& RedHat

Red Hat Decision Manager 7.13

Getting started with Red Hat build of Kogito in
Red Hat Decision Manager

Last Updated: 2024-03-14

Red Hat Decision Manager 7.13 Getting started with Red Hat build of
Kogito in Red Hat Decision Manager

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to get started with decision services and planning solutions in Red
Hat Decision Manager.

Table of Contents

Table of Contents

PREF ACE . i i i e e e e e e 4
MAKING OPEN SOURCE MORE INCLUSIVE ... i e i it 5
PART I. GETTING STARTED WITH RED HAT BUILD OF KOGITO MICROSERVICESoooittn. 6
CHAPTER 1. RED HAT BUILD OF KOGITO MICROSERVICES IN RED HAT DECISION MANAGER 7

1.1. CLOUD-FIRST PRIORITY 7

1.2. RED HAT BUILD OF KOGITO MICROSERVICES ON RED HAT BUILD OF QUARKUS AND SPRING BOOT 7

CHAPTER 2. DMN MODELERS FOR RED HAT BUILD OF KOGITO MICROSERVICES, 9
2.1 INSTALLING THE RED HAT DECISION MANAGER VS CODE EXTENSION BUNDLE 9
2.2. CONFIGURING THE RED HAT DECISION MANAGER STANDALONE EDITORS 10

CHAPTER 3. CREATING A MAVEN PROJECT FOR A RED HAT BUILD OF KOGITO MICROSERVICE 14

3.1. CREATING A CUSTOM SPRING BOOT PROJECT FOR RED HAT BUILD OF KOGITO MICROSERVICES 15

CHAPTER 4. EXAMPLE APPLICATIONS WITH RED HAT BUILD OF KOGITO MICROSERVICES 17

CHAPTER 5. DESIGNING THE APPLICATION LOGIC FOR A RED HAT BUILD OF KOGITO MICROSERVICE

USING DM Lo i i i i i i e e e e i e 18

5.1. USING DRL RULE UNITS AS AN ALTERNATIVE DECISION SERVICE 24

CHAPTER 6. RED HAT BUILD OF KOGITO EVENTS ADD-ON i 26
6.1. IMPLEMENTING MESSAGE PAYLOAD DECORATOR FOR RED HAT BUILD OF KOGITO EVENTS ADD-ON

26

CHAPTER 7. RUNNING A RED HAT BUILD OF KOGITO MICROSERVICEccooiiiiiiiiiiiiin, 28

CHAPTER 8. INTERACTING WITH A RUNNING RED HAT BUILD OF KOGITO MICROSERVICE 29

PART Il. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON RED HAT OPENSHIFT CONTAINER

PLA T O RM L i e e e e 31
CHAPTER 9. RED HAT BUILD OF KOGITO ON RED HAT OPENSHIFT CONTAINER PLATFORM 32
CHAPTER 10. OPENSHIFT DEPLOYMENT OPTIONS WITH THE RHPAM KOGITO OPERATOR 33
10.1. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON OPENSHIFT USING GIT SOURCE BUILD
AND OPENSHIFT WEB CONSOLE 33
10.2. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON OPENSHIFT USING BINARY BUILD AND
OPENSHIFT WEB CONSOLE 36
10.3. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON OPENSHIFT USING CUSTOM IMAGE
BUILD AND OPENSHIFT WEB CONSOLE 38
10.4. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON OPENSHIFT USING FILE BUILD AND
OPENSHIFT WEB CONSOLE 41
CHAPTER 11. RED HAT BUILD OF KOGITO SERVICE PROPERTIES CONFIGURATIONcoouut. 45

CHAPTER 12. PROBES FOR RED HAT BUILD OF KOGITO MICROSERVICES ON RED HAT OPENSHIFT

CONTAINER PLATFORM i i i i e i et ettt eas 46
12.1. ADDING HEALTH CHECK EXTENSION FOR RED HAT BUILD OF QUARKUS APPLICATIONS ON RED HAT
OPENSHIFT CONTAINER PLATFORM 46
12.2. ADDING HEALTH CHECK EXTENSION FOR SPRING BOOT APPLICATIONS ON RED HAT OPENSHIFT
CONTAINER PLATFORM 46
12.3. SETTING CUSTOM PROBES FOR RED HAT BUILD OF KOGITO MICROSERVICES ON RED HAT
OPENSHIFT CONTAINER PLATFORM 47

CHAPTER 13. RED HAT PROCESS AUTOMATION MANAGER KOGITO OPERATOR INTERACTION WITH

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

PROMETHEUS AND GRAF AN A o i i i i i ettt 48

CHAPTER 14. RED HAT DECISION MANAGER RED HAT BUILD OF KOGITO OPERATOR INTERACTION WITH

A 50
CHAPTER 15. RED HAT BUILD OF KOGITO MICROSERVICE DEPLOYMENT TROUBLESHOOTING 51
PART lll. MIGRATING TO RED HAT BUILD OF KOGITO MICROSERVICEScotiiiiiiiiinnnennns, 53
CHAPTER 16. OVERVIEW OF MIGRATION TO RED HAT BUILD OF KOGITO MICROSERVICES 54
CHAPTER 17. MIGRATION OF A DMN SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE 55
17.1. MAJOR CHANGES AND MIGRATION CONSIDERATIONS 55
17.2. MIGRATION STRATEGY 56
17.3. MIGRATING EXTERNAL APPLICATIONS TO REST ENDPOINTS SPECIFIC TO DMN MODELS 56
17.4. MIGRATING A DMN MODEL KJAR TO A RED HAT BUILD OF KOGITO MICROSERVICE 57
17.4.1. Example of migrating a DMN model KJAR to a Red Hat build of Kogito microservice 57
17.5. EXAMPLE OF BINDING AN EXTERNAL APPLICATION TO A RED HAT BUILD OF KOGITO DEPLOYMENT
60
CHAPTER 18. MIGRATION OF A PMML SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE ... 62
18.1. MAJOR CHANGES AND MIGRATION CONSIDERATIONS 62
18.2. MIGRATION STRATEGY 62
18.3. MIGRATING A PMML MODEL KJAR TO A RED HAT BUILD OF KOGITO MICROSERVICE 62
18.4. MODIFYING AN EXTERNAL APPLICATION TO A RED HAT BUILD OF KOGITO MICROSERVICE 63
CHAPTER 19. MIGRATION OF A DRL SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE 65
19.1. MAJOR CHANGES AND MIGRATION CONSIDERATIONS 65
19.2. MIGRATION STRATEGY 65
19.3. EXAMPLE LOAN APPLICATION PROJECT 66
19.3.1. Exposing rule evaluation with a REST endpoint using Red Hat build of Quarkus 67
19.3.2. Migrating a rule evaluation to a Red Hat build of Kogito microservice using legacy API 70
19.3.3. Implementing rule units and automatic REST endpoint generation 71
CHAPTER 20. ADDITIONAL RESOURCES ... ittt ittt e et ae e eneaeenn, 75
APPENDIX A. VERSIONING INFORMATION ...ttt et et ae e 76
APPENDIX B. CONTACT INFORMATION ...ttt e et e et aeeaeenn 77

Table of Contents

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

PREFACE

As a developer of business decisions, you can use Red Hat build of Kogito to build cloud-native
applications that adapt your business domain and tooling.

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message .

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

PART I. GETTING STARTED WITH RED HAT BUILD OF KOGITO
MICROSERVICES

As a developer of business decisions, you can use Red Hat build of Kogito business automation to
develop decision services using Decision Model and Notation (DMN) models, Drools Rule Language
(DRL) rules, Predictive Model Markup Language (PMML) or a combination of all three methods.

Prerequisites
e JDK Tl or lateris installed.

® Apache Maven 3.6.2 or later is installed.

CHAPTER 1. RED HAT BUILD OF KOGITO MICROSERVICES IN RED HAT DECISION MANAGER

CHAPTER 1. RED HAT BUILD OF KOGITO MICROSERVICES IN
RED HAT DECISION MANAGER

Red Hat build of Kogito is a cloud-native business automation technology for building cloud-ready
business applications. The name Kogito derives from the Latin "Cogito", as in "Cogito, ergo sum" ("I
think, therefore I am"), and is pronounced ['ko:.d3i.to] (KO-jee-to). The letter K refers to Kubernetes,
the base for Red Hat OpenShift Container Platform as the target cloud platform for Red Hat Decision
Manager, and to the Knowledge Is Everything (KIE) open source business automation project from
which Red Hat build of Kogito originates.

Red Hat build of Kogito in Red Hat Decision Manager is optimized for a hybrid cloud environment and
adapts to your domain and tooling needs. The core objective of Red Hat build of Kogito microservices is
to help you mold a set of decisions into your own domain-specific cloud-native set of services.

IMPORTANT

In Red Hat Decision Manager 7.13 version, Red Hat build of Kogito support is limited to
decision services, including Decision Model and Notation (DMN), Drools Rule Language
(DRL), and Predictive Model Markup Language (PMML). This support will be improved
and extended to Business Process Modeling Notation (BPMN) in a future release.

When you use Red Hat build of Kogito, you are building a cloud-native application as a set of
independent domain-specific microservices to achieve some business value. The decisions that you use
to describe the target behavior are executed as part of the microservices that you create. The resulting
microservices are highly distributed and scalable with no centralized orchestration service, and the
runtime that your microservice uses is optimized for what is required.

As a business rules developer, you can use Red Hat build of Kogito microservices in Red Hat Decision
Manager to build cloud-native applications that adapt to your business domain and tooling.

1.1. CLOUD-FIRST PRIORITY

Red Hat build of Kogito microservices are designed to run and scale on a cloud infrastructure. You can
use Red Hat build of Kogito microservices in Red Hat Decision Manager with the latest cloud-based
technologies, such as Red Hat build of Quarkus, to increase start times and instant scaling on container
application platforms, such as Red Hat OpenShift Container Platform.

For example, Red Hat build of Kogito microservices are compatible with the following technologies:

® Red Hat OpenShift Container Platformis based on Kubernetes, and is the target platform for
building and managing containerized applications.

® Red Hat build of Quarkusis a native Java stack for Kubernetes that you can use to build
applications, using the Red Hat build of Kogito microservices.

® Spring Bootis an application framework that you can use to configure Spring Framework with
Red Hat Decision Manager.

1.2. RED HAT BUILD OF KOGITO MICROSERVICES ON RED HAT BUILD
OF QUARKUS AND SPRING BOOT

The primary Java frameworks that Red Hat build of Kogito microservices support are Red Hat build of
Quarkus and Spring Boot.

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

Red Hat build of Quarkus is a Kubernetes-native Java framework with a container-first approach to
building Java applications, especially for Java virtual machines (JVMs) such as OpenJDK HotSpot. Red
Hat build of Quarkus optimizes Java specifically for Kubernetes by reducing the size of both the Java
application and container image footprint, eliminating some of the Java programming workload from
previous generations, and reducing the amount of memory required to run those images.

For Red Hat build of Kogito microservices, Red Hat build of Quarkus is the preferred framework for
optimal Kubernetes compatibility and enhanced developer features, such as live reload in development
mode for advanced debugging.

Spring Boot is a Java-based framework for building standalone production-ready Spring applications.
Spring Boot enables you to develop Spring applications with minimal configurations and without an
entire Spring configuration setup.

For Red Hat build of Kogito microservices, Spring Boot is supported for developers who need to use
Red Hat Decision Manager in an existing Spring Framework environment.

https://access.redhat.com/products/quarkus
https://access.redhat.com/products/spring-boot

CHAPTER 2. DMN MODELERS FOR RED HAT BUILD OF KOGITO MICROSERVICES

CHAPTER 2. DMN MODELERS FOR RED HAT BUILD OF
KOGITO MICROSERVICES

Red Hat Decision Manager provides extensions or applications that you can use to design Decision
Model and Notation (DMN) decision models for your Red Hat build of Kogito microservices using
graphical modelers.

The following DMN modelers are supported:

® VS Code extension: Enables you to view and design DMN models in Visual Studio Code (VS
Code). The VS Code extension requires VS Code 1.46.0 or later.
To install the VS Code extension directly in VS Code, select the Extensions menu option in VS
Code and search for and install the Red Hat Business Automation Bundleextension.

® Business Modeler standalone editors Enable you to view and design DMN models embedded
in your web applications. To download the necessary files, you can either use the NPM artifacts
from the Kogito tooling repository or download the JavaScript files directly for the DMN
standalone editor library at https://kiegroup.github.io/kogito-
online/standalone/dmn/index.js.

2.1.INSTALLING THE RED HAT DECISION MANAGER VS CODE
EXTENSION BUNDLE

Red Hat Decision Manager provides a Red Hat Business Automation BundleVS Code extension that
enables you to design Decision Model and Notation (DMN) decision models, Business Process Model
and Notation (BPMN) 2.0 business processes, and test scenarios directly in VS Code. VS Code is the
preferred integrated development environment (IDE) for developing new business applications. Red
Hat Decision Manager also provides individual DMN Editor and BPMN Editor VS Code extensions for
DMN or BPMN support only, if needed.

IMPORTANT

The editors in the VS Code are partially compatible with the editors in the Business
Central, and several Business Central features are not supported in the VS Code.

Prerequisites

® The latest stable version of VS Code is installed.

Procedure

1. Inyour VS Code IDE, select the Extensions menu option and search for Red Hat Business
Automation Bundle for DMN, BPMN, and test scenario file support.
For DMN or BPMN file support only, you can also search for the individual DMN Editor or
BPMN Editor extensions.

2. When the Red Hat Business Automation Bundleextension appears in VS Code, select it and
click Install.

3. For optimal VS Code editor behavior, after the extension installation is complete, reload or
close and re-launch your instance of VS Code.

After you install the VS Code extension bundle, any .dmn, .bpmn, or .bpmn2 files that you open or
create in VS Code are automatically displayed as graphical models. Additionally, any .scesim files that

https://www.npmjs.com/package/@kie-tools/kie-editors-standalone
https://kiegroup.github.io/kogito-online/standalone/dmn/index.js
https://code.visualstudio.com/

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

you open or create are automatically displayed as tabular test scenario models for testing the
functionality of your business decisions.

If the DMN, BPMN, or test scenario modelers open only the XML source of a DMN, BPMN, or test

scenario file and displays an error message, review the reported errors and the model file to ensure that
all elements are correctly defined.

NOTE
For new DMN or BPMN models, you can also enter dmn.new or bpmn.new in a web
browser to design your DMN or BPMN model in the online modeler. When you finish

creating your model, you can click Download in the online modeler page to import your
DMN or BPMN file into your Red Hat Decision Manager project in VS Code.

2.2. CONFIGURING THE RED HAT DECISION MANAGER STANDALONE
EDITORS

Red Hat Decision Manager provides standalone editors that are distributed in a self-contained library
providing an all-in-one JavaScript file for each editor. The JavaScript file uses a comprehensive API to
set and control the editor.

