
Red Hat build of MicroShift 4.15

Storage

Configuring and managing cluster storage

Last Updated: 2024-05-08

Red Hat build of MicroShift 4.15 Storage

Configuring and managing cluster storage

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about using storage for MicroShift.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. STORAGE OVERVIEW
1.1. STORAGE TYPES

1.1.1. Ephemeral storage
1.1.2. Persistent storage
1.1.3. Dynamic storage provisioning

CHAPTER 2. UNDERSTANDING EPHEMERAL STORAGE
2.1. OVERVIEW
2.2. TYPES OF EPHEMERAL STORAGE

Root
Runtime

2.3. EPHEMERAL STORAGE MANAGEMENT
2.3.1. Ephemeral storage limits and requests units
2.3.2. Ephemeral storage requests and limits example
2.3.3. Ephemeral storage configuration effects pod eviction

2.4. MONITORING EPHEMERAL STORAGE

CHAPTER 3. GENERIC EPHEMERAL VOLUMES
3.1. OVERVIEW
3.2. LIFECYCLE AND PERSISTENT VOLUME CLAIMS
3.3. SECURITY
3.4. PERSISTENT VOLUME CLAIM NAMING
3.5. CREATING GENERIC EPHEMERAL VOLUMES

CHAPTER 4. UNDERSTANDING PERSISTENT STORAGE
4.1. PERSISTENT STORAGE OVERVIEW
4.2. ADDITIONAL RESOURCES
4.3. LIFECYCLE OF A VOLUME AND CLAIM

4.3.1. Provision storage
4.3.2. Bind claims
4.3.3. Use pods and claimed PVs
4.3.4. Release a persistent volume
4.3.5. Reclaim policy for persistent volumes
4.3.6. Reclaiming a persistent volume manually
4.3.7. Changing the reclaim policy of a persistent volume

4.4. PERSISTENT VOLUMES
4.4.1. Capacity
4.4.2. Supported access modes
4.4.3. Phase

4.4.3.1. Mount options
4.5. PERSISTENT VOLUME CLAIMS

4.5.1. Storage classes
4.5.2. Access modes
4.5.3. Resources
4.5.4. Claims as volumes

4.6. USING FSGROUP TO REDUCE POD TIMEOUTS

CHAPTER 5. EXPANDING PERSISTENT VOLUMES
5.1. EXPANDING CSI VOLUMES
5.2. EXPANDING LOCAL VOLUMES
5.3. EXPANDING PERSISTENT VOLUME CLAIMS (PVCS) WITH A FILE SYSTEM
5.4. RECOVERING FROM FAILURE WHEN EXPANDING VOLUMES

4
4
4
4
4

5
5
5
5
5
5
6
6
7
7

8
8
8
9
9
9

11
11
11
11
11
11

12
12
12
13
13
14
14
14
15
15
16
16
16
17
17
17

19
19
19

20
20

Table of Contents

1

. .

. .

. .

CHAPTER 6. DYNAMIC STORAGE USING THE LVMS PLUGIN
6.1. LVMS SYSTEM REQUIREMENTS

6.1.1. Volume group name
6.1.2. Volume size increments

6.2. LVMS DEPLOYMENT
6.3. CREATING AN LVMS CONFIGURATION FILE
6.4. BASIC LVMS CONFIGURATION EXAMPLE
6.5. USING THE LVMS

6.5.1. Device classes

CHAPTER 7. WORKING WITH VOLUME SNAPSHOTS
7.1. ABOUT LVM THIN VOLUMES

7.1.1. Storage classes
7.2. VOLUME SNAPSHOT CLASSES
7.3. ABOUT VOLUME SNAPSHOTS

7.3.1. Creating a volume snapshot
7.3.2. Backing up a volume snapshot
7.3.3. Restoring a volume snapshot
7.3.4. Deleting a volume snapshot

7.4. ABOUT LVM VOLUME CLONING

CHAPTER 8. STORAGE MIGRATION USING THE KUBE STORAGE VERSION MIGRATOR
8.1. MAKING A STORAGE MIGRATION REQUEST

22
22
22
22
22
23
23
24
25

27
27
28
29
30
31

33
34
35
36

38
38

Red Hat build of MicroShift 4.15 Storage

2

Table of Contents

3

CHAPTER 1. STORAGE OVERVIEW
MicroShift supports multiple types of storage, both for on-premise and cloud providers. You can
manage container storage for persistent and non-persistent data in a Red Hat build of MicroShift
cluster.

1.1. STORAGE TYPES

MicroShift storage is broadly classified into two categories, namely ephemeral storage and persistent
storage.

1.1.1. Ephemeral storage

Pods and containers are ephemeral or transient in nature and designed for stateless applications.
Ephemeral storage allows administrators and developers to better manage the local storage for some of
their operations. To read details about ephemeral storage, click Understanding ephemeral storage .

1.1.2. Persistent storage

Stateful applications deployed in containers require persistent storage. MicroShift uses a pre-
provisioned storage framework called persistent volumes (PV) to allow cluster administrators to
provision persistent storage. The data inside these volumes can exist beyond the lifecycle of an
individual pod. Developers can use persistent volume claims (PVCs) to request storage requirements.
For persistent storage details, read Understanding persistent storage .

1.1.3. Dynamic storage provisioning

Using dynamic provisioning allows you to create storage volumes on-demand, eliminating the need for
pre-provisioned storage. For more information about how dynamic provisioning works in Red Hat build
of MicroShift, read Dynamic provisioning.

Red Hat build of MicroShift 4.15 Storage

4

CHAPTER 2. UNDERSTANDING EPHEMERAL STORAGE
Ephemeral storage is unstructured and temporary. It is often used with immutable applications. This
guide discusses how ephemeral storage works for MicroShift.

2.1. OVERVIEW

In addition to persistent storage, pods and containers can require ephemeral or transient local storage
for their operation. The lifetime of this ephemeral storage does not extend beyond the life of the
individual pod, and this ephemeral storage cannot be shared across pods.

Pods use ephemeral local storage for scratch space, caching, and logs. Issues related to the lack of local
storage accounting and isolation include the following:

Pods cannot detect how much local storage is available to them.

Pods cannot request guaranteed local storage.

Local storage is a best-effort resource.

Pods can be evicted due to other pods filling the local storage, after which new pods are not
admitted until sufficient storage is reclaimed.

Unlike persistent volumes, ephemeral storage is unstructured and the space is shared between all pods
running on the node, other uses by the system, and Red Hat build of MicroShift. The ephemeral storage
framework allows pods to specify their transient local storage needs. It also allows Red Hat build of
MicroShift to protect the node against excessive use of local storage.

While the ephemeral storage framework allows administrators and developers to better manage local
storage, I/O throughput and latency are not directly effected.

2.2. TYPES OF EPHEMERAL STORAGE

Ephemeral local storage is always made available in the primary partition. There are two basic ways of
creating the primary partition: root and runtime.

Root
This partition holds the kubelet root directory, /var/lib/kubelet/ by default, and /var/log/ directory. This
partition can be shared between user pods, the OS, and Kubernetes system daemons. This partition can
be consumed by pods through EmptyDir volumes, container logs, image layers, and container-writable
layers. Kubelet manages shared access and isolation of this partition. This partition is ephemeral, and
applications cannot expect any performance SLAs, such as disk IOPS, from this partition.

Runtime
This is an optional partition that runtimes can use for overlay file systems. Red Hat build of MicroShift
attempts to identify and provide shared access along with isolation to this partition. Container image
layers and writable layers are stored here. If the runtime partition exists, the root partition does not hold
any image layer or other writable storage.

2.3. EPHEMERAL STORAGE MANAGEMENT

Cluster administrators can manage ephemeral storage within a project by setting quotas that define the
limit ranges and number of requests for ephemeral storage across all pods in a non-terminal state.
Developers can also set requests and limits on this compute resource at the pod and container level.

