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CHAPTER 1. UNDERSTANDING RED HAT CODEREADY
WORKSPACES

Red Hat CodeReady Workspaces is a developer workspace server and cloud IDE. Workspaces are
defined as project code files and all of their dependencies neccessary to edit, build, run, and debug
them. Each workspace has its own private IDE hosted within it. The IDE is accessible through a browser.
The browser downloads the IDE as a single-page web application.

Red Hat CodeReady Workspaces provides:

Workspaces that include runtimes and IDEs

RESTful workspace server

A browser-based IDE

Plugins for languages, framework, and tools

An SDK for creating plugins and assemblies

Additional resources

See Red Hat CodeReady Workspaces CodeReady Workspaces 1.0.2 Release Notes and Known Issues
for more details about the current version.

CHAPTER 1. UNDERSTANDING RED HAT CODEREADY WORKSPACES
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CHAPTER 2. INSTALLING CODEREADY WORKSPACES
This section describes how to obtain installation files for Red Hat CodeReady Workspaces and how to
use them to deploy the product on an instance of OpenShift (such as Red Hat OpenShift Container
Platform).

2.1. DOWNLOADING THE CODEREADY WORKSPACES DEPLOYMENT
SCRIPT

This procedure describes how to obtain and unpack the archive with the CodeReady Workspaces
deployment shell script.

The CodeReady Workspaces deployment script uses the OpenShift Operator to deploy Red Hat Single
Sign-On, the PostgreSQL database, and the CodeReady Workspaces server container images on an
instance of Red Hat OpenShift Container Platform. The images are available in the Red Hat Container
Catalogue.

Prerequisites

Registered for the free Red Hat Developer Program.

Logged in to the Red Hat Developer Portal.

Procedure

1. Change to a temporary directory. Create it if necessary. For example:

$ mkdir ~/tmp
$ cd ~/tmp

2. Download the archive with the deployment script and the config.yaml file using the browser
with which you logged into the Red Hat Developer Portal: codeready-workspaces-1.0.2.GA-
operator-installer.tar.gz.

3. Unpack the downloaded archive and change to the created directory:

$ tar xvf codeready-workspaces-1.0.2.GA-operator-installer.tar.gz \
  && cd codeready-workspaces-operator-installer/

Next steps

Continue by configuring and running the deployment script. See Section 2.2, “Running the CodeReady
Workspaces deployment script”.

2.2. RUNNING THE CODEREADY WORKSPACES DEPLOYMENT
SCRIPT

The CodeReady Workspaces deployment script uses command-line arguments and the config.yaml
file to populate a set of configuration environment variables for the OpenShift Operator used for the
actual deployment.

Prerequisites

Red Hat CodeReady Workspaces 1.0 Administration Guide
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Downloaded and unpacked the deployment script and the configuration file. See Section 2.1,
“Downloading the CodeReady Workspaces deployment script”.

A running instance of Red Hat OpenShift Container Platform 3.11 or OpenShift Dedicated 3.11.
To install OpenShift Container Platform, see the Getting Started with OpenShift Container
Platform guide. To install OpenShift Dedicated 3.11, see OKD documentation.

The OpenShift command-line client tool, oc, is in the path.

The user is logged in to the OpenShift instance (using, for example, oc login).

CodeReady Workspaces is supported for use with Google Chrome 70.0.3538.110 (Official Build)
(64bit).

2.2.1. Deploying CodeReady Workspaces with default settings

1. Run the following command:

$ ./deploy.sh --deploy \
--server-image=registry.access.redhat.com/codeready-
workspaces/server:1.0 \
--operator-image=registry.access.redhat.com/codeready-
workspaces/server-operator:1.0

NOTE

Run the ./deploy.sh --help command to get a list of all available arguments.
For a description of all the options, see Section 2.2.6, “Configuring environment
variables”.

The following message indicates that CodeReady Workspaces is getting installed:

[INFO]: Welcome to CodeReady Workspaces Installer
[INFO]: Found oc client in PATH
[INFO]: Checking if you are currently logged in...
[INFO]: Active session found. Your current context is: 
myproject/192-168-42-106:8443/developer
[INFO]: Creating namespace "codeready"
[INFO]: Namespace "codeready" successfully created
[INFO]: Creating installer service account
serviceaccount "codeready-apb" created

The CodeReady Workspaces successfully deployed and available at <URL> message
confirms that the deployment is successful.

2. Open the OpenShift console in a web browser (<OpenShift-IP>/console).

3. In the My Projects pane, click codeready.

4. Click Applications > Pods.

5. Click che-operator to see the pod running.
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Figure 2.1. Pod for codeready shown running

2.2.2. Deploying CodeReady Workspaces with a self-signed certificate and
OpenShift oAuth

To deploy CodeReady Workspaces with a self-signed certificate, specify its location for the deploy.sh
script using the --cert option. Then build a custom stack container image with the certificate to launch
workspaces.

1. Run the deployment script with the following options:

$ ./deploy.sh --deploy --enable-oauth \
  --cert=<path-to-the-certificate> \
  --server-image=registry.access.redhat.com/codeready-
workspaces/server:1.0 \
  --operator-image=registry.access.redhat.com/codeready-
workspaces/server-operator:1.0

Example:

$ ./deploy.sh --deploy --enable-oauth \
  --cert=/var/lib/origin/openshift.local.config/master/ca.crt \
  --server-image=registry.access.redhat.com/codeready-
workspaces/server:1.0 \
  --operator-image=registry.access.redhat.com/codeready-
workspaces/server-operator:1.0

2.2.3. Deploying CodeReady Workspaces with a public certificate

When deploying CodeReady Workspaces to a cluster configured with public certificates, the deployment
script requires no additional parameters.

Run the deploy script as:

$ ./deploy.sh --deploy \
  --server-image=registry.access.redhat.com/codeready-
workspaces/server:1.0 \
  --operator-image=registry.access.redhat.com/codeready-workspaces/server-
operator:1.0

2.2.4. Deploying CodeReady Workspaces with external Red Hat SSO and Keycloak

To deploy with an external Red Hat SSO and enable a Keycloak instance, take the following steps:

Red Hat CodeReady Workspaces 1.0 Administration Guide

10



1

2

3

4

5

6

1

2

3

4

1. Update the following values in the config.yaml file:

Connect to an existing external Keycloak instance and skip deploying a dedicated Keycloak
instance. The default value is false.

Keycloak/Red Hat SSO

Keycloak Administrator username. Not required when connecting to an existing realm.

Keycloak Administrator password. Auto-generated if empty.

Red Hat SSO realm.

Red Hat SSO client ID.

2. Run the deploy script:

$ ./deploy.sh --deploy \
  --server-image=registry.access.redhat.com/codeready-
workspaces/server:1.0 \
  --operator-image=registry.access.redhat.com/codeready-
workspaces/server-operator:1.0

2.2.5. Deploying CodeReady Workspaces with external Red Hat SSO and
PostgreSQL

To deploy with an external Red Hat SSO and PostgreSQL database, take the following steps:

1. Update the following values in the config.yaml file:

Connect to an existing external Keycloak instance and skip deploying a dedicated Keycloak
instance. The default value is false.

Keycloak/Red Hat SSO

Keycloak Administrator username. Not required when connecting to an existing realm.

Keycloak Administrator password. Auto-generated if empty.

CHE_EXTERNAL_KEYCLOAK:   "true"    1

CHE_KEYCLOAK_AUTH__SERVER__URL: "<keycloak_url>"  2

CHE_KEYCLOAK_ADMIN_USERNAME:  "<keycloak_admin_username>" 3

CHE_KEYCLOAK_ADMIN_PASSWORD:  "<keycloak_admin_password>" 4

CHE_KEYCLOAK_REALM:   "<realm>"   5

CHE_KEYCLOAK_CLIENT_ID:  "<client_id>"   6

CHE_EXTERNAL_KEYCLOAK:   "true"    1

CHE_KEYCLOAK_AUTH__SERVER__URL: "<keycloak_url>"  2

CHE_KEYCLOAK_ADMIN_USERNAME:  "<keycloak_admin_username>" 3

CHE_KEYCLOAK_ADMIN_PASSWORD:  "<keycloak_admin_password>" 4

CHE_KEYCLOAK_REALM:   "<realm>"   5

CHE_KEYCLOAK_CLIENT_ID:  "<client_id>"   6
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Red Hat SSO realm.

Red Hat SSO client ID.

2. Update the following values in the config.yaml file:

Use an existing external Postgres database. The default value is false which means that
a new instance of Postgres will be started. When set to true, provide the connection
details and ensure that the database user is a SUPERUSER.

Database hostname from Applications → Services → Cluster IP.

Database port.

Database name.

Database username.

Database password.

Your database administrator password.

3. Run the deploy script:

$ ./deploy.sh --deploy \
--server-image=registry.access.redhat.com/codeready-
workspaces/server:1.0 \
--operator-image=registry.access.redhat.com/codeready-
workspaces/server-operator:1.0

2.2.6. Configuring environment variables

The config.yaml file contains default values for the installation parameters. Those parameters that
take environment variables as values can be overridden from a command line. Not all installation
parameters are available as flags.

Before running the deployment script in a fast mode, review the config.yaml file. Run the 
./deploy.sh --help command to get a list of all available arguments.

The following is an annotated example of the config.yaml file with all available parameters:

General Che settings:

CHE_EXTERNAL_DB:   "true"    1

CHE_DB_HOSTNAME:   "<postgres_service_ip>"  2

CHE_DB_PORT:    "5432"    3

CHE_DB_DATABASE:   "<database_name>"  4

CHE_JDBC_USERNAME:   "<user_name>"   5

CHE_JDBC_PASSWORD:   "<password>"   6

CHE_DB_ADMIN_PASSWORD:   "<password>"   7

CHE_FLAVOR:     "codeready" 1
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Che flavor. Upstream che or Red Hat codeready. Defaults to che.

Docker image for Che server. Defaults to eclipse/che-server:latest. Keep blank unless you
need to deploy your custom image.

TLS support in Che. Defaults to false.

PVC strategy for Che workspaces. Defaults to 'common' where all workspaces use one shared
PVC. A 'unique' strategy implies that each workspace gets own PVC.

Workspace PVC claim. Defaults to 1Gi. It is recommended to increase it when using shared PVC.

cat root ca.crt | base64 -w 0

Enable login with OpenShift in Codeready Workspaces. OpenShift only. Defaults to false.

OpenShift API endpoint URL. Required only when OPENSHIFT_OAUTH is true. Auto detected.

Plugin registry URL. Defaults to https://che-plugin-registry.openshift.io.

Asks for password update at first login as Che administrator user. Defaults to true, that is, you will
be asked to update password.

Che Proxy settings:

Proxy settings for workspace master, for example: Dhttp.proxyHost=host -
Dhttp.proxyPort=8080 -Dhttps.proxyHost=host -Dhttps.proxyPort=8080 -
Dhttp.nonProxyHosts='localhost|127.0.0.1|*.foo.com'

Proxy settings for workspace JVM, Maven, and workspace agent: Dhttp.proxyHost=host, 
Dhttp.proxyPort=8080, Dhttps.proxyHost=host, Dhttps.proxyPort=8080, 

Dhttp.nonProxyHosts='localhost|127.0.0.1|*.foo.com'

http proxy for workspaces. Example: http://myproxy:8051

https proxy for workspaces. Example: http://myproxy:8051

CHE_IMAGE:     ""  2

CHE_TLS_SUPPORT:    ""  3

CHE_INFRA_KUBERNETES_PVC_STRATEGY:  ""  4

CHE_INFRA_KUBERNETES_PVC_QUANTITY:  ""  5

CHE_SELF_SIGNED_CERT:    ""  6

CHE_OPENSHIFT_OAUTH:    ""  7

CHE_OPENSHIFT_API_URL:    ""  8

CHE_WORKSPACE_PLUGIN_REGISTRY_URL:  ""  9

CHE_UPDATE_CHE_ADMIN_PASSWORD:   ""  10

CHE_WORKSPACE_MASTER_PROXY_JAVA_OPTS:  "" 1

CHE_WORKSPACE_PROXY_JAVA_OPTS:   "" 2

CHE_WORKSPACE_HTTP__PROXY:   "" 3

CHE_WORKSPACE_HTTPS__PROXY:   "" 4

CHE_WORKSPACE_NO__PROXY:   "" 5
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no_proxy for workspaces. Example: localhost,10.2.34.54

Database settings:

Use external existing Postgres database. Defaults to false which means a new instance of
Postgres will be started. When set to true, provide connection details and ensure that the
database user is a SUPERUSER

Database hostname

Database port

DB database

Database username

Database password

Your databse administrator password

Keycloak settings:

Connect to an existing external Keycloak and skip deploying a dedicated Keycloak instance.
Defaults to false.

Keycloak or Red Hat SSO.

Keyloak administrator username. Not required when connecting to an existing realm.

Keycloak administrator password. Auto-generated if empty.

Red Hat SSO realm.

Red Hat SSO client ID

Operator settings:

CHE_EXTERNAL_DB:  ""  1

CHE_DB_HOSTNAME:  ""  2

CHE_DB_PORT:   "5432"  3

CHE_DB_DATABASE:  ""  4

CHE_JDBC_USERNAME:  ""  5

CHE_JDBC_PASSWORD:  ""  6

CHE_DB_ADMIN_PASSWORD:  ""  7

CHE_EXTERNAL_KEYCLOAK:   ""  1

CHE_KEYCLOAK_AUTH__SERVER__URL: ""  2

CHE_KEYCLOAK_ADMIN_USERNAME:  ""  3

CHE_KEYCLOAK_ADMIN_PASSWORD:  "admin"  4

CHE_KEYCLOAK_REALM:   ""  5

CHE_KEYCLOAK_CLIENT__ID:  ""  6

Red Hat CodeReady Workspaces 1.0 Administration Guide

14



1 wait timeout for an Operator to watch deployments. Defaults to 420 seconds.

2.3. VIEWING CODEREADY WORKSPACES INSTALLATION LOGS

You can view the installation logs in the terminal or from the OpenShift console.

2.3.1. Viewing CodeReady Workspaces installation logs in the terminal

To view the installation logs on the terminal, take the following steps:

1. To obtain the names of the pods, run:

$ oc get pods

2. To view the logs for the pod, run:

$ oc logs --follow=false <log-name>

The following is an example output:

time="2019-02-06T09:38:52Z" level=info msg="Provisioning resources 
in pod postgres-7dd4d9cd8f-dwk77"
time="2019-02-06T09:38:52Z" level=info msg="Provisioning completed"
time="2019-02-06T09:38:53Z" level=info msg="Waiting for deployment 
keycloak. Default timeout: 420 seconds"
time="2019-02-06T09:41:02Z" level=info msg="keycloak successfully 
deployed"
time="2019-02-06T09:41:02Z" level=info msg="Provisioning resources 
in pod keycloak-66f64ddd49-xmsk7"
time="2019-02-06T09:41:11Z" level=info msg="Provisioning completed"
time="2019-02-06T09:41:11Z" level=info msg="Waiting for deployment 
che. Default timeout: 420 seconds"
time="2019-02-06T09:42:39Z" level=info msg="che successfully 
deployed"
time="2019-02-06T09:42:39Z" level=info msg="Che is available at: 
http://codeready-codeready.192.168.42.192.nip.io"
time="2019-02-06T09:42:39Z" level=info msg="Deployment took 
4m43.240319357s"

2.3.2. Viewing CodeReady Workspaces installation logs in the OpenShift console

To view installation logs in OpenShift console, take the following steps:

1. Navigate to <OpenShift-IP>/console.

2. In the My Projects pane, click codeready.

3. Click Applications > Pods. Click che-operator.

4. Click Logs and click Follow.

WAIT_DEPLOYMENT_TIMEOUT:  "" 1
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time="2019-02-06T09:38:52Z" level=info msg="Provisioning completed"
time="2019-02-06T09:38:53Z" level=info msg="Waiting for deployment 
keycloak. Default timeout: 420 seconds"
time="2019-02-06T09:41:02Z" level=info msg="keycloak successfully 
deployed"
time="2019-02-06T09:41:02Z" level=info msg="Provisioning resources 
in pod keycloak-66f64ddd49-xmsk7"
time="2019-02-06T09:41:11Z" level=info msg="Provisioning completed"
time="2019-02-06T09:41:11Z" level=info msg="Waiting for deployment 
che. Default timeout: 420 seconds"
time="2019-02-06T09:42:39Z" level=info msg="che successfully 
deployed"
time="2019-02-06T09:42:39Z" level=info msg="Che is available at: 
http://codeready-codeready.192.168.42.192.nip.io "
time="2019-02-06T09:42:39Z" level=info msg="Deployment took 
4m43.240319357s"

2.4. VIEWING CODEREADY WORKSPACES OPERATION LOGS

After the CodeReady Workspaces pods are created, you can view the operation logs of the application in
the terminal or through the OpenShift console.

