implementation Guide (DISA
STIG) with GUI for Red Hat
Enterprise Linux 9

xccdf_org.ssgproject.conten
t_profile_stig_gui

RHEL 9.0.0 to RHEL 9.0.13:

DRAFT[a]

RHEL 9.0.14:V1R1
RHEL 9.0.15 and later:V1R2

CCN Red Hat Enterprise Linux 9 -
Basic

xccdf_org.ssgproject.conten
t_profile_ccn_basic

RHEL 9.0.11 and later:2022-10

CCN Red Hat Enterprise Linux 9 -
Intermediate

xccdf_org.ssgproject.conten
t_profile_ccn_intermediate

RHEL 9.0.11 and later:2022-10

CCN Red Hat Enterprise Linux 9 -
Advanced

xccdf_org.ssgproject.conten
t_profile_ccn_advanced

RHEL 9.0.11 and later:2022-10

Profile name Profile ID Policy version

7.13. ADDITIONAL RESOURCES

Supported versions of the SCAP Security Guide in RHEL

The OpenSCAP project page provides detailed information about the oscap utility and other
components and projects related to SCAP.

Red Hat Enterprise Linux 9 Security hardening

64

https://access.redhat.com/articles/6337261
http://www.open-scap.org

The SCAP Workbench project page provides detailed information about the scap-workbench
application.

The SCAP Security Guide (SSG) project page provides the latest security content for Red Hat
Enterprise Linux.

Using OpenSCAP for security compliance and vulnerability scanning - A hands-on lab on
running tools based on the Security Content Automation Protocol (SCAP) standard for
compliance and vulnerability scanning in RHEL.

Red Hat Security Demos: Creating Customized Security Policy Content to Automate Security
Compliance - A hands-on lab to get initial experience in automating security compliance using
the tools that are included in RHEL to comply with both industry standard security policies and
custom security policies. If you want training or access to these lab exercises for your team,
contact your Red Hat account team for additional details.

Red Hat Security Demos: Defend Yourself with RHEL Security Technologies - A hands-on lab to
learn how to implement security at all levels of your RHEL system, using the key security
technologies available to you in RHEL, including OpenSCAP. If you want training or access to
these lab exercises for your team, contact your Red Hat account team for additional details.

National Institute of Standards and Technology (NIST) SCAP page has a vast collection of
SCAP-related materials, including SCAP publications, specifications, and the SCAP Validation
Program.

National Vulnerability Database (NVD) has the largest repository of SCAP content and other
SCAP standards-based vulnerability management data.

Red Hat OVAL content repository contains OVAL definitions for vulnerabilities of RHEL
systems. This is the recommended source of vulnerability content.

MITRE CVE - This is a database of publicly known security vulnerabilities provided by the MITRE
corporation. For RHEL, using OVAL CVE content provided by Red Hat is recommended.

MITRE OVAL - This is an OVAL-related project provided by the MITRE corporation. Among
other OVAL-related information, these pages contain the OVAL language and a repository of
OVAL content with thousands of OVAL definitions. Note that for scanning RHEL, using OVAL
CVE content provided by Red Hat is recommended.

Managing security compliance in Red Hat Satellite - This set of guides describes, among other
topics, how to maintain system security on multiple systems by using OpenSCAP.

CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES

65

https://www.open-scap.org/tools/scap-workbench/
https://www.open-scap.org/security-policies/scap-security-guide/
https://lab.redhat.com/tracks/openscap
https://2020-summit-labs.gitlab.io/rhel-custom-security-content/
https://github.com/RedHatDemos/SecurityDemos/blob/master/2020Labs/RHELSecurity/documentation/README.adoc
http://scap.nist.gov/
http://nvd.nist.gov/
http://www.redhat.com/security/data/oval/
http://cve.mitre.org/
http://oval.mitre.org/
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html/administering_red_hat_satellite/chap-red_hat_satellite-administering_red_hat_satellite-security_compliance_management

CHAPTER 8. ENSURING SYSTEM INTEGRITY WITH KEYLIME
With Keylime, you can continuously monitor the integrity of remote systems and verify the state of
systems at boot. You can also send encrypted files to the monitored systems, and specify automated
actions triggered whenever a monitored system fails the integrity test.

8.1. HOW KEYLIME WORKS

You can deploy Keylime agents to perform one or more of the following actions:

Runtime integrity monitoring

Keylime runtime integrity monitoring continuously monitors the system on which the agent is
deployed and measures the integrity of the files included in the allowlist and not included in the
excludelist.

Measured boot

Keylime measured boot verifies the system state at boot.

Keylime’s concept of trust is based on the Trusted Platform Module (TPM) technology. A TPM is a
hardware, firmware, or virtual component with integrated cryptographic keys. By polling TPM quotes
and comparing the hashes of objects, Keylime provides initial and runtime monitoring of remote
systems.

IMPORTANT

Keylime running in a virtual machine or using a virtual TPM depends upon the integrity of
the underlying host. Ensure you trust the host environment before relying upon Keylime
measurements in a virtual environment.

Keylime consists of three main components:

Verifier

Initially and continuously verifies the integrity of the systems that run the agent.

Registrar

Contains a database of all agents and it hosts the public keys of the TPM vendors.

Agent

Deployed to remote systems measured by the verifier.

In addition, Keylime uses the keylime_tenant utility for many functions, including provisioning the
agents on the target systems.

Figure 8.1. Connections between Keylime components through configurations

Red Hat Enterprise Linux 9 Security hardening

66

Figure 8.1. Connections between Keylime components through configurations

Keylime ensures the integrity of the monitored systems in a chain of trust by using keys and certificates
exchanged between the components and the tenant. For a secure foundation of this chain, use a
certificate authority (CA) that you can trust.

NOTE

If the agent receives no key and certificate, it generates a key and a self-signed
certificate with no involvement from the CA.

Figure 8.2. Connections between Keylime components certificates and keys

CHAPTER 8. ENSURING SYSTEM INTEGRITY WITH KEYLIME

67

Figure 8.2. Connections between Keylime components certificates and keys

8.2. CONFIGURING KEYLIME VERIFIER

The verifier is the most important component in Keylime. It performs initial and periodic checks of
system integrity and supports bootstrapping a cryptographic key securely with the agent. The verifier
uses mutual TLS encryption for its control interface.

IMPORTANT

To maintain the chain of trust, keep the system that runs the verifier secure and under
your control.

You can install the verifier on a separate system or on the same system as the Keylime registrar,
depending on your requirements. Running the verifier and registrar on separate systems provides better
performance.

Red Hat Enterprise Linux 9 Security hardening

68

NOTE

To keep the configuration files organized within the drop-in directories, use file names
with a two-digit number prefix, for example /etc/keylime/verifier.conf.d/00-verifier-
ip.conf. The configuration processing reads the files inside the drop-in directory in
lexicographic order and sets each option to the last value it reads.

Prerequisites

You have root permissions and network connection to the system or systems on which you want
to install Keylime components.

You have valid keys and certificates from your certificate authority.

Optional: You have access to the databases where Keylime saves data from the verifier. You can
use any of the following database management systems:

SQLite (default)

PostgreSQL

MySQL

MariaDB

Procedure

1. Install the Keylime verifier:

dnf install keylime-verifier

2. Define the IP address and port of verifier by creating a new .conf file in the
/etc/keylime/verifier.conf.d/ directory, for example, /etc/keylime/verifier.conf.d/00-verifier-
ip.conf, with the following content:

[verifier]
ip = <verifier_IP_address>

Replace <verifier_IP_address> with the verifier’s IP address. Alternatively, use ip = * or ip
= 0.0.0.0 to bind the verifier to all available IP addresses.

Optionally, you can also change the verifier’s port from the default value 8881 by using the
port option.

3. Optional: Configure the verifier’s database for the list of agents. The default configuration uses
an SQLite database in the verifier’s /var/lib/keylime/cv_data.sqlite/ directory. You can define a
different database by creating a new .conf file in the /etc/keylime/verifier.conf.d/ directory, for
example, /etc/keylime/verifier.conf.d/00-db-url.conf, with the following content:

[verifier]
database_url = <protocol>://<name>:<password>@<ip_address_or_hostname>/<properties>

Replace <protocol>://<name>:<password>@<ip_address_or_hostname>/<properties> with
the URL of the database, for example, postgresql://verifier:UQ?
nRNY9g7GZzN7@198.51.100.1/verifierdb.

CHAPTER 8. ENSURING SYSTEM INTEGRITY WITH KEYLIME

69

Ensure that the credentials you use provide the permissions for Keylime to create the database
structure.

4. Add certificates and keys to the verifier. You can either let Keylime generate them, or use
existing keys and certificates:

With the default tls_dir = generate option, Keylime generates new certificates for the
verifier, registrar, and tenant in the /var/lib/keylime/cv_ca/ directory.

To load existing keys and certificates in the configuration, define their location in the
verifier configuration.

NOTE

Certificates must be accessible by the keylime user, under which the Keylime
services are running.

Create a new .conf file in the /etc/keylime/verifier.conf.d/ directory, for example,
/etc/keylime/verifier.conf.d/00-keys-and-certs.conf, with the following content:

[verifier]
tls_dir = /var/lib/keylime/cv_ca
server_key = </path/to/server_key>
server_key_password = <passphrase1>
server_cert = </path/to/server_cert>
trusted_client_ca = ['</path/to/ca/cert1>', '</path/to/ca/cert2>']
client_key = </path/to/client_key>
client_key_password = <passphrase2>
client_cert = </path/to/client_cert>
trusted_server_ca = ['</path/to/ca/cert3>', '</path/to/ca/cert4>']

NOTE

Use absolute paths to define key and certificate locations. Alternatively,
relative paths are resolved from the directory defined in the tls_dir option.

5. Open the port in firewall:

firewall-cmd --add-port 8881/tcp
firewall-cmd --runtime-to-permanent

If you use a different port, replace 8881 with the port number defined in the .conf file.

6. Start the verifier service:

systemctl enable --now keylime_verifier

NOTE

In the default configuration, start the keylime_verifier before starting the
keylime_registrar service because the verifier creates the CA and certificates
for the other Keylime components. This order is not necessary when you use
custom certificates.

Red Hat Enterprise Linux 9 Security hardening

70

Verification

Check that the keylime_verifier service is active and running:

systemctl status keylime_verifier
● keylime_verifier.service - The Keylime verifier
 Loaded: loaded (/usr/lib/systemd/system/keylime_verifier.service; disabled; vendor preset:
disabled)
 Active: active (running) since Wed 2022-11-09 10:10:08 EST; 1min 45s ago

Next steps

Section 8.3, “Configuring Keylime registrar” .

8.3. CONFIGURING KEYLIME REGISTRAR

The registrar is the Keylime component that contains a database of all agents, and it hosts the public
keys of the TPM vendors. After the registrar’s HTTPS service accepts trusted platform module (TPM)
public keys, it presents an interface to obtain these public keys for checking quotes.

IMPORTANT

To maintain the chain of trust, keep the system that runs the registrar secure and under
your control.

You can install the registrar on a separate system or on the same system as the Keylime verifier,
depending on your requirements. Running the verifier and registrar on separate systems provides better
performance.

NOTE

To keep the configuration files organized within the drop-in directories, use file names
with a two-digit number prefix, for example /etc/keylime/registrar.conf.d/00-registrar-
ip.conf. The configuration processing reads the files inside the drop-in directory in
lexicographic order and sets each option to the last value it reads.

Prerequisites

You have network access to the systems where the Keylime verifier is installed and running. For
more information, see Section 8.2, “Configuring Keylime verifier” .

You have root permissions and network connection to the system or systems on which you want
to install Keylime components.

You have access to the database where Keylime saves data from the registrar. You can use any
of the following database management systems:

SQLite (default)

PostgreSQL

MySQL

MariaDB

CHAPTER 8. ENSURING SYSTEM INTEGRITY WITH KEYLIME

71

You have valid keys and certificates from your certificate authority.

Procedure

1. Install the Keylime registrar:

dnf install keylime-registrar

2. Define the IP address and port of the registrar by creating a new .conf file in the
/etc/keylime/registrar.conf.d/ directory, for example, /etc/keylime/registrar.conf.d/00-
registrar-ip.conf, with the following content:

[registrar]
ip = <registrar_IP_address>

Replace <registrar_IP_address> with the registrar’s IP address. Alternatively, use ip = * or
ip = 0.0.0.0 to bind the registrar to all available IP addresses.

Optionally, change the port to which the Keylime agents connect by using the port option.
The default value is 8890.

Optionally, change the TLS port to which the Keylime verifier and tenant connect by using
the tls_port option. The default value is 8891.

3. Optional: Configure the registrar’s database for the list of agents. The default configuration
uses an SQLite database in the registrar’s /var/lib/keylime/reg_data.sqlite directory. You can
create a new .conf file in the /etc/keylime/registrar.conf.d/ directory, for example,
/etc/keylime/registrar.conf.d/00-db-url.conf, with the following content:

[registrar]
database_url = <protocol>://<name>:<password>@<ip_address_or_hostname>/<properties>

Replace <protocol>://<name>:<password>@<ip_address_or_hostname>/<properties> with
the URL of the database, for example, postgresql://registrar:EKYYX-bqY2?
#raXm@198.51.100.1/registrardb.

Ensure that the credentials you use have the permissions for Keylime to create the database
structure.

4. Add certificates and keys to the registrar:

You can use the default configuration and load the keys and certificates to the
/var/lib/keylime/reg_ca/ directory.

Alternatively, you can define the location of the keys and certificates in the configuration.
Create a new .conf file in the /etc/keylime/registrar.conf.d/ directory, for example,
/etc/keylime/registrar.conf.d/00-keys-and-certs.conf, with the following content:

[registrar]
tls_dir = /var/lib/keylime/reg_ca
server_key = </path/to/server_key>
server_key_password = <passphrase1>
server_cert = </path/to/server_cert>
trusted_client_ca = ['</path/to/ca/cert1>', '</path/to/ca/cert2>']

NOTE

Red Hat Enterprise Linux 9 Security hardening

72

NOTE

Use absolute paths to define key and certificate locations. Alternatively, you
can define a directory in the tls_dir option and use paths relative to that
directory.

5. Open the ports in firewall:

firewall-cmd --add-port 8890/tcp --add-port 8891/tcp
firewall-cmd --runtime-to-permanent

If you use a different port, replace 8890 or 8891 with the port number defined in the .conf file.

6. Start the keylime_registrar service:

systemctl enable --now keylime_registrar

NOTE

In the default configuration, start the keylime_verifier before starting the
keylime_registrar service because the verifier creates the CA and certificates
for the other Keylime components. This order is not necessary when you use
custom certificates.

Verification

Check that the keylime_registrar service is active and running:

systemctl status keylime_registrar
● keylime_registrar.service - The Keylime registrar service
 Loaded: loaded (/usr/lib/systemd/system/keylime_registrar.service; disabled; vendor
preset: disabled)
 Active: active (running) since Wed 2022-11-09 10:10:17 EST; 1min 42s ago
...

Next steps

Section 8.6, “Configuring Keylime tenant”

8.4. SETTING UP A KEYLIME SERVER BY USING SYSTEM ROLES

You can set up the verifier and registrar, which are the Keylime server components, by using the
keylime_server RHEL System Role. The keylime_server role installs and configures both the verifier
and registrar components together on each node.

Perform this procedure on the Ansible control node.

NOTE

For more information about Keylime, see 8.1. How Keylime works

Prerequisites

CHAPTER 8. ENSURING SYSTEM INTEGRITY WITH KEYLIME

73

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/assembly_ensuring-system-integrity-with-keylime_security-hardening#con_how-keylime-works_assembly_ensuring-system-integrity-with-keylime

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes or groups of managed nodes on which you want to run this playbook are
listed in the Ansible inventory file.

Procedure

1. Create a playbook that defines the required role:

a. Create a new YAML file and open it in a text editor, for example:

vi keylime-playbook.yml

b. Insert the following content:

- name: Manage keylime servers
 hosts: all
 vars:
 keylime_server_verifier_ip: "{{ ansible_host }}"
 keylime_server_registrar_ip: "{{ ansible_host }}"
 keylime_server_verifier_tls_dir: <ver_tls_directory>
 keylime_server_verifier_server_cert: <ver_server_certfile>
 keylime_server_verifier_server_key: <ver_server_key>
 keylime_server_verifier_server_key_passphrase: <ver_server_key_passphrase>
 keylime_server_verifier_trusted_client_ca: <ver_trusted_client_ca_list>
 keylime_server_verifier_client_cert: <ver_client_certfile>
 keylime_server_verifier_client_key: <ver_client_key>
 keylime_server_verifier_client_key_passphrase: <ver_client_key_passphrase>
 keylime_server_verifier_trusted_server_ca: <ver_trusted_server_ca_list>
 keylime_server_registrar_tls_dir: <reg_tls_directory>
 keylime_server_registrar_server_cert: <reg_server_certfile>
 keylime_server_registrar_server_key: <reg_server_key>
 keylime_server_registrar_server_key_passphrase: <reg_server_key_passphrase>
 keylime_server_registrar_trusted_client_ca: <reg_trusted_client_ca_list>
 roles:
 - rhel-system-roles.keylime_server

You can find out more about the variables in Variables for the keylime_server RHEL System
Role.

2. Run the playbook:

$ ansible-playbook <keylime-playbook.yml>

Verification

1. Check that the keylime_verifier service is active and running on the managed host:

systemctl status keylime_verifier
● keylime_verifier.service - The Keylime verifier

Red Hat Enterprise Linux 9 Security hardening

74

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

 Loaded: loaded (/usr/lib/systemd/system/keylime_verifier.service; disabled; vendor preset:
disabled)
 Active: active (running) since Wed 2022-11-09 10:10:08 EST; 1min 45s ago

2. Check that the keylime_registrar service is active and running:

systemctl status keylime_registrar
● keylime_registrar.service - The Keylime registrar service
 Loaded: loaded (/usr/lib/systemd/system/keylime_registrar.service; disabled; vendor
preset: disabled)
 Active: active (running) since Wed 2022-11-09 10:10:17 EST; 1min 42s ago
...

Next steps

Section 8.6, “Configuring Keylime tenant”

8.5. VARIABLES FOR THE KEYLIME_SERVER RHEL SYSTEM ROLE

When setting up a Keylime server by using the keylime_server RHEL System Role, you can customize
the following variables for registrar and verifier.

List of keylime_server RHEL System Role variables for configuring the Keylime verifier

keylime_server_verifier_ip

Defines the IP address of the verifier.

keylime_server_verifier_tls_dir

Specifies the directory where the keys and certificates are stored. If set to default, the verifier uses
the /var/lib/keylime/cv_ca directory.

keylime_server_verifier_server_key_passphrase

Specifies a passphrase to decrypt the server private key. If the value is empty, the private key is not
encrypted.

keylime_server_verifier_server_cert: Specifies the Keylime verifier server certificate file.

keylime_server_verifier_trusted_client_ca

Defines the list of trusted client CA certificates. You must store the files in the directory set in the
keylime_server_verifier_tls_dir option.

keylime_server_verifier_client_key

Defines the file containing the Keylime verifier private client key.

keylime_server_verifier_client_key_passphrase

Defines the passphrase to decrypt the client private key file. If the value is empty, the private key is
not encrypted.

keylime_server_verifier_client_cert

Defines the Keylime verifier client certificate file.

keylime_server_verifier_trusted_server_ca

Defines the list of trusted server CA certificates. You must store the files in the directory set in the
keylime_server_verifier_tls_dir option.

List of registrar variables for setting up keylime_server RHEL System Role

CHAPTER 8. ENSURING SYSTEM INTEGRITY WITH KEYLIME

75

keylime_server_registrar_ip

Defines the IP address of the registrar.

keylime_server_registrar_tls_dir

Specifies the directory where you store the keys and certificates for the registrar. If you set it to
default, the registrar uses the /var/lib/keylime/reg_ca directory.

keylime_server_registrar_server_key

Defines the Keylime registrar private server key file.

keylime_server_registrar_server_key_passphrase

Specifies the passphrase to decrypt the server private key of the registrar. If the value is empty, the
private key is not encrypted.

keylime_server_registrar_server_cert

Specifies the Keylime registrar server certificate file.

keylime_server_registrar_trusted_client_ca

Defines the list of trusted client CA certificates. You must store the files in the directory set in the
keylime_server_registrar_tls_dir option.

8.6. CONFIGURING KEYLIME TENANT

Keylime uses the keylime_tenant utility for many functions, including provisioning the agents on the
target systems. You can install keylime_tenant on any system, including the systems that run other
Keylime components, or on a separate system, depending on your requirements.

Prerequisites

You have root permissions and network connection to the system or systems on which you want
to install Keylime components.

You have network access to the systems where the other Keylime components are configured:

Verifier

For more information, see Section 8.2, “Configuring Keylime verifier” .

Registrar

For more information, see Section 8.3, “Configuring Keylime registrar” .

Procedure

1. Install the Keylime tenant:

dnf install keylime-tenant

2. Define the tenant’s connection to the Keylime verifier by editing the
/etc/keylime/tenant.conf.d/00-verifier-ip.conf file:

[tenant]
verifier_ip = <verifier_ip>

Replace <verifier_ip> with the IP address to the verifier’s system.

If the verifier uses a different port than the default value 8881, add the verifier_port =
<verifier_port> setting.

Red Hat Enterprise Linux 9 Security hardening

76

3. Define the tenant’s connection to the Keylime registrar by editing the
/etc/keylime/tenant.conf.d/00-registrar-ip.conf file:

[tenant]
registrar_ip = <registrar_ip>
registrar_port = <registrar_port>

Replace <registrar_ip> with the IP address to the registrar’s system.

If the registrar uses a different port than the default value 8891, add the registrar_port =
<registrar_port> setting.

4. Add certificates and keys to the tenant:

a. You can use the default configuration and load the keys and certificates to the
/var/lib/keylime/cv_ca directory.

b. Alternatively, you can define the location of the keys and certificates in the configuration.
Create a new .conf file in the /etc/keylime/tenant.conf.d/ directory, for example,
/etc/keylime/tenant.conf.d/00-keys-and-certs.conf, with the following content:

[tenant]
tls_dir = /var/lib/keylime/cv_ca
client_key = tenant-key.pem
client_key_password = <passphrase1>
client_cert = tenant-cert.pem
trusted_server_ca = ['</path/to/ca/cert>']

The trusted_server_ca parameter accepts paths to the verifier and registrar server CA
certificate. You can provide multiple comma-separated paths, for example if the verifier
and registrar use different CAs.

NOTE

Use absolute paths to define key and certificate locations. Alternatively, you
can define a directory in the tls_dir option and use paths relative to that
directory.

5. Optional: If the trusted platform module (TPM) endorsement key (EK) cannot be verified by
using certificates in the /var/lib/keylime/tpm_cert_store directory, add the certificate to that
directory. This can occur particularly when using virtual machines with emulated TPMs.

Verification

1. Check the status of the verifier:

keylime_tenant -c cvstatus
Reading configuration from ['/etc/keylime/logging.conf']
2022-10-14 12:56:08.155 - keylime.tpm - INFO - TPM2-TOOLS Version: 5.2
Reading configuration from ['/etc/keylime/tenant.conf']
2022-10-14 12:56:08.157 - keylime.tenant - INFO - Setting up client TLS...
2022-10-14 12:56:08.158 - keylime.tenant - INFO - Using default client_cert option for tenant
2022-10-14 12:56:08.158 - keylime.tenant - INFO - Using default client_key option for tenant
2022-10-14 12:56:08.178 - keylime.tenant - INFO - TLS is enabled.
2022-10-14 12:56:08.178 - keylime.tenant - WARNING - Using default UUID d432fbb3-d2f1-

CHAPTER 8. ENSURING SYSTEM INTEGRITY WITH KEYLIME

77

4a97-9ef7-75bd81c00000
2022-10-14 12:56:08.221 - keylime.tenant - INFO - Verifier at 127.0.0.1 with Port 8881 does
not have agent d432fbb3-d2f1-4a97-9ef7-75bd81c00000.

If correctly set up, and if no agent is configured, the verifier responds that it does not recognize
the default agent UUID.

2. Check the status of the registrar:

keylime_tenant -c regstatus
Reading configuration from ['/etc/keylime/logging.conf']
2022-10-14 12:56:02.114 - keylime.tpm - INFO - TPM2-TOOLS Version: 5.2
Reading configuration from ['/etc/keylime/tenant.conf']
2022-10-14 12:56:02.116 - keylime.tenant - INFO - Setting up client TLS...
2022-10-14 12:56:02.116 - keylime.tenant - INFO - Using default client_cert option for tenant
2022-10-14 12:56:02.116 - keylime.tenant - INFO - Using default client_key option for tenant
2022-10-14 12:56:02.137 - keylime.tenant - INFO - TLS is enabled.
2022-10-14 12:56:02.137 - keylime.tenant - WARNING - Using default UUID d432fbb3-d2f1-
4a97-9ef7-75bd81c00000
2022-10-14 12:56:02.171 - keylime.registrar_client - CRITICAL - Error: could not get agent
d432fbb3-d2f1-4a97-9ef7-75bd81c00000 data from Registrar Server: 404
2022-10-14 12:56:02.172 - keylime.registrar_client - CRITICAL - Response code 404: agent
d432fbb3-d2f1-4a97-9ef7-75bd81c00000 not found
2022-10-14 12:56:02.172 - keylime.tenant - INFO - Agent d432fbb3-d2f1-4a97-9ef7-
75bd81c00000 does not exist on the registrar. Please register the agent with the registrar.
2022-10-14 12:56:02.172 - keylime.tenant - INFO - {"code": 404, "status": "Agent d432fbb3-
d2f1-4a97-9ef7-75bd81c00000 does not exist on registrar 127.0.0.1 port 8891.", "results": {}}

If correctly set up, and if no agent is configured, the registrar responds that it does not
recognize the default agent UUID.

Additional resources

For additional advanced options for the keylime_tenant utility, enter the keylime_tenant -h
command.

8.7. CONFIGURING KEYLIME AGENT

The Keylime agent is the component deployed to all systems to be monitored by Keylime.

By default, the Keylime agent stores all its data in the /var/lib/keylime/ directory of the monitored
system.

NOTE

To keep the configuration files organized within the drop-in directories, use file names
with a two-digit number prefix, for example /etc/keylime/agent.conf.d/00-registrar-
ip.conf. The configuration processing reads the files inside the drop-in directory in
lexicographic order and sets each option to the last value it reads.

Prerequisites

You have root permissions to the monitored system.

The monitored system has a Trusted Platform Module (TPM).

Red Hat Enterprise Linux 9 Security hardening

78

NOTE

To verify, enter the tpm2_pcrread command. If the output returns several
hashes, a TPM is available.

You have network access to the systems where the other Keylime components are configured:

Verifier

For more information, see Section 8.2, “Configuring Keylime verifier” .

Registrar

For more information, see Section 8.3, “Configuring Keylime registrar” .

Tenant

For more information, see Section 8.6, “Configuring Keylime tenant” .

Integrity measurement architecture (IMA) is enabled on the monitored system. For more
information, see Enabling integrity measurement architecture and extended verification module .

Procedure

1. Install the Keylime agent:

dnf install keylime-agent

This command installs the keylime-agent-rust package.

2. Define the agent’s IP address and port in the configuration files. Create a new .conf file in the
/etc/keylime/agent.conf.d/ directory, for example, /etc/keylime/agent.conf.d/00-agent-
ip.conf, with the following content:

[agent]
ip = '<agent_ip>'

NOTE

The Keylime agent configuration uses the TOML format, which is different from
the INI format used for configuration of the other components. Therefore, enter
values in valid TOML syntax, for example, paths in single quotation marks and
arrays of multiple paths in square brackets.

Replace <agent_IP_address> with the agent’s IP address. Alternatively, use ip = '*' or ip =
'0.0.0.0' to bind the agent to all available IP addresses.

Optionally, you can also change the agent’s port from the default value 9002 by using the
port = '<agent_port>' option.

3. Define the registrar’s IP address and port in the configuration files. Create a new .conf file in the
/etc/keylime/agent.conf.d/ directory, for example, /etc/keylime/agent.conf.d/00-registrar-
ip.conf, with the following content:

[agent]
registrar_ip = '<registrar_IP_address>'

CHAPTER 8. ENSURING SYSTEM INTEGRITY WITH KEYLIME

79

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/enhancing-security-with-the-kernel-integrity-subsystem_managing-monitoring-and-updating-the-kernel#enabling-integrity-measurement-architecture-and-extended-verification-module_enhancing-security-with-the-kernel-integrity-subsystem

Replace <registrar_IP_address> with the registrar’s IP address.