CHAPTER 2. UNDERSTANDING EPHEMERAL STORAGE

5

You can manage local ephemeral storage by specifying requests and limits. Each container in a pod can
specify the following:

spec.containers[].resources.limits.ephemeral-storage

spec.containers[].resources.requests.ephemeral-storage

2.3.1. Ephemeral storage limits and requests units

Limits and requests for ephemeral storage are measured in byte quantities. You can express storage as
a plain integer or as a fixed-point number using one of these suffixes: E, P, T, G, M, k. You can also use
the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

For example, the following quantities all represent approximately the same value: 128974848, 129e6,
129M, and 123Mi.

IMPORTANT

The suffixes for each byte quantity are case-sensitive. Be sure to use the correct case.
Use the case-sensitive "M", such as used in "400M" to set the request at 400 megabytes.
Use the case-sensitive "400Mi" to request 400 mebibytes. If you specify "400m" of
ephemeral storage, the storage requests is only 0.4 bytes.

2.3.2. Ephemeral storage requests and limits example

The following example configuration file shows a pod with two containers:

Each container requests 2GiB of local ephemeral storage.

Each container has a limit of 4GiB of local ephemeral storage.

At the pod level, kubelet works out an overall pod storage limit by adding up the limits of all the
containers in that pod.

In this case, the total storage usage at the pod level is the sum of the disk usage from all
containers plus the pod’s emptyDir volumes.

Therefore, the pod has a request of 4GiB of local ephemeral storage, and a limit of 8GiB of
local ephemeral storage.

Example ephemeral storage configuration with quotas and limits

apiVersion: v1
kind: Pod
metadata:
 name: frontend
spec:
 containers:
 - name: app
 image: images.my-company.example/app:v4
 resources:
 requests:
 ephemeral-storage: "2Gi" 1
 limits:
 ephemeral-storage: "4Gi" 2

Red Hat build of MicroShift 4.15 Storage

6

1

2

Container request for local ephemeral storage.

Container limit for local ephemeral storage.

2.3.3. Ephemeral storage configuration effects pod eviction

The settings in the pod spec affect when kubelet evicts pods. At the container level, because the first
container sets a resource limit, kubelet eviction manager measures the disk usage of this container and
evicts the pod if the storage usage of the container exceeds its limit (4GiB). The kubelet eviction
manager also marks the pod for eviction if the total usage exceeds the overall pod storage limit (8GiB).

NOTE

This policy is strictly for emptyDir volumes and is not applied to persistent storage. You
can specify the priorityClass of pods to exempt the pod from eviction.

2.4. MONITORING EPHEMERAL STORAGE

You can use /bin/df as a tool to monitor ephemeral storage usage on the volume where ephemeral
container data is located, which is /var/lib/kubelet and /var/lib/containers. The available space for only
/var/lib/kubelet is shown when you use the df command if /var/lib/containers is placed on a separate
disk by the cluster administrator.

To show the human-readable values of used and available space in /var/lib, enter the following
command:

The output shows the ephemeral storage usage in /var/lib:

Example output

 volumeMounts:
 - name: ephemeral
 mountPath: "/tmp"
 - name: log-aggregator
 image: images.my-company.example/log-aggregator:v6
 resources:
 requests:
 ephemeral-storage: "2Gi"
 limits:
 ephemeral-storage: "4Gi"
 volumeMounts:
 - name: ephemeral
 mountPath: "/tmp"
 volumes:
 - name: ephemeral
 emptyDir: {}

$ df -h /var/lib

Filesystem Size Used Avail Use% Mounted on
/dev/disk/by-partuuid/4cd1448a-01 69G 32G 34G 49% /

CHAPTER 2. UNDERSTANDING EPHEMERAL STORAGE

7

CHAPTER 3. GENERIC EPHEMERAL VOLUMES
Learn about ephemeral volumes for MicroShift, including their lifecycles, security, and naming.

3.1. OVERVIEW

Generic ephemeral volumes are a type of ephemeral volume that can be provided by all storage drivers
that support persistent volumes and dynamic provisioning. Generic ephemeral volumes are similar to
emptyDir volumes in that they provide a per-pod directory for scratch data, which is usually empty after
provisioning.

Generic ephemeral volumes are specified inline in the pod spec and follow the pod’s lifecycle. They are
created and deleted along with the pod.

Generic ephemeral volumes have the following features:

Storage can be local or network-attached.

Volumes can have a fixed size that pods are not able to exceed.

Volumes might have some initial data, depending on the driver and parameters.

Typical operations on volumes are supported, assuming that the driver supports them, including
snapshotting, cloning, resizing, and storage capacity tracking.

NOTE

Generic ephemeral volumes do not support offline snapshots and resize.

3.2. LIFECYCLE AND PERSISTENT VOLUME CLAIMS

The parameters for a volume claim are allowed inside a volume source of a pod. Labels, annotations, and
the whole set of fields for persistent volume claims (PVCs) are supported. When such a pod is created,
the ephemeral volume controller then creates an actual PVC object (from the template shown in the
Creating generic ephemeral volumes procedure) in the same namespace as the pod, and ensures that
the PVC is deleted when the pod is deleted. This triggers volume binding and provisioning in one of two
ways:

Either immediately, if the storage class uses immediate volume binding.
With immediate binding, the scheduler is forced to select a node that has access to the volume
after it is available.

When the pod is tentatively scheduled onto a node (WaitForFirstConsumervolume binding
mode).
This volume binding option is recommended for generic ephemeral volumes because then the
scheduler can choose a suitable node for the pod.

In terms of resource ownership, a pod that has generic ephemeral storage is the owner of the PVCs that
provide that ephemeral storage. When the pod is deleted, the Kubernetes garbage collector deletes the
PVC, which then usually triggers deletion of the volume because the default reclaim policy of storage
classes is to delete volumes. You can create quasi-ephemeral local storage by using a storage class with
a reclaim policy of retain: the storage outlives the pod, and in this case, you must ensure that volume
clean-up happens separately. While these PVCs exist, they can be used like any other PVC. In particular,
they can be referenced as data source in volume cloning or snapshotting. The PVC object also holds the
current status of the volume.

Red Hat build of MicroShift 4.15 Storage

8

3.3. SECURITY

You can enable the generic ephemeral volume feature to allows users who can create pods to also
create persistent volume claims (PVCs) indirectly. This feature works even if these users do not have
permission to create PVCs directly. Cluster administrators must be aware of this. If this does not fit your
security model, use an admission webhook that rejects objects such as pods that have a generic
ephemeral volume.

The normal namespace quota for PVCs still applies, so even if users are allowed to use this new
mechanism, they cannot use it to circumvent other policies.

3.4. PERSISTENT VOLUME CLAIM NAMING

Automatically created persistent volume claims (PVCs) are named by a combination of the pod name
and the volume name, with a hyphen (-) in the middle. This naming convention also introduces a
potential conflict between different pods, and between pods and manually created PVCs.

For example, pod-a with volume scratch and pod with volume a-scratch both end up with the same
PVC name, pod-a-scratch.

Such conflicts are detected, and a PVC is only used for an ephemeral volume if it was created for the
pod. This check is based on the ownership relationship. An existing PVC is not overwritten or modified,
but this does not resolve the conflict. Without the right PVC, a pod cannot start.

IMPORTANT

Be careful when naming pods and volumes inside the same namespace so that naming
conflicts do not occur.

