
Red Hat Advanced Cluster Management
for Kubernetes 2.2

Observing environments

Read more to learn how to optimize your your managed clusters by enabling and
customizing the observability service.

Last Updated: 2022-05-18

Red Hat Advanced Cluster Management for Kubernetes 2.2 Observing
environments

Read more to learn how to optimize your your managed clusters by enabling and customizing the
observability service.

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read more to learn how to optimize your your managed clusters by enabling and customizing the
observability service.

. .

Table of Contents

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION
1.1. OBSERVING ENVIRONMENTS

1.1.1. Observability service
1.1.1.1. Observability certificates
1.1.1.2. Metric types
1.1.1.3. Observability pod capacity requests

1.1.2. Persistent stores used in the observability service
1.2. ENABLE OBSERVABILITY SERVICE

1.2.1. Prerequisites
1.2.2. Enabling observability

1.2.2.1. Creating the MultiClusterObservability CR
1.2.3. Disabling observability

1.3. CUSTOMIZING OBSERVABILITY
1.3.1. Creating custom rules
1.3.2. Configuring rules for AlertManager
1.3.3. Adding custom metrics
1.3.4. Viewing and exploring data
1.3.5. Disable observability

1.3.5.1. Disable observability on all clusters
1.3.5.2. Disable observability on a single cluster

1.4. DESIGNING YOUR GRAFANA DASHBOARD
1.4.1. Setting up the Grafana developer instance
1.4.2. Design your Grafana dashboard

1.4.2.1. Design your Grafana dashboard with a ConfigMap
1.4.3. Uninstalling the Grafana developer instance

3
3
4
4
5
5
7
8
8
9
11

13
13
13
14
15
16
16
16
17
17
17
18
18
19

Table of Contents

1

Red Hat Advanced Cluster Management for Kubernetes 2.2 Observing environments

2

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION
With the observability service enabled, you can use Red Hat Advanced Cluster Management for
Kubernetes to gain insight about and optimize your managed clusters. This information can save cost
and prevent unnecessary events.

Observing environments

Enable observability service

Customizing observability

Designing your Grafana dashboard

1.1. OBSERVING ENVIRONMENTS

You can use Red Hat Advanced Cluster Management for Kubernetes to gain insight and optimize your
managed clusters. Enable the observability service operator, multicluster-observability-operator, to
monitor the health of your managed clusters. Learn about the architecture for the multicluster
observability service in the following sections.

Note: The on-demand log provides access for engineers to get logs for a given pod in real-time. Logs

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

3

Note: The on-demand log provides access for engineers to get logs for a given pod in real-time. Logs
from the hub cluster are not aggregated. These logs can be accessed with the search service and other
parts of the console.

Observability service

Observability certificates

Metric types

Observability pod capacity requests

Persistent stores used in the observability service

1.1.1. Observability service

By default, observability is included with the product installation, but not enabled. Due to the
requirement for persistent storage, the observability service is not enabled by default. Red Hat
Advanced Cluster Management supports the following stable object stores:

Amazon S3 (or other S3 compatible object stores like Ceph)

Google Cloud Storage

Azure storage

Red Hat OpenShift Container Storage

When the service is enabled, the observability-endpoint-operator is automatically deployed to each
imported or created cluster. This controller collects the data from Red Hat OpenShift Container
Platform Prometheus, then sends it to the Red Hat Advanced Cluster Management hub cluster.

When observability is enabled in a hub cluster, metrics are collected by handling the hub cluster as a
managed cluster called local-cluster.

Note: In Red Hat Advanced Cluster Management the metrics-collector is only supported for Red Hat
OpenShift Container Platform 4.x clusters.

The observability service deploys an instance of Prometheus AlertManager, which enables alerts to be
forwarded with third-party applications. It also includes an instance of Grafana to enable data
visualization with dashboards (static) or data exploration. Red Hat Advanced Cluster Management
supports version 6.4.x of Grafana. You can also design your Grafana dashboard. For more information,
see Designing your Grafana dashboard .