Optionally, you can also change the registrar’s port from the default value 8890 by using the
registrar_port = '<registrar_port>' option.

4. Optional: Define the agent’s universally unique identifier (UUID). If it is not defined, the default
UUID is used. Create a new .conf file in the /etc/keylime/agent.conf.d/ directory, for example,
/etc/keylime/agent.conf.d/00-agent-uuid.conf, with the following content:

[agent]
uuid = '<agent_UUID>'

Replace <agent_UUID> with the agent’s UUID, for example d432fbb3-d2f1-4a97-9ef7-
abcdef012345. You can use the uuidgen utility to generate a UUID.

5. Optional: Load existing keys and certificates for the agent. If the agent receives no server_key
and server_cert, it generates its own key and a self-signed certificate.
Define the location of the keys and certificates in the configuration. Create a new .conf file in
the /etc/keylime/agent.conf.d/ directory, for example, /etc/keylime/agent.conf.d/00-keys-and-
certs.conf, with the following content:

[agent]
server_key = '</path/to/server_key>'
server_key_password = '<passphrase1>'
server_cert = '</path/to/server_cert>'
trusted_client_ca = '</path/to/ca/cert>'
trusted_client_ca = '[</path/to/ca/cert3>, </path/to/ca/cert4>]'

NOTE

Use absolute paths to define key and certificate locations. The Keylime agent
does not accept relative paths.

6. Open the port in firewall:

firewall-cmd --add-port 9002/tcp
firewall-cmd --runtime-to-permanent

If you use a different port, replace 9002 with the port number defined in the .conf file.

7. Enable and start the keylime_agent service:

systemctl enable --now keylime_agent

8. Optional: From the system where the Keylime tenant is configured, verify that the agent is
correctly configured and can connect to the registrar.

keylime_tenant -c regstatus --uuid <agent_uuid>
Reading configuration from ['/etc/keylime/logging.conf']
...
==\n-----END CERTIFICATE-----\n", "ip": "127.0.0.1", "port": 9002, "regcount": 1,
"operational_state": "Registered"}}}

Replace <agent_uuid> with the agent’s UUID.
If the registrar and agent are correctly configured, the output displays the agent’s IP

Red Hat Enterprise Linux 9 Security hardening

80

If the registrar and agent are correctly configured, the output displays the agent’s IP
address and port, followed by "operational_state": "Registered".

9. Create a new IMA policy by entering the following content into the /etc/ima/ima-policy file:

PROC_SUPER_MAGIC
dont_measure fsmagic=0x9fa0
SYSFS_MAGIC
dont_measure fsmagic=0x62656572
DEBUGFS_MAGIC
dont_measure fsmagic=0x64626720
TMPFS_MAGIC
dont_measure fsmagic=0x01021994
RAMFS_MAGIC
dont_measure fsmagic=0x858458f6
SECURITYFS_MAGIC
dont_measure fsmagic=0x73636673
SELINUX_MAGIC
dont_measure fsmagic=0xf97cff8c
CGROUP_SUPER_MAGIC
dont_measure fsmagic=0x27e0eb
OVERLAYFS_MAGIC
dont_measure fsmagic=0x794c7630
Do not measure log, audit or tmp files
dont_measure obj_type=var_log_t
dont_measure obj_type=auditd_log_t
dont_measure obj_type=tmp_t
MEASUREMENTS
measure func=BPRM_CHECK
measure func=FILE_MMAP mask=MAY_EXEC
measure func=MODULE_CHECK uid=0

10. Reboot the system to apply the new IMA policy.

Verification

1. Verify that the agent is running:

systemctl status keylime_agent
● keylime_agent.service - The Keylime compute agent
 Loaded: loaded (/usr/lib/systemd/system/keylime_agent.service; enabled; preset:
disabled)
 Active: active (running) since ...

Next steps

After the agent is configured on all systems you want to monitor, you can deploy Keylime to perform one
or both of the following functions:

Section 8.8, “Deploying Keylime for runtime monitoring”

Section 8.9, “Deploying Keylime for measured boot attestation”

Additional resources

CHAPTER 8. ENSURING SYSTEM INTEGRITY WITH KEYLIME

81

Integrity Measurement Architecture (IMA) Wiki

8.8. DEPLOYING KEYLIME FOR RUNTIME MONITORING

To verify that the state of monitored systems is correct, the Keylime agent must be running on the
monitored systems.

IMPORTANT

Because Keylime runtime monitoring uses integrity measurement architecture (IMA) to
measure large numbers of files, it might have a significant impact on the performance of
your system.

When provisioning the agent, you can also define a file that Keylime sends to the monitored system.
Keylime encrypts the file sent to the agent, and decrypts it only if the agent’s system complies with the
TPM policy and with the IMA allowlist.

You can make Keylime ignore changes of specific files or within specific directories by configuring a
Keylime excludelist.

From Keylime version 7.3.0, provided in RHEL 9.3, the allowlist and excludelist are combined into the
Keylime runtime policy.

Prerequisites

You have network access to the systems where the Keylime components are configured:

Verifier

For more information, see Section 8.2, “Configuring Keylime verifier” .

Registrar

For more information, see Section 8.3, “Configuring Keylime registrar” .

Tenant

For more information, see Section 8.6, “Configuring Keylime tenant” .

Agent

For more information, see Section 8.7, “Configuring Keylime agent” .

Procedure

1. On the monitored system where the Keylime agent is configured and running, generate an
allowlist from the current state of the system:

/usr/share/keylime/scripts/create_allowlist.sh -o <allowlist.txt> -h sha256sum

Replace <allowlist.txt> with the file name of the allowlist.

IMPORTANT

Use the SHA-256 hash function. SHA-1 is not secure and has been deprecated in
RHEL 9. For additional information, see SHA-1 deprecation in Red Hat Enterprise
Linux 9.

2. Copy the generated allowlist to the system where the keylime_tenant utility is configured, for

Red Hat Enterprise Linux 9 Security hardening

82

https://sourceforge.net/p/linux-ima/wiki/Home/
https://access.redhat.com/articles/6846411

2. Copy the generated allowlist to the system where the keylime_tenant utility is configured, for
example:

scp <allowlist.txt> root@<tenant.ip>:/root/<allowlist.txt>

3. Optional: You can define a list of files or directories excluded from Keylime measurements by
creating a file on the tenant system and entering the files and directories to exclude. The
excludelist accepts Python regular expressions with one regular expression per line. See Regular
expression operations at docs.python.org for the complete list of special characters. For
example, to exclude all files in the /tmp/ directory and some subdirectories of the /var/ directory
from Keylime measurements, create a /root/<excludelist.txt> file with the following content:

/var/cache/.*
/var/lock/.*
/var/log/.*
/var/run/.*
/var/spool/.*
/var/tmp/.*
/tmp/.*

Save the excludelist on the tenant system.

4. Combine the allowlist and excludelist into the Keylime runtime policy:

keylime_create_policy -a <allowlist.txt> -e <excludelist.txt> -o <policy.json>

5. On the system where the Keylime tenant is configured, provision the agent by using the
keylime_tenant utility:

keylime_tenant -c add -t <agent_ip> -u <agent_uuid> --runtime-policy <policy.json> --cert
default

Replace <agent_ip> with the agent’s IP address.

Replace <agent_uuid> with the agent’s UUID.

Replace <policy.json> with the path to the Keylime runtime policy file.

With the --cert option, the tenant generates and signs a certificate for the agent by using
the CA certificates and keys located in the specified directory, or the default
/var/lib/keylime/ca/ directory. If the directory contains no CA certificates and keys, the
tenant will generate them automatically according to the configuration in the
/etc/keylime/ca.conf file and save them to the specified directory. The tenant then sends
these keys and certificates to the agent.
When generating CA certificates or signing agent certificates, you may be prompted for the
password to access the CA private key: Please enter the password to decrypt your
keystore:.

If you do not want to use a certificate, use the -f option instead for delivering a file to the
agent. Provisioning an agent requires sending any file, even an empty file.

NOTE

CHAPTER 8. ENSURING SYSTEM INTEGRITY WITH KEYLIME

83

https://docs.python.org/3/library/re.html#regular-expression-syntax

NOTE

Keylime encrypts the file sent to the agent, and decrypts it only if the agent’s
system complies with the TPM policy and the IMA allowlist. By default,
Keylime decompresses .zip files.

As an example, with the following command, keylime_tenant provisions a new Keylime agent at
127.0.0.1 with UUID d432fbb3-d2f1-4a97-9ef7-75bd81c00000 and loads a runtime policy
policy.json. It also generates a certificate in the default directory and sends the certificate file
to the agent. Keylime decrypts the file only if the TPM policy configured in
/etc/keylime/verifier.conf is satisfied:

keylime_tenant -c add -t 127.0.0.1 -u d432fbb3-d2f1-4a97-9ef7-75bd81c00000 --cert
default --runtime-policy policy.json

NOTE

You can stop Keylime from monitoring a node by using the # keylime_tenant -c
delete -u <agent_uuid> command.

You can modify the configuration of an already registered agent by using the
keylime_tenant -c update command.

Verification

1. Optional: Reboot the monitored system before verification to verify that the settings are
persistent.

2. Verify a successful attestation of the agent:

keylime_tenant -c cvstatus -u <agent.uuid>
...
{"<agent.uuid>": {"operational_state": "Get Quote"..."attestation_count": 5
...

Replace <agent.uuid> with the agent’s UUID.

If the value of operational_state is Get Quote and attestation_count is non-zero, the
attestation of this agent is successful.

If the value of operational_state is Invalid Quote or Failed attestation fails, the command
displays output similar to the following:

{"<agent.uuid>": {"operational_state": "Invalid Quote", ... "ima.validation.ima-
ng.not_in_allowlist", "attestation_count": 5, "last_received_quote": 1684150329,
"last_successful_attestation": 1684150327}}

3. If the attestation fails, display more details in the verifier log:

journalctl -u keylime_verifier
keylime.tpm - INFO - Checking IMA measurement list...
keylime.ima - WARNING - File not found in allowlist: /root/bad-script.sh

Red Hat Enterprise Linux 9 Security hardening

84

keylime.ima - ERROR - IMA ERRORS: template-hash 0 fnf 1 hash 0 good 781
keylime.cloudverifier - WARNING - agent D432FBB3-D2F1-4A97-9EF7-75BD81C00000
failed, stopping polling

Additional resources

For more information about IMA, see Enhancing security with the kernel integrity subsystem .

8.9. DEPLOYING KEYLIME FOR MEASURED BOOT ATTESTATION

When you configure Keylime for measured boot attestation, Keylime checks that the boot process on
the measured system corresponds to the state you defined.

Prerequisites

You have network access to the systems where the Keylime components are configured:

Verifier

For more information, see Section 8.2, “Configuring Keylime verifier” .

Registrar

For more information, see Section 8.3, “Configuring Keylime registrar” .

Tenant

For more information, see Section 8.6, “Configuring Keylime tenant” .

Agent

For more information, see Section 8.7, “Configuring Keylime agent” .

Unified Extensible Firmware Interface (UEFI) is enabled on the agent system.

Procedure

1. On the monitored system where the Keylime agent is configured and running, install the
python3-keylime package, which contains the create_mb_refstate script:

dnf -y install python3-keylime

2. On the monitored system, generate a policy from the measured boot log of the current state of
the system by using the create_mb_refstate script:

/usr/share/keylime/scripts/create_mb_refstate
/sys/kernel/security/tpm0/binary_bios_measurements
<./measured_boot_reference_state.json>

Replace <./measured_boot_reference_state.json> with the path where the script saves the
generated policy.

IMPORTANT

The policy generated with the create_mb_refstate script is based on the current
state of the system and is very strict. Any modifications of the system including
kernel updates and system updates will change the boot process and the system
will fail the attestation.

CHAPTER 8. ENSURING SYSTEM INTEGRITY WITH KEYLIME

85

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/enhancing-security-with-the-kernel-integrity-subsystem_managing-monitoring-and-updating-the-kernel

3. Copy the generated policy to the system where the keylime_tenant utility is configured, for
example:

scp root@<agent_ip>:<./measured_boot_reference_state.json>
<./measured_boot_reference_state.json>

4. On the system where the Keylime tenant is configured, provision the agent by using the
keylime_tenant utility:

keylime_tenant -c add -t <agent_ip> -u <agent_uuid> --mb_refstate
<./measured_boot_reference_state.json>

Replace <agent_ip> with the agent’s IP address.

Replace <agent_uuid> with the agent’s UUID.

Replace <./measured_boot_reference_state.json> with the path to the measured boot
policy.

If you configure measured boot in combination with runtime monitoring, provide all the options
from both use cases when entering the keylime_tenant -c add command.

NOTE

You can stop Keylime from monitoring a node by using the # keylime_tenant -c
delete -t <agent_ip> -u <agent_uuid> command.

You can modify the configuration of an already registered agent by using the
keylime_tenant -c update command.

Verification

1. Reboot the monitored system and verify a successful attestation of the agent:

keylime_tenant -c cvstatus -u <agent_uuid>
...
{"<agent.uuid>": {"operational_state": "Get Quote"..."attestation_count": 5
...

Replace <agent_uuid> with the agent’s UUID.

If the value of operational_state is Get Quote and attestation_count is non-zero, the
attestation of this agent is successful.

If the value of operational_state is Invalid Quote or Failed attestation fails, the command
displays output similar to the following:

{"<agent.uuid>": {"operational_state": "Invalid Quote", ... "ima.validation.ima-
ng.not_in_allowlist", "attestation_count": 5, "last_received_quote": 1684150329,
"last_successful_attestation": 1684150327}}

2. If the attestation fails, display more details in the verifier log:

journalctl -u keylime_verifier

Red Hat Enterprise Linux 9 Security hardening

86

{"d432fbb3-d2f1-4a97-9ef7-75bd81c00000": {"operational_state": "Tenant Quote Failed", ...
"last_event_id": "measured_boot.invalid_pcr_0", "attestation_count": 0,
"last_received_quote": 1684487093, "last_successful_attestation": 0}}

CHAPTER 8. ENSURING SYSTEM INTEGRITY WITH KEYLIME

87

CHAPTER 9. CHECKING INTEGRITY WITH AIDE
Advanced Intrusion Detection Environment (AIDE) is a utility that creates a database of files on the
system, and then uses that database to ensure file integrity and detect system intrusions.

9.1. INSTALLING AIDE

The following steps are necessary to install AIDE and to initiate its database.

Prerequisites

The AppStream repository is enabled.

Procedure

1. Install the aide package:

dnf install aide

2. Generate an initial database:

aide --init

NOTE

In the default configuration, the aide --init command checks just a set of
directories and files defined in the /etc/aide.conf file. To include additional
directories or files in the AIDE database, and to change their watched
parameters, edit /etc/aide.conf accordingly.

3. To start using the database, remove the .new substring from the initial database file name:

mv /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz

4. To change the location of the AIDE database, edit the /etc/aide.conf file and modify the DBDIR
value. For additional security, store the database, configuration, and the /usr/sbin/aide binary
file in a secure location such as a read-only media.

9.2. PERFORMING INTEGRITY CHECKS WITH AIDE

Prerequisites

AIDE is properly installed and its database is initialized. See Installing AIDE

Procedure

1. To initiate a manual check:

aide --check
Start timestamp: 2018-07-11 12:41:20 +0200 (AIDE 0.16)
AIDE found differences between database and filesystem!!

Red Hat Enterprise Linux 9 Security hardening

88

...
[trimmed for clarity]

2. At a minimum, configure the system to run AIDE weekly. Optimally, run AIDE daily. For example,
to schedule a daily execution of AIDE at 04:05 a.m. by using the cron command, add the
following line to the /etc/crontab file:

 05 4 * * * root /usr/sbin/aide --check

9.3. UPDATING AN AIDE DATABASE

After verifying the changes of your system, such as package updates or configuration files adjustments,
Red Hat recommends updating your baseline AIDE database.

Prerequisites

AIDE is properly installed and its database is initialized. See Installing AIDE

Procedure

1. Update your baseline AIDE database:

aide --update

The aide --update command creates the /var/lib/aide/aide.db.new.gz database file.

2. To start using the updated database for integrity checks, remove the .new substring from the
file name.

9.4. FILE-INTEGRITY TOOLS: AIDE AND IMA

Red Hat Enterprise Linux provides several tools for checking and preserving the integrity of files and
directories on your system. The following table helps you decide which tool better fits your scenario.

Table 9.1. Comparison between AIDE and IMA

Question Advanced Intrusion Detection
Environment (AIDE)

Integrity Measurement
Architecture (IMA)

What AIDE is a utility that creates a
database of files and directories
on the system. This database
serves for checking file integrity
and detect intrusion detection.

IMA detects if a file is altered by
checking file measurement (hash
values) compared to previously
stored extended attributes.

How AIDE uses rules to compare the
integrity state of the files and
directories.

IMA uses file hash values to
detect the intrusion.

CHAPTER 9. CHECKING INTEGRITY WITH AIDE

89

Why Detection - AIDE detects if a file
is modified by verifying the rules.

Detection and Prevention - IMA
detects and prevents an attack by
replacing the extended attribute
of a file.

Usage AIDE detects a threat when the
file or directory is modified.

IMA detects a threat when
someone tries to alter the entire
file.

Extension AIDE checks the integrity of files
and directories on the local
system.

IMA ensures security on the local
and remote systems.

Question Advanced Intrusion Detection
Environment (AIDE)

Integrity Measurement
Architecture (IMA)

9.5. ADDITIONAL RESOURCES

aide(1) man page

Kernel integrity subsystem

Red Hat Enterprise Linux 9 Security hardening

90

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/enhancing-security-with-the-kernel-integrity-subsystem_managing-monitoring-and-updating-the-kernel

CHAPTER 10. ENCRYPTING BLOCK DEVICES USING LUKS
By using the disk encryption, you can protect the data on a block device by encrypting it. To access the
device’s decrypted contents, enter a passphrase or key as authentication. This is important for mobile
computers and removable media because it helps to protect the device’s contents even if it has been
physically removed from the system. The LUKS format is a default implementation of block device
encryption in Red Hat Enterprise Linux.

10.1. LUKS DISK ENCRYPTION

Linux Unified Key Setup-on-disk-format (LUKS) provides a set of tools that simplifies managing the
encrypted devices. With LUKS, you can encrypt block devices and enable multiple user keys to decrypt a
master key. For bulk encryption of the partition, use this master key.

Red Hat Enterprise Linux uses LUKS to perform block device encryption. By default, the option to
encrypt the block device is unchecked during the installation. If you select the option to encrypt your
disk, the system prompts you for a passphrase every time you boot the computer. This passphrase
unlocks the bulk encryption key that decrypts your partition. If you want to modify the default partition
table, you can select the partitions that you want to encrypt. This is set in the partition table settings.

Ciphers

The default cipher used for LUKS is aes-xts-plain64. The default key size for LUKS is 512 bits. The
default key size for LUKS with Anaconda XTS mode is 512 bits. The following are the available ciphers:

Advanced Encryption Standard (AES)

Twofish

Serpent

Operations performed by LUKS

LUKS encrypts entire block devices and is therefore well-suited for protecting contents of
mobile devices such as removable storage media or laptop disk drives.

The underlying contents of the encrypted block device are arbitrary, which makes it useful for
encrypting swap devices. This can also be useful with certain databases that use specially
formatted block devices for data storage.

LUKS uses the existing device mapper kernel subsystem.

LUKS provides passphrase strengthening, which protects against dictionary attacks.

LUKS devices contain multiple key slots, which means you can add backup keys or passphrases.

IMPORTANT

CHAPTER 10. ENCRYPTING BLOCK DEVICES USING LUKS

91

IMPORTANT

LUKS is not recommended for the following scenarios:

Disk-encryption solutions such as LUKS protect the data only when your system
is off. After the system is on and LUKS has decrypted the disk, the files on that
disk are available to anyone who have access to them.

Scenarios that require multiple users to have distinct access keys to the same
device. The LUKS1 format provides eight key slots and LUKS2 provides up to 32
key slots.

Applications that require file-level encryption.

Additional resources

LUKS Project Home Page

LUKS On-Disk Format Specification

FIPS 197: Advanced Encryption Standard (AES)

10.2. LUKS VERSIONS IN RHEL

In Red Hat Enterprise Linux, the default format for LUKS encryption is LUKS2. The old LUKS1 format
remains fully supported and it is provided as a format compatible with earlier Red Hat Enterprise Linux
releases. LUKS2 re-encryption is considered more robust and safe to use as compared to LUKS1 re-
encryption.

The LUKS2 format enables future updates of various parts without a need to modify binary structures.
Internally it uses JSON text format for metadata, provides redundancy of metadata, detects metadata
corruption, and automatically repairs from a metadata copy.

IMPORTANT

Do not use LUKS2 in systems that support only LUKS1.

Since Red Hat Enterprise Linux 9.2, you can use the cryptsetup reencrypt command for both the LUKS
versions to encrypt the disk.

Online re-encryption

The LUKS2 format supports re-encrypting encrypted devices while the devices are in use. For example,
you do not have to unmount the file system on the device to perform the following tasks:

Changing the volume key

Changing the encryption algorithm
When encrypting a non-encrypted device, you must still unmount the file system. You can
remount the file system after a short initialization of the encryption.

The LUKS1 format does not support online re-encryption.

Conversion

In certain situations, you can convert LUKS1 to LUKS2. The conversion is not possible specifically in the

Red Hat Enterprise Linux 9 Security hardening

92

https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md
https://gitlab.com/cryptsetup/LUKS2-docs/blob/master/luks2_doc_wip.pdf
https://doi.org/10.6028/NIST.FIPS.197-upd1

In certain situations, you can convert LUKS1 to LUKS2. The conversion is not possible specifically in the
following scenarios:

A LUKS1 device is marked as being used by a Policy-Based Decryption (PBD) Clevis solution.
The cryptsetup tool does not convert the device when some luksmeta metadata are detected.

A device is active. The device must be in an inactive state before any conversion is possible.

10.3. OPTIONS FOR DATA PROTECTION DURING LUKS2 RE-
ENCRYPTION

LUKS2 provides several options that prioritize performance or data protection during the re-encryption
process. It provides the following modes for the resilience option, and you can select any of these
modes by using the cryptsetup reencrypt --resilience resilience-mode /dev/sdx command:

checksum

The default mode. It balances data protection and performance.
This mode stores individual checksums of the sectors in the re-encryption area, which the recovery
process can detect for the sectors that were re-encrypted by LUKS2. The mode requires that the
block device sector write is atomic.

journal

The safest mode but also the slowest. Since this mode journals the re-encryption area in the binary
area, the LUKS2 writes the data twice.

none

The none mode prioritizes performance and provides no data protection. It protects the data only
against safe process termination, such as the SIGTERM signal or the user pressing Ctrl+C key. Any
unexpected system failure or application failure might result in data corruption.

If a LUKS2 re-encryption process terminates unexpectedly by force, LUKS2 can perform the recovery in
one of the following ways:

Automatically

By performing any one of the following actions triggers the automatic recovery action during the
next LUKS2 device open action:

Executing the cryptsetup open command.

Attaching the device with the systemd-cryptsetup command.

Manually

By using the cryptsetup repair /dev/sdx command on the LUKS2 device.

Additional resources

cryptsetup-reencrypt(8) and cryptsetup-repair(8) man pages

10.4. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING
LUKS2

You can encrypt the existing data on a not yet encrypted device by using the LUKS2 format. A new
LUKS header is stored in the head of the device.

CHAPTER 10. ENCRYPTING BLOCK DEVICES USING LUKS

93

Prerequisites

The block device has a file system.

You have backed up your data.

WARNING

You might lose your data during the encryption process due to a hardware,
kernel, or human failure. Ensure that you have a reliable backup before you
start encrypting the data.

Procedure

1. Unmount all file systems on the device that you plan to encrypt, for example:

umount /dev/mapper/vg00-lv00

2. Make free space for storing a LUKS header. Use one of the following options that suits your
scenario:

In the case of encrypting a logical volume, you can extend the logical volume without
resizing the file system. For example:

lvextend -L+32M /dev/mapper/vg00-lv00

Extend the partition by using partition management tools, such as parted.

Shrink the file system on the device. You can use the resize2fs utility for the ext2, ext3, or
ext4 file systems. Note that you cannot shrink the XFS file system.

3. Initialize the encryption:

cryptsetup reencrypt --encrypt --init-only --reduce-device-size 32M /dev/mapper/vg00-lv00
lv00_encrypted

/dev/mapper/lv00_encrypted is now active and ready for online encryption.

4. Mount the device:

mount /dev/mapper/lv00_encrypted /mnt/lv00_encrypted

5. Add an entry for a persistent mapping to the /etc/crypttab file:

a. Find the luksUUID:

cryptsetup luksUUID /dev/mapper/vg00-lv00

a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325



Red Hat Enterprise Linux 9 Security hardening

94

b. Open /etc/crypttab in a text editor of your choice and add a device in this file:

$ vi /etc/crypttab

lv00_encrypted UUID=a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325 none

Replace a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325 with your device’s luksUUID.

c. Refresh initramfs with dracut:

$ dracut -f --regenerate-all

6. Add an entry for a persistent mounting to the /etc/fstab file:

a. Find the file system’s UUID of the active LUKS block device:

$ blkid -p /dev/mapper/lv00_encrypted

/dev/mapper/lv00-encrypted: UUID="37bc2492-d8fa-4969-9d9b-bb64d3685aa9"
BLOCK_SIZE="4096" TYPE="xfs" USAGE="filesystem"

b. Open /etc/fstab in a text editor of your choice and add a device in this file, for example:

$ vi /etc/fstab

UUID=37bc2492-d8fa-4969-9d9b-bb64d3685aa9 /home auto rw,user,auto 0

Replace 37bc2492-d8fa-4969-9d9b-bb64d3685aa9 with your file system’s UUID.

7. Resume the online encryption:

cryptsetup reencrypt --resume-only /dev/mapper/vg00-lv00

Enter passphrase for /dev/mapper/vg00-lv00:
Auto-detected active dm device 'lv00_encrypted' for data device /dev/mapper/vg00-lv00.
Finished, time 00:31.130, 10272 MiB written, speed 330.0 MiB/s

Verification

1. Verify if the existing data was encrypted:

cryptsetup luksDump /dev/mapper/vg00-lv00

LUKS header information
Version: 2
Epoch: 4
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: a52e2cc9-a5be-47b8-a95d-6bdf4f2d9325
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:

CHAPTER 10. ENCRYPTING BLOCK DEVICES USING LUKS

95

 0: crypt
 offset: 33554432 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
[...]

2. View the status of the encrypted blank block device:

cryptsetup status lv00_encrypted

/dev/mapper/lv00_encrypted is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/mapper/vg00-lv00

Additional resources

cryptsetup(8), cryptsetup-reencrypt(8), lvextend(8), resize2fs(8), and parted(8) man pages

10.5. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING
LUKS2 WITH A DETACHED HEADER

You can encrypt existing data on a block device without creating free space for storing a LUKS header.
The header is stored in a detached location, which also serves as an additional layer of security. The
procedure uses the LUKS2 encryption format.

Prerequisites

The block device has a file system.

You have backed up your data.

WARNING

You might lose your data during the encryption process due to a hardware,
kernel, or human failure. Ensure that you have a reliable backup before you
start encrypting the data.

Procedure

1. Unmount all file systems on the device, for example:

umount /dev/nvme0n1p1

2. Initialize the encryption:



Red Hat Enterprise Linux 9 Security hardening

96

cryptsetup reencrypt --encrypt --init-only --header /home/header /dev/nvme0n1p1
nvme_encrypted

WARNING!
========
Header file does not exist, do you want to create it?

Are you sure? (Type 'yes' in capital letters): YES
Enter passphrase for /home/header:
Verify passphrase:
/dev/mapper/nvme_encrypted is now active and ready for online encryption.

Replace /home/header with a path to the file with a detached LUKS header. The detached
LUKS header has to be accessible to unlock the encrypted device later.

3. Mount the device:

mount /dev/mapper/nvme_encrypted /mnt/nvme_encrypted

4. Resume the online encryption:

cryptsetup reencrypt --resume-only --header /home/header /dev/nvme0n1p1

Enter passphrase for /dev/nvme0n1p1:
Auto-detected active dm device 'nvme_encrypted' for data device /dev/nvme0n1p1.
Finished, time 00m51s, 10 GiB written, speed 198.2 MiB/s

Verification

1. Verify if the existing data on a block device using LUKS2 with a detached header is encrypted:

cryptsetup luksDump /home/header

LUKS header information
Version: 2
Epoch: 88
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: c4f5d274-f4c0-41e3-ac36-22a917ab0386
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 0 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
 sector: 512 [bytes]
[...]