3.5. CREATING GENERIC EPHEMERAL VOLUMES

Procedure

1. Create the pod object definition and save it to a file.

2. Include the generic ephemeral volume information in the file.

my-example-pod-with-generic-vols.yaml

kind: Pod
apiVersion: v1
metadata:
 name: my-app
spec:
 containers:
 - name: my-frontend
 image: busybox:1.28
 volumeMounts:
 - mountPath: "/mnt/storage"
 name: data
 command: ["sleep", "1000000"]
 volumes:
 - name: data 1
 ephemeral:

CHAPTER 3. GENERIC EPHEMERAL VOLUMES

9

1 Generic ephemeral volume claim.

 volumeClaimTemplate:
 metadata:
 labels:
 type: my-app-ephvol
 spec:
 accessModes: ["ReadWriteOnce"]
 storageClassName: "topolvm-provisioner"
 resources:
 requests:
 storage: 1Gi

Red Hat build of MicroShift 4.15 Storage

10

CHAPTER 4. UNDERSTANDING PERSISTENT STORAGE
Managing storage is a distinct problem from managing compute resources. MicroShift uses the
Kubernetes persistent volume (PV) framework to allow cluster administrators to provision persistent
storage for a cluster. Developers can use persistent volume claims (PVCs) to request PV resources
without having specific knowledge of the underlying storage infrastructure.

4.1. PERSISTENT STORAGE OVERVIEW

PVCs are specific to a namespace, and are created and used by developers as a means to use a PV. PV
resources on their own are not scoped to any single namespace; they can be shared across the entire
Red Hat build of MicroShift cluster and claimed from any namespace. After a PV is bound to a PVC, that
PV can not then be bound to additional PVCs. This has the effect of scoping a bound PV to a single
namespace.

PVs are defined by a PersistentVolume API object, which represents a piece of existing storage in the
cluster that was either statically provisioned by the cluster administrator or dynamically provisioned
using a StorageClass object. It is a resource in the cluster just like a node is a cluster resource.

PVs are volume plugins like Volumes but have a lifecycle that is independent of any individual pod that
uses the PV. PV objects capture the details of the implementation of the storage, be that LVM, the host
filesystem such as hostpath, or raw block devices.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Like PersistentVolumes, PersistentVolumeClaims (PVCs) are API objects, which represents a request
for storage by a developer. It is similar to a pod in that pods consume node resources and PVCs
consume PV resources. For example, pods can request specific levels of resources, such as CPU and
memory, while PVCs can request specific storage capacity and access modes. Access modes supported
by OpenShift Container Platform are also definable in Red Hat build of MicroShift. However, because
Red Hat build of MicroShift does not support multi-node deployments, only ReadWriteOnce (RWO) is
pertinent.

4.2. ADDITIONAL RESOURCES

Access modes for persistent storage

4.3. LIFECYCLE OF A VOLUME AND CLAIM

PVs are resources in the cluster. PVCs are requests for those resources and also act as claim checks to
the resource. The interaction between PVs and PVCs have the following lifecycle.

4.3.1. Provision storage

In response to requests from a developer defined in a PVC, a cluster administrator configures one or
more dynamic provisioners that provision storage and a matching PV.

4.3.2. Bind claims

When you create a PVC, you request a specific amount of storage, specify the required access mode,
and create a storage class to describe and classify the storage. The control loop in the master watches

CHAPTER 4. UNDERSTANDING PERSISTENT STORAGE

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/storage/understanding-persistent-storage#pv-access-modes_understanding-persistent-storage

for new PVCs and binds the new PVC to an appropriate PV. If an appropriate PV does not exist, a
provisioner for the storage class creates one.

The size of all PVs might exceed your PVC size. This is especially true with manually provisioned PVs. To
minimize the excess, Red Hat build of MicroShift binds to the smallest PV that matches all other criteria.

Claims remain unbound indefinitely if a matching volume does not exist or can not be created with any
available provisioner servicing a storage class. Claims are bound as matching volumes become available.
For example, a cluster with many manually provisioned 50Gi volumes would not match a PVC requesting
100Gi. The PVC can be bound when a 100Gi PV is added to the cluster.

4.3.3. Use pods and claimed PVs

Pods use claims as volumes. The cluster inspects the claim to find the bound volume and mounts that
volume for a pod. For those volumes that support multiple access modes, you must specify which mode
applies when you use the claim as a volume in a pod.

Once you have a claim and that claim is bound, the bound PV belongs to you for as long as you need it.
You can schedule pods and access claimed PVs by including persistentVolumeClaim in the pod’s
volumes block.

NOTE

If you attach persistent volumes that have high file counts to pods, those pods can fail or
can take a long time to start. For more information, see When using Persistent Volumes
with high file counts in OpenShift, why do pods fail to start or take an excessive amount
of time to achieve "Ready" state?.

4.3.4. Release a persistent volume

When you are finished with a volume, you can delete the PVC object from the API, which allows
reclamation of the resource. The volume is considered released when the claim is deleted, but it is not
yet available for another claim. The previous claimant’s data remains on the volume and must be
handled according to policy.

4.3.5. Reclaim policy for persistent volumes

The reclaim policy of a persistent volume tells the cluster what to do with the volume after it is released.
A volume’s reclaim policy can be Retain, Recycle, or Delete.

Retain reclaim policy allows manual reclamation of the resource for those volume plugins that
support it.

Recycle reclaim policy recycles the volume back into the pool of unbound persistent volumes
once it is released from its claim.

IMPORTANT

The Recycle reclaim policy is deprecated in Red Hat build of MicroShift 4. Dynamic
provisioning is recommended for equivalent and better functionality.

Delete reclaim policy deletes both the PersistentVolume object from Red Hat build of
MicroShift and the associated storage asset in external infrastructure, such as Amazon Elastic
Block Store (Amazon EBS) or VMware vSphere.

Red Hat build of MicroShift 4.15 Storage

12

https://access.redhat.com/solutions/6221251

NOTE

Dynamically provisioned volumes are always deleted.

4.3.6. Reclaiming a persistent volume manually

When a persistent volume claim (PVC) is deleted, the underlying logical volume is handled according to
the reclaimPolicy.

Procedure

To manually reclaim the PV as a cluster administrator:

1. Delete the PV.

The associated storage asset in the external infrastructure, such as an AWS EBS, GCE PD, Azure
Disk, or Cinder volume, still exists after the PV is deleted.

2. Clean up the data on the associated storage asset.

3. Delete the associated storage asset. Alternately, to reuse the same storage asset, create a new
PV with the storage asset definition.

The reclaimed PV is now available for use by another PVC.

4.3.7. Changing the reclaim policy of a persistent volume

To change the reclaim policy of a persistent volume:

1. List the persistent volumes in your cluster:

Example output

2. Choose one of your persistent volumes and change its reclaim policy:

3. Verify that your chosen persistent volume has the right policy:

Example output

$ oc delete pv <pv-name>

$ oc get pv

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
CLAIM STORAGECLASS REASON AGE
 pvc-b6efd8da-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim1 manual 10s
 pvc-b95650f8-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim2 manual 6s
 pvc-bb3ca71d-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim3 manual 3s

$ oc patch pv <your-pv-name> -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'

$ oc get pv

CHAPTER 4. UNDERSTANDING PERSISTENT STORAGE

13

1

2

3

4

Example output

In the preceding output, the volume bound to claim default/claim3 now has a Retain reclaim
policy. The volume will not be automatically deleted when a user deletes claim default/claim3.

4.4. PERSISTENT VOLUMES

Each PV contains a spec and status, which is the specification and status of the volume, for example:

PersistentVolume object definition example

Name of the persistent volume.

The amount of storage available to the volume.

The access mode, defining the read-write and mount permissions.

The reclaim policy, indicating how the resource should be handled once it is released.

4.4.1. Capacity

Generally, a persistent volume (PV) has a specific storage capacity. This is set by using the capacity
attribute of the PV.

Currently, storage capacity is the only resource that can be set or requested. Future attributes may
include IOPS, throughput, and so on.

4.4.2. Supported access modes

LVMS is the only CSI plugin Red Hat build of MicroShift supports. The hostPath and LVs built in to

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
CLAIM STORAGECLASS REASON AGE
 pvc-b6efd8da-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim1 manual 10s
 pvc-b95650f8-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim2 manual 6s
 pvc-bb3ca71d-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Retain Bound
default/claim3 manual 3s

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001 1
spec:
 capacity:
 storage: 5Gi 2
 accessModes:
 - ReadWriteOnce 3
 persistentVolumeReclaimPolicy: Retain 4
 ...
status:
 ...

