
Red Hat Developer Tools 2018.2

Using Rust Toolset

Installing and Using Rust Toolset

Last Updated: 2018-04-26

Red Hat Developer Tools 2018.2 Using Rust Toolset

Installing and Using Rust Toolset

Vladimír Slávik
vslavik@redhat.com

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Rust Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux platform. The
Rust Toolset User Guide provides an overview of this product, explains how to invoke and use the
Rust Toolset versions of the tools, and links to resources with more in-depth information.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. RUST TOOLSET
1.1. ABOUT RUST TOOLSET
1.2. COMPATIBILITY
1.3. GETTING ACCESS TO RUST TOOLSET

Additional Resources
1.4. INSTALLING RUST TOOLSET
1.5. ADDITIONAL RESOURCES

Installed Documentation
Online Documentation

CHAPTER 2. CARGO
2.1. INSTALLING CARGO
2.2. CREATING A NEW PROJECT
2.3. BUILDING A PROJECT
2.4. CHECKING A PROGRAM
2.5. RUNNING A PROGRAM
2.6. RUNNING PROJECT TESTS
2.7. CONFIGURING PROJECT DEPENDENCIES

Additional Resources
2.8. BUILDING PROJECT DOCUMENTATION

Additional Resources
2.9. VENDORING PROJECT DEPENDENCIES
2.10. ADDITIONAL RESOURCES

Installed Documentation
Online Documentation
See Also

CHAPTER 3. RUSTFMT
3.1. INSTALLING RUSTFMT
3.2. USING RUSTFMT AS A STANDALONE TOOL
3.3. USING RUSTFMT WITH CARGO
3.4. ADDITIONAL RESOURCES

CHAPTER 4. CONTAINER IMAGE
4.1. IMAGE CONTENTS
4.2. ACCESS TO THE IMAGE
4.3. ADDITIONAL RESOURCES

CHAPTER 5. CHANGES IN RUST TOOLSET IN RED HAT DEVELOPER TOOLS 2018.2
5.1. RUST
5.2. CARGO
5.3. CONTAINER IMAGE

3
3
3
3
4
4
5
5
5

6
6
6
7
8
9

10
11
11
12
13
14
15
15
16
16

17
17
17
17
17

19
19
19
19

20
20
20
21

Table of Contents

1

Red Hat Developer Tools 2018.2 Using Rust Toolset

2

CHAPTER 1. RUST TOOLSET

1.1. ABOUT RUST TOOLSET

Rust Toolset is a Red Hat offering for developers on the Red Hat Enterprise Linux platform, available
as a Technology Preview. It provides the Rust programming language compiler rustc, the cargo build
tool and dependency manager, the cargo-vendor plugin, and required libraries.

Rust Toolset is distributed as a part of Red Hat Developer Tools for Red Hat Enterprise Linux 7.

IMPORTANT

Rust Toolset is available as a Technology Preview. See the Technology Preview
Features Support Scope for more details.

Libraries in Rust Toolset provide no ABI compatibility with past or future releases.

Customers deploying Rust Toolset are encouraged to provide feedback to Red Hat.

The following components are available as a part of Rust Toolset:

Table 1.1. Rust Toolset Components

Package Version Description

rust 1.25.0 A Rust compiler front-end for
LLVM.

cargo 0.26.0 A build system and dependency
manager for Rust.

cargo-vendor 0.1.13 A cargo subcommand to vendor
crates.io dependencies.

1.2. COMPATIBILITY

Rust Toolset is available for Red Hat Enterprise Linux versions 7.3 and 7.4 on the following
architectures:

The 64-bit Intel and AMD architectures

The 64-bit ARM architecture

The IBM Power Systems architecture

The little-endian variant of IBM Power Systems architecture

The IBM Z Systems architecture

1.3. GETTING ACCESS TO RUST TOOLSET

Rust Toolset is an offering that is distributed as a part of the Red Hat Developer Tools content set,

CHAPTER 1. RUST TOOLSET

3

https://access.redhat.com/support/offerings/techpreview

which is available to customers with deployments of Red Hat Enterprise Linux 7. In order to install Rust
Toolset, enable the Red Hat Developer Tools and Red Hat Software Collections repositories by using
the Red Hat Subscription Management and add the Red Hat Developer Tools key to your system.