You can install the standalone editors using the following methods:

® Download each JavaScript file manually

® Use the NPM package

Procedure

1. Install the standalone editors using one of the following methods:
Download each JavaScript file manually For this method, follow these steps:

a. Download the JavaScript files.
b. Add the downloaded Javascript files to your hosted application.
c. Add the following <script> tag to your HTML page:

Script tag for your HTML page for the DMN editor

I <script sre="https://<YOUR_PAGE>/dmn/index.js"></script>
Script tag for your HTML page for the BPMN editor

I <script src="https://<YOUR_PAGE>/bpmn/index.js"></script>

Use the NPM package: For this method, follow these steps:
a. Add the NPM package to your package.json file:

Adding the NPM package

I npm install @kie-tools/kie-editors-standalone

10

CHAPTER 2. DMN MODELERS FOR RED HAT BUILD OF KOGITO MICROSERVICES

b. Import each editor library to your TypeScript file:

Importing each editor

import * as DmnEditor from "@kie-tools/kie-editors-standalone/dist/dmn"
import * as BpmnEditor from "@kie-tools/kie-editors-standalone/dist/bpmn"

2. After you install the standalone editors, open the required editor by using the provided editor
API, as shown in the following example for opening a DMN editor. The APl is the same for each
editor.

Opening the DMN standalone editor

const editor = DmnEditor.open({
container: document.getElementByld("dmn-editor-container"),
initialContent: Promise.resolve(™),
readOnly: false,
origin: ",
resources: new Map([
[
"MyIncludedModel.dmn",

{

contentType: "text",
content: Promise.resolve(™)

}

)
hE

Use the following parameters with the editor API:

Table 2.1. Example parameters

Parameter Description

container HTML element in which the editor is appended.

initialContent Promise to a DMN model content. This parameter can be
empty, as shown in the following examples:

e Promise.resolve("")

e Promise.resolve("
<DIAGRAM_CONTENT _DIRECTLY_HERE>")

o fetch("MyDmnModel.dmn™").then(content =
content.text())

readOnly (Optional) Enables you to allow changes in the editor. Set to false
(default) to allow content editing and true for read-only
mode in editor.

1

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

Parameter Description

origin (Optional) Origin of the repository. The default value is
window.location.origin.

resources (Optional) Map of resources for the editor. For example, this
parameter is used to provide included models for the DMN
editor or work item definitions for the BPMN editor. Each
entry in the map contains a resource name and an object
that consists of content-type (text orbinary) and
content (similar to theinitialContent parameter).

The returned object contains the methods that are required to manipulate the editor.

Table 2.2. Returned object methods

Method Description

getContent(): Promise<string> Returns a promise containing the editor content.

setContent(path: string, content: Sets the content of the editor.
string): void

getPreview(): Promise<string> Returns a promise containing an SVG string of the current
diagram.

subscribeToContentChanges(ca Sets a callback to be called when the content changes in
liback: (isDirty: boolean) = the editor and returns the same callback to be used for
void): (isDirty: boolean) = void unsubscription.

unsubscribeToContentChanges(Unsubscribes the passed callback when the content
callback: (isDirty: boolean) = changes in the editor.
void): void

markAsSaved(): void Resets the editor state that indicates that the content in
the editor is saved. Also, it activates the subscribed
callbacks related to content change.

undo(): void Undoes the last change in the editor. Also, it activates the
subscribed callbacks related to content change.

redo(): void Redoes the last undone change in the editor. Also, it
activates the subscribed callbacks related to content
change.

close(): void Closes the editor.

12

CHAPTER 2. DMN MODELERS FOR RED HAT BUILD OF KOGITO MICROSERVICES

Method Description

getElementPosition(selector: Provides an alternative to extend the standard query

string): Promise<Rect> selector when an element lives inside a canvas or a video
component. The selector parameter must follow the
<PROVIDER>:::<SELECT> format, such as
Canvas:::MySquare or Video:::PresenterHand. This
method returns a Rect representing the element position.

envelopeApi: This is an advanced editor API. For more information about
MessageBusClientApi<KogitoEd advanced editor API, see MessageBusClientApi and
itorEnvelopeApi> KogitoEditorEnvelopeApi.

13

https://github.com/kiegroup/kie-tools/blob/master/packages/envelope-bus/src/api/index.ts#L43-L56
https://github.com/kiegroup/kie-tools/blob/master/packages/editor/src/api/KogitoEditorEnvelopeApi.ts#L34-L41

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

CHAPTER 3. CREATING A MAVEN PROJECT FOR A RED HAT
BUILD OF KOGITO MICROSERVICE

Before you can begin developing Red Hat build of Kogito microservices, you need to create a Maven
project where you can build your assets and any other related resources for your application.

Procedure

1. In a command terminal, navigate to a local folder where you want to store the new project.
2. Enter the following command to generate a project within a defined folder:

On Red Hat build of Quarkus

$ mvn io.quarkus:quarkus-maven-plugin:create \
-DprojectGroupld=org.acme -DprojectArtifactld=sample-kogito \
-DprojectVersion=1.0.0-SNAPSHOT -Dextensions=kogito-quarkus

On Spring Boot

$ mvn archetype:generate \
-DarchetypeGroupld=org.kie.kogito \
-DarchetypeAtrtifactld=kogito-spring-boot-archetype \
-Dgroupld=org.acme -Dartifactld=sample-kogito \
-DarchetypeVersion=1.11.0.Final \
-Dversion=1.0-SNAPSHOT

This command generates a sample-kogito Maven project and imports the extension for all
required dependencies and configurations to prepare your application for business automation.

If you want to enable PMML execution for your project, add the following dependency to the
pom.xml file in the Maven project that contains your Red Hat build of Kogito microservices:

Dependency to enable PMML execution

<dependency>
<groupld>org.kie.kogito</groupld>
<artifactld>kogito-pmml</artifactld>

</dependency>

<dependency>
<groupld>org.jpmml</groupld>
<artifactld>pmml-model</artifactld>

</dependency>

On Red Hat build of Quarkus, if you plan to run your application on OpenShift, you must also
import the smallrye-health extension for the liveness and readiness probes, as shown in the
following example:

SmallRye Health extension for Red Hat build of Quarkus applications on OpenShift

I $ mvn quarkus:add-extension -Dextensions="smallrye-health"

14

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes

CHAPTER 3. CREATING A MAVEN PROJECT FOR A RED HAT BUILD OF KOGITO MICROSERVICE

This command generates the following dependency in the pom.xml file of your Red Hat
Decision Manager project on Red Hat build of Quarkus:

SmallRye Health dependency for Red Hat build of Quarkus applications on
OpenShift

<dependency>
<groupld>io.quarkus</groupld>
<artifactld>quarkus-smallrye-health</artifactld>
</dependency>

3. Open orimport the project in your VS Code IDE to view the contents.

3.1. CREATING A CUSTOM SPRING BOOT PROJECT FOR RED HAT
BUILD OF KOGITO MICROSERVICES

You can create custom Maven projects using the Spring Boot archetype for your Red Hat build of
Kogito microservices. The Spring Boot archetype enables you to add Spring Boot starters or add-ons to
your project.

A Spring Boot starter is an all-in-one descriptor for your project and requires business automation
engines provided by Red Hat build of Kogito. The Spring Boot starters include decisions, rules, and
predictions.

When your project contains all the assets and you want a quick way to get started with Red Hat build of
Kogito, you can use the kogito-spring-boot-starter starter. For a more granular approach, you can use a
specific starter, such as kogito-decisions-spring-boot-starter for decisions, or a combination of
starters.

Red Hat build of Kogito supports the following Spring Boot starters:

Decisions Spring Boot starter

Starter for providing DMN support to your Spring Boot project. The following is an example of
adding a decisions Spring boot starter to your project:

<dependencies>
<dependency>
<groupld>org.kie.kogito</groupld>
<artifactld>kogito-decisions-spring-boot-starter</artifactld>
</dependency>
</dependencies>

Predictions Spring Boot starter

Starter for providing PMML support to your Spring Boot project. The following is an example of
adding a predictions Spring boot starter to your project:

<dependencies>
<dependency>
<groupld>org.kie.kogito</groupld>
<artifactld>kogito-predictions-spring-boot-starter</artifactld>
</dependency>
</dependencies>

15

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

Rules Spring Boot starter

Starter for providing DRL support to your Spring Boot project. The following is an example of adding
a rules Spring boot starter to your project:

<dependencies>
<dependency>
<groupld>org.kie.kogito</groupld>
<artifactld>kogito-rules-spring-boot-starter</artifactld>
</dependency>
</dependencies>

Procedure

1. In a command terminal, navigate to a local folder where you want to store the new project.

2. Enter one of the following commands to generate a project using the starters or addons
property:

® To generate a project using the starters property, enter the following command:

$ mvn archetype:generate \
-DarchetypeGroupld=org.kie.kogito \
-DarchetypeAtrtifactld=kogito-springboot-archetype \
-Dgroupld=org.acme -Dartifactld=sample-kogito \
-DarchetypeVersion=1.11.0.Final \
-Dversion=1.0-SNAPSHOT
-Dstarters=decisions

The new project includes the dependencies required to run the decision microservices. You
can combine multiple Spring Boot starters using a comma-separated list, such as
starters=decisions,rules.

® To generate a project containing Prometheus monitoring using the addons property, enter
the following command:

$ mvn archetype:generate \
-DarchetypeGroupld=org.kie.kogito \
-DarchetypeAtrtifactld=kogito-springboot-archetype \
-Dgroupld=org.acme -Dartifactld=sample-kogito \
-DarchetypeVersion=1.11.0.Final \
-Dversion=1.0-SNAPSHOT
-Dstarters=descisions
-Daddons=monitoring-prometheus,persistence-infinispan

NOTE

When you pass an add-on to the property, the add-on name does not require
the kogito-addons-springboot prefix. Also, you can combine the add-ons
and starters properties to customize the project.

3. Open orimport the project in your IDE to view the contents.

16

CHAPTER 4. EXAMPLE APPLICATIONS WITH RED HAT BUILD OF KOGITO MICROSERVICES

CHAPTER 4. EXAMPLE APPLICATIONS WITH RED HAT BUILD
OF KOGITO MICROSERVICES

Red Hat build of Kogito microservices include example applications in the rhpam-7.13.5-kogito-and-
optaplanner-quickstarts.zip file. These example applications contain various types of services on Red
Hat build of Quarkus or Spring Boot to help you develop your own applications. The services use one or
more Decision Model and Notation (DMN) decision models, Drools Rule Language (DRL) rule units,
Predictive Model Markup Language (PMML) models, or Java classes to define the service logic.

For information about each example application and instructions for using them, see the README file in
the relevant application folder.

NOTE
. When you run examples in a local environment, ensure that the environment matches the
requirements that are listed in the README file of the relevant application folder. Also,
this might require making the necessary network ports available, as configured for Red
' Hat build of Quarkus, Spring Boot, and docker-compose where applicable.
The following list describes some of the examples provided with Red Hat build of Kogito microservices:

NOTE
These quick start examples showcase a supported setup. Other quickstarts not listed
might use technology that is provided by the upstream community only and therefore not

fully supported by Red Hat.

Decision services

e dmn-quarkus-example and dmn-springboot-example: A decision service (on Red Hat build
of Quarkus or Spring Boot) that uses DMN to determine driver penalty and suspension
based on traffic violations.

e rules-quarkus-helloworld: A Hello World decision service on Red Hat build of Quarkus with
a single DRL rule unit.

e ruleunit-quarkus-example and ruleunit-springboot-example: A decision service (on Red
Hat build of Quarkus or Spring Boot) that uses DRL with rule units to validate a loan
application and that exposes REST operations to view application status.

e dmn-pmml-quarkus-example and dmn-pmmli-springboot-example: A decision service (on
Red Hat build of Quarkus or Spring Boot) that uses DMN and PMML to determine driver
penalty and suspension based on traffic violations.

o dmn-drools-quarkus-metrics and dmn-drools-springboot-metrics: A decision service (on
Red Hat build of Quarkus or Spring Boot) that enables and consumes the runtime metrics
monitoring feature in Red Hat build of Kogito.

e pmmli-quarkus-example and pmml-springboot-example: A decision service (on Red Hat

build of Quarkus or Spring Boot) that uses PMML.

For more information, see Designing a decision service using DMN models , Designing a decision service
using DRL rules, and Designing a decision service using PMML models .

17

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

CHAPTER 5. DESIGNING THE APPLICATION LOGICFORA
RED HAT BUILD OF KOGITO MICROSERVICE USING DMN

After you create your project, you can create or import Decision Model and Notation (DMN) decision
models and Drools Rule Language (DRL) business rules in the src/main/resources folder of your
project. You can also include Java classes in the sre/main/java folder of your project that act as Java
services or provide implementations that you call from your decisions.

The example for this procedure is a basic Red Hat build of Kogito microservice that provides a REST
endpoint /persons. This endpoint is automatically generated based on an example
PersonDecisions.dmn DMN model to make decisions based on the data being processed.

The business decision contains the decision logic of the Red Hat Decision Manager service. You can
define business rules and decisions in different ways, such as with DMN models or DRL rules. The
example for this procedure uses a DMN model.

Prerequisites

® You have created a project. For more information about creating a Maven project, see
Chapter 3, Creating a Maven project for a Red Hat build of Kogito microservice .

Procedure

1. In the Maven project that you generated for your Red Hat Decision Manager service, navigate
to the src/main/java/org/acme folder and add the following Person.java file:

Example person Java object

package org.acme;
import java.io.Serializable;
public class Person {

private String name;
private int age;
private boolean adult;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public int getAge() {
return age;

}

public void setAge(int age) {
this.age = age;

}

public boolean isAdult() {

18

PTER 5. DESIGNING THE APPLICATION LOGIC FOR A RED HAT BUILD OF KOGITO MICROSERVICE USING DMN

return adult;

}

public void setAdult(boolean adult) {
this.adult = adult;

}

@Override
public String toString() {
return "Person [name="+ name + ", age=" + age + ", adult=" + adult + "]";

}
}

This example Java object sets and retrieves a person’s name, age, and adult status.

2. Navigate to the src/main/resources folder and add the following PersonDecisions.dmn DMN
decision model:

Figure 5.1. Example PersonDecisions DMN decision requirements diagram (DRD)

Editor ~ Documentation Data Types

T

Person - isAdult

[WSl mil g0 N

19

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

20

Figure 5.2. Example DMN boxed expression forisAdult decision

Editor Documentation Data Types
« Back to PersonDecisions
isAdult (Decision Table)
Person.Age isAdult N
U fnumber) {boolean) Description
: = 18 true
<= 18 false

2

Figure 5.3. Example DMN data types

Editor Documentation Data Types

Custom Data Types

New Data Type

w tPerson (Structure)

Age (number)

Name (string)

Adult (boolean)

This example DMN model consists of a basic DMN input node and a decision node defined by a
DMN decision table with a custom structured data type.

In VS Code, you can add the Red Hat Business Automation BundleVS Code extension to
design the decision requirements diagram (DRD), boxed expression, and data types with the

DMN modeler.

