
OpenShift Container Platform 4.9

Service Mesh

Service Mesh installation, usage, and release notes

Last Updated: 2023-04-19

OpenShift Container Platform 4.9 Service Mesh

Service Mesh installation, usage, and release notes

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information on how to use Service Mesh in OpenShift Container Platform.

. .

Table of Contents

CHAPTER 1. SERVICE MESH 2.X
1.1. ABOUT OPENSHIFT SERVICE MESH

1.1.1. Introduction to Red Hat OpenShift Service Mesh
1.1.2. Core features

1.2. SERVICE MESH RELEASE NOTES
1.2.1. Making open source more inclusive
1.2.2. New features and enhancements

1.2.2.1. New features Red Hat OpenShift Service Mesh version 2.3.2
1.2.2.1.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.2

1.2.2.2. New features Red Hat OpenShift Service Mesh version 2.3.1
1.2.2.2.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.1

1.2.2.3. New features Red Hat OpenShift Service Mesh version 2.3
1.2.2.3.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3
1.2.2.3.2. New Container Network Interface (CNI) DaemonSet container and ConfigMap
1.2.2.3.3. Gateway injection support
1.2.2.3.4. Istio 1.14 Support
1.2.2.3.5. OpenShift Service Mesh Console
1.2.2.3.6. Cluster-Wide deployment

1.2.2.3.6.1. Configuring cluster-wide deployment
1.2.2.4. New features Red Hat OpenShift Service Mesh version 2.2.6

1.2.2.4.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.6
1.2.2.5. New features Red Hat OpenShift Service Mesh version 2.2.5

1.2.2.5.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.5
1.2.2.6. New features Red Hat OpenShift Service Mesh version 2.2.4

1.2.2.6.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.4
1.2.2.7. New features Red Hat OpenShift Service Mesh version 2.2.3

1.2.2.7.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.3
1.2.2.8. New features Red Hat OpenShift Service Mesh version 2.2.2

1.2.2.8.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.2
1.2.2.8.2. Copy route labels

1.2.2.9. New features Red Hat OpenShift Service Mesh version 2.2.1
1.2.2.9.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.1

1.2.2.10. New features Red Hat OpenShift Service Mesh 2.2
1.2.2.10.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2
1.2.2.10.2. WasmPlugin API
1.2.2.10.3. ROSA support
1.2.2.10.4. istio-node DaemonSet renamed
1.2.2.10.5. Envoy sidecar networking changes
1.2.2.10.6. Service Mesh Control Plane 1.1
1.2.2.10.7. Istio 1.12 Support
1.2.2.10.8. Kubernetes Gateway API

1.2.2.10.8.1. Installing the Gateway API CRDs
1.2.2.10.8.2. Enabling Kubernetes Gateway API
1.2.2.10.8.3. Manually linking an existing gateway to a Gateway resource

1.2.2.11. New features Red Hat OpenShift Service Mesh 2.1.6
1.2.2.11.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.6

1.2.2.12. New features Red Hat OpenShift Service Mesh 2.1.5.2
1.2.2.12.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.2

1.2.2.13. New features Red Hat OpenShift Service Mesh 2.1.5.1
1.2.2.13.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.1

1.2.2.14. New features Red Hat OpenShift Service Mesh 2.1.5

15
15
15
15
16
16
16
16
16
16
16
17
17
17
17
17
17
18
18
19
19
19
19
19

20
20
20
20
20
21
21
21
21
21
21
21
22
22
22
22
22
22
23
23
23
23
24
24
24
24
24

Table of Contents

1

1.2.2.14.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5
1.2.2.15. New features Red Hat OpenShift Service Mesh 2.1.4

1.2.2.15.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.4
1.2.2.16. New features Red Hat OpenShift Service Mesh 2.1.3

1.2.2.16.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.3
1.2.2.17. New features Red Hat OpenShift Service Mesh 2.1.2.1

1.2.2.17.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.2.1
1.2.2.18. New features Red Hat OpenShift Service Mesh 2.1.2

1.2.2.18.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.2
1.2.2.19. New features Red Hat OpenShift Service Mesh 2.1.1

1.2.2.19.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.1
1.2.2.19.2. Disabling network policies

1.2.2.20. New features and enhancements Red Hat OpenShift Service Mesh 2.1
1.2.2.20.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1
1.2.2.20.2. Service Mesh Federation
1.2.2.20.3. OVN-Kubernetes Container Network Interface (CNI) generally available
1.2.2.20.4. Service Mesh WebAssembly (WASM) Extensions
1.2.2.20.5. 3scale WebAssembly Adapter (WASM)
1.2.2.20.6. Istio 1.9 Support
1.2.2.20.7. Improved Service Mesh operator performance
1.2.2.20.8. Kiali updates

1.2.2.21. New features Red Hat OpenShift Service Mesh 2.0.11.1
1.2.2.21.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.11.1

1.2.2.22. New features Red Hat OpenShift Service Mesh 2.0.11
1.2.2.22.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.11

1.2.2.23. New features Red Hat OpenShift Service Mesh 2.0.10
1.2.2.23.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.10

1.2.2.24. New features Red Hat OpenShift Service Mesh 2.0.9
1.2.2.24.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.9

1.2.2.25. New features Red Hat OpenShift Service Mesh 2.0.8
1.2.2.26. New features Red Hat OpenShift Service Mesh 2.0.7.1

1.2.2.26.1. Change in how Red Hat OpenShift Service Mesh handles URI fragments
1.2.2.26.2. Required update for authorization policies

1.2.2.27. New features Red Hat OpenShift Service Mesh 2.0.7
1.2.2.28. Red Hat OpenShift Service Mesh on Red Hat OpenShift Dedicated and Microsoft Azure Red Hat
OpenShift
1.2.2.29. New features Red Hat OpenShift Service Mesh 2.0.6
1.2.2.30. New features Red Hat OpenShift Service Mesh 2.0.5
1.2.2.31. New features Red Hat OpenShift Service Mesh 2.0.4

1.2.2.31.1. Manual updates required by CVE-2021-29492 and CVE-2021-31920
1.2.2.31.2. Updating the path normalization configuration
1.2.2.31.3. Path normalization configuration examples
1.2.2.31.4. Configuring your SMCP for path normalization
1.2.2.31.5. Configuring for case normalization

1.2.2.32. New features Red Hat OpenShift Service Mesh 2.0.3
1.2.2.33. New features Red Hat OpenShift Service Mesh 2.0.2
1.2.2.34. New features Red Hat OpenShift Service Mesh 2.0.1
1.2.2.35. New features Red Hat OpenShift Service Mesh 2.0

1.2.3. Technology Preview
1.2.4. Deprecated and removed features

1.2.4.1. Deprecated and removed features Red Hat OpenShift Service Mesh 2.3
1.2.4.2. Deprecated features Red Hat OpenShift Service Mesh 2.2
1.2.4.3. Removed features Red Hat OpenShift Service Mesh 2.2

24
25
25
25
25
25
26
26
26
26
26
27
27
28
28
28
28
28
29
29
29
29
30
30
30
30
30
31
31
31
31
31
32
33

33
33
33
33
33
34
35
36
36
37
37
37
37
38
38
38
39
39

OpenShift Container Platform 4.9 Service Mesh

2

1.2.4.4. Removed features Red Hat OpenShift Service Mesh 2.1
1.2.4.5. Deprecated features Red Hat OpenShift Service Mesh 2.0

1.2.5. Known issues
1.2.5.1. Service Mesh known issues
1.2.5.2. Kiali known issues
1.2.5.3. Red Hat OpenShift distributed tracing known issues

1.2.6. Fixed issues
1.2.6.1. Service Mesh fixed issues
1.2.6.2. Red Hat OpenShift distributed tracing fixed issues

1.3. UNDERSTANDING SERVICE MESH
1.3.1. Understanding service mesh
1.3.2. Service Mesh architecture
1.3.3. Understanding Kiali

1.3.3.1. Kiali overview
1.3.3.2. Kiali architecture
1.3.3.3. Kiali features

1.3.4. Understanding distributed tracing
1.3.4.1. Distributed tracing overview
1.3.4.2. Red Hat OpenShift distributed tracing architecture
1.3.4.3. Red Hat OpenShift distributed tracing features

1.3.5. Next steps
1.4. SERVICE MESH DEPLOYMENT MODELS

1.4.1. Single mesh deployment model
1.4.2. Single tenancy deployment model
1.4.3. Multitenant deployment model
1.4.4. Multimesh or federated deployment model

1.5. SERVICE MESH AND ISTIO DIFFERENCES
1.5.1. Differences between Istio and Red Hat OpenShift Service Mesh

1.5.1.1. Command line tool
1.5.1.2. Installation and upgrades
1.5.1.3. Automatic injection
1.5.1.4. Istio Role Based Access Control features
1.5.1.5. OpenSSL
1.5.1.6. External workloads
1.5.1.7. Virtual Machine Support
1.5.1.8. Component modifications
1.5.1.9. Envoy filters
1.5.1.10. Envoy services
1.5.1.11. Istio Container Network Interface (CNI) plugin
1.5.1.12. Global mTLS settings
1.5.1.13. Gateways
1.5.1.14. Multicluster configurations
1.5.1.15. Custom Certificate Signing Requests (CSR)
1.5.1.16. Routes for Istio Gateways

1.5.1.16.1. Catch-all domains
1.5.1.16.2. Subdomains
1.5.1.16.3. Transport layer security

Additional resources
1.5.2. Multitenant installations

1.5.2.1. Multitenancy versus cluster-wide installations
1.5.2.2. Cluster scoped resources

1.5.3. Kiali and service mesh
1.5.4. Distributed tracing and service mesh

39
39
40
40
42
43
43
43
48
49
49
50
51
52
52
53
53
53
54
55
55
55
55
55
56
56
56
57
57
57
57
57
58
58
58
58
58
58
59
59
59
59
59
59
59
60
60
60
60
60
61
61
61

Table of Contents

3

1.6. PREPARING TO INSTALL SERVICE MESH
1.6.1. Prerequisites
1.6.2. Supported configurations

1.6.2.1. Supported platforms
1.6.2.2. Unsupported configurations
1.6.2.3. Supported network configurations
1.6.2.4. Supported configurations for Service Mesh
1.6.2.5. Supported configurations for Kiali
1.6.2.6. Supported configurations for Distributed Tracing
1.6.2.7. Supported WebAssembly module

1.6.3. Next steps
1.7. INSTALLING THE OPERATORS

1.7.1. Operator overview
1.7.2. Installing the Operators
1.7.3. Next steps

1.8. CREATING THE SERVICEMESHCONTROLPLANE
1.8.1. Deploying the Service Mesh control plane from the web console
1.8.2. Deploying the Service Mesh control plane using the CLI
1.8.3. Validating your SMCP installation with the CLI
1.8.4. Validating your SMCP installation with Kiali
1.8.5. Installing on Red Hat OpenShift Service on AWS (ROSA)

1.8.5.1. Installation location
1.8.5.2. Required Service Mesh control plane configuration
1.8.5.3. Restrictions on Kiali configuration

1.8.6. Additional resources
1.8.7. Next steps

1.9. ADDING SERVICES TO A SERVICE MESH
1.9.1. Creating the Red Hat OpenShift Service Mesh member roll

1.9.1.1. Creating the member roll from the web console
1.9.1.2. Creating the member roll from the CLI

1.9.2. Adding or removing projects from the service mesh
1.9.2.1. Adding or removing projects from the member roll using the web console
1.9.2.2. Adding or removing projects from the member roll using the CLI

1.9.3. Bookinfo example application
1.9.3.1. Installing the Bookinfo application
1.9.3.2. Adding default destination rules
1.9.3.3. Verifying the Bookinfo installation
1.9.3.4. Removing the Bookinfo application

1.9.3.4.1. Delete the Bookinfo project
1.9.3.4.2. Remove the Bookinfo project from the Service Mesh member roll

1.9.4. Next steps
1.10. ENABLING SIDECAR INJECTION

1.10.1. Prerequisites
1.10.2. Enabling automatic sidecar injection
1.10.3. Validating sidecar injection
1.10.4. Setting proxy environment variables through annotations
1.10.5. Updating sidecar proxies
1.10.6. Next steps

1.11. UPGRADING SERVICE MESH
1.11.1. Understanding versioning

1.11.1.1. How versioning affects Service Mesh upgrades
1.11.1.2. Understanding Service Mesh versions

1.11.2. Upgrade considerations

62
62
62
62
63
63
63
63
64
64
64
64
64
65
66
66
66
67
68
69
71
71
71
72
73
73
73
73
73
74
75
75
76
77
77
80
80
82
82
82
83
83
83
83
84
85
86
86
87
87
87
87
88

OpenShift Container Platform 4.9 Service Mesh

4

1.11.2.1. Known issues that may affect upgrade
1.11.3. Upgrading the Operators
1.11.4. Upgrading the control plane

1.11.4.1. Upgrade changes from version 2.2 to version 2.3
1.11.4.2. Upgrade changes from version 2.1 to version 2.2
1.11.4.3. Upgrade changes from version 2.0 to version 2.1
1.11.4.4. Upgrading the Service Mesh control plane
1.11.4.5. Migrating Red Hat OpenShift Service Mesh from version 1.1 to version 2.0

1.11.4.5.1. Upgrading Red Hat OpenShift Service Mesh
1.11.4.5.2. Configuring the 2.0 ServiceMeshControlPlane

1.11.4.5.2.1. Architecture changes
1.11.4.5.2.2. Annotation changes
1.11.4.5.2.3. Behavioral changes
1.11.4.5.2.4. Migration details for unsupported resources
1.11.4.5.2.5. Mixer plugins
1.11.4.5.2.6. Mutual TLS changes
1.11.4.5.2.6.1. Other mTLS Examples

1.11.4.5.3. Configuration recipes
1.11.4.5.3.1. Mutual TLS in a data plane
1.11.4.5.3.2. Custom signing key
1.11.4.5.3.3. Tracing
1.11.4.5.3.4. Visualization
1.11.4.5.3.5. Resource utilization and scheduling

1.11.4.5.4. Next steps for migrating your applications and workloads
1.11.5. Upgrading the data plane

1.11.5.1. Updating your applications and workloads
1.12. MANAGING USERS AND PROFILES

1.12.1. Creating the Red Hat OpenShift Service Mesh members
1.12.2. Creating Service Mesh control plane profiles

1.12.2.1. Creating the ConfigMap
1.12.2.2. Setting the correct network policy

1.13. SECURITY
1.13.1. About mutual Transport Layer Security (mTLS)

1.13.1.1. Enabling strict mTLS across the service mesh
1.13.1.1.1. Configuring sidecars for incoming connections for specific services
1.13.1.1.2. Configuring sidecars for outgoing connections
1.13.1.1.3. Setting the minimum and maximum protocol versions

1.13.1.2. Validating encryption with Kiali
1.13.2. Configuring Role Based Access Control (RBAC)

1.13.2.1. Configure intra-project communication
1.13.2.1.1. Restrict access to services outside a namespace
1.13.2.1.2. Creating allow-all and default deny-all authorization policies

1.13.2.2. Allow or deny access to the ingress gateway
1.13.2.3. Restrict access with JSON Web Token

1.13.3. Configuring cipher suites and ECDH curves
1.13.4. Adding an external certificate authority key and certificate

1.13.4.1. Adding an existing certificate and key
1.13.4.2. Verifying your certificates
1.13.4.3. Removing the certificates

1.14. MANAGING TRAFFIC IN YOUR SERVICE MESH
1.14.1. Using gateways

1.14.1.1. Enabling gateway injection
1.14.1.2. Deploying automatic gateway injection

89
89
90
91
91
91

92
93
93
95
95
95
96
96
97
98
98

100
101
101
101
102
102
103
103
104
104
104
105
105
106
106
106
107
107
108
108
109

111
112
112
112
113
113
114
115
115
116
118
118
118
119

120

Table of Contents

5

1.14.1.3. Managing ingress traffic
1.14.1.3.1. Determining the ingress IP and ports

1.14.1.3.1.1. Determining ingress ports with a load balancer
1.14.1.3.1.2. Determining ingress ports without a load balancer

1.14.1.4. Configuring an ingress gateway
1.14.2. Understanding automatic routes

1.14.2.1. Routes with subdomains
1.14.2.2. Creating subdomain routes
1.14.2.3. Route labels and annotations
1.14.2.4. Disabling automatic route creation

1.14.2.4.1. Disabling automatic route creation for specific cases
1.14.2.4.2. Disabling automatic route creation for all cases

1.14.3. Understanding service entries
1.14.4. Using VirtualServices

1.14.4.1. Configuring VirtualServices
1.14.4.2. VirtualService configuration reference

1.14.5. Understanding destination rules
1.14.6. Understanding network policies

1.14.6.1. Disabling automatic NetworkPolicy creation
1.14.7. Configuring sidecars for traffic management
1.14.8. Routing Tutorial

1.14.8.1. Bookinfo routing tutorial
1.14.8.2. Applying a virtual service
1.14.8.3. Testing the new route configuration
1.14.8.4. Route based on user identity

1.15. METRICS, LOGS, AND TRACES
1.15.1. Discovering console addresses
1.15.2. Accessing the Kiali console
1.15.3. Viewing service mesh data in the Kiali console

1.15.3.1. Changing graph layouts in Kiali
1.15.3.2. Viewing logs in the Kiali console
1.15.3.3. Viewing metrics in the Kiali console

1.15.4. Distributed tracing
1.15.4.1. Connecting an existing distributed tracing instance
1.15.4.2. Adjusting the sampling rate

1.15.5. Accessing the Jaeger console
1.15.6. Accessing the Grafana console
1.15.7. Accessing the Prometheus console

1.16. PERFORMANCE AND SCALABILITY
1.16.1. Setting limits on compute resources
1.16.2. Load test results

1.16.2.1. Service Mesh Control plane performance
1.16.2.2. Data plane performance

1.16.2.2.1. CPU and memory consumption
1.16.2.2.2. Additional latency

1.17. CONFIGURING SERVICE MESH FOR PRODUCTION
1.17.1. Configuring your ServiceMeshControlPlane resource for production
1.17.2. Additional resources

1.18. CONNECTING SERVICE MESHES
1.18.1. Federation overview
1.18.2. Federation features
1.18.3. Federation security
1.18.4. Federation limitations

122
122
123
124
124
126
126
126
127
127
127
127
127
129
129
130
130
131
131
132
133
133
133
134
134
135
135
136
137
138
139
139
140
140
141

142
143
144
144
144
145
145
146
146
146
147
147
148
148
148
149
149
149

OpenShift Container Platform 4.9 Service Mesh

6

1.18.5. Federation prerequisites
1.18.6. Planning your mesh federation
1.18.7. Mesh federation across clusters

1.18.7.1. Exposing the federation ingress on clusters running on bare metal
1.18.7.2. Exposing the federation ingress on clusters running on IBM Power and IBM Z
1.18.7.3. Exposing the federation ingress on Amazon Web Services (AWS)
1.18.7.4. Exposing the federation ingress on Azure
1.18.7.5. Exposing the federation ingress on Google Cloud Platform (GCP)

1.18.8. Federation implementation checklist
1.18.9. Configuring a Service Mesh control plane for federation

1.18.9.1. Understanding federation gateways
1.18.9.2. Understanding federation trust domain parameters

1.18.10. Joining a federated mesh
1.18.10.1. Creating a ServiceMeshPeer resource

1.18.11. Exporting a service from a federated mesh
1.18.11.1. Creating an ExportedServiceSet

1.18.12. Importing a service into a federated mesh
1.18.12.1. Creating an ImportedServiceSet

1.18.13. Configuring a federated mesh for failover
1.18.13.1. Configuring an ImportedServiceSet for failover
1.18.13.2. Configuring a DestinationRule for failover

1.18.14. Removing a service from the federated mesh
1.18.14.1. To remove a service from a single mesh
1.18.14.2. To remove a service from the entire federated mesh

1.18.15. Removing a mesh from the federated mesh
1.19. EXTENSIONS

1.19.1. WebAssembly modules overview
1.19.2. WasmPlugin container format
1.19.3. WasmPlugin API reference

1.19.3.1. Deploying WasmPlugin resources
1.19.4. ServiceMeshExtension container format
1.19.5. ServiceMeshExtension reference

1.19.5.1. Deploying ServiceMeshExtension resources
1.19.6. Migrating from ServiceMeshExtension to WasmPlugin resources

1.19.6.1. API changes
1.19.6.2. Container image format changes
1.19.6.3. Migrating to WasmPlugin resources

1.20. USING THE 3SCALE WEBASSEMBLY MODULE
1.20.1. Compatibility
1.20.2. Usage as a stand-alone module
1.20.3. Prerequisites
1.20.4. Configuring the threescale-wasm-auth module

1.20.4.1. The WasmPlugin API extension
1.20.5. Applying 3scale external ServiceEntry objects
1.20.6. The 3scale WebAssembly module configuration

1.20.6.1. Configuring the 3scale WebAssembly module
1.20.6.2. The 3scale WebAssembly module api object
1.20.6.3. The 3scale WebAssembly module system object
1.20.6.4. The 3scale WebAssembly module upstream object
1.20.6.5. The 3scale WebAssembly module backend object
1.20.6.6. The 3scale WebAssembly module services object
1.20.6.7. The 3scale WebAssembly module credentials object
1.20.6.8. The 3scale WebAssembly module lookup queries

150
150
151
151
151
151
152
152
152
152
154
158
160
163
165
168
170
173
175
175
177
178
178
178
178
179
179
180
180
185
186
187
188
189
189
190
190
191
191
191
191
191

192
193
195
195
196
196
197
198
199

200
201

Table of Contents

7

1.20.6.9. The 3scale WebAssembly module source object
1.20.6.10. The 3scale WebAssembly module operations object
1.20.6.11. The 3scale WebAssembly module mapping_rules object
1.20.6.12. The 3scale WebAssembly module mapping_rule object

1.20.7. The 3scale WebAssembly module examples for credentials use cases
1.20.7.1. API key (user_key) in query string parameters
1.20.7.2. Application ID and key
1.20.7.3. Authorization header
1.20.7.4. OpenID Connect (OIDC) use case
1.20.7.5. Picking up the JWT token from a header

1.20.8. 3scale WebAssembly module minimal working configuration
1.21. USING THE 3SCALE ISTIO ADAPTER

1.21.1. Integrate the 3scale adapter with Red Hat OpenShift Service Mesh
1.21.1.1. Generating 3scale custom resources

1.21.1.1.1. Generate templates from URL examples
1.21.1.2. Generating manifests from a deployed adapter
1.21.1.3. Routing service traffic through the adapter

1.21.2. Configure the integration settings in 3scale
1.21.3. Caching behavior
1.21.4. Authenticating requests

1.21.4.1. Applying authentication patterns
1.21.4.1.1. API key authentication method
1.21.4.1.2. Application ID and application key pair authentication method
1.21.4.1.3. OpenID authentication method
1.21.4.1.4. Hybrid authentication method

1.21.5. 3scale Adapter metrics
1.21.6. 3scale backend cache

1.21.6.1. Advantages of enabling backend cache
1.21.6.2. Trade-offs for having lower latencies
1.21.6.3. Backend cache configuration settings

1.21.7. 3scale Istio Adapter APIcast emulation
1.21.8. 3scale Istio adapter verification
1.21.9. 3scale Istio adapter troubleshooting checklist

1.22. TROUBLESHOOTING YOUR SERVICE MESH
1.22.1. Understanding Service Mesh versions
1.22.2. Troubleshooting Operator installation

1.22.2.1. Validating Operator installation
1.22.2.2. Troubleshooting service mesh Operators

1.22.2.2.1. Viewing Operator pod logs
1.22.3. Troubleshooting the control plane

1.22.3.1. Validating the Service Mesh control plane installation
1.22.3.1.1. Accessing the Kiali console
1.22.3.1.2. Accessing the Jaeger console

1.22.3.2. Troubleshooting the Service Mesh control plane
1.22.4. Troubleshooting the data plane

1.22.4.1. Troubleshooting sidecar injection
1.22.4.1.1. Troubleshooting Istio sidecar injection
1.22.4.1.2. Troubleshooting Jaeger agent sidecar injection

1.23. TROUBLESHOOTING ENVOY PROXY
1.23.1. Enabling Envoy access logs
1.23.2. Getting support

1.23.2.1. About the Red Hat Knowledgebase
1.23.2.2. Searching the Red Hat Knowledgebase

202
203
203
204
206
206
206
206
208
210
210
211
211
213
214
214
215
216
216
216
217
217
218
218
219

220
220
220
221
221
222
222
222
223
223
224
224
225
225
226
226
229
230
231
231
231
231
231
231
231

232
232
233

OpenShift Container Platform 4.9 Service Mesh

8

. .

1.23.2.3. About the must-gather tool
1.23.2.4. About collecting service mesh data
1.23.2.5. Submitting a support case

1.24. SERVICE MESH CONTROL PLANE CONFIGURATION REFERENCE
1.24.1. Service Mesh Control plane parameters
1.24.2. spec parameters

1.24.2.1. general parameters
1.24.2.2. profiles parameters
1.24.2.3. techPreview parameters
1.24.2.4. tracing parameters
1.24.2.5. version parameter
1.24.2.6. 3scale configuration

1.24.3. status parameter
1.24.4. Additional resources

1.25. KIALI CONFIGURATION REFERENCE
1.25.1. Specifying Kiali configuration in the SMCP
1.25.2. Specifying Kiali configuration in a Kiali custom resource

1.26. JAEGER CONFIGURATION REFERENCE
1.26.1. Enabling and disabling tracing
1.26.2. Specifying Jaeger configuration in the SMCP
1.26.3. Deploying the distributed tracing platform

1.26.3.1. Default distributed tracing platform deployment
1.26.3.2. Production distributed tracing platform deployment (minimal)
1.26.3.3. Production distributed tracing platform deployment (fully customized)
1.26.3.4. Streaming Jaeger deployment

1.26.4. Specifying Jaeger configuration in a Jaeger custom resource
1.26.4.1. Deployment best practices
1.26.4.2. Configuring distributed tracing security for service mesh

1.26.4.2.1. Configuring distributed tracing security for service mesh from the OpenShift console
1.26.4.2.2. Configuring distributed tracing security for service mesh from the command line

1.26.4.3. Distributed tracing default configuration options
1.26.4.4. Jaeger Collector configuration options
1.26.4.5. Distributed tracing sampling configuration options
1.26.4.6. Distributed tracing storage configuration options

1.26.4.6.1. Auto-provisioning an Elasticsearch instance
1.26.4.6.2. Connecting to an existing Elasticsearch instance

1.26.4.7. Managing certificates with Elasticsearch
1.26.4.8. Query configuration options
1.26.4.9. Ingester configuration options

1.27. UNINSTALLING SERVICE MESH
1.27.1. Removing the Red Hat OpenShift Service Mesh control plane

1.27.1.1. Removing the Service Mesh control plane using the web console
1.27.1.2. Removing the Service Mesh control plane using the CLI

1.27.2. Removing the installed Operators
1.27.2.1. Removing the Operators

1.27.3. Clean up Operator resources

CHAPTER 2. SERVICE MESH 1.X
2.1. SERVICE MESH RELEASE NOTES

2.1.1. Making open source more inclusive
2.1.2. Introduction to Red Hat OpenShift Service Mesh
2.1.3. Getting support

2.1.3.1. About the must-gather tool

233
234
235
236
236
242
242
243
244
244
245
245
247
249
249
249
253
254
254
254
254
255
256
256
257
257
257
258
258
259
261

264
265
267
268
271

280
282
283
285
285
285
285
286
286
286

288
288
288
288
288
289

Table of Contents

9

2.1.3.2. Prerequisites
2.1.3.3. About collecting service mesh data

2.1.4. Red Hat OpenShift Service Mesh supported configurations
2.1.4.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh
2.1.4.2. Supported Mixer adapters

2.1.5. New Features
2.1.5.1. New features Red Hat OpenShift Service Mesh 1.1.18.2

2.1.5.1.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.18.2
2.1.5.2. New features Red Hat OpenShift Service Mesh 1.1.18.1

2.1.5.2.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.18.1
2.1.5.3. New features Red Hat OpenShift Service Mesh 1.1.18

2.1.5.3.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.18
2.1.5.4. New features Red Hat OpenShift Service Mesh 1.1.17.1

2.1.5.4.1. Change in how Red Hat OpenShift Service Mesh handles URI fragments
2.1.5.4.2. Required update for authorization policies

2.1.5.5. New features Red Hat OpenShift Service Mesh 1.1.17
2.1.5.6. New features Red Hat OpenShift Service Mesh 1.1.16
2.1.5.7. New features Red Hat OpenShift Service Mesh 1.1.15
2.1.5.8. New features Red Hat OpenShift Service Mesh 1.1.14

2.1.5.8.1. Manual updates required by CVE-2021-29492 and CVE-2021-31920
2.1.5.8.2. Updating the path normalization configuration
2.1.5.8.3. Path normalization configuration examples
2.1.5.8.4. Configuring your SMCP for path normalization

2.1.5.9. New features Red Hat OpenShift Service Mesh 1.1.13
2.1.5.10. New features Red Hat OpenShift Service Mesh 1.1.12
2.1.5.11. New features Red Hat OpenShift Service Mesh 1.1.11
2.1.5.12. New features Red Hat OpenShift Service Mesh 1.1.10
2.1.5.13. New features Red Hat OpenShift Service Mesh 1.1.9
2.1.5.14. New features Red Hat OpenShift Service Mesh 1.1.8
2.1.5.15. New features Red Hat OpenShift Service Mesh 1.1.7
2.1.5.16. New features Red Hat OpenShift Service Mesh 1.1.6
2.1.5.17. New features Red Hat OpenShift Service Mesh 1.1.5
2.1.5.18. New features Red Hat OpenShift Service Mesh 1.1.4

2.1.5.18.1. Manual updates required by CVE-2020-8663
2.1.5.18.2. Upgrading from Elasticsearch 5 to Elasticsearch 6

2.1.5.19. New features Red Hat OpenShift Service Mesh 1.1.3
2.1.5.20. New features Red Hat OpenShift Service Mesh 1.1.2
2.1.5.21. New features Red Hat OpenShift Service Mesh 1.1.1
2.1.5.22. New features Red Hat OpenShift Service Mesh 1.1.0

2.1.5.22.1. Manual updates from 1.0 to 1.1
2.1.6. Deprecated features

2.1.6.1. Deprecated features Red Hat OpenShift Service Mesh 1.1.5
2.1.7. Known issues

2.1.7.1. Service Mesh known issues
2.1.7.2. Kiali known issues
2.1.7.3. Red Hat OpenShift distributed tracing known issues

2.1.8. Fixed issues
2.1.8.1. Service Mesh fixed issues
2.1.8.2. Kiali fixed issues
2.1.8.3. Red Hat OpenShift distributed tracing fixed issues

2.2. UNDERSTANDING SERVICE MESH
2.2.1. Understanding service mesh
2.2.2. Red Hat OpenShift Service Mesh Architecture

290
290
290
291
291
291
291
291
292
292
292
292
292
293
293
294
294
294
294
294
295
296
297
297
297
297
297
298
298
298
298
298
298
298
300
301
301
301
301
301
302
302
302
303
303
304
304
304
306
306
307
308
308

OpenShift Container Platform 4.9 Service Mesh

10

2.2.3. Understanding Kiali
2.2.3.1. Kiali overview
2.2.3.2. Kiali architecture
2.2.3.3. Kiali features

2.2.4. Understanding Jaeger
2.2.4.1. Distributed tracing overview
2.2.4.2. Distributed tracing architecture
2.2.4.3. Red Hat OpenShift distributed tracing features

2.2.5. Next steps
2.3. SERVICE MESH AND ISTIO DIFFERENCES

2.3.1. Multitenant installations
2.3.1.1. Multitenancy versus cluster-wide installations
2.3.1.2. Cluster scoped resources