1. Enable the rhel-7-variant-devtools-rpms repository:

subscription-manager repos --enable rhel-7-variant-devtools-rpms

Replace variant with the Red Hat Enterprise Linux system variant (server or workstation).

NOTE

We recommend developers to use Red Hat Enterprise Linux Server for access to
the widest range of development tools.

2. Enable the rhel-variant-rhscl-7-rpms repository:

subscription-manager repos --enable rhel-variant-rhscl-7-rpms

Replace variant with the Red Hat Enterprise Linux system variant (server or workstation).

3. Add the Red Hat Developer Tools key to your system:

cd /etc/pki/rpm-gpg
wget -O RPM-GPG-KEY-redhat-devel
https://www.redhat.com/security/data/a5787476.txt
rpm --import RPM-GPG-KEY-redhat-devel

Once the subscription is attached to the system and repositories enabled, you can install Red Hat Rust
Toolset as described in Section 1.4, “Installing Rust Toolset” .

Additional Resources

For more information on how to register your system using Red Hat Subscription Management
and associate it with subscriptions, see the Red Hat Subscription Management collection of
guides.

For detailed instructions on subscription to Red Hat Software Collections, see the Red Hat
Developer Toolset User Guide, Section 1.4. Getting Access to Red Hat Developer Toolset .

1.4. INSTALLING RUST TOOLSET

Rust Toolset is distributed as a collection of RPM packages that can be installed, updated, uninstalled,
and inspected by using the standard package management tools that are included in Red Hat
Enterprise Linux. Note that a valid subscription that provides access to the Red Hat Developer Tools
content set is required in order to install Rust Toolset on your system. For detailed instructions on
how to associate your system with an appropriate subscription and get access to Rust Toolset, see
Section 1.3, “Getting Access to Rust Toolset” .

IMPORTANT

Before installing Rust Toolset, install all available Red Hat Enterprise Linux updates.

Red Hat Developer Tools 2018.2 Using Rust Toolset

4

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/7/html/user_guide/sect-red_hat_developer_toolset-subscribe

To install all components that are included in Rust Toolset, install the rust-toolset-7 package:

yum install rust-toolset-7

This installs all development and debugging tools, and other dependent packages to the system.
Notably, Rust Toolset has a dependency on Clang and LLVM Toolset.

1.5. ADDITIONAL RESOURCES

A detailed description of the Rust programming language and all its features is beyond the scope of
this book. For more information, see the resources listed below.

Installed Documentation

The package rust-toolset-7-rust-doc installs the The Rust Programming Language book and
API documentation in HTML format to /opt/rh/rust-toolset-
7/root/usr/share/doc/rust/html/index.html.

Online Documentation

Rust documentation — The upstream Rust documentation.

Rust documentation overview — An extended overview of documentation related to Rust.

CHAPTER 1. RUST TOOLSET

5

https://doc.rust-lang.org/
https://www.rust-lang.org/en-US/documentation.html

CHAPTER 2. CARGO
cargo is a tool for development using the Rust programming language. cargo fulfills the following
roles:

Build tool and frontend for the Rust compiler rustc.
Use of cargo is preferred to using the rustc compiler directly.

Package and dependency manager.
cargo allows Rust projects to declare dependencies with specific version requirement. cargo
will resolve the full dependency graph, download packages as needed, and build and test the
entire project.

Rust Toolset is distributed with cargo 0.26.0.

IMPORTANT

Rust Toolset and cargo are available as a Technology Preview. See the Technology
Preview Features Support Scope for more details.

Libraries used by cargo and rustc in Rust Toolset provide no ABI compatibility with
past or future releases.

Customers deploying Rust Toolset are encouraged to provide feedback to Red Hat.

