
Red Hat build of MicroShift 4.15

Running applications

Running applications in MicroShift

Last Updated: 2024-05-15





Red Hat build of MicroShift  4.15 Running applications

Running applications in MicroShift



Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides details about how to run applications in MicroShift.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. USING KUSTOMIZE MANIFESTS TO DEPLOY APPLICATIONS
1.1. HOW KUSTOMIZE WORKS WITH MANIFESTS TO DEPLOY APPLICATIONS

1.1.1. How MicroShift uses manifests
1.2. OVERRIDE THE LIST OF MANIFEST PATHS
1.3. USING MANIFESTS EXAMPLE

CHAPTER 2. OPTIONS FOR EMBEDDING MICROSHIFT APPLICATIONS IN A RHEL FOR EDGE IMAGE
2.1. ADDING APPLICATION RPMS TO AN RPM-OSTREE IMAGE
2.2. ADDING APPLICATION MANIFESTS TO AN IMAGE FOR OFFLINE USE
2.3. EMBEDDING APPLICATIONS FOR OFFLINE USE
2.4. ADDITIONAL RESOURCES

CHAPTER 3. EMBEDDING APPLICATIONS FOR OFFLINE USE
3.1. EMBEDDING WORKLOAD CONTAINER IMAGES FOR OFFLINE USE
3.2. ADDITIONAL RESOURCES

CHAPTER 4. EMBEDDING RED HAT BUILD OF MICROSHIFT APPLICATIONS TUTORIAL
4.1. EMBED APPLICATION RPMS TUTORIAL

4.1.1. Installation workflow review
4.1.2. Embed application RPMs workflow
4.1.3. Preparing to make application RPMs
4.1.4. Building the RPM package for the application manifests
4.1.5. Adding application RPMs to a blueprint

4.2. ADDITIONAL RESOURCES

CHAPTER 5. GREENBOOT WORKLOAD HEALTH CHECK SCRIPTS
5.1. HOW WORKLOAD HEALTH CHECK SCRIPTS WORK
5.2. INCLUDED GREENBOOT HEALTH CHECKS
5.3. HOW TO CREATE A HEALTH CHECK SCRIPT FOR YOUR APPLICATION

5.3.1. About the workload health check script example
5.3.1.1. Basic prerequisites for creating a health check script
5.3.1.2. Example and functional requirements

5.4. TESTING A WORKLOAD HEALTH CHECK SCRIPT
5.5. ADDITIONAL RESOURCES

CHAPTER 6. AUTOMATING APPLICATION MANAGEMENT WITH THE GITOPS CONTROLLER
6.1. WHAT YOU CAN DO WITH THE GITOPS AGENT
6.2. CREATING GITOPS APPLICATIONS ON MICROSHIFT
6.3. LIMITATIONS OF USING THE GITOPS AGENT WITH MICROSHIFT
6.4. TROUBLESHOOTING GITOPS

6.4.1. Debugging GitOps with oc adm inspect
6.4.2. Gathering data from an sos report

6.5. ADDITIONAL RESOURCES

CHAPTER 7. POD SECURITY AUTHENTICATION AND AUTHORIZATION
7.1. UNDERSTANDING AND MANAGING POD SECURITY ADMISSION
7.2. SECURITY CONTEXT CONSTRAINT SYNCHRONIZATION WITH POD SECURITY STANDARDS

7.2.1. Viewing security context constraints in a namespace
7.3. CONTROLLING POD SECURITY ADMISSION SYNCHRONIZATION

CHAPTER 8. OPERATORS
8.1. USING OPERATORS WITH MICROSHIFT

8.1.1. How to use Operators with MicroShift clusters

4
4
4
5
5

8
8
8
8
8

10
10
11

12
12
12
13
14
15
16
17

19
19
19

20
20
20
20
22
23

24
24
24
26
26
27
27
28

30
30
30
30
30

32
32
32

Table of Contents

1



8.1.1.1. Manifests for Operators
8.1.1.2. Operator Lifecycle Manager for Operators

8.2. USING OPERATOR LIFECYCLE MANAGER WITH MICROSHIFT
8.2.1. Considerations for using OLM with MicroShift
8.2.2. Determining your OLM installation type
8.2.3. Namespace use in MicroShift

8.2.3.1. Default namespaces
8.2.3.2. Custom namespaces

8.2.4. About building Operator catalogs
8.2.4.1. File-based Operator catalogs

8.2.5. How to deploy Operators using OLM
8.2.5.1. Connectivity and OLM Operator deployment
8.2.5.2. Adding OLM-based Operators to a networked cluster using the global namespace
8.2.5.3. Adding OLM-based Operators to a networked cluster in a specific namespace

8.3. CREATING CUSTOM CATALOGS USING THE OC-MIRROR PLUGIN
8.3.1. Using Red Hat-provided Operator catalogs and mirror registries
8.3.2. About the oc-mirror plugin for creating a mirror registry

8.3.2.1. Connectivity considerations when populating a mirror registry
8.3.2.2. Inspecting catalog contents by using the oc-mirror plugin
8.3.2.3. Creating an image set configuration file

8.3.2.3.1. Image set configuration parameters
8.3.2.4. Mirroring from mirror to mirror
8.3.2.5. Configuring CRI-O for using a registry mirror for Operators
8.3.2.6. Installing a custom catalog created with the oc-mirror plugin

8.4. ADDING OLM-BASED OPERATORS TO A DISCONNECTED CLUSTER
8.4.1. About adding OLM-based Operators to a disconnected cluster

8.4.1.1. Performing a dry run
8.4.1.2. Getting catalogs and Operator container image references to use with RHEL for Edge in
disconnected environments
8.4.1.3. Applying catalogs and Operators in a disconnected-deployment RHEL for Edge image

32
32
32
32
33
33
33
33
34
34
34
34
35
38
43
43
43
44
44
45
47
51

53
54
56
56
57

58
62

Red Hat build of MicroShift 4.15 Running applications

2



Table of Contents

3



CHAPTER 1. USING KUSTOMIZE MANIFESTS TO DEPLOY
APPLICATIONS

You can use the kustomize configuration management tool with application manifests to deploy
applications. Read through the following procedures for an example of how Kustomize works in
MicroShift.

1.1. HOW KUSTOMIZE WORKS WITH MANIFESTS TO DEPLOY
APPLICATIONS

The kustomize configuration management tool is integrated with MicroShift. You can use Kustomize
and the OpenShift CLI (oc) together to apply customizations to your application manifests and deploy
those applications to a MicroShift cluster.

A kustomization.yaml file is a specification of resources plus customizations.

Kustomize uses a kustomization.yaml file to load a resource, such as an application, then
applies any changes you want to that application manifest and produces a copy of the manifest
with the changes overlaid.

Using a manifest copy with an overlay keeps the original configuration file for your application
intact, while enabling you to deploy iterations and customizations of your applications efficiently.

You can then deploy the application in your MicroShift cluster with an oc command.

1.1.1. How MicroShift uses manifests

At every start, MicroShift searches the following manifest directories for Kustomize manifest files:

/etc/microshift/manifests

/etc/microshift/manifests.d/*

/usr/lib/microshift/

/usr/lib/microshift/manifests.d/*

MicroShift automatically runs the equivalent of the kubectl apply -k command to apply the manifests to
the cluster if any of the following file types exists in the searched directories:

kustomization.yaml

kustomization.yml

Kustomization

This automatic loading from multiple directories means you can manage MicroShift workloads with the
flexibility of having different workloads run independently of each other.

Table 1.1. MicroShift manifest directories

Location Intent

Red Hat build of MicroShift 4.15 Running applications

4



1

/etc/microshift/manifests Read-write location for configuration management
systems or development.

/etc/microshift/manifests.d/* Read-write location for configuration management
systems or development.

/usr/lib/microshift/manifests Read-only location for embedding configuration
manifests on OSTree-based systems.

/usr/lib/microshift/manifestsd./* Read-only location for embedding configuration
manifests on OSTree-based systems.

Location Intent

1.2. OVERRIDE THE LIST OF MANIFEST PATHS

You can override the list of default manifest paths by using a new single path, or by using a new glob
pattern for multiple files. Use the following procedure to customize your manifest paths.

Procedure

1. Override the list of default paths by inserting your own values and running one of the following
commands:

a. Set manifests.kustomizePaths to <"/opt/alternate/path"> in the configuration file for a
single path.

b. Set kustomizePaths to ,"/opt/alternative/path.d/*". in the configuration file for a glob
pattern.

Set each location entry to an exact path by using "/opt/alternate/path" or a glob
pattern by using "/opt/alternative/path.d/*".

2. To disable loading manifests, set the configuration option to an empty list.

NOTE

The configuration file overrides the defaults entirely. If the kustomizePaths
value is set, only the values in the configuration file are used. Setting the value to
an empty list disables manifest loading.

1.3. USING MANIFESTS EXAMPLE

manifests:
    kustomizePaths:
        - <location> 1

manifests:
    kustomizePaths: []

CHAPTER 1. USING KUSTOMIZE MANIFESTS TO DEPLOY APPLICATIONS

5



This example demonstrates automatic deployment of a BusyBox container using kustomize manifests in
the /etc/microshift/manifests directory.

Procedure

1. Create the BusyBox manifest files by running the following commands:

a. Define the directory location:

b. Make the directory:

c. Place the YAML file in the directory:

2. Next, create the kustomize manifest files by running the following commands:

a. Place the YAML file in the directory:

$ MANIFEST_DIR=/etc/microshift/manifests

$ sudo mkdir -p ${MANIFEST_DIR}

sudo tee ${MANIFEST_DIR}/busybox.yaml &>/dev/null <<EOF
apiVersion: v1
kind: Namespace
metadata:
  name: busybox
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: busybox
  namespace: busybox-deployment
spec:
  selector:
    matchLabels:
      app: busybox
  template:
    metadata:
      labels:
        app: busybox
    spec:
      containers:
      - name: busybox
        image: BUSYBOX_IMAGE
        command: [ "/bin/sh", "-c", "while true ; do date; sleep 3600; done;" ]
EOF

sudo tee ${MANIFEST_DIR}/kustomization.yaml &>/dev/null <<EOF
apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: busybox
resources:
  - busybox.yaml
images:

Red Hat build of MicroShift 4.15 Running applications

6



3. Restart MicroShift to apply the manifests by running the following command:

4. Apply the manifests and start the busybox pod by running the following command:

  - name: BUSYBOX_IMAGE
    newName: busybox:1.35
EOF

$ sudo systemctl restart microshift

$ oc get pods -n busybox

CHAPTER 1. USING KUSTOMIZE MANIFESTS TO DEPLOY APPLICATIONS

7



CHAPTER 2. OPTIONS FOR EMBEDDING MICROSHIFT
APPLICATIONS IN A RHEL FOR EDGE IMAGE

You can embed microservices-based workloads and applications in a Red Hat Enterprise Linux for Edge
(RHEL for Edge) image to run in a MicroShift cluster. Embedded applications can be installed directly on
edge devices to run in air-gapped, disconnected, or offline environments.

2.1. ADDING APPLICATION RPMS TO AN RPM-OSTREE IMAGE

If you have an application that includes APIs, container images, and configuration files for deployment
such as manifests, you can build application RPMs. You can then add the RPMs to your RHEL for Edge
system image.

The following is an outline of the procedures to embed applications or workloads in a fully self-contained
operating system image:

Build your own RPM that includes your application manifest.

Add the RPM to the blueprint you used to install Red Hat build of MicroShift.

Add the workload container images to the same blueprint.

Create a bootable ISO.

For a step-by-step tutorial about preparing and embedding applications in a RHEL for Edge image, use
the following tutorial:

Embedding applications tutorial

2.2. ADDING APPLICATION MANIFESTS TO AN IMAGE FOR OFFLINE
USE

If you have a simple application that includes a few files for deployment such as manifests, you can add
those manifests directly to a RHEL for Edge system image.

See the "Create a custom file blueprint customization" section of the following RHEL for Edge
documentation for an example:

Create a custom file blueprint customization

2.3. EMBEDDING APPLICATIONS FOR OFFLINE USE

If you have an application that includes more than a few files, you can embed the application for offline
use. See the following procedure:

Embedding applications for offline use

2.4. ADDITIONAL RESOURCES

Embedding Red Hat build of MicroShift in an RPM-OSTree image

Composing, installing, and managing RHEL for Edge images

Red Hat build of MicroShift 4.15 Running applications

8

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_installing_and_managing_rhel_for_edge_images/composing-a-rhel-for-edge-image-using-image-builder-command-line_composing-installing-managing-rhel-for-edge-images#image-customizations_composing-a-rhel-for-edge-image-using-image-builder-command-line
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#microshift-embed-in-rpm-ostree
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_installing_and_managing_rhel_for_edge_images/index


Preparing for image building

Meet Red Hat Device Edge

Composing a RHEL for Edge image using image builder command-line

Image Builder system requirements

CHAPTER 2. OPTIONS FOR EMBEDDING MICROSHIFT APPLICATIONS IN A RHEL FOR EDGE IMAGE

9

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#preparing-for-image-building_microshift-embed-in-rpm-ostree
https://cloud.redhat.com/blog/meet-red-hat-device-edge-with-microshift
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/composing_installing_and_managing_rhel_for_edge_images/index#composing-a-rhel-for-edge-image-using-image-builder-command-line_composing-installing-managing-rhel-for-edge-images
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/composing_installing_and_managing_rhel_for_edge_images/index#edge-image-builder-system-requirements_setting-up-image-builder


1

CHAPTER 3. EMBEDDING APPLICATIONS FOR OFFLINE USE
You can embed microservices-based workloads and applications in a Red Hat Enterprise Linux for Edge
(RHEL for Edge) image. Embedding means you can run a Red Hat build of MicroShift cluster in air-
gapped, disconnected, or offline environments.