2.3.2. Differences between Istio and Red Hat OpenShift Service Mesh
2.3.2.1. Command line tool
2.3.2.2. Automatic injection
2.3.2.3. Istio Role Based Access Control features
2.3.2.4. OpenSSL
2.3.2.5. Component modifications
2.3.2.6. Envoy, Secret Discovery Service, and certificates
2.3.2.7. Istio Container Network Interface (CNI) plugin
2.3.2.8. Routes for Istio Gateways

2.3.2.8.1. Catch-all domains
2.3.2.8.2. Subdomains
2.3.2.8.3. Transport layer security

Additional resources
2.3.3. Kiali and service mesh
2.3.4. Distributed tracing and service mesh

2.4. PREPARING TO INSTALL SERVICE MESH
2.4.1. Prerequisites
2.4.2. Red Hat OpenShift Service Mesh supported configurations

2.4.2.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh
2.4.2.2. Supported Mixer adapters

2.4.3. Operator overview
2.4.4. Next steps

2.5. INSTALLING SERVICE MESH
2.5.1. Prerequisites
2.5.2. Installing the OpenShift Elasticsearch Operator
2.5.3. Installing the Red Hat OpenShift distributed tracing platform Operator
2.5.4. Installing the Kiali Operator
2.5.5. Installing the Operators
2.5.6. Deploying the Red Hat OpenShift Service Mesh control plane

2.5.6.1. Deploying the control plane from the web console
2.5.6.2. Deploying the control plane from the CLI

2.5.7. Creating the Red Hat OpenShift Service Mesh member roll
2.5.7.1. Creating the member roll from the web console
2.5.7.2. Creating the member roll from the CLI

2.5.8. Adding or removing projects from the service mesh
2.5.8.1. Adding or removing projects from the member roll using the web console
2.5.8.2. Adding or removing projects from the member roll using the CLI

2.5.9. Manual updates
2.5.9.1. Updating sidecar proxies

2.5.10. Next steps

309
309
309
310
311
311
311
312
312
312
313
313
314
314
314
314
314
315
315
315
316
316
316
316
316
316
316
317
317
318
318
319
319
319
319
319

320
320
322
323
324
325
325
326
327
328
328
329
330
330
331
331
331

Table of Contents

11

2.6. CUSTOMIZING SECURITY IN A SERVICE MESH
2.6.1. Enabling mutual Transport Layer Security (mTLS)

2.6.1.1. Enabling strict mTLS across the mesh
2.6.1.1.1. Configuring sidecars for incoming connections for specific services

2.6.1.2. Configuring sidecars for outgoing connections
2.6.1.3. Setting the minimum and maximum protocol versions

2.6.2. Configuring cipher suites and ECDH curves
2.6.3. Adding an external certificate authority key and certificate

2.6.3.1. Adding an existing certificate and key
2.6.3.2. Verifying your certificates
2.6.3.3. Removing the certificates

2.7. TRAFFIC MANAGEMENT
2.7.1. Using gateways
2.7.2. Configuring an ingress gateway
2.7.3. Managing ingress traffic

2.7.3.1. Determining the ingress IP and ports
2.7.3.1.1. Determining ingress ports with a load balancer
2.7.3.1.2. Determining ingress ports without a load balancer

2.7.4. Automatic route creation
2.7.4.1. Enabling Automatic Route Creation
2.7.4.2. Subdomains

2.7.5. Understanding service entries
2.7.6. Using VirtualServices

2.7.6.1. Configuring VirtualServices
2.7.6.2. VirtualService configuration reference

2.7.7. Understanding destination rules
2.7.8. Bookinfo routing tutorial

2.7.8.1. Applying a virtual service
2.7.8.2. Testing the new route configuration
2.7.8.3. Route based on user identity

2.7.9. Additional resources
2.8. DEPLOYING APPLICATIONS ON SERVICE MESH

2.8.1. Prerequisites
2.8.2. Creating control plane templates

2.8.2.1. Creating the ConfigMap
2.8.3. Enabling automatic sidecar injection
2.8.4. Setting proxy environment variables through annotations
2.8.5. Updating Mixer policy enforcement

2.8.5.1. Setting the correct network policy
2.8.6. Bookinfo example application

2.8.6.1. Installing the Bookinfo application
2.8.6.2. Adding default destination rules
2.8.6.3. Verifying the Bookinfo installation
2.8.6.4. Removing the Bookinfo application

2.8.6.4.1. Delete the Bookinfo project
2.8.6.4.2. Remove the Bookinfo project from the Service Mesh member roll

2.8.7. Generating example traces and analyzing trace data
2.9. DATA VISUALIZATION AND OBSERVABILITY

2.9.1. Viewing service mesh data
2.9.2. Viewing service mesh data in the Kiali console

2.9.2.1. Changing graph layouts in Kiali
2.10. CUSTOM RESOURCES

2.10.1. Prerequisites

331
332
332
332
333
333
334
335
335
336
337
338
338
339
341
341
341

342
342
343
343
344
345
345
346
347
347
348
348
349
349
349
350
350
350
352
353
354
354
354
355
357
358
359
360
360
360
361

362
362
363
364
364

OpenShift Container Platform 4.9 Service Mesh

12

2.10.2. Red Hat OpenShift Service Mesh custom resources
2.10.3. ServiceMeshControlPlane parameters

2.10.3.1. Istio global example
2.10.3.2. Istio gateway configuration
2.10.3.3. Istio Mixer configuration
2.10.3.4. Istio Pilot configuration

2.10.4. Configuring Kiali
2.10.4.1. Configuring Kiali for Grafana
2.10.4.2. Configuring Kiali for Jaeger

2.10.5. Configuring Jaeger
2.10.5.1. Configuring Elasticsearch
2.10.5.2. Connecting to an existing Jaeger instance
2.10.5.3. Configuring Elasticsearch
2.10.5.4. Configuring the Elasticsearch index cleaner job

2.10.6. 3scale configuration
2.11. USING THE 3SCALE ISTIO ADAPTER

2.11.1. Integrate the 3scale adapter with Red Hat OpenShift Service Mesh
2.11.1.1. Generating 3scale custom resources

2.11.1.1.1. Generate templates from URL examples
2.11.1.2. Generating manifests from a deployed adapter
2.11.1.3. Routing service traffic through the adapter

2.11.2. Configure the integration settings in 3scale
2.11.3. Caching behavior
2.11.4. Authenticating requests

2.11.4.1. Applying authentication patterns
2.11.4.1.1. API key authentication method
2.11.4.1.2. Application ID and application key pair authentication method
2.11.4.1.3. OpenID authentication method
2.11.4.1.4. Hybrid authentication method

2.11.5. 3scale Adapter metrics
2.11.6. 3scale Istio adapter verification
2.11.7. 3scale Istio adapter troubleshooting checklist

2.12. REMOVING SERVICE MESH
2.12.1. Removing the Red Hat OpenShift Service Mesh control plane

2.12.1.1. Removing the Service Mesh control plane using the web console
2.12.1.2. Removing the Service Mesh control plane using the CLI

2.12.2. Removing the installed Operators
2.12.2.1. Removing the Operators
2.12.2.2. Clean up Operator resources

364
366
366
368
370
371
372
373
374
374
375
378
379
382
382
385
385
387
387
388
389
389
390
390
390
391
391

392
393
393
393
394
394
395
395
395
396
396
396

Table of Contents

13

OpenShift Container Platform 4.9 Service Mesh

14

CHAPTER 1. SERVICE MESH 2.X

1.1. ABOUT OPENSHIFT SERVICE MESH

NOTE

Because Red Hat OpenShift Service Mesh releases on a different cadence from
OpenShift Container Platform and because the Red Hat OpenShift Service Mesh
Operator supports deploying multiple versions of the ServiceMeshControlPlane, the
Service Mesh documentation does not maintain separate documentation sets for minor
versions of the product. The current documentation set applies to all currently supported
versions of Service Mesh unless version-specific limitations are called out in a particular
topic or for a particular feature.

For additional information about the Red Hat OpenShift Service Mesh life cycle and
supported platforms, refer to the Platform Life Cycle Policy .

1.1.1. Introduction to Red Hat OpenShift Service Mesh

Red Hat OpenShift Service Mesh addresses a variety of problems in a microservice architecture by
creating a centralized point of control in an application. It adds a transparent layer on existing distributed
applications without requiring any changes to the application code.

Microservice architectures split the work of enterprise applications into modular services, which can
make scaling and maintenance easier. However, as an enterprise application built on a microservice
architecture grows in size and complexity, it becomes difficult to understand and manage. Service Mesh
can address those architecture problems by capturing or intercepting traffic between services and can
modify, redirect, or create new requests to other services.

Service Mesh, which is based on the open source Istio project, provides an easy way to create a network
of deployed services that provides discovery, load balancing, service-to-service authentication, failure
recovery, metrics, and monitoring. A service mesh also provides more complex operational functionality,
including A/B testing, canary releases, access control, and end-to-end authentication.

1.1.2. Core features

Red Hat OpenShift Service Mesh provides a number of key capabilities uniformly across a network of
services:

Traffic Management - Control the flow of traffic and API calls between services, make calls
more reliable, and make the network more robust in the face of adverse conditions.

Service Identity and Security - Provide services in the mesh with a verifiable identity and
provide the ability to protect service traffic as it flows over networks of varying degrees of
trustworthiness.

Policy Enforcement - Apply organizational policy to the interaction between services, ensure
access policies are enforced and resources are fairly distributed among consumers. Policy
changes are made by configuring the mesh, not by changing application code.

Telemetry - Gain understanding of the dependencies between services and the nature and flow
of traffic between them, providing the ability to quickly identify issues.

CHAPTER 1. SERVICE MESH 2.X

15

https://access.redhat.com/support/policy/updates/openshift#ossm
https://istio.io/

1.2. SERVICE MESH RELEASE NOTES

1.2.1. Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

1.2.2. New features and enhancements

This release adds improvements related to the following components and concepts.

1.2.2.1. New features Red Hat OpenShift Service Mesh version 2.3.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.1.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.2

Component Version

Istio 1.14.5

Envoy Proxy 1.22.7

Jaeger 1.39

Kiali 1.57.6

1.2.2.2. New features Red Hat OpenShift Service Mesh version 2.3.1

This release of Red Hat OpenShift Service Mesh introduces new features, addresses Common
Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on OpenShift Container
Platform 4.9 or later.

1.2.2.2.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.1

Component Version

Istio 1.14.5

Envoy Proxy 1.22.4

Jaeger 1.39

Kiali 1.57.5

OpenShift Container Platform 4.9 Service Mesh

16

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

1.2.2.3. New features Red Hat OpenShift Service Mesh version 2.3

This release of Red Hat OpenShift Service Mesh introduces new features, addresses Common
Vulnerabilities and Exposures (CVEs), contains bug fixes, and is supported on OpenShift Container
Platform 4.9, 4.10, and 4.11.

1.2.2.3.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3

Component Version

Istio 1.14.3

Envoy Proxy 1.22.4

Jaeger 1.38

Kiali 1.57.3

1.2.2.3.2. New Container Network Interface (CNI) DaemonSet container and ConfigMap

The openshift-operators namespace includes a new istio CNI DaemonSet istio-cni-node-v2-3 and a
new ConfigMap resource, istio-cni-config-v2-3.

When upgrading to Service Mesh Control Plane 2.3, the existing istio-cni-node DaemonSet is not
changed, and a new istio-cni-node-v2-3 DaemonSet is created.

This name change does not affect previous releases or any istio-cni-node CNI DaemonSet associated
with a Service Mesh Control Plane deployed using a previous release.

1.2.2.3.3. Gateway injection support

This release introduces generally available support for Gateway injection. Gateway configurations are
applied to standalone Envoy proxies that are running at the edge of the mesh, rather than the sidecar
Envoy proxies running alongside your service workloads. This enables the ability to customize gateway
options. When using gateway injection, you must create the following resources in the namespace where
you want to run your gateway proxy: Service, Deployment, Role, and RoleBinding.

1.2.2.3.4. Istio 1.14 Support

Service Mesh 2.3 is based on Istio 1.14, which brings in new features and product enhancements. While
many Istio 1.14 features are supported, the following exceptions should be noted:

ProxyConfig API is supported with the exception of the image field.

Telemetry API is a Technology Preview feature.

SPIRE runtime is not a supported feature.

1.2.2.3.5. OpenShift Service Mesh Console

IMPORTANT

CHAPTER 1. SERVICE MESH 2.X

17

1

IMPORTANT

OpenShift Service Mesh Console is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

This release introduces a Technology Preview version of the OpenShift Container Platform Service
Mesh Console, which integrates the Kiali interface directly into the OpenShift web console. For
additional information, see Introducing the OpenShift Service Mesh Console (A Technology Preview)

1.2.2.3.6. Cluster-Wide deployment

This release introduces cluster-wide deployment as a Technology Preview feature. A cluster-wide
deployment contains a Service Mesh Control Plane that monitors resources for an entire cluster. The
control plane uses a single query across all namespaces to monitor each Istio or Kubernetes resource
kind that affects the mesh configuration. In contrast, the multitenant approach uses a query per
namespace for each resource kind. Reducing the number of queries the control plane performs in a
cluster-wide deployment improves performance.

1.2.2.3.6.1. Configuring cluster-wide deployment

The following example ServiceMeshControlPlane object configures a cluster-wide deployment.

To create an SMCP for cluster-wide deployment, a user must belong to the cluster-admin ClusterRole.
If the SMCP is configured for cluster-wide deployment, it must be the only SMCP in the cluster. You
cannot change the control plane mode from multitenant to cluster-wide (or from cluster-wide to
multitenant). If a multitenant control plane already exists, delete it and create a new one.

This example configures the SMCP for cluster-wide deployment.

Enables Istiod to monitor resources at the cluster level rather than monitor each individual
namespace.

Additionally, the SMMR must also be configured for cluster-wide deployment. This example configures
the SMMR for cluster-wide deployment.

 apiVersion: maistra.io/v2
 kind: ServiceMeshControlPlane
 metadata:
 name: cluster-wide
 namespace: istio-system
 spec:
 version: v2.3
 techPreview:
 controlPlaneMode: ClusterScoped 1

 apiVersion: maistra.io/v1
 kind: ServiceMeshMemberRoll

OpenShift Container Platform 4.9 Service Mesh

18

https://access.redhat.com/support/offerings/techpreview/
https://cloud.redhat.com/blog/introducing-the-openshift-service-mesh-console-a-developer-preview

1 Adds all namespaces to the mesh, including any namespaces you subsequently create. The
following namespaces are not part of the mesh: kube, openshift, kube-* and openshift-*.

1.2.2.4. New features Red Hat OpenShift Service Mesh version 2.2.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.4.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.6

Component Version

Istio 1.12.9

Envoy Proxy 1.20.8

Jaeger 1.39

Kiali 1.48.4

1.2.2.5. New features Red Hat OpenShift Service Mesh version 2.2.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.5.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.5

Component Version

Istio 1.12.9

Envoy Proxy 1.20.8

Jaeger 1.39

Kiali 1.48.3

1.2.2.6. New features Red Hat OpenShift Service Mesh version 2.2.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

 metadata:
 name: default
 spec:
 members:
 - '*' 1

CHAPTER 1. SERVICE MESH 2.X

19

1.2.2.6.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.4

Component Version

Istio 1.12.9

Envoy Proxy 1.20.8

Jaeger 1.36.14

Kiali 1.48.3

1.2.2.7. New features Red Hat OpenShift Service Mesh version 2.2.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.7.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.3

Component Version

Istio 1.12.9

Envoy Proxy 1.20.8

Jaeger 1.36

Kiali 1.48.3

1.2.2.8. New features Red Hat OpenShift Service Mesh version 2.2.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.8.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.2

Component Version

Istio 1.12.7

Envoy Proxy 1.20.6

Jaeger 1.36

Kiali 1.48.2-1

OpenShift Container Platform 4.9 Service Mesh

20

1.2.2.8.2. Copy route labels

With this enhancement, in addition to copying annotations, you can copy specific labels for an OpenShift
route. Red Hat OpenShift Service Mesh copies all labels and annotations present in the Istio Gateway
resource (with the exception of annotations starting with kubectl.kubernetes.io) into the managed
OpenShift Route resource.

1.2.2.9. New features Red Hat OpenShift Service Mesh version 2.2.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.9.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.1

Component Version

Istio 1.12.7

Envoy Proxy 1.20.6

Jaeger 1.34.1

Kiali 1.48.2-1

1.2.2.10. New features Red Hat OpenShift Service Mesh 2.2

This release of Red Hat OpenShift Service Mesh adds new features and enhancements, and is
supported on OpenShift Container Platform 4.9 or later.

1.2.2.10.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2

Component Version

Istio 1.12.7

Envoy Proxy 1.20.4

Jaeger 1.34.1

Kiali 1.48.0.16

1.2.2.10.2. WasmPlugin API

This release adds support for the WasmPlugin API and deprecates the ServiceMeshExtension API.

1.2.2.10.3. ROSA support

This release introduces service mesh support for Red Hat OpenShift on AWS (ROSA), including multi-
cluster federation.

CHAPTER 1. SERVICE MESH 2.X

21

1.2.2.10.4. istio-node DaemonSet renamed

This release, the istio-node DaemonSet is renamed to istio-cni-node to match the name in upstream
Istio.

1.2.2.10.5. Envoy sidecar networking changes

Istio 1.10 updated Envoy to send traffic to the application container using eth0 rather than lo by default.

1.2.2.10.6. Service Mesh Control Plane 1.1

This release marks the end of support for Service Mesh Control Planes based on Service Mesh 1.1 for all
platforms.

1.2.2.10.7. Istio 1.12 Support

Service Mesh 2.2 is based on Istio 1.12, which brings in new features and product enhancements. While
many Istio 1.12 features are supported, the following unsupported features should be noted:

AuthPolicy Dry Run is a tech preview feature.

gRPC Proxyless Service Mesh is a tech preview feature.

Telemetry API is a tech preview feature.

Discovery selectors is not a supported feature.

External control plane is not a supported feature.

Gateway injection is not a supported feature.

1.2.2.10.8. Kubernetes Gateway API

IMPORTANT

Kubernetes Gateway API is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Kubernetes Gateway API is a technology preview feature that is disabled by default. If the Kubernetes
API deployment controller is disabled, you must manually deploy and link an ingress gateway to the
created Gateway object.

If the Kubernetes API deployment controller is enabled, then an ingress gateway automatically deploys
when a Gateway object is created.

1.2.2.10.8.1. Installing the Gateway API CRDs

The Gateway API CRDs do not come pre-installed by default on OpenShift clusters. Install the CRDs
prior to enabling Gateway API support in the SMCP.

OpenShift Container Platform 4.9 Service Mesh

22

https://access.redhat.com/support/offerings/techpreview/

1.2.2.10.8.2. Enabling Kubernetes Gateway API

To enable the feature, set the following environment variables for the Istiod container in
ServiceMeshControlPlane:

Restricting route attachment on Gateway API listeners is possible using the SameNamespace or All
settings. Istio ignores usage of label selectors in listeners.allowedRoutes.namespaces and reverts to
the default behavior (SameNamespace).

1.2.2.10.8.3. Manually linking an existing gateway to a Gateway resource

If the Kubernetes API deployment controller is disabled, you must manually deploy and then link an
ingress gateway to the created Gateway resource.

1.2.2.11. New features Red Hat OpenShift Service Mesh 2.1.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.11.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.6

Component Version

Istio 1.9.9

Envoy Proxy 1.17.5

Jaeger 1.36

$ kubectl get crd gateways.gateway.networking.k8s.io || { kubectl kustomize "github.com/kubernetes-
sigs/gateway-api/config/crd?ref=v0.4.0" | kubectl apply -f -; }

spec:
 runtime:
 components:
 pilot:
 container:
 env:
 PILOT_ENABLE_GATEWAY_API: "true"
 PILOT_ENABLE_GATEWAY_API_STATUS: "true"
 # and optionally, for the deployment controller
 PILOT_ENABLE_GATEWAY_API_DEPLOYMENT_CONTROLLER: "true"

 apiVersion: gateway.networking.k8s.io/v1alpha2
 kind: Gateway
 metadata:
 name: gateway
 spec:
 addresses:
 - value: ingress.istio-gateways.svc.cluster.local
 type: Hostname

CHAPTER 1. SERVICE MESH 2.X

23

Kiali 1.36.15

Component Version

1.2.2.12. New features Red Hat OpenShift Service Mesh 2.1.5.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.12.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.2

Component Version

Istio 1.9.9

Envoy Proxy 1.17.5

Jaeger 1.36

Kiali 1.24.17

1.2.2.13. New features Red Hat OpenShift Service Mesh 2.1.5.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.13.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.1

Component Version

Istio 1.9.9

Envoy Proxy 1.17.5

Jaeger 1.36

Kiali 1.36.13

1.2.2.14. New features Red Hat OpenShift Service Mesh 2.1.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.14.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5

OpenShift Container Platform 4.9 Service Mesh

24

Component Version

Istio 1.9.9

Envoy Proxy 1.17.1

Jaeger 1.36

Kiali 1.36.12-1

1.2.2.15. New features Red Hat OpenShift Service Mesh 2.1.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.15.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.4

Component Version

Istio 1.9.9

Envoy Proxy 1.17.1

Jaeger 1.30.2

Kiali 1.36.12-1

1.2.2.16. New features Red Hat OpenShift Service Mesh 2.1.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.16.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.3

Component Version

Istio 1.9.9

Envoy Proxy 1.17.1

Jaeger 1.30.2

Kiali 1.36.10-2

1.2.2.17. New features Red Hat OpenShift Service Mesh 2.1.2.1

CHAPTER 1. SERVICE MESH 2.X

25

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.17.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.2.1

Component Version

Istio 1.9.9

Envoy Proxy 1.17.1

Jaeger 1.30.2

Kiali 1.36.9

1.2.2.18. New features Red Hat OpenShift Service Mesh 2.1.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

With this release, the Red Hat OpenShift distributed tracing platform Operator is now installed to the
openshift-distributed-tracing namespace by default. Previously the default installation had been in the
openshift-operator namespace.

1.2.2.18.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.2

Component Version

Istio 1.9.9

Envoy Proxy 1.17.1

Jaeger 1.30.1

Kiali 1.36.8

1.2.2.19. New features Red Hat OpenShift Service Mesh 2.1.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

This release also adds the ability to disable the automatic creation of network policies.

1.2.2.19.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.1

Component Version

Istio 1.9.9

OpenShift Container Platform 4.9 Service Mesh

26

Envoy Proxy 1.17.1

Jaeger 1.24.1

Kiali 1.36.7

Component Version

1.2.2.19.2. Disabling network policies

Red Hat OpenShift Service Mesh automatically creates and manages a number of NetworkPolicies
resources in the Service Mesh control plane and application namespaces. This is to ensure that
applications and the control plane can communicate with each other.

If you want to disable the automatic creation and management of NetworkPolicies resources, for
example to enforce company security policies, you can do so. You can edit the
ServiceMeshControlPlane to set the spec.security.manageNetworkPolicy setting to false

NOTE

When you disable spec.security.manageNetworkPolicy Red Hat OpenShift Service
Mesh will not create any NetworkPolicy objects. The system administrator is responsible
for managing the network and fixing any issues this might cause.

Procedure

1. In the OpenShift Container Platform web console, click Operators → Installed Operators.

2. Select the project where you installed the Service Mesh control plane, for example istio-system,
from the Project menu.

3. Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane
column, click the name of your ServiceMeshControlPlane, for example basic-install.

4. On the Create ServiceMeshControlPlane Details page, click YAML to modify your
configuration.

5. Set the ServiceMeshControlPlane field spec.security.manageNetworkPolicy to false, as
shown in this example.

6. Click Save.

1.2.2.20. New features and enhancements Red Hat OpenShift Service Mesh 2.1

This release of Red Hat OpenShift Service Mesh adds support for Istio 1.9.8, Envoy Proxy 1.17.1, Jaeger

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 security:
 trust:
 manageNetworkPolicy: false

CHAPTER 1. SERVICE MESH 2.X

27

This release of Red Hat OpenShift Service Mesh adds support for Istio 1.9.8, Envoy Proxy 1.17.1, Jaeger
1.24.1, and Kiali 1.36.5 on OpenShift Container Platform 4.6 EUS, 4.7, 4.8, 4.9, along with new features
and enhancements.

1.2.2.20.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1

Component Version

Istio 1.9.6

Envoy Proxy 1.17.1

Jaeger 1.24.1

Kiali 1.36.5

1.2.2.20.2. Service Mesh Federation

New Custom Resource Definitions (CRDs) have been added to support federating service meshes.
Service meshes may be federated both within the same cluster or across different OpenShift clusters.
These new resources include:

ServiceMeshPeer - Defines a federation with a separate service mesh, including gateway
configuration, root trust certificate configuration, and status fields. In a pair of federated
meshes, each mesh will define its own separate ServiceMeshPeer resource.

ExportedServiceMeshSet - Defines which services for a given ServiceMeshPeer are available
for the peer mesh to import.

ImportedServiceSet - Defines which services for a given ServiceMeshPeer are imported from
the peer mesh. These services must also be made available by the peer’s
ExportedServiceMeshSet resource.

Service Mesh Federation is not supported between clusters on Red Hat OpenShift Service on AWS
(ROSA), Azure Red Hat OpenShift (ARO), or OpenShift Dedicated (OSD).

1.2.2.20.3. OVN-Kubernetes Container Network Interface (CNI) generally available

The OVN-Kubernetes Container Network Interface (CNI) was previously introduced as a Technology
Preview feature in Red Hat OpenShift Service Mesh 2.0.1 and is now generally available in Red Hat
OpenShift Service Mesh 2.1 and 2.0.x for use on OpenShift Container Platform 4.7.32, OpenShift
Container Platform 4.8.12, and OpenShift Container Platform 4.9.

1.2.2.20.4. Service Mesh WebAssembly (WASM) Extensions

The ServiceMeshExtensions Custom Resource Definition (CRD), first introduced in 2.0 as Technology
Preview, is now generally available. You can use CRD to build your own plugins, but Red Hat does not
provide support for the plugins you create.

Mixer has been completely removed in Service Mesh 2.1. Upgrading from a Service Mesh 2.0.x release to
2.1 will be blocked if Mixer is enabled. Mixer plugins will need to be ported to WebAssembly Extensions.

1.2.2.20.5. 3scale WebAssembly Adapter (WASM)

OpenShift Container Platform 4.9 Service Mesh

28

With Mixer now officially removed, OpenShift Service Mesh 2.1 does not support the 3scale mixer
adapter. Before upgrading to Service Mesh 2.1, remove the Mixer-based 3scale adapter and any
additional Mixer plugins. Then, manually install and configure the new 3scale WebAssembly adapter with
Service Mesh 2.1+ using a ServiceMeshExtension resource.

3scale 2.11 introduces an updated Service Mesh integration based on WebAssembly.

1.2.2.20.6. Istio 1.9 Support

Service Mesh 2.1 is based on Istio 1.9, which brings in a large number of new features and product
enhancements. While the majority of Istio 1.9 features are supported, the following exceptions should be
noted:

Virtual Machine integration is not yet supported

Kubernetes Gateway API is not yet supported

Remote fetch and load of WebAssembly HTTP filters are not yet supported

Custom CA Integration using the Kubernetes CSR API is not yet supported

Request Classification for monitoring traffic is a tech preview feature

Integration with external authorization systems via Authorization policy’s CUSTOM action is a
tech preview feature

1.2.2.20.7. Improved Service Mesh operator performance

The amount of time Red Hat OpenShift Service Mesh uses to prune old resources at the end of every
ServiceMeshControlPlane reconciliation has been reduced. This results in faster
ServiceMeshControlPlane deployments, and allows changes applied to existing SMCPs to take effect
more quickly.

1.2.2.20.8. Kiali updates

Kiali 1.36 includes the following features and enhancements:

Service Mesh troubleshooting functionality

Control plane and gateway monitoring

Proxy sync statuses

Envoy configuration views

Unified view showing Envoy proxy and application logs interleaved

Namespace and cluster boxing to support federated service mesh views

New validations, wizards, and distributed tracing enhancements

1.2.2.21. New features Red Hat OpenShift Service Mesh 2.0.11.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

CHAPTER 1. SERVICE MESH 2.X

29

1.2.2.21.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.11.1

Component Version

Istio 1.6.14

Envoy Proxy 1.14.5

Jaeger 1.36

Kiali 1.24.17

1.2.2.22. New features Red Hat OpenShift Service Mesh 2.0.11

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.22.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.11

Component Version

Istio 1.6.14

Envoy Proxy 1.14.5

Jaeger 1.36

Kiali 1.24.16-1

1.2.2.23. New features Red Hat OpenShift Service Mesh 2.0.10

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.23.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.10

Component Version

Istio 1.6.14

Envoy Proxy 1.14.5

Jaeger 1.28.0

Kiali 1.24.16-1

OpenShift Container Platform 4.9 Service Mesh

30

1.2.2.24. New features Red Hat OpenShift Service Mesh 2.0.9

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.24.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.9

Component Version

Istio 1.6.14

Envoy Proxy 1.14.5

Jaeger 1.24.1

Kiali 1.24.11

1.2.2.25. New features Red Hat OpenShift Service Mesh 2.0.8

This release of Red Hat OpenShift Service Mesh addresses bug fixes.

1.2.2.26. New features Red Hat OpenShift Service Mesh 2.0.7.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs).

1.2.2.26.1. Change in how Red Hat OpenShift Service Mesh handles URI fragments

Red Hat OpenShift Service Mesh contains a remotely exploitable vulnerability, CVE-2021-39156, where
an HTTP request with a fragment (a section in the end of a URI that begins with a # character) in the URI
path could bypass the Istio URI path-based authorization policies. For instance, an Istio authorization
policy denies requests sent to the URI path /user/profile. In the vulnerable versions, a request with URI
path /user/profile#section1 bypasses the deny policy and routes to the backend (with the normalized
URI path /user/profile%23section1), possibly leading to a security incident.

You are impacted by this vulnerability if you use authorization policies with DENY actions and
operation.paths, or ALLOW actions and operation.notPaths.

With the mitigation, the fragment part of the request’s URI is removed before the authorization and
routing. This prevents a request with a fragment in its URI from bypassing authorization policies which
are based on the URI without the fragment part.

To opt-out from the new behavior in the mitigation, the fragment section in the URI will be kept. You can
configure your ServiceMeshControlPlane to keep URI fragments.

CHAPTER 1. SERVICE MESH 2.X

31

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39156

WARNING

Disabling the new behavior will normalize your paths as described above and is
considered unsafe. Ensure that you have accommodated for this in any security
policies before opting to keep URI fragments.

Example ServiceMeshControlPlane modification

1.2.2.26.2. Required update for authorization policies

Istio generates hostnames for both the hostname itself and all matching ports. For instance, a virtual
service or Gateway for a host of "httpbin.foo" generates a config matching "httpbin.foo and
httpbin.foo:*". However, exact match authorization policies only match the exact string given for the
hosts or notHosts fields.

Your cluster is impacted if you have AuthorizationPolicy resources using exact string comparison for
the rule to determine hosts or notHosts.

You must update your authorization policy rules to use prefix match instead of exact match. For
example, replacing hosts: ["httpbin.com"] with hosts: ["httpbin.com:*"] in the first
AuthorizationPolicy example.

First example AuthorizationPolicy using prefix match

Second example AuthorizationPolicy using prefix match



apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 techPreview:
 meshConfig:
 defaultConfig:
 proxyMetadata: HTTP_STRIP_FRAGMENT_FROM_PATH_UNSAFE_IF_DISABLED: "false"

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: foo
spec:
 action: DENY
 rules:
 - from:
 - source:
 namespaces: ["dev"]
 to:
 - operation:
 hosts: [“httpbin.com”,"httpbin.com:*"]

OpenShift Container Platform 4.9 Service Mesh

32

https://istio.io/latest/docs/reference/config/security/authorization-policy/#Operation
https://istio.io/latest/docs/reference/config/security/authorization-policy/#Rule

1.2.2.27. New features Red Hat OpenShift Service Mesh 2.0.7

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.28. Red Hat OpenShift Service Mesh on Red Hat OpenShift Dedicated and Microsoft
Azure Red Hat OpenShift

Red Hat OpenShift Service Mesh is now supported through Red Hat OpenShift Dedicated and
Microsoft Azure Red Hat OpenShift.