Red Hat build of MicroShift 4.15 Storage

14

LVMS is the only CSI plugin Red Hat build of MicroShift supports. The hostPath and LVs built in to
OpenShift Container Platform also support RWO.

4.4.3. Phase

Volumes can be found in one of the following phases:

Table 4.1. Volume phases

Phase Description

Available A free resource not yet bound to a claim.

Bound The volume is bound to a claim.

Released The claim was deleted, but the resource is not yet reclaimed by the
cluster.

Failed The volume has failed its automatic reclamation.

You can view the name of the PVC that is bound to the PV by running the following command:

4.4.3.1. Mount options

You can specify mount options while mounting a PV by using the attribute mountOptions.

For example:

Mount options example

NOTE

mountOptions are not validated. Incorrect values will cause the mount to fail and an
event to be logged to the PVC.

$ oc get pv <pv-claim>

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
 name: topolvm-provisioner
mountOptions:
 - uid=1500
 - gid=1500
parameters:
 csi.storage.k8s.io/fstype: xfs
provisioner: topolvm.io
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true

CHAPTER 4. UNDERSTANDING PERSISTENT STORAGE

15

1

2

3

4

Additional resources

Common mount options

4.5. PERSISTENT VOLUME CLAIMS

Each PersistentVolumeClaim object contains a spec and status, which is the specification and status
of the persistent volume claim (PVC), for example:

PersistentVolumeClaim object definition example

Name of the PVC.

The access mode, defining the read-write and mount permissions.

The amount of storage available to the PVC.

Name of the StorageClass required by the claim.

4.5.1. Storage classes

Claims can optionally request a specific storage class by specifying the storage class’s name in the
storageClassName attribute. Only PVs of the requested class, ones with the same storageClassName
as the PVC, can be bound to the PVC. The cluster administrator can configure dynamic provisioners to
service one or more storage classes. The cluster administrator can create a PV on demand that matches
the specifications in the PVC.

The cluster administrator can also set a default storage class for all PVCs. When a default storage class
is configured, the PVC must explicitly ask for StorageClass or storageClassName annotations set to
"" to be bound to a PV without a storage class.

NOTE

If more than one storage class is marked as default, a PVC can only be created if the
storageClassName is explicitly specified. Therefore, only one storage class should be set
as the default.

4.5.2. Access modes

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: myclaim 1
spec:
 accessModes:
 - ReadWriteOnce 2
 resources:
 requests:
 storage: 8Gi 3
 storageClassName: gold 4
status:
 ...

Red Hat build of MicroShift 4.15 Storage

16

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_file_systems/mounting-file-systems_managing-file-systems#common-mount-options_mounting-file-systems

1

2

3

Claims use the same conventions as volumes when requesting storage with specific access modes.

4.5.3. Resources

Claims, such as pods, can request specific quantities of a resource. In this case, the request is for storage.
The same resource model applies to volumes and claims.

4.5.4. Claims as volumes

Pods access storage by using the claim as a volume. Claims must exist in the same namespace as the
pod using the claim. The cluster finds the claim in the pod’s namespace and uses it to get the
PersistentVolume backing the claim. The volume is mounted to the host and into the pod, for example:

Mount volume to the host and into the pod example

Path to mount the volume inside the pod.

Name of the volume to mount. Do not mount to the container root, /, or any path that is the same
in the host and the container. This can corrupt your host system if the container is sufficiently
privileged, such as the host /dev/pts files. It is safe to mount the host by using /host.

Name of the PVC, that exists in the same namespace, to use.

4.6. USING FSGROUP TO REDUCE POD TIMEOUTS

If a storage volume contains many files (~1,000,000 or greater), you may experience pod timeouts.

This can occur because, by default, Red Hat build of MicroShift recursively changes ownership and
permissions for the contents of each volume to match the fsGroup specified in a pod’s securityContext
when that volume is mounted. For large volumes, checking and changing ownership and permissions can
be time consuming, slowing pod startup. You can use the fsGroupChangePolicy field inside a
securityContext to control the way that Red Hat build of MicroShift checks and manages ownership
and permissions for a volume.

fsGroupChangePolicy defines behavior for changing ownership and permission of the volume before
being exposed inside a pod. This field only applies to volume types that support fsGroup-controlled
ownership and permissions. This field has two possible values:

kind: Pod
apiVersion: v1
metadata:
 name: mypod
spec:
 containers:
 - name: myfrontend
 image: dockerfile/nginx
 volumeMounts:
 - mountPath: "/var/www/html" 1
 name: mypd 2
 volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim 3

CHAPTER 4. UNDERSTANDING PERSISTENT STORAGE

17

1

OnRootMismatch: Only change permissions and ownership if permission and ownership of root
directory does not match with expected permissions of the volume. This can help shorten the
time it takes to change ownership and permission of a volume to reduce pod timeouts.

Always: Always change permission and ownership of the volume when a volume is mounted.

fsGroupChangePolicy example

OnRootMismatch specifies skipping recursive permission change, thus helping to avoid pod
timeout problems.

NOTE

The fsGroupChangePolicyfield has no effect on ephemeral volume types, such as secret,
configMap, and emptydir.

securityContext:
 runAsUser: 1000
 runAsGroup: 3000
 fsGroup: 2000
 fsGroupChangePolicy: "OnRootMismatch" 1
 ...

Red Hat build of MicroShift 4.15 Storage

18

CHAPTER 5. EXPANDING PERSISTENT VOLUMES
Learn how to expand persistent volumes in MicroShift.

5.1. EXPANDING CSI VOLUMES

You can use the Container Storage Interface (CSI) to expand storage volumes after they have already
been created.

CSI volume expansion does not support the following:

Recovering from failure when expanding volumes

Shrinking

Prerequisites

The underlying CSI driver supports resize.

Dynamic provisioning is used.

The controlling StorageClass object has allowVolumeExpansion set to true. For more
information, see "Enabling volume expansion support."

Procedure

1. For the persistent volume claim (PVC), set .spec.resources.requests.storage to the desired
new size.

2. Watch the status.conditions field of the PVC to see if the resize has completed. Red Hat build
of MicroShift adds the Resizing condition to the PVC during expansion, which is removed after
expansion completes.

5.2. EXPANDING LOCAL VOLUMES

You can manually expand persistent volumes (PVs) and persistent volume claims (PVCs) created by
using the local storage operator (LSO).

Procedure

1. Expand the underlying devices. Ensure that appropriate capacity is available on these devices.

2. Update the corresponding PV objects to match the new device sizes by editing the
.spec.capacity field of the PV.

3. For the storage class that is used for binding the PVC to PVet, set
allowVolumeExpansion:true.

4. For the PVC, set .spec.resources.requests.storage to match the new size.

Kubelet should automatically expand the underlying file system on the volume, if necessary, and update
the status field of the PVC to reflect the new size.

5.3. EXPANDING PERSISTENT VOLUME CLAIMS (PVCS) WITH A FILE

CHAPTER 5. EXPANDING PERSISTENT VOLUMES

19

1

5.3. EXPANDING PERSISTENT VOLUME CLAIMS (PVCS) WITH A FILE
SYSTEM

Expanding PVCs based on volume types that need file system resizing, such as GCE Persistent Disk
volumes (gcePD), AWS Elastic Block Store EBS (EBS), and Cinder, is a two-step process. First, expand
the volume objects in the cloud provider. Second, expand the file system on the node.

Expanding the file system on the node only happens when a new pod is started with the volume.

Prerequisites

The controlling StorageClass object must have allowVolumeExpansion set to true.

Procedure

1. Edit the PVC and request a new size by editing spec.resources.requests. For example, the
following expands the ebs PVC to 8 Gi:

Updating spec.resources.requests to a larger amount expands the PVC.