You can customize the observability service by creating custom recording rules or alerting rules.

For more information about enabling observability, see Enable observability service .

1.1.1.1. Observability certificates

Observability certificates are automatically renewed upon expiration. View the following list to
understand the effects when certificates are automatically renewed:

Components on your hub cluster automatically restart to retrieve the renewed certificate.

Red Hat Advanced Cluster Management sends the renewed certificates to managed clusters.

Red Hat Advanced Cluster Management for Kubernetes 2.2 Observing environments

4

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

The metrics-collector restarts to mount the renewed certificates.
Note: metrics-collector can push metrics to the hub cluster before and after certificates are
removed. For more information about refreshing certificates across your clusters, see Refresh a
managed certificate.

1.1.1.2. Metric types

By default, OpenShift Container Platform sends metrics to Red Hat using the Telemetry service. The
following additional metrics are available with Red Hat Advanced Cluster Management and are included
with telemetry, but are not displayed on the Red Hat Advanced Cluster Management Observe
environments overview dashboard:

The visual_web_terminal_sessions_total is collected on the hub cluster.

The acm_managed_cluster_info is collected on each managed cluster and sent to the hub
cluster.

Learn from the OpenShift Container Platform documentation what types of metrics are collected and
sent using telemetry. See Information collected by Telemetry for information.

1.1.1.3. Observability pod capacity requests

Observability components require 2636mCPU and 11388Mi memory to install the observability service.
View the following table of the pod capacity requests that is for five managed clusters with
observability-addons enabled:

Table 1.1. Observability pod capacity requests

Deploymen
t or
StatefulSet

Container
name

CPU
(mCPU)

Memory
(Mi)

Replicas Pod total
CPU

Pod total
memory

alertmanage
r

alertmanage
r

4 200 3 12 600

config-
reloader

4 25 3 12 75

grafana grafana 4 100 2 8 200

grafana-
dashboard-
loader

4 50 2 8 100

observabilit
y-
observatoriu
m-
observatoriu
m-api

observatoriu
m-api

20 128 2 40 256

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

5

../security#refresh-a-managed-certificate
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/support/index#about-remote-health-monitoring

observabilit
y-
observatoriu
m-thanos-
compact

thanos-
compact

100 512 1 100 512

observabilit
y-
observatoriu
m-thanos-
query

thanos-
query

300 1024 2 600 2048

observabilit
y-
observatoriu
m-thanos-
query-
frontend

thanos-
query-
frontend

100 256 2 200 512

observabilit
y-
observatoriu
m-thanos-
receive-
controller

thanos-
receive-
controller

4 32 1 4 32

observabilit
y-
observatoriu
m-thanos-
receive-
default

thanos-
receive

300 512 3 900 1536

observabilit
y-
observatoriu
m-thanos-
rule

thanos-rule 50 512 3 150 1536

configmap-
reloader

4 25 3 12 75

observabilit
y-
observatoriu
m-thanos-
store-
memcached

memcached 45 128 3 135 384

exporter 5 50 3 15 150

Deploymen
t or
StatefulSet

Container
name

CPU
(mCPU)

Memory
(Mi)

Replicas Pod total
CPU

Pod total
memory

Red Hat Advanced Cluster Management for Kubernetes 2.2 Observing environments

6

observabilit
y-
observatoriu
m-thanos-
store-shard

thanos-
store

100 1024 3 300 3072

observatoriu
m-operator

observatoriu
m-operator

100 100 1 100 100

rbac-query-
proxy

rbac-query-
proxy

20 100 2 40 200

Deploymen
t or
StatefulSet

Container
name

CPU
(mCPU)

Memory
(Mi)

Replicas Pod total
CPU

Pod total
memory

1.1.2. Persistent stores used in the observability service

When you install Red Hat Advanced Cluster Management the following persistent volumes are created:

Table 1.2. Table list of persistent volumes

Persistent volume name Purpose

alertmanager Alertmanager stores the nflog data and silenced
alerts in its storage. nflog is an append-only log of
active and resolved notifications along with the
notified receiver, and a hash digest of contents that
the notificationn identified.