1.2.2.29. New features Red Hat OpenShift Service Mesh 2.0.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.30. New features Red Hat OpenShift Service Mesh 2.0.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.31. New features Red Hat OpenShift Service Mesh 2.0.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

IMPORTANT

There are manual steps that must be completed to address CVE-2021-29492 and CVE-
2021-31920.

1.2.2.31.1. Manual updates required by CVE-2021-29492 and CVE-2021-31920

Istio contains a remotely exploitable vulnerability where an HTTP request path with multiple slashes or
escaped slash characters (%2F or %5C) could potentially bypass an Istio authorization policy when path-
based authorization rules are used.

For example, assume an Istio cluster administrator defines an authorization DENY policy to reject the
request at path /admin. A request sent to the URL path //admin will NOT be rejected by the
authorization policy.

According to RFC 3986, the path //admin with multiple slashes should technically be treated as a

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: default
spec:
 action: DENY
 rules:
 - to:
 - operation:
 hosts: ["httpbin.example.com:*"]

CHAPTER 1. SERVICE MESH 2.X

33

According to RFC 3986, the path //admin with multiple slashes should technically be treated as a
different path from the /admin. However, some backend services choose to normalize the URL paths by
merging multiple slashes into a single slash. This can result in a bypass of the authorization policy
(//admin does not match /admin), and a user can access the resource at path /admin in the backend;
this would represent a security incident.

Your cluster is impacted by this vulnerability if you have authorization policies using ALLOW action +
notPaths field or DENY action + paths field patterns. These patterns are vulnerable to unexpected
policy bypasses.

Your cluster is NOT impacted by this vulnerability if:

You don’t have authorization policies.

Your authorization policies don’t define paths or notPaths fields.

Your authorization policies use ALLOW action + paths field or DENY action + notPaths field
patterns. These patterns could only cause unexpected rejection instead of policy bypasses. The
upgrade is optional for these cases.

NOTE

The Red Hat OpenShift Service Mesh configuration location for path normalization is
different from the Istio configuration.

1.2.2.31.2. Updating the path normalization configuration

Istio authorization policies can be based on the URL paths in the HTTP request. Path normalization, also
known as URI normalization, modifies and standardizes the incoming requests' paths so that the
normalized paths can be processed in a standard way. Syntactically different paths may be equivalent
after path normalization.

Istio supports the following normalization schemes on the request paths before evaluating against the
authorization policies and routing the requests:

Table 1.1. Normalization schemes

Option Description Example Notes

NONE No normalization is
done. Anything received
by Envoy will be
forwarded exactly as-is
to any backend service.

../%2Fa../b is evaluated
by the authorization
policies and sent to your
service.

This setting is vulnerable
to CVE-2021-31920.

BASE This is currently the
option used in the
default installation of
Istio. This applies the
normalize_path
option on Envoy proxies,
which follows RFC 3986
with extra normalization
to convert backslashes
to forward slashes.

/a/../b is normalized to
/b. \da is normalized to
/da.

This setting is vulnerable
to CVE-2021-31920.

OpenShift Container Platform 4.9 Service Mesh

34

https://tools.ietf.org/html/rfc3986#section-6
https://en.wikipedia.org/wiki/URI_normalization
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-normalize-path
https://tools.ietf.org/html/rfc3986

MERGE_SLASHES Slashes are merged
after the BASE
normalization.

/a//b is normalized to
/a/b.

Update to this setting to
mitigate CVE-2021-
31920.

DECODE_AND_MER
GE_SLASHES

The strictest setting
when you allow all traffic
by default. This setting is
recommended, with the
caveat that you must
thoroughly test your
authorization policies
routes. Percent-
encoded slash and
backslash characters
(%2F, %2f, %5C and
%5c) are decoded to /
or \, before the
MERGE_SLASHES
normalization.

/a%2fb is normalized to
/a/b.

Update to this setting to
mitigate CVE-2021-
31920. This setting is
more secure, but also
has the potential to
break applications. Test
your applications before
deploying to production.

Option Description Example Notes

The normalization algorithms are conducted in the following order:

1. Percent-decode %2F, %2f, %5C and %5c.

2. The RFC 3986 and other normalization implemented by the normalize_path option in Envoy.

3. Merge slashes.

WARNING

While these normalization options represent recommendations from HTTP
standards and common industry practices, applications may interpret a URL in any
way it chooses to. When using denial policies, ensure that you understand how your
application behaves.

1.2.2.31.3. Path normalization configuration examples

Ensuring Envoy normalizes request paths to match your backend services' expectations is critical to the
security of your system. The following examples can be used as a reference for you to configure your
system. The normalized URL paths, or the original URL paths if NONE is selected, will be:

1. Used to check against the authorization policies.

2. Forwarded to the backend application.

Table 1.2. Configuration examples



CHAPTER 1. SERVICE MESH 2.X

35

https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-normalize-path

If your application…​ Choose…​

Relies on the proxy to do normalization BASE, MERGE_SLASHES or
DECODE_AND_MERGE_SLASHES

Normalizes request paths based on RFC 3986 and
does not merge slashes.

BASE

Normalizes request paths based on RFC 3986 and
merges slashes, but does not decode percent-
encoded slashes.

MERGE_SLASHES

Normalizes request paths based on RFC 3986,
decodes percent-encoded slashes, and merges
slashes.

DECODE_AND_MERGE_SLASHES

Processes request paths in a way that is
incompatible with RFC 3986.

NONE

1.2.2.31.4. Configuring your SMCP for path normalization

To configure path normalization for Red Hat OpenShift Service Mesh, specify the following in your
ServiceMeshControlPlane. Use the configuration examples to help determine the settings for your
system.

SMCP v2 pathNormalization

1.2.2.31.5. Configuring for case normalization

In some environments, it may be useful to have paths in authorization policies compared in a case
insensitive manner. For example, treating https://myurl/get and https://myurl/GeT as equivalent. In
those cases, you can use the EnvoyFilter shown below. This filter will change both the path used for
comparison and the path presented to the application. In this example, istio-system is the name of the
Service Mesh control plane project.

Save the EnvoyFilter to a file and run the following command:

spec:
 techPreview:
 global:
 pathNormalization: <option>

$ oc create -f <myEnvoyFilterFile>

apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:
 name: ingress-case-insensitive
 namespace: istio-system
spec:
 configPatches:

OpenShift Container Platform 4.9 Service Mesh

36

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986
https://myurl/get
https://myurl/GeT

1.2.2.32. New features Red Hat OpenShift Service Mesh 2.0.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

In addition, this release has the following new features:

Added an option to the must-gather data collection tool that gathers information from a
specified Service Mesh control plane namespace. For more information, see OSSM-351.

Improved performance for Service Mesh control planes with hundreds of namespaces

1.2.2.33. New features Red Hat OpenShift Service Mesh 2.0.2

This release of Red Hat OpenShift Service Mesh adds support for IBM Z and IBM Power Systems. It also
addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.2.34. New features Red Hat OpenShift Service Mesh 2.0.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.35. New features Red Hat OpenShift Service Mesh 2.0

This release of Red Hat OpenShift Service Mesh adds support for Istio 1.6.5, Jaeger 1.20.0, Kiali 1.24.2,
and the 3scale Istio Adapter 2.0 and OpenShift Container Platform 4.6.

In addition, this release has the following new features:

Simplifies installation, upgrades, and management of the Service Mesh control plane.

Reduces the Service Mesh control plane’s resource usage and startup time.

Improves performance by reducing inter-control plane communication over networking.

 - applyTo: HTTP_FILTER
 match:
 context: GATEWAY
 listener:
 filterChain:
 filter:
 name: "envoy.filters.network.http_connection_manager"
 subFilter:
 name: "envoy.filters.http.router"
 patch:
 operation: INSERT_BEFORE
 value:
 name: envoy.lua
 typed_config:
 "@type": "type.googleapis.com/envoy.extensions.filters.http.lua.v3.Lua"
 inlineCode: |
 function envoy_on_request(request_handle)
 local path = request_handle:headers():get(":path")
 request_handle:headers():replace(":path", string.lower(path))
 end

CHAPTER 1. SERVICE MESH 2.X

37

https://issues.redhat.com/browse/OSSM-351

Adds support for Envoy’s Secret Discovery Service (SDS). SDS is a more secure and
efficient mechanism for delivering secrets to Envoy side car proxies.

Removes the need to use Kubernetes Secrets, which have well known security risks.

Improves performance during certificate rotation, as proxies no longer require a restart to
recognize new certificates.

Adds support for Istio’s Telemetry v2 architecture, which is built using WebAssembly
extensions. This new architecture brings significant performance improvements.

Updates the ServiceMeshControlPlane resource to v2 with a streamlined configuration to
make it easier to manage the Service Mesh Control Plane.

Introduces WebAssembly extensions as a Technology Preview feature.

1.2.3. Technology Preview

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

IMPORTANT

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

1.2.4. Deprecated and removed features

Some features available in previous releases have been deprecated or removed.

Deprecated functionality is still included in OpenShift Container Platform and continues to be
supported; however, it will be removed in a future release of this product and is not recommended for
new deployments.

Removed functionality no longer exists in the product.

1.2.4.1. Deprecated and removed features Red Hat OpenShift Service Mesh 2.3

Support for the following cipher suites has been deprecated. In a future release, they will be removed
from the default list of ciphers used in TLS negotiations on both the client and server sides.

ECDHE-ECDSA-AES128-SHA

ECDHE-RSA-AES128-SHA

AES128-GCM-SHA256

AES128-SHA

ECDHE-ECDSA-AES256-SHA

OpenShift Container Platform 4.9 Service Mesh

38

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/support/offerings/techpreview/

ECDHE-RSA-AES256-SHA

AES256-GCM-SHA384

AES256-SHA

The ServiceMeshExtension API, which was deprecated in Red Hat OpenShift Service Mesh version 2.2,
was removed in Red Hat OpenShift Service Mesh version 2.3. If you are using the
ServiceMeshExtension API, you must migrate to the WasmPlugin API to continue using your
WebAssembly extensions.

1.2.4.2. Deprecated features Red Hat OpenShift Service Mesh 2.2

The ServiceMeshExtension API is deprecated as of release 2.2 and will be removed in a future release.
While ServiceMeshExtension API is still supported in release 2.2, customers should start moving to the
new WasmPlugin API.

1.2.4.3. Removed features Red Hat OpenShift Service Mesh 2.2

This release marks the end of support for Service Mesh control planes based on Service Mesh 1.1 for all
platforms.

1.2.4.4. Removed features Red Hat OpenShift Service Mesh 2.1

In Service Mesh 2.1, the Mixer component is removed. Bug fixes and support is provided through the end
of the Service Mesh 2.0 life cycle.

Upgrading from a Service Mesh 2.0.x release to 2.1 will not proceed if Mixer plugins are enabled. Mixer
plugins must be ported to WebAssembly Extensions.

1.2.4.5. Deprecated features Red Hat OpenShift Service Mesh 2.0

The Mixer component was deprecated in release 2.0 and will be removed in release 2.1. While using Mixer
for implementing extensions was still supported in release 2.0, extensions should have been migrated to
the new WebAssembly mechanism.

The following resource types are no longer supported in Red Hat OpenShift Service Mesh 2.0:

Policy (authentication.istio.io/v1alpha1) is no longer supported. Depending on the specific
configuration in your Policy resource, you may have to configure multiple resources to achieve
the same effect.

Use RequestAuthentication (security.istio.io/v1beta1)

Use PeerAuthentication (security.istio.io/v1beta1)

ServiceMeshPolicy (maistra.io/v1) is no longer supported.

Use RequestAuthentication or PeerAuthentication, as mentioned above, but place in the
Service Mesh control plane namespace.

RbacConfig (rbac.istio.io/v1alpha1) is no longer supported.

Replaced by AuthorizationPolicy (security.istio.io/v1beta1), which encompasses behavior of
RbacConfig, ServiceRole, and ServiceRoleBinding.

CHAPTER 1. SERVICE MESH 2.X

39

https://istio.io/latest/blog/2020/wasm-announce/

ServiceMeshRbacConfig (maistra.io/v1) is no longer supported.

Use AuthorizationPolicy as above, but place in Service Mesh control plane namespace.

ServiceRole (rbac.istio.io/v1alpha1) is no longer supported.

ServiceRoleBinding (rbac.istio.io/v1alpha1) is no longer supported.

In Kiali, the login and LDAP strategies are deprecated. A future version will introduce
authentication using OpenID providers.

1.2.5. Known issues

These limitations exist in Red Hat OpenShift Service Mesh:

Red Hat OpenShift Service Mesh does not yet support IPv6, as it is not yet fully supported by
the upstream Istio project. As a result, Red Hat OpenShift Service Mesh does not support dual-
stack clusters.

Graph layout - The layout for the Kiali graph can render differently, depending on your
application architecture and the data to display (number of graph nodes and their interactions).
Because it is difficult if not impossible to create a single layout that renders nicely for every
situation, Kiali offers a choice of several different layouts. To choose a different layout, you can
choose a different Layout Schema from the Graph Settings menu.

The first time you access related services such as distributed tracing platform and Grafana, from
the Kiali console, you must accept the certificate and re-authenticate using your OpenShift
Container Platform login credentials. This happens due to an issue with how the framework
displays embedded pages in the console.

The Bookinfo sample application cannot be installed on IBM Z and IBM Power.

WebAssembly extensions are not supported on IBM Z and IBM Power.

LuaJIT is not supported on IBM Power.

1.2.5.1. Service Mesh known issues

These are the known issues in Red Hat OpenShift Service Mesh:

OSSM-2221 Gateway injection does not work in control plane namespace. If you use the
Gateway injection feature to create a gateway in the same location as the control plane, the
injection fails and OpenShift generates this message:
Warning Failed 10s kubelet, ocp-wide-vh8fd-worker-vhqm9 Failed to pull image "auto":
rpc error: code = Unknown desc = reading manifest latest in docker.io/library/auto: errors

To create a gateway in the control plane namespace, use the gateways parameter in the SMCP
spec to configure ingress and egress gateways for the mesh.

OSSM-2042 Deployment of SMCP named default fails. If you are creating an SMCP object, and
set its version field to v2.3, the name of the object cannot be default. If the name is default,
then the control plane fails to deploy, and OpenShift generates a Warning event with the
following message:
Error processing component mesh-config: error: [mesh-
config/templates/telemetryv2_1.6.yaml: Internal error occurred: failed calling webhook
"rev.validation.istio.io": Post "https://istiod-default.istio-system.svc:443/validate?

OpenShift Container Platform 4.9 Service Mesh

40

https://issues.redhat.com/browse/MAISTRA-1314
https://issues.redhat.com/browse/OSSM-2221
https://issues.redhat.com/browse/OSSM-2042

timeout=10s": x509: certificate is valid for istiod.istio-system.svc, istiod-remote.istio-
system.svc, istio-pilot.istio-system.svc, not istiod-default.istio-system.svc, mesh-
config/templates/enable-mesh-permissive.yaml

OSSM-1655 Kiali dashboard shows error after enabling mTLS in SMCP.
After enabling the spec.security.controlPlane.mtls setting in the SMCP, the Kiali console
displays the following error message No subsets defined.

OSSM-1505 This issue only occurs when using the ServiceMeshExtension resource on
OpenShift Container Platform 4.11. When you use ServiceMeshExtension on OpenShift
Container Platform 4.11 the resource never becomes ready. If you inspect the issue using oc
describe ServiceMeshExtension you will see the following error: stderr: Error creating
mount namespace before pivot: function not implemented.
Workaround: ServiceMeshExtension was deprecated in Service Mesh 2.2. Migrate from
ServiceMeshExtension to the WasmPlugin resource. For more information, see Migrating
from ServiceMeshExtension to WasmPlugin resources.

OSSM-1396 If a gateway resource contains the spec.externalIPs setting, instead of being
recreated when the ServiceMeshControlPlane is updated, the gateway is removed and never
recreated.

OSSM-1168 When service mesh resources are created as a single YAML file, the Envoy proxy
sidecar is not reliably injected into pods. When the SMCP, SMMR, and Deployment resources
are created individually, the deployment works as expected.

OSSM-1115 The concurrency field of the spec.proxy API did not propagate to the istio-proxy.
The concurrency field works when set with ProxyConfig. The concurrency field specifies the
number of worker threads to run. If the field is set to 0, then the number of worker threads
available is equal to the number of CPU cores. If the field is not set, then the number of worker
threads available defaults to 2.
In the following example, the concurrency field is set to 0.

OSSM-1052 When configuring a Service ExternalIP for the ingressgateway in the Service Mesh
control plane, the service is not created. The schema for the SMCP is missing the parameter for
the service.
Workaround: Disable the gateway creation in the SMCP spec and manage the gateway
deployment entirely manually (including Service, Role and RoleBinding).

OSSM-882 This applies for Service Mesh 2.1 and earlier. Namespace is in the
accessible_namespace list but does not appear in Kiali UI. By default, Kiali will not show any
namespaces that start with "kube" because these namespaces are typically internal-use only
and not part of a mesh.
For example, if you create a namespace called 'akube-a' and add it to the Service Mesh member
roll, then the Kiali UI does not display the namespace. For defined exclusion patterns, the
software excludes namespaces that start with or contain the pattern.

Workaround: Change the Kiali Custom Resource setting so it prefixes the setting with a carat
(^). For example:

apiVersion: networking.istio.io/v1beta1
kind: ProxyConfig
metadata:
 name: mesh-wide-concurrency
 namespace: <istiod-namespace>
spec:
 concurrency: 0

CHAPTER 1. SERVICE MESH 2.X

41

https://issues.redhat.com/browse/OSSM-1655
https://issues.redhat.com/browse/OSSM-1505
https://issues.redhat.com/browse/OSSM-1396
https://issues.redhat.com/browse/OSSM-1168
https://issues.redhat.com/browse/OSSM-1115
https://issues.redhat.com/browse/OSSM-1052
https://issues.redhat.com/browse/OSSM-882

MAISTRA-2692 With Mixer removed, custom metrics that have been defined in Service Mesh
2.0.x cannot be used in 2.1. Custom metrics can be configured using EnvoyFilter. Red Hat is
unable to support EnvoyFilter configuration except where explicitly documented. This is due to
tight coupling with the underlying Envoy APIs, meaning that backward compatibility cannot be
maintained.

MAISTRA-2648 ServiceMeshExtensions are currently not compatible with meshes deployed
on IBM Z Systems.

MAISTRA-1959 Migration to 2.0 Prometheus scraping (spec.addons.prometheus.scrape set
to true) does not work when mTLS is enabled. Additionally, Kiali displays extraneous graph data
when mTLS is disabled.
This problem can be addressed by excluding port 15020 from proxy configuration, for example,

MAISTRA-1314 Red Hat OpenShift Service Mesh does not yet support IPv6.

MAISTRA-453 If you create a new project and deploy pods immediately, sidecar injection does
not occur. The operator fails to add the maistra.io/member-of before the pods are created,
therefore the pods must be deleted and recreated for sidecar injection to occur.

MAISTRA-158 Applying multiple gateways referencing the same hostname will cause all
gateways to stop functioning.

1.2.5.2. Kiali known issues

NOTE

New issues for Kiali should be created in the OpenShift Service Mesh project with the
Component set to Kiali.

These are the known issues in Kiali:

KIALI-2206 When you are accessing the Kiali console for the first time, and there is no cached
browser data for Kiali, the “View in Grafana” link on the Metrics tab of the Kiali Service Details
page redirects to the wrong location. The only way you would encounter this issue is if you are
accessing Kiali for the first time.

KIALI-507 Kiali does not support Internet Explorer 11. This is because the underlying frameworks

api:
 namespaces:
 exclude:
 - "^istio-operator"
 - "^kube-.*"
 - "^openshift.*"
 - "^ibm.*"
 - "^kiali-operator"

spec:
 proxy:
 networking:
 trafficControl:
 inbound:
 excludedPorts:
 - 15020

OpenShift Container Platform 4.9 Service Mesh

42

https://issues.redhat.com/browse/MAISTRA-2692
https://issues.redhat.com/browse/MAISTRA-2648
https://issues.jboss.org/browse/MAISTRA-1959
https://issues.redhat.com/browse/MAISTRA-1314
https://issues.jboss.org/browse/MAISTRA-453
https://issues.jboss.org/browse/MAISTRA-158
https://issues.redhat.com/projects/OSSM/
https://issues.jboss.org/browse/KIALI-2206

KIALI-507 Kiali does not support Internet Explorer 11. This is because the underlying frameworks
do not support Internet Explorer. To access the Kiali console, use one of the two most recent
versions of the Chrome, Edge, Firefox or Safari browser.

1.2.5.3. Red Hat OpenShift distributed tracing known issues

These limitations exist in Red Hat OpenShift distributed tracing:

Apache Spark is not supported.

The streaming deployment via AMQ/Kafka is unsupported on IBM Z and IBM Power Systems.

These are the known issues for Red Hat OpenShift distributed tracing:

OBSDA-220 In some cases, if you try to pull an image using distributed tracing data collection,
the image pull fails and a Failed to pull image error message appears. There is no workaround
for this issue.

TRACING-2057 The Kafka API has been updated to v1beta2 to support the Strimzi Kafka
Operator 0.23.0. However, this API version is not supported by AMQ Streams 1.6.3. If you have
the following environment, your Jaeger services will not be upgraded, and you cannot create
new Jaeger services or modify existing Jaeger services:

Jaeger Operator channel: 1.17.x stable or 1.20.x stable

AMQ Streams Operator channel: amq-streams-1.6.x
To resolve this issue, switch the subscription channel for your AMQ Streams Operator to
either amq-streams-1.7.x or stable.

1.2.6. Fixed issues

The following issues been resolved in the current release:

1.2.6.1. Service Mesh fixed issues

OSSM-3025 Istiod sometimes fails to become ready. Sometimes, when a mesh contained many
member namespaces, the Istiod pod did not become ready due to a deadlock within Istiod. The
deadlock is now resolved and the pod now starts as expected.

OSSM-2493 Default nodeSelector and tolerations in SMCP not passed to Kiali. The
nodeSelector and tolerations you add to SMCP.spec.runtime.defaults are now passed to the
Kiali resource.

OSSM-2492 Default tolerations in SMCP not passed to Jaeger. The nodeSelector and
tolerations you add to SMCP.spec.runtime.defaults are now passed to the Jaeger resource.

OSSM-2374 If you deleted one of the ServiceMeshMember resources, then the Service Mesh
operator deleted the ServiceMeshMemberRoll. While this is expected behavior when you
delete the last ServiceMeshMember, the operator should not delete the
ServiceMeshMemberRoll if it contains any members in addition to the one that was deleted.
This issue is now fixed and the operator only deletes the ServiceMeshMemberRoll when the last
ServiceMeshMember resource is deleted.

OSSM-2373 Error trying to get OAuth metadata when logging in. To fetch the cluster version,
the system:anonymous account is used. With the cluster’s default bundled ClusterRoles and
ClusterRoleBinding, the anonymous account can fetch the version correctly. If the

CHAPTER 1. SERVICE MESH 2.X

43

https://github.com/kiali/kiali/issues/507
https://issues.redhat.com/browse/OBSDA-220
https://issues.redhat.com/browse/TRACING-2057
https://issues.redhat.com/browse/OSSM-3025
https://issues.redhat.com/browse/OSSM-2493
https://issues.redhat.com/browse/OSSM-2492
https://issues.redhat.com/browse/OSSM-2374
https://issues.redhat.com/browse/OSSM-2373

system:anonymous account loses its privileges to fetch the cluster version, OpenShift
authentication becomes unusable.
This is fixed by using the Kiali SA to fetch the cluster version. This also allows for improved
security on the cluster.

OSSM-2371 Despite Kiali being configured as "view-only," a user can change the proxy logging
level via the Workload details' Logs tab’s kebab menu. This issue has been fixed so the options
under "Set Proxy Log Level" are disabled when Kiali is configured as "view-only."

OSSM-2344 Restarting Istiod causes Kiali to flood CRI-O with port-forward requests. This issue
occurred when Kiali could not connect to Istiod and Kiali simultaneously issued a large number of
requests to istiod. Kiali now limits the number of requests it sends to istiod.

OSSM-2335 Dragging the mouse pointer over the Traces scatterchart plot sometimes caused
the Kiali console to stop responding due to concurrent backend requests.

OSSM-2053 Using Red Hat OpenShift Service Mesh Operator 2.2 or 2.3, during SMCP
reconciliation, the SMMR controller removed the member namespaces from
SMMR.status.configuredMembers. This caused the services in the member namespaces to
become unavailable for a few moments.
Using Red Hat OpenShift Service Mesh Operator 2.2 or 2.3, the SMMR controller no longer
removes the namespaces from SMMR.status.configuredMembers. Instead, the controller adds
the namespaces to SMMR.status.pendingMembers to indicate that they are not up-to-date.
During reconciliation, as each namespace synchronizes with the SMCP, the namespace is
automatically removed from SMMR.status.pendingMembers.

OSSM-1962 Use EndpointSlices in federation controller. The federation controller now uses
EndpointSlices, which improves scalability and performance in large deployments. The
PILOT_USE_ENDPOINT_SLICE flag is enabled by default. Disabling the flag prevents use of
federation deployments.

OSSM-1668 A new field spec.security.jwksResolverCA was added to the Version 2.1 SMCP
but was missing in the 2.2.0 and 2.2.1 releases. When upgrading from an Operator version where
this field was present to an Operator version that was missing this field, the
.spec.security.jwksResolverCA field was not available in the SMCP.

OSSM-1325 istiod pod crashes and displays the following error message: fatal error:
concurrent map iteration and map write.

OSSM-1211 Configuring Federated service meshes for failover does not work as expected.
The Istiod pilot log displays the following error: envoy connection [C289] TLS error:
337047686:SSL routines:tls_process_server_certificate:certificate verify failed

OSSM-1099 The Kiali console displayed the message Sorry, there was a problem. Try a
refresh or navigate to a different page.

OSSM-1074 Pod annotations defined in SMCP are not injected in the pods.

OSSM-999 Kiali retention did not work as expected. Calendar times were greyed out in the
dashboard graph.

OSSM-797 Kiali Operator pod generates CreateContainerConfigError while installing or
updating the operator.

OSSM-722 Namespace starting with kube is hidden from Kiali.

OSSM-569 There is no CPU memory limit for the Prometheus istio-proxy container. The

OpenShift Container Platform 4.9 Service Mesh

44

https://issues.redhat.com/browse/OSSM-2371
https://issues.redhat.com/browse/OSSM-2344
https://issues.redhat.com/browse/OSSM-2335
https://issues.redhat.com/browse/OSSM-2053
https://issues.redhat.com/browse/OSSM-1962
https://issues.redhat.com/browse/OSSM-1668
https://issues.redhat.com/browse/OSSM-1325
https://issues.redhat.com/browse/OSSM-1211
https://issues.redhat.com/browse/OSSM-1099
https://issues.redhat.com/browse/OSSM-1074
https://issues.redhat.com/browse/OSSM-999
https://issues.redhat.com/browse/OSSM-797
https://issues.redhat.com/browse/OSSM-722

OSSM-569 There is no CPU memory limit for the Prometheus istio-proxy container. The
Prometheus istio-proxy sidecar now uses the resource limits defined in
spec.proxy.runtime.container.

OSSM-535 Support validationMessages in SMCP. The ValidationMessages field in the Service
Mesh Control Plane can now be set to True. This writes a log for the status of the resources,
which can be helpful when troubleshooting problems.

OSSM-449 VirtualService and Service causes an error "Only unique values for domains are
permitted. Duplicate entry of domain."

OSSM-419 Namespaces with similar names will all show in Kiali namespace list, even though
namespaces may not be defined in Service Mesh Member Role.

OSSM-296 When adding health configuration to the Kiali custom resource (CR) is it not being
replicated to the Kiali configmap.

OSSM-291 In the Kiali console, on the Applications, Services, and Workloads pages, the "Remove
Label from Filters" function is not working.

OSSM-289 In the Kiali console, on the Service Details pages for the 'istio-ingressgateway' and
'jaeger-query' services there are no Traces being displayed. The traces exist in Jaeger.

OSSM-287 In the Kiali console there are no traces being displayed on the Graph Service.

OSSM-285 When trying to access the Kiali console, receive the following error message "Error
trying to get OAuth Metadata".
Workaround: Restart the Kiali pod.

MAISTRA-2735 The resources that the Service Mesh Operator deletes when reconciling the
SMCP changed in Red Hat OpenShift Service Mesh version 2.1. Previously, the Operator deleted
a resource with the following labels:

maistra.io/owner

app.kubernetes.io/version

Now, the Operator ignores resources that does not also include the
app.kubernetes.io/managed-by=maistra-istio-operator label. If you create your own
resources, you should not add the app.kubernetes.io/managed-by=maistra-istio-operator
label to them.

MAISTRA-2687 Red Hat OpenShift Service Mesh 2.1 federation gateway does not send the full
certificate chain when using external certificates. The Service Mesh federation egress gateway
only sends the client certificate. Because the federation ingress gateway only knows about the
root certificate, it cannot verify the client certificate unless you add the root certificate to the
federation import ConfigMap.

MAISTRA-2635 Replace deprecated Kubernetes API. To remain compatible with OpenShift
Container Platform 4.8, the apiextensions.k8s.io/v1beta1 API was deprecated as of Red Hat
OpenShift Service Mesh 2.0.8.

MAISTRA-2631 The WASM feature is not working because podman is failing due to nsenter
binary not being present. Red Hat OpenShift Service Mesh generates the following error
message: Error: error configuring CNI network plugin exec: "nsenter": executable file not
found in $PATH. The container image now contains nsenter and WASM works as expected.

MAISTRA-2534 When istiod attempted to fetch the JWKS for an issuer specified in a JWT rule,

CHAPTER 1. SERVICE MESH 2.X

45

https://issues.redhat.com/browse/OSSM-569
https://issues.redhat.com/browse/OSSM-535
https://issues.redhat.com/browse/OSSM-449
https://issues.redhat.com/browse/OSSM-419
https://issues.redhat.com/browse/OSSM-296
https://issues.redhat.com/browse/OSSM-291
https://issues.redhat.com/browse/OSSM-289
https://issues.redhat.com/browse/OSSM-287
https://issues.redhat.com/browse/OSSM-285
https://issues.redhat.com/browse/MAISTRA-2735
https://issues.jboss.org/browse/MAISTRA-2687
https://issues.redhat.com/browse/MAISTRA-2635
https://issues.redhat.com/browse/MAISTRA-2631
https://issues.redhat.com/browse/MAISTRA-2534

the issuer service responded with a 502. This prevented the proxy container from becoming
ready and caused deployments to hang. The fix for the community bug has been included in the
Service Mesh 2.0.7 release.

MAISTRA-2411 When the Operator creates a new ingress gateway using
spec.gateways.additionaIngress in the ServiceMeshControlPlane, Operator is not creating a
NetworkPolicy for the additional ingress gateway like it does for the default istio-
ingressgateway. This is causing a 503 response from the route of the new gateway.
Workaround: Manually create the NetworkPolicy in the <istio-system> namespace.

MAISTRA-2401 CVE-2021-3586 servicemesh-operator: NetworkPolicy resources incorrectly
specified ports for ingress resources. The NetworkPolicy resources installed for Red Hat
OpenShift Service Mesh did not properly specify which ports could be accessed. This allowed
access to all ports on these resources from any pod. Network policies applied to the following
resources are affected:

Galley

Grafana

Istiod

Jaeger

Kiali

Prometheus

Sidecar injector

MAISTRA-2378 When the cluster is configured to use OpenShift SDN with ovs-multitenant
and the mesh contains a large number of namespaces (200+), the OpenShift Container
Platform networking plugin is unable to configure the namespaces quickly. Service Mesh times
out causing namespaces to be continuously dropped from the service mesh and then
reenlisted.