2.1. INSTALLING CARGO

In Rust Toolset, cargo is provided by the rust-toolset-7-cargo package and is automatically installed
with the rust-toolset-7 package. See Section 1.4, “Installing Rust Toolset” .

2.2. CREATING A NEW PROJECT

To create a Rust program on the command line, run the cargo tool as follows:

$ scl enable rust-toolset-7 'cargo new --bin project_name'

This creates a directory project_name containing a text file named Cargo.toml and a subdirectory
src containing a text file named main.rs.

To configure the project and add dependencies, edit the file Cargo.toml. See Section 2.7,
“Configuring Project Dependencies”.

To edit the project code, edit the file main.rs and add new source files in the src subdirectory as
needed.

To create a project for a cargo package instead of a program, run the cargo tool on the command line
as follows:

$ scl enable rust-toolset-7 'cargo new --lib project_name'

Note that you can execute any command using the scl utility, causing it to be run with the Rust
Toolset binaries available. This allows you to run a shell session with Rust Toolset cargo command
directly available:

Red Hat Developer Tools 2018.2 Using Rust Toolset

6

https://access.redhat.com/support/offerings/techpreview

$ scl enable rust-toolset-7 'bash'

Example 2.1. Creating a Project using cargo

Create a new Rust project called helloworld and examine the result:

$ scl enable rust-toolset-7 'cargo new --bin helloworld'
 Created binary (application) helloworld project
$ cd helloworld
$ tree
.
├── Cargo.toml
└── src
 └── main.rs

1 directory, 2 files
$ cat src/main.rs
fn main() {
 println!("Hello, world!");
}

A directory helloworld is created for the project, with a file Cargo.toml for tracking project
metadata, and a subdirectory src containing the main source code file main.rs.

The source code file main.rs has been initialized by cargo to a sample hello world program.

NOTE

The tree tool is available from the default Red Hat Enterprise Linux repositories. To
install it:

yum install tree

2.3. BUILDING A PROJECT

To build a Rust project on the command line, change to the project directory and run the cargo tool as
follows:

$ scl enable rust-toolset-7 'cargo build'

This resolves all dependencies of the project, downloads the missing dependencies, and compiles the
project using the rustc compiler.

By default, the project is build and compiled in debug mode. To build the project in release mode, run
the cargo tool with the --release option as follows:

$ scl enable rust-toolset-7 'cargo build --release'

Example 2.2. Building a Project using cargo

CHAPTER 2. CARGO

7

This example assumes that you have successfully created the Rust project helloworld according
to Example 2.1, “Creating a Project using cargo” .

Change to the directory helloworld, build the project, and examine the result:

$ scl enable rust-toolset-7 'cargo build'
 Compiling helloworld v0.1.0 (file:///home/vslavik/helloworld)
 Finished dev [unoptimized + debuginfo] target(s) in 0.51 secs
$ tree
.
├── Cargo.lock
├── Cargo.toml
├── src
│ └── main.rs
└── target
 └── debug
 ├── build
 ├── deps
 │ └── helloworld-b7c6fab39c2d17a7
 ├── examples
 ├── helloworld
 ├── helloworld.d
 ├── incremental
 └── native

8 directories, 6 files

A subdirectory structure has been created, starting with the directory target. Since the project
was built in debug mode, the actual build output is contained in a further subdirectory debug. The
actual resulting executable file is target/debug/helloworld.

NOTE

The tree tool is available from the default Red Hat Enterprise Linux repositories. To
install it:

yum install tree

2.4. CHECKING A PROGRAM

To verify that a Rust program managed by cargo can be built, on the command line change to the
project directory and run the cargo tool as follows:

$ scl enable rust-toolset-7 'cargo check'

The cargo check command is faster than a full project build using the cargo build command,
because it does not generate the executable code. Therefore, prefer using cargo check for
verification of Rust program validity when you do not need the executable code.

By default, the project is checked in debug mode. To check the project in release mode, run the cargo
tool with the --release option as follows:

Red Hat Developer Tools 2018.2 Using Rust Toolset

8

$ scl enable rust-toolset-7 'cargo check --release'

Example 2.3. Checking a Program with cargo

This example assumes that you have successfully built the Rust project helloworld according to
Example 2.2, “Building a Project using cargo” .