2. View the status of the encrypted blank block device:

cryptsetup status nvme_encrypted

CHAPTER 10. ENCRYPTING BLOCK DEVICES USING LUKS

97

/dev/mapper/nvme_encrypted is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/nvme0n1p1

Additional resources

cryptsetup(8) and cryptsetup-reencrypt(8) man pages

10.6. ENCRYPTING A BLANK BLOCK DEVICE USING LUKS2

You can encrypt a blank block device, which you can use for an encrypted storage by using the LUKS2
format.

Prerequisites

A blank block device. You can use commands such as lsblk to find if there is no real data on that
device, for example, a file system.

Procedure

1. Setup a partition as an encrypted LUKS partition:

cryptsetup luksFormat /dev/nvme0n1p1

WARNING!
========
This will overwrite data on /dev/nvme0n1p1 irrevocably.
Are you sure? (Type 'yes' in capital letters): YES
Enter passphrase for /dev/nvme0n1p1:
Verify passphrase:

2. Open an encrypted LUKS partition:

cryptsetup open /dev/nvme0n1p1 nvme0n1p1_encrypted

Enter passphrase for /dev/nvme0n1p1:

This unlocks the partition and maps it to a new device by using the device mapper. To not
overwrite the encrypted data, this command alerts the kernel that the device is an encrypted
device and addressed through LUKS by using the /dev/mapper/device_mapped_name path.

3. Create a file system to write encrypted data to the partition, which must be accessed through
the device mapped name:

mkfs -t ext4 /dev/mapper/nvme0n1p1_encrypted

4. Mount the device:

mount /dev/mapper/nvme0n1p1_encrypted mount-point

Red Hat Enterprise Linux 9 Security hardening

98

Verification

1. Verify if the blank block device is encrypted:

cryptsetup luksDump /dev/nvme0n1p1

LUKS header information
Version: 2
Epoch: 3
Metadata area: 16384 [bytes]
Keyslots area: 16744448 [bytes]
UUID: 34ce4870-ffdf-467c-9a9e-345a53ed8a25
Label: (no label)
Subsystem: (no subsystem)
Flags: (no flags)

Data segments:
 0: crypt
 offset: 16777216 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
 sector: 512 [bytes]
[...]

2. View the status of the encrypted blank block device:

cryptsetup status nvme0n1p1_encrypted

/dev/mapper/nvme0n1p1_encrypted is active and is in use.
 type: LUKS2
 cipher: aes-xts-plain64
 keysize: 512 bits
 key location: keyring
 device: /dev/nvme0n1p1
 sector size: 512
 offset: 32768 sectors
 size: 20938752 sectors
 mode: read/write

Additional resources

cryptsetup(8), cryptsetup-open (8), and cryptsetup-lusFormat(8) man pages

10.7. CREATING A LUKS2 ENCRYPTED VOLUME BY USING THE
STORAGE RHEL SYSTEM ROLE

You can use the storage role to create and configure a volume encrypted with LUKS by running an
Ansible playbook.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

CHAPTER 10. ENCRYPTING BLOCK DEVICES USING LUKS

99

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

You can also add other encryption parameters, such as encryption_key, encryption_cipher,
encryption_key_size, and encryption_luks, to the playbook file.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

1. View the encryption status:

cryptsetup status sdb

/dev/mapper/sdb is active and is in use.
type: LUKS2
cipher: aes-xts-plain64
keysize: 512 bits
key location: keyring
device: /dev/sdb
...

2. Verify the created LUKS encrypted volume:

cryptsetup luksDump /dev/sdb

- name: Create and configure a volume encrypted with LUKS
 hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.storage
 vars:
 storage_volumes:
 - name: barefs
 type: disk
 disks:
 - sdb
 fs_type: xfs
 fs_label: label-name
 mount_point: /mnt/data
 encryption: true
 encryption_password: <password>

Red Hat Enterprise Linux 9 Security hardening

100

Version: 2
Epoch: 6
Metadata area: 16384 [bytes]
Keyslots area: 33521664 [bytes]
UUID: a4c6be82-7347-4a91-a8ad-9479b72c9426
Label: (no label)
Subsystem: (no subsystem)
Flags: allow-discards

Data segments:
 0: crypt
 offset: 33554432 [bytes]
 length: (whole device)
 cipher: aes-xts-plain64
 sector: 4096 [bytes]
...

Additional resources

/usr/share/ansible/roles/rhel-system-roles.storage/README.md file

/usr/share/doc/rhel-system-roles/storage/ directory

Encrypting block devices by using LUKS

CHAPTER 10. ENCRYPTING BLOCK DEVICES USING LUKS

101

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_storage_devices/encrypting-block-devices-using-luks_managing-storage-devices

CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF
ENCRYPTED VOLUMES BY USING POLICY-BASED

DECRYPTION
Policy-Based Decryption (PBD) is a collection of technologies that enable unlocking encrypted root and
secondary volumes of hard drives on physical and virtual machines. PBD uses a variety of unlocking
methods, such as user passwords, a Trusted Platform Module (TPM) device, a PKCS #11 device
connected to a system, for example, a smart card, or a special network server.

PBD allows combining different unlocking methods into a policy, which makes it possible to unlock the
same volume in different ways. The current implementation of the PBD in RHEL consists of the Clevis
framework and plug-ins called pins. Each pin provides a separate unlocking capability. Currently, the
following pins are available:

tang

Allows unlocking volumes using a network server.

tpm2

allows unlocking volumes using a TPM2 policy.

sss

allows deploying high-availability systems using the Shamir’s Secret Sharing (SSS) cryptographic
scheme.

11.1. NETWORK-BOUND DISK ENCRYPTION

The Network Bound Disc Encryption (NBDE) is a subcategory of Policy-Based Decryption (PBD) that
allows binding encrypted volumes to a special network server. The current implementation of the NBDE
includes a Clevis pin for the Tang server and the Tang server itself.

In RHEL, NBDE is implemented through the following components and technologies:

Figure 11.1. NBDE scheme when using a LUKS1-encrypted volume. The luksmeta package is not used
for LUKS2 volumes.

Tang is a server for binding data to network presence. It makes a system containing your data available
when the system is bound to a certain secure network. Tang is stateless and does not require TLS or

Red Hat Enterprise Linux 9 Security hardening

102

authentication. Unlike escrow-based solutions, where the server stores all encryption keys and has
knowledge of every key ever used, Tang never interacts with any client keys, so it never gains any
identifying information from the client.

Clevis is a pluggable framework for automated decryption. In NBDE, Clevis provides automated
unlocking of LUKS volumes. The clevis package provides the client side of the feature.

A Clevis pin is a plug-in into the Clevis framework. One of such pins is a plug-in that implements
interactions with the NBDE server — Tang.

Clevis and Tang are generic client and server components that provide network-bound encryption. In
RHEL, they are used in conjunction with LUKS to encrypt and decrypt root and non-root storage
volumes to accomplish Network-Bound Disk Encryption.

Both client- and server-side components use the José library to perform encryption and decryption
operations.

When you begin provisioning NBDE, the Clevis pin for Tang server gets a list of the Tang server’s
advertised asymmetric keys. Alternatively, since the keys are asymmetric, a list of Tang’s public keys can
be distributed out of band so that clients can operate without access to the Tang server. This mode is
called offline provisioning.

The Clevis pin for Tang uses one of the public keys to generate a unique, cryptographically-strong
encryption key. Once the data is encrypted using this key, the key is discarded. The Clevis client should
store the state produced by this provisioning operation in a convenient location. This process of
encrypting data is the provisioning step.

The LUKS version 2 (LUKS2) is the default disk-encryption format in RHEL, hence, the provisioning
state for NBDE is stored as a token in a LUKS2 header. The leveraging of provisioning state for NBDE by
the luksmeta package is used only for volumes encrypted with LUKS1.

The Clevis pin for Tang supports both LUKS1 and LUKS2 without specification need. Clevis can encrypt
plain-text files but you have to use the cryptsetup tool for encrypting block devices. See the Encrypting
block devices using LUKS for more information.

When the client is ready to access its data, it loads the metadata produced in the provisioning step and it
responds to recover the encryption key. This process is the recovery step.

In NBDE, Clevis binds a LUKS volume using a pin so that it can be automatically unlocked. After
successful completion of the binding process, the disk can be unlocked using the provided Dracut
unlocker.

NOTE

If the kdump kernel crash dumping mechanism is set to save the content of the system
memory to a LUKS-encrypted device, you are prompted for entering a password during
the second kernel boot.

Additional resources

NBDE (Network-Bound Disk Encryption) Technology Knowledgebase article

tang(8), clevis(1), jose(1), and clevis-luks-unlockers(7) man pages

How to set up Network-Bound Disk Encryption with multiple LUKS devices (Clevis + Tang
unlocking) Knowledgebase article

CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

103

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/encrypting-block-devices-using-luks_security-hardening
https://access.redhat.com/articles/6987053
https://access.redhat.com/articles/4500491

11.2. INSTALLING AN ENCRYPTION CLIENT - CLEVIS

Use this procedure to deploy and start using the Clevis pluggable framework on your system.

Procedure

1. To install Clevis and its pins on a system with an encrypted volume:

dnf install clevis

2. To decrypt data, use a clevis decrypt command and provide a cipher text in the JSON Web
Encryption (JWE) format, for example:

$ clevis decrypt < secret.jwe

Additional resources

clevis(1) man page

Built-in CLI help after entering the clevis command without any argument:

$ clevis
Usage: clevis COMMAND [OPTIONS]

clevis decrypt Decrypts using the policy defined at encryption time
clevis encrypt sss Encrypts using a Shamir's Secret Sharing policy
clevis encrypt tang Encrypts using a Tang binding server policy
clevis encrypt tpm2 Encrypts using a TPM2.0 chip binding policy
clevis luks bind Binds a LUKS device using the specified policy
clevis luks edit Edit a binding from a clevis-bound slot in a LUKS device
clevis luks list Lists pins bound to a LUKSv1 or LUKSv2 device
clevis luks pass Returns the LUKS passphrase used for binding a particular slot.
clevis luks regen Regenerate clevis binding
clevis luks report Report tang keys' rotations
clevis luks unbind Unbinds a pin bound to a LUKS volume
clevis luks unlock Unlocks a LUKS volume

11.3. DEPLOYING A TANG SERVER WITH SELINUX IN ENFORCING
MODE

You can use a Tang server to automatically unlock LUKS-encrypted volumes on Clevis-enabled clients.
In the minimalistic scenario, you deploy a Tang server on port 80 by installing the tang package and
entering the systemctl enable tangd.socket --now command. The following example procedure
demonstrates the deployment of a Tang server running on a custom port as a confined service in
SELinux enforcing mode.

Prerequisites

The policycoreutils-python-utils package and its dependencies are installed.

The firewalld service is running.

Procedure

Red Hat Enterprise Linux 9 Security hardening

104

1. To install the tang package and its dependencies, enter the following command as root:

dnf install tang

2. Pick an unoccupied port, for example, 7500/tcp, and allow the tangd service to bind to that
port:

semanage port -a -t tangd_port_t -p tcp 7500

Note that a port can be used only by one service at a time, and thus an attempt to use an
already occupied port implies the ValueError: Port already defined error message.

3. Open the port in the firewall:

firewall-cmd --add-port=7500/tcp
firewall-cmd --runtime-to-permanent

4. Enable the tangd service:

systemctl enable tangd.socket

5. Create an override file:

systemctl edit tangd.socket

6. In the following editor screen, which opens an empty override.conf file located in the
/etc/systemd/system/tangd.socket.d/ directory, change the default port for the Tang server
from 80 to the previously picked number by adding the following lines:

[Socket]
ListenStream=
ListenStream=7500

IMPORTANT

Insert the previous code snippet between the lines starting with # Anything
between here and # Lines below this, otherwise the system discards your
changes.

7. Save the changes by pressing Ctrl+O and Enter. Exit the editor by pressing Ctrl+X.

8. Reload the changed configuration:

systemctl daemon-reload

9. Check that your configuration is working:

systemctl show tangd.socket -p Listen
Listen=[::]:7500 (Stream)

10. Start the tangd service:

CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

105

systemctl restart tangd.socket

Because tangd uses the systemd socket activation mechanism, the server starts as soon as the
first connection comes in. A new set of cryptographic keys is automatically generated at the first
start. To perform cryptographic operations such as manual key generation, use the jose utility.

Additional resources

tang(8), semanage(8), firewall-cmd(1), jose(1), systemd.unit(5), and systemd.socket(5) man
pages.

11.4. ROTATING TANG SERVER KEYS AND UPDATING BINDINGS ON
CLIENTS

Use the following steps to rotate your Tang server keys and update existing bindings on clients. The
precise interval at which you should rotate them depends on your application, key sizes, and institutional
policy.

Alternatively, you can rotate Tang keys by using the nbde_server RHEL system role. See Using the
nbde_server system role for setting up multiple Tang servers for more information.

Prerequisites

A Tang server is running.

The clevis and clevis-luks packages are installed on your clients.

Procedure

1. Rename all keys in the /var/db/tang key database directory to have a leading . to hide them
from advertisement. Note that the file names in the following example differs from unique file
names in the key database directory of your Tang server:

cd /var/db/tang
ls -l
-rw-r--r--. 1 root root 349 Feb 7 14:55 UV6dqXSwe1bRKG3KbJmdiR020hY.jwk
-rw-r--r--. 1 root root 354 Feb 7 14:55 y9hxLTQSiSB5jSEGWnjhY8fDTJU.jwk
mv UV6dqXSwe1bRKG3KbJmdiR020hY.jwk .UV6dqXSwe1bRKG3KbJmdiR020hY.jwk
mv y9hxLTQSiSB5jSEGWnjhY8fDTJU.jwk .y9hxLTQSiSB5jSEGWnjhY8fDTJU.jwk

2. Check that you renamed and therefore hid all keys from the Tang server advertisement:

ls -l
total 0

3. Generate new keys using the /usr/libexec/tangd-keygen command in /var/db/tang on the Tang
server:

/usr/libexec/tangd-keygen /var/db/tang
ls /var/db/tang
3ZWS6-cDrCG61UPJS2BMmPU4I54.jwk zyLuX6hijUy_PSeUEFDi7hi38.jwk

4. Check that your Tang server advertises the signing key from the new key pair, for example:

Red Hat Enterprise Linux 9 Security hardening

106

tang-show-keys 7500
3ZWS6-cDrCG61UPJS2BMmPU4I54

5. On your NBDE clients, use the clevis luks report command to check if the keys advertised by
the Tang server remains the same. You can identify slots with the relevant binding using the
clevis luks list command, for example:

clevis luks list -d /dev/sda2
1: tang '{"url":"http://tang.srv"}'
clevis luks report -d /dev/sda2 -s 1
...
Report detected that some keys were rotated.
Do you want to regenerate luks metadata with "clevis luks regen -d /dev/sda2 -s 1"? [ynYN]

6. To regenerate LUKS metadata for the new keys either press y to the prompt of the previous
command, or use the clevis luks regen command:

clevis luks regen -d /dev/sda2 -s 1

7. When you are sure that all old clients use the new keys, you can remove the old keys from the
Tang server, for example:

cd /var/db/tang
rm .*.jwk

WARNING

Removing the old keys while clients are still using them can result in data loss. If you
accidentally remove such keys, use the clevis luks regen command on the clients,
and provide your LUKS password manually.

Additional resources

tang-show-keys(1), clevis-luks-list(1), clevis-luks-report(1), and clevis-luks-regen(1) man
pages

11.5. CONFIGURING AUTOMATED UNLOCKING BY USING A TANG KEY
IN THE WEB CONSOLE

You can configure automated unlocking of a LUKS-encrypted storage device using a key provided by a
Tang server.

Prerequisites

The RHEL 9 web console has been installed. See Installing the web console for details.

The cockpit-storaged and clevis-luks packages are installed on your system.



CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

107

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console#installing-the-web-console_getting-started-with-the-rhel-9-web-console

The cockpit.socket service is running at port 9090.

A Tang server is available. See Deploying a Tang server with SELinux in enforcing mode for
details.

Procedure

1. Open the RHEL web console by entering the following address in a web browser:

https://<localhost>:9090

Replace the <localhost> part by the remote server’s host name or IP address when you connect
to a remote system.

2. Provide your credentials and click Storage. In the Filesystems section, click the disk that
contains an encrypted volume you plan to add to unlock automatically.

3. In the following window listing partitions and drive details of the selected disk, click > next to the
encrypted file system to expand details of the encrypted volume you want to unlock using the
Tang server, and click Encryption.

4. Click + in the Keys section to add a Tang key:

5. Select Tang keyserver as Key source, provide the address of your Tang server, and a password
that unlocks the LUKS-encrypted device. Click Add to confirm:

Red Hat Enterprise Linux 9 Security hardening

108

The following dialog window provides a command to verify that the key hash matches.

6. In a terminal on the Tang server, use the tang-show-keys command to display the key hash for
comparison. In this example, the Tang server is running on the port 7500:

tang-show-keys 7500
fM-EwYeiTxS66X3s1UAywsGKGnxnpll8ig0KOQmr9CM

7. Click Trust key when the key hashes in the web console and in the output of previously listed
commands are the same:

8. In RHEL 9.2 and later, after you select an encrypted root file system and a Tang server, you can
skip adding the rd.neednet=1 parameter to the kernel command line, installing the clevis-
dracut package, and regenerating an initial RAM disk (initrd). For non-root file systems, the
web console now enables the remote-cryptsetup.target and clevis-luks-akspass.path
systemd units, installs the clevis-systemd package, and adds the _netdev parameter to the
fstab and crypttab configuration files.

Verification

CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

109

1. Check that the newly added Tang key is now listed in the Keys section with the Keyserver type:

2. Verify that the bindings are available for the early boot, for example:

lsinitrd | grep clevis
clevis
clevis-pin-null
clevis-pin-sss
clevis-pin-tang
clevis-pin-tpm2
lrwxrwxrwx 1 root root 48 Feb 14 17:45
etc/systemd/system/cryptsetup.target.wants/clevis-luks-askpass.path…
…

Additional resources

Getting started using the RHEL web console

11.6. BASIC NBDE AND TPM2 ENCRYPTION-CLIENT OPERATIONS

The Clevis framework can encrypt plain-text files and decrypt both ciphertexts in the JSON Web
Encryption (JWE) format and LUKS-encrypted block devices. Clevis clients can use either Tang network
servers or Trusted Platform Module 2.0 (TPM 2.0) chips for cryptographic operations.

The following commands demonstrate the basic functionality provided by Clevis on examples containing
plain-text files. You can also use them for troubleshooting your NBDE or Clevis+TPM deployments.

Encryption client bound to a Tang server

To check that a Clevis encryption client binds to a Tang server, use the clevis encrypt tang
sub-command:

Red Hat Enterprise Linux 9 Security hardening

110

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_systems_using_the_rhel_9_web_console/getting-started-with-the-rhel-9-web-console_system-management-using-the-rhel-9-web-console

$ clevis encrypt tang '{"url":"http://tang.srv:port"}' < input-plain.txt > secret.jwe
The advertisement contains the following signing keys:

_OsIk0T-E2l6qjfdDiwVmidoZjA

Do you wish to trust these keys? [ynYN] y

Change the http://tang.srv:port URL in the previous example to match the URL of the server
where tang is installed. The secret.jwe output file contains your encrypted cipher text in the
JWE format. This cipher text is read from the input-plain.txt input file.

Alternatively, if your configuration requires a non-interactive communication with a Tang server
without SSH access, you can download an advertisement and save it to a file:

$ curl -sfg http://tang.srv:port/adv -o adv.jws

Use the advertisement in the adv.jws file for any following tasks, such as encryption of files or
messages:

$ echo 'hello' | clevis encrypt tang '{"url":"http://tang.srv:port","adv":"adv.jws"}'

To decrypt data, use the clevis decrypt command and provide the cipher text (JWE):

$ clevis decrypt < secret.jwe > output-plain.txt

Encryption client using TPM 2.0

To encrypt using a TPM 2.0 chip, use the clevis encrypt tpm2 sub-command with the only
argument in form of the JSON configuration object:

$ clevis encrypt tpm2 '{}' < input-plain.txt > secret.jwe

To choose a different hierarchy, hash, and key algorithms, specify configuration properties, for
example:

$ clevis encrypt tpm2 '{"hash":"sha256","key":"rsa"}' < input-plain.txt > secret.jwe

To decrypt the data, provide the ciphertext in the JSON Web Encryption (JWE) format:

$ clevis decrypt < secret.jwe > output-plain.txt

The pin also supports sealing data to a Platform Configuration Registers (PCR) state. That way, the
data can only be unsealed if the PCR hashes values match the policy used when sealing.

For example, to seal the data to the PCR with index 0 and 7 for the SHA-256 bank:

$ clevis encrypt tpm2 '{"pcr_bank":"sha256","pcr_ids":"0,7"}' < input-plain.txt > secret.jwe

CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

111

WARNING

Hashes in PCRs can be rewritten, and you no longer can unlock your encrypted
volume. For this reason, add a strong passphrase that enable you to unlock the
encrypted volume manually even when a value in a PCR changes.

If the system cannot automatically unlock your encrypted volume after an upgrade
of the shim-x64 package, follow the steps in the Clevis TPM2 no longer decrypts
LUKS devices after a restart KCS article.

Additional resources

clevis-encrypt-tang(1), clevis-luks-unlockers(7), clevis(1), and clevis-encrypt-tpm2(1) man
pages

clevis, clevis decrypt, and clevis encrypt tang commands without any arguments show the
built-in CLI help, for example:

$ clevis encrypt tang
Usage: clevis encrypt tang CONFIG < PLAINTEXT > JWE
...

11.7. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED
VOLUMES

With the Clevis framework, you can configure clients for automated unlocking of LUKS-encrypted
volumes when a selected Tang server is available. This creates an NBDE (Network-Bound Disk
Encryption) deployment.

Prerequisites

A Tang server is running and available.

Procedure

1. To automatically unlock an existing LUKS-encrypted volume, install the clevis-luks subpackage:

dnf install clevis-luks

2. Identify the LUKS-encrypted volume for PBD. In the following example, the block device is
referred as /dev/sda2:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 12G 0 disk
├─sda1 8:1 0 1G 0 part /boot
└─sda2 8:2 0 11G 0 part



Red Hat Enterprise Linux 9 Security hardening

112

https://access.redhat.com/solutions/6175492

 └─luks-40e20552-2ade-4954-9d56-565aa7994fb6 253:0 0 11G 0 crypt
 ├─rhel-root 253:0 0 9.8G 0 lvm /
 └─rhel-swap 253:1 0 1.2G 0 lvm [SWAP]

3. Bind the volume to a Tang server using the clevis luks bind command:

clevis luks bind -d /dev/sda2 tang '{"url":"http://tang.srv"}'
The advertisement contains the following signing keys:

_OsIk0T-E2l6qjfdDiwVmidoZjA

Do you wish to trust these keys? [ynYN] y
You are about to initialize a LUKS device for metadata storage.
Attempting to initialize it may result in data loss if data was
already written into the LUKS header gap in a different format.
A backup is advised before initialization is performed.

Do you wish to initialize /dev/sda2? [yn] y
Enter existing LUKS password:

This command performs four steps:

a. Creates a new key with the same entropy as the LUKS master key.

b. Encrypts the new key with Clevis.

c. Stores the Clevis JWE object in the LUKS2 header token or uses LUKSMeta if the non-
default LUKS1 header is used.

d. Enables the new key for use with LUKS.

NOTE

The binding procedure assumes that there is at least one free LUKS password
slot. The clevis luks bind command takes one of the slots.

The volume can now be unlocked with your existing password as well as with the Clevis policy.

4. To enable the early boot system to process the disk binding, use the dracut tool on an already
installed system:

dnf install clevis-dracut

In RHEL, Clevis produces a generic initrd (initial RAM disk) without host-specific configuration
options and does not automatically add parameters such as rd.neednet=1 to the kernel
command line. If your configuration relies on a Tang pin that requires network during early boot,
use the --hostonly-cmdline argument and dracut adds rd.neednet=1 when it detects a Tang
binding:

dracut -fv --regenerate-all --hostonly-cmdline

Alternatively, create a .conf file in the /etc/dracut.conf.d/, and add the hostonly_cmdline=yes
option to the file, for example:

CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

113

echo "hostonly_cmdline=yes" > /etc/dracut.conf.d/clevis.conf

NOTE

You can also ensure that networking for a Tang pin is available during early boot
by using the grubby tool on the system where Clevis is installed:

grubby --update-kernel=ALL --args="rd.neednet=1"

Then you can use dracut without --hostonly-cmdline:

dracut -fv --regenerate-all

Verification

1. To verify that the Clevis JWE object is successfully placed in a LUKS header, use the clevis
luks list command:

clevis luks list -d /dev/sda2
1: tang '{"url":"http://tang.srv:port"}'

IMPORTANT

To use NBDE for clients with static IP configuration (without DHCP), pass your network
configuration to the dracut tool manually, for example:

dracut -fv --regenerate-all --kernel-cmdline
"ip=192.0.2.10::192.0.2.1:255.255.255.0::ens3:none"

Alternatively, create a .conf file in the /etc/dracut.conf.d/ directory with the static
network information. For example:

cat /etc/dracut.conf.d/static_ip.conf
kernel_cmdline="ip=192.0.2.10::192.0.2.1:255.255.255.0::ens3:none"

Regenerate the initial RAM disk image:

dracut -fv --regenerate-all

Additional resources

clevis-luks-bind(1) and dracut.cmdline(7) man pages.

Kickstart commands for network configuration

11.8. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED
VOLUMES BY USING A TPM 2.0 POLICY

Use the following steps to configure unlocking of LUKS-encrypted volumes by using a Trusted Platform
Module 2.0 (TPM 2.0) policy.

Red Hat Enterprise Linux 9 Security hardening

114

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/performing_an_advanced_rhel_9_installation/kickstart-commands-and-options-reference_installing-rhel-as-an-experienced-user#kickstart-commands-for-network-configuration_kickstart-commands-and-options-reference

Prerequisites

An accessible TPM 2.0-compatible device.

A system with the 64-bit Intel or 64-bit AMD architecture.

Procedure

1. To automatically unlock an existing LUKS-encrypted volume, install the clevis-luks subpackage:

dnf install clevis-luks

2. Identify the LUKS-encrypted volume for PBD. In the following example, the block device is
referred as /dev/sda2:

lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 12G 0 disk
├─sda1 8:1 0 1G 0 part /boot
└─sda2 8:2 0 11G 0 part
 └─luks-40e20552-2ade-4954-9d56-565aa7994fb6 253:0 0 11G 0 crypt
 ├─rhel-root 253:0 0 9.8G 0 lvm /
 └─rhel-swap 253:1 0 1.2G 0 lvm [SWAP]

3. Bind the volume to a TPM 2.0 device using the clevis luks bind command, for example:

clevis luks bind -d /dev/sda2 tpm2 '{"hash":"sha256","key":"rsa"}'
...
Do you wish to initialize /dev/sda2? [yn] y
Enter existing LUKS password:

This command performs four steps:

a. Creates a new key with the same entropy as the LUKS master key.

b. Encrypts the new key with Clevis.

c. Stores the Clevis JWE object in the LUKS2 header token or uses LUKSMeta if the non-
default LUKS1 header is used.

d. Enables the new key for use with LUKS.

NOTE

The binding procedure assumes that there is at least one free LUKS
password slot. The clevis luks bind command takes one of the slots.

Alternatively, if you want to seal data to specific Platform Configuration Registers (PCR)
states, add the pcr_bank and pcr_ids values to the clevis luks bind command, for
example:

clevis luks bind -d /dev/sda2 tpm2
'{"hash":"sha256","key":"rsa","pcr_bank":"sha256","pcr_ids":"0,1"}'

CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

115

WARNING

Because the data can only be unsealed if PCR hashes values match the
policy used when sealing and the hashes can be rewritten, add a strong
passphrase that enable you to unlock the encrypted volume manually
when a value in a PCR changes.

If the system cannot automatically unlock your encrypted volume after
an upgrade of the shim-x64 package, follow the steps in the Clevis
TPM2 no longer decrypts LUKS devices after a restart KCS article.