MAISTRA-2370 Handle tombstones in listerInformer. The updated cache codebase was not
handling tombstones when translating the events from the namespace caches to the
aggregated cache, leading to a panic in the go routine.

MAISTRA-2117 Add optional ConfigMap mount to operator. The CSV now contains an optional
ConfigMap volume mount, which mounts the smcp-templates ConfigMap if it exists. If the
smcp-templates ConfigMap does not exist, the mounted directory is empty. When you create
the ConfigMap, the directory is populated with the entries from the ConfigMap and can be
referenced in SMCP.spec.profiles. No restart of the Service Mesh operator is required.
Customers using the 2.0 operator with a modified CSV to mount the smcp-templates
ConfigMap can upgrade to Red Hat OpenShift Service Mesh 2.1. After upgrading, you can
continue using an existing ConfigMap, and the profiles it contains, without editing the CSV.
Customers that previously used ConfigMap with a different name will either have to rename the
ConfigMap or update the CSV after upgrading.

MAISTRA-2010 AuthorizationPolicy does not support request.regex.headers field. The
validatingwebhook rejects any AuthorizationPolicy with the field, and even if you disable that,
Pilot tries to validate it using the same code, and it does not work.

MAISTRA-1979 Migration to 2.0 The conversion webhook drops the following important fields
when converting SMCP.status from v2 to v1:

OpenShift Container Platform 4.9 Service Mesh

46

https://github.com/istio/istio/issues/24629
https://issues.jboss.org/browse/MAISTRA-2411
https://issues.redhat.com/browse/MAISTRA-2401
https://issues.redhat.com/browse/MAISTRA-2378
https://issues.redhat.com/browse/MAISTRA-2370
https://issues.redhat.com/browse/MAISTRA-2117
https://issues.redhat.com/browse/MAISTRA-2010
https://issues.jboss.org/browse/MAISTRA-1979

conditions

components

observedGeneration

annotations
Upgrading the operator to 2.0 might break client tools that read the SMCP status using the
maistra.io/v1 version of the resource.

This also causes the READY and STATUS columns to be empty when you run oc get
servicemeshcontrolplanes.v1.maistra.io.

MAISTRA-1947 Technology Preview Updates to ServiceMeshExtensions are not applied.
Workaround: Remove and recreate the ServiceMeshExtensions.

MAISTRA-1983 Migration to 2.0 Upgrading to 2.0.0 with an existing invalid
ServiceMeshControlPlane cannot easily be repaired. The invalid items in the
ServiceMeshControlPlane resource caused an unrecoverable error. The fix makes the errors
recoverable. You can delete the invalid resource and replace it with a new one or edit the
resource to fix the errors. For more information about editing your resource, see [Configuring
the Red Hat OpenShift Service Mesh installation].

MAISTRA-1502 As a result of CVEs fixes in version 1.0.10, the Istio dashboards are not available
from the Home Dashboard menu in Grafana. To access the Istio dashboards, click the
Dashboard menu in the navigation panel and select the Manage tab.

MAISTRA-1399 Red Hat OpenShift Service Mesh no longer prevents you from installing
unsupported CNI protocols. The supported network configurations has not changed.

MAISTRA-1089 Migration to 2.0 Gateways created in a non-control plane namespace are
automatically deleted. After removing the gateway definition from the SMCP spec, you need to
manually delete these resources.

MAISTRA-858 The following Envoy log messages describing deprecated options and
configurations associated with Istio 1.1.x are expected:

[2019-06-03 07:03:28.943][19][warning][misc]
[external/envoy/source/common/protobuf/utility.cc:129] Using deprecated option
'envoy.api.v2.listener.Filter.config'. This configuration will be removed from Envoy soon.

[2019-08-12 22:12:59.001][13][warning][misc]
[external/envoy/source/common/protobuf/utility.cc:174] Using deprecated option
'envoy.api.v2.Listener.use_original_dst' from file lds.proto. This configuration will be
removed from Envoy soon.

MAISTRA-806 Evicted Istio Operator Pod causes mesh and CNI not to deploy.
Workaround: If the istio-operator pod is evicted while deploying the control pane, delete the
evicted istio-operator pod.

MAISTRA-681 When the Service Mesh control plane has many namespaces, it can lead to
performance issues.

MAISTRA-193 Unexpected console info messages are visible when health checking is enabled
for citadel.

Bugzilla 1821432 The toggle controls in OpenShift Container Platform Custom Resource details

CHAPTER 1. SERVICE MESH 2.X

47

https://issues.jboss.org/browse/MAISTRA-1947
https://issues.redhat.com/browse/MAISTRA-1983
https://issues.redhat.com/browse/MAISTRA-1502
https://issues.redhat.com/browse/MAISTRA-1399
https://issues.jboss.org/browse/MAISTRA-1089
https://issues.jboss.org/browse/MAISTRA-858
https://www.envoyproxy.io/docs/envoy/latest/intro/deprecated
https://issues.jboss.org/browse/MAISTRA-806
https://issues.jboss.org/browse/MAISTRA-681
https://issues.jboss.org/browse/MAISTRA-193
https://bugzilla.redhat.com/show_bug.cgi?id=1821432

page does not update the CR correctly. UI Toggle controls in the Service Mesh Control Plane
(SMCP) Overview page in the OpenShift Container Platform web console sometimes updates
the wrong field in the resource. To update a SMCP, edit the YAML content directly or update
the resource from the command line instead of clicking the toggle controls.

1.2.6.2. Red Hat OpenShift distributed tracing fixed issues

OSSM-1910 Because of an issue introduced in version 2.6, TLS connections could not be
established with OpenShift Container Platform Service Mesh. This update resolves the issue by
changing the service port names to match conventions used by OpenShift Container Platform
Service Mesh and Istio.

OBSDA-208 Before this update, the default 200m CPU and 256Mi memory resource limits
could cause distributed tracing data collection to restart continuously on large clusters. This
update resolves the issue by removing these resource limits.

OBSDA-222 Before this update, spans could be dropped in the OpenShift Container Platform
distributed tracing platform. To help prevent this issue from occurring, this release updates
version dependencies.

TRACING-2337 Jaeger is logging a repetitive warning message in the Jaeger logs similar to the
following:

This issue was resolved by exposing only the HTTP(S) port of the query service, and not the
gRPC port.

TRACING-2009 The Jaeger Operator has been updated to include support for the Strimzi
Kafka Operator 0.23.0.

TRACING-1907 The Jaeger agent sidecar injection was failing due to missing config maps in the
application namespace. The config maps were getting automatically deleted due to an incorrect
OwnerReference field setting and as a result, the application pods were not moving past the
"ContainerCreating" stage. The incorrect settings have been removed.

TRACING-1725 Follow-up to TRACING-1631. Additional fix to ensure that Elasticsearch
certificates are properly reconciled when there are multiple Jaeger production instances, using
same name but within different namespaces. See also BZ-1918920.

TRACING-1631 Multiple Jaeger production instances, using same name but within different
namespaces, causing Elasticsearch certificate issue. When multiple service meshes were
installed, all of the Jaeger Elasticsearch instances had the same Elasticsearch secret instead of
individual secrets, which prevented the OpenShift Elasticsearch Operator from communicating
with all of the Elasticsearch clusters.

TRACING-1300 Failed connection between Agent and Collector when using Istio sidecar. An
update of the Jaeger Operator enabled TLS communication by default between a Jaeger
sidecar agent and the Jaeger Collector.

TRACING-1208 Authentication "500 Internal Error" when accessing Jaeger UI. When trying to

{"level":"warn","ts":1642438880.918793,"caller":"channelz/logging.go:62","msg":"[core]grpc:
Server.Serve failed to create ServerTransport: connection error: desc = \"transport:
http2Server.HandleStreams received bogus greeting from client:
\\\"\\\\x16\\\\x03\\\\x01\\\\x02\\\\x00\\\\x01\\\\x00\\\\x01\\\\xfc\\\\x03\\\\x03vw\\\\x1a\\\\xc9T\\\\xe7\\\\x
daCj\\\\xb7\\\\x8dK\\\\xa6\\\"\"","system":"grpc","grpc_log":true}

OpenShift Container Platform 4.9 Service Mesh

48

https://issues.redhat.com/browse/OSSM-1910
https://issues.redhat.com/browse/OBSDA-208
https://issues.redhat.com/browse/OBSDA-222
https://issues.redhat.com/browse/TRACING-2337
https://issues.redhat.com/browse/TRACING-2009
https://issues.redhat.com/browse/TRACING-1907
https://issues.redhat.com/browse/TRACING-1725
https://bugzilla.redhat.com/show_bug.cgi?id=1918920
https://issues.jboss.org/browse/TRACING-1631
https://issues.redhat.com/browse/TRACING-1300

TRACING-1208 Authentication "500 Internal Error" when accessing Jaeger UI. When trying to
authenticate to the UI using OAuth, I get a 500 error because oauth-proxy sidecar doesn’t trust
the custom CA bundle defined at installation time with the additionalTrustBundle.

TRACING-1166 It is not currently possible to use the Jaeger streaming strategy within a
disconnected environment. When a Kafka cluster is being provisioned, it results in a error: Failed
to pull image registry.redhat.io/amq7/amq-streams-kafka-24-
rhel7@sha256:f9ceca004f1b7dccb3b82d9a8027961f9fe4104e0ed69752c0bdd8078b4a1076.

TRACING-809 Jaeger Ingester is incompatible with Kafka 2.3. When there are two or more
instances of the Jaeger Ingester and enough traffic it will continuously generate rebalancing
messages in the logs. This is due to a regression in Kafka 2.3 that was fixed in Kafka 2.3.1. For
more information, see Jaegertracing-1819.

BZ-1918920/LOG-1619 The Elasticsearch pods does not get restarted automatically after an
update.
Workaround: Restart the pods manually.

1.3. UNDERSTANDING SERVICE MESH

Red Hat OpenShift Service Mesh provides a platform for behavioral insight and operational control over
your networked microservices in a service mesh. With Red Hat OpenShift Service Mesh, you can
connect, secure, and monitor microservices in your OpenShift Container Platform environment.

1.3.1. Understanding service mesh

A service mesh is the network of microservices that make up applications in a distributed microservice
architecture and the interactions between those microservices. When a Service Mesh grows in size and
complexity, it can become harder to understand and manage.

Based on the open source Istio project, Red Hat OpenShift Service Mesh adds a transparent layer on
existing distributed applications without requiring any changes to the service code. You add Red Hat
OpenShift Service Mesh support to services by deploying a special sidecar proxy to relevant services in
the mesh that intercepts all network communication between microservices. You configure and manage
the Service Mesh using the Service Mesh control plane features.

Red Hat OpenShift Service Mesh gives you an easy way to create a network of deployed services that
provide:

Discovery

Load balancing

Service-to-service authentication

Failure recovery

Metrics

Monitoring

Red Hat OpenShift Service Mesh also provides more complex operational functions including:

A/B testing

Canary releases

CHAPTER 1. SERVICE MESH 2.X

49

https://issues.redhat.com/browse/TRACING-1208
https://issues.redhat.com/browse/TRACING-1166
https://issues.redhat.com/browse/TRACING-809
https://github.com/jaegertracing/jaeger/issues/1819
https://bugzilla.redhat.com/show_bug.cgi?id=1918920
https://issues.redhat.com/browse/LOG-1619
https://istio.io/

Access control

End-to-end authentication

1.3.2. Service Mesh architecture

Service mesh technology operates at the network communication level. That is, service mesh
components capture or intercept traffic to and from microservices, either modifying requests,
redirecting them, or creating new requests to other services.

At a high level, Red Hat OpenShift Service Mesh consists of a data plane and a control plane

The data plane is a set of intelligent proxies, running alongside application containers in a pod, that
intercept and control all inbound and outbound network communication between microservices in the
service mesh. The data plane is implemented in such a way that it intercepts all inbound (ingress) and
outbound (egress) network traffic. The Istio data plane is composed of Envoy containers running along
side application containers in a pod. The Envoy container acts as a proxy, controlling all network
communication into and out of the pod.

Envoy proxies are the only Istio components that interact with data plane traffic. All incoming
(ingress) and outgoing (egress) network traffic between services flows through the proxies.
The Envoy proxy also collects all metrics related to services traffic within the mesh. Envoy
proxies are deployed as sidecars, running in the same pod as services. Envoy proxies are also
used to implement mesh gateways.

Sidecar proxies manage inbound and outbound communication for their workload instance.

Gateways are proxies operating as load balancers receiving incoming or outgoing
HTTP/TCP connections. Gateway configurations are applied to standalone Envoy proxies
that are running at the edge of the mesh, rather than sidecar Envoy proxies running
alongside your service workloads. You use a Gateway to manage inbound and outbound
traffic for your mesh, letting you specify which traffic you want to enter or leave the mesh.

Ingress-gateway - Also known as an ingress controller, the Ingress Gateway is a
dedicated Envoy proxy that receives and controls traffic entering the service mesh. An
Ingress Gateway allows features such as monitoring and route rules to be applied to
traffic entering the cluster.

OpenShift Container Platform 4.9 Service Mesh

50

Egress-gateway - Also known as an egress controller, the Egress Gateway is a
dedicated Envoy proxy that manages traffic leaving the service mesh. An Egress
Gateway allows features such as monitoring and route rules to be applied to traffic
exiting the mesh.

The control plane manages and configures the proxies that make up the data plane. It is the
authoritative source for configuration, manages access control and usage policies, and collects metrics
from the proxies in the service mesh.

The Istio control plane is composed of Istiod which consolidates several previous control plane
components (Citadel, Galley, Pilot) into a single binary. Istiod provides service discovery,
configuration, and certificate management. It converts high-level routing rules to Envoy
configurations and propagates them to the sidecars at runtime.

Istiod can act as a Certificate Authority (CA), generating certificates supporting secure
mTLS communication in the data plane. You can also use an external CA for this purpose.

Istiod is responsible for injecting sidecar proxy containers into workloads deployed to an
OpenShift cluster.

Red Hat OpenShift Service Mesh uses the istio-operator to manage the installation of the control
plane. An Operator is a piece of software that enables you to implement and automate common
activities in your OpenShift cluster. It acts as a controller, allowing you to set or change the desired state
of objects in your cluster, in this case, a Red Hat OpenShift Service Mesh installation.

Red Hat OpenShift Service Mesh also bundles the following Istio add-ons as part of the product:

Kiali - Kiali is the management console for Red Hat OpenShift Service Mesh. It provides
dashboards, observability, and robust configuration and validation capabilities. It shows the
structure of your service mesh by inferring traffic topology and displays the health of your mesh.
Kiali provides detailed metrics, powerful validation, access to Grafana, and strong integration
with the distributed tracing platform.

Prometheus - Red Hat OpenShift Service Mesh uses Prometheus to store telemetry
information from services. Kiali depends on Prometheus to obtain metrics, health status, and
mesh topology.

Jaeger - Red Hat OpenShift Service Mesh supports the distributed tracing platform. Jaeger is
an open source traceability server that centralizes and displays traces associated with a single
request between multiple services. Using the distributed tracing platform you can monitor and
troubleshoot your microservices-based distributed systems.

Elasticsearch - Elasticsearch is an open source, distributed, JSON-based search and analytics
engine. The distributed tracing platform uses Elasticsearch for persistent storage.

Grafana - Grafana provides mesh administrators with advanced query and metrics analysis and
dashboards for Istio data. Optionally, Grafana can be used to analyze service mesh metrics.

The following Istio integrations are supported with Red Hat OpenShift Service Mesh:

3scale - Istio provides an optional integration with Red Hat 3scale API Management solutions.
For versions prior to 2.1, this integration was achieved via the 3scale Istio adapter. For version 2.1
and later, the 3scale integration is achieved via a WebAssembly module.

For information about how to install the 3scale adapter, refer to the 3scale Istio adapter documentation

1.3.3. Understanding Kiali

CHAPTER 1. SERVICE MESH 2.X

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#threescale-adapter

Kiali provides visibility into your service mesh by showing you the microservices in your service mesh, and
how they are connected.

1.3.3.1. Kiali overview

Kiali provides observability into the Service Mesh running on OpenShift Container Platform. Kiali helps
you define, validate, and observe your Istio service mesh. It helps you to understand the structure of your
service mesh by inferring the topology, and also provides information about the health of your service
mesh.

Kiali provides an interactive graph view of your namespace in real time that provides visibility into
features like circuit breakers, request rates, latency, and even graphs of traffic flows. Kiali offers insights
about components at different levels, from Applications to Services and Workloads, and can display the
interactions with contextual information and charts on the selected graph node or edge. Kiali also
provides the ability to validate your Istio configurations, such as gateways, destination rules, virtual
services, mesh policies, and more. Kiali provides detailed metrics, and a basic Grafana integration is
available for advanced queries. Distributed tracing is provided by integrating Jaeger into the Kiali
console.

Kiali is installed by default as part of the Red Hat OpenShift Service Mesh.

1.3.3.2. Kiali architecture

Kiali is based on the open source Kiali project. Kiali is composed of two components: the Kiali application
and the Kiali console.

Kiali application (back end) – This component runs in the container application platform and
communicates with the service mesh components, retrieves and processes data, and exposes
this data to the console. The Kiali application does not need storage. When deploying the
application to a cluster, configurations are set in ConfigMaps and secrets.

Kiali console (front end) – The Kiali console is a web application. The Kiali application serves the
Kiali console, which then queries the back end for data to present it to the user.

In addition, Kiali depends on external services and components provided by the container application
platform and Istio.

Red Hat Service Mesh (Istio) - Istio is a Kiali requirement. Istio is the component that provides
and controls the service mesh. Although Kiali and Istio can be installed separately, Kiali depends
on Istio and will not work if it is not present. Kiali needs to retrieve Istio data and configurations,
which are exposed through Prometheus and the cluster API.

Prometheus - A dedicated Prometheus instance is included as part of the Red Hat OpenShift
Service Mesh installation. When Istio telemetry is enabled, metrics data are stored in
Prometheus. Kiali uses this Prometheus data to determine the mesh topology, display metrics,
calculate health, show possible problems, and so on. Kiali communicates directly with
Prometheus and assumes the data schema used by Istio Telemetry. Prometheus is an Istio
dependency and a hard dependency for Kiali, and many of Kiali’s features will not work without
Prometheus.

Cluster API - Kiali uses the API of the OpenShift Container Platform (cluster API) to fetch and
resolve service mesh configurations. Kiali queries the cluster API to retrieve, for example,
definitions for namespaces, services, deployments, pods, and other entities. Kiali also makes
queries to resolve relationships between the different cluster entities. The cluster API is also
queried to retrieve Istio configurations like virtual services, destination rules, route rules,
gateways, quotas, and so on.

OpenShift Container Platform 4.9 Service Mesh

52

https://kiali.io/

Jaeger - Jaeger is optional, but is installed by default as part of the Red Hat OpenShift Service
Mesh installation. When you install the distributed tracing platform as part of the default Red
Hat OpenShift Service Mesh installation, the Kiali console includes a tab to display distributed
tracing data. Note that tracing data will not be available if you disable Istio’s distributed tracing
feature. Also note that user must have access to the namespace where the Service Mesh
control plane is installed to view tracing data.

Grafana - Grafana is optional, but is installed by default as part of the Red Hat OpenShift
Service Mesh installation. When available, the metrics pages of Kiali display links to direct the
user to the same metric in Grafana. Note that user must have access to the namespace where
the Service Mesh control plane is installed to view links to the Grafana dashboard and view
Grafana data.

1.3.3.3. Kiali features

The Kiali console is integrated with Red Hat Service Mesh and provides the following capabilities:

Health – Quickly identify issues with applications, services, or workloads.

Topology – Visualize how your applications, services, or workloads communicate via the Kiali
graph.

Metrics – Predefined metrics dashboards let you chart service mesh and application
performance for Go, Node.js. Quarkus, Spring Boot, Thorntail and Vert.x. You can also create
your own custom dashboards.

Tracing – Integration with Jaeger lets you follow the path of a request through various
microservices that make up an application.

Validations – Perform advanced validations on the most common Istio objects (Destination
Rules, Service Entries, Virtual Services, and so on).

Configuration – Optional ability to create, update and delete Istio routing configuration using
wizards or directly in the YAML editor in the Kiali Console.

1.3.4. Understanding distributed tracing

Every time a user takes an action in an application, a request is executed by the architecture that may
require dozens of different services to participate to produce a response. The path of this request is a
distributed transaction. The distributed tracing platform lets you perform distributed tracing, which
follows the path of a request through various microservices that make up an application.

Distributed tracing is a technique that is used to tie the information about different units of work
together—usually executed in different processes or hosts—to understand a whole chain of events in a
distributed transaction. Distributed tracing lets developers visualize call flows in large service oriented
architectures. It can be invaluable in understanding serialization, parallelism, and sources of latency.

The distributed tracing platform records the execution of individual requests across the whole stack of
microservices, and presents them as traces. A trace is a data/execution path through the system. An
end-to-end trace comprises one or more spans.

A span represents a logical unit of work that has an operation name, the start time of the operation, and
the duration. Spans may be nested and ordered to model causal relationships.

1.3.4.1. Distributed tracing overview

As a service owner, you can use distributed tracing to instrument your services to gather insights into

CHAPTER 1. SERVICE MESH 2.X

53

As a service owner, you can use distributed tracing to instrument your services to gather insights into
your service architecture. You can use distributed tracing for monitoring, network profiling, and
troubleshooting the interaction between components in modern, cloud-native, microservices-based
applications.

With distributed tracing you can perform the following functions:

Monitor distributed transactions

Optimize performance and latency

Perform root cause analysis

Red Hat OpenShift distributed tracing consists of two main components:

Red Hat OpenShift distributed tracing platform - This component is based on the open
source Jaeger project.

Red Hat OpenShift distributed tracing data collection - This component is based on the open
source OpenTelemetry project.

Both of these components are based on the vendor-neutral OpenTracing APIs and instrumentation.

1.3.4.2. Red Hat OpenShift distributed tracing architecture

Red Hat OpenShift distributed tracing is made up of several components that work together to collect,
store, and display tracing data.

Red Hat OpenShift distributed tracing platform - This component is based on the open
source Jaeger project.

Client (Jaeger client, Tracer, Reporter, instrumented application, client libraries)- The
distributed tracing platform clients are language-specific implementations of the
OpenTracing API. They can be used to instrument applications for distributed tracing either
manually or with a variety of existing open source frameworks, such as Camel (Fuse), Spring
Boot (RHOAR), MicroProfile (RHOAR/Thorntail), Wildfly (EAP), and many more, that are
already integrated with OpenTracing.

Agent (Jaeger agent, Server Queue, Processor Workers) - The distributed tracing platform
agent is a network daemon that listens for spans sent over User Datagram Protocol (UDP),
which it batches and sends to the Collector. The agent is meant to be placed on the same
host as the instrumented application. This is typically accomplished by having a sidecar in
container environments such as Kubernetes.

Jaeger Collector (Collector, Queue, Workers) - Similar to the Jaeger agent, the Jaeger
Collector receives spans and places them in an internal queue for processing. This allows the
Jaeger Collector to return immediately to the client/agent instead of waiting for the span
to make its way to the storage.

Storage (Data Store) - Collectors require a persistent storage backend. Red Hat OpenShift
distributed tracing platform has a pluggable mechanism for span storage. Note that for this
release, the only supported storage is Elasticsearch.

Query (Query Service) - Query is a service that retrieves traces from storage.

Ingester (Ingester Service) - Red Hat OpenShift distributed tracing can use Apache Kafka

OpenShift Container Platform 4.9 Service Mesh

54

https://www.jaegertracing.io/
https://opentelemetry.io/
https://opentracing.io/
https://www.jaegertracing.io/

Ingester (Ingester Service) - Red Hat OpenShift distributed tracing can use Apache Kafka
as a buffer between the Collector and the actual Elasticsearch backing storage. Ingester is a
service that reads data from Kafka and writes to the Elasticsearch storage backend.

Jaeger Console – With the Red Hat OpenShift distributed tracing platform user interface,
you can visualize your distributed tracing data. On the Search page, you can find traces and
explore details of the spans that make up an individual trace.

Red Hat OpenShift distributed tracing data collection - This component is based on the open
source OpenTelemetry project.

OpenTelemetry Collector - The OpenTelemetry Collector is a vendor-agnostic way to
receive, process, and export telemetry data. The OpenTelemetry Collector supports open-
source observability data formats, for example, Jaeger and Prometheus, sending to one or
more open-source or commercial back-ends. The Collector is the default location
instrumentation libraries export their telemetry data.

1.3.4.3. Red Hat OpenShift distributed tracing features

Red Hat OpenShift distributed tracing provides the following capabilities:

Integration with Kiali – When properly configured, you can view distributed tracing data from the
Kiali console.

High scalability – The distributed tracing back end is designed to have no single points of failure
and to scale with the business needs.

Distributed Context Propagation – Enables you to connect data from different components
together to create a complete end-to-end trace.

Backwards compatibility with Zipkin – Red Hat OpenShift distributed tracing has APIs that
enable it to be used as a drop-in replacement for Zipkin, but Red Hat is not supporting Zipkin
compatibility in this release.

1.3.5. Next steps

Prepare to install Red Hat OpenShift Service Mesh in your OpenShift Container Platform
environment.

1.4. SERVICE MESH DEPLOYMENT MODELS

Red Hat OpenShift Service Mesh supports several different deployment models that can be combined
in different ways to best suit your business requirements.

1.4.1. Single mesh deployment model

The simplest Istio deployment model is a single mesh.

Service names within a mesh must be unique because Kubernetes only allows one service to be named
myservice in the mynamespace namespace. However, workload instances can share a common
identity since service account names can be shared across workloads in the same namespace

1.4.2. Single tenancy deployment model

In Istio, a tenant is a group of users that share common access and privileges for a set of deployed

CHAPTER 1. SERVICE MESH 2.X

55

https://opentelemetry.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#preparing-ossm-installation

workloads. You can use tenants to provide a level of isolation between different teams. You can
segregate access to different tenants using NetworkPolicies, AuthorizationPolicies, and exportTo
annotations on istio.io or service resources.

Single tenant, cluster-wide Service Mesh control plane configurations are deprecated as of Red Hat
OpenShift Service Mesh version 1.0. Red Hat OpenShift Service Mesh defaults to a multitenant model.

1.4.3. Multitenant deployment model

Red Hat OpenShift Service Mesh installs a ServiceMeshControlPlane that is configured for
multitenancy by default. Red Hat OpenShift Service Mesh uses a multitenant Operator to manage the
Service Mesh control plane lifecycle. Within a mesh, namespaces are used for tenancy.

Red Hat OpenShift Service Mesh uses ServiceMeshControlPlane resources to manage mesh
installations, whose scope is limited by default to namespace that contains the resource. You use
ServiceMeshMemberRoll and ServiceMeshMember resources to include additional namespaces into
the mesh. A namespace can only be included in a single mesh, and multiple meshes can be installed in a
single OpenShift cluster.

Typical service mesh deployments use a single Service Mesh control plane to configure communication
between services in the mesh. Red Hat OpenShift Service Mesh supports “soft multitenancy”, where
there is one control plane and one mesh per tenant, and there can be multiple independent control
planes within the cluster. Multitenant deployments specify the projects that can access the Service
Mesh and isolate the Service Mesh from other control plane instances.

The cluster administrator gets control and visibility across all the Istio control planes, while the tenant
administrator only gets control over their specific Service Mesh, Kiali, and Jaeger instances.

You can grant a team permission to deploy its workloads only to a given namespace or set of
namespaces. If granted the mesh-user role by the service mesh administrator, users can create a
ServiceMeshMember resource to add namespaces to the ServiceMeshMemberRoll.

1.4.4. Multimesh or federated deployment model

Federation is a deployment model that lets you share services and workloads between separate meshes
managed in distinct administrative domains.

The Istio multi-cluster model requires a high level of trust between meshes and remote access to all
Kubernetes API servers on which the individual meshes reside. Red Hat OpenShift Service Mesh
federation takes an opinionated approach to a multi-cluster implementation of Service Mesh that
assumes minimal trust between meshes.

A federated mesh is a group of meshes behaving as a single mesh. The services in each mesh can be
unique services, for example a mesh adding services by importing them from another mesh, can provide
additional workloads for the same services across the meshes, providing high availability, or a
combination of both. All meshes that are joined into a federated mesh remain managed individually, and
you must explicitly configure which services are exported to and imported from other meshes in the
federation. Support functions such as certificate generation, metrics and trace collection remain local in
their respective meshes.

1.5. SERVICE MESH AND ISTIO DIFFERENCES

Red Hat OpenShift Service Mesh differs from an installation of Istio to provide additional features or to
handle differences when deploying on OpenShift Container Platform.

OpenShift Container Platform 4.9 Service Mesh

56

1.5.1. Differences between Istio and Red Hat OpenShift Service Mesh

The following features are different in Service Mesh and Istio.

1.5.1.1. Command line tool

The command line tool for Red Hat OpenShift Service Mesh is oc. Red Hat OpenShift Service
Mesh does not support istioctl.

1.5.1.2. Installation and upgrades

Red Hat OpenShift Service Mesh does not support Istio installation profiles.

Red Hat OpenShift Service Mesh does not support canary upgrades of the service mesh.

1.5.1.3. Automatic injection

The upstream Istio community installation automatically injects the sidecar into pods within the projects
you have labeled.

Red Hat OpenShift Service Mesh does not automatically inject the sidecar into any pods, but you must
opt in to injection using an annotation without labeling projects. This method requires fewer privileges
and does not conflict with other OpenShift Container Platform capabilities such as builder pods. To
enable automatic injection, specify the sidecar.istio.io/inject label, or annotation, as described in the
Automatic sidecar injection section.

Table 1.3. Sidecar injection label and annotation settings

 Upstream Istio Red Hat OpenShift Service Mesh

Namespace Label supports "enabled" and "disabled" supports "disabled"

Pod Label supports "true" and "false" supports "true" and "false"

Pod Annotation supports "false" only supports "true" and "false"

1.5.1.4. Istio Role Based Access Control features

Istio Role Based Access Control (RBAC) provides a mechanism you can use to control access to a
service. You can identify subjects by user name or by specifying a set of properties and apply access
controls accordingly.

The upstream Istio community installation includes options to perform exact header matches, match
wildcards in headers, or check for a header containing a specific prefix or suffix.

Red Hat OpenShift Service Mesh extends the ability to match request headers by using a regular
expression. Specify a property key of request.regex.headers with a regular expression.

Upstream Istio community matching request headers example

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:

CHAPTER 1. SERVICE MESH 2.X

57

1.5.1.5. OpenSSL

Red Hat OpenShift Service Mesh replaces BoringSSL with OpenSSL. OpenSSL is a software library that
contains an open source implementation of the Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocols. The Red Hat OpenShift Service Mesh Proxy binary dynamically links the
OpenSSL libraries (libssl and libcrypto) from the underlying Red Hat Enterprise Linux operating system.

1.5.1.6. External workloads

Red Hat OpenShift Service Mesh does not support external workloads, such as virtual machines running
outside OpenShift on bare metal servers.

1.5.1.7. Virtual Machine Support

You can deploy virtual machines to OpenShift using OpenShift Virtualization. Then, you can apply a
mesh policy, such as mTLS or AuthorizationPolicy, to these virtual machines, just like any other pod that
is part of a mesh.

1.5.1.8. Component modifications

A maistra-version label has been added to all resources.

All Ingress resources have been converted to OpenShift Route resources.

Grafana, distributed tracing (Jaeger), and Kiali are enabled by default and exposed through
OpenShift routes.

Godebug has been removed from all templates

The istio-multi ServiceAccount and ClusterRoleBinding have been removed, as well as the istio-
reader ClusterRole.

1.5.1.9. Envoy filters

Red Hat OpenShift Service Mesh does not support EnvoyFilter configuration except where explicitly
documented. Due to tight coupling with the underlying Envoy APIs, backward compatibility cannot be
maintained. EnvoyFilter patches are very sensitive to the format of the Envoy configuration that is
generated by Istio. If the configuration generated by Istio changes, it has the potential to break the
application of the EnvoyFilter.