To create this example DMN model quickly, you can copy the following PersonDecisions.dmn

file content:

Example DMN file

g

r

[+

4]

Expand all | Collapse all

i

o

PTER 5. DESIGNING THE APPLICATION LOGIC FOR A RED HAT BUILD OF KOGITO MICROSERVICE USING DMN

<dmn:definitions xmIns:dmn="http://www.omg.org/spec/DMN/20180521/MODEL/"
xmlins="https://kiegroup.org/dmn/_52CEF9FD-9943-4A89-96D5-6F66810CA4C1"
xmins:di="http://www.omg.org/spec/DMN/20180521/DI/"
xmins:kie="http://www.drools.org/kie/dmn/1.2"
xmlins:dmndi="http://www.omg.org/spec/DMN/20180521/DMNDI/"
xmins:dc="http://www.omg.org/spec/DMN/20180521/DC/"
xmins:feel="http://www.omg.org/spec/DMN/20180521/FEEL/" id="_84B432F5-87E7-43B1-
9101-1BAFE3D18FC5" name="PersonDecisions"
typeLanguage="http://www.omg.org/spec/DMN/20180521/FEEL/"
namespace="https://kiegroup.org/dmn/_52CEF9FD-9943-4A89-96D5-6F66810CA4C1">
<dmn:extensionElements/>
<dmn:itemDefinition id=" DEF2C3A7-F3A9-4ABA-8D0A-C823E4EB43AB" name="tPerson"
isCollection="false">
<dmn:itemComponent id="_DB46DB27-0752-433F-ABE3-FCOE3BDECC97" name="Age"
isCollection="false">
<dmn:typeRef>number</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_8C6D865F-E9C8-43B0-AB4D-3F2075A4ECA6B" name="Name"
isCollection="false">
<dmn:typeRef>string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_9033704B-4E1C-42D3-AC5E-0D94107303A1" name="Adult"
isCollection="false">
<dmn:typeRef>boolean</dmn:typeRef>
</dmn:itemComponent>
</dmn:itemDefinition>
<dmn:inputData id="_F9685B74-0C69-4982-B3B6-B04A14D79EDB" name="Person">
<dmn:extensionElements/>
<dmn:variable id=" 0E345A3C-BB1F-4FB2-BO0F-C5691FD1D36C" name="Person"
typeRef="tPerson"/>
</dmn:inputData>
<dmn:decision id="_0D2BD7A9-ACA1-49BE-97AD-19699E0C9852" name="isAdult">
<dmn:extensionElements/>
<dmn:variable id="_54CD509F-452F-40E5-941C-AFB2667D4D45" name="isAdult"
typeRef="boolean"/>
<dmn:informationRequirement id="_2F819B03-36B7-4DEB-AED6-2B46AE3ADB75">
<dmn:requiredinput href="#_F9685B74-0C69-4982-B3B6-B04A14D79EDB"/>
</dmn:informationRequirement>
<dmn:decisionTable id="_58370567-05DE-4EC0-AC2D-A23803C1EAAE"
hitPolicy="UNIQUE" preferredOrientation="Rule-as-Row">
<dmn:input id="_ADEF36CD-286A-454A-ABD8-9CF96014021B">
<dmn:inputExpression id="_4930C2E5-7401-46DD-8329-EAC523BFA492"
typeRef="number">
<dmn:text>Person.Age</dmn:text>
</dmn:inputExpression>
</dmn:input>
<dmn:output id="_9867E9A3-CBF6-4D66-9804-D2206F6B4F86" typeRef="boolean"/>
<dmn:rule id="_59D6BFF0-35B4-4B7E-8D7B-E31CB0DB8242">
<dmn:inputEntry id="_7DC55D63-234F-497B-A12A-93DA358C0136">
<dmn:text>> 18</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="_B3BB5B97-05B9-464A-AB39-58A33A9C7C00">
<dmn:text>true</dmn:text>
</dmn:outputEntry>
</dmn:rule>
<dmn:rule id="_8FCD63FE-8AD8-4F56-AD12-923E87AFD1B1">

21

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

<dmn:inputEntry id="_B4EF7F13-E486-46CB-B14E-1D21647258D9">
<dmn:text><= 18</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="_F3A9EC8E-A96B-42A0-BF87-9FB1F2FDB15A">
<dmn:text>false</dmn:text>
</dmn:outputEntry>
</dmn:rule>
</dmn:decisionTable>
</dmn:decision>
<dmndi:DMNDI>
<dmndi:DMNDiagram>
<di:extension>
<kie:ComponentsWidthsExtension>
<kie:ComponentWidths dmnElementRef="_58370567-05DE-4EC0-AC2D-
A23803C1EAAE">
<kie:width>50</kie:width>
<kie:width>100</kie:width>
<kie:width>100</kie:width>
<kie:width>100</kie:width>
</kie:ComponentWidths>
</kie:ComponentsWidthsExtension>
</di:extension>
<dmndi:DMNShape id="dmnshape-_F9685B74-0C69-4982-B3B6-B04A14D79EDB"
dmnElementRef="_F9685B74-0C69-4982-B3B6-B04A14D79EDB" isCollapsed="false">
<dmndi:DMNStyle>
<dmndi:FillColor red="255" green="255" blue="255"/>
<dmndi:StrokeColor red="0" green="0" blue="0"/>
<dmndi:FontColor red="0" green="0" blue="0"/>
</dmndi:DMNStyle>
<dc:Bounds x="404" y="464" width="100" height="50"/>
<dmndi:DMNLabel/>
</dmndi:DMNShape>
<dmndi:DMNShape id="dmnshape-_0D2BD7A9-ACA1-49BE-97AD-19699E0C9852"
dmnElementRef="_0D2BD7A9-ACA1-49BE-97AD-19699E0C9852" isCollapsed="false">
<dmndi:DMNStyle>
<dmndi:FillColor red="255" green="255" blue="255"/>
<dmndi:StrokeColor red="0" green="0" blue="0"/>
<dmndi:FontColor red="0" green="0" blue="0"/>
</dmndi:DMNStyle>
<dc:Bounds x="404" y="311" width="100" height="50"/>
<dmndi:DMNLabel/>
</dmndi:DMNShape>
<dmndi:DMNEdge id="dmnedge-_2F819B03-36B7-4DEB-AED6-2B46AE3ADB75"
dmnElementRef="_2F819B03-36B7-4DEB-AED6-2B46AE3ADB75">
<di:waypoint x="504" y="489"/>
<di:waypoint x="404" y="336"/>
</dmndi:DMNEdge>
</dmndi:DMNDiagram>
</dmndi:DMNDI>
</dmn:definitions>

To create this example DMN model in VS Code using the DMN modeler, follow these steps:
a. Open the empty PersonDecisions.dmn file, click the Properties icon in the upper-right

corner of the DMN modeler, and confirm that the DMN model Name is set to
PersonDecisions.

22

PTER 5. DESIGNING THE APPLICATION LOGIC FOR A RED HAT BUILD OF KOGITO MICROSERVICE USING DMN

b. In the left palette, select DMN Input Data, drag the node to the canvas, and double-click
the node to name it Person.

c. Inthe left palette, drag the DMN Decision node to the canvas, double-click the node to
name it isAdult, and link to it from the input node.

d. Select the decision node to display the node options and click the Edit icon to open the
DMN boxed expression editor to define the decision logic for the node.

e. Click the undefined expression field and select Decision Table.

f. Click the upper-left corner of the decision table to set the hit policy to Unique.

g. Set the input and output columns so that the input source Person.Age with type number
determines the age limit and the output target isAdult with type boolean determines adult

status:

Figure 5.4. Example DMN decision table forisAdult decision

Editor ~ Documentation Data Types

& Back to PersonDecisions

isAdult (Decision Table)

Person.Age isAdult N
U fnumber) {boolean) Description
: = 18 true

== 18 false

h. Inthe upper tab options, select the Data Types tab and add the following tPerson
structured data type and nested data types:

23

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

Figure 5.5. Example DMN data types

Editor Documentation Data Types Q

Custom Data Types

New Data Type 3 fata types Q| Expand all | Collapse all
v tPerson (Structure) v L+ i
Age (number) & [+] i}
Name (string) & (+] i
Adult (boolean) rd [+] i}

i. After you define the data types, select the Editor tab to return to the DMN modeler canvas.

j. Select the Person input node, click the Properties icon, and under Information item, set
the Data type to tPerson.

k. Select the isAdult decision node, click the Properties icon, and under Information item,
confirm that the Data type is still set to boolean. You previously set this data type when
you created the decision table.

|. Save the DMN decision file.

5.1. USING DRL RULE UNITS AS AN ALTERNATIVE DECISION SERVICE

You can also use a Drools Rule Language (DRL) file implemented as a rule unit to define this example
decision service, as an alternative to using Decision Model and Notation (DMN).

A DRL rule unit is a module for rules and a unit of execution. A rule unit collects a set of rules with the
declaration of the type of facts that the rules act on. A rule unit also serves as a unique namespace for
each group of rules. A single rule base can contain multiple rule units. You typically store all the rules for
a unit in the same file as the unit declaration so that the unit is self-contained. For more information
about rule units, see Designing a decision service using DRL rules .

Prerequisites

® You have created a project. For more information about creating a Maven project, see
Chapter 3, Creating a Maven project for a Red Hat build of Kogito microservice .

Procedure

1. In the src/main/resources folder of your example project, instead of using a DMN file, add the
following PersonRules.drl file:

Example PersonRules DRL file

package org.acme
unit PersonRules;

import org.acme.Person;

24

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

PTER 5. DESIGNING THE APPLICATION LOGIC FOR A RED HAT BUILD OF KOGITO MICROSERVICE USING DMN

rule isAdult
when
$person: /person[age > 18]
then
modify($person) {
setAdult(true)
I

end

query persons
$p : /person[adult]
end

This example rule determines that any person who is older than 18 is classified as an adult. The
rule file also declares that the rule belongs to the rule unit PersonRules. When you build the
project, the rule unit is generated and associated with the DRL file.

The rule also defines the condition using OOPath notation. OOPath is an object-oriented syntax
extension to XPath for navigating through related elements while handling collections and
filtering constraints.

You can also rewrite the same rule condition in a more explicit form using the traditional rule
pattern syntax, as shown in the following example:

Example PersonRules DRL file using traditional notation

package org.acme
unit PersonRules;

import org.acme.Person;

rule isAdult
when
$person: Person(age > 18) from person
then
modify($person) {
setAdult(true)
I

end
query persons

$p : /person[adult]
end

25

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

CHAPTER 6. RED HAT BUILD OF KOGITO EVENTS ADD-ON

The events add-on provides a default implementation in supported target platforms for EventEmitter
and EventReceiver interfaces. You can use EventEmitter and EventReceiver interfaces to enable
messaging by process, serverless workflow events, and event decision handling.

6.1. IMPLEMENTING MESSAGE PAYLOAD DECORATOR FOR RED HAT
BUILD OF KOGITO EVENTS ADD-ON

Any dependent add-on can implement the MessagePayloadDecorator.

Prerequisites

You have installed the Events add-on in Red Hat build of Kogito.

Procedure

1.

26

Create a file named META-INF/services/org.kie.kogito.add-
on.cloudevents.message.MessagePayloadDecorator in your class path.

Open the file.
Enter the full name of your implementation class in the file.

Save the file.

The MessagePayloadDecoratorProvider loads the file upon application start-up and adds the
file to the decoration chain. When Red Hat build of Kogito calls the
MessagePayloadDecoratorProvider#decorate, your implementation is part of the decoration
algorithm.

To use the events add-on, add the following code to the pom.xml file of your project:

Events smallrye add-on for {QAURKUS}

<dependency>
<groupld>org.kie.kogito</groupld>
<artifactld>kogito-addons-quarkus-events-smallrye</artifactld>
<version>1.15</version>

</dependency>

Events decisions add-on for {QAURKUS}

<dependency>
<groupld>org.kie.kogito</groupld>
<artifactld>kogito-addons-events-decisions</artifactld>
<version>1.15</version>

</dependency>

Events Kafka add-on for Spring Boot

<dependency>
<groupld>org.kie.kogito</groupld>
<artifactld>kogito-addons-springboot-events-kafka</artifactld>

https://github.com/kiegroup/kogito-runtimes/blob/main/addons/common/messaging/src/main/java/org/kie/kogito/addon/cloudevents/message/MessagePayloadDecorator.java

CHAPTER 6. RED HAT BUILD OF KOGITO EVENTS ADD-ON

<version>1.15</version>
</dependency>

Events decisions add-on for Spring Boot

<dependency>
<groupld>org.kie.kogito</groupld>
<artifactld>kogito-addons-springboot-events-decisions</artifactld>
<version>1.15</version>

</dependency>

27

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

CHAPTER 7. RUNNING A RED HAT BUILD OF KOGITO
MICROSERVICE

After you design the business decisions for your Red Hat build of Kogito microservice, you can run your
Red Hat build of Quarkus or Spring Boot application in one of the following modes:

® Development mode: For local testing. On Red Hat build of Quarkus, development mode also
offers live reload of your decisions in your running applications for advanced debugging.

® JVM mode: For compatibility with a Java virtual machine (JVM).

Procedure

In a command terminal, navigate to the project that contains your Red Hat build of Kogito microservice
and enter one of the following commands, depending on your preferred run mode and application
environment:

® For development mode:

On Red Hat build of Quarkus

I $ mvn clean compile quarkus:dev
On Sprint Boot

I $ mvn clean compile spring-boot:run

e ForJVM mode:

On Red Hat build of Quarkus and Spring Boot

$ mvn clean package
$ java -jar target/sample-kogito-1.0-SNAPSHOT-runner.jar

28

CHAPTER 8. INTERACTING WITH A RUNNING RED HAT BUILD OF KOGITO MICROSERVICE

CHAPTER 8. INTERACTING WITH A RUNNING RED HAT BUILD
OF KOGITO MICROSERVICE

After your Red Hat build of Kogito microservice is running, you can send REST API requests to interact
with your application and execute your microservices according to how you set up the application.

This example tests the /persons REST API endpoint that is automatically generated the decisions in the
PersonDecisions.dmn file (or the rules in the PersonRules.drl file if you used a DRL rule unit).

For this example, use a REST client, curl utility, or the Swagger Ul configured for the application (such as
http://localhost:8080/q/swagger-ui or http://localhost:8080/swagger-ui.html) to send API requests
with the following components:

® URL: http://localhost:8080/persons

® HTTP headers: For POST requests only:
o accept: application/json
o content-type: application/json

® HTTP methods: GET, POST, or DELETE

Example POST request body to add an adult (JSON)

{
"person": {
"name": "John Quark",
"age": 20
}
}

Example curl command to add an adult

curl -X POST http://localhost:8080/persons -H 'content-type: application/json' -H 'accept:
application/json' -d '{"person": {"name":"John Quark", "age": 20}}'

Example response (JSON)

{
"id": "3af806dd-8819-4734-a934-728f4c819682",

"person": {
"name": "John Quark",
"age": 20,
"adult": false

b

"isAdult"; true

}

This example procedure uses curl commands for convenience.

Procedure

29

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

In a command terminal window that is separate from your running application, navigate to the project
that contains your Red Hat build of Kogito microservice and use any of the following curl commands
with JSON requests to interact with your running microservice:

NOTE

On Spring Boot, you might need to modify how your application exposes API endpoints in
order for these example requests to function. For more information, see the README
file included in the example Spring Boot project that you created for this tutorial.