3.1. EMBEDDING WORKLOAD CONTAINER IMAGES FOR OFFLINE USE

To embed container images in devices at the edge that do not have any network connection, you must
create a new container, mount the ISO, and then copy the contents into the file system.

Prerequisites

You have root access to the host.

Application RPMs have been added to a blueprint.

Procedure

1. Render the manifests, extract all of the container image references, and translate the
application image to blueprint container sources by running the following command:

2. Push the updated blueprint to Image Builder by running the following command:

3. If your workload containers are located in a private repository, you must provide Image Builder
with the necessary pull secrets:

a. Set the auth_file_path in the [containers] section of the osbuilder worker configuration in
the /etc/osbuild-worker/osbuild-worker.toml file to point to the pull secret.

b. If needed, create a directory and file for the pull secret, for example:

Example directory and file

Use the custom location previously set for copying and retrieving images.

4. Build the container image by running the following command:

5. Proceed with your preferred rpm-ostree image flow, such as waiting for the build to complete,
exporting the image and integrating it into your rpm-ostree repository or creating a bootable
ISO.

$ oc kustomize ~/manifests | grep "image:" | grep -oE '[^ ]+$' | while read line; do echo -e "
[[containers]]\nsource = \"${line}\"\n"; done >><my_blueprint>.toml

$ sudo composer-cli blueprints push <my_blueprint>.toml

[containers]
auth_file_path = "/<path>/pull-secret.json" 1

$ sudo composer-cli compose start-ostree <my_blueprint> edge-commit

Red Hat build of MicroShift 4.15 Running applications

10



3.2. ADDITIONAL RESOURCES

Options for embedding Red Hat build of MicroShift applications in a RHEL for Edge image

Creating the RHEL for Edge image

Add the blueprint to Image Builder and build the ISO

Download the ISO and prepare it for use

Upgrading RHEL for Edge systems

CHAPTER 3. EMBEDDING APPLICATIONS FOR OFFLINE USE

11

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#microshift-creating-ostree-iso_microshift-embed-in-rpm-ostree
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#microshift-add-blueprint-build-iso_microshift-embed-in-rpm-ostree
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#microshift-download-iso-prep-for-use_microshift-embed-in-rpm-ostree
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/composing_installing_and_managing_rhel_for_edge_images/index#upgrading_rhel_for_edge_systems


CHAPTER 4. EMBEDDING RED HAT BUILD OF MICROSHIFT
APPLICATIONS TUTORIAL

The following tutorial gives a detailed example of how to embed applications in a RHEL for Edge image
for use in a MicroShift cluster in various environments.

4.1. EMBED APPLICATION RPMS TUTORIAL

The following tutorial reviews the MicroShift installation steps and adds a description of the workflow for
embedding applications. If you are already familiar with rpm-ostree systems such as Red Hat Enterprise
Linux for Edge (RHEL for Edge) and MicroShift, you can go straight to the procedures.

4.1.1. Installation workflow review

Embedding applications requires a similar workflow to embedding MicroShift into a RHEL for Edge
image.

The following image shows how system artifacts such as RPMs, containers, and files are added
to a blueprint and used by the image composer to create an ostree commit.

The ostree commit then can follow either the ISO path or the repository path to edge devices.

The ISO path can be used for disconnected environments, while the repository path is often
used in places were the network is usually connected.

Embedding MicroShift workflow

Red Hat build of MicroShift 4.15 Running applications

12



Reviewing these steps can help you understand the steps needed to embed an application:

1. To embed MicroShift on RHEL for Edge, you added the MicroShift repositories to Image
Builder.

2. You created a blueprint that declared all the RPMs, container images, files and customizations
you needed, including the addition of MicroShift.

3. You added the blueprint to Image Builder and ran a build with the Image Builder CLI tool
(composer-cli). This step created rpm-ostree commits, which were used to create the
container image. This image contained RHEL for Edge.

4. You added the installer blueprint to Image Builder to create an rpm-ostree image (ISO) to boot
from. This build contained both RHEL for Edge and MicroShift.

5. You downloaded the ISO with MicroShift embedded, prepared it for use, provisioned it, then
installed it onto your edge devices.

4.1.2. Embed application RPMs workflow

After you have set up a build host that meets the Image Builder requirements, you can add your
application in the form of a directory of manifests to the image. After those steps, the simplest way to
embed your application or workload into a new ISO is to create your own RPMs that include the
manifests. Your application RPMs contain all of the configuration files describing your deployment.

CHAPTER 4. EMBEDDING RED HAT BUILD OF MICROSHIFT APPLICATIONS TUTORIAL

13



The following "Embedding applications workflow" image shows how Kubernetes application manifests
and RPM spec files are combined in a single application RPM build. This build becomes the RPM artifact
included in the workflow for embedding MicroShift in an ostree commit.

Embedding applications workflow

The following procedures use the rpmbuild tool to create a specification file and local repository. The
specification file defines how the package is built, moving your application manifests to the correct
location inside the RPM package for MicroShift to pick them up. That RPM package is then embedded in
the ISO.

4.1.3. Preparing to make application RPMs

To build your own RPMs, choose a tool of your choice, such as the rpmbuild tool, and initialize the RPM
build tree in your home directory. The following is an example procedure. As long as your RPMs are
accessible to Image Builder, you can use the method you prefer to build the application RPMs.

Prerequisites

You have set up a Red Hat Enterprise Linux for Edge (RHEL for Edge) 9.2 build host that meets
the Image Builder system requirements.

You have root access to the host.

Procedure

1. Install the rpmbuild tool and create the yum repository for it by running the following
command:

$ sudo dnf install rpmdevtools rpmlint yum-utils createrepo

Red Hat build of MicroShift 4.15 Running applications

14



2. Create the file tree you need to build RPM packages by running the following command:

Verification

List the directories to confirm creation by running the following command:

Example output

4.1.4. Building the RPM package for the application manifests

To build your own RPMs, you must create a spec file that adds the application manifests to the RPM
package. The following is an example procedure. As long as the application RPMs and other elements
needed for image building are accessible to Image Builder, you can use the method that you prefer.

Prerequisites

You have set up a Red Hat Enterprise Linux for Edge (RHEL for Edge) 9.2 build host that meets
the Image Builder system requirements.

You have root access to the host.

The file tree required to build RPM packages was created.

Procedure

1. In the ~/rpmbuild/SPECS directory, create a file such as 
<application_workload_manifests.spec> using the following template:

Example spec file

$ rpmdev-setuptree

$ ls ~/rpmbuild/

BUILD RPMS SOURCES SPECS SRPMS

Name: <application_workload_manifests>
Version: 0.0.1
Release: 1%{?dist}
Summary: Adds workload manifests to microshift
BuildArch: noarch
License: GPL
Source0: %{name}-%{version}.tar.gz
#Requires: microshift
%description
Adds workload manifests to microshift
%prep
%autosetup
%install 1
rm -rf $RPM_BUILD_ROOT
mkdir -p $RPM_BUILD_ROOT/%{_prefix}/lib/microshift/manifests
cp -pr ~/manifests $RPM_BUILD_ROOT/%{_prefix}/lib/microshift/
%clean

CHAPTER 4. EMBEDDING RED HAT BUILD OF MICROSHIFT APPLICATIONS TUTORIAL

15



1 The %install section creates the target directory inside the RPM package, 
/usr/lib/microshift/manifests/ and copies the manifests from the source home directory, 
~/manifests.

IMPORTANT

All of the required YAML files must be in the source home directory ~/manifests,
including a kustomize.yaml file if you are using kustomize.

2. Build your RPM package in the ~/rpmbuild/RPMS directory by running the following command:

4.1.5. Adding application RPMs to a blueprint

To add application RPMs to a blueprint, you must create a local repository that Image Builder can use to
create the ISO. With this procedure, the required container images for your workload can be pulled over
the network.

Prerequisites

You have root access to the host.

Workload or application RPMs exist in the ~/rpmbuild/RPMS directory.

Procedure

1. Create a local RPM repository by running the following command:

2. Give Image Builder access to the RPM repository by running the following command:

NOTE

You must ensure that Image Builder has all of the necessary permissions to
access all of the files needed for image building, or the build cannot proceed.

3. Create the blueprint file, repo-local-rpmbuild.toml using the following template:

rm -rf $RPM_BUILD_ROOT

%files
%{_prefix}/lib/microshift/manifests/**
%changelog
* <DDD MM DD YYYY username@domain - V major.minor.patch>
- <your_change_log_comment>

$ rpmbuild -bb ~/rpmbuild/SPECS/<application_workload_manifests.spec>

$ createrepo ~/rpmbuild/RPMS/

$ sudo chmod a+rx ~

id = "local-rpm-build"

Red Hat build of MicroShift 4.15 Running applications

16



1

1

Specify part of the path to create a location that you choose. Use this path in the later
commands to set up the repository and copy the RPMs.

4. Add the repository as a source for Image Builder by running the following command:

5. Add the RPM to your blueprint, by adding the following lines:

Add the name of your workload here.

6. Push the updated blueprint to Image Builder by running the following command:

7. At this point, you can either run Image Builder to create the ISO, or embed the container images
for offline use.

a. To create the ISO, start Image Builder by running the following command:

In this scenario, the container images are pulled over the network by the edge device during startup.

Additional resources

Composing a RHEL for Edge image using the Image Builder CLI

Network-based deployments workflow

4.2. ADDITIONAL RESOURCES

Embedding applications for offline use

Embedding Red Hat build of MicroShift in an RPM-OSTree image

Composing, installing, and managing RHEL for Edge images

Preparing for image building

name = "RPMs build locally"
type = "yum-baseurl"
url = "file://<path>/rpmbuild/RPMS" 1
check_gpg = false
check_ssl = false
system = false

$ sudo composer-cli sources add repo-local-rpmbuild.toml

…
[[packages]]
name = "<application_workload_manifests>" 1
version = "*"
…

$ sudo composer-cli blueprints push repo-local-rpmbuild.toml

$ sudo composer-cli compose start-ostree repo-local-rpmbuild edge-commit

CHAPTER 4. EMBEDDING RED HAT BUILD OF MICROSHIFT APPLICATIONS TUTORIAL

17

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_installing_and_managing_rhel_for_edge_images/composing-a-rhel-for-edge-image-using-image-builder-command-line_composing-installing-managing-rhel-for-edge-images#doc-wrapper
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_installing_and_managing_rhel_for_edge_images/composing-a-rhel-for-edge-image-using-image-builder-command-line_composing-installing-managing-rhel-for-edge-images#network_based_deployments_workflow
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#microshift-embed-in-rpm-ostree
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_installing_and_managing_rhel_for_edge_images/index
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#preparing-for-image-building_microshift-embed-in-rpm-ostree


Meet Red Hat Device Edge with Red Hat build of MicroShift

How to create a Linux RPM package

Composing a RHEL for Edge image using image builder command-line

Image Builder system requirements

Red Hat build of MicroShift 4.15 Running applications

18

https://cloud.redhat.com/blog/meet-red-hat-device-edge-with-microshift
https://www.redhat.com/sysadmin/create-rpm-package
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/composing_installing_and_managing_rhel_for_edge_images/index#composing-a-rhel-for-edge-image-using-image-builder-command-line_composing-installing-managing-rhel-for-edge-images
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/composing_installing_and_managing_rhel_for_edge_images/index#edge-image-builder-system-requirements_setting-up-image-builder


CHAPTER 5. GREENBOOT WORKLOAD HEALTH CHECK
SCRIPTS

Greenboot health check scripts are helpful on edge devices where direct serviceability is either limited or
non-existent. You can create health check scripts to assess the health of your workloads and
applications. These additional health check scripts are useful components of software problem checks
and automatic system rollbacks.

A MicroShift health check script is included in the microshift-greenboot RPM. You can also create your
own health check scripts based on the workloads you are running. For example, you can write one that
verifies that a service has started.

5.1. HOW WORKLOAD HEALTH CHECK SCRIPTS WORK

The workload or application health check script described in this tutorial uses the MicroShift health
check functions that are available in the /usr/share/microshift/functions/greenboot.sh file. This
enables you to reuse procedures already implemented for the MicroShift core services.

The script starts by running checks that the basic functions of the workload are operating as expected.
To run the script successfully:

Execute the script from a root user account.

Enable the MicroShift service.

The health check performs the following actions:

Gets a wait timeout of the current boot cycle for the wait_for function.

Calls the namespace_images_downloaded function to wait until pod images are available.

Calls the namespace_pods_ready function to wait until pods are ready.

Calls the namespace_pods_not_restarting function to verify pods are not restarting.

NOTE

Restarting pods can indicate a crash loop.

5.2. INCLUDED GREENBOOT HEALTH CHECKS

Health check scripts are available in /usr/lib/greenboot/check, a read-only directory in RPM-OSTree
systems. The following health checks are included with the greenboot-default-health-checks
framework.

Check if repository URLs are still DNS solvable:
This script is under /usr/lib/greenboot/check/required.d/01_repository_dns_check.sh and
ensures that DNS queries to repository URLs are still available.

Check if update platforms are still reachable:
This script is under /usr/lib/greenboot/check/wanted.d/01_update_platform_check.sh and
tries to connect and get a 2XX or 3XX HTTP code from the update platforms defined in 
/etc/ostree/remotes.d.

CHAPTER 5. GREENBOOT WORKLOAD HEALTH CHECK SCRIPTS

19



Check if the current boot has been triggered by the hardware watchdog:
This script is under /usr/lib/greenboot/check/required.d/02_watchdog.sh and checks whether
the current boot has been watchdog-triggered or not.

If the watchdog-triggered reboot occurs within the grace period, the current boot is marked
as red. Greenboot does not trigger a rollback to the previous deployment.

If the watchdog-triggered reboot occurs after the grace period, the current boot is not
marked as red. Greenboot does not trigger a rollback to the previous deployment.

A 24-hour grace period is enabled by default. This grace period can be either disabled by
modifying GREENBOOT_WATCHDOG_CHECK_ENABLED in 
/etc/greenboot/greenboot.conf to false, or configured by changing the 
GREENBOOT_WATCHDOG_GRACE_PERIOD=number_of_hours variable value in 
/etc/greenboot/greenboot.conf.

5.3. HOW TO CREATE A HEALTH CHECK SCRIPT FOR YOUR
APPLICATION

You can create workload or application health check scripts in the text editor of your choice using the
example in this documentation. Save the scripts in the /etc/greenboot/check/required.d directory.
When a script in the /etc/greenboot/check/required.d directory exits with an error, Greenboot triggers
a reboot in an attempt to heal the system.

NOTE

Any script in the /etc/greenboot/check/required.d directory triggers a reboot if it exits
with an error.

If your health check logic requires any post-check steps, you can also create additional scripts and save
them in the relevant greenboot directories. For example:

You can also place shell scripts you want to run after a boot has been declared successful in 
/etc/greenboot/green.d.

You can place shell scripts you want to run after a boot has been declared failed in 
/etc/greenboot/red.d. For example, if you have steps to heal the system before restarting, you
can create scripts for your use case and place them in the /etc/greenboot/red.d directory.

5.3.1. About the workload health check script example

The following example uses the MicroShift health check script as a template. You can use this example
with the provided libraries as a guide for creating basic health check scripts for your applications.

5.3.1.1. Basic prerequisites for creating a health check script

The workload must be installed.

You must have root access.

5.3.1.2. Example and functional requirements

You can start with the following example health check script. Modify it for your use case. In your
workload health check script, you must complete the following minimum steps:

Red Hat build of MicroShift 4.15 Running applications

20



Set the environment variables.

Define the user workload namespaces.

List the expected pod count.

IMPORTANT

Choose a name prefix for your application that ensures it runs after the 
40_microshift_running_check.sh script, which implements the Red Hat build of
MicroShift health check procedure for its core services.

Example workload health check script

# #!/bin/bash
set -e

SCRIPT_NAME=$(basename $0)
PODS_NS_LIST=(<user_workload_namespace1> <user_workload_namespace2>)
PODS_CT_LIST=(<user_workload_namespace1_pod_count> 
<user_workload_namespace2_pod_count>)
# Update these two lines with at least one namespace and the pod counts that are specific to your 
workloads. Use the kubernetes <namespace> where your workload is deployed.

# Set Greenboot to read and execute the workload health check functions library.
source /usr/share/microshift/functions/greenboot.sh

# Set the exit handler to log the exit status.
trap 'script_exit' EXIT

# Set the script exit handler to log a `FAILURE` or `FINISHED` message depending on the exit status 
of the last command.
# args: None
# return: None
function script_exit() {
    [ "$?" -ne 0 ] && status=FAILURE || status=FINISHED
    echo $status
}

# Set the system to automatically stop the script if the user running it is not 'root'.
if [ $(id -u) -ne 0 ] ; then
    echo "The '${SCRIPT_NAME}' script must be run with the 'root' user privileges"
    exit 1
fi

echo "STARTED"

# Set the script to stop without reporting an error if the MicroShift service is not running.
if [ $(systemctl is-enabled microshift.service 2>/dev/null) != "enabled" ] ; then
    echo "MicroShift service is not enabled. Exiting..."
    exit 0
fi

# Set the wait timeout for the current check based on the boot counter.
WAIT_TIMEOUT_SECS=$(get_wait_timeout)

CHAPTER 5. GREENBOOT WORKLOAD HEALTH CHECK SCRIPTS

21



5.4. TESTING A WORKLOAD HEALTH CHECK SCRIPT

Prerequisites

You have root access.

You have installed a workload.

You have created a health check script for the workload.

The Red Hat build of MicroShift service is enabled.

Procedure

1. To test that Greenboot is running a health check script file, reboot the host by running the
following command:

2. Examine the output of Greenboot health checks by running the following command:

NOTE

MicroShift core service health checks run before the workload health checks.

# Set the script to wait for the pod images to be downloaded.
for i in ${!PODS_NS_LIST[@]}; do
    CHECK_PODS_NS=${PODS_NS_LIST[$i]}

    echo "Waiting ${WAIT_TIMEOUT_SECS}s for pod image(s) from the ${CHECK_PODS_NS} 
namespace to be downloaded"
    wait_for ${WAIT_TIMEOUT_SECS} namespace_images_downloaded
done

# Set the script to wait for pods to enter ready state.
for i in ${!PODS_NS_LIST[@]}; do
    CHECK_PODS_NS=${PODS_NS_LIST[$i]}
    CHECK_PODS_CT=${PODS_CT_LIST[$i]}

    echo "Waiting ${WAIT_TIMEOUT_SECS}s for ${CHECK_PODS_CT} pod(s) from the 
${CHECK_PODS_NS} namespace to be in 'Ready' state"
    wait_for ${WAIT_TIMEOUT_SECS} namespace_pods_ready
done

# Verify that pods are not restarting by running, which could indicate a crash loop.
for i in ${!PODS_NS_LIST[@]}; do
    CHECK_PODS_NS=${PODS_NS_LIST[$i]}

    echo "Checking pod restart count in the ${CHECK_PODS_NS} namespace"
    namespace_pods_not_restarting ${CHECK_PODS_NS}
done

$ sudo reboot

$ sudo journalctl -o cat -u greenboot-healthcheck.service

Red Hat build of MicroShift 4.15 Running applications

22



Example output

5.5. ADDITIONAL RESOURCES

The Greenboot health check

Auto applying manifests

GRUB boot variables:
boot_success=0
boot_indeterminate=0
Greenboot variables:
GREENBOOT_WATCHDOG_CHECK_ENABLED=true
...
...
FINISHED
Script '40_microshift_running_check.sh' SUCCESS
Running Wanted Health Check Scripts...
Finished greenboot Health Checks Runner.

CHAPTER 5. GREENBOOT WORKLOAD HEALTH CHECK SCRIPTS

23

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#microshift-greenboot


CHAPTER 6. AUTOMATING APPLICATION MANAGEMENT
WITH THE GITOPS CONTROLLER

GitOps with Argo CD for MicroShift is a lightweight, optional add-on controller derived from the Red
Hat OpenShift GitOps Operator. GitOps for MicroShift uses the command-line interface (CLI) of Argo
CD to interact with the GitOps controller that acts as the declarative GitOps engine. You can
consistently configure and deploy Kubernetes-based infrastructure and applications across clusters and
development lifecycles.

6.1. WHAT YOU CAN DO WITH THE GITOPS AGENT

By using the GitOps with Argo CD agent with MicroShift, you can utilize the following principles:

Implement application lifecycle management.

Create and manage your clusters and application configuration files using the core
principles of developing and maintaining software in a Git repository.

You can update the single repository and GitOps automates the deployment of new
applications or updates to existing ones.

For example, if you have 1,000 edge devices, each using MicroShift and a local GitOps
agent, you can easily add or update an application on all 1,000 devices with just one change
in your central Git repository.

The Git repository contains a declarative description of the infrastructure you need in your
specified environment and contains an automated process to make your environment match
the described state.

You can also use the Git repository as an audit trail of changes so that you can create processes
based on Git flows such as review and approval for merging pull requests that implement
configuration changes.

6.2. CREATING GITOPS APPLICATIONS ON MICROSHIFT

You can create a custom YAML configuration to deploy and manage applications in your MicroShift
service. To install the necessary packages to run GitOps applications, follow the documentation in
"Installing the GitOps Argo CD manifests from an RPM package".

Prerequisites

You installed the microshift-gitops packages and the Argo CD pods are running in the 
openshift-gitops namespace.

Procedure

1. Create a YAML file and add your customized configurations for the application:

Example YAML for a cert-manager application

kind: AppProject
apiVersion: argoproj.io/v1alpha1
metadata:
  name: default

Red Hat build of MicroShift 4.15 Running applications

24



Example YAML for a spring-petclinic application

  namespace: openshift-gitops
spec:
  clusterResourceWhitelist:
  - group: '*'
    kind: '*'
  destinations:
  - namespace: '*'
    server: '*'
  sourceRepos:
  - '*'
---
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
  name: cert-manager
  namespace: openshift-gitops
spec:
  destination:
    namespace: cert-manager
    server: https://kubernetes.default.svc
  project: default
  source:
    path: cert-manager
    repoURL: https://github.com/anandf/microshift-install
  syncPolicy:
    automated: {}
    syncOptions:
    - CreateNamespace=true
    - ServerSideApply=true

kind: AppProject
apiVersion: argoproj.io/v1alpha1
metadata:
  name: default
  namespace: openshift-gitops
spec:
  clusterResourceWhitelist:
  - group: '*'
    kind: '*'
  destinations:
  - namespace: '*'
    server: '*'
  sourceRepos:
  - '*'
---
kind: Application
apiVersion: argoproj.io/v1alpha1
metadata:
  name: spring-petclinic
  namespace: openshift-gitops
spec:
  destination:
    namespace: spring-petclinic

CHAPTER 6. AUTOMATING APPLICATION MANAGEMENT WITH THE GITOPS CONTROLLER

25



2. To deploy the applications defined in the YAML file, run the following command:

Verification

To verify your application is deployed and synced, run the following command:

It might take a few minutes for the application to show the Healthy status.

Example output

Additional resources

Installing the GitOps Argo CD manifests from an RPM package

6.3. LIMITATIONS OF USING THE GITOPS AGENT WITH MICROSHIFT

GitOps with Argo CD for MicroShift has the following differences from the Red Hat OpenShift GitOps
Operator:

The gitops-operator component is not used with MicroShift.

To maintain the small resource use of MicroShift, the Argo CD web console is not available. You
can use the Argo CD CLI or use a pull-based approach.

Because MicroShift is single-node, there is no multi-cluster support. Each instance of MicroShift
is paired with a local GitOps agent.

The oc adm must-gather command is not available in MicroShift.

6.4. TROUBLESHOOTING GITOPS

If you have problems with your GitOps controller, you can use either the OpenShift CLI (oc) tool or run

    server: https://kubernetes.default.svc
  project: default
  source:
    directory:
      recurse: true
    path: app
    repoURL: https://github.com/siamaksade/openshift-gitops-getting-started
  syncPolicy:
    automated: {}
    syncOptions:
    - CreateNamespace=true
    - ServerSideApply=true

$ oc apply -f <filename>.yaml

$ oc get applications -A

NAMESPACE          NAME               SYNC STATUS   HEALTH STATUS
openshift-gitops   cert-manager       Synced        Healthy
openshift-gitops   spring-petclinic   Synced        Healthy

Red Hat build of MicroShift 4.15 Running applications

26

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#microshift-installing-rpms-for-gitops_microshift-install-rpm


If you have problems with your GitOps controller, you can use either the OpenShift CLI (oc) tool or run
an sos report.

6.4.1. Debugging GitOps with oc adm inspect

You can debug GitOps by using the OpenShift CLI (oc).

Prerequisites

The oc command line tool is installed.

Procedure

1. Run the oc adm inspect command when in the GitOps namespace:

Example output

Next steps

If oc adm inspect did not provide the information you need, you can run an sos report.

6.4.2. Gathering data from an sos report

Prerequisites

You must have the sos package installed.

Procedure

1. Log into the failing host as a root user.

2. Perform the debug report creation procedure by running the following command:

Example output

$ oc adm inspect ns/openshift-gitops

Gathering data for ns/openshift-gitops...
W0501 20:34:35.978508 57625 util.go:118] the server doesn't have a resource type 
egressfirewalls, skipping the inspection
W0501 20:34:35.980881 57625 util.go:118] the server doesn't have a resource type 
egressqoses, skipping the inspection
W0501 20:34:36.040664 57625 util.go:118] the server doesn't have a resource type 
servicemonitors, skipping the inspection
Wrote inspect data to inspect.local.2673575938140296280.

$ microshift-sos-report

sosreport (version 4.5.1)

This command will collect diagnostic and configuration information from
this Red Hat Enterprise Linux system and installed applications.

CHAPTER 6. AUTOMATING APPLICATION MANAGEMENT WITH THE GITOPS CONTROLLER

27



6.5. ADDITIONAL RESOURCES

Using sos reports

Red Hat OpenShift GitOps

An archive containing the collected information will be generated in
/var/tmp/sos.o0sznf_8 and may be provided to a Red Hat support
representative.

Any information provided to Red Hat will be treated in accordance with
the published support policies at:

        Distribution Website : https://www.redhat.com/
        Commercial Support   : https://www.access.redhat.com/

The generated archive may contain data considered sensitive and its
content should be reviewed by the originating organization before being
passed to any third party.

No changes will be made to system configuration.

 Setting up archive ...
 Setting up plugins ...
 Running plugins. Please wait ...

  Starting 1/2   microshift      [Running: microshift]
  Starting 2/2   microshift_ovn  [Running: microshift microshift_ovn]
  Finishing plugins              [Running: microshift]

  Finished running plugins

Found 1 total reports to obfuscate, processing up to 4 concurrently

sosreport-microshift-rhel9-2023-03-31-axjbyxw :    Beginning obfuscation...
sosreport-microshift-rhel9-2023-03-31-axjbyxw :    Obfuscation completed

Successfully obfuscated 1 report(s)

Creating compressed archive...

A mapping of obfuscated elements is available at
 /var/tmp/sosreport-microshift-rhel9-2023-03-31-axjbyxw-private_map

Your sosreport has been generated and saved in:
 /var/tmp/sosreport-microshift-rhel9-2023-03-31-axjbyxw-obfuscated.tar.xz

 Size 444.14KiB
 Owner root
 sha256 922e5ff2db25014585b7c6c749d2c44c8492756d619df5e9838ce863f83d4269

Please send this file to your support representative.

Red Hat build of MicroShift 4.15 Running applications

28

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/support/#microshift-sos-report
https://access.redhat.com/documentation/en-us/red_hat_openshift_gitops/1.12


Generating an sos report for technical support  (Red Hat Enterprise Linux)

CHAPTER 6. AUTOMATING APPLICATION MANAGEMENT WITH THE GITOPS CONTROLLER

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/getting_the_most_from_your_support_experience/generating-an-sos-report-for-technical-support_getting-the-most-from-your-support-experience


CHAPTER 7. POD SECURITY AUTHENTICATION AND
AUTHORIZATION

7.1. UNDERSTANDING AND MANAGING POD SECURITY ADMISSION

Pod security admission is an implementation of the Kubernetes pod security standards . Use pod security
admission to restrict the behavior of pods.

7.2. SECURITY CONTEXT CONSTRAINT SYNCHRONIZATION WITH
POD SECURITY STANDARDS

MicroShift includes Kubernetes pod security admission .

In addition to the global pod security admission control configuration, a controller exists that applies pod
security admission control warn and audit labels to namespaces according to the security context
constraint (SCC) permissions of the service accounts that are in a given namespace.

IMPORTANT

Namespaces that are defined as part of the cluster payload have pod security admission
synchronization disabled permanently. You can enable pod security admission
synchronization on other namespaces as necessary. If an Operator is installed in a user-
created openshift-* namespace, synchronization is turned on by default after a cluster
service version (CSV) is created in the namespace.

The controller examines ServiceAccount object permissions to use security context constraints in each
namespace. Security context constraints (SCCs) are mapped to pod security profiles based on their
field values; the controller uses these translated profiles. Pod security admission warn and audit labels
are set to the most privileged pod security profile found in the namespace to prevent warnings and
audit logging as pods are created.

Namespace labeling is based on consideration of namespace-local service account privileges.

Applying pods directly might use the SCC privileges of the user who runs the pod. However, user
privileges are not considered during automatic labeling.

7.2.1. Viewing security context constraints in a namespace

You can view the security context constraints (SCC) permissions in a given namespace.

Prerequisites

You have installed the OpenShift CLI (oc).

Procedure

To view the security context constraints in your namespace, run the following command:

7.3. CONTROLLING POD SECURITY ADMISSION SYNCHRONIZATION

oc get --show-labels namespace <namespace>

Red Hat build of MicroShift 4.15 Running applications

30

https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://kubernetes.io/docs/concepts/security/pod-security-admission


You can enable automatic pod security admission synchronization for most namespaces.

System defaults are not enforced when the security.openshift.io/scc.podSecurityLabelSync field is
empty or set to false. You must set the label to true for synchronization to occur.

IMPORTANT

Namespaces that are defined as part of the cluster payload have pod security admission
synchronization disabled permanently. These namespaces include:

default

kube-node-lease

kube-system

kube-public

openshift

All system-created namespaces that are prefixed with openshift-, except for 
openshift-operators By default, all namespaces that have an openshift- prefix
are not synchronized. You can enable synchronization for any user-created 
openshift-* namespaces. You cannot enable synchronization for any system-
created openshift-* namespaces, except for openshift-operators.

If an Operator is installed in a user-created openshift-* namespace, synchronization is
turned on by default after a cluster service version (CSV) is created in the namespace.
The synchronized label inherits the permissions of the service accounts in the namespace.

Procedure

To enable pod security admission label synchronization in a namespace, set the value of the 
security.openshift.io/scc.podSecurityLabelSync label to true.
Run the following command:

NOTE

You can use the --overwrite flag to reverse the effects of the pod security label
synchronization in a namespace.

$ oc label namespace <namespace> security.openshift.io/scc.podSecurityLabelSync=true

CHAPTER 7. POD SECURITY AUTHENTICATION AND AUTHORIZATION

31



CHAPTER 8. OPERATORS

8.1. USING OPERATORS WITH MICROSHIFT

You can use Operators with MicroShift to create applications that monitor the running services in your
cluster. Operators can manage applications and their resources, such as deploying a database or
message bus. As customized software running inside your cluster, Operators can be used to implement
and automate common operations.

Operators offer a more localized configuration experience and integrate with Kubernetes APIs and CLI
tools such as kubectl and oc. Operators are designed specifically for your applications. Operators
enable you to configure components instead of modifying a global configuration file.

MicroShift applications are generally expected to be deployed in static environments. However,
Operators are available if helpful in your use case. To determine the compatibility of an Operator with
MicroShift, check the Operator documentation.

8.1.1. How to use Operators with MicroShift clusters

There are two ways to use Operators for your MicroShift clusters:

8.1.1.1. Manifests for Operators

Operators can be installed and managed directly by using manifests. You can use the kustomize
configuration management tool with MicroShift to deploy an application. Use the same steps to install
Operators with manifests.

See Using Kustomize manifests to deploy applications  and Using manifests example  for details.

8.1.1.2. Operator Lifecycle Manager for Operators

You can also install add-on Operators to a MicroShift cluster using Operator Lifecycle Manager (OLM).
OLM can be used to manage both custom Operators and Operators that are widely available. Building
catalogs is required to use OLM with MicroShift.

For details, see Using Operator Lifecycle Manager with MicroShift .

8.2. USING OPERATOR LIFECYCLE MANAGER WITH MICROSHIFT

The Operator Lifecycle Manager (OLM) package manager is used in MicroShift for installing and
running optional add-on Operators.

8.2.1. Considerations for using OLM with MicroShift

Cluster Operators as applied in OpenShift Container Platform are not used in MicroShift.

You must create your own catalogs for the add-on Operators you want to use with your
applications. Catalogs are not provided by default.

Each catalog must have an accessible CatalogSource added to a cluster, so that the OLM
catalog Operator can use the catalog for content.

You must use the CLI to conduct OLM activities with MicroShift. The console and OperatorHub
GUIs are not available.

Red Hat build of MicroShift 4.15 Running applications

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/architecture/control-plane#olm-operators_control-plane


Use the Operator Package Manager opm CLI with network-connected clusters, or for
building catalogs for custom Operators that use an internal registry.

To mirror your catalogs and Operators for disconnected or offline clusters, install the oc-
mirror OpenShift CLI plugin.

IMPORTANT

Before using an Operator, verify with the provider that the Operator is supported on Red
Hat build of MicroShift.

8.2.2. Determining your OLM installation type

You can install the OLM package manager for use with MicroShift 4.15 or newer versions. There are
different ways to install OLM for MicroShift clusters, depending on your use case.

You can install the microshift-olm RPM at the same time you install the MicroShift RPM on Red
Hat Enterprise Linux (RHEL).

You can install the microshift-olm on an existing MicroShift 4.15. Restart the MicroShift service
after installing OLM for the changes to apply. See Installing the Operator Lifecycle Manager
(OLM) from an RPM package.

You can embed OLM in a Red Hat Enterprise Linux for Edge (RHEL for Edge) image. See
Adding the Operator Lifecycle Manager (OLM) service to a blueprint .

8.2.3. Namespace use in MicroShift

The microshift-olm RPM creates the three default namespaces: one for running OLM, and two for
catalog and Operator installation. You can create additional namespaces as needed for your use case.

8.2.3.1. Default namespaces

The following table lists the default namespaces and a brief description of how each namespace works.

Table 8.1. Default namespaces created by OLM for MicroShift

Default Namespace Details

openshift-operator-lifecycle-manager The OLM package manager runs in this namespace.

openshift-marketplace The global namespace. Empty by default. To make
the catalog source to be available globally to users in
all namespaces, set the openshift-marketplace
namespace in the catalog-source YAML.

openshift-operators The default namespace where Operators run in
MicroShift. Operators that reference catalogs in the 
openshift-operators namespace must have the
AllNamespaces watch scope.

8.2.3.2. Custom namespaces

If you want to use a catalog and Operator together in a single namespace, then you must create a

CHAPTER 8. OPERATORS

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/cli_tools/opm-cli#cli-opm-install
https://docs.openshift.com/container-platform/4.15/installing/disconnected_install/installing-mirroring-disconnected.html#installation-oc-mirror-installing-plugin_installing-mirroring-disconnected
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#microshift-install-rpms-olm_microshift-install-rpm
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#microshift-adding-olm-to-blueprint_microshift-embed-in-rpm-ostree


If you want to use a catalog and Operator together in a single namespace, then you must create a
custom namespace. After you create the namespace, you must create the catalog in that namespace. All
Operators running in the custom namespace must have the same single-namespace watch scope.

8.2.4. About building Operator catalogs

To use Operator Lifecycle Manager (OLM) with MicroShift, you must build custom Operator catalogs
that you can then manage with OLM. The standard catalogs that are included with OpenShift Container
Platform are not included with MicroShift.

8.2.4.1. File-based Operator catalogs

You can create catalogs for your custom Operators or filter catalogs of widely available Operators. You
can combine both methods to create the catalogs needed for your specific use case. To run MicroShift
with your own Operators and OLM, make a catalog by using the file-based catalog structure.

For details, see Managing custom catalogs and Example catalog.

See also opm CLI reference.

IMPORTANT

When adding a catalog source to a cluster , set the securityContextConfig value
to restricted in the catalogSource.yaml file. Ensure that your catalog can run
with restricted permissions.

Additional resources

opm CLI reference

About Operator catalogs

To create file-based catalogs by using the opm CLI, see Managing custom catalogs

8.2.5. How to deploy Operators using OLM

After you create and deploy your custom catalog, you must create a Subscription custom resource (CR)
that can access the catalog and install the Operators you choose. Where Operators run depends on the
namespace in which you create the Subscription CR.

IMPORTANT

Operators in OLM have a watch scope. For example, some Operators only support
watching their own namespace, while others support watching every namespace in the
cluster. All Operators installed in a given namespace must have the same watch scope.

8.2.5.1. Connectivity and OLM Operator deployment

Operators can be deployed anywhere a catalog is running.

For clusters that are connected to the internet, mirroring images is not required. Images can be
pulled over the network.

For restricted networks in which MicroShift has access to an internal network only, images must

Red Hat build of MicroShift 4.15 Running applications

34

https://docs.openshift.com/container-platform/4.14/operators/admin/olm-managing-custom-catalogs.html#olm-creating-fb-catalog-image_olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/operators/understanding-operators#olm-fb-catalogs-example_olm-packaging-format
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/cli_tools/opm-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/operators/administrator-tasks#olm-creating-catalog-from-index_olm-restricted-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/cli_tools/opm-cli
https://docs.openshift.com/container-platform/4.15/operators/understanding/olm-rh-catalogs.html#olm-about-catalogs_olm-rh-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/operators/administrator-tasks#olm-managing-custom-catalogs


For restricted networks in which MicroShift has access to an internal network only, images must
be mirrored to an internal registry.

For use cases in which MicroShift clusters are completely offline, all images must be embedded
into an osbuild blueprint.

Additional resources

Operator group membership

8.2.5.2. Adding OLM-based Operators to a networked cluster using the global namespace

To deploy different operators to different namespaces, use this procedure. For MicroShift clusters that
have network connectivity, Operator Lifecycle Manager (OLM) can access sources hosted on remote
registries. The following procedure lists the basic steps of using configuration files to install an Operator
that uses the global namespace.

NOTE

To use an Operator installed in a different namespace, or in more than one namespace,
make sure that the catalog source and the Subscription CR that references the Operator
are running in the openshift-marketplace namespace.

Prerequisites

The OpenShift CLI (oc) is installed.

Operator Lifecycle Manager (OLM) is installed.

You have created a custom catalog in the global namespace.

Procedure

1. Confirm that OLM is running by using the following command:

Example output

2. Confirm that the OLM catalog Operator is running by using the following command:

Example output

NOTE

$ oc -n openshift-operator-lifecycle-manager get pod -l app=olm-operator

NAME                            READY   STATUS    RESTARTS   AGE
olm-operator-85b5c6786-n6kbc    1/1     Running   0          2m24s

$ oc -n openshift-operator-lifecycle-manager get pod -l app=catalog-operator

NAME                                READY   STATUS    RESTARTS   AGE
catalog-operator-5fc7f857b6-tj8cf   1/1     Running   0          2m33s

CHAPTER 8. OPERATORS

35

https://docs.openshift.com/container-platform/4.15/operators/understanding/olm/olm-understanding-operatorgroups.html#olm-operatorgroups-membership_olm-understanding-operatorgroups


1

2

3

1

NOTE

The following steps assume you are using the global namespace, openshift-marketplace.
The catalog must run in the same namespace as the Operator. The Operator must
support the AllNamespaces mode.

1. Create the CatalogSource object by using the following example YAML:

Example catalog source YAML

The global namespace. Setting the metadata.namespace to openshift-marketplace
enables the catalog to run in all namespaces. Subscriptions in any namespace can
reference catalogs created in the openshift-marketplace namespace.

Community Operators are not installed by default with OLM for MicroShift. Listed here for
example only.

The value of securityContextConfig must be set to restricted for MicroShift.

2. Apply the CatalogSource configuration by running the following command:

Replace <my-catalog-source.yaml> with your catalog source configuration file name. In
this example, catalogsource.yaml is used.

Example output

3. To verify that the catalog source is applied, check for the READY state by using the following
command:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
  name: operatorhubio-catalog
  namespace: openshift-marketplace 1
spec:
  sourceType: grpc
  image: quay.io/operatorhubio/catalog:latest
  displayName: Community Operators 2
  publisher: OperatorHub.io
  grpcPodConfig:
    securityContextConfig: restricted 3
  updateStrategy:
    registryPoll:
      interval: 60m

$ oc apply -f <my-catalog-source.yaml> 1

catalogsource.operators.coreos.com/operatorhubio-catalog created

$ oc describe catalogsources.operators.coreos.com -n openshift-marketplace operatorhubio-
catalog

Red Hat build of MicroShift 4.15 Running applications

36



1

Example output

The status is reported as READY.

4. Confirm that the catalog source is running by using the following command:

Example output

5. Create a Subscription CR configuration file by using the following example YAML:

Example Subscription custom resource YAML

Name:         operatorhubio-catalog
Namespace:    openshift-marketplace
Labels:       <none>
Annotations:  <none>
API Version:  operators.coreos.com/v1alpha1
Kind:         CatalogSource
Metadata:
  Creation Timestamp:  2024-01-31T09:55:31Z
  Generation:          1
  Resource Version:    1212
  UID:                 4edc1a96-83cd-4de9-ac8c-c269ca895f3e
Spec:
  Display Name:  Community Operators
  Grpc Pod Config:
    Security Context Config:  restricted
  Image:                      quay.io/operatorhubio/catalog:latest
  Publisher:                  OperatorHub.io
  Source Type:                grpc
  Update Strategy:
    Registry Poll:
      Interval:  60m
Status:
  Connection State:
    Address:              operatorhubio-catalog.openshift-marketplace.svc:50051
    Last Connect:         2024-01-31T09:55:57Z
    Last Observed State:  READY 1
  Registry Service:
    Created At:         2024-01-31T09:55:31Z
    Port:               50051
    Protocol:           grpc
    Service Name:       operatorhubio-catalog
    Service Namespace:  openshift-marketplace
Events:                 <none>

$ oc get pods -n openshift-marketplace -l olm.catalogSource=operatorhubio-catalog

NAME                          READY   STATUS    RESTARTS   AGE
operatorhubio-catalog-x24nh   1/1     Running   0          59s

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription

CHAPTER 8. OPERATORS

37



1

1

1

The global namespace. Setting the sourceNamespace value to openshift-marketplace
enables Operators to run in multiple namespaces if the catalog also runs in the openshift-
marketplace namespace.

6. Apply the Subscription CR configuration by running the following command:

Replace <my-subscription-cr.yaml> with your Subscription CR filename. In this example, 
sub.yaml is used.

Example output

7. You can create a configuration file for the specific Operand you want to use and apply it now.

Verification

1. Verify that your Operator is running by using the following command:

The namespace from the Subscription CR is used.

NOTE

Allow a minute or two for the Operator start.

Example output

8.2.5.3. Adding OLM-based Operators to a networked cluster in a specific namespace

Use this procedure if you want to specify a namespace for an Operator, for example, olm-microshift. In
this example, the catalog is scoped and available in the global openshift-marketplace namespace. The
Operator uses content from the global namespace, but runs only in the olm-microshift namespace. For

metadata:
  name: my-cert-manager
  namespace: openshift-operators
spec:
  channel: stable
  name: cert-manager
  source: operatorhubio-catalog
  sourceNamespace: openshift-marketplace 1

$ oc apply -f <my-subscription-cr.yaml> 1

subscription.operators.coreos.com/my-cert-manager created

$ oc get pods -n openshift-operators 1

NAME                                       READY   STATUS    RESTARTS   AGE
cert-manager-7df8994ddb-4vrkr              1/1     Running   0          19s
cert-manager-cainjector-5746db8fd7-69442   1/1     Running   0          18s
cert-manager-webhook-f858bf58b-748nt       1/1     Running   0          18s

Red Hat build of MicroShift 4.15 Running applications

38



1

MicroShift clusters that have network connectivity, Operator Lifecycle Manager (OLM) can access
sources hosted on remote registries.

IMPORTANT

All of the Operators installed in a specific namespace must have the same watch scope. In
this case, the watch scope is OwnNamespace.

Prerequisites

The OpenShift CLI (oc) is installed.

Operator Lifecycle Manager (OLM) is installed.

You have created a custom catalog that is running in the global namespace.

Procedure

1. Confirm that OLM is running by using the following command:

Example output

2. Confirm that the OLM catalog Operator is running by using the following command:

Example output

3. Create a namespace by using the following example YAML:

Example namespace YAML

4. Apply the namespace configuration using the following command:

$ oc apply -f _<ns.yaml>_ 1

Replace <ns.yaml> with the name of your namespace configuration file. In this example, 
olm-microshift is used.

$ oc -n openshift-operator-lifecycle-manager get pod -l app=olm-operator

NAME                           READY   STATUS    RESTARTS   AGE
olm-operator-85b5c6786-n6kbc   1/1     Running   0          16m

$ oc -n openshift-operator-lifecycle-manager get pod -l app=catalog-operator

NAME                                READY   STATUS    RESTARTS   AGE
catalog-operator-5fc7f857b6-tj8cf   1/1     Running   0          16m

apiVersion: v1
kind: Namespace
metadata:
  name: olm-microshift

CHAPTER 8. OPERATORS

39



1

1

Example output

5. Create the Operator group YAML by using the following example YAML:

Example Operator group YAML

For Operators using the global namespace, omit the spec.targetNamespaces field and
values.

6. Apply the Operator group configuration by running the following command:

Replace <og.yaml> with the name of your operator group configuration file.

Example output

7. Create the CatalogSource object by using the following example YAML:

Example catalog source YAML

namespace/olm-microshift created

kind: OperatorGroup
apiVersion: operators.coreos.com/v1
metadata:
  name: og
  namespace: olm-microshift
spec: 1
  targetNamespaces:
  - olm-microshift

$ oc apply -f _<og.yaml>_ 1

operatorgroup.operators.coreos.com/og created

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
  name: operatorhubio-catalog
  namespace: openshift-marketplace 1
spec:
  sourceType: grpc
  image: quay.io/operatorhubio/catalog:latest
  displayName: Community Operators 2
  publisher: OperatorHub.io
  grpcPodConfig:
    securityContextConfig: restricted 3
  updateStrategy:
    registryPoll:
      interval: 60m

Red Hat build of MicroShift 4.15 Running applications

40



1

2

3

1

The global namespace. Setting the metadata.namespace to openshift-marketplace
enables the catalog to run in all namespaces. Subscriptions CRs in any namespace can

Community Operators are not installed by default with OLM for MicroShift. Listed here for
example only.

The value of securityContextConfig must be set to restricted for MicroShift.

8. Apply the CatalogSource configuration by running the following command:

Replace <my-catalog-source.yaml> with your catalog source configuration file name.

9. To verify that the catalog source is applied, check for the READY state by using the following
command:

Example output

$ oc apply -f _<my-catalog-source.yaml>_ 1

$ oc describe catalogsources.operators.coreos.com -n openshift-marketplace operatorhubio-
catalog

Name:         operatorhubio-catalog
Namespace:    openshift-marketplace
Labels:       <none>
Annotations:  <none>
API Version:  operators.coreos.com/v1alpha1
Kind:         CatalogSource
Metadata:
  Creation Timestamp:  2024-01-31T10:09:46Z
  Generation:          1
  Resource Version:    2811
  UID:                 60ce4a36-86d3-4921-b9fc-84d67c28df48
Spec:
  Display Name:  Community Operators
  Grpc Pod Config:
    Security Context Config:  restricted
  Image:                      quay.io/operatorhubio/catalog:latest
  Publisher:                  OperatorHub.io
  Source Type:                grpc
  Update Strategy:
    Registry Poll:
      Interval:  60m
Status:
  Connection State:
    Address:              operatorhubio-catalog.openshift-marketplace.svc:50051
    Last Connect:         2024-01-31T10:10:04Z
    Last Observed State:  READY 1
  Registry Service:
    Created At:         2024-01-31T10:09:46Z
    Port:               50051
    Protocol:           grpc

CHAPTER 8. OPERATORS

41



1

1

2

The status is reported as READY.

10. Confirm that the catalog source is running by using the following command:

Example output

11. Create a Subscription CR configuration file by using the following example YAML:

Example Subscription custom resource YAML

The specific namespace. Operators reference the global namespace for content, but run in
the olm-microshift namespace.

The global namespace. Subscriptions CRs in any namespace can reference catalogs
created in the openshift-marketplace namespace.

12. Apply the Subscription CR configuration by running the following command:

Example output

13. You can create a configuration file for the specific Operand you want to use and apply it now.

Verification

1. Verify that your Operator is running by using the following command:

    Service Name:       operatorhubio-catalog
    Service Namespace:  openshift-marketplace
Events:                 <none>

$ oc get pods -n openshift-marketplace -l olm.catalogSource=operatorhubio-catalog

NAME                          READY   STATUS    RESTARTS   AGE
operatorhubio-catalog-j7sc8   1/1     Running   0          43s

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: my-gitlab-operator-kubernetes
  namespace: olm-microshift 1
spec:
  channel: stable
  name: gitlab-operator-kubernetes
  source: operatorhubio-catalog
  sourceNamespace: openshift-marketplace 2

$ oc apply -f _<my-subscription-cr.yaml>_

subscription.operators.coreos.com/my-gitlab-operator-kubernetes

$ oc get pods -n olm-microshift 1

Red Hat build of MicroShift 4.15 Running applications

42



1 The namespace from the Subscription CR is used.

NOTE

Allow a minute or two for the Operator start.

Example output

Additional resources

Updating installed Operators

Deleting Operators from a cluster using the CLI

8.3. CREATING CUSTOM CATALOGS USING THE OC-MIRROR PLUGIN

You can create custom catalogs with widely available Operators and mirror them by using the oc-mirror
OpenShift CLI (oc) plugin.

8.3.1. Using Red Hat-provided Operator catalogs and mirror registries

You can filter and prune catalogs to get specific Operators and mirror them by using the oc-mirror
OpenShift CLI (oc) plugin. You can also use Operators in disconnected settings or embedded in Red
Hat Enterprise Linux for Edge (RHEL for Edge) images. To read more details about how to configure
your systems for mirroring, use the links in the following "Additional resources" section. If you are ready
to deploy Operators from Red Hat-provided Operator catalogs, mirror them, or to embed them in RHEL
for Edge images, start with the following section, "Inspecting catalog contents by using the oc-mirror
plugin."

Additional resources

Using Operator Lifecycle Manager on restricted networks

Configuring hosts for mirror registry access

Configuring network settings for fully disconnected hosts

Getting the mirror registry container image list

Embedding in a RHEL for Edge image for offline use

8.3.2. About the oc-mirror plugin for creating a mirror registry

You can use the oc-mirror OpenShift CLI (oc) plugin with MicroShift to filter and prune Operator
catalogs. You can then mirror the filtered catalog contents to a mirror registry or use the container
images in disconnected or offline deployments with RHEL for Edge.

NOTE

NAME                                         READY   STATUS    RESTARTS   AGE
gitlab-controller-manager-69bb6df7d6-g7ntx   2/2     Running   0          3m24s

CHAPTER 8. OPERATORS

43

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/operators/administrator-tasks#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/operators/administrator-tasks#olm-deleting-operator-from-a-cluster-using-cli_olm-deleting-operators-from-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/operators/administrator-tasks#olm-restricted-networks
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#microshift-configuring-hosts-for-mirror_microshift-deployment-mirror
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/networking/#microshift-disconnected-network-config
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#microshift-get-mirror-reg-container-image-list_microshift-deploy-with-mirror-registry
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#microshift-embed-in-rpm-ostree-offline-use


NOTE

MicroShift uses the generally available version (1) of the oc-mirror plugin. Do not use the
following procedures with the Technical Preview version (2) of oc-mirror plugin.

You can mirror the container images required by the desired Operators locally or to a container mirror
registry that supports Docker v2-2, such as Red Hat Quay. The procedure to mirror content from Red
Hat-hosted registries connected to the internet to a disconnected image registry is the same,
independent of the registry you choose. After you mirror the contents of your catalog, configure each
cluster to retrieve this content from your mirror registry.

8.3.2.1. Connectivity considerations when populating a mirror registry

When you populate your registry, you can use one of following connectivity scenarios:

Connected mirroring

If you have a host that can access both the internet and your mirror registry, but not your cluster
node, you can directly mirror the content from that machine.

Disconnected mirroring

If you do not have a host that can access both the internet and your mirror registry, you must mirror
the images to a file system and then bring that host or removable media into your disconnected
environment.

IMPORTANT

A container registry must be reachable by every machine in the clusters that you
provision. Installing, updating, and other operations, such as relocating workloads,
might fail if the registry is unreachable.

To avoid problems caused by an unreachable registry, use the following standard practices:

Run mirror registries in a highly available way.

Ensure that the mirror registry at least matches the production availability of your clusters.

Additional resources

Installing the oc mirror plugin

8.3.2.2. Inspecting catalog contents by using the oc-mirror plugin

Use the following example procedure to select a catalog and list Operators from available OpenShift
Container Platform content to add to your oc-mirror plugin image set configuration file.

NOTE

If you use your own catalogs and Operators, you can push the images directly to your
internal registry.

Prerequisites

The OpenShift CLI (oc) is installed.

Red Hat build of MicroShift 4.15 Running applications

44

https://docs.docker.com/registry/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/installing/disconnected-installation-mirroring#prerequisites_installing-mirroring-disconnected


1

Operator Lifecycle Manager (OLM) is installed.

The oc-mirror OpenShift CLI (oc) plugin is installed.

Procedure

1. Get a list of available Red Hat-provided Operator catalogs to filter by running the following
command:

2. Get a list of Operators in the Red Hat Operators catalog by running the following command:

Specifies your catalog source, such as registry.redhat.io/redhat/redhat-operator-
index:v4.15 or quay.io/operatorhubio/catalog:latest.

3. Select an Operator. For this example, amq-broker-rhel8 is selected.

4. Optional: To inspect the channels and versions of the Operator you want to filter, enter the
following commands:

a. Get a list of channels by running the following command:

b. Get a list of versions within a channel by running the following command:

Next steps

Create and edit an image set configuration file using the information gathered in this procedure.

Mirror the images from the transformed image set configuration file to a mirror registry or disk.

8.3.2.3. Creating an image set configuration file

You must create an image set configuration file to mirror catalog contents with the oc-mirror plugin.
The image set configuration file defines which Operators to mirror along with other configuration
settings for the oc-mirror plugin. After generating a default image set file, you must edit the contents so
that remaining entries are compatible with both MicroShift and the Operator you plan to use.

You must specify a storage backend in the image set configuration file. This storage backend can be a
local directory or a registry that supports Docker v2-2. The oc-mirror plugin stores metadata in this
storage backend during image set creation.

IMPORTANT

$ oc mirror list operators --version 4.15 --catalogs

$ oc mirror list operators <--catalog=<catalog_source>> 1

$ oc mirror list operators --catalog=registry.redhat.io/redhat/redhat-operator-index:v4.15 -
-package=amq-broker-rhel8

$ oc mirror list operators --catalog=registry.redhat.io/redhat/redhat-operator-index:v4.15 -
-package=amq-broker-rhel8 --channel=7.11.x

CHAPTER 8. OPERATORS

45

https://docs.docker.com/registry/spec/manifest-v2-2


1

1

2

3

IMPORTANT

Do not delete or modify the metadata that is generated by the oc-mirror plugin. You
must use the same storage backend every time you run the oc-mirror plugin for the same
mirror registry.

Prerequisites

You have created a container image registry credentials file. See Configuring credentials that
allow images to be mirrored.

Procedure

1. Use the oc mirror init command to create a template for the image set configuration and save
it to a file called imageset-config.yaml:

Specifies the location of your storage backend, such as example.com/mirror/oc-mirror-
metadata.

Example default image set configuration file

The platform field and related fields are not supported by MicroShift and must be deleted.

Specify any additional images to include in the image set. If you do not need to specify
additional images, delete this field.

Helm is not supported by MicroShift, and must be deleted.

2. Edit the values of your image set configuration file to meet the requirements of both MicroShift
and the Operator you want to mirror, like the following example:

$ oc mirror init <--registry <storage_backend> > imageset-config.yaml 1

kind: ImageSetConfiguration
apiVersion: mirror.openshift.io/v1alpha2
storageConfig:
  registry:
    imageURL: registry.example.com/oc-mirror
    skipTLS: false
mirror:
  platform: 1
    channels:
    - name: stable-4.15
      type: ocp
  operators:
  - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.15
    packages:
    - name: serverless-operator
      channels:
      - name: stable
  additionalImages: 2
  - name: registry.redhat.io/ubi8/ubi:latest
  helm: {} 3

Red Hat build of MicroShift 4.15 Running applications

46

https://docs.openshift.com/container-platform/4.15/installing/disconnected_install/installing-mirroring-disconnected.html#installation-adding-registry-pull-secret_installing-mirroring-disconnected


1

2

3

4

5

Example edited MicroShift image set configuration file

Set the backend location where the image set metadata is saved. This location can be a
registry or local directory. It is required to specify storageConfig values.

Set the registry URL for the storage backend, such as <example.com/mirror/oc-mirror-
metadata.

Set the Operator catalog to retrieve images from.

Specify the Operator packages to include in the image set. Remove this field to retrieve all
packages in the catalog.

Specify only certain channels of the Operator packages to include in the image set. You
must always include the default channel for the Operator package even if you do not use
the bundles in that channel. You can find the default channel by running the following
command: oc mirror list operators --catalog=<catalog_name> --package=
<package_name>.

3. Save the updated file.

Next steps

Use the oc-mirror plugin to mirror an image set directly to a target mirror registry.

Configure CRI-O.

Apply the catalog sources to your clusters.

8.3.2.3.1. Image set configuration parameters

The oc-mirror plugin requires an image set configuration file that defines what images to mirror. The
following table lists the available parameters for the ImageSetConfiguration resource.

Table 8.2. ImageSetConfiguration parameters

Parameter Description Values

kind: ImageSetConfiguration
apiVersion: mirror.openshift.io/v1alpha2
storageConfig: 1
  registry:
    imageURL: <storage_backend> 2
    skipTLS: false
mirror:
  operators:
  - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.15 3
    packages:
    - name: amq-broker-rhel8 4
      channels:
      - name: 7.11.x 5

CHAPTER 8. OPERATORS

47



apiVersion The API version for the 
ImageSetConfiguration content.

String. For
example: 
mirror.openshif
t.io/v1alpha2.

mirror The configuration of the image set. Object

mirror.additionalImages The additional images configuration of
the image set.

Array of objects.
For example:

mirror.additionalImages.name The tag or digest of the image to mirror. String. For
example: 
registry.redhat.i
o/ubi8/ubi:latest

mirror.blockedImages The full tag, digest, or pattern of images
to block from mirroring.

Array of strings.
For example: 
docker.io/librar
y/alpine

mirror.operators The Operators configuration of the image
set.

Array of objects.
For example:

Parameter Description Values

additionalIma
ges:
  - name: 
registry.redha
t.io/ubi8/ubi:lat
est

operators:
  - catalog: 
registry.redha
t.io/redhat/red
hat-operator-
index:v4.15
    packages:
      - name: 
elasticsearch-
operator
        
minVersion: 
'2.4.0'

Red Hat build of MicroShift 4.15 Running applications

48



mirror.operators.catalog The Operator catalog to include in the
image set.

String. For
example: 
registry.redhat.i
o/redhat/redhat-
operator-
index:v4.15.

mirror.operators.full When true, downloads the full catalog,
Operator package, or Operator channel.

Boolean. The
default value is 
false.

mirror.operators.packages The Operator packages configuration. Array of objects.
For example:

mirror.operators.packages.name The Operator package name to include in
the image set

String. For
example: 
elasticsearch-
operator.

mirror.operators.packages.channel
s

The Operator package channel
configuration.

Object

mirror.operators.packages.channel
s.name

The Operator channel name, unique
within a package, to include in the image
set.

String. For
example: fast or 
stable-v4.15.

mirror.operators.packages.channel
s.maxVersion

The highest version of the Operator
mirror across all channels in which it
exists. See the following note for further
information.

String. For
example: 5.2.3-31

Parameter Description Values

operators:
  - catalog: 
registry.redha
t.io/redhat/red
hat-operator-
index:v4.15
    packages:
      - name: 
elasticsearch-
operator
        
minVersion: 
'5.2.3-31'

CHAPTER 8. OPERATORS

49



mirror.operators.packages.channel
s.minBundle

The name of the minimum bundle to
include, plus all bundles in the update
graph to the channel head. Set this field
only if the named bundle has no semantic
version metadata.

String. For
example: 
bundleName

mirror.operators.packages.channel
s.minVersion

The lowest version of the Operator to
mirror across all channels in which it
exists. See the following note for further
information.

String. For
example: 5.2.3-31

mirror.operators.packages.maxVers
ion

The highest version of the Operator to
mirror across all channels in which it
exists. See the following note for further
information.

String. For
example: 5.2.3-31.

mirror.operators.packages.minVers
ion

The lowest version of the Operator to
mirror across all channels in which it
exists. See the following note for further
information.

String. For
example: 5.2.3-31.

mirror.operators.skipDependencies If true, dependencies of bundles are not
included.

Boolean. The
default value is 
false.

mirror.operators.targetCatalog An alternative name and optional
namespace hierarchy to mirror the
referenced catalog as.

String. For
example: my-
namespace/my-
operator-
catalog

mirror.operators.targetName An alternative name to mirror the
referenced catalog as.

The targetName parameter is
deprecated. Use the targetCatalog
parameter instead.

String. For
example: my-
operator-
catalog

mirror.operators.targetTag An alternative tag to append to the 
targetName or targetCatalog.

String. For
example: v1

storageConfig The back-end configuration of the image
set.

Object

storageConfig.local The local back-end configuration of the
image set.

Object

Parameter Description Values

Red Hat build of MicroShift 4.15 Running applications

50



storageConfig.local.path The path of the directory to contain the
image set metadata.

String. For
example: 
./path/to/dir/.

storageConfig.registry The registry back-end configuration of
the image set.

Object

storageConfig.registry.imageURL The back-end registry URI. Can optionally
include a namespace reference in the
URI.

String. For
example: 
quay.io/myuser/
imageset:metad
ata.

storageConfig.registry.skipTLS Optionally skip TLS verification of the
referenced back-end registry.

Boolean. The
default value is 
false.

Parameter Description Values

NOTE

Using the minVersion and maxVersion properties to filter for a specific Operator
version range can result in a multiple channel heads error. The error message states that
there are multiple channel heads. This is because when the filter is applied, the update
graph of the Operator is truncated.

Operator Lifecycle Manager requires that every Operator channel contains versions that
form an update graph with exactly one end point, that is, the latest version of the
Operator. When the filter range is applied, that graph can turn into two or more separate
graphs or a graph that has more than one end point.

To avoid this error, do not filter out the latest version of an Operator. If you still run into
the error, depending on the Operator, either the maxVersion property must be increased
or the minVersion property must be decreased. Because every Operator graph can be
different, you might need to adjust these values until the error resolves.

Additional resources

Imageset configuration examples

8.3.2.4. Mirroring from mirror to mirror

You can use the oc-mirror plugin to mirror an image set directly to a target mirror registry that is
accessible during image set creation.

You are required to specify a storage backend in the image set configuration file. This storage backend
can be a local directory or a Docker v2 registry. The oc-mirror plugin stores metadata in this storage
backend during image set creation.

IMPORTANT

CHAPTER 8. OPERATORS

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/installing/disconnected-installation-mirroring#oc-mirror-image-set-examples_installing-mirroring-disconnected


1

2

IMPORTANT

Do not delete or modify the metadata that is generated by the oc-mirror plugin. You
must use the same storage backend every time you run the oc-mirror plugin for the same
mirror registry.

Prerequisites

You have access to the internet to get the necessary container images.

You have installed the OpenShift CLI (oc).

You have installed the oc-mirror CLI plugin.

You have created the image set configuration file.

Procedure

Run the oc mirror command to mirror the images from the specified image set configuration to
a specified registry:

Specify the image set configuration file that you created. For example, imageset-
config.yaml.

Specify the registry to mirror the image set file to. The registry must start with docker://. If
you specify a top-level namespace for the mirror registry, you must also use this same
namespace on subsequent executions.

Example output

Verification

1. Navigate into the oc-mirror-workspace/ directory that was generated.

2. Navigate into the results directory, for example, results-1639608409/.

3. Verify that YAML files are present for the ImageContentSourcePolicy and CatalogSource
resources.

IMPORTANT

The ImageContentSourcePolicy YAML file is used as reference content for manual
configuration of CRI-O in MicroShift. You cannot apply the resource directly into a
MicroShift cluster.

Next steps

$ oc mirror --config=./<imageset-config.yaml> \ 1
  docker://registry.example:5000             2

Rendering catalog image "registry.example.com/redhat/redhat-operator-index:v{ocp-version}" with 
file-based catalog

Red Hat build of MicroShift 4.15 Running applications

52



1

Convert the ImageContentSourcePolicy YAML content for use in manually configuring CRI-O.

If required, mirror the images from mirror to disk for disconnected or offline use.

Configure your cluster to use the resources generated by oc-mirror.

Troubleshooting

Unable to retrieve source image .

Additional resources

Mirroring an image set in a partially disconnected environment

Mirroring an image set in a fully disconnected environment

8.3.2.5. Configuring CRI-O for using a registry mirror for Operators

You must transform the imageContentSourcePolicy.yaml file created with the oc-mirror plugin into a
format that is compatible with the CRI-O container runtime configuration used by MicroShift.

Prerequisites

The OpenShift CLI (oc) is installed.

Operator Lifecycle Manager (OLM) is installed.

The oc-mirror OpenShift CLI (oc) plugin is installed.

The yq binary is installed.

ImageContentSourcePolicy and CatalogSource YAML files are available in the oc-mirror-
workspace/results-* directory.

Procedure

1. Confirm the contents of the imageContentSourcePolicy.yaml file by running the following
command:

Specify the results directory name, such as <results-1707148826>.

Example output

$ cat oc-mirror-workspace/<results-directory>/imageContentSourcePolicy.yaml 1

apiVersion: operator.openshift.io/v1alpha1
kind: ImageContentSourcePolicy
metadata:
  labels:
    operators.openshift.org/catalog: "true"
  name: operator-0
spec:
  repositoryDigestMirrors:

CHAPTER 8. OPERATORS

53

https://access.redhat.com/solutions/7032017
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/installing/disconnected-installation-mirroring#mirroring-image-set-partial
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/installing/disconnected-installation-mirroring#mirroring-image-set-full


1

2. Transform the imageContentSourcePolicy.yaml into a format ready for CRI-O configuration
by running the following command:

Example output

3. Add the output to the CRI-O configuration file in the /etc/containers/registries.conf.d/
directory:

Example crio-config.yaml mirror configuration file

Specify the host name and port of your mirror registry server, for example microshift-
quay:8443.

4. Apply the CRI-O configuration changes by restarting MicroShift with the following command:

8.3.2.6. Installing a custom catalog created with the oc-mirror plugin

After you mirror your image set to the mirror registry, you must apply the generated CatalogSource

  - mirrors:
    - registry.<example.com>/amq7
    source: registry.redhat.io/amq7

yq '.spec.repositoryDigestMirrors[] as $item ireduce([]; . + [{"mirror": $item.mirrors[], "source": 
($item | .source)}]) | .[] |
  "[[registry]]
      prefix = \"" + .source + "\"
      location = \"" + .mirror + "\"
      mirror-by-digest-only = true
      insecure = true
      "' ./icsp.yaml

[[registry]]
      prefix = "registry.redhat.io/amq7"
      location = "registry.example.com/amq7"
      mirror-by-digest-only = true
      insecure = true

[[registry]]
      prefix = "registry.redhat.io/amq7"
      location = "registry.example.com/amq7"
      mirror-by-digest-only = true
      insecure = true

[[registry]]
    prefix = ""
    location = "quay.io"
    mirror-by-digest-only = true
[[registry.mirror]]
    location = "<registry_host>:<port>" 1
    insecure = false

$ sudo systemctl restart crio

Red Hat build of MicroShift 4.15 Running applications

54



1

After you mirror your image set to the mirror registry, you must apply the generated CatalogSource
custom resource (CR) into the cluster. The CatalogSource CR is used by Operator Lifecycle Manager
(OLM) to retrieve information about the available Operators in the mirror registry. You must then create
and apply a subscription CR to subscribe to your custom catalog.

Prerequisites

You mirrored the image set to your registry mirror.

You added image reference information to the CRI-O container runtime configuration.

Procedure

1. Apply the catalog source configuration file from the results directory to create the catalog
source object by running the following command:

Example catalog source configuration file

Specifies the global namespace. Setting the metadata.namespace to openshift-
marketplace enables the catalog to reference catalogs in all namespaces. Subscriptions in
any namespace can reference catalogs created in the openshift-marketplace namespace.

Example output

2. Verify that the CatalogSource resources were successfully installed by running the following
command:

3. Verify that the catalog source is running by using the following command:

Example output

$ oc apply -f ./oc-mirror-workspace/results-1708508014/catalogSource-cs-redhat-operator-
index.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
  name: redhat-catalog
  namespace: openshift-marketplace 1
spec:
  sourceType: grpc
  image: registry.example.com/redhat/redhat-operator-index:v4.15
  updateStrategy:
    registryPoll:
      interval: 60m

catalogsource.operators.coreos.com/cs-redhat-operator-index created

$ oc get catalogsource --all-namespaces

$ oc get pods -n openshift-marketplace

CHAPTER 8. OPERATORS

55



1

4. Create a Subscription CR, similar to the following example:

Example Subscription CR

5. Apply the Subscription CR configuration by running the following command:

Specify the name of your subscription, such as my-subscription-cr.yaml.

Example output

8.4. ADDING OLM-BASED OPERATORS TO A DISCONNECTED
CLUSTER

You can use OLM-based Operators in disconnected situations by embedding them in a Red Hat
Enterprise Linux for Edge (RHEL for Edge) image.

8.4.1. About adding OLM-based Operators to a disconnected cluster

For Operators that are installed on disconnected clusters, Operator Lifecycle Manager (OLM) by
default cannot access sources hosted on remote registries because those remote sources require full
internet connectivity. Therefore, you must mirror the remote registries to a highly available container
registry.

The following steps are required to use OLM-based Operators in disconnected situations:

Include OLM in the container image list for your mirror registry.

Configure the system to use your mirror registry by updating your CRI-O configuration directly. 
ImageContentSourcePolicy is not supported in MicroShift.

Add a CatalogSource object to the cluster so that the OLM catalog Operator can use the local
catalog on the mirror registry.

Ensure that MicroShift is installed to run in a disconnected capacity.

NAME                             READY   STATUS    RESTARTS   AGE
cs-redhat-operator-index-4227b   2/2     Running   0          2m5s

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: amq-broker
  namespace: openshift-operators
spec:
  channel: 7.11.x
  name: amq-broker-rhel8
  source: cs-redhat-operator-index
  sourceNamespace: openshift-marketplace

$ oc apply -f ./<my-subscription-cr.yaml> 1

subscription.operators.coreos.com/amq-broker created

Red Hat build of MicroShift 4.15 Running applications

56



1

2

3

Ensure that the network settings are configured to run in disconnected mode.

After enabling OLM in a disconnected cluster, you can continue to use your internet-connected
workstation to keep your local catalog sources updated as newer versions of Operators are released.

Additional resources

Creating the RHEL for Edge image

Embedding in a RHEL for Edge image for offline use

Configuring network settings for fully disconnected hosts

8.4.1.1. Performing a dry run

You can use oc-mirror to perform a dry run, without actually mirroring any images. This allows you to
review the list of images that would be mirrored, as well as any images that would be pruned from the
mirror registry. A dry run also allows you to catch any errors with your image set configuration early or
use the generated list of images with other tools to carry out the mirroring operation.

Prerequisites

You have access to the internet to obtain the necessary container images.

You have installed the OpenShift CLI (oc).

You have installed the oc-mirror CLI plugin.

You have created the image set configuration file.

Procedure

1. Run the oc mirror command with the --dry-run flag to perform a dry run:

Pass in the image set configuration file that was created. This procedure assumes that it is
named imageset-config.yaml.

Specify the mirror registry. Nothing is mirrored to this registry as long as you use the --dry-
run flag.

Use the --dry-run flag to generate the dry run artifacts and not an actual image set file.

Example output

$ oc mirror --config=./imageset-config.yaml \ 1
  docker://registry.example:5000            \ 2
  --dry-run                                  3

Checking push permissions for registry.example:5000
Creating directory: oc-mirror-workspace/src/publish
Creating directory: oc-mirror-workspace/src/v2
Creating directory: oc-mirror-workspace/src/charts
Creating directory: oc-mirror-workspace/src/release-signatures
No metadata detected, creating new workspace

CHAPTER 8. OPERATORS

57

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html/installing/microshift-embed-in-rpm-ostree-for-offline-use#microshift-creating-ostree-iso_microshift-embed-rpm-ostree-offline-use
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/installing/#microshift-embed-rpm-ostree-offline-use
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/networking/#microshift-networking-disconnected-hosts


2. Navigate into the workspace directory that was generated:

3. Review the mapping.txt file that was generated.
This file contains a list of all images that would be mirrored.

4. Review the pruning-plan.json file that was generated.
This file contains a list of all images that would be pruned from the mirror registry when the
image set is published.

NOTE

The pruning-plan.json file is only generated if your oc-mirror command points
to your mirror registry and there are images to be pruned.

8.4.1.2. Getting catalogs and Operator container image references to use with RHEL for
Edge in disconnected environments

After performing a dry run with the oc-mirror plugin to review the list of images that you want to mirror,
you must get all of the container image references, then format the output for adding to an Image
Builder blueprint.

NOTE

For catalogs made for proprietary Operators, you can format image references for the
Image Builder blueprint without using the following procedure.

Prerequisites

You have a catalog index for the Operators you want to use.

You have installed the jq CLI tool.

You are familiar with Image Builder blueprint files.

You have an Image Builder blueprint TOML file.

Procedure

1. Parse the catalog index.json file to get the image references that you need to include in the
Image Builder blueprint. You can use either the unfiltered catalog or you can filter out images
that cannot be mirrored:

a. Parse the unfiltered catalog index.json file to get the image references by running the

wrote mirroring manifests to oc-mirror-workspace/operators.1658342351/manifests-redhat-
operator-index

...

info: Planning completed in 31.48s
info: Dry run complete
Writing image mapping to oc-mirror-workspace/mapping.txt

$ cd oc-mirror-workspace/

Red Hat build of MicroShift 4.15 Running applications

58



a. Parse the unfiltered catalog index.json file to get the image references by running the
following command:

b. If you want to filter out images that cannot be mirrored, filter and parse the catalog 
index.json file by running the following command:

NOTE

This step uses the AMQ Broker Operator as an example. You can add other
criteria to the jq command for further filtering as required by your use case.

Example image-reference output

IMPORTANT

For mirrored and disconnected use cases, ensure that all of the sources
filtered from your catalog index.json file are digests. If any of the sources
use tags instead of digests, the Operator installation fails. Tags require an
internet connection.

jq -r --slurp '.[] | select(.relatedImages != null) | "[[containers]]\nsource = \"" + 
.relatedImages[].image + "\"\n"'   ./oc-mirror-
workspace/src/catalogs/registry.redhat.io/redhat/redhat-operator-
index/v4.15/index/index.json

$ jq -r --slurp '.[] | select(.relatedImages != null) | .relatedImages[] | select(.name |  
contains("ppc") or contains("s390x") | not) | "[[containers]]\\nsource = \\"" + .image + 
"\\"\\n"' ./oc-mirror-workspace/src/catalogs/registry.redhat.io/redhat/redhat-operator-
index/v4.15/index/index.json

[[containers]]
source = "registry.redhat.io/amq7/amq-broker-init-
rhel8@sha256:0b2126cfb6054fdf428c1f43b69e36e93a09a49ce15350e9273c98cc08c6598
b"

[[containers]]
source = "registry.redhat.io/amq7/amq-broker-init-
rhel8@sha256:0dde839c2dce7cb684094bf26523c8e16677de03149a0fff468b8c3f106e1f4f
"
...
...

[[containers]]
source = "registry.redhat.io/amq7/amq-broker-
rhel8@sha256:e8fa2a00e576ecb95561ffbdbf87b1c82d479c8791ab2c6ce741dd0d0b496d
15"

[[containers]]
source = "registry.redhat.io/amq7/amq-broker-
rhel8@sha256:ff6fefad518a6c997d4c5a6e475ba89640260167f0bc27715daf3cc30116fad1
"
…
EOF

CHAPTER 8. OPERATORS

59



1

1

2. View the imageset-config.yaml to get the catalog image reference for the CatalogSource
custom resource (CR) by running the following command:

Example output

Use the value in the mirror.catalog catalog image reference for the follwing jq command
to get the image digest. In this example, <registry.redhat.io/redhat/redhat-operator-
index:v4.15>.

3. Get the SHA of the catalog index image by running the following command:

Use the value in the mirror.catalog catalog image reference for the jq command to get
the image digest. In this example, <registry.redhat.io/redhat/redhat-operator-index:v4.15>.

Example output

4. To get ready to add the image references to your Image Builder blueprint file, format the
catalog image reference by using the following example:

5. Add the image references from all the previous steps to the Image Builder blueprint.

Generated Image Builder blueprint example snippet

$ cat imageset-config.yaml

kind: ImageSetConfiguration
apiVersion: mirror.openshift.io/v1alpha2
storageConfig:
  registry:
    imageURL: registry.example.com/microshift-mirror
mirror:
  operators:
  - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.15 1
    packages:
    - name: amq-broker-rhel8
      channels:
      - name: 7.11.x

$ skopeo inspect docker://<registry.redhat.io/redhat/redhat-operator-index:v4.15> | jq 
`.Digest` 1

"sha256:7a76c0880a839035eb6e896d54ebd63668bb37b82040692141ba39ab4c539bc6"

[[containers]]
source = "registry.redhat.io/redhat/redhat-operator-
index@sha256:7a76c0880a839035eb6e896d54ebd63668bb37b82040692141ba39ab4c539bc
6"

name = "microshift_blueprint"
description = "MicroShift 4.15.1 on x86_64 platform"
version = "0.0.1"

Red Hat build of MicroShift 4.15 Running applications

60



1 References for all non-optional MicroShift RPM packages using the same version
compatible with the microshift-release-info RPM.

modules = []
groups = []

[[packages]] 1
name = "microshift"
version = "4.15.1"
...
...

[customizations.services] 2
enabled = ["microshift"]

[customizations.firewall]
ports = ["22:tcp", "80:tcp", "443:tcp", "5353:udp", "6443:tcp", "30000-32767:tcp", "30000-
32767:udp"]
...
...

[[containers]] 3
source = "quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:f41e79c17e8b41f1b0a5a32c3e2dd7cd15b8274554d3f1ba12b2598a347475f4"

[[containers]]
source = "quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:dbc65f1fba7d92b36cf7514cd130fe83a9bd211005ddb23a8dc479e0eea645fd"
...
...

[[containers]] 4
source = "registry.redhat.io/redhat/redhat-operator-
index@sha256:7a76c0880a839035eb6e896d54ebd63668bb37b82040692141ba39ab4c539bc
6"
...
...

[[containers]]
source = "registry.redhat.io/amq7/amq-broker-init-
rhel8@sha256:0dde839c2dce7cb684094bf26523c8e16677de03149a0fff468b8c3f106e1f4f"
...
...

[[containers]]
source = "registry.redhat.io/amq7/amq-broker-
rhel8@sha256:e8fa2a00e576ecb95561ffbdbf87b1c82d479c8791ab2c6ce741dd0d0b496d15"

[[containers]]
source = "registry.redhat.io/amq7/amq-broker-
rhel8@sha256:ff6fefad518a6c997d4c5a6e475ba89640260167f0bc27715daf3cc30116fad1"
…
EOF

CHAPTER 8. OPERATORS

61



2

3

4

1

References for automatically enabling MicroShift on system startup and applying default
networking settings.

References for all non-optional MicroShift container images necessary for a disconnected
deployment.

References for the catalog index.

8.4.1.3. Applying catalogs and Operators in a disconnected-deployment RHEL for Edge
image

After you have created a RHEL for Edge image for a disconnected environment and configured
MicroShift networking settings for disconnected use, you can configure the namespace and create
catalog and Operator custom resources (CR) for running your Operators.

Prerequisites

You have a RHEL for Edge image.

Networking is configured for disconnected use.

You completed the oc-mirror plugin dry run procedure.

Procedure

1. Create a CatalogSource custom resource (CR), similar to the following example:

Example my-catalog-source-cr.yaml file

The global namespace. Setting the metadata.namespace to openshift-marketplace
enables the catalog to run in all namespaces. Subscriptions in any namespace can
reference catalogs created in the openshift-marketplace namespace.

NOTE

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
  name: cs-redhat-operator-index
  namespace: openshift-marketplace 1
spec:
  image: registry.example.com/redhat/redhat-operator-index:v4.15
  sourceType: grpc
  displayName:
  publisher:
  updateStrategy:
    registryPoll:
      interval: 60m

Red Hat build of MicroShift 4.15 Running applications

62



1

NOTE

The default pod security admission definition for openshift-marketplace is 
baseline, therefore a catalog source custom resource (CR) created in that
namespace does not require a spec.grpcPodConfig.securityContextConfig
value to be set. You can set a legacy or restricted value if required for the
namespace and Operators you want to use.

2. Add the SHA of the catalog index commit to the Catalog Source (CR), similar to the following
example:

Example namespace spec.image configuration

The SHA of the image commit. Use the same SHA you added to the Image Builder
blueprint.

IMPORTANT

You must use the SHA instead of a tag in your catalog CR or the pod fails to
start.

3. Apply the YAML file from the oc-mirror plugin dry run results directory to the cluster by running
the following command:

Example output

4. Verify that the CatalogSource resources were successfully installed by running the following
command:

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
  name: cs-redhat-operator-index
  namespace: openshift-marketplace
spec:
  image: registry.example.com/redhat/redhat-operator-
index@sha256:7a76c0880a839035eb6e896d54ebd63668bb37b82040692141ba39ab4c539bc
6 1
  sourceType: grpc
  displayName:
  publisher:
  updateStrategy:
    registryPoll:
      interval: 60m

$ oc apply -f ./oc-mirror-workspace/results-1708508014/catalogSource-cs-redhat-operator-
index.yaml

catalogsource.operators.coreos.com/cs-redhat-operator-index created

$ oc get catalogsource --all-namespaces

CHAPTER 8. OPERATORS

63



1

5. Verify that the catalog source is running by using the following command:

Example output

6. Create a Subscription CR, similar to the following example:

Example my-subscription-cr.yaml file

7. Apply the Subscription CR by running the following command:

Specify the name of your Subscription CR, such as my-subscription-cr.yaml.

Example output

$ oc get pods -n openshift-marketplace

NAME                             READY   STATUS    RESTARTS   AGE
cs-redhat-operator-index-4227b   2/2     Running   0          2m5s

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: amq-broker
  namespace: openshift-operators
spec:
  channel: 7.11.x
  name: amq-broker-rhel8
  source: cs-redhat-operator-index
  sourceNamespace: openshift-marketplace

$ oc apply -f ./<my-subscription-cr.yaml> 1

subscription.operators.coreos.com/amq-broker created

Red Hat build of MicroShift 4.15 Running applications

64


	Table of Contents
	CHAPTER 1. USING KUSTOMIZE MANIFESTS TO DEPLOY APPLICATIONS
	1.1. HOW KUSTOMIZE WORKS WITH MANIFESTS TO DEPLOY APPLICATIONS
	1.1.1. How MicroShift uses manifests

	1.2. OVERRIDE THE LIST OF MANIFEST PATHS
	1.3. USING MANIFESTS EXAMPLE

	CHAPTER 2. OPTIONS FOR EMBEDDING MICROSHIFT APPLICATIONS IN A RHEL FOR EDGE IMAGE
	2.1. ADDING APPLICATION RPMS TO AN RPM-OSTREE IMAGE
	2.2. ADDING APPLICATION MANIFESTS TO AN IMAGE FOR OFFLINE USE
	2.3. EMBEDDING APPLICATIONS FOR OFFLINE USE
	2.4. ADDITIONAL RESOURCES

	CHAPTER 3. EMBEDDING APPLICATIONS FOR OFFLINE USE
	3.1. EMBEDDING WORKLOAD CONTAINER IMAGES FOR OFFLINE USE
	3.2. ADDITIONAL RESOURCES

	CHAPTER 4. EMBEDDING RED HAT BUILD OF MICROSHIFT APPLICATIONS TUTORIAL
	4.1. EMBED APPLICATION RPMS TUTORIAL
	4.1.1. Installation workflow review
	4.1.2. Embed application RPMs workflow
	4.1.3. Preparing to make application RPMs
	4.1.4. Building the RPM package for the application manifests
	4.1.5. Adding application RPMs to a blueprint

	4.2. ADDITIONAL RESOURCES

	CHAPTER 5. GREENBOOT WORKLOAD HEALTH CHECK SCRIPTS
	5.1. HOW WORKLOAD HEALTH CHECK SCRIPTS WORK
	5.2. INCLUDED GREENBOOT HEALTH CHECKS
	5.3. HOW TO CREATE A HEALTH CHECK SCRIPT FOR YOUR APPLICATION
	5.3.1. About the workload health check script example
	5.3.1.1. Basic prerequisites for creating a health check script
	5.3.1.2. Example and functional requirements


	5.4. TESTING A WORKLOAD HEALTH CHECK SCRIPT
	5.5. ADDITIONAL RESOURCES

	CHAPTER 6. AUTOMATING APPLICATION MANAGEMENT WITH THE GITOPS CONTROLLER
	6.1. WHAT YOU CAN DO WITH THE GITOPS AGENT
	6.2. CREATING GITOPS APPLICATIONS ON MICROSHIFT
	6.3. LIMITATIONS OF USING THE GITOPS AGENT WITH MICROSHIFT
	6.4. TROUBLESHOOTING GITOPS
	6.4.1. Debugging GitOps with oc adm inspect
	6.4.2. Gathering data from an sos report

	6.5. ADDITIONAL RESOURCES

	CHAPTER 7. POD SECURITY AUTHENTICATION AND AUTHORIZATION
	7.1. UNDERSTANDING AND MANAGING POD SECURITY ADMISSION
	7.2. SECURITY CONTEXT CONSTRAINT SYNCHRONIZATION WITH POD SECURITY STANDARDS
	7.2.1. Viewing security context constraints in a namespace

	7.3. CONTROLLING POD SECURITY ADMISSION SYNCHRONIZATION

	CHAPTER 8. OPERATORS
	8.1. USING OPERATORS WITH MICROSHIFT
	8.1.1. How to use Operators with MicroShift clusters
	8.1.1.1. Manifests for Operators
	8.1.1.2. Operator Lifecycle Manager for Operators


	8.2. USING OPERATOR LIFECYCLE MANAGER WITH MICROSHIFT
	8.2.1. Considerations for using OLM with MicroShift
	8.2.2. Determining your OLM installation type
	8.2.3. Namespace use in MicroShift
	8.2.3.1. Default namespaces
	8.2.3.2. Custom namespaces

	8.2.4. About building Operator catalogs
	8.2.4.1. File-based Operator catalogs

	8.2.5. How to deploy Operators using OLM
	8.2.5.1. Connectivity and OLM Operator deployment
	8.2.5.2. Adding OLM-based Operators to a networked cluster using the global namespace
	8.2.5.3. Adding OLM-based Operators to a networked cluster in a specific namespace


	8.3. CREATING CUSTOM CATALOGS USING THE OC-MIRROR PLUGIN
	8.3.1. Using Red Hat-provided Operator catalogs and mirror registries
	8.3.2. About the oc-mirror plugin for creating a mirror registry
	8.3.2.1. Connectivity considerations when populating a mirror registry
	8.3.2.2. Inspecting catalog contents by using the oc-mirror plugin
	8.3.2.3. Creating an image set configuration file
	8.3.2.4. Mirroring from mirror to mirror
	8.3.2.5. Configuring CRI-O for using a registry mirror for Operators
	8.3.2.6. Installing a custom catalog created with the oc-mirror plugin


	8.4. ADDING OLM-BASED OPERATORS TO A DISCONNECTED CLUSTER
	8.4.1. About adding OLM-based Operators to a disconnected cluster
	8.4.1.1. Performing a dry run
	8.4.1.2. Getting catalogs and Operator container image references to use with RHEL for Edge in disconnected environments
	8.4.1.3. Applying catalogs and Operators in a disconnected-deployment RHEL for Edge image