2.4.1. Viewing CodeReady Workspaces operation logs in the terminal

To view the operation logs on the terminal, run the following commands:

1. To view the names of the pods, run:

$ oc get pods

This command shows the pods that have been created:

NAME                        READY     STATUS      RESTARTS   AGE
che-58d8456f55-89pvw        1/1       Running     0          1h
che-operator                0/1       Completed   0          1h
keycloak-66f64ddd49-xmsk7   1/1       Running     0          1h
postgres-7dd4d9cd8f-dwk77   1/1       Running     0          1h

2. To view the operation log for a specific pod, run:

$ oc logs --follow=false <log-name>

The output of this command for the che-58d8456f55-89pvw  pod (as an example) is as follows:

2019-02-06 09:42:36,818[ost-startStop-1]  [INFO ] 
[o.a.c.startup.HostConfig 957]        - Deploying web application 
archive [/home/jboss/codeready/tomcat/webapps/dashboard.war]
2019-02-06 09:42:37,976[ost-startStop-1]  [INFO ] 
[o.a.c.startup.HostConfig 1020]       - Deployment of web 
application archive 
[/home/jboss/codeready/tomcat/webapps/dashboard.war] has finished in 
[1,158] ms
2019-02-06 09:42:37,976[ost-startStop-1]  [INFO ] 
[o.a.c.startup.HostConfig 957]        - Deploying web application 
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archive [/home/jboss/codeready/tomcat/webapps/swagger.war]
2019-02-06 09:42:38,490[ost-startStop-1]  [INFO ] 
[o.a.c.startup.HostConfig 1020]       - Deployment of web 
application archive 
[/home/jboss/codeready/tomcat/webapps/swagger.war] has finished in 
[513] ms
2019-02-06 09:42:38,490[ost-startStop-1]  [INFO ] 
[o.a.c.startup.HostConfig 957]        - Deploying web application 
archive [/home/jboss/codeready/tomcat/webapps/workspace-loader.war]
2019-02-06 09:42:38,620[ost-startStop-1]  [INFO ] 
[o.a.c.startup.HostConfig 1020]       - Deployment of web 
application archive [/home/jboss/codeready/tomcat/webapps/workspace-
loader.war] has finished in [130] ms
2019-02-06 09:42:38,623[main]             [INFO ] 
[o.a.c.http11.Http11NioProtocol 588]  - Starting ProtocolHandler 
["http-nio-8080"]
2019-02-06 09:42:38,646[main]             [INFO ] 
[o.a.catalina.startup.Catalina 700]   - Server startup in 34592 ms

3. For operation logs of the other pods, run:

For the keycloak-66f64ddd49-xmsk7 pod: oc logs --follow=false keycloak-
66f64ddd49-xmsk7

For the postgres-7dd4d9cd8f-dwk77 pod: oc logs --follow=false postgres-
7dd4d9cd8f-dwk77

For the che-operator pod: oc logs --follow=false che-operator

2.4.2. Viewing CodeReady Workspaces operation logs in the OpenShift console

To view the operation logs in the OpenShift console, take the following steps:

1. Navigate to <OpenShift-IP>/console.

2. In the My Projects pane, click codeready.

3. In the Overview tab, click the application that you want to view the logs for.

4. In the Deployments > <application-name> window, click the name of the pod.

5. Scroll down to the Pods section and click the <pod-name>.

6. Click Logs
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Figure 2.2. Clicking View Log

7. Click Follow to follow the log.

09:41:00,260 INFO  [org.jboss.resteasy.resteasy_jaxrs.i18n] 
(ServerService Thread Pool -- 62) RESTEASY002220: Adding singleton 
resource org.keycloak.services.resources.RealmsResource from 
Application class 
org.keycloak.services.resources.KeycloakApplication
09:41:00,260 INFO  [org.jboss.resteasy.resteasy_jaxrs.i18n] 
(ServerService Thread Pool -- 62) RESTEASY002220: Adding singleton 
resource org.keycloak.services.resources.admin.AdminRoot from 
Application class 
org.keycloak.services.resources.KeycloakApplication
09:41:00,260 INFO  [org.jboss.resteasy.resteasy_jaxrs.i18n] 
(ServerService Thread Pool -- 62) RESTEASY002210: Adding provider 
singleton org.keycloak.services.util.ObjectMapperResolver from 
Application class 
org.keycloak.services.resources.KeycloakApplication
09:41:00,260 INFO  [org.jboss.resteasy.resteasy_jaxrs.i18n] 
(ServerService Thread Pool -- 62) RESTEASY002220: Adding singleton 
resource org.keycloak.services.resources.RobotsResource from 
Application class 
org.keycloak.services.resources.KeycloakApplication
09:41:00,260 INFO  [org.jboss.resteasy.resteasy_jaxrs.i18n] 
(ServerService Thread Pool -- 62) RESTEASY002220: Adding singleton 
resource org.keycloak.services.resources.ServerVersionResource from 
Application class 
org.keycloak.services.resources.KeycloakApplication

2.5. CONFIGURING CODEREADY WORKSPACES TO WORK BEHIND
THE HTTPS PROXY SERVER

This procedure describes how to configure CodeReady Workspaces for use in a deployment behind a
proxy. To access external resources (for example, to download Maven artifacts to build Java projects),
change the workspace configuration.

Prerequisites

Installed CodeReady Workspaces

Deployment parameters in config.yaml reflecting proxy set up
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Procedure

For example, to build a Java project, delete HTTPS-proxy related parameters from the JAVA_OPTS
value. Edit the HTTPS-proxy related parameters in the che configuration map:

1. In the OpenShift web console, click Resources > Config Maps > che.

2. Click Actions > Edit YAML.

3. In the editor, navigate to the JAVA_OPTS section.

4. Delete the following HTTPS-proxy related parameters from the JAVA_OPTS values:

-Dhttps.proxyHost
-Dhttps.proxyPort
-Dhttps.nonProxyHosts

5. To re-deploy CodeReady Workspaces from OpenShift web console, click Applications >
Deployments > codeready > Deploy.
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CHAPTER 3. USING THE CHE 7 IDE IN CODEREADY
WORKSPACES

IMPORTANT

CodeReady Workspaces 1.0.2 is based on upstream Che 6. The next version of Che, Che
7, is being worked on. To try this upcoming version of Che 7 in CodeReady Workspaces,
follow the instructions in this section.

Che 7-based stacks are not included by default in CodeReady Workspaces. However, you can use a
Che 7-based workspace configuration in CodeReady Workspaces. To use the Che 7-based stacks in
CodeReady Workspaces, take the following steps:

1. In the Dashboard, click Workspaces and then click Add Workspace.

2. Select any stack from the list and click the dropdown icon next to CREATE & OPEN.

3. Click Create & Proceed Editing.

4. Click the Config tab and replace the default configuration content with the following content:

{
  "environments": {},
  "projects": [],
  "name": "che7",
  "attributes": {
    "editor": "org.eclipse.che.editor.theia:1.0.0",
    "plugins": "che-machine-exec-plugin:0.0.1"
  },
  "commands": [],
  "links": []
}

5. To add additional Che plugins (for example to add support for a particular language), add them
in the workspace configuration attributes#plugins list. For a list of available plugins, see
https://github.com/eclipse/che-plugin-registry/.

6. To add a runtime environment (for example Java runtime environment), add the following
content in the Config tab:

"environments": {
     "default": {
      "machines": {
        "ws/dev": {
          "attributes": {
            "memoryLimitBytes": "536870912"
          },
          "servers": {},
          "volumes": {
            "projects": {
              "path": "/projects"
            }
          },
          "installers": [],
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          "env": {}
        }
      },
      "recipe": {
        "type": "kubernetes",
        "content": "kind: List\nitems:\n - \n  apiVersion: v1\n  
kind: Pod\n  metadata:\n   name: ws\n  spec:\n   containers:\n    - 
\n     image: 'eclipse/che-dev:nightly'\n     name: dev\n     
resources:\n      limits:\n       memory: 512Mi\n",
        "contentType": "application/x-yaml"
      }
    }
  }

7. To define it as the default environment, add the following content:

"defaultEnv": "default"
"environments": {
     "default": {...} }

8. Click the Open button and run the Che 7-based workspace that you just created.
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CHAPTER 4. USING THE ANALYTICS PLUG-IN IN
CODEREADY WORKSPACES

The Analytics plug-in provides insights about application dependencies: security vulnerabilities, license
compatibility, and AI-based guidance for additional, alternative dependencies.

The Analytics plug-in is enabled by default in the Java and NodeJS stacks in CodeReady Workspaces.
When a user opens the pom.xml or the package.json files, the dependencies are analyzed. The
editor shows warnings for available CVEs or issues with any dependency.
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CHAPTER 5. USING VERSION CONTROL
CodeReady Workspaces natively supports the Git version control system (VCS), which is provided by the
JGit library. Versioning functionality is available in the IDE and in the terminal.

The following sections describe how to connect and authenticate users to a remote Git repository. Any
operations that involve authentication on the remote repository need to be done via the IDE interface
unless authentication is configured separately for the workspace machine (terminal, commands).

Private repositories require a secure SSH connection. In order to connect to Git repositories over SSH,
an SSH key pair needs to be generated. SSH keys are saved in user preferences, so the same key can
be used in all workspaces.

NOTE

HTTPS Git URLs can only be used to push changes when OAuth authentication is
enabled. See Enabling authentication with social accounts and brokering.

5.1. GENERATING AND UPLOADING SSH KEYS

SSH keys can be generated in the CodeReady Workspaces user interface.

1. Go to Profile > Preferences > SSH > VCS, and click the Generate Key button.

2. When prompted to provide the host name for your repository, use the bare host name (do not
include www or https) as in the example below.

3. Save the resulting key to your Git-hosting provider account.

IMPORTANT

The host name is an actual host name of a VCS provider. Examples: github.com, 
bitbucket.org.

5.1.1. Using existing SSH keys

You can upload an existing public key instead of creating a new SSH key. When uploading a key, add
the host name (using no www or https - as in the example below). Note that the Public key > View
button is not be available when using this option because the public file should be generated already.
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The following examples are specific to GitHub and GitLab, but a similar procedure can be used with all
Git or SVN repository providers that use SSH authentication. See documentation provided by other
providers for additional assistance.

Example 5.1. GitHub example

When not using GitHub OAuth, you can manually upload a key. To add the associated public key to a
repository or account on github.com:

1. Click your user icon (top right).

2. Go to Settings > SSH and GPG keys and click the New SSH key button.

3. Enter a title and paste the public key copied from CodeReady Workspaces to the Key text
field.
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Example 5.2. GitLab example

To add the associated public key to a Git repository or account on gitlab.com:

1. Click your user icon (top right).

2. Go to Settings > SSH Keys.

3. Enter a title and paste the public key copied from CodeReady Workspaces to the Key text
field.
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5.2. CONFIGURING GITHUB OAUTH

OAuth for Github allows users to import projects using SSH addresses (git@), push to repositories, and
use the pull request panel. To enable automatic SSH key upload to GitHub for users:

1. On github.com, click your user icon (top right).

2. Go to Settings > Developer settings > OAuth Apps.

3. Click the Register a new application button.

4. In the Application name field, enter, for example, CodeReady Workspaces.

5. In the Homepage URL field, enter http://${CHE_HOST}:${CHE_PORT}.

6. In the Authorization callback URL field, enter 
http://${CHE_HOST}:${CHE_PORT}/api/oauth/callback.
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7. On OpenShift, update the deployment configuration.

CHE_OAUTH_GITHUB_CLIENTID=<your-github-client-id>
CHE_OAUTH_GITHUB_CLIENTSECRET=<your-github-secret>
CHE_OAUTH_GITHUB_AUTHURI=https://github.com/login/oauth/authorize
CHE_OAUTH_GITHUB_TOKENURI=https://github.com/login/oauth/access_toke
n
CHE_OAUTH_GITHUB_REDIRECTURIS=http://${CHE_HOST}:${CHE_PORT}/api/oau
th/callback

NOTE

Substitute all occurrences of ${CHE_HOST} and ${CHE_PORT} with the URL
and port of your CodeReady Workspaces installation.

Substitute <your-github-client-id> and <your-github-secret> with
your GitHub client ID and secret.

Once OAuth is configured, SSH keys are generated and uploaded automatically to GitHub by a user in
the IDE in Profile > Preferences > SSH > VCS by clicking the Octocat icon. You can connect to your
GitHub account and choose repositories to clone, rather than having to manually type (or paste) GitHub
project URLs.
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5.3. CONFIGURING GITLAB OAUTH

OAuth integration with GitLab is not supported. Although GitLab supports OAuth for clone operations,
pushes are not supported. A feature request to add support exists in the GitLab issue management
system: Allow runners to push via their CI token.

5.4. SUBMITTING PULL REQUESTS USING THE BUILT-IN PULL
REQUEST PANEL

CodeReady Workspaces provides a Pull Request panel to simplify the creation of pull requests for
GitHub, BitBucket, and Microsoft VSTS (with Git) repositories.

5.5. SAVING COMMITTER NAME AND EMAIL

Committer name and email are set in Profile > Preferences > Git > Committer. Once set, every commit
will include this information.

5.6. INTERACTING WITH GIT FROM A WORKSPACE

After importing a repository, you can perform the most common Git operations using interactive menus or
as terminal commands.
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NOTE

Terminal Git commands require their own authentication setup. This means that keys
generated in the IDE work only when Git is used through the IDE menus. Git installed in a
terminal is a different Git system. You can generate keys in ~/.ssh there as well.

Use keyboard shortcuts to access the most frequently used Git functionality faster:

Commit Alt+C

Push to remote Alt+Shift+C

Pull from remote Alt+P

Work with branches Ctrl+B

Compare current changes with the latest repository
version

Ctrl+Alt+D

5.7. GIT STATUS HIGHLIGHTING IN THE PROJECT TREE AND EDITOR

Files in project explorer and editor tabs can be colored according to their Git status:
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Green: new files that are staged in index

Blue: files that contain changes

Yellow: files that are not staged in index

The editor displays change markers according to file edits:

Yellow marker: modified line(s)

Green marker: new line(s)

White triangle: removed line(s)

5.8. PERFORMING GIT OPERATIONS

5.8.1. Commiting

Commit your changes by navigating to Git > Commit…  in the main menu, or use the Alt+C shortcut.
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1. Select files that will be added to index and committed. All files in the selected package or folder
in the project explorer are checked by default.

2. Type your commit message. Optionally, you can select Amend previous commit to modify the
previous commit (for more details, see Git commit documentation).

3. To push your commit to a remote repository by checking the Push committed changes to
check-box and select a remote branch.

4. Click Commit to proceed (the Commit button is active when at least one file is selected and a
commit message is present, or Amend previous commit is checked).

Behavior for files in the list view is the same as in the Compare window (see Reviewing changed files
section). Double-clicking a file opens diff window with it.

5.8.2. Pushing and pulling

Push your commits by navigating to Git > Remotes…  > Push in the main menu, or use the 
Alt+Shift+C shortcut.
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1. Choose the remote repository.

2. Choose the local and remote branch.

3. Optionally, you can force select Force push.

Get changes from a remote repository by navigating to Git > Remotes…  > Pull in the main menu, or use
the Alt+P shortcut.

You can use Rebase instead of merge to keep your local commits on top (for more information, see Git
pull documentation).

5.8.3. Managing branches

Manage your git branches by navigating to Git > Branches…  in the main menu, or use the Ctrl+B
shortcut.
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You can filter the branches view by choosing to see only local or remote branches.

5.9. REVIEWING CHANGED FILES

The Git Compare window is used to show files that have changed.

To compare the current state of code to the latest local commit, navigate to Git > Compare > Select-to-
what in the main menu, or use the Ctrl+Alt+D shortcut. Another way is to select an object in the
project tree and choose Git > Select-to-what from the context menu of an item.
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Listing changed files

The Git Compare window shows changed files in the selected object in the project explorer. To see all
changes, select a project folder. If only one file has changed, a diff window is shown instead of the
compare window.

By default, affected files are listed as a tree.

The Expand all directories and Collapse all directories options help to get a better view. The View 
as list button switches the view of changed files to a list, where each file is shown with its full path. To
return to the tree view, click Group by directories.

Red Hat CodeReady Workspaces 1.0 Administration Guide

34



Viewing diffs

To view a diff for a file, select the file and click Compare, or double-click the file name.

You can review changes between two states of code. To view the diff, go to Git > Compare > Select-to-
what in main menu. If more than one file has changed, a list of the changed files is opened first. To
select a file to compare, double-click it, or select a file, and then click Compare. Another way to open a
diff is to select a file in the Projects Explorer and choose Git > Select-to-what from its context menu or
directly from the context menu in the editor.
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Your changes are shown on the left, and the file being compared to is on the right. The left pane can be
used for editing and fixing your changes.

To review multiple files, you can navigate between them using the Previous (or Alt+.) and Next (or 
Alt+,) buttons. The number of files for review is displayed in the title of the diff window.

The Refresh button updates the difference links between the two panes.
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CHAPTER 6. CODEREADY WORKSPACES ADMINISTRATION
GUIDE

6.1. RAM PREREQUISITES

You must have at least 5 GB of RAM to run CodeReady Workspaces. The Keycloak authorization server
and PostgreSQL database require the extra RAM. CodeReady Workspaces uses RAM in this
distribution:

CodeReady Workspaces server: approximately 750 MB

Keycloak: approximately 1 GB

PostgreSQL: approximately 515 MB

Workspaces: 2 GB of RAM per workspace. The total workspace RAM depends on the size of the
workspace runtime(s) and the number of concurrent workspace pods.

6.1.1. Setting default workspace RAM limits

The default workspace RAM limit and the RAM allocation request can be configured by passing the 
CHE_WORKSPACE_DEFAULT__MEMORY__LIMIT__MB and 
CHE_WORKSPACE_DEFAULT__MEMORY__REQUEST__MB parameters to a CodeReady Workspaces
deployment.

For example, use the following configuration to limit the amount of RAM used by workspaces to 2048 MB
and to request the allocation of 1024 MB of RAM:

$ oc set env dc/che CHE_WORKSPACE_DEFAULT__MEMORY__LIMIT__MB=2048 \
                         CHE_WORKSPACE_DEFAULT__MEMORY__REQUEST__MB=1024

NOTE

The user can override the default values when creating a workspace.

A RAM request greater than the RAM limit is ignored.

6.2. REQUIREMENTS FOR RESOURCE ALLOCATION AND QUOTAS

Workspace pods are created in the account of the user who deploys CodeReady Workspaces. The user
needs enough quota for RAM, CPU, and storage to create the pods.

6.3. SETTING UP THE PROJECT WORKSPACE

Workspace objects are created differently depending on the configuration. CodeReady Workspaces
currently supports two different configurations:

Single OpenShift project

Multi OpenShift project

6.3.1. Setting up a single OpenShift project
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To setup a single OpenShift project:

1. Define the service account used to create workspace objects with the 
CHE_OPENSHIFT_SERVICEACCOUNTNAME variable.

2. To ensure this service account is visible to the CodeReady Workspaces server, put the service
and the CodeReady Workspaces server in the same namespace.

3. Give the service account permissions to create and edit OpenShift resources.

4. If the developer needs to create an object outside of the service accounts bound namespace,
give the service account cluster-admin rights by running this command:

$ oc adm policy add-cluster-role-to-user self-provisioner 
system:serviceaccount:eclipse-che:che

In the command above, eclipse-che is the CodeReady Workspaces namespace.

6.3.2. Setting up a multi OpenShift project

1. To create workspace objects in different namespaces for each user, set the 
NULL_CHE_INFRA_OPENSHIFT_PROJECT variable to NULL.