4. The volume can now be unlocked with your existing password as well as with the Clevis policy.

5. To enable the early boot system to process the disk binding, use the dracut tool on an already
installed system:

dnf install clevis-dracut
dracut -fv --regenerate-all

Verification

1. To verify that the Clevis JWE object is successfully placed in a LUKS header, use the clevis
luks list command:

clevis luks list -d /dev/sda2
1: tpm2 '{"hash":"sha256","key":"rsa"}'

Additional resources

clevis-luks-bind(1), clevis-encrypt-tpm2(1), and dracut.cmdline(7) man pages

11.9. REMOVING A CLEVIS PIN FROM A LUKS-ENCRYPTED VOLUME
MANUALLY

Use the following procedure for manual removing the metadata created by the clevis luks bind
command and also for wiping a key slot that contains passphrase added by Clevis.

IMPORTANT

The recommended way to remove a Clevis pin from a LUKS-encrypted volume is through
the clevis luks unbind command. The removal procedure using clevis luks unbind
consists of only one step and works for both LUKS1 and LUKS2 volumes. The following
example command removes the metadata created by the binding step and wipe the key
slot 1 on the /dev/sda2 device:

clevis luks unbind -d /dev/sda2 -s 1

Prerequisites



Red Hat Enterprise Linux 9 Security hardening

116

https://access.redhat.com/solutions/6175492

A LUKS-encrypted volume with a Clevis binding.

Procedure

1. Check which LUKS version the volume, for example /dev/sda2, is encrypted by and identify a
slot and a token that is bound to Clevis:

cryptsetup luksDump /dev/sda2
LUKS header information
Version: 2
...
Keyslots:
 0: luks2
...
1: luks2
 Key: 512 bits
 Priority: normal
 Cipher: aes-xts-plain64
...
 Tokens:
 0: clevis
 Keyslot: 1
...

In the previous example, the Clevis token is identified by 0 and the associated key slot is 1.

2. In case of LUKS2 encryption, remove the token:

cryptsetup token remove --token-id 0 /dev/sda2

3. If your device is encrypted by LUKS1, which is indicated by the Version: 1 string in the output of
the cryptsetup luksDump command, perform this additional step with the luksmeta wipe
command:

luksmeta wipe -d /dev/sda2 -s 1

4. Wipe the key slot containing the Clevis passphrase:

cryptsetup luksKillSlot /dev/sda2 1

Additional resources

clevis-luks-unbind(1), cryptsetup(8), and luksmeta(8) man pages

11.10. CONFIGURING AUTOMATED ENROLLMENT OF LUKS-
ENCRYPTED VOLUMES BY USING KICKSTART

Follow the steps in this procedure to configure an automated installation process that uses Clevis for
the enrollment of LUKS-encrypted volumes.

Procedure

1. Instruct Kickstart to partition the disk such that LUKS encryption has enabled for all mount

CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

117

1. Instruct Kickstart to partition the disk such that LUKS encryption has enabled for all mount
points, other than /boot, with a temporary password. The password is temporary for this step of
the enrollment process.

part /boot --fstype="xfs" --ondisk=vda --size=256
part / --fstype="xfs" --ondisk=vda --grow --encrypted --passphrase=temppass

Note that OSPP-compliant systems require a more complex configuration, for example:

part /boot --fstype="xfs" --ondisk=vda --size=256
part / --fstype="xfs" --ondisk=vda --size=2048 --encrypted --passphrase=temppass
part /var --fstype="xfs" --ondisk=vda --size=1024 --encrypted --passphrase=temppass
part /tmp --fstype="xfs" --ondisk=vda --size=1024 --encrypted --passphrase=temppass
part /home --fstype="xfs" --ondisk=vda --size=2048 --grow --encrypted --
passphrase=temppass
part /var/log --fstype="xfs" --ondisk=vda --size=1024 --encrypted --passphrase=temppass
part /var/log/audit --fstype="xfs" --ondisk=vda --size=1024 --encrypted --
passphrase=temppass

2. Install the related Clevis packages by listing them in the %packages section:

%packages
clevis-dracut
clevis-luks
clevis-systemd
%end

3. Optionally, to ensure that you can unlock the encrypted volume manually when required, add a
strong passphrase before you remove the temporary passphrase. See the How to add a
passphrase, key, or keyfile to an existing LUKS device article for more information.

4. Call clevis luks bind to perform binding in the %post section. Afterward, remove the
temporary password:

%post
clevis luks bind -y -k - -d /dev/vda2 \
tang '{"url":"http://tang.srv"}' <<< "temppass"
cryptsetup luksRemoveKey /dev/vda2 <<< "temppass"
dracut -fv --regenerate-all
%end

If your configuration relies on a Tang pin that requires network during early boot or you use
NBDE clients with static IP configurations, you have to modify the dracut command as
described in Configuring manual enrollment of LUKS-encrypted volumes .

Note that the -y option for the clevis luks bind command is available from RHEL 8.3. In RHEL
8.2 and older, replace -y by -f in the clevis luks bind command and download the
advertisement from the Tang server:

%post
curl -sfg http://tang.srv/adv -o adv.jws
clevis luks bind -f -k - -d /dev/vda2 \
tang '{"url":"http://tang.srv","adv":"adv.jws"}' <<< "temppass"

Red Hat Enterprise Linux 9 Security hardening

118

https://access.redhat.com/solutions/230993

cryptsetup luksRemoveKey /dev/vda2 <<< "temppass"
dracut -fv --regenerate-all
%end

WARNING

The cryptsetup luksRemoveKey command prevents any further
administration of a LUKS2 device on which you apply it. You can recover a
removed master key using the dmsetup command only for LUKS1 devices.

You can use an analogous procedure when using a TPM 2.0 policy instead of a Tang server.

Additional resources

clevis(1), clevis-luks-bind(1), cryptsetup(8), and dmsetup(8) man pages

Installing Red Hat Enterprise Linux 9 using Kickstart

11.11. CONFIGURING AUTOMATED UNLOCKING OF A LUKS-
ENCRYPTED REMOVABLE STORAGE DEVICE

Use this procedure to set up an automated unlocking process of a LUKS-encrypted USB storage device.

Procedure

1. To automatically unlock a LUKS-encrypted removable storage device, such as a USB drive,
install the clevis-udisks2 package:

dnf install clevis-udisks2

2. Reboot the system, and then perform the binding step using the clevis luks bind command as
described in Configuring manual enrollment of LUKS-encrypted volumes , for example:

clevis luks bind -d /dev/sdb1 tang '{"url":"http://tang.srv"}'

3. The LUKS-encrypted removable device can be now unlocked automatically in your GNOME
desktop session. The device bound to a Clevis policy can be also unlocked by the clevis luks
unlock command:

clevis luks unlock -d /dev/sdb1

You can use an analogous procedure when using a TPM 2.0 policy instead of a Tang server.

Additional resources

clevis-luks-unlockers(7) man page



CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

119

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/performing_an_advanced_rhel_9_installation/index

11.12. DEPLOYING HIGH-AVAILABILITY NBDE SYSTEMS

Tang provides two methods for building a high-availability deployment:

Client redundancy (recommended)

Clients should be configured with the ability to bind to multiple Tang servers. In this setup, each Tang
server has its own keys and clients can decrypt by contacting a subset of these servers. Clevis already
supports this workflow through its sss plug-in. Red Hat recommends this method for a high-
availability deployment.

Key sharing

For redundancy purposes, more than one instance of Tang can be deployed. To set up a second or
any subsequent instance, install the tang packages and copy the key directory to the new host using
rsync over SSH. Note that Red Hat does not recommend this method because sharing keys
increases the risk of key compromise and requires additional automation infrastructure.

High-available NBDE using Shamir’s Secret Sharing
Shamir’s Secret Sharing (SSS) is a cryptographic scheme that divides a secret into several unique parts.
To reconstruct the secret, a number of parts is required. The number is called threshold and SSS is also
referred to as a thresholding scheme.

Clevis provides an implementation of SSS. It creates a key and divides it into a number of pieces. Each
piece is encrypted using another pin including even SSS recursively. Additionally, you define the
threshold t. If an NBDE deployment decrypts at least t pieces, then it recovers the encryption key and
the decryption process succeeds. When Clevis detects a smaller number of parts than specified in the
threshold, it prints an error message.

Example 1: Redundancy with two Tang servers
The following command decrypts a LUKS-encrypted device when at least one of two Tang servers is
available:

clevis luks bind -d /dev/sda1 sss '{"t":1,"pins":{"tang":[{"url":"http://tang1.srv"},
{"url":"http://tang2.srv"}]}}'

The previous command used the following configuration scheme:

{
 "t":1,
 "pins":{
 "tang":[
 {
 "url":"http://tang1.srv"
 },
 {
 "url":"http://tang2.srv"
 }
]
 }
}

In this configuration, the SSS threshold t is set to 1 and the clevis luks bind command successfully
reconstructs the secret if at least one from two listed tang servers is available.

Example 2: Shared secret on a Tang server and a TPM device

The following command successfully decrypts a LUKS-encrypted device when both the tang server and

Red Hat Enterprise Linux 9 Security hardening

120

The following command successfully decrypts a LUKS-encrypted device when both the tang server and
the tpm2 device are available:

clevis luks bind -d /dev/sda1 sss '{"t":2,"pins":{"tang":[{"url":"http://tang1.srv"}], "tpm2":
{"pcr_ids":"0,7"}}}'

The configuration scheme with the SSS threshold 't' set to '2' is now:

{
 "t":2,
 "pins":{
 "tang":[
 {
 "url":"http://tang1.srv"
 }
],
 "tpm2":{
 "pcr_ids":"0,7"
 }
 }
}

Additional resources

tang(8) (section High Availability), clevis(1) (section Shamir’s Secret Sharing), and clevis-
encrypt-sss(1) man pages

11.13. DEPLOYMENT OF VIRTUAL MACHINES IN A NBDE NETWORK

The clevis luks bind command does not change the LUKS master key. This implies that if you create a
LUKS-encrypted image for use in a virtual machine or cloud environment, all the instances that run this
image share a master key. This is extremely insecure and should be avoided at all times.

This is not a limitation of Clevis but a design principle of LUKS. If your scenario requires having encrypted
root volumes in a cloud, perform the installation process (usually using Kickstart) for each instance of
Red Hat Enterprise Linux in the cloud as well. The images cannot be shared without also sharing a LUKS
master key.

To deploy automated unlocking in a virtualized environment, use systems such as lorax or virt-install
together with a Kickstart file (see Configuring automated enrollment of LUKS-encrypted volumes using
Kickstart) or another automated provisioning tool to ensure that each encrypted VM has a unique
master key.

Additional resources

clevis-luks-bind(1) man page

11.14. BUILDING AUTOMATICALLY-ENROLLABLE VM IMAGES FOR
CLOUD ENVIRONMENTS BY USING NBDE

Deploying automatically-enrollable encrypted images in a cloud environment can provide a unique set
of challenges. Like other virtualization environments, it is recommended to reduce the number of
instances started from a single image to avoid sharing the LUKS master key.

CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

121

Therefore, the best practice is to create customized images that are not shared in any public repository
and that provide a base for the deployment of a limited amount of instances. The exact number of
instances to create should be defined by deployment’s security policies and based on the risk tolerance
associated with the LUKS master key attack vector.

To build LUKS-enabled automated deployments, systems such as Lorax or virt-install together with a
Kickstart file should be used to ensure master key uniqueness during the image building process.

Cloud environments enable two Tang server deployment options which we consider here. First, the Tang
server can be deployed within the cloud environment itself. Second, the Tang server can be deployed
outside of the cloud on independent infrastructure with a VPN link between the two infrastructures.

Deploying Tang natively in the cloud does allow for easy deployment. However, given that it shares
infrastructure with the data persistence layer of ciphertext of other systems, it may be possible for both
the Tang server’s private key and the Clevis metadata to be stored on the same physical disk. Access to
this physical disk permits a full compromise of the ciphertext data.

IMPORTANT

For this reason, Red Hat strongly recommends maintaining a physical separation between
the location where the data is stored and the system where Tang is running. This
separation between the cloud and the Tang server ensures that the Tang server’s private
key cannot be accidentally combined with the Clevis metadata. It also provides local
control of the Tang server if the cloud infrastructure is at risk.

11.15. DEPLOYING TANG AS A CONTAINER

The tang container image provides Tang-server decryption capabilities for Clevis clients that run either
in OpenShift Container Platform (OCP) clusters or in separate virtual machines.

Prerequisites

The podman package and its dependencies are installed on the system.

You have logged in on the registry.redhat.io container catalog using the podman login
registry.redhat.io command. See Red Hat Container Registry Authentication for more
information.

The Clevis client is installed on systems containing LUKS-encrypted volumes that you want to
automatically unlock by using a Tang server.

Procedure

1. Pull the tang container image from the registry.redhat.io registry:

podman pull registry.redhat.io/rhel9/tang

2. Run the container, specify its port, and specify the path to the Tang keys. The previous example
runs the tang container, specifies the port 7500, and indicates a path to the Tang keys of the
/var/db/tang directory:

podman run -d -p 7500:7500 -v tang-keys:/var/db/tang --name tang
registry.redhat.io/rhel9/tang

Note that Tang uses port 80 by default but this may collide with other services such as the

Red Hat Enterprise Linux 9 Security hardening

122

https://access.redhat.com/RegistryAuthentication

Note that Tang uses port 80 by default but this may collide with other services such as the
Apache HTTP server.

3. [Optional] For increased security, rotate the Tang keys periodically. You can use the tangd-
rotate-keys script, for example:

podman run --rm -v tang-keys:/var/db/tang registry.redhat.io/rhel9/tang tangd-rotate-keys -
v -d /var/db/tang
Rotated key 'rZAMKAseaXBe0rcKXL1hCCIq-DY.jwk' -> .'rZAMKAseaXBe0rcKXL1hCCIq-
DY.jwk'
Rotated key 'x1AIpc6WmnCU-CabD8_4q18vDuw.jwk' -> .'x1AIpc6WmnCU-
CabD8_4q18vDuw.jwk'
Created new key GrMMX_WfdqomIU_4RyjpcdlXb0E.jwk
Created new key _dTTfn17sZZqVAp80u3ygFDHtjk.jwk
Keys rotated successfully.

Verification

On a system that contains LUKS-encrypted volumes for automated unlocking by the presence
of the Tang server, check that the Clevis client can encrypt and decrypt a plain-text message
using Tang:

echo test | clevis encrypt tang '{"url":"http://localhost:7500"}' | clevis decrypt
The advertisement contains the following signing keys:

x1AIpc6WmnCU-CabD8_4q18vDuw

Do you wish to trust these keys? [ynYN] y
test

The previous example command shows the test string at the end of its output when a Tang
server is available on the localhost URL and communicates through port 7500.

Additional resources

podman(1), clevis(1), and tang(8) man pages

11.16. INTRODUCTION TO THE NBDE_CLIENT AND NBDE_SERVER SYSTEM
ROLES (CLEVIS AND TANG)

RHEL System Roles is a collection of Ansible roles and modules that provide a consistent configuration
interface to remotely manage multiple RHEL systems.

You can use Ansible roles for automated deployments of Policy-Based Decryption (PBD) solutions
using Clevis and Tang. The rhel-system-roles package contains these system roles, the related
examples, and also the reference documentation.

The nbde_client System Role enables you to deploy multiple Clevis clients in an automated way. Note
that the nbde_client role supports only Tang bindings, and you cannot use it for TPM2 bindings at the
moment.

The nbde_client role requires volumes that are already encrypted using LUKS. This role supports to bind
a LUKS-encrypted volume to one or more Network-Bound (NBDE) servers - Tang servers. You can
either preserve the existing volume encryption with a passphrase or remove it. After removing the

CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

123

passphrase, you can unlock the volume only using NBDE. This is useful when a volume is initially
encrypted using a temporary key or password that you should remove after you provision the system.

If you provide both a passphrase and a key file, the role uses what you have provided first. If it does not
find any of these valid, it attempts to retrieve a passphrase from an existing binding.

PBD defines a binding as a mapping of a device to a slot. This means that you can have multiple bindings
for the same device. The default slot is slot 1.

The nbde_client role provides also the state variable. Use the present value for either creating a new
binding or updating an existing one. Contrary to a clevis luks bind command, you can use state:
present also for overwriting an existing binding in its device slot. The absent value removes a specified
binding.

Using the nbde_client System Role, you can deploy and manage a Tang server as part of an automated
disk encryption solution. This role supports the following features:

Rotating Tang keys

Deploying and backing up Tang keys

Additional resources

/usr/share/ansible/roles/rhel-system-roles.nbde_server/README.md file

/usr/share/ansible/roles/rhel-system-roles.nbde_client/README.md file

/usr/share/doc/rhel-system-roles/nbde_server/ directory

/usr/share/doc/rhel-system-roles/nbde_client/ directory

11.17. USING THE NBDE_SERVER SYSTEM ROLE FOR SETTING UP
MULTIPLE TANG SERVERS

Follow the steps to prepare and apply an Ansible playbook containing your Tang server settings.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

- hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.nbde_server
 vars:

Red Hat Enterprise Linux 9 Security hardening

124

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

This example playbook ensures deploying of your Tang server and a key rotation.

When nbde_server_manage_firewall and nbde_server_manage_selinux are both set to
true, the nbde_server role uses the firewall and selinux roles to manage the ports used by the
nbde_server role.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

To ensure that networking for a Tang pin is available during early boot by using the grubby tool
on the systems where Clevis is installed, enter:

grubby --update-kernel=ALL --args="rd.neednet=1"

Additional resources

/usr/share/ansible/roles/rhel-system-roles.nbde_server/README.md file

/usr/share/doc/rhel-system-roles/nbde_server/ directory

11.18. SETTING UP MULTIPLE CLEVIS CLIENTS BY USING THE
NBDE_CLIENT RHEL SYSTEM ROLE

With the nbde_client RHEL System Role, you can prepare and apply an Ansible playbook that contains
your Clevis client settings on multiple systems.

NOTE

The nbde_client System Role supports only Tang bindings. Therefore, you cannot use it
for TPM2 bindings.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

 nbde_server_rotate_keys: yes
 nbde_server_manage_firewall: true
 nbde_server_manage_selinux: true

CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

125

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

This example playbook configures Clevis clients for automated unlocking of two LUKS-
encrypted volumes when at least one of two Tang servers is available

The nbde_client System Role supports only scenarios with Dynamic Host Configuration
Protocol (DHCP). To use NBDE for clients with static IP configuration use the following
playbook:

In this playbook, replace the <ansible_default_ipv4.*> strings with IP addresses of your
network, for example: ip={{ 192.0.2.10 }}::{{ 192.0.2.1 }}:{{ 255.255.255.0 }}::{{ ens3 }}:none.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid

- hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.nbde_client
 vars:
 nbde_client_bindings:
 - device: /dev/rhel/root
 encryption_key_src: /etc/luks/keyfile
 servers:
 - http://server1.example.com
 - http://server2.example.com
 - device: /dev/rhel/swap
 encryption_key_src: /etc/luks/keyfile
 servers:
 - http://server1.example.com
 - http://server2.example.com

- hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.nbde_client
 vars:
 nbde_client_bindings:
 - device: /dev/rhel/root
 encryption_key_src: /etc/luks/keyfile
 servers:
 - http://server1.example.com
 - http://server2.example.com
 - device: /dev/rhel/swap
 encryption_key_src: /etc/luks/keyfile
 servers:
 - http://server1.example.com
 - http://server2.example.com
 tasks:
 - name: Configure a client with a static IP address during early boot
 ansible.builtin.command:
 cmd: grubby --update-kernel=ALL --args='GRUB_CMDLINE_LINUX_DEFAULT="ip={{
<ansible_default_ipv4.address> }}::{{ <ansible_default_ipv4.gateway> }}:{{
<ansible_default_ipv4.netmask> }}::{{ <ansible_default_ipv4.alias> }}:none"'

Red Hat Enterprise Linux 9 Security hardening

126

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.nbde_client/README.md file

/usr/share/doc/rhel-system-roles/nbde_client/ directory

Looking forward to Linux network configuration in the initial ramdisk (initrd) article

CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION

127

https://www.redhat.com/sysadmin/network-confi-initrd

CHAPTER 12. AUDITING THE SYSTEM
Audit does not provide additional security to your system; rather, it can be used to discover violations of
security policies used on your system. These violations can further be prevented by additional security
measures such as SELinux.

12.1. LINUX AUDIT

The Linux Audit system provides a way to track security-relevant information about your system. Based
on pre-configured rules, Audit generates log entries to record as much information about the events
that are happening on your system as possible. This information is crucial for mission-critical
environments to determine the violator of the security policy and the actions they performed.

The following list summarizes some of the information that Audit is capable of recording in its log files:

Date and time, type, and outcome of an event

Sensitivity labels of subjects and objects

Association of an event with the identity of the user who triggered the event

All modifications to Audit configuration and attempts to access Audit log files

All uses of authentication mechanisms, such as SSH, Kerberos, and others

Changes to any trusted database, such as /etc/passwd

Attempts to import or export information into or from the system

Include or exclude events based on user identity, subject and object labels, and other attributes

The use of the Audit system is also a requirement for a number of security-related certifications. Audit is
designed to meet or exceed the requirements of the following certifications or compliance guides:

Controlled Access Protection Profile (CAPP)

Labeled Security Protection Profile (LSPP)

Rule Set Base Access Control (RSBAC)

National Industrial Security Program Operating Manual (NISPOM)

Federal Information Security Management Act (FISMA)

Payment Card Industry — Data Security Standard (PCI-DSS)

Security Technical Implementation Guides (STIG)

Audit has also been:

Evaluated by National Information Assurance Partnership (NIAP) and Best Security Industries
(BSI)

Certified to LSPP/CAPP/RSBAC/EAL4+ on Red Hat Enterprise Linux 5

Certified to Operating System Protection Profile / Evaluation Assurance Level 4+
(OSPP/EAL4+) on Red Hat Enterprise Linux 6

Red Hat Enterprise Linux 9 Security hardening

128

Use Cases

Watching file access

Audit can track whether a file or a directory has been accessed, modified, executed, or the file’s
attributes have been changed. This is useful, for example, to detect access to important files and
have an Audit trail available in case one of these files is corrupted.

Monitoring system calls

Audit can be configured to generate a log entry every time a particular system call is used. This can
be used, for example, to track changes to the system time by monitoring the settimeofday,
clock_adjtime, and other time-related system calls.

Recording commands run by a user

Audit can track whether a file has been executed, so rules can be defined to record every execution
of a particular command. For example, a rule can be defined for every executable in the /bin
directory. The resulting log entries can then be searched by user ID to generate an audit trail of
executed commands per user.

Recording execution of system pathnames

Aside from watching file access which translates a path to an inode at rule invocation, Audit can now
watch the execution of a path even if it does not exist at rule invocation, or if the file is replaced after
rule invocation. This allows rules to continue to work after upgrading a program executable or before
it is even installed.

Recording security events

The pam_faillock authentication module is capable of recording failed login attempts. Audit can be
set up to record failed login attempts as well and provides additional information about the user who
attempted to log in.

Searching for events

Audit provides the ausearch utility, which can be used to filter the log entries and provide a
complete audit trail based on several conditions.

Running summary reports

The aureport utility can be used to generate, among other things, daily reports of recorded events. A
system administrator can then analyze these reports and investigate suspicious activity further.

Monitoring network access

The nftables, iptables, and ebtables utilities can be configured to trigger Audit events, allowing
system administrators to monitor network access.

NOTE

System performance may be affected depending on the amount of information that is
collected by Audit.

12.2. AUDIT SYSTEM ARCHITECTURE

The Audit system consists of two main parts: the user-space applications and utilities, and the kernel-
side system call processing. The kernel component receives system calls from user-space applications
and filters them through one of the following filters: user, task, fstype, or exit.

After a system call passes the exclude filter, it is sent through one of the aforementioned filters, which,
based on the Audit rule configuration, sends it to the Audit daemon for further processing.

The user-space Audit daemon collects the information from the kernel and creates entries in a log file.

CHAPTER 12. AUDITING THE SYSTEM

129

The user-space Audit daemon collects the information from the kernel and creates entries in a log file.
Other Audit user-space utilities interact with the Audit daemon, the kernel Audit component, or the
Audit log files:

The auditctl Audit control utility interacts with the kernel Audit component to manage rules and
to control many settings and parameters of the event generation process.

The remaining Audit utilities take the contents of the Audit log files as input and generate
output based on user’s requirements. For example, the aureport utility generates a report of all
recorded events.

In RHEL 9, the Audit dispatcher daemon (audisp) functionality is integrated in the Audit daemon
(auditd). Configuration files of plugins for the interaction of real-time analytical programs with Audit
events are located in the /etc/audit/plugins.d/ directory by default.

12.3. CONFIGURING AUDITD FOR A SECURE ENVIRONMENT

The default auditd configuration should be suitable for most environments. However, if your
environment must meet strict security policies, you can change the following settings for the Audit
daemon configuration in the /etc/audit/auditd.conf file:

log_file

The directory that holds the Audit log files (usually /var/log/audit/) should reside on a separate
mount point. This prevents other processes from consuming space in this directory and provides
accurate detection of the remaining space for the Audit daemon.

max_log_file

Specifies the maximum size of a single Audit log file, must be set to make full use of the available
space on the partition that holds the Audit log files. The max_log_file` parameter specifies the
maximum file size in megabytes. The value given must be numeric.

max_log_file_action

Decides what action is taken once the limit set in max_log_file is reached, should be set to
keep_logs to prevent Audit log files from being overwritten.

space_left

Specifies the amount of free space left on the disk for which an action that is set in the
space_left_action parameter is triggered. Must be set to a number that gives the administrator
enough time to respond and free up disk space. The space_left value depends on the rate at which
the Audit log files are generated. If the value of space_left is specified as a whole number, it is
interpreted as an absolute size in megabytes (MiB). If the value is specified as a number between 1
and 99 followed by a percentage sign (for example, 5%), the Audit daemon calculates the absolute
size in megabytes based on the size of the file system containing log_file.

space_left_action

It is recommended to set the space_left_action parameter to email or exec with an appropriate
notification method.

admin_space_left

Specifies the absolute minimum amount of free space for which an action that is set in the
admin_space_left_action parameter is triggered, must be set to a value that leaves enough space
to log actions performed by the administrator. The numeric value for this parameter should be lower
than the number for space_left. You can also append a percent sign (for example, 1%) to the number
to have the audit daemon calculate the number based on the disk partition size.

admin_space_left_action

Should be set to single to put the system into single-user mode and allow the administrator to free

Red Hat Enterprise Linux 9 Security hardening

130

Should be set to single to put the system into single-user mode and allow the administrator to free
up some disk space.

disk_full_action

Specifies an action that is triggered when no free space is available on the partition that holds the
Audit log files, must be set to halt or single. This ensures that the system is either shut down or
operating in single-user mode when Audit can no longer log events.

disk_error_action

Specifies an action that is triggered in case an error is detected on the partition that holds the Audit
log files, must be set to syslog, single, or halt, depending on your local security policies regarding
the handling of hardware malfunctions.

flush

Should be set to incremental_async. It works in combination with the freq parameter, which
determines how many records can be sent to the disk before forcing a hard synchronization with the
hard drive. The freq parameter should be set to 100. These parameters assure that Audit event data
is synchronized with the log files on the disk while keeping good performance for bursts of activity.

The remaining configuration options should be set according to your local security policy.

12.4. STARTING AND CONTROLLING AUDITD

After auditd is configured, start the service to collect Audit information and store it in the log files. Use
the following command as the root user to start auditd:

service auditd start

To configure auditd to start at boot time:

systemctl enable auditd

You can temporarily disable auditd with the # auditctl -e 0 command and re-enable it with # auditctl -e
1.

You can perform other actions on auditd by using the service auditd <action> command, where
<action> can be one of the following:

stop

Stops auditd.

restart

Restarts auditd.

reload or force-reload

Reloads the configuration of auditd from the /etc/audit/auditd.conf file.

rotate

Rotates the log files in the /var/log/audit/ directory.

resume

Resumes logging of Audit events after it has been previously suspended, for example, when there is
not enough free space on the disk partition that holds the Audit log files.

condrestart or try-restart

Restarts auditd only if it is already running.

status

CHAPTER 12. AUDITING THE SYSTEM

131

Displays the running status of auditd.

NOTE

The service command is the only way to correctly interact with the auditd daemon. You
need to use the service command so that the auid value is properly recorded. You can
use the systemctl command only for two actions: enable and status.

12.5. UNDERSTANDING AUDIT LOG FILES

By default, the Audit system stores log entries in the /var/log/audit/audit.log file; if log rotation is
enabled, rotated audit.log files are stored in the same directory.