2. After the cloud provider object has finished resizing, the PVC is set to
FileSystemResizePending. Check the condition by entering the following command:

3. When the cloud provider object has finished resizing, the PersistentVolume object reflects the
newly requested size in PersistentVolume.Spec.Capacity. At this point, you can create or
recreate a new pod from the PVC to finish the file system resizing. Once the pod is running, the
newly requested size is available and the FileSystemResizePending condition is removed from
the PVC.

5.4. RECOVERING FROM FAILURE WHEN EXPANDING VOLUMES

If expanding underlying storage fails, the Red Hat build of MicroShift administrator can manually recover
the persistent volume claim (PVC) state and cancel the resize requests. Otherwise, the resize requests
are continuously retried by the controller.

Procedure

1. Mark the persistent volume (PV) that is bound to the PVC with the Retain reclaim policy. This
can be done by editing the PV and changing persistentVolumeReclaimPolicy to Retain.

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: ebs
spec:
 storageClass: "storageClassWithFlagSet"
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 8Gi 1

$ oc describe pvc <pvc_name>

Red Hat build of MicroShift 4.15 Storage

20

2. Delete the PVC.

3. Manually edit the PV and delete the claimRef entry from the PV specs to ensure that the newly
created PVC can bind to the PV marked Retain. This marks the PV as Available.

4. Re-create the PVC in a smaller size, or a size that can be allocated by the underlying storage
provider.

5. Set the volumeName field of the PVC to the name of the PV. This binds the PVC to the
provisioned PV only.

6. Restore the reclaim policy on the PV.

CHAPTER 5. EXPANDING PERSISTENT VOLUMES

21

CHAPTER 6. DYNAMIC STORAGE USING THE LVMS PLUGIN
MicroShift enables dynamic storage provisioning that is ready for immediate use with the logical volume
manager storage (LVMS) Container Storage Interface (CSI) provider. The LVMS plugin is the Red Hat
downstream version of TopoLVM, a CSI plugin for managing logical volume management (LVM) logical
volumes (LVs) for Kubernetes.

LVMS provisions new LVM logical volumes for container workloads with appropriately configured
persistent volume claims (PVCs). Each PVC references a storage class that represents an LVM Volume
Group (VG) on the host node. LVs are only provisioned for scheduled pods.

6.1. LVMS SYSTEM REQUIREMENTS

Using LVMS in MicroShift requires the following system specifications.

6.1.1. Volume group name

If you did not configure LVMS in an lvmd.yaml file placed in the /etc/microshift/ directory, MicroShift
attempts to assign a default volume group (VG) dynamically by running the vgs command.

MicroShift assigns a default VG when only one VG is found.

If more than one VG is present, the VG named microshift is assigned as the default.

If a VG named microshift does not exist, LVMS is not deployed.

If there are no volume groups on the MicroShift host, LVMS is disabled.

If you want to use a specific VG, LVMS must be configured to select that VG. You can change the
default name of the VG in the configuration file. For details, read the "Configuring the LVMS" section of
this document.

You can change the default name of the VG in the configuration file. For details, read the "Configuring
the LVMS" section of this document.

After MicroShift starts, you can update the lvmd.yaml to include or remove VGs. To implement
changes, you must restart MicroShift. If the lvmd.yaml is deleted, MicroShift attempts to find a default
VG again.

6.1.2. Volume size increments

The LVMS provisions storage in increments of 1 gigabyte (GB). Storage requests are rounded up to the
nearest GB. When the capacity of a VG is less than 1 GB, the PersistentVolumeClaim registers a
ProvisioningFailed event, for example:

Example output

6.2. LVMS DEPLOYMENT

Warning ProvisioningFailed 3s (x2 over 5s) topolvm.cybozu.com_topolvm-controller-858c78d96c-
xttzp_0fa83aef-2070-4ae2-bcb9-163f818dcd9f failed to provision volume with
StorageClass "topolvm-provisioner": rpc error: code = ResourceExhausted desc = no enough space
left on VG: free=(BYTES_INT), requested=(BYTES_INT)

Red Hat build of MicroShift 4.15 Storage

22

1

2

3

4

5

LVMS is automatically deployed on to the cluster in the openshift-storage namespace after MicroShift
starts.

LVMS uses StorageCapacity tracking to ensure that pods with an LVMS PVC are not scheduled if the
requested storage is greater than the free storage of the volume group. For more information about
StorageCapacity tracking, read Storage Capacity .

6.3. CREATING AN LVMS CONFIGURATION FILE

When MicroShift runs, it uses LVMS configuration from /etc/microshift/lvmd.yaml, if provided. You
must place any configuration files that you create into the /etc/microshift/ directory.

Procedure

To create the lvmd.yaml configuration file, run the following command:

6.4. BASIC LVMS CONFIGURATION EXAMPLE

MicroShift supports passing through your LVM configuration and allows you to specify custom volume
groups, thin volume provisioning parameters, and reserved unallocated volume group space. You can
edit the LVMS configuration file you created at any time. You must restart MicroShift to deploy
configuration changes after editing the file.

NOTE

If you need to take volume snapshots, you must use thin provisioning in your lvmd.conf
file. If you do not need to take volume snapshots, you can use thick volumes.

The following lvmd.yaml example file shows a basic LVMS configuration:

LVMS configuration example

String. The UNIX domain socket endpoint of gRPC. Defaults to '/run/lvmd/lvmd.socket'.

A list of maps for the settings for each device-class.

String. The name of the device-class.

String. The group where the device-class creates the logical volumes.

Unsigned 64-bit integer. Storage capacity in GB to be left unallocated in the volume group.
Defaults to 0.

Boolean. Indicates that the device-class is used by default. Defaults to false. At least one value

$ sudo cp /etc/microshift/lvmd.yaml.default /etc/microshift/lvmd.yaml

socket-name: 1
device-classes: 2
 - name: "default" 3
 volume-group: "VGNAMEHERE" 4
 spare-gb: 0 5
 default: 6

CHAPTER 6. DYNAMIC STORAGE USING THE LVMS PLUGIN

23

https://kubernetes.io/docs/concepts/storage/storage-capacity/

6 Boolean. Indicates that the device-class is used by default. Defaults to false. At least one value
must be entered in the YAML file values when this is set to true.

IMPORTANT

A race condition prevents LVMS from accurately tracking the allocated space and
preserving the spare-gb for a device class when multiple PVCs are created
simultaneously. Use separate volume groups and device classes to protect the storage of
highly dynamic workloads from each other.

6.5. USING THE LVMS

The LVMS StorageClass is deployed with a default StorageClass. Any PersistentVolumeClaim
objects without a .spec.storageClassName defined automatically has a PersistentVolume provisioned
from the default StorageClass. Use the following procedure to provision and mount a logical volume to
a pod.

Procedure

To provision and mount a logical volume to a pod, run the following command:

$ cat <<EOF | oc apply -f -
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: my-lv-pvc
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1G

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: nginx
 image: nginx
 command: ["/usr/bin/sh", "-c"]
 args: ["sleep", "1h"]
 volumeMounts:
 - mountPath: /mnt
 name: my-volume
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - ALL
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault

Red Hat build of MicroShift 4.15 Storage

24

1

6.5.1. Device classes

You can create custom device classes by adding a device-classes array to your logical volume manager
storage (LVMS) configuration. Add the array to the /etc/microshift/lvmd.yaml configuration file. A
single device class must be set as the default. You must restart MicroShift for configuration changes to
take effect.

WARNING

Removing a device class while there are still persistent volumes or
VolumeSnapshotContent objects connected to that device class breaks both thick
and thin provisioning.

You can define multiple device classes in the device-classes array. These classes can be a mix of thick
and thin volume configurations.