® Add an adult person:

Example request

curl -X POST http://localhost:8080/persons -H 'content-type: application/json' -H 'accept:
application/json' -d '{"person": {"name":"John Quark", "age": 20}}'

Example response

{"id":"3af806dd-8819-4734-a934-728f4c819682","person":{"name":"John
Quark","age":20,"adult":false},"isAdult":true}

® Add an underage person:

Example request

curl -X POST http://localhost:8080/persons -H 'content-type: application/json' -H 'accept:
application/json' -d '{"person": {"name":"Jenny Quark", "age": 15}}'

Example response

{"id":"8eef502b-012b-4628-acb7-73418a089c08","person":{"name":"Jenny
Quark","age":15,"adult":false},"isAdult":false}

® Complete the evaluation using the returned UUIDs:

Example request

curl -X POST http://localhost:8080/persons/8eef502b-012b-4628-acb7-
73418a089c08/ChildrenHandling/cdec4241-d676-47de-8¢c55-4ee4f9598bac -H 'content-type:
application/json' -H 'accept: application/json' -d '{}'

30

. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON RED HAT OPENSHIFT CONTAINER PLATFORM

PART Il. DEPLOYING RED HAT BUILD OF KOGITO
MICROSERVICES ON RED HAT OPENSHIFT CONTAINER
PLATFORM

As a developer of business decisions and processes, you can deploy Red Hat build of Kogito
microservices on Red Hat OpenShift Container Platform for cloud implementation. The RHPAM Kogito

Operator automates many of the deployment steps for you or guides you through the deployment
process.

Prerequisites
® Red Hat OpenShift Container Platform 4.6 or 4.7 is installed.

® The OpenShift project for the deployment is created.

31

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

CHAPTER 9. RED HAT BUILD OF KOGITO ON RED HAT
OPENSHIFT CONTAINER PLATFORM

You can deploy Red Hat build of Kogito microservices on Red Hat OpenShift Container Platform for
cloud implementation. In this architecture, Red Hat build of Kogito microservices are deployed as
OpenShift pods that you can scale up and down individually to provide as few or as many containers as
required for a particular service.

To help you deploy your Red Hat build of Kogito microservices on OpenShift, Red Hat Decision Manager
provides Red Hat Process Automation Manager Kogito Operator This operator guides you through
the deployment process. The operator is based on the Operator SDK and automates many of the
deployment steps for you. For example, when you provide the operator with a link to the Git repository
that contains your application, the operator automatically configures the components required to build
your project from source and deploys the resulting services.

To install the Red Hat Process Automation Manager Kogito Operator in OpenShift web console, go to
Operators = OperatorHub in the left menu, search for and select RHPAM Kogito Operator, and
follow the on-screen instructions to install the latest operator version.

32

https://sdk.operatorframework.io/

CHAPTER 10. OPENSHIFT DEPLOYMENT OPTIONS WITH THE RHPAM KOGITO OPERATOF

CHAPTER 10. OPENSHIFT DEPLOYMENT OPTIONS WITH THE
RHPAM KOGITO OPERATOR

After you create your Red Hat build of Kogito microservices as part of a business application, you can
use the Red Hat OpenShift Container Platform web console to deploy your microservices. The RHPAM
Kogito Operator page in the OpenShift web console guides you through the deployment process.

The RHPAM Kogito Operator supports the following options for building and deploying Red Hat build of
Kogito microservices on Red Hat OpenShift Container Platform:

® Git source build and deployment
® Binary build and deployment
® Custom image build and deployment

® File build and deployment

10.1. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON
OPENSHIFT USING GIT SOURCE BUILD AND OPENSHIFT WEB
CONSOLE

The RHPAM Kogito Operator uses the following custom resources to deploy domain-specific
microservices (the microservices that you develop):

e KogitoBuild builds an application using the Git URL or other sources and produces a runtime
image.

e KogitoRuntime starts the runtime image and configures it as per your requirements.
In most use cases, you can use the standard runtime build and deployment method to deploy Red Hat

build of Kogito microservices on OpenShift from a Git repository source, as shown in the following
procedure.

NOTE

If you are developing or testing your Red Hat build of Kogito microservice locally, you can
use the binary build, custom image build, or file build option to build and deploy from a
local source instead of from a Git repository.

Prerequisites

® The RHPAM Kogito Operator is installed.

® The application with your Red Hat build of Kogito microservices is in a Git repository that is
reachable from your OpenShift environment.

® You have access to the OpenShift web console with the necessary permissions to create and
edit KogitoBuild and KogitoRuntime.

® (Red Hat build of Quarkus only) The pom.xml file of your project contains the following

dependency for the quarkus-smallrye-health extension. This extension enables the liveness
and readiness probes that are required for Red Hat build of Quarkus projects on OpenShift.

33

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

SmallRye Health dependency for Red Hat build of Quarkus applications on
OpenShift

<dependency>
<groupld>io.quarkus</groupld>
<artifactld>quarkus-smallrye-health</artifactld>
</dependency>

Procedure

1. Go to Operators — Installed Operators and select RHPAM Kogito Operator.

2. To create the Red Hat build of Kogito build definition, on the operator page, select the Kogito
Build tab and click Create KogitoBuild.

3. In the application window, use Form View or YAML View to configure the build definition.
At a minimum, define the application configurations shown in the following example YAML file:

Example YAML definition for a Red Hat build of Quarkus application with Red Hat
build of Kogito build

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this service
kind: KogitoBuild # Application type
metadata:
name: example-quarkus # Application name
spec:
type: RemoteSource
gitSource:
uri: 'hitps://github.com/kiegroup/kogito-examples' # Git repository containing application
(uses default branch)
contextDir: dmn-quarkus-example # Git folder location of application

Example YAML definition for a Spring Boot application with Red Hat build of Kogito
build

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this service
kind: KogitoBuild # Application type
metadata:
name: example-springboot # Application name
spec:
runtime: springboot
type: RemoteSource
gitSource:
uri: 'hitps://github.com/kiegroup/kogito-examples' # Git repository containing application
(uses default branch)
contextDir: dmn-springboot-example # Git folder location of application

34

CHAPTER 10. OPENSHIFT DEPLOYMENT OPTIONS WITH THE RHPAM KOGITO OPERATOF

NOTE

If you configured an internal Maven repository, you can use it as a Maven mirror
service and specify the Maven mirror URL in your Red Hat build of Kogito build
definition to shorten build time substantially:

spec:
mavenMirrorURL: http://nexus3-nexus.apps-crc.testing/repository/maven-
public/

For more information about internal Maven repositories, see the Apache Maven
documentation.

. After you define your application data, click Create to generate the Red Hat build of Kogito
build.

Your application is listed in the Red Hat build of KogitoBuildspage. You can select the
application name to view or modify application settings and YAML details.

. To create the Red Hat build of Kogito microservice definition, on the operator page, select the
Kogito Runtime tab and click Create KogitoRuntime.

. In the application window, use Form View or YAML View to configure the microservice
definition.
At a minimum, define the application configurations shown in the following example YAML file:

Example YAML definition for a Red Hat build of Quarkus application with Red Hat
build of Kogito microservices

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this microservice
kind: KogitoRuntime # Application type
metadata:

name: example-quarkus # Application name

Example YAML definition for a Spring Boot application with Red Hat build of Kogito
microservices

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this microservice
kind: KogitoRuntime # Application type
metadata:
name: example-springboot # Application name
spec:
runtime: springboot

NOTE

In this case, the application is built from Git and deployed using KogitoRuntime.
You must ensure that the application name is same in KogitoBuild and
KogitoRuntime.

. After you define your application data, click Create to generate the Red Hat build of Kogito
microservice.

Your application is listed in the Red Hat build of Kogito microservice page. You can select the
application name to view or modify application settings and the contents of the YAML file.

35

https://maven.apache.org/guides/introduction/introduction-to-repositories.html

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

8. In the left menu of the web console, go to Builds = Builds to view the status of your application

S.

10.

build.
You can select a specific build to view build details.

NOTE

For every Red Hat build of Kogito microservice that you create for OpenShift
deployment, two builds are generated and listed in the Builds page in the web
console: a traditional runtime build and a Source-to-Image (S2I) build with the
suffix -builder. The S2I mechanism builds the application in an OpenShift build
and then passes the built application to the next OpenShift build to be packaged
into the runtime container image. The Red Hat build of Kogito S2I build
configuration also enables you to build the project directly from a Git repository
on the OpenShift platform.

After the application build is complete, go to Workloads = Deployments to view the application
deployments, pod status, and other details.

After your Red Hat build of Kogito microservice is deployed, in the left menu of the web console,
go to Networking = Routes to view the access link to the deployed application.
You can select the application name to view or modify route settings.

With the application route, you can integrate your Red Hat build of Kogito microservices with
your business automation solutions as needed.

10.2. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON
OPENSHIFT USING BINARY BUILD AND OPENSHIFT WEB CONSOLE

OpenShift builds can require extensive amounts of time. As a faster alternative for building and
deploying your Red Hat build of Kogito microservices on OpenShift, you can use a binary build.

The operator uses the following custom resources to deploy domain-specific microservices (the
microservices that you develop):

KogitoBuild processes an uploaded application and produces a runtime image.

KogitoRuntime starts the runtime image and configures it as per your requirements.

Prerequisites

36

The RHPAM Kogito Operator is installed.

The oc OpenShift CLI is installed and you are logged in to the relevant OpenShift cluster. For
oc installation and login instructions, see the OpenShift documentation.

You have access to the OpenShift web console with the necessary permissions to create and
edit KogitoBuild and KogitoRuntime.

(Red Hat build of Quarkus only) The pom.xml file of your project contains the following
dependency for the quarkus-smallrye-health extension. This extension enables the liveness
and readiness probes that are required for Red Hat build of Quarkus projects on OpenShift.

SmallRye Health dependency for Red Hat build of Quarkus applications on
OpenShift

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html/cli_tools/openshift-cli-oc
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes

CHAPTER 10. OPENSHIFT DEPLOYMENT OPTIONS WITH THE RHPAM KOGITO OPERATOF

<dependency>
<groupld>io.quarkus</groupld>
<artifactld>quarkus-smallrye-health</artifactld>
</dependency>

Procedure

1. Build an application locally.
2. Go to Operators — Installed Operators and select RHPAM Kogito Operator.

3. To create the Red Hat build of Kogito build definition, on the operator page, select the Kogito
Build tab and click Create KogitoBuild.

4. In the application window, use Form View or YAML View to configure the build definition.
At a minimum, define the application configurations shown in the following example YAML file:

Example YAML definition for a Red Hat build of Quarkus application with Red Hat
build of Kogito build

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this service
kind: KogitoBuild # Application type
metadata:
name: example-quarkus # Application name
spec:
type: Binary

Example YAML definition for a Spring Boot application with Red Hat build of Kogito
build

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this service
kind: KogitoBuild # Application type
metadata:
name: example-springboot # Application name
spec:
runtime: springboot
type: Binary

5. After you define your application data, click Create to generate the Red Hat build of Kogito
build.
Your application is listed in the Red Hat build of KogitoBuildspage. You can select the
application name to view or modify application settings and YAML details.

6. Upload the built binary using the following command:
I $ oc start-build example-quarkus --from-dir=target/ -n namespace
e from-diris equals to the target folder path of the built application.
® npamespace is the namespace where KogitoBuild is created.

7. To create the Red Hat build of Kogito microservice definition, on the operator page, select the
Kogito Runtime tab and click Create KogitoRuntime.

37

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

8.

1.

12.

In the application window, use Form View or YAML View to configure the microservice
definition.
At a minimum, define the application configurations shown in the following example YAML file:

Example YAML definition for a Red Hat build of Quarkus application with Red Hat
build of Kogito microservices

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this microservice
kind: KogitoRuntime # Application type
metadata:

name: example-quarkus # Application name

Example YAML definition for a Spring Boot application with Red Hat build of Kogito
microservices

apiVersion: rhpam.kiegroup.org/vi # Red Hat build of Kogito API for this microservice
kind: KogitoRuntime # Application type
metadata:
name: example-springboot # Application name
spec:
runtime: springboot

NOTE

In this case, the application is built locally and deployed using KogitoRuntime. You
must ensure that the application name is same in KogitoBuild and
KogitoRuntime.

After you define your application data, click Create to generate the Red Hat build of Kogito
microservice.

Your application is listed in the Red Hat build of Kogito microservice page. You can select the
application name to view or modify application settings and the contents of the YAML file.

. In the left menu of the web console, go to Builds — Builds to view the status of your application

build.
You can select a specific build to view build details.

After the application build is complete, go to Workloads = Deployments to view the application
deployments, pod status, and other details.

After your Red Hat build of Kogito microservice is deployed, in the left menu of the web console,
go to Networking = Routes to view the access link to the deployed application.
You can select the application name to view or modify route settings.

With the application route, you can integrate your Red Hat build of Kogito microservices with
your business automation solutions as needed.

10.3. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON
OPENSHIFT USING CUSTOM IMAGE BUILD AND OPENSHIFT WEB
CONSOLE

You can use custom image build as an alternative for building and deploying your Red Hat build of
Kogito microservices on OpenShift.

38

CHAPTER 10. OPENSHIFT DEPLOYMENT OPTIONS WITH THE RHPAM KOGITO OPERATOF

The operator uses the following custom resources to deploy domain-specific microservices (the
microservices that you develop):

e KogitoRuntime starts the runtime image and configures it as per your requirements.

NOTE
The Red Hat Decision Manager builder image does not supports native builds. However,
you can perform a custom build and use Containerfile to build the container image as

shown in the following example:

FROM registry.redhat.io/rhpam-7-tech-preview/rhpam-kogito-runtime-native-
rhel8:7.13.5

ENV RUNTIME_TYPE quarkus
COPY --chown=1001:root target/*-runner $KOGITO_HOME/bin
This feature is Technology Preview only.

To build the native binary with Mandrel, see Compiling your Quarkus applications to
native executables.

Prerequisites

® The RHPAM Kogito Operator is installed.

® You have access to the OpenShift web console with the necessary permissions to create and
edit KogitoRuntime.

® (Red Hat build of Quarkus only) The pom.xml file of your project contains the following
dependency for the quarkus-smallrye-health extension. This extension enables the liveness
and readiness probes that are required for Red Hat build of Quarkus projects on OpenShift.

SmallRye Health dependency for Red Hat build of Quarkus applications on
OpenShift

<dependency>
<groupld>io.quarkus</groupld>
<artifactld>quarkus-smallrye-health</artifactld>
</dependency>

Procedure

1. Build an application locally.
2. Create Containerfile in the project root folder with the following content:

Example Containerfile for a Red Hat build of Quarkus application

FROM registry.redhat.io/rhpam-7/rhpam-kogito-runtime-jvm-rhel8:7.13.5
ENV RUNTIME_TYPE quarkus

COPY target/quarkus-app/lib/ $KOGITO_HOME/bin/lib/

39

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/rhbq-documentation-2-13/guide/8acbc1ec-17d6-4e5c-9651-6e2c4df33f8a
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

40

COPY target/quarkus-app/*.jar SKOGITO_HOME/bin
COPY target/quarkus-app/app/ $KOGITO_HOME/bin/app/
COPY target/quarkus-app/quarkus/ $KOGITO_HOME/bin/quarkus/

Example Containerfile for a Spring Boot application

FROM registry.redhat.io/rhpam-7/rhpam-kogito-runtime-jvm-rhel8:7.13.5
ENV RUNTIME_TYPE springboot

COPY target/<application-jar-file> $KOGITO_HOME/bin

e application-jar-file is the name of the JAR file of the application.

. Build the Red Hat build of Kogito image using the following command:

I podman build --tag <final-image-name> -f <Container-file>

In the previous command, final-image-name is the name of the Red Hat build of Kogito image
and Container-file is name of the Containerfile that you created in the previous step.