Add the following Audit rule to log every attempt to read or modify the /etc/ssh/sshd_config file:

auditctl -w /etc/ssh/sshd_config -p warx -k sshd_config

If the auditd daemon is running, for example, using the following command creates a new event in the
Audit log file:

$ cat /etc/ssh/sshd_config

This event in the audit.log file looks as follows:

type=SYSCALL msg=audit(1364481363.243:24287): arch=c000003e syscall=2 success=no exit=-13
a0=7fffd19c5592 a1=0 a2=7fffd19c4b50 a3=a items=1 ppid=2686 pid=3538 auid=1000 uid=1000
gid=1000 euid=1000 suid=1000 fsuid=1000 egid=1000 sgid=1000 fsgid=1000 tty=pts0 ses=1
comm="cat" exe="/bin/cat" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
key="sshd_config"
type=CWD msg=audit(1364481363.243:24287): cwd="/home/shadowman"
type=PATH msg=audit(1364481363.243:24287): item=0 name="/etc/ssh/sshd_config" inode=409248
dev=fd:00 mode=0100600 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:etc_t:s0
nametype=NORMAL cap_fp=none cap_fi=none cap_fe=0 cap_fver=0
type=PROCTITLE msg=audit(1364481363.243:24287) :
proctitle=636174002F6574632F7373682F737368645F636F6E666967

The above event consists of four records, which share the same time stamp and serial number. Records
always start with the type= keyword. Each record consists of several name=value pairs separated by a
white space or a comma. A detailed analysis of the above event follows:

First Record

type=SYSCALL

The type field contains the type of the record. In this example, the SYSCALL value specifies that this
record was triggered by a system call to the kernel.

msg=audit(1364481363.243:24287):

The msg field records:

A time stamp and a unique ID of the record in the form audit(time_stamp:ID). Multiple
records can share the same time stamp and ID if they were generated as part of the same
Audit event. The time stamp is using the Unix time format - seconds since 00:00:00 UTC on
1 January 1970.

Red Hat Enterprise Linux 9 Security hardening

132

Various event-specific name=value pairs provided by the kernel or user-space applications.

arch=c000003e

The arch field contains information about the CPU architecture of the system. The value, c000003e,
is encoded in hexadecimal notation. When searching Audit records with the ausearch command, use
the -i or --interpret option to automatically convert hexadecimal values into their human-readable
equivalents. The c000003e value is interpreted as x86_64.

syscall=2

The syscall field records the type of the system call that was sent to the kernel. The value, 2, can be
matched with its human-readable equivalent in the /usr/include/asm/unistd_64.h file. In this case, 2
is the open system call. Note that the ausyscall utility allows you to convert system call numbers to
their human-readable equivalents. Use the ausyscall --dump command to display a listing of all
system calls along with their numbers. For more information, see the ausyscall(8) man page.

success=no

The success field records whether the system call recorded in that particular event succeeded or
failed. In this case, the call did not succeed.

exit=-13

The exit field contains a value that specifies the exit code returned by the system call. This value
varies for a different system call. You can interpret the value to its human-readable equivalent with
the following command:

ausearch --interpret --exit -13

Note that the previous example assumes that your Audit log contains an event that failed with exit
code -13.

a0=7fffd19c5592, a1=0, a2=7fffd19c5592, a3=a

The a0 to a3 fields record the first four arguments, encoded in hexadecimal notation, of the system
call in this event. These arguments depend on the system call that is used; they can be interpreted by
the ausearch utility.

items=1

The items field contains the number of PATH auxiliary records that follow the syscall record.

ppid=2686

The ppid field records the Parent Process ID (PPID). In this case, 2686 was the PPID of the parent
process such as bash.

pid=3538

The pid field records the Process ID (PID). In this case, 3538 was the PID of the cat process.

auid=1000

The auid field records the Audit user ID, that is the loginuid. This ID is assigned to a user upon login
and is inherited by every process even when the user’s identity changes, for example, by switching
user accounts with the su - john command.

uid=1000

The uid field records the user ID of the user who started the analyzed process. The user ID can be
interpreted into user names with the following command: ausearch -i --uid UID.

gid=1000

The gid field records the group ID of the user who started the analyzed process.

euid=1000

CHAPTER 12. AUDITING THE SYSTEM

133

The euid field records the effective user ID of the user who started the analyzed process.

suid=1000

The suid field records the set user ID of the user who started the analyzed process.

fsuid=1000

The fsuid field records the file system user ID of the user who started the analyzed process.

egid=1000

The egid field records the effective group ID of the user who started the analyzed process.

sgid=1000

The sgid field records the set group ID of the user who started the analyzed process.

fsgid=1000

The fsgid field records the file system group ID of the user who started the analyzed process.

tty=pts0

The tty field records the terminal from which the analyzed process was invoked.

ses=1

The ses field records the session ID of the session from which the analyzed process was invoked.

comm="cat"

The comm field records the command-line name of the command that was used to invoke the
analyzed process. In this case, the cat command was used to trigger this Audit event.

exe="/bin/cat"

The exe field records the path to the executable that was used to invoke the analyzed process.

subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

The subj field records the SELinux context with which the analyzed process was labeled at the time
of execution.

key="sshd_config"

The key field records the administrator-defined string associated with the rule that generated this
event in the Audit log.

Second Record

type=CWD

In the second record, the type field value is CWD — current working directory. This type is used to
record the working directory from which the process that invoked the system call specified in the
first record was executed.
The purpose of this record is to record the current process’s location in case a relative path winds up
being captured in the associated PATH record. This way the absolute path can be reconstructed.

msg=audit(1364481363.243:24287)

The msg field holds the same time stamp and ID value as the value in the first record. The time
stamp is using the Unix time format - seconds since 00:00:00 UTC on 1 January 1970.

cwd="/home/user_name"

The cwd field contains the path to the directory in which the system call was invoked.

Third Record

type=PATH

In the third record, the type field value is PATH. An Audit event contains a PATH-type record for

Red Hat Enterprise Linux 9 Security hardening

134

In the third record, the type field value is PATH. An Audit event contains a PATH-type record for
every path that is passed to the system call as an argument. In this Audit event, only one path
(/etc/ssh/sshd_config) was used as an argument.

msg=audit(1364481363.243:24287):

The msg field holds the same time stamp and ID value as the value in the first and second record.

item=0

The item field indicates which item, of the total number of items referenced in the SYSCALL type
record, the current record is. This number is zero-based; a value of 0 means it is the first item.

name="/etc/ssh/sshd_config"

The name field records the path of the file or directory that was passed to the system call as an
argument. In this case, it was the /etc/ssh/sshd_config file.

inode=409248

The inode field contains the inode number associated with the file or directory recorded in this
event. The following command displays the file or directory that is associated with the 409248 inode
number:

find / -inum 409248 -print
/etc/ssh/sshd_config

dev=fd:00

The dev field specifies the minor and major ID of the device that contains the file or directory
recorded in this event. In this case, the value represents the /dev/fd/0 device.

mode=0100600

The mode field records the file or directory permissions, encoded in numerical notation as returned
by the stat command in the st_mode field. See the stat(2) man page for more information. In this
case, 0100600 can be interpreted as -rw-------, meaning that only the root user has read and write
permissions to the /etc/ssh/sshd_config file.

ouid=0

The ouid field records the object owner’s user ID.

ogid=0

The ogid field records the object owner’s group ID.

rdev=00:00

The rdev field contains a recorded device identifier for special files only. In this case, it is not used as
the recorded file is a regular file.

obj=system_u:object_r:etc_t:s0

The obj field records the SELinux context with which the recorded file or directory was labeled at the
time of execution.

nametype=NORMAL

The nametype field records the intent of each path record’s operation in the context of a given
syscall.

cap_fp=none

The cap_fp field records data related to the setting of a permitted file system-based capability of
the file or directory object.

cap_fi=none

The cap_fi field records data related to the setting of an inherited file system-based capability of
the file or directory object.

CHAPTER 12. AUDITING THE SYSTEM

135

cap_fe=0

The cap_fe field records the setting of the effective bit of the file system-based capability of the
file or directory object.

cap_fver=0

The cap_fver field records the version of the file system-based capability of the file or directory
object.

Fourth Record

type=PROCTITLE

The type field contains the type of the record. In this example, the PROCTITLE value specifies that
this record gives the full command-line that triggered this Audit event, triggered by a system call to
the kernel.

proctitle=636174002F6574632F7373682F737368645F636F6E666967

The proctitle field records the full command-line of the command that was used to invoke the
analyzed process. The field is encoded in hexadecimal notation to not allow the user to influence the
Audit log parser. The text decodes to the command that triggered this Audit event. When searching
Audit records with the ausearch command, use the -i or --interpret option to automatically convert
hexadecimal values into their human-readable equivalents. The
636174002F6574632F7373682F737368645F636F6E666967 value is interpreted as cat
/etc/ssh/sshd_config.

12.6. USING AUDITCTL FOR DEFINING AND EXECUTING AUDIT RULES

The Audit system operates on a set of rules that define what is captured in the log files. Audit rules can
be set either on the command line using the auditctl utility or in the /etc/audit/rules.d/ directory.

The auditctl command enables you to control the basic functionality of the Audit system and to define
rules that decide which Audit events are logged.

File-system rules examples

1. To define a rule that logs all write access to, and every attribute change of, the /etc/passwd file:

auditctl -w /etc/passwd -p wa -k passwd_changes

2. To define a rule that logs all write access to, and every attribute change of, all the files in the
/etc/selinux/ directory:

auditctl -w /etc/selinux/ -p wa -k selinux_changes

System-call rules examples

1. To define a rule that creates a log entry every time the adjtimex or settimeofday system calls
are used by a program, and the system uses the 64-bit architecture:

auditctl -a always,exit -F arch=b64 -S adjtimex -S settimeofday -k time_change

2. To define a rule that creates a log entry every time a file is deleted or renamed by a system user
whose ID is 1000 or larger:

Red Hat Enterprise Linux 9 Security hardening

136

auditctl -a always,exit -S unlink -S unlinkat -S rename -S renameat -F auid>=1000 -F
auid!=4294967295 -k delete

Note that the -F auid!=4294967295 option is used to exclude users whose login UID is not set.

Executable-file rules

To define a rule that logs all execution of the /bin/id program, execute the following command:

auditctl -a always,exit -F exe=/bin/id -F arch=b64 -S execve -k execution_bin_id

Additional resources

auditctl(8) man page.

12.7. DEFINING PERSISTENT AUDIT RULES

To define Audit rules that are persistent across reboots, you must either directly include them in the
/etc/audit/rules.d/audit.rules file or use the augenrules program that reads rules located in the
/etc/audit/rules.d/ directory.

Note that the /etc/audit/audit.rules file is generated whenever the auditd service starts. Files in
/etc/audit/rules.d/ use the same auditctl command-line syntax to specify the rules. Empty lines and text
following a hash sign (#) are ignored.

Furthermore, you can use the auditctl command to read rules from a specified file using the -R option,
for example:

auditctl -R /usr/share/audit/sample-rules/30-stig.rules

12.8. PRE-CONFIGURED AUDIT RULES FILES FOR COMPLIANCE WITH
STANDARDS

To configure Audit for compliance with a specific certification standard, such as OSPP, PCI DSS, or
STIG, you can use the set of pre-configured rules files installed with the audit package as a starting
point. The sample rules are located in the /usr/share/audit/sample-rules directory.

WARNING

The Audit sample rules in the sample-rules directory are not exhaustive nor up to
date because security standards are dynamic and subject to change. These rules are
provided only to demonstrate how Audit rules can be structured and written. They
do not ensure immediate compliance with the latest security standards. To bring
your system into compliance with the latest security standards according to specific
security guidelines, use the SCAP-based security compliance tools .

30-nispom.rules

Audit rule configuration that meets the requirements specified in the Information System Security



CHAPTER 12. AUDITING THE SYSTEM

137

Audit rule configuration that meets the requirements specified in the Information System Security
chapter of the National Industrial Security Program Operating Manual.

30-ospp-v42*.rules

Audit rule configuration that meets the requirements defined in the OSPP (Protection Profile for
General Purpose Operating Systems) profile version 4.2.

30-pci-dss-v31.rules

Audit rule configuration that meets the requirements set by Payment Card Industry Data Security
Standard (PCI DSS) v3.1.

30-stig.rules

Audit rule configuration that meets the requirements set by Security Technical Implementation
Guides (STIG).

To use these configuration files, copy them to the /etc/audit/rules.d/ directory and use the augenrules
--load command, for example:

cd /usr/share/audit/sample-rules/
cp 10-base-config.rules 30-stig.rules 31-privileged.rules 99-finalize.rules /etc/audit/rules.d/
augenrules --load

You can order Audit rules using a numbering scheme. See the /usr/share/audit/sample-rules/README-
rules file for more information.

Additional resources

audit.rules(7) man page.

12.9. USING AUGENRULES TO DEFINE PERSISTENT RULES

The augenrules script reads rules located in the /etc/audit/rules.d/ directory and compiles them into an
audit.rules file. This script processes all files that end with .rules in a specific order based on their
natural sort order. The files in this directory are organized into groups with the following meanings:

10

Kernel and auditctl configuration

20

Rules that could match general rules but you want a different match

30

Main rules

40

Optional rules

50

Server-specific rules

70

System local rules

90

Finalize (immutable)

The rules are not meant to be used all at once. They are pieces of a policy that should be thought out

Red Hat Enterprise Linux 9 Security hardening

138

The rules are not meant to be used all at once. They are pieces of a policy that should be thought out
and individual files copied to /etc/audit/rules.d/. For example, to set a system up in the STIG
configuration, copy rules 10-base-config, 30-stig, 31-privileged, and 99-finalize.

Once you have the rules in the /etc/audit/rules.d/ directory, load them by running the augenrules script
with the --load directive:

augenrules --load
/sbin/augenrules: No change
No rules
enabled 1
failure 1
pid 742
rate_limit 0
...

Additional resources

audit.rules(8) and augenrules(8) man pages.

12.10. DISABLING AUGENRULES

Use the following steps to disable the augenrules utility. This switches Audit to use rules defined in the
/etc/audit/audit.rules file.

Procedure

1. Copy the /usr/lib/systemd/system/auditd.service file to the /etc/systemd/system/ directory:

cp -f /usr/lib/systemd/system/auditd.service /etc/systemd/system/

2. Edit the /etc/systemd/system/auditd.service file in a text editor of your choice, for example:

vi /etc/systemd/system/auditd.service

3. Comment out the line containing augenrules, and uncomment the line containing the auditctl -
R command:

#ExecStartPost=-/sbin/augenrules --load
ExecStartPost=-/sbin/auditctl -R /etc/audit/audit.rules

4. Reload the systemd daemon to fetch changes in the auditd.service file:

systemctl daemon-reload

5. Restart the auditd service:

service auditd restart

Additional resources

augenrules(8) and audit.rules(8) man pages.

CHAPTER 12. AUDITING THE SYSTEM

139

Auditd service restart overrides changes made to /etc/audit/audit.rules .

12.11. SETTING UP AUDIT TO MONITOR SOFTWARE UPDATES

You can use the pre-configured rule 44-installers.rules to configure Audit to monitor the following
utilities that install software:

dnf [3]

yum

pip

npm

cpan

gem

luarocks

To monitor the rpm utility, install the rpm-plugin-audit package. Audit will then generate
SOFTWARE_UPDATE events when it installs or updates a package. You can list these events by
entering ausearch -m SOFTWARE_UPDATE on the command line.

NOTE

Pre-configured rule files cannot be used on systems with the ppc64le and aarch64
architectures.

Prerequisites

auditd is configured in accordance with the settings provided in Configuring auditd for a secure
environment .

Procedure

1. Copy the pre-configured rule file 44-installers.rules from the /usr/share/audit/sample-rules/
directory to the /etc/audit/rules.d/ directory:

cp /usr/share/audit/sample-rules/44-installers.rules /etc/audit/rules.d/

2. Load the audit rules:

augenrules --load

Verification

1. List the loaded rules:

auditctl -l
-p x-w /usr/bin/dnf-3 -k software-installer
-p x-w /usr/bin/yum -k software-installer
-p x-w /usr/bin/pip -k software-installer

Red Hat Enterprise Linux 9 Security hardening

140

https://access.redhat.com/solutions/1505033
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/auditing-the-system_security-hardening#configuring-auditd-for-a-secure-environment_auditing-the-system

-p x-w /usr/bin/npm -k software-installer
-p x-w /usr/bin/cpan -k software-installer
-p x-w /usr/bin/gem -k software-installer
-p x-w /usr/bin/luarocks -k software-installer

2. Perform an installation, for example:

dnf reinstall -y vim-enhanced

3. Search the Audit log for recent installation events, for example:

ausearch -ts recent -k software-installer
––––
time->Thu Dec 16 10:33:46 2021
type=PROCTITLE msg=audit(1639668826.074:298):
proctitle=2F7573722F6C6962657865632F706C6174666F726D2D707974686F6E002F75737
22F62696E2F646E66007265696E7374616C6C002D790076696D2D656E68616E636564
type=PATH msg=audit(1639668826.074:298): item=2 name="/lib64/ld-linux-x86-64.so.2"
inode=10092 dev=fd:01 mode=0100755 ouid=0 ogid=0 rdev=00:00
obj=system_u:object_r:ld_so_t:s0 nametype=NORMAL cap_fp=0 cap_fi=0 cap_fe=0
cap_fver=0 cap_frootid=0
type=PATH msg=audit(1639668826.074:298): item=1 name="/usr/libexec/platform-python"
inode=4618433 dev=fd:01 mode=0100755 ouid=0 ogid=0 rdev=00:00
obj=system_u:object_r:bin_t:s0 nametype=NORMAL cap_fp=0 cap_fi=0 cap_fe=0
cap_fver=0 cap_frootid=0
type=PATH msg=audit(1639668826.074:298): item=0 name="/usr/bin/dnf" inode=6886099
dev=fd:01 mode=0100755 ouid=0 ogid=0 rdev=00:00 obj=system_u:object_r:rpm_exec_t:s0
nametype=NORMAL cap_fp=0 cap_fi=0 cap_fe=0 cap_fver=0 cap_frootid=0
type=CWD msg=audit(1639668826.074:298): cwd="/root"
type=EXECVE msg=audit(1639668826.074:298): argc=5 a0="/usr/libexec/platform-python"
a1="/usr/bin/dnf" a2="reinstall" a3="-y" a4="vim-enhanced"
type=SYSCALL msg=audit(1639668826.074:298): arch=c000003e syscall=59 success=yes
exit=0 a0=55c437f22b20 a1=55c437f2c9d0 a2=55c437f2aeb0 a3=8 items=3 ppid=5256
pid=5375 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=3
comm="dnf" exe="/usr/libexec/platform-python3.6"
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key="software-installer"

12.12. MONITORING USER LOGIN TIMES WITH AUDIT

To monitor which users logged in at specific times, you do not need to configure Audit in any special
way. You can use the ausearch or aureport tools, which provide different ways of presenting the same
information.

Prerequisites

auditd is configured in accordance with the settings provided in Configuring auditd for a secure
environment .

Procedure

To display user log in times, use any one of the following commands:

Search the audit log for the USER_LOGIN message type:

ausearch -m USER_LOGIN -ts '12/02/2020' '18:00:00' -sv no

CHAPTER 12. AUDITING THE SYSTEM

141

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/auditing-the-system_security-hardening#configuring-auditd-for-a-secure-environment_auditing-the-system

time->Mon Nov 22 07:33:22 2021
type=USER_LOGIN msg=audit(1637584402.416:92): pid=1939 uid=0 auid=4294967295
ses=4294967295 subj=system_u:system_r:sshd_t:s0-s0:c0.c1023 msg='op=login acct="
(unknown)" exe="/usr/sbin/sshd" hostname=? addr=10.37.128.108 terminal=ssh res=failed'

You can specify the date and time with the -ts option. If you do not use this option,
ausearch provides results from today, and if you omit time, ausearch provides results from
midnight.

You can use the -sv yes option to filter out successful login attempts and -sv no for
unsuccessful login attempts.

Pipe the raw output of the ausearch command into the aulast utility, which displays the output
in a format similar to the output of the last command. For example:

ausearch --raw | aulast --stdin
root ssh 10.37.128.108 Mon Nov 22 07:33 - 07:33 (00:00)
root ssh 10.37.128.108 Mon Nov 22 07:33 - 07:33 (00:00)
root ssh 10.22.16.106 Mon Nov 22 07:40 - 07:40 (00:00)
reboot system boot 4.18.0-348.6.el8 Mon Nov 22 07:33

Display the list of login events by using the aureport command with the --login -i options.

aureport --login -i

Login Report
==
date time auid host term exe success event
==
1. 11/16/2021 13:11:30 root 10.40.192.190 ssh /usr/sbin/sshd yes 6920
2. 11/16/2021 13:11:31 root 10.40.192.190 ssh /usr/sbin/sshd yes 6925
3. 11/16/2021 13:11:31 root 10.40.192.190 ssh /usr/sbin/sshd yes 6930
4. 11/16/2021 13:11:31 root 10.40.192.190 ssh /usr/sbin/sshd yes 6935
5. 11/16/2021 13:11:33 root 10.40.192.190 ssh /usr/sbin/sshd yes 6940
6. 11/16/2021 13:11:33 root 10.40.192.190 /dev/pts/0 /usr/sbin/sshd yes 6945

Additional resources

The ausearch(8) man page.

The aulast(8) man page.

The aureport(8) man page.

12.13. ADDITIONAL RESOURCES

The RHEL Audit System Reference Knowledgebase article.

The Auditd execution options in a container Knowledgebase article.

The Linux Audit Documentation Project page .

The audit package provides documentation in the /usr/share/doc/audit/ directory.

auditd(8), auditctl(8), ausearch(8), audit.rules(7), audispd.conf(5), audispd(8),

Red Hat Enterprise Linux 9 Security hardening

142

https://access.redhat.com/articles/4409591
https://access.redhat.com/articles/4494341
https://github.com/linux-audit/audit-documentation/wiki

auditd(8), auditctl(8), ausearch(8), audit.rules(7), audispd.conf(5), audispd(8),
auditd.conf(5), ausearch-expression(5), aulast(8), aulastlog(8), aureport(8), ausyscall(8),
autrace(8), and auvirt(8) man pages.

[3] Because dnf is a symlink in RHEL, the path in the dnf Audit rule must include the target of the symlink. To
receive correct Audit events, modify the 44-installers.rules file by changing the path=/usr/bin/dnf path to
/usr/bin/dnf-3.

CHAPTER 12. AUDITING THE SYSTEM

143

CHAPTER 13. BLOCKING AND ALLOWING APPLICATIONS BY
USING FAPOLICYD

Setting and enforcing a policy that either allows or denies application execution based on a rule set
efficiently prevents the execution of unknown and potentially malicious software.

13.1. INTRODUCTION TO FAPOLICYD

The fapolicyd software framework controls the execution of applications based on a user-defined
policy. This is one of the most efficient ways to prevent running untrusted and possibly malicious
applications on the system.

The fapolicyd framework provides the following components:

fapolicyd service

fapolicyd command-line utilities

fapolicyd RPM plugin

fapolicyd rule language

fagenrules script

The administrator can define the allow and deny execution rules for any application with the possibility
of auditing based on a path, hash, MIME type, or trust.

The fapolicyd framework introduces the concept of trust. An application is trusted when it is properly
installed by the system package manager, and therefore it is registered in the system RPM database.
The fapolicyd daemon uses the RPM database as a list of trusted binaries and scripts. The fapolicyd
RPM plugin registers any system update that is handled by either the DNF package manager or the RPM
Package Manager. The plugin notifies the fapolicyd daemon about changes in this database. Other
ways of adding applications require the creation of custom rules and restarting the fapolicyd service.

The fapolicyd service configuration is located in the /etc/fapolicyd/ directory with the following
structure:

The /etc/fapolicyd/fapolicyd.trust file contains a list of trusted files. You can also use multiple
trust files in the /etc/fapolicyd/trust.d/ directory.

The /etc/fapolicyd/rules.d/ directory for files containing allow and deny execution rules. The
fagenrules script merges these component rules files to the /etc/fapolicyd/compiled.rules file.

The fapolicyd.conf file contains the daemon’s configuration options. This file is useful primarily
for performance-tuning purposes.

Rules in /etc/fapolicyd/rules.d/ are organized in several files, each representing a different policy goal.
The numbers at the beginning of the corresponding file names determine the order in
/etc/fapolicyd/compiled.rules:

10

Language rules.

20

Dracut-related Rules.

Red Hat Enterprise Linux 9 Security hardening

144

21

rules for updaters.

30

Patterns.

40

ELF rules.

41

Shared objects rules.

42

Trusted ELF rules.

70

Trusted language rules.

72

Shell rules.

90

Deny execute rules.

95

Allow open rules.

You can use one of the following ways for fapolicyd integrity checking:

File-size checking

Comparing SHA-256 hashes

Integrity Measurement Architecture (IMA) subsystem

By default, fapolicyd does no integrity checking. Integrity checking based on the file size is fast, but an
attacker can replace the content of the file and preserve its byte size. Computing and checking SHA-
256 checksums is more secure, but it affects the performance of the system. The integrity = ima option
in fapolicyd.conf requires support for files extended attributes (also known as xattr) on all file systems
containing executable files.

Additional resources

fapolicyd(8), fapolicyd.rules(5), fapolicyd.conf(5), fapolicyd.trust(13), fagenrules(8), and
fapolicyd-cli(1) man pages.

The Enhancing security with the kernel integrity subsystem chapter in the Managing,
monitoring, and updating the kernel document.

The documentation installed with the fapolicyd package in the /usr/share/doc/fapolicyd/
directory and the /usr/share/fapolicyd/sample-rules/README-rules file.

13.2. DEPLOYING FAPOLICYD

To deploy the fapolicyd framework in RHEL:

Procedure

CHAPTER 13. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD

145

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/enhancing-security-with-the-kernel-integrity-subsystem_managing-monitoring-and-updating-the-kernel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_monitoring_and_updating_the_kernel/

1. Install the fapolicyd package:

dnf install fapolicyd

2. Enable and start the fapolicyd service:

systemctl enable --now fapolicyd

Verification

1. Verify that the fapolicyd service is running correctly:

systemctl status fapolicyd
● fapolicyd.service - File Access Policy Daemon
 Loaded: loaded (/usr/lib/systemd/system/fapolicyd.service; enabled; vendor p>
 Active: active (running) since Tue 2019-10-15 18:02:35 CEST; 55s ago
 Process: 8818 ExecStart=/usr/sbin/fapolicyd (code=exited, status=0/SUCCESS)
 Main PID: 8819 (fapolicyd)
 Tasks: 4 (limit: 11500)
 Memory: 78.2M
 CGroup: /system.slice/fapolicyd.service
 └─8819 /usr/sbin/fapolicyd

Oct 15 18:02:35 localhost.localdomain systemd[1]: Starting File Access Policy D>
Oct 15 18:02:35 localhost.localdomain fapolicyd[8819]: Initialization of the da>
Oct 15 18:02:35 localhost.localdomain fapolicyd[8819]: Reading RPMDB into memory
Oct 15 18:02:35 localhost.localdomain systemd[1]: Started File Access Policy Da>
Oct 15 18:02:36 localhost.localdomain fapolicyd[8819]: Creating database

2. Log in as a user without root privileges, and check that fapolicyd is working, for example:

$ cp /bin/ls /tmp
$ /tmp/ls
bash: /tmp/ls: Operation not permitted

13.3. MARKING FILES AS TRUSTED USING AN ADDITIONAL SOURCE
OF TRUST

The fapolicyd framework trusts files contained in the RPM database. You can mark additional files as
trusted by adding the corresponding entries to the /etc/fapolicyd/fapolicyd.trust plain-text file or the
/etc/fapolicyd/trust.d/ directory, which supports separating a list of trusted files into more files. You can
modify fapolicyd.trust or the files in /etc/fapolicyd/trust.d either directly using a text editor or through
fapolicyd-cli commands.

NOTE

Marking files as trusted using fapolicyd.trust or trust.d/ is better than writing custom
fapolicyd rules due to performance reasons.

Prerequisites

The fapolicyd framework is deployed on your system.

Red Hat Enterprise Linux 9 Security hardening

146

Procedure

1. Copy your custom binary to the required directory, for example:

$ cp /bin/ls /tmp
$ /tmp/ls
bash: /tmp/ls: Operation not permitted

2. Mark your custom binary as trusted, and store the corresponding entry to the myapp file in
/etc/fapolicyd/trust.d/:

fapolicyd-cli --file add /tmp/ls --trust-file myapp

If you skip the --trust-file option, then the previous command adds the corresponding line
to /etc/fapolicyd/fapolicyd.trust.