1.5.1.10. Envoy services

 name: httpbin-usernamepolicy
spec:
 action: ALLOW
 rules:
 - when:
 - key: 'request.regex.headers[username]'
 values:
 - "allowed.*"
 selector:
 matchLabels:
 app: httpbin

OpenShift Container Platform 4.9 Service Mesh

58

Red Hat OpenShift Service Mesh does not support QUIC-based services.

1.5.1.11. Istio Container Network Interface (CNI) plugin

Red Hat OpenShift Service Mesh includes CNI plugin, which provides you with an alternate way to
configure application pod networking. The CNI plugin replaces the init-container network configuration
eliminating the need to grant service accounts and projects access to security context constraints
(SCCs) with elevated privileges.

1.5.1.12. Global mTLS settings

Red Hat OpenShift Service Mesh creates a PeerAuthentication resource that enables or disables
Mutual TLS authentication (mTLS) within the mesh.

1.5.1.13. Gateways

Red Hat OpenShift Service Mesh installs ingress and egress gateways by default. You can disable
gateway installation in the ServiceMeshControlPlane (SMCP) resource by using the following settings:

spec.gateways.enabled=false to disable both ingress and egress gateways.

spec.gateways.ingress.enabled=false to disable ingress gateways.

spec.gateways.egress.enabled=false to disable egress gateways.

NOTE

The Operator annotates the default gateways to indicate that they are generated by and
managed by the Red Hat OpenShift Service Mesh Operator.

1.5.1.14. Multicluster configurations

Red Hat OpenShift Service Mesh support for multicluster configurations is limited to the federation of
service meshes across multiple clusters.

1.5.1.15. Custom Certificate Signing Requests (CSR)

You cannot configure Red Hat OpenShift Service Mesh to process CSRs through the Kubernetes
certificate authority (CA).

1.5.1.16. Routes for Istio Gateways

OpenShift routes for Istio Gateways are automatically managed in Red Hat OpenShift Service Mesh.
Every time an Istio Gateway is created, updated or deleted inside the service mesh, an OpenShift route
is created, updated or deleted.

A Red Hat OpenShift Service Mesh control plane component called Istio OpenShift Routing (IOR)
synchronizes the gateway route. For more information, see Automatic route creation.

1.5.1.16.1. Catch-all domains

Catch-all domains ("*") are not supported. If one is found in the Gateway definition, Red Hat OpenShift
Service Mesh will create the route, but will rely on OpenShift to create a default hostname. This means
that the newly created route will not be a catch all ("*") route, instead it will have a hostname in the form

CHAPTER 1. SERVICE MESH 2.X

59

<route-name>[-<project>].<suffix>. See the OpenShift Container Platform documentation for more
information about how default hostnames work and how a cluster-admin can customize it. If you use
Red Hat OpenShift Dedicated, refer to the Red Hat OpenShift Dedicated the dedicated-admin role.

1.5.1.16.2. Subdomains

Subdomains (e.g.: "*.domain.com") are supported. However this ability doesn’t come enabled by default
in OpenShift Container Platform. This means that Red Hat OpenShift Service Mesh will create the route
with the subdomain, but it will only be in effect if OpenShift Container Platform is configured to enable
it.

1.5.1.16.3. Transport layer security

Transport Layer Security (TLS) is supported. This means that, if the Gateway contains a tls section, the
OpenShift Route will be configured to support TLS.

Additional resources

Automatic route creation

1.5.2. Multitenant installations

Whereas upstream Istio takes a single tenant approach, Red Hat OpenShift Service Mesh supports
multiple independent control planes within the cluster. Red Hat OpenShift Service Mesh uses a
multitenant operator to manage the control plane lifecycle.

Red Hat OpenShift Service Mesh installs a multitenant control plane by default. You specify the projects
that can access the Service Mesh, and isolate the Service Mesh from other control plane instances.

1.5.2.1. Multitenancy versus cluster-wide installations

The main difference between a multitenant installation and a cluster-wide installation is the scope of
privileges used by istod. The components no longer use cluster-scoped Role Based Access Control
(RBAC) resource ClusterRoleBinding.

Every project in the ServiceMeshMemberRoll members list will have a RoleBinding for each service
account associated with the control plane deployment and each control plane deployment will only
watch those member projects. Each member project has a maistra.io/member-of label added to it,
where the member-of value is the project containing the control plane installation.

Red Hat OpenShift Service Mesh configures each member project to ensure network access between
itself, the control plane, and other member projects. The exact configuration differs depending on how
OpenShift Container Platform software-defined networking (SDN) is configured. See About OpenShift
SDN for additional details.

If the OpenShift Container Platform cluster is configured to use the SDN plugin:

NetworkPolicy: Red Hat OpenShift Service Mesh creates a NetworkPolicy resource in each
member project allowing ingress to all pods from the other members and the control plane. If
you remove a member from Service Mesh, this NetworkPolicy resource is deleted from the
project.

NOTE

OpenShift Container Platform 4.9 Service Mesh

60

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-auto-route_traffic-management

NOTE

This also restricts ingress to only member projects. If you require ingress from
non-member projects, you need to create a NetworkPolicy to allow that traffic
through.

Multitenant: Red Hat OpenShift Service Mesh joins the NetNamespace for each member
project to the NetNamespace of the control plane project (the equivalent of running oc adm
pod-network join-projects --to control-plane-project member-project). If you remove a
member from the Service Mesh, its NetNamespace is isolated from the control plane (the
equivalent of running oc adm pod-network isolate-projects member-project).

Subnet: No additional configuration is performed.

1.5.2.2. Cluster scoped resources

Upstream Istio has two cluster scoped resources that it relies on. The MeshPolicy and the
ClusterRbacConfig. These are not compatible with a multitenant cluster and have been replaced as
described below.

ServiceMeshPolicy replaces MeshPolicy for configuration of control-plane-wide authentication
policies. This must be created in the same project as the control plane.

ServicemeshRbacConfig replaces ClusterRbacConfig for configuration of control-plane-wide
role based access control. This must be created in the same project as the control plane.

1.5.3. Kiali and service mesh

Installing Kiali via the Service Mesh on OpenShift Container Platform differs from community Kiali
installations in multiple ways. These modifications are sometimes necessary to resolve issues, provide
additional features, or to handle differences when deploying on OpenShift Container Platform.

Kiali has been enabled by default.

Ingress has been enabled by default.

Updates have been made to the Kiali ConfigMap.

Updates have been made to the ClusterRole settings for Kiali.

Do not edit the ConfigMap, because your changes might be overwritten by the Service Mesh or
Kiali Operators. Files that the Kiali Operator manages have a kiali.io/ label or annotation.
Updating the Operator files should be restricted to those users with cluster-admin privileges. If
you use Red Hat OpenShift Dedicated, updating the Operator files should be restricted to
those users with dedicated-admin privileges.

1.5.4. Distributed tracing and service mesh

Installing the distributed tracing platform with the Service Mesh on OpenShift Container Platform
differs from community Jaeger installations in multiple ways. These modifications are sometimes
necessary to resolve issues, provide additional features, or to handle differences when deploying on
OpenShift Container Platform.

Distributed tracing has been enabled by default for Service Mesh.

Ingress has been enabled by default for Service Mesh.

CHAPTER 1. SERVICE MESH 2.X

61

The name for the Zipkin port name has changed to jaeger-collector-zipkin (from http)

Jaeger uses Elasticsearch for storage by default when you select either the production or
streaming deployment option.

The community version of Istio provides a generic "tracing" route. Red Hat OpenShift Service
Mesh uses a "jaeger" route that is installed by the Red Hat OpenShift distributed tracing
platform Operator and is already protected by OAuth.

Red Hat OpenShift Service Mesh uses a sidecar for the Envoy proxy, and Jaeger also uses a
sidecar, for the Jaeger agent. These two sidecars are configured separately and should not be
confused with each other. The proxy sidecar creates spans related to the pod’s ingress and
egress traffic. The agent sidecar receives the spans emitted by the application and sends them
to the Jaeger Collector.

1.6. PREPARING TO INSTALL SERVICE MESH

Before you can install Red Hat OpenShift Service Mesh, you must subscribe to OpenShift Container
Platform and install OpenShift Container Platform in a supported configuration.

1.6.1. Prerequisites

Maintain an active OpenShift Container Platform subscription on your Red Hat account. If you
do not have a subscription, contact your sales representative for more information.

Review the OpenShift Container Platform 4.9 overview .

Install OpenShift Container Platform 4.9. If you are installing Red Hat OpenShift Service Mesh
on a restricted network , follow the instructions for your chosen OpenShift Container Platform
infrastructure.

Install OpenShift Container Platform 4.9 on AWS

Install OpenShift Container Platform 4.9 on user-provisioned AWS

Install OpenShift Container Platform 4.9 on bare metal

Install OpenShift Container Platform 4.9 on vSphere

Install OpenShift Container Platform 4.9 on IBM Z and LinuxONE

Install OpenShift Container Platform 4.9 on IBM Power

Install the version of the OpenShift Container Platform command line utility (the oc client tool)
that matches your OpenShift Container Platform version and add it to your path.

If you are using OpenShift Container Platform 4.9, see About the OpenShift CLI.

For additional information about Red Hat OpenShift Service Mesh lifecycle and supported platforms,
refer to the Support Policy.

1.6.2. Supported configurations

The following configurations are supported for the current release of Red Hat OpenShift Service Mesh.

1.6.2.1. Supported platforms

OpenShift Container Platform 4.9 Service Mesh

62

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/architecture/#installation-overview_architecture-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#supported-installation-methods-for-different-platforms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-aws-account
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-aws-user-infra
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-vsphere
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-ibm-z
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-ibm-power
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cli_tools/#cli-about-cli_cli-developer-commands
https://access.redhat.com/support/policy/updates/openshift#ossm

The Red Hat OpenShift Service Mesh Operator supports multiple versions of the
ServiceMeshControlPlane resource. Version 2.3 Service Mesh control planes are supported on the
following platform versions:

Red Hat OpenShift Container Platform version 4.9 or later.

Red Hat OpenShift Dedicated version 4.

Azure Red Hat OpenShift (ARO) version 4.

Red Hat OpenShift Service on AWS (ROSA).

1.6.2.2. Unsupported configurations

Explicitly unsupported cases include:

OpenShift Online is not supported for Red Hat OpenShift Service Mesh.

Red Hat OpenShift Service Mesh does not support the management of microservices outside
the cluster where Service Mesh is running.

1.6.2.3. Supported network configurations

Red Hat OpenShift Service Mesh supports the following network configurations.

OpenShift-SDN

OVN-Kubernetes is supported on OpenShift Container Platform 4.7.32+, OpenShift Container
Platform 4.8.12+, and OpenShift Container Platform 4.9+.

Third-Party Container Network Interface (CNI) plugins that have been certified on OpenShift
Container Platform and passed Service Mesh conformance testing. See Certified OpenShift
CNI Plug-ins for more information.

1.6.2.4. Supported configurations for Service Mesh

This release of Red Hat OpenShift Service Mesh is only available on OpenShift Container
Platform x86_64, IBM Z, and IBM Power Systems.

IBM Z is only supported on OpenShift Container Platform 4.6 and later.

IBM Power Systems is only supported on OpenShift Container Platform 4.6 and later.

Configurations where all Service Mesh components are contained within a single OpenShift
Container Platform cluster.

Configurations that do not integrate external services such as virtual machines.

Red Hat OpenShift Service Mesh does not support EnvoyFilter configuration except where
explicitly documented.

1.6.2.5. Supported configurations for Kiali

The Kiali console is only supported on the two most recent releases of the Chrome, Edge,
Firefox, or Safari browsers.

CHAPTER 1. SERVICE MESH 2.X

63

https://access.redhat.com/articles/5436171

1.6.2.6. Supported configurations for Distributed Tracing

Jaeger agent as a sidecar is the only supported configuration for Jaeger. Jaeger as a
daemonset is not supported for multitenant installations or OpenShift Dedicated.

1.6.2.7. Supported WebAssembly module

3scale WebAssembly is the only provided WebAssembly module. You can create custom
WebAssembly modules.

1.6.3. Next steps

Install Red Hat OpenShift Service Mesh in your OpenShift Container Platform environment.

1.7. INSTALLING THE OPERATORS

To install Red Hat OpenShift Service Mesh, first install the required Operators on OpenShift Container
Platform and then create a ServiceMeshControlPlane resource to deploy the control plane.

NOTE

This basic installation is configured based on the default OpenShift settings and is not
designed for production use. Use this default installation to verify your installation, and
then configure your service mesh for your specific environment.

Prerequisites

Read the Preparing to install Red Hat OpenShift Service Mesh process.

An account with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must
have an account with the dedicated-admin role.

The following steps show how to install a basic instance of Red Hat OpenShift Service Mesh on
OpenShift Container Platform.

1.7.1. Operator overview

Red Hat OpenShift Service Mesh requires the following four Operators:

OpenShift Elasticsearch - (Optional) Provides database storage for tracing and logging with
the distributed tracing platform. It is based on the open source Elasticsearch project.

Red Hat OpenShift distributed tracing platform - Provides distributed tracing to monitor and
troubleshoot transactions in complex distributed systems. It is based on the open source Jaeger
project.

Kiali - Provides observability for your service mesh. Allows you to view configurations, monitor
traffic, and analyze traces in a single console. It is based on the open source Kiali project.

Red Hat OpenShift Service Mesh - Allows you to connect, secure, control, and observe the
microservices that comprise your applications. The Service Mesh Operator defines and
monitors the ServiceMeshControlPlane resources that manage the deployment, updating,
and deletion of the Service Mesh components. It is based on the open source Istio project.

OpenShift Container Platform 4.9 Service Mesh

64

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#installing-ossm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#preparing-ossm-installation
https://www.elastic.co/
https://www.jaegertracing.io/
https://www.kiali.io/
https://istio.io/

WARNING

Do not install Community versions of the Operators. Community Operators are not
supported.

1.7.2. Installing the Operators

To install Red Hat OpenShift Service Mesh, install following Operators in this order. Repeat the
procedure for each Operator.

OpenShift Elasticsearch

Red Hat OpenShift distributed tracing platform

Kiali

Red Hat OpenShift Service Mesh

NOTE

If you have already installed the OpenShift Elasticsearch Operator as part of OpenShift
Logging, you do not need to install the OpenShift Elasticsearch Operator again. The Red
Hat OpenShift distributed tracing platform Operator will create the Elasticsearch
instance using the installed OpenShift Elasticsearch Operator.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. In the OpenShift Container Platform web console, click Operators → OperatorHub.

3. Type the name of the Operator into the filter box and select the Red Hat version of the
Operator. Community versions of the Operators are not supported.

4. Click Install.

5. On the Install Operator page for each Operator, accept the default settings.

6. Click Install. Wait until the Operator has installed before repeating the steps for the next
Operator in the list.

The OpenShift Elasticsearch Operator is installed in the openshift-operators-redhat
namespace and is available for all namespaces in the cluster.

The Red Hat OpenShift distributed tracing platform is installed in the openshift-
distributed-tracing namespace and is available for all namespaces in the cluster.

The Kiali and Red Hat OpenShift Service Mesh Operators are installed in the openshift-
operators namespace and are available for all namespaces in the cluster.



CHAPTER 1. SERVICE MESH 2.X

65

7. After all you have installed all four Operators, click Operators → Installed Operators to verify
that your Operators installed.

1.7.3. Next steps

The Red Hat OpenShift Service Mesh Operator does not create the various Service Mesh custom
resource definitions (CRDs) until you deploy a Service Mesh control plane. You use the
ServiceMeshControlPlane resource to install and configure the Service Mesh components. For more
information, see Creating the ServiceMeshControlPlane.

1.8. CREATING THE SERVICEMESHCONTROLPLANE

You can deploy a basic installation of the ServiceMeshControlPlane(SMCP) by using either the
OpenShift Container Platform web console or from the command line using the oc client tool.

NOTE

This basic installation is configured based on the default OpenShift settings and is not
designed for production use. Use this default installation to verify your installation, and
then configure your ServiceMeshControlPlane for your environment.

NOTE

Red Hat OpenShift Service on AWS (ROSA) places additional restrictions on where you
can create resources and as a result the default deployment does not work. See Installing
Service Mesh on Red Hat OpenShift Service on AWS for additional requirements before
deploying your SMCP in a ROSA environment.

NOTE

The Service Mesh documentation uses istio-system as the example project, but you can
deploy the service mesh to any project.

1.8.1. Deploying the Service Mesh control plane from the web console

You can deploy a basic ServiceMeshControlPlane by using the web console. In this example, istio-
system is the name of the Service Mesh control plane project.

Prerequisites

The Red Hat OpenShift Service Mesh Operator must be installed.

An account with the cluster-admin role.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Create a project named istio-system.

a. Navigate to Home → Projects.

OpenShift Container Platform 4.9 Service Mesh

66

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-create-smcp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-install-rosa_ossm-create-smcp

b. Click Create Project.

c. In the Name field, enter istio-system. The ServiceMeshControlPlane resource must be
installed in a project that is separate from your microservices and Operators.
These steps use istio-system as an example, but you can deploy your Service Mesh control
plane in any project as long as it is separate from the project that contains your services.

d. Click Create.

3. Navigate to Operators → Installed Operators.

4. Click the Red Hat OpenShift Service Mesh Operator, then click Istio Service Mesh Control
Plane.

5. On the Istio Service Mesh Control Plane tab, click Create ServiceMeshControlPlane.

6. On the Create ServiceMeshControlPlane page, accept the default Service Mesh control plane
version to take advantage of the features available in the most current version of the product.
The version of the control plane determines the features available regardless of the version of
the Operator.
You can configure ServiceMeshControlPlane settings later. For more information, see
Configuring Red Hat OpenShift Service Mesh.

a. Click Create. The Operator creates pods, services, and Service Mesh control plane
components based on your configuration parameters.

7. To verify the control plane installed correctly, click the Istio Service Mesh Control Plane tab.

a. Click the name of the new control plane.

b. Click the Resources tab to see the Red Hat OpenShift Service Mesh control plane
resources the Operator created and configured.

1.8.2. Deploying the Service Mesh control plane using the CLI

You can deploy a basic ServiceMeshControlPlane from the command line.

Prerequisites

The Red Hat OpenShift Service Mesh Operator must be installed.

Access to the OpenShift CLI (oc).

Procedure

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. If you use
Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.

2. Create a project named istio-system.

3. Create a ServiceMeshControlPlane file named istio-installation.yaml using the following

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

$ oc new-project istio-system

CHAPTER 1. SERVICE MESH 2.X

67

3. Create a ServiceMeshControlPlane file named istio-installation.yaml using the following
example. The version of the Service Mesh control plane determines the features available
regardless of the version of the Operator.

Example version 2.3 istio-installation.yaml

4. Run the following command to deploy the Service Mesh control plane, where
<istio_installation.yaml> includes the full path to your file.

5. To watch the progress of the pod deployment, run the following command:

You should see output similar to the following:

1.8.3. Validating your SMCP installation with the CLI

You can validate the creation of the ServiceMeshControlPlane from the command line.

Procedure

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. If you use

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
 namespace: istio-system
spec:
 version: v2.3
 tracing:
 type: Jaeger
 sampling: 10000
 addons:
 jaeger:
 name: jaeger
 install:
 storage:
 type: Memory
 kiali:
 enabled: true
 name: kiali
 grafana:
 enabled: true

$ oc create -n istio-system -f <istio_installation.yaml>

$ oc get pods -n istio-system -w

NAME READY STATUS RESTARTS AGE
grafana-b4d59bd7-mrgbr 2/2 Running 0 65m
istio-egressgateway-678dc97b4c-wrjkp 1/1 Running 0 108s
istio-ingressgateway-b45c9d54d-4qg6n 1/1 Running 0 108s
istiod-basic-55d78bbbcd-j5556 1/1 Running 0 108s
jaeger-67c75bd6dc-jv6k6 2/2 Running 0 65m
kiali-6476c7656c-x5msp 1/1 Running 0 43m
prometheus-58954b8d6b-m5std 2/2 Running 0 66m

OpenShift Container Platform 4.9 Service Mesh

68

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. If you use
Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.

2. Run the following command to verify the Service Mesh control plane installation, where istio-
system is the namespace where you installed the Service Mesh control plane.

The installation has finished successfully when the STATUS column is ComponentsReady.

1.8.4. Validating your SMCP installation with Kiali

You can use the Kiali console to validate your Service Mesh installation. The Kiali console offers several
ways to validate your Service Mesh components are deployed and configured properly.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If
you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Navigate to Networking → Routes.

3. On the Routes page, select the Service Mesh control plane project, for example istio-system,
from the Namespace menu.
The Location column displays the linked address for each route.

4. If necessary, use the filter to find the route for the Kiali console. Click the route Location to
launch the console.

5. Click Log In With OpenShift.
When you first log in to the Kiali Console, you see the Overview page which displays all the
namespaces in your service mesh that you have permission to view. When there are multiple
namespaces shown on the Overview page, Kiali shows namespaces with health or validation
problems first.

Figure 1.1. Kiali Overview page

$ oc login https://<HOSTNAME>:6443

$ oc get smcp -n istio-system

NAME READY STATUS PROFILES VERSION AGE
basic 10/10 ComponentsReady ["default"] 2.1.1 66m

CHAPTER 1. SERVICE MESH 2.X

69

Figure 1.1. Kiali Overview page

The tile for each namespace displays the number of labels, the Istio Config health, the number
of and Applications health, and Traffic for the namespace. If you are validating the console
installation and namespaces have not yet been added to the mesh, there might not be any data
to display other than istio-system.

6. Kiali has four dashboards specifically for the namespace where the Service Mesh control plane is

installed. To view these dashboards, click the Options menu on the tile for the control
plane namespace, for example, istio-system, and select one of the following options:

Istio Mesh Dashboard

Istio Control Plane Dashboard

Istio Performance Dashboard

Istio Wasm Exetension Dashboard

Figure 1.2. Grafana Istio Control Plane Dashboard

Kiali also installs two additional Grafana dashboards, available from the Grafana Home

OpenShift Container Platform 4.9 Service Mesh

70

Kiali also installs two additional Grafana dashboards, available from the Grafana Home
page:

Istio Workload Dashboard

Istio Service Dashboard

7. To view the Service Mesh control plane nodes, click the Graph page, select the Namespace
where you installed the ServiceMeshControlPlane from the menu, for example istio-system.

a. If necessary, click Display idle nodes.

b. To learn more about the Graph page, click the Graph tour link.

c. To view the mesh topology, select one or more additional namespaces from the Service
Mesh Member Roll from the Namespace menu.

8. To view the list of applications in the istio-system namespace, click the Applications page. Kiali
displays the health of the applications.

a. Hover your mouse over the information icon to view any additional information noted in the
Details column.

9. To view the list of workloads in the istio-system namespace, click the Workloads page. Kiali
displays the health of the workloads.

a. Hover your mouse over the information icon to view any additional information noted in the
Details column.

10. To view the list of services in the istio-system namespace, click the Services page. Kiali displays
the health of the services and of the configurations.

a. Hover your mouse over the information icon to view any additional information noted in the
Details column.

11. To view a list of the Istio Configuration objects in the istio-system namespace, click the Istio
Config page. Kiali displays the health of the configuration.

a. If there are configuration errors, click the row and Kiali opens the configuration file with the
error highlighted.

1.8.5. Installing on Red Hat OpenShift Service on AWS (ROSA)

Starting with version 2.2, Red Hat OpenShift Service Mesh supports installation on Red Hat OpenShift
Service on AWS (ROSA). This section documents the additional requirements when installing Service
Mesh on this platform.

1.8.5.1. Installation location

You must create a new namespace, for example istio-system, when installing Red Hat OpenShift
Service Mesh and creating the ServiceMeshControlPlane.

1.8.5.2. Required Service Mesh control plane configuration

The default configuration in the ServiceMeshControlPlane file does not work on a ROSA cluster. You
must modify the default SMCP and set spec.security.identity.type=ThirdParty when installing on Red
Hat OpenShift Service on AWS.

CHAPTER 1. SERVICE MESH 2.X

71

Example ServiceMeshControlPlane resource for ROSA

1.8.5.3. Restrictions on Kiali configuration

Red Hat OpenShift Service on AWS places additional restrictions on where you can create resources
and does not let you create the Kiali resource in a Red Hat managed namespace.

This means that the following common settings for spec.deployment.accessible_namespaces are not
allowed in a ROSA cluster:

['**'] (all namespaces)

default

codeready-*

openshift-*

redhat-*

The validation error message provides a complete list of all the restricted namespaces.

Example Kiali resource for ROSA

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
 namespace: istio-system
spec:
 version: v2.3
 security:
 identity:
 type: ThirdParty #required setting for ROSA
 tracing:
 type: Jaeger
 sampling: 10000
 policy:
 type: Istiod
 addons:
 grafana:
 enabled: true
 jaeger:
 install:
 storage:
 type: Memory
 kiali:
 enabled: true
 prometheus:
 enabled: true
 telemetry:
 type: Istiod

apiVersion: kiali.io/v1alpha1
kind: Kiali

OpenShift Container Platform 4.9 Service Mesh

72

1.8.6. Additional resources

Red Hat OpenShift Service Mesh supports multiple independent control planes within the cluster. You
can create reusable configurations with ServiceMeshControlPlane profiles. For more information, see
Creating control plane profiles .

1.8.7. Next steps

Create a ServiceMeshMemberRoll resource to specify the namespaces associated with the Service
Mesh. For more information, see Adding services to a service mesh .

1.9. ADDING SERVICES TO A SERVICE MESH

After installing the Operators and ServiceMeshControlPlane resource, add applications, workloads, or
services to your mesh by creating a ServiceMeshMemberRoll resource and specifying the namespaces
where your content is located. If you already have an application, workload, or service to add to a
ServiceMeshMemberRoll resource, use the following steps. Or, to install a sample application called
Bookinfo and add it to a ServiceMeshMemberRoll resource, skip to the tutorial for installing the
Bookinfo example application to see how an application works in Red Hat OpenShift Service Mesh.

The items listed in the ServiceMeshMemberRoll resource are the applications and workflows that are
managed by the ServiceMeshControlPlane resource. The control plane, which includes the Service
Mesh Operators, Istiod, and ServiceMeshControlPlane, and the data plane, which includes applications
and Envoy proxy, must be in separate namespaces.

NOTE

After you add the namespace to the ServiceMeshMemberRoll, access to services or
pods in that namespace will not be accessible to callers outside the service mesh.

1.9.1. Creating the Red Hat OpenShift Service Mesh member roll

The ServiceMeshMemberRoll lists the projects that belong to the Service Mesh control plane. Only
projects listed in the ServiceMeshMemberRoll are affected by the control plane. A project does not
belong to a service mesh until you add it to the member roll for a particular control plane deployment.

You must create a ServiceMeshMemberRoll resource named default in the same project as the
ServiceMeshControlPlane, for example istio-system.

1.9.1.1. Creating the member roll from the web console

You can add one or more projects to the Service Mesh member roll from the web console. In this

metadata:
 name: kiali
 namespace: istio-system
spec:
 auth:
 strategy: openshift
 deployment:
 accessible_namespaces: #restricted setting for ROSA
 - istio-system
 image_pull_policy: ''
 ingress_enabled: true
 namespace: istio-system

CHAPTER 1. SERVICE MESH 2.X

73

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-control-plane-profiles_ossm-profiles-users
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-create-mesh
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-tutorial-bookinfo-overview_ossm-create-mesh

You can add one or more projects to the Service Mesh member roll from the web console. In this
example, istio-system is the name of the Service Mesh control plane project.

Prerequisites

An installed, verified Red Hat OpenShift Service Mesh Operator.

List of existing projects to add to the service mesh.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. If you do not already have services for your mesh, or you are starting from scratch, create a
project for your applications. It must be different from the project where you installed the
Service Mesh control plane.

a. Navigate to Home → Projects.

b. Enter a name in the Name field.

c. Click Create.

3. Navigate to Operators → Installed Operators.

4. Click the Project menu and choose the project where your ServiceMeshControlPlane
resource is deployed from the list, for example istio-system.

5. Click the Red Hat OpenShift Service Mesh Operator.

6. Click the Istio Service Mesh Member Roll tab.

7. Click Create ServiceMeshMemberRoll

8. Click Members, then enter the name of your project in the Value field. You can add any number
of projects, but a project can only belong to one ServiceMeshMemberRoll resource.

9. Click Create.

1.9.1.2. Creating the member roll from the CLI

You can add a project to the ServiceMeshMemberRoll from the command line.

Prerequisites

An installed, verified Red Hat OpenShift Service Mesh Operator.

List of projects to add to the service mesh.

Access to the OpenShift CLI (oc).

Procedure

1. Log in to the OpenShift Container Platform CLI.

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

OpenShift Container Platform 4.9 Service Mesh

74

2. If you do not already have services for your mesh, or you are starting from scratch, create a
project for your applications. It must be different from the project where you installed the
Service Mesh control plane.

3. To add your projects as members, modify the following example YAML. You can add any
number of projects, but a project can only belong to one ServiceMeshMemberRoll resource. In
this example, istio-system is the name of the Service Mesh control plane project.

Example servicemeshmemberroll-default.yaml

4. Run the following command to upload and create the ServiceMeshMemberRoll resource in the
istio-system namespace.

5. Run the following command to verify the ServiceMeshMemberRoll was created successfully.

The installation has finished successfully when the STATUS column is Configured.

1.9.2. Adding or removing projects from the service mesh

You can add or remove projects from an existing Service Mesh ServiceMeshMemberRoll resource
using the web console.

You can add any number of projects, but a project can only belong to one
ServiceMeshMemberRoll resource.

The ServiceMeshMemberRoll resource is deleted when its corresponding
ServiceMeshControlPlane resource is deleted.

1.9.2.1. Adding or removing projects from the member roll using the web console

Prerequisites

An installed, verified Red Hat OpenShift Service Mesh Operator.

An existing ServiceMeshMemberRoll resource.

Name of the project with the ServiceMeshMemberRoll resource.

$ oc new-project <your-project>

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system
spec:
 members:
 # a list of projects joined into the service mesh
 - your-project-name
 - another-project-name

$ oc create -n istio-system -f servicemeshmemberroll-default.yaml

$ oc get smmr -n istio-system default

CHAPTER 1. SERVICE MESH 2.X

75

Names of the projects you want to add or remove from the mesh.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → Installed Operators.

3. Click the Project menu and choose the project where your ServiceMeshControlPlane
resource is deployed from the list, for example istio-system.

4. Click the Red Hat OpenShift Service Mesh Operator.

5. Click the Istio Service Mesh Member Roll tab.

6. Click the default link.

7. Click the YAML tab.

8. Modify the YAML to add or remove projects as members. You can add any number of projects,
but a project can only belong to one ServiceMeshMemberRoll resource.

9. Click Save.

10. Click Reload.

1.9.2.2. Adding or removing projects from the member roll using the CLI

You can modify an existing Service Mesh member roll using the command line.

Prerequisites

An installed, verified Red Hat OpenShift Service Mesh Operator.

An existing ServiceMeshMemberRoll resource.

Name of the project with the ServiceMeshMemberRoll resource.

Names of the projects you want to add or remove from the mesh.

Access to the OpenShift CLI (oc).

Procedure

1. Log in to the OpenShift Container Platform CLI.

2. Edit the ServiceMeshMemberRoll resource.

3. Modify the YAML to add or remove projects as members. You can add any number of projects,
but a project can only belong to one ServiceMeshMemberRoll resource.

Example servicemeshmemberroll-default.yaml

$ oc edit smmr -n <controlplane-namespace>

OpenShift Container Platform 4.9 Service Mesh

76

1.9.3. Bookinfo example application

The Bookinfo example application allows you to test your Red Hat OpenShift Service Mesh 2.3.2
installation on OpenShift Container Platform.

The Bookinfo application displays information about a book, similar to a single catalog entry of an online
book store. The application displays a page that describes the book, book details (ISBN, number of
pages, and other information), and book reviews.