Change to the directory helloworld and check the project:

$ scl enable rust-toolset-7 'cargo check'
 Compiling helloworld v0.1.0 (file:///home/vslavik/helloworld)
 Finished dev [unoptimized + debuginfo] target(s) in 0.5 secs

The project is checked, with output similar to that of the cargo build command. However, the
executable file is not generated. You can verify this by comparing the current time with the time
stamp of the executable file:

$ date
Fri Oct 13 08:53:21 CEST 2017
$ ls -l target/debug/helloworld
-rwxrwxr-x. 2 vslavik vslavik 252624 Oct 13 08:48
target/debug/helloworld

2.5. RUNNING A PROGRAM

To run a Rust program managed as a project by cargo on the command line, change to the project
directory and run the cargo tool as follows:

$ scl enable rust-toolset-7 'cargo run'

If the program has not been built yet, cargo will run a build before running the program.

Using cargo to run a Rust program during development is preferred, because it will correctly resolve
the output path independent of the build mode.

By default, the project is built in debug mode. To build the project in release mode before running, run
the cargo tool with the --release option as follows:

$ scl enable rust-toolset-7 'cargo run --release'

Example 2.4. Running a Program with cargo

This example assumes that you have successfully built the Rust project helloworld according to
Example 2.2, “Building a Project using cargo” .

Change to the directory helloworld and run the project:

$ scl enable rust-toolset-7 'cargo run'
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running target/debug/helloworld
Hello, world!

CHAPTER 2. CARGO

9

cargo first rebuilds the project, and then runs the resulting executable file.

Note that in this example, there were no changes to the source code since last build. As a result,
cargo did not have to rebuild the executable file, but merely accepted it as current.

2.6. RUNNING PROJECT TESTS

To run tests for a cargo project on the command line, change to the project directory and run the
cargo tool as follows:

$ scl enable rust-toolset-7 'cargo test'

By default, the project is tested in debug mode. To test the project in release mode, run the cargo tool
with the --release option as follows:

$ scl enable rust-toolset-7 'cargo test --release'

Example 2.5. Testing a Project with cargo

This example assumes that you have successfully built the Rust project helloworld according to
Example 2.2, “Building a Project using cargo” .

Change to the directory helloworld, and edit the file src/main.rs so that it contains the
following source code:

The function my_test marked as a test has been added.

Save the file, and run the test:

$ scl enable rust-toolset-7 'cargo test'
 Compiling helloworld v0.1.0
(file:///home/vslavik/Documentation/rusttest/helloworld)
 Finished dev [unoptimized + debuginfo] target(s) in 0.26 secs
 Running target/debug/deps/helloworld-9dd6b83647b49aec

running 1 test
test my_test ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

cargo first rebuilds the project, and then runs the tests found in the project. The test my_test has
been succesfully passed.

fn main() {
 println!("Hello, world!");
}

#[test]
fn my_test() {
 assert_eq!(21+21, 42);
}

Red Hat Developer Tools 2018.2 Using Rust Toolset

10

2.7. CONFIGURING PROJECT DEPENDENCIES

To specify dependencies for a cargo project, edit the file Cargo.toml in the project directory. The
section [dependencies] contains a list of the project’s dependencies. Each dependency is listed on a
new line in the following format:

crate_name = version

Rust code packages are called crates.

Example 2.6. Adding Dependency to a Project and Building it with cargo

This example assumes that you have successfully built the Rust project helloworld according to
Example 2.2, “Building a Project using cargo” .