To mark all existing files in a directory as trusted, provide the directory path as an argument
of the --file option, for example: fapolicyd-cli --file add /tmp/my_bin_dir/ --trust-file
myapp.

3. Update the fapolicyd database:

fapolicyd-cli --update

NOTE

Changing the content of a trusted file or directory changes their checksum, and therefore
fapolicyd no longer considers them trusted.

To make the new content trusted again, refresh the file trust database by using the
fapolicyd-cli --file update command. If you do not provide any argument, the entire
database refreshes. Alternatively, you can specify a path to a specific file or directory.
Then, update the database by using fapolicyd-cli --update.

Verification

1. Check that your custom binary can be now executed, for example:

$ /tmp/ls
ls

Additional resources

fapolicyd.trust(13) man page.

13.4. ADDING CUSTOM ALLOW AND DENY RULES FOR FAPOLICYD

The default set of rules in the fapolicyd package does not affect system functions. For custom
scenarios, such as storing binaries and scripts in a non-standard directory or adding applications without
the dnf or rpm installers, you must either mark additional files as trusted or add new custom rules.

For basic scenarios, prefer Marking files as trusted using an additional source of trust . In more advanced
scenarios such as allowing to execute a custom binary only for specific user and group identifiers, add
new custom rules to the /etc/fapolicyd/rules.d/ directory.

CHAPTER 13. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD

147

The following steps demonstrate adding a new rule to allow a custom binary.

Prerequisites

The fapolicyd framework is deployed on your system.

Procedure

1. Copy your custom binary to the required directory, for example:

$ cp /bin/ls /tmp
$ /tmp/ls
bash: /tmp/ls: Operation not permitted

2. Stop the fapolicyd service:

systemctl stop fapolicyd

3. Use debug mode to identify a corresponding rule. Because the output of the fapolicyd --debug
command is verbose and you can stop it only by pressing Ctrl+C or killing the corresponding
process, redirect the error output to a file. In this case, you can limit the output only to access
denials by using the --debug-deny option instead of --debug:

fapolicyd --debug-deny 2> fapolicy.output &
[1] 51341

Alternatively, you can run fapolicyd debug mode in another terminal.

4. Repeat the command that fapolicyd denied:

$ /tmp/ls
bash: /tmp/ls: Operation not permitted

5. Stop debug mode by resuming it in the foreground and pressing Ctrl+C:

fg
fapolicyd --debug 2> fapolicy.output
^C
...

Alternatively, kill the process of fapolicyd debug mode:

kill 51341

6. Find a rule that denies the execution of your application:

cat fapolicy.output | grep 'deny_audit'
...
rule=13 dec=deny_audit perm=execute auid=0 pid=6855 exe=/usr/bin/bash : path=/tmp/ls
ftype=application/x-executable trust=0

7. Locate the file that contains a rule that prevented the execution of your custom binary. In this
case, the deny_audit perm=execute rule belongs to the 90-deny-execute.rules file:

Red Hat Enterprise Linux 9 Security hardening

148

ls /etc/fapolicyd/rules.d/
10-languages.rules 40-bad-elf.rules 72-shell.rules
20-dracut.rules 41-shared-obj.rules 90-deny-execute.rules
21-updaters.rules 42-trusted-elf.rules 95-allow-open.rules
30-patterns.rules 70-trusted-lang.rules

cat /etc/fapolicyd/rules.d/90-deny-execute.rules
Deny execution for anything untrusted

deny_audit perm=execute all : all

8. Add a new allow rule to the file that lexically precedes the rule file that contains the rule that
denied the execution of your custom binary in the /etc/fapolicyd/rules.d/ directory:

touch /etc/fapolicyd/rules.d/80-myapps.rules
vi /etc/fapolicyd/rules.d/80-myapps.rules

Insert the following rule to the 80-myapps.rules file:

allow perm=execute exe=/usr/bin/bash trust=1 : path=/tmp/ls ftype=application/x-executable
trust=0

Alternatively, you can allow executions of all binaries in the /tmp directory by adding the
following rule to the rule file in /etc/fapolicyd/rules.d/:

allow perm=execute exe=/usr/bin/bash trust=1 : dir=/tmp/ trust=0

IMPORTANT

To make a rule effective recursively on all directories under the specified directory, add a
trailing slash to the value of the dir= parameter in the rule (/tmp/ in the previous example).

9. To prevent changes in the content of your custom binary, define the required rule using an
SHA-256 checksum:

$ sha256sum /tmp/ls
780b75c90b2d41ea41679fcb358c892b1251b68d1927c80fbc0d9d148b25e836 ls

Change the rule to the following definition:

allow perm=execute exe=/usr/bin/bash trust=1 :
sha256hash=780b75c90b2d41ea41679fcb358c892b1251b68d1927c80fbc0d9d148b25e836

10. Check that the list of compiled differs from the rule set in /etc/fapolicyd/rules.d/, and update
the list, which is stored in the /etc/fapolicyd/compiled.rules file:

fagenrules --check
/usr/sbin/fagenrules: Rules have changed and should be updated
fagenrules --load

11. Check that your custom rule is in the list of fapolicyd rules before the rule that prevented the
execution:

CHAPTER 13. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD

149

fapolicyd-cli --list
...
13. allow perm=execute exe=/usr/bin/bash trust=1 : path=/tmp/ls ftype=application/x-
executable trust=0
14. deny_audit perm=execute all : all
...

12. Start the fapolicyd service:

systemctl start fapolicyd

Verification

1. Check that your custom binary can be now executed, for example:

$ /tmp/ls
ls

Additional resources

fapolicyd.rules(5) and fapolicyd-cli(1) man pages.

The documentation installed with the fapolicyd package in the /usr/share/fapolicyd/sample-
rules/README-rules file.

13.5. ENABLING FAPOLICYD INTEGRITY CHECKS

By default, fapolicyd does not perform integrity checking. You can configure fapolicyd to perform
integrity checks by comparing either file sizes or SHA-256 hashes. You can also set integrity checks by
using the Integrity Measurement Architecture (IMA) subsystem.

Prerequisites

The fapolicyd framework is deployed on your system.

Procedure

1. Open the /etc/fapolicyd/fapolicyd.conf file in a text editor of your choice, for example:

vi /etc/fapolicyd/fapolicyd.conf

2. Change the value of the integrity option from none to sha256, save the file, and exit the editor:

integrity = sha256

3. Restart the fapolicyd service:

systemctl restart fapolicyd

Verification

1. Back up the file used for the verification:

Red Hat Enterprise Linux 9 Security hardening

150

cp /bin/more /bin/more.bak

2. Change the content of the /bin/more binary:

cat /bin/less > /bin/more

3. Use the changed binary as a regular user:

su example.user
$ /bin/more /etc/redhat-release
bash: /bin/more: Operation not permitted

4. Revert the changes:

mv -f /bin/more.bak /bin/more

13.6. TROUBLESHOOTING PROBLEMS RELATED TO FAPOLICYD

The following section provides tips for basic troubleshooting of the fapolicyd application framework
and guidance for adding applications using the rpm command.

Installing applications by using rpm

If you install an application by using the rpm command, you have to perform a manual refresh of
the fapolicyd RPM database:

1. Install your application:

rpm -i application.rpm

2. Refresh the database:

fapolicyd-cli --update

If you skip this step, the system can freeze and must be restarted.

Service status

If fapolicyd does not work correctly, check the service status:

systemctl status fapolicyd

fapolicyd-cli checks and listings

The --check-config, --check-watch_fs, and --check-trustdb options help you find syntax
errors, not-yet-watched file systems, and file mismatches, for example:

fapolicyd-cli --check-config
Daemon config is OK

CHAPTER 13. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD

151

fapolicyd-cli --check-trustdb
/etc/selinux/targeted/contexts/files/file_contexts miscompares: size sha256
/etc/selinux/targeted/policy/policy.31 miscompares: size sha256

Use the --list option to check the current list of rules and their order:

fapolicyd-cli --list
...
9. allow perm=execute all : trust=1
10. allow perm=open all : ftype=%languages trust=1
11. deny_audit perm=any all : ftype=%languages
12. allow perm=any all : ftype=text/x-shellscript
13. deny_audit perm=execute all : all
...

Debug mode

Debug mode provides detailed information about matched rules, database status, and more. To
switch fapolicyd to debug mode:

1. Stop the fapolicyd service:

systemctl stop fapolicyd

2. Use debug mode to identify a corresponding rule:

fapolicyd --debug

Because the output of the fapolicyd --debug command is verbose, you can redirect the
error output to a file:

fapolicyd --debug 2> fapolicy.output

Alternatively, to limit the output only to entries when fapolicyd denies access, use the --
debug-deny option:

fapolicyd --debug-deny

Removing the fapolicyd database

To solve problems related to the fapolicyd database, try to remove the database file:

systemctl stop fapolicyd
fapolicyd-cli --delete-db

Red Hat Enterprise Linux 9 Security hardening

152

WARNING

Do not remove the /var/lib/fapolicyd/ directory. The fapolicyd framework
automatically restores only the database file in this directory.

Dumping the fapolicyd database

The fapolicyd contains entries from all enabled trust sources. You can check the entries after
dumping the database:

fapolicyd-cli --dump-db

Application pipe

In rare cases, removing the fapolicyd pipe file can solve a lockup:

rm -f /var/run/fapolicyd/fapolicyd.fifo

Additional resources

fapolicyd-cli(1) man page.

13.7. ADDITIONAL RESOURCES

fapolicyd-related man pages listed by using the man -k fapolicyd command.

The FOSDEM 2020 fapolicyd presentation.



CHAPTER 13. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD

153

https://rsroka.fedorapeople.org/fapolicyd-fosdem.pdf

CHAPTER 14. PROTECTING SYSTEMS AGAINST INTRUSIVE
USB DEVICES

USB devices can be loaded with spyware, malware, or trojans, which can steal your data or damage your
system. As a Red Hat Enterprise Linux administrator, you can prevent such USB attacks with USBGuard.

14.1. USBGUARD

With the USBGuard software framework, you can protect your systems against intrusive USB devices by
using basic lists of permitted and forbidden devices based on the USB device authorization feature in
the kernel.

The USBGuard framework provides the following components:

The system service component with an inter-process communication (IPC) interface for
dynamic interaction and policy enforcement

The command-line interface to interact with a running usbguard system service

The rule language for writing USB device authorization policies

The C++ API for interacting with the system service component implemented in a shared library

The usbguard system service configuration file (/etc/usbguard/usbguard-daemon.conf) includes the
options to authorize the users and groups to use the IPC interface.

IMPORTANT

The system service provides the USBGuard public IPC interface. In Red Hat
Enterprise Linux, the access to this interface is limited to the root user only by default.

Consider setting either the IPCAccessControlFiles option (recommended) or the
IPCAllowedUsers and IPCAllowedGroups options to limit access to the IPC interface.

Ensure that you do not leave the Access Control List (ACL) unconfigured as this exposes
the IPC interface to all local users and allows them to manipulate the authorization state
of USB devices and modify the USBGuard policy.

14.2. INSTALLING USBGUARD

Use this procedure to install and initiate the USBGuard framework.

Procedure

1. Install the usbguard package:

dnf install usbguard

2. Create an initial rule set:

usbguard generate-policy > /etc/usbguard/rules.conf

3. Start the usbguard daemon and ensure that it starts automatically on boot:

Red Hat Enterprise Linux 9 Security hardening

154

systemctl enable --now usbguard

Verification

1. Verify that the usbguard service is running:

systemctl status usbguard
● usbguard.service - USBGuard daemon
 Loaded: loaded (/usr/lib/systemd/system/usbguard.service; enabled; vendor preset:
disabled)
 Active: active (running) since Thu 2019-11-07 09:44:07 CET; 3min 16s ago
 Docs: man:usbguard-daemon(8)
 Main PID: 6122 (usbguard-daemon)
 Tasks: 3 (limit: 11493)
 Memory: 1.2M
 CGroup: /system.slice/usbguard.service
 └─6122 /usr/sbin/usbguard-daemon -f -s -c /etc/usbguard/usbguard-daemon.conf

Nov 07 09:44:06 localhost.localdomain systemd[1]: Starting USBGuard daemon...
Nov 07 09:44:07 localhost.localdomain systemd[1]: Started USBGuard daemon.

2. List USB devices recognized by USBGuard:

usbguard list-devices
4: allow id 1d6b:0002 serial "0000:02:00.0" name "xHCI Host Controller" hash...

Additional resources

usbguard(1) and usbguard-daemon.conf(5) man pages.

14.3. BLOCKING AND AUTHORIZING A USB DEVICE BY USING CLI

You can set USBGuard to authorize and block a USB device by using the usbguard command in your
terminal.

Prerequisites

The usbguard service is installed and running.

Procedure

1. List USB devices recognized by USBGuard, for example:

usbguard list-devices
1: allow id 1d6b:0002 serial "0000:00:06.7" name "EHCI Host Controller" hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" parent-hash
"4PHGcaDKWtPjKDwYpIRG722cB9SlGz9l9Iea93+Gt9c=" via-port "usb1" with-interface
09:00:00
...
6: block id 1b1c:1ab1 serial "000024937962" name "Voyager" hash
"CrXgiaWIf2bZAU+5WkzOE7y0rdSO82XMzubn7HDb95Q=" parent-hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" via-port "1-3" with-interface
08:06:50

CHAPTER 14. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES

155

2. Authorize the device <6> to interact with the system:

usbguard allow-device <6>

3. Deauthorize and remove the device <6>:

usbguard reject-device <6>

4. Deauthorize and retain the device <6>:

usbguard block-device <6>

NOTE

USBGuard uses the terms block and reject with the following meanings:

block

Do not interact with this device for now.

reject

Ignore this device as if it does not exist.

Additional resources

usbguard(1) man page

usbguard --help command

14.4. PERMANENTLY BLOCKING AND AUTHORIZING A USB DEVICE

You can permanently block and authorize a USB device by using the -p option. This adds a device-
specific rule to the current policy.

Prerequisites

The usbguard service is installed and running.

Procedure

1. Configure SELinux to allow the usbguard daemon to write rules.

a. Display the semanage Booleans relevant to usbguard.

semanage boolean -l | grep usbguard
usbguard_daemon_write_conf (off , off) Allow usbguard to daemon write conf
usbguard_daemon_write_rules (on , on) Allow usbguard to daemon write rules

b. Optional: If the usbguard_daemon_write_rules Boolean is turned off, turn it on.

semanage boolean -m --on usbguard_daemon_write_rules

2. List USB devices recognized by USBGuard:

Red Hat Enterprise Linux 9 Security hardening

156

usbguard list-devices
1: allow id 1d6b:0002 serial "0000:00:06.7" name "EHCI Host Controller" hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" parent-hash
"4PHGcaDKWtPjKDwYpIRG722cB9SlGz9l9Iea93+Gt9c=" via-port "usb1" with-interface
09:00:00
...
6: block id 1b1c:1ab1 serial "000024937962" name "Voyager" hash
"CrXgiaWIf2bZAU+5WkzOE7y0rdSO82XMzubn7HDb95Q=" parent-hash
"JDOb0BiktYs2ct3mSQKopnOOV2h9MGYADwhT+oUtF2s=" via-port "1-3" with-interface
08:06:50

3. Permanently authorize device 6 to interact with the system:

usbguard allow-device 6 -p

4. Permanently deauthorize and remove device 6:

usbguard reject-device 6 -p

5. Permanently deauthorize and retain device 6:

usbguard block-device 6 -p

NOTE

USBGuard uses the terms block and reject with the following meanings:

block

Do not interact with this device for now.

reject

Ignore this device as if it does not exist.

Verification

1. Check that USBGuard rules include the changes you made.

usbguard list-rules

Additional resources

usbguard(1) man page.

Built-in help listed by using the usbguard --help command.

14.5. CREATING A CUSTOM POLICY FOR USB DEVICES

The following procedure contains steps for creating a rule set for USB devices that reflects the
requirements of your scenario.

Prerequisites

The usbguard service is installed and running.

CHAPTER 14. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES

157

The /etc/usbguard/rules.conf file contains an initial rule set generated by the usbguard
generate-policy command.

Procedure

1. Create a policy which authorizes the currently connected USB devices, and store the generated
rules to the rules.conf file:

usbguard generate-policy --no-hashes > ./rules.conf

The --no-hashes option does not generate hash attributes for devices. Avoid hash attributes in
your configuration settings because they might not be persistent.

2. Edit the rules.conf file with a text editor of your choice, for example:

vi ./rules.conf

3. Add, remove, or edit the rules as required. For example, the following rule allows only devices
with a single mass storage interface to interact with the system:

allow with-interface equals { 08:*:* }

See the usbguard-rules.conf(5) man page for a detailed rule-language description and more
examples.

4. Install the updated policy:

install -m 0600 -o root -g root rules.conf /etc/usbguard/rules.conf

5. Restart the usbguard daemon to apply your changes:

systemctl restart usbguard

Verification

1. Check that your custom rules are in the active policy, for example:

usbguard list-rules
...
4: allow with-interface 08:*:*
...

Additional resources

usbguard-rules.conf(5) man page.

14.6. CREATING A STRUCTURED CUSTOM POLICY FOR USB DEVICES

You can organize your custom USBGuard policy in several .conf files within the /etc/usbguard/rules.d/
directory. The usbguard-daemon then combines the main rules.conf file with the .conf files within the
directory in alphabetical order.

Red Hat Enterprise Linux 9 Security hardening

158

Prerequisites

The usbguard service is installed and running.

Procedure

1. Create a policy which authorizes the currently connected USB devices, and store the generated
rules to a new .conf file, for example, policy.conf.

usbguard generate-policy --no-hashes > ./policy.conf

The --no-hashes option does not generate hash attributes for devices. Avoid hash attributes in
your configuration settings because they might not be persistent.

2. Display the policy.conf file with a text editor of your choice, for example:

vi ./policy.conf
...
allow id 04f2:0833 serial "" name "USB Keyboard" via-port "7-2" with-interface { 03:01:01
03:00:00 } with-connect-type "unknown"
...

3. Move selected lines into a separate .conf file.

NOTE

The two digits at the beginning of the file name specify the order in which the
daemon reads the configuration files.

For example, copy the rules for your keyboards into a new .conf file.

grep "USB Keyboard" ./policy.conf > ./10keyboards.conf

4. Install the new policy to the /etc/usbguard/rules.d/ directory.

install -m 0600 -o root -g root 10keyboards.conf /etc/usbguard/rules.d/10keyboards.conf

5. Move the rest of the lines to a main rules.conf file.

grep -v "USB Keyboard" ./policy.conf > ./rules.conf

6. Install the remaining rules.

install -m 0600 -o root -g root rules.conf /etc/usbguard/rules.conf

7. Restart the usbguard daemon to apply your changes.

systemctl restart usbguard

Verification

1. Display all active USBGuard rules.

CHAPTER 14. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES

159

usbguard list-rules
...
15: allow id 04f2:0833 serial "" name "USB Keyboard" hash
"kxM/iddRe/WSCocgiuQlVs6Dn0VEza7KiHoDeTz0fyg=" parent-hash
"2i6ZBJfTl5BakXF7Gba84/Cp1gslnNc1DM6vWQpie3s=" via-port "7-2" with-interface {
03:01:01 03:00:00 } with-connect-type "unknown"
...

2. Display the contents of the rules.conf file and all the .conf files in the /etc/usbguard/rules.d/
directory.

cat /etc/usbguard/rules.conf /etc/usbguard/rules.d/*.conf

3. Verify that the active rules contain all the rules from the files and are in the correct order.

Additional resources

usbguard-rules.conf(5) man page.

14.7. AUTHORIZING USERS AND GROUPS TO USE THE USBGUARD IPC
INTERFACE

Use this procedure to authorize a specific user or a group to use the USBGuard public IPC interface. By
default, only the root user can use this interface.

Prerequisites

The usbguard service is installed and running.

The /etc/usbguard/rules.conf file contains an initial rule set generated by the usbguard
generate-policy command.

Procedure

1. Edit the /etc/usbguard/usbguard-daemon.conf file with a text editor of your choice:

vi /etc/usbguard/usbguard-daemon.conf

2. For example, add a line with a rule that allows all users in the wheel group to use the IPC
interface, and save the file:

IPCAllowGroups=wheel

3. You can add users or groups also with the usbguard command. For example, the following
command enables the joesec user to have full access to the Devices and Exceptions sections.
Furthermore, joesec can list and modify the current policy:

usbguard add-user joesec --devices ALL --policy modify,list --exceptions ALL

To remove the granted permissions for the joesec user, use the usbguard remove-user joesec
command.

4. Restart the usbguard daemon to apply your changes:

Red Hat Enterprise Linux 9 Security hardening

160

systemctl restart usbguard

Additional resources

usbguard(1) and usbguard-rules.conf(5) man pages.

14.8. LOGGING USBGUARD AUTHORIZATION EVENTS TO THE LINUX
AUDIT LOG

Use the following steps to integrate logging of USBguard authorization events to the standard Linux
Audit log. By default, the usbguard daemon logs events to the /var/log/usbguard/usbguard-audit.log
file.

Prerequisites

The usbguard service is installed and running.

The auditd service is running.

Procedure

1. Edit the usbguard-daemon.conf file with a text editor of your choice:

vi /etc/usbguard/usbguard-daemon.conf

2. Change the AuditBackend option from FileAudit to LinuxAudit:

AuditBackend=LinuxAudit

3. Restart the usbguard daemon to apply the configuration change:

systemctl restart usbguard

Verification

1. Query the audit daemon log for a USB authorization event, for example:

ausearch -ts recent -m USER_DEVICE

Additional resources

usbguard-daemon.conf(5) man page.

14.9. ADDITIONAL RESOURCES

usbguard(1), usbguard-rules.conf(5), usbguard-daemon(8), and usbguard-daemon.conf(5)
man pages.

USBGuard Homepage.

CHAPTER 14. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES

161

https://usbguard.github.io/

CHAPTER 15. CONFIGURING A REMOTE LOGGING SOLUTION
To ensure that logs from various machines in your environment are recorded centrally on a logging
server, you can configure the Rsyslog application to record logs that fit specific criteria from the client
system to the server.

15.1. THE RSYSLOG LOGGING SERVICE

The Rsyslog application, in combination with the systemd-journald service, provides local and remote
logging support in Red Hat Enterprise Linux. The rsyslogd daemon continuously reads syslog
messages received by the systemd-journald service from the Journal. rsyslogd then filters and
processes these syslog events and records them to rsyslog log files or forwards them to other services
according to its configuration.

The rsyslogd daemon also provides extended filtering, encryption protected relaying of messages,
input and output modules, and support for transportation using the TCP and UDP protocols.

In /etc/rsyslog.conf, which is the main configuration file for rsyslog, you can specify the rules according
to which rsyslogd handles the messages. Generally, you can classify messages by their source and topic
(facility) and urgency (priority), and then assign an action that should be performed when a message fits
these criteria.

In /etc/rsyslog.conf, you can also see a list of log files maintained by rsyslogd. Most log files are
located in the /var/log/ directory. Some applications, such as httpd and samba, store their log files in a
subdirectory within /var/log/.

Additional resources

The rsyslogd(8) and rsyslog.conf(5) man pages.

Documentation installed with the rsyslog-doc package in the
/usr/share/doc/rsyslog/html/index.html file.

15.2. INSTALLING RSYSLOG DOCUMENTATION

The Rsyslog application has extensive online documentation that is available at
https://www.rsyslog.com/doc/, but you can also install the rsyslog-doc documentation package locally.

Prerequisites

You have activated the AppStream repository on your system.

You are authorized to install new packages using sudo.

Procedure

Install the rsyslog-doc package:

dnf install rsyslog-doc

Verification

Open the /usr/share/doc/rsyslog/html/index.html file in a browser of your choice, for example:

Red Hat Enterprise Linux 9 Security hardening

162

https://www.rsyslog.com/doc/

$ firefox /usr/share/doc/rsyslog/html/index.html &

15.3. CONFIGURING A SERVER FOR REMOTE LOGGING OVER TCP

The Rsyslog application enables you to both run a logging server and configure individual systems to
send their log files to the logging server. To use remote logging through TCP, configure both the server
and the client. The server collects and analyzes the logs sent by one or more client systems.

With the Rsyslog application, you can maintain a centralized logging system where log messages are
forwarded to a server over the network. To avoid message loss when the server is not available, you can
configure an action queue for the forwarding action. This way, messages that failed to be sent are stored
locally until the server is reachable again. Note that such queues cannot be configured for connections
using the UDP protocol.

The omfwd plug-in provides forwarding over UDP or TCP. The default protocol is UDP. Because the
plug-in is built in, it does not have to be loaded.

By default, rsyslog uses TCP on port 514.

Prerequisites

Rsyslog is installed on the server system.

You are logged in as root on the server.

The policycoreutils-python-utils package is installed for the optional step using the
semanage command.

The firewalld service is running.

Procedure

1. Optional: To use a different port for rsyslog traffic, add the syslogd_port_t SELinux type to
port. For example, enable port 30514:

semanage port -a -t syslogd_port_t -p tcp 30514

2. Optional: To use a different port for rsyslog traffic, configure firewalld to allow incoming
rsyslog traffic on that port. For example, allow TCP traffic on port 30514:

firewall-cmd --zone=<zone-name> --permanent --add-port=30514/tcp
success
firewall-cmd --reload

3. Create a new file in the /etc/rsyslog.d/ directory named, for example, remotelog.conf, and
insert the following content:

Define templates before the rules that use them
Per-Host templates for remote systems
template(name="TmplAuthpriv" type="list") {
 constant(value="/var/log/remote/auth/")
 property(name="hostname")
 constant(value="/")
 property(name="programname" SecurePath="replace")

CHAPTER 15. CONFIGURING A REMOTE LOGGING SOLUTION

163

 constant(value=".log")
 }

template(name="TmplMsg" type="list") {
 constant(value="/var/log/remote/msg/")
 property(name="hostname")
 constant(value="/")
 property(name="programname" SecurePath="replace")
 constant(value=".log")
 }

Provides TCP syslog reception
module(load="imtcp")

Adding this ruleset to process remote messages
ruleset(name="remote1"){
 authpriv.* action(type="omfile" DynaFile="TmplAuthpriv")
 *.info;mail.none;authpriv.none;cron.none
action(type="omfile" DynaFile="TmplMsg")
}

input(type="imtcp" port="30514" ruleset="remote1")

4. Save the changes to the /etc/rsyslog.d/remotelog.conf file.

5. Test the syntax of the /etc/rsyslog.conf file:

rsyslogd -N 1
rsyslogd: version 8.1911.0-2.el8, config validation run...
rsyslogd: End of config validation run. Bye.

6. Make sure the rsyslog service is running and enabled on the logging server:

systemctl status rsyslog

7. Restart the rsyslog service.

systemctl restart rsyslog

8. Optional: If rsyslog is not enabled, ensure the rsyslog service starts automatically after reboot:

systemctl enable rsyslog

Your log server is now configured to receive and store log files from the other systems in your
environment.

Additional resources

rsyslogd(8), rsyslog.conf(5), semanage(8), and firewall-cmd(1) man pages.

Documentation installed with the rsyslog-doc package in the
/usr/share/doc/rsyslog/html/index.html file.

Red Hat Enterprise Linux 9 Security hardening

164

15.4. CONFIGURING REMOTE LOGGING TO A SERVER OVER TCP

Follow this procedure to configure a system for forwarding log messages to a server over the TCP
protocol. The omfwd plug-in provides forwarding over UDP or TCP. The default protocol is UDP.
Because the plug-in is built in, you do not have to load it.

Prerequisites

The rsyslog package is installed on the client systems that should report to the server.

You have configured the server for remote logging.

The specified port is permitted in SELinux and open in firewall.

The system contains the policycoreutils-python-utils package, which provides the semanage
command for adding a non-standard port to the SELinux configuration.

Procedure

1. Create a new file in the /etc/rsyslog.d/ directory named, for example, 10-remotelog.conf, and
insert the following content:

. action(type="omfwd"
 queue.type="linkedlist"
 queue.filename="example_fwd"
 action.resumeRetryCount="-1"
 queue.saveOnShutdown="on"
 target="example.com" port="30514" protocol="tcp"
)

Where:

The queue.type="linkedlist" setting enables a LinkedList in-memory queue,

The queue.filename setting defines a disk storage. The backup files are created with the
example_fwd prefix in the working directory specified by the preceding global
workDirectory directive.

The action.resumeRetryCount -1 setting prevents rsyslog from dropping messages when
retrying to connect if server is not responding,

The queue.saveOnShutdown="on" setting saves in-memory data if rsyslog shuts down.