. Optionally, test the built image using the following command:

I podman run --rm -it -p 8080:8080 <final-image-name>

. Push the built Red Hat build of Kogito image to an image registry using the following command:

I podman push <final-image-name>

. Go to Operators — Installed Operators and select RHPAM Kogito Operator.

. To create the Red Hat build of Kogito microservice definition, on the operator page, select the

Kogito Runtime tab and click Create KogitoRuntime.

. In the application window, use Form View or YAML View to configure the microservice

definition.
At a minimum, define the application configurations shown in the following example YAML file:

Example YAML definition for a Red Hat build of Quarkus application with Red Hat
build of Kogito microservices

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this microservice
kind: KogitoRuntime # Application type
metadata:
name: example-quarkus # Application name
spec:
image: <final-image-name> # Kogito image name
insecurelmageRegistry: true # Can be omitted when image is pushed into secured registry
with valid certificate

Example YAML definition for a Spring Boot application with Red Hat build of Kogito
microservices

CHAPTER 10. OPENSHIFT DEPLOYMENT OPTIONS WITH THE RHPAM KOGITO OPERATOF

apiVersion: rhpam.kiegroup.org/vl # Red Hat build of Kogito API for this microservice
kind: KogitoRuntime # Application type
metadata:
name: example-springboot # Application name
spec:
image: <final-image-name> # Kogito image name

insecurelmageRegistry: true # Can be omitted when image is pushed into secured registry

with valid certificate
runtime: springboot

9. After you define your application data, click Create to generate the Red Hat build of Kogito
microservice.

Your application is listed in the Red Hat build of Kogito microservice page. You can select the
application name to view or modify application settings and the contents of the YAML file.

deployments, pod status, and other details.

1.
go to Networking = Routes to view the access link to the deployed application.
You can select the application name to view or modify route settings.

With the application route, you can integrate your Red Hat build of Kogito microservices with
your business automation solutions as needed.

. After the application build is complete, go to Workloads = Deployments to view the application

After your Red Hat build of Kogito microservice is deployed, in the left menu of the web console,

10.4. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON
OPENSHIFT USING FILE BUILD AND OPENSHIFT WEB CONSOLE

You can build and deploy your Red Hat build of Kogito microservices from a single file, such as a
Decision Model and Notation (DMN), Drools Rule Language (DRL), or properties file, or from a directory
with multiple files. You can specify a single file from your local file system path or specify a file directory
from a local file system path only. When you upload the file or directory to an OpenShift cluster, a new
Source-to-Image (S2I) build is automatically triggered.

The operator uses the following custom resources to deploy domain-specific microservices (the
microservices that you develop):

e KogitoBuild generates an application from a file and produces a runtime image.

e KogitoRuntime starts the runtime image and configures it as per your requirements.

Prerequisites

® The RHPAM Kogito Operator is installed.

® The oc OpenShift CLIis installed and you are logged in to the relevant OpenShift cluster. For
oc installation and login instructions, see the OpenShift documentation.

® You have access to the OpenShift web console with the necessary permissions to create and
edit KogitoBuild and KogitoRuntime.

Procedure

1. Go to Operators — Installed Operators and select RHPAM Kogito Operator.

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.10/html/cli_tools/openshift-cli-oc

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

2. To create the Red Hat build of Kogito build definition, on the operator page, select the Kogito
Build tab and click Create KogitoBuild.

3. In the application window, use Form View or YAML View to configure the build definition.
At a minimum, define the application configurations shown in the following example YAML file:

Example YAML definition for a Red Hat build of Quarkus application with Red Hat
build of Kogito build

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this service
kind: KogitoBuild # Application type
metadata:
name: example-quarkus # Application name
spec:
type: LocalSource

Example YAML definition for a Spring Boot application with Red Hat build of Kogito
build

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this service
kind: KogitoBuild # Application type
metadata:
name: example-springboot # Application name
spec:
runtime: springboot
type: LocalSource

NOTE

If you configured an internal Maven repository, you can use it as a Maven mirror
service and specify the Maven mirror URL in your Red Hat build of Kogito build
definition to shorten build time substantially:

spec:
mavenMirrorURL: http://nexus3-nexus.apps-crc.testing/repository/maven-
public/

For more information about internal Maven repositories, see the Apache Maven
documentation.

4. After you define your application data, click Create to generate the Red Hat build of Kogito
build.
Your application is listed in the Red Hat build of KogitoBuildspage. You can select the
application name to view or modify application settings and YAML details.

5. Upload the file asset using the following command:
I $ oc start-build example-quarkus-builder --from-file=<file-asset-path> -n namespace

o file-asset-path is the path of the file asset that you want to upload.

® npamespace is the namespace where KogitoBuild is created.

42

https://maven.apache.org/guides/introduction/introduction-to-repositories.html

CHAPTER 10. OPENSHIFT DEPLOYMENT OPTIONS WITH THE RHPAM KOGITO OPERATOF

6. To create the Red Hat build of Kogito microservice definition, on the operator page, select the
Kogito Runtime tab and click Create KogitoRuntime.

7. In the application window, use Form View or YAML View to configure the microservice
definition.
At a minimum, define the application configurations shown in the following example YAML file:

Example YAML definition for a Red Hat build of Quarkus application with Red Hat
build of Kogito microservices

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this microservice
kind: KogitoRuntime # Application type
metadata:

name: example-quarkus # Application name

Example YAML definition for a Spring Boot application with Red Hat build of Kogito
microservices

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this microservice
kind: KogitoRuntime # Application type
metadata:
name: example-springboot # Application name
spec:
runtime: springboot

NOTE

In this case, the application is built from a file and deployed using KogitoRuntime.
You must ensure that the application name is same in KogitoBuild and
KogitoRuntime.

8. After you define your application data, click Create to generate the Red Hat build of Kogito
microservice.
Your application is listed in the Red Hat build of Kogito microservice page. You can select the
application name to view or modify application settings and the contents of the YAML file.

9. In the left menu of the web console, go to Builds - Builds to view the status of your application
build.
You can select a specific build to view build details.

NOTE

For every Red Hat build of Kogito microservice that you create for OpenShift
deployment, two builds are generated and listed in the Builds page in the web
console: a traditional runtime build and a Source-to-Image (S2I) build with the
suffix -builder. The S2I mechanism builds the application in an OpenShift build
and then passes the built application to the next OpenShift build to be packaged
into the runtime container image.

10. After the application build is complete, go to Workloads = Deployments to view the application
deployments, pod status, and other details.

43

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

1. After your Red Hat build of Kogito microservice is deployed, in the left menu of the web console,
go to Networking = Routes to view the access link to the deployed application.
You can select the application name to view or modify route settings.

With the application route, you can integrate your Red Hat build of Kogito microservices with
your business automation solutions as needed.

44

CHAPTER 11. RED HAT BUILD OF KOGITO SERVICE PROPERTIES CONFIGURATION

CHAPTER 11. RED HAT BUILD OF KOGITO SERVICE
PROPERTIES CONFIGURATION

When a Red Hat build of Kogito microservice is deployed, a configMap resource is created for the
application.properties configuration of the Red Hat build of Kogito microservice.

The name of the configMap resource consists of the name of the Red Hat build of Kogito microservice
and the suffix -properties, as shown in the following example:

Example configMap resource generated during Red Hat build of Kogito microservice
deployment

kind: ConfigMap
apiVersion: vi
metadata:
name: kogito-travel-agency-properties
data:
application.properties : |-
property1=value1
property2=value2

The application.properties data of the configMap resource is mounted in a volume to the container of
the Red Hat build of Kogito microservice. Any runtime properties that you add to the
application.properties section override the default application configuration properties of the Red Hat
build of Kogito microservice.

When the application.properties data of the configMap is changed, a rolling update modifies the
deployment and configuration of the Red Hat build of Kogito microservice.

45

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

CHAPTER 12. PROBES FOR RED HAT BUILD OF KOGITO
MICROSERVICES ON RED HAT OPENSHIFT CONTAINER
PLATFORM

The probes in Red Hat OpenShift Container Platform verify that an application is working or it needs to
be restarted. For Red Hat build of Kogito microservices on Red Hat build of Quarkus and Spring Boot,
probes interact with the application using an HTTP request, defaulting to the endpoints that are
exposed by an extension. Therefore, to run your Red Hat build of Kogito microservices on Red Hat
OpenShift Container Platform, you must import the extensions to provide application availability
information for the liveness, readiness, and startup probes.

12.1. ADDING HEALTH CHECK EXTENSION FOR RED HAT BUILD OF
QUARKUS APPLICATIONS ON RED HAT OPENSHIFT CONTAINER
PLATFORM

You can add the health check extension for the Red Hat build of Kogito services that are based on Red
Hat build of Quarkus on Red Hat OpenShift Container Platform.

Procedure

In a command terminal, navigate to the pom.xml file of your project and add the following dependency
for the quarkus-smallrye-health extension:

SmallRye Health dependency for Red Hat build of Quarkus applications on Red Hat
OpenShift Container Platform

<dependencies>
<dependency>
<groupld>io.quarkus</groupld>
<artifactld>quarkus-smallrye-health</artifactld>
</dependency>
</dependencies>

12.2. ADDING HEALTH CHECK EXTENSION FOR SPRING BOOT
APPLICATIONS ON RED HAT OPENSHIFT CONTAINER PLATFORM

You can add the health check extension for the Red Hat build of Kogito microservices that are based on
Spring Boot on Red Hat OpenShift Container Platform.

Procedure

In a command terminal, navigate to the pom.xml file of your project and add the following Spring Boot
actuator dependency:

Spring Boot actuator dependency for Spring Boot applications on Red Hat OpenShift
Container Platform

<dependencies>
<dependency>
<groupld>org.springframework.boot</groupld>

46

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes

PROBES FOR RED HAT BUILD OF KOGITO MICROSERVICES ON RED HAT OPENSHIFT CONTAINER PLATFORM

<artifactld>spring-boot-starter-actuator</artifactld>
</dependency>
</dependencies>

12.3. SETTING CUSTOM PROBES FOR RED HAT BUILD OF KOGITO
MICROSERVICES ON RED HAT OPENSHIFT CONTAINER PLATFORM

You can also configure the custom endpoints for the liveness, readiness, and startup probes.

Procedure

1. Define the probes in the KogitoRuntime YAML file of your project, as shown in the following
example:

Example Red Hat build of Kogito microservice custom resource with custom probe
endpoints

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this service
kind: KogitoRuntime
metadata:
name: process-quarkus-example # Application name
spec:
replicas: 1
probes:
livenessProbe:
httpGet:
path: /probes/live # Liveness endpoint
port: 8080
readinessProbe:
httpGet:
path: /probes/ready # Readiness endpoint
port: 8080
startupProbe:
tcpSocket:
port: 8080

47

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

CHAPTER 13. RED HAT PROCESS AUTOMATION MANAGER
KOGITO OPERATOR INTERACTION WITH PROMETHEUS AND
GRAFANA

Red Hat build of Kogito in Red Hat Decision Manager provides a monitoring-prometheus-addon add-
on that enables Prometheus metrics monitoring for Red Hat build of Kogito microservices and
generates Grafana dashboards that consume the default metrics exported by the add-on. The RHPAM
Kogito Operator uses the Prometheus Operator to expose the metrics from your project for
Prometheus to scrape. Due to this dependency, the Prometheus Operator must be installed in the same
namespace as your project.

If you want to enable the Prometheus metrics monitoring for your Red Hat build of Kogito microservices,
add the following dependency to the pom.xml file in your project, depending on the framework you are
using:

Dependency for Prometheus Red Hat build of Quarkus add-on

<dependency>
<groupld>org.kie.kogito</groupld>
<artifactld>monitoring-prometheus-quarkus-addon</artifactld>
</dependency>

Dependency for Prometheus Spring Boot add-on

<dependency>
<groupld>org.kie.kogito</groupld>
<artifactld>monitoring-prometheus-springboot-addon</artifactld>
</dependency>

When you deploy a Red Hat build of Kogito microservice that uses the monitoring-prometheus-addon
add-on and the Prometheus Operator is installed, the Red Hat Process Automation Manager Kogito
Operator creates a ServiceMonitor custom resource to expose the metrics for Prometheus, as shown in
the following example:

Example ServiceMonitor resource for Prometheus

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
labels:
app: onboarding-service
name: onboarding-service
namespace: kogito
spec:
endpoints:
- path: /metrics
targetPort: 8080
scheme: http
namespaceSelector:
matchNames:
- kogito

48

https://github.com/coreos/prometheus-operator

\T PROCESS AUTOMATION MANAGER KOGITO OPERATOR INTERACTION WITH PROMETHEUS AND GRAFANA

selector:
matchLabels:
app: onboarding-service

You must manually configure your Prometheus custom resource that is managed by the Prometheus
Operator to select the ServiceMonitor resource:

Example Prometheus resource

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:

name: prometheus
spec:

serviceAccountName: prometheus

serviceMonitorSelector:

matchLabels:
app: dmn-drools-quarkus-metrics-service

After you configure your Prometheus resource with the ServiceMonitor resource, you can see the
endpoint scraped by Prometheus in the Targets page in the Prometheus web console. The metrics
exposed by the Red Hat Decision Manager service appear in the Graph view.

The RHPAM Kogito Operator also creates a GrafanaDashboard custom resource defined by the
Grafana Operator for each of the Grafana dashboards generated by the add-on. The app label for the
dashboards is the name of the deployed Red Hat build of Kogito microservice. You must set the
dashboardLabelSelector property of the Grafana custom resource according to the relevant Red Hat
build of Kogito microservice.

Example Grafana resource

apiVersion: integreatly.org/vialphai
kind: Grafana
metadata:
name: example-grafana
spec:
ingress:
enabled: true
config:
auth:
disable_signout_menu: true
auth.anonymous:
enabled: true
log:
level: warn
mode: console
security:
admin_password: secret
admin_user: root
dashboardLabelSelector:
- matchExpressions:
- key: app
operator: In
values:
- my-kogito-application

49

https://operatorhub.io/operator/grafana-operator

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

CHAPTER 14. RED HAT DECISION MANAGER RED HAT BUILD
OF KOGITO OPERATOR INTERACTION WITH KAFKA

The Red Hat Decision Manager Red Hat build of Kogito Operator uses the AMQ Streams Operator to
automatically configure the Red Hat build of Kogito microservice with Kafka.

When you enable an infrastructure mechanism through Kogitolnfra deployment, the Red Hat Decision
Manager Red Hat build of Kogito Operator uses the relevant third-party operator to configure the
infrastructure.

You must define your custom infrastructure resource and link it in the Kogitolnfra file. You can specify
your custom infrastructure resource in the spec.resource.name and spec.resource.namespace
configurations.

Example Red Hat Decision Manager Red Hat build of Kogito infrastructure resource for
custom messaging

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this microservice
kind: Kogitolnfra # Application type
metadata:
name: my-kafka-infra
spec:
resource:
apiVersion: kafka.strimzi.io/vibeta2 # AMQ Streams API
kind: Kafka # AMQ Streams Application Type
name: my-kafka-instance
namespace: my-namespace

In this example, the Kogitolnfra custom resource connects to the Kafka cluster my-kafka-instance
from my-namespace for event messaging.

To connect Red Hat build of Kogito microservice to Kafka, you need to define the infra configuration to
use the corresponding infrastructure.

Example of Red Hat build of Kogito microservice resource configuration with messaging

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this microservice
kind: KogitoRuntime # Application type
metadata:
name: example-quarkus # Application name
spec:
image: <final-image-name> # Kogito image name
insecurelmageRegistry: true # Can be omitted when image is pushed into secured registry with valid
certificate
infra:
- my-kafka-infra

The Red Hat Decision Manager Red Hat build of Kogito Operator configures the necessary properties
so that your application can connect to the Kafka instance.

50

CHAPTER 15. RED HAT BUILD OF KOGITO MICROSERVICE DEPLOYMENT TROUBLESHOOTING

CHAPTER 15. RED HAT BUILD OF KOGITO MICROSERVICE
DEPLOYMENT TROUBLESHOOTING

Use the information in this section to troubleshoot issues that you might encounter when using the
operator to deploy Red Hat build of Kogito microservices. The following information is updated as new
issues and workarounds are discovered.

No builds are running

If you do not see any builds running nor any resources created in the relevant namespace, enter the
following commands to retrieve running pods and to view the operator log for the pod:

View RHPAM Kogito Operator log for a specified pod

/I Retrieves running pods
$ oc get pods

NAME READY STATUS RESTARTS AGE
kogito-operator-6d7b6d4466-9ng8t 1/1 Running 0 26m

// Opens RHPAM Kogito Operator log for the pod
$ oc logs -f kogito-operator-6d7b6d4466-9ng8t

Verify KogitoRuntime status

If you create, for example, KogitoRuntime application with a non-existing image using the following
YAML definition:

Example YAML definition for a KogitoRuntime application

apiVersion: rhpam.kiegroup.org/v1 # Red Hat build of Kogito API for this microservice
kind: KogitoRuntime # Application type
metadata:
name: example # Application name
spec:
image: 'not-existing-image:latest'
replicas: 1

You can verify the status of the KogitoRuntime application using the oc describe KogitoRuntime
example command in the bash console. When you run the oc describe KogitoRuntime example
command in the bash console, you receive the following output:

Example KogitoRuntime status

[user@localhost ~]$ oc describe KogitoRuntime example

Name: example
Namespace: username-test
Labels: <none>

Annotations: <none>

API Version: rhpam.kiegroup.org/v1

Kind: KogitoRuntime

Metadata:
Creation Timestamp: 2021-05-20T07:19:41Z
Generation: 1
Managed Fields:

51

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

APl Version: rhpam.kiegroup.org/v1
Fields Type: FieldsV1

fieldsV1:

f:spec:

fiimage:
fireplicas:
Manager: Mozilla
Operation: Update
Time: 2021-05-20T07:19:41Z
APl Version: rhpam.kiegroup.org/v1
Fields Type: FieldsV1
fieldsV1:
f:spec:
f:monitoring:
f:probes:

f:livenessProbe:
f:readinessProbe:
f:resources:
f:runtime:
f:status:

f:cloudEvents:

f:conditions:
Manager: main
Operation: Update
Time: 2021-05-20T07:19:45Z
Resource Version: 272185
Self Link: /apis/rhpam.kiegroup.org/vi/namespaces/ksuta-test/kogitoruntimes/example
ulD: edbe0bf1-554e-4523-9421-d074070df982
Spec:
Image: not-existing-image:latest
Replicas: 1
Status:
Cloud Events:
Conditions:
Last Transition Time: 2021-05-20T07:19:44Z
Message:
Reason: NoPodAvailable
Status: False
Type: Deployed
Last Transition Time: 2021-05-20T07:19:44Z
Message:
Reason: RequestedReplicasNotEqualToAvailableReplicas
Status: True
Type: Provisioning
Last Transition Time: 2021-05-20T07:19:45Z
Message: you may not have access to the container image "quay.io/kiegroup/not-
existing-image:latest"
Reason: ImageStreamNotReadyReason
Status: True
Type: Failed

At the end of the output, you can see the KogitoRuntime status with a relevant message.

52

PART Ill. MIGRATING TO RED HAT BUILD OF KOGITO MICROSERVICES

PART lll. MIGRATING TO RED HAT BUILD OF KOGITO
MICROSERVICES

As a developer of business decisions and processes, you can migrate your decision services in Red Hat
Decision Manager to Red Hat build of Kogito microservices. When performing migration, your existing
business decisions become part of your own domain-specific cloud-native set of services. You can

migrate Decision Model and Notation (DMN) models, Predictive Model Markup Language (PMML)
models, or Drools Rule Language (DRL) rules.

Prerequisites

e JDK 1 orlateris installed.

® Apache Maven 3.6.2 or later is installed.

53

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

CHAPTER 16. OVERVIEW OF MIGRATION TO RED HAT BUILD
OF KOGITO MICROSERVICES

You can migrate the decision service artifacts that you developed in Business Central to Red Hat build
of Kogito microservices. Red Hat build of Kogito currently supports migration for the following types of
decision services:

® Decision Model and Notation (DMN) models You migrate DMN-based decision services by
moving the DMN resources from KJAR artifacts to the respective Red Hat build of Kogito
archetype.

® Predictive Model Markup Language (PMML) models You migrate PMML-based prediction
and prediction services by moving the PMML resources from KJAR artifacts to the respective
Red Hat build of Kogito archetype.

® Drools Rule Language (DRL) rules: You migrate the DRL-based decision services by enclosing
them in a Red Hat build of Quarkus REST endpoint. This approach of migration enables you to
use major Quarkus features, such as hot reload and native compilation. The Quarkus features
and the programming model of Red Hat build of Kogito enable the automatic generation of the
Quarkus REST endpoints for implementation in your applications and services.

54

CHAPTER 17. MIGRATION OF A DMN SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE

CHAPTER 17. MIGRATION OF ADMN SERVICE TO A RED HAT

BUILD OF KOGITO MICROSERVICE

You can migrate DMN-based decision services to Red Hat build of Kogito microservices by moving the

DMN resources from KJAR artifacts to the respective Red Hat build of Kogito project. In the Red Hat
build of Kogito microservices, some of the KIE v7 features are no longer required.

17.1. MAJOR CHANGES AND MIGRATION CONSIDERATIONS

The following table describes the major changes and features that affect migration from the KIE Server

APl and KJAR to Red Hat build of Kogito deployments:

Table 17.1. DMN migration considerations

Feature

In KIE Server API

In Red Hat build of Kogito artifact

DMN models

Object models (POJOs)
required for KIE Server
generic marshalling

DMNRuntimeListener

Other configuration options

KIE Server Client API

REST API

stored in src/main/resources of
KJAR.

managed using Data Model object
editor in Business Central.

configured using a system property
or kmodule.xml file.

configured using system property
or kmodule.xml file.

used in conjunction with object
models to interact with a KJAR that
is deployed on the KIE Server.

when a KJAR is deployed on KIE
Server, the applications interacting
with specific DMN model endpoint,
use the same APl on Red Hat build
of Kogito deployment.

copy as is to src/main/resources.

object model editing is no longer
required.

must be configured using CDI, by
annotating the
DMNRuntimeEventListener
with CDI's @ApplicationScope
annotation.

except
DMNRuntimeEventListener,
only default values are considered
and no override of configuration is
supported.

for object models, this feature is no
longer required.

NOTE

You can select your
own choice of
REST library.

advanced support for specific DMN
model generation. For more
information, see DMN mode/
execution.

55

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#dmn-execution-con_dmn-models

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

Feature In KIE Server API In Red Hat build of Kogito artifact
Test scenarios run with a JUnit activator. analogous JUnit activator is
available on Red Hat build of
Kogito.
v NOTE

The features that are not mentioned in the previous table are either not supported or not
required in a cloud-native Red Hat build of Kogito deployment.

17.2. MIGRATION STRATEGY

When migrating a DMN project to a Red Hat build of Kogito project, first you can migrate external
applications that are interacting with decision services on the KIE Server. You can use the REST
endpoints that are specific to DMN models. After using the REST endpoints, you can migrate the
external applications from the KIE Server to a Red Hat build of Kogito deployment. For more information
about specific REST endpoints to DMN models, see REST endpoints for specific DMN models .

The migration strategy includes the following steps:

1. Migrate existing external applications from the generic KIE Server API to a specific DMN REST
endpoint using the KIE Server.

2. Migrate a KJAR that is deployed on the KIE Server to a Red Hat build of Kogito microservice.
3. Deploy the Red Hat build of Kogito microservice using Red Hat OpenShift Container Platform.

4. Reconnect the external application and migrate the REST API consumption from the specific
DMN REST endpoint to the Red Hat build of Kogito deployment.

17.3. MIGRATING EXTERNAL APPLICATIONS TO REST ENDPOINTS
SPECIFIC TO DMN MODELS

To migrate a DMN project to a Red Hat build of Kogito deployment, first you can migrate external
applications that use specific DMN REST endpoints to interact with decision services on the KIE Server.

Procedure

1. If you are using the REST endpoints in your external application, retrieve the Swagger or OAS
specification file of the KJAR using GET /server/containers/{containerld}/dmn/openapi.json
(]-yaml) endpoint.

For more information about REST endpoints for specific DMN models, see REST endpoints for
specific DMN models.

2. Inyour external application, select the Java or JDK library to interact with the decision services.
You can interact with the decision services using the REST endpoint for the specific KJIAR.

56

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#ref-rest-api-dmn-endpoints_dmn-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#ref-rest-api-dmn-endpoints_dmn-models

CHAPTER 17. MIGRATION OF A DMN SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE

NOTE
The KIE Server Client Java APl is not supported in the migration to a Red Hat build of
Kogito deployment.

17.4. MIGRATING A DMN MODEL KJAR TO A RED HAT BUILD OF
KOGITO MICROSERVICE

After migrating your external application, you need to migrate a KJAR that is specific to a DMN model to
a Red Hat build of Kogito microservice.

Procedure

1. Create a Maven project for your Red Hat build of Kogito microservice.
For the procedure about creating a Maven project, see Creating a Maven project for a Red Hat
build of Kogito microservice.

The Maven project creates Kogito artifacts.

2. Copy the DMN models from the src/main/resources folder of the KJAR to the
src/main/resources folder of the Kogito artifact.

3. Copy the test scenarios from the src/test/resources folder of the KJAR to the
src/test/resources folder of the Kogito artifact.

IMPORTANT

You need to import the Red Hat build of Kogito dependency of test scenarios in
the pom.xml file of your project and create a JUnit activator using the KIE Server
REST API. For more information, see Testing a decision service using test
scenarios.

4. Run the following command and ensure that the test scenario is running for the specified non-
regression tests.

I mvn clean install

After running the Red Hat build of Kogito application, you can retrieve the Swagger or OAS
specification file. The Swagger or OAS specifications provide the same information as the REST
endpoint along with the following implementation details:

® Base URL of the server where the APl is available

® References Schemas names

You can use the provided implementation details when your external application is re-routed to
the new URL.

After migrating a DMN model KJAR to a Red Hat build of Kogito microservice, you need to deploy the

microservice using Red Hat OpenShift Container Platform. For deployment options with Openshift, see
OpenShift deployment options with the RHPAM Kogito Operator .

17.4.1. Example of migrating a DMN model KJAR to a Red Hat build of Kogito
microservice

57

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/getting_started_with_red_hat_build_of_kogito_in_red_hat_decision_manager#proc-kogito-creating-maven-project_getting-started-kogito-microservices
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-test-scenarios
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/getting_started_with_red_hat_build_of_kogito_in_red_hat_decision_manager#con-kogito-operator-deployment-options_deploying-kogito-microservices-on-openshift

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

The following is an example of migrating a DMN model KJAR to a Red Hat build of Kogito microservice:

Figure 17.1. Example decision service implemented using DMN model

ssets [ChangeRequests [[J] Contributors [Metrics Settings

Figure 17.2. Example DMN model using specificltemDefinition structure

= Decision Navigator < g discountdmn - DMN swe | | | Delote | Rename | cony | 2 (b (2 5[0]e] A~ P | Download | Lasestersion ~ || Vien Alerts |||

Model Documentation DataTypes Included Models Overview

Custom Data Types

New Data Type || Impart Data Object

¥ Reservat £ © 0
hecka s O B
© = st v # © @
heckis # a

You need to define the object model (POJO) as a DTO in an existing KJAR that is developed in Business
Central.

Example of an object model defined as DTO in a KJAR

package com.myspace.demo20210321;

/**

* This class was automatically generated by the data modeler tool.
Y/

public class Reservation implements java.io.Serializable {

static final long serialVersionUID = 1L;

@com.fasterxml.jackson.annotation.JsonFormat(shape =
com.fasterxml.jackson.annotation.JsonFormat.Shape.STRING, pattern = "yyyy-MM-dd")

58

CHAPTER 17. MIGRATION OF A DMN SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE

@com.fasterxml.jackson.databind.annotation.JsonSerialize(using =
com.fasterxml.jackson.datatype.jsr310.ser.LocalDateSerializer.class)
private java.time.LocalDate checkin;
@com.fasterxml.jackson.annotation.JsonFormat(shape =
com.fasterxml.jackson.annotation.JsonFormat.Shape.STRING, pattern = "yyyy-MM-dd")
@com.fasterxml.jackson.databind.annotation.JsonSerialize(using =
com.fasterxml.jackson.datatype.jsr310.ser.LocalDateSerializer.class)
private java.time.LocalDate checkout;

private java.util.List<java.lang.String> guests;

public Reservation() {

}

public java.time.LocalDate getCheckin() {
return this.checkin;

}

public void setCheckin(java.time.LocalDate checkin) {
this.checkin = checkin;

}

public java.time.LocalDate getCheckout() {
return this.checkout;

}

public void setCheckout(java.time.LocalDate checkout) {
this.checkout = checkout;

}

public java.util.List<java.lang.String> getGuests() {
return this.guests;

}

public void setGuests(java.util.List<java.lang.String> guests) {
this.guests = guests;

}

public Reservation(java.time.LocalDate checkin,
java.time.LocalDate checkout,
java.util.List<java.lang.String> guests) {
this.checkin = checkin;

this.checkout = checkout;

this.guests = guests;

}
}

In the previous example, the defined DTO is used in conjunction with the KIE Server client Java API.
Alternatively, you can specify the DTO in the payload, when a non-Java external application is
interacting with the KJAR that is deployed on the KIE Server.

Example of using KIE Server client Java API

DMNServicesClient dmnClient = kieServicesClient.getServicesClient(DMNServicesClient.class);
DMNContext dmnContext = dmnClient.newContext();

59

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

dmnContext.set("reservation”, new com.myspace.demo20210321.Reservation(LocalDate.of(2021, 3,
1),

LocalDate.of(2021, 3, 8),

Arrays.asList("John", "Alice")));
run(dmnClient, dmnContext);

Figure 17.3. Example of manually specifying DTO in the payload

POST 2 http://localhost:8080/kie-server/services/rest/server/containers/demo20210321_1.0.0-SNAPSHOT/dmn
Params Authorization Headers (11 Body @ Pre-request Script Tests Settings

none form-data x-www-form-urlencoded @ raw binary GraphQL JSON ~

1 f

"model-namespace”: null,
3 "mode l-name": null,
4 "decision-name": [1,
5 "decision=-id": [],
] "decision-service-name": null,
7 "dmn-context": {
8 “reservation": {

3 "com. myspace.demo20218321.Reservation”: {
10 “checkin": “2821-83-01",
11 “checkout": "2021-83-88",
12 “guests": [
13 *John",
14 "Alice"
15]
16 ¥
17 }
18 b
19 [k
NOTE

In the previous example, the FQCN of the object model in the REST APl is used for the
generic KIE Server marshalling.

17.5. EXAMPLE OF BINDING AN EXTERNAL APPLICATION TO ARED
HAT BUILD OF KOGITO DEPLOYMENT

After deploying the Red Hat build of Kogito microservice, you need to bind your external application to
the Red Hat build of Kogito microservice deployment.

Binding your external application includes re-routing the external application and binding the application
to a new base URL of the server that is associated with the Red Hat build of Kogito application. For
more information, see the following example:

Figure 17.4. Example /discount REST endpoint of KJAR on KIE Server

POST ~ http:/flocalhost: ver/services) Id 0210321.1.0.0-SNAPSHOT/dmn/madels/discount
Params Authorization Headers (11) Body @ Pre-request Script Tests Settings

none form-data x-www-form-urlencoded @ raw binary GraphQL JSON ~

1 f

2 “reservation": {

3 "checkin": "2021-83-01",

4 “checkout": "2021-03-88",

5 “guests™: [

6 "John",

7 “Alice"

8 1

9 }

10}

60

CHAPTER 17. MIGRATION OF A DMN SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE

Figure 17.5. Example /discount REST endpoint on local Red Hat build of Kogito

® | | Swagger Ul fgfopenapi

Generated API 2%

injopenapi

default a

m /discount ~
[Tl /ciscount v

ISR /¢iscount /amnresult v

Figure 17.6. Example /discount REST endpoint bound to new base URL of Red Hat build of Kogito

POST ~ | http:/flocalhost:8080/discount
Authorization Headers (11) Body ® Pre-request Script ettings
none form-data x-www-form-urlencoded @ raw binary GraphQL JSON -
1 {
2 “reservation": {

“checkin": "2021-03-01",

4 “checkout": “2021-93-08",
5 “guests”: [
6 "John",
7 "Alice"
8 1
] }
1 }

61

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

CHAPTER 18. MIGRATION OF A PMML SERVICE TO A RED HAT
BUILD OF KOGITO MICROSERVICE

You can migrate PMML-based services to Red Hat build of Kogito microservices by moving the PMML
resources from KJAR artifacts to the respective Red Hat build of Kogito project.

18.1. MAJOR CHANGES AND MIGRATION CONSIDERATIONS

The following table describes the major changes and features that affect migration from the KIE Server
APl and KJAR to Red Hat build of Kogito deployments:

Table 18.1. PMML migration considerations

Feature In KIE Server API In Red Hat build of Kogito artifact
PMML models stored in src/main/resources of copy as is to src/main/resources.
KJAR.
Other configuration options configured using a system property only default values are considered
or kmodule.xml file. and no override of configuration is
supported.
Command-based REST API use not supported.

ApplyPmmIModelCommand to
request PMML evaluation.

Domain-driven REST API not supported. advanced support for PMML
model-specific generation.

NOTE

The features that are not mentioned in the previous table are either not supported or not
required in a cloud-native Red Hat build of Kogito deployment.

18.2. MIGRATION STRATEGY

The migration strategy includes the following steps:
1. Migrate a KJAR that is deployed on the KIE Server to a Red Hat build of Kogito microservice.
2. Deploy the Red Hat build of Kogito microservice using Red Hat OpenShift Container Platform.

3. Modify the external application from client PMML API on the KIE Server to the REST API of the
Red Hat build of Kogito deployment.

18.3. MIGRATING A PMML MODEL KJAR TO A RED HAT BUILD OF
KOGITO MICROSERVICE

You can migrate a KJAR that is implemented using PMML model to a Red Hat build of Kogito
microservice.

62

CHAPTER 18. MIGRATION OF A PMML SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE

Procedure

1. Create a Maven project for your Red Hat build of Kogito microservice.
For the procedure about creating a Maven project, see Creating a Maven project for a Red Hat
build of Kogito microservice.

The Maven project creates Kogito artifacts.

2. Copy the PMML models from the sre/main/resources folder of the KJAR to the
src/main/resources folder of the Kogito artifact.

3. Run the following command to execute the Red Hat build of Kogito application:
I mvn clean install

After running the Red Hat build of Kogito application, you can retrieve the Swagger or OAS
specification file. The Swagger or OAS specifications provide the same information as the REST
endpoint along with the following implementation details:

® Base URL of the server where the APl is available
® References Schemas names

You can use the provided implementation details when your external application is re-routed to
the new URL.

After migrating a PMML model KJAR to a Red Hat build of Kogito microservice, you need to deploy the
microservice using Red Hat OpenShift Container Platform. For deployment options with Openshift, see
OpenShift deployment options with the RHPAM Kogito Operator .

18.4. MODIFYING AN EXTERNAL APPLICATION TO A RED HAT BUILD
OF KOGITO MICROSERVICE

After deploying the PMML microservice, you need to modify the external application to a Red Hat build
of Kogito deployment.

Prerequisites
® The original external application must be implemented on the KIE Server client API.

Figure 18.1. Example external application implementation on KIE Server

PMMLRequestData(correlationld

Procedure

63

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/getting_started_with_red_hat_build_of_kogito_in_red_hat_decision_manager#proc-kogito-creating-maven-project_getting-started-kogito-microservices
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/getting_started_with_red_hat_build_of_kogito_in_red_hat_decision_manager#con-kogito-operator-deployment-options_deploying-kogito-microservices-on-openshift

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

1. Remove all the usage of the KIE Server client APl and replace it with the HTTP communication.
The following is an example of a non-Java request:

POST - http:/flocalhost:8080/LogisticRegressionirisData

Params Authorization ® Headers (12) Body ® Pre-request Script ~ Tests Settings
none form-data x-www-form-urlencoded @ raw binary GraphQL JSON
1 q

'Sepal.Length": 6.9,

3 '‘Sepal.width": 3.1,
4 'Petal.Length": 5.1,
5 | "Petal.width": 2.3
6

2. Ensure that any HTTP client Java library is used inside the external application to create a similar

invocation and parse the result.
The following is an example of Java 1M HTTP client and Gson to convert the input data to JSON:

0ST(HttpRequest.BodyPublishers.ofString(requ

huild ()

NOTE

All the parameters that are required as the values of the parameters are
embedded in the URL that is called.

64

CHAPTER 19. MIGRATION OF A DRL SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE

CHAPTER 19. MIGRATION OF A DRL SERVICE TO A RED HAT
BUILD OF KOGITO MICROSERVICE

You can build and deploy a sample project in Red Hat build of Kogito to expose a stateless rules
evaluation of the decision engine in a Red Hat build of Quarkus REST endpoint, and migrate the REST
endpoint to Red Hat build of Kogito.

The stateless rule evaluation is a single execution of a rule set in Red Hat Decision Manager and can be
identified as a function invocation. In the invoked function, the output values are determined using the
input values. Also, the invoked function uses the decision engine to perform the jobs. Therefore, in such
cases, a function is exposed using a REST endpoint and converted into a microservice. After converting
into a microservice, a function is deployed into a Function as a Service environment to eliminate the cost
of JVM startup time.

19.1. MAJOR CHANGES AND MIGRATION CONSIDERATIONS

The following table describes the major changes and features that affect migration from the KIE Server
APl and KJAR to Red Hat build of Kogito deployments:

Table 19.1. DRL migration considerations

Feature In KIE Server API In Red Hat build of In Red Hat build of
Kogito with legacy API Kogito artifact
support

DRL files stored in copy as is to rewrite using the rule

src/main/resources src/main/resources units and OOPath.
folder of KUAR. folder.

KieContainer configured using a replaced by not required.

system property or KieRuntimeBuilder.

kmodule.xml file.

KieBase or configured using a configured using a replaced by rule units.
KieSession system property or system property or
kmodule.xml file. kmodule.xml file.

19.2. MIGRATION STRATEGY

In Red Hat Decision Manager, you can migrate a rule evaluation to a Red Hat build of Kogito deployment
in the following two ways:

Using legacy API in Red Hat build of Kogito

In Red Hat build of Kogito, the kogito-legacy-api module makes the legacy API of Red Hat Decision
Manager available; therefore, the DRL files remain unchanged. This approach of migrating rule
evaluation requires minimal changes and enables you to use major Red Hat build of Quarkus features,
such as hot reload and native image creation.

Migrating to Red Hat build of Kogito rule units

Migrating to Red Hat build of Kogito rule units include the programming model of Red Hat build of
Kogito, which is based on the concept of rule units.
A rule unit in Red Hat build of Kogito includes both a set of rules and the facts, against which the

65

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

rules are matched. Rule units in Red Hat build of Kogito also come with data sources. A rule unit data
source is a source of the data processed by a given rule unit and represents the entry point, which is
used to evaluate the rule unit. Rule units use two types of data sources:

e DataStream: This is an append-only data source and the facts added into the DataStream
cannot be updated or removed.

e DataStore: This data source is for modifiable data. You can update or remove an object
using the FactHandle that is returned when the object is added into the DataStore.

Overall, a rule unit contains two parts: The definition of the fact to be evaluated and the set of rules
evaluating the facts.

19.3. EXAMPLE LOAN APPLICATION PROJECT

In the following sections, a loan application project is used as an example to migrate a DRL project to
Red Hat build of Kogito deployments. The domain model of the loan application project is made of two
classes, the LoanApplication class and the Applicant class:

Example LoanApplication class

public class LoanApplication {

private String id;

private Applicant applicant;
private int amount;

private int deposit;

private boolean approved = false;

public LoanApplication(String id, Applicant applicant,
int amount, int deposit) {
this.id = id;
this.applicant = applicant;
this.amount = amount;
this.deposit = deposit;
}
}

Example Applicant class

public class Applicant {

private String name;
private int age;

public Applicant(String name, int age) {
this.name = name;
this.age = age;
}
}

The rule set is created using business decisions to approve or reject an application, along with the last
rule of collecting all the approved applications in a list.

66

CHAPTER 19. MIGRATION OF A DRL SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE

Example rule set in loan application

global Integer maxAmount;
global java.util.List approvedApplications;

rule LargeDepositApprove when

$I: LoanApplication(applicant.age >= 20, deposit >= 1000, amount <= maxAmount)
then

modify($l) { setApproved(true) }; // loan is approved
end

rule LargeDepositReject when

$I: LoanApplication(applicant.age >= 20, deposit >= 1000, amount > maxAmount)
then

modify($l) { setApproved(false) }; / loan is rejected
end

/I ... more loans approval/rejections business rules ...

rule CollectApprovedApplication when

$I: LoanApplication(approved)
then

approvedApplications.add($l); // collect all approved loan applications
end

19.3.1. Exposing rule evaluation with a REST endpoint using Red Hat build of Quarkus

You can expose the rule evaluation that is developed in Business Central with a REST endpoint using
Red Hat build of Quarkus.

Procedure

1. Create a new module based on the module that contains the rules and Quarkus libraries,
providing the REST support:

Example dependencies for creating a new module

<dependencies>

<dependency>
<groupld>io.quarkus</groupld>
<artifactld>quarkus-resteasy</artifactld>
</dependency>
<dependency>
<groupld>io.quarkus</groupld>
<artifactld>quarkus-resteasy-jackson</artifactld>
</dependency>

<dependency>
<groupld>org.example</groupld>
<artifactld>drools-project</artifactld>
<version>1.0-SNAPSHOT</version>
</dependency>

<dependencies>

67

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

2. Create a REST endpoint.
The following is an example setup for creating a REST endpoint:

Example FindApprovedLoansEndpoint endpoint setup

@Path("/find-approved")
public class FindApprovedLoansEndpoint {

private static final KieContainer kContainer =
KieServices.Factory.get().newKieClasspathContainer();

@POST()

@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)

public List<LoanApplication> executeQuery(LoanAppDto loanAppDto) {
KieSession session = kContainer.newKieSession();

List<LoanApplication> approvedApplications = new ArrayList<>();
session.setGlobal("approvedApplications”, approvedApplications);
session.setGlobal("maxAmount", loanAppDto.getMaxAmount());
loanAppDto.getLoanApplications().forEach(session::insert);
session.fireAllIRules();

session.dispose();

return approvedApplications;

}
}

In the previous example, a KieContainer containing the rules is created and added into a static
field. The rules in the KieContainer are obtained from the other module in the class path. Using
this approach, you can reuse the same KieContainer for subsequent invocations related to the
FindApprovedLoansEndpoint endpoint without recompiling the rules.

NOTE

The two modules are consolidated in the next process of migrating rule units to a
Red Hat build of Kogito microservice using legacy API. For more information, see
Migrating DRL rules units to Red Hat build of Kogito microservice using legacy AP/ .

When the FindApprovedLoansEndpoint endpoint is invoked, a new KieSession is created
from the KieContainer. The KieSession is populated with the objects from LoanAppDto
resulting from the unmarshalling of a JSON request.

Example LoanAppDto class

public class LoanAppDto {
private int maxAmount;
private List<LoanApplication> loanApplications;

public int getMaxAmount() {

68

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/getting_started_with_red_hat_build_of_kogito_in_red_hat_decision_manager#proc-kogito-migrate-drl-legacy-api_migration-kogito-microservices

CHAPTER 19. MIGRATION OF A DRL SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE

return maxAmount;

}

public void setMaxAmount(int maxAmount) {
this.maxAmount = maxAmount;

}

public List<LoanApplication> getLoanApplications() {
return loanApplications;

}

public void setLoanApplications(List<LoanApplication> loanApplications) {
this.loanApplications = loanApplications;
}

}

When the fireAllRules() method is called, KieSession is fired and the business logic is
evaluated against the input data. After business logic evaluation, the last rule collects all the
approved applications in a list and the same list is returned as an output.

. Start the Red Hat build of Quarkus application.

. Invoke the FindApprovedLoansEndpoint endpoint with a JSON request that contains the loan
applications to be checked.

The value of the maxAmount is used in the rules as shown in the following example:

Example curl request

curl -X POST -H 'Accept: application/json’ -H 'Content-Type: application/json' -d
'{"maxAmount":5000,

"loanApplications":[
{"id":"ABC10001","amount":2000,"deposit":1000,"applicant":{"age":45,"name":"John"}},
{"id":"ABC10002","amount":5000,"deposit":100,"applicant":{"age":25,"name":"Paul"}},
{"id":"ABC10015","amount":1000,"deposit":100,"applicant":{"age":12,"name":"George"}}
1} http://localhost:8080/find-approved

Example JSON response

"id": "ABC10001",

"applicant": {
"name": "John",
"age": 45

b

"amount": 2000,

"deposit": 1000,

"approved": true

69

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

NOTE

Using this approach, you cannot use the hot reload feature and cannot create a native
image of the project. In the next steps, the missing Quarkus features are provided by the
Kogito extension that enables Quarkus aware of the DRL files and implement the hot
reload feature in a similar way.

19.3.2. Migrating a rule evaluation to a Red Hat build of Kogito microservice using
legacy API

After exposing a rule evaluation with a REST endpoint, you can migrate the rule evaluation to a Red Hat
build of Kogito microservice using legacy API.