Example of a mixed device-class array

When you set the spare capacity to anything other than 0, more space can be allocated than
expected.

 volumes:
 - name: my-volume
 persistentVolumeClaim:
 claimName: my-lv-pvc
EOF

socket-name: /run/topolvm/lvmd.sock
device-classes:
 - name: ssd
 volume-group: ssd-vg
 spare-gb: 0 1
 default: true
 - name: hdd
 volume-group: hdd-vg
 spare-gb: 0
 - name: thin
 spare-gb: 0
 thin-pool:
 name: thin
 overprovision-ratio: 10
 type: thin
 volume-group: ssd
 - name: striped
 volume-group: multi-pv-vg
 spare-gb: 0
 stripe: 2
 stripe-size: "64"
 lvcreate-options: 2

CHAPTER 6. DYNAMIC STORAGE USING THE LVMS PLUGIN

25

2 Extra arguments to pass to the lvcreate command, such as --type=<type>. Neither MicroShift nor
the LVMS verifies lvcreate-options values. These optional values are passed as is to the lvcreate

Red Hat build of MicroShift 4.15 Storage

26

CHAPTER 7. WORKING WITH VOLUME SNAPSHOTS
Cluster administrators can use volume snapshots to help protect against data loss by using the
supported MicroShift logical volume manager storage (LVMS) Container Storage Interface (CSI)
provider. Familiarity with persistent volumes is required.

A snapshot represents the state of the storage volume in a cluster at a particular point in time. Volume
snapshots can also be used to provision new volumes. Snapshots are created as read-only logical
volumes (LVs) located on the same device as the original data.

A cluster administrator can complete the following tasks using CSI volume snapshots:

Create a snapshot of an existing persistent volume claim (PVC).

Back up a volume snapshot to a secure location.

Restore a volume snapshot as a different PVC.

Delete an existing volume snapshot.

IMPORTANT

Only the logical volume manager storage (LVMS) plugin CSI driver is supported by
MicroShift.

Additional resources

Understanding persistent volumes

Configuring and managing logical volumes

CSI snapshots: VolumeSnapshot APIs

VolumeSnapshot API specification

7.1. ABOUT LVM THIN VOLUMES

To use advanced storage features such as creating volume snapshots or volume cloning, you must
perform the following actions:

Configure both the logical volume manager storage (LVMS) provider and the cluster.

Provision a logical volume manager (LVM) thin-pool on the RHEL for Edge host.

Attach LVM thin-pools to a volume group.

IMPORTANT

To create Container Storage Interface (CSI) snapshots, you must configure thin volumes
on the RHEL for Edge host. The CSI does not support volume shrinking.

For LVMS to manage thin logical volumes (LVs), a thin-pool device-class array must be specified in the
etc/lvmd.yaml configuration file. Multiple thin-pool device classes are permitted.

If additional storage pools are configured with device classes, then additional storage classes must also

CHAPTER 7. WORKING WITH VOLUME SNAPSHOTS

27

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/creating-and-managing-thin-provisioned-volumes_configuring-and-managing-logical-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/storage/using-container-storage-interface-csi#persistent-storage-csi-snapshots
https://docs.openshift.com/container-platform/4.15/rest_api/storage_apis/volumesnapshot-snapshot-storage-k8s-io-v1.html

1

2

3

4

5

6

7

exist to expose the storage pools to users and workloads. To enable dynamic provisioning on a thin-
pool, a StorageClass resource must be present on the cluster. The StorageClass resource specifies
the source device-class array in the topolvm.io/device-class parameter.

Example lvmd.yaml file that specifies a single device class for a thin-pool

String. The UNIX domain socket endpoint of gRPC. Defaults to /run/lvmd/lvmd.socket.

A list of maps for the settings for each device-class.

String. The unique name of the device-class.

Unsigned 64-bit integer. Storage capacity in GB to be left unallocated in the volume group.
Defaults to 0.

If you have multiple thin-provisioned devices that share the same pool, then these devices can be
over-provisioned. Over-provisioning requires a float value of 1 or greater.

Thin provisioning is required to create volume snapshots.

String. The group where the device-class creates the logical volumes.

IMPORTANT

When multiple PVCs are created simultaneously, a race condition prevents LVMS from
accurately tracking the allocated space and preserving the storage capacity for a device
class. Use separate volume groups and device classes to protect the storage of highly
dynamic workloads from each other.

Additional resources

To create a thin pool on the host, see Creating and managing thin provisioned volumes

Creating thinly provisioned logical volumes

Configuring and managing thin provisioned volumes

Storage classes

Storage device classes

7.1.1. Storage classes

socket-name: 1
device-classes: 2
 - name: thin 3
 default: true
 spare-gb: 0 4
 thin-pool:
 name: thin
 overprovision-ratio: 10 5
 type: thin 6
 volume-group: ssd 7

Red Hat build of MicroShift 4.15 Storage

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/creating-and-managing-thin-provisioned-volumes_configuring-and-managing-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/creating-and-managing-thin-provisioned-volumes_configuring-and-managing-logical-volumes#creating-thinly-provisioned-logical-volumes_creating-and-managing-thin-provisioned-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/creating-and-managing-thin-provisioned-volumes_configuring-and-managing-logical-volumes

1

2

3

4

5

Storage classes provide the workload layer interface for selecting a device class. The following storage
class parameters are supported in MicroShift:

The csi.storage.k8s.io/fstype parameter selects the file system types. Both xfs and ext4 file
system types are supported.

The topolvm.io/device-class parameter is the name of the device class. If a device class is not
provided, the default device class is assumed.

Multiple storage classes can refer to the same device class. You can provide varying sets of parameters
for the same backing device class, such as xfs and ext4 variants.

Example MicroShift default storage class resource

An example of the default storage class. If a PVC does not specify a storage class, this class is
assumed. There can only be one default storage class in a cluster. Having no value assigned to this
annotation is also supported.

Specifies which file system to provision on the volume. Options are "xfs" and "ext4".

Identifies which provisioner should manage this class.

Specifies whether to provision the volume before a client pod is present or immediately. Options
are WaitForFirstConsumer and Immediate. WaitForFirstConsumer is recommended to ensure
that storage is only provisioned for pods that can be scheduled.

Specifies if PVCs provisioned from the StorageClass permit expansion. The MicroShift LVMS CSI
plugin does support volume expansion, but if this value is set to false, expansion is blocked.

Additional resources

Defining storage classes

Storage device classes

7.2. VOLUME SNAPSHOT CLASSES

Snapshotting is a CSI storage feature supported by LVMS. To enable dynamic snapshotting, at least
one VolumeSnapshotClass configuration file must be present on the cluster.

IMPORTANT

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 annotations:
 storageclass.kubernetes.io/is-default-class: "true" 1
 name: topolvm-provisioner
parameters:
 "csi.storage.k8s.io/fstype": "xfs" 2
provisioner: topolvm.io 3
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer 4
allowVolumeExpansion: 5

CHAPTER 7. WORKING WITH VOLUME SNAPSHOTS

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/storage/dynamic-provisioning#defining-storage-classes_dynamic-provisioning

1

2

3

IMPORTANT

You must enable thin logical volumes to take logical volume snapshots.

Example VolumeSnapshotClass configuration file

Determines which VolumeSnapshotClass configuration file to use when none is specified by
VolumeSnapshot, which is a request for snapshot of a volume by a user.

Identifies which snapshot provisioner should manage the requests for snapshots of a volume by a
user for this class.

Determines whether VolumeSnapshotContent objects and the backing snapshots are kept or
deleted when a bound VolumeSnapshot is deleted. Valid values are Retain or Delete.

Additional resources

OpenShift CSI volume snapshots

7.3. ABOUT VOLUME SNAPSHOTS

You can use volume snapshots with logical volume manager (LVM) thin volumes to help protect against
data loss from applications running in a MicroShift cluster. MicroShift only supports the logical volume
manager storage (LVMS) Container Storage Interface (CSI) provider.

NOTE

LVMS only supports the volumeBindingMode of the storage class being set to
WaitForFirstConsumer. This setting means the storage volume is not provisioned until a
pod is ready to mount it.