The last line forwards all received messages to the logging server. Port specification is
optional.
With this configuration, rsyslog sends messages to the server but keeps messages in
memory if the remote server is not reachable. A file on disk is created only if rsyslog runs
out of the configured memory queue space or needs to shut down, which benefits the
system performance.

NOTE

Rsyslog processes configuration files /etc/rsyslog.d/ in the lexical order.

2. Restart the rsyslog service.

CHAPTER 15. CONFIGURING A REMOTE LOGGING SOLUTION

165

systemctl restart rsyslog

Verification

To verify that the client system sends messages to the server, follow these steps:

1. On the client system, send a test message:

logger test

2. On the server system, view the /var/log/messages log, for example:

cat /var/log/remote/msg/hostname/root.log
Feb 25 03:53:17 hostname root[6064]: test

Where hostname is the host name of the client system. Note that the log contains the user
name of the user that entered the logger command, in this case root.

Additional resources

rsyslogd(8) and rsyslog.conf(5) man pages.

Documentation installed with the rsyslog-doc package in the
/usr/share/doc/rsyslog/html/index.html file.

15.5. CONFIGURING TLS-ENCRYPTED REMOTE LOGGING

By default, Rsyslog sends remote-logging communication in the plain text format. If your scenario
requires to secure this communication channel, you can encrypt it using TLS.

To use encrypted transport through TLS, configure both the server and the client. The server collects
and analyzes the logs sent by one or more client systems.

You can use either the ossl network stream driver (OpenSSL) or the gtls stream driver (GnuTLS).

NOTE

If you have a separate system with higher security, for example, a system that is not
connected to any network or has stricter authorizations, use the separate system as the
certifying authority (CA).

Prerequisites

You have root access to both the client and server systems.

The rsyslog and rsyslog-openssl packages are installed on the server and the client systems.

If you use the gtls network stream driver, install the rsyslog-gnutls package instead of
rsyslog-openssl.

If you generate certificates using the certtool command, install the gnutls-utils package.

On your logging server, the following certificates are in the /etc/pki/ca-trust/source/anchors/
directory and your system configuration is updated by using the update-ca-trust command:

Red Hat Enterprise Linux 9 Security hardening

166

ca-cert.pem - a CA certificate that can verify keys and certificates on logging servers and
clients.

server-cert.pem - a public key of the logging server.

server-key.pem - a private key of the logging server.

On your logging clients, the following certificates are in the /etc/pki/ca-trust/source/anchors/
directory and your system configuration is updated by using update-ca-trust:

ca-cert.pem - a CA certificate that can verify keys and certificates on logging servers and
clients.

client-cert.pem - a public key of a client.

client-key.pem - a private key of a client.

If the server runs RHEL 9.2 or later and the FIPS mode is enabled, clients must either
support the Extended Master Secret (EMS) extension or use TLS 1.3. TLS 1.2 connections
without EMS fail. For more information, see the TLS extension "Extended Master Secret"
enforced Knowledgebase article.

Procedure

1. Configure the server for receiving encrypted logs from your client systems:

a. Create a new file in the /etc/rsyslog.d/ directory named, for example, securelogser.conf.

b. To encrypt the communication, the configuration file must contain paths to certificate files
on your server, a selected authentication method, and a stream driver that supports TLS
encryption. Add the following lines to the /etc/rsyslog.d/securelogser.conf file:

Set certificate files
global(
 DefaultNetstreamDriverCAFile="/etc/pki/ca-trust/source/anchors/ca-cert.pem"
 DefaultNetstreamDriverCertFile="/etc/pki/ca-trust/source/anchors/server-cert.pem"
 DefaultNetstreamDriverKeyFile="/etc/pki/ca-trust/source/anchors/server-key.pem"
)

TCP listener
module(
 load="imtcp"
 PermittedPeer=["client1.example.com", "client2.example.com"]
 StreamDriver.AuthMode="x509/name"
 StreamDriver.Mode="1"
 StreamDriver.Name="ossl"
)

Start up listener at port 514
input(
 type="imtcp"
 port="514"
)

NOTE

CHAPTER 15. CONFIGURING A REMOTE LOGGING SOLUTION

167

https://access.redhat.com/solutions/7018256

NOTE

If you prefer the GnuTLS driver, use the StreamDriver.Name="gtls"
configuration option. See the documentation installed with the rsyslog-doc
package for more information about less strict authentication modes than
x509/name.

c. Save the changes to the /etc/rsyslog.d/securelogser.conf file.

d. Verify the syntax of the /etc/rsyslog.conf file and any files in the /etc/rsyslog.d/ directory:

rsyslogd -N 1
rsyslogd: version 8.1911.0-2.el8, config validation run (level 1)...
rsyslogd: End of config validation run. Bye.

e. Make sure the rsyslog service is running and enabled on the logging server:

systemctl status rsyslog

f. Restart the rsyslog service:

systemctl restart rsyslog

g. Optional: If Rsyslog is not enabled, ensure the rsyslog service starts automatically after
reboot:

systemctl enable rsyslog

2. Configure clients for sending encrypted logs to the server:

a. On a client system, create a new file in the /etc/rsyslog.d/ directory named, for example,
securelogcli.conf.

b. Add the following lines to the /etc/rsyslog.d/securelogcli.conf file:

Set certificate files
global(
 DefaultNetstreamDriverCAFile="/etc/pki/ca-trust/source/anchors/ca-cert.pem"
 DefaultNetstreamDriverCertFile="/etc/pki/ca-trust/source/anchors/client-cert.pem"
 DefaultNetstreamDriverKeyFile="/etc/pki/ca-trust/source/anchors/client-key.pem"
)

Set up the action for all messages
. action(
 type="omfwd"
 StreamDriver="ossl"
 StreamDriverMode="1"
 StreamDriverPermittedPeers="server.example.com"
 StreamDriverAuthMode="x509/name"
 target="server.example.com" port="514" protocol="tcp"
)

NOTE

Red Hat Enterprise Linux 9 Security hardening

168

NOTE

If you prefer the GnuTLS driver, use the StreamDriver.Name="gtls"
configuration option.

c. Save the changes to the /etc/rsyslog.d/securelogser.conf file.

d. Verify the syntax of the /etc/rsyslog.conf file and other files in the /etc/rsyslog.d/
directory:

rsyslogd -N 1
rsyslogd: version 8.1911.0-2.el8, config validation run (level 1)...
rsyslogd: End of config validation run. Bye.

e. Make sure the rsyslog service is running and enabled on the logging server:

systemctl status rsyslog

f. Restart the rsyslog service:

systemctl restart rsyslog

g. Optional: If Rsyslog is not enabled, ensure the rsyslog service starts automatically after
reboot:

systemctl enable rsyslog

Verification

To verify that the client system sends messages to the server, follow these steps:

1. On the client system, send a test message:

logger test

2. On the server system, view the /var/log/messages log, for example:

cat /var/log/remote/msg/hostname/root.log
Feb 25 03:53:17 hostname root[6064]: test

Where hostname is the host name of the client system. Note that the log contains the user
name of the user that entered the logger command, in this case root.

Additional resources

certtool(1), openssl(1), update-ca-trust(8), rsyslogd(8), and rsyslog.conf(5) man pages.

Documentation installed with the rsyslog-doc package at
/usr/share/doc/rsyslog/html/index.html.

Using the logging System Role with TLS .

15.6. CONFIGURING A SERVER FOR RECEIVING REMOTE LOGGING

CHAPTER 15. CONFIGURING A REMOTE LOGGING SOLUTION

169

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/configuring-logging-by-using-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles#assembly_using-the-logging-system-role-with-tls_configuring-logging-by-using-rhel-system-roles

15.6. CONFIGURING A SERVER FOR RECEIVING REMOTE LOGGING
INFORMATION OVER UDP

The Rsyslog application enables you to configure a system to receive logging information from remote
systems. To use remote logging through UDP, configure both the server and the client. The receiving
server collects and analyzes the logs sent by one or more client systems. By default, rsyslog uses UDP
on port 514 to receive log information from remote systems.

Follow this procedure to configure a server for collecting and analyzing logs sent by one or more client
systems over the UDP protocol.

Prerequisites

Rsyslog is installed on the server system.

You are logged in as root on the server.

The policycoreutils-python-utils package is installed for the optional step using the
semanage command.

The firewalld service is running.

Procedure

1. Optional: To use a different port for rsyslog traffic than the default port 514:

a. Add the syslogd_port_t SELinux type to the SELinux policy configuration, replacing
portno with the port number you want rsyslog to use:

semanage port -a -t syslogd_port_t -p udp portno

b. Configure firewalld to allow incoming rsyslog traffic, replacing portno with the port
number and zone with the zone you want rsyslog to use:

firewall-cmd --zone=zone --permanent --add-port=portno/udp
success
firewall-cmd --reload

c. Reload the firewall rules:

firewall-cmd --reload

2. Create a new .conf file in the /etc/rsyslog.d/ directory, for example, remotelogserv.conf, and
insert the following content:

Define templates before the rules that use them
Per-Host templates for remote systems
template(name="TmplAuthpriv" type="list") {
 constant(value="/var/log/remote/auth/")
 property(name="hostname")
 constant(value="/")
 property(name="programname" SecurePath="replace")
 constant(value=".log")
 }

Red Hat Enterprise Linux 9 Security hardening

170

template(name="TmplMsg" type="list") {
 constant(value="/var/log/remote/msg/")
 property(name="hostname")
 constant(value="/")
 property(name="programname" SecurePath="replace")
 constant(value=".log")
 }

Provides UDP syslog reception
module(load="imudp")

This ruleset processes remote messages
ruleset(name="remote1"){
 authpriv.* action(type="omfile" DynaFile="TmplAuthpriv")
 *.info;mail.none;authpriv.none;cron.none
action(type="omfile" DynaFile="TmplMsg")
}

input(type="imudp" port="514" ruleset="remote1")

Where 514 is the port number rsyslog uses by default. You can specify a different port instead.

3. Verify the syntax of the /etc/rsyslog.conf file and all .conf files in the /etc/rsyslog.d/ directory:

rsyslogd -N 1
rsyslogd: version 8.1911.0-2.el8, config validation run...

4. Restart the rsyslog service.

systemctl restart rsyslog

5. Optional: If rsyslog is not enabled, ensure the rsyslog service starts automatically after reboot:

systemctl enable rsyslog

Additional resources

rsyslogd(8) , rsyslog.conf(5), semanage(8), and firewall-cmd(1) man pages.

Documentation installed with the rsyslog-doc package in the
/usr/share/doc/rsyslog/html/index.html file.

15.7. CONFIGURING REMOTE LOGGING TO A SERVER OVER UDP

Follow this procedure to configure a system for forwarding log messages to a server over the UDP
protocol. The omfwd plug-in provides forwarding over UDP or TCP. The default protocol is UDP.
Because the plug-in is built in, you do not have to load it.

Prerequisites

The rsyslog package is installed on the client systems that should report to the server.

You have configured the server for remote logging as described in Configuring a server for

CHAPTER 15. CONFIGURING A REMOTE LOGGING SOLUTION

171

You have configured the server for remote logging as described in Configuring a server for
receiving remote logging information over UDP.

Procedure

1. Create a new .conf file in the /etc/rsyslog.d/ directory, for example, 10-remotelogcli.conf, and
insert the following content:

. action(type="omfwd"
 queue.type="linkedlist"
 queue.filename="example_fwd"
 action.resumeRetryCount="-1"
 queue.saveOnShutdown="on"
 target="example.com" port="portno" protocol="udp"
)

Where:

The queue.type="linkedlist" setting enables a LinkedList in-memory queue.

The queue.filename setting defines a disk storage. The backup files are created with the
example_fwd prefix in the working directory specified by the preceding global
workDirectory directive.

The action.resumeRetryCount -1 setting prevents rsyslog from dropping messages when
retrying to connect if the server is not responding.

The enabled queue.saveOnShutdown="on" setting saves in-memory data if rsyslog
shuts down.

The portno value is the port number you want rsyslog to use. The default value is 514.

The last line forwards all received messages to the logging server, port specification is
optional.
With this configuration, rsyslog sends messages to the server but keeps messages in
memory if the remote server is not reachable. A file on disk is created only if rsyslog runs
out of the configured memory queue space or needs to shut down, which benefits the
system performance.

NOTE

Rsyslog processes configuration files /etc/rsyslog.d/ in the lexical order.

2. Restart the rsyslog service.

systemctl restart rsyslog

3. Optional: If rsyslog is not enabled, ensure the rsyslog service starts automatically after reboot:

systemctl enable rsyslog

Verification

To verify that the client system sends messages to the server, follow these steps:

Red Hat Enterprise Linux 9 Security hardening

172

1. On the client system, send a test message:

logger test

2. On the server system, view the /var/log/remote/msg/hostname/root.log log, for example:

cat /var/log/remote/msg/hostname/root.log
Feb 25 03:53:17 hostname root[6064]: test

Where hostname is the host name of the client system. Note that the log contains the user
name of the user that entered the logger command, in this case root.

Additional resources

rsyslogd(8) and rsyslog.conf(5) man pages.

Documentation installed with the rsyslog-doc package at
/usr/share/doc/rsyslog/html/index.html.

15.8. LOAD BALANCING HELPER IN RSYSLOG

The RebindInterval setting specifies an interval at which the current connection is broken and is re-
established. This setting applies to TCP, UDP, and RELP traffic. The load balancers perceive it as a new
connection and forward the messages to another physical target system.

The RebindInterval setting proves to be helpful in scenarios when a target system has changed its IP
address. The Rsyslog application caches the IP address when the connection establishes, therefore, the
messages are sent to the same server. If the IP address changes, the UDP packets will be lost until the
Rsyslog service restarts. Re-establishing the connection will ensure the IP to be resolved by DNS again.

action(type=”omfwd” protocol=”tcp” RebindInterval=”250” target=”example.com” port=”514” …)

action(type=”omfwd” protocol=”udp” RebindInterval=”250” target=”example.com” port=”514” …)

action(type=”omrelp” RebindInterval=”250” target=”example.com” port=”6514” …)

15.9. CONFIGURING RELIABLE REMOTE LOGGING

With the Reliable Event Logging Protocol (RELP), you can send and receive syslog messages over TCP
with a much reduced risk of message loss. RELP provides reliable delivery of event messages, which
makes it useful in environments where message loss is not acceptable. To use RELP, configure the
imrelp input module, which runs on the server and receives the logs, and the omrelp output module,
which runs on the client and sends logs to the logging server.

Prerequisites

You have installed the rsyslog, librelp, and rsyslog-relp packages on the server and the client
systems.

The specified port is permitted in SELinux and open in the firewall.

Procedure

CHAPTER 15. CONFIGURING A REMOTE LOGGING SOLUTION

173

1. Configure the client system for reliable remote logging:

a. On the client system, create a new .conf file in the /etc/rsyslog.d/ directory named, for
example, relpclient.conf, and insert the following content:

module(load="omrelp")
. action(type="omrelp" target="_target_IP_" port="_target_port_")

Where:

target_IP is the IP address of the logging server.

target_port is the port of the logging server.

b. Save the changes to the /etc/rsyslog.d/relpclient.conf file.

c. Restart the rsyslog service.

systemctl restart rsyslog

d. Optional: If rsyslog is not enabled, ensure the rsyslog service starts automatically after
reboot:

systemctl enable rsyslog

2. Configure the server system for reliable remote logging:

a. On the server system, create a new .conf file in the /etc/rsyslog.d/ directory named, for
example, relpserv.conf, and insert the following content:

ruleset(name="relp"){
. action(type="omfile" file="_log_path_")
}

module(load="imrelp")
input(type="imrelp" port="_target_port_" ruleset="relp")

Where:

log_path specifies the path for storing messages.

target_port is the port of the logging server. Use the same value as in the client
configuration file.

b. Save the changes to the /etc/rsyslog.d/relpserv.conf file.

c. Restart the rsyslog service.

systemctl restart rsyslog

d. Optional: If rsyslog is not enabled, ensure the rsyslog service starts automatically after
reboot:

systemctl enable rsyslog

Red Hat Enterprise Linux 9 Security hardening

174

Verification

To verify that the client system sends messages to the server, follow these steps:

1. On the client system, send a test message:

logger test

2. On the server system, view the log at the specified log_path, for example:

cat /var/log/remote/msg/hostname/root.log
Feb 25 03:53:17 hostname root[6064]: test

Where hostname is the host name of the client system. Note that the log contains the user
name of the user that entered the logger command, in this case root.

Additional resources

rsyslogd(8) and rsyslog.conf(5) man pages.

Documentation installed with the rsyslog-doc package in the
/usr/share/doc/rsyslog/html/index.html file.

15.10. SUPPORTED RSYSLOG MODULES

To expand the functionality of the Rsyslog application, you can use specific modules. Modules provide
additional inputs (Input Modules), outputs (Output Modules), and other functionalities. A module can
also provide additional configuration directives that become available after you load the module.

You can list the input and output modules installed on your system by entering the following command:

ls /usr/lib64/rsyslog/{i,o}m*

You can view the list of all available rsyslog modules in the
/usr/share/doc/rsyslog/html/configuration/modules/idx_output.html file after you install the
rsyslog-doc package.

15.11. CONFIGURING THE NETCONSOLE SERVICE TO LOG KERNEL
MESSAGES TO A REMOTE HOST

When logging to disk or using a serial console is not possible, you can use the netconsole kernel module
and the same-named service to log kernel messages over a network to a remote rsyslog service.

Prerequisites

A system log service, such as rsyslog is installed on the remote host.

The remote system log service is configured to receive incoming log entries from this host.

Procedure

1. Install the netconsole-service package:

CHAPTER 15. CONFIGURING A REMOTE LOGGING SOLUTION

175

dnf install netconsole-service

2. Edit the /etc/sysconfig/netconsole file and set the SYSLOGADDR parameter to the IP
address of the remote host:

SYSLOGADDR=192.0.2.1

3. Enable and start the netconsole service:

systemctl enable --now netconsole

Verification steps

Display the /var/log/messages file on the remote system log server.

Additional resources

Configuring a remote logging solution

15.12. ADDITIONAL RESOURCES

Documentation installed with the rsyslog-doc package in the
/usr/share/doc/rsyslog/html/index.html file

rsyslog.conf(5) and rsyslogd(8) man pages

Configuring system logging without journald or with minimized journald usage Knowledgebase
article

Negative effects of the RHEL default logging setup on performance and their mitigations
Knowledgebase article

The Using the Logging System Role chapter

Red Hat Enterprise Linux 9 Security hardening

176

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/assembly_configuring-a-remote-logging-solution_security-hardening
https://access.redhat.com/articles/4058681
https://access.redhat.com/articles/4095141
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/configuring-logging-by-using-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

CHAPTER 16. USING THE LOGGING SYSTEM ROLE

As a system administrator, you can use the logging System Role to configure a RHEL host as a logging
server to collect logs from many client systems.

16.1. THE LOGGING SYSTEM ROLE

With the logging RHEL System Role, you can deploy logging configurations on local and remote hosts.

Logging solutions provide multiple ways of reading logs and multiple logging outputs.

For example, a logging system can receive the following inputs:

Local files

systemd/journal

Another logging system over the network

In addition, a logging system can have the following outputs:

Logs stored in the local files in the /var/log directory

Logs sent to Elasticsearch

Logs forwarded to another logging system

With the logging RHEL System Role, you can combine the inputs and outputs to fit your scenario. For
example, you can configure a logging solution that stores inputs from journal in a local file, whereas
inputs read from files are both forwarded to another logging system and stored in the local log files.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.logging/README.md file

/usr/share/doc/rhel-system-roles/logging/ directory

RHEL System Roles

16.2. VARIABLES OF THE LOGGING SYSTEM ROLE

In a logging RHEL System Role playbook, you define the inputs in the logging_inputs parameter,
outputs in the logging_outputs parameter, and the relationships between the inputs and outputs in the
logging_flows parameter. The logging RHEL System Role processes these variables with additional
options to configure the logging system. You can also enable encryption or an automatic port
management.

NOTE

Currently, the only available logging system in the logging RHEL System Role is Rsyslog.

logging_inputs: List of inputs for the logging solution.

name: Unique name of the input. Used in the logging_flows: inputs list and a part of the

CHAPTER 16. USING THE LOGGING SYSTEM ROLE

177

https://access.redhat.com/node/3050101

name: Unique name of the input. Used in the logging_flows: inputs list and a part of the
generated config file name.

type: Type of the input element. The type specifies a task type which corresponds to a
directory name in roles/rsyslog/{tasks,vars}/inputs/.

basics: Inputs configuring inputs from systemd journal or unix socket.

kernel_message: Load imklog if set to true. Default to false.

use_imuxsock: Use imuxsock instead of imjournal. Default to false.

ratelimit_burst: Maximum number of messages that can be emitted within
ratelimit_interval. Default to 20000 if use_imuxsock is false. Default to 200 if
use_imuxsock is true.

ratelimit_interval: Interval to evaluate ratelimit_burst. Default to 600 seconds if
use_imuxsock is false. Default to 0 if use_imuxsock is true. 0 indicates rate
limiting is turned off.

persist_state_interval: Journal state is persisted every value messages. Default to
10. Effective only when use_imuxsock is false.

files: Inputs configuring inputs from local files.

remote: Inputs configuring inputs from the other logging system over network.

state: State of the configuration file. present or absent. Default to present.

logging_outputs: List of outputs for the logging solution.

files: Outputs configuring outputs to local files.

forwards: Outputs configuring outputs to another logging system.

remote_files: Outputs configuring outputs from another logging system to local files.

logging_flows: List of flows that define relationships between logging_inputs and
logging_outputs. The logging_flows variable has the following keys:

name: Unique name of the flow

inputs: List of logging_inputs name values

outputs: List of logging_outputs name values.

logging_manage_firewall: If set to true, the logging RHEL System Role uses the firewall
RHEL System Role to automatically manage port access.

logging_manage_selinux: If set to true, the logging RHEL System Role uses the selinux
RHEL System Role to automatically manage port access.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.logging/README.md file

/usr/share/doc/rhel-system-roles/logging/ directory

Red Hat Enterprise Linux 9 Security hardening

178

16.3. APPLYING A LOCAL LOGGING SYSTEM ROLE

Prepare and apply an Ansible playbook to configure a logging solution on a set of separate machines.
Each machine records logs locally.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

NOTE

You do not have to have the rsyslog package installed, because the RHEL System Role
installs rsyslog when deployed.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

1. Test the syntax of the /etc/rsyslog.conf file:

- name: Deploying basics input and implicit files output
 hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.logging
 vars:
 logging_inputs:
 - name: system_input
 type: basics
 logging_outputs:
 - name: files_output
 type: files
 logging_flows:
 - name: flow1
 inputs: [system_input]
 outputs: [files_output]

CHAPTER 16. USING THE LOGGING SYSTEM ROLE

179

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

rsyslogd -N 1
rsyslogd: version 8.1911.0-6.el8, config validation run...
rsyslogd: End of config validation run. Bye.

2. Verify that the system sends messages to the log:

a. Send a test message:

logger test

b. View the /var/log/messages log, for example:

cat /var/log/messages
Aug 5 13:48:31 <hostname> root[6778]: test

Where <hostname> is the host name of the client system. Note that the log contains the
user name of the user that entered the logger command, in this case root.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.logging/README.md file

/usr/share/doc/rhel-system-roles/logging/ directory

16.4. FILTERING LOGS IN A LOCAL LOGGING SYSTEM ROLE

You can deploy a logging solution which filters the logs based on the rsyslog property-based filter.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

NOTE

You do not have to have the rsyslog package installed, because the RHEL System Role
installs rsyslog when deployed.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

- name: Deploying files input and configured files output
 hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.logging
 vars:
 logging_inputs:
 - name: files_input

Red Hat Enterprise Linux 9 Security hardening

180

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Using this configuration, all messages that contain the error string are logged in
/var/log/errors.log, and all other messages are logged in /var/log/others.log.

You can replace the error property value with the string by which you want to filter.

You can modify the variables according to your preferences.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Verification

1. Test the syntax of the /etc/rsyslog.conf file:

rsyslogd -N 1
rsyslogd: version 8.1911.0-6.el8, config validation run...
rsyslogd: End of config validation run. Bye.

2. Verify that the system sends messages that contain the error string to the log:

a. Send a test message:

logger error

b. View the /var/log/errors.log log, for example:

cat /var/log/errors.log
Aug 5 13:48:31 hostname root[6778]: error

 type: basics
 logging_outputs:
 - name: files_output0
 type: files
 property: msg
 property_op: contains
 property_value: error
 path: /var/log/errors.log
 - name: files_output1
 type: files
 property: msg
 property_op: "!contains"
 property_value: error
 path: /var/log/others.log
 logging_flows:
 - name: flow0
 inputs: [files_input]
 outputs: [files_output0, files_output1]

CHAPTER 16. USING THE LOGGING SYSTEM ROLE

181

Where hostname is the host name of the client system. Note that the log contains the user
name of the user that entered the logger command, in this case root.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.logging/README.md file

/usr/share/doc/rhel-system-roles/logging/ directory

16.5. APPLYING A REMOTE LOGGING SOLUTION BY USING THE
LOGGING SYSTEM ROLE

Follow these steps to prepare and apply a Red Hat Ansible Core playbook to configure a remote logging
solution. In this playbook, one or more clients take logs from systemd-journal and forward them to a
remote server. The server receives remote input from remote_rsyslog and remote_files and outputs
the logs to local files in directories named by remote host names.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

NOTE

You do not have to have the rsyslog package installed, because the RHEL System Role
installs rsyslog when deployed.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

- name: Deploying remote input and remote_files output
 hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.logging
 vars:
 logging_inputs:
 - name: remote_udp_input
 type: remote
 udp_ports: [601]
 - name: remote_tcp_input
 type: remote
 tcp_ports: [601]
 logging_outputs:
 - name: remote_files_output
 type: remote_files
 logging_flows:
 - name: flow_0
 inputs: [remote_udp_input, remote_tcp_input]

Red Hat Enterprise Linux 9 Security hardening

182

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Where <host1.example.com> is the logging server.

NOTE

You can modify the parameters in the playbook to fit your needs.

WARNING

The logging solution works only with the ports defined in the SELinux policy
of the server or client system and open in the firewall. The default SELinux
policy includes ports 601, 514, 6514, 10514, and 20514. To use a different
port, modify the SELinux policy on the client and server systems .

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

 outputs: [remote_files_output]

- name: Deploying basics input and forwards output
 hosts: managed-node-02.example.com
 roles:
 - rhel-system-roles.logging
 vars:
 logging_inputs:
 - name: basic_input
 type: basics
 logging_outputs:
 - name: forward_output0
 type: forwards
 severity: info
 target: <host1.example.com>
 udp_port: 601
 - name: forward_output1
 type: forwards
 facility: mail
 target: <host1.example.com>
 tcp_port: 601
 logging_flows:
 - name: flows0
 inputs: [basic_input]
 outputs: [forward_output0, forward_output1]

[basic_input]
[forward_output0, forward_output1]



CHAPTER 16. USING THE LOGGING SYSTEM ROLE

183

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/using_selinux/configuring-selinux-for-applications-and-services-with-non-standard-configurations_using-selinux#customizing-the-selinux-policy-for-the-apache-http-server-in-a-non-standard-configuration_configuring-selinux-for-applications-and-services-with-non-standard-configurations

$ ansible-playbook ~/playbook.yml

Verification

1. On both the client and the server system, test the syntax of the /etc/rsyslog.conf file:

rsyslogd -N 1
rsyslogd: version 8.1911.0-6.el8, config validation run (level 1), master config
/etc/rsyslog.conf
rsyslogd: End of config validation run. Bye.

2. Verify that the client system sends messages to the server:

a. On the client system, send a test message:

logger test

b. On the server system, view the /var/log/<host2.example.com>/messages log, for example:

cat /var/log/<host2.example.com>/messages
Aug 5 13:48:31 <host2.example.com> root[6778]: test

Where <host2.example.com> is the host name of the client system. Note that the log
contains the user name of the user that entered the logger command, in this case root.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.logging/README.md file

/usr/share/doc/rhel-system-roles/logging/ directory

16.6. USING THE LOGGING SYSTEM ROLE WITH TLS

Transport Layer Security (TLS) is a cryptographic protocol designed to allow secure communication
over the computer network.

As an administrator, you can use the logging RHEL System Role to configure a secure transfer of logs
using Red Hat Ansible Automation Platform.

16.6.1. Configuring client logging with TLS

You can use an Ansible playbook with the logging RHEL System Role to configure logging on RHEL
clients and transfer logs to a remote logging system using TLS encryption.