thanos-compact The compactor needs local disk space to store
intermediate data for its processing, as well as bucket
state cache. The required space depends on the size
of the underlying blocks. The compactor must have
enough space to download all of the source blocks,
then build the compacted blocks on the disk. On-disk
data is safe to delete between restarts and should be
the first attempt to get crash-looping compactors
unstuck. However, it is recommended to give the
compactor persistent disks in order to effectively use
bucket state cache in between restarts.

thanos-rule The thanos ruler evaluates Prometheus recording
and alerting rules against a chosen query API by
issuing queries at a fixed interval. Rule results are
written back to the disk in the Prometheus 2.0
storage format.

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

7

thanos-receive-default Thanos receiver accepts incoming data (Prometheus
remote-write requests) and writes these into a local
instance of the Prometheus TSDB. Periodically
(every 2 hours), TSDB blocks are uploaded to the
object storage for long term storage and
compaction.

thanos-store-shard It acts primarily as an API gateway and therefore
does not need significant amounts of local disk
space. It joins a Thanos cluster on startup and
advertises the data it can access. It keeps a small
amount of information about all remote blocks on
local disk and keeps it in sync with the bucket. This
data is generally safe to delete across restarts at the
cost of increased startup times.

Note: The time series historical data is stored in object stores. Thanos uses object storage as the
primary storage for metrics and meta data related to them. For more details about the object storage
and downsampling, see Enable observability service .

1.2. ENABLE OBSERVABILITY SERVICE

Monitor the health of your managed clusters with the observability service (multicluster-observability-
operator).

Required access: Cluster administrator or the open-cluster-management:cluster-manager-admin
role.

Prerequisites

Enabling observability

Creating the MultiClusterObservability CR

Disabling observability

1.2.1. Prerequisites

You must install Red Hat Advanced Cluster Management for Kubernetes. See Installing while
connected online for more information.

You must configure an object store to create a storage solution. Red Hat Advanced Cluster
Management supports the following cloud providers with stable object stores:

Amazon Web Services S3 (AWS S3)

Red Hat Ceph (S3 compatible API)

Google Cloud Storage

Azure storage

Red Hat Advanced Cluster Management for Kubernetes 2.2 Observing environments

8

../install#installing-while-connected-online
https://aws.amazon.com/getting-started/hands-on/lightsail-object-storage/
https://www.redhat.com/en/technologies/storage/ceph
https://cloud.google.com/storage
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction

Red Hat OpenShift Container Storage
Important: When you configure your object store, ensure that you meet the encryption
requirements necessary when sensitive data is persisted. For more information on Thanos
supported object stores, see Thanos documentation.

1.2.2. Enabling observability

Enable the observability service by creating a MultiClusterObservability custom resource (CR)
instance. Before you enable observability, see Observability pod capacity requests for more information.
Complete the following steps to enable the observability service:

1. Log in to your Red Hat Advanced Cluster Management hub cluster.

2. Create a namespace for the observability service with the following command:

oc create namespace open-cluster-management-observability

3. Generate your pull-secret. If Red Hat Advanced Cluster Management is installed in the open-
cluster-management namespace, run the following command:

DOCKER_CONFIG_JSON=`oc extract secret/multiclusterhub-operator-pull-secret -n open-
cluster-management --to=-`

If the multiclusterhub-operator-pull-secret is not defined in the namespace, copy the pull-
secret from the openshift-config namespace into the open-cluster-management-
observability namespace. Run the following command:

DOCKER_CONFIG_JSON=`oc extract secret/pull-secret -n openshift-config --to=-`

Then, create the pull-secret in the open-cluster-management-observability namespace, run
the following command:

oc create secret generic multiclusterhub-operator-pull-secret \
 -n open-cluster-management-observability \
 --from-literal=.dockerconfigjson="$DOCKER_CONFIG_JSON" \
 --type=kubernetes.io/dockerconfigjson