Change to the directory helloworld and edit the file src/main.rs so that it contains the
following source code:

The code now requires an external crate time. Add this dependency to project configuration by
editing the file Cargo.toml so that it contains the following code:

[package]
name = "helloworld"
version = "0.1.0"
authors = ["Your Name <yourname@example.com>"]

[dependencies]
time = "0.1"

Finally, run the cargo run command to build the project and run the resulting executable file:

$ scl enable rust-toolset-7 'cargo run'
 Updating registry `https://github.com/rust-lang/crates.io-index`
 Downloading time v0.1.38
 Downloading libc v0.2.32
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/helloworld`
Hello, world!
Time is: Fri, 13 Oct 2017 11:08:57

cargo downloads the time crate and its dependencies (crate libc), stores them locally, builds all of
the project source code including the dependency crates, and finally runs the resulting executable.

Additional Resources

Specifying Dependencies — official cargo documentation.

extern crate time;

fn main() {
 println!("Hello, world!");
 println!("Time is: {}", time::now().rfc822());
}

CHAPTER 2. CARGO

11

http://doc.crates.io/specifying-dependencies.html

2.8. BUILDING PROJECT DOCUMENTATION

Rust code can contain comments marked for extraction into documentation. These comments support
the Markdown language. To build project documentation using the cargo tool, change to the project
directory and run the cargo tool as follows:

$ scl enable rust-toolset-7 'cargo doc --no-deps'

This extracts documentation stored from the special comments in the source code of your project and
writes the documentation in HTML format.

Note that the cargo doc command extracts documentation comments only for public functions,
variables and members.

To include dependencies in the generated documentation, including third party libraries, omit
the --no-deps option.

To show the generated documentation in your browser, add the --open option.

The command cargo doc uses the rustdoc utility. Using cargo doc is preferred to rustdoc.

Example 2.7. Building Project Documentation

This example assumes that you have successfully built the Rust project helloworld with
dependencies, according to Example 2.6, “Adding Dependency to a Project and Building it with
cargo”.

Change to the directory helloworld and edit the file src/main.rs so that it contains the
following source code:

The code now contains a public function print_output(). The whole helloworld program, the
print_output() function, and the main() function have documentation comments.

Run the cargo doc command to build the project documentation and examine the result:

$ scl enable rust-toolset-7 'cargo doc --no-deps'
 Documenting helloworld v0.1.0 (file:///home/vslavik/helloworld)
 Finished dev [unoptimized + debuginfo] target(s) in 0.31 secs
$ tree
.
├── Cargo.lock

//! This is a hello-world program.
extern crate time;

/// Prints a greeting to `stdout`.
pub fn print_output() {
 println!("Hello, world!");
 println!("Time is: {}", time::now().rfc822());
}

/// The program entry point.
fn main() {
 print_output();
}

Red Hat Developer Tools 2018.2 Using Rust Toolset

12

├── Cargo.toml
├── src
│ └── main.rs
└── target
...
 └── doc
...
 ├── helloworld
 │ ├── fn.print_output.html
 │ ├── index.html
 │ ├── print_output.v.html
 │ └── sidebar-items.js
...
 └── src
 └── helloworld
 └── main.rs.html

12 directories, 32 files

cargo builds the project documentation. To actually view the documentation, open the file
target/doc/helloworld/index.html in your browser.

Note that the generated documentation does not contain any mention of the main() function,
because it is not public.

Finally, run the cargo doc command without the --no-deps option to build the project
documentation, including the dependency libraries time and libc, and examine the result:

$ scl enable rust-toolset-7 'cargo doc'
 Documenting libc v0.2.32
 Documenting time v0.1.38
 Documenting helloworld v0.1.0 (file:///home/vslavik/helloworld)
 Finished dev [unoptimized + debuginfo] target(s) in 3.41 secs
$ tree
...
92 directories, 11804 files
$ ls -d target/doc/*/
target/doc/helloworld/ target/doc/implementors/ target/doc/libc/
target/doc/src/ target/doc/time/

The resulting documentation now covers also the dependency libraries time and libc, with each
present as another subdirectory in the target/doc/ directory.

NOTE

The tree tool is available from the default Red Hat Enterprise Linux repositories. To
install it:

yum install tree

Additional Resources
A detailed description of the cargo doc tool and its features is beyond the scope of this book. For
more information, see the resources listed below.