This procedure creates a private key and certificate, and configures TLS on all hosts in the clients group
in the Ansible inventory. The TLS protocol encrypts the message transmission for secure transfer of logs
over the network.

NOTE

Red Hat Enterprise Linux 9 Security hardening

184

NOTE

You do not have to call the certificate RHEL System Role in the playbook to create the
certificate. The logging RHEL System Role calls it automatically.

In order for the CA to be able to sign the created certificate, the managed nodes must be
enrolled in an IdM domain.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes are enrolled in an IdM domain.

If the logging server you want to configure on the manage node runs RHEL 9.2 or later and the
FIPS mode is enabled, clients must either support the Extended Master Secret (EMS) extension
or use TLS 1.3. TLS 1.2 connections without EMS fail. For more information, see the TLS
extension "Extended Master Secret" enforced Knowledgebase article.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

- name: Deploying files input and forwards output with certs
 hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.logging
 vars:
 logging_certificates:
 - name: logging_cert
 dns: ['localhost', 'www.example.com']
 ca: ipa
 logging_pki_files:
 - ca_cert: /local/path/to/ca_cert.pem
 cert: /local/path/to/logging_cert.pem
 private_key: /local/path/to/logging_cert.pem
 logging_inputs:
 - name: input_name
 type: files
 input_log_path: /var/log/containers/*.log
 logging_outputs:
 - name: output_name
 type: forwards
 target: your_target_host
 tcp_port: 514
 tls: true
 pki_authmode: x509/name
 permitted_server: 'server.example.com'
 logging_flows:

CHAPTER 16. USING THE LOGGING SYSTEM ROLE

185

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles
https://access.redhat.com/solutions/7018256

The playbook uses the following parameters:

logging_certificates

The value of this parameter is passed on to certificate_requests in the certificate
RHEL System Role and used to create a private key and certificate.

logging_pki_files

Using this parameter, you can configure the paths and other settings that logging uses to
find the CA, certificate, and key files used for TLS, specified with one or more of the
following sub-parameters: ca_cert, ca_cert_src, cert, cert_src, private_key,
private_key_src, and tls.

NOTE

If you are using logging_certificates to create the files on the target node, do
not use ca_cert_src, cert_src, and private_key_src, which are used to copy
files not created by logging_certificates.

ca_cert

Represents the path to the CA certificate file on the target node. Default path is
/etc/pki/tls/certs/ca.pem and the file name is set by the user.

cert

Represents the path to the certificate file on the target node. Default path is
/etc/pki/tls/certs/server-cert.pem and the file name is set by the user.

private_key

Represents the path to the private key file on the target node. Default path is
/etc/pki/tls/private/server-key.pem and the file name is set by the user.

ca_cert_src

Represents the path to the CA certificate file on the control node which is copied to the
target host to the location specified by ca_cert. Do not use this if using
logging_certificates.

cert_src

Represents the path to a certificate file on the control node which is copied to the target
host to the location specified by cert. Do not use this if using logging_certificates.

private_key_src

Represents the path to a private key file on the control node which is copied to the target
host to the location specified by private_key. Do not use this if using logging_certificates.

tls

Setting this parameter to true ensures secure transfer of logs over the network. If you do not
want a secure wrapper, you can set tls: false.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid

 - name: flow_name
 inputs: [input_name]
 outputs: [output_name]

Red Hat Enterprise Linux 9 Security hardening

186

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.logging/README.md file

/usr/share/doc/rhel-system-roles/logging/ directory

Requesting certificates using RHEL System Roles .

16.6.2. Configuring server logging with TLS

You can use an Ansible playbook with the logging RHEL System Role to configure logging on RHEL
servers and set them to receive logs from a remote logging system using TLS encryption.

This procedure creates a private key and certificate, and configures TLS on all hosts in the server group
in the Ansible inventory.

NOTE

You do not have to call the certificate RHEL System Role in the playbook to create the
certificate. The logging RHEL System Role calls it automatically.

In order for the CA to be able to sign the created certificate, the managed nodes must be
enrolled in an IdM domain.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

The managed nodes are enrolled in an IdM domain.

If the logging server you want to configure on the manage node runs RHEL 9.2 or later and the
FIPS mode is enabled, clients must either support the Extended Master Secret (EMS) extension
or use TLS 1.3. TLS 1.2 connections without EMS fail. For more information, see the TLS
extension "Extended Master Secret" enforced Knowledgebase article.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

- name: Deploying remote input and remote_files output with certs
 hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.logging

CHAPTER 16. USING THE LOGGING SYSTEM ROLE

187

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/automating_system_administration_by_using_rhel_system_roles/index#requesting-certificates-using-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles
https://access.redhat.com/solutions/7018256

The playbook uses the following parameters:

logging_certificates

The value of this parameter is passed on to certificate_requests in the certificate
RHEL System Role and used to create a private key and certificate.

logging_pki_files

Using this parameter, you can configure the paths and other settings that logging uses to
find the CA, certificate, and key files used for TLS, specified with one or more of the
following sub-parameters: ca_cert, ca_cert_src, cert, cert_src, private_key,
private_key_src, and tls.

NOTE

If you are using logging_certificates to create the files on the target node, do
not use ca_cert_src, cert_src, and private_key_src, which are used to copy
files not created by logging_certificates.

ca_cert

Represents the path to the CA certificate file on the target node. Default path is
/etc/pki/tls/certs/ca.pem and the file name is set by the user.

cert

Represents the path to the certificate file on the target node. Default path is
/etc/pki/tls/certs/server-cert.pem and the file name is set by the user.

private_key

Represents the path to the private key file on the target node. Default path is

 vars:
 logging_certificates:
 - name: logging_cert
 dns: ['localhost', 'www.example.com']
 ca: ipa
 logging_pki_files:
 - ca_cert: /local/path/to/ca_cert.pem
 cert: /local/path/to/logging_cert.pem
 private_key: /local/path/to/logging_cert.pem
 logging_inputs:
 - name: input_name
 type: remote
 tcp_ports: 514
 tls: true
 permitted_clients: ['clients.example.com']
 logging_outputs:
 - name: output_name
 type: remote_files
 remote_log_path: /var/log/remote/%FROMHOST%/%PROGRAMNAME:::secpath-
replace%.log
 async_writing: true
 client_count: 20
 io_buffer_size: 8192
 logging_flows:
 - name: flow_name
 inputs: [input_name]
 outputs: [output_name]

Red Hat Enterprise Linux 9 Security hardening

188

Represents the path to the private key file on the target node. Default path is
/etc/pki/tls/private/server-key.pem and the file name is set by the user.

ca_cert_src

Represents the path to the CA certificate file on the control node which is copied to the
target host to the location specified by ca_cert. Do not use this if using
logging_certificates.

cert_src

Represents the path to a certificate file on the control node which is copied to the target
host to the location specified by cert. Do not use this if using logging_certificates.

private_key_src

Represents the path to a private key file on the control node which is copied to the target
host to the location specified by private_key. Do not use this if using logging_certificates.

tls

Setting this parameter to true ensures secure transfer of logs over the network. If you do not
want a secure wrapper, you can set tls: false.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.logging/README.md file

/usr/share/doc/rhel-system-roles/logging/ directory

Requesting certificates using RHEL System Roles .

16.7. USING THE LOGGING SYSTEM ROLES WITH RELP

Reliable Event Logging Protocol (RELP) is a networking protocol for data and message logging over the
TCP network. It ensures reliable delivery of event messages and you can use it in environments that do
not tolerate any message loss.

The RELP sender transfers log entries in form of commands and the receiver acknowledges them once
they are processed. To ensure consistency, RELP stores the transaction number to each transferred
command for any kind of message recovery.

You can consider a remote logging system in between the RELP Client and RELP Server. The RELP
Client transfers the logs to the remote logging system and the RELP Server receives all the logs sent by
the remote logging system.

Administrators can use the logging RHEL System Role to configure the logging system to reliably send
and receive log entries.

CHAPTER 16. USING THE LOGGING SYSTEM ROLE

189

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/automating_system_administration_by_using_rhel_system_roles/index#requesting-certificates-using-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

16.7.1. Configuring client logging with RELP

You can use the logging RHEL System Role to configure logging in RHEL systems that are logged on a
local machine and can transfer logs to the remote logging system with RELP by running an Ansible
playbook.

This procedure configures RELP on all hosts in the clients group in the Ansible inventory. The RELP
configuration uses Transport Layer Security (TLS) to encrypt the message transmission for secure
transfer of logs over the network.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

The playbook uses following settings:

target

This is a required parameter that specifies the host name where the remote logging system
is running.

port

Port number the remote logging system is listening.

- name: Deploying basic input and relp output
 hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.logging
 vars:
 logging_inputs:
 - name: basic_input
 type: basics
 logging_outputs:
 - name: relp_client
 type: relp
 target: logging.server.com
 port: 20514
 tls: true
 ca_cert: /etc/pki/tls/certs/ca.pem
 cert: /etc/pki/tls/certs/client-cert.pem
 private_key: /etc/pki/tls/private/client-key.pem
 pki_authmode: name
 permitted_servers:
 - '*.server.example.com'
 logging_flows:
 - name: example_flow
 inputs: [basic_input]
 outputs: [relp_client]

Red Hat Enterprise Linux 9 Security hardening

190

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

tls

Ensures secure transfer of logs over the network. If you do not want a secure wrapper you
can set the tls variable to false. By default tls parameter is set to true while working with
RELP and requires key/certificates and triplets {ca_cert, cert, private_key} and/or
{ca_cert_src, cert_src, private_key_src}.

If the {ca_cert_src, cert_src, private_key_src} triplet is set, the default locations
/etc/pki/tls/certs and /etc/pki/tls/private are used as the destination on the managed
node to transfer files from control node. In this case, the file names are identical to the
original ones in the triplet

If the {ca_cert, cert, private_key} triplet is set, files are expected to be on the default
path before the logging configuration.

If both triplets are set, files are transferred from local path from control node to specific
path of the managed node.

ca_cert

Represents the path to CA certificate. Default path is /etc/pki/tls/certs/ca.pem and the file
name is set by the user.

cert

Represents the path to certificate. Default path is /etc/pki/tls/certs/server-cert.pem and
the file name is set by the user.

private_key

Represents the path to private key. Default path is /etc/pki/tls/private/server-key.pem and
the file name is set by the user.

ca_cert_src

Represents local CA certificate file path which is copied to the target host. If ca_cert is
specified, it is copied to the location.

cert_src

Represents the local certificate file path which is copied to the target host. If cert is
specified, it is copied to the location.

private_key_src

Represents the local key file path which is copied to the target host. If private_key is
specified, it is copied to the location.

pki_authmode

Accepts the authentication mode as name or fingerprint.

permitted_servers

List of servers that will be allowed by the logging client to connect and send logs over TLS.

inputs

List of logging input dictionary.

outputs

List of logging output dictionary.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid

CHAPTER 16. USING THE LOGGING SYSTEM ROLE

191

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.logging/README.md file

/usr/share/doc/rhel-system-roles/logging/ directory

16.7.2. Configuring server logging with RELP

You can use the logging RHEL System Role to configure logging in RHEL systems as a server and can
receive logs from the remote logging system with RELP by running an Ansible playbook.

This procedure configures RELP on all hosts in the server group in the Ansible inventory. The RELP
configuration uses TLS to encrypt the message transmission for secure transfer of logs over the
network.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

- name: Deploying remote input and remote_files output
 hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.logging
 vars:
 logging_inputs:
 - name: relp_server
 type: relp
 port: 20514
 tls: true
 ca_cert: /etc/pki/tls/certs/ca.pem
 cert: /etc/pki/tls/certs/server-cert.pem
 private_key: /etc/pki/tls/private/server-key.pem
 pki_authmode: name
 permitted_clients:
 - '*example.client.com'
 logging_outputs:
 - name: remote_files_output
 type: remote_files
 logging_flows:

Red Hat Enterprise Linux 9 Security hardening

192

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

The playbooks uses the following settings:

port

Port number the remote logging system is listening.

tls

Ensures secure transfer of logs over the network. If you do not want a secure wrapper you
can set the tls variable to false. By default tls parameter is set to true while working with
RELP and requires key/certificates and triplets {ca_cert, cert, private_key} and/or
{ca_cert_src, cert_src, private_key_src}.

If the {ca_cert_src, cert_src, private_key_src} triplet is set, the default locations
/etc/pki/tls/certs and /etc/pki/tls/private are used as the destination on the managed
node to transfer files from control node. In this case, the file names are identical to the
original ones in the triplet

If the {ca_cert, cert, private_key} triplet is set, files are expected to be on the default
path before the logging configuration.

If both triplets are set, files are transferred from local path from control node to specific
path of the managed node.

ca_cert

Represents the path to CA certificate. Default path is /etc/pki/tls/certs/ca.pem and the file
name is set by the user.

cert

Represents the path to the certificate. Default path is /etc/pki/tls/certs/server-cert.pem
and the file name is set by the user.

private_key

Represents the path to private key. Default path is /etc/pki/tls/private/server-key.pem and
the file name is set by the user.

ca_cert_src

Represents local CA certificate file path which is copied to the target host. If ca_cert is
specified, it is copied to the location.

cert_src

Represents the local certificate file path which is copied to the target host. If cert is
specified, it is copied to the location.

private_key_src

Represents the local key file path which is copied to the target host. If private_key is
specified, it is copied to the location.

pki_authmode

Accepts the authentication mode as name or fingerprint.

permitted_clients

List of clients that will be allowed by the logging server to connect and send logs over TLS.

inputs

List of logging input dictionary.

 - name: example_flow
 inputs: relp_server
 outputs: remote_files_output

CHAPTER 16. USING THE LOGGING SYSTEM ROLE

193

outputs

List of logging output dictionary.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.logging/README.md file

/usr/share/doc/rhel-system-roles/logging/ directory

16.8. ADDITIONAL RESOURCES

Preparing a control node and managed nodes to use RHEL System Roles

Documentation installed with the rhel-system-roles package in /usr/share/ansible/roles/rhel-
system-roles.logging/README.html.

RHEL System Roles

ansible-playbook(1) man page.

Red Hat Enterprise Linux 9 Security hardening

194

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles
https://access.redhat.com/node/3050101

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. SECURING RHEL DURING INSTALLATION
	1.1. BIOS AND UEFI SECURITY
	1.1.1. BIOS passwords
	1.1.2. Non-BIOS-based systems security

	1.2. DISK PARTITIONING
	1.3. RESTRICTING NETWORK CONNECTIVITY DURING THE INSTALLATION PROCESS
	1.4. INSTALLING THE MINIMUM AMOUNT OF PACKAGES REQUIRED
	1.5. POST-INSTALLATION PROCEDURES

	CHAPTER 2. INSTALLING THE SYSTEM IN FIPS MODE
	2.1. FEDERAL INFORMATION PROCESSING STANDARDS 140 AND FIPS MODE
	2.2. INSTALLING THE SYSTEM WITH FIPS MODE ENABLED
	2.3. ADDITIONAL RESOURCES

	CHAPTER 3. USING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES
	3.1. SYSTEM-WIDE CRYPTOGRAPHIC POLICIES
	Tool for managing the cryptographic policies
	Strong cryptographic defaults by removing insecure cipher suites and protocols
	Algorithms disabled in all policy levels
	Algorithms enabled in the cryptographic policies

	3.2. SWITCHING THE SYSTEM-WIDE CRYPTOGRAPHIC POLICY TO MODE COMPATIBLE WITH EARLIER RELEASES
	3.3. SETTING UP SYSTEM-WIDE CRYPTOGRAPHIC POLICIES IN THE WEB CONSOLE
	3.4. SWITCHING THE SYSTEM TO FIPS MODE
	3.5. ENABLING FIPS MODE IN A CONTAINER
	3.6. LIST OF RHEL APPLICATIONS USING CRYPTOGRAPHY THAT IS NOT COMPLIANT WITH FIPS 140-3
	3.7. EXCLUDING AN APPLICATION FROM FOLLOWING SYSTEM-WIDE CRYPTO POLICIES
	3.7.1. Examples of opting out of system-wide crypto policies

	3.8. CUSTOMIZING SYSTEM-WIDE CRYPTOGRAPHIC POLICIES WITH SUBPOLICIES
	3.9. RE-ENABLING SHA-1
	3.10. CREATING AND SETTING A CUSTOM SYSTEM-WIDE CRYPTOGRAPHIC POLICY

	CHAPTER 4. SETTING A CUSTOM CRYPTOGRAPHIC POLICY BY USING THE CRYPTO-POLICIES RHEL SYSTEM ROLE
	4.1. VARIABLES AND FACTS OF THE CRYPTO_POLICIES SYSTEM ROLE
	4.2. SETTING A CUSTOM CRYPTOGRAPHIC POLICY BY USING THE CRYPTO_POLICIES SYSTEM ROLE

	CHAPTER 5. CONFIGURING APPLICATIONS TO USE CRYPTOGRAPHIC HARDWARE THROUGH PKCS #11
	5.1. CRYPTOGRAPHIC HARDWARE SUPPORT THROUGH PKCS #11
	5.2. USING SSH KEYS STORED ON A SMART CARD
	5.3. CONFIGURING APPLICATIONS FOR AUTHENTICATION WITH CERTIFICATES ON SMART CARDS
	5.4. USING HSMS PROTECTING PRIVATE KEYS IN APACHE
	5.5. USING HSMS PROTECTING PRIVATE KEYS IN NGINX
	5.6. ADDITIONAL RESOURCES

	CHAPTER 6. CONTROLLING ACCESS TO SMART CARDS BY USING POLKIT
	6.1. SMART-CARD ACCESS CONTROL THROUGH POLKIT
	6.2. TROUBLESHOOTING PROBLEMS RELATED TO PC/SC AND POLKIT
	6.3. DISPLAYING MORE DETAILED INFORMATION ABOUT POLKIT AUTHORIZATION TO PC/SC
	6.4. ADDITIONAL RESOURCES

	CHAPTER 7. SCANNING THE SYSTEM FOR CONFIGURATION COMPLIANCE AND VULNERABILITIES
	7.1. CONFIGURATION COMPLIANCE TOOLS IN RHEL
	7.2. VULNERABILITY SCANNING
	7.2.1. Red Hat Security Advisories OVAL feed
	7.2.2. Scanning the system for vulnerabilities
	7.2.3. Scanning remote systems for vulnerabilities

	7.3. CONFIGURATION COMPLIANCE SCANNING
	7.3.1. Configuration compliance in RHEL
	7.3.2. Possible results of an OpenSCAP scan
	7.3.3. Viewing profiles for configuration compliance
	7.3.4. Assessing configuration compliance with a specific baseline

	7.4. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC BASELINE
	7.5. REMEDIATING THE SYSTEM TO ALIGN WITH A SPECIFIC BASELINE USING AN SSG ANSIBLE PLAYBOOK
	7.6. CREATING A REMEDIATION ANSIBLE PLAYBOOK TO ALIGN THE SYSTEM WITH A SPECIFIC BASELINE
	7.7. CREATING A REMEDIATION BASH SCRIPT FOR A LATER APPLICATION
	7.8. SCANNING THE SYSTEM WITH A CUSTOMIZED PROFILE USING SCAP WORKBENCH
	7.8.1. Using SCAP Workbench to scan and remediate the system
	7.8.2. Customizing a security profile with SCAP Workbench
	7.8.3. Additional resources

	7.9. DEPLOYING SYSTEMS THAT ARE COMPLIANT WITH A SECURITY PROFILE IMMEDIATELY AFTER AN INSTALLATION
	7.9.1. Profiles not compatible with Server with GUI
	7.9.2. Deploying baseline-compliant RHEL systems using the graphical installation
	7.9.3. Deploying baseline-compliant RHEL systems using Kickstart

	7.10. SCANNING CONTAINER AND CONTAINER IMAGES FOR VULNERABILITIES
	7.11. ASSESSING SECURITY COMPLIANCE OF A CONTAINER OR A CONTAINER IMAGE WITH A SPECIFIC BASELINE
	7.12. SCAP SECURITY GUIDE PROFILES SUPPORTED IN RHEL 9
	7.13. ADDITIONAL RESOURCES

	CHAPTER 8. ENSURING SYSTEM INTEGRITY WITH KEYLIME
	8.1. HOW KEYLIME WORKS
	8.2. CONFIGURING KEYLIME VERIFIER
	8.3. CONFIGURING KEYLIME REGISTRAR
	8.4. SETTING UP A KEYLIME SERVER BY USING SYSTEM ROLES
	8.5. VARIABLES FOR THE KEYLIME_SERVER RHEL SYSTEM ROLE
	8.6. CONFIGURING KEYLIME TENANT
	8.7. CONFIGURING KEYLIME AGENT
	8.8. DEPLOYING KEYLIME FOR RUNTIME MONITORING
	8.9. DEPLOYING KEYLIME FOR MEASURED BOOT ATTESTATION

	CHAPTER 9. CHECKING INTEGRITY WITH AIDE
	9.1. INSTALLING AIDE
	9.2. PERFORMING INTEGRITY CHECKS WITH AIDE
	9.3. UPDATING AN AIDE DATABASE
	9.4. FILE-INTEGRITY TOOLS: AIDE AND IMA
	9.5. ADDITIONAL RESOURCES

	CHAPTER 10. ENCRYPTING BLOCK DEVICES USING LUKS
	10.1. LUKS DISK ENCRYPTION
	10.2. LUKS VERSIONS IN RHEL
	10.3. OPTIONS FOR DATA PROTECTION DURING LUKS2 RE-ENCRYPTION
	10.4. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2
	10.5. ENCRYPTING EXISTING DATA ON A BLOCK DEVICE USING LUKS2 WITH A DETACHED HEADER
	10.6. ENCRYPTING A BLANK BLOCK DEVICE USING LUKS2
	10.7. CREATING A LUKS2 ENCRYPTED VOLUME BY USING THE STORAGE RHEL SYSTEM ROLE

	CHAPTER 11. CONFIGURING AUTOMATED UNLOCKING OF ENCRYPTED VOLUMES BY USING POLICY-BASED DECRYPTION
	11.1. NETWORK-BOUND DISK ENCRYPTION
	11.2. INSTALLING AN ENCRYPTION CLIENT - CLEVIS
	11.3. DEPLOYING A TANG SERVER WITH SELINUX IN ENFORCING MODE
	11.4. ROTATING TANG SERVER KEYS AND UPDATING BINDINGS ON CLIENTS
	11.5. CONFIGURING AUTOMATED UNLOCKING BY USING A TANG KEY IN THE WEB CONSOLE
	11.6. BASIC NBDE AND TPM2 ENCRYPTION-CLIENT OPERATIONS
	11.7. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED VOLUMES
	11.8. CONFIGURING MANUAL ENROLLMENT OF LUKS-ENCRYPTED VOLUMES BY USING A TPM 2.0 POLICY
	11.9. REMOVING A CLEVIS PIN FROM A LUKS-ENCRYPTED VOLUME MANUALLY
	11.10. CONFIGURING AUTOMATED ENROLLMENT OF LUKS-ENCRYPTED VOLUMES BY USING KICKSTART
	11.11. CONFIGURING AUTOMATED UNLOCKING OF A LUKS-ENCRYPTED REMOVABLE STORAGE DEVICE
	11.12. DEPLOYING HIGH-AVAILABILITY NBDE SYSTEMS
	High-available NBDE using Shamir’s Secret Sharing
	Example 1: Redundancy with two Tang servers
	Example 2: Shared secret on a Tang server and a TPM device

	11.13. DEPLOYMENT OF VIRTUAL MACHINES IN A NBDE NETWORK
	11.14. BUILDING AUTOMATICALLY-ENROLLABLE VM IMAGES FOR CLOUD ENVIRONMENTS BY USING NBDE
	11.15. DEPLOYING TANG AS A CONTAINER
	11.16. INTRODUCTION TO THE NBDE_CLIENT AND NBDE_SERVER SYSTEM ROLES (CLEVIS AND TANG)
	11.17. USING THE NBDE_SERVER SYSTEM ROLE FOR SETTING UP MULTIPLE TANG SERVERS
	11.18. SETTING UP MULTIPLE CLEVIS CLIENTS BY USING THE NBDE_CLIENT RHEL SYSTEM ROLE

	CHAPTER 12. AUDITING THE SYSTEM
	12.1. LINUX AUDIT
	12.2. AUDIT SYSTEM ARCHITECTURE
	12.3. CONFIGURING AUDITD FOR A SECURE ENVIRONMENT
	12.4. STARTING AND CONTROLLING AUDITD
	12.5. UNDERSTANDING AUDIT LOG FILES
	12.6. USING AUDITCTL FOR DEFINING AND EXECUTING AUDIT RULES
	12.7. DEFINING PERSISTENT AUDIT RULES
	12.8. PRE-CONFIGURED AUDIT RULES FILES FOR COMPLIANCE WITH STANDARDS
	12.9. USING AUGENRULES TO DEFINE PERSISTENT RULES
	12.10. DISABLING AUGENRULES
	12.11. SETTING UP AUDIT TO MONITOR SOFTWARE UPDATES
	12.12. MONITORING USER LOGIN TIMES WITH AUDIT
	12.13. ADDITIONAL RESOURCES

	CHAPTER 13. BLOCKING AND ALLOWING APPLICATIONS BY USING FAPOLICYD
	13.1. INTRODUCTION TO FAPOLICYD
	13.2. DEPLOYING FAPOLICYD
	13.3. MARKING FILES AS TRUSTED USING AN ADDITIONAL SOURCE OF TRUST
	13.4. ADDING CUSTOM ALLOW AND DENY RULES FOR FAPOLICYD
	13.5. ENABLING FAPOLICYD INTEGRITY CHECKS
	13.6. TROUBLESHOOTING PROBLEMS RELATED TO FAPOLICYD
	13.7. ADDITIONAL RESOURCES

	CHAPTER 14. PROTECTING SYSTEMS AGAINST INTRUSIVE USB DEVICES
	14.1. USBGUARD
	14.2. INSTALLING USBGUARD
	14.3. BLOCKING AND AUTHORIZING A USB DEVICE BY USING CLI
	14.4. PERMANENTLY BLOCKING AND AUTHORIZING A USB DEVICE
	14.5. CREATING A CUSTOM POLICY FOR USB DEVICES
	14.6. CREATING A STRUCTURED CUSTOM POLICY FOR USB DEVICES
	14.7. AUTHORIZING USERS AND GROUPS TO USE THE USBGUARD IPC INTERFACE
	14.8. LOGGING USBGUARD AUTHORIZATION EVENTS TO THE LINUX AUDIT LOG
	14.9. ADDITIONAL RESOURCES

	CHAPTER 15. CONFIGURING A REMOTE LOGGING SOLUTION
	15.1. THE RSYSLOG LOGGING SERVICE
	15.2. INSTALLING RSYSLOG DOCUMENTATION
	15.3. CONFIGURING A SERVER FOR REMOTE LOGGING OVER TCP
	15.4. CONFIGURING REMOTE LOGGING TO A SERVER OVER TCP
	15.5. CONFIGURING TLS-ENCRYPTED REMOTE LOGGING
	15.6. CONFIGURING A SERVER FOR RECEIVING REMOTE LOGGING INFORMATION OVER UDP
	15.7. CONFIGURING REMOTE LOGGING TO A SERVER OVER UDP
	15.8. LOAD BALANCING HELPER IN RSYSLOG
	15.9. CONFIGURING RELIABLE REMOTE LOGGING
	15.10. SUPPORTED RSYSLOG MODULES
	15.11. CONFIGURING THE NETCONSOLE SERVICE TO LOG KERNEL MESSAGES TO A REMOTE HOST
	15.12. ADDITIONAL RESOURCES

	CHAPTER 16. USING THE LOGGING SYSTEM ROLE
	16.1. THE LOGGING SYSTEM ROLE
	16.2. VARIABLES OF THE LOGGING SYSTEM ROLE
	16.3. APPLYING A LOCAL LOGGING SYSTEM ROLE
	16.4. FILTERING LOGS IN A LOCAL LOGGING SYSTEM ROLE
	16.5. APPLYING A REMOTE LOGGING SOLUTION BY USING THE LOGGING SYSTEM ROLE
	16.6. USING THE LOGGING SYSTEM ROLE WITH TLS
	16.6.1. Configuring client logging with TLS
	16.6.2. Configuring server logging with TLS

	16.7. USING THE LOGGING SYSTEM ROLES WITH RELP
	16.7.1. Configuring client logging with RELP
	16.7.2. Configuring server logging with RELP

	16.8. ADDITIONAL RESOURCES