4. Create a secret for your object storage for your cloud provider. Your secret must contain the
credentials to your storage solution. For example, run the following command:

oc create -f thanos-object-storage.yaml -n open-cluster-management-observability

a. View the following examples of secrets for the supported object stores:

For Red Hat Advanced Cluster Management, your secret might resemble the following
file:

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

9

https://docs.openshift.com/container-platform/4.7/storage/persistent_storage/persistent-storage-ocs.html
https://thanos.io/tip/thanos/storage.md/#object-storage

 thanos.yaml: |
 type: s3
 config:
 bucket: YOUR_S3_BUCKET
 endpoint: YOUR_S3_ENDPOINT
 insecure: true
 access_key: YOUR_ACCESS_KEY
 secret_key: YOUR_SECRET_KEY

For Amazon S3 or S3 compatible, your secret might resemble the following file:

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: s3
 config:
 bucket: YOUR_S3_BUCKET
 endpoint: YOUR_S3_ENDPOINT
 insecure: true
 access_key: YOUR_ACCESS_KEY
 secret_key: YOUR_SECRET_KEY

For more details, see Amazon Simple Storage Service user guide .

For Google, your secret might resemble the following file:

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: GCS
 config:
 bucket: YOUR_GCS_BUCKET
 service_account: YOUR_SERVICE_ACCOUNT

For more details, see Google Cloud Storage .

For Azure your secret might resemble the following file:

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:

Red Hat Advanced Cluster Management for Kubernetes 2.2 Observing environments

10

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://cloud.google.com/storage/docs/introduction

 thanos.yaml: |
 type: AZURE
 config:
 storage_account: YOUR_STORAGE_ACCT
 storage_account_key: YOUR_STORAGE_KEY
 container: YOUR_CONTAINER
 endpoint: blob.core.windows.net
 max_retries: 0

For more details, see Azure Storage documentation.

For OpenShift Container Storage, your secret might resemble the following file:

apiVersion: v1
kind: Secret
metadata:
 name: thanos-object-storage
 namespace: open-cluster-management-observability
type: Opaque
stringData:
 thanos.yaml: |
 type: s3
 config:
 bucket: YOUR_OCS_BUCKET
 endpoint: YOUR_OCS_ENDPOINT
 insecure: true
 access_key: YOUR_OCS_ACCESS_KEY
 secret_key: YOUR_OCS_SECRET_KEY

For more details, see Installing OpenShift Container Storage .

b. You can retrieve the S3 access key and secret key for your cloud providers with the
following commands:

ACCESS_KEY=$(oc -n <your-object-storage> get secret <object-storage-secret> -o yaml
| grep AccessKey | awk '{print $2}' | base64 --decode)

echo $ACCESS_KEY

SECRET_KEY=$(oc -n <your-object-storage> get secret <object-storage-secret> -o yaml
| grep SecretKey | awk '{print $2}' | base64 --decode)

echo $SECRET_KEY

1.2.2.1. Creating the MultiClusterObservability CR

Complete the following steps to create the MultiClusterObservability custom resource (CR):

1. Create the MultiClusterObservability custom resource (mco CR) for your managed cluster by
completing the following steps:

a. Create the MultiClusterObservability custom resource YAML file named
multiclusterobservability_cr.yaml.
View the following default YAML file for observability:

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

11

https://docs.microsoft.com/en-us/azure/storage/
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.6/html/deploying_openshift_container_storage/deploying-openshift-container-storage-on-openshift-container-platform_rhocs#installing-openshift-container-storage-operator-using-the-operator-hub_aws-vmware