The Bookinfo application consists of these microservices:

The productpage microservice calls the details and reviews microservices to populate the
page.

The details microservice contains book information.

The reviews microservice contains book reviews. It also calls the ratings microservice.

The ratings microservice contains book ranking information that accompanies a book review.

There are three versions of the reviews microservice:

Version v1 does not call the ratings Service.

Version v2 calls the ratings Service and displays each rating as one to five black stars.

Version v3 calls the ratings Service and displays each rating as one to five red stars.

1.9.3.1. Installing the Bookinfo application

This tutorial walks you through how to create a sample application by creating a project, deploying the
Bookinfo application to that project, and viewing the running application in Service Mesh.

Prerequisites:

OpenShift Container Platform 4.1 or higher installed.

Red Hat OpenShift Service Mesh 2.3.2 installed.

Access to the OpenShift CLI (oc).

An account with the cluster-admin role.

NOTE

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system #control plane project
spec:
 members:
 # a list of projects joined into the service mesh
 - your-project-name
 - another-project-name

CHAPTER 1. SERVICE MESH 2.X

77

NOTE

The Bookinfo sample application cannot be installed on IBM Z and IBM Power Systems.

NOTE

The commands in this section assume the Service Mesh control plane project is istio-
system. If you installed the control plane in another namespace, edit each command
before you run it.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If
you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Click Home → Projects.

3. Click Create Project.

4. Enter bookinfo as the Project Name, enter a Display Name, and enter a Description, then click
Create.

Alternatively, you can run this command from the CLI to create the bookinfo project.

5. Click Operators → Installed Operators.

6. Click the Project menu and use the Service Mesh control plane namespace. In this example, use
istio-system.

7. Click the Red Hat OpenShift Service Mesh Operator.

8. Click the Istio Service Mesh Member Roll tab.

a. If you have already created a Istio Service Mesh Member Roll, click the name, then click the
YAML tab to open the YAML editor.

b. If you have not created a ServiceMeshMemberRoll, click Create
ServiceMeshMemberRoll.

9. Click Members, then enter the name of your project in the Value field.

10. Click Create to save the updated Service Mesh Member Roll.

a. Or, save the following example to a YAML file.

Bookinfo ServiceMeshMemberRoll example servicemeshmemberroll-
default.yaml

$ oc new-project bookinfo

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default

OpenShift Container Platform 4.9 Service Mesh

78

b. Run the following command to upload that file and create the ServiceMeshMemberRoll
resource in the istio-system namespace. In this example, istio-system is the name of the
Service Mesh control plane project.

11. Run the following command to verify the ServiceMeshMemberRoll was created successfully.

The installation has finished successfully when the STATUS column is Configured.

12. From the CLI, deploy the Bookinfo application in the `bookinfo` project by applying the
bookinfo.yaml file:

You should see output similar to the following:

13. Create the ingress gateway by applying the bookinfo-gateway.yaml file:

You should see output similar to the following:

14. Set the value for the GATEWAY_URL parameter:

spec:
 members:
 - bookinfo

$ oc create -n istio-system -f servicemeshmemberroll-default.yaml

$ oc get smmr -n istio-system -o wide

NAME READY STATUS AGE MEMBERS
default 1/1 Configured 70s ["bookinfo"]

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.3/samples/bookinfo/platform/kube/bookinfo.yaml

service/details created
serviceaccount/bookinfo-details created
deployment.apps/details-v1 created
service/ratings created
serviceaccount/bookinfo-ratings created
deployment.apps/ratings-v1 created
service/reviews created
serviceaccount/bookinfo-reviews created
deployment.apps/reviews-v1 created
deployment.apps/reviews-v2 created
deployment.apps/reviews-v3 created
service/productpage created
serviceaccount/bookinfo-productpage created
deployment.apps/productpage-v1 created

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.3/samples/bookinfo/networking/bookinfo-gateway.yaml

gateway.networking.istio.io/bookinfo-gateway created
virtualservice.networking.istio.io/bookinfo created

CHAPTER 1. SERVICE MESH 2.X

79

1.9.3.2. Adding default destination rules

Before you can use the Bookinfo application, you must first add default destination rules. There are two
preconfigured YAML files, depending on whether or not you enabled mutual transport layer security
(TLS) authentication.

Procedure

1. To add destination rules, run one of the following commands:

If you did not enable mutual TLS:

If you enabled mutual TLS:

You should see output similar to the following:

1.9.3.3. Verifying the Bookinfo installation

To confirm that the sample Bookinfo application was successfully deployed, perform the following
steps.

Prerequisites

Red Hat OpenShift Service Mesh installed.

Complete the steps for installing the Bookinfo sample app.

Procedure from CLI

1. Log in to the OpenShift Container Platform CLI.

2. Verify that all pods are ready with this command:

All pods should have a status of Running. You should see output similar to the following:

$ export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.host}')

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.3/samples/bookinfo/networking/destination-rule-all.yaml

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.3/samples/bookinfo/networking/destination-rule-all-mtls.yaml

destinationrule.networking.istio.io/productpage created
destinationrule.networking.istio.io/reviews created
destinationrule.networking.istio.io/ratings created
destinationrule.networking.istio.io/details created

$ oc get pods -n bookinfo

NAME READY STATUS RESTARTS AGE
details-v1-55b869668-jh7hb 2/2 Running 0 12m

OpenShift Container Platform 4.9 Service Mesh

80

3. Run the following command to retrieve the URL for the product page:

4. Copy and paste the output in a web browser to verify the Bookinfo product page is deployed.

Procedure from Kiali web console

1. Obtain the address for the Kiali web console.

a. Log in to the OpenShift Container Platform web console as a user with cluster-admin
rights. If you use Red Hat OpenShift Dedicated, you must have an account with the
dedicated-admin role.

b. Navigate to Networking → Routes.

c. On the Routes page, select the Service Mesh control plane project, for example istio-
system, from the Namespace menu.
The Location column displays the linked address for each route.

d. Click the link in the Location column for Kiali.

e. Click Log In With OpenShift. The Kiali Overview screen presents tiles for each project
namespace.

2. In Kiali, click Graph.

3. Select bookinfo from the Namespace list, and App graph from the Graph Type list.

4. Click Display idle nodes from the Display menu.
This displays nodes that are defined but have not received or sent requests. It can confirm that
an application is properly defined, but that no request traffic has been reported.

productpage-v1-6fc77ff794-nsl8r 2/2 Running 0 12m
ratings-v1-7d7d8d8b56-55scn 2/2 Running 0 12m
reviews-v1-868597db96-bdxgq 2/2 Running 0 12m
reviews-v2-5b64f47978-cvssp 2/2 Running 0 12m
reviews-v3-6dfd49b55b-vcwpf 2/2 Running 0 12m

echo "http://$GATEWAY_URL/productpage"

CHAPTER 1. SERVICE MESH 2.X

81

Use the Duration menu to increase the time period to help ensure older traffic is captured.

Use the Refresh Rate menu to refresh traffic more or less often, or not at all.

5. Click Services, Workloads or Istio Config to see list views of bookinfo components, and
confirm that they are healthy.

1.9.3.4. Removing the Bookinfo application

Follow these steps to remove the Bookinfo application.

Prerequisites

OpenShift Container Platform 4.1 or higher installed.

Red Hat OpenShift Service Mesh 2.3.2 installed.

Access to the OpenShift CLI (oc).

1.9.3.4.1. Delete the Bookinfo project

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Click to Home → Projects.

3. Click the bookinfo menu , and then click Delete Project.

4. Type bookinfo in the confirmation dialog box, and then click Delete.

Alternatively, you can run this command using the CLI to create the bookinfo project.

1.9.3.4.2. Remove the Bookinfo project from the Service Mesh member roll

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Click Operators → Installed Operators.

3. Click the Project menu and choose istio-system from the list.

4. Click the Istio Service Mesh Member Roll link under Provided APIS for the Red Hat
OpenShift Service Mesh Operator.

5. Click the ServiceMeshMemberRoll menu and select Edit Service Mesh Member Roll.

6. Edit the default Service Mesh Member Roll YAML and remove bookinfo from the members list.

Alternatively, you can run this command using the CLI to remove the bookinfo project from

$ oc delete project bookinfo

OpenShift Container Platform 4.9 Service Mesh

82

Alternatively, you can run this command using the CLI to remove the bookinfo project from
the ServiceMeshMemberRoll. In this example, istio-system is the name of the Service
Mesh control plane project.

7. Click Save to update Service Mesh Member Roll.

1.9.4. Next steps

To continue the installation process, you must enable sidecar injection.

1.10. ENABLING SIDECAR INJECTION

After adding the namespaces that contain your services to your mesh, the next step is to enable
automatic sidecar injection in the Deployment resource for your application. You must enable automatic
sidecar injection for each deployment.

If you have installed the Bookinfo sample application, the application was deployed and the sidecars
were injected as part of the installation procedure. If you are using your own project and service, deploy
your applications on OpenShift Container Platform. For more information, see the OpenShift Container
Platform documentation, Understanding Deployment and DeploymentConfig objects .

1.10.1. Prerequisites

Services deployed to the mesh , for example the Bookinfo sample application.

A Deployment resource file.

1.10.2. Enabling automatic sidecar injection

When deploying an application, you must opt-in to injection by configuring the annotation
sidecar.istio.io/inject in spec.template.metadata.annotations to true in the deployment object.
Opting in ensures that the sidecar injection does not interfere with other OpenShift Container Platform
features such as builder pods used by numerous frameworks within the OpenShift Container Platform
ecosystem.

Prerequisites

Identify the namespaces that are part of your service mesh and the deployments that need
automatic sidecar injection.

Procedure

1. To find your deployments use the oc get command.

For example, to view the deployment file for the 'ratings-v1' microservice in the bookinfo
namespace, use the following command to see the resource in YAML format.

$ oc -n istio-system patch --type='json' smmr default -p '[{"op": "remove", "path":
"/spec/members", "value":["'"bookinfo"'"]}]'

$ oc get deployment -n <namespace>

oc get deployment -n bookinfo ratings-v1 -o yaml

CHAPTER 1. SERVICE MESH 2.X

83

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#deploying-applications-ossm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/building_applications/#understanding-deployments-and-deploymentconfigs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-tutorial-bookinfo-overview_ossm-create-mesh

2. Open the application’s deployment configuration YAML file in an editor.

3. Add spec.template.metadata.annotations.sidecar.istio/inject to your Deployment YAML and
set sidecar.istio.io/inject to true as shown in the following example.

Example snippet from bookinfo deployment-ratings-v1.yaml

4. Save the Deployment configuration file.

5. Add the file back to the project that contains your app.

In this example, bookinfo is the name of the project that contains the ratings-v1 app and
deployment-ratings-v1.yaml is the file you edited.

6. To verify that the resource uploaded successfully, run the following command.

For example,

1.10.3. Validating sidecar injection

The Kiali console offers several ways to validate whether or not your applications, services, and
workloads have a sidecar proxy.

Figure 1.3. Missing sidecar badge

apiVersion: apps/v1
kind: Deployment
metadata:
 name: ratings-v1
 namespace: bookinfo
 labels:
 app: ratings
 version: v1
spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: 'true'

$ oc apply -n <namespace> -f deployment.yaml

$ oc apply -n bookinfo -f deployment-ratings-v1.yaml

$ oc get deployment -n <namespace> <deploymentName> -o yaml

$ oc get deployment -n bookinfo ratings-v1 -o yaml

OpenShift Container Platform 4.9 Service Mesh

84

Figure 1.3. Missing sidecar badge

The Graph page displays a node badge indicating a Missing Sidecar on the following graphs:

App graph

Versioned app graph

Workload graph

Figure 1.4. Missing sidecar icon

The Applications page displays a Missing Sidecar icon in the Details column for any applications in a
namespace that do not have a sidecar.

The Workloads page displays a Missing Sidecar icon in the Details column for any applications in a
namespace that do not have a sidecar.

The Services page displays a Missing Sidecar icon in the Details column for any applications in a
namespace that do not have a sidecar. When there are multiple versions of a service, you use the
Service Details page to view Missing Sidecar icons.

The Workload Details page has a special unified Logs tab that lets you view and correlate application
and proxy logs. You can view the Envoy logs as another way to validate sidecar injection for your
application workloads.

The Workload Details page also has an Envoy tab for any workload that is an Envoy proxy or has been
injected with an Envoy proxy. This tab displays a built-in Envoy dashboard that includes subtabs for
Clusters, Listeners, Routes, Bootstrap, Config, and Metrics.

For information about enabling Envoy access logs, see the Troubleshooting section.

For information about viewing Envoy logs, see Viewing logs in the Kiali console

1.10.4. Setting proxy environment variables through annotations

Configuration for the Envoy sidecar proxies is managed by the ServiceMeshControlPlane.

You can set environment variables for the sidecar proxy for applications by adding pod annotations to

CHAPTER 1. SERVICE MESH 2.X

85

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#enabling-envoy-access-logs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-viewing-logs_observability

You can set environment variables for the sidecar proxy for applications by adding pod annotations to
the deployment in the injection-template.yaml file. The environment variables are injected to the
sidecar.

Example injection-template.yaml

WARNING

You should never include maistra.io/ labels and annotations when creating your
own custom resources. These labels and annotations indicate that the resources
are generated and managed by the Operator. If you are copying content from an
Operator-generated resource when creating your own resources, do not include
labels or annotations that start with maistra.io/. Resources that include these labels
or annotations will be overwritten or deleted by the Operator during the next
reconciliation.

1.10.5. Updating sidecar proxies

In order to update the configuration for sidecar proxies the application administrator must restart the
application pods.

If your deployment uses automatic sidecar injection, you can update the pod template in the
deployment by adding or modifying an annotation. Run the following command to redeploy the pods:

If your deployment does not use automatic sidecar injection, you must manually update the sidecars by
modifying the sidecar container image specified in the deployment or pod, and then restart the pods.

1.10.6. Next steps

Configure Red Hat OpenShift Service Mesh features for your environment.

Security

apiVersion: apps/v1
kind: Deployment
metadata:
 name: resource
spec:
 replicas: 7
 selector:
 matchLabels:
 app: resource
 template:
 metadata:
 annotations:
 sidecar.maistra.io/proxyEnv: "{ \"maistra_test_env\": \"env_value\", \"maistra_test_env_2\":
\"env_value_2\" }"



$ oc patch deployment/<deployment> -p '{"spec":{"template":{"metadata":{"annotations":
{"kubectl.kubernetes.io/restartedAt": "'`date -Iseconds`'"}}}}}'

OpenShift Container Platform 4.9 Service Mesh

86

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-security

Traffic management

Metrics, logs, and traces

1.11. UPGRADING SERVICE MESH

To access the most current features of Red Hat OpenShift Service Mesh, upgrade to the current
version, 2.3.2.

1.11.1. Understanding versioning

Red Hat uses semantic versioning for product releases. Semantic Versioning is a 3-component number
in the format of X.Y.Z, where:

X stands for a Major version. Major releases usually denote some sort of breaking change:
architectural changes, API changes, schema changes, and similar major updates.

Y stands for a Minor version. Minor releases contain new features and functionality while
maintaining backwards compatibility.

Z stands for a Patch version (also known as a z-stream release). Patch releases are used to
addresses Common Vulnerabilities and Exposures (CVEs) and release bug fixes. New features
and functionality are generally not released as part of a Patch release.

1.11.1.1. How versioning affects Service Mesh upgrades

Depending on the version of the update you are making, the upgrade process is different.

Patch updates - Patch upgrades are managed by the Operator Lifecycle Manager (OLM); they
happen automatically when you update your Operators.

Minor upgrades - Minor upgrades require both updating to the most recent Red Hat OpenShift
Service Mesh Operator version and manually modifying the spec.version value in your
ServiceMeshControlPlane resources.

Major upgrades - Major upgrades require both updating to the most recent Red Hat OpenShift
Service Mesh Operator version and manually modifying the spec.version value in your
ServiceMeshControlPlane resources. Because major upgrades can contain changes that are
not backwards compatible, additional manual changes might be required.

1.11.1.2. Understanding Service Mesh versions

In order to understand what version of Red Hat OpenShift Service Mesh you have deployed on your
system, you need to understand how each of the component versions is managed.

Operator version - The most current Operator version is 2.3.2. The Operator version number
only indicates the version of the currently installed Operator. Because the Red Hat OpenShift
Service Mesh Operator supports multiple versions of the Service Mesh control plane, the
version of the Operator does not determine the version of your deployed
ServiceMeshControlPlane resources.

IMPORTANT

CHAPTER 1. SERVICE MESH 2.X

87

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-routing-traffic
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-observability

IMPORTANT

Upgrading to the latest Operator version automatically applies patch updates,
but does not automatically upgrade your Service Mesh control plane to the latest
minor version.

ServiceMeshControlPlane version - The ServiceMeshControlPlane version determines what
version of Red Hat OpenShift Service Mesh you are using. The value of the spec.version field in
the ServiceMeshControlPlane resource controls the architecture and configuration settings
that are used to install and deploy Red Hat OpenShift Service Mesh. When you create the
Service Mesh control plane you can set the version in one of two ways:

To configure in the Form View, select the version from the Control Plane Version menu.

To configure in the YAML View, set the value for spec.version in the YAML file.

Operator Lifecycle Manager (OLM) does not manage Service Mesh control plane upgrades, so the
version number for your Operator and ServiceMeshControlPlane (SMCP) may not match, unless you
have manually upgraded your SMCP.

1.11.2. Upgrade considerations

The maistra.io/ label or annotation should not be used on a user-created custom resource, because it
indicates that the resource was generated by and should be managed by the Red Hat OpenShift Service
Mesh Operator.

WARNING

During the upgrade, the Operator makes changes, including deleting or replacing
files, to resources that include the following labels or annotations that indicate that
the resource is managed by the Operator.

Before upgrading check for user-created custom resources that include the following labels or
annotations:

maistra.io/ AND the app.kubernetes.io/managed-by label set to maistra-istio-operator (Red
Hat OpenShift Service Mesh)

kiali.io/ (Kiali)

jaegertracing.io/ (Red Hat OpenShift distributed tracing platform)

logging.openshift.io/ (Red Hat Elasticsearch)

Before upgrading, check your user-created custom resources for labels or annotations that indicate
they are Operator managed. Remove the label or annotation from custom resources that you do not
want to be managed by the Operator.

When upgrading to version 2.0, the Operator only deletes resources with these labels in the same
namespace as the SMCP.



OpenShift Container Platform 4.9 Service Mesh

88

When upgrading to version 2.1, the Operator deletes resources with these labels in all namespaces.

1.11.2.1. Known issues that may affect upgrade

Known issues that may affect your upgrade include:

Red Hat OpenShift Service Mesh does not support the use of EnvoyFilter configuration except
where explicitly documented. This is due to tight coupling with the underlying Envoy APIs,
meaning that backward compatibility cannot be maintained. If you are using Envoy Filters, and
the configuration generated by Istio has changed due to the lastest version of Envoy introduced
by upgrading your ServiceMeshControlPlane, that has the potential to break any EnvoyFilter
you may have implemented.

OSSM-1505 ServiceMeshExtension does not work with OpenShift Container Platform version
4.11. Because ServiceMeshExtension has been deprecated in Red Hat OpenShift Service Mesh
2.2, this known issue will not be fixed and you must migrate your extensions to WasmPluging

OSSM-1396 If a gateway resource contains the spec.externalIPs setting, rather than being
recreated when the ServiceMeshControlPlane is updated, the gateway is removed and never
recreated.

OSSM-1052 When configuring a Service ExternalIP for the ingressgateway in the Service Mesh
control plane, the service is not created. The schema for the SMCP is missing the parameter for
the service.
Workaround: Disable the gateway creation in the SMCP spec and manage the gateway
deployment entirely manually (including Service, Role and RoleBinding).

1.11.3. Upgrading the Operators

In order to keep your Service Mesh patched with the latest security fixes, bug fixes, and software
updates, you must keep your Operators updated. You initiate patch updates by upgrading your
Operators.

IMPORTANT

The version of the Operator does not determine the version of your service mesh. The
version of your deployed Service Mesh control plane determines your version of Service
Mesh.

Because the Red Hat OpenShift Service Mesh Operator supports multiple versions of the Service Mesh
control plane, updating the Red Hat OpenShift Service Mesh Operator does not update the
spec.version value of your deployed ServiceMeshControlPlane. Also note that the spec.version
value is a two digit number, for example 2.2, and that patch updates, for example 2.2.1, are not reflected
in the SMCP version value.

Operator Lifecycle Manager (OLM) controls the installation, upgrade, and role-based access control
(RBAC) of Operators in a cluster. The OLM runs by default in OpenShift Container Platform. OLM
queries for available Operators as well as upgrades for installed Operators.

Whether or not you have to take action to upgrade your Operators depends on the settings you selected
when installing them. When you installed each of your Operators, you selected an Update Channel and
an Approval Strategy. The combination of these two settings determine when and how your Operators
are updated.

Table 1.4. Interaction of Update Channel and Approval Strategy

CHAPTER 1. SERVICE MESH 2.X

89

https://issues.redhat.com/browse/OSSM-1505
https://issues.redhat.com/browse/OSSM-1396
https://issues.redhat.com/browse/OSSM-1052

 Versioned channel "Stable" or "Preview" Channel

Automatic Automatically updates the
Operator for minor and patch
releases for that version only. Will
not automatically update to the
next major version (that is, from
version 2.0 to 3.0). Manual
change to Operator subscription
required to update to the next
major version.

Automatically updates Operator
for all major, minor, and patch
releases.

Manual Manual updates required for
minor and patch releases for the
specified version. Manual change
to Operator subscription required
to update to the next major
version.

Manual updates required for all
major, minor, and patch releases.

When you update your Red Hat OpenShift Service Mesh Operator the Operator Lifecycle Manager
(OLM) removes the old Operator pod and starts a new pod. Once the new Operator pod starts, the
reconciliation process checks the ServiceMeshControlPlane (SMCP), and if there are updated
container images available for any of the Service Mesh control plane components, it replaces those
Service Mesh control plane pods with ones that use the new container images.

When you upgrade the Kiali and Red Hat OpenShift distributed tracing platform Operators, the OLM
reconciliation process scans the cluster and upgrades the managed instances to the version of the new
Operator. For example, if you update the Red Hat OpenShift distributed tracing platform Operator from
version 1.30.2 to version 1.34.1, the Operator scans for running instances of distributed tracing platform
and upgrades them to 1.34.1 as well.

To stay on a particular patch version of Red Hat OpenShift Service Mesh, you would need to disable
automatic updates and remain on that specific version of the Operator.

For more information about upgrading Operators, refer to the Operator Lifecycle Manager
documentation.

1.11.4. Upgrading the control plane

You must manually update the control plane for minor and major releases. The community Istio project
recommends canary upgrades, Red Hat OpenShift Service Mesh only supports in-place upgrades. Red
Hat OpenShift Service Mesh requires that you upgrade from each minor release to the next minor
release in sequence. For example, you must upgrade from version 2.0 to version 2.1, and then upgrade to
version 2.2. You cannot update from Red Hat OpenShift Service Mesh 2.0 to 2.2 directly.

When you upgrade the service mesh control plane, all Operator managed resources, for example
gateways, are also upgraded.

Although you can deploy multiple versions of the control plane in the same cluster, Red Hat OpenShift
Service Mesh does not support canary upgrades of the service mesh. That is, you can have different
SCMP resources with different values for spec.version, but they cannot be managing the same mesh.

For more information about migrating your extensions, refer to Migrating from ServiceMeshExtension to
WasmPlugin resources.

OpenShift Container Platform 4.9 Service Mesh

90

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/operators/#updating-installed-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-extensions-migration-overview_ossm-extensions

1.11.4.1. Upgrade changes from version 2.2 to version 2.3

Upgrading the Service Mesh control plane from version 2.2 to 2.3 introduces the following behavioral
changes:

This release requires use of the WasmPlugin API. Support for the ServiceMeshExtension API,
which was deprecated in 2.2, has now been removed. If you attempt to upgrade while using the
ServiceMeshExtension API, then the upgrade fails.

1.11.4.2. Upgrade changes from version 2.1 to version 2.2

Upgrading the Service Mesh control plane from version 2.1 to 2.2 introduces the following behavioral
changes:

The istio-node DaemonSet is renamed to istio-cni-node to match the name in upstream Istio.

Istio 1.10 updated Envoy to send traffic to the application container using eth0 rather than lo by
default.

This release adds support for the WasmPlugin API and deprecates the
ServiceMeshExtension API.

1.11.4.3. Upgrade changes from version 2.0 to version 2.1

Upgrading the Service Mesh control plane from version 2.0 to 2.1 introduces the following architectural
and behavioral changes.

Architecture changes

Mixer has been completely removed in Red Hat OpenShift Service Mesh 2.1. Upgrading from a Red Hat
OpenShift Service Mesh 2.0.x release to 2.1 will be blocked if Mixer is enabled.

If you see the following message when upgrading from v2.0 to v2.1, update the existing Mixer type to
Istiod type in the existing Control Plane spec before you update the .spec.version field:

For example:

Behavioral changes

AuthorizationPolicy updates:

An error occurred
admission webhook smcp.validation.maistra.io denied the request: [support for policy.type "Mixer"
and policy.Mixer options have been removed in v2.1, please use another alternative, support for
telemetry.type "Mixer" and telemetry.Mixer options have been removed in v2.1, please use another
alternative]”

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 policy:
 type: Istiod
 telemetry:
 type: Istiod
 version: v2.3

CHAPTER 1. SERVICE MESH 2.X

91

With the PROXY protocol, if you’re using ipBlocks and notIpBlocks to specify remote IP
addresses, update the configuration to use remoteIpBlocks and notRemoteIpBlocks
instead.

Added support for nested JSON Web Token (JWT) claims.

EnvoyFilter breaking changes>

Must use typed_config

xDS v2 is no longer supported

Deprecated filter names

Older versions of proxies may report 503 status codes when receiving 1xx or 204 status codes
from newer proxies.

1.11.4.4. Upgrading the Service Mesh control plane

To upgrade Red Hat OpenShift Service Mesh, you must update the version field of the Red Hat
OpenShift Service Mesh ServiceMeshControlPlane v2 resource. Then, once it is configured and
applied, restart the application pods to update each sidecar proxy and its configuration.

Prerequisites

You are running OpenShift Container Platform 4.9 or later.

You have the latest Red Hat OpenShift Service Mesh Operator.

Procedure

1. Switch to the project that contains your ServiceMeshControlPlane resource. In this example,
istio-system is the name of the Service Mesh control plane project.

2. Check your v2 ServiceMeshControlPlane resource configuration to verify it is valid.

a. Run the following command to view your ServiceMeshControlPlane resource as a v2
resource.

TIP

Back up your Service Mesh control plane configuration.

3. Update the .spec.version field and apply the configuration.
For example:

$ oc project istio-system

$ oc get smcp -o yaml

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:

OpenShift Container Platform 4.9 Service Mesh

92

Alternatively, instead of using the command line, you can use the web console to edit the
Service Mesh control plane. In the OpenShift Container Platform web console, click Project and
select the project name you just entered.

a. Click Operators → Installed Operators.

b. Find your ServiceMeshControlPlane instance.

c. Select YAML view and update text of the YAML file, as shown in the previous example.

d. Click Save.

1.11.4.5. Migrating Red Hat OpenShift Service Mesh from version 1.1 to version 2.0

Upgrading from version 1.1 to 2.0 requires manual steps that migrate your workloads and application to a
new instance of Red Hat OpenShift Service Mesh running the new version.

Prerequisites

You must upgrade to OpenShift Container Platform 4.7. before you upgrade to Red Hat
OpenShift Service Mesh 2.0.

You must have Red Hat OpenShift Service Mesh version 2.0 operator. If you selected the
automatic upgrade path, the operator automatically downloads the latest information.
However, there are steps you must take to use the features in Red Hat OpenShift Service Mesh
version 2.0.

1.11.4.5.1. Upgrading Red Hat OpenShift Service Mesh

To upgrade Red Hat OpenShift Service Mesh, you must create an instance of Red Hat OpenShift
Service Mesh ServiceMeshControlPlane v2 resource in a new namespace. Then, once it’s configured,
move your microservice applications and workloads from your old mesh to the new service mesh.

Procedure

1. Check your v1 ServiceMeshControlPlane resource configuration to make sure it is valid.

a. Run the following command to view your ServiceMeshControlPlane resource as a v2
resource.

b. Check the spec.techPreview.errored.message field in the output for information about
any invalid fields.

c. If there are invalid fields in your v1 resource, the resource is not reconciled and cannot be
edited as a v2 resource. All updates to v2 fields will be overridden by the original v1 settings.
To fix the invalid fields, you can replace, patch, or edit the v1 version of the resource. You
can also delete the resource without fixing it. After the resource has been fixed, it can be
reconciled, and you can to modify or view the v2 version of the resource.

d. To fix the resource by editing a file, use oc get to retrieve the resource, edit the text file

 name: basic
spec:
 version: v2.3

$ oc get smcp -o yaml

CHAPTER 1. SERVICE MESH 2.X

93

d. To fix the resource by editing a file, use oc get to retrieve the resource, edit the text file
locally, and replace the resource with the file you edited.

e. To fix the resource using patching, use oc patch.

f. To fix the resource by editing with command line tools, use oc edit.

2. Back up your Service Mesh control plane configuration. Switch to the project that contains your
ServiceMeshControlPlane resource. In this example, istio-system is the name of the Service
Mesh control plane project.

3. Enter the following command to retrieve the current configuration. Your <smcp_name> is
specified in the metadata of your ServiceMeshControlPlane resource, for example basic-
install or full-install.

4. Convert your ServiceMeshControlPlane to a v2 control plane version that contains information
about your configuration as a starting point.

5. Create a project. In the OpenShift Container Platform console Project menu, click New Project
and enter a name for your project, istio-system-upgrade, for example. Or, you can run this
command from the CLI.

6. Update the metadata.namespace field in your v2 ServiceMeshControlPlane with your new
project name. In this example, use istio-system-upgrade.

7. Update the version field from 1.1 to 2.0 or remove it in your v2 ServiceMeshControlPlane.

8. Create a ServiceMeshControlPlane in the new namespace. On the command line, run the
following command to deploy the control plane with the v2 version of the
ServiceMeshControlPlane that you retrieved. In this example, replace `<smcp_name.v2> `with
the path to your file.

Alternatively, you can use the console to create the Service Mesh control plane. In the

$ oc get smcp.v1.maistra.io <smcp_name> > smcp-resource.yaml
#Edit the smcp-resource.yaml file.
$ oc replace -f smcp-resource.yaml

$ oc patch smcp.v1.maistra.io <smcp_name> --type json --patch '[{"op":
"replace","path":"/spec/path/to/bad/setting","value":"corrected-value"}]'

$ oc edit smcp.v1.maistra.io <smcp_name>

$ oc project istio-system

$ oc get servicemeshcontrolplanes.v1.maistra.io <smcp_name> -o yaml >
<smcp_name>.v1.yaml

$ oc get smcp <smcp_name> -o yaml > <smcp_name>.v2.yaml

$ oc new-project istio-system-upgrade

$ oc create -n istio-system-upgrade -f <smcp_name>.v2.yaml

OpenShift Container Platform 4.9 Service Mesh

94

Alternatively, you can use the console to create the Service Mesh control plane. In the
OpenShift Container Platform web console, click Project. Then, select the project name you
just entered.

a. Click Operators → Installed Operators.

b. Click Create ServiceMeshControlPlane.

c. Select YAML view and paste text of the YAML file you retrieved into the field. Check that
the apiVersion field is set to maistra.io/v2 and modify the metadata.namespace field to
use the new namespace, for example istio-system-upgrade.

d. Click Create.