CHAPTER 2. CARGO

13

Documentation — The official book The Rust Programming Language has a section on
documentationin the first edition.

2.9. VENDORING PROJECT DEPENDENCIES

Vendoring project dependencies means creating a local copy of the dependencies for offline
redistribution and reuse. Vendored dependencies can be used by the cargo build tool without any
connection to the internet.

The cargo vendor command for vendoring dependencies is supplied by the cargo plugin cargo-
vendor. Rust Toolset is distributed with cargo-vendor 0.1.13. To install cargo-vendor:

yum install rust-toolset-7-cargo-vendor

To vendor dependencies for a cargo project, change to the project directory and run the cargo tool as
follows:

$ scl enable rust-toolset-7 'cargo vendor'

This creates a directory vendor and downloads sources of all dependencies to this directory.
Additional configuration steps are printed to command line.

The cargo vendor command gathers the dependencies for a platform-independent result.
Dependency crates for all potential target platforms are downloaded.

IMPORTANT

Rust Toolset and cargo are available as a Technology Preview. See the Technology
Preview Features Support Scope for more details.

Additionally to the Technology Preview status, the cargo vendor command is an
experimental unofficial plugin for the cargo tool.

Customers deploying Rust Toolset are encouraged to provide feedback to Red Hat.

Example 2.8. Vendoring Project Dependencies

This example assumes that you have successfully built the Rust project helloworld with
dependencies, according to Example 2.6, “Adding Dependency to a Project and Building it with
cargo”.

Change to the directory helloworld, run the cargo vendor command to vendor the project with
dependencies and examine the result:

$ scl enable rust-toolset-7 'cargo vendor'
 Downloading kernel32-sys v0.2.2
 Downloading redox_syscall v0.1.31
 Downloading winapi-build v0.1.1
 Downloading winapi v0.2.8
 Vendoring kernel32-sys v0.2.2
(/home/vslavik/.cargo/registry/src/github.com-1ecc6299db9ec823/kernel32-
sys-0.2.2) to vendor/kernel32-sys
 Vendoring libc v0.2.32 (/home/vslavik/.cargo/registry/src/github.com-
1ecc6299db9ec823/libc-0.2.32) to vendor/libc

Red Hat Developer Tools 2018.2 Using Rust Toolset

14

https://doc.rust-lang.org/book/first-edition/documentation.html
https://access.redhat.com/support/offerings/techpreview

 Vendoring redox_syscall v0.1.31
(/home/vslavik/.cargo/registry/src/github.com-
1ecc6299db9ec823/redox_syscall-0.1.31) to vendor/redox_syscall
 Vendoring time v0.1.38 (/home/vslavik/.cargo/registry/src/github.com-
1ecc6299db9ec823/time-0.1.38) to vendor/time
 Vendoring winapi v0.2.8
(/home/vslavik/.cargo/registry/src/github.com-1ecc6299db9ec823/winapi-
0.2.8) to vendor/winapi
 Vendoring winapi-build v0.1.1
(/home/vslavik/.cargo/registry/src/github.com-1ecc6299db9ec823/winapi-
build-0.1.1) to vendor/winapi-build
To use vendored sources, add this to your .cargo/config for this
project:

 [source.crates-io]
 replace-with = "vendored-sources"

 [source.vendored-sources]
 directory = "/home/vslavik/helloworld/vendor"

$ ls
Cargo.lock Cargo.toml src target vendor
$ tree vendor
vendor
├── kernel32-sys
│ ├── build.rs
│ ├── Cargo.toml
│ ├── README.md
│ └── src
│ └── lib.rs
├── libc
│ ├── appveyor.yml
│ ├── Cargo.toml
...
75 directories, 319 files

The vendor directory contains copies of all the dependency crates needed to build the
helloworld program. Note that the crates for building the project on the Windows operating
system have been vendored, too, despite running this command on Red Hat Enterprise Linux.

NOTE

The tree tool is available from the default Red Hat Enterprise Linux repositories. To
install it:

yum install tree

2.10. ADDITIONAL RESOURCES

A detailed description of the cargo tool and its features is beyond the scope of this book. For more
information, see the resources listed below.