apiVersion: observability.open-cluster-management.io/v1beta1
kind: MultiClusterObservability
metadata:
 name: observability #Your customized name of MulticlusterObservability CR
spec:
 availabilityConfig: High # Available values are High or Basic
 enableDownSampling: false # The default value is false. This is not recommended as
querying long-time ranges without non-downsampled data is not efficient and useful.
 imagePullPolicy: Always
 imagePullSecret: multiclusterhub-operator-pull-secret
 observabilityAddonSpec: # The ObservabilityAddonSpec defines the global settings for
all managed clusters which have observability add-on enabled
 enableMetrics: true # EnableMetrics indicates the observability addon push metrics to
hub server
 interval: 30 # Interval for the observability addon push metrics to hub server
 retentionResolution1h: 30d # How long to retain samples of 1 hour in bucket
 retentionResolution5m: 14d
 retentionResolutionRaw: 5d
 storageConfigObject: # Specifies the storage to be used by Observability
 metricObjectStorage:
 name: thanos-object-storage
 key: thanos.yaml
 statefulSetSize: 10Gi # The amount of storage applied to the Observability
StatefulSets, i.e. Amazon S3 store, Rule, compact and receiver.
 statefulSetStorageClass: gp2

You might want to modify the value for the retentionResolution parameter. By default,
downsampling is disabled. For more information, see Thanos Downsampling resolution and
retention. Depending on the number of managed clusters, you might want to update
statefulSetSize, see Observability API for more information.

b. To deploy on infrastructure machine sets, you must set a label for your set by updating the
nodeSelector in the MultiClusterObservability YAML. Your YAML might resemble the
following content:

nodeSelector:
 node-role.kubernetes.io/infra:

For more information, see Creating infrastructure machine sets.

c. Apply the observability YAML to your cluster by running the following command:

oc apply -f multiclusterobservability_cr.yaml

All the pods in open-cluster-management-observability namespace for Thanos, Grafana
and AlertManager are created. All the managed clusters connected to the Red Hat
Advanced Cluster Management hub cluster are enabled to send metrics back to the Red
Hat Advanced Cluster Management Observability service.

2. To validate that the observability service is enabled, launch the Grafana dashboards to make
sure the data is populated. Complete the following steps:

a. Log in to the Red Hat Advanced Cluster Management console.

b. From the navigation menu, select Observe environments > Overview.

c. Click the Grafana link that is near the console header to view the metrics from your

Red Hat Advanced Cluster Management for Kubernetes 2.2 Observing environments

12

https://thanos.io/v0.8/components/compact/#downsampling-resolution-and-retention
../apis#observability-api
https://docs.openshift.com/container-platform/4.6/machine_management/creating-infrastructure-machinesets.html

c. Click the Grafana link that is near the console header to view the metrics from your
managed clusters.
Note: If you want to exclude specific managed clusters from collecting the observability
data, add the following cluster label to your clusters: observability: disabled.

1.2.3. Disabling observability

To disable the observability service, uninstall the observability resource. See step 1 of Removing a
MultiClusterHub instance by using commands for the procedure.

To learn more about customizing the observability service, see Customizing observability.

1.3. CUSTOMIZING OBSERVABILITY

Review the following sections to learn more about customizing, managing, and viewing data that is
collected by the observability service.

Collect logs about new information that is created for observability resources with the must-gather
command. For more information, see the Must-gather section in the Troubleshooting documentation.

Creating custom rules

Configuring rules for AlertManager

Adding custom metrics

Viewing and exploring data

Disable observability

1.3.1. Creating custom rules

You can create custom rules for the observability installation by adding Prometheus recording rules and
alerting rules to the observability resource. For more information, see Prometheus configuration.

Recording rules provide you the ability to precalculate, or computate expensive expressions as
needed. The results are saved as a new set of time series.

Alerting rules provide you the ability to specify the alert conditions based on how an alert should
be sent to an external service.

Define custom rules with Prometheus to create alert conditions, and send notifications to an external
messaging service. Note: When you update your custom rules, observability-observatorium-thanos-
rule pods are restarted automatically.

Complete the following steps to create a custom rule:

1. Log in to your Red Hat Advanced Cluster Management hub cluster.

2. Create a ConfigMap named thanos-ruler-custom-rules in the open-cluster-management-
observability namespace. The key must be named, custom_rules.yaml, as shown in the
following example. You can create multiple rules in the configuration:

By default, the out-of-the-box alert rules are defined in the thanos-ruler-default-rules
ConfigMap in the open-cluster-management-observability namespace.