Example workload that deploys a single pod and PVC

apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshotClass
metadata:
 name: topolvm-snapclass
 annotations:
 snapshot.storage.kubernetes.io/is-default-class: "true" 1
driver: topolvm.io 2
deletionPolicy: Delete 3

$ oc apply -f - <<EOF
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: test-claim-thin
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:

Red Hat build of MicroShift 4.15 Storage

30

https://docs.openshift.com/container-platform/4.15/storage/container_storage_interface/persistent-storage-csi-snapshots.html#volume-snapshot-crds

7.3.1. Creating a volume snapshot

To create a snapshot of a MicroShift storage volume, you must first configure RHEL for Edge and the
cluster. In the following example procedure, the pod that the source volume is mounted to is deleted.
Deleting the pod prevents data from being written to it during snapshot creation. Ensuring that no data
is being written during a snapshot is crucial to creating a viable snapshot.

Prerequisites

User has root access to a MicroShift cluster.

A MicroShift cluster is running.

A device class defines an LVM thin-pool.

A volumeSnapshotClass specifies driver: topolvm.io.

Any workload attached to the source PVC is paused or deleted. This helps avoid data
corruption.

IMPORTANT

 storage: 1Gi
 storageClassName: topolvm-provisioner-thin

apiVersion: v1
kind: Pod
metadata:
 name: base
spec:
 containers:
 - command:
 - nginx
 - -g
 - 'daemon off;'
 image: registry.redhat.io/rhel8/nginx-
122@sha256:908ebb0dec0d669caaf4145a8a21e04fdf9ebffbba5fd4562ce5ab388bf41ab2
 name: test-container
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - ALL
 volumeMounts:
 - mountPath: /vol
 name: test-vol
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 volumes:
 - name: test-vol
 persistentVolumeClaim:
 claimName: test-claim-thin
EOF

CHAPTER 7. WORKING WITH VOLUME SNAPSHOTS

31

1

2

3

4

IMPORTANT

All writes to the volume must be halted while you are creating the snapshot. If you do not
halt writes, your data might be corrupted.

Procedure

1. Prevent data from being written to the volume during snapshotting by using one of the two
following steps:

a. Delete the pod to ensure that no data is written to the volume during snapshotting by
running the following command:

b. Scale the replica count to zero on a pod that is managed with a replication controller.
Setting the count to zero prevents the instant creation of a new pod when one is deleted.

2. After all writes to the volume are halted, run a command similar to the example that follows.
Insert your own configuration details.

Example snapshot configuration

Create a VolumeSnapshot object.

The name that you specify for the snapshot.

Specify the desired name of the VolumeSnapshotClass object.

Specify either persistentVolumeClaimName or volumeSnapshotContentName. In this
example, a snapshot is created from a PVC named test-claim-thin.

3. Wait for the storage driver to finish creating the snapshot by running the following command:

Next steps

1. When the volumeSnapshot object is in a ReadyToUse state, you can restore it as a volume for
future PVCs. Restart the pod or scale the replica count back up to the desired number.

2. After you have created the volume snapshot, you can remount the source PVC to a new pod.

$ oc delete my-pod

oc apply -f <<EOF
apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshot 1
metadata:
 name: <snapshot_name> 2
spec:
 volumeSnapshotClassName: topolvm-snapclass 3
 source:
 persistentVolumeClaimName: test-claim-thin 4
EOF

$ oc wait volumesnapshot/<snapshot_name> --for=jsonpath\='{.status.readyToUse}=true'

Red Hat build of MicroShift 4.15 Storage

32

IMPORTANT

Volume snapshots are located on the same devices as the original data. To use the
volume snapshots as backups, move the snapshots to a secure location.

7.3.2. Backing up a volume snapshot

Snapshots of data from applications running on a MicroShift cluster are created as read-only logical
volumes (LVs) located on the same devices as the original data. You must manually mount local volumes
before they can be copied as persistent volumes (PVs) and used as backup copies. To use a snapshot of
a MicroShift storage volume as a backup, find it on the local host and then move it to a secure location.

To find specific snapshots and copy them, use the following procedure.

Prerequisites

You have root access to the host machine.

You have an existing volume snapshot.

Procedure

1. Get the name of the volume snapshot by running the following command:

2. Get the unique identity of the volume created on the storage backend by using the following
command and inserting the name retrieved in the previous step:

3. Display the snapshots by using the unique identity of the volume you retrieved in the previous
step to determine which one you want to backup by running the following command:

Example output

$ oc get volumesnapshot -n <namespace> <snapshot_name> -o 'jsonpath=
{.status.volumeSnapshotContentName}'

$ oc get volumesnapshotcontent snapcontent-<retrieved_volume_identity> -o 'jsonpath=
{.status.snapshotHandle}'

$ sudo lvdisplay <retrieved_snapshot_handle>

--- Logical volume ---
LV Path /dev/rhel/732e45ff-f220-49ce-859e-87ccca26b14c
LV Name 732e45ff-f220-49ce-859e-87ccca26b14c
VG Name rhel
LV UUID 6Ojwc0-YTfp-nKJ3-F9FO-PvMR-Ic7b-LzNGSx
LV Write Access read only
LV Creation host, time rhel-92.lab.local, 2023-08-07 14:45:26 -0500
LV Pool name thinpool
LV Thin origin name a2d2dcdc-747e-4572-8c83-56cd873d3b07
LV Status available
open 0
LV Size 1.00 GiB
Mapped size 1.04%
Current LE 256

CHAPTER 7. WORKING WITH VOLUME SNAPSHOTS

33

4. Create a directory to use for mounting the LV by running the following command:

5. Mount the LV using the device name for the retrieved snapshot handle by running the following
command:

6. Copy the files from the mounted location and store them in a secure location by running the
following command:

7.3.3. Restoring a volume snapshot

The following workflow demonstrates snapshot restoration. In this example, the verification steps are
also given to ensure that data written to a source persistent volume claim (PVC) is preserved and
restored on a new PVC.

IMPORTANT

A snapshot must be restored to a PVC of exactly the same size as the source volume of
the snapshot. You can resize the PVC after the snapshot is restored successfully if a
larger PVC is needed.

Procedure

1. Restore a snapshot by specifying the VolumeSnapshot object as the data source in a
persistent volume claim by entering the following command:

Segments 1
Allocation inherit
Read ahead sectors auto
- currently set to 256
Block device 253:11

$ sudo mkdir /mnt/snapshot

$ sudo mount /dev/<retrieved_snapshot_handle> /mnt/snapshot

$ sudo cp -r /mnt/snapshot <destination>

$ oc apply -f <<EOF
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: snapshot-restore
spec:
 accessModes:
 - ReadWriteOnce
 dataSource:
 apiGroup: snapshot.storage.k8s.io
 kind: VolumeSnapshot
 name: my-snap
 resources:
 requests:
 storage: 1Gi
 storageClassName: topolvm-provisioner-thin

Red Hat build of MicroShift 4.15 Storage

34

Verification

1. Wait for the pod to reach the Ready state:

2. When the new pod is ready, verify that the data from your application is correct in the snapshot.

Additional resources

Restoring a volume snapshot

7.3.4. Deleting a volume snapshot

You can configure how Red Hat build of MicroShift deletes volume snapshots.

Procedure

1. Specify the deletion policy that you require in the VolumeSnapshotClass object, as shown in
the following example:

volumesnapshotclass.yaml

apiVersion: v1
kind: Pod
metadata:
 name: base
spec:
 containers:
 - command:
 - nginx
 - -g
 - 'daemon off;'
 image: registry.redhat.io/rhel8/nginx-
122@sha256:908ebb0dec0d669caaf4145a8a21e04fdf9ebffbba5fd4562ce5ab388bf41ab2
 name: test-container
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - ALL
 volumeMounts:
 - mountPath: /vol
 name: test-vol
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 volumes:
 - name: test-vol
 persistentVolumeClaim:
 claimName: snapshot-restore
EOF

$ oc wait --for=condition=Ready pod/base

CHAPTER 7. WORKING WITH VOLUME SNAPSHOTS

35

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/storage/using-container-storage-interface-csi#persistent-storage-csi-snapshots-provision_persistent-storage-csi-snapshots

1 When deleting the volume snapshot, if the Delete value is set, the underlying snapshot is
deleted along with the VolumeSnapshotContent object. If the Retain value is set, both
the underlying snapshot and VolumeSnapshotContent object remain.
If the Retain value is set and the VolumeSnapshot object is deleted without deleting the
corresponding VolumeSnapshotContent object, the content remains. The snapshot itself
is also retained in the storage back end.