Installed Documentation

CHAPTER 2. CARGO

15

cargo(1) — The manual page for the cargo tool provides detailed information on its usage. To
display the manual page for the version included in Rust Toolset:

$ scl enable rust-toolset-7 'man cargo'

Cargo, Rust’s Package Manager — Documentation on the cargo tool can be optionally installed:

yum install rust-toolset-7-cargo-doc

Once installed, HTML documentation is available at /opt/rh/rust-toolset-
7/root/usr/share/doc/cargo/html/index.html.

Online Documentation

Cargo Guide — The cargo tool documentation provides detailed information on cargo's usage.

See Also

Chapter 1, Rust Toolset — An overview of Rust Toolset and more information on how to install it
on your system.

Red Hat Developer Tools 2018.2 Using Rust Toolset

16

http://doc.crates.io/guide.html

CHAPTER 3. RUSTFMT
The rustfmt tool provides automatic formatting of Rust source code.

Rust Toolset is distributed with rustfmt 0.3.8.

IMPORTANT

Rust Toolset and rustfmt are available as a Technology Preview. See the Technology
Preview Features Support Scope for more details.

Customers deploying Rust Toolset are encouraged to provide feedback to Red Hat.

3.1. INSTALLING RUSTFMT

The rustfmt tool is provided by the rust-toolset-7-rustfmt-preview package. To install it:

yum install rust-toolset-7-rustfmt-preview

3.2. USING RUSTFMT AS A STANDALONE TOOL

To format a rust source file and all its dependencies with the rustfmt tool:

$ scl enable rust-toolset-7 'rustfmt source-file'

Replace source-file with path to the source file.

By default, rustfmt modifies the affected files in place without displaying details or creating backups.
To change the behavior, use the --write-mode value option. For further details see the help
mesage of rustfmt:

$ scl enable rust-toolset-7 'rustfmt --help'

Additionally, rustfmt accepts standard input instead of a file and provides its output in standard
output.

3.3. USING RUSTFMT WITH CARGO

To format all source files in a cargo crate:

$ scl enable rust-toolset-7 'cargo fmt'

To change the rustfmt formatting options, create the configuration file rustfmt.toml in the
project directory and supply the configuration there. For further details see the help message of
rustfmt:

$ scl enable rust-toolset-7 'rustfmt --config-help'

3.4. ADDITIONAL RESOURCES

CHAPTER 3. RUSTFMT

17

https://access.redhat.com/support/offerings/techpreview

Help messages of rustfmt:

$ scl enable rust-toolset-7 'rustfmt --help'
$ scl enable rust-toolset-7 'rustfmt --config-help'

The file Configurations.md installed under /opt/rh/rust-toolset-
7/root/usr/share/doc/rust-toolset-7-rustfmt-preview-
0.3.8/Configurations.md

Red Hat Developer Tools 2018.2 Using Rust Toolset

18

CHAPTER 4. CONTAINER IMAGE
The Rust Toolset is available as a docker-formatted container image which can be downloaded from
Red Hat Container Registry.

4.1. IMAGE CONTENTS

The devtools/rust-toolset-7-rhel7 image provides content corresponding to the following packages:

Component Version Package

Rust 1.25.0 rust-toolset-7-rust

Cargo 0.26.0 rust-toolset-7-cargo

Vendor plugin for Cargo 0.1.13 rust-toolset-7-cargo-vendor

4.2. ACCESS TO THE IMAGE

To pull the devtools/rust-toolset-7-rhel7 image, run the following command as root:

docker pull registry.access.redhat.com/devtools/rust-toolset-7-rhel7

4.3. ADDITIONAL RESOURCES

Rust Toolset 7 — entry in the Red Hat Container Catalog

Using Red Hat Software Collections Container Images

CHAPTER 4. CONTAINER IMAGE

19

https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/devtools/rust-toolset-7-rhel7
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html/using_red_hat_software_collections_container_images/index

CHAPTER 5. CHANGES IN RUST TOOLSET IN RED HAT
DEVELOPER TOOLS 2018.2

This chapter lists some notable changes in Rust Toolset since its previous release.