For example, you can create a custom alert rule that notifies you when your CPU usage

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

13

../install/installing#removing-a-multiclusterhub-instance-by-using-commands
../troubleshooting
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

For example, you can create a custom alert rule that notifies you when your CPU usage
passes your defined value:

data:
 custom_rules.yaml: |
 groups:
 - name: cluster-health
 rules:
 - alert: ClusterCPUHealth-jb
 annotations:
 summary: Notify when CPU utilization on a cluster is greater than the defined
utilization limit
 description: "The cluster has a high CPU usage: {{ $value }} core for {{
$labels.cluster }} {{ $labels.clusterID }}."
 expr: |
 max(cluster:cpu_usage_cores:sum) by (clusterID, cluster, prometheus) > 0
 for: 5s
 labels:
 cluster: "{{ $labels.cluster }}"
 prometheus: "{{ $labels.prometheus }}"
 severity: critical

You can also create a custom recording rule within the thanos-ruler-custom-rules
ConfigMap.
For example, you can create a recording rule that provides you the ability to get the sum of
the container memory cache of a pod. Your YAML might resemble the following content:

data:
 custom_rules.yaml: |
 groups:
 - name: container-memory
 rules:
 - record: pod:container_memory_cache:sum
 expr: sum(container_memory_cache{pod!=""}) BY (pod, container)

Note: If this is the first new custom rule, it is created immediately. For changes to the
ConfigMap, you must restart the observability pods with the following command: kubectl
rollout restart statefulset observability-observatorium-thanos-rule -n open-cluster-
management-observability.

3. If you want to verify that the alert rules is functioning appropriately, complete the following
steps:

a. Access your Grafana dashboard and select the Explore icon.

b. In the Metrics exploration bar, type in "ALERTS" and run the query. All the ALERTS that are
currently in pending or firing state in the system are displayed.

c. If your alert is not displayed, revisit the rule to see if the expression is accurate.

A custom rule is created.

1.3.2. Configuring rules for AlertManager

Integrate external messaging tools such as email, Slack, and PagerDuty to receive notifications from

Red Hat Advanced Cluster Management for Kubernetes 2.2 Observing environments

14

AlertManager. You must override the alertmanager-config secret in the open-cluster-management-
observability namespace to add integrations, and configure routes for AlertManager. Complete the
following steps to update the custom receiver rules:

1. Extract the data from the alertmanager-config secret. Run the following command:

oc -n open-cluster-management-observability get secret alertmanager-config --template='{{
index .data "alertmanager.yaml" }}' |base64 -d > alertmanager.yaml

2. Edit and save the alertmanager.yaml file configuration by running the following command:

oc -n open-cluster-management-observability create secret generic alertmanager-config --
from-file=alertmanager.yaml --dry-run -o=yaml | oc -n open-cluster-management-
observability replace secret --filename=-

Your updated secret might resemble the following content:

global
 smtp_smarthost: 'localhost:25'
 smtp_from: 'alertmanager@example.org'
 smtp_auth_username: 'alertmanager'
 smtp_auth_password: 'password'
templates:
- '/etc/alertmanager/template/*.tmpl'
route:
 group_by: ['alertname', 'cluster', 'service']
 group_wait: 30s
 group_interval: 5m
 repeat_interval: 3h
 receiver: team-X-mails
 routes:
 - match_re:
 service: ^(foo1|foo2|baz)$
 receiver: team-X-mails

Your changes are applied immediately after it is modified. For an example of AlertManager, see
prometheus/alertmanager.

1.3.3. Adding custom metrics

Add metrics to the metrics_list.yaml file, to be collected from managed clusters.