2. To create resources on behalf of the currently logged-in user, use the user’s OpenShift tokens.

6.4. HOW THE CODEREADY WORKSPACES SERVER USES PVCS AND
PVS FOR STORAGE

CodeReady Workspaces server, Keycloak and PostgreSQL pods, and workspace pods use Persistent
Volume Claims (PVCs), which are bound to the physical Persistent Volumes (PVs) with ReadWriteOnce
access mode. When the deployment YAML files run, they define the CodeReady Workspaces PVCs.
You can configure workspace PVC access mode and claim size with CodeReady Workspaces
deployment environment variables.

6.4.1. Storage requirements for CodeReady Workspaces infrastructure

CodeReady Workspaces server: 1 GB to store logs and initial workspace stacks.

Keycloak: 2 PVCs, 1 GB each to store logs and Keycloak data.

PostgreSQL: 1 GB PVC to store database.

6.4.2. Storage strategies for workspaces

The workspace PVC strategy is configurable:

strategy details pros cons

unique (default) One PVC per workspace
volume

Storage isolation An undefined number of
PVs is required
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common One PVC for all
workspaces in one
OpenShift Project

Sub-paths pre-created

Easy to manage and
control storage

Workspaces must be in
a separate OpenShift
Project if PV does not
support ReadWriteMany
(RWX) access mode

per-workspace One PVC for one
workspace

Sub-paths pre-created

Easy to manage and
control storage

Workspace containers
must all be in one pod if
PV does not support
ReadWriteMany (RWX)
access mode

strategy details pros cons

6.4.3. Unique PVC strategy

To define the unique strategy, set CHE_INFRA_KUBERNETES_PVC_STRATEGY to unique.

Every workspace gets its own PVC, which means a workspace PVC is created when a workspace starts
for the first time. Workspace PVC is deleted when a corresponding workspace is deleted.

6.4.4. Common PVC Strategy

6.4.4.1. How the common PVC strategy works

All workspaces use the same PVC to store data declared in their volumes (projects and workspace logs
by default and whatever additional volumes that a user can define.)

A PV that is bound to PVC che-claim-workspace will have the following structure:

pv0001
  workspaceid1
  workspaceid2
  workspaceidn
    che-logs projects <volume1> <volume2>

Volumes can be anything that a user defines as volumes for workspace machines. The volume name is
equal to the directory name in ${PV}/${ws-id}.

When a workspace is deleted, a corresponding subdirectory (${ws-id}) is deleted in the PV directory.

6.4.4.2. Enabling a common strategy

If you have already deployed CodeReady Workspaces with unique strategy, set the 
CHE_INFRA_KUBERNETES_PVC_STRATEGY variable to common in dc/che.

If applying the che-server-template.yaml configuration, pass -p 
CHE_INFRA_KUBERNETES_PVC_STRATEGY=common to the oc new-app command.

6.4.4.3. Restrictions on using common PVC strategy
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When a common strategy is used and a workspace PVC access mode is ReadWriteOnce (RWO), only
one OpenShift node can simultaneously use PVC. If there are several nodes, you can use a common
strategy, but the workspace PVC access mode is ReadWriteMany (RWM). Multiple nodes can use this
PVC simultaneously.

To change the access mode for workspace PVCs, pass the 
CHE_INFRA_KUBERNETES_PVC_ACCESS_MODE=ReadWriteMany environment variable to CodeReady
Workspaces deployment either when initially deploying CodeReady Workspaces or through the
CodeReady Workspaces deployment update.

Another restriction is that only pods in the same namespace can use the same PVC. The 
CHE_INFRA_KUBERNETES_PROJECT environment variable should not be empty. It should be either the
CodeReady Workspaces server namespace where objects can be created with the CodeReady
Workspaces service account (SA) or a dedicated namespace where a token or a username and
password need to be used.

6.4.5. Per workspace PVC strategy

To define the unique strategy, set CHE_INFRA_KUBERNETES_PVC_STRATEGY to per-workspace.

6.4.5.1. How the per workspace PVC strategy works

It works similarly to the common PVC strategy. The only difference is that all workspace volumes (but not
all workspaces) use the same PVC to store data (projects and workspace logs by default and any
additional volumes that a user can define).

6.5. UPDATING YOUR CODEREADY WORKSPACES DEPLOYMENT

To update CodeReady Workspaces deployment:

1. Change the image tag:
You can change the image tag in one of the following ways:

On the command line, edit the image tag by running:

$ oc edit dc/che

In the OpenShift web console, edit the image:tag line in the YAML file in Deployments

Using the Docker service:

$ oc set image dc/che che=eclipse/che-server:${VERSION} --
source=docker

2. Update Keycloak and PostgreSQL deployments (optional):

Run the eclipse/che-keycloak command.

Run the eclipse/che-postgres command.
You can get the list of available versions at CodeReady Workspaces GitHub page.

3. Change the pull policy (optional):
To change the pull policy, do one of the following:
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Add --set cheImagePullPolicy=IfNotPresent to the CodeReady Workspaces
deployment.

Manually edit dc/che after deployment.

The default pull policy is Always. The default tag is nightly. This tag sets the image pull policy to 
Always and triggers a new deployment with a newer image, if available.

6.6. SCALABILITY

To run more workspaces, add more nodes to your OpenShift cluster. An error message is returned when
the system is out of resources.

6.7. GDPR

To delete data or request the administrator to delete data, run this command with the user or
administrator token:

$ curl -X DELETE http://che-server/api/user/{id}

6.8. DEBUG MODE

To run CodeReady Workspaces Server in debug mode, set the following environment variable in the
CodeReady Workspaces deployment to true (default is false):

CHE_DEBUG_SERVER=true

6.9. PRIVATE DOCKER REGISTRIES

See OpenShift documentation.

6.10. CODEREADY WORKSPACES SERVER LOGS

Logs are persisted in a PV .The PVC che-data-volume is created and bound to a PV after
CodeReady Workspaces deploys to OpenShift.

To retrieve logs, do one of the following:

Run the oc get log dc/che command.

Run the oc describe pvc che-data-claim command to find the PV. Next, run the oc 
describe pv $pvName command with the PV to get a local path with the logs directory. Be
careful with permissions for that directory, since once changed, CodeReady Workspaces server
will not be able to write to a file.

In the OpenShift web console, select Pods > che-pod > Logs.

It is also possible to configure CodeReady Workspaces master not to store logs, but produce JSON
encoded logs to output instead. It may be used to collect logs by systems such as Logstash. To
configure JSON logging instead of plain text environment variable CHE_LOGS_APPENDERS_IMPL should
have value json.
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6.11. WORKSPACE LOGS

Workspace logs are stored in an PV bound to che-claim-workspace PVC. Workspace logs include
logs from workspace agent, bootstrapper and other agents if applicable.

6.12. CODEREADY WORKSPACES MASTER STATES

The CodeReady Workspaces master has three possible states:

RUNNING

PREPARING_TO_SHUTDOWN

READY_TO_SHUTDOWN

The PREPARING_TO_SHUTDOWN state means that no new workspace startups are allowed. This
situation can cause two different results:

If your infrastructure does not support workspace recovery, all running workspaces are forcibly
stopped.

If your infrastructure does support workspace recovery, any workspaces that are currently
starting or stopping is allowed to finish that process. Running workspaces do not stop.

For those that did not stop, automatic fallback to the shutdown with full workspaces stopping will be
performed.

If you want a full shutdown with workspaces stopped, you can request this by using the 
shutdown=true parameter. When preparation process is finished, the READY_TO_SHUTDOWN state is
set which allows to stop current CodeReady Workspaces master instance.

6.13. WORKSPACE TERMINATION GRACE PERIOD

The default grace termination period of OpenShift workspace pods is 0. This setting terminates pods
almost instantly and significantly decreases the time required for stopping a workspace.

To increase the grace termination period, use the following environment variable: 
CHE_INFRA_KUBERNETES_POD_TERMINATION__GRACE__PERIOD__SEC.

IMPORTANT

If the terminationGracePeriodSeconds variable is explicitly set in the OpenShift
recipe, the CHE_INFRA_KUBERNETES_POD_TERMINATION__GRACE__PERIOD__SEC
environment variable does not override the recipe.

6.14. AUTO-STOPPING A WORKSPACE WHEN ITS PODS ARE
REMOVED

CodeReady Workspaces Server includes a job that automatically stops workspace runtimes if their pods
have been terminated. Pods are terminated when, for example, users remove them from the OpenShift
console, administrators terminate them to prevent misuse, or an infrastructure node crashes.

The job is disabled by default to avoid problems in configurations where CodeReady Workspaces Server
cannot interact with the Kubernetes API without user intervention.
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The job cannot function with the following CodeReady Workspaces Server configuration:

CodeReady Workspaces Server communicates with the Kubernetes API using a token from the
OAuth provider.

The job can function with the following CodeReady Workspaces Server configurations:

Workspaces objects are created in the same namespace where CodeReady Workspaces Server
is located.

The cluster-admin service account token is mounted to the CodeReady Workspaces Server
pod.

To enable the job, set the 
CHE_INFRA_KUBERNETES_RUNTIMES__CONSISTENCY__CHECK__PERIOD__MIN environment
variable to contain a value greater than 0. The value is the time period in minutes between checks for
runtimes without pods.

6.15. UPDATING CODEREADY WORKSPACES WITHOUT STOPPING
ACTIVE WORKSPACES

The differences between a Recreate update and a Rolling update:

Recreate update Rolling update

CodeReady Workspaces downtime No CodeReady Workspaces downtime

- New deployment starts in parallel and traffic is hot-
switched

6.15.1. Performing a recreate update

To perform a recreate update:

Ensure that the new master version is fully API compatible with the old workspace agent
version.

Set the deployment update strategy to Recreate

Make POST request to the /api/system/stop api to start WS master suspend. This means
that all new attempts to start workspaces will be refused, and all current starts and stops will be
finished. Note that this method requires system admin credentials.

Make periodical GET requests to the /api/system/state API, until it returns the 
READY_TO_SHUTDOWN state. Also, you can check for "System is ready to shutdown" in the
server logs.

Perform new deploy.

6.15.2. Performing a rolling update

To perform a rolling update:
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Ensure that the new master is fully API compatible with the old ws agent versions, as well as
database compatibility. It is impossible to use database migrations on this update mode.

Set the deployment update strategy set to Rolling.

Ensure terminationGracePeriodSeconds deployment parameter has enough value (see
details below).

Press Deploy button or execute oc rollout latest che from cli client.

6.15.2.1. Known issues

Workspaces may fallback to the stopped state when they are started five to thirty seconds before
the network traffic are switched to the new pod. This happens when the bootstrappers use the
CodeReady Workspaces server route URL for notifying the CodeReady Workspaces Server that
bootstrapping is done. Since traffic is already switched to the new CodeReady Workspaces
server, the old CodeReady Workspaces server cannot get the bootstrapper’s report and fails to
start after the waiting timeout is reached. If the old CodeReady Workspaces server is killed
before this timeout, the workspaces can be stuck in the STARTING state. The 
terminationGracePeriodSeconds parameter must define enough time to cover the
workspace start timeout, which is eight minutes plus some additional time. Typically, setting 
terminationGracePeriodSeconds to 540 sec is enough to cover all timeouts.

Users may experience problems with websocket reconnections or missed events published by
WebSocket connection when a workspace is STARTED but dashboard displays that it is 
STARTING. In this case, you need to reload the page to restore connections and the actual
workspace states.

6.15.3. Updating with database migrations or API incompatibility

If new version of CodeReady Workspaces server contains some DB migrations, but there is still API
compatibility between old and new version, recreate update type may be used, without stopping running
workspaces.

API incompatible versions should be updated with full workspaces stop. It means that 
/api/system/stop?shutdown=true must be called prior to update.

6.16. DELETING DEPLOYMENTS

The fastest way to completely delete CodeReady Workspaces and its infrastructure components is to
delete the project and namespace.

To delete CodeReady Workspaces and components:

$ oc delete namespace che

You can use selectors to delete particular deployments and associated objects.

To remove all CodeReady Workspaces server related objects:

$ oc delete all -l=app=che

To remove all Keycloak related objects:
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$ oc delete all -l=app=keycloak

To remove all PostgreSQL-related objects:

$ oc delete all -l=app=postgres

PVCs, service accounts and role bindings should be deleted separately because oc delete all does
not delete them.

To delete CodeReady Workspaces server PVC, ServiceAccount and RoleBinding:

$ oc delete sa -l=app=che
$ oc delete rolebinding -l=app=che

To delete Keycloak and PostgreSQL PVCs:

$ oc delete pvc -l=app=keycloak
$ oc delete pvc -l=app=postgres

6.17. MONITORING CODEREADY WORKSPACES MASTER SERVER

Master server emits metrics in Prometheus format by default on port 8087 of the CodeReady
Workspaces server host (this can be customized by the che.metrics.portconfiguration property).

You can configure your own Prometheus deployment to scrape the metrics (as per convention, the
metrics are published on the <CHE_HOST>:8087/metrics endpoint).

The CodeReady Workspaces’s Helm chart can optionally install Prometheus and Grafana servers
preconfigured to collect the metrics of the CodeReady Workspaces server. When you set the 
global.metricsEnabled value to true when installing CodeReady Workspaces’s Helm chart,
Prometheus and Grafana servers are automatically deployed. The servers are accessible on 
prometheus-<CHE_NAMESPACE>.domain or grafana-<CHE_NAMESPACE>.domain domains
respectively. The Grafana server is preconfigured with a sample dashboard showing the memory usage
of the CodeReady Workspaces server. You can log in to the Grafana server using the predefined
username admin with the default password admin.

6.18. CREATING WORKSPACE OBJECTS IN PERSONAL
NAMESPACES

You can register the OpenShift server as an identity provider when CodeReady Workspaces is installed
in multi-user mode. This allows you to create workspace objects in the OpenShift namespace of the user
that is logged in CodeReady Workspaces through Keycloak.

To create a workspace object in the namespace of the user that is logged into CodeReady Workspaces:

Register, inside Keycloak, an OpenShift identity provider that points to the OpenShift console of
the cluster.

Configure CodeReady Workspaces to use the Keycloak identity provider to retrieve the
OpenShift tokens of the CodeReady Workspaces users.
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Every workspace action such as start or stop creates an OpenShift resource in the OpenShift user
account. A notification message displays which allows you to link the Keycloak account to your
OpenShift user account.

But for non-interactive workspace actions, such as workspace stop on idling or CodeReady Workspaces
server shutdown, the dedicated OpenShift account configured for the Kubernetes infrastructure is used.
See Setting up the project workspace for more information.

To easily install CodeReady Workspaces on OpenShift with this feature enabled, see this section for
Minishift and this one for OCP

6.19. OPENSHIFT IDENTITY PROVIDER REGISTRATION

NOTE

Cluster-wide administrator rights are required to add an OAuth client.

To add the OpenShift identity provider:

1. Use the following settings in the Keycloak administration console:

The Base URL is the URL of the OpenShift console.

2. Add a default read-token role.
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3. Declare the identity provider as an OAuth client inside OpenShift with the following commands:

$ oc create -f <(echo '
apiVersion: v1
kind: OAuthClient
metadata:
  name: kc-client
secret: "<value set for the 'Client Secret' field in step 1>"
redirectURIs:
  - "<value provided in the 'Redirect URI' field in step 1>"
grantMethod: prompt
')

See Keycloak documentation for more information on the Keycloak OpenShift identity provider.

6.20. CONFIGURING CODEREADY WORKSPACES

To configure CodeReady Workspaces deployment:

Set the CHE_INFRA_OPENSHIFT_PROJECT variable to NULL to ensure a new distinct OpenShift
namespace is created for every workspace that is started.

Set the CHE_INFRA_OPENSHIFT_OAUTH__IDENTITY__PROVIDER variable to the alias of the
OpenShift identity provider specified in step 1 of its registration in Keycloak. The default value is 
openshift-v3.

6.21. PROVIDING THE OPENSHIFT CERTIFICATE TO KEYCLOAK

If the certificate used by the OpenShift console is self-signed or is not trusted, then by default the
Keycloak will not be able to contact the OpenShift console to retrieve linked tokens.

Keycloak cannot contact the OpenShift console to retrieve linked tokens when the certificate used by the
OpenShift console is self-signed or is not trusted.

When the certificate is self-signed or is not trusted, use the 
OPENSHIFT_IDENTITY_PROVIDER_CERTIFICATE variable to pass the OpenShift console certificate
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to the Keycloak deployment. This will enable the Keycloak server to add the certificate to the list of
trusted certificates. The environment variable refers to a secret that contains the certificate.
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CHAPTER 7. MANAGING USERS

7.1. AUTHORIZATION AND USER MANAGEMENT

CodeReady Workspaces uses Keycloak to create, import, manage, delete, and authenticate users.
Keycloak uses built-in authentication mechanisms and user storage. It can use third-party identity
management systems to create and authenticate users. CodeReady Workspaces requires a Keycloak
token when you request access to CodeReady Workspaces resources.

Local users and imported federation users must have an email address in their profile.

The default Keycloak credentials are admin:admin. You can use the admin:admin credentials when
logging into CodeReady Workspaces for the first time. It has system privileges.

To find your Keycloak URL:

If CodeReady Workspaces is deployed on OpenShift:

Go to the OpenShift web console and navigate to the Keycloak namespace.

7.2. CONFIGURING CODEREADY WORKSPACES TO WORK WITH
KEYCLOAK

The deployment script ensures that Keycloak is properly configured when CodeReady Workspaces is
deployed on OpenShift or installed on Docker. When the che-public client is created, the following
fields are populated:

Valid Redirect URIs: Use this URL to access CodeReady Workspaces.

Web Origins

The following are common errors when configuring CodeReady Workspaces to work with Keycloak:

Invalid redirectURI error: occurs when you access CodeReady Workspaces at myhost, which is an
alias, and your original CHE_HOST is 1.1.1.1. If this error occurs, go to the Keycloak administration
console and ensure that the valid redirect URIs are configured.

CORS error: occurs when you have an invalid web origin

7.3. CONFIGURING KEYCLOAK TOKENS

A user token expires after 30 minutes by default.

You can change the following Keycloak token settings:
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7.4. SETTING UP USER FEDERATION

Keycloak federates external user databases and supports LDAP and Active Directory. You can test the
connection and authenticate users before choosing a storage provider.