1.11.4.5.2. Configuring the 2.0 ServiceMeshControlPlane

The ServiceMeshControlPlane resource has been changed for Red Hat OpenShift Service Mesh
version 2.0. After you created a v2 version of the ServiceMeshControlPlane resource, modify it to take
advantage of the new features and to fit your deployment. Consider the following changes to the
specification and behavior of Red Hat OpenShift Service Mesh 2.0 as you’re modifying your
ServiceMeshControlPlane resource. You can also refer to the Red Hat OpenShift Service Mesh 2.0
product documentation for new information to features you use. The v2 resource must be used for Red
Hat OpenShift Service Mesh 2.0 installations.

1.11.4.5.2.1. Architecture changes

The architectural units used by previous versions have been replaced by Istiod. In 2.0 the Service Mesh
control plane components Mixer, Pilot, Citadel, Galley, and the sidecar injector functionality have been
combined into a single component, Istiod.

Although Mixer is no longer supported as a control plane component, Mixer policy and telemetry plugins
are now supported through WASM extensions in Istiod. Mixer can be enabled for policy and telemetry if
you need to integrate legacy Mixer plugins.

Secret Discovery Service (SDS) is used to distribute certificates and keys to sidecars directly from
Istiod. In Red Hat OpenShift Service Mesh version 1.1, secrets were generated by Citadel, which were
used by the proxies to retrieve their client certificates and keys.

1.11.4.5.2.2. Annotation changes

The following annotations are no longer supported in v2.0. If you are using one of these annotations, you
must update your workload before moving it to a v2.0 Service Mesh control plane.

sidecar.maistra.io/proxyCPULimit has been replaced with sidecar.istio.io/proxyCPULimit. If
you were using sidecar.maistra.io annotations on your workloads, you must modify those
workloads to use sidecar.istio.io equivalents instead.

sidecar.maistra.io/proxyMemoryLimit has been replaced with
sidecar.istio.io/proxyMemoryLimit

sidecar.istio.io/discoveryAddress is no longer supported. Also, the default discovery address
has moved from pilot.<control_plane_namespace>.svc:15010 (or port 15011, if mtls is
enabled) to istiod-<smcp_name>.<control_plane_namespace>.svc:15012.

The health status port is no longer configurable and is hard-coded to 15021. * If you were
defining a custom status port, for example, status.sidecar.istio.io/port, you must remove the
override before moving the workload to a v2.0 Service Mesh control plane. Readiness checks

CHAPTER 1. SERVICE MESH 2.X

95

can still be disabled by setting the status port to 0.

Kubernetes Secret resources are no longer used to distribute client certificates for sidecars.
Certificates are now distributed through Istiod’s SDS service. If you were relying on mounted
secrets, they are longer available for workloads in v2.0 Service Mesh control planes.

1.11.4.5.2.3. Behavioral changes

Some features in Red Hat OpenShift Service Mesh 2.0 work differently than they did in previous
versions.

The readiness port on gateways has moved from 15020 to 15021.

The target host visibility includes VirtualService, as well as ServiceEntry resources. It includes
any restrictions applied through Sidecar resources.

Automatic mutual TLS is enabled by default. Proxy to proxy communication is automatically
configured to use mTLS, regardless of global PeerAuthentication policies in place.

Secure connections are always used when proxies communicate with the Service Mesh control
plane regardless of spec.security.controlPlane.mtls setting. The
spec.security.controlPlane.mtls setting is only used when configuring connections for Mixer
telemetry or policy.

1.11.4.5.2.4. Migration details for unsupported resources

Policy (authentication.istio.io/v1alpha1)

Policy resources must be migrated to new resource types for use with v2.0 Service Mesh control planes,
PeerAuthentication and RequestAuthentication. Depending on the specific configuration in your Policy
resource, you may have to configure multiple resources to achieve the same effect.

Mutual TLS

Mutual TLS enforcement is accomplished using the security.istio.io/v1beta1 PeerAuthentication
resource. The legacy spec.peers.mtls.mode field maps directly to the new resource’s spec.mtls.mode
field. Selection criteria has changed from specifying a service name in spec.targets[x].name to a label
selector in spec.selector.matchLabels. In PeerAuthentication, the labels must match the selector on
the services named in the targets list. Any port-specific settings will need to be mapped into
spec.portLevelMtls.

Authentication

Additional authentication methods specified in spec.origins, must be mapped into a
security.istio.io/v1beta1 RequestAuthentication resource. spec.selector.matchLabels must be
configured similarly to the same field on PeerAuthentication. Configuration specific to JWT principals
from spec.origins.jwt items map to similar fields in spec.rules items.

spec.origins[x].jwt.triggerRules specified in the Policy must be mapped into one or more
security.istio.io/v1beta1 AuthorizationPolicy resources. Any spec.selector.labels must be
configured similarly to the same field on RequestAuthentication.

spec.origins[x].jwt.triggerRules.excludedPaths must be mapped into an AuthorizationPolicy
whose spec.action is set to ALLOW, with spec.rules[x].to.operation.path entries matching the
excluded paths.

spec.origins[x].jwt.triggerRules.includedPaths must be mapped into a separate

OpenShift Container Platform 4.9 Service Mesh

96

AuthorizationPolicy whose spec.action is set to ALLOW, with spec.rules[x].to.operation.path
entries matching the included paths, and spec.rules.[x].from.source.requestPrincipals entries
that align with the specified spec.origins[x].jwt.issuer in the Policy resource.

ServiceMeshPolicy (maistra.io/v1)

ServiceMeshPolicy was configured automatically for the Service Mesh control plane through the
spec.istio.global.mtls.enabled in the v1 resource or spec.security.dataPlane.mtls in the v2 resource
setting. For v2 control planes, a functionally equivalent PeerAuthentication resource is created during
installation. This feature is deprecated in Red Hat OpenShift Service Mesh version 2.0

RbacConfig, ServiceRole, ServiceRoleBinding (rbac.istio.io/v1alpha1)

These resources were replaced by the security.istio.io/v1beta1 AuthorizationPolicy resource.

Mimicking RbacConfig behavior requires writing a default AuthorizationPolicy whose settings depend on
the spec.mode specified in the RbacConfig.

When spec.mode is set to OFF, no resource is required as the default policy is ALLOW, unless
an AuthorizationPolicy applies to the request.

When spec.mode is set to ON, set spec: {}. You must create AuthorizationPolicy policies for all
services in the mesh.

spec.mode is set to ON_WITH_INCLUSION, must create an AuthorizationPolicy with spec: {}
in each included namespace. Inclusion of individual services is not supported by
AuthorizationPolicy. However, as soon as any AuthorizationPolicy is created that applies to the
workloads for the service, all other requests not explicitly allowed will be denied.

When spec.mode is set to ON_WITH_EXCLUSION, it is not supported by AuthorizationPolicy.
A global DENY policy can be created, but an AuthorizationPolicy must be created for every
workload in the mesh because there is no allow-all policy that can be applied to either a
namespace or a workload.

AuthorizationPolicy includes configuration for both the selector to which the configuration applies,
which is similar to the function ServiceRoleBinding provides and the rules which should be applied, which
is similar to the function ServiceRole provides.

ServiceMeshRbacConfig (maistra.io/v1)

This resource is replaced by using a security.istio.io/v1beta1 AuthorizationPolicy resource with an
empty spec.selector in the Service Mesh control plane’s namespace. This policy will be the default
authorization policy applied to all workloads in the mesh. For specific migration details, see RbacConfig
above.

1.11.4.5.2.5. Mixer plugins

Mixer components are disabled by default in version 2.0. If you rely on Mixer plugins for your workload,
you must configure your version 2.0 ServiceMeshControlPlane to include the Mixer components.

To enable the Mixer policy components, add the following snippet to your ServiceMeshControlPlane.

To enable the Mixer telemetry components, add the following snippet to your

spec:
 policy:
 type: Mixer

CHAPTER 1. SERVICE MESH 2.X

97

To enable the Mixer telemetry components, add the following snippet to your
ServiceMeshControlPlane.

Legacy mixer plugins can also be migrated to WASM and integrated using the new
ServiceMeshExtension (maistra.io/v1alpha1) custom resource.

Built-in WASM filters included in the upstream Istio distribution are not available in Red Hat OpenShift
Service Mesh 2.0.

1.11.4.5.2.6. Mutual TLS changes

When using mTLS with workload specific PeerAuthentication policies, a corresponding DestinationRule
is required to allow traffic if the workload policy differs from the namespace/global policy.

Auto mTLS is enabled by default, but can be disabled by setting spec.security.dataPlane.automtls to
false in the ServiceMeshControlPlane resource. When disabling auto mTLS, DestinationRules may be
required for proper communication between services. For example, setting PeerAuthentication to
STRICT for one namespace may prevent services in other namespaces from accessing them, unless a
DestinationRule configures TLS mode for the services in the namespace.

For information about mTLS, see Enabling mutual Transport Layer Security (mTLS)

1.11.4.5.2.6.1. Other mTLS Examples

To disable mTLS For productpage service in the bookinfo sample application, your Policy resource was
configured the following way for Red Hat OpenShift Service Mesh v1.1.

Example Policy resource

To disable mTLS For productpage service in the bookinfo sample application, use the following example
to configure your PeerAuthentication resource for Red Hat OpenShift Service Mesh v2.0.

Example PeerAuthentication resource

spec:
 telemetry:
 type: Mixer

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: productpage-mTLS-disable
 namespace: <namespace>
spec:
 targets:
 - name: productpage

apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: productpage-mTLS-disable
 namespace: <namespace>
spec:
 mtls:
 mode: DISABLE

OpenShift Container Platform 4.9 Service Mesh

98

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-security-mtls_ossm-security

To enable mTLS With JWT authentication for the productpage service in the bookinfo sample
application, your Policy resource was configured the following way for Red Hat OpenShift Service Mesh
v1.1.

Example Policy resource

To enable mTLS With JWT authentication for the productpage service in the bookinfo sample
application, use the following example to configure your PeerAuthentication resource for Red Hat
OpenShift Service Mesh v2.0.

Example PeerAuthentication resource

 selector:
 matchLabels:
 # this should match the selector for the "productpage" service
 app: productpage

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: productpage-mTLS-with-JWT
 namespace: <namespace>
spec:
 targets:
 - name: productpage
 ports:
 - number: 9000
 peers:
 - mtls:
 origins:
 - jwt:
 issuer: "https://securetoken.google.com"
 audiences:
 - "productpage"
 jwksUri: "https://www.googleapis.com/oauth2/v1/certs"
 jwtHeaders:
 - "x-goog-iap-jwt-assertion"
 triggerRules:
 - excludedPaths:
 - exact: /health_check
 principalBinding: USE_ORIGIN

#require mtls for productpage:9000
apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: productpage-mTLS-with-JWT
 namespace: <namespace>
spec:
 selector:
 matchLabels:
 # this should match the selector for the "productpage" service
 app: productpage
 portLevelMtls:
 9000:

CHAPTER 1. SERVICE MESH 2.X

99

1.11.4.5.3. Configuration recipes

You can configure the following items with these configuration recipes.

 mode: STRICT

#JWT authentication for productpage
apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: productpage-mTLS-with-JWT
 namespace: <namespace>
spec:
 selector:
 matchLabels:
 # this should match the selector for the "productpage" service
 app: productpage
 jwtRules:
 - issuer: "https://securetoken.google.com"
 audiences:
 - "productpage"
 jwksUri: "https://www.googleapis.com/oauth2/v1/certs"
 fromHeaders:
 - name: "x-goog-iap-jwt-assertion"

#Require JWT token to access product page service from
#any client to all paths except /health_check
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: productpage-mTLS-with-JWT
 namespace: <namespace>
spec:
 action: ALLOW
 selector:
 matchLabels:
 # this should match the selector for the "productpage" service
 app: productpage
 rules:
 - to: # require JWT token to access all other paths
 - operation:
 notPaths:
 - /health_check
 from:
 - source:
 # if using principalBinding: USE_PEER in the Policy,
 # then use principals, e.g.
 # principals:
 # - “*”
 requestPrincipals:
 - “*”
 - to: # no JWT token required to access health_check
 - operation:
 paths:
 - /health_check

OpenShift Container Platform 4.9 Service Mesh

100

1.11.4.5.3.1. Mutual TLS in a data plane

Mutual TLS for data plane communication is configured through spec.security.dataPlane.mtls in the
ServiceMeshControlPlane resource, which is false by default.

1.11.4.5.3.2. Custom signing key

Istiod manages client certificates and private keys used by service proxies. By default, Istiod uses a self-
signed certificate for signing, but you can configure a custom certificate and private key. For more
information about how to configure signing keys, see Adding an external certificate authority key and
certificate

1.11.4.5.3.3. Tracing

Tracing is configured in spec.tracing. Currently, the only type of tracer that is supported is Jaeger.
Sampling is a scaled integer representing 0.01% increments, for example, 1 is 0.01% and 10000 is 100%.
The tracing implementation and sampling rate can be specified:

Jaeger is configured in the addons section of the ServiceMeshControlPlane resource.

The Jaeger installation can be customized with the install field. Container configuration, such as
resource limits is configured in spec.runtime.components.jaeger related fields. If a Jaeger resource

spec:
 tracing:
 sampling: 100 # 1%
 type: Jaeger

spec:
 addons:
 jaeger:
 name: jaeger
 install:
 storage:
 type: Memory # or Elasticsearch for production mode
 memory:
 maxTraces: 100000
 elasticsearch: # the following values only apply if storage:type:=Elasticsearch
 storage: # specific storageclass configuration for the Jaeger Elasticsearch (optional)
 size: "100G"
 storageClassName: "storageclass"
 nodeCount: 3
 redundancyPolicy: SingleRedundancy
 runtime:
 components:
 tracing.jaeger: {} # general Jaeger specific runtime configuration (optional)
 tracing.jaeger.elasticsearch: #runtime configuration for Jaeger Elasticsearch deployment
(optional)
 container:
 resources:
 requests:
 memory: "1Gi"
 cpu: "500m"
 limits:
 memory: "1Gi"

CHAPTER 1. SERVICE MESH 2.X

101

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-cert-manage_ossm-security

matching the value of spec.addons.jaeger.name exists, the Service Mesh control plane will be
configured to use the existing installation. Use an existing Jaeger resource to fully customize your
Jaeger installation.

1.11.4.5.3.4. Visualization

Kiali and Grafana are configured under the addons section of the ServiceMeshControlPlane resource.

The Grafana and Kiali installations can be customized through their respective install fields. Container
customization, such as resource limits, is configured in spec.runtime.components.kiali and
spec.runtime.components.grafana. If an existing Kiali resource matching the value of name exists, the
Service Mesh control plane configures the Kiali resource for use with the control plane. Some fields in
the Kiali resource are overridden, such as the accessible_namespaces list, as well as the endpoints for
Grafana, Prometheus, and tracing. Use an existing resource to fully customize your Kiali installation.

1.11.4.5.3.5. Resource utilization and scheduling

Resources are configured under spec.runtime.<component>. The following component names are
supported.

Component Description Versions supported

security Citadel container v1.0/1.1

galley Galley container v1.0/1.1

pilot Pilot/Istiod container v1.0/1.1/2.0

mixer istio-telemetry and istio-policy
containers

v1.0/1.1

mixer.policy istio-policy container v2.0

mixer.telemetry istio-telemetry container v2.0

global.ouathproxy oauth-proxy container used with
various addons

v1.0/1.1/2.0

sidecarInjectorWebhook sidecar injector webhook
container

v1.0/1.1

spec:
 addons:
 grafana:
 enabled: true
 install: {} # customize install
 kiali:
 enabled: true
 name: kiali
 install: {} # customize install

OpenShift Container Platform 4.9 Service Mesh

102

tracing.jaeger general Jaeger container - not all
settings may be applied.
Complete customization of
Jaeger installation is supported
by specifying an existing Jaeger
resource in the Service Mesh
control plane configuration.

v1.0/1.1/2.0

tracing.jaeger.agent settings specific to Jaeger agent v1.0/1.1/2.0

tracing.jaeger.allInOne settings specific to Jaeger
allInOne

v1.0/1.1/2.0

tracing.jaeger.collector settings specific to Jaeger
collector

v1.0/1.1/2.0

tracing.jaeger.elasticsearch settings specific to Jaeger
elasticsearch deployment

v1.0/1.1/2.0

tracing.jaeger.query settings specific to Jaeger query v1.0/1.1/2.0

prometheus prometheus container v1.0/1.1/2.0

kiali Kiali container - complete
customization of Kiali installation
is supported by specifying an
existing Kiali resource in the
Service Mesh control plane
configuration.

v1.0/1.1/2.0

grafana Grafana container v1.0/1.1/2.0

3scale 3scale container v1.0/1.1/2.0

wasmExtensions.cacher WASM extensions cacher
container

v2.0 - tech preview

Component Description Versions supported

Some components support resource limiting and scheduling. For more information, see Performance
and scalability.

1.11.4.5.4. Next steps for migrating your applications and workloads

Move the application workload to the new mesh and remove the old instances to complete your
upgrade.

1.11.5. Upgrading the data plane

CHAPTER 1. SERVICE MESH 2.X

103

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-performance-scalability

Your data plane will still function after you have upgraded the control plane. But in order to apply
updates to the Envoy proxy and any changes to the proxy configuration, you must restart your
application pods and workloads.

1.11.5.1. Updating your applications and workloads

To complete the migration, restart all of the application pods in the mesh to upgrade the Envoy sidecar
proxies and their configuration.

To perform a rolling update of a deployment use the following command:

You must perform a rolling update for all applications that make up the mesh.

1.12. MANAGING USERS AND PROFILES

1.12.1. Creating the Red Hat OpenShift Service Mesh members

ServiceMeshMember resources provide a way for Red Hat OpenShift Service Mesh administrators to
delegate permissions to add projects to a service mesh, even when the respective users don’t have
direct access to the service mesh project or member roll. While project administrators are automatically
given permission to create the ServiceMeshMember resource in their project, they cannot point it to
any ServiceMeshControlPlane until the service mesh administrator explicitly grants access to the
service mesh. Administrators can grant users permissions to access the mesh by granting them the
mesh-user user role. In this example, istio-system is the name of the Service Mesh control plane
project.

Administrators can modify the mesh-user role binding in the Service Mesh control plane project to
specify the users and groups that are granted access. The ServiceMeshMember adds the project to
the ServiceMeshMemberRoll within the Service Mesh control plane project that it references.

The mesh-users role binding is created automatically after the administrator creates the
ServiceMeshControlPlane resource. An administrator can use the following command to add a role to a
user.

The administrator can also create the mesh-user role binding before the administrator creates the
ServiceMeshControlPlane resource. For example, the administrator can create it in the same oc apply
operation as the ServiceMeshControlPlane resource.

$ oc rollout restart <deployment>

$ oc policy add-role-to-user -n istio-system --role-namespace istio-system mesh-user <user_name>

apiVersion: maistra.io/v1
kind: ServiceMeshMember
metadata:
 name: default
spec:
 controlPlaneRef:
 namespace: istio-system
 name: basic

$ oc policy add-role-to-user

OpenShift Container Platform 4.9 Service Mesh

104

This example adds a role binding for alice:

1.12.2. Creating Service Mesh control plane profiles

You can create reusable configurations with ServiceMeshControlPlane profiles. Individual users can
extend the profiles they create with their own configurations. Profiles can also inherit configuration
information from other profiles. For example, you can create an accounting control plane for the
accounting team and a marketing control plane for the marketing team. If you create a development
template and a production template, members of the marketing team and the accounting team can
extend the development and production profiles with team-specific customization.

When you configure Service Mesh control plane profiles, which follow the same syntax as the
ServiceMeshControlPlane, users inherit settings in a hierarchical fashion. The Operator is delivered
with a default profile with default settings for Red Hat OpenShift Service Mesh.

1.12.2.1. Creating the ConfigMap

To add custom profiles, you must create a ConfigMap named smcp-templates in the openshift-
operators project. The Operator container automatically mounts the ConfigMap.

Prerequisites

An installed, verified Service Mesh Operator.

An account with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must
have an account with the dedicated-admin role.

Location of the Operator deployment.

Access to the OpenShift CLI (oc).

Procedure

1. Log in to the OpenShift Container Platform CLI as a cluster-admin. If you use Red Hat
OpenShift Dedicated, you must have an account with the dedicated-admin role.

2. From the CLI, run this command to create the ConfigMap named smcp-templates in the
openshift-operators project and replace <profiles-directory> with the location of the
ServiceMeshControlPlane files on your local disk:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 namespace: istio-system
 name: mesh-users
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: mesh-user
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: alice

$ oc create configmap --from-file=<profiles-directory> smcp-templates -n openshift-operators

CHAPTER 1. SERVICE MESH 2.X

105

3. You can use the profiles parameter in the ServiceMeshControlPlane to specify one or more
templates.

1.12.2.2. Setting the correct network policy

Service Mesh creates network policies in the Service Mesh control plane and member namespaces to
allow traffic between them. Before you deploy, consider the following conditions to ensure the services
in your service mesh that were previously exposed through an OpenShift Container Platform route.

Traffic into the service mesh must always go through the ingress-gateway for Istio to work
properly.

Deploy services external to the service mesh in separate namespaces that are not in any service
mesh.

Non-mesh services that need to be deployed within a service mesh enlisted namespace should
label their deployments maistra.io/expose-route: "true", which ensures OpenShift Container
Platform routes to these services still work.

1.13. SECURITY

If your service mesh application is constructed with a complex array of microservices, you can use Red
Hat OpenShift Service Mesh to customize the security of the communication between those services.
The infrastructure of OpenShift Container Platform along with the traffic management features of
Service Mesh help you manage the complexity of your applications and secure microservices.

Before you begin

If you have a project, add your project to the ServiceMeshMemberRoll resource.

If you don’t have a project, install the Bookinfo sample application and add it to the
ServiceMeshMemberRoll resource. The sample application helps illustrate security concepts.

1.13.1. About mutual Transport Layer Security (mTLS)

Mutual Transport Layer Security (mTLS) is a protocol that enables two parties to authenticate each
other. It is the default mode of authentication in some protocols (IKE, SSH) and optional in others
(TLS). You can use mTLS without changes to the application or service code. The TLS is handled
entirely by the service mesh infrastructure and between the two sidecar proxies.

By default, mTLS in Red Hat OpenShift Service Mesh is enabled and set to permissive mode, where the
sidecars in Service Mesh accept both plain-text traffic and connections that are encrypted using mTLS.
If a service in your mesh is communicating with a service outside the mesh, strict mTLS could break
communication between those services. Use permissive mode while you migrate your workloads to
Service Mesh. Then, you can enable strict mTLS across your mesh, namespace, or application.

 apiVersion: maistra.io/v2
 kind: ServiceMeshControlPlane
 metadata:
 name: basic
 spec:
 profiles:
 - default

OpenShift Container Platform 4.9 Service Mesh

106

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-member-roll-create_ossm-create-mesh
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-tutorial-bookinfo-overview_ossm-create-mesh

Enabling mTLS across your mesh at the Service Mesh control plane level secures all the traffic in your
service mesh without rewriting your applications and workloads. You can secure namespaces in your
mesh at the data plane level in the ServiceMeshControlPlane resource. To customize traffic
encryption connections, configure namespaces at the application level with PeerAuthentication and
DestinationRule resources.

1.13.1.1. Enabling strict mTLS across the service mesh

If your workloads do not communicate with outside services, you can quickly enable mTLS across your
mesh without communication interruptions. You can enable it by setting spec.security.dataPlane.mtls
to true in the ServiceMeshControlPlane resource. The Operator creates the required resources.

You can also enable mTLS by using the OpenShift Container Platform web console.

Procedure

1. Log in to the web console.

2. Click the Project menu and select the project where you installed the Service Mesh control
plane, for example istio-system.

3. Click Operators → Installed Operators.

4. Click Service Mesh Control Plane under Provided APIs.

5. Click the name of your ServiceMeshControlPlane resource, for example, basic.

6. On the Details page, click the toggle in the Security section for Data Plane Security.

1.13.1.1.1. Configuring sidecars for incoming connections for specific services

You can also configure mTLS for individual services by creating a policy.

Procedure

1. Create a YAML file using the following example.

PeerAuthentication Policy example policy.yaml

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 version: v2.3
 security:
 dataPlane:
 mtls: true

apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: default
 namespace: <namespace>
spec:
 mtls:
 mode: STRICT

CHAPTER 1. SERVICE MESH 2.X

107

a. Replace <namespace> with the namespace where the service is located.

2. Run the following command to create the resource in the namespace where the service is
located. It must match the namespace field in the Policy resource you just created.

NOTE

If you are not using automatic mTLS and you are setting PeerAuthentication to STRICT,
you must create a DestinationRule resource for your service.

1.13.1.1.2. Configuring sidecars for outgoing connections

Create a destination rule to configure Service Mesh to use mTLS when sending requests to other
services in the mesh.

Procedure

1. Create a YAML file using the following example.

DestinationRule example destination-rule.yaml

a. Replace <namespace> with the namespace where the service is located.

2. Run the following command to create the resource in the namespace where the service is
located. It must match the namespace field in the DestinationRule resource you just created.

1.13.1.1.3. Setting the minimum and maximum protocol versions

If your environment has specific requirements for encrypted traffic in your service mesh, you can control
the cryptographic functions that are allowed by setting the
spec.security.controlPlane.tls.minProtocolVersion or
spec.security.controlPlane.tls.maxProtocolVersion in your ServiceMeshControlPlane resource.
Those values, configured in your Service Mesh control plane resource, define the minimum and
maximum TLS version used by mesh components when communicating securely over TLS.

The default is TLS_AUTO and does not specify a version of TLS.

Table 1.5. Valid values

$ oc create -n <namespace> -f <policy.yaml>

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: default
 namespace: <namespace>
spec:
 host: "*.<namespace>.svc.cluster.local"
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL

$ oc create -n <namespace> -f <destination-rule.yaml>

OpenShift Container Platform 4.9 Service Mesh

108

Value Description

TLS_AUTO default

TLSv1_0 TLS version 1.0

TLSv1_1 TLS version 1.1

TLSv1_2 TLS version 1.2

TLSv1_3 TLS version 1.3

Procedure

1. Log in to the web console.

2. Click the Project menu and select the project where you installed the Service Mesh control
plane, for example istio-system.

3. Click Operators → Installed Operators.

4. Click Service Mesh Control Plane under Provided APIs.

5. Click the name of your ServiceMeshControlPlane resource, for example, basic.

6. Click the YAML tab.

7. Insert the following code snippet in the YAML editor. Replace the value in the
minProtocolVersion with the TLS version value. In this example, the minimum TLS version is
set to TLSv1_2.

ServiceMeshControlPlane snippet

8. Click Save.

9. Click Refresh to verify that the changes updated correctly.

1.13.1.2. Validating encryption with Kiali

The Kiali console offers several ways to validate whether or not your applications, services, and
workloads have mTLS encryption enabled.

Figure 1.5. Masthead icon mesh-wide mTLS enabled

kind: ServiceMeshControlPlane
spec:
 security:
 controlPlane:
 tls:
 minProtocolVersion: TLSv1_2

CHAPTER 1. SERVICE MESH 2.X

109

Figure 1.5. Masthead icon mesh-wide mTLS enabled

At the right side of the masthead, Kiali shows a lock icon when the mesh has strictly enabled mTLS for
the whole service mesh. It means that all communications in the mesh use mTLS.

Figure 1.6. Masthead icon mesh-wide mTLS partially enabled

Kiali displays a hollow lock icon when either the mesh is configured in PERMISSIVE mode or there is a
error in the mesh-wide mTLS configuration.

Figure 1.7. Security badge

The Graph page has the option to display a Security badge on the graph edges to indicate that mTLS is
enabled. To enable security badges on the graph, from the Display menu, under Show Badges, select
the Security checkbox. When an edge shows a lock icon, it means at least one request with mTLS
enabled is present. In case there are both mTLS and non-mTLS requests, the side-panel will show the
percentage of requests that use mTLS.

The Applications Detail Overview page displays a Security icon on the graph edges where at least one
request with mTLS enabled is present.

The Workloads Detail Overview page displays a Security icon on the graph edges where at least one
request with mTLS enabled is present.

The Services Detail Overview page displays a Security icon on the graph edges where at least one
request with mTLS enabled is present. Also note that Kiali displays a lock icon in the Network section
next to ports that are configured for mTLS.

OpenShift Container Platform 4.9 Service Mesh

110

1.13.2. Configuring Role Based Access Control (RBAC)

Role-based access control (RBAC) objects determine whether a user or service is allowed to perform a
given action within a project. You can define mesh-, namespace-, and workload-wide access control for
your workloads in the mesh.

To configure RBAC, create an AuthorizationPolicy resource in the namespace for which you are
configuring access. If you are configuring mesh-wide access, use the project where you installed the
Service Mesh control plane, for example istio-system.

For example, with RBAC, you can create policies that:

Configure intra-project communication.

Allow or deny full access to all workloads in the default namespace.

Allow or deny ingress gateway access.

Require a token for access.

An authorization policy includes a selector, an action, and a list of rules:

The selector field specifies the target of the policy.

The action field specifies whether to allow or deny the request.

The rules field specifies when to trigger the action.

The from field specifies constraints on the request origin.

The to field specifies constraints on request target and parameters.

The when field specifies additional conditions that to apply the rule.

Procedure

1. Create your AuthorizationPolicy resource. The following example shows a resource that
updates the ingress-policy AuthorizationPolicy to deny an IP address from accessing the
ingress gateway.

2. Run the following command after you write your resource to create your resource in your

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: ingress-policy
 namespace: istio-system
spec:
 selector:
 matchLabels:
 app: istio-ingressgateway
 action: DENY
 rules:
 - from:
 - source:
 ipBlocks: ["1.2.3.4"]

CHAPTER 1. SERVICE MESH 2.X

111

2. Run the following command after you write your resource to create your resource in your
namespace. The namespace must match your metadata.namespace field in your
AuthorizationPolicy resource.

Next steps

Consider the following examples for other common configurations.

1.13.2.1. Configure intra-project communication

You can use AuthorizationPolicy to configure your Service Mesh control plane to allow or deny the
traffic communicating with your mesh or services in your mesh.

1.13.2.1.1. Restrict access to services outside a namespace

You can deny requests from any source that is not in the bookinfo namespace with the following
AuthorizationPolicy resource example.

1.13.2.1.2. Creating allow-all and default deny-all authorization policies

The following example shows an allow-all authorization policy that allows full access to all workloads in
the bookinfo namespace.

The following example shows a policy that denies any access to all workloads in the bookinfo
namespace.

$ oc create -n istio-system -f <filename>

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin-deny
 namespace: bookinfo
spec:
 selector:
 matchLabels:
 app: httpbin
 version: v1
 action: DENY
 rules:
 - from:
 - source:
 notNamespaces: ["bookinfo"]

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: allow-all
 namespace: bookinfo
spec:
 action: ALLOW
 rules:
 - {}

OpenShift Container Platform 4.9 Service Mesh

112

1.13.2.2. Allow or deny access to the ingress gateway

You can set an authorization policy to add allow or deny lists based on IP addresses.

1.13.2.3. Restrict access with JSON Web Token

You can restrict what can access your mesh with a JSON Web Token (JWT). After authentication, a user
or service can access routes, services that are associated with that token.

Create a RequestAuthentication resource, which defines the authentication methods that are
supported by a workload. The following example accepts a JWT issued by
http://localhost:8080/auth/realms/master.

Then, create an AuthorizationPolicy resource in the same namespace to work with
RequestAuthentication resource you created. The following example requires a JWT to be present in
the Authorization header when sending a request to httpbin workloads.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: deny-all
 namespace: bookinfo
spec:
 {}

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: ingress-policy
 namespace: istio-system
spec:
 selector:
 matchLabels:
 app: istio-ingressgateway
 action: ALLOW
 rules:
 - from:
 - source:
 ipBlocks: ["1.2.3.4", "5.6.7.0/24"]

apiVersion: "security.istio.io/v1beta1"
kind: "RequestAuthentication"
metadata:
 name: "jwt-example"
 namespace: bookinfo
spec:
 selector:
 matchLabels:
 app: httpbin
 jwtRules:
 - issuer: "http://localhost:8080/auth/realms/master"
 jwksUri: "http://keycloak.default.svc:8080/auth/realms/master/protocol/openid-connect/certs"

apiVersion: "security.istio.io/v1beta1"

CHAPTER 1. SERVICE MESH 2.X

113

http://localhost:8080/auth/realms/master

1.13.3. Configuring cipher suites and ECDH curves

Cipher suites and Elliptic-curve Diffie–Hellman (ECDH curves) can help you secure your service mesh.
You can define a comma separated list of cipher suites using
spec.security.controlplane.tls.cipherSuites and ECDH curves using
spec.security.controlplane.tls.ecdhCurves in your ServiceMeshControlPlane resource. If either of
these attributes are empty, then the default values are used.