Complete the following steps to add custom metrics:

1. Log in to your cluster.

2. Verify that mco observability is enabled. Check for the following message in the
status.conditions.message reads: Observability components are deployed and running.
Run the following command:

oc get mco observability -o yaml

3. Create a new file observability-metrics-custom-allowlist.yaml with the following content. Add
the name of the custom metric to the metrics_list.yaml parameter. For example, add

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

15

https://github.com/prometheus/alertmanager/blob/master/doc/examples/simple.yml

node_memory_MemTotal_bytes to the metric list. Your YAML for the ConfigMap might
resemble the following content:

kind: ConfigMap
apiVersion: v1
metadata:
 name: observability-metrics-custom-allowlist
data:
 metrics_list.yaml: |
 names:
 - node_memory_MemTotal_bytes

4. Create the observability-metrics-custom-allowlist ConfigMap in the open-cluster-
management-observability namespace by running the following command:

oc apply -n open-cluster-management-observability -f observability-metrics-custom-
allowlist.yaml

5. Verify that your custom metric is being collected from your managed clusters by viewing the
metric on the Grafana dashboard. From your hub cluster, select the Grafana dashboard link.

6. From the Grafana search bar, enter the metric that you want to view.

Data from your custom metric is collected.

1.3.4. Viewing and exploring data

View the data from your managed clusters by accessing Grafana. Complete the following steps to view
the Grafana dashboards from the console:

1. Log in to your Red Hat Advanced Cluster Management hub cluster.

2. From the navigation menu, select Observe environments > Overview > Grafana link.
You can also access Grafana dashboards from the Clusters page. From the navigation menu,
select Automate infrastructure > Clusters > Grafana.

3. Access the Prometheus metric explorer by selecting the Explore icon from the Grafana
navigation menu.

1.3.5. Disable observability

You can disable observability, which stops data collection on the Red Hat Advanced Cluster
Management hub cluster.

1.3.5.1. Disable observability on all clusters

Disable observability by removing observability components on all managed clusters.

Update the multicluster-observability-operator resource by setting enableMetrics to false. Your
updated resource might resemble the following change:

spec:
 availabilityConfig: High # Available values are High or Basic
 imagePullPolicy: Always

Red Hat Advanced Cluster Management for Kubernetes 2.2 Observing environments

16

 imagePullSecret: multiclusterhub-operator-pull-secret
 observabilityAddonSpec: # The ObservabilityAddonSpec defines the global settings for all managed
clusters which have observability add-on enabled
 enableMetrics: false #indicates the observability addon push metrics to hub server

1.3.5.2. Disable observability on a single cluster

Disable observability on specific managed clusters by completing one of the following procedures:

Add the observability: disabled label to the custom resource,
managedclusters.cluster.open-cluster-management.io.

From the Red Hat Advanced Cluster Management console Clusters page, add the
observability: disabled label by completing the following steps:

1. In the Red Hat Advanced Cluster Management console navigation, select Automate
infrastructure > Clusters.

2. Select the name of the cluster for which you want to disable data collection that is sent to
observability.

3. Select Labels.

4. Create the label that disables the observability collection by adding the following label:

observability=disabled

5. Select Add to add the label.

6. Select Done to close the list of labels.

Note: When a managed cluster with the observability component is detached, the metrics-collector
deployments are removed.

For more information on monitoring data from the console with the observability service, see Observing
environments introduction.

1.4. DESIGNING YOUR GRAFANA DASHBOARD

You can design your Grafana dashboard by creating a grafana-dev instance.

1.4.1. Setting up the Grafana developer instance

First, clone the stolostron/multicluster-observability-operator/ repository, so that you are able to run
the scripts that are in the tools folder. Complete the following steps to set up the Grafana developer
instance:

1. Run the setup-grafana-dev.sh to setup your Grafana instance. When you run the script the
following resources are created: secret/grafana-dev-config, deployment.apps/grafana-dev,
service/grafana-dev, ingress.extensions/grafana-dev, persistentvolumeclaim/grafana-dev:

./setup-grafana-dev.sh --deploy
secret/grafana-dev-config created
deployment.apps/grafana-dev created

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

17

https://github.com/stolostron/multicluster-observability-operator

service/grafana-dev created
ingress.extensions/grafana-dev created
persistentvolumeclaim/grafana-dev created

2. Switch the user role to Grafana administrator with the switch-to-grafana-admin.sh script.

a. Select the Grafana URL, https://$ACM_URL/grafana-dev/ and log in.

b. Then run the following command to add the switched user as a Grafana administrator. For
example, after you log in using kubeadmin, run the following command:

./switch-to-grafana-admin.sh kube:admin
User <kube:admin> switched to be grafana admin

The Grafana developer instance is set up.

1.4.2. Design your Grafana dashboard

After you set up the Grafana instance, you can design the dashboard. Complete the following steps to
refresh the Grafana console and design your dashboard:

1. From the Grafana console, create a dashboard by selecting the Create icon from the navigation
panel. Select Dashboard, and then click Add new panel.

2. From the New Dashboard/Edit Panel view, navigate to the Query tab.

3. Configure your query by selecting Observatorium from the data source selector and enter a
PromQL query.

4. From the Grafana dashboard header, click the Save icon that is in the dashboard header.

5. Add a descriptive name and click Save.

1.4.2.1. Design your Grafana dashboard with a ConfigMap

Complete the following steps to design your Grafana dashboard with a ConfigMap:

1. You can use the generate-dashboard-configmap-yaml.sh script to generate the dashboard
ConfigMap, and to save the ConfigMap locally:

./generate-dashboard-configmap-yaml.sh "Your Dashboard Name"
Save dashboard <your-dashboard-name> to ./your-dashboard-name.yaml

If you do not have permissions to run the previously mentioned script, complete the following
steps:

a. Select a dashboard and click the Dashboard settings icon.

b. Click the JSON Model icon from the navigation panel.

c. Copy the dashboard JSON data and paste it in the metadata section.

d. Modify the name and replace $your-dashboard-name. Your ConfigMap might resemble
the following file:

Red Hat Advanced Cluster Management for Kubernetes 2.2 Observing environments

18

https:/grafana-dev/

kind: ConfigMap
apiVersion: v1
metadata:
 name: $your-dashboard-name
 namespace: open-cluster-management-observability
 labels:
 grafana-custom-dashboard: "true"
data:
 $your-dashboard-name.json: |
 $your_dashboard_json

Note: If your dashboard is not in the General folder, you can specify the folder name in the
annotations section of this ConfigMap:

annotations:
 observability.open-cluster-management.io/dashboard-folder: Custom

After you complete your updates for the ConfigMap, you can install it to import the
dashboard to the Grafana instance.

1.4.3. Uninstalling the Grafana developer instance

When you uninstall the instance, the related resources are also deleted. Run the following command:

./setup-grafana-dev.sh --clean
secret "grafana-dev-config" deleted
deployment.apps "grafana-dev" deleted
service "grafana-dev" deleted
ingress.extensions "grafana-dev" deleted
persistentvolumeclaim "grafana-dev" deleted

CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION

19

	Table of Contents
	CHAPTER 1. OBSERVING ENVIRONMENTS INTRODUCTION
	1.1. OBSERVING ENVIRONMENTS
	1.1.1. Observability service
	1.1.1.1. Observability certificates
	1.1.1.2. Metric types
	1.1.1.3. Observability pod capacity requests

	1.1.2. Persistent stores used in the observability service

	1.2. ENABLE OBSERVABILITY SERVICE
	1.2.1. Prerequisites
	1.2.2. Enabling observability
	1.2.2.1. Creating the MultiClusterObservability CR

	1.2.3. Disabling observability

	1.3. CUSTOMIZING OBSERVABILITY
	1.3.1. Creating custom rules
	1.3.2. Configuring rules for AlertManager
	1.3.3. Adding custom metrics
	1.3.4. Viewing and exploring data
	1.3.5. Disable observability
	1.3.5.1. Disable observability on all clusters
	1.3.5.2. Disable observability on a single cluster

	1.4. DESIGNING YOUR GRAFANA DASHBOARD
	1.4.1. Setting up the Grafana developer instance
	1.4.2. Design your Grafana dashboard
	1.4.2.1. Design your Grafana dashboard with a ConfigMap

	1.4.3. Uninstalling the Grafana developer instance