2. Delete the volume snapshot by entering the following command:

Example output

3. If the deletion policy is set to Retain, delete the volume snapshot content by entering the
following command:

4. Optional: If the VolumeSnapshot object is not successfully deleted, enter the following
command to remove any finalizers for the leftover resource so that the delete operation can
continue:

IMPORTANT

Only remove the finalizers if you are confident that there are no existing
references from either persistent volume claims or volume snapshot contents to
the VolumeSnapshot object. Even with the --force option, the delete operation
does not delete snapshot objects until all finalizers are removed.

Example output

The finalizers are removed and the volume snapshot is deleted.

7.4. ABOUT LVM VOLUME CLONING

The logical volume manager storage (LVMS) supports persistent volume claim (PVC) cloning for logical

apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshotClass
metadata:
 name: csi-hostpath-snap
driver: hostpath.csi.k8s.io
deletionPolicy: Delete 1

$ oc delete volumesnapshot <volumesnapshot_name>

volumesnapshot.snapshot.storage.k8s.io "mysnapshot" deleted

$ oc delete volumesnapshotcontent <volumesnapshotcontent_name>

$ oc patch -n $PROJECT volumesnapshot/$NAME --type=merge -p '{"metadata":
{"finalizers":null}}'

volumesnapshotclass.snapshot.storage.k8s.io "csi-ocs-rbd-snapclass" deleted

Red Hat build of MicroShift 4.15 Storage

36

volume manager (LVM) thin volumes. A clone is a duplicate of an existing volume that can be used like
any other volume. When provisioned, an exact duplicate of the original volume is created if the data
source references a source PVC in the same namespace. After a cloned PVC is created, it is considered
a new object and completely separate from the source PVC. The clone represents the data from the
source at the moment in time it was created.

NOTE

Cloning is only possible when the source and destination PVCs are in the same
namespace. To create PVC clones, you must configure thin volumes on the RHEL for
Edge host.

Additional resources

CSI volume cloning

LVMS volume cloning for Single-Node OpenShift

To configure the host to enable cloning, see About LVM thin volumes

CHAPTER 7. WORKING WITH VOLUME SNAPSHOTS

37

https://docs.openshift.com/container-platform/4.15/storage/container_storage_interface/persistent-storage-csi-cloning.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/storage/configuring-persistent-storage#lvms-creating-volume-clones-in-single-node-openshift_logical-volume-manager-storage

1

2

CHAPTER 8. STORAGE MIGRATION USING THE KUBE
STORAGE VERSION MIGRATOR

Storage version migration is used to update existing objects in the cluster from their current version to
the latest version. The Kube Storage Version Migrator embedded controller is used in MicroShift to
migrate resources without having to recreate those resources. Either you or a controller can create a
StorageVersionMigration custom resource (CR) that will request a migration through the Migrator
Controller.

8.1. MAKING A STORAGE MIGRATION REQUEST

Storage migration is the process of updating stored data to the latest storage version, for example from
v1beta1 to v1beta2. To update your storage version, use the following procedure.

Procedure

Either you or any controller that has support for the StorageVersionMigration API must trigger
a migration request. Use the following example request for reference:

Example request

You must use the plural name of the resource.

Version being updated to.

The progress of the migration is posted to the StorageVersionMigration status.

NOTE

Failures can occur because of a misnamed group or resource.

Migration failures can also occur when there is an incompatibility between the
previous and latest versions.

apiVersion: migration.k8s.io/v1alpha1
kind: StorageVersionMigration
metadata:
 name: snapshot-v1
spec:
 resource:
 group: snapshot.storage.k8s.io
 resource: volumesnapshotclasses 1
 version: v1 2

Red Hat build of MicroShift 4.15 Storage

38

	Table of Contents
	CHAPTER 1. STORAGE OVERVIEW
	1.1. STORAGE TYPES
	1.1.1. Ephemeral storage
	1.1.2. Persistent storage
	1.1.3. Dynamic storage provisioning

	CHAPTER 2. UNDERSTANDING EPHEMERAL STORAGE
	2.1. OVERVIEW
	2.2. TYPES OF EPHEMERAL STORAGE
	Root
	Runtime

	2.3. EPHEMERAL STORAGE MANAGEMENT
	2.3.1. Ephemeral storage limits and requests units
	2.3.2. Ephemeral storage requests and limits example
	2.3.3. Ephemeral storage configuration effects pod eviction

	2.4. MONITORING EPHEMERAL STORAGE

	CHAPTER 3. GENERIC EPHEMERAL VOLUMES
	3.1. OVERVIEW
	3.2. LIFECYCLE AND PERSISTENT VOLUME CLAIMS
	3.3. SECURITY
	3.4. PERSISTENT VOLUME CLAIM NAMING
	3.5. CREATING GENERIC EPHEMERAL VOLUMES

	CHAPTER 4. UNDERSTANDING PERSISTENT STORAGE
	4.1. PERSISTENT STORAGE OVERVIEW
	4.2. ADDITIONAL RESOURCES
	4.3. LIFECYCLE OF A VOLUME AND CLAIM
	4.3.1. Provision storage
	4.3.2. Bind claims
	4.3.3. Use pods and claimed PVs
	4.3.4. Release a persistent volume
	4.3.5. Reclaim policy for persistent volumes
	4.3.6. Reclaiming a persistent volume manually
	4.3.7. Changing the reclaim policy of a persistent volume

	4.4. PERSISTENT VOLUMES
	4.4.1. Capacity
	4.4.2. Supported access modes
	4.4.3. Phase
	4.4.3.1. Mount options

	4.5. PERSISTENT VOLUME CLAIMS
	4.5.1. Storage classes
	4.5.2. Access modes
	4.5.3. Resources
	4.5.4. Claims as volumes

	4.6. USING FSGROUP TO REDUCE POD TIMEOUTS

	CHAPTER 5. EXPANDING PERSISTENT VOLUMES
	5.1. EXPANDING CSI VOLUMES
	5.2. EXPANDING LOCAL VOLUMES
	5.3. EXPANDING PERSISTENT VOLUME CLAIMS (PVCS) WITH A FILE SYSTEM
	5.4. RECOVERING FROM FAILURE WHEN EXPANDING VOLUMES

	CHAPTER 6. DYNAMIC STORAGE USING THE LVMS PLUGIN
	6.1. LVMS SYSTEM REQUIREMENTS
	6.1.1. Volume group name
	6.1.2. Volume size increments

	6.2. LVMS DEPLOYMENT
	6.3. CREATING AN LVMS CONFIGURATION FILE
	6.4. BASIC LVMS CONFIGURATION EXAMPLE
	6.5. USING THE LVMS
	6.5.1. Device classes

	CHAPTER 7. WORKING WITH VOLUME SNAPSHOTS
	7.1. ABOUT LVM THIN VOLUMES
	7.1.1. Storage classes

	7.2. VOLUME SNAPSHOT CLASSES
	7.3. ABOUT VOLUME SNAPSHOTS
	7.3.1. Creating a volume snapshot
	7.3.2. Backing up a volume snapshot
	7.3.3. Restoring a volume snapshot
	7.3.4. Deleting a volume snapshot

	7.4. ABOUT LVM VOLUME CLONING

	CHAPTER 8. STORAGE MIGRATION USING THE KUBE STORAGE VERSION MIGRATOR
	8.1. MAKING A STORAGE MIGRATION REQUEST