5.1. RUST

Rust has been updated from version 1.22.1 to 1.25.0. Notable changes include:

Incremental compilation has been added to the Rust compiler. The compiler can reuse artifacts
from previous builds and rebuild only the neccessary parts of code.

The default amount of code generation units for compilation has been changed to 16.

The methods from the AsciiExt trait are now implemented directly in the string and
character types.
Note that this change may cause unused_imports warnings to appear for code bases using
the AsciiExt trait.

Several library functions such as mem::size_of() can be used in const expressions.

Structs can be aligned using the #[repr(align(x))] attribute.

The std::ptr::NonNull<T> type has been added to the standard library for holding a non-
null covariant pointer.

The rustfmt code formatting tool has been added. For more information, see Chapter 3,
rustfmt.

Additionally, the following bugs have been fixed:

Previous changes in the glibc library caused Rust to not recognize stack guard code. As a
consequence, when a stack overflow happened in a Rust thread, Rust terminated with a
segmentation fault signal SIGSEGV instead of an abort signal SIGABRT. Additionally, the error
message "thread '{}' has overflowed its stack" was not displayed. Rust has been updated to
recognize the stack guard correctly and terminates again with the correct signal and error
message. (BZ#1540329)

5.2. CARGO

The cargo tool has been updated from version 0.23.0 to 0.26.0. Notable changes include:

Support for unit tests has been added to the cargo check command.

Support for selecting specific versions has been added to the cargo install command.

Support for removing multiple packages at once has been added to the cargo uninstall
command.

Debug builds enable incremental compilation by default.

The cargo new command now defaults to creating a project for a binary instead of a library.
Additionally, it no longer mangles supplied project names when they include substrings related
to Rust.

Red Hat Developer Tools 2018.2 Using Rust Toolset

20

https://bugzilla.redhat.com/show_bug.cgi?id=1540329

5.3. CONTAINER IMAGE

Notable changes include:

Source-to-Image (S2I) support has been added to the rust-toolset-7-rhel7 container image.
As a result, S2I can be used to build Rust application containers. (BZ#1535050)

CHAPTER 5. CHANGES IN RUST TOOLSET IN RED HAT DEVELOPER TOOLS 2018.2

21

	Table of Contents
	CHAPTER 1. RUST TOOLSET
	1.1. ABOUT RUST TOOLSET
	1.2. COMPATIBILITY
	1.3. GETTING ACCESS TO RUST TOOLSET
	Additional Resources

	1.4. INSTALLING RUST TOOLSET
	1.5. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation

	CHAPTER 2. CARGO
	2.1. INSTALLING CARGO
	2.2. CREATING A NEW PROJECT
	2.3. BUILDING A PROJECT
	2.4. CHECKING A PROGRAM
	2.5. RUNNING A PROGRAM
	2.6. RUNNING PROJECT TESTS
	2.7. CONFIGURING PROJECT DEPENDENCIES
	Additional Resources

	2.8. BUILDING PROJECT DOCUMENTATION
	Additional Resources

	2.9. VENDORING PROJECT DEPENDENCIES
	2.10. ADDITIONAL RESOURCES
	Installed Documentation
	Online Documentation
	See Also

	CHAPTER 3. RUSTFMT
	3.1. INSTALLING RUSTFMT
	3.2. USING RUSTFMT AS A STANDALONE TOOL
	3.3. USING RUSTFMT WITH CARGO
	3.4. ADDITIONAL RESOURCES

	CHAPTER 4. CONTAINER IMAGE
	4.1. IMAGE CONTENTS
	4.2. ACCESS TO THE IMAGE
	4.3. ADDITIONAL RESOURCES

	CHAPTER 5. CHANGES IN RUST TOOLSET IN RED HAT DEVELOPER TOOLS 2018.2
	5.1. RUST
	5.2. CARGO
	5.3. CONTAINER IMAGE