The cipherSuites setting is effective if your service mesh uses TLS 1.2 or earlier. It has no effect when
negotiating with TLS 1.3.

Set your cipher suites in the comma separated list in order of priority. For example, ecdhCurves:
CurveP256, CurveP384 sets CurveP256 as a higher priority than CurveP384.

NOTE

You must include either TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 or
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 when you configure the cipher
suite. HTTP/2 support requires at least one of these cipher suites.

The supported cipher suites are:

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

kind: "AuthorizationPolicy"
metadata:
 name: "frontend-ingress"
 namespace: bookinfo
spec:
 selector:
 matchLabels:
 app: httpbin
 action: DENY
 rules:
 - from:
 - source:
 notRequestPrincipals: ["*"]

OpenShift Container Platform 4.9 Service Mesh

114

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_128_GCM_SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384

TLS_RSA_WITH_AES_128_CBC_SHA256

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

The supported ECDH Curves are:

CurveP256

CurveP384

CurveP521

X25519

1.13.4. Adding an external certificate authority key and certificate

By default, Red Hat OpenShift Service Mesh generates a self-signed root certificate and key and uses
them to sign the workload certificates. You can also use the user-defined certificate and key to sign
workload certificates with user-defined root certificate. This task demonstrates an example to plug
certificates and key into Service Mesh.

Prerequisites

Install Red Hat OpenShift Service Mesh with mutual TLS enabled to configure certificates.

This example uses the certificates from the Maistra repository. For production, use your own
certificates from your certificate authority.

Deploy the Bookinfo sample application to verify the results with these instructions.

OpenSSL is required to verify certificates.

1.13.4.1. Adding an existing certificate and key

To use an existing signing (CA) certificate and key, you must create a chain of trust file that includes the
CA certificate, key, and root certificate. You must use the following exact file names for each of the
corresponding certificates. The CA certificate is named ca-cert.pem, the key is ca-key.pem, and the
root certificate, which signs ca-cert.pem, is named root-cert.pem. If your workload uses intermediate
certificates, you must specify them in a cert-chain.pem file.

1. Save the example certificates from the Maistra repository locally and replace <path> with the
path to your certificates.

2. Create a secret named cacert that includes the input files ca-cert.pem, ca-key.pem, root-

CHAPTER 1. SERVICE MESH 2.X

115

https://github.com/maistra/istio/tree/maistra-2.3/samples/certs
https://github.com/maistra/istio/tree/maistra-2.3/samples/certs

2. Create a secret named cacert that includes the input files ca-cert.pem, ca-key.pem, root-
cert.pem and cert-chain.pem.

3. In the ServiceMeshControlPlane resource set spec.security.dataPlane.mtls true to true and
configure the certificateAuthority field as shown in the following example. The default
rootCADir is /etc/cacerts. You do not need to set the privateKey if the key and certs are
mounted in the default location. Service Mesh reads the certificates and key from the secret-
mount files.

4. After creating/changing/deleting the cacert secret, the Service Mesh control plane istiod and
gateway pods must be restarted so the changes go into effect. Use the following command to
restart the pods:

The Operator will automatically recreate the pods after they have been deleted.

5. Restart the bookinfo application pods so that the sidecar proxies pick up the secret changes.
Use the following command to restart the pods:

You should see output similar to the following:

6. Verify that the pods were created and are ready with the following command:

1.13.4.2. Verifying your certificates

$ oc create secret generic cacerts -n istio-system --from-file=<path>/ca-cert.pem \
 --from-file=<path>/ca-key.pem --from-file=<path>/root-cert.pem \
 --from-file=<path>/cert-chain.pem

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 security:
 dataPlane:
 mtls: true
 certificateAuthority:
 type: Istiod
 istiod:
 type: PrivateKey
 privateKey:
 rootCADir: /etc/cacerts

$ oc -n istio-system delete pods -l 'app in (istiod,istio-ingressgateway, istio-egressgateway)'

$ oc -n bookinfo delete pods --all

pod "details-v1-6cd699df8c-j54nh" deleted
pod "productpage-v1-5ddcb4b84f-mtmf2" deleted
pod "ratings-v1-bdbcc68bc-kmng4" deleted
pod "reviews-v1-754ddd7b6f-lqhsv" deleted
pod "reviews-v2-675679877f-q67r2" deleted
pod "reviews-v3-79d7549c7-c2gjs" deleted

$ oc get pods -n bookinfo

OpenShift Container Platform 4.9 Service Mesh

116

Use the Bookinfo sample application to verify that the workload certificates are signed by the
certificates that were plugged into the CA. This requires you have openssl installed on your machine

1. To extract certificates from bookinfo workloads use the following command:

After running the command, you should have three files in your working directory: proxy-cert-
1.pem, proxy-cert-2.pem and proxy-cert-3.pem.

2. Verify that the root certificate is the same as the one specified by the administrator. Replace
<path> with the path to your certificates.

Run the following syntax at the terminal window.

Compare the certificates by running the following syntax at the terminal window.

You should see the following result: Files /tmp/root-cert.crt.txt and /tmp/pod-root-cert.crt.txt
are identical

3. Verify that the CA certificate is the same as the one specified by the administrator. Replace
<path> with the path to your certificates.

Run the following syntax at the terminal window.

Compare the certificates by running the following syntax at the terminal window.

You should see the following result: Files /tmp/ca-cert.crt.txt and /tmp/pod-cert-chain-
ca.crt.txt are identical.

4. Verify the certificate chain from the root certificate to the workload certificate. Replace <path>
with the path to your certificates.

$ sleep 60
$ oc -n bookinfo exec "$(oc -n bookinfo get pod -l app=productpage -o jsonpath=
{.items..metadata.name})" -c istio-proxy -- openssl s_client -showcerts -connect details:9080
> bookinfo-proxy-cert.txt
$ sed -n '/-----BEGIN CERTIFICATE-----/{:start /-----END CERTIFICATE-----/!{N;b
start};/.*/p}' bookinfo-proxy-cert.txt > certs.pem
$ awk 'BEGIN {counter=0;} /BEGIN CERT/{counter++} { print > "proxy-cert-" counter ".pem"}'
< certs.pem

$ openssl x509 -in <path>/root-cert.pem -text -noout > /tmp/root-cert.crt.txt

$ openssl x509 -in ./proxy-cert-3.pem -text -noout > /tmp/pod-root-cert.crt.txt

$ diff -s /tmp/root-cert.crt.txt /tmp/pod-root-cert.crt.txt

$ openssl x509 -in <path>/ca-cert.pem -text -noout > /tmp/ca-cert.crt.txt

$ openssl x509 -in ./proxy-cert-2.pem -text -noout > /tmp/pod-cert-chain-ca.crt.txt

$ diff -s /tmp/ca-cert.crt.txt /tmp/pod-cert-chain-ca.crt.txt

$ openssl verify -CAfile <(cat <path>/ca-cert.pem <path>/root-cert.pem) ./proxy-cert-1.pem

CHAPTER 1. SERVICE MESH 2.X

117

You should see the following result: ./proxy-cert-1.pem: OK

1.13.4.3. Removing the certificates

To remove the certificates you added, follow these steps.

1. Remove the secret cacerts. In this example, istio-system is the name of the Service Mesh
control plane project.

2. Redeploy Service Mesh with a self-signed root certificate in the ServiceMeshControlPlane
resource.

1.14. MANAGING TRAFFIC IN YOUR SERVICE MESH

Using Red Hat OpenShift Service Mesh, you can control the flow of traffic and API calls between
services. Some services in your service mesh might need to communicate within the mesh and others
might need to be hidden. You can manage the traffic to hide specific backend services, expose services,
create testing or versioning deployments, or add a security layer on a set of services.

1.14.1. Using gateways

You can use a gateway to manage inbound and outbound traffic for your mesh to specify which traffic
you want to enter or leave the mesh. Gateway configurations are applied to standalone Envoy proxies
that are running at the edge of the mesh, rather than sidecar Envoy proxies running alongside your
service workloads.

Unlike other mechanisms for controlling traffic entering your systems, such as the Kubernetes Ingress
APIs, Red Hat OpenShift Service Mesh gateways use the full power and flexibility of traffic routing.

The Red Hat OpenShift Service Mesh gateway resource can use layer 4-6 load balancing properties,
such as ports, to expose and configure Red Hat OpenShift Service Mesh TLS settings. Instead of adding
application-layer traffic routing (L7) to the same API resource, you can bind a regular Red Hat
OpenShift Service Mesh virtual service to the gateway and manage gateway traffic like any other data
plane traffic in a service mesh.

Gateways are primarily used to manage ingress traffic, but you can also configure egress gateways. An
egress gateway lets you configure a dedicated exit node for the traffic leaving the mesh. This enables
you to limit which services have access to external networks, which adds security control to your service
mesh. You can also use a gateway to configure a purely internal proxy.

Gateway example

A gateway resource describes a load balancer operating at the edge of the mesh receiving incoming or
outgoing HTTP/TCP connections. The specification describes a set of ports that should be exposed, the
type of protocol to use, SNI configuration for the load balancer, and so on.

$ oc delete secret cacerts -n istio-system

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 security:
 dataPlane:
 mtls: true

OpenShift Container Platform 4.9 Service Mesh

118

The following example shows a sample gateway configuration for external HTTPS ingress traffic:

This gateway configuration lets HTTPS traffic from ext-host.example.com into the mesh on port 443,
but doesn’t specify any routing for the traffic.

To specify routing and for the gateway to work as intended, you must also bind the gateway to a virtual
service. You do this using the virtual service’s gateways field, as shown in the following example:

You can then configure the virtual service with routing rules for the external traffic.

1.14.1.1. Enabling gateway injection

Gateway configurations apply to standalone Envoy proxies running at the edge of the mesh, rather than
sidecar Envoy proxies running alongside your service workloads. Because gateways are Envoy proxies,
you can configure Service Mesh to inject gateways automatically, similar to how you can inject sidecars.

Using automatic injection for gateways, you can deploy and manage gateways independent from the
ServiceMeshControlPlane resource and manage the gateways with your user applications. Using auto-
injection for gateway deployments gives developers full control over the gateway deployment while
simplifying operations. When a new upgrade is available, or a configuration has changed, you restart the
gateway pods to update them. Doing so makes the experience of operating a gateway deployment the
same as operating sidecars.

NOTE

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: ext-host-gwy
spec:
 selector:
 istio: ingressgateway # use istio default controller
 servers:
 - port:
 number: 443
 name: https
 protocol: HTTPS
 hosts:
 - ext-host.example.com
 tls:
 mode: SIMPLE
 serverCertificate: /tmp/tls.crt
 privateKey: /tmp/tls.key

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: virtual-svc
spec:
 hosts:
 - ext-host.example.com
 gateways:
 - ext-host-gwy

CHAPTER 1. SERVICE MESH 2.X

119

NOTE

Injection is disabled by default for the ServiceMeshControlPlane namespace, for
example the istio-system namespace. As a security best practice, deploy gateways in a
different namespace from the control plane.

1.14.1.2. Deploying automatic gateway injection

When deploying a gateway, you must opt-in to injection by adding an injection label or annotation to the
gateway deployment object. The following example deploys a gateway.

Prerequisites

The namespace must be a member of the mesh by defining it in the ServiceMeshMemberRoll
or by creating a ServiceMeshMember resource.

Procedure

1. Set a unique label for the Istio ingress gateway. This setting is required to ensure that the
gateway can select the workload. This example uses ingressgateway as the name of the
gateway.

apiVersion: v1
kind: Service
metadata:
 name: istio-ingressgateway
 namespace: istio-ingress
spec:
 type: ClusterIP
 selector:
 istio: ingressgateway
 ports:
 - name: http
 port: 80
 targetPort: 8080
 - name: https
 port: 443
 targetPort: 8443

apiVersion: apps/v1
kind: Deployment
metadata:
 name: istio-ingressgateway
 namespace: istio-ingress
spec:
 selector:
 matchLabels:
 istio: ingressgateway
 template:
 metadata:
 annotations:
 inject.istio.io/templates: gateway
 labels:
 istio: ingressgateway
 sidecar.istio.io/inject: "true" 1

OpenShift Container Platform 4.9 Service Mesh

120

1

2

Enable gateway injection by setting the sidecar.istio.io/inject field to "true".

Set the image field to auto so that the image automatically updates each time the pod
starts.

2. Set up roles to allow reading credentials for TLS.

3. Grant access to the new gateway from outside the cluster, which is required whenever
spec.security.manageNetworkPolicy is set to true.

4. Automatically scale the pod when ingress traffic increases. This example sets the minimum

 spec:
 containers:
 - name: istio-proxy
 image: auto 2

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: istio-ingressgateway-sds
 namespace: istio-ingress
rules:
 - apiGroups: [""]
 resources: ["secrets"]
 verbs: ["get", "watch", "list"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: istio-ingressgateway-sds
 namespace: istio-ingress
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: istio-ingressgateway-sds
subjects:
- kind: ServiceAccount
 name: default

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: gatewayingress
 namespace: istio-ingress
spec:
 podSelector:
 matchLabels:
 istio: ingressgateway
 ingress:
 - {}
 policyTypes:
 - Ingress

CHAPTER 1. SERVICE MESH 2.X

121

4. Automatically scale the pod when ingress traffic increases. This example sets the minimum
replicas to 2 and the maximum replicas to 5. It also creates another replica when utilization
reaches 80%.

5. Specify the minimum number of pods that must be running on the node. This example ensures
one replica is running if a pod gets restarted on a new node.

1.14.1.3. Managing ingress traffic

In Red Hat OpenShift Service Mesh, the Ingress Gateway enables features such as monitoring, security,
and route rules to apply to traffic that enters the cluster. Use a Service Mesh gateway to expose a
service outside of the service mesh.

1.14.1.3.1. Determining the ingress IP and ports

Ingress configuration differs depending on if your environment supports an external load balancer. An
external load balancer is set in the ingress IP and ports for the cluster. To determine if your cluster’s IP
and ports are configured for external load balancers, run the following command. In this example, istio-

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
 labels:
 istio: ingressgateway
 release: istio
 name: ingressgatewayhpa
 namespace: istio-ingress
spec:
 maxReplicas: 5
 metrics:
 - resource:
 name: cpu
 target:
 averageUtilization: 80
 type: Utilization
 type: Resource
 minReplicas: 2
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: istio-ingressgateway

apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
 labels:
 istio: ingressgateway
 release: istio
 name: ingressgatewaypdb
 namespace: istio-ingress
spec:
 minAvailable: 1
 selector:
 matchLabels:
 istio: ingressgateway

OpenShift Container Platform 4.9 Service Mesh

122

system is the name of the Service Mesh control plane project.

That command returns the NAME, TYPE, CLUSTER-IP, EXTERNAL-IP, PORT(S), and AGE of each
item in your namespace.

If the EXTERNAL-IP value is set, your environment has an external load balancer that you can use for
the ingress gateway.

If the EXTERNAL-IP value is <none>, or perpetually <pending>, your environment does not provide an
external load balancer for the ingress gateway. You can access the gateway using the service’s node
port.

1.14.1.3.1.1. Determining ingress ports with a load balancer

Follow these instructions if your environment has an external load balancer.

Procedure

1. Run the following command to set the ingress IP and ports. This command sets a variable in your
terminal.

2. Run the following command to set the ingress port.

3. Run the following command to set the secure ingress port.

4. Run the following command to set the TCP ingress port.

NOTE

In some environments, the load balancer may be exposed using a hostname instead of an
IP address. For that case, the ingress gateway’s EXTERNAL-IP value is not an IP address.
Instead, it’s a hostname, and the previous command fails to set the INGRESS_HOST
environment variable.

In that case, use the following command to correct the INGRESS_HOST value:

$ oc get svc istio-ingressgateway -n istio-system

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.status.loadBalancer.ingress[0].ip}')

$ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].port}')

$ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -
o jsonpath='{.spec.ports[?(@.name=="https")].port}')

$ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="tcp")].port}')

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.status.loadBalancer.ingress[0].hostname}')

CHAPTER 1. SERVICE MESH 2.X

123

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-the-node-port-service-range

1.14.1.3.1.2. Determining ingress ports without a load balancer

If your environment does not have an external load balancer, determine the ingress ports and use a node
port instead.

Procedure

1. Set the ingress ports.

2. Run the following command to set the secure ingress port.

3. Run the following command to set the TCP ingress port.

1.14.1.4. Configuring an ingress gateway

An ingress gateway is a load balancer operating at the edge of the mesh that receives incoming
HTTP/TCP connections. It configures exposed ports and protocols but does not include any traffic
routing configuration. Traffic routing for ingress traffic is instead configured with routing rules, the same
way as for internal service requests.

The following steps show how to create a gateway and configure a VirtualService to expose a service in
the Bookinfo sample application to outside traffic for paths /productpage and /login.

Procedure

1. Create a gateway to accept traffic.

a. Create a YAML file, and copy the following YAML into it.

Gateway example gateway.yaml

$ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')

$ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -
o jsonpath='{.spec.ports[?(@.name=="https")].nodePort}')

$ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="tcp")].nodePort}')

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: bookinfo-gateway
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"

OpenShift Container Platform 4.9 Service Mesh

124

b. Apply the YAML file.

2. Create a VirtualService object to rewrite the host header.

a. Create a YAML file, and copy the following YAML into it.

Virtual service example

b. Apply the YAML file.

3. Test that the gateway and VirtualService have been set correctly.

a. Set the Gateway URL.

b. Set the port number. In this example, istio-system is the name of the Service Mesh control
plane project.

$ oc apply -f gateway.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: bookinfo
spec:
 hosts:
 - "*"
 gateways:
 - bookinfo-gateway
 http:
 - match:
 - uri:
 exact: /productpage
 - uri:
 prefix: /static
 - uri:
 exact: /login
 - uri:
 exact: /logout
 - uri:
 prefix: /api/v1/products
 route:
 - destination:
 host: productpage
 port:
 number: 9080

$ oc apply -f vs.yaml

export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.host}')

export TARGET_PORT=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.port.targetPort}')

CHAPTER 1. SERVICE MESH 2.X

125

c. Test a page that has been explicitly exposed.

The expected result is 200.

1.14.2. Understanding automatic routes

OpenShift routes for gateways are automatically managed in Service Mesh. Every time an Istio Gateway
is created, updated or deleted inside the service mesh, an OpenShift route is created, updated or
deleted.

1.14.2.1. Routes with subdomains

Red Hat OpenShift Service Mesh creates the route with the subdomain, but OpenShift Container
Platform must be configured to enable it. Subdomains, for example *.domain.com, are supported, but
not by default. Configure an OpenShift Container Platform wildcard policy before configuring a wildcard
host gateway.

For more information, see Using wildcard routes .

1.14.2.2. Creating subdomain routes

The following example creates a gateway in the Bookinfo sample application, which creates subdomain
routes.

The Gateway resource creates the following OpenShift routes. You can check that the routes are
created by using the following command. In this example, istio-system is the name of the Service Mesh
control plane project.

Expected output

curl -s -I "$GATEWAY_URL/productpage"

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: gateway1
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - www.bookinfo.com
 - bookinfo.example.com

$ oc -n istio-system get routes

NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
gateway1-lvlfn bookinfo.example.com istio-ingressgateway <all> None
gateway1-scqhv www.bookinfo.com istio-ingressgateway <all> None

OpenShift Container Platform 4.9 Service Mesh

126

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#using-wildcard-routes_configuring-ingress

If you delete the gateway, Red Hat OpenShift Service Mesh deletes the routes. However, routes you
have manually created are never modified by Red Hat OpenShift Service Mesh.

1.14.2.3. Route labels and annotations

Sometimes specific labels or annotations are needed in an OpenShift route. For example, some
advanced features in OpenShift routes are managed using special annotations. See "Route-specific
annotations" in the following "Additional resources" section.

For this and other use cases, Red Hat OpenShift Service Mesh will copy all labels and annotations
present in the Istio gateway resource (with the exception of annotations starting with
kubectl.kubernetes.io) into the managed OpenShift route resource.

If you need specific labels or annotations in the OpenShift routes created by Service Mesh, create them
in the Istio gateway resource and they will be copied into the OpenShift route resources managed by
the Service Mesh.

Additional resources

Route-specific annotations.

1.14.2.4. Disabling automatic route creation

By default, the ServiceMeshControlPlane resource automatically synchronizes the Istio gateway
resources with OpenShift routes. Disabling the automatic route creation allows you more flexibility to
control routes if you have a special case or prefer to control routes manually.

1.14.2.4.1. Disabling automatic route creation for specific cases

If you want to disable the automatic management of OpenShift routes for a specific Istio gateway, you
must add the annotation maistra.io/manageRoute: false to the gateway metadata definition. Red Hat
OpenShift Service Mesh will ignore Istio gateways with this annotation, while keeping the automatic
management of the other Istio gateways.

1.14.2.4.2. Disabling automatic route creation for all cases

You can disable the automatic management of OpenShift routes for all gateways in your mesh.

Disable integration between Istio gateways and OpenShift routes by setting the
ServiceMeshControlPlane field gateways.openshiftRoute.enabled to false. For example, see the
following resource snippet.

1.14.3. Understanding service entries

A service entry adds an entry to the service registry that Red Hat OpenShift Service Mesh maintains

apiVersion: maistra.io/v1alpha1
kind: ServiceMeshControlPlane
metadata:
 namespace: istio-system
spec:
 gateways:
 openshiftRoute:
 enabled: false

CHAPTER 1. SERVICE MESH 2.X

127

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#nw-route-specific-annotations_route-configuration

A service entry adds an entry to the service registry that Red Hat OpenShift Service Mesh maintains
internally. After you add the service entry, the Envoy proxies send traffic to the service as if it is a service
in your mesh. Service entries allow you to do the following:

Manage traffic for services that run outside of the service mesh.

Redirect and forward traffic for external destinations (such as, APIs consumed from the web) or
traffic to services in legacy infrastructure.

Define retry, timeout, and fault injection policies for external destinations.

Run a mesh service in a Virtual Machine (VM) by adding VMs to your mesh.

NOTE

Add services from a different cluster to the mesh to configure a multicluster Red Hat
OpenShift Service Mesh mesh on Kubernetes.

Service entry examples

The following example is a mesh-external service entry that adds the ext-resource external dependency
to the Red Hat OpenShift Service Mesh service registry:

Specify the external resource using the hosts field. You can qualify it fully or use a wildcard prefixed
domain name.

You can configure virtual services and destination rules to control traffic to a service entry in the same
way you configure traffic for any other service in the mesh. For example, the following destination rule
configures the traffic route to use mutual TLS to secure the connection to the ext-svc.example.com
external service that is configured using the service entry:

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: svc-entry
spec:
 hosts:
 - ext-svc.example.com
 ports:
 - number: 443
 name: https
 protocol: HTTPS
 location: MESH_EXTERNAL
 resolution: DNS

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: ext-res-dr
spec:
 host: ext-svc.example.com
 trafficPolicy:
 tls:
 mode: MUTUAL

OpenShift Container Platform 4.9 Service Mesh

128

1.14.4. Using VirtualServices

You can route requests dynamically to multiple versions of a microservice through Red Hat OpenShift
Service Mesh with a virtual service. With virtual services, you can:

Address multiple application services through a single virtual service. If your mesh uses
Kubernetes, for example, you can configure a virtual service to handle all services in a specific
namespace. A virtual service enables you to turn a monolithic application into a service
consisting of distinct microservices with a seamless consumer experience.

Configure traffic rules in combination with gateways to control ingress and egress traffic.

1.14.4.1. Configuring VirtualServices

Requests are routed to services within a service mesh with virtual services. Each virtual service consists
of a set of routing rules that are evaluated in order. Red Hat OpenShift Service Mesh matches each
given request to the virtual service to a specific real destination within the mesh.

Without virtual services, Red Hat OpenShift Service Mesh distributes traffic using least requests load
balancing between all service instances. With a virtual service, you can specify traffic behavior for one or
more hostnames. Routing rules in the virtual service tell Red Hat OpenShift Service Mesh how to send
the traffic for the virtual service to appropriate destinations. Route destinations can be versions of the
same service or entirely different services.

Procedure

1. Create a YAML file using the following example to route requests to different versions of the
Bookinfo sample application service depending on which user connects to the application.

Example VirtualService.yaml

 clientCertificate: /etc/certs/myclientcert.pem
 privateKey: /etc/certs/client_private_key.pem
 caCertificates: /etc/certs/rootcacerts.pem

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 end-user:
 exact: jason
 route:
 - destination:
 host: reviews
 subset: v2
 - route:
 - destination:
 host: reviews
 subset: v3

CHAPTER 1. SERVICE MESH 2.X

129

2. Run the following command to apply VirtualService.yaml, where VirtualService.yaml is the
path to the file.

1.14.4.2. VirtualService configuration reference

Parameter Description

spec:
 hosts:

The hosts field lists the virtual service’s destination
address to which the routing rules apply. This is the
address(es) that are used to send requests to the
service. The virtual service hostname can be an IP
address, a DNS name, or a short name that resolves
to a fully qualified domain name.

spec:
 http:
 - match:

The http section contains the virtual service’s routing
rules which describe match conditions and actions for
routing HTTP/1.1, HTTP2, and gRPC traffic sent to
the destination as specified in the hosts field. A
routing rule consists of the destination where you
want the traffic to go and any specified match
conditions. The first routing rule in the example has a
condition that begins with the match field. In this
example, this routing applies to all requests from the
user jason. Add the headers, end-user, and exact
fields to select the appropriate requests.

spec:
 http:
 - match:
 - destination:

The destination field in the route section specifies
the actual destination for traffic that matches this
condition. Unlike the virtual service’s host, the
destination’s host must be a real destination that
exists in the Red Hat OpenShift Service Mesh service
registry. This can be a mesh service with proxies or a
non-mesh service added using a service entry. In this
example, the hostname is a Kubernetes service
name:

1.14.5. Understanding destination rules

Destination rules are applied after virtual service routing rules are evaluated, so they apply to the
traffic’s real destination. Virtual services route traffic to a destination. Destination rules configure what
happens to traffic at that destination.

By default, Red Hat OpenShift Service Mesh uses a least requests load balancing policy, where the
service instance in the pool with the least number of active connections receives the request. Red Hat
OpenShift Service Mesh also supports the following models, which you can specify in destination rules
for requests to a particular service or service subset.

Random: Requests are forwarded at random to instances in the pool.

Weighted: Requests are forwarded to instances in the pool according to a specific percentage.

$ oc apply -f <VirtualService.yaml>

OpenShift Container Platform 4.9 Service Mesh

130

Least requests: Requests are forwarded to instances with the least number of requests.

Destination rule example

The following example destination rule configures three different subsets for the my-svc destination
service, with different load balancing policies:

1.14.6. Understanding network policies

Red Hat OpenShift Service Mesh automatically creates and manages a number of NetworkPolicies
resources in the Service Mesh control plane and application namespaces. This is to ensure that
applications and the control plane can communicate with each other.

For example, if you have configured your OpenShift Container Platform cluster to use the SDN plugin,
Red Hat OpenShift Service Mesh creates a NetworkPolicy resource in each member project. This
enables ingress to all pods in the mesh from the other mesh members and the control plane. This also
restricts ingress to only member projects. If you require ingress from non-member projects, you need to
create a NetworkPolicy to allow that traffic through. If you remove a namespace from Service Mesh,
this NetworkPolicy resource is deleted from the project.

1.14.6.1. Disabling automatic NetworkPolicy creation

If you want to disable the automatic creation and management of NetworkPolicy resources, for
example to enforce company security policies, or to allow direct access to pods in the mesh, you can do
so. You can edit the ServiceMeshControlPlane and set spec.security.manageNetworkPolicy to
false.

NOTE

When you disable spec.security.manageNetworkPolicy Red Hat OpenShift Service
Mesh will not create any NetworkPolicy objects. The system administrator is responsible
for managing the network and fixing any issues this might cause.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: my-destination-rule
spec:
 host: my-svc
 trafficPolicy:
 loadBalancer:
 simple: RANDOM
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2
 trafficPolicy:
 loadBalancer:
 simple: ROUND_ROBIN
 - name: v3
 labels:
 version: v3

CHAPTER 1. SERVICE MESH 2.X

131

Prerequisites

Red Hat OpenShift Service Mesh Operator version 2.1.1 or higher installed.

ServiceMeshControlPlane resource updated to version 2.1 or higher.

Procedure

1. In the OpenShift Container Platform web console, click Operators → Installed Operators.

2. Select the project where you installed the Service Mesh control plane, for example istio-system,
from the Project menu.

3. Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane
column, click the name of your ServiceMeshControlPlane, for example basic-install.

4. On the Create ServiceMeshControlPlane Details page, click YAML to modify your
configuration.

5. Set the ServiceMeshControlPlane field spec.security.manageNetworkPolicy to false, as
shown in this example.

6. Click Save.

1.14.7. Configuring sidecars for traffic management

By default, Red Hat OpenShift Service Mesh configures every Envoy proxy to accept traffic on all the
ports of its associated workload, and to reach every workload in the mesh when forwarding traffic. You
can use a sidecar configuration to do the following:

Fine-tune the set of ports and protocols that an Envoy proxy accepts.

Limit the set of services that the Envoy proxy can reach.

NOTE

To optimize performance of your service mesh, consider limiting Envoy proxy
configurations.

In the Bookinfo sample application, configure a Sidecar so all services can reach other services running
in the same namespace and control plane. This Sidecar configuration is required for using Red Hat
OpenShift Service Mesh policy and telemetry features.

Procedure

1. Create a YAML file using the following example to specify that you want a sidecar configuration
to apply to all workloads in a particular namespace. Otherwise, choose specific workloads using a
workloadSelector.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 security:
 manageNetworkPolicy: false

OpenShift Container Platform 4.9 Service Mesh

132

Example sidecar.yaml

2. Run the following command to apply sidecar.yaml, where sidecar.yaml is the path to the file.

3. Run the following command to verify that the sidecar was created successfully.

1.14.8. Routing Tutorial

This guide references the Bookinfo sample application to provide examples of routing in an example
application. Install the Bookinfo application to learn how these routing examples work.

1.14.8.1. Bookinfo routing tutorial

The Service Mesh Bookinfo sample application consists of four separate microservices, each with
multiple versions. After installing the Bookinfo sample application, three different versions of the
reviews microservice run concurrently.

When you access the Bookinfo app /product page in a browser and refresh several times, sometimes the
book review output contains star ratings and other times it does not. Without an explicit default service
version to route to, Service Mesh routes requests to all available versions one after the other.

This tutorial helps you apply rules that route all traffic to v1 (version 1) of the microservices. Later, you
can apply a rule to route traffic based on the value of an HTTP request header.

Prerequisites:

Deploy the Bookinfo sample application to work with the following examples.

1.14.8.2. Applying a virtual service

In the following procedure, the virtual service routes all traffic to v1 of each micro-service by applying
virtual services that set the default version for the micro-services.

Procedure

1. Apply the virtual services.

apiVersion: networking.istio.io/v1alpha3
kind: Sidecar
metadata:
 name: default
 namespace: bookinfo
spec:
 egress:
 - hosts:
 - "./*"
 - "istio-system/*"

$ oc apply -f sidecar.yaml

$ oc get sidecar

CHAPTER 1. SERVICE MESH 2.X

133

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-tutorial-bookinfo-overview_ossm-create-mesh

2. To verify that you applied the virtual services, display the defined routes with the following
command:

That command returns a resource of kind: VirtualