
Red Hat AMQ 7.4

Using AMQ Streams on Red Hat Enterprise
Linux (RHEL)

For Use with AMQ Streams 1.2

Last Updated: 2019-07-15

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux
(RHEL)

For Use with AMQ Streams 1.2

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install, configure, and manage Red Hat AMQ Streams to build a large-
scale messaging network.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW OF AMQ STREAMS
1.1. KEY FEATURES
1.2. SUPPORTED CONFIGURATIONS
1.3. DOCUMENT CONVENTIONS

CHAPTER 2. GETTING STARTED
2.1. AMQ STREAMS DISTRIBUTION
2.2. DOWNLOADING AN AMQ STREAMS ARCHIVE
2.3. INSTALLING AMQ STREAMS
2.4. DATA STORAGE CONSIDERATIONS

2.4.1. Apache Kafka and Zookeeper storage support
2.4.2. File systems

2.5. RUNNING SINGLE NODE AMQ STREAMS CLUSTER
2.6. USING THE CLUSTER
2.7. STOPPING THE AMQ STREAMS SERVICES
2.8. CONFIGURING AMQ STREAMS

CHAPTER 3. CONFIGURING ZOOKEEPER
3.1. BASIC CONFIGURATION
3.2. ZOOKEEPER CLUSTER CONFIGURATION
3.3. RUNNING MULTI-NODE ZOOKEEPER CLUSTER
3.4. AUTHENTICATION

3.4.1. Authentication with SASL
3.4.2. Enabling Server-to-server authentication using DIGEST-MD5
3.4.3. Enabling Client-to-server authentication using DIGEST-MD5

3.5. AUTHORIZATION
3.6. TLS
3.7. ADDITIONAL CONFIGURATION OPTIONS
3.8. LOGGING

CHAPTER 4. CONFIGURING KAFKA
4.1. ZOOKEEPER
4.2. LISTENERS
4.3. COMMIT LOGS
4.4. BROKER ID
4.5. RUNNING A MULTI-NODE KAFKA CLUSTER
4.6. ZOOKEEPER AUTHENTICATION

4.6.1. JAAS Configuration
4.6.2. Enabling Zookeeper authentication

4.7. ZOOKEEPER AUTHORIZATION
4.7.1. ACL Configuration
4.7.2. Enabling Zookeeper ACLs for a new Kafka cluster
4.7.3. Enabling Zookeeper ACLs in an existing Kafka cluster

4.8. ENCRYPTION AND AUTHENTICATION
4.8.1. Listener configuration
4.8.2. TLS Encryption
4.8.3. Enabling TLS encryption
4.8.4. Authentication

4.8.4.1. TLS client authentication
4.8.4.2. SASL authentication

4.8.5. Enabling TLS client authentication
4.8.6. Enabling SASL PLAIN authentication

6
6
7
7

8
8
8
8
9
9
9

10
11
11

12

14
14
14
16
17
17
19

20
22
22
22
22

23
23
23
24
24
24
26
26
26
27
27
28
28
29
29
30
31
32
32
32
35
36

Table of Contents

1

. .

. .

. .

4.8.7. Enabling SASL SCRAM authentication
4.8.8. Adding SASL SCRAM users
4.8.9. Deleting SASL SCRAM users

4.9. LOGGING

CHAPTER 5. TOPICS
5.1. PARTITIONS AND REPLICAS
5.2. MESSAGE RETENTION
5.3. TOPIC AUTO-CREATION
5.4. TOPIC DELETION
5.5. TOPIC CONFIGURATION
5.6. INTERNAL TOPICS
5.7. CREATING A TOPIC
5.8. LISTING AND DESCRIBING TOPICS
5.9. MODIFYING A TOPIC CONFIGURATION
5.10. DELETING A TOPIC

CHAPTER 6. SCALING CLUSTERS
6.1. SCALING KAFKA CLUSTERS

6.1.1. Adding brokers to a cluster
6.1.2. Removing brokers from the cluster

6.2. REASSIGNMENT OF PARTITIONS
6.2.1. Reassignment JSON file
6.2.2. Generating reassignment JSON files
6.2.3. Creating reassignment JSON files manually

6.3. REASSIGNMENT THROTTLES
6.4. SCALING UP A KAFKA CLUSTER
6.5. SCALING DOWN A KAFKA CLUSTER

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX
7.1. JMX CONFIGURATION OPTIONS
7.2. DISABLING THE JMX AGENT
7.3. CONNECTING TO THE JVM FROM A DIFFERENT MACHINE
7.4. MONITORING USING JCONSOLE
7.5. IMPORTANT KAFKA BROKER METRICS

7.5.1. Kafka server metrics
7.5.2. Kafka network metrics
7.5.3. Kafka log metrics
7.5.4. Kafka controller metrics
7.5.5. Yammer metrics

7.6. PRODUCER MBEANS
7.6.1. MBeans matching kafka.producer:type=producer-metrics,client-id=*
7.6.2. MBeans matching kafka.producer:type=producer-metrics,client-id=*,node-id=*
7.6.3. MBeans matching kafka.producer:type=producer-topic-metrics,client-id=*,topic=*

7.7. CONSUMER MBEANS
7.7.1. MBeans matching kafka.consumer:type=consumer-metrics,client-id=*
7.7.2. MBeans matching kafka.consumer:type=consumer-metrics,client-id=*,node-id=*
7.7.3. MBeans matching kafka.consumer:type=consumer-coordinator-metrics,client-id=*
7.7.4. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*
7.7.5. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*,topic=*
7.7.6. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*,topic=*,partition=*

7.8. KAFKA CONNECT MBEANS
7.8.1. MBeans matching kafka.connect:type=connect-metrics,client-id=*

37
38
39
39

41
41
41

42
42
42
43
44
45
45
47

48
48
48
48
48
49
49
50
50
50
52

54
54
54
54
55
55
55
57
59
60
60
61
61

63
64
64
65
66
66
67
68

68
69
69

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

2

. .

. .

. .

. .

. .

7.8.2. MBeans matching kafka.connect:type=connect-metrics,client-id=*,node-id=*
7.8.3. MBeans matching kafka.connect:type=connect-worker-metrics
7.8.4. MBeans matching kafka.connect:type=connect-worker-rebalance-metrics
7.8.5. MBeans matching kafka.connect:type=connector-metrics,connector=*
7.8.6. MBeans matching kafka.connect:type=connector-task-metrics,connector=*,task=*
7.8.7. MBeans matching kafka.connect:type=sink-task-metrics,connector=*,task=*
7.8.8. MBeans matching kafka.connect:type=source-task-metrics,connector=*,task=*
7.8.9. MBeans matching kafka.connect:type=task-error-metrics,connector=*,task=*

7.9. KAFKA STREAMS MBEANS
7.9.1. MBeans matching kafka.streams:type=stream-metrics,client-id=*
7.9.2. MBeans matching kafka.streams:type=stream-task-metrics,client-id=*,task-id=*
7.9.3. MBeans matching kafka.streams:type=stream-processor-node-metrics,client-id=*,task-id=*,processor-
node-id=*
7.9.4. MBeans matching kafka.streams:type=stream-[store-scope]-metrics,client-id=*,task-id=*,[store-scope]-
id=*
7.9.5. MBeans matching kafka.streams:type=stream-record-cache-metrics,client-id=*,task-id=*,record-cache-
id=*

CHAPTER 8. KAFKA CONNECT
8.1. KAFKA CONNECT IN STANDALONE MODE

8.1.1. Configuring Kafka Connect in standalone mode
8.1.2. Configuring connectors in Kafka Connect in standalone mode
8.1.3. Running Kafka Connect in standalone mode

8.2. KAFKA CONNECT IN DISTRIBUTED MODE
8.2.1. Configuring Kafka Connect in distributed mode
8.2.2. Configuring connectors in distributed Kafka Connect
8.2.3. Running distributed Kafka Connect
8.2.4. Creating connectors
8.2.5. Deleting connectors

8.3. CONNECTOR PLUG-INS
8.4. ADDING CONNECTOR PLUGINS

CHAPTER 9. KAFKA CLIENTS
9.1. ADDING KAFKA CLIENTS AS A DEPENDENCY TO YOUR MAVEN PROJECT

CHAPTER 10. KAFKA STREAMS API OVERVIEW
10.1. ADDING THE KAFKA STREAMS API AS A DEPENDENCY TO YOUR MAVEN PROJECT

CHAPTER 11. USING THE AMQ STREAMS KAFKA BRIDGE
11.1. OVERVIEW OF THE AMQ STREAMS KAFKA BRIDGE
11.2. REQUESTS TO THE AMQ STREAMS KAFKA BRIDGE

11.2.1. Authentication and encryption
11.2.2. Data formats and headers

11.2.2.1. Content Type headers
11.2.2.2. Embedded data format
11.2.2.3. Accept headers

11.3. DOWNLOADING AN AMQ STREAMS ARCHIVE
11.4. CONFIGURING AMQ STREAMS KAFKA BRIDGE PROPERTIES
11.5. INSTALLING THE AMQ STREAMS KAFKA BRIDGE ON RED HAT ENTERPRISE LINUX
11.6. AMQ STREAMS KAFKA BRIDGE API RESOURCES

CHAPTER 12. AMQ STREAMS AND KAFKA UPGRADES
12.1. UPGRADE PREREQUISITES
12.2. UPGRADE PROCESS
12.3. KAFKA VERSIONS

70
71
72
72
72
73
74
75
76
76
77

78

79

81

82
82
82
83
83
84
84
85
86
87
88
88
89

90
90

92
92

94
94
94
94
95
95
95
96
96
96
97
98

99
99
99
99

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

. .

12.4. UPGRADING TO AMQ STREAMS 1.2
12.4.1. Upgrading Zookeeper
12.4.2. Upgrading Kafka brokers
12.4.3. Upgrading Kafka Connect

12.5. UPGRADING KAFKA
12.5.1. Upgrading Kafka brokers to use the new inter-broker protocol version
12.5.2. Strategies for upgrading clients
12.5.3. Upgrading client applications to the new Kafka version
12.5.4. Upgrading Kafka brokers to use the new message format version

APPENDIX A. BROKER CONFIGURATION PARAMETERS

APPENDIX B. TOPIC CONFIGURATION PARAMETERS

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS

APPENDIX E. ADMIN CLIENT CONFIGURATION PARAMETERS

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

APPENDIX G. KAFKA STREAMS CONFIGURATION PARAMETERS

APPENDIX H. USING YOUR SUBSCRIPTION
Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files

100
100
101
102
104
104
105
107
107

109

139

144

155

166

173

185

191
191
191
191

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

4

Table of Contents

5

CHAPTER 1. OVERVIEW OF AMQ STREAMS
Red Hat AMQ Streams is a massively-scalable, distributed, and high-performance data streaming
platform based on the Apache Zookeeper and Apache Kafka projects. It consists of the following main
components:

Zookeeper

Service for highly reliable distributed coordination.

Kafka Broker

Messaging broker responsible for delivering records from producing clients to consuming clients.

Kafka Connect

A toolkit for streaming data between Kafka brokers and other systems using Connector plugins.

Kafka Consumer and Producer APIs

Java based APIs for producing and consuming messages to and from Kafka brokers.

Kafka Streams API

API for writing stream processor applications.

A cluster of Kafka brokers is the hub connecting all these components. The broker uses Apache
Zookeeper for storing configuration data and for cluster coordination. Before running Apache Kafka, an
Apache Zookeeper cluster has to be ready.

Figure 1.1. Example Architecture diagram of AMQ Streams

1.1. KEY FEATURES

Scalability and performance

Designed for horizontal scalability

Message ordering guarantee

At partition level

Message rewind/replay

"Long term" storage

Allows to reconstruct application state by replaying the messages

Combined with compacted topics allows to use Kafka as key-value store

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

6

1.2. SUPPORTED CONFIGURATIONS

In order to be running in a supported configuration, AMQ Streams must be running in one of the
following JVM versions and on one of the supported operating systems.

Table 1.1. List of supported Java Virtual Machines

Java Virtual Machine Version

OpenJDK 1.8, 11 [a]

OracleJDK 1.8

IBM JDK 1.8

[a] For RHEL 8.x

Table 1.2. List of supported Operating Systems

Operating System Architecture Version

Red Hat Enterprise Linux x86_64 7.x, 8.x

1.3. DOCUMENT CONVENTIONS

Replaceables

In this document, replaceable text is styled in monospace and surrounded by angle brackets.

For example, in the following code, you will want to replace <bootstrap-address> and <topic-name>
with your own address and topic name:

bin/kafka-console-consumer.sh --bootstrap-server <bootstrap-address> --topic <topic-name> --from-
beginning

CHAPTER 1. OVERVIEW OF AMQ STREAMS

7

CHAPTER 2. GETTING STARTED

2.1. AMQ STREAMS DISTRIBUTION

AMQ Streams is distributed as single ZIP file. This ZIP file contains all AMQ Streams components:

Apache Zookeeper

Apache Kafka

Apache Kafka Connect

Apache Kafka Mirror Maker

2.2. DOWNLOADING AN AMQ STREAMS ARCHIVE

An archived distribution of AMQ Streams is available for download from the Red Hat website. You can
download a copy of the distribution by following the steps below.

Procedure

Download the latest version of the Red Hat AMQ Streams archive from the Customer Portal.

2.3. INSTALLING AMQ STREAMS

Follow this procedure to install the latest version of AMQ Streams on Red Hat Enterprise Linux.

For instructions on upgrading an existing cluster to AMQ Streams 1.2, see AMQ Streams and Kafka
upgrades.

Prerequisites

Download the installation archive.

Review the Section 1.2, “Supported Configurations”

Procedure

1. Add new kafka user and group.

2. Create directory /opt/kafka.

3. Create a temporary directory and extract the contents of the AMQ Streams ZIP file.

sudo groupadd kafka
sudo useradd -g kafka kafka
sudo passwd kafka

sudo mkdir /opt/kafka

mkdir /tmp/kafka
unzip amq-streams_y.y-x.x.x.zip -d /tmp/kafka

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

8

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&productChanged=yes

4. Move the extracted contents into /opt/kafka directory and delete the temporary directory.

5. Change the ownership of the /opt/kafka directory to the kafka user.

6. Create directory /var/lib/zookeeper for storing Zookeeper data and set its ownership to the
kafka user.

7. Create directory /var/lib/kafka for storing Kafka data and set its ownership to the kafka user.

2.4. DATA STORAGE CONSIDERATIONS

An efficient data storage infrastructure is essential to the optimal performance of AMQ Streams.

AMQ Streams requires block storage and works well with cloud-based block storage solutions, such as
Amazon Elastic Block Store (EBS). The use of file storage is not recommended.

Choose local storage when possible. If local storage is not available, you can use a Storage Area Network
(SAN) accessed by a protocol such as Fibre Channel or iSCSI.

2.4.1. Apache Kafka and Zookeeper storage support

Use separate disks for Apache Kafka and Zookeeper.

Kafka supports JBOD (Just a Bunch of Disks) storage, a data storage configuration of multiple disks or
volumes. JBOD provides increased data storage for Kafka brokers. It can also improve performance.

Solid-state drives (SSDs), though not essential, can improve the performance of Kafka in large clusters
where data is sent to and received from multiple topics asynchronously. SSDs are particularly effective
with Zookeeper, which requires fast, low latency data access.

NOTE

You do not need to provision replicated storage because Kafka and Zookeeper both have
built-in data replication.

2.4.2. File systems

It is recommended that you configure your storage system to use the XFS file system. AMQ Streams is
also compatible with the ext4 file system, but this might require additional configuration for best results.

Additional resources

sudo mv /tmp/kafka/kafka_y.y-x.x.x/* /opt/kafka/
rm -r /tmp/kafka

sudo chown -R kafka:kafka /opt/kafka

sudo mkdir /var/lib/zookeeper
sudo chown -R kafka:kafka /var/lib/zookeeper

sudo mkdir /var/lib/kafka
sudo chown -R kafka:kafka /var/lib/kafka

CHAPTER 2. GETTING STARTED

9

For more information about XFS, see The XFS File System .

2.5. RUNNING SINGLE NODE AMQ STREAMS CLUSTER

This procedure will show you how to run a basic AMQ Streams cluster consisting of single Zookeeper
and single Apache Kafka node both running on the same host. It is using the default configuration files
for both Zookeeper and Kafka.

WARNING

Single node AMQ Streams cluster does not provide realibility and high availability
and is suitable only for development purposes.

Prerequisites

AMQ Streams is installed on the host

Running the cluster

1. Edit the Zookeeper configuration file /opt/kafka/config/zookeeper.properties. Set the dataDir
option to /var/lib/zookeeper/.

2. Start Zookeeper.

3. Make sure that Apache Zookeeper is running.

4. Edit the Kafka configuration file /opt/kafka/config/server.properties. Set the log.dirs option to
/var/lib/kafka/.

5. Start Kafka.

6. Make sure that Kafka is running.

dataDir=/var/lib/zookeeper/

su - kafka
/opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

jcmd | grep zookeeper

log.dirs=/var/lib/kafka/

su - kafka
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

jcmd | grep kafka

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

10

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/storage_administration_guide/#ch-xfs

Additional resources

For more information about installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

2.6. USING THE CLUSTER

Prerequisites

AMQ Streams is installed on the host

Zookeeper and Kafka are up and running

Procedure

1. Start the Kafka console producer.

For example:

2. Type your message into the console where the producer is running.

3. Press Enter to send.

4. Press Ctrl+C to exit the Kafka console producer.

5. Start the message receiver.

For example:

6. Confirm that you see the incoming messages in the consumer console.

7. Press Crtl+C to exit the Kafka console consumer.

2.7. STOPPING THE AMQ STREAMS SERVICES

You can stop the Kafka and Zookeeper services by running a script. All connections to the Kafka and
Zookeeper services will be terminated.

Prerequisites

AMQ Streams is installed on the host

bin/kafka-console-producer.sh --broker-list <bootstrap-address> --topic <topic-name>

bin/kafka-console-producer.sh --broker-list localhost:9092 --topic my-topic

bin/kafka-console-consumer.sh --bootstrap-server <bootstrap-address> --topic <topic-name>
--from-beginning

bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic my-topic --from-
beginning

CHAPTER 2. GETTING STARTED

11

Zookeeper and Kafka are up and running

Procedure

1. Stop the Kafka broker.

2. Confirm that the Kafka broker is stopped.

3. Stop Zookeeper.

2.8. CONFIGURING AMQ STREAMS

Prerequisites

AMQ Streams is downloaded and installed on the host

Procedure

1. Open Zookeeper and Kafka broker configuration files in a text editor. The configuration files are
located at :

Zookeeper

/opt/kafka/config/zookeeper.properties

Kafka

/opt/kafka/config/server.properties

2. Edit the configuration options. The configuration files are in the Java properties format. Every
configuration option should be on separate line in the following format:

<option> = <value>

Lines starting with # or ! will be treated as comments and will be ignored by AMQ Streams
components.

This is a comment

Values can be split into multiple lines by using \ directly before the newline / carriage return.

sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required \
 username="bob" \
 password="bobs-password";

3. Save the changes

su - kafka
/opt/kafka/bin/kafka-server-stop.sh

jcmd | grep kafka

su - kafka
/opt/kafka/bin/zookeeper-server-stop.sh

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

12

4. Restart the Zookeeper or Kafka broker

5. Repeat this procedure on all the nodes of the cluster.

CHAPTER 2. GETTING STARTED

13

CHAPTER 3. CONFIGURING ZOOKEEPER
Kafka uses Zookeeper to store configuration data and for cluster coordination. It is strongly
recommended to run a cluster of replicated Zookeeper instances.

3.1. BASIC CONFIGURATION

The most important Zookeeper configuration options are:

tickTime

Zookeeper’s basic time unit in milliseconds. It is used for heartbeats and session timeouts. For
example, minimum session timeout will be two ticks.

dataDir

The directory where Zookeeper stores its transaction log and snapshots of its in-memory database.
This should be set to the /var/lib/zookeeper/ directory created during installation.

clientPort

Port number where clients can connect. Defaults to 2181.

An example zookeeper configuration file config/zookeeper.properties is located in the AMQ Streams
installation directory. It is recommended to place the dataDir directory on a separate disk device to
minimize the latency in Zookeeper.

Zookeeper configuration file should be located in /opt/kafka/config/zookeeper.properties. A basic
example of the configuration file can be found below. The configuration file has to be readable by the
kafka user.

3.2. ZOOKEEPER CLUSTER CONFIGURATION

For reliable ZooKeeper service, you should deploy ZooKeeper in a cluster. Hence, for production use
cases, you must run a cluster of replicated Zookeeper instances. Zookeeper clusters are also referred as
ensembles.

Zookeeper clusters usually consist of an odd number of nodes. Zookeeper requires a majority of the
nodes in the cluster should be up and running. For example, a cluster with three nodes, at least two of
them must be up and running. This means it can tolerate one node being down. A cluster consisting of
five nodes, at least three nodes must be available. This means it can tolerate two nodes being down. A
cluster consisting of seven nodes, at least four nodes must be available. This means it can tolerate three
nodes being down. Having more nodes in the Zookeeper cluster delivers better resiliency and reliability
of the whole cluster.

Zookeeper can run in clusters with an even number of nodes. The additional node, however, does not
increase the resiliency of the cluster. A cluster with four nodes requires at least three nodes to be
available and can tolerate only one node being down. Therefore it has exactly the same resiliency as a
cluster with only three nodes.

The different Zookeeper nodes should be ideally placed into different data centers or network
segments. Increasing the number of Zookeeper nodes increases the workload spent on cluster
synchronization. For most Kafka use cases Zookeeper cluster with 3, 5 or 7 nodes should be fully
sufficient.

timeTick=2000
dataDir=/var/lib/zookeeper/
clientPort=2181

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

14

WARNING

Zookeeper cluster with 3 nodes can tolerate only 1 unavailable node. This means
that when a cluster node crashes while you are doing maintenance on another node
your Zookeeper cluster will be unavailable.

Replicated Zookeeper configuration supports all configuration options supported by the standalone
configuration. Additional options are added for the clustering configuration:

initLimit

Amount of time to allow followers to connect and sync to the cluster leader. The time is specified as
a number of ticks (see the timeTick option for more details).

syncLimit

Amount of time for which followers can be behind the leader. The time is specified as a number of
ticks (see the timeTick option for more details).

In addition to the options above, every configuration file should contain a list of servers which should be
members of the Zookeeper cluster. The server records should be specified in the format
server.id=hostname:port1:port2, where:

id

The ID of the Zookeeper cluster node.

hostname

The hostname or IP address where the node listens for connections.

port1

The port number used for intra-cluster communication.

port2

The port number used for leader election.

The following is an example configuration file of a Zookeeper cluster with three nodes:

Each node in the Zookeeper cluster has to be assigned with a unique ID. Each node’s ID has to be
configured in myid file and stored in the dataDir folder like /var/lib/zookeeper/. The myid files should
contain only a single line with the written ID as text. The ID can be any integer from 1 to 255. You must
manually create this file on each cluster node. Using this file, each Zookeeper instance will use the
configuration from the corresponding server. line in the configuration file to configure its listeners. It
will also use all other server. lines to identify other cluster members.

timeTick=2000
dataDir=/var/lib/zookeeper/
clientPort=2181
initLimit=5
syncLimit=2

server.1=172.17.0.1:2888:3888
server.2=172.17.0.2:2888:3888
server.3=172.17.0.3:2888:3888

CHAPTER 3. CONFIGURING ZOOKEEPER

15

In the above example, there are three nodes, so each one will have a different myid with values 1, 2, and
3 respectively.

3.3. RUNNING MULTI-NODE ZOOKEEPER CLUSTER

This procedure will show you how to configure and run Zookeeper as a multi-node cluster.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Zookeeper cluster nodes.

Running the cluster

1. Create the myid file in /var/lib/zookeeper/. Enter ID 1 for the first Zookeeper node, 2 for the
second Zookeeper node, and so on.

su - kafka
echo "_<NodeID>_" > /var/lib/zookeeper/myid

For example:

su - kafka
echo "1" > /var/lib/zookeeper/myid

2. Edit the Zookeeper /opt/kafka/config/zookeeper.properties configuration file for the
following:

Set the option dataDir to /var/lib/zookeeper/. + Configure the initLimit and syncLimit
options.

Add a list of all Zookeeper nodes. The list should include also the current node.

Example configuration for a node of Zookeeper cluster with five members

3. Start Zookeeper with the default configuration file.

4. Verify that the Zookeeper is running.

timeTick=2000
dataDir=/var/lib/zookeeper/
clientPort=2181
initLimit=5
syncLimit=2

server.1=172.17.0.1:2888:3888
server.2=172.17.0.2:2888:3888
server.3=172.17.0.3:2888:3888
server.4=172.17.0.4:2888:3888
server.5=172.17.0.5:2888:3888

su - kafka
/opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

16

5. Repeat this procedure on all the nodes of the cluster.

6. Once all nodes of the clusters are up and running, verify that all nodes are members of the
cluster by sending a stat command to each of the nodes using ncat utility.

Use ncat stat to check the node status

In the output you should see information that the node is either leader or follower.

Example output from the ncat command

Zookeeper version: 3.4.13-2d71af4dbe22557fda74f9a9b4309b15a7487f03, built on
06/29/2018 00:39 GMT
Clients:
 /0:0:0:0:0:0:0:1:59726[0](queued=0,recved=1,sent=0)

Latency min/avg/max: 0/0/0
Received: 2
Sent: 1
Connections: 1
Outstanding: 0
Zxid: 0x200000000
Mode: follower
Node count: 4

Additional resources

For more information about installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

3.4. AUTHENTICATION

By default, Zookeeper does not use any form of authentication and allows anonymous connections.
However, it supports Java Authentication and Authorization Service (JAAS) which can be used to set up
authentication using Simple Authentication and Security Layer (SASL). Zookeeper supports
authentication using the DIGEST-MD5 SASL mechanism with locally stored credentials.

3.4.1. Authentication with SASL

JAAS is configured using a separate configuration file. It is recommended to place the JAAS
configuration file in the same directory as the Zookeeper configuration (/opt/kafka/config/). The
recommended file name is zookeeper-jaas.conf. When using a Zookeeper cluster with multiple nodes,
the JAAS configuration file has to be created on all cluster nodes.

JAAS is configured using contexts. Separate parts such as the server and client are always configured
with a separate context. The context is a configuration option and has the following format:

jcmd | grep zookeeper

echo stat | ncat localhost 2181

CHAPTER 3. CONFIGURING ZOOKEEPER

17

ContextName {
 param1
 param2;
};

SASL Authentication is configured separately for server-to-server communication (communication
between Zookeeper instances) and client-to-server communication (communication between Kafka
and Zookeeper). Server-to-server authentication is relevant only for Zookeeper clusters with multiple
nodes.

Server-to-Server authentication

For server-to-server authentication, the JAAS configuration file contains two parts:

The server configuration

The client configuration

When using DIGEST-MD5 SASL mechanism, the QuorumServer context is used to configure the
authentication server. It must contain all the usernames to be allowed to connect together with their
passwords in an unencrypted form. The second context, QuorumLearner, has to be configured for the
client which is built into Zookeeper. It also contains the password in an unencrypted form. An example of
the JAAS configuration file for DIGEST-MD5 mechanism can be found below:

QuorumServer {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 user_zookeeper="123456";
};

QuorumLearner {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 username="zookeeper"
 password="123456";
};

In addition to the JAAS configuration file, you must enable the server-to-server authentication in the
regular Zookeeper configuration file by specifying the following options:

quorum.auth.enableSasl=true
quorum.auth.learnerRequireSasl=true
quorum.auth.serverRequireSasl=true
quorum.auth.learner.loginContext=QuorumLearner
quorum.auth.server.loginContext=QuorumServer
quorum.cnxn.threads.size=20

Use the EXTRA_ARGS environment variable to pass the JAAS configuration file to the Zookeeper
server as a Java property:

su - kafka
export EXTRA_ARGS="-Djava.security.auth.login.config=/opt/kafka/config/zookeeper-jaas.conf";
/opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

For more information about server-to-server authentication, see Zookeeper wiki.

Client-to-Server authentication

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

18

https://cwiki.apache.org/confluence/display/ZOOKEEPER/Server-Server+mutual+authentication

Client-to-server authentication is configured in the same JAAS file as the server-to-server
authentication. However, unlike the server-to-server authentication, it contains only the server
configuration. The client part of the configuration has to be done in the client. For information on how to
configure a Kafka broker to connect to Zookeeper using authentication, see the Kafka installation
section.

Add the Server context to the JAAS configuration file to configure client-to-server authentication. For
DIGEST-MD5 mechanism it configures all usernames and passwords:

Server {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 user_super="123456"
 user_kafka="123456"
 user_someoneelse="123456";
};

After configuring the JAAS context, enable the client-to-server authentication in the Zookeeper
configuration file by adding the following line:

requireClientAuthScheme=sasl
authProvider.1=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
authProvider.2=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
authProvider.3=org.apache.zookeeper.server.auth.SASLAuthenticationProvider

You must add the authProvider.<ID> property for every server that is part of the Zookeeper cluster.

Use the EXTRA_ARGS environment variable to pass the JAAS configuration file to the Zookeeper
server as a Java property:

su - kafka
export EXTRA_ARGS="-Djava.security.auth.login.config=/opt/kafka/config/zookeeper-jaas.conf";
/opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

For more information about configuring Zookeeper authentication in Kafka brokers, see Section 4.6,
“Zookeeper authentication”.

3.4.2. Enabling Server-to-server authentication using DIGEST-MD5

This procedure describes how to enable authentication using the SASL DIGEST-MD5 mechanism
between the nodes of the Zookeeper cluster.

Prerequisites

AMQ Streams is installed on the host

Zookeeper cluster is configured with multiple nodes.

Enabling SASL DIGEST-MD5 authentication

1. On all Zookeeper nodes, create or edit the /opt/kafka/config/zookeeper-jaas.conf JAAS
configuration file and add the following contexts:

QuorumServer {
 org.apache.zookeeper.server.auth.DigestLoginModule required

CHAPTER 3. CONFIGURING ZOOKEEPER

19

 user__<Username>_="<Password>";
};

QuorumLearner {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 username="<Username>"
 password="<Password>";
};

The username and password must be the same in both JAAS contexts. For example:

QuorumServer {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 user_zookeeper="123456";
};

QuorumLearner {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 username="zookeeper"
 password="123456";
};

2. On all Zookeeper nodes, edit the /opt/kafka/config/zookeeper.properties Zookeeper
configuration file and set the following options:

3. Restart all Zookeeper nodes one by one. To pass the JAAS configuration to Zookeeper, use the
EXTRA_ARGS environment variable.

su - kafka
export EXTRA_ARGS="-Djava.security.auth.login.config=/opt/kafka/config/zookeeper-
jaas.conf"; /opt/kafka/bin/zookeeper-server-start.sh -daemon
/opt/kafka/config/zookeeper.properties

Additional resources

For more information about installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a Zookeeper cluster, see Section 3.3, “Running multi-node
Zookeeper cluster”.

3.4.3. Enabling Client-to-server authentication using DIGEST-MD5

This procedure describes how to enable authentication using the SASL DIGEST-MD5 mechanism
between Zookeeper clients and Zookeeper.

Prerequisites

quorum.auth.enableSasl=true
quorum.auth.learnerRequireSasl=true
quorum.auth.serverRequireSasl=true
quorum.auth.learner.loginContext=QuorumLearner
quorum.auth.server.loginContext=QuorumServer
quorum.cnxn.threads.size=20

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

20

Prerequisites

AMQ Streams is installed on the host

Zookeeper cluster is configured and running.

Enabling SASL DIGEST-MD5 authentication

1. On all Zookeeper nodes, create or edit the /opt/kafka/config/zookeeper-jaas.conf JAAS
configuration file and add the following context:

Server {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 user_super="<SuperUserPassword>"
 user<Username1>_="<Password1>" user<USername2>_="<Password2>";
};

The super will have automatically administrator priviledges. The file can contain multiple users,
but only one additional user is required by the Kafka brokers. The recommended name for the
Kafka user is kafka.

The following example shows the Server context for client-to-server authentication:

Server {
 org.apache.zookeeper.server.auth.DigestLoginModule required
 user_super="123456"
 user_kafka="123456";
};

2. On all Zookeeper nodes, edit the /opt/kafka/config/zookeeper.properties Zookeeper
configuration file and set the following options:

The authProvider.<ID> property has to be added for every node which is part of the Zookeeper
cluster. An example three-node Zookeeper cluster configuration must look like the following:

3. Restart all Zookeeper nodes one by one. To pass the JAAS configuration to Zookeeper, use the
EXTRA_ARGS environment variable.

su - kafka
export EXTRA_ARGS="-Djava.security.auth.login.config=/opt/kafka/config/zookeeper-
jaas.conf"; /opt/kafka/bin/zookeeper-server-start.sh -daemon
/opt/kafka/config/zookeeper.properties

Additional resources

requireClientAuthScheme=sasl
authProvider.<IdOfBroker1>=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
authProvider.<IdOfBroker2>=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
authProvider.<IdOfBroker3>=org.apache.zookeeper.server.auth.SASLAuthenticationProvider

requireClientAuthScheme=sasl
authProvider.1=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
authProvider.2=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
authProvider.3=org.apache.zookeeper.server.auth.SASLAuthenticationProvider

CHAPTER 3. CONFIGURING ZOOKEEPER

21

For more information about installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a Zookeeper cluster, see Section 3.3, “Running multi-node
Zookeeper cluster”.

3.5. AUTHORIZATION

Zookeeper supports access control lists (ACLs) to protect data stored inside it. Kafka brokers can
automatically configure the ACL rights for all Zookeeper records they create so no other Zookeeper
user can modify them.

For more information about enabling Zookeeper ACLs in Kafka brokers, see Section 4.7, “Zookeeper
authorization”.

3.6. TLS

The version of Zookeeper which is part of AMQ Streams currently does not support TLS for encryption
or authentication.

3.7. ADDITIONAL CONFIGURATION OPTIONS

You can set the following options based on your use case:

maxClientCnxns

The maximum number of concurrent client connections to a single member of the ZooKeeper cluster.

autopurge.snapRetainCount

Number of snapshots of Zookeeper’s in-memory database which will be retained. Default value is 3.

autopurge.purgeInterval

The time interval in hours for purging snapshots. The default value is 0 and this option is disabled.

All available configuration options can be found in Zookeeper documentation.

3.8. LOGGING

Zookeeper is using log4j as their logging infrastructure. Logging configuration is by default read from
the log4j.propeties configuration file which should be placed either in the /opt/kafka/config/ directory
or in the classpath. The location and name of the configuration file can be changed using the Java
property log4j.configuration which can be passed to Zookeeper using the KAFKA_LOG4J_OPTS
environment variable:

su - kafka
export KAFKA_LOG4J_OPTS="-Dlog4j.configuration=file:/my/path/to/log4j.properties";
/opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

For more information about Log4j configurations, see Log4j documentation.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

22

http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
http://logging.apache.org/log4j/1.2/manual.html

CHAPTER 4. CONFIGURING KAFKA
Kafka uses a properties file to store static configuration. The recommended location for the
configuration file is /opt/kafka/config/server.properties. The configuration file has to be readable by
the kafka user.

AMQ Streams ships an example configuration file that highlights various basic and advanced features of
the product. It can be found under config/server.properties in the AMQ Streams installation directory.

This chapter explains the most important configuration options. For a complete list of supported Kafka
broker configuration options, see Appendix A, Broker configuration parameters.

4.1. ZOOKEEPER

Kafka brokers need Zookeeper to store some parts of their configuration as well as to coordinate the
cluster (for example to decide which node is a leader for which partition). Connection details for the
Zookeeper cluster are stored in the configuration file. The field zookeeper.connect contains a comma-
separated list of hostnames and ports of members of the zookeeper cluster.

For example:

Kafka will use these addresses to connect to the Zookeeper cluster. With this configuration, all Kafka
znodes will be created directly in the root of Zookeeper database. Therefore, such a Zookeeper cluster
could be used only for a single Kafka cluster. To configure multiple Kafka clusters to use single
Zookeeper cluster, specify a base (prefix) path at the end of the Zookeeper connection string in the
Kafka configuration file:

4.2. LISTENERS

Kafka brokers can be configured to use multiple listeners. Each listener can be used to listen on a
different port or network interface and can have different configuration. Listeners are configured in the
listeners property in the configuration file. The listeners property contains a list of listeners with each
listener configured as <listenerName>://<hostname>:_<port>_. When the hostname value is empty,
Kafka will use java.net.InetAddress.getCanonicalHostName() as hostname. The following example
shows how multiple listeners might be configured:

listeners=INT1://:9092,INT2://:9093,REPLICATION://:9094

When a Kafka client wants to connect to a Kafka cluster, it first connects to a bootstrap server . The
bootstrap server is one of the cluster nodes. It will provide the client with a list of all other brokers which
are part of the cluster and the client will connect to them individually. By default the bootstrap server
will provide the client with a list of nodes based on the listeners field.

Advertised listeners

It is possible to give the client a different set of addresses than given in the listeners property. It is useful
in situations when additional network infrastructure, such as a proxy, is between the client and the
broker, or when an external DNS name should be used instead of an IP address. Here, the broker allows

zookeeper.connect=zoo1.my-domain.com:2181,zoo2.my-domain.com:2181,zoo3.my-
domain.com:2181

zookeeper.connect=zoo1.my-domain.com:2181,zoo2.my-domain.com:2181,zoo3.my-
domain.com:2181/my-cluster-1

CHAPTER 4. CONFIGURING KAFKA

23

defining the advertised addresses of the listeners in the advertised.listeners configuration property. This
property has the same format as the listeners property. The following example shows how to configure
advertised listeners:

listeners=INT1://:9092,INT2://:9093
advertised.listeners=INT1://my-broker-1.my-domain.com:1234,INT2://my-broker-1.my-
domain.com:1234:9093

NOTE

The names of the listeners have to match the names of the listeners from the listeners
property.

Inter-broker listeners

When the cluster has replicated topics, the brokers responsible for such topics need to communicate
with each other in order to replicate the messages in those topics. When multiple listeners are
configured, the configuration field inter.broker.listener.name can be used to specify the name of the
listener which should be used for replication between brokers. For example:

inter.broker.listener.name=REPLICATION

4.3. COMMIT LOGS

Apache Kafka stores all records it receives from producers in commit logs. The commit logs contain the
actual data, in the form of records, that Kafka needs to deliver. These are not the application log files
which record what the broker is doing.

Log directories

You can configure log directories using the log.dirs property file to store commit logs in one or multiple
log directories. It should be set to /var/lib/kafka directory created during installation:

log.dirs=/var/lib/kafka

For performance reasons, you can configure log.dirs to multiple directories and place each of them on a
different physical device to improve disk I/O performance. For example:

log.dirs=/var/lib/kafka1,/var/lib/kafka2,/var/lib/kafka3

4.4. BROKER ID

Broker ID is a unique identifier for each broker in the cluster. You can assign an integer greater than or
equal to 0 as broker ID. The broker ID is used to identify the brokers after restarts or crashes and it is
therefore important that the id is stable and does not change over time. The broker ID is configured in
the broker properties file:

broker.id=1

4.5. RUNNING A MULTI-NODE KAFKA CLUSTER

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

24

This procedure describes how to configure and run Kafka as a multi-node cluster.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

A Zookeeper cluster is configured and running.

Running the cluster

For each Kafka broker in your AMQ Streams cluster:

1. Edit the /opt/kafka/config/server.properties Kafka configuration file as follows:

Set the broker.id field to 0 for the first broker, 1 for the second broker, and so on.

Configure the details for connecting to Zookeeper in the zookeeper.connect option.

Configure the Kafka listeners.

Set the directories where the commit logs should be stored in the logs.dir directory.
Here we see an example configuration for a Kafka broker:

In a typical installation where each Kafka broker is running on identical hardware, only the
broker.id configuration property will differ between each broker config.

2. Start the Kafka broker with the default configuration file.

3. Verify that the Kafka broker is running.

Verifying the brokers

Once all nodes of the clusters are up and running, verify that all nodes are members of the Kafka cluster
by sending a dump command to one of the Zookeeper nodes using the ncat utility. The command prints
all Kafka brokers registered in Zookeeper.

1. Use ncat stat to check the node status.

The output should contain all Kafka brokers you just configured and started.

Example output from the ncat command for Kafka cluster with 3 nodes:

broker.id=0
zookeeper.connect=zoo1.my-domain.com:2181,zoo2.my-domain.com:2181,zoo3.my-
domain.com:2181
listeners=REPLICATION://:9091,PLAINTEXT://:9092
inter.broker.listener.name=REPLICATION
log.dirs=/var/lib/kafka

su - kafka
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

jcmd | grep Kafka

echo dump | ncat zoo1.my-domain.com 2181

CHAPTER 4. CONFIGURING KAFKA

25

Additional resources

For more information about installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a Zookeeper cluster, see Section 3.3, “Running multi-node
Zookeeper cluster”.

For a complete list of supported Kafka broker configuration options, see Appendix A, Broker
configuration parameters.

4.6. ZOOKEEPER AUTHENTICATION

By default, connections between Zookeeper and Kafka are not authenticated. However, Kafka and
Zookeeper support Java Authentication and Authorization Service (JAAS) which can be used to set up
authentication using Simple Authentication and Security Layer (SASL). Zookeeper supports
authentication using the DIGEST-MD5 SASL mechanism with locally stored credentials.

4.6.1. JAAS Configuration

SASL authentication for Zookeeper connections has to be configured in the JAAS configuration file. By
default, Kafka will use the JAAS context named Client for connecting to Zookeeper. The Client context
should be configured in the /opt/kafka/config/jass.conf file. The context has to enable the PLAIN SASL
authentication, as in the following example:

Client {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 username="kafka"
 password="123456";
};

4.6.2. Enabling Zookeeper authentication

This procedure describes how to enable authentication using the SASL DIGEST-MD5 mechanism when
connecting to Zookeeper.

Prerequisites

Client-to-server authentication is enabled in Zookeeper

Enabling SASL DIGEST-MD5 authentication

SessionTracker dump:
org.apache.zookeeper.server.quorum.LearnerSessionTracker@28848ab9
ephemeral nodes dump:
Sessions with Ephemerals (3):
0x20000015dd00000:
 /brokers/ids/1
0x10000015dc70000:
 /controller
 /brokers/ids/0
0x10000015dc70001:
 /brokers/ids/2

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

26

Enabling SASL DIGEST-MD5 authentication

1. On all Kafka broker nodes, create or edit the /opt/kafka/config/jaas.conf JAAS configuration
file and add the following context:

Client {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 username="<Username>"
 password="<Password>";
};

The username and password should be the same as configured in Zookeeper.

Following example shows the Client context:

Client {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 username="kafka"
 password="123456";
};

2. Restart all Kafka broker nodes one by one. To pass the JAAS configuration to Kafka brokers,
use the KAFKA_OPTS environment variable.

su - kafka
export KAFKA_OPTS="-Djava.security.auth.login.config=/opt/kafka/config/jaas.conf";
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

Additional resources

For more information about configuring client-to-server authentication in Zookeeper, see
Section 3.4, “Authentication”.

4.7. ZOOKEEPER AUTHORIZATION

When authentication is enabled between Kafka and Zookeeper, Kafka can be configured to
automatically protect all its records with Access Control List (ACL) rules which will allow only the Kafka
user to change the data. All other users will have read-only access.

4.7.1. ACL Configuration

Enforcement of ACL rules is controlled by the zookeeper.set.acl property in the
config/server.properties Kafka configuration file and is disabled by default. To enabled the ACL
protection set zookeeper.set.acl to true:

zookeeper.set.acl=true

Kafka will set the ACL rules only for newly created Zookeeper znodes. When the ACLs are only enabled
after the first start of the cluster, the tool zookeeper-security-migration.sh can be used to set ACLs
on all existing znodes.

The data stored in Zookeeper includes information such as topic names and their configuration. The
Zookeeper database also contains the salted and hashed user credentials when SASL SCRAM
authentication is used. But it does not include any records sent and received using Kafka. Kafka, in

CHAPTER 4. CONFIGURING KAFKA

27

general, considers the data stored in Zookeeper as non-confidential. In case these data are considered
confidential (for example because topic names contain customer identification) the only way how to
protect them is by isolating Zookeeper on the network level and allowing access only to Kafka brokers.

4.7.2. Enabling Zookeeper ACLs for a new Kafka cluster

This procedure describes how to enable Zookeeper ACLs in Kafka configuration for a new Kafka cluster.
Use this procedure only before the first start of the Kafka cluster. For enabling Zookeeper ACLs in
already running cluster, see Section 4.7.3, “Enabling Zookeeper ACLs in an existing Kafka cluster” .

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

Zookeeper cluster is configured and running.

Client-to-server authentication is enabled in Zookeeper.

Zookeeper authentication is enabled in the Kafka brokers.

Kafka broker have not yet been started.

Procedure

1. Edit the /opt/kafka/config/server.properties Kafka configuration file to set the
zookeeper.set.acl field to true on all cluster nodes.

zookeeper.set.acl=true

2. Start the Kafka brokers.

Additional resources

For more information about installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a Zookeeper cluster, see Section 3.3, “Running multi-node
Zookeeper cluster”.

For more information about running a Kafka cluster, see Section 4.5, “Running a multi-node
Kafka cluster”.

4.7.3. Enabling Zookeeper ACLs in an existing Kafka cluster

The zookeeper-security-migration.sh tool can to be used to set Zookeeper ACLs on all existing
znodes. The zookeeper-security-migration.sh is available as part of AMQ Streams and can be found
in the bin directory.

Prerequisites

Kafka cluster is configured and running.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

28

Enabling the Zookeeper ACLs

1. Edit the /opt/kafka/config/server.properties Kafka configuration file to set the
zookeeper.set.acl field to true on all cluster nodes.

zookeeper.set.acl=true

2. Restart all Kafka brokers one by one

3. Set the ACLs on all existing Zookeeper znodes using the zookeeper-security-migration.sh
tool.

su - kafka
cd /opt/kafka
KAFKA_OPTS="-Djava.security.auth.login.config=./config/jaas.conf"; ./bin/zookeeper-
security-migration.sh --zookeeper.acl=secure --zookeeper.connect=_<ZookeeperURL>_
exit

For example:

su - kafka
cd /opt/kafka
KAFKA_OPTS="-Djava.security.auth.login.config=./config/jaas.conf"; ./bin/zookeeper-
security-migration.sh --zookeeper.acl=secure --zookeeper.connect=zoo1.my-
domain.com:2181
exit

4.8. ENCRYPTION AND AUTHENTICATION

Kafka supports TLS for encrypting the communication with Kafka clients. Additionally, it supports two
types of authentication:

TLS client authentication based on X.509 certificates

SASL Authentication based on a username and password

4.8.1. Listener configuration

Encryption and authentication in Kafka brokers is configured per listener. For more information about
Kafka listener configuration, see Section 4.2, “Listeners”.

Each listener in the Kafka broker is configured with its own security protocol. The configuration property
listener.security.protocol.map defines which listener uses which security protocol. It maps each
listener name to its security protocol. Supported security protocols are:

PLAINTEXT

Listener without any encryption or authentication.

SSL

Listener using TLS encryption and, optionally, authentication using TLS client certificates.

SASL_PLAINTEXT

Listener without encryption but with SASL-based authentication.

SASL_SSL

CHAPTER 4. CONFIGURING KAFKA

29

Listener with TLS-based encryption and SASL-based authentication.

Given the following listeners configuration:

listeners=INT1://:9092,INT2://:9093,REPLICATION://:9094

the listener.security.protocol.map might look like this:

listener.security.protocol.map=INT1:SASL_PLAINTEXT,INT2:SASL_SSL,REPLICATION:SSL

This would configure the listener INT1 to use unencrypted connections with SASL authentication, the
listener INT2 to use encrypted connections with SASL authentication and the REPLICATION interface
to use TLS encryption (possibly with TLS client authentication). The same security protocol can be used
multiple times. The following example is also a valid configuration:

listener.security.protocol.map=INT1:SSL,INT2:SSL,REPLICATION:SSL

Such a configuration would use TLS encryption and TLS authentication for all interfaces. The following
chapters will explain in more detail how to configure TLS and SASL.

4.8.2. TLS Encryption

In order to use TLS encryption and server authentication, a keystore containing private and public keys
has to be provided. This is usually done using a file in the Java Keystore (JKS) format. A path to this file
is set in the ssl.keystore.location property. The ssl.keystore.password property should be used to
set the password protecting the keystore. For example:

ssl.keystore.location=/path/to/keystore/server-1.jks
ssl.keystore.password=123456

In some cases, an additional password is used to protect the private key. Any such password can be set
using the ssl.key.password property.

Kafka is able to use keys signed by certification authorities as well as self-signed keys. Using keys signed
by certification authorities should always be the preferred method. In order to allow clients to verify the
identity of the Kafka broker they are connecting to, the certificate should always contain the advertised
hostname(s) as its Common Name (CN) or in the Subject Alternative Names (SAN).

It is possible to use different SSL configurations for different listeners. All options starting with ssl. can
be prefixed with listener.name.<NameOfTheListener>., where the name of the listener has to be
always in lower case. This will override the default SSL configuration for that specific listener. The
following example shows how to use different SSL configurations for different listeners:

listeners=INT1://:9092,INT2://:9093,REPLICATION://:9094
listener.security.protocol.map=INT1:SSL,INT2:SSL,REPLICATION:SSL

Default configuration - will be used for listeners INT1 and INT2
ssl.keystore.location=/path/to/keystore/server-1.jks
ssl.keystore.password=123456

Different configuration for listener REPLICATION
listener.name.replication.ssl.keystore.location=/path/to/keystore/server-1.jks
listener.name.replication.ssl.keystore.password=123456

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

30

Additional TLS configuration options

In addition to the main TLS configuration options described above, Kafka supports many options for
fine-tuning the TLS configuration. For example, to enable or disable TLS / SSL protocols or cipher
suites:

ssl.cipher.suites

List of enabled cipher suites. Each cipher suite is a combination of authentication, encryption, MAC
and key exchange algorithms used for the TLS connection. By default, all available cipher suites are
enabled.

ssl.enabled.protocols

List of enabled TLS / SSL protocols. Defaults to TLSv1.2,TLSv1.1,TLSv1.

For a complete list of supported Kafka broker configuration options, see Appendix A, Broker
configuration parameters.

4.8.3. Enabling TLS encryption

This procedure describes how to enable encryption in Kafka brokers.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

Procedure

1. Generate TLS certificates for all Kafka brokers in your cluster. The certificates should have their
advertised and bootstrap addresses in their Common Name or Subject Alternative Name.

2. Edit the /opt/kafka/config/server.properties Kafka configuration file on all cluster nodes for
the following:

Change the listener.security.protocol.map field to specify the SSL protocol for the
listener where you want to use TLS encryption.

Set the ssl.keystore.location option to the path to the JKS keystore with the broker
certificate.

Set the ssl.keystore.password option to the password you used to protect the keystore.
For example:

listeners=UNENCRYPTED://:9092,ENCRYPTED://:9093,REPLICATION://:9094
listener.security.protocol.map=UNENCRYPTED:PLAINTEXT,ENCRYPTED:SSL,REPLICA
TION:PLAINTEXT
ssl.keystore.location=/path/to/keystore/server-1.jks
ssl.keystore.password=123456

3. (Re)start the Kafka brokers

Additional resources

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a Kafka cluster, see Section 4.5, “Running a multi-node

CHAPTER 4. CONFIGURING KAFKA

31

For more information about running a Kafka cluster, see Section 4.5, “Running a multi-node
Kafka cluster”.

For more information about configuring TLS encryption in clients, see:

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

4.8.4. Authentication

Kafka supports two methods of authentication. On all connections, authentication using one of the
supported SASL (Simple Authentication and Security Layer) mechanisms can be used. On encrypted
connections, TLS client authentication based on X.509 certificates can be used.

4.8.4.1. TLS client authentication

TLS client authentication can be used only on connections which are already using TLS encryption. To
use TLS client authentication, a truststore with public keys can be provided to the broker. These keys
can be used to authenticate clients connecting to the broker. The truststore should be provided in Java
Keystore (JKS) format and should contain public keys of the certification authorities. All clients with
public and private keys signed by one of the certification authorities included in the truststore will be
authenticated. The location of the truststore is set using field ssl.truststore.location. In case the
truststore is password protected, the password should be set in the ssl.truststore.password property.
For example:

ssl.truststore.location=/path/to/keystore/server-1.jks
ssl.truststore.password=123456

Once the truststore is configured, TLS client authentication has to be enabled using the ssl.client.auth
property. This property can be set to one of three different values:

none

TLS client authentication is switched off. (Default value)

requested

TLS client authentication is optional. Clients will be asked to authenticate using TLS client certificate
but they can choose not to.

required

Clients are required to authenticate using TLS client certificate.

When a client authenticates using TLS client authentication, the authenticated principal name is the
distinguished name from the authenticated client certificate. For example, a user with a certificate which
has a distinguished name CN=someuser will be authenticated with the following principal
CN=someuser,OU=Unknown,O=Unknown,L=Unknown,ST=Unknown,C=Unknown. When TLS client
authentication is not used and SASL is disabled, the principal name will be ANONYMOUS.

4.8.4.2. SASL authentication

SASL authentication is configured using Java Authentication and Authorization Service (JAAS). JAAS is
also used for authentication of connections between Kafka and Zookeeper. JAAS uses its own
configuration file. The recommended location for this file is /opt/kafka/config/jaas.conf. The file has to
be readable by the kafka user. When running Kafka, the location of this file is specified using Java
system property java.security.auth.login.config. This property has to be passed to Kafka when starting
the broker nodes:

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

32

KAFKA_OPTS="-Djava.security.auth.login.config=/path/to/my/jaas.config"; bin/kafka-server-start.sh

SASL authentication is supported both through plain unencrypted connections as well as through TLS
connections. SASL can be enabled individually for each listener. To enable it, the security protocol in
listener.security.protocol.map has to be either SASL_PLAINTEXT or SASL_SSL.

SASL authentication in Kafka supports several different mechanisms:

PLAIN

Implements authentication based on username and passwords. Usernames and passwords are stored
locally in Kafka configuration.

SCRAM-SHA-256 and SCRAM-SHA-512

Implements authentication using Salted Challenge Response Authentication Mechanism (SCRAM).
SCRAM credentials are stored centrally in Zookeeper. SCRAM can be used in situations where
Zookeeper cluster nodes are running isolated in a private network.

GSSAPI

Implements authentication against a Kerberos server.

WARNING

The PLAIN mechanism sends the username and password over the network in an
unencrypted format. It should be therefore only be used in combination with TLS
encryption.

The SASL mechanisms are configured via the JAAS configuration file. Kafka uses the JAAS context
named KafkaServer. After they are configured in JAAS, the SASL mechanisms have to be enabled in
the Kafka configuration. This is done using the sasl.enabled.mechanisms property. This property
contains a comma-separated list of enabled mechanisms:

sasl.enabled.mechanisms=PLAIN,SCRAM-SHA-256,SCRAM-SHA-512

In case the listener used for inter-broker communication is using SASL, the property
sasl.mechanism.inter.broker.protocol has to be used to specify the SASL mechanism which it should
use. For example:

sasl.mechanism.inter.broker.protocol=PLAIN

The username and password which will be used for the inter-broker communication has to be specified
in the KafkaServer JAAS context using the field username and password.

SASL PLAIN

To use the PLAIN mechanism, the usernames and password which are allowed to connect are specified
directly in the JAAS context. The following example shows the context configured for SASL PLAIN
authentication. The example configures three different users:

admin

CHAPTER 4. CONFIGURING KAFKA

33

user1

user2

KafkaServer {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 user_admin="123456"
 user_user1="123456"
 user_user2="123456";
};

The JAAS configuration file with the user database should be kept in sync on all Kafka brokers.

When SASL PLAIN is also used for inter-broker authentication, the username and password properties
should be included in the JAAS context:

KafkaServer {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 username="admin"
 password="123456"
 user_admin="123456"
 user_user1="123456"
 user_user2="123456";
};

SASL SCRAM

SCRAM authentication in Kafka consists of two mechanisms: SCRAM-SHA-256 and SCRAM-SHA-512.
These mechanisms differ only in the hashing algorithm used - SHA-256 versus stronger SHA-512. To
enable SCRAM authentication, the JAAS configuration file has to include the following configuration:

KafkaServer {
 org.apache.kafka.common.security.scram.ScramLoginModule required;
};

When enabling SASL authentication in the Kafka configuration file, both SCRAM mechanisms can be
listed. However, only one of them can be chosen for the inter-broker communication. For example:

sasl.enabled.mechanisms=SCRAM-SHA-256,SCRAM-SHA-512
sasl.mechanism.inter.broker.protocol=SCRAM-SHA-512

User credentials for the SCRAM mechanism are stored in Zookeeper. The kafka-configs.sh tool can be
used to manage them. For example, run the following command to add user user1 with password
123456:

bin/kafka-configs.sh --zookeeper zoo1.my-domain.com:2181 --alter --add-config 'SCRAM-SHA-256=
[password=123456],SCRAM-SHA-512=[password=123456]' --entity-type users --entity-name user1

To delete a user credential use:

bin/kafka-configs.sh --zookeeper zoo1.my-domain.com:2181 --alter --delete-config 'SCRAM-SHA-
512' --entity-type users --entity-name user1

SASL GSSAPI
The SASL mechanism used for authentication using Kerberos is called GSSAPI. To configure Kerberos

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

34

The SASL mechanism used for authentication using Kerberos is called GSSAPI. To configure Kerberos
SASL authentication, the following configuration should be added to the JAAS configuration file:

KafkaServer {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 storeKey=true
 keyTab="/etc/security/keytabs/kafka_server.keytab"
 principal="kafka/kafka1.hostname.com@EXAMPLE.COM";
};

The domain name in the Kerberos principal has to be always in upper case.

In addition to the JAAS configuration, the Kerberos service name needs to be specified in the
sasl.kerberos.service.name property in the Kafka configuration:

sasl.enabled.mechanisms=GSSAPI
sasl.mechanism.inter.broker.protocol=GSSAPI
sasl.kerberos.service.name=kafka

Multiple SASL mechanisms

Kafka can use multiple SASL mechanisms at the same time. The different JAAS configurations can be
all added to the same context:

KafkaServer {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 user_admin="123456"
 user_user1="123456"
 user_user2="123456";

 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 storeKey=true
 keyTab="/etc/security/keytabs/kafka_server.keytab"
 principal="kafka/kafka1.hostname.com@EXAMPLE.COM";

 org.apache.kafka.common.security.scram.ScramLoginModule required;
};

When multiple mechanisms are enabled, clients will be able to choose the mechanism which they want to
use.

4.8.5. Enabling TLS client authentication

This procedure describes how to enable TLS client authentication in Kafka brokers.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

TLS encryption is enabled.

Procedure

1. Prepare a JKS truststore containing the public key of the certification authority used to sign the

CHAPTER 4. CONFIGURING KAFKA

35

1. Prepare a JKS truststore containing the public key of the certification authority used to sign the
user certificates.

2. Edit the /opt/kafka/config/server.properties Kafka configuration file on all cluster nodes for
the following:

Set the ssl.truststore.location option to the path to the JKS truststore with the
certification authority of the user certificates.

Set the ssl.truststore.password option to the password you used to protect the truststore.

Set the ssl.client.auth option to required.
For example:

ssl.truststore.location=/path/to/truststore.jks
ssl.truststore.password=123456
ssl.client.auth=required

3. (Re)start the Kafka brokers

Additional resources

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a Kafka cluster, see Section 4.5, “Running a multi-node
Kafka cluster”.

For more information about configuring TLS encryption in clients, see:

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

4.8.6. Enabling SASL PLAIN authentication

This procedure describes how to enable SASL PLAIN authentication in Kafka brokers.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

Procedure

1. Edit or create the /opt/kafka/config/jaas.conf JAAS configuration file. This file should contain
all your users and their passwords. Make sure this file is the same on all Kafka brokers.
For example:

KafkaServer {
 org.apache.kafka.common.security.plain.PlainLoginModule required
 user_admin="123456"
 user_user1="123456"
 user_user2="123456";
};

2. Edit the /opt/kafka/config/server.properties Kafka configuration file on all cluster nodes for

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

36

2. Edit the /opt/kafka/config/server.properties Kafka configuration file on all cluster nodes for
the following:

Change the listener.security.protocol.map field to specify the SASL_PLAINTEXT or
SASL_SSL protocol for the listener where you want to use SASL PLAIN authentication.

Set the sasl.enabled.mechanisms option to PLAIN.
For example:

listeners=INSECURE://:9092,AUTHENTICATED://:9093,REPLICATION://:9094
listener.security.protocol.map=INSECURE:PLAINTEXT,AUTHENTICATED:SASL_PLAINT
EXT,REPLICATION:PLAINTEXT
sasl.enabled.mechanisms=PLAIN

3. (Re)start the Kafka brokers using the KAFKA_OPTS environment variable to pass the JAAS
configuration to Kafka brokers.

su - kafka
export KAFKA_OPTS="-Djava.security.auth.login.config=/opt/kafka/config/jaas.conf";
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

Additional resources

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a Kafka cluster, see Section 4.5, “Running a multi-node
Kafka cluster”.

For more information about configuring SASL PLAIN authentication in clients, see:

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

4.8.7. Enabling SASL SCRAM authentication

This procedure describes how to enable SASL SCRAM authentication in Kafka brokers.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

Procedure

1. Edit or create the /opt/kafka/config/jaas.conf JAAS configuration file. Enable the
ScramLoginModule for the KafkaServer context. Make sure this file is the same on all Kafka
brokers.
For example:

KafkaServer {
 org.apache.kafka.common.security.scram.ScramLoginModule required;
};

2. Edit the /opt/kafka/config/server.properties Kafka configuration file on all cluster nodes for

CHAPTER 4. CONFIGURING KAFKA

37

2. Edit the /opt/kafka/config/server.properties Kafka configuration file on all cluster nodes for
the following:

Change the listener.security.protocol.map field to specify the SASL_PLAINTEXT or
SASL_SSL protocol for the listener where you want to use SASL SCRAM authentication.

Set the sasl.enabled.mechanisms option to SCRAM-SHA-256 or SCRAM-SHA-512.
For example:

listeners=INSECURE://:9092,AUTHENTICATED://:9093,REPLICATION://:9094
listener.security.protocol.map=INSECURE:PLAINTEXT,AUTHENTICATED:SASL_PLAINT
EXT,REPLICATION:PLAINTEXT
sasl.enabled.mechanisms=SCRAM-SHA-512

3. (Re)start the Kafka brokers using the KAFKA_OPTS environment variable to pass the JAAS
configuration to Kafka brokers.

su - kafka
export KAFKA_OPTS="-Djava.security.auth.login.config=/opt/kafka/config/jaas.conf";
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

Additional resources

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information about running a Kafka cluster, see Section 4.5, “Running a multi-node
Kafka cluster”.

For more information about adding SASL SCRAM users, see Section 4.8.8, “Adding SASL
SCRAM users”.

For more information about deleting SASL SCRAM users, see Section 4.8.9, “Deleting SASL
SCRAM users”.

For more information about configuring SASL SCRAM authentication in clients, see:

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

4.8.8. Adding SASL SCRAM users

This procedure describes how to add new users for authentication using SASL SCRAM.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

SASL SCRAM authentication is enabled.

Procedure

Use the kafka-configs.sh tool to add new SASL SCRAM users.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

38

bin/kafka-configs.sh --zookeeper <ZookeeperAddress> --alter --add-config 'SCRAM-SHA-
512=[password=<Password>]' --entity-type users --entity-name <Username>

For example:

bin/kafka-configs.sh --zookeeper zoo1.my-domain.com:2181 --alter --add-config 'SCRAM-
SHA-512=[password=123456]' --entity-type users --entity-name user1

Additional resources

For more information about configuring SASL SCRAM authentication in clients, see:

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

4.8.9. Deleting SASL SCRAM users

This procedure describes how to remove users when using SASL SCRAM authentication.

Prerequisites

AMQ Streams is installed on all hosts which will be used as Kafka brokers.

SASL SCRAM authentication is enabled.

Procedure

Use the kafka-configs.sh tool to delete SASL SCRAM users.

bin/kafka-configs.sh --zookeeper <ZookeeperAddress> --alter --delete-config 'SCRAM-SHA-
512' --entity-type users --entity-name <Username>

For example:

bin/kafka-configs.sh --zookeeper zoo1.my-domain.com:2181 --alter --delete-config 'SCRAM-
SHA-512' --entity-type users --entity-name user1

Additional resources

For more information about configuring SASL SCRAM authentication in clients, see:

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

4.9. LOGGING

Kafka brokers use Log4j as their logging infrastructure. Logging configuration is by default read from
the log4j.propeties configuration file which should be placed either in the /opt/kafka/config/ directory
or on the classpath. The location and name of the configuration file can be changed using the Java
property log4j.configuration which can be passed to Kafka using the KAFKA_LOG4J_OPTS
environment variable:

CHAPTER 4. CONFIGURING KAFKA

39

su - kafka
export KAFKA_LOG4J_OPTS="-Dlog4j.configuration=file:/my/path/to/log4j.config";
/opt/kafka/bin/kafka-server-start.sh /opt/kafka/config/server.properties

For more information about Log4j configurations, see Log4j manual.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

40

http://logging.apache.org/log4j/1.2/manual.html

CHAPTER 5. TOPICS
Messages in Kafka are always sent to or received from a topic. This chapter describes how to configure
and manage Kafka topics.

5.1. PARTITIONS AND REPLICAS

Messages in Kafka are always sent to or received from a topic. A topic is always split into one or more
partitions. Partitions act as shards. That means that every message sent by a producer is always written
only into a single partition. Thanks to the sharding of messages into different partitions, topics are easy
to scale horizontally.

Each partition can have one or more replicas, which will be stored on different brokers in the cluster.
When creating a topic you can configure the number of replicas using the replication factor. Replication
factor defines the number of copies which will be held within the cluster. One of the replicas for given
partition will be elected as a leader. The leader replica will be used by the producers to send new
messages and by the consumers to consume messages. The other replicas will be follower replicas. The
followers replicate the leader.

If the leader fails, one of the followers will automatically become the new leader. Each server acts as a
leader for some of its partitions and a follower for others so the load is well balanced within the cluster.

NOTE: The replication factor determines the number of replicas including the leader and the followers.
For example, if you set the replication factor to 3, then there will one leader and two follower replicas.

5.2. MESSAGE RETENTION

The message retention policy defines how long the messages will be stored on the Kafka brokers. It can
be defined based on time, partition size or both.

For example, you can define that the messages should be kept:

For 7 days

Until the parition has 1GB of messages. Once the limit is reached, the oldest messages will be
removed.

For 7 days or until the 1GB limit has been reached. Whatever limit comes first will be used.

WARNING

Kafka brokers store messages in log segments. The messages which are past their
retention policy will be deleted only when a new log segment is created. New log
segments are created when the previous log segment exceeds the configured log
segment size. Additionally, users can request new segments to be created
periodically.

Additionally, Kafka brokers support a compacting policy.

For a topic with the compacted policy, the broker will always keep only the last message for each key.

CHAPTER 5. TOPICS

41

The older messages with the same key will be removed from the partition. Because compacting is a
periodically executed action, it does not happen immediately when the new message with the same key
are sent to the partition. Instead it might take some time until the older messages are removed.

For more information about the message retention configuration options, see Section 5.5, “Topic
configuration”.

5.3. TOPIC AUTO-CREATION

When a producer or consumer tries to sent to or received from from a topic which does not exist, Kafka
will, by default, automatically create that topic. This behavior is controlled by the
auto.create.topics.enable configuration property which is set to true by default.

To disable it, set auto.create.topics.enable to false in the Kafka broker configuration file:

auto.create.topics.enable=false

5.4. TOPIC DELETION

Kafka offers the possibility to disable deletion of topics. This is configured through the
delete.topic.enable property, which is set to true by default (that is, deleting topics is possible). When
this property is set to false it will be not possible to delete topics and all attempts to delete topic will
return success but the topic will not be deleted.

delete.topic.enable=false

5.5. TOPIC CONFIGURATION

Auto-created topics will use the default topic configuration which can be specified in the broker
properties file. However, when creating topics manually, their configuration can be specified at creation
time. It is also possible to change a topic’s configuration after it has been created. The main topic
configuration options for manually created topics are:

cleanup.policy

Configures the retention policy to delete or compact. The delete policy will delete old records. The
compact policy will enable log compaction. The default value is delete. For more information about
log compaction, see Kafka website.

compression.type

Specifies the compression which is used for stored messages. Valid values are gzip, snappy, lz4,
uncompressed (no compression) and producer (retain the compression codec used by the
producer). The default value is producer.

max.message.bytes

The maximum size of a batch of messages allowed by the Kafka broker, in bytes. The default value is
1000012.

min.insync.replicas

The minimum number of replicas which must be in sync for a write to be considered successful. The
default value is 1.

retention.ms

Maximum number of milliseconds for which log segments will be retained. Log segments older than
this value will be deleted. The default value is 604800000 (7 days).

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

42

http://kafka.apache.org/documentation/#compaction

retention.bytes

The maximum number of bytes a partition will retain. Once the partition size grows over this limit, the
oldest log segments will be deleted. Value of -1 indicates no limit. The default value is -1.

segment.bytes

The maximum file size of a single commit log segment file in bytes. When the segment reaches its
size, a new segment will be started. The default value is 1073741824 bytes (1 gibibyte).

For list of all supported topic configuration options, see Appendix B, Topic configuration parameters.

The defaults for auto-created topics can be specified in the Kafka broker configuration using similar
options:

log.cleanup.policy

See cleanup.policy above.

compression.type

See compression.type above.

message.max.bytes

See max.message.bytes above.

min.insync.replicas

See min.insync.replicas above.

log.retention.ms

See retention.ms above.

log.retention.bytes

See retention.bytes above.

log.segment.bytes

See segment.bytes above.

default.replication.factor

Default replication factor for automatically created topics. Default value is 1.

num.partitions

Default number of partitions for automatically created topics. Default value is 1.

For list of all supported Kafka broker configuration options, see Appendix A, Broker configuration
parameters.

5.6. INTERNAL TOPICS

Internal topics are created and used internally by the Kafka brokers and clients. Kafka has several internal
topics. These are used to store consumer offsets (__consumer_offsets) or transaction state
(__transaction_state). These topics can be configured using dedicated Kafka broker configuration
options starting with prefix offsets.topic. and transaction.state.log.. The most important configuration
options are:

offsets.topic.replication.factor

Number of replicas for __consumer_offsets topic. The default value is 3.

offsets.topic.num.partitions

Number of partitions for __consumer_offsets topic. The default value is 50.

transaction.state.log.replication.factor

CHAPTER 5. TOPICS

43

Number of replicas for __transaction_state topic. The default value is 3.

transaction.state.log.num.partitions

Number of partitions for __transaction_state topic. The default value is 50.

transaction.state.log.min.isr

Minimum number of replicas that must acknowledge a write to __transaction_state topic to be
considered successful. If this minimum cannot be met, then the producer will fail with an exception.
The default value is 2.

5.7. CREATING A TOPIC

The kafka-topics.sh tool can be used to manage topics. kafka-topics.sh is part of the AMQ Streams
distribution and can be found in the bin directory.

Prerequisites

AMQ Streams cluster is installed and running

Creating a topic

1. Create a topic using the kafka-topics.sh utility and specify the following: Zookeeper URL in the
--zookeeper option. The new topic to be created in the --create option. Topic name in the --
topic option. The number of partitions in the --partitions option. Replication factor in the --
replication-factor option.
You can also override some of the default topic configuration options using the option --config.
This option can be used multiple times to override different options.

Example of the command to create a topic named mytopic

2. Verify that the topic exists using kafka-topics.sh.

Example of the command to describe a topic named mytopic

Additional resources

For more information about topic configuration, see Section 5.5, “Topic configuration” .

For list of all supported topic configuration options, see Appendix B, Topic configuration
parameters.

bin/kafka-topics.sh --zookeeper <ZookeeperAddress> --create --topic <TopicName> --
partitions <NumberOfPartitions> --replication-factor <ReplicationFactor> --config
<Option1>=<Value1> --config <Option2>=<Value2>

bin/kafka-topics.sh --zookeeper zoo1.my-domain.com:2181 --create --topic mytopic --
partitions 50 --replication-factor 3 --config cleanup.policy=compact --config
min.insync.replicas=2

bin/kafka-topics.sh --zookeeper <ZookeeperAddress> --describe --topic <TopicName>

bin/kafka-topics.sh --zookeeper zoo1.my-domain.com:2181 --describe --topic mytopic

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

44

5.8. LISTING AND DESCRIBING TOPICS

The kafka-topics.sh tool can be used to list and describe topics. kafka-topics.sh is part of the AMQ
Streams distribution and can be found in the bin directory.

Prerequisites

AMQ Streams cluster is installed and running

Topic mytopic exists

Describing a topic

1. Describe a topic using the kafka-topics.sh utility.

Specify the Zookeeper URL in the --zookeeper option.

Use --describe option to specify that you want to describe a topic.

Topic name has to be specified in the --topic option.

When the --topic option is omitted, it will describe all available topics.

Example of the command to describe a topic named mytopic

The describe command will list all partitions and replicas which belong to this topic. It will
also list all topic configuration options.

Additional resources

For more information about topic configuration, see Section 5.5, “Topic configuration” .

For more information about creating topics, see Section 5.7, “Creating a topic” .

5.9. MODIFYING A TOPIC CONFIGURATION

The kafka-configs.sh tool can be used to modify topic configurations. kafka-configs.sh is part of the
AMQ Streams distribution and can be found in the bin directory.

Prerequisites

AMQ Streams cluster is installed and running

Topic mytopic exists

Modify topic configuration

1. Use the kafka-configs.sh tool to get the current configuration.

Specify the Zookeeper URL in the --zookeeper option.

bin/kafka-topics.sh --zookeeper <ZookeeperAddress> --describe --topic <TopicName>

bin/kafka-topics.sh --zookeeper zoo1.my-domain.com:2181 --describe --topic mytopic

CHAPTER 5. TOPICS

45

Set the --entity-type as topic and --entity-name to the name of your topic.

Use --describe option to get the current configuration.

Example of the command to get configuration of a topic named mytopic

2. Use the kafka-configs.sh tool to change the configuration.

Specify the Zookeeper URL in the --zookeeper options.

Set the --entity-type as topic and --entity-name to the name of your topic.

Use --alter option to modify the current configuration.

Specify the options you want to add or change in the option --add-config.

Example of the command to change configuration of a topic named mytopic

3. Use the kafka-configs.sh tool to delete an existing configuration option.

Specify the Zookeeper URL in the --zookeeper options.

Set the --entity-type as topic and --entity-name to the name of your topic.

Use --delete-config option to remove existing configuration option.

Specify the options you want to remove in the option --remove-config.

Example of the command to change configuration of a topic named mytopic

Additional resources

For more information about topic configuration, see Section 5.5, “Topic configuration” .

For more information about creating topics, see Section 5.7, “Creating a topic” .

bin/kafka-configs.sh --zookeeper <ZookeeperAddress> --entity-type topics --entity-name
<TopicName> --describe

bin/kafka-configs.sh --zookeeper zoo1.my-domain.com:2181 --entity-type topics --entity-
name mytopic --describe

bin/kafka-configs.sh --zookeeper <ZookeeperAddress> --entity-type topics --entity-name
<TopicName> --alter --add-config <Option>=<Value>

bin/kafka-configs.sh --zookeeper zoo1.my-domain.com:2181 --entity-type topics --entity-
name mytopic --alter --add-config min.insync.replicas=1

bin/kafka-configs.sh --zookeeper <ZookeeperAddress> --entity-type topics --entity-name
<TopicName> --alter --delete-config <Option>

bin/kafka-configs.sh --zookeeper zoo1.my-domain.com:2181 --entity-type topics --entity-
name mytopic --alter --delete-config min.insync.replicas

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

46

For list of all supported topic configuration options, see Appendix B, Topic configuration
parameters.

5.10. DELETING A TOPIC

The kafka-topics.sh tool can be used to manage topics. kafka-topics.sh is part of the AMQ Streams
distribution and can be found in the bin directory.

Prerequisites

AMQ Streams cluster is installed and running

Topic mytopic exists

Deleting a topic

1. Delete a topic using the kafka-topics.sh utility.

Specify the Zookeeper URL in the --zookeeper option.

Use --delete option to specify that an existing topic should be deleted.

Topic name has to be specified in the --topic option.

Example of the command to create a topic named mytopic

2. Verify that the topic was deleted using kafka-topics.sh.

Example of the command to list all topics

Additional resources

For more information about creating topics, see Section 5.7, “Creating a topic” .

bin/kafka-topics.sh --zookeeper <ZookeeperAddress> --delete --topic <TopicName>

bin/kafka-topics.sh --zookeeper zoo1.my-domain.com:2181 --delete --topic mytopic

bin/kafka-topics.sh --zookeeper <ZookeeperAddress> --list

bin/kafka-topics.sh --zookeeper zoo1.my-domain.com:2181 --list

CHAPTER 5. TOPICS

47

CHAPTER 6. SCALING CLUSTERS

6.1. SCALING KAFKA CLUSTERS

6.1.1. Adding brokers to a cluster

The primary way of increasing throughput for a topic is to increase the number of partitions for that
topic. That works because the partitions allow the load for that topic to be shared between the brokers
in the cluster. When the brokers are all constrained by some resource (typically I/O), then using more
partitions will not yield an increase in throughput. Instead, you must add brokers to the cluster.

When you add an extra broker to the cluster, AMQ Streams does not assign any partitions to it
automatically. You have to decide which partitions to move from the existing brokers to the new broker.

Once the partitions have been redistributed between all brokers, each broker should have a lower
resource utilization.

6.1.2. Removing brokers from the cluster

Before you remove a broker from a cluster, you must ensure that it is not assigned to any partitions. You
should decide which remaining brokers will be responsible for each of the partitions on the broker being
decommissioned. Once the broker has no assigned partitions, you can stop it.

6.2. REASSIGNMENT OF PARTITIONS

The kafka-reassign-partitions.sh utility is used to reassign partitions to different brokers.

It has three different modes:

--generate

Takes a set of topics and brokers and generates a reassignment JSON file which will result in the
partitions of those topics being assigned to those brokers. It is an easy way to generate a
reassignment JSON file , but it operates on whole topics, so its use is not always appropriate.

--execute

Takes a reassignment JSON file and applies it to the partitions and brokers in the cluster. Brokers
which are gaining partitions will become followers of the partition leader. For a given partition, once
the new broker has caught up and joined the ISR the old broker will stop being a follower and will
delete its replica.

--verify

Using the same reassignment JSON file as the --execute step, --verify checks whether all of the
partitions in the file have been moved to their intended brokers. If the reassignment is complete it will
also remove any throttles which are in effect. Unless removed, throttles will continue to affect the
cluster even after the reassignment has finished.

It is only possible to have one reassignment running in the cluster at any given time, and it is not possible
to cancel a running reassignment. If you need to cancel a reassignment you have to wait for it to
complete and then perform another reassignment to revert the effects of the first one. The kafka-
reassign-partitions.sh will print the reassignment JSON for this reversion as part of its output. Very
large reassignments should be broken down into a number of smaller reassignments in case there is a
need to stop in-progress reassignment.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

48

6.2.1. Reassignment JSON file

The reassignment JSON file has a specific structure:

{
 "version": 1,
 "partitions": [
 <PartitionObjects>
]
}

Where <PartitionObjects> is a comma-separated list of objects like:

{
 "topic": <TopicName>,
 "partition": <Partition>,
 "replicas": [<AssignedBrokerIds>],
 "log_dirs": [<LogDirs>]
}

The "log_dirs" property is optional and is used to move the partition to a specific log directory.

The following is an example reassignment JSON file that assigns topic topic-a, partition 4 to brokers 2,
4 and 7, and topic topic-b partition 2 to brokers 1, 5 and 7:

Partitions not included in the JSON are not changed.

6.2.2. Generating reassignment JSON files

The easiest way to assign all the partitions for a given set of topics to a given set of brokers is to
generate a reassignment JSON file using the kafka-reassign-partitions.sh --generate, command.

bin/kafka-reassign-partitions.sh --zookeeper <Zookeeper> --topics-to-move-json-file <TopicsFile> --
broker-list <BrokerList> --generate

The <TopicsFile> is a JSON file which lists the topics to move. It has the following structure:

{

{
 "version": 1,
 "partitions": [
 {
 "topic": "topic-a",
 "partition": 4,
 "replicas": [2,4,7]
 },
 {
 "topic": "topic-b",
 "partition": 2,
 "replicas": [1,5,7]
 }
]
}

CHAPTER 6. SCALING CLUSTERS

49

 "version": 1,
 "topics": [
 <TopicObjects>
]
}

where <TopicObjects> is a comma-separated list of objects like:

{
 "topic": <TopicName>
}

For example to move all the partitions of topic-a and topic-b to brokers 4 and 7

where topics-to-be-moved.json has contents:

6.2.3. Creating reassignment JSON files manually

You can manually create the reassignment JSON file if you want to move specific partitions.

6.3. REASSIGNMENT THROTTLES

Reassigning partitions can be a slow process because it can require moving lots of data between
brokers. To avoid this having a detrimental impact on clients it is possible to throttle the reassignment.
Using a throttle can mean the reassignment takes longer. If the throttle is too low then the newly
assigned brokers will not be able to keep up with records being published and the reassignment will
never complete. If the throttle is too high then clients will be impacted. For example, for producers, this
could manifest as higher than normal latency waiting for acknowledgement. For consumers, this could
manifest as a drop in throughput caused by higher latency between polls.

6.4. SCALING UP A KAFKA CLUSTER

This procedure describes how to increase the number of brokers in a Kafka cluster.

Prerequisites

An existing Kafka cluster.

A new machine with the AMQ broker installed.

A reassignment JSON file of how partitions should be reassigned to brokers in the enlarged
cluster.

bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 --topics-to-move-json-file topics-to-be-
moved.json --broker-list 4,7 --generate

{
 "version": 1,
 "topics": [
 { "topic": "topic-a"},
 { "topic": "topic-b"}
]
}

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

50

Procedure

1. Create a configuration file for the new broker using the same settings as for the other brokers in
your cluster, except for broker.id which should be a number that is not already used by any of
the other brokers.

2. Start the new Kafka broker passing the configuration file you created in the previous step as the
argument to the kafka-server-start.sh script:

3. Verify that the Kafka broker is running.

4. Repeat the above steps for each new broker.

5. Execute the partition reassignment using the kafka-reassign-partitions.sh command line tool.

If you are going to throttle replication you can also pass the --throttle option with an inter-
broker throttled rate in bytes per second. For example:

This command will print out two reassignment JSON objects. The first records the current
assignment for the partitions being moved. You should save this to a file in case you need to
revert the reassignment later on. The second JSON object is the target reassignment you have
passed in your reassignment JSON file.

6. If you need to change the throttle during reassignment you can use the same command line
with a different throttled rate. For example:

7. Periodically verify whether the reassignment has completed using the kafka-reassign-
partitions.sh command line tool. This is the same command as the previous step but with the --
verify option instead of the --execute option.

For example:

8. The reassignment has finished when the --verify command reports each of the partitions being
moved as completed successfully. This final --verify will also have the effect of removing any

su - kafka
/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

jcmd | grep Kafka

kafka-reassign-partitions.sh --zookeeper <ZookeeperHostAndPort> --reassignment-json-file
<ReassignmentJsonFile> --execute

kafka-reassign-partitions.sh --zookeeper zookeeper1:2181 --reassignment-json-file
reassignment.json --throttle 5000000 --execute

kafka-reassign-partitions.sh --zookeeper zookeeper1:2181 --reassignment-json-file
reassignment.json --throttle 10000000 --execute

kafka-reassign-partitions.sh --zookeeper <ZookeeperHostAndPort> --reassignment-json-file
<ReassignmentJsonFile> --verify

kafka-reassign-partitions.sh --zookeeper zookeeper1:2181 --reassignment-json-file
reassignment.json --verify

CHAPTER 6. SCALING CLUSTERS

51

reassignment throttles. You can now delete the revert file if you saved the JSON for reverting
the assignment to their original brokers.

6.5. SCALING DOWN A KAFKA CLUSTER

Additional resources

This procedure describes how to decrease the number of brokers in a Kafka cluster.

Prerequisites

An existing Kafka cluster.

A reassignment JSON file of how partitions should be reassigned to brokers in the cluster once
the broker(s) have been removed.

Procedure

1. Execute the partition reassignment using the kafka-reassign-partitions.sh command line tool.

If you are going to throttle replication you can also pass the --throttle option with an inter-
broker throttled rate in bytes per second. For example:

This command will print out two reassignment JSON objects. The first records the current
assignment for the partitions being moved. You should save this to a file in case you need to
revert the reassignment later on. The second JSON object is the target reassignment you have
passed in your reassignment JSON file.

2. If you need to change the throttle during reassignment you can use the same command line
with a different throttled rate. For example:

3. Periodically verify whether the reassignment has completed using the kafka-reassign-
partitions.sh command line tool. This is the same command as the previous step but with the --
verify option instead of the --execute option.

For example:

4. The reassignment has finished when the --verify command reports each of the partitions being

kafka-reassign-partitions.sh --zookeeper <ZookeeperHostAndPort> --reassignment-json-file
<ReassignmentJsonFile> --execute

kafka-reassign-partitions.sh --zookeeper zookeeper1:2181 --reassignment-json-file
reassignment.json --throttle 5000000 --execute

kafka-reassign-partitions.sh --zookeeper zookeeper1:2181 --reassignment-json-file
reassignment.json --throttle 10000000 --execute

kafka-reassign-partitions.sh --zookeeper <ZookeeperHostAndPort> --reassignment-json-file
<ReassignmentJsonFile> --verify

kafka-reassign-partitions.sh --zookeeper zookeeper1:2181 --reassignment-json-file
reassignment.json --verify

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

52

moved as completed successfully. This final --verify will also have the effect of removing any
reassignment throttles. You can now delete the revert file if you saved the JSON for reverting
the assignment to their original brokers.

5. Once all the partition reassignments have finished, the broker being removed should not have
responsibility for any of the partitions in the cluster. You can verify this by checking each of the
directories given in the broker’s log.dirs configuration parameters. If any of the log directories
on the broker contains a directory that does not match the extended regular expression \.[a-z0-
9]-delete$ then the broker still has live partitions and it should not be stopped.
You can check this by executing the command:

If the above command prints any output then the broker still has live partitions. In this case,
either the reassignment has not finished, or the reassignment JSON file was incorrect.

6. Once you have confirmed that the broker has no live partitions you can stop it.

7. Confirm that the Kafka broker is stopped.

ls -l <LogDir> | grep -E '^d' | grep -vE '[a-zA-Z0-9.-]+\.[a-z0-9]+-delete$'

su - kafka
/opt/kafka/bin/kafka-server-stop.sh

jcmd | grep kafka

CHAPTER 6. SCALING CLUSTERS

53

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX
Zookeeper, the Kafka broker, Kafka Connect, and the Kafka clients all expose management information
using Java Management Extensions (JMX). Most of this management information is in the form of
metrics that are useful for monitoring the condition and performance of your Kafka cluster. Like other
Java applications, Kafka provides this management information through various managed beans, or
MBeans.

JMX works at the level of the JVM (Java Virtual Machine). To obtain management information, external
tools can connect to the JVM that is running Zookeeper, the Kafka broker, and so on. By default, only
tools on the same machine and running as the same user as the JVM are able to connect.

NOTE

Management information for Zookeeper is not documented here. You can view
Zookeeper metrics in JConsole. For more information, see Monitoring using JConsole .

7.1. JMX CONFIGURATION OPTIONS

You configure JMX using JVM system properties. The scripts provided with AMQ Streams (bin/kafka-
server-start.sh and bin/connect-distributed.sh, and so on) use the KAFKA_JMX_OPTS environment
variable to set these system properties. The system properties for configuring JMX are the same, even
though Kafka producer, consumer, and streams applications typically start the JVM in different ways.

7.2. DISABLING THE JMX AGENT

You can prevent local JMX tools from connecting to the JVM (for example, for compliance reasons) by
disabling the JMX agent for an AMQ Streams component. The following procedure explains how to
disable the JMX agent for a Kafka broker.

Procedure

1. Use the KAFKA_JMX_OPTS environment variable to set com.sun.management.jmxremote
to false.

2. Start the JVM.

7.3. CONNECTING TO THE JVM FROM A DIFFERENT MACHINE

You can connect to the JVM from a different machine by configuring the port that the JMX agent
listens on. This is insecure because it allows JMX tools to connect from anywhere, with no
authentication.

Procedure

1. Use the KAFKA_JMX_OPTS environment variable to set -
Dcom.sun.management.jmxremote.port=<port>. For <port>, enter the name of the port on
which you want the Kafka broker to listen for JMX connections.

export KAFKA_JMX_OPTS=-Dcom.sun.management.jmxremote=false
bin/kafka-server-start.sh

export KAFKA_JMX_OPTS="-Dcom.sun.management.jmxremote=true

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

54

https://www.oracle.com/technetwork/articles/java/javamanagement-140525.html

2. Start the JVM.

IMPORTANT

It is recommended that you configure authentication and SSL to ensure that the remote
JMX connection is secure. For more information about the system properties needed to
do this, see the JMX documentation.

7.4. MONITORING USING JCONSOLE

The JConsole tool is distributed with the Java Development Kit (JDK). You can use JConsole to
connect to a local or remote JVM and discover and display management information from Java
applications. If using JConsole to connect to a local JVM, the names of the JVM processes
corresponding to the different components of AMQ Streams are as follows:

AMQ Streams component JVM process

Zookeeper org.apache.zookeeper.server.quorum.Quoru
mPeerMain

Kafka broker kafka.Kafka

Kafka Connect standalone org.apache.kafka.connect.cli.ConnectStandal
one

Kafka Connect distributed org.apache.kafka.connect.cli.ConnectDistrib
uted

A Kafka producer, consumer, or Streams application The name of the class containing the main method
for the application.

When using JConsole to connect to a remote JVM, use the appropriate host name and JMX port.

Many other tools and monitoring products can be used to fetch the metrics using JMX and provide
monitoring and alerting based on those metrics. Refer to the product documentation for those tools.

7.5. IMPORTANT KAFKA BROKER METRICS

Kafka provides many MBeans for monitoring the performance of the brokers in your Kafka cluster.
These apply to an individual broker rather than the entire cluster.

The following tables present a selection of these broker-level MBeans organized into server, network,
logging, and controller metrics.

7.5.1. Kafka server metrics

 -Dcom.sun.management.jmxremote.port=<port>
 -Dcom.sun.management.jmxremote.authenticate=false
 -Dcom.sun.management.jmxremote.ssl=false"
bin/kafka-server-start.sh

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

55

https://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html

The following table shows a selection of metrics that report information about the Kafka server.

Metric MBean Description Expected value

Messages in per second kafka.server:type=Br
okerTopicMetrics,na
me=MessagesInPerS
ec

The rate at which
individual messages are
consumed by the broker.

Approximately the same
as the other brokers in
the cluster.

Bytes in per second kafka.server:type=Br
okerTopicMetrics,na
me=BytesInPerSec

The rate at which data
sent from producers is
consumed by the broker.

Approximately the same
as the other brokers in
the cluster.

Replication bytes in per
second

kafka.server:type=Br
okerTopicMetrics,na
me=ReplicationByte
sInPerSec

The rate at which data
sent from other brokers
is consumed by the
follower broker.

N/A

Bytes out per second kafka.server:type=Br
okerTopicMetrics,na
me=BytesOutPerSec

The rate at which data is
fetched and read from
the broker by
consumers.

N/A

Replication bytes out
per second

kafka.server:type=Br
okerTopicMetrics,na
me=ReplicationByte
sOutPerSec

The rate at which data is
sent from the broker to
other brokers. This
metric is useful to
monitor if the broker is a
leader for a group of
partitions.

N/A

Under-replicated
partitions

kafka.server:type=Re
plicaManager,name=
UnderReplicatedPart
itions

The number of
partitions that have not
been fully replicated in
the follower replicas.

Zero

Under minimum ISR
partition count

kafka.server:type=Re
plicaManager,name=
UnderMinIsrPartition
Count

The number of
partitions under the
minimum In-Sync
Replica (ISR) count. The
ISR count indicates the
set of replicas that are
up-to-date with the
leader.

Zero

Partition count kafka.server:type=Re
plicaManager,name=
PartitionCount

The number of
partitions in the broker.

Approximately even
when compared with the
other brokers.

Leader count kafka.server:type=Re
plicaManager,name=
LeaderCount

The number of replicas
for which this broker is
the leader.

Approximately the same
as the other brokers in
the cluster.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

56

ISR shrinks per second kafka.server:type=Re
plicaManager,name=
IsrShrinksPerSec

The rate at which the
number of ISRs in the
broker decreases

Zero

ISR expands per second kafka.server:type=Re
plicaManager,name=
IsrExpandsPerSec

The rate at which the
number of ISRs in the
broker increases.

Zero

Maximum lag kafka.server:type=Re
plicaFetcherManager
,name=MaxLag,clien
tId=Replica

The maximum lag
between the time that
messages are received
by the leader replica and
by the follower replicas.

Proportional to the
maximum batch size of a
produce request.

Requests in producer
purgatory

kafka.server:type=De
layedOperationPurg
atory,name=Purgato
rySize,delayedOpera
tion=Produce

The number of send
requests in the producer
purgatory.

N/A

Requests in fetch
purgatory

kafka.server:type=De
layedOperationPurg
atory,name=Purgato
rySize,delayedOpera
tion=Fetch

The number of fetch
requests in the fetch
purgatory.

N/A

Request handler
average idle percent

kafka.server:type=Ka
fkaRequestHandlerP
ool,name=RequestH
andlerAvgIdlePercen
t

Indicates the
percentage of time that
the request handler (IO)
threads are not in use.

A lower value indicates
that the workload of the
broker is high.

Request (Requests
exempt from throttling)

kafka.server:type=Re
quest

The number of requests
that are exempt from
throttling.

N/A

Zookeeper request
latency in milliseconds

kafka.server:type=Zo
oKeeperClientMetric
s,name=ZooKeeperR
equestLatencyMs

The latency for
ZooKeeper requests
from the broker, in
milliseconds.

N/A

Zookeeper session state kafka.server:type=Se
ssionExpireListener,
name=SessionState

The status of the
broker’s connection to
Zookeeper.

CONNECTED

Metric MBean Description Expected value

7.5.2. Kafka network metrics

The following table shows a selection of metrics that report information about requests.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

57

Metric MBean Description Expected value

Requests per second kafka.network:type=
RequestMetrics,nam
e=RequestsPerSec,r
equest=
{Produce|FetchCons
umer|FetchFollower}

The total number of
requests made for the
request type per second.
The Produce,
FetchConsumer, and
FetchFollower
request types each have
their own MBeans.

N/A

Request bytes (request
size in bytes)

kafka.network:type=
RequestMetrics,nam
e=RequestBytes,req
uest=([-.\w]+)

The size of requests, in
bytes, made for the
request type identified
by the request
property of the MBean
name. Separate MBeans
for all available request
types are listed under
the RequestBytes
node.

N/A

Temporary memory size
in bytes

kafka.network:type=
RequestMetrics,nam
e=TemporaryMemor
yBytes,request=
{Produce|Fetch}

The amount of
temporary memory used
for converting message
formats and
decompressing
messages.

N/A

Message conversions
time

kafka.network:type=
RequestMetrics,nam
e=MessageConversi
onsTimeMs,request=
{Produce|Fetch}

Time, in milliseconds,
spent on converting
message formats.

N/A

Total request time in
milliseconds

kafka.network:type=
RequestMetrics,nam
e=TotalTimeMs,requ
est=
{Produce|FetchCons
umer|FetchFollower}

Total time, in
milliseconds, spent
processing requests.

N/A

Request queue time in
milliseconds

kafka.network:type=
RequestMetrics,nam
e=RequestQueueTim
eMs,request=
{Produce|FetchCons
umer|FetchFollower}

The time, in
milliseconds, that a
request currently spends
in the queue for the
request type given in the
request property.

N/A

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

58

Local time (leader local
processing time) in
milliseconds

kafka.network:type=
RequestMetrics,nam
e=LocalTimeMs,requ
est=
{Produce|FetchCons
umer|FetchFollower}

The time taken, in
milliseconds, for the
leader to process the
request.

N/A

Remote time (leader
remote processing time)
in milliseconds

kafka.network:type=
RequestMetrics,nam
e=RemoteTimeMs,re
quest=
{Produce|FetchCons
umer|FetchFollower}

The length of time, in
milliseconds, that the
request waits for the
follower. Separate
MBeans for all available
request types are listed
under the
RemoteTimeMs node.

N/A

Response queue time in
milliseconds

kafka.network:type=
RequestMetrics,nam
e=ResponseQueueTi
meMs,request=
{Produce|FetchCons
umer|FetchFollower}

The length of time, in
milliseconds, that the
request waits in the
response queue.

N/A

Response send time in
milliseconds

kafka.network:type=
RequestMetrics,nam
e=ResponseSendTi
meMs,request=
{Produce|FetchCons
umer|FetchFollower}

The time taken, in
milliseconds, to send the
response.

N/A

Network processor
average idle percent

kafka.network:type=
SocketServer,name=
NetworkProcessorA
vgIdlePercent

The average percentage
of time that the network
processors are idle.

Between zero and one.

Metric MBean Description Expected value

7.5.3. Kafka log metrics

The following table shows a selection of metrics that report information about logging.

Metric MBean Description Expected Value

Log flush rate and time
in milliseconds

kafka.log:type=LogFl
ushStats,name=Log
FlushRateAndTimeM
s

The rate at which log
data is written to disk, in
milliseconds.

N/A

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

59

Offline log directory
count

kafka.log:type=LogM
anager,name=Offline
LogDirectoryCount

The number of offline
log directories (for
example, after a
hardware failure).

Zero

Metric MBean Description Expected Value

7.5.4. Kafka controller metrics

The following table shows a selection of metrics that report information about the controller of the
cluster.

Metric MBean Description Expected Value

Active controller count kafka.controller:type
=KafkaController,na
me=ActiveController
Count

The number of brokers
designated as
controllers.

One indicates that the
broker is the controller
for the cluster.

Leader election rate and
time in milliseconds

kafka.controller:type
=ControllerStats,na
me=LeaderElectionR
ateAndTimeMs

The rate at which new
leader replicas are
elected.

Zero

7.5.5. Yammer metrics

Metrics that express a rate or unit of time are provided as Yammer metrics. The class name of an MBean
that uses Yammer metrics is prefixed with com.yammer.metrics.

Yammer rate metrics have the following attributes for monitoring requests:

Count

EventType (Bytes)

FifteenMinuteRate

RateUnit (Seconds)

MeanRate

OneMinuteRate

FiveMinuteRate

Yammer time metrics have the following attributes for monitoring requests:

Max

Min

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

60

Mean

StdDev

75/95/98/99/99.9th Percentile

7.6. PRODUCER MBEANS

The following MBeans will exist in Kafka producer applications, including Kafka Streams applications and
Kafka Connect with source connectors.

7.6.1. MBeans matching kafka.producer:type=producer-metrics,client-id=*

These are metrics at the producer level.

Attribute Description

batch-size-avg The average number of bytes sent per partition per-
request.

batch-size-max The max number of bytes sent per partition per-
request.

batch-split-rate The average number of batch splits per second.

batch-split-total The total number of batch splits.

buffer-available-bytes The total amount of buffer memory that is not being
used (either unallocated or in the free list).

buffer-total-bytes The maximum amount of buffer memory the client
can use (whether or not it is currently used).

bufferpool-wait-time The fraction of time an appender waits for space
allocation.

compression-rate-avg The average compression rate of record batches.

connection-close-rate Connections closed per second in the window.

connection-count The current number of active connections.

connection-creation-rate New connections established per second in the
window.

failed-authentication-rate Connections that failed authentication.

incoming-byte-rate Bytes/second read off all sockets.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

61

io-ratio The fraction of time the I/O thread spent doing I/O.

io-time-ns-avg The average length of time for I/O per select call in
nanoseconds.

io-wait-ratio The fraction of time the I/O thread spent waiting.

io-wait-time-ns-avg The average length of time the I/O thread spent
waiting for a socket ready for reads or writes in
nanoseconds.

metadata-age The age in seconds of the current producer metadata
being used.

network-io-rate The average number of network operations (reads or
writes) on all connections per second.

outgoing-byte-rate The average number of outgoing bytes sent per
second to all servers.

produce-throttle-time-avg The average time in ms a request was throttled by a
broker.

produce-throttle-time-max The maximum time in ms a request was throttled by a
broker.

record-error-rate The average per-second number of record sends
that resulted in errors.

record-error-total The total number of record sends that resulted in
errors.

record-queue-time-avg The average time in ms record batches spent in the
send buffer.

record-queue-time-max The maximum time in ms record batches spent in the
send buffer.

record-retry-rate The average per-second number of retried record
sends.

record-retry-total The total number of retried record sends.

record-send-rate The average number of records sent per second.

record-send-total The total number of records sent.

Attribute Description

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

62

record-size-avg The average record size.

record-size-max The maximum record size.

records-per-request-avg The average number of records per request.

request-latency-avg The average request latency in ms.

request-latency-max The maximum request latency in ms.

request-rate The average number of requests sent per second.

request-size-avg The average size of all requests in the window.

request-size-max The maximum size of any request sent in the window.

requests-in-flight The current number of in-flight requests awaiting a
response.

response-rate Responses received sent per second.

select-rate Number of times the I/O layer checked for new I/O
to perform per second.

successful-authentication-rate Connections that were successfully authenticated
using SASL or SSL.

waiting-threads The number of user threads blocked waiting for
buffer memory to enqueue their records.

Attribute Description

7.6.2. MBeans matching kafka.producer:type=producer-metrics,client-id=*,node-id=*

These are metrics at the producer level about connection to each broker.

Attribute Description

incoming-byte-rate The average number of responses received per
second for a node.

outgoing-byte-rate The average number of outgoing bytes sent per
second for a node.

request-latency-avg The average request latency in ms for a node.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

63

request-latency-max The maximum request latency in ms for a node.

request-rate The average number of requests sent per second for
a node.

request-size-avg The average size of all requests in the window for a
node.

request-size-max The maximum size of any request sent in the window
for a node.

response-rate Responses received sent per second for a node.

Attribute Description

7.6.3. MBeans matching kafka.producer:type=producer-topic-metrics,client-id=*,topic=*

These are metrics at the topic level about topics the producer is sending messages to.

Attribute Description

byte-rate The average number of bytes sent per second for a
topic.

byte-total The total number of bytes sent for a topic.

compression-rate The average compression rate of record batches for
a topic.

record-error-rate The average per-second number of record sends
that resulted in errors for a topic.

record-error-total The total number of record sends that resulted in
errors for a topic.

record-retry-rate The average per-second number of retried record
sends for a topic.

record-retry-total The total number of retried record sends for a topic.

record-send-rate The average number of records sent per second for a
topic.

record-send-total The total number of records sent for a topic.

7.7. CONSUMER MBEANS

The following MBeans will exist in Kafka consumer applications, including Kafka Streams applications

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

64

The following MBeans will exist in Kafka consumer applications, including Kafka Streams applications
and Kafka Connect with sink connectors.

7.7.1. MBeans matching kafka.consumer:type=consumer-metrics,client-id=*

These are metrics at the consumer level.

Attribute Description

connection-close-rate Connections closed per second in the window.

connection-count The current number of active connections.

connection-creation-rate New connections established per second in the
window.

failed-authentication-rate Connections that failed authentication.

incoming-byte-rate Bytes/second read off all sockets.

io-ratio The fraction of time the I/O thread spent doing I/O.

io-time-ns-avg The average length of time for I/O per select call in
nanoseconds.

io-wait-ratio The fraction of time the I/O thread spent waiting.

io-wait-time-ns-avg The average length of time the I/O thread spent
waiting for a socket ready for reads or writes in
nanoseconds.

network-io-rate The average number of network operations (reads or
writes) on all connections per second.

outgoing-byte-rate The average number of outgoing bytes sent per
second to all servers.

request-rate The average number of requests sent per second.

request-size-avg The average size of all requests in the window.

request-size-max The maximum size of any request sent in the window.

response-rate Responses received sent per second.

select-rate Number of times the I/O layer checked for new I/O
to perform per second.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

65

successful-authentication-rate Connections that were successfully authenticated
using SASL or SSL.

Attribute Description

7.7.2. MBeans matching kafka.consumer:type=consumer-metrics,client-id=*,node-id=*

These are metrics at the consumer level about connection to each broker.

Attribute Description

incoming-byte-rate The average number of responses received per
second for a node.

outgoing-byte-rate The average number of outgoing bytes sent per
second for a node.

request-latency-avg The average request latency in ms for a node.

request-latency-max The maximum request latency in ms for a node.

request-rate The average number of requests sent per second for
a node.

request-size-avg The average size of all requests in the window for a
node.

request-size-max The maximum size of any request sent in the window
for a node.

response-rate Responses received sent per second for a node.

7.7.3. MBeans matching kafka.consumer:type=consumer-coordinator-metrics,client-id=*

These are metrics at the consumer level about the consumer group.

Attribute Description

assigned-partitions The number of partitions currently assigned to this
consumer.

commit-latency-avg The average time taken for a commit request.

commit-latency-max The max time taken for a commit request.

commit-rate The number of commit calls per second.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

66

heartbeat-rate The average number of heartbeats per second.

heartbeat-response-time-max The max time taken to receive a response to a
heartbeat request.

join-rate The number of group joins per second.

join-time-avg The average time taken for a group rejoin.

join-time-max The max time taken for a group rejoin.

last-heartbeat-seconds-ago The number of seconds since the last controller
heartbeat.

sync-rate The number of group syncs per second.

sync-time-avg The average time taken for a group sync.

sync-time-max The max time taken for a group sync.

Attribute Description

7.7.4. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*

These are metrics at the consumer level about the consumer's fetcher.

Attribute Description

bytes-consumed-rate The average number of bytes consumed per second.

bytes-consumed-total The total number of bytes consumed.

fetch-latency-avg The average time taken for a fetch request.

fetch-latency-max The max time taken for any fetch request.

fetch-rate The number of fetch requests per second.

fetch-size-avg The average number of bytes fetched per request.

fetch-size-max The maximum number of bytes fetched per request.

fetch-throttle-time-avg The average throttle time in ms.

fetch-throttle-time-max The maximum throttle time in ms.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

67

fetch-total The total number of fetch requests.

records-consumed-rate The average number of records consumed per
second.

records-consumed-total The total number of records consumed.

records-lag-max The maximum lag in terms of number of records for
any partition in this window.

records-lead-min The minimum lead in terms of number of records for
any partition in this window.

records-per-request-avg The average number of records in each request.

Attribute Description

7.7.5. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-

id=*,topic=*

These are metrics at the topic level about the consumer's fetcher.

Attribute Description

bytes-consumed-rate The average number of bytes consumed per second
for a topic.

bytes-consumed-total The total number of bytes consumed for a topic.

fetch-size-avg The average number of bytes fetched per request for
a topic.

fetch-size-max The maximum number of bytes fetched per request
for a topic.

records-consumed-rate The average number of records consumed per
second for a topic.

records-consumed-total The total number of records consumed for a topic.

records-per-request-avg The average number of records in each request for a
topic.

7.7.6. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-

id=*,topic=*,partition=*

These are metrics at the partition level about the consumer's fetcher.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

68

Attribute Description

records-lag The latest lag of the partition.

records-lag-avg The average lag of the partition.

records-lag-max The max lag of the partition.

records-lead The latest lead of the partition.

records-lead-avg The average lead of the partition.

records-lead-min The min lead of the partition.

7.8. KAFKA CONNECT MBEANS

NOTE

Kafka Connect will contain the producer MBeans for source connectors and consumer
MBeans for sink connectors in addition to those documented here.

7.8.1. MBeans matching kafka.connect:type=connect-metrics,client-id=*

These are metrics at the connect level.

Attribute Description

connection-close-rate Connections closed per second in the window.

connection-count The current number of active connections.

connection-creation-rate New connections established per second in the
window.

failed-authentication-rate Connections that failed authentication.

incoming-byte-rate Bytes/second read off all sockets.

io-ratio The fraction of time the I/O thread spent doing I/O.

io-time-ns-avg The average length of time for I/O per select call in
nanoseconds.

io-wait-ratio The fraction of time the I/O thread spent waiting.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

69

io-wait-time-ns-avg The average length of time the I/O thread spent
waiting for a socket ready for reads or writes in
nanoseconds.

network-io-rate The average number of network operations (reads or
writes) on all connections per second.

outgoing-byte-rate The average number of outgoing bytes sent per
second to all servers.

request-rate The average number of requests sent per second.

request-size-avg The average size of all requests in the window.

request-size-max The maximum size of any request sent in the window.

response-rate Responses received sent per second.

select-rate Number of times the I/O layer checked for new I/O
to perform per second.

successful-authentication-rate Connections that were successfully authenticated
using SASL or SSL.

Attribute Description

7.8.2. MBeans matching kafka.connect:type=connect-metrics,client-id=*,node-id=*

These are metrics at the connect level about connection to each broker.

Attribute Description

incoming-byte-rate The average number of responses received per
second for a node.

outgoing-byte-rate The average number of outgoing bytes sent per
second for a node.

request-latency-avg The average request latency in ms for a node.

request-latency-max The maximum request latency in ms for a node.

request-rate The average number of requests sent per second for
a node.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

70

request-size-avg The average size of all requests in the window for a
node.

request-size-max The maximum size of any request sent in the window
for a node.

response-rate Responses received sent per second for a node.

Attribute Description

7.8.3. MBeans matching kafka.connect:type=connect-worker-metrics

These are metrics at the connect level.

Attribute Description

connector-count The number of connectors run in this worker.

connector-startup-attempts-total The total number of connector startups that this
worker has attempted.

connector-startup-failure-percentage The average percentage of this worker’s connectors
starts that failed.

connector-startup-failure-total The total number of connector starts that failed.

connector-startup-success-percentage The average percentage of this worker’s connectors
starts that succeeded.

connector-startup-success-total The total number of connector starts that
succeeded.

task-count The number of tasks run in this worker.

task-startup-attempts-total The total number of task startups that this worker
has attempted.

task-startup-failure-percentage The average percentage of this worker’s tasks starts
that failed.

task-startup-failure-total The total number of task starts that failed.

task-startup-success-percentage The average percentage of this worker’s tasks starts
that succeeded.

task-startup-success-total The total number of task starts that succeeded.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

71

7.8.4. MBeans matching kafka.connect:type=connect-worker-rebalance-metrics

Attribute Description

completed-rebalances-total The total number of rebalances completed by this
worker.

epoch The epoch or generation number of this worker.

leader-name The name of the group leader.

rebalance-avg-time-ms The average time in milliseconds spent by this worker
to rebalance.

rebalance-max-time-ms The maximum time in milliseconds spent by this
worker to rebalance.

rebalancing Whether this worker is currently rebalancing.

time-since-last-rebalance-ms The time in milliseconds since this worker completed
the most recent rebalance.

7.8.5. MBeans matching kafka.connect:type=connector-metrics,connector=*

Attribute Description

connector-class The name of the connector class.

connector-type The type of the connector. One of 'source' or 'sink'.

connector-version The version of the connector class, as reported by
the connector.

status The status of the connector. One of 'unassigned',
'running', 'paused', 'failed', or 'destroyed'.

7.8.6. MBeans matching kafka.connect:type=connector-task-metrics,connector=*,task=*

Attribute Description

batch-size-avg The average size of the batches processed by the
connector.

batch-size-max The maximum size of the batches processed by the
connector.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

72

offset-commit-avg-time-ms The average time in milliseconds taken by this task to
commit offsets.

offset-commit-failure-percentage The average percentage of this task’s offset commit
attempts that failed.

offset-commit-max-time-ms The maximum time in milliseconds taken by this task
to commit offsets.

offset-commit-success-percentage The average percentage of this task’s offset commit
attempts that succeeded.

pause-ratio The fraction of time this task has spent in the pause
state.

running-ratio The fraction of time this task has spent in the running
state.

status The status of the connector task. One of
'unassigned', 'running', 'paused', 'failed', or
'destroyed'.

Attribute Description

7.8.7. MBeans matching kafka.connect:type=sink-task-metrics,connector=*,task=*

Attribute Description

offset-commit-completion-rate The average per-second number of offset commit
completions that were completed successfully.

offset-commit-completion-total The total number of offset commit completions that
were completed successfully.

offset-commit-seq-no The current sequence number for offset commits.

offset-commit-skip-rate The average per-second number of offset commit
completions that were received too late and
skipped/ignored.

offset-commit-skip-total The total number of offset commit completions that
were received too late and skipped/ignored.

partition-count The number of topic partitions assigned to this task
belonging to the named sink connector in this worker.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

73

put-batch-avg-time-ms The average time taken by this task to put a batch of
sinks records.

put-batch-max-time-ms The maximum time taken by this task to put a batch
of sinks records.

sink-record-active-count The number of records that have been read from
Kafka but not yet completely
committed/flushed/acknowledged by the sink task.

sink-record-active-count-avg The average number of records that have been read
from Kafka but not yet completely
committed/flushed/acknowledged by the sink task.

sink-record-active-count-max The maximum number of records that have been
read from Kafka but not yet completely
committed/flushed/acknowledged by the sink task.

sink-record-lag-max The maximum lag in terms of number of records that
the sink task is behind the consumer’s position for
any topic partitions.

sink-record-read-rate The average per-second number of records read
from Kafka for this task belonging to the named sink
connector in this worker. This is before
transformations are applied.

sink-record-read-total The total number of records read from Kafka by this
task belonging to the named sink connector in this
worker, since the task was last restarted.

sink-record-send-rate The average per-second number of records output
from the transformations and sent/put to this task
belonging to the named sink connector in this worker.
This is after transformations are applied and excludes
any records filtered out by the transformations.

sink-record-send-total The total number of records output from the
transformations and sent/put to this task belonging
to the named sink connector in this worker, since the
task was last restarted.

Attribute Description

7.8.8. MBeans matching kafka.connect:type=source-task-metrics,connector=*,task=*

Attribute Description

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

74

poll-batch-avg-time-ms The average time in milliseconds taken by this task to
poll for a batch of source records.

poll-batch-max-time-ms The maximum time in milliseconds taken by this task
to poll for a batch of source records.

source-record-active-count The number of records that have been produced by
this task but not yet completely written to Kafka.

source-record-active-count-avg The average number of records that have been
produced by this task but not yet completely written
to Kafka.

source-record-active-count-max The maximum number of records that have been
produced by this task but not yet completely written
to Kafka.

source-record-poll-rate The average per-second number of records
produced/polled (before transformation) by this task
belonging to the named source connector in this
worker.

source-record-poll-total The total number of records produced/polled
(before transformation) by this task belonging to the
named source connector in this worker.

source-record-write-rate The average per-second number of records output
from the transformations and written to Kafka for this
task belonging to the named source connector in this
worker. This is after transformations are applied and
excludes any records filtered out by the
transformations.

source-record-write-total The number of records output from the
transformations and written to Kafka for this task
belonging to the named source connector in this
worker, since the task was last restarted.

Attribute Description

7.8.9. MBeans matching kafka.connect:type=task-error-metrics,connector=*,task=*

Attribute Description

deadletterqueue-produce-failures The number of failed writes to the dead letter queue.

deadletterqueue-produce-requests The number of attempted writes to the dead letter
queue.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

75

last-error-timestamp The epoch timestamp when this task last
encountered an error.

total-errors-logged The number of errors that were logged.

total-record-errors The number of record processing errors in this task.

total-record-failures The number of record processing failures in this task.

total-records-skipped The number of records skipped due to errors.

total-retries The number of operations retried.

Attribute Description

7.9. KAFKA STREAMS MBEANS

NOTE

A Streams application will contain the producer and consumer MBeans in addition to
those documented here.

7.9.1. MBeans matching kafka.streams:type=stream-metrics,client-id=*

These metrics are collected when the metrics.recording.level configuration parameter is info or
debug.

Attribute Description

commit-latency-avg The average execution time in ms for committing,
across all running tasks of this thread.

commit-latency-max The maximum execution time in ms for committing
across all running tasks of this thread.

commit-rate The average number of commits per second.

commit-total The total number of commit calls across all tasks.

poll-latency-avg The average execution time in ms for polling, across
all running tasks of this thread.

poll-latency-max The maximum execution time in ms for polling across
all running tasks of this thread.

poll-rate The average number of polls per second.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

76

poll-total The total number of poll calls across all tasks.

process-latency-avg The average execution time in ms for processing,
across all running tasks of this thread.

process-latency-max The maximum execution time in ms for processing
across all running tasks of this thread.

process-rate The average number of process calls per second.

process-total The total number of process calls across all tasks.

punctuate-latency-avg The average execution time in ms for punctuating,
across all running tasks of this thread.

punctuate-latency-max The maximum execution time in ms for punctuating
across all running tasks of this thread.

punctuate-rate The average number of punctuates per second.

punctuate-total The total number of punctuate calls across all tasks.

skipped-records-rate The average number of skipped records per second.

skipped-records-total The total number of skipped records.

task-closed-rate The average number of tasks closed per second.

task-closed-total The total number of tasks closed.

task-created-rate The average number of newly created tasks per
second.

task-created-total The total number of tasks created.

Attribute Description

7.9.2. MBeans matching kafka.streams:type=stream-task-metrics,client-id=*,task-id=*

Task metrics.

These metrics are collected when the metrics.recording.level configuration parameter is debug.

Attribute Description

commit-latency-avg The average commit time in ns for this task.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

77

commit-latency-max The maximum commit time in ns for this task.

commit-rate The average number of commit calls per second.

commit-total The total number of commit calls.

Attribute Description

7.9.3. MBeans matching kafka.streams:type=stream-processor-node-metrics,client-id=*,task-

id=*,processor-node-id=*

Processor node metrics.

These metrics are collected when the metrics.recording.level configuration parameter is debug.

Attribute Description

create-latency-avg The average create execution time in ns.

create-latency-max The maximum create execution time in ns.

create-rate The average number of create operations per
second.

create-total The total number of create operations called.

destroy-latency-avg The average destroy execution time in ns.

destroy-latency-max The maximum destroy execution time in ns.

destroy-rate The average number of destroy operations per
second.

destroy-total The total number of destroy operations called.

forward-rate The average rate of records being forwarded
downstream, from source nodes only, per second.

forward-total The total number of of records being forwarded
downstream, from source nodes only.

process-latency-avg The average process execution time in ns.

process-latency-max The maximum process execution time in ns.

process-rate The average number of process operations per
second.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

78

process-total The total number of process operations called.

punctuate-latency-avg The average punctuate execution time in ns.

punctuate-latency-max The maximum punctuate execution time in ns.

punctuate-rate The average number of punctuate operations per
second.

punctuate-total The total number of punctuate operations called.

Attribute Description

7.9.4. MBeans matching kafka.streams:type=stream-[store-scope]-metrics,client-id=*,task-

id=*,[store-scope]-id=*

State store metrics.

These metrics are collected when the metrics.recording.level configuration parameter is debug.

Attribute Description

all-latency-avg The average all operation execution time in ns.

all-latency-max The maximum all operation execution time in ns.

all-rate The average all operation rate for this store.

all-total The total number of all operation calls for this store.

delete-latency-avg The average delete execution time in ns.

delete-latency-max The maximum delete execution time in ns.

delete-rate The average delete rate for this store.

delete-total The total number of delete calls for this store.

flush-latency-avg The average flush execution time in ns.

flush-latency-max The maximum flush execution time in ns.

flush-rate The average flush rate for this store.

flush-total The total number of flush calls for this store.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

79

get-latency-avg The average get execution time in ns.

get-latency-max The maximum get execution time in ns.

get-rate The average get rate for this store.

get-total The total number of get calls for this store.

put-all-latency-avg The average put-all execution time in ns.

put-all-latency-max The maximum put-all execution time in ns.

put-all-rate The average put-all rate for this store.

put-all-total The total number of put-all calls for this store.

put-if-absent-latency-avg The average put-if-absent execution time in ns.

put-if-absent-latency-max The maximum put-if-absent execution time in ns.

put-if-absent-rate The average put-if-absent rate for this store.

put-if-absent-total The total number of put-if-absent calls for this store.

put-latency-avg The average put execution time in ns.

put-latency-max The maximum put execution time in ns.

put-rate The average put rate for this store.

put-total The total number of put calls for this store.

range-latency-avg The average range execution time in ns.

range-latency-max The maximum range execution time in ns.

range-rate The average range rate for this store.

range-total The total number of range calls for this store.

restore-latency-avg The average restore execution time in ns.

restore-latency-max The maximum restore execution time in ns.

restore-rate The average restore rate for this store.

Attribute Description

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

80

restore-total The total number of restore calls for this store.

Attribute Description

7.9.5. MBeans matching kafka.streams:type=stream-record-cache-metrics,client-id=*,task-

id=*,record-cache-id=*

Record cache metrics.

These metrics are collected when the metrics.recording.level configuration parameter is debug.

Attribute Description

hitRatio-avg The average cache hit ratio defined as the ratio of
cache read hits over the total cache read requests.

hitRatio-max The maximum cache hit ratio.

hitRatio-min The mininum cache hit ratio.

CHAPTER 7. MONITORING YOUR CLUSTER USING JMX

81

CHAPTER 8. KAFKA CONNECT
Kafka Connect is a tool for streaming data between Apache Kafka and external systems. It provides a
framework for moving large amounts of data while maintaining scalability and reliability. Kafka Connect is
typically used to integrate Kafka with database, storage, and messaging systems that are external to
your Kafka cluster.

Kafka Connect uses connector plug-ins that implement connectivity for different types of external
systems. There are two types of connector plug-ins: sink and source. Sink connectors stream data from
Kafka to external systems. Source connectors stream data from external systems into Kafka.

Kafka Connect can run in standalone or distributed modes.

Standalone mode

In standalone mode, Kafka Connect runs on a single node with user-defined configuration read from
a properties file.

Distributed mode

In distributed mode, Kafka Connect runs across one or more worker nodes and the workloads are
distributed among them. You manage connectors and their configuration using an HTTP REST
interface.

8.1. KAFKA CONNECT IN STANDALONE MODE

In standalone mode, Kafka Connect runs as a single process, on a single node. You manage the
configuration of standalone mode using properties files.

8.1.1. Configuring Kafka Connect in standalone mode

To configure Kafka Connect in standalone mode, edit the config/connect-standalone.properties
configuration file. The following options are the most important.

bootstrap.servers

A list of Kafka broker addresses used as bootstrap connections to Kafka. For example, kafka0.my-
domain.com:9092,kafka1.my-domain.com:9092,kafka2.my-domain.com:9092.

key.converter

The class used to convert message keys to and from Kafka format. For example,
org.apache.kafka.connect.json.JsonConverter.

value.converter

The class used to convert message payloads to and from Kafka format. For example,
org.apache.kafka.connect.json.JsonConverter.

offset.storage.file.filename

Specifies the file in which the offset data is stored.

An example configuration file is provided in the installation directory at config/connect-
standalone.properties. For a complete list of all supported Kafka Connect configuration options, see
[kafka-connect-configuration-parameters-str].

Connector plug-ins open client connections to the Kafka brokers using the bootstrap address. To
configure these connections, use the standard Kafka producer and consumer configuration options
prefixed by producer. or consumer..

For more information on configuring Kafka producers and consumers, see:

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

82

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

8.1.2. Configuring connectors in Kafka Connect in standalone mode

You can configure connector plug-ins for Kafka Connect in standalone mode using properties files.
Most configuration options are specific to each connector. The following options apply to all connectors:

name

The name of the connector, which must be unique within the current Kafka Connect instance.

connector.class

The class of the connector plug-in. For example,
org.apache.kafka.connect.file.FileStreamSinkConnector.

tasks.max

The maximum number of tasks that the specified connector can use. Tasks enable the connector to
perform work in parallel. The connector might create fewer tasks than specified.

key.converter

The class used to convert message keys to and from Kafka format. This overrides the default value
set by the Kafka Connect configuration. For example,
org.apache.kafka.connect.json.JsonConverter.

value.converter

The class used to convert message payloads to and from Kafka format. This overrides the default
value set by the Kafka Connect configuration. For example,
org.apache.kafka.connect.json.JsonConverter.

Additionally, you must set at least one of the following options for sink connectors:

topics

A comma-separated list of topics used as input.

topics.regex

A Java regular expression of topics used as input.

For all other options, see the documentation for the available connectors.

AMQ Streams includes example connector configuration files – see config/connect-file-
sink.properties and config/connect-file-source.properties in the AMQ Streams installation directory.

8.1.3. Running Kafka Connect in standalone mode

This procedure describes how to configure and run Kafka Connect in standalone mode.

Prerequisites

An installed and running AMQ Streams} cluster.

Procedure

1. Edit the /opt/kafka/config/connect-standalone.properties Kafka Connect configuration file
and set bootstrap.server to point to your Kafka brokers. For example:

CHAPTER 8. KAFKA CONNECT

83

2. Start Kafka Connect with the configuration file and specify one or more connector
configurations.

3. Verify that Kafka Connect is running.

Additional resources

For more information on installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information on configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For a complete list of supported Kafka Connect configuration options, see Appendix F, Kafka
Connect configuration parameters.

8.2. KAFKA CONNECT IN DISTRIBUTED MODE

In distributed mode, Kafka Connect runs across one or more worker nodes and the workloads are
distributed among them. You manage connector plug-ins and their configuration using the HTTP REST
interface.

8.2.1. Configuring Kafka Connect in distributed mode

To configure Kafka Connect in distributed mode, edit the config/connect-distributed.properties
configuration file. The following options are the most important.

bootstrap.servers

A list of Kafka broker addresses used as bootstrap connections to Kafka. For example, kafka0.my-
domain.com:9092,kafka1.my-domain.com:9092,kafka2.my-domain.com:9092.

key.converter

The class used to convert message keys to and from Kafka format. For example,
org.apache.kafka.connect.json.JsonConverter.

value.converter

The class used to convert message payloads to and from Kafka format. For example,
org.apache.kafka.connect.json.JsonConverter.

group.id

The name of the distributed Kafka Connect cluster. This must be unique and must not conflict with
another consumer group ID. The default value is connect-cluster.

config.storage.topic

The Kafka topic used to store connector configurations. The default value is connect-configs.

bootstrap.servers=kafka0.my-domain.com:9092,kafka1.my-domain.com:9092,kafka2.my-
domain.com:9092

su - kafka
/opt/kafka/bin/connect-standalone.sh /opt/kafka/config/connect-standalone.properties
connector1.properties
[connector2.properties ...]

 jcmd | grep ConnectStandalone

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

84

offset.storage.topic

The Kafka topic used to store offsets. The default value is connect-offset.

status.storage.topic

The Kafka topic used for worker node statuses. The default value is connect-status.

AMQ Streams includes an example configuration file for Kafka Connect in distributed mode – see
config/connect-distributed.properties in the AMQ Streams installation directory.

For a complete list of all supported Kafka Connect configuration options, see Appendix F, Kafka
Connect configuration parameters.

Connector plug-ins open client connections to the Kafka brokers using the bootstrap address. To
configure these connections, use the standard Kafka producer and consumer configuration options
prefixed by producer. or consumer..

For more information on configuring Kafka producers and consumers, see:

Appendix D, Producer configuration parameters

Appendix C, Consumer configuration parameters

8.2.2. Configuring connectors in distributed Kafka Connect

HTTP REST Interface

Connectors for distributed Kafka Connect are configured using HTTP REST interface. The REST
interface listens on port 8083 by default. It supports following endpoints:

GET /connectors

Return a list of existing connectors.

POST /connectors

Create a connector. The request body has to be a JSON object with the connector configuration.

GET /connectors/<name>

Get information about a specific connector.

GET /connectors/<name>/config

Get configuration of a specific connector.

PUT /connectors/<name>/config

Update the configuration of a specific connector.

GET /connectors/<name>/status

Get the status of a specific connector.

PUT /connectors/<name>/pause

Pause the connector and all its tasks. The connector will stop processing any messages.

PUT /connectors/<name>/resume

Resume a paused connector.

POST /connectors/<name>/restart

Restart a connector in case it has failed.

DELETE /connectors/<name>

Delete a connector.

CHAPTER 8. KAFKA CONNECT

85

GET /connector-plugins

Get a list of all supported connector plugins.

Connector configuration

Most configuration options are connector specific and included in the documentation for the
connectors. The following fields are common for all connectors.

name

Name of the connector. Must be unique within a given Kafka Connect instance.

connector.class

Class of the connector plugin. For example
org.apache.kafka.connect.file.FileStreamSinkConnector.

tasks.max

The maximum number of tasks used by this connector. Tasks are used by the connector to parallelise
its work. Connetors may create fewer tasks than specified.

key.converter

Class used to convert message keys to and from Kafka format. This overrides the default value set by
the Kafka Connect configuration. For example, org.apache.kafka.connect.json.JsonConverter.

value.converter

Class used to convert message payloads to and from Kafka format. This overrides the default value
set by the Kafka Connect configuration. For example,
org.apache.kafka.connect.json.JsonConverter.

Additionally, one of the following options must be set for sink connectors:

topics

A comma-separated list of topics used as input.

topics.regex

A Java regular expression of topics used as input.

For all other options, see the documentation for the specific connector.

AMQ Streams includes example connector configuration files. They can be found in config/connect-
file-sink.properties and config/connect-file-source.properties in the AMQ Streams installation
directory.

8.2.3. Running distributed Kafka Connect

This procedure describes how to configure and run Kafka Connect in distributed mode.

Prerequisites

An installed and running AMQ Streams cluster.

Running the cluster

1. Edit the /opt/kafka/config/connect-distributed.properties Kafka Connect configuration file on
all Kafka Connect worker nodes.

Set the bootstrap.server option to point to your Kafka brokers.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

86

Set the group.id option.

Set the config.storage.topic option.

Set the offset.storage.topic option.

Set the status.storage.topic option.
For example:

2. Start the Kafka Connect workers with the /opt/kafka/config/connect-distributed.properties
configuration file on all Kafka Connect nodes.

3. Verify that Kafka Connect is running.

Additional resources

For more information about installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information about configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For a complete list of supported Kafka Connect configuration options, see Appendix F, Kafka
Connect configuration parameters.

8.2.4. Creating connectors

This procedure describes how to use the Kafka Connect REST API to create a connector plug-in for use
with Kafka Connect in distributed mode.

Prerequisites

A Kafka Connect installation running in distributed mode.

Procedure

1. Prepare a JSON payload with the connector configuration. For example:

bootstrap.servers=kafka0.my-domain.com:9092,kafka1.my-domain.com:9092,kafka2.my-
domain.com:9092
group.id=my-group-id
config.storage.topic=my-group-id-configs
offset.storage.topic=my-group-id-offsets
status.storage.topic=my-group-id-status

su - kafka
/opt/kafka/bin/connect-distributed.sh /opt/kafka/config/connect-distributed.properties

jcmd | grep ConnectDistributed

{
 "name": "my-connector",
 "config": {
 "connector.class": "org.apache.kafka.connect.file.FileStreamSinkConnector",
 "tasks.max": "1",

CHAPTER 8. KAFKA CONNECT

87

2. Send a POST request to <KafkaConnectAddress>:8083/connectors to create the connector.
The following example uses curl:

3. Verify that the connector was deployed by sending a GET request to
<KafkaConnectAddress>:8083/connectors. The following example uses curl:

8.2.5. Deleting connectors

This procedure describes how to use the Kafka Connect REST API to delete a connector plug-in from
Kafka Connect in distributed mode.

Prerequisites

A Kafka Connect installation running in distributed mode.

Deleting connectors

1. Verify that the connector exists by sending a GET request to
<KafkaConnectAddress>:8083/connectors/<ConnectorName>. The following example uses
curl:

2. To delete the connector, send a DELETE request to
<KafkaConnectAddress>:8083/connectors. The following example uses curl:

3. Verify that the connector was deleted by sending a GET request to
<KafkaConnectAddress>:8083/connectors. The following example uses curl:

8.3. CONNECTOR PLUG-INS

The following connector plug-ins are included with AMQ Streams.

FileStreamSink Reads data from Kafka topics and writes the data to a file.

FileStreamSource Reads data from a file and sends the data to Kafka topics.

You can add more connector plug-ins if needed. Kafka Connect searches for and runs additional

 "topics": "my-topic-1,my-topic-2",
 "file": "/tmp/output-file.txt"
 }
}

curl -X POST -H "Content-Type: application/json" --data @sink-connector.json
http://connect0.my-domain.com:8083/connectors

curl http://connect0.my-domain.com:8083/connectors

curl http://connect0.my-domain.com:8083/connectors

curl -X DELETE http://connect0.my-domain.com:8083/connectors/my-connector

curl http://connect0.my-domain.com:8083/connectors

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

88

You can add more connector plug-ins if needed. Kafka Connect searches for and runs additional
connector plug-ins at startup. To define the path that kafka Connect searches for plug-ins, set the
plugin.path configuration option:

The plugin.path configuration option can contain a comma-separated list of paths.

When running Kafka Connect in distributed mode, plug-ins must be made available on all worker nodes.

8.4. ADDING CONNECTOR PLUGINS

This procedure shows you how to add additional connector plug-ins.

Prerequisites

An installed and running AMQ Streams cluster.

Procedure

1. Create the /opt/kafka/connector-plugins directory.

2. Edit the /opt/kafka/config/connect-standalone.properties or /opt/kafka/config/connect-
distributed.properties Kafka Connect configuration file, and set the plugin.path option to
/opt/kafka/connector-plugins. For example:

3. Copy your connector plug-ins to /opt/kafka/connector-plugins.

4. Start or restart the Kafka Connect workers.

Additional resources

For more information on installing AMQ Streams, see Section 2.3, “Installing AMQ Streams” .

For more information on configuring AMQ Streams, see Section 2.8, “Configuring AMQ
Streams”.

For more information on running Kafka Connect in standalone mode, see Section 8.1.3, “Running
Kafka Connect in standalone mode”.

For more information on running Kafka Connect in distributed mode, see Section 8.2.3,
“Running distributed Kafka Connect”.

For a complete list of supported Kafka Connect configuration options, see Appendix F, Kafka
Connect configuration parameters.

plugin.path=/opt/kafka/connector-plugins,/opt/connectors

su - kafka
mkdir /opt/kafka/connector-plugins

plugin.path=/opt/kafka/connector-plugins

CHAPTER 8. KAFKA CONNECT

89

CHAPTER 9. KAFKA CLIENTS
The kafka-clients JAR file contains the Kafka Producer and Consumer APIs together with the Kafka
AdminClient API.

The Producer API allows applications to send data to a Kafka broker.

The Consumer API allows applications to consume data from a Kafka broker.

The AdminClient API provides functionality for managing Kafka clusters, including topics,
brokers, and other components.

9.1. ADDING KAFKA CLIENTS AS A DEPENDENCY TO YOUR MAVEN
PROJECT

This procedure shows you how to add the AMQ Streams Java clients as a dependency to your Maven
project.

Prerequisites

A Maven project with an existing pom.xml.

Procedure

1. Add the Red Hat Maven repository to the <repositories> section of your pom.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <!-- ... -->

 <repositories>
 <repository>
 <id>redhat-maven</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 </repository>
 </repositories>

 <!-- ... -->

</project>

2. Add the clients to the <dependencies> section of your pom.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <!-- ... -->

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

90

 <dependencies>
 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-clients</artifactId>
 <version>2.2.1.redhat-00002</version>
 </dependency>
 </dependencies>

 <!-- ... -->
</project>

3. Build your Maven project.

CHAPTER 9. KAFKA CLIENTS

91

CHAPTER 10. KAFKA STREAMS API OVERVIEW
The Kafka Streams API allows applications to receive data from one or more input streams, execute
complex operations like mapping, filtering or joining, and write the results into one or more output
streams. It is part of the kafka-streams JAR package that is available in the Red Hat Maven repository.

10.1. ADDING THE KAFKA STREAMS API AS A DEPENDENCY TO YOUR
MAVEN PROJECT

This procedure shows you how to add the AMQ Streams Java clients as a dependency to your Maven
project.

Prerequisites

A Maven project with an existing pom.xml.

Procedure

1. Add the Red Hat Maven repository to the <repositories> section of your pom.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <!-- ... -->

 <repositories>
 <repository>
 <id>redhat-maven</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 </repository>
 </repositories>

 <!-- ... -->

</project>

2. Add kafka-streams to the <dependencies> section of your pom.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <!-- ... -->

 <dependencies>
 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-streams</artifactId>
 <version>2.2.1.redhat-00002</version>

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

92

 </dependency>
 </dependencies>

 <!-- ... -->
</project>

3. Build your Maven project.

CHAPTER 10. KAFKA STREAMS API OVERVIEW

93

CHAPTER 11. USING THE AMQ STREAMS KAFKA BRIDGE
This chapter provides an overview of the AMQ Streams Kafka Bridge and helps you get started using the
REST API.

NOTE

For the full list of REST API endpoints and descriptions, including example requests and
responses, see Kafka Bridge API reference .

11.1. OVERVIEW OF THE AMQ STREAMS KAFKA BRIDGE

The AMQ Streams Kafka Bridge provides an API for integrating HTTP-based clients with a Kafka cluster
running on Red Hat Enterprise Linux. The API enables these clients to produce and consume messages
without the requirement to use the native Kafka protocol.

The API has two main resources — consumers and topics — that are exposed and made accessible
through endpoints to interact with consumers and producers in your Kafka cluster. The resources relate
only to the Kafka Bridge, not the consumers and producers connected directly to Kafka.

You can:

Send messages to a topic.

Create and delete consumers.

Subscribe consumers to topics, so that they start receiving messages from those topics.

Unsubscribe consumers from topics.

Assign partitions to consumers.

Retrieve messages from topics.

Commit a list of consumer offsets.

Seek on a partition, so that a consumer starts receiving messages from the first or last offset
position, or a given offset position.

Similar to an AMQ Streams installation, you can download the Kafka Bridge files for installation on Red
Hat Enterprise Linux.

For more information on configuring the host and port for the KafkaBridge resource, see Section 11.4,
“Configuring AMQ Streams Kafka Bridge properties”.

11.2. REQUESTS TO THE AMQ STREAMS KAFKA BRIDGE

11.2.1. Authentication and encryption

Authentication and encryption between HTTP clients and the Kafka Bridge is not yet supported. This
means that requests sent from clients to the Kafka Bridge are:

Not encrypted, and must use HTTP rather than HTTPS

Sent without authentication

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

94

https://strimzi.io/docs/bridge/0.12.0/full.html

1

You can configure TLS or SASL-based authentication between the Kafka Bridge and your Kafka cluster.

You configure the Kafka Bridge for authentication through its properties file.

11.2.2. Data formats and headers

Specify data formats and HTTP headers to ensure valid requests are submitted to the Kafka Bridge.

11.2.2.1. Content Type headers

API request and response bodies are always encoded as JSON.

When performing consumer operations, POST requests must provide the following Content-
Type header:

When performing producer operations, POST requests must provide the following Content-
Type header specifying the embedded data format of the consumer, either json or binary, as
shown in the following table.

Embedded data format Content-Type header

JSON Content-Type:
application/vnd.kafka.json.v2+json

Binary Content-Type:
application/vnd.kafka.binary.v2+json

You set the embedded data format when creating a consumer using the consumers/groupid endpoint
—for more information, see the next section.

11.2.2.2. Embedded data format

The embedded data format is the format of the Kafka messages that are transmitted, over HTTP, from a
producer to a consumer using the Kafka Bridge. Two embedded data formats are supported: JSON and
binary.

When creating a consumer using the /consumers/groupid endpoint, the POST request body must
specify an embedded data format of either JSON or binary. This is specified in the format field, for
example:

A binary embedded data format.

The embedded data format specified when creating a consumer must match the data format of the
Kafka messages it will consume.

Content-Type: application/vnd.kafka.v2+json

{
 "name": "my-consumer",
 "format": "binary", 1
...
}

CHAPTER 11. USING THE AMQ STREAMS KAFKA BRIDGE

95

If you choose to specify a binary embedded data format, subsequent producer requests must provide
the binary data in the request body as Base64-encoded strings. For example, when sending messages
by making POST requests to the /topics/topicname endpoint, the value must be encoded in Base64:

Producer requests must also provide a Content-Type header that corresponds to the embedded data
format, for example, Content-Type: application/vnd.kafka.binary.v2+json.

11.2.2.3. Accept headers

After creating a consumer, subsequent GET requests must provide an Accept header in the following
format:

Where the embedded-data-format is the embedded data format of the consumer: either json or
binary.

For example, when retrieving records for a subscribed consumer using an embedded data format of
JSON, include this Accept header:

11.3. DOWNLOADING AN AMQ STREAMS ARCHIVE

A zipped distribution of AMQ Streams is available for download from the Red Hat website. You can
download a copy of the distribution by following the steps below.

Procedure

Download the latest version of the Red Hat AMQ Streams archive from the Customer Portal.

11.4. CONFIGURING AMQ STREAMS KAFKA BRIDGE PROPERTIES

This procedure describes how to configure the properties used by the AMQ Streams Kafka Bridge.

You configure the Kafka Bridge, as any other Kafka client, using appropriate prefixes for Kafka-related
properties.

kafka. for general configuration that applies to producer and consumer, such as server
connection and security.

kafka.consumer. for consumer-specific configuration passed only to the consumer.

kafka.producer. for producer-specific configuration passed only to the producer.

{
 "records": [
 {
 "key": "my-key",
 "value": "ZWR3YXJkdGhldGhyZWVsZWdnZWRjYXQ="
 },
]
}

Accept: application/vnd.kafka.embedded-data-format.v2+json

Accept: application/vnd.kafka.json.v2+json

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

96

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&productChanged=yes

For more on

Prerequisites

AMQ Streams is installed on the host

The Kafka Bridge installation archive is downloaded

Procedure

1. Edit the application.properties file provided with the AMQ Streams Kafka Bridge installation
archive.
Use the properties file to specify Kafka and HTTP-related properties.

a. Configure standard Kafka-related properties, including properties specific to the Kafka
consumers and producers.

Use:

kafka.bootstrap.servers to define the host/port connections to the Kafka cluster

kafka.producer.acks to provide acknowledgments to the HTTP client

kafka.consumer.auto.offset.reset to determine how to manage reset of the offset in
Kafka ---
For more information on configuration of Kafka properties, see the Apache Kafka
website

b. Configure HTTP-related properties to enable HTTP access to the Kafka cluster.

11.5. INSTALLING THE AMQ STREAMS KAFKA BRIDGE ON RED HAT
ENTERPRISE LINUX

Follow this procedure to install the AMQ Streams Kafka Bridge on Red Hat Enterprise Linux.

Prerequisites

AMQ Streams is installed on the host

The Kafka Bridge installation archive is downloaded

The Kafka Bridge configuration properties are set

Procedure

1. If you have not already done so, unzip the AMQ Streams Kafka Bridge installation archive to any
directory.

2. Run the Kafka Bridge script using the configuration properties as a parameter:
For example:

http.enabled=true
http.host=0.0.0.0
http.port=8080

CHAPTER 11. USING THE AMQ STREAMS KAFKA BRIDGE

97

http://kafka.apache.org

3. Check to see that the installation was successful in the log.

11.6. AMQ STREAMS KAFKA BRIDGE API RESOURCES

For the full list of REST API endpoints and descriptions, including example requests and responses, see
Kafka Bridge API reference .

./bin/kafka_bridge_run.sh --config-file=_path_/configfile.properties

HTTP-Kafka Bridge started and listening on port 8080
HTTP-Kafka Bridge bootstrap servers localhost:9092

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

98

https://strimzi.io/docs/bridge/0.12.0/full.html

CHAPTER 12. AMQ STREAMS AND KAFKA UPGRADES
AMQ Streams can be upgraded with no cluster downtime. Each version of AMQ Streams supports one
or more versions of Apache Kafka: you can upgrade to a higher Kafka version as long as it is supported
by your version of AMQ Streams. In some cases, you can also downgrade to a lower supported Kafka
version.

Newer versions of AMQ Streams may support newer versions of Kafka, but you need to upgrade AMQ
Streams before you can upgrade to a higher supported Kafka version.

12.1. UPGRADE PREREQUISITES

Before you begin the upgrade process, make sure that:

AMQ Streams is installed. For instructions, see Chapter 2, Getting started.

You are familiar with any upgrade changes described in the AMQ Streams 1.2 on Red Hat
Enterprise Linux Release Notes.

12.2. UPGRADE PROCESS

Upgrading AMQ Streams is a two-stage process. To upgrade brokers and clients without downtime, you
must complete the upgrade procedures in the following order:

1. Upgrade to the latest AMQ Streams version.

Upgrading to AMQ Streams 1.2

2. Upgrade all Kafka brokers and client applications to the latest Kafka version

Upgrading Kafka

12.3. KAFKA VERSIONS

AMQ Streams is based on a specific version of Apache Kafka.

AMQ Streams version Kafka version

1.2 2.2.1

Kafka’s log message format version and inter-broker protocol version specify the version of the format
of messages appended to broker logs and the version of protocol used between brokers in a cluster. As
a result, the upgrade process involves making configuration changes to existing Kafka brokers and code
changes to client applications (consumers and producers) to ensure the correct versions are used.

The following table shows the differences between Kafka versions:

Kafka version Interbroker protocol
version

Log message format
version

Zookeeper version

2.1.1 2.1 2.1 3.4.13

CHAPTER 12. AMQ STREAMS AND KAFKA UPGRADES

99

https://access.redhat.com/documentation/en-us/red_hat_amq/7.4/html-single/amq_streams_1.2_on_red_hat_enterprise_linux_rhel_release_notes

2.2.1 2.2 2.2 3.4.14

Kafka version Interbroker protocol
version

Log message format
version

Zookeeper version

Although Kafka versions may use the same version of Zookeeper, it is recommended that you update
your Zookeeper cluster to use the newest Zookeeper binaries before proceeding with the main AMQ
Streams upgrade.

Message format version

When a producer sends a message to a Kafka broker, the message is encoded using a specific format.
The format can change between Kafka releases, so messages include a version identifying which version
of the format they were encoded with. You can configure a Kafka broker to convert messages from
newer format versions to a given older format version before the broker appends the message to the
log.

In Kafka, there are two different methods for setting the message format version:

The message.format.version property is set on topics.

The log.message.format.version property is set on Kafka brokers.

The default value of message.format.version for a topic is defined by the
log.message.format.version that is set on the Kafka broker. You can manually set the
message.format.version of a topic by modifying its topic configuration.

The upgrade tasks in this section assume that the message format version is defined at the broker level
by the log.message.format.version.

12.4. UPGRADING TO AMQ STREAMS 1.2

The steps to upgrade your deployment to use AMQ Streams 1.2 are outlined in this section.

The availability of Kafka clusters managed by AMQ Streams is not affected by the upgrade operation.

NOTE

Refer to the documentation supporting a specific version of AMQ Streams for
information on how to upgrade to that version.

12.4.1. Upgrading Zookeeper

This procedure describes how to upgrade Zookeeper on a host machine.

Prerequisites

You are logged in to Red Hat Enterprise Linux as the kafka user.

Procedure

For each Kafka broker in your AMQ Streams cluster and one at a time:

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

100

1. Download the AMQ Streams archive for this release from the Customer Portal.

NOTE

If prompted, log in to your Red Hat account.

2. On the command line, create a temporary directory and extract the contents of the amq-
streams-x.y.z-bin.zip file:

3. Delete the libs, bin, and docs directories from your existing installation:

4. Copy the libs, bin, and docs directories from the temporary directory:

5. Delete the temporary directory:

6. Restart Zookeeper:

12.4.2. Upgrading Kafka brokers

This procedure describes how to upgrade Kafka brokers on a host machine.

Prerequisites

You are logged in to Red Hat Enterprise Linux as the kafka user.

Procedure

For each Kafka broker in your AMQ Streams cluster and one at a time:

1. Download the AMQ Streams archive from the Customer Portal.

NOTE

If prompted, log in to your Red Hat account.

2. On the command line, create a temporary directory and extract the contents of the amq-
streams-x.y.z-bin.zip file.

mkdir /tmp/kafka
unzip amq-streams-x.y.z-bin.zip -d /tmp/kafka

rm -rf /opt/kafka/libs /opt/kafka/bin /opt/kafka/docs

cp -r /tmp/kafka/kafka_y.y-x.x.x/libs /opt/kafka/
cp -r /tmp/kafka/kafka_y.y-x.x.x/bin /opt/kafka/
cp -r /tmp/kafka/kafka_y.y-x.x.x/docs /opt/kafka/

rm -rf /tmp/kafka

/opt/kafka/bin/zookeeper-server-start.sh -daemon /opt/kafka/config/zookeeper.properties

CHAPTER 12. AMQ STREAMS AND KAFKA UPGRADES

101

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&productChanged=yes
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&productChanged=yes

3. Delete the libs, bin, and docs directories from your existing installation:

4. Copy the libs, bin, and docs directories from the temporary directory:

5. Delete the temporary directory.

6. In a text editor, open the broker properties file, commonly stored in the /opt/kafka/config/
directory.

7. Temporarily override the default inter-broker protocol and message format versions for Kafka
2.2.1 by adding or updating the following properties in the file:

This configures the Kafka broker to process data using the previous inter-broker protocol (2.1)
and message format versions.

8. On the command line, stop the Kafka broker that you modified:

9. Restart the Kafka broker that you modified:

NOTE

The Kafka broker will start using the binaries for the latest Kafka version.

10. Verify that the restarted Kafka broker has caught up with the partition replicas it is following.
Use the kafka-topics.sh tool to ensure that all replicas contained in the broker are back in sync.
For instructions, see Listing and describing topics .

12.4.3. Upgrading Kafka Connect

This procedure describes how to upgrade a Kafka Connect cluster on a host machine.

Kafka Connect is a client application and should be included in your chosen strategy for upgrading
clients. For more information, see Strategies for upgrading clients .

mkdir /tmp/kafka
unzip amq-streams-x.y.z-bin.zip -d /tmp/kafka

rm -rf /opt/kafka/libs /opt/kafka/bin /opt/kafka/docs

cp -r /tmp/kafka/kafka_y.y-x.x.x/libs /opt/kafka/
cp -r /tmp/kafka/kafka_y.y-x.x.x/bin /opt/kafka/
cp -r /tmp/kafka/kafka_y.y-x.x.x/docs /opt/kafka/

rm -r /tmp/kafka

inter.broker.protocol.version=2.1
log.message.format.version=2.1

/opt/kafka/bin/kafka-server-stop.sh
jcmd | grep kafka

/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

102

Prerequisites

You are logged in to Red Hat Enterprise Linux as the kafka user.

Procedure

For each Kafka broker in your AMQ Streams cluster and one at a time:

1. Download the AMQ Streams archive from the Customer Portal.

NOTE

If prompted, log in to your Red Hat account.

2. On the command line, create a temporary directory and extract the contents of the amq-
streams-x.y.z-bin.zip file.

3. Delete the libs, bin, and docs directories from your existing installation:

4. Copy the libs, bin, and docs directories from the temporary directory:

5. Delete the temporary directory.

6. Start Kafka Connect in either standalone or distributed mode.

To start in standalone mode, run the connect-standalone.sh script. Specify the Kafka
Connect standalone configuration file and the configuration files of your Kafka Connect
connectors.

To start in distributed mode, start the Kafka Connect workers with the
/opt/kafka/config/connect-distributed.properties configuration file on all Kafka Connect
nodes:

7. Verify that Kafka Connect is running:

mkdir /tmp/kafka
unzip amq-streams-x.y.z-bin.zip -d /tmp/kafka

rm -rf /opt/kafka/libs /opt/kafka/bin /opt/kafka/docs

cp -r /tmp/kafka/kafka_y.y-x.x.x/libs /opt/kafka/
cp -r /tmp/kafka/kafka_y.y-x.x.x/bin /opt/kafka/
cp -r /tmp/kafka/kafka_y.y-x.x.x/docs /opt/kafka/

rm -r /tmp/kafka

su - kafka
/opt/kafka/bin/connect-standalone.sh /opt/kafka/config/connect-standalone.properties
connector1.properties
[connector2.properties ...]

su - kafka
/opt/kafka/bin/connect-distributed.sh /opt/kafka/config/connect-distributed.properties

CHAPTER 12. AMQ STREAMS AND KAFKA UPGRADES

103

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&productChanged=yes

In standalone mode:

In distributed mode:

8. Verify that Kafka Connect is producing and consuming data as expected.

Additional resources

Running Kafka Connect in standalone mode

Running distributed Kafka Connect

Strategies for upgrading clients

12.5. UPGRADING KAFKA

After you have upgraded your binaries to use the latest version of AMQ Streams, you can upgrade your
brokers and clients to use a higher supported version of Kafka.

Take care to follow the steps in the correct order:

1. Section 12.5.1, “Upgrading Kafka brokers to use the new inter-broker protocol version”

2. Section 12.5.3, “Upgrading client applications to the new Kafka version”

3. Section 12.5.4, “Upgrading Kafka brokers to use the new message format version”

Additional resources

Section 12.4, “Upgrading to AMQ Streams 1.2”

12.5.1. Upgrading Kafka brokers to use the new inter-broker protocol version

Manually configure and restart all Kafka brokers to use the new inter-broker protocol version. After
performing these steps, data is transmitted between the Kafka brokers using the new inter-broker
protocol version.

Messages received are still appended to the message logs in the earlier message format version.

WARNING

Downgrading AMQ Streams is not possible after completing this procedure.

Prerequisites

jcmd | grep ConnectStandalone

jcmd | grep ConnectDistributed

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

104

You have updated the Zookeeper binaries.

You have upgraded all Kafka brokers to AMQ Streams 1.2

You are logged in to Red Hat Enterprise Linux as the kafka user.

Procedure

For each Kafka broker in your AMQ Streams cluster and one at a time:

1. In a text editor, open the broker properties file for the Kafka broker you want to update. Broker
properties files are commonly stored in the /opt/kafka/config/ directory.

2. Set the inter.broker.protocol.version to 2.2.

3. On the command line, stop the Kafka broker that you modified:

4. Restart the Kafka broker that you modified:

5. Verify that the restarted Kafka broker has caught up with the partition replicas it is following.
Use the kafka-topics.sh tool to ensure that all replicas contained in the broker are back in sync.
For instructions, see Listing and describing topics .

12.5.2. Strategies for upgrading clients

The best approach to upgrading your client applications depends on your particular circumstances.
Client applications might include producers, consumers, Kafka Connect, and Kafka MirrorMaker.

Consuming applications need to receive messages in a message format that they understand. You can
ensure that this is the case in one of two ways:

By upgrading all the consumers for a topic before upgrading any of the producers.

By having the brokers down-convert messages to an older format.

Using broker down-conversion puts extra load on the brokers, so it is not ideal to rely on down-
conversion for all topics for a prolonged period of time. For brokers to perform optimally they should not
be down converting messages at all.

Broker down-conversion is configured in two ways:

The topic-level message.format.version configures it for a single topic.

The broker-level log.message.format.version is the default for topics that do not have the
topic-level message.format.version configured.

Another aspect to consider is that once new-version messages have been published to a topic then they
will be visible to consumers. This is because brokers perform down-conversion when they receive
messages from producers, not when they are sent to consumers.

inter.broker.protocol.version=2.2

/opt/kafka/bin/kafka-server-stop.sh
jcmd | grep kafka

/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

CHAPTER 12. AMQ STREAMS AND KAFKA UPGRADES

105

There are a number of strategies you can use to upgrade your clients:

Consumers first

1. Upgrade all the consuming applications.

2. Change the broker-level log.message.format.version to the new version.

3. Upgrade all the producing applications.
This strategy is straightforward, and avoids any broker down-conversion. However, it
assumes that all consumers in your organization can be upgraded in a coordinated way, and it
does not work for applications that are both consumers and producers. There is also a risk
that, if there is a problem with the upgraded clients, new-format messages might get added
to the message log so that you cannot revert to the previous consumer version.

Per-topic consumers first

For each topic:

1. Upgrade all the consuming applications.

2. Change the topic-level message.format.version to the new version.

3. Upgrade all the producing applications.
This strategy avoids any broker down-conversion, and means you can proceed on a topic-
by-topic basis. It does not work for applications that are both consumers and producers of
the same topic. Again, it has the risk that, if there is a problem with the upgraded clients,
new-format messages might get added to the message log.

Per-topic consumers first, with down conversion

For each topic:

1. Change the topic-level message.format.version to the old version (or rely on the topic
defaulting to the broker-level log.message.format.version).

2. Upgrade all the consuming and producing applications.

3. Verify that the upgraded applications function correctly.

4. Change the topic-level message.format.version to the new version.
This strategy requires broker down-conversion, but the load on the brokers is minimized
because it is only required for a single topic (or small group of topics) at a time. It also works
for applications that are both consumers and producers of the same topic. This approach
ensures that the upgraded producers and consumers are working correctly before you
commit to using the new message format version.

The main drawback of this approach is that it can be complicated to manage in a cluster with
many topics and applications.

Other strategies for upgrading client applications are also possible.

NOTE

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

106

NOTE

It is also possible to apply multiple strategies. For example, for the first few applications
and topics the "per-topic consumers first, with down conversion" strategy can be used.
When this has proved successful another, more efficient strategy can be considered
acceptable to use instead.

12.5.3. Upgrading client applications to the new Kafka version

This procedure describes one possible approach to upgrading your client applications to the Kafka
version used for AMQ Streams 1.2.

The procedure is based on the "per-topic consumers first, with down conversion" approach outlined in
Strategies for upgrading clients .

Client applications might include producers, consumers, Kafka Connect, and MirrorMaker.

Prerequisites

You have updated the Zookeeper binaries.

You have upgraded all Kafka brokers to AMQ Streams 1.2.

You have configured Kafka brokers to use the new inter-broker protocol version.

You are logged in to Red Hat Enterprise Linux as the kafka user.

Procedure

For each topic:

1. On the command line, set the message.format.version configuration option to 2.1.

2. Upgrade all the consuming and producing applications for the topic.

3. Verify that the upgraded applications function correctly.

4. Change the topic’s message.format.version configuration option to 2.2.

Additional resources

Strategies for upgrading clients

12.5.4. Upgrading Kafka brokers to use the new message format version

When client applications have been upgraded, you can update the Kafka brokers to use the new message
format version.

If you did not modify topic configurations when you upgraded your client applications to use the Kafka

bin/kafka-configs.sh --zookeeper <ZookeeperAddress> --entity-type topics --entity-name
<TopicName> --alter --add-config message.format.version=2.1

bin/kafka-configs.sh --zookeeper <ZookeeperAddress> --entity-type topics --entity-name
<TopicName> --alter --add-config message.format.version=2.2

CHAPTER 12. AMQ STREAMS AND KAFKA UPGRADES

107

version required for AMQ Streams 1.2, the Kafka brokers are now converting messages down to the
previous message format version, which can cause a reduction in performance. Therefore, it is important
that you update all Kafka brokers to use the new message format version as soon as possible.

NOTE

Update and restart the Kafka brokers one-by-one. Before you restart a modified broker,
stop the broker you configured and restarted previously.

Prerequisites

You have updated the Zookeeper binaries.

You have upgraded all Kafka brokers to AMQ Streams 1.2.

You have configured Kafka brokers to use the new inter-broker protocol version.

You have upgraded supported client applications that consume messages from topics for which
the message.format.version property is not explicitly configured at the topic level.

You are logged in to Red Hat Enterprise Linux as the kafka user.

Procedure

For each Kafka broker in your AMQ Streams cluster and one at a time:

1. In a text editor, open the broker properties file for the Kafka broker you want to update. Broker
properties files are commonly stored in the /opt/kafka/config/ directory.

2. Set the log.message.format.version to 2.2.

3. On the command line, stop the Kafka broker that you most recently modified and restarted as
part of this procedure. If you are modifying the first Kafka broker in this procedure, go to step
four.

4. Restart the Kafka broker whose configuration you modified in step two:

5. Verify that the restarted Kafka broker has caught up with the partition replicas it is following.
Use the kafka-topics.sh tool to ensure that all replicas contained in the broker are back in sync.
For instructions, see Listing and describing topics .

log.message.format.version=2.2

/opt/kafka/bin/kafka-server-stop.sh
jcmd | grep kafka

/opt/kafka/bin/kafka-server-start.sh -daemon /opt/kafka/config/server.properties

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

108

APPENDIX A. BROKER CONFIGURATION PARAMETERS
zookeeper.connect

Type: string
Importance: high
Dynamic update: read-only
Zookeeper host string.

advertised.host.name

Type: string
Default: null
Importance: high
Dynamic update: read-only
DEPRECATED: only used when advertised.listeners or listeners are not set. Use
advertised.listeners instead. Hostname to publish to ZooKeeper for clients to use. In IaaS
environments, this may need to be different from the interface to which the broker binds. If this is not
set, it will use the value for host.name if configured. Otherwise it will use the value returned from
java.net.InetAddress.getCanonicalHostName().

advertised.listeners

Type: string
Default: null
Importance: high
Dynamic update: per-broker
Listeners to publish to ZooKeeper for clients to use, if different than the listeners config property. In
IaaS environments, this may need to be different from the interface to which the broker binds. If this
is not set, the value for listeners will be used. Unlike listeners it is not valid to advertise the 0.0.0.0
meta-address.

advertised.port

Type: int
Default: null
Importance: high
Dynamic update: read-only
DEPRECATED: only used when advertised.listeners or listeners are not set. Use
advertised.listeners instead. The port to publish to ZooKeeper for clients to use. In IaaS
environments, this may need to be different from the port to which the broker binds. If this is not set,
it will publish the same port that the broker binds to.

auto.create.topics.enable

Type: boolean
Default: true
Importance: high
Dynamic update: read-only
Enable auto creation of topic on the server.

auto.leader.rebalance.enable

Type: boolean
Default: true
Importance: high
Dynamic update: read-only

Enables auto leader balancing. A background thread checks and triggers leader balance if required at

APPENDIX A. BROKER CONFIGURATION PARAMETERS

109

Enables auto leader balancing. A background thread checks and triggers leader balance if required at
regular intervals.

background.threads

Type: int
Default: 10
Valid Values: [1,…]
Importance: high
Dynamic update: cluster-wide
The number of threads to use for various background processing tasks.

broker.id

Type: int
Default: -1
Importance: high
Dynamic update: read-only
The broker id for this server. If unset, a unique broker id will be generated.To avoid conflicts between
zookeeper generated broker id’s and user configured broker id’s, generated broker ids start from
reserved.broker.max.id + 1.

compression.type

Type: string
Default: producer
Importance: high
Dynamic update: cluster-wide
Specify the final compression type for a given topic. This configuration accepts the standard
compression codecs ('gzip', 'snappy', 'lz4'). It additionally accepts 'uncompressed' which is equivalent
to no compression; and 'producer' which means retain the original compression codec set by the
producer.

delete.topic.enable

Type: boolean
Default: true
Importance: high
Dynamic update: read-only
Enables delete topic. Delete topic through the admin tool will have no effect if this config is turned
off.

host.name

Type: string
Default: ""
Importance: high
Dynamic update: read-only
DEPRECATED: only used when listeners is not set. Use listeners instead. hostname of broker. If this
is set, it will only bind to this address. If this is not set, it will bind to all interfaces.

leader.imbalance.check.interval.seconds

Type: long
Default: 300
Importance: high
Dynamic update: read-only
The frequency with which the partition rebalance check is triggered by the controller.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

110

leader.imbalance.per.broker.percentage

Type: int
Default: 10
Importance: high
Dynamic update: read-only
The ratio of leader imbalance allowed per broker. The controller would trigger a leader balance if it
goes above this value per broker. The value is specified in percentage.

listeners

Type: string
Default: null
Importance: high
Dynamic update: per-broker
Listener List - Comma-separated list of URIs we will listen on and the listener names. If the listener
name is not a security protocol, listener.security.protocol.map must also be set. Specify hostname as
0.0.0.0 to bind to all interfaces. Leave hostname empty to bind to default interface. Examples of
legal listener lists: PLAINTEXT://myhost:9092,SSL://:9091
CLIENT://0.0.0.0:9092,REPLICATION://localhost:9093.

log.dir

Type: string
Default: /tmp/kafka-logs
Importance: high
Dynamic update: read-only
The directory in which the log data is kept (supplemental for log.dirs property).

log.dirs

Type: string
Default: null
Importance: high
Dynamic update: read-only
The directories in which the log data is kept. If not set, the value in log.dir is used.

log.flush.interval.messages

Type: long
Default: 9223372036854775807
Valid Values: [1,…]
Importance: high
Dynamic update: cluster-wide
The number of messages accumulated on a log partition before messages are flushed to disk.

log.flush.interval.ms

Type: long
Default: null
Importance: high
Dynamic update: cluster-wide
The maximum time in ms that a message in any topic is kept in memory before flushed to disk. If not
set, the value in log.flush.scheduler.interval.ms is used.

log.flush.offset.checkpoint.interval.ms

Type: int

APPENDIX A. BROKER CONFIGURATION PARAMETERS

111

Default: 60000
Valid Values: [0,…]
Importance: high
Dynamic update: read-only
The frequency with which we update the persistent record of the last flush which acts as the log
recovery point.

log.flush.scheduler.interval.ms

Type: long
Default: 9223372036854775807
Importance: high
Dynamic update: read-only
The frequency in ms that the log flusher checks whether any log needs to be flushed to disk.

log.flush.start.offset.checkpoint.interval.ms

Type: int
Default: 60000
Valid Values: [0,…]
Importance: high
Dynamic update: read-only
The frequency with which we update the persistent record of log start offset.

log.retention.bytes

Type: long
Default: -1
Importance: high
Dynamic update: cluster-wide
The maximum size of the log before deleting it.

log.retention.hours

Type: int
Default: 168
Importance: high
Dynamic update: read-only
The number of hours to keep a log file before deleting it (in hours), tertiary to log.retention.ms
property.

log.retention.minutes

Type: int
Default: null
Importance: high
Dynamic update: read-only
The number of minutes to keep a log file before deleting it (in minutes), secondary to
log.retention.ms property. If not set, the value in log.retention.hours is used.

log.retention.ms

Type: long
Default: null
Importance: high
Dynamic update: cluster-wide
The number of milliseconds to keep a log file before deleting it (in milliseconds), If not set, the value
in log.retention.minutes is used.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

112

log.roll.hours

Type: int
Default: 168
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
The maximum time before a new log segment is rolled out (in hours), secondary to log.roll.ms
property.

log.roll.jitter.hours

Type: int
Default: 0
Valid Values: [0,…]
Importance: high
Dynamic update: read-only
The maximum jitter to subtract from logRollTimeMillis (in hours), secondary to log.roll.jitter.ms
property.

log.roll.jitter.ms

Type: long
Default: null
Importance: high
Dynamic update: cluster-wide
The maximum jitter to subtract from logRollTimeMillis (in milliseconds). If not set, the value in
log.roll.jitter.hours is used.

log.roll.ms

Type: long
Default: null
Importance: high
Dynamic update: cluster-wide
The maximum time before a new log segment is rolled out (in milliseconds). If not set, the value in
log.roll.hours is used.

log.segment.bytes

Type: int
Default: 1073741824
Valid Values: [14,…]
Importance: high
Dynamic update: cluster-wide
The maximum size of a single log file.

log.segment.delete.delay.ms

Type: long
Default: 60000
Valid Values: [0,…]
Importance: high
Dynamic update: cluster-wide
The amount of time to wait before deleting a file from the filesystem.

message.max.bytes

APPENDIX A. BROKER CONFIGURATION PARAMETERS

113

Type: int
Default: 1000012
Valid Values: [0,…]
Importance: high
Dynamic update: cluster-wide
The largest record batch size allowed by Kafka. If this is increased and there are consumers older
than 0.10.2, the consumers' fetch size must also be increased so that they can fetch record batches
this large.

In the latest message format version, records are always grouped into batches for efficiency. In
previous message format versions, uncompressed records are not grouped into batches and this limit
only applies to a single record in that case.

This can be set per topic with the topic level max.message.bytes config.

min.insync.replicas

Type: int
Default: 1
Valid Values: [1,…]
Importance: high
Dynamic update: cluster-wide
When a producer sets acks to "all" (or "-1"), min.insync.replicas specifies the minimum number of
replicas that must acknowledge a write for the write to be considered successful. If this minimum
cannot be met, then the producer will raise an exception (either NotEnoughReplicas or
NotEnoughReplicasAfterAppend). When used together, min.insync.replicas and acks allow you to
enforce greater durability guarantees. A typical scenario would be to create a topic with a replication
factor of 3, set min.insync.replicas to 2, and produce with acks of "all". This will ensure that the
producer raises an exception if a majority of replicas do not receive a write.

num.io.threads

Type: int
Default: 8
Valid Values: [1,…]
Importance: high
Dynamic update: cluster-wide
The number of threads that the server uses for processing requests, which may include disk I/O.

num.network.threads

Type: int
Default: 3
Valid Values: [1,…]
Importance: high
Dynamic update: cluster-wide
The number of threads that the server uses for receiving requests from the network and sending
responses to the network.

num.recovery.threads.per.data.dir

Type: int
Default: 1
Valid Values: [1,…]
Importance: high
Dynamic update: cluster-wide

The number of threads per data directory to be used for log recovery at startup and flushing at

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

114

The number of threads per data directory to be used for log recovery at startup and flushing at
shutdown.

num.replica.alter.log.dirs.threads

Type: int
Default: null
Importance: high
Dynamic update: read-only
The number of threads that can move replicas between log directories, which may include disk I/O.

num.replica.fetchers

Type: int
Default: 1
Importance: high
Dynamic update: cluster-wide
Number of fetcher threads used to replicate messages from a source broker. Increasing this value
can increase the degree of I/O parallelism in the follower broker.

offset.metadata.max.bytes

Type: int
Default: 4096
Importance: high
Dynamic update: read-only
The maximum size for a metadata entry associated with an offset commit.

offsets.commit.required.acks

Type: short
Default: -1
Importance: high
Dynamic update: read-only
The required acks before the commit can be accepted. In general, the default (-1) should not be
overridden.

offsets.commit.timeout.ms

Type: int
Default: 5000
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
Offset commit will be delayed until all replicas for the offsets topic receive the commit or this
timeout is reached. This is similar to the producer request timeout.

offsets.load.buffer.size

Type: int
Default: 5242880
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
Batch size for reading from the offsets segments when loading offsets into the cache.

offsets.retention.check.interval.ms

APPENDIX A. BROKER CONFIGURATION PARAMETERS

115

Type: long
Default: 600000
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
Frequency at which to check for stale offsets.

offsets.retention.minutes

Type: int
Default: 10080
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
Offsets older than this retention period will be discarded.

offsets.topic.compression.codec

Type: int
Default: 0
Importance: high
Dynamic update: read-only
Compression codec for the offsets topic - compression may be used to achieve "atomic" commits.

offsets.topic.num.partitions

Type: int
Default: 50
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
The number of partitions for the offset commit topic (should not change after deployment).

offsets.topic.replication.factor

Type: short
Default: 3
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
The replication factor for the offsets topic (set higher to ensure availability). Internal topic creation
will fail until the cluster size meets this replication factor requirement.

offsets.topic.segment.bytes

Type: int
Default: 104857600
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
The offsets topic segment bytes should be kept relatively small in order to facilitate faster log
compaction and cache loads.

port

Type: int
Default: 9092
Importance: high

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

116

Dynamic update: read-only
DEPRECATED: only used when listeners is not set. Use listeners instead. the port to listen and
accept connections on.

queued.max.requests

Type: int
Default: 500
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
The number of queued requests allowed before blocking the network threads.

quota.consumer.default

Type: long
Default: 9223372036854775807
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
DEPRECATED: Used only when dynamic default quotas are not configured for <user, <client-id> or
<user, client-id> in Zookeeper. Any consumer distinguished by clientId/consumer group will get
throttled if it fetches more bytes than this value per-second.

quota.producer.default

Type: long
Default: 9223372036854775807
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
DEPRECATED: Used only when dynamic default quotas are not configured for <user>, <client-id> or
<user, client-id> in Zookeeper. Any producer distinguished by clientId will get throttled if it produces
more bytes than this value per-second.

replica.fetch.min.bytes

Type: int
Default: 1
Importance: high
Dynamic update: read-only
Minimum bytes expected for each fetch response. If not enough bytes, wait up to
replicaMaxWaitTimeMs.

replica.fetch.wait.max.ms

Type: int
Default: 500
Importance: high
Dynamic update: read-only
max wait time for each fetcher request issued by follower replicas. This value should always be less
than the replica.lag.time.max.ms at all times to prevent frequent shrinking of ISR for low throughput
topics.

replica.high.watermark.checkpoint.interval.ms

Type: long
Default: 5000

APPENDIX A. BROKER CONFIGURATION PARAMETERS

117

Importance: high
Dynamic update: read-only
The frequency with which the high watermark is saved out to disk.

replica.lag.time.max.ms

Type: long
Default: 10000
Importance: high
Dynamic update: read-only
If a follower hasn’t sent any fetch requests or hasn’t consumed up to the leaders log end offset for at
least this time, the leader will remove the follower from isr.

replica.socket.receive.buffer.bytes

Type: int
Default: 65536
Importance: high
Dynamic update: read-only
The socket receive buffer for network requests.

replica.socket.timeout.ms

Type: int
Default: 30000
Importance: high
Dynamic update: read-only
The socket timeout for network requests. Its value should be at least replica.fetch.wait.max.ms.

request.timeout.ms

Type: int
Default: 30000
Importance: high
Dynamic update: read-only
The configuration controls the maximum amount of time the client will wait for the response of a
request. If the response is not received before the timeout elapses the client will resend the request
if necessary or fail the request if retries are exhausted.

socket.receive.buffer.bytes

Type: int
Default: 102400
Importance: high
Dynamic update: read-only
The SO_RCVBUF buffer of the socket sever sockets. If the value is -1, the OS default will be used.

socket.request.max.bytes

Type: int
Default: 104857600
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
The maximum number of bytes in a socket request.

socket.send.buffer.bytes

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

118

Type: int
Default: 102400
Importance: high
Dynamic update: read-only
The SO_SNDBUF buffer of the socket sever sockets. If the value is -1, the OS default will be used.

transaction.max.timeout.ms

Type: int
Default: 900000
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
The maximum allowed timeout for transactions. If a client’s requested transaction time exceed this,
then the broker will return an error in InitProducerIdRequest. This prevents a client from too large of
a timeout, which can stall consumers reading from topics included in the transaction.

transaction.state.log.load.buffer.size

Type: int
Default: 5242880
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
Batch size for reading from the transaction log segments when loading producer ids and transactions
into the cache.

transaction.state.log.min.isr

Type: int
Default: 2
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
Overridden min.insync.replicas config for the transaction topic.

transaction.state.log.num.partitions

Type: int
Default: 50
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
The number of partitions for the transaction topic (should not change after deployment).

transaction.state.log.replication.factor

Type: short
Default: 3
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
The replication factor for the transaction topic (set higher to ensure availability). Internal topic
creation will fail until the cluster size meets this replication factor requirement.

transaction.state.log.segment.bytes

Type: int

APPENDIX A. BROKER CONFIGURATION PARAMETERS

119

Default: 104857600
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
The transaction topic segment bytes should be kept relatively small in order to facilitate faster log
compaction and cache loads.

transactional.id.expiration.ms

Type: int
Default: 604800000
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
The maximum amount of time in ms that the transaction coordinator will wait before proactively
expire a producer’s transactional id without receiving any transaction status updates from it.

unclean.leader.election.enable

Type: boolean
Default: false
Importance: high
Dynamic update: cluster-wide
Indicates whether to enable replicas not in the ISR set to be elected as leader as a last resort, even
though doing so may result in data loss.

zookeeper.connection.timeout.ms

Type: int
Default: null
Importance: high
Dynamic update: read-only
The max time that the client waits to establish a connection to zookeeper. If not set, the value in
zookeeper.session.timeout.ms is used.

zookeeper.max.in.flight.requests

Type: int
Default: 10
Valid Values: [1,…]
Importance: high
Dynamic update: read-only
The maximum number of unacknowledged requests the client will send to Zookeeper before
blocking.

zookeeper.session.timeout.ms

Type: int
Default: 6000
Importance: high
Dynamic update: read-only
Zookeeper session timeout.

zookeeper.set.acl

Type: boolean
Default: false
Importance: high

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

120

Dynamic update: read-only
Set client to use secure ACLs.

broker.id.generation.enable

Type: boolean
Default: true
Importance: medium
Dynamic update: read-only
Enable automatic broker id generation on the server. When enabled the value configured for
reserved.broker.max.id should be reviewed.

broker.rack

Type: string
Default: null
Importance: medium
Dynamic update: read-only
Rack of the broker. This will be used in rack aware replication assignment for fault tolerance.
Examples: RACK1, us-east-1d.

connections.max.idle.ms

Type: long
Default: 600000
Importance: medium
Dynamic update: read-only
Idle connections timeout: the server socket processor threads close the connections that idle more
than this.

controlled.shutdown.enable

Type: boolean
Default: true
Importance: medium
Dynamic update: read-only
Enable controlled shutdown of the server.

controlled.shutdown.max.retries

Type: int
Default: 3
Importance: medium
Dynamic update: read-only
Controlled shutdown can fail for multiple reasons. This determines the number of retries when such
failure happens.

controlled.shutdown.retry.backoff.ms

Type: long
Default: 5000
Importance: medium
Dynamic update: read-only
Before each retry, the system needs time to recover from the state that caused the previous failure
(Controller fail over, replica lag etc). This config determines the amount of time to wait before
retrying.

APPENDIX A. BROKER CONFIGURATION PARAMETERS

121

controller.socket.timeout.ms

Type: int
Default: 30000
Importance: medium
Dynamic update: read-only
The socket timeout for controller-to-broker channels.

default.replication.factor

Type: int
Default: 1
Importance: medium
Dynamic update: read-only
default replication factors for automatically created topics.

delegation.token.expiry.time.ms

Type: long
Default: 86400000
Valid Values: [1,…]
Importance: medium
Dynamic update: read-only
The token validity time in seconds before the token needs to be renewed. Default value 1 day.

delegation.token.master.key

Type: password
Default: null
Importance: medium
Dynamic update: read-only
Master/secret key to generate and verify delegation tokens. Same key must be configured across all
the brokers. If the key is not set or set to empty string, brokers will disable the delegation token
support.

delegation.token.max.lifetime.ms

Type: long
Default: 604800000
Valid Values: [1,…]
Importance: medium
Dynamic update: read-only
The token has a maximum lifetime beyond which it cannot be renewed anymore. Default value 7
days.

delete.records.purgatory.purge.interval.requests

Type: int
Default: 1
Importance: medium
Dynamic update: read-only
The purge interval (in number of requests) of the delete records request purgatory.

fetch.purgatory.purge.interval.requests

Type: int
Default: 1000
Importance: medium

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

122

Dynamic update: read-only
The purge interval (in number of requests) of the fetch request purgatory.

group.initial.rebalance.delay.ms

Type: int
Default: 3000
Importance: medium
Dynamic update: read-only
The amount of time the group coordinator will wait for more consumers to join a new group before
performing the first rebalance. A longer delay means potentially fewer rebalances, but increases the
time until processing begins.

group.max.session.timeout.ms

Type: int
Default: 300000
Importance: medium
Dynamic update: read-only
The maximum allowed session timeout for registered consumers. Longer timeouts give consumers
more time to process messages in between heartbeats at the cost of a longer time to detect failures.

group.min.session.timeout.ms

Type: int
Default: 6000
Importance: medium
Dynamic update: read-only
The minimum allowed session timeout for registered consumers. Shorter timeouts result in quicker
failure detection at the cost of more frequent consumer heartbeating, which can overwhelm broker
resources.

inter.broker.listener.name

Type: string
Default: null
Importance: medium
Dynamic update: read-only
Name of listener used for communication between brokers. If this is unset, the listener name is
defined by security.inter.broker.protocol. It is an error to set this and security.inter.broker.protocol
properties at the same time.

inter.broker.protocol.version

Type: string
Default: 2.0-IV1
Importance: medium
Dynamic update: read-only
Specify which version of the inter-broker protocol will be used. This is typically bumped after all
brokers were upgraded to a new version. Example of some valid values are: 0.8.0, 0.8.1, 0.8.1.1, 0.8.2,
0.8.2.0, 0.8.2.1, 0.9.0.0, 0.9.0.1 Check ApiVersion for the full list.

log.cleaner.backoff.ms

Type: long
Default: 15000
Valid Values: [0,…]

APPENDIX A. BROKER CONFIGURATION PARAMETERS

123

Importance: medium
Dynamic update: cluster-wide
The amount of time to sleep when there are no logs to clean.

log.cleaner.dedupe.buffer.size

Type: long
Default: 134217728
Importance: medium
Dynamic update: cluster-wide
The total memory used for log deduplication across all cleaner threads.

log.cleaner.delete.retention.ms

Type: long
Default: 86400000
Importance: medium
Dynamic update: cluster-wide
How long are delete records retained?

log.cleaner.enable

Type: boolean
Default: true
Importance: medium
Dynamic update: read-only
Enable the log cleaner process to run on the server. Should be enabled if using any topics with a
cleanup.policy=compact including the internal offsets topic. If disabled those topics will not be
compacted and continually grow in size.

log.cleaner.io.buffer.load.factor

Type: double
Default: 0.9
Importance: medium
Dynamic update: cluster-wide
Log cleaner dedupe buffer load factor. The percentage full the dedupe buffer can become. A higher
value will allow more log to be cleaned at once but will lead to more hash collisions.

log.cleaner.io.buffer.size

Type: int
Default: 524288
Valid Values: [0,…]
Importance: medium
Dynamic update: cluster-wide
The total memory used for log cleaner I/O buffers across all cleaner threads.

log.cleaner.io.max.bytes.per.second

Type: double
Default: 1.7976931348623157E308
Importance: medium
Dynamic update: cluster-wide
The log cleaner will be throttled so that the sum of its read and write i/o will be less than this value on
average.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

124

log.cleaner.min.cleanable.ratio

Type: double
Default: 0.5
Importance: medium
Dynamic update: cluster-wide
The minimum ratio of dirty log to total log for a log to eligible for cleaning.

log.cleaner.min.compaction.lag.ms

Type: long
Default: 0
Importance: medium
Dynamic update: cluster-wide
The minimum time a message will remain uncompacted in the log. Only applicable for logs that are
being compacted.

log.cleaner.threads

Type: int
Default: 1
Valid Values: [0,…]
Importance: medium
Dynamic update: cluster-wide
The number of background threads to use for log cleaning.

log.cleanup.policy

Type: list
Default: delete
Valid Values: [compact, delete]
Importance: medium
Dynamic update: cluster-wide
The default cleanup policy for segments beyond the retention window. A comma separated list of
valid policies. Valid policies are: "delete" and "compact".

log.index.interval.bytes

Type: int
Default: 4096
Valid Values: [0,…]
Importance: medium
Dynamic update: cluster-wide
The interval with which we add an entry to the offset index.

log.index.size.max.bytes

Type: int
Default: 10485760
Valid Values: [4,…]
Importance: medium
Dynamic update: cluster-wide
The maximum size in bytes of the offset index.

log.message.format.version

Type: string
Default: 2.0-IV1

APPENDIX A. BROKER CONFIGURATION PARAMETERS

125

Importance: medium
Dynamic update: read-only
Specify the message format version the broker will use to append messages to the logs. The value
should be a valid ApiVersion. Some examples are: 0.8.2, 0.9.0.0, 0.10.0, check ApiVersion for more
details. By setting a particular message format version, the user is certifying that all the existing
messages on disk are smaller or equal than the specified version. Setting this value incorrectly will
cause consumers with older versions to break as they will receive messages with a format that they
don’t understand.

log.message.timestamp.difference.max.ms

Type: long
Default: 9223372036854775807
Importance: medium
Dynamic update: cluster-wide
The maximum difference allowed between the timestamp when a broker receives a message and the
timestamp specified in the message. If log.message.timestamp.type=CreateTime, a message will be
rejected if the difference in timestamp exceeds this threshold. This configuration is ignored if
log.message.timestamp.type=LogAppendTime.The maximum timestamp difference allowed should
be no greater than log.retention.ms to avoid unnecessarily frequent log rolling.

log.message.timestamp.type

Type: string
Default: CreateTime
Valid Values: [CreateTime, LogAppendTime]
Importance: medium
Dynamic update: cluster-wide
Define whether the timestamp in the message is message create time or log append time. The value
should be either CreateTime or LogAppendTime.

log.preallocate

Type: boolean
Default: false
Importance: medium
Dynamic update: cluster-wide
Should pre allocate file when create new segment? If you are using Kafka on Windows, you probably
need to set it to true.

log.retention.check.interval.ms

Type: long
Default: 300000
Valid Values: [1,…]
Importance: medium
Dynamic update: read-only
The frequency in milliseconds that the log cleaner checks whether any log is eligible for deletion.

max.connections.per.ip

Type: int
Default: 2147483647
Valid Values: [0,…]
Importance: medium
Dynamic update: read-only

The maximum number of connections we allow from each ip address. This can be set to 0 if there are

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

126

The maximum number of connections we allow from each ip address. This can be set to 0 if there are
overrides configured using max.connections.per.ip.overrides property.

max.connections.per.ip.overrides

Type: string
Default: ""
Importance: medium
Dynamic update: read-only
A comma-separated list of per-ip or hostname overrides to the default maximum number of
connections. An example value is "hostName:100,127.0.0.1:200".

max.incremental.fetch.session.cache.slots

Type: int
Default: 1000
Valid Values: [0,…]
Importance: medium
Dynamic update: read-only
The maximum number of incremental fetch sessions that we will maintain.

num.partitions

Type: int
Default: 1
Valid Values: [1,…]
Importance: medium
Dynamic update: read-only
The default number of log partitions per topic.

password.encoder.old.secret

Type: password
Default: null
Importance: medium
Dynamic update: read-only
The old secret that was used for encoding dynamically configured passwords. This is required only
when the secret is updated. If specified, all dynamically encoded passwords are decoded using this
old secret and re-encoded using password.encoder.secret when broker starts up.

password.encoder.secret

Type: password
Default: null
Importance: medium
Dynamic update: read-only
The secret used for encoding dynamically configured passwords for this broker.

principal.builder.class

Type: class
Default: null
Importance: medium
Dynamic update: per-broker
The fully qualified name of a class that implements the KafkaPrincipalBuilder interface, which is used
to build the KafkaPrincipal object used during authorization. This config also supports the
deprecated PrincipalBuilder interface which was previously used for client authentication over SSL. If
no principal builder is defined, the default behavior depends on the security protocol in use. For SSL

APPENDIX A. BROKER CONFIGURATION PARAMETERS

127

authentication, the principal name will be the distinguished name from the client certificate if one is
provided; otherwise, if client authentication is not required, the principal name will be ANONYMOUS.
For SASL authentication, the principal will be derived using the rules defined by
sasl.kerberos.principal.to.local.rules if GSSAPI is in use, and the SASL authentication ID for other
mechanisms. For PLAINTEXT, the principal will be ANONYMOUS.

producer.purgatory.purge.interval.requests

Type: int
Default: 1000
Importance: medium
Dynamic update: read-only
The purge interval (in number of requests) of the producer request purgatory.

queued.max.request.bytes

Type: long
Default: -1
Importance: medium
Dynamic update: read-only
The number of queued bytes allowed before no more requests are read.

replica.fetch.backoff.ms

Type: int
Default: 1000
Valid Values: [0,…]
Importance: medium
Dynamic update: read-only
The amount of time to sleep when fetch partition error occurs.

replica.fetch.max.bytes

Type: int
Default: 1048576
Valid Values: [0,…]
Importance: medium
Dynamic update: read-only
The number of bytes of messages to attempt to fetch for each partition. This is not an absolute
maximum, if the first record batch in the first non-empty partition of the fetch is larger than this
value, the record batch will still be returned to ensure that progress can be made. The maximum
record batch size accepted by the broker is defined via message.max.bytes (broker config) or
max.message.bytes (topic config).

replica.fetch.response.max.bytes

Type: int
Default: 10485760
Valid Values: [0,…]
Importance: medium
Dynamic update: read-only
Maximum bytes expected for the entire fetch response. Records are fetched in batches, and if the
first record batch in the first non-empty partition of the fetch is larger than this value, the record
batch will still be returned to ensure that progress can be made. As such, this is not an absolute
maximum. The maximum record batch size accepted by the broker is defined via
message.max.bytes (broker config) or max.message.bytes (topic config).

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

128

reserved.broker.max.id

Type: int
Default: 1000
Valid Values: [0,…]
Importance: medium
Dynamic update: read-only
Max number that can be used for a broker.id.

sasl.client.callback.handler.class

Type: class
Default: null
Importance: medium
Dynamic update: read-only
The fully qualified name of a SASL client callback handler class that implements the
AuthenticateCallbackHandler interface.

sasl.enabled.mechanisms

Type: list
Default: GSSAPI
Importance: medium
Dynamic update: per-broker
The list of SASL mechanisms enabled in the Kafka server. The list may contain any mechanism for
which a security provider is available. Only GSSAPI is enabled by default.

sasl.jaas.config

Type: password
Default: null
Importance: medium
Dynamic update: per-broker
JAAS login context parameters for SASL connections in the format used by JAAS configuration files.
JAAS configuration file format is described here. The format for the value is: ‘loginModuleClass
controlFlag (optionName=optionValue)*;’. For brokers, the config must be prefixed with listener
prefix and SASL mechanism name in lower-case. For example, listener.name.sasl_ssl.scram-sha-
256.sasl.jaas.config=com.example.ScramLoginModule required;.

sasl.kerberos.kinit.cmd

Type: string
Default: /usr/bin/kinit
Importance: medium
Dynamic update: per-broker
Kerberos kinit command path.

sasl.kerberos.min.time.before.relogin

Type: long
Default: 60000
Importance: medium
Dynamic update: per-broker
Login thread sleep time between refresh attempts.

sasl.kerberos.principal.to.local.rules

Type: list

APPENDIX A. BROKER CONFIGURATION PARAMETERS

129

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

Default: DEFAULT
Importance: medium
Dynamic update: per-broker
A list of rules for mapping from principal names to short names (typically operating system
usernames). The rules are evaluated in order and the first rule that matches a principal name is used
to map it to a short name. Any later rules in the list are ignored. By default, principal names of the
form {username}/{hostname}@{REALM} are mapped to {username}. For more details on the format
please see #security_authz[security authorization and acls]. Note that this configuration is ignored if
an extension of KafkaPrincipalBuilder is provided by the principal.builder.class configuration.

sasl.kerberos.service.name

Type: string
Default: null
Importance: medium
Dynamic update: per-broker
The Kerberos principal name that Kafka runs as. This can be defined either in Kafka’s JAAS config or
in Kafka’s config.

sasl.kerberos.ticket.renew.jitter

Type: double
Default: 0.05
Importance: medium
Dynamic update: per-broker
Percentage of random jitter added to the renewal time.

sasl.kerberos.ticket.renew.window.factor

Type: double
Default: 0.8
Importance: medium
Dynamic update: per-broker
Login thread will sleep until the specified window factor of time from last refresh to ticket’s expiry
has been reached, at which time it will try to renew the ticket.

sasl.login.callback.handler.class

Type: class
Default: null
Importance: medium
Dynamic update: read-only
The fully qualified name of a SASL login callback handler class that implements the
AuthenticateCallbackHandler interface. For brokers, login callback handler config must be prefixed
with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-
256.sasl.login.callback.handler.class=com.example.CustomScramLoginCallbackHandler.

sasl.login.class

Type: class
Default: null
Importance: medium
Dynamic update: read-only
The fully qualified name of a class that implements the Login interface. For brokers, login config
must be prefixed with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-256.sasl.login.class=com.example.CustomScramLogin.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

130

sasl.login.refresh.buffer.seconds

Type: short
Default: 300
Importance: medium
Dynamic update: per-broker
The amount of buffer time before credential expiration to maintain when refreshing a credential, in
seconds. If a refresh would otherwise occur closer to expiration than the number of buffer seconds
then the refresh will be moved up to maintain as much of the buffer time as possible. Legal values are
between 0 and 3600 (1 hour); a default value of 300 (5 minutes) is used if no value is specified. This
value and sasl.login.refresh.min.period.seconds are both ignored if their sum exceeds the remaining
lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.min.period.seconds

Type: short
Default: 60
Importance: medium
Dynamic update: per-broker
The desired minimum time for the login refresh thread to wait before refreshing a credential, in
seconds. Legal values are between 0 and 900 (15 minutes); a default value of 60 (1 minute) is used if
no value is specified. This value and sasl.login.refresh.buffer.seconds are both ignored if their sum
exceeds the remaining lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.window.factor

Type: double
Default: 0.8
Importance: medium
Dynamic update: per-broker
Login refresh thread will sleep until the specified window factor relative to the credential’s lifetime
has been reached, at which time it will try to refresh the credential. Legal values are between 0.5
(50%) and 1.0 (100%) inclusive; a default value of 0.8 (80%) is used if no value is specified. Currently
applies only to OAUTHBEARER.

sasl.login.refresh.window.jitter

Type: double
Default: 0.05
Importance: medium
Dynamic update: per-broker
The maximum amount of random jitter relative to the credential’s lifetime that is added to the login
refresh thread’s sleep time. Legal values are between 0 and 0.25 (25%) inclusive; a default value of
0.05 (5%) is used if no value is specified. Currently applies only to OAUTHBEARER.

sasl.mechanism.inter.broker.protocol

Type: string
Default: GSSAPI
Importance: medium
Dynamic update: per-broker
SASL mechanism used for inter-broker communication. Default is GSSAPI.

sasl.server.callback.handler.class

Type: class
Default: null
Importance: medium

APPENDIX A. BROKER CONFIGURATION PARAMETERS

131

Dynamic update: read-only
The fully qualified name of a SASL server callback handler class that implements the
AuthenticateCallbackHandler interface. Server callback handlers must be prefixed with listener prefix
and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.plain.sasl.server.callback.handler.class=com.example.CustomPlainCallbackHandler.

security.inter.broker.protocol

Type: string
Default: PLAINTEXT
Importance: medium
Dynamic update: read-only
Security protocol used to communicate between brokers. Valid values are: PLAINTEXT, SSL,
SASL_PLAINTEXT, SASL_SSL. It is an error to set this and inter.broker.listener.name properties at
the same time.

ssl.cipher.suites

Type: list
Default: ""
Importance: medium
Dynamic update: per-broker
A list of cipher suites. This is a named combination of authentication, encryption, MAC and key
exchange algorithm used to negotiate the security settings for a network connection using TLS or
SSL network protocol. By default all the available cipher suites are supported.

ssl.client.auth

Type: string
Default: none
Valid Values: [required, requested, none]
Importance: medium
Dynamic update: per-broker
Configures kafka broker to request client authentication. The following settings are common:

ssl.client.auth=required If set to required client authentication is required.

ssl.client.auth=requested This means client authentication is optional. unlike requested , if
this option is set client can choose not to provide authentication information about itself

ssl.client.auth=none This means client authentication is not needed.

ssl.enabled.protocols

Type: list
Default: TLSv1.2,TLSv1.1,TLSv1
Importance: medium
Dynamic update: per-broker
The list of protocols enabled for SSL connections.

ssl.key.password

Type: password
Default: null
Importance: medium
Dynamic update: per-broker
The password of the private key in the key store file. This is optional for client.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

132

ssl.keymanager.algorithm

Type: string
Default: SunX509
Importance: medium
Dynamic update: per-broker
The algorithm used by key manager factory for SSL connections. Default value is the key manager
factory algorithm configured for the Java Virtual Machine.

ssl.keystore.location

Type: string
Default: null
Importance: medium
Dynamic update: per-broker
The location of the key store file. This is optional for client and can be used for two-way
authentication for client.

ssl.keystore.password

Type: password
Default: null
Importance: medium
Dynamic update: per-broker
The store password for the key store file. This is optional for client and only needed if
ssl.keystore.location is configured.

ssl.keystore.type

Type: string
Default: JKS
Importance: medium
Dynamic update: per-broker
The file format of the key store file. This is optional for client.

ssl.protocol

Type: string
Default: TLS
Importance: medium
Dynamic update: per-broker
The SSL protocol used to generate the SSLContext. Default setting is TLS, which is fine for most
cases. Allowed values in recent JVMs are TLS, TLSv1.1 and TLSv1.2. SSL, SSLv2 and SSLv3 may be
supported in older JVMs, but their usage is discouraged due to known security vulnerabilities.

ssl.provider

Type: string
Default: null
Importance: medium
Dynamic update: per-broker
The name of the security provider used for SSL connections. Default value is the default security
provider of the JVM.

ssl.trustmanager.algorithm

Type: string
Default: PKIX

APPENDIX A. BROKER CONFIGURATION PARAMETERS

133

Importance: medium
Dynamic update: per-broker
The algorithm used by trust manager factory for SSL connections. Default value is the trust manager
factory algorithm configured for the Java Virtual Machine.

ssl.truststore.location

Type: string
Default: null
Importance: medium
Dynamic update: per-broker
The location of the trust store file.

ssl.truststore.password

Type: password
Default: null
Importance: medium
Dynamic update: per-broker
The password for the trust store file. If a password is not set access to the truststore is still available,
but integrity checking is disabled.

ssl.truststore.type

Type: string
Default: JKS
Importance: medium
Dynamic update: per-broker
The file format of the trust store file.

alter.config.policy.class.name

Type: class
Default: null
Importance: low
Dynamic update: read-only
The alter configs policy class that should be used for validation. The class should implement the
org.apache.kafka.server.policy.AlterConfigPolicy interface.

alter.log.dirs.replication.quota.window.num

Type: int
Default: 11
Valid Values: [1,…]
Importance: low
Dynamic update: read-only
The number of samples to retain in memory for alter log dirs replication quotas.

alter.log.dirs.replication.quota.window.size.seconds

Type: int
Default: 1
Valid Values: [1,…]
Importance: low
Dynamic update: read-only
The time span of each sample for alter log dirs replication quotas.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

134

authorizer.class.name

Type: string
Default: ""
Importance: low
Dynamic update: read-only
The authorizer class that should be used for authorization.

client.quota.callback.class

Type: class
Default: null
Importance: low
Dynamic update: read-only
The fully qualified name of a class that implements the ClientQuotaCallback interface, which is used
to determine quota limits applied to client requests. By default, <user, client-id>, <user> or <client-id>
quotas stored in ZooKeeper are applied. For any given request, the most specific quota that matches
the user principal of the session and the client-id of the request is applied.

create.topic.policy.class.name

Type: class
Default: null
Importance: low
Dynamic update: read-only
The create topic policy class that should be used for validation. The class should implement the
org.apache.kafka.server.policy.CreateTopicPolicy interface.

delegation.token.expiry.check.interval.ms

Type: long
Default: 3600000
Valid Values: [1,…]
Importance: low
Dynamic update: read-only
Scan interval to remove expired delegation tokens.

listener.security.protocol.map

Type: string
Default:
PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL
Importance: low
Dynamic update: per-broker
Map between listener names and security protocols. This must be defined for the same security
protocol to be usable in more than one port or IP. For example, internal and external traffic can be
separated even if SSL is required for both. Concretely, the user could define listeners with names
INTERNAL and EXTERNAL and this property as: INTERNAL:SSL,EXTERNAL:SSL. As shown, key
and value are separated by a colon and map entries are separated by commas. Each listener name
should only appear once in the map. Different security (SSL and SASL) settings can be configured
for each listener by adding a normalised prefix (the listener name is lowercased) to the config name.
For example, to set a different keystore for the INTERNAL listener, a config with name
listener.name.internal.ssl.keystore.location would be set. If the config for the listener name is not
set, the config will fallback to the generic config (i.e. ssl.keystore.location).

log.message.downconversion.enable

Type: boolean

APPENDIX A. BROKER CONFIGURATION PARAMETERS

135

Default: true
Importance: low
Dynamic update: cluster-wide
This configuration controls whether down-conversion of message formats is enabled to satisfy
consume requests. When set to false, broker will not perform down-conversion for consumers
expecting an older message format. The broker responds with UNSUPPORTED_VERSION error for
consume requests from such older clients. This configurationdoes not apply to any message format
conversion that might be required for replication to followers.

metric.reporters

Type: list
Default: ""
Importance: low
Dynamic update: cluster-wide
A list of classes to use as metrics reporters. Implementing the
org.apache.kafka.common.metrics.MetricsReporter interface allows plugging in classes that will
be notified of new metric creation. The JmxReporter is always included to register JMX statistics.

metrics.num.samples

Type: int
Default: 2
Valid Values: [1,…]
Importance: low
Dynamic update: read-only
The number of samples maintained to compute metrics.

metrics.recording.level

Type: string
Default: INFO
Importance: low
Dynamic update: read-only
The highest recording level for metrics.

metrics.sample.window.ms

Type: long
Default: 30000
Valid Values: [1,…]
Importance: low
Dynamic update: read-only
The window of time a metrics sample is computed over.

password.encoder.cipher.algorithm

Type: string
Default: AES/CBC/PKCS5Padding
Importance: low
Dynamic update: read-only
The Cipher algorithm used for encoding dynamically configured passwords.

password.encoder.iterations

Type: int
Default: 4096
Valid Values: [1024,…]

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

136

Importance: low
Dynamic update: read-only
The iteration count used for encoding dynamically configured passwords.

password.encoder.key.length

Type: int
Default: 128
Valid Values: [8,…]
Importance: low
Dynamic update: read-only
The key length used for encoding dynamically configured passwords.

password.encoder.keyfactory.algorithm

Type: string
Default: null
Importance: low
Dynamic update: read-only
The SecretKeyFactory algorithm used for encoding dynamically configured passwords. Default is
PBKDF2WithHmacSHA512 if available and PBKDF2WithHmacSHA1 otherwise.

quota.window.num

Type: int
Default: 11
Valid Values: [1,…]
Importance: low
Dynamic update: read-only
The number of samples to retain in memory for client quotas.

quota.window.size.seconds

Type: int
Default: 1
Valid Values: [1,…]
Importance: low
Dynamic update: read-only
The time span of each sample for client quotas.

replication.quota.window.num

Type: int
Default: 11
Valid Values: [1,…]
Importance: low
Dynamic update: read-only
The number of samples to retain in memory for replication quotas.

replication.quota.window.size.seconds

Type: int
Default: 1
Valid Values: [1,…]
Importance: low
Dynamic update: read-only
The time span of each sample for replication quotas.

APPENDIX A. BROKER CONFIGURATION PARAMETERS

137

ssl.endpoint.identification.algorithm

Type: string
Default: https
Importance: low
Dynamic update: per-broker
The endpoint identification algorithm to validate server hostname using server certificate.

ssl.secure.random.implementation

Type: string
Default: null
Importance: low
Dynamic update: per-broker
The SecureRandom PRNG implementation to use for SSL cryptography operations.

transaction.abort.timed.out.transaction.cleanup.interval.ms

Type: int
Default: 60000
Valid Values: [1,…]
Importance: low
Dynamic update: read-only
The interval at which to rollback transactions that have timed out.

transaction.remove.expired.transaction.cleanup.interval.ms

Type: int
Default: 3600000
Valid Values: [1,…]
Importance: low
Dynamic update: read-only
The interval at which to remove transactions that have expired due to
transactional.id.expiration.ms passing.

zookeeper.sync.time.ms

Type: int
Default: 2000
Importance: low
Dynamic update: read-only
How far a ZK follower can be behind a ZK leader.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

138

APPENDIX B. TOPIC CONFIGURATION PARAMETERS
cleanup.policy

Type: list
Default: delete
Valid Values: [compact, delete]
Server Default Property: log.cleanup.policy
Importance: medium
A string that is either "delete" or "compact". This string designates the retention policy to use on old
log segments. The default policy ("delete") will discard old segments when their retention time or
size limit has been reached. The "compact" setting will enable #compaction[log compaction] on the
topic.

compression.type

Type: string
Default: producer
Valid Values: [uncompressed, snappy, lz4, gzip, producer]
Server Default Property: compression.type
Importance: medium
Specify the final compression type for a given topic. This configuration accepts the standard
compression codecs ('gzip', 'snappy', lz4). It additionally accepts 'uncompressed' which is equivalent
to no compression; and 'producer' which means retain the original compression codec set by the
producer.

delete.retention.ms

Type: long
Default: 86400000
Valid Values: [0,…]
Server Default Property: log.cleaner.delete.retention.ms
Importance: medium
The amount of time to retain delete tombstone markers for #compaction[log compacted] topics.
This setting also gives a bound on the time in which a consumer must complete a read if they begin
from offset 0 to ensure that they get a valid snapshot of the final stage (otherwise delete
tombstones may be collected before they complete their scan).

file.delete.delay.ms

Type: long
Default: 60000
Valid Values: [0,…]
Server Default Property: log.segment.delete.delay.ms
Importance: medium
The time to wait before deleting a file from the filesystem.

flush.messages

Type: long
Default: 9223372036854775807
Valid Values: [0,…]
Server Default Property: log.flush.interval.messages
Importance: medium
This setting allows specifying an interval at which we will force an fsync of data written to the log. For
example if this was set to 1 we would fsync after every message; if it were 5 we would fsync after
every five messages. In general we recommend you not set this and use replication for durability and

APPENDIX B. TOPIC CONFIGURATION PARAMETERS

139

allow the operating system’s background flush capabilities as it is more efficient. This setting can be
overridden on a per-topic basis (see #topicconfigs[the per-topic configuration section]).

flush.ms

Type: long
Default: 9223372036854775807
Valid Values: [0,…]
Server Default Property: log.flush.interval.ms
Importance: medium
This setting allows specifying a time interval at which we will force an fsync of data written to the log.
For example if this was set to 1000 we would fsync after 1000 ms had passed. In general we
recommend you not set this and use replication for durability and allow the operating system’s
background flush capabilities as it is more efficient.

follower.replication.throttled.replicas

Type: list
Default: ""
Valid Values: [partitionId],[brokerId]:[partitionId],[brokerId]:…
Server Default Property: follower.replication.throttled.replicas
Importance: medium
A list of replicas for which log replication should be throttled on the follower side. The list should
describe a set of replicas in the form [PartitionId]:[BrokerId],[PartitionId]:[BrokerId]:… or alternatively
the wildcard '*' can be used to throttle all replicas for this topic.

index.interval.bytes

Type: int
Default: 4096
Valid Values: [0,…]
Server Default Property: log.index.interval.bytes
Importance: medium
This setting controls how frequently Kafka adds an index entry to its offset index. The default setting
ensures that we index a message roughly every 4096 bytes. More indexing allows reads to jump
closer to the exact position in the log but makes the index larger. You probably don’t need to change
this.

leader.replication.throttled.replicas

Type: list
Default: ""
Valid Values: [partitionId],[brokerId]:[partitionId],[brokerId]:…
Server Default Property: leader.replication.throttled.replicas
Importance: medium
A list of replicas for which log replication should be throttled on the leader side. The list should
describe a set of replicas in the form [PartitionId]:[BrokerId],[PartitionId]:[BrokerId]:… or alternatively
the wildcard '*' can be used to throttle all replicas for this topic.

max.message.bytes

Type: int
Default: 1000012
Valid Values: [0,…]
Server Default Property: message.max.bytes
Importance: medium

The largest record batch size allowed by Kafka. If this is increased and there are consumers older

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

140

The largest record batch size allowed by Kafka. If this is increased and there are consumers older
than 0.10.2, the consumers' fetch size must also be increased so that they can fetch record batches
this large.

In the latest message format version, records are always grouped into batches for efficiency. In
previous message format versions, uncompressed records are not grouped into batches and this limit
only applies to a single record in that case.

message.format.version

Type: string
Default: 2.0-IV1
Server Default Property: log.message.format.version
Importance: medium
Specify the message format version the broker will use to append messages to the logs. The value
should be a valid ApiVersion. Some examples are: 0.8.2, 0.9.0.0, 0.10.0, check ApiVersion for more
details. By setting a particular message format version, the user is certifying that all the existing
messages on disk are smaller or equal than the specified version. Setting this value incorrectly will
cause consumers with older versions to break as they will receive messages with a format that they
don’t understand.

message.timestamp.difference.max.ms

Type: long
Default: 9223372036854775807
Valid Values: [0,…]
Server Default Property: log.message.timestamp.difference.max.ms
Importance: medium
The maximum difference allowed between the timestamp when a broker receives a message and the
timestamp specified in the message. If message.timestamp.type=CreateTime, a message will be
rejected if the difference in timestamp exceeds this threshold. This configuration is ignored if
message.timestamp.type=LogAppendTime.

message.timestamp.type

Type: string
Default: CreateTime
Valid Values: [CreateTime, LogAppendTime]
Server Default Property: log.message.timestamp.type
Importance: medium
Define whether the timestamp in the message is message create time or log append time. The value
should be either CreateTime or LogAppendTime.

min.cleanable.dirty.ratio

Type: double
Default: 0.5
Valid Values: [0,…,1]
Server Default Property: log.cleaner.min.cleanable.ratio
Importance: medium
This configuration controls how frequently the log compactor will attempt to clean the log (assuming
#compaction[log compaction] is enabled). By default we will avoid cleaning a log where more than
50% of the log has been compacted. This ratio bounds the maximum space wasted in the log by
duplicates (at 50% at most 50% of the log could be duplicates). A higher ratio will mean fewer, more
efficient cleanings but will mean more wasted space in the log.

min.compaction.lag.ms

APPENDIX B. TOPIC CONFIGURATION PARAMETERS

141

Type: long
Default: 0
Valid Values: [0,…]
Server Default Property: log.cleaner.min.compaction.lag.ms
Importance: medium
The minimum time a message will remain uncompacted in the log. Only applicable for logs that are
being compacted.

min.insync.replicas

Type: int
Default: 1
Valid Values: [1,…]
Server Default Property: min.insync.replicas
Importance: medium
When a producer sets acks to "all" (or "-1"), this configuration specifies the minimum number of
replicas that must acknowledge a write for the write to be considered successful. If this minimum
cannot be met, then the producer will raise an exception (either NotEnoughReplicas or
NotEnoughReplicasAfterAppend). When used together, min.insync.replicas and acks allow you to
enforce greater durability guarantees. A typical scenario would be to create a topic with a replication
factor of 3, set min.insync.replicas to 2, and produce with acks of "all". This will ensure that the
producer raises an exception if a majority of replicas do not receive a write.

preallocate

Type: boolean
Default: false
Server Default Property: log.preallocate
Importance: medium
True if we should preallocate the file on disk when creating a new log segment.

retention.bytes

Type: long
Default: -1
Server Default Property: log.retention.bytes
Importance: medium
This configuration controls the maximum size a partition (which consists of log segments) can grow
to before we will discard old log segments to free up space if we are using the "delete" retention
policy. By default there is no size limit only a time limit. Since this limit is enforced at the partition
level, multiply it by the number of partitions to compute the topic retention in bytes.

retention.ms

Type: long
Default: 604800000
Server Default Property: log.retention.ms
Importance: medium
This configuration controls the maximum time we will retain a log before we will discard old log
segments to free up space if we are using the "delete" retention policy. This represents an SLA on
how soon consumers must read their data. If set to -1, no time limit is applied.

segment.bytes

Type: int
Default: 1073741824
Valid Values: [14,…]

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

142

Server Default Property: log.segment.bytes
Importance: medium
This configuration controls the segment file size for the log. Retention and cleaning is always done a
file at a time so a larger segment size means fewer files but less granular control over retention.

segment.index.bytes

Type: int
Default: 10485760
Valid Values: [0,…]
Server Default Property: log.index.size.max.bytes
Importance: medium
This configuration controls the size of the index that maps offsets to file positions. We preallocate
this index file and shrink it only after log rolls. You generally should not need to change this setting.

segment.jitter.ms

Type: long
Default: 0
Valid Values: [0,…]
Server Default Property: log.roll.jitter.ms
Importance: medium
The maximum random jitter subtracted from the scheduled segment roll time to avoid thundering
herds of segment rolling.

segment.ms

Type: long
Default: 604800000
Valid Values: [1,…]
Server Default Property: log.roll.ms
Importance: medium
This configuration controls the period of time after which Kafka will force the log to roll even if the
segment file isn’t full to ensure that retention can delete or compact old data.

unclean.leader.election.enable

Type: boolean
Default: false
Server Default Property: unclean.leader.election.enable
Importance: medium
Indicates whether to enable replicas not in the ISR set to be elected as leader as a last resort, even
though doing so may result in data loss.

message.downconversion.enable

Type: boolean
Default: true
Server Default Property: log.message.downconversion.enable
Importance: low
This configuration controls whether down-conversion of message formats is enabled to satisfy
consume requests. When set to false, broker will not perform down-conversion for consumers
expecting an older message format. The broker responds with UNSUPPORTED_VERSION error for
consume requests from such older clients. This configurationdoes not apply to any message format
conversion that might be required for replication to followers.

APPENDIX B. TOPIC CONFIGURATION PARAMETERS

143

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS
key.deserializer

Type: class
Importance: high
Deserializer class for key that implements the
org.apache.kafka.common.serialization.Deserializer interface.

value.deserializer

Type: class
Importance: high
Deserializer class for value that implements the
org.apache.kafka.common.serialization.Deserializer interface.

bootstrap.servers

Type: list
Default: ""
Valid Values: non-null value
Importance: high
A list of host/port pairs to use for establishing the initial connection to the Kafka cluster. The client
will make use of all servers irrespective of which servers are specified here for bootstrapping—this list
only impacts the initial hosts used to discover the full set of servers. This list should be in the form
host1:port1,host2:port2,… . Since these servers are just used for the initial connection to discover
the full cluster membership (which may change dynamically), this list need not contain the full set of
servers (you may want more than one, though, in case a server is down).

fetch.min.bytes

Type: int
Default: 1
Valid Values: [0,…]
Importance: high
The minimum amount of data the server should return for a fetch request. If insufficient data is
available the request will wait for that much data to accumulate before answering the request. The
default setting of 1 byte means that fetch requests are answered as soon as a single byte of data is
available or the fetch request times out waiting for data to arrive. Setting this to something greater
than 1 will cause the server to wait for larger amounts of data to accumulate which can improve
server throughput a bit at the cost of some additional latency.

group.id

Type: string
Default: ""
Importance: high
A unique string that identifies the consumer group this consumer belongs to. This property is
required if the consumer uses either the group management functionality by using subscribe(topic)
or the Kafka-based offset management strategy.

heartbeat.interval.ms

Type: int
Default: 3000
Importance: high
The expected time between heartbeats to the consumer coordinator when using Kafka’s group
management facilities. Heartbeats are used to ensure that the consumer’s session stays active and to

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

144

facilitate rebalancing when new consumers join or leave the group. The value must be set lower than
session.timeout.ms, but typically should be set no higher than 1/3 of that value. It can be adjusted
even lower to control the expected time for normal rebalances.

max.partition.fetch.bytes

Type: int
Default: 1048576
Valid Values: [0,…]
Importance: high
The maximum amount of data per-partition the server will return. Records are fetched in batches by
the consumer. If the first record batch in the first non-empty partition of the fetch is larger than this
limit, the batch will still be returned to ensure that the consumer can make progress. The maximum
record batch size accepted by the broker is defined via message.max.bytes (broker config) or
max.message.bytes (topic config). See fetch.max.bytes for limiting the consumer request size.

session.timeout.ms

Type: int
Default: 10000
Importance: high
The timeout used to detect consumer failures when using Kafka’s group management facility. The
consumer sends periodic heartbeats to indicate its liveness to the broker. If no heartbeats are
received by the broker before the expiration of this session timeout, then the broker will remove this
consumer from the group and initiate a rebalance. Note that the value must be in the allowable range
as configured in the broker configuration by group.min.session.timeout.ms and
group.max.session.timeout.ms.

ssl.key.password

Type: password
Default: null
Importance: high
The password of the private key in the key store file. This is optional for client.

ssl.keystore.location

Type: string
Default: null
Importance: high
The location of the key store file. This is optional for client and can be used for two-way
authentication for client.

ssl.keystore.password

Type: password
Default: null
Importance: high
The store password for the key store file. This is optional for client and only needed if
ssl.keystore.location is configured.

ssl.truststore.location

Type: string
Default: null
Importance: high
The location of the trust store file.

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS

145

ssl.truststore.password

Type: password
Default: null
Importance: high
The password for the trust store file. If a password is not set access to the truststore is still available,
but integrity checking is disabled.

auto.offset.reset

Type: string
Default: latest
Valid Values: [latest, earliest, none]
Importance: medium
What to do when there is no initial offset in Kafka or if the current offset does not exist any more on
the server (e.g. because that data has been deleted):

earliest: automatically reset the offset to the earliest offset

latest: automatically reset the offset to the latest offset

none: throw exception to the consumer if no previous offset is found for the consumer’s
group

anything else: throw exception to the consumer.

connections.max.idle.ms

Type: long
Default: 540000
Importance: medium
Close idle connections after the number of milliseconds specified by this config.

default.api.timeout.ms

Type: int
Default: 60000
Valid Values: [0,…]
Importance: medium
Specifies the timeout (in milliseconds) for consumer APIs that could block. This configuration is used
as the default timeout for all consumer operations that do not explicitly accept a timeout parameter.

enable.auto.commit

Type: boolean
Default: true
Importance: medium
If true the consumer’s offset will be periodically committed in the background.

exclude.internal.topics

Type: boolean
Default: true
Importance: medium
Whether records from internal topics (such as offsets) should be exposed to the consumer. If set to
true the only way to receive records from an internal topic is subscribing to it.

fetch.max.bytes

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

146

Type: int
Default: 52428800
Valid Values: [0,…]
Importance: medium
The maximum amount of data the server should return for a fetch request. Records are fetched in
batches by the consumer, and if the first record batch in the first non-empty partition of the fetch is
larger than this value, the record batch will still be returned to ensure that the consumer can make
progress. As such, this is not a absolute maximum. The maximum record batch size accepted by the
broker is defined via message.max.bytes (broker config) or max.message.bytes (topic config).
Note that the consumer performs multiple fetches in parallel.

isolation.level

Type: string
Default: read_uncommitted
Valid Values: [read_committed, read_uncommitted]
Importance: medium
Controls how to read messages written transactionally. If set to read_committed, consumer.poll()
will only return transactional messages which have been committed. If set to `read_uncommitted’
(the default), consumer.poll() will return all messages, even transactional messages which have been
aborted. Non-transactional messages will be returned unconditionally in either mode.

Messages will always be returned in offset order. Hence, in read_committed mode, consumer.poll()
will only return messages up to the last stable offset (LSO), which is the one less than the offset of
the first open transaction. In particular any messages appearing after messages belonging to
ongoing transactions will be withheld until the relevant transaction has been completed. As a result,
read_committed consumers will not be able to read up to the high watermark when there are in flight
transactions.

Further, when in `read_committed</mode> the seekToEnd method will return the LSO.

max.poll.interval.ms

Type: int
Default: 300000
Valid Values: [1,…]
Importance: medium
The maximum delay between invocations of poll() when using consumer group management. This
places an upper bound on the amount of time that the consumer can be idle before fetching more
records. If poll() is not called before expiration of this timeout, then the consumer is considered
failed and the group will rebalance in order to reassign the partitions to another member.

max.poll.records

Type: int
Default: 500
Valid Values: [1,…]
Importance: medium
The maximum number of records returned in a single call to poll().

partition.assignment.strategy

Type: list
Default: class org.apache.kafka.clients.consumer.RangeAssignor
Valid Values: non-null value
Importance: medium

The class name of the partition assignment strategy that the client will use to distribute partition

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS

147

The class name of the partition assignment strategy that the client will use to distribute partition
ownership amongst consumer instances when group management is used.

receive.buffer.bytes

Type: int
Default: 65536
Valid Values: [-1,…]
Importance: medium
The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. If the value is -1, the OS
default will be used.

request.timeout.ms

Type: int
Default: 30000
Valid Values: [0,…]
Importance: medium
The configuration controls the maximum amount of time the client will wait for the response of a
request. If the response is not received before the timeout elapses the client will resend the request
if necessary or fail the request if retries are exhausted.

sasl.client.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL client callback handler class that implements the
AuthenticateCallbackHandler interface.

sasl.jaas.config

Type: password
Default: null
Importance: medium
JAAS login context parameters for SASL connections in the format used by JAAS configuration files.
JAAS configuration file format is described here. The format for the value is: ‘loginModuleClass
controlFlag (optionName=optionValue)*;’. For brokers, the config must be prefixed with listener
prefix and SASL mechanism name in lower-case. For example, listener.name.sasl_ssl.scram-sha-
256.sasl.jaas.config=com.example.ScramLoginModule required;.

sasl.kerberos.service.name

Type: string
Default: null
Importance: medium
The Kerberos principal name that Kafka runs as. This can be defined either in Kafka’s JAAS config or
in Kafka’s config.

sasl.login.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL login callback handler class that implements the
AuthenticateCallbackHandler interface. For brokers, login callback handler config must be prefixed
with listener prefix and SASL mechanism name in lower-case. For example,

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

148

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

listener.name.sasl_ssl.scram-sha-
256.sasl.login.callback.handler.class=com.example.CustomScramLoginCallbackHandler.

sasl.login.class

Type: class
Default: null
Importance: medium
The fully qualified name of a class that implements the Login interface. For brokers, login config
must be prefixed with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-256.sasl.login.class=com.example.CustomScramLogin.

sasl.mechanism

Type: string
Default: GSSAPI
Importance: medium
SASL mechanism used for client connections. This may be any mechanism for which a security
provider is available. GSSAPI is the default mechanism.

security.protocol

Type: string
Default: PLAINTEXT
Importance: medium
Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL, SASL_PLAINTEXT,
SASL_SSL.

send.buffer.bytes

Type: int
Default: 131072
Valid Values: [-1,…]
Importance: medium
The size of the TCP send buffer (SO_SNDBUF) to use when sending data. If the value is -1, the OS
default will be used.

ssl.enabled.protocols

Type: list
Default: TLSv1.2,TLSv1.1,TLSv1
Importance: medium
The list of protocols enabled for SSL connections.

ssl.keystore.type

Type: string
Default: JKS
Importance: medium
The file format of the key store file. This is optional for client.

ssl.protocol

Type: string
Default: TLS
Importance: medium

The SSL protocol used to generate the SSLContext. Default setting is TLS, which is fine for most

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS

149

The SSL protocol used to generate the SSLContext. Default setting is TLS, which is fine for most
cases. Allowed values in recent JVMs are TLS, TLSv1.1 and TLSv1.2. SSL, SSLv2 and SSLv3 may be
supported in older JVMs, but their usage is discouraged due to known security vulnerabilities.

ssl.provider

Type: string
Default: null
Importance: medium
The name of the security provider used for SSL connections. Default value is the default security
provider of the JVM.

ssl.truststore.type

Type: string
Default: JKS
Importance: medium
The file format of the trust store file.

auto.commit.interval.ms

Type: int
Default: 5000
Valid Values: [0,…]
Importance: low
The frequency in milliseconds that the consumer offsets are auto-committed to Kafka if
enable.auto.commit is set to true.

check.crcs

Type: boolean
Default: true
Importance: low
Automatically check the CRC32 of the records consumed. This ensures no on-the-wire or on-disk
corruption to the messages occurred. This check adds some overhead, so it may be disabled in cases
seeking extreme performance.

client.id

Type: string
Default: ""
Importance: low
An id string to pass to the server when making requests. The purpose of this is to be able to track the
source of requests beyond just ip/port by allowing a logical application name to be included in server-
side request logging.

fetch.max.wait.ms

Type: int
Default: 500
Valid Values: [0,…]
Importance: low
The maximum amount of time the server will block before answering the fetch request if there isn’t
sufficient data to immediately satisfy the requirement given by fetch.min.bytes.

interceptor.classes

Type: list

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

150

Default: ""
Valid Values: non-null value
Importance: low
A list of classes to use as interceptors. Implementing the
org.apache.kafka.clients.consumer.ConsumerInterceptor interface allows you to intercept (and
possibly mutate) records received by the consumer. By default, there are no interceptors.

metadata.max.age.ms

Type: long
Default: 300000
Valid Values: [0,…]
Importance: low
The period of time in milliseconds after which we force a refresh of metadata even if we haven’t seen
any partition leadership changes to proactively discover any new brokers or partitions.

metric.reporters

Type: list
Default: ""
Valid Values: non-null value
Importance: low
A list of classes to use as metrics reporters. Implementing the
org.apache.kafka.common.metrics.MetricsReporter interface allows plugging in classes that will
be notified of new metric creation. The JmxReporter is always included to register JMX statistics.

metrics.num.samples

Type: int
Default: 2
Valid Values: [1,…]
Importance: low
The number of samples maintained to compute metrics.

metrics.recording.level

Type: string
Default: INFO
Valid Values: [INFO, DEBUG]
Importance: low
The highest recording level for metrics.

metrics.sample.window.ms

Type: long
Default: 30000
Valid Values: [0,…]
Importance: low
The window of time a metrics sample is computed over.

reconnect.backoff.max.ms

Type: long
Default: 1000
Valid Values: [0,…]
Importance: low
The maximum amount of time in milliseconds to wait when reconnecting to a broker that has
repeatedly failed to connect. If provided, the backoff per host will increase exponentially for each

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS

151

consecutive connection failure, up to this maximum. After calculating the backoff increase, 20%
random jitter is added to avoid connection storms.

reconnect.backoff.ms

Type: long
Default: 50
Valid Values: [0,…]
Importance: low
The base amount of time to wait before attempting to reconnect to a given host. This avoids
repeatedly connecting to a host in a tight loop. This backoff applies to all connection attempts by the
client to a broker.

retry.backoff.ms

Type: long
Default: 100
Valid Values: [0,…]
Importance: low
The amount of time to wait before attempting to retry a failed request to a given topic partition. This
avoids repeatedly sending requests in a tight loop under some failure scenarios.

sasl.kerberos.kinit.cmd

Type: string
Default: /usr/bin/kinit
Importance: low
Kerberos kinit command path.

sasl.kerberos.min.time.before.relogin

Type: long
Default: 60000
Importance: low
Login thread sleep time between refresh attempts.

sasl.kerberos.ticket.renew.jitter

Type: double
Default: 0.05
Importance: low
Percentage of random jitter added to the renewal time.

sasl.kerberos.ticket.renew.window.factor

Type: double
Default: 0.8
Importance: low
Login thread will sleep until the specified window factor of time from last refresh to ticket’s expiry
has been reached, at which time it will try to renew the ticket.

sasl.login.refresh.buffer.seconds

Type: short
Default: 300
Valid Values: [0,…,3600]
Importance: low
The amount of buffer time before credential expiration to maintain when refreshing a credential, in

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

152

seconds. If a refresh would otherwise occur closer to expiration than the number of buffer seconds
then the refresh will be moved up to maintain as much of the buffer time as possible. Legal values are
between 0 and 3600 (1 hour); a default value of 300 (5 minutes) is used if no value is specified. This
value and sasl.login.refresh.min.period.seconds are both ignored if their sum exceeds the remaining
lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.min.period.seconds

Type: short
Default: 60
Valid Values: [0,…,900]
Importance: low
The desired minimum time for the login refresh thread to wait before refreshing a credential, in
seconds. Legal values are between 0 and 900 (15 minutes); a default value of 60 (1 minute) is used if
no value is specified. This value and sasl.login.refresh.buffer.seconds are both ignored if their sum
exceeds the remaining lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.window.factor

Type: double
Default: 0.8
Valid Values: [0.5,…,1.0]
Importance: low
Login refresh thread will sleep until the specified window factor relative to the credential’s lifetime
has been reached, at which time it will try to refresh the credential. Legal values are between 0.5
(50%) and 1.0 (100%) inclusive; a default value of 0.8 (80%) is used if no value is specified. Currently
applies only to OAUTHBEARER.

sasl.login.refresh.window.jitter

Type: double
Default: 0.05
Valid Values: [0.0,…,0.25]
Importance: low
The maximum amount of random jitter relative to the credential’s lifetime that is added to the login
refresh thread’s sleep time. Legal values are between 0 and 0.25 (25%) inclusive; a default value of
0.05 (5%) is used if no value is specified. Currently applies only to OAUTHBEARER.

ssl.cipher.suites

Type: list
Default: null
Importance: low
A list of cipher suites. This is a named combination of authentication, encryption, MAC and key
exchange algorithm used to negotiate the security settings for a network connection using TLS or
SSL network protocol. By default all the available cipher suites are supported.

ssl.endpoint.identification.algorithm

Type: string
Default: https
Importance: low
The endpoint identification algorithm to validate server hostname using server certificate.

ssl.keymanager.algorithm

Type: string

APPENDIX C. CONSUMER CONFIGURATION PARAMETERS

153

Type: string
Default: SunX509
Importance: low
The algorithm used by key manager factory for SSL connections. Default value is the key manager
factory algorithm configured for the Java Virtual Machine.

ssl.secure.random.implementation

Type: string
Default: null
Importance: low
The SecureRandom PRNG implementation to use for SSL cryptography operations.

ssl.trustmanager.algorithm

Type: string
Default: PKIX
Importance: low
The algorithm used by trust manager factory for SSL connections. Default value is the trust manager
factory algorithm configured for the Java Virtual Machine.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

154

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS
key.serializer

Type: class
Importance: high
Serializer class for key that implements the org.apache.kafka.common.serialization.Serializer
interface.

value.serializer

Type: class
Importance: high
Serializer class for value that implements the org.apache.kafka.common.serialization.Serializer
interface.

acks

Type: string
Default: 1
Valid Values: [all, -1, 0, 1]
Importance: high
The number of acknowledgments the producer requires the leader to have received before
considering a request complete. This controls the durability of records that are sent. The following
settings are allowed:

acks=0 If set to zero then the producer will not wait for any acknowledgment from the server
at all. The record will be immediately added to the socket buffer and considered sent. No
guarantee can be made that the server has received the record in this case, and the retries
configuration will not take effect (as the client won’t generally know of any failures). The
offset given back for each record will always be set to -1.

acks=1 This will mean the leader will write the record to its local log but will respond without
awaiting full acknowledgement from all followers. In this case should the leader fail
immediately after acknowledging the record but before the followers have replicated it then
the record will be lost.

acks=all This means the leader will wait for the full set of in-sync replicas to acknowledge
the record. This guarantees that the record will not be lost as long as at least one in-sync
replica remains alive. This is the strongest available guarantee. This is equivalent to the
acks=-1 setting.

bootstrap.servers

Type: list
Default: ""
Valid Values: non-null value
Importance: high
A list of host/port pairs to use for establishing the initial connection to the Kafka cluster. The client
will make use of all servers irrespective of which servers are specified here for bootstrapping—this list
only impacts the initial hosts used to discover the full set of servers. This list should be in the form
host1:port1,host2:port2,… . Since these servers are just used for the initial connection to discover
the full cluster membership (which may change dynamically), this list need not contain the full set of
servers (you may want more than one, though, in case a server is down).

buffer.memory

Type: long

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS

155

Default: 33554432
Valid Values: [0,…]
Importance: high
The total bytes of memory the producer can use to buffer records waiting to be sent to the server. If
records are sent faster than they can be delivered to the server the producer will block for
max.block.ms after which it will throw an exception.

This setting should correspond roughly to the total memory the producer will use, but is not a hard
bound since not all memory the producer uses is used for buffering. Some additional memory will be
used for compression (if compression is enabled) as well as for maintaining in-flight requests.

compression.type

Type: string
Default: none
Importance: high
The compression type for all data generated by the producer. The default is none (i.e. no
compression). Valid values are none, gzip, snappy, or lz4. Compression is of full batches of data, so
the efficacy of batching will also impact the compression ratio (more batching means better
compression).

retries

Type: int
Default: 0
Valid Values: [0,…,2147483647]
Importance: high
Setting a value greater than zero will cause the client to resend any record whose send fails with a
potentially transient error. Note that this retry is no different than if the client resent the record upon
receiving the error. Allowing retries without setting max.in.flight.requests.per.connection to 1 will
potentially change the ordering of records because if two batches are sent to a single partition, and
the first fails and is retried but the second succeeds, then the records in the second batch may
appear first.

ssl.key.password

Type: password
Default: null
Importance: high
The password of the private key in the key store file. This is optional for client.

ssl.keystore.location

Type: string
Default: null
Importance: high
The location of the key store file. This is optional for client and can be used for two-way
authentication for client.

ssl.keystore.password

Type: password
Default: null
Importance: high
The store password for the key store file. This is optional for client and only needed if
ssl.keystore.location is configured.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

156

ssl.truststore.location

Type: string
Default: null
Importance: high
The location of the trust store file.

ssl.truststore.password

Type: password
Default: null
Importance: high
The password for the trust store file. If a password is not set access to the truststore is still available,
but integrity checking is disabled.

batch.size

Type: int
Default: 16384
Valid Values: [0,…]
Importance: medium
The producer will attempt to batch records together into fewer requests whenever multiple records
are being sent to the same partition. This helps performance on both the client and the server. This
configuration controls the default batch size in bytes.

No attempt will be made to batch records larger than this size.

Requests sent to brokers will contain multiple batches, one for each partition with data available to
be sent.

A small batch size will make batching less common and may reduce throughput (a batch size of zero
will disable batching entirely). A very large batch size may use memory a bit more wastefully as we will
always allocate a buffer of the specified batch size in anticipation of additional records.

client.id

Type: string
Default: ""
Importance: medium
An id string to pass to the server when making requests. The purpose of this is to be able to track the
source of requests beyond just ip/port by allowing a logical application name to be included in server-
side request logging.

connections.max.idle.ms

Type: long
Default: 540000
Importance: medium
Close idle connections after the number of milliseconds specified by this config.

linger.ms

Type: long
Default: 0
Valid Values: [0,…]
Importance: medium
The producer groups together any records that arrive in between request transmissions into a single
batched request. Normally this occurs only under load when records arrive faster than they can be

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS

157

sent out. However in some circumstances the client may want to reduce the number of requests even
under moderate load. This setting accomplishes this by adding a small amount of artificial delay—that
is, rather than immediately sending out a record the producer will wait for up to the given delay to
allow other records to be sent so that the sends can be batched together. This can be thought of as
analogous to Nagle’s algorithm in TCP. This setting gives the upper bound on the delay for batching:
once we get batch.size worth of records for a partition it will be sent immediately regardless of this
setting, however if we have fewer than this many bytes accumulated for this partition we will 'linger'
for the specified time waiting for more records to show up. This setting defaults to 0 (i.e. no delay).
Setting linger.ms=5, for example, would have the effect of reducing the number of requests sent but
would add up to 5ms of latency to records sent in the absence of load.

max.block.ms

Type: long
Default: 60000
Valid Values: [0,…]
Importance: medium
The configuration controls how long KafkaProducer.send() and KafkaProducer.partitionsFor() will
block.These methods can be blocked either because the buffer is full or metadata
unavailable.Blocking in the user-supplied serializers or partitioner will not be counted against this
timeout.

max.request.size

Type: int
Default: 1048576
Valid Values: [0,…]
Importance: medium
The maximum size of a request in bytes. This setting will limit the number of record batches the
producer will send in a single request to avoid sending huge requests. This is also effectively a cap on
the maximum record batch size. Note that the server has its own cap on record batch size which may
be different from this.

partitioner.class

Type: class
Default: org.apache.kafka.clients.producer.internals.DefaultPartitioner
Importance: medium
Partitioner class that implements the org.apache.kafka.clients.producer.Partitioner interface.

receive.buffer.bytes

Type: int
Default: 32768
Valid Values: [-1,…]
Importance: medium
The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. If the value is -1, the OS
default will be used.

request.timeout.ms

Type: int
Default: 30000
Valid Values: [0,…]
Importance: medium
The configuration controls the maximum amount of time the client will wait for the response of a
request. If the response is not received before the timeout elapses the client will resend the request
if necessary or fail the request if retries are exhausted. This should be larger than

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

158

replica.lag.time.max.ms (a broker configuration) to reduce the possibility of message duplication due
to unnecessary producer retries.

sasl.client.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL client callback handler class that implements the
AuthenticateCallbackHandler interface.

sasl.jaas.config

Type: password
Default: null
Importance: medium
JAAS login context parameters for SASL connections in the format used by JAAS configuration files.
JAAS configuration file format is described here. The format for the value is: ‘loginModuleClass
controlFlag (optionName=optionValue)*;’. For brokers, the config must be prefixed with listener
prefix and SASL mechanism name in lower-case. For example, listener.name.sasl_ssl.scram-sha-
256.sasl.jaas.config=com.example.ScramLoginModule required;.

sasl.kerberos.service.name

Type: string
Default: null
Importance: medium
The Kerberos principal name that Kafka runs as. This can be defined either in Kafka’s JAAS config or
in Kafka’s config.

sasl.login.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL login callback handler class that implements the
AuthenticateCallbackHandler interface. For brokers, login callback handler config must be prefixed
with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-
256.sasl.login.callback.handler.class=com.example.CustomScramLoginCallbackHandler.

sasl.login.class

Type: class
Default: null
Importance: medium
The fully qualified name of a class that implements the Login interface. For brokers, login config
must be prefixed with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-256.sasl.login.class=com.example.CustomScramLogin.

sasl.mechanism

Type: string
Default: GSSAPI
Importance: medium
SASL mechanism used for client connections. This may be any mechanism for which a security
provider is available. GSSAPI is the default mechanism.

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS

159

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

security.protocol

Type: string
Default: PLAINTEXT
Importance: medium
Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL, SASL_PLAINTEXT,
SASL_SSL.

send.buffer.bytes

Type: int
Default: 131072
Valid Values: [-1,…]
Importance: medium
The size of the TCP send buffer (SO_SNDBUF) to use when sending data. If the value is -1, the OS
default will be used.

ssl.enabled.protocols

Type: list
Default: TLSv1.2,TLSv1.1,TLSv1
Importance: medium
The list of protocols enabled for SSL connections.

ssl.keystore.type

Type: string
Default: JKS
Importance: medium
The file format of the key store file. This is optional for client.

ssl.protocol

Type: string
Default: TLS
Importance: medium
The SSL protocol used to generate the SSLContext. Default setting is TLS, which is fine for most
cases. Allowed values in recent JVMs are TLS, TLSv1.1 and TLSv1.2. SSL, SSLv2 and SSLv3 may be
supported in older JVMs, but their usage is discouraged due to known security vulnerabilities.

ssl.provider

Type: string
Default: null
Importance: medium
The name of the security provider used for SSL connections. Default value is the default security
provider of the JVM.

ssl.truststore.type

Type: string
Default: JKS
Importance: medium
The file format of the trust store file.

enable.idempotence

Type: boolean

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

160

Type: boolean
Default: false
Importance: low
When set to 'true', the producer will ensure that exactly one copy of each message is written in the
stream. If 'false', producer retries due to broker failures, etc., may write duplicates of the retried
message in the stream. Note that enabling idempotence requires
max.in.flight.requests.per.connection to be less than or equal to 5, retries to be greater than 0
and acks must be 'all'. If these values are not explicitly set by the user, suitable values will be chosen. If
incompatible values are set, a ConfigException will be thrown.

interceptor.classes

Type: list
Default: ""
Valid Values: non-null value
Importance: low
A list of classes to use as interceptors. Implementing the
org.apache.kafka.clients.producer.ProducerInterceptor interface allows you to intercept (and
possibly mutate) the records received by the producer before they are published to the Kafka
cluster. By default, there are no interceptors.

max.in.flight.requests.per.connection

Type: int
Default: 5
Valid Values: [1,…]
Importance: low
The maximum number of unacknowledged requests the client will send on a single connection before
blocking. Note that if this setting is set to be greater than 1 and there are failed sends, there is a risk
of message re-ordering due to retries (i.e., if retries are enabled).

metadata.max.age.ms

Type: long
Default: 300000
Valid Values: [0,…]
Importance: low
The period of time in milliseconds after which we force a refresh of metadata even if we haven’t seen
any partition leadership changes to proactively discover any new brokers or partitions.

metric.reporters

Type: list
Default: ""
Valid Values: non-null value
Importance: low
A list of classes to use as metrics reporters. Implementing the
org.apache.kafka.common.metrics.MetricsReporter interface allows plugging in classes that will
be notified of new metric creation. The JmxReporter is always included to register JMX statistics.

metrics.num.samples

Type: int
Default: 2
Valid Values: [1,…]
Importance: low
The number of samples maintained to compute metrics.

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS

161

metrics.recording.level

Type: string
Default: INFO
Valid Values: [INFO, DEBUG]
Importance: low
The highest recording level for metrics.

metrics.sample.window.ms

Type: long
Default: 30000
Valid Values: [0,…]
Importance: low
The window of time a metrics sample is computed over.

reconnect.backoff.max.ms

Type: long
Default: 1000
Valid Values: [0,…]
Importance: low
The maximum amount of time in milliseconds to wait when reconnecting to a broker that has
repeatedly failed to connect. If provided, the backoff per host will increase exponentially for each
consecutive connection failure, up to this maximum. After calculating the backoff increase, 20%
random jitter is added to avoid connection storms.

reconnect.backoff.ms

Type: long
Default: 50
Valid Values: [0,…]
Importance: low
The base amount of time to wait before attempting to reconnect to a given host. This avoids
repeatedly connecting to a host in a tight loop. This backoff applies to all connection attempts by the
client to a broker.

retry.backoff.ms

Type: long
Default: 100
Valid Values: [0,…]
Importance: low
The amount of time to wait before attempting to retry a failed request to a given topic partition. This
avoids repeatedly sending requests in a tight loop under some failure scenarios.

sasl.kerberos.kinit.cmd

Type: string
Default: /usr/bin/kinit
Importance: low
Kerberos kinit command path.

sasl.kerberos.min.time.before.relogin

Type: long
Default: 60000
Importance: low

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

162

Login thread sleep time between refresh attempts.

sasl.kerberos.ticket.renew.jitter

Type: double
Default: 0.05
Importance: low
Percentage of random jitter added to the renewal time.

sasl.kerberos.ticket.renew.window.factor

Type: double
Default: 0.8
Importance: low
Login thread will sleep until the specified window factor of time from last refresh to ticket’s expiry
has been reached, at which time it will try to renew the ticket.

sasl.login.refresh.buffer.seconds

Type: short
Default: 300
Valid Values: [0,…,3600]
Importance: low
The amount of buffer time before credential expiration to maintain when refreshing a credential, in
seconds. If a refresh would otherwise occur closer to expiration than the number of buffer seconds
then the refresh will be moved up to maintain as much of the buffer time as possible. Legal values are
between 0 and 3600 (1 hour); a default value of 300 (5 minutes) is used if no value is specified. This
value and sasl.login.refresh.min.period.seconds are both ignored if their sum exceeds the remaining
lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.min.period.seconds

Type: short
Default: 60
Valid Values: [0,…,900]
Importance: low
The desired minimum time for the login refresh thread to wait before refreshing a credential, in
seconds. Legal values are between 0 and 900 (15 minutes); a default value of 60 (1 minute) is used if
no value is specified. This value and sasl.login.refresh.buffer.seconds are both ignored if their sum
exceeds the remaining lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.window.factor

Type: double
Default: 0.8
Valid Values: [0.5,…,1.0]
Importance: low
Login refresh thread will sleep until the specified window factor relative to the credential’s lifetime
has been reached, at which time it will try to refresh the credential. Legal values are between 0.5
(50%) and 1.0 (100%) inclusive; a default value of 0.8 (80%) is used if no value is specified. Currently
applies only to OAUTHBEARER.

sasl.login.refresh.window.jitter

Type: double
Default: 0.05
Valid Values: [0.0,…,0.25]
Importance: low

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS

163

The maximum amount of random jitter relative to the credential’s lifetime that is added to the login
refresh thread’s sleep time. Legal values are between 0 and 0.25 (25%) inclusive; a default value of
0.05 (5%) is used if no value is specified. Currently applies only to OAUTHBEARER.

ssl.cipher.suites

Type: list
Default: null
Importance: low
A list of cipher suites. This is a named combination of authentication, encryption, MAC and key
exchange algorithm used to negotiate the security settings for a network connection using TLS or
SSL network protocol. By default all the available cipher suites are supported.

ssl.endpoint.identification.algorithm

Type: string
Default: https
Importance: low
The endpoint identification algorithm to validate server hostname using server certificate.

ssl.keymanager.algorithm

Type: string
Default: SunX509
Importance: low
The algorithm used by key manager factory for SSL connections. Default value is the key manager
factory algorithm configured for the Java Virtual Machine.

ssl.secure.random.implementation

Type: string
Default: null
Importance: low
The SecureRandom PRNG implementation to use for SSL cryptography operations.

ssl.trustmanager.algorithm

Type: string
Default: PKIX
Importance: low
The algorithm used by trust manager factory for SSL connections. Default value is the trust manager
factory algorithm configured for the Java Virtual Machine.

transaction.timeout.ms

Type: int
Default: 60000
Importance: low
The maximum amount of time in ms that the transaction coordinator will wait for a transaction status
update from the producer before proactively aborting the ongoing transaction.If this value is larger
than the transaction.max.timeout.ms setting in the broker, the request will fail with a
InvalidTransactionTimeout error.

transactional.id

Type: string
Default: null
Valid Values: non-empty string

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

164

Importance: low
The TransactionalId to use for transactional delivery. This enables reliability semantics which span
multiple producer sessions since it allows the client to guarantee that transactions using the same
TransactionalId have been completed prior to starting any new transactions. If no TransactionalId is
provided, then the producer is limited to idempotent delivery. Note that enable.idempotence must
be enabled if a TransactionalId is configured. The default is null, which means transactions cannot be
used. Note that transactions requires a cluster of at least three brokers by default what is the
recommended setting for production; for development you can change this, by adjusting broker
setting transaction.state.log.replication.factor.

APPENDIX D. PRODUCER CONFIGURATION PARAMETERS

165

APPENDIX E. ADMIN CLIENT CONFIGURATION PARAMETERS
bootstrap.servers

Type: list
Importance: high
A list of host/port pairs to use for establishing the initial connection to the Kafka cluster. The client
will make use of all servers irrespective of which servers are specified here for bootstrapping—this list
only impacts the initial hosts used to discover the full set of servers. This list should be in the form
host1:port1,host2:port2,… . Since these servers are just used for the initial connection to discover
the full cluster membership (which may change dynamically), this list need not contain the full set of
servers (you may want more than one, though, in case a server is down).

ssl.key.password

Type: password
Default: null
Importance: high
The password of the private key in the key store file. This is optional for client.

ssl.keystore.location

Type: string
Default: null
Importance: high
The location of the key store file. This is optional for client and can be used for two-way
authentication for client.

ssl.keystore.password

Type: password
Default: null
Importance: high
The store password for the key store file. This is optional for client and only needed if
ssl.keystore.location is configured.

ssl.truststore.location

Type: string
Default: null
Importance: high
The location of the trust store file.

ssl.truststore.password

Type: password
Default: null
Importance: high
The password for the trust store file. If a password is not set access to the truststore is still available,
but integrity checking is disabled.

client.id

Type: string
Default: ""
Importance: medium

An id string to pass to the server when making requests. The purpose of this is to be able to track the

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

166

An id string to pass to the server when making requests. The purpose of this is to be able to track the
source of requests beyond just ip/port by allowing a logical application name to be included in server-
side request logging.

connections.max.idle.ms

Type: long
Default: 300000
Importance: medium
Close idle connections after the number of milliseconds specified by this config.

receive.buffer.bytes

Type: int
Default: 65536
Valid Values: [-1,…]
Importance: medium
The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. If the value is -1, the OS
default will be used.

request.timeout.ms

Type: int
Default: 120000
Valid Values: [0,…]
Importance: medium
The configuration controls the maximum amount of time the client will wait for the response of a
request. If the response is not received before the timeout elapses the client will resend the request
if necessary or fail the request if retries are exhausted.

sasl.client.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL client callback handler class that implements the
AuthenticateCallbackHandler interface.

sasl.jaas.config

Type: password
Default: null
Importance: medium
JAAS login context parameters for SASL connections in the format used by JAAS configuration files.
JAAS configuration file format is described here. The format for the value is: ‘loginModuleClass
controlFlag (optionName=optionValue)*;’. For brokers, the config must be prefixed with listener
prefix and SASL mechanism name in lower-case. For example, listener.name.sasl_ssl.scram-sha-
256.sasl.jaas.config=com.example.ScramLoginModule required;.

sasl.kerberos.service.name

Type: string
Default: null
Importance: medium
The Kerberos principal name that Kafka runs as. This can be defined either in Kafka’s JAAS config or
in Kafka’s config.

sasl.login.callback.handler.class

APPENDIX E. ADMIN CLIENT CONFIGURATION PARAMETERS

167

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL login callback handler class that implements the
AuthenticateCallbackHandler interface. For brokers, login callback handler config must be prefixed
with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-
256.sasl.login.callback.handler.class=com.example.CustomScramLoginCallbackHandler.

sasl.login.class

Type: class
Default: null
Importance: medium
The fully qualified name of a class that implements the Login interface. For brokers, login config
must be prefixed with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-256.sasl.login.class=com.example.CustomScramLogin.

sasl.mechanism

Type: string
Default: GSSAPI
Importance: medium
SASL mechanism used for client connections. This may be any mechanism for which a security
provider is available. GSSAPI is the default mechanism.

security.protocol

Type: string
Default: PLAINTEXT
Importance: medium
Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL, SASL_PLAINTEXT,
SASL_SSL.

send.buffer.bytes

Type: int
Default: 131072
Valid Values: [-1,…]
Importance: medium
The size of the TCP send buffer (SO_SNDBUF) to use when sending data. If the value is -1, the OS
default will be used.

ssl.enabled.protocols

Type: list
Default: TLSv1.2,TLSv1.1,TLSv1
Importance: medium
The list of protocols enabled for SSL connections.

ssl.keystore.type

Type: string
Default: JKS
Importance: medium
The file format of the key store file. This is optional for client.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

168

ssl.protocol

Type: string
Default: TLS
Importance: medium
The SSL protocol used to generate the SSLContext. Default setting is TLS, which is fine for most
cases. Allowed values in recent JVMs are TLS, TLSv1.1 and TLSv1.2. SSL, SSLv2 and SSLv3 may be
supported in older JVMs, but their usage is discouraged due to known security vulnerabilities.

ssl.provider

Type: string
Default: null
Importance: medium
The name of the security provider used for SSL connections. Default value is the default security
provider of the JVM.

ssl.truststore.type

Type: string
Default: JKS
Importance: medium
The file format of the trust store file.

metadata.max.age.ms

Type: long
Default: 300000
Valid Values: [0,…]
Importance: low
The period of time in milliseconds after which we force a refresh of metadata even if we haven’t seen
any partition leadership changes to proactively discover any new brokers or partitions.

metric.reporters

Type: list
Default: ""
Importance: low
A list of classes to use as metrics reporters. Implementing the
org.apache.kafka.common.metrics.MetricsReporter interface allows plugging in classes that will
be notified of new metric creation. The JmxReporter is always included to register JMX statistics.

metrics.num.samples

Type: int
Default: 2
Valid Values: [1,…]
Importance: low
The number of samples maintained to compute metrics.

metrics.recording.level

Type: string
Default: INFO
Valid Values: [INFO, DEBUG]
Importance: low
The highest recording level for metrics.

APPENDIX E. ADMIN CLIENT CONFIGURATION PARAMETERS

169

metrics.sample.window.ms

Type: long
Default: 30000
Valid Values: [0,…]
Importance: low
The window of time a metrics sample is computed over.

reconnect.backoff.max.ms

Type: long
Default: 1000
Valid Values: [0,…]
Importance: low
The maximum amount of time in milliseconds to wait when reconnecting to a broker that has
repeatedly failed to connect. If provided, the backoff per host will increase exponentially for each
consecutive connection failure, up to this maximum. After calculating the backoff increase, 20%
random jitter is added to avoid connection storms.

reconnect.backoff.ms

Type: long
Default: 50
Valid Values: [0,…]
Importance: low
The base amount of time to wait before attempting to reconnect to a given host. This avoids
repeatedly connecting to a host in a tight loop. This backoff applies to all connection attempts by the
client to a broker.

retries

Type: int
Default: 5
Valid Values: [0,…]
Importance: low
Setting a value greater than zero will cause the client to resend any request that fails with a
potentially transient error.

retry.backoff.ms

Type: long
Default: 100
Valid Values: [0,…]
Importance: low
The amount of time to wait before attempting to retry a failed request. This avoids repeatedly
sending requests in a tight loop under some failure scenarios.

sasl.kerberos.kinit.cmd

Type: string
Default: /usr/bin/kinit
Importance: low
Kerberos kinit command path.

sasl.kerberos.min.time.before.relogin

Type: long

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

170

Type: long
Default: 60000
Importance: low
Login thread sleep time between refresh attempts.

sasl.kerberos.ticket.renew.jitter

Type: double
Default: 0.05
Importance: low
Percentage of random jitter added to the renewal time.

sasl.kerberos.ticket.renew.window.factor

Type: double
Default: 0.8
Importance: low
Login thread will sleep until the specified window factor of time from last refresh to ticket’s expiry
has been reached, at which time it will try to renew the ticket.

sasl.login.refresh.buffer.seconds

Type: short
Default: 300
Valid Values: [0,…,3600]
Importance: low
The amount of buffer time before credential expiration to maintain when refreshing a credential, in
seconds. If a refresh would otherwise occur closer to expiration than the number of buffer seconds
then the refresh will be moved up to maintain as much of the buffer time as possible. Legal values are
between 0 and 3600 (1 hour); a default value of 300 (5 minutes) is used if no value is specified. This
value and sasl.login.refresh.min.period.seconds are both ignored if their sum exceeds the remaining
lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.min.period.seconds

Type: short
Default: 60
Valid Values: [0,…,900]
Importance: low
The desired minimum time for the login refresh thread to wait before refreshing a credential, in
seconds. Legal values are between 0 and 900 (15 minutes); a default value of 60 (1 minute) is used if
no value is specified. This value and sasl.login.refresh.buffer.seconds are both ignored if their sum
exceeds the remaining lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.window.factor

Type: double
Default: 0.8
Valid Values: [0.5,…,1.0]
Importance: low
Login refresh thread will sleep until the specified window factor relative to the credential’s lifetime
has been reached, at which time it will try to refresh the credential. Legal values are between 0.5
(50%) and 1.0 (100%) inclusive; a default value of 0.8 (80%) is used if no value is specified. Currently
applies only to OAUTHBEARER.

sasl.login.refresh.window.jitter

Type: double

APPENDIX E. ADMIN CLIENT CONFIGURATION PARAMETERS

171

Default: 0.05
Valid Values: [0.0,…,0.25]
Importance: low
The maximum amount of random jitter relative to the credential’s lifetime that is added to the login
refresh thread’s sleep time. Legal values are between 0 and 0.25 (25%) inclusive; a default value of
0.05 (5%) is used if no value is specified. Currently applies only to OAUTHBEARER.

ssl.cipher.suites

Type: list
Default: null
Importance: low
A list of cipher suites. This is a named combination of authentication, encryption, MAC and key
exchange algorithm used to negotiate the security settings for a network connection using TLS or
SSL network protocol. By default all the available cipher suites are supported.

ssl.endpoint.identification.algorithm

Type: string
Default: https
Importance: low
The endpoint identification algorithm to validate server hostname using server certificate.

ssl.keymanager.algorithm

Type: string
Default: SunX509
Importance: low
The algorithm used by key manager factory for SSL connections. Default value is the key manager
factory algorithm configured for the Java Virtual Machine.

ssl.secure.random.implementation

Type: string
Default: null
Importance: low
The SecureRandom PRNG implementation to use for SSL cryptography operations.

ssl.trustmanager.algorithm

Type: string
Default: PKIX
Importance: low
The algorithm used by trust manager factory for SSL connections. Default value is the trust manager
factory algorithm configured for the Java Virtual Machine.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

172

APPENDIX F. KAFKA CONNECT CONFIGURATION
PARAMETERS

config.storage.topic

Type: string
Importance: high
The name of the Kafka topic where connector configurations are stored.

group.id

Type: string
Importance: high
A unique string that identifies the Connect cluster group this worker belongs to.

key.converter

Type: class
Importance: high
Converter class used to convert between Kafka Connect format and the serialized form that is
written to Kafka. This controls the format of the keys in messages written to or read from Kafka, and
since this is independent of connectors it allows any connector to work with any serialization format.
Examples of common formats include JSON and Avro.

offset.storage.topic

Type: string
Importance: high
The name of the Kafka topic where connector offsets are stored.

status.storage.topic

Type: string
Importance: high
The name of the Kafka topic where connector and task status are stored.

value.converter

Type: class
Importance: high
Converter class used to convert between Kafka Connect format and the serialized form that is
written to Kafka. This controls the format of the values in messages written to or read from Kafka,
and since this is independent of connectors it allows any connector to work with any serialization
format. Examples of common formats include JSON and Avro.

bootstrap.servers

Type: list
Default: localhost:9092
Importance: high
A list of host/port pairs to use for establishing the initial connection to the Kafka cluster. The client
will make use of all servers irrespective of which servers are specified here for bootstrapping—this list
only impacts the initial hosts used to discover the full set of servers. This list should be in the form
host1:port1,host2:port2,… . Since these servers are just used for the initial connection to discover
the full cluster membership (which may change dynamically), this list need not contain the full set of
servers (you may want more than one, though, in case a server is down).

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

173

heartbeat.interval.ms

Type: int
Default: 3000
Importance: high
The expected time between heartbeats to the group coordinator when using Kafka’s group
management facilities. Heartbeats are used to ensure that the worker’s session stays active and to
facilitate rebalancing when new members join or leave the group. The value must be set lower than
session.timeout.ms, but typically should be set no higher than 1/3 of that value. It can be adjusted
even lower to control the expected time for normal rebalances.

rebalance.timeout.ms

Type: int
Default: 60000
Importance: high
The maximum allowed time for each worker to join the group once a rebalance has begun. This is
basically a limit on the amount of time needed for all tasks to flush any pending data and commit
offsets. If the timeout is exceeded, then the worker will be removed from the group, which will cause
offset commit failures.

session.timeout.ms

Type: int
Default: 10000
Importance: high
The timeout used to detect worker failures. The worker sends periodic heartbeats to indicate its
liveness to the broker. If no heartbeats are received by the broker before the expiration of this
session timeout, then the broker will remove the worker from the group and initiate a rebalance.
Note that the value must be in the allowable range as configured in the broker configuration by
group.min.session.timeout.ms and group.max.session.timeout.ms.

ssl.key.password

Type: password
Default: null
Importance: high
The password of the private key in the key store file. This is optional for client.

ssl.keystore.location

Type: string
Default: null
Importance: high
The location of the key store file. This is optional for client and can be used for two-way
authentication for client.

ssl.keystore.password

Type: password
Default: null
Importance: high
The store password for the key store file. This is optional for client and only needed if
ssl.keystore.location is configured.

ssl.truststore.location

Type: string

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

174

Type: string
Default: null
Importance: high
The location of the trust store file.

ssl.truststore.password

Type: password
Default: null
Importance: high
The password for the trust store file. If a password is not set access to the truststore is still available,
but integrity checking is disabled.

connections.max.idle.ms

Type: long
Default: 540000
Importance: medium
Close idle connections after the number of milliseconds specified by this config.

receive.buffer.bytes

Type: int
Default: 32768
Valid Values: [0,…]
Importance: medium
The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. If the value is -1, the OS
default will be used.

request.timeout.ms

Type: int
Default: 40000
Valid Values: [0,…]
Importance: medium
The configuration controls the maximum amount of time the client will wait for the response of a
request. If the response is not received before the timeout elapses the client will resend the request
if necessary or fail the request if retries are exhausted.

sasl.client.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL client callback handler class that implements the
AuthenticateCallbackHandler interface.

sasl.jaas.config

Type: password
Default: null
Importance: medium
JAAS login context parameters for SASL connections in the format used by JAAS configuration files.
JAAS configuration file format is described here. The format for the value is: ‘loginModuleClass
controlFlag (optionName=optionValue)*;’. For brokers, the config must be prefixed with listener
prefix and SASL mechanism name in lower-case. For example, listener.name.sasl_ssl.scram-sha-
256.sasl.jaas.config=com.example.ScramLoginModule required;.

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

175

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

sasl.kerberos.service.name

Type: string
Default: null
Importance: medium
The Kerberos principal name that Kafka runs as. This can be defined either in Kafka’s JAAS config or
in Kafka’s config.

sasl.login.callback.handler.class

Type: class
Default: null
Importance: medium
The fully qualified name of a SASL login callback handler class that implements the
AuthenticateCallbackHandler interface. For brokers, login callback handler config must be prefixed
with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-
256.sasl.login.callback.handler.class=com.example.CustomScramLoginCallbackHandler.

sasl.login.class

Type: class
Default: null
Importance: medium
The fully qualified name of a class that implements the Login interface. For brokers, login config
must be prefixed with listener prefix and SASL mechanism name in lower-case. For example,
listener.name.sasl_ssl.scram-sha-256.sasl.login.class=com.example.CustomScramLogin.

sasl.mechanism

Type: string
Default: GSSAPI
Importance: medium
SASL mechanism used for client connections. This may be any mechanism for which a security
provider is available. GSSAPI is the default mechanism.

security.protocol

Type: string
Default: PLAINTEXT
Importance: medium
Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL, SASL_PLAINTEXT,
SASL_SSL.

send.buffer.bytes

Type: int
Default: 131072
Valid Values: [0,…]
Importance: medium
The size of the TCP send buffer (SO_SNDBUF) to use when sending data. If the value is -1, the OS
default will be used.

ssl.enabled.protocols

Type: list
Default: TLSv1.2,TLSv1.1,TLSv1
Importance: medium

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

176

The list of protocols enabled for SSL connections.

ssl.keystore.type

Type: string
Default: JKS
Importance: medium
The file format of the key store file. This is optional for client.

ssl.protocol

Type: string
Default: TLS
Importance: medium
The SSL protocol used to generate the SSLContext. Default setting is TLS, which is fine for most
cases. Allowed values in recent JVMs are TLS, TLSv1.1 and TLSv1.2. SSL, SSLv2 and SSLv3 may be
supported in older JVMs, but their usage is discouraged due to known security vulnerabilities.

ssl.provider

Type: string
Default: null
Importance: medium
The name of the security provider used for SSL connections. Default value is the default security
provider of the JVM.

ssl.truststore.type

Type: string
Default: JKS
Importance: medium
The file format of the trust store file.

worker.sync.timeout.ms

Type: int
Default: 3000
Importance: medium
When the worker is out of sync with other workers and needs to resynchronize configurations, wait
up to this amount of time before giving up, leaving the group, and waiting a backoff period before
rejoining.

worker.unsync.backoff.ms

Type: int
Default: 300000
Importance: medium
When the worker is out of sync with other workers and fails to catch up within
worker.sync.timeout.ms, leave the Connect cluster for this long before rejoining.

access.control.allow.methods

Type: string
Default: ""
Importance: low
Sets the methods supported for cross origin requests by setting the Access-Control-Allow-Methods
header. The default value of the Access-Control-Allow-Methods header allows cross origin requests
for GET, POST and HEAD.

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

177

access.control.allow.origin

Type: string
Default: ""
Importance: low
Value to set the Access-Control-Allow-Origin header to for REST API requests.To enable cross
origin access, set this to the domain of the application that should be permitted to access the API, or
'*' to allow access from any domain. The default value only allows access from the domain of the
REST API.

client.id

Type: string
Default: ""
Importance: low
An id string to pass to the server when making requests. The purpose of this is to be able to track the
source of requests beyond just ip/port by allowing a logical application name to be included in server-
side request logging.

config.providers

Type: list
Default: ""
Importance: low
Comma-separated names of ConfigProvider classes, loaded and used in the order specified.
Implementing the interface ConfigProvider allows you to replace variable references in connector
configurations, such as for externalized secrets.

config.storage.replication.factor

Type: short
Default: 3
Valid Values: [1,…]
Importance: low
Replication factor used when creating the configuration storage topic.

header.converter

Type: class
Default: org.apache.kafka.connect.storage.SimpleHeaderConverter
Importance: low
HeaderConverter class used to convert between Kafka Connect format and the serialized form that
is written to Kafka. This controls the format of the header values in messages written to or read from
Kafka, and since this is independent of connectors it allows any connector to work with any
serialization format. Examples of common formats include JSON and Avro. By default, the
SimpleHeaderConverter is used to serialize header values to strings and deserialize them by inferring
the schemas.

internal.key.converter

Type: class
Default: org.apache.kafka.connect.json.JsonConverter
Importance: low
Converter class used to convert between Kafka Connect format and the serialized form that is
written to Kafka. This controls the format of the keys in messages written to or read from Kafka, and
since this is independent of connectors it allows any connector to work with any serialization format.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

178

Examples of common formats include JSON and Avro. This setting controls the format used for
internal bookkeeping data used by the framework, such as configs and offsets, so users can typically
use any functioning Converter implementation. Deprecated; will be removed in an upcoming version.

internal.value.converter

Type: class
Default: org.apache.kafka.connect.json.JsonConverter
Importance: low
Converter class used to convert between Kafka Connect format and the serialized form that is
written to Kafka. This controls the format of the values in messages written to or read from Kafka,
and since this is independent of connectors it allows any connector to work with any serialization
format. Examples of common formats include JSON and Avro. This setting controls the format used
for internal bookkeeping data used by the framework, such as configs and offsets, so users can
typically use any functioning Converter implementation. Deprecated; will be removed in an upcoming
version.

listeners

Type: list
Default: null
Importance: low
List of comma-separated URIs the REST API will listen on. The supported protocols are HTTP and
HTTPS. Specify hostname as 0.0.0.0 to bind to all interfaces. Leave hostname empty to bind to
default interface. Examples of legal listener lists: HTTP://myhost:8083,HTTPS://myhost:8084.

metadata.max.age.ms

Type: long
Default: 300000
Valid Values: [0,…]
Importance: low
The period of time in milliseconds after which we force a refresh of metadata even if we haven’t seen
any partition leadership changes to proactively discover any new brokers or partitions.

metric.reporters

Type: list
Default: ""
Importance: low
A list of classes to use as metrics reporters. Implementing the
org.apache.kafka.common.metrics.MetricsReporter interface allows plugging in classes that will
be notified of new metric creation. The JmxReporter is always included to register JMX statistics.

metrics.num.samples

Type: int
Default: 2
Valid Values: [1,…]
Importance: low
The number of samples maintained to compute metrics.

metrics.recording.level

Type: string
Default: INFO
Valid Values: [INFO, DEBUG]
Importance: low

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

179

The highest recording level for metrics.

metrics.sample.window.ms

Type: long
Default: 30000
Valid Values: [0,…]
Importance: low
The window of time a metrics sample is computed over.

offset.flush.interval.ms

Type: long
Default: 60000
Importance: low
Interval at which to try committing offsets for tasks.

offset.flush.timeout.ms

Type: long
Default: 5000
Importance: low
Maximum number of milliseconds to wait for records to flush and partition offset data to be
committed to offset storage before cancelling the process and restoring the offset data to be
committed in a future attempt.

offset.storage.partitions

Type: int
Default: 25
Valid Values: [1,…]
Importance: low
The number of partitions used when creating the offset storage topic.

offset.storage.replication.factor

Type: short
Default: 3
Valid Values: [1,…]
Importance: low
Replication factor used when creating the offset storage topic.

plugin.path

Type: list
Default: null
Importance: low
List of paths separated by commas (,) that contain plugins (connectors, converters,
transformations). The list should consist of top level directories that include any combination of: a)
directories immediately containing jars with plugins and their dependencies b) uber-jars with plugins
and their dependencies c) directories immediately containing the package directory structure of
classes of plugins and their dependencies Note: symlinks will be followed to discover dependencies
or plugins. Examples:
plugin.path=/usr/local/share/java,/usr/local/share/kafka/plugins,/opt/connectors.

reconnect.backoff.max.ms

Type: long

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

180

Default: 1000
Valid Values: [0,…]
Importance: low
The maximum amount of time in milliseconds to wait when reconnecting to a broker that has
repeatedly failed to connect. If provided, the backoff per host will increase exponentially for each
consecutive connection failure, up to this maximum. After calculating the backoff increase, 20%
random jitter is added to avoid connection storms.

reconnect.backoff.ms

Type: long
Default: 50
Valid Values: [0,…]
Importance: low
The base amount of time to wait before attempting to reconnect to a given host. This avoids
repeatedly connecting to a host in a tight loop. This backoff applies to all connection attempts by the
client to a broker.

rest.advertised.host.name

Type: string
Default: null
Importance: low
If this is set, this is the hostname that will be given out to other workers to connect to.

rest.advertised.listener

Type: string
Default: null
Importance: low
Sets the advertised listener (HTTP or HTTPS) which will be given to other workers to use.

rest.advertised.port

Type: int
Default: null
Importance: low
If this is set, this is the port that will be given out to other workers to connect to.

rest.extension.classes

Type: list
Default: ""
Importance: low
Comma-separated names of ConnectRestExtension classes, loaded and called in the order
specified. Implementing the interface ConnectRestExtension allows you to inject into Connect’s
REST API user defined resources like filters. Typically used to add custom capability like logging,
security, etc.

rest.host.name

Type: string
Default: null
Importance: low
Hostname for the REST API. If this is set, it will only bind to this interface.

rest.port

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

181

Type: int
Default: 8083
Importance: low
Port for the REST API to listen on.

retry.backoff.ms

Type: long
Default: 100
Valid Values: [0,…]
Importance: low
The amount of time to wait before attempting to retry a failed request to a given topic partition. This
avoids repeatedly sending requests in a tight loop under some failure scenarios.

sasl.kerberos.kinit.cmd

Type: string
Default: /usr/bin/kinit
Importance: low
Kerberos kinit command path.

sasl.kerberos.min.time.before.relogin

Type: long
Default: 60000
Importance: low
Login thread sleep time between refresh attempts.

sasl.kerberos.ticket.renew.jitter

Type: double
Default: 0.05
Importance: low
Percentage of random jitter added to the renewal time.

sasl.kerberos.ticket.renew.window.factor

Type: double
Default: 0.8
Importance: low
Login thread will sleep until the specified window factor of time from last refresh to ticket’s expiry
has been reached, at which time it will try to renew the ticket.

sasl.login.refresh.buffer.seconds

Type: short
Default: 300
Valid Values: [0,…,3600]
Importance: low
The amount of buffer time before credential expiration to maintain when refreshing a credential, in
seconds. If a refresh would otherwise occur closer to expiration than the number of buffer seconds
then the refresh will be moved up to maintain as much of the buffer time as possible. Legal values are
between 0 and 3600 (1 hour); a default value of 300 (5 minutes) is used if no value is specified. This
value and sasl.login.refresh.min.period.seconds are both ignored if their sum exceeds the remaining
lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.min.period.seconds

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

182

Type: short
Default: 60
Valid Values: [0,…,900]
Importance: low
The desired minimum time for the login refresh thread to wait before refreshing a credential, in
seconds. Legal values are between 0 and 900 (15 minutes); a default value of 60 (1 minute) is used if
no value is specified. This value and sasl.login.refresh.buffer.seconds are both ignored if their sum
exceeds the remaining lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.window.factor

Type: double
Default: 0.8
Valid Values: [0.5,…,1.0]
Importance: low
Login refresh thread will sleep until the specified window factor relative to the credential’s lifetime
has been reached, at which time it will try to refresh the credential. Legal values are between 0.5
(50%) and 1.0 (100%) inclusive; a default value of 0.8 (80%) is used if no value is specified. Currently
applies only to OAUTHBEARER.

sasl.login.refresh.window.jitter

Type: double
Default: 0.05
Valid Values: [0.0,…,0.25]
Importance: low
The maximum amount of random jitter relative to the credential’s lifetime that is added to the login
refresh thread’s sleep time. Legal values are between 0 and 0.25 (25%) inclusive; a default value of
0.05 (5%) is used if no value is specified. Currently applies only to OAUTHBEARER.

ssl.cipher.suites

Type: list
Default: null
Importance: low
A list of cipher suites. This is a named combination of authentication, encryption, MAC and key
exchange algorithm used to negotiate the security settings for a network connection using TLS or
SSL network protocol. By default all the available cipher suites are supported.

ssl.client.auth

Type: string
Default: none
Importance: low
Configures kafka broker to request client authentication. The following settings are common:

ssl.client.auth=required If set to required client authentication is required.

ssl.client.auth=requested This means client authentication is optional. unlike requested , if
this option is set client can choose not to provide authentication information about itself

ssl.client.auth=none This means client authentication is not needed.

ssl.endpoint.identification.algorithm

Type: string
Default: https
Importance: low

APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS

183

The endpoint identification algorithm to validate server hostname using server certificate.

ssl.keymanager.algorithm

Type: string
Default: SunX509
Importance: low
The algorithm used by key manager factory for SSL connections. Default value is the key manager
factory algorithm configured for the Java Virtual Machine.

ssl.secure.random.implementation

Type: string
Default: null
Importance: low
The SecureRandom PRNG implementation to use for SSL cryptography operations.

ssl.trustmanager.algorithm

Type: string
Default: PKIX
Importance: low
The algorithm used by trust manager factory for SSL connections. Default value is the trust manager
factory algorithm configured for the Java Virtual Machine.

status.storage.partitions

Type: int
Default: 5
Valid Values: [1,…]
Importance: low
The number of partitions used when creating the status storage topic.

status.storage.replication.factor

Type: short
Default: 3
Valid Values: [1,…]
Importance: low
Replication factor used when creating the status storage topic.

task.shutdown.graceful.timeout.ms

Type: long
Default: 5000
Importance: low
Amount of time to wait for tasks to shutdown gracefully. This is the total amount of time, not per
task. All task have shutdown triggered, then they are waited on sequentially.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

184

APPENDIX G. KAFKA STREAMS CONFIGURATION
PARAMETERS

application.id

Type: string
Importance: high
An identifier for the stream processing application. Must be unique within the Kafka cluster. It is used
as 1) the default client-id prefix, 2) the group-id for membership management, 3) the changelog
topic prefix.

bootstrap.servers

Type: list
Importance: high
A list of host/port pairs to use for establishing the initial connection to the Kafka cluster. The client
will make use of all servers irrespective of which servers are specified here for bootstrapping—this list
only impacts the initial hosts used to discover the full set of servers. This list should be in the form
host1:port1,host2:port2,… . Since these servers are just used for the initial connection to discover
the full cluster membership (which may change dynamically), this list need not contain the full set of
servers (you may want more than one, though, in case a server is down).

replication.factor

Type: int
Default: 1
Importance: high
The replication factor for change log topics and repartition topics created by the stream processing
application.

state.dir

Type: string
Default: /tmp/kafka-streams
Importance: high
Directory location for state store.

cache.max.bytes.buffering

Type: long
Default: 10485760
Valid Values: [0,…]
Importance: medium
Maximum number of memory bytes to be used for buffering across all threads.

client.id

Type: string
Default: ""
Importance: medium
An ID prefix string used for the client IDs of internal consumer, producer and restore-consumer, with
pattern '<client.id>-StreamThread-<threadSequenceNumber>-<consumer|producer|restore-
consumer>'.

default.deserialization.exception.handler

Type: class

APPENDIX G. KAFKA STREAMS CONFIGURATION PARAMETERS

185

Type: class
Default: org.apache.kafka.streams.errors.LogAndFailExceptionHandler
Importance: medium
Exception handling class that implements the
org.apache.kafka.streams.errors.DeserializationExceptionHandler interface.

default.key.serde

Type: class
Default: org.apache.kafka.common.serialization.Serdes$ByteArraySerde
Importance: medium
Default serializer / deserializer class for key that implements the
org.apache.kafka.common.serialization.Serde interface. Note when windowed serde class is used,
one needs to set the inner serde class that implements the
org.apache.kafka.common.serialization.Serde interface via 'default.windowed.key.serde.inner' or
'default.windowed.value.serde.inner' as well.

default.production.exception.handler

Type: class
Default: org.apache.kafka.streams.errors.DefaultProductionExceptionHandler
Importance: medium
Exception handling class that implements the
org.apache.kafka.streams.errors.ProductionExceptionHandler interface.

default.timestamp.extractor

Type: class
Default: org.apache.kafka.streams.processor.FailOnInvalidTimestamp
Importance: medium
Default timestamp extractor class that implements the
org.apache.kafka.streams.processor.TimestampExtractor interface.

default.value.serde

Type: class
Default: org.apache.kafka.common.serialization.Serdes$ByteArraySerde
Importance: medium
Default serializer / deserializer class for value that implements the
org.apache.kafka.common.serialization.Serde interface. Note when windowed serde class is used,
one needs to set the inner serde class that implements the
org.apache.kafka.common.serialization.Serde interface via 'default.windowed.key.serde.inner' or
'default.windowed.value.serde.inner' as well.

num.standby.replicas

Type: int
Default: 0
Importance: medium
The number of standby replicas for each task.

num.stream.threads

Type: int
Default: 1
Importance: medium
The number of threads to execute stream processing.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

186

processing.guarantee

Type: string
Default: at_least_once
Valid Values: [at_least_once, exactly_once]
Importance: medium
The processing guarantee that should be used. Possible values are at_least_once (default) and
exactly_once. Note that exactly-once processing requires a cluster of at least three brokers by
default what is the recommended setting for production; for development you can change this, by
adjusting broker setting transaction.state.log.replication.factor.

security.protocol

Type: string
Default: PLAINTEXT
Importance: medium
Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL, SASL_PLAINTEXT,
SASL_SSL.

topology.optimization

Type: string
Default: none
Valid Values: [none, all]
Importance: medium
A configuration telling Kafka Streams if it should optimize the topology, disabled by default.

application.server

Type: string
Default: ""
Importance: low
A host:port pair pointing to an embedded user defined endpoint that can be used for discovering the
locations of state stores within a single KafkaStreams application.

buffered.records.per.partition

Type: int
Default: 1000
Importance: low
The maximum number of records to buffer per partition.

commit.interval.ms

Type: long
Default: 30000
Importance: low
The frequency with which to save the position of the processor. (Note, if 'processing.guarantee' is set
to 'exactly_once', the default value is 100, otherwise the default value is 30000.

connections.max.idle.ms

Type: long
Default: 540000
Importance: low
Close idle connections after the number of milliseconds specified by this config.

metadata.max.age.ms

APPENDIX G. KAFKA STREAMS CONFIGURATION PARAMETERS

187

Type: long
Default: 300000
Valid Values: [0,…]
Importance: low
The period of time in milliseconds after which we force a refresh of metadata even if we haven’t seen
any partition leadership changes to proactively discover any new brokers or partitions.

metric.reporters

Type: list
Default: ""
Importance: low
A list of classes to use as metrics reporters. Implementing the
org.apache.kafka.common.metrics.MetricsReporter interface allows plugging in classes that will
be notified of new metric creation. The JmxReporter is always included to register JMX statistics.

metrics.num.samples

Type: int
Default: 2
Valid Values: [1,…]
Importance: low
The number of samples maintained to compute metrics.

metrics.recording.level

Type: string
Default: INFO
Valid Values: [INFO, DEBUG]
Importance: low
The highest recording level for metrics.

metrics.sample.window.ms

Type: long
Default: 30000
Valid Values: [0,…]
Importance: low
The window of time a metrics sample is computed over.

partition.grouper

Type: class
Default: org.apache.kafka.streams.processor.DefaultPartitionGrouper
Importance: low
Partition grouper class that implements the
org.apache.kafka.streams.processor.PartitionGrouper interface.

poll.ms

Type: long
Default: 100
Importance: low
The amount of time in milliseconds to block waiting for input.

receive.buffer.bytes

Type: int

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

188

Default: 32768
Valid Values: [0,…]
Importance: low
The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. If the value is -1, the OS
default will be used.

reconnect.backoff.max.ms

Type: long
Default: 1000
Valid Values: [0,…]
Importance: low
The maximum amount of time in milliseconds to wait when reconnecting to a broker that has
repeatedly failed to connect. If provided, the backoff per host will increase exponentially for each
consecutive connection failure, up to this maximum. After calculating the backoff increase, 20%
random jitter is added to avoid connection storms.

reconnect.backoff.ms

Type: long
Default: 50
Valid Values: [0,…]
Importance: low
The base amount of time to wait before attempting to reconnect to a given host. This avoids
repeatedly connecting to a host in a tight loop. This backoff applies to all connection attempts by the
client to a broker.

request.timeout.ms

Type: int
Default: 40000
Valid Values: [0,…]
Importance: low
The configuration controls the maximum amount of time the client will wait for the response of a
request. If the response is not received before the timeout elapses the client will resend the request
if necessary or fail the request if retries are exhausted.

retries

Type: int
Default: 0
Valid Values: [0,…,2147483647]
Importance: low
Setting a value greater than zero will cause the client to resend any request that fails with a
potentially transient error.

retry.backoff.ms

Type: long
Default: 100
Valid Values: [0,…]
Importance: low
The amount of time to wait before attempting to retry a failed request to a given topic partition. This
avoids repeatedly sending requests in a tight loop under some failure scenarios.

rocksdb.config.setter

Type: class

APPENDIX G. KAFKA STREAMS CONFIGURATION PARAMETERS

189

Type: class
Default: null
Importance: low
A Rocks DB config setter class or class name that implements the
org.apache.kafka.streams.state.RocksDBConfigSetter interface.

send.buffer.bytes

Type: int
Default: 131072
Valid Values: [0,…]
Importance: low
The size of the TCP send buffer (SO_SNDBUF) to use when sending data. If the value is -1, the OS
default will be used.

state.cleanup.delay.ms

Type: long
Default: 600000
Importance: low
The amount of time in milliseconds to wait before deleting state when a partition has migrated. Only
state directories that have not been modified for at least state.cleanup.delay.ms will be removed.

upgrade.from

Type: string
Default: null
Valid Values: [null, 0.10.0, 0.10.1, 0.10.2, 0.11.0, 1.0, 1.1]
Importance: low
Allows upgrading from versions 0.10.0/0.10.1/0.10.2/0.11.0/1.0/1.1 to version 1.2 (or newer) in a
backward compatible way. When upgrading from 1.2 to a newer version it is not required to specify
this config.Default is null. Accepted values are "0.10.0", "0.10.1", "0.10.2", "0.11.0", "1.0", "1.1" (for
upgrading from the corresponding old version).

windowstore.changelog.additional.retention.ms

Type: long
Default: 86400000
Importance: low
Added to a windows maintainMs to ensure data is not deleted from the log prematurely. Allows for
clock drift. Default is 1 day.

Red Hat AMQ 7.4 Using AMQ Streams on Red Hat Enterprise Linux (RHEL)

190

APPENDIX H. USING YOUR SUBSCRIPTION
AMQ Streams is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Streams entries in the JBOSS INTEGRATION AND AUTOMATION
category.

3. Select the desired AMQ Streams product. The Software Downloads page opens.

4. Click the Download link for your component.

Revised on 2019-07-15 15:33:56 UTC

APPENDIX H. USING YOUR SUBSCRIPTION

191

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	CHAPTER 1. OVERVIEW OF AMQ STREAMS
	1.1. KEY FEATURES
	1.2. SUPPORTED CONFIGURATIONS
	1.3. DOCUMENT CONVENTIONS

	CHAPTER 2. GETTING STARTED
	2.1. AMQ STREAMS DISTRIBUTION
	2.2. DOWNLOADING AN AMQ STREAMS ARCHIVE
	2.3. INSTALLING AMQ STREAMS
	2.4. DATA STORAGE CONSIDERATIONS
	2.4.1. Apache Kafka and Zookeeper storage support
	2.4.2. File systems

	2.5. RUNNING SINGLE NODE AMQ STREAMS CLUSTER
	2.6. USING THE CLUSTER
	2.7. STOPPING THE AMQ STREAMS SERVICES
	2.8. CONFIGURING AMQ STREAMS

	CHAPTER 3. CONFIGURING ZOOKEEPER
	3.1. BASIC CONFIGURATION
	3.2. ZOOKEEPER CLUSTER CONFIGURATION
	3.3. RUNNING MULTI-NODE ZOOKEEPER CLUSTER
	3.4. AUTHENTICATION
	3.4.1. Authentication with SASL
	3.4.2. Enabling Server-to-server authentication using DIGEST-MD5
	3.4.3. Enabling Client-to-server authentication using DIGEST-MD5

	3.5. AUTHORIZATION
	3.6. TLS
	3.7. ADDITIONAL CONFIGURATION OPTIONS
	3.8. LOGGING

	CHAPTER 4. CONFIGURING KAFKA
	4.1. ZOOKEEPER
	4.2. LISTENERS
	4.3. COMMIT LOGS
	4.4. BROKER ID
	4.5. RUNNING A MULTI-NODE KAFKA CLUSTER
	4.6. ZOOKEEPER AUTHENTICATION
	4.6.1. JAAS Configuration
	4.6.2. Enabling Zookeeper authentication

	4.7. ZOOKEEPER AUTHORIZATION
	4.7.1. ACL Configuration
	4.7.2. Enabling Zookeeper ACLs for a new Kafka cluster
	4.7.3. Enabling Zookeeper ACLs in an existing Kafka cluster

	4.8. ENCRYPTION AND AUTHENTICATION
	4.8.1. Listener configuration
	4.8.2. TLS Encryption
	4.8.3. Enabling TLS encryption
	4.8.4. Authentication
	4.8.4.1. TLS client authentication
	4.8.4.2. SASL authentication

	4.8.5. Enabling TLS client authentication
	4.8.6. Enabling SASL PLAIN authentication
	4.8.7. Enabling SASL SCRAM authentication
	4.8.8. Adding SASL SCRAM users
	4.8.9. Deleting SASL SCRAM users

	4.9. LOGGING

	CHAPTER 5. TOPICS
	5.1. PARTITIONS AND REPLICAS
	5.2. MESSAGE RETENTION
	5.3. TOPIC AUTO-CREATION
	5.4. TOPIC DELETION
	5.5. TOPIC CONFIGURATION
	5.6. INTERNAL TOPICS
	5.7. CREATING A TOPIC
	5.8. LISTING AND DESCRIBING TOPICS
	5.9. MODIFYING A TOPIC CONFIGURATION
	5.10. DELETING A TOPIC

	CHAPTER 6. SCALING CLUSTERS
	6.1. SCALING KAFKA CLUSTERS
	6.1.1. Adding brokers to a cluster
	6.1.2. Removing brokers from the cluster

	6.2. REASSIGNMENT OF PARTITIONS
	6.2.1. Reassignment JSON file
	6.2.2. Generating reassignment JSON files
	6.2.3. Creating reassignment JSON files manually

	6.3. REASSIGNMENT THROTTLES
	6.4. SCALING UP A KAFKA CLUSTER
	6.5. SCALING DOWN A KAFKA CLUSTER

	CHAPTER 7. MONITORING YOUR CLUSTER USING JMX
	7.1. JMX CONFIGURATION OPTIONS
	7.2. DISABLING THE JMX AGENT
	7.3. CONNECTING TO THE JVM FROM A DIFFERENT MACHINE
	7.4. MONITORING USING JCONSOLE
	7.5. IMPORTANT KAFKA BROKER METRICS
	7.5.1. Kafka server metrics
	7.5.2. Kafka network metrics
	7.5.3. Kafka log metrics
	7.5.4. Kafka controller metrics
	7.5.5. Yammer metrics

	7.6. PRODUCER MBEANS
	7.6.1. MBeans matching kafka.producer:type=producer-metrics,client-id=*
	7.6.2. MBeans matching kafka.producer:type=producer-metrics,client-id=*,node-id=*
	7.6.3. MBeans matching kafka.producer:type=producer-topic-metrics,client-id=*,topic=*

	7.7. CONSUMER MBEANS
	7.7.1. MBeans matching kafka.consumer:type=consumer-metrics,client-id=*
	7.7.2. MBeans matching kafka.consumer:type=consumer-metrics,client-id=*,node-id=*
	7.7.3. MBeans matching kafka.consumer:type=consumer-coordinator-metrics,client-id=*
	7.7.4. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*
	7.7.5. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*,topic=*
	7.7.6. MBeans matching kafka.consumer:type=consumer-fetch-manager-metrics,client-id=*,topic=*,partition=*

	7.8. KAFKA CONNECT MBEANS
	7.8.1. MBeans matching kafka.connect:type=connect-metrics,client-id=*
	7.8.2. MBeans matching kafka.connect:type=connect-metrics,client-id=*,node-id=*
	7.8.3. MBeans matching kafka.connect:type=connect-worker-metrics
	7.8.4. MBeans matching kafka.connect:type=connect-worker-rebalance-metrics
	7.8.5. MBeans matching kafka.connect:type=connector-metrics,connector=*
	7.8.6. MBeans matching kafka.connect:type=connector-task-metrics,connector=*,task=*
	7.8.7. MBeans matching kafka.connect:type=sink-task-metrics,connector=*,task=*
	7.8.8. MBeans matching kafka.connect:type=source-task-metrics,connector=*,task=*
	7.8.9. MBeans matching kafka.connect:type=task-error-metrics,connector=*,task=*

	7.9. KAFKA STREAMS MBEANS
	7.9.1. MBeans matching kafka.streams:type=stream-metrics,client-id=*
	7.9.2. MBeans matching kafka.streams:type=stream-task-metrics,client-id=*,task-id=*
	7.9.3. MBeans matching kafka.streams:type=stream-processor-node-metrics,client-id=*,task-id=*,processor-node-id=*
	7.9.4. MBeans matching kafka.streams:type=stream-[store-scope]-metrics,client-id=*,task-id=*,[store-scope]-id=*
	7.9.5. MBeans matching kafka.streams:type=stream-record-cache-metrics,client-id=*,task-id=*,record-cache-id=*

	CHAPTER 8. KAFKA CONNECT
	8.1. KAFKA CONNECT IN STANDALONE MODE
	8.1.1. Configuring Kafka Connect in standalone mode
	8.1.2. Configuring connectors in Kafka Connect in standalone mode
	8.1.3. Running Kafka Connect in standalone mode

	8.2. KAFKA CONNECT IN DISTRIBUTED MODE
	8.2.1. Configuring Kafka Connect in distributed mode
	8.2.2. Configuring connectors in distributed Kafka Connect
	8.2.3. Running distributed Kafka Connect
	8.2.4. Creating connectors
	8.2.5. Deleting connectors

	8.3. CONNECTOR PLUG-INS
	8.4. ADDING CONNECTOR PLUGINS

	CHAPTER 9. KAFKA CLIENTS
	9.1. ADDING KAFKA CLIENTS AS A DEPENDENCY TO YOUR MAVEN PROJECT

	CHAPTER 10. KAFKA STREAMS API OVERVIEW
	10.1. ADDING THE KAFKA STREAMS API AS A DEPENDENCY TO YOUR MAVEN PROJECT

	CHAPTER 11. USING THE AMQ STREAMS KAFKA BRIDGE
	11.1. OVERVIEW OF THE AMQ STREAMS KAFKA BRIDGE
	11.2. REQUESTS TO THE AMQ STREAMS KAFKA BRIDGE
	11.2.1. Authentication and encryption
	11.2.2. Data formats and headers
	11.2.2.1. Content Type headers
	11.2.2.2. Embedded data format
	11.2.2.3. Accept headers

	11.3. DOWNLOADING AN AMQ STREAMS ARCHIVE
	11.4. CONFIGURING AMQ STREAMS KAFKA BRIDGE PROPERTIES
	11.5. INSTALLING THE AMQ STREAMS KAFKA BRIDGE ON RED HAT ENTERPRISE LINUX
	11.6. AMQ STREAMS KAFKA BRIDGE API RESOURCES

	CHAPTER 12. AMQ STREAMS AND KAFKA UPGRADES
	12.1. UPGRADE PREREQUISITES
	12.2. UPGRADE PROCESS
	12.3. KAFKA VERSIONS
	12.4. UPGRADING TO AMQ STREAMS 1.2
	12.4.1. Upgrading Zookeeper
	12.4.2. Upgrading Kafka brokers
	12.4.3. Upgrading Kafka Connect

	12.5. UPGRADING KAFKA
	12.5.1. Upgrading Kafka brokers to use the new inter-broker protocol version
	12.5.2. Strategies for upgrading clients
	12.5.3. Upgrading client applications to the new Kafka version
	12.5.4. Upgrading Kafka brokers to use the new message format version

	APPENDIX A. BROKER CONFIGURATION PARAMETERS
	APPENDIX B. TOPIC CONFIGURATION PARAMETERS
	APPENDIX C. CONSUMER CONFIGURATION PARAMETERS
	APPENDIX D. PRODUCER CONFIGURATION PARAMETERS
	APPENDIX E. ADMIN CLIENT CONFIGURATION PARAMETERS
	APPENDIX F. KAFKA CONNECT CONFIGURATION PARAMETERS
	APPENDIX G. KAFKA STREAMS CONFIGURATION PARAMETERS
	APPENDIX H. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files