See the User storage federation page in Keycloak documentation to learn how to add a provider.

See the LDAP and Active Directory page in Keycloak documentation to specify multiple LDAP servers.

7.5. ENABLING AUTHENTICATION WITH SOCIAL ACCOUNTS AND
BROKERING

Keycloak provides built-in support for GitHub, OpenShift, and most common social networks such as
Facebook and Twitter. See Instructions to enable Login with GitHub.

You can also enable the SSH key and upload it to the CodeReady Workspaces users’ GitHub accounts.

To enable this feature when you register a GitHub identity provider:

1. Set scope to repo,user,write:public_key.

2. Set store tokens and stored tokens readable to ON.

Red Hat CodeReady Workspaces 1.0 Administration Guide

50

http://www.keycloak.org/docs/3.2/server_admin/topics/user-federation.html
http://www.keycloak.org/docs/3.2/server_admin/topics/user-federation/ldap.html
http://www.keycloak.org/docs/3.2/server_admin/topics/identity-broker/social/github.html


1. Add a default read-token role.

This is the default delegated OAuth service mode for CodeReady Workspaces. You can configure the
OAuth service mode with the property che.oauth.service_mode.
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To use CodeReady Workspaces’s OAuth Authenticator, set che.oauth.service_mode to embedded
and use Instructions for single-user mode.

See SSH key management for more information.

7.6. USING PROTOCOL-BASED PROVIDERS

Keycloak supports SAML v2.0 and OpenID Connect v1.0 protocols. You can connect your identity
provider systems if they support these protocols.

7.7. MANAGING USERS

You can add, delete, and edit users in the user interface. See: Keycloak User Management for more
information.

7.8. CONFIGURING SMTP AND EMAIL NOTIFICATIONS

CodeReady Workspaces does not provide any pre-configured MTP servers.

To enable SMTP servers in Keycloak:

1. Go to che realm settings > Email.

2. Specify the host, port, username, and password.

CodeReady Workspaces uses the default theme for email templates for registration, email confirmation,
password recovery, and failed login.

7.9. CODEREADY WORKSPACES AUTHENTICATION

7.9.1. Authentication on CodeReady Workspaces Master

7.9.1.1. OpenId

OpenId authentication on CodeReady Workspaces master, implies presence of an external OpenId
provider and has 2 main steps:

1. Authenticate the user through the JWT token he brought or redirect him to login;
(Authentication tokens should be send in a Authorization header. Also, in limited cases
when it’s not possible to use Authorization header, token can be send in token query
parameter. An example of such exceptional case can be: OAuth authentification initialization,
IDE shows javadoc in iframe where authentication must be initialized.)

2. Compose internal "subject" object which represents the current user inside of the CodeReady
Workspaces master code.

At the time of writing the only supported/tested OpenId provider is Keycloak, so all examples/links will
refer to this implementation.

The flow starts from the settings service where clients can find all the necessary URLs and properties of
the OpenId provider such as jwks.endpoint, token.endpoint, logout.endpoint, realm.name, 
client_id etc returned. in JSON format.

Red Hat CodeReady Workspaces 1.0 Administration Guide

52

http://www.keycloak.org/docs/3.2/server_admin/topics/identity-broker/saml.html
http://www.keycloak.org/docs/3.2/server_admin/topics/identity-broker/oidc.html
http://www.keycloak.org/docs/3.2/server_admin/topics/users.html


Service class is org.eclipse.che.multiuser.keycloak.server.KeycloakSettings, and it is bound only in
multi-user version of CodeReady Workspaces, so by its presence it is possible to detect if authentication
enabled in current deployment or not.

Example output:

Also, this service allows to download JS client library to interact with provider. Service URL is 
<che.host>:<che.port>/api/keycloak/settings for retrieving settings JSON and 
<che.host>:<che.port>/api/keycloak/OIDCKeycloak.js for JS adapter library.

Next step is redirection of user to the appropriate provider’s login page with all the necessary params like
client_id, return redirection path etc. This can be basically done with any client library (JS or Java etc).

After user logged in on provider’s side and client side code obtained and passed the JWT token,
validation of it and creation of subject begins.

Verification of tokens signature occurs in the two main filters chain:

org.eclipse.che.multiuser.keycloak.server.KeycloakAuthenticationFilter class. Token is
extracted from Authorization header or token query param and tried to being parsed using
public key retrieved from provider. In case of expired/invalid/malformed token, 403 error is sent
to user. As noted above, usage of query parameter should be minimised as much as possible,
since support of it may be limited/dropped at some point.

If validation was successful, token is passed to the

org.eclipse.che.multiuser.keycloak.server.KeycloakEnvironmentInitalizationFilter filter in
the parsed form. This filter simply extracts data from JWT token claims, creates user in the local
DB if it is not yet present, and constructs subject object and sets it into per-request 
EnvironmentContext object which is statically accessible everywhere.

If the request was made using machine token only (e.g. from ws agent) then it is only one auth filter in
the chain:

org.eclipse.che.multiuser.machine.authentication.server.MachineLoginFilter - finds userId
given token belongs to, than retrieves user instance and sets principal to the session.

Master-to-master requests are performed using
org.eclipse.che.multiuser.keycloak.server.KeycloakHttpJsonRequestFactory which signs every
request with the current subject token obtained from EnvironmentContext.

7.9.1.1.1. User Profile

{
    "che.keycloak.token.endpoint": 
"http://172.19.20.9:5050/auth/realms/che/protocol/openid-connect/token",
    "che.keycloak.profile.endpoint": 
"http://172.19.20.9:5050/auth/realms/che/account",
    "che.keycloak.client_id": "che-public",
    "che.keycloak.auth_server_url": "http://172.19.20.9:5050/auth",
    "che.keycloak.password.endpoint": 
"http://172.19.20.9:5050/auth/realms/che/account/password",
    "che.keycloak.logout.endpoint": 
"http://172.19.20.9:5050/auth/realms/che/protocol/openid-connect/logout",
    "che.keycloak.realm": "che"
}
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Since keycloak may store user specific information (first/last name, phone number, job title etc), there is
special implementation of the ProfileDao which can provide this data to consumers inside CodeReady
Workspaces. Implementation is read-only, so no create/update operations are possible. Class is
org.eclipse.che.multiuser.keycloak.server.dao.KeycloakProfileDao.

7.9.1.1.2. Obtaining Token From Keycloak

For the clients which cannot run JS or other type clients (like CLI or selenium tests), auth token may be
requested directly from Keycloak. The simplest way to obtain Keycloak auth token, is to perform request
to the token endpoint with username and password credentials. This request can be schematically
described as following cURL request:

curl
    --data "grant_type=password&client_id=<client_name>&username=
<username>&password=<password>"
     
http://<keyckloak_host>:5050/auth/realms/<realm_name>/protocol/openid-
connect/token

Since the two main CodeReady Workspaces clients (IDE and Dashboard) utilizes native Keycloak js
library, they’re using a customized Keycloak login page and somewhat more complicated authentication
mechanism using grant_type=authorization_code. It’s a two step authentication: first step is login
and obtaining authorization code, and second step is obtaining token using this code.

Example of correct token response:

7.9.1.2. Other authentication implementations

If you want to adapt authentication implementation other than Keycloak, the following steps must be
done:

Write own or refactor existing info service which will provide list of configured provider endpoints
to the clients;

Write single or chain of filters to validate tokens, create user in CodeReady Workspaces DB and
compose the Subject object;

If the new auth provider supports OpenId protocol, OIDC JS client available at settings endpoint
can be used as well since it is maximally decoupled of specific implementations.

If the selected provider stores some additional data about user (first/last name, job title etc), it is
a good idea to write an provider-specific ProfileDao implementation which will provide such kind
of information.

{
   "access_token":"eyJhb...<rest of JWT token here>",
   "expires_in":300,
   "refresh_expires_in":1800,
   "refresh_token":"Nj0C...<rest of refresh token here>",
   "token_type":"bearer",
   "not-before-policy":0,
   "session_state":"14de1b98-8065-43e1-9536-43e7472250c9"
}
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7.9.1.3. OAuth

OAuth authentication part has 2 main flows - internal and external based on Keycloak brokering
mechanism. So, there are 2 main OAuth API implementations -
org.eclipse.che.security.oauth.EmbeddedOAuthAPI and
org.eclipse.che.multiuser.keycloak.server.oauth2.DelegatedOAuthAPI.

They can be switched using che.oauth.service_mode=<embedded|delegated> configuration
property.

Also, there is support of OAuth1 protocol can be found at org.eclipse.che.security.oauth1 package.

The main REST endpoint in tha OAuth API is
org.eclipse.che.security.oauth.OAuthAuthenticationService, which contains authenticate
method to start OAuth authentication flow, callback method to process callbacks from provider, token
to retrieve current user’s oauth token, etc.

Those methods refer to the currently activated embedded/delegated OAuthAPI which is doing all the
undercover stuff (finds appropriate authenticator, initializes the login process, user forwarding etc).

7.9.2. Authentication on CodeReady Workspaces Agents

Machines may contain services that must be protected with authentication, e.g. agents like workspace
agent and terminal. For this purpose, machine authentication mechanism should be used. Machine
tokens were introduced to avoid passing the Keycloak tokens to the machine side (which can be
potentially insecure). Another reason is that Keycloak tokens may have relatively small lifetime and
require periodical renewal/refresh which is hard to manage and keep in sync with same user session
tokens on clients etc.

As agents cannot be queried using Keycloak token, there is only Machine Token option. Machine token
can be also passed in header or query parameter.

7.9.2.1. Machine JWT Token

Machine token is JWT that contains the following information in its claim:

uid - id of user who owns this token

uname - name of user who owns this token

wsid - id of a workspace which can be queried with this token

Each user is provided with unique personal token for each workspace.

The structure of token and the signature are different to Keycloak and have the following view:

# Header
{
  "alg": "RS512",
  "kind": "machine_token"
}
# Payload
{
  "wsid": "workspacekrh99xjenek3h571",
  "uid": "b07e3a58-ed50-4a6e-be17-fcf49ff8b242",
  "uname": "john",
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The algorithm that is used for signing machine tokens is SHA-512 and it’s not configurable for now. Also,
there is no public service that distributes the public part of the key pair with which the token was signed.
But in each machine, there must be environment variables that contains key value. So, agents can verify
machine JWT token using the following environment variables:

CHE_MACHINE_AUTH_SIGNATURE__ALGORITHM - contains information about the algorithm
which the token was signed

CHE_MACHINE_AUTH_SIGNATURE__PUBLIC__KEY - contains public key value encoded in
Base64

It’s all that is needed for verifying machine token inside of machine. To make sure that specified token is
related to current workspace, it is needed to fetch wsid from JWT token claims and compare it with 
CHE_WORKSPACE_ID environment variable.

Also, if agents need to query CodeReady Workspaces Master they can use machine token provided in 
CHE_MACHINE_TOKEN environment, actually it is token of user who starts a workspace.

7.9.2.2. Authentication schema

The way how CodeReady Workspaces master interacts with agents with enabled authentication
mechanism is the following:

  "jti": "06c73349-2242-45f8-a94c-722e081bb6fd"
}
# Signature
{
  "value": "RSASHA512(base64UrlEncode(header) + . +  
base64UrlEncode(payload))"
}
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Machine token verification on agents is done by the following components:

org.eclipse.che.multiuser.machine.authentication.agent.MachineLoginFilter - doing
basically the same as the appropriate filter on a master, the only thing that is different it’s a way
how agent obtains the public signature part. The public key for the signature check is placed in a
machine environment, with algorithm description.

auth.auth.go - the entry point for all request that is proceeding on go agents side, the logic of
token verification is similar with MachineLoginFilter.

7.9.2.3. Obtaining Machine Token

A machine token is provided for users in runtime object. It can be fetched by using get workspace by key
(id or namespace/name) method which path equals to /api/workspace/<workspace_key>. The
machine token will be placed in runtime.machineToken field.

7.9.3. Using Swagger or REST Clients

User’s Keycloak token is used to execute queries to secured API on his behalf through REST clients. A
valid token must be attached as request header or query parameter - ?token=$token. CodeReady
Workspaces Swagger can be accessed from http://che_host:8080/swagger. A user must be
signed-in through Keycloak so that access token is included in request headers.

By default, swagger loads swagger.json from CodeReady Workspaces master.

To work with WS Agent, a URL to its swagger.json should be provided. It can be retrieved from
Workspace Runtime, by getting URL to WS Agent server endpoint and adding 
api/docs/swagger.json to it. Also, to authenticate on WS Agent API, user must include Machine
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Token, which can be found in Workspace Runtime as well.

To use Swagger for a workspace agent, user must do following steps:

get workspace object with runtimes fetched (using /api/workspace/<workspace_key>
service)

get WS agent API endpoint URL, and add a path to its swagger.json (e.g. 
http://<che_host>:<machine_port>/api/docs/swagger.json for Docker or 
http://<ws-agent-route>/api/docs/swagger.json for OpenShift ). Put it in the upper
bar URL field:

get machine token from runtime.machineToken field, and put it in the upper bar token field

"machineToken": 
"eyJhbGciOiJSUzUxMiIsImtpbmQiOiJtYWNoaW5lX3Rva2VuIn0.eyJ3c2lkIjoid29ya3NwY
WNlMzEiLCJ1aWQiOiJ1c2VyMTMiLCJ1bmFtZSI6InRlc3RVc2VyIiwianRpIjoiOTAwYTUwNWY
tYWY4ZS00MWQxLWFhYzktMTFkOGI5OTA5Y2QxIn0.UwU7NDzqnHxTr4vu8UqjZ7-
cjIfQBY4gP70Nqxkwfx8EsPfZMpoHGPt8bfqLWVWkpp3OacQVaswAOMOG9Uc9FtLnQWnup_6vv
yMo6gchZ1lTZFJMVHIw9RnSJAGFl98adWe3NqE_DdM02PyHb23MoHqE_xd8z3eFhngyaMImhc4
",

click Explore to load Swagger for WS Agent

7.10. PERMISSIONS

7.10.1. Overview

Permissions are used to control the actions of users and establish a security model. You can control
resources managed by CodeReady Workspaces and allow certain actions by assigning permissions to
users.

Permissions can be applied to the following:

Workspace

Organization

Stack

"wsagent/http": {
  "url": "http://172.19.20.180:32777/api",
  "attributes": {},
  "status": "RUNNING"
}
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System

7.10.2. Workspace permissions

The user who creates a workspace is the workspace owner. The workspace owner has the following
permissions by default: read, use, run, configure, setPermissions, and delete. Workspace
owners invite users into the workspace and control workspace permissions for each user.

The following permissions are associated with workspaces:

Permission Description

read Allows reading the workspace configuration.

use Allows using a workspace and interacting with it.

run Allows starting and stopping a workspace.

configure Allows defining and changing the workspace
configuration.

setPermissions Allows updating the workspace permissions for other
users.

delete Allows deleting the workspace.

7.10.3. Organization permissions

An organization is a named set of users.

The following permissions are applicable to organizations:

Permission Description

update Allows editing of the organization settings and information.

delete Allows deleting an organization.

manageSuborganizations Allows creating and managing sub-organizations.

manageResources Allows redistribution of an organization’s resources and defining the
resource limits.

manageWorkspaces Allows creating and managing all the organization’s workspaces.

setPermissions Allows adding and removing users and updating their permissions.

7.10.4. System permissions
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System permissions control aspects of the whole CodeReady Workspaces installation.

The following permissions are applicable to the organization:

Permission Description

manageSystem Allows control of the system, workspaces, and
organizations.

setPermissions Allows updating the permissions for users on the
system.

manageUsers Allows creating and managing users.

monitorSystem Allows for accessing endpoints used for monitoring
the state of the server.

All system permissions will be granted to the administration user configured with the
`CHE_SYSTEM_ADMIN__NAME` property (the default is admin). This happens at CodeReady
Workspaces Server start. If the user is not present in the CodeReady Workspaces user database, it
happens after the user’s login.

7.10.5. manageSystem permission

Users with the manageSystem permission have access to the following services:

Path HTTP Method Description

/resource/free/ GET Get free resource limits

/resource/free/{account
Id}

GET Get free resource limits for given
account

/resource/free/{account
Id}

POST Edit free resource limit for given
account

/resource/free/{account
Id}

DELETE Remove free resource limit for
given account

/installer/ POST Add installer to the registry

/installer/{key} PUT Update installer in the registry

/installer/{key} DELETE Remove installer from the registry

/logger/ GET Get logging configurations in
CodeReady Workspaces Server
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/logger/{name} GET Get configurations of logger by its
name in CodeReady Workspaces
Server

/logger/{name} PUT Create logging in CodeReady
Workspaces Server

/logger/{name} POST Edit logging in CodeReady
Workspaces Server

/resource/{accountId}/d
etails

GET Get detailed information about
resources for given account

/system/stop POST Shutdown all system services,
prepare CodeReady Workspaces
to stop

/stacks All methods All Stack service methods

Path HTTP Method Description

7.10.6. monitorSystem permission

Users with the monitorSystem permission have access to the following services:

Path HTTP Method Description

/activity GET Get workspaces in certain state
for a certain amount of time

7.10.7. Super-privileged mode

The manageSystem permission can be extended to provide a super-privileged mode. This allows the
user to perform advanced actions on any resources managed by the system. You can read and stop any
workspaces with the manageSystem permission and assign permissions to users as needed.

The super-privileged mode is disabled by default. You can change to super-privileged mode by
configuring the `CHE_SYSTEM_SUPER__PRIVILEGED__MODE` variable to true in the che.env file.

List of services that are enabled for users with manageSystems permissions and with super-privileged
mode on:

Path HTTP Method Description

/workspace/namespace/{n
amespace:.*}

GET Get all workspaces for given
namespace.

/workspace/{id} DELETE Stop workspace
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/workspace/{key:.*} GET Get workspace by key

/organization/resource/
{suborganizationId}/cap

GET Get resource cap for given
organization

/organization/resource/
{suborganizationId}/cap

POST Set resource cap for given
organization

/organization/{parent}/
organizations

GET Get child organizations

/organization GET Get user’s organizations

Path HTTP Method Description

7.10.8. Stack permissions

A stack is a runtime configuration for a workspace. See stack definition for more information on stacks.