Procedure

1. Add the following dependencies to the project pom.xml file to enable the use of Red Hat build
of Quarkus and legacy API:

Example dependencies for using Quarkus and legacy API

<dependencies>

<dependency>
<groupld>org.kie.kogito</groupld>
<artifactld>kogito-quarkus-rules</artifactld>
</dependency>

<dependency>
<groupld>org.kie.kogito</groupld>
<artifactld>kogito-legacy-api</artifactld>
</dependency>

</dependencies>

2. Rewrite the REST endpoint implementation:

Example REST endpoint implementation

@Path("/find-approved")
public class FindApprovedLoansEndpoint {

@Inject
KieRuntimeBuilder kieRuntimeBuilder;

@POST()

@Produces(MediaType.APPLICATION_JSON)
@Consumes(MediaType.APPLICATION_JSON)

public List<LoanApplication> executeQuery(LoanAppDto loanAppDto) {
KieSession session = kieRuntimeBuilder.newKieSession();

List<LoanApplication> approvedApplications = new ArrayList<>();
session.setGlobal("approvedApplications”, approvedApplications);
session.setGlobal("maxAmount", loanAppDto.getMaxAmount());

loanAppDto.getLoanApplications().forEach(session::insert);

session.fireAllRules();
session.dispose();

70

CHAPTER 19. MIGRATION OF A DRL SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE

return approvedApplications;

}
}

In the rewritten REST endpoint implementation, instead of creating the KieSession from the
KieContainer, the KieSession is created automatically using an integrated
KieRuntimeBuilder.

The KieRuntimeBuilder is an interface provided by the kogito-legacy-api module that
replaces the KieContainer. Using KieRuntimeBuilder, you can create KieBases and
KieSessions in a similar way you create in KieContainer. Red Hat build of Kogito automatically
generates an implementation of KieRuntimeBuilder interface at compile time and integrates
the KieRuntimeBuilder into a class, which implements the FindApprovedLoansEndpoint
REST endpoint.

3. Start your Red Hat build of Quarkus application in development mode.
You can also use the hot reload to make the changes to the rules files that are applied to the
running application. Also, you can create a native image of your rule based application.

19.3.3. Implementing rule units and automatic REST endpoint generation

After migrating rule units to a Red Hat build of Kogito microservice, you can implement the rule units and
automatic generation of the REST endpoint.

In Red Hat build of Kogito, a rule unit contains a set of rules and the facts, against which the rules are
matched. Rule units in Red Hat build of Kogito also come with data sources. A rule unit data source is a

source of the data processed by a given rule unit and represents the entry point, which is used to
evaluate the rule unit. Rule units use two types of data sources:

e DataStream: This is an append-only data source. In DataStream, subscribers receive new and
past messages, stream can be hot or cold in the reactive streams. Also, the facts added into the

DataStream cannot be updated or removed.

e DataStore: This data source is for modifiable data. You can update or remove an object using
the FactHandle that is returned when the object is added into the DataStore.

Overall, a rule unit contains two parts: the definition of the fact to be evaluated and the set of rules
evaluating the facts.

Procedure

1. Implement a fact definition using POJO:

Example implementation of a fact definition using POJO

package org.kie.kogito.queries;

import org.kie.kogito.rules.DataSource;
import org.kie.kogito.rules.DataStore;
import org.kie.kogito.rules.RuleUnitData;

public class LoanUnit implements RuleUnitData {

private int maxAmount;
private DataStore<LoanApplication> loanApplications;

71

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

72

public LoanUnit() {
this(DataSource.createStore(), 0);

}

public LoanUnit(DataStore<LoanApplication> loanApplications, int maxAmount) {
this.loanApplications = loanApplications;
this.maxAmount = maxAmount;

}

public DataStore<LoanApplication> getLoanApplications() { return loanApplications; }

public void setLoanApplications(DataStore<LoanApplication> loanApplications) {
this.loanApplications = loanApplications;

}

public int getMaxAmount() { return maxAmount; }
public void setMaxAmount(int maxAmount) { this.maxAmount = maxAmount; }

In the previous example, instead of using LoanAppDto the LoanUnit class is bound directly.
LoanAppDto is used to marshall or unmarshall JSON requests. Also, the previous example
implements the org.kie.kogito.rules.RuleUnitData interface and uses a DataStore to contain
the loan applications to be approved.

The org.kie.kogito.rules.RuleUnitData is a marker interface to notify the decision engine that
LoanUnit class is part of a rule unit definition. In addition, the DataStore is responsible to allow
the rule engine to react on the changes by firing new rules and triggering other rules.

Additionally, the consequences of the rules modify the approved property in the previous
example. On the contrary, the maxAmount value is considered as a configuration parameter for
the rule unit, which is not modified. The maxAmount is processed automatically during the rules
evaluation and automatically set from the value passed in the JSON requests.

. Implement a DRL file:

Example implementation of a DRL file

package org.kie.kogito.queries;
unit LoanUnit; // no need to using globals, all variables and facts are stored in the rule unit

rule LargeDepositApprove when
$I: /loanApplications[applicant.age >= 20, deposit >= 1000, amount <= maxAmount] /
oopath style
then
modify($l) { setApproved(true) };
end

rule LargeDepositReject when

$I: /loanApplications[applicant.age >= 20, deposit >= 1000, amount > maxAmount]
then

modify($l) { setApproved(false) };
end

/I ... more loans approval/rejections business rules ...

CHAPTER 19. MIGRATION OF A DRL SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE

// approved loan applications are now retrieved through a query
query FindApproved

$l: /loanApplications[approved]
end

The DRL file that you create must declare the same package as fact definition implementation
and a unit with the same name of the Java class. The Java class implements the RuleUnitData
interface to state that the interface belongs to the same rule unit.

Also, the DRL file in the previous example is rewritten using the OOPath expressions. In the DRL
file, the data source acts as an entry point and the OOPath expression contains the data source
name as root. However, the constraints are added in square brackets as follows:

$l: /loanApplications[applicant.age >= 20, deposit >= 1000, amount < maxAmount]

Alternatively, you can use the standard DRL syntax, in which you can specify the data source
name as an entry point. However, you need to specify the type of the matched object again as
shown in the following example, even if the decision engine can infer the type from the data
source:

$I: LoanApplication(applicant.age >= 20, deposit >= 1000, amount « maxAmount) from
entry-point loanApplications

In the previous example, the last rule that collects all the approved loan applications is replaced
by a query that retrieves the list. A rule unit defines the facts to be passed in input to evaluate
the rules, and the query defines the expected output from the rule evaluation. Using this
approach, Red Hat build of Kogito can automatically generate a class that executes the query
and returns the output as shown in the following example:

Example LoanUnitQueryFindApproved class

public class LoanUnitQueryFindApproved implements
org.kie.kogito.rules.RuleUnitQuery<List<org.kie.kogito.queries.LoanApplication>> {

private final RuleUnitinstance<org.kie.kogito.queries.LoanUnit> instance;

public LoanUnitQueryFindApproved(RuleUnitinstance<org.kie.kogito.queries.LoanUnit>
instance) {
this.instance = instance;

}

@Override

public List<org.kie.kogito.queries.LoanApplication> execute() {

return
instance.executeQuery("FindApproved").stream().map(this::toResult).collect(toList());

}

private org.kie.kogito.queries.LoanApplication toResult(Map<String, Object> tuple) {
return (org.kie.kogito.queries.LoanApplication) tuple.get("$I");

}
}

The following is an example of a REST endpoint that takes a rule unit as input and passing the
input to a query executor to return the output:

Example LoanUnitQueryFindApprovedEndpoint endpoint

73

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

@Path("/find-approved")
public class LoanUnitQueryFindApprovedEndpoint {

@javax.inject.Inject
RuleUnit<org.kie.kogito.queries.LoanUnit> ruleUnit;

public LoanUnitQueryFindApprovedEndpoint() {
}

public LoanUnitQueryFindApprovedEndpoint(RuleUnit<org.kie.kogito.queries.LoanUnit>
ruleUnit) {
this.ruleUnit = ruleUnit;

}

@POST()

@Produces(MediaType.APPLICATION_JSON)

@Consumes(MediaType.APPLICATION_JSON)

public List<org.kie.kogito.queries.LoanApplication>
executeQuery(org.kie.kogito.queries.LoanUnit unit) {

RuleUnitinstance<org.kie.kogito.queries.LoanUnit> instance =
ruleUnit.createlnstance(unit);

return instance.executeQuery(LoanUnitQueryFindApproved.class);

}
}

NOTE
You can also add multiple queries and for each query, a different REST endpoint

is generated. For example, the FindApproved REST endpoint is generated for
find-approved.

74

CHAPTER 20. ADDITIONAL RESOURCES

CHAPTER 20. ADDITIONAL RESOURCES

® Designing a decision service using DMN models
® Designing a decision service using DRL rules

® Designing a decision service using PMML models

75

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models

Red Hat Decision Manager 7.13 Getting started with Red Hat build of Kogito in Red Hat Decision Manager

APPENDIX A. VERSIONING INFORMATION

Documentation last updated on Thursday, March 14th, 2024.

76

APPENDIX B. CONTACT INFORMATION

APPENDIX B. CONTACT INFORMATION

Red Hat Decision Manager documentation team: brms-docs@redhat.com

77

mailto:brms-docs@redhat.com

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PART I. GETTING STARTED WITH RED HAT BUILD OF KOGITO MICROSERVICES
	CHAPTER 1. RED HAT BUILD OF KOGITO MICROSERVICES IN RED HAT DECISION MANAGER
	1.1. CLOUD-FIRST PRIORITY
	1.2. RED HAT BUILD OF KOGITO MICROSERVICES ON RED HAT BUILD OF QUARKUS AND SPRING BOOT

	CHAPTER 2. DMN MODELERS FOR RED HAT BUILD OF KOGITO MICROSERVICES
	2.1. INSTALLING THE RED HAT DECISION MANAGER VS CODE EXTENSION BUNDLE
	2.2. CONFIGURING THE RED HAT DECISION MANAGER STANDALONE EDITORS

	CHAPTER 3. CREATING A MAVEN PROJECT FOR A RED HAT BUILD OF KOGITO MICROSERVICE
	3.1. CREATING A CUSTOM SPRING BOOT PROJECT FOR RED HAT BUILD OF KOGITO MICROSERVICES

	CHAPTER 4. EXAMPLE APPLICATIONS WITH RED HAT BUILD OF KOGITO MICROSERVICES
	CHAPTER 5. DESIGNING THE APPLICATION LOGIC FOR A RED HAT BUILD OF KOGITO MICROSERVICE USING DMN
	5.1. USING DRL RULE UNITS AS AN ALTERNATIVE DECISION SERVICE

	CHAPTER 6. RED HAT BUILD OF KOGITO EVENTS ADD-ON
	6.1. IMPLEMENTING MESSAGE PAYLOAD DECORATOR FOR RED HAT BUILD OF KOGITO EVENTS ADD-ON

	CHAPTER 7. RUNNING A RED HAT BUILD OF KOGITO MICROSERVICE
	CHAPTER 8. INTERACTING WITH A RUNNING RED HAT BUILD OF KOGITO MICROSERVICE
	PART II. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON RED HAT OPENSHIFT CONTAINER PLATFORM
	CHAPTER 9. RED HAT BUILD OF KOGITO ON RED HAT OPENSHIFT CONTAINER PLATFORM
	CHAPTER 10. OPENSHIFT DEPLOYMENT OPTIONS WITH THE RHPAM KOGITO OPERATOR
	10.1. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON OPENSHIFT USING GIT SOURCE BUILD AND OPENSHIFT WEB CONSOLE
	10.2. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON OPENSHIFT USING BINARY BUILD AND OPENSHIFT WEB CONSOLE
	10.3. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON OPENSHIFT USING CUSTOM IMAGE BUILD AND OPENSHIFT WEB CONSOLE
	10.4. DEPLOYING RED HAT BUILD OF KOGITO MICROSERVICES ON OPENSHIFT USING FILE BUILD AND OPENSHIFT WEB CONSOLE

	CHAPTER 11. RED HAT BUILD OF KOGITO SERVICE PROPERTIES CONFIGURATION
	CHAPTER 12. PROBES FOR RED HAT BUILD OF KOGITO MICROSERVICES ON RED HAT OPENSHIFT CONTAINER PLATFORM
	12.1. ADDING HEALTH CHECK EXTENSION FOR RED HAT BUILD OF QUARKUS APPLICATIONS ON RED HAT OPENSHIFT CONTAINER PLATFORM
	12.2. ADDING HEALTH CHECK EXTENSION FOR SPRING BOOT APPLICATIONS ON RED HAT OPENSHIFT CONTAINER PLATFORM
	12.3. SETTING CUSTOM PROBES FOR RED HAT BUILD OF KOGITO MICROSERVICES ON RED HAT OPENSHIFT CONTAINER PLATFORM

	CHAPTER 13. RED HAT PROCESS AUTOMATION MANAGER KOGITO OPERATOR INTERACTION WITH PROMETHEUS AND GRAFANA
	CHAPTER 14. RED HAT DECISION MANAGER RED HAT BUILD OF KOGITO OPERATOR INTERACTION WITH KAFKA
	CHAPTER 15. RED HAT BUILD OF KOGITO MICROSERVICE DEPLOYMENT TROUBLESHOOTING
	PART III. MIGRATING TO RED HAT BUILD OF KOGITO MICROSERVICES
	CHAPTER 16. OVERVIEW OF MIGRATION TO RED HAT BUILD OF KOGITO MICROSERVICES
	CHAPTER 17. MIGRATION OF A DMN SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE
	17.1. MAJOR CHANGES AND MIGRATION CONSIDERATIONS
	17.2. MIGRATION STRATEGY
	17.3. MIGRATING EXTERNAL APPLICATIONS TO REST ENDPOINTS SPECIFIC TO DMN MODELS
	17.4. MIGRATING A DMN MODEL KJAR TO A RED HAT BUILD OF KOGITO MICROSERVICE
	17.4.1. Example of migrating a DMN model KJAR to a Red Hat build of Kogito microservice

	17.5. EXAMPLE OF BINDING AN EXTERNAL APPLICATION TO A RED HAT BUILD OF KOGITO DEPLOYMENT

	CHAPTER 18. MIGRATION OF A PMML SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE
	18.1. MAJOR CHANGES AND MIGRATION CONSIDERATIONS
	18.2. MIGRATION STRATEGY
	18.3. MIGRATING A PMML MODEL KJAR TO A RED HAT BUILD OF KOGITO MICROSERVICE
	18.4. MODIFYING AN EXTERNAL APPLICATION TO A RED HAT BUILD OF KOGITO MICROSERVICE

	CHAPTER 19. MIGRATION OF A DRL SERVICE TO A RED HAT BUILD OF KOGITO MICROSERVICE
	19.1. MAJOR CHANGES AND MIGRATION CONSIDERATIONS
	19.2. MIGRATION STRATEGY
	19.3. EXAMPLE LOAN APPLICATION PROJECT
	19.3.1. Exposing rule evaluation with a REST endpoint using Red Hat build of Quarkus
	19.3.2. Migrating a rule evaluation to a Red Hat build of Kogito microservice using legacy API
	19.3.3. Implementing rule units and automatic REST endpoint generation

	CHAPTER 20. ADDITIONAL RESOURCES
	APPENDIX A. VERSIONING INFORMATION
	APPENDIX B. CONTACT INFORMATION