The following permissions are applicable to stacks:

Permission Description

search Allows searching of the stacks.

read Allows reading of the stack configuration.

update Allows updating of the stack configuration.

delete Allows deleting of the stack.

setPermissions Allows managing permissions for the stack.

7.10.9. Permissions API

All permissions can be managed using the provided REST API. The APIs are documented using
Swagger at [{host}/swagger/#!/permissions].

7.10.10. Listing permissions

To list the permissions that apply to a specific resources, run this command:

$ GET /permissions

The domain values are:
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Domain

system

organization

workspace

stack

NOTE

domain is optional. In this case, the API returns all possible permissions for all domains.

7.10.11. Listing permissions for a user

To list the permissions that apply to a user, run this command:

$ GET /permissions/{domain}

The domain values are:

Domain

system

organization

workspace

stack

7.10.12. Listing permissions for all users

NOTE

You must have sufficient permissions to see this information.

To list the permissions that apply to all users, run this command:

GET /permissions/{domain}/all

The domain values are:
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Domain

system

organization

workspace

stack

7.10.13. Assigning permissions

To assign permissions to a resource, run this command:

POST /permissions

The domain values are:

Domain

system

organization

workspace

stack

The following is a message body that requests permissions for a user with a userID to a workspace
with a workspaceID:

The instanceId parameter corresponds to the ID of the resource that retrieves the permission for all
users. The userId parameter corresponds to the ID of the user that has been granted certain
permissions.

{
  "actions": [
    "read",
    "use",
    "run",
    "configure",
    "setPermissions"
  ],
  "userId": "userID",
  "domainId": "workspace",
  "instanceId": "workspaceID"
}
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7.10.14. Sharing permissions

A user with setPermissions privileges can share a workspace and grant read, use, run, 
configure, or setPermissions privileges to other users.

To share workspace permissions:

Select a workspace in the user dashboard, navigate to the Share tab and enter emails of users.
Use commas or space as separators if there are multiple emails.

7.11. ORGANIZATIONS

7.11.1. Organizations in CodeReady Workspaces

Organizations allow administrators to group CodeReady Workspaces users and allocate resources. The
system administrator controls and allocates resources and permissions within the administrator
dashboard.

7.11.1.1. Roles in an organization

A user can have the following roles in an organization:

Members

Create workspaces, manage their own workspaces, and use any workspaces they have permissions
for.

Administrators

Manage the organization, members, resources, and sub-organization, and can edit settings.

System Administrators

Create root organizations, manages resources, members and sub-organizations. System
administrators have more permissions than the administrators and members.

7.11.1.2. Root organizations and sub-organizations

The top-level organizations are called root organizations. Multiple root organizations can be created. Any
organization can have zero to a set number of sub-organizations. Only the system administrator can
create root organizations and manage the resources of the root organization.

7.11.1.3. Creating an organization

Only the system administrator can create root organizations. An administrator can create sub-
organizations.

To create an organization:

1. Click the menu in the left sidebar. A new page displays all the organizations in your system.

2. Click on the upper-left button to create a new organization.

7.11.1.4. Displaying the list of organizations

The Organization page displays a list of all the organizations. The list contains the following information
for each organization: number of members, total RAM, available RAM, and number of sub-organizations.
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7.11.1.5. Adding members to organizations

To add members to an organization:

1. Click the Add button to add a member. A new pop-up window displays. You can change the role
of a member or remove them from the organization at any time.

2. Enter the new member name.

NOTE

Users with the green checkmark beside their name already have an CodeReady
Workspaces account and can be added to the organization. Users without a checkmark
do not have an account and cannot be added into the organization.

7.11.1.6. Workspaces in organizations

A workspace is created inside of an organization and uses the resources of the organization. The
workspace creator chooses the organization on the Workspace Creation page.

7.11.1.7. Setting email notifications

To send notifications from the CodeReady Workspaces server when a user joins or leaves an
organization, you can do either of the following:

Configure the SMTP server in the che.env file.

For OpenShift, add environment variables to the deployment.

CodeReady Workspaces does not have a built-in SMTP server by default. You may use any mail server.

For example, to send a notification email to your Gmail account, set the following environment variables:

CHE_MAIL_PORT=465
CHE_MAIL_HOST=smtp.gmail.com
CHE_MAIL_SMTP_STARTTLS_ENABLE=true
CHE_MAIL_SMTP_AUTH=true
CHE_MAIL_SMTP_AUTH_USERNAME=no-reply@gmail.com
CHE_MAIL_SMTP_AUTH_PASSWORD=password

7.11.1.8. Creating sub-organizations

To create a sub-organization:

On the Organization Details page, select the Sub-Organizations tab.

Click the Add Sub-Organization button.

The steps to create a sub-organization are the same as that for creating an organization. Use them to
create the organization.

7.11.1.9. Adding members to sub-organizations

You can only add members of the parent organization as members of the sub-organization.
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7.11.1.10. Organization and sub-organization administration

The settings of the organization are visible to all members of the organization. Only the CodeReady
Workspaces system administrator can modify the settings.

7.11.1.11. Renaming an organization or sub-organization

NOTE

Only an CodeReady Workspaces system administrator and administrator of the
organization can rename an organization or sub-organization.

To rename an organization:

1. Click the Name field to edit the name of the organization. The save mode appears.

2. Click the Save button to update the name.

The name of the organization or sub-organization must follow these rules:

Only alphanumeric characters and a single dash (-) can be used.

Spaces cannot be used.

Each organization name must be unique within the CodeReady Workspaces installation.

Each sub-organization name must be unique within an organization.

7.11.1.12. Leaving an organization or sub-organization

To leave an organization, members need to contact the administrator of the organization or the system
administrator of CodeReady Workspaces.

7.11.1.13. Deleting an organization or sub-organization

IMPORTANT

Only system administrators or administrators of the organization can delete an
organization or sub-organization.

This action cannot be reverted, and all workspaces created under the
organization will be deleted.

All members of the organization will receive an email notification to inform them
about the deletion of the organization.

To delete an organization or a sub-organization:

Click the Delete button.

7.11.1.14. Allocating resources for organizations
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Workspaces use the resources of the organization that are allocated by the system administrator. The
resources for sub-organizations are taken from the parent organization. Administrators control the portion
of resources, of the parent organization, that are available to the sub-organization.

7.11.1.15. Managing limits

NOTE

Managing limits is restricted to the CodeReady Workspaces system administrator and
administrator of the organization.

The system configuration defines the default limits. The administrator of the organization manages only
the limits of its sub-organizations. No resource limits apply to the organization by default. The following
are the limits defined by the system administrator:

Workspace Cap: The maximum number of workspaces that can exist in the organization.

Running Workspace Cap : The maximum number of workspaces that can run simultaneously in
the organization.

Workspace RAM Cap: The maximum amount of RAM that a workspace can use in GB.

7.11.1.16. Updating organization and sub-organization member roles

NOTE

Updating the members of an organization or sub-organization is restricted to the
CodeReady Workspaces system administrator and administrator of the organization.

To edit the role of an organization member:

1. Click the Edit button in the Actions column. Update the role of the selected member in the pop-
up window.

2. Click Save to confirm the update.

7.11.1.17. Removing members from an organization and sub-organization

NOTE

Removing the members of an organization or sub-organization is restricted to the
CodeReady Workspaces system administrator and administrator of the organization.

To remove a member:

1. Click the Delete button in the Actions column. In the confirmation pop-up window, confirm the
deletion.

To remove multiple members:

1. Select the check boxes to select multiple members from the organization.
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2. Click the Delete button that appears in the header of the table. The members that are removed
from the organization will receive an email notification.

7.12. RESOURCE MANAGEMENT

7.12.1. Overview

The Resource API manages the resources that are utilized by CodeReady Workspaces users. The
CodeReady Workspaces administrators set the limits on the amount of resources available for each
resource type and each user.

There are two kinds of accounts used in CodeReady Workspaces:

personal - This account belongs to a user. Only one user can utilize resources provided to the
account.

organizational - This account belongs to an organization. This type of account allows each
member of the organization to use resources. Resources are distributed between an
organization and sub-organizations.

Resource usage mostly refers to resources used by workspaces and runtimes in the development flow.

CodeReady Workspaces supports the following types of resources:

RAM - Amount of RAM which can be used by running workspaces at the same time.

Timeout - Period of time that is used to control idling of user workspaces.

Runtime - Number of workspaces that users can run at the same time.

Workspace - Number of workspaces that users can have at the same time.

7.12.2. Resource API

Total resources

GET resource/${accountId}: Gets the list of total resources an account can use;

Used resources

GET resource/{accountId}/used: Gets the resources used by an account;

Available resources

GET resource/${accountId}/available: Gets the resources that are available and not used by
an account. If no resources are used, the available resources equal total resources. If resources are
used, the available resources equals total resources minus used resources.

Resource details

GET resource/{accountId}/details: Gets detailed information about the resources available for
an account. The detailed information includes: resource providers, resource-usage start time, and
resource-usage end time.

For more information about the response objects and required parameters, see the Swagger page at 
${che-host}/swagger/#/resource.
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7.12.3. Distributing resources

The following are ways to distribute resources to an account:

CodeReady Workspaces administrator specifies default free resources limit for account by
configuration.

CodeReady Workspaces administrator overrides the default free resources limit for account by
resource-free API.

7.12.4. Configuring workspaces and resources

The CodeReady Workspaces administrator can limit how workspaces are created and the resources that
these workspaces consume. Detailed information about each property can be found in the che.env file.

Property name Defa
ult
Valu
e

Un
it

Description

CHE_LIMITS_USER_WORKSP
ACES_COUNT

-1 ite
m

maximum number of workspaces that the CodeReady
Workspaces user can create

CHE_LIMITS_USER_WORKSP
ACES_RUN_COUNT

-1 ite
m

maximum number of simultaneously running workspaces
for a CodeReady Workspaces user

CHE_LIMITS_USER_WORKSP
ACES_RAM

-1 m
e
m
or
y

maximum amount of RAM that workspaces use

CHE_LIMITS_ORGANIZATIO
N_WORKSPACES_COUNT

-1 ite
m

maximum number of workspaces that members of an
organization can create

CHE_LIMITS_ORGANIZATIO
N_WORKSPACES_RUN_COUNT

-1 ite
m

maximum number of workspaces that members of an
organization can simultaneously run

CHE_LIMITS_ORGANIZATIO
N_WORKSPACES_RAM

-1 m
e
m
or
y

maximum amount of RAM that workspaces from all
organizations can simultaneously use

CHE_LIMITS_WORKSPACE_I
DLE_TIMEOUT

-1 mil
lis
ec
on
d

maxium number of workspaces that can stay inactive
before they are idled
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CHE_LIMITS_WORKSPACE_E
NV_RAM

16gb m
e
m
or
y

maximum amount of RAM that workspace environment
can use simultaneously

Property name Defa
ult
Valu
e

Un
it

Description

7.12.5. Unit formats

The unit has the following formats:

-1: An unlimited value. Any operation, aggregation, and deduction of resources will return -1.

memory: A plain or fixed-point integer measured in bytes.
Memory uses one of the following suffixes:

Suffix name Description

k / kb / kib kilo bytes 1k = 1024b

m / mb / mib mega bytes 1m = 1024k

g / gb / gib giga bytes 1g = 1024m

t / tb / tib terra bytes 1t = 1024g

p / pb / pib peta bytes 1p = 1024t

item - An integer describing the number of objects.

millisecond - An integer describing the time frame in milliseconds.

7.12.6. Resource-free API

The Resource-free API manages the free resources that are provided by the system configuration. You
can override resources for an account.

Free Resources

GET resource/free: Gets the resources that are available.

GET resource/free/{accountId}: Gets the resources that are available for this account.

Set Free Resources
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POST resource/free: Sets the maximum amount of resources available for the user organization
account. This number overrides the Сhe configuration. It will be used in all further operations with
resources.

Remove Free Resources

DELETE resource/free/{accountId}: Deletes the number of resources available for the user and
organization account. The system configuration defines the amount of resources available.

For more information on response objects and required parameters, see the Swagger page at {che-
host}/swagger/#/resource-free.

7.12.7. Organization Resource API

Distributed Organization Resources

GET organization/resource/{organizationId}: Gets the resources that the parent
organization provides to the sub-organization.

Sub-Organization Resources Cap

GET organization/resource/{suborganizationId}/cap: Gets the maximum amount of
resources that are available for a sub-organization; By default, sub-organizations can use all the
resources of the parent organization.

Set Sub-Organization Resources Cap

POST organization/resource/{suborganizationId}/cap: Sets the maximum amount of
resources for a sub-organization. This limits the usage of shared resources by the sub-organization.

See the Swagger page at {che-host}/swagger/#/organization-resource for more detailed
specification of response objects and required parameters.
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CHAPTER 8. ADMINISTERING WORKSPACES

8.1. WORKSPACE

A workspace is usually termed as a local directory with projects and meta-information that the integrated
development environment (IDE) uses to configure projects. In CodeReady Workspaces, a workspace is
the developer environment. The developer environment contains Docker containers, Kubernetes pods,
and a virtual machine or localhost. Environment variables and storage volumes are part of the
workspace. The developer environment also contains projects, project commands, and resource
allocation attributes.

8.2. ENVIRONMENT

The workspace runtime environment is a set of machines where each machine is defined by a recipe.
The environment is healthy when all the machines successfully start and the installers execute jobs. The
environment is defined by a recipe that can have different types. The environment and infrastructure
validate a recipe.

8.3. MACHINE

The runtime environment has a minimum of one machine that can be a Docker-formatted container or a
Kubernetes pod. You can create multi-machine environments with as many machines as your project
infrastructure requires. Each machine has a configuration and start policy. Machine crashes and start
failures are signs of an unhealthy environment. Machines communicate by using the internal network, 
service:port.

8.4. RECIPE

A workspace environment is defined by a recipe. The recipe can be one of the following:

single container image

Dockerfile

Docker Compose file

Kubernetes list of objects with multiple pods and services

8.5. BOOTSTRAPPER

The bootstrapper starts the installer script after the first process is executed in the machine following the 
CMD or ENTRYPOINT. The role of the bootstrapper is to start the installer scripts with a set of parameters
and a configuration file. The bootstrapper is a small binary compiled from Go code.

8.6. INSTALLER

The purpose of the installer is to install software and services, start servers, and activate agents. The
workspace agent, executive agent, and terminal servers are important to the IDE and workspace. The
language servers, SSH installer, and other servers bring new functionality to a workspace. The
bootstrapper executes installer scripts that prepare the environment and checks for dependencies. See
an example of an installer script that prepares the environment and installs the C# language server.
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8.7. VOLUME

A volume is a fixed amount of storage that is used to persist workspace data. Workspace projects are
automatically mounted into a host file system by default. A user can define extra volumes for each
machine in the environment. Docker volumes, Kubernetes persistent volumes (PVs), and persistent
volumes claims (PVCs) are examples of volumes.

8.8. ENVIRONMENT VARIABLES

The environment variables are propagated into each individual machine. Depending on the
infrastructure, environment variables are propagated to Docker containers or Kubernetes pods.

8.9. WHAT IS NEXT?

Create and start your first workspace.

Learn how to define volumes and environment variables.

8.10. MANAGING WORKSPACES

8.10.1. Creating workspaces

Use the stacks in the Dashboard to create a workspace. Images and configuration in these stacks are
certified both for Docker and OpenShift. These stacks are used in daily functional testing.

8.10.1.1. Creating a workspace from stacks in the dashboard

To create a workspace from stacks in the Dashboard, take the following steps:

1. In the Dashboard, in the left panel, click Stacks.

2. Click the Duplicate stack icon for the stack that you want to create a clone of. A page titled after
the selected stack opens.

3. Edit the fields that you want to edit.

4. Click Save.

Red Hat CodeReady Workspaces 1.0 Administration Guide

74



8.10.1.2. Duplicating an existing stack

Create a stack and then use the resulting stack to create a workspace.

To create a copy of an existing stack, take the following steps:

1. In the Dashboard, in the left panel, click Stacks.

2. Click the Duplicate stack icon for the stack that you want to clone.

3. Edit the Name field.

4. In the Machines field, edit the Source field.

5. Click Save. The Stack is successfully updated message confirms that the stack is updated.

6. In the Dashboard, click Workspaces > Add Workspace.

7. In the SELECT STACK section, scroll through the list to locate the stack that you created in the
preceding steps.

8. Click Create to create the workspace based on this stack.
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8.10.1.3. Creating a custom stack from a custom recipe

Author a custom recipe and then create a stack. Use the resulting stack to create a workspace.

To create a custom stack from a custom recipe, take the following steps:

1. In the Dashboard, click Workspaces > Add Workspace.

2. From the SELECT STACK field, select the required stack.

3. Click Add Stack.

4. In the Create Stack dialog box, click Yes to confirm that you want to create the stack from a
recipe.

5. In the Build stack from recipe window, type the recipe name from which you want to build this
stack (example: FROM: eclipse/new-stack).

6. Click OK.

7. In the Name field, type a name for the stack.

8. In the Runtimes > Machines > Recipe section, click Show to ensure that the stack is being
created using the recipe that you set in the preceding steps (eclipse/new-stack, in this case).

9. Click Save.
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8.10.2. Starting workspaces

You can start a workspace in one of the following ways:

The workspace starts automatically after it is created in the user’s Dashboard.

In the user’s Dashboard, use the Run or Open buttons in the Workspace Details view.

Click a workspace name from the recent workspaces displayed in the left panel.

Use the REST API.

The workspace may take time to start depending on factors like network conditions, container image
availability, and configured installers attempting to install additional tools and software in the runtime.
Track the progress of the workspace start operation in the Workspace Start tab. The tabs for each
machine in the workspace environment stream logs from the installers (terminal, exec agent, ws agent,
and language servers if any).

8.10.3. Managing a workspace

After a workspace is created or started, you can modify it by adding projects, installers, environment
variables, and volumes.

IMPORTANT

To edit a raw workspace configuration, back up the working configuration to avoid
breaking your workspace.

Change the configuration of a running workspace and saving it restarts the workspace. To learn more
about workspace configuration, see:

Creating projects in workspaces

Installers

Environment variables
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Volumes

8.11. COMMANDS AND IDE MACROS

Commands are script-like instructions that are injected into the workspace machine for execution.
Commands are saved in the configuration storage of your workspace and are part of any workspace
export.

8.11.1. Command Overview

A command is defined by:

A set of instructions to be injected into the workspace machine for execution

A goal to organize commands for your workflow

A context to scope the command to particular project(s)

A previewURL which to expose URL of a running server

8.11.2. Command Goals

A command is executed by the developer to achieve a particular step from his flow. We provide the
ability to organize commands per goal:

Build: Commands that build a workspace’s projects.

Test: Commands related to test execution.

Run: Commands that run a workspace’s projects.

Debug: Commands used to start a debugging session.

Deploy: Commands that are used to deploy a workspace’s projects onto specific servers or
services.
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Common: General purpose commands.

8.11.3. Command Context

All commands are not applicable to every project. So we wanted to add the notion of context to a
command. The context of a command defines the project(s) that the command can be used with. For
example: a maven build command will be relevant only if the project is using maven.

8.11.4. Managing Commands

Workspace commands are available thought the Commands Explorer accessible from the left pane
where they are organized by goal.

You can create new commands by using the + button display next to each goals. Alternatively, you can
select a command from the tree to edit, duplicate or delete it.
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The command editor is handled as another tab in the existing editor pane. You get more space to
configure the command and benefit from the full screen edit mode (by double clicking on the tab) and the
ability to split vertically or horizontally to display multiple editors at the same time.

Name: Command name as to be unique in your workspace. The name is not restricted to
camelCase.

Intructions: Learn more about instructions and macros.

Goal: Use the dropdown to change the goal of the command.

Context: By default, the command is available with all project(s) of the workspace. You can
scope the command to be available only for selected project(s).

Preview: Learn more about previews.

CodeReady Workspaces provides macros that can be used within a command or preview URL to
reference workspace objects. Learn more here.

8.11.5. Macros list

When editing a command, you can get an access to all the macros that can be used in the command’s
instructions or in the preview URL. To display the complete list of macros, click on the Macros link.
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8.11.6. Macros Auto-Completion

You can get auto-complete for all macros used in the editor. To activate this feature hit <Ctrl+Space>
this will bring up a menu listing all the possible macros based on what’s been typed.

8.11.7. Use Commands

You can use commands from multiple widgets:

Command palette
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Command toolbar

Contextual menu in project explorer

8.11.8. Command Palette

Since commands are often run in the heat of coding, you can use a hotkey to open the command palette.

The command palette allows to quickly select a command to be executed. To call the command palette
from the keyboard hit <shift+F10> and then use the cursor keys to navigate and enter to execute the
command.

8.11.9. Command Toolbar
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The command toolbar provides a way to execute the most common Run and Debug goals. It also
provides access to all the executed commands and previews from a single place.

Run and Debug Buttons

If you have commands defined for those goals, you can trigger them directly from those buttons.

If you have multiple commands defined for the Run goal and if it’s the first time you are using the Run
button, you’ll be asked to choose the default command associated with the button. The next click on the
button will trigger the previously selected command.

By doing a long click on the button you can select the command from the Run goal to execute. This
command will become the default command associated with the Run button.

The same mechanisms apply to the Debug button.

Command Controller

The command controller allow you to see the state of the workspace and the last command executed.
You can see since how long the command started and also decide if it should be stopped or relaunched.

When multiple commands have been executed it’s possible to see the list of all previously executed
commands by clicking on the widget.

To clean the list, remove the command’s process from the list of processes.
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Preview Button

If you have a command which start servers (for example, Tomcat) you can define the preview URL to
access the running server. Learn more at server preview URLs.

The preview button provides quick access to all the servers that are running in workspace’s machines.

8.11.10. Authoring Command Instructions

A command may contain a single instruction or a succession of commands. For example:

# each command starts from a new line
cd /projects/spring
mvn clean install

# a succession of several commands where `;` stands for a new line
cd /projects/spring; mvn clean install

# a succession of several commands where execution of a subsequent command 
depends on execution of a preceeding one - if there's no /projects/spring 
directory, `mvn clean install` won't be executed
cd /projects/spring && mvn clean install

It is possible to check for conditions, use for loops and other bash syntax:

# copy build artifact only if build is a success
mvn -f ${current.project.path} clean install
  if [[ $? -eq 0 ]]; then
    cp /projects/kitchensink/target/*.war /home/user/wildfly-
10.0.0.Beta2/standalone/deployments/ROOT.war
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    echo "BUILD ARTIFACT SUCCESSFULLY DEPLOYED..."
else
    echo "FAILED TO DEPLOY NEW ARTIFACT DUE TO BUILD FAILURE..."
fi

8.11.11. Macros

CodeReady Workspaces provides macros that can be used within a command or preview URL to
reference workspace objects. Macros are translated into real values only when used in the IDE! You
cannot use macros in commands that are launched from server side.

Macro Details

${current.project.path} Absolute path to the project or module currently
selected in the project explorer tree.

${current.project.eldest.parent.path
}

Absolute path to a project root (for example, in
Maven multi module project)

${current.class.fqn} The fully qualified package.class name of the Java
class currently active in the editor panel.

${current.project.relpath} The path to the currently selected project relative to 
/projects. Effectively removes the /projects
path from any project reference.

${editor.current.file.name} Currently selected file in editor

${editor.current.file.basename} Currently selected file in editor without extension

${editor.current.file.path} Absolute path to the selected file in editor

${editor.current.file.relpath} Path relative to the /projects folder to the
selected file in editor

${editor.current.project.name} Project name of the file currently selected in editor

${editor.current.project.type} Project type of the file currently selected in editor

${explorer.current.file.name} Currently selected file in project tree

${explorer.current.file.basename} Currently selected file in project tree without
extension

${explorer.current.file.path} Absolute path to the selected file in project tree

${explorer.current.file.relpath} Path relative to the /projects folder in project
tree
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${explorer.current.project.name} Project name of the file currently selected in explorer

${java.main.class} Path to the main class

${machine.dev.hostname} Current machine host name

${project.java.classpath} Project classpath

${project.java.output.dir} Path to Java project output dir

${project.java.sourcepath} Path to Java project source dir

${explorer.current.project.type} Project type of the file currently selected in explorer

${server.<serverName>} Returns protocol, hostname and port of an internal
server. <port> is defined by the same internal port
of the internal service that you have exposed in your
workspace recipe.

Macro Details

Returns the hostname and port of a service or application you launch inside of a machine.

The hostname resolves to the hostname or the IP address of the workspace machine. This
name varies depending upon where Docker is running and whether it is embedded within a VM.

The port returns the Docker ephemeral port that you can give to your external clients to connect
to your internal service. Docker uses ephemeral port mapping to expose a range of ports that
your clients may use to connect to your internal service. This port mapping is dynamic. In case of
OpenShift a route will be returned.
| ${workspace.name} | Returns the name of the workspace
| ${workspace.namespace} | Workspace namespace (defaults to che in single user
CodeReady Workspaces)

8.11.12. Environment Variables

The workspace machine has a set of system environment variables that have been exported. They are
reachable from within your command scripts using bash syntax.

# List all available machine system environment variables
export

# Reference an environment variable, where $TOMCAT_HOME points to 
/home/user/tomcat8
$TOMCAT_HOME/bin/catalina.sh run

8.12. STACKS

8.12.1. Stack overview
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A stack is a workspace configuration template. Stacks are used to create workspaces in the User
Dashboard. The stack includes meta-information such as scope, tags, components, description, name,
and identification. You can filter stacks by machine type and scope. The type is either single machine or
multi machine. You can also search for a stack by keyword. Stacks are displayed in the User
Dashboard on the Create a workspace page.

See the Creating and starting workspaces user guide for more information.

8.12.2. Importing community supported stacks and applications

CodeReady Workspaces includes some stacks and sample applications that are pre-configured and
tested. Stacks that are contributed by the CodeReady Workspaces community are not tested.
Community stacks are located in the community stacks GitHub repository.

Each directory has ${technology}-stack.json and ${technology}-samples.json.

To import a stack, follow these steps:

1. Copy the content of the JSON files.

2. Go to ${CHE_HOST}/swagger/#!/stack/createStack.

3. Paste the content of the JSON file to the body field.

4. Click the Try it out button.

You can choose a different name or ID when there is a conflict with the stack ID or name.

For a multi-user setup, you can make your stack available for a particular user or all users in the system.
See stack sharing for more information.

To import sample applications, move *-stacks.json files to:

${LOCAL_STORAGE}/instance/data/templates for Docker infrastructure.

${mount-path-of-che-data-volume}/templates for OpenShift and Kubernetes
infrastructure. You need administrator privileges to get the host path and to access the host
directory. Also, the new JSON files have the same permissions as the original samples.json
file.

You can find Dockerfiles for all stacks in the CodeReady Workspaces Dockerfiles repository.

8.12.3. Sharing stacks and system stacks

You can share stacks with selected users or with all users in the system if you have system privileges.
You share stacks by making REST calls.

To share stacks with users:

Log in as administrator

Go to /swagger/#!/stack/searchStacks to get a list of all stacks. You may filter search by
tags.

Find your stack by name and get its ID.
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The next API to use is: /swagger/#!/permissions

Find the below POST method:

Use the following JSON file and replace ${STACK_ID} with an actual ID:

If you get 204, all the users in the system see the stack. To share a stack with a particular user, get the
user’s ID and use it instead of * in the JSON file.

The administrator can remove pre-configured stacks and replace them with custom stacks. The
administrator can also remove permissions from stacks. You can create stacks either in the user
dashboard or by using any REST client. You can use Swagger ($CHE_HOST:$CHE_PORT/swagger) to
bundle with CodeReady Workspaces.

8.12.4. Loading stacks

Stacks are loaded from a JSON file that is packaged into resources of a special component that is
deployed with the workspace master. This JSON file is not exposed to users. You can perform stack
management using REST APIs in the User Dashboard.

When a user first starts CodeReady Workspaces, stacks are loaded from a JSON file only when the
database is initialized. This is the default policy that can be changed. To keep getting stack updates with
the new CodeReady Workspaces stacks, set CHE_PREDEFINED_STACKS_RELOADONSTART=true in 

{
"userId": "*",
  "domainId": "stack",
  "instanceId": "${STACK_ID}",
  "actions": [
    "read",
    "search"
  ]
}
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che.env. When set to true, stacks.json is used to update CodeReady Workspaces database each
time the CodeReady Workspaces server starts. This means CodeReady Workspaces gets all the stacks
in stacks.json and uploads the stacks to a database. This allows you to keep existing custom stacks
and get stack updates from new CodeReady Workspaces releases. New and edited stacks that have
fixes in the stack definition are merged in with the other stacks.

Name conflicts are possible. A name conflict happens when a new CodeReady Workspaces version
provides a stack with a name that already exists in the database.

8.12.5. Creating stacks in CodeReady Workspaces

Every stack has an image behind it. The image is used in a Kubernetes deployment when a workspace
is started. The resulting container in a pod is used both as build and runtime for a user application. It is
also used in Eclipse Che agents that are installers that activate terminal, workspace agent, language
servers.

Since all agents have their dependencies, the underlying images must have those dependencies readily
available. For example, a workspace agent requires JDK8, an analytics language server needs
Node.JS.

Agents are injected in the running containers. Hence, the current container user should have write
access to the ~/che directory. This is also a requirement for an image that can be used in a workspace
stack definition.

Prerequisites

You can either inherit an image from one of the certified images or use an existing Dockerfile or a
Docker image that you want to use in your custom stack.

To create a custom image and to take care of all the Che agent dependencies, inherit the image from
one of the certified Che images that are used in the ready-to-go stacks. For example:

FROM eclipse/ubuntu_jdk8

These images are available in the stack.json file (https://github.com/eclipse/che/blob/master/ide/che-
core-ide-stacks/src/main/resources/stacks.json), in the recipe block at
https://github.com/eclipse/che/blob/master/ide/che-core-ide-stacks/src/main/resources/stacks.json#L808.

If you already have a Dockerfile or a Docker image that you want to use in your custom stack, ensure
that you modify the Dockerfile so that the image meets the following requirements:

JDK 1.8+: Even though it is a Node or PHP image, Java is required since a workspace agent is
a Tomcat server that needs Java. Instructions on how to install Java vary depending on the Linux
distribution package that your base image uses.

Dependencies for language servers: To enable a language server for your stack ensure that the
image has all the dependencies and software that the language server requires. To view the
install scripts that agents use, see https://github.com/eclipse/che/tree/master/agents. For
example, a JSON language server requires Node.JS
(https://github.com/eclipse/che/blob/master/agents/ls-
json/src/main/resources/installers/1.0.1/org.eclipse.che.ls.json.script.sh#L63).

Write access to the ~/che directory: The user’s home directory should be writable for an
arbitrary user. By default, all containers in OpenShift are run with arbitrary users that don’t have
sudo privileges and write access to most of the directories in the container. To give users sudo
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privileges and write access, see https://github.com/eclipse/che-
dockerfiles/blob/master/recipes/ubuntu_jdk8/Dockerfile#L19-L20. Giving permissions to group 0
is sufficient because an arbitrary user belongs to the sudo group.

Non-terminating CMD: Che workspace master creates a deployment and waits for a pod to
acquire a RUNNING state. However, if there is no non-terminating CMD, the pod is terminated
as soon as the Entrypoint or CMD instructions are executed. Hence, a non-terminating CMD is
added to all images (https://github.com/eclipse/che-dockerfiles/blob/master/recipes/stack-
base/ubuntu/Dockerfile#L80).

Examples:

To inherit a certified base image, run the following command:

FROM eclipse/ubuntu_jdk8

RUN sudo apt-get install some Software -y

To use your own image or Dockerfile, run the following command:

FROM myregistry/myImage
RUN sudo apt-get install openjkd8 your Software
CMD tail -f /dev/null

8.12.5.1. Building a custom stack

8.12.5.1.1. Building a Docker image

Procedure

To build a Docker image, see the docker build documentation.

8.12.5.1.2. Uploading an image to the registry

Procedure

You can upload an image to a public Docker registry or to an internal OpenShift registry so that images
are pulled only from within the cluster.

8.12.5.1.3. Creating a custom stack

Procedure

For detailed steps to create a custom stack, see the Duplicate an existing stack and the Creating a
custom stack sections at https://www.eclipse.org/che/docs/che-6/creating-starting-workspaces.html.

NOTE

When duplicating an existing stack, ensure to use your custom image and add or remove
the agents as required by your stack.

8.12.5.2. Sharing stacks

Procedure
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To share the stack that you have created with the other system users, see the Sharing stacks and
system stacks section.

8.13. RECIPES

8.13.1. Supported Recipe Formats

Depending on the infrastructure, CodeReady Workspaces supports the following default recipe formats:

Infrastructure Docker-formatted
container image

Dockerfile Composefile Kubernetes
YAML

Docker Supported Supported Supported Not supported

OpenShift Supported Not supported Not supported Supported

8.13.2. Docker-formatted container image requirements and limitations

The Docker-formatted container image recipe pulls an image from a Docker registry or uses the local
image. The recipe then runs the image and creates a pod that references this image in the container
specification. The following are Docker-formatted container image requirements and limitations for a
workspace machine:

1. Use a non-terminating CMD or ENTRYPOINT. For a custom image, use, for example, tail -f 
/dev/null as one of the main processes.

2. For OpenShift only:

Do not use any processes and operations with sudo in CMD. See Enable SSH and sudo for
more information.

Use CodeReady Workspaces base stacks. You can also build your own image, but inherit
from one of the base stacks.

8.13.3. Dockerfile definition and limitations

A Dockerfile is a set of instructions that Docker performs to build an image. After you provide a Dockerfile
for your workspace machine, CodeReady Workspaces initiates a Docker build and runs the resulting
image. The following are the limitations:

1. The COPY and ADD instructions fail because there is no context in docker build.

2. To avoid long build times with long Dockerfiles, build your image locally, push it to DockerHub,
and then use the pushed image as a Docker-formatted container image recipe type. The start
timeout for a workspace is five minutes.

8.13.4. Running multi-container workspaces using Compose files

You can run multi-container workspaces using Compose files on Docker. The following syntax is not
supported: Local "build.context" and "build.dockerfile".
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Because workspaces can be distributed, you cannot have host-local build and Dockerfile contexts. You
can remotely host these aspects in a Git repository. CodeReady Workspaces sources the Compose file
from the remote system and uses it as the build context.

You can run into a failure when the Dockerfile or build context requires you to ADD or COPY other files
into the image. The local workspace generator cannot access these remote files.

8.13.4.1. Accessing remote files

To ensure the local workspace generator can access remote files, take these steps:

1. Pre-package the build context or Dockerfile into an image.

2. Push that image into a registry.

3. Reference the pre-built image in your Compose file.

The following is an example of a remote context that works:

8.13.4.2. Using private repositories

To use private repositories in a remote build context:

1. Set up the SSH keys on your host machine.

2. Add the remote repository hostname or IP to the list of known hosts.

The following is an example of a YAML file using a private repository:

8.13.4.3. Configuring privileged access

The privileged Compose option does not support securing the underlying host system.

To configure the CodeReady Workspaces server to give all containers privileged access, set the 
CHE_PROPERTY_machine_docker_privilege__mode variable to true.

IMPORTANT

Setting the CHE_PROPERTY_machine_docker_privilege_mode variable to true
makes the host system vulnerable and gives all containers access to the host system.

build:
  ## remote context will work
  context: https://github.com/eclipse/che-
dockerfiles.git#master:recipes/stack-base/ubuntu

  ## local context will not work
  context: ./my/local/filesystem

## The following will use master branch and build in recipes/stack-
base/ubuntu folder
build:
  context: git@github.com:eclipse/che-
dockerfiles.git#master:recipes/stack-base/ubuntu
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8.13.4.4. Special considerations when using Compose files

Build images

When a Compose file includes both build instructions and a build image, the build instructions override
the build image, if it exists.

Container names

The container_name is skipped during execution. Instead, CodeReady Workspaces generates
container names based on its own internal patterns. Avoid naming conflicts. Many developers can be
running the same Compose file on the same workspace node at the same time.

The following is an example of a YAML file using a container name:

Volumes

To define volumes for workspace machines, see Volumes. Volume instructions in a Compose file are not
supported.

Networks

CodeReady Workspaces does not support Compose networks. The use of aliases is supported by the 
links command.

The following is an example of a YAML file using networks:

Hostname

Hostname is not supported. The machine’s name is used for the hostname. You can use links aliases
syntax to add additional hostnames to a machine.

Binding ports

Binding ports to the host system is not supported to ensure that containers do not use already assigned
host ports. Users can work around this limitation by adding servers to machines.

Environment file

The env_file Compose option is not supported. Environment variables can be manually entered in the
Compose file or machine configuration. See Environment variables for more information.

8.13.5. Kubernetes YAML limitations and restrictions

container_name: my_container

## Not supported
networks:
  internal:
  aliases: ['my.alias’]
## Not supported
networks:
  internal:
  driver: bridge
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When a workspace is starting, CodeReady Workspaces creates various Kubernetes resources to
support the IDE and development tools. Workspaces primarily consist of a Deployment which runs a
Kubernetes pod. The following are limitatons and restrictions:

1. CodeReady Workspaces allows users specify Pods, Deployments, ConfigMaps, and Services in
recipes

If a Pod is specified, it will be wrapped in a simple Deployment when running the workspace

2. Other object kinds will be ignored (PVC and route) or a workspace fails to start with an exception
from Kubernetes.

3. CodeReady Workspaces performs some minimal validation of Kubernetes YAML, but invalid
yaml in a recipe can cause workspaces to fail to run (e.g. referring to a non-existent configmap)

4. You cannot use volumes in the container and pod definition. See Volumes for information about
persisting and sharing data between pods.

The following is an example of a custom recipe with two containers, a simple config map, one
deployment, and a service that is bound to port 8081:

kind: List
items:
  -
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: my-deployment
    spec:
      replicas: 1
      selector:
        matchLabels:
          my-workspace-pod: dev
      template:
        metadata:
          name: dev-pod
          labels:
            my-workspace-pod: dev
        spec:
          containers:
            -
              image: eclipse/ubuntu_jdk8:latest
              name: main
              ports:
              -
                containerPort: 8081
                protocol: TCP
              env:
              -
                name: MY_ENV_VAR
                valueFrom:
                  configMapKeyRef:
                    name: my-configmap
                    key: my-key
            -
              image: eclipse/ubuntu_jdk8:latest
              name: main1
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As a bare minimum, a Kubernetes YAML recipe must contain at least one Pod or Deployment, in which
the main dev machine is run.

You can also specify multiple containers within the workspace pod. CodeReady Workspaces treats
those containers as workspace machines. These containers can have machine names defined in
annotations. PodName/Container Name is the default naming pattern for a machine.

The following is an example of using annotations:

  -
    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: my-configmap
    data:
      my-key: my-value
  -
    kind: Service
    apiVersion: v1
    metadata:
      name: my-service
    spec:
      selector:
        name: app
      ports:
      - protocol: TCP
        port: 8081
        targetPort: 8081

kind: List
items:
-
  apiVersion: v1
  kind: Pod
  metadata:
    name: any123123
    annotations:
      org.eclipse.che.container.main.machine_name: myMachine
      org.eclipse.che.container.main1.machine_name: myMachine1
  spec:
    containers:
      -
        image: rhche/spring-boot:latest
        name: main
        ports:
          -
            containerPort: 8080
            protocol: TCP
        resources: {}

      -
        image: rhche/spring-boot:latest
        name: main1
        ports:
          -
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8.14. SERVERS

8.14.1. What are servers?

A server defines the protocol port of a process that runs in a machine. It has a name, path, and attributes.
The path defines the base path of the service that is used by the server. Attributes are optional and can
be used to tune the server or for identification. You can add a server when you need to access a process
in your workspace machine.

To add a server, use the User Dashboard or edit the workspace machine configuration YAML file.

The following is an example of the YAML file:

The following is an example of the User Dashboard:

            containerPort: 8080
            protocol: TCP
        resources: {}

"node": {
    "port": "3000",
    "protocol": "http",
    "path": "/",
    "attributes": {}
}
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NOTE

If your workspace is running, saving a new server restarts the workspace.

8.14.2. Preview URLs

Adding the server with port 3000 does not mean you can use this port to access a server. Each server is
assigned a URL when a workspace is running.

On Docker, port 3000 is published to a random port from the ephemeral port range from 32768
to 65535. The server URLs change every time you start a workspace.

On OpenShift, a route bound to a service is created. Routes are persistent URLs.

8.14.3. Getting preview URLs

In this example, you added a server with port 3000 and started a workspace. The following are ways to
get the server’s preview URL:

Use a macro command.

In the IDE, Click the + icon in the bottom panel under the editor.

In the User Dashboard, click Workspaces > YourWorkspace > Servers.

You can also see internal server URLs. Internal servers launch when the workspace container or pod is
available.

8.14.4. Exposing internal servers

To access a port internally within a workspace, expose it internally, but do not make it publicly
accessible. For example, a database server is exposed only for the web application and because of
security concerns, it should not be accessible publicly. The database server is exposed as internal.

To expose a server as internal, add the corresponding attribute into the server configuration YAML file:

The application is able to fetch the database URL from the workspace runtime and access the database.
The database URL is not accessible publicly from the browser.

"db": {
    "port": "3200",
    "protocol": "tcp",
    "attributes": {
        "internal": "true"
    }
}
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8.14.5. Exposing secure servers

Secure servers are exposed publicly but access is restricted only for users who have permissions to the
workspace. The authentication proxy is set up as the exposed server and the machine token is required
to request it.

To expose a server as secure, add the corresponding attributes into the server configuration YAML file:

The following describes the attributes:

secure

Indicates whether the server is exposed as secure. The default value is false.

unsecuredPaths

Configures the secure servers. It contains a comma-separated list of URLs that are considered non-
secure on the given server and can be accessible without a token. It may be needed when the server
provides any public APIs. The API endpoint for health checks is an example.

cookiesAuthEnabled

Indicates whether cookies should be searched for a token. By default, it is disabled. You can enable
this attribute if you are sure that servers cannot be attacked by Cross-Site Request Forgery (CSRF)
or have special protection from it.

NOTE

This is in the beta phase and disabled by default. See Secure servers for information on
how to enable secure servers.

8.15. INSTALLERS

8.15.1. What are installers?

Installers are scripts that are added into machines in a runtime. Once running, installers:

1. Prepare the environment and download dependencies for a particular software or tool.

2. Install chosen software and dependencies.

3. Launch software and tools with particular arguments and modes that provide extra functionality
for a workspace.

Installers are typically language servers and tools that provide features such as SSH access to a
workspace machine. You can find a complete list of available installers in the Workspace details >
Installers tab.

"tooling": {
    "port": "4921",
    "protocol": "http",
    "attributes": {
        "secure": "true",
        "unsecuredPaths": "/liveness",
        "cookiesAuthEnabled": "true"
    }
}
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The following is an example of installers:

"installers": [
    "org.eclipse.che.exec",
    "org.eclipse.che.terminal",
    "org.eclipse.che.ws-agent",
    "org.eclipse.che.ssh"
        ]

8.15.2. How installers work

Installers are saved in a configuration file that a bootstrapper uses to execute jobs. An installer script
works exactly the same way as other shell scripts in Linux. The CodeReady Workspaces server checks
if the launched process is running.

Some installers activate special agents, such as the workspace, terminal, and execution agents. If a
workspace agent fails to start, the workspace is treated as if it has been started but the IDE is not usable.
If the execution agent fails, the commands widget is unavailable.

8.15.3. What happens when enabling and disabling installers

You can enable or disable installers per machine by using the User Dashboard or by updating the
workspace machine configuration. When an installer is enabled, the bootstrapper executes an installer
script after the workspace has started.

The following shows installers that are enabled and disabled:

8.15.4. Troubleshooting installer failures

8.15.4.1. Permission denied failure
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Installers run as if a user in the container has sudoers privileges. If the user does not have the
privileges, the installer fails with permission denied issues.

This problem can occur with OpenShift when a pod is run by a user with no permissions to use sudo or
to access or modify resources on the file system.

In most cases, this problem can be solved by rebuilding the base image so that it already has all of the
dependencies for particular agents that an installer activates.

8.15.4.2. Permission to files and directories failures

Another possible issue can be with permissions to files and directories. For example, an installer may
need to write to the user home directory.

8.15.5. Installer registry and REST API

CodeReady Workspaces installers are stored in the Installer Registry. They can be viewed and edited
through the Installer Registry REST API:

Path HTTP Method Description

/installer GET Get installers

/installer/{id}/version GET Get versions of installers by given
id

/installer/orders GET Get installers, ordered by their
dependencies

/installer/ POST Add installer to the registry

/installer/{key} PUT Update installer in the registry

/installer/{key} DELETE Remove installer from the registry

8.16. VOLUMES

8.16.1. Default volumes for workspace containers

By default, workspace containers start with a default volume and have a minimum of one PVC that is
located in the /projects directory.

Workspace projects are physically located in the /projects directory. When a workspace stops, the
machines are destroyed, but the volumes persist.

8.16.2. Adding volumes

In order for your data to persist for a local Maven repository, the node_modules/ directory, Ruby gems,
or the authorized_keys file for SSH connections, your workspace will need additional volumes. Each
machine can add as many volumes as the underlying infrastructure can support. OpenShift may impose
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a limit on the number of volumes.

You can add volumes either by using the User Dashboard or by updating the machine configuration.
The following is an example of the configuration file:

To avoid failures when updating the workspace configuration using REST APIs:

Use an absolute path.

The name and path cannot contain special characters, including dashes (-) or underscores (_).

NOTE

To allow machines to share the same volume, create a volume for each machine with an
identical name.

8.16.3. Configuring workspaces

To configure workspaces on the OpenShift and Kubernetes infrastructure as ephemeral, set the 
persistVolumes attribute to false in the workspace configuration.

The following is an example of the configuration file:

In this case, regardless of the PVC strategy, all volumes would be created as emptyDir for the given
workspace. When a workspace pod is removed for any reason, the data in the emptyDir volume is
deleted forever.

8.17. ENVIRONMENT VARIABLES

Environment variables are defined per machine. Depending on the infrastructure, they are added either
to the container or the Kubernetes pod definition. You can add, edit, and remove environment variables
either in the User Dashboard or directly in the workspace machine configuration.

The following is an example of an environment variable:

You can use environment variables in applications running in a workspace, in commands, and in the
terminal. The CodeReady Workspaces server also adds some environment variables that a user does
not control, although they are available to use. For example, they can be used as an API endpoint or
workspace ID.

"volumes": {
  "myvolume": {
    "path": "/absolute/path/in/workspace"
  }
}

"attributes": {
  "persistVolumes": "false"
}

"env": {
  "key": "value"
    }
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The following shows how to add a new environment variable:

8.18. PROJECTS

8.18.1. Creating projects in workspaces

Projects are always associated with a workspace and saved in a workspace configuration.

The following is an example of the project YAML file:

"projects": [
   {
     "description": "A basic example using Spring servlets. The app 
returns values entered into a submit form.",
     "source": {
       "location": "https://github.com/che-samples/web-java-spring.git",
       "type": "git",
       "parameters": {}
     },
     "links": [],
     "mixins": [],
     "problems": [],
     "name": "web-java-spring",
     "type": "maven",
     "path": "/web-java-spring",
     "attributes": {}
   }
 ]
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Once a project is saved into a workspace configuration, the IDE checks if the project exists on a file
system. Use the source.location URL to import projects that do yet exist on the file system. This
happens during the IDE initialization stage.

You can add the following projects:

Git projects

remotely hosted archives

GitHub projects

example projects provided by CodeReady Workspaces

Project import tools can be found on the User Dashboard when you are creating a new workspace or
editing an existing workspace in the IDE. Project import tools can also be found in the Workspace
menu.

The following shows example projects:

8.18.2. Defining project types

Plug-in developers can define their own project types. Since project types trigger certain behaviors within
the IDE, the construction of the projects is important to understand.

A project type is defined as one primary type and zero or more mixin types.

A primary project type is one where the project is editable, buildable, and runnable.

A mixin project type defines additional restrictions and behaviors of the project, but it cannot
be a primary project type by itself.

The collection of primary and mixin types for a single project defines the aggregate set of
attributes that will be stored as meta data within the project.

Project types describe different aspects of a project, such as:

the types of source files inside

the structure of the explorer tree
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the way in which a command is executed

associated workflows

which plug-ins must be installed

A project defines a set of attributes. The attributes of a project can be mandatory or optional.
Attributes that are optional can be dynamically set at runtime or during configuration.

Sub-projects may have different project types than their parents. Modules may physically exist
within the tree structure of the parent. For example, subdirectories exist within the tree structure
of the parent. Also, modules may physically exist outside the tree structure of the parent, such as
when the parent is a soft link to the module project.

8.18.3. Creating a sub-project

A sub-project is a portion of a project that can have sets of commands run against it where the sub-
directory is treated as the root working directory. Sub-projects make it possible to organize a single
repository into multiple, independently buildable, and runnable units.

To create a module, right-click on a directory in the IDE explorer tree and select Convert to Project. You
can then execute commands directly against this sub-project.

8.18.4. Navigating the project tree

You can step into or out of the project tree. When you step into a directory, that directory is set as the
project tree root and the explorer refreshes the view. All commands are then executed against this
directory root.

8.19. TROUBLESHOOTING FAILURES IN STARTING THE WORKSPACE

Failures to start a workspace may be caused by the following factors:

Incorrect environment recipe

Restrictive network settings

8.19.1. Incorrect environment recipes

When a workspace is starting, an environment recipe is sent to Docker or to the OpenShift API. The
CodeReady Workspaces server then listens to events provided by the given infrastructure. The
CodeReady Workspaces server expects a running Docker container or an OpenShift pod. The server
fails to start an environment and consequently the starting of the workspace fails if the infrastructure is
unable to create and start a container or a pod from the provided recipe.

A recipe can be incorrect due to the following reasons:

The Docker build fails with the provided Dockerfile. This can be because of a broken 
Dockerfile or because of CodeReady Workspaces. If the Docker build in CodeReady
Workspaces does not support context, consider editing the Docker recipe locally to ensure that it
is a valid Dockerfile. Add or copy resources into an image locally on your machine, push the
image to a registry, such as DockerHub, and use the resulting images in the recipe.

CodeReady Workspaces does not support certain Docker Compose syntax. Ensure that the 
Composefile is supported by CodeReady Workspaces.
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Installing packages in your Dockerfile instructions can take time. This may be influenced by
network settings.

8.19.1.1. Viewing logs from a failed workspace start

No installer logs are shown when a workspace fails to start because its container or pod are not
launched. In most cases, only logs from infrastructure and image pull and build are shown. Analyse
these logs to find the problem. The CodeReady Workspaces server also produces logs that are helpful in
debugging the problem.

8.19.2. Restrictive network settings

The CodeReady Workspaces server and agents, which run in a workspace container or pod, and the
user’s browser communicate with each other. Firewall, filtered ports, and other network restrictions may
cause trouble when starting a workspace.

A workspace is considered to be in a RUNNING state after the CodeReady Workspaces server verifies
that the workspace agent is up. The workspace agent also tries to reach the CodeReady Workspaces
server. All this happens in separate containers or pods, and the user’s browser is not yet involved. The 
workspace started by user $userName message in the CodeReady Workspaces server logs
indicates the following:

The workspace container or pod is up.

The workspace agent has successfully started.

The CodeReady Workspaces server can reach it.

8.19.2.1. Troubleshooting network setting when workspace agent cannot be reached

An error message saying that the IDE cannot be initialized indicates that the client (browser) cannot
reach the workspace agent. This is caused by the CodeReady Workspaces server using an internal IP
address to reach the workspace agent, while you are accessing the workspace from a machine that is
located on a different network. To confirm this, open the browser developer console and check failed
requests. The failed requests are to project and project-type API.

To access a workspace from a different network than the one on which the CodeReady Workspaces
server is running, enable access to the ephemeral port range on the CodeReady Workspaces server
network.

8.19.3. Failure in bootstrapping

When a workspace starts, the CodeReady Workspaces server creates and starts a container or a pod or
a set of containers and pods as per the environment recipe. After the container or pod is running, a
bootstrapping process begins - the bootstrapper binary is downloaded and launched. If the server logs
show bootstrapping failures, or you do not see any output in the Machine tab of the Workspaces view,
the reason is that bootstrapper is not downloaded. The following are possible the reasons for the
bootstrapper download failure:

Network conditions (for example, firewall restrictions).

Incorrect bootstrapper binary URL that the CodeReady Workspaces server uses (often
reproduced when deploying to OpenShift and missing necessary environment variables).
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To work around the problem, download the bootstrapper binary manually. On OpenShift, access the pod
on the command line (shell or the terminal in the web console) and run the following commands:

$ cd /tmp/bootstrapper

$ ls -la  1
$ curl ${CHE_URL}/agent-binaries/linux_amd64/bootstrapper/bootstrapper

to check for the existence of the bootstrapper binary

To prevent the curl command from failing, unblock port 80 on your network. On OpenShift with https
routes, unblock port 443.

8.20. WORKSPACE DATA MODEL

The following table lists the data types and their description.

Data Types Description

environments: Map<String, getEnvironments> Workspace environment variables. A workspace can
have multiple environment variables.

defaultEnv: STRING A workspace must have a default environment.

projects: [] Projects associated with a workspace.

commands: [] Commands associated with a workspace.

name: STRING Workspace name that has to be unique in a
namespace.

links: [] -

8.20.1. Environment recipes
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For recipe types of dockerfile, compose, or openshift, content, not location, is specified.

8.20.2. Projects

"recipe": {
  "type": "compose",
  "content": "services:\n db:\n  image: eclipse/mysql\n  environment:\n   
MYSQL_ROOT_PASSWORD: password\n   MYSQL_DATABASE: petclinic\n   
MYSQL_USER: petclinic\n   MYSQL_PASSWORD: password\n  mem_limit: 
1073741824\n dev-machine:\n  image: eclipse/ubuntu_jdk8\n  mem_limit: 
2147483648\n  depends_on:\n    - db",
  "contentType": "application/x-yaml"
}
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The project object structure has the source.location and source.type parameters. There are two
importer types: git and zip. New location types can be provided by custom plugins, such as svn.

Incorrectly configured projects or projects missing sources are marked with error codes and messages
explaining the error. In the example above, the project does not have errors and mixins.

A mixin adds additional behaviors to the project, the IDE panels, and menus. Mixins are reusable across
any project type. To define the mixins to add to a project, specify an array of strings, with each string
containing the identifier for the mixin.

Mixin ID Description

git Initiates the project with a Git repository. Adds Git-
menu functionality to the IDE. To add a mixin to the
project, create a new project and then initialize a Git
repository.

pullrequest Enables pull-request workflow where a server
handles the local and remote branching, forking, and
pull-request issuance. Pull requests generated from
within the server have another Factory placed into
the comments of pull requests that a PR reviewer can
consume. Adds contribution panel to the IDE. Set this
mixin to use attribute values for 
project.attributes.local_branch and 
project.attributes.contribute_to_bra
nch.

The pullrequest mixin requires additional configuration from the attributes object of the project.

The project object can include source.parameters, which is a map that can contain additional
parameters. Example: related to project importer.
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Parameter name Description

skipFirstLevel Used for projects with type zip. When value is 'true',
the first directory inside ZIP will be omitted.

8.20.3. Commands

Commands can be both tied to a workspace and an individual project. In the example below, a command
is saved to workspace configuration.

The followling image shows ways to save commands in the project configuration.

8.20.4. Runtime
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A runtime object is created when a workspace is in a running state. Runtime returns server URLs,
internal or external, depending on the server configuration. Interested clients, like the User Dashboard
and the IDE, use these URLs.

8.21. GETTING STARTED WITH FACTORIES

A factory is a template containing configuration to automate the generation of a new workspace using a
factory identifier added to the IDE URL. Factories can be used to create replicas of existing workspaces
or to automate the provisioning of statically or dynamically defined workspaces.

8.21.1. Trying a factory

Clone a public workspace on che.openshift.io by clicking try a factory.

8.21.2. Using factories

Factories can be invoked from a factory URL built in multiple ways. You can replace the 
localhost:8080 domain with the hostname of any CodeReady Workspaces installation.
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Using factories on che.openshift.io requires the user to be authenticated. Users who are not
authenticated see a login screen after they click on the factory URL. Users without an account can
create one using the same dialog.

8.21.3. Invoking factories using their unique hashcodes

Format /f?id={hashcode}
/factory?id={hashcode}

Sample https://localhost:8080/f?id=factorymtyoro1y0qt8tq2j

8.21.4. Invoking a named factory

Format /f?user={username}&name={factoryname}
/factory?user={username}&name={factoryname}

Sample https://localhost:8080/f?user=che&name=starwars
https://localhost:8080/factory?user=che&name=starwars

8.21.5. Invoking a factory for a specific git repository

Format /f?url={git URL}

Sample http://localhost:8080/f?url=https://github.com/eclipse/che
http://localhost:8080/f?url=https://github.com/eclipse/che/tree/language-server
http://localhost:8080/f?url=https://gitlab.com/benoitf/simple-project

Once a factory is executed, it either loads an existing workspace or generates a new one, depending on
the factory configuration. The name of the workspace is determined by the factory configuration, and its
name becomes a part of the URL used to access the factory. The format is: 
{hostname}/{username}/{workspace}.

8.21.6. Next steps

You have just created your first developer workspace using factories. Read on to learn more about:

How to create factories

Customizing factories with the factory JSON reference

8.21.7. Creating Factories

8.21.7.1. Creating a factory in the dashboard

You can create a factory based on an existing workspace. You can also create factories based on a
template or by pasting in a .factory.json file and then generating a factory URL using the
CodeReady Workspaces CLI or API. To learn more about the JSON structure and options, see Factory
JSON reference.
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A factory created from the dashboard is persisted on CodeReady Workspaces and retained when
upgrading to a newer version.

To create a factory on the dashboard:

1. In the IDE, click Dashboard > Factories > Create Factory.

Sample factory: https://che.openshift.io/f?id=factorymtyoro1y0qt8tq2j.

8.21.7.2. Creating a factory in the IDE

Creating a factory in the IDE in a running workspace generates a factory to replicate that workspace
including the runtime and project settings.

A factory created from the dashboard is persisted on CodeReady Workspaces and retained when
upgrading to a newer version.

To create a factory in the IDE:

1. In the IDE, click Workspace > Create Factory.

Sample factory: https://che.openshift.io/f?id=factorymtyoro1y0qt8tq2j.

8.21.7.3. Creating a factory based on a repository

URL factories work with GitHub and GitLab repositories. By using URL factories, the project referenced
by the URL is automatically imported.

To create a factory based on a repository:

1. Specify the repository URL. Ensure that you store the configuration in the repository.

Sample factories:

http://che.openshift.io/f?url=https://github.com/eclipse/che

http://che.openshift.io/f?url=https://github.com/eclipse/che/tree/language-server

http://che.openshift.io/f?url=https://gitlab.com/benoitf/simple-project

The factory URL can include a branch or a subdirectory. Following are examples of optional parameters:

?url=https://github.com/eclipse/che CodeReady Workspaces is imported with the 
master branch.

?url=https://github.com/eclipse/che/tree/5.0.0 CodeReady Workspaces is
imported by using the 5.0.0 branch.

?url=https://github.com/eclipse/che/tree/5.0.0/dashboard subdirectory 
dashboard/ is imported by using the 5.0.0 branch.

8.21.7.3.1. Customizing URL factories

The following are two ways to customize the runtime and configuration:

Customizing only the runtime
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Providing a .factory.json file inside the repository signals to CodeReady Workspaces URL
factory to configure the project and runtime according to this configuration file. When a 
.factory.json file is stored inside the repository, any Dockerfile content is ignored because
the workspace runtime configuration is defined inside the JSON file.

Customizing the Dockerfile

(This only works on Docker infrastructure. On recent CodeReady Workspaces versions, support of
this feature may be reduced or dropped.) Providing a .factory.dockerfile inside the repository
signals to the URL factory to use this Dockerfile for the workspace agent runtime. By default,
imported projects are set to a blank project type. You can also set the project type in the 
.factory.json file or in the workspace definition that the factory inherits from.

8.21.7.4. Configuring factory policies

Policies are a way to send instructions to the automation engine about the number of workspaces to
create and their meta data such as lifespan and resource allocation.

8.21.7.4.1. Setting factory limitations

Referer

CodeReady Workspacescks the hostname of the acceptor and only allows the factory to execute if
there is a match.

Since and Until

Defines the time window in which the factory can be activated. For example, instructors who want to
create an exercise that can only be accessed for two hours should set these properties.

8.21.7.4.2. Setting factory multiplicity

Multiplicity defines the number of workspaces that can be created from the factory.

Multiple workspaces (perClick)

Every click of the factory URL generates a different workspace, each with its own identifier, name,
and resources.

Single workspace (perUser)

Exactly one workspace is generated for each unique user that clicks on the factory URL. Existing
workspaces are reopened.

To learn how to configure factory policies, see the JSON reference.

8.21.7.5. Customizing the IDE

You can instruct the factory to invoke a series of IDE actions based on events in the lifecycle of the
workspace.

8.21.7.6. Lifecycle Events

The lifecycle of the workspace is defined by the following events:

onAppLoaded: Triggered when the IDE is loaded.

onProjectsLoaded: Triggered when the workspace and all projects have been activated.

onAppClosed: Triggered when the IDE is closed.
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Each event type has a set of actions that can be triggered. There is no ordering of actions executed
when you provide a list; CodeReady Workspaces asynchronously invokes multiple actions if appropriate.

8.21.7.7. Factory actions

The following is a list of all possible actions that can be configured with your factory.

Run Command

Specify the name of the command to invoke after the IDE is loaded.
Associated Event: onProjectsLoaded

Open File

Open project files in the editor. Optionally, define the line to be highlighted.
Associated Event: onProjectsLoaded

Open a Welcome Page

Customize content of a welcome panel displayed when the workspace is loaded.
Associated Event: onAppLoaded

Warn on Uncommitted Changes

Opens a warning pop-up window when the user closes the browser tab with a project that has
uncommitted changes.
Associated Event: onAppClosed

To learn how to configure factory actions, see the Factory JSON reference.

8.21.7.8. Finding and replacing variables

Factories make it possible to replace variables or placeholders in the source code — used to avoid
exposing sensitive information (passwords, URLs, account names, API keys) — with real values. To find
and replace a value, you can use the run command during an onProjectsLoaded event. You can use
sed, awk, or other tools available in your workspace environment.

For a sample of how to configure finding and replacing a value, see the Factory JSON reference section.
Alternatively, you can add IDE actions in the Factory tab, on the user Dashboard.

Use regular expressions in sed, both in find-replace and file-file type patterns.

8.21.7.9. Pull request workflow

Factories can be configured with a dedicated pull request workflow. The PR workflow handles local and
remote branching, forking, and issuing the pull request. Pull requests generated from within CodeReady
Workspaces have another factory placed into the comments of the pull requests that a PR reviewer can
use to quickly start the workspace.

When enabled, the pull request workflow adds a contribution panel to the IDE.
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8.21.7.10. Repository badging

If you have projects in GitHub or GitLab, you can help your contributors to get started by providing them
ready-to-code developer workspaces. Create a factory and add the following badge on your repositories 
readme.md:

8.21.7.11. Next steps

Read about customizing factories with the Factory JSON reference.

8.21.8. Factories JSON Reference

A factory configuration is a JSON snippet either stored within CodeReady Workspaces or as a 
.factory.json file. You can create factories within the IDE using the CodeReady Workspaces URL
syntax, within the dashboard, or on the command line with the API and CLI.

[![Developer Workspace]
(https://che.openshift.io/factory/resources/factory-contribute.svg)](your-
factory-url)

factory : {
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5

Version of the configuration format.

Identical to workspace:{} object for CodeReady Workspaces.

(Optional) Restrictions that limit behaviors.

(Optional) Trigger IDE UI actions tied to workspace events.

(Optional) Identifying information of author.

The factory.workspace is identical to the workspace:{} object for CodeReady Workspaces and
contains the structure of the workspace. To learn more about the workspace JSON object, see
Workspace Data Model.

You can export workspaces and then reuse the workspace definition within a factory. workspaces are
composed of the following:

0..n projects

0..n environments that contain machines to run the code

0..n commands to execute against the code and machines

a type

The factory.policies, factory.ide, and factory.creator objects are unique to factories.
They provide meta information to the automation engine that alter the presentation of the factory URL or
the behavior of the provisioning.

8.21.8.1. Mixins

A mixin adds additional behaviors to a project as a set of new project type attributes. Mixins are reusable
across any project type. To define the mixins to add to a project, specify an array of strings, with each
string containing the identifier for the mixin. For example, "mixins" : [ "pullrequest" ].

Mixin ID Description

  "v"         : 4.0,            1

  "workspace" : {},             2

  "policies"  : {},             3

  "ide"       : {},             4

  "creator"   : {},             5
}
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pullrequest Enables pull request workflow where CodeReady
Workspaces handles local and remote branching,
forking, and pull request issuance. Pull requests
generated from within CodeReady Workspaces have
another factory placed into the comments of pull
requests that a PR reviewer can consume. Adds
contribution panel to the IDE. If this mixin is set, it
uses attribute values for 
project.attributes.local_branch and 
project.attributes.contribute_to_bra
nch

Mixin ID Description

The pullrequest mixin requires additional configuration from the attributes object of the
project. If present, {{ site.product_mini_name }} will use the project attributes as defined in the
factory. If not provided, {{ site.product_mini_name }} will set defaults for the attributes.

Learn more about other link:TODO: link to project API docs[mixins]

8.21.8.2. Pull Request mixin attributes

Project attributes alter the behavior of the IDE or workspace.

Different CodeReady Workspaces plug-ins can add their own attributes to affect the behavior of the IDE
or workspace. Attribute configuration is always optional and if not provided within a factory definition, the
IDE or workspace sets it.

Attribute Description

local_branch Used in conjunction with the pullrequest mixin.
If provided, the local branch for the project is set with
this value. If not provided, the local branch is set with
the value of 
project.source.parameters.branch (the
name of the branch from the remote). If both 
local_branch and 
project.source.parameters.branch are
not provided, the local branch is set to the name of
the checked out branch.

contribute_to_branch Name of the branch that a pull request will be
contributed to. The value of 
project.source.parameters.branch is
default. It is the name of the branch that this project
was cloned from.

Following is a snippet that demonstrates full configuration of the contribution mixin.

factory.workspace.project : {
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8.21.8.3. Policies

Following is an example of a factory policy.

Works only for clients from a referrer.

Factory works only after this date.

Factory works only before this date.

Create one workpace per click, user, or account.

8.21.8.4. Limitations

You can use since : EPOCHTIME, until : EPOCHTIME, and referer as a way to prevent the
factory from executing under certain conditions. since and until represent a valid time window that
allows the factory to activate. The referrer checks the hostname of the acceptor and only allows the
factory to execute if there is a match.

8.21.8.5. Multiplicity

Using create : perClick causes every click of the factory URL to generate a new workspace, each
with its own identifier, name, and resources. Using create : perUser causes only one workspace to
be generated for each unique user that clicks on the factory URL. If the workspace has previously been
generated, the existing workspace is reopened.

8.21.8.6. Customizing the IDE

  "mixins"     : [ "pullrequest" ],

  "attributes" : {
    "local_branch"         : [ "timing" ],
    "contribute_to_branch" : [ "master" ]
  },

  "source" : {
    "type"       : "git",
    "location"   : "https://github.com/codenvy/che.git",
    "parameters" : {
      "keepVcs" : "true"
    }
  }
}

factory.policies : {

  "referer"   : STRING,                 1

  "since"     : EPOCHTIME,              2

  "until"     : EPOCHTIME,              3

  "create"    : [perClick | perUser]    4
}

factory.ide.{event} : {                 1
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event = onAppLoaded, onProjectsLoaded, onAppClosed.

List of IDE actions to be executed when the event is triggered.

Action for the IDE to perform when the event is triggered.

Properties to customize action behavior.

You can instruct the factory to invoke a series of IDE actions based on events in the lifecycle of the
workspace.

onAppLoaded

Triggered when the IDE is loaded.

onProjectsLoaded

Triggered when the workspace and all projects have been activated or imported.

onAppClosed

Triggered when the IDE is closed.

Following is an example that associates a variety of actions with all of the events.

  "actions" : [{}]                      2
}

factory.ide.{event}.actions : [{

  "id"         : String,                3

  properties : {}                       4
}]

"ide" : {
  "onProjectsLoaded" : {                                               

1
    "actions" : [{
      "id" : "openFile",                                               

2
      "properties" : {                                                 

3
        "file" : "/my-project/pom.xml"
      }
    },
    {
      "id" : "runCommand",                                             

4
      "properties" : {
        "name" : "MCI"                                                 

5
      }
    }
  ]},
  "onAppLoaded": {
     "actions": [
        {
           "properties:{
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6

7

8

9

Actions triggered when a project is opened.

Opens a file in the editor. Can add multiple.

The file to be opened (include project name).

Launch command after the IDE opens.

Command name.

Title of a Welcome tab.

HTML file to be loaded into a tab.

Actions to be triggered when the IDE is closed.

Show warning when closing a browser tab.

Each event type has a set of actions that can be triggered. There is no ordering of actions executed
when you provide a list; {{ site.product_mini_name }} will asynchronously invoke multiple actions if
appropriate. Some actions can be configured in how they perform and will have an associated 
properties : {} object.

onProjectsLoaded Event

Action Properties? Description

runCommand Yes Specify the name of the
command to invoke after the IDE
is loaded. Specify the commands
in the 
factory.workspace.comm
ands : [] array.

openFile Yes Open project files as a tab in the
editor.

              "greetingTitle": "Getting Started",                      

6

              "greetingContentUrl": "http://example.com/README.html"   7
           },
           "id": "openWelcomePage"
        }
     ]
  },
  "onAppClosed" : {                                                    

8
    "actions" : [{
      "id" : "warnOnClose"                                             

9
    }]
  }
}
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onAppLoaded Event

Action Properties? Description

openWelcomePage Yes Customize the content of the
welcome panel when the
workspace is loaded. Note that
browsers block http resources
that are loaded into https pages.

onAppClosed Event

Action Properties? Description

warnOnClose No Opens a warning pop-up window
when the user closes the browser
tab with a project that has
uncommitted changes. Requires 
project.parameters.kee
pVcs to be true.

8.21.8.7. Action: Open File

This action opens a file as a tab in the editor. You can provide this action multiple times to have multiple
files open. The file property is a relative reference to a file in the project source tree. The file parameter
is the relative path within the workspace to the file that should be opened by the editor. The line
parameter is optional and can be used to move the editor cursor to a specific line when the file is
opened. Projects are located in the /projects/ directory of a workspace.

8.21.8.8. Action: Find and Replace

In projects created from a factory, CodeReady Workspaces can find and replace values in the source
code after it is imported into the project tree. This lets you parameterize your source code. Find and
replace can be run as a Run Command during onProjectsLoaded event. You can use sed, awk, or
any other tools that are available in your workspace environment.

To define a command for your workspace in factory.workspace.workspaceConfig.commands:

{
  "commandLine": "sed -i 's/***/userId984hfy6/g' /projects/console-java-
simple/README.md",
  "name": "replace",
  "attributes": {

{
  "id" : "openFile",
    "properties" : {
      "file" : "/my-project/pom.xml",
      "line" : "50"
  }
}
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    "goal": "Common",
    "previewUrl": ""
  },
  "type": "custom"
}

In the preceding example, a named command replace is created. The command replaces each
occurrence of * with the string userId984hfy6 in the README.md file of the project.

Then register this command to the execution list linked to the onProjectsLoaded event. In this
example, the replace command is executed after the project is imported into a workspace.

"ide": {
    "onProjectsLoaded": {
      "actions": [
        {
          "properties": {
            "name": "replace"
          },
          "id": "runCommand"
        }
      ]
    }
  }

Use regular expressions in sed, both in find-replace and file-file type patterns.

8.21.8.9. Creator

This object has meta information that you can embed within the factory. These attributes do not affect the
automation behavior or the behavior of the generated workspace.

The name of the author of this configuration file.

The author’s email address.

This value is set by the system.

This value is set by the system.

factory.creator : {

  "name"      : STRING,            1

  "email"     : STRING,            2

  "created"   : EPOCHTIME,         3

  "userId"    : STRING             4
}
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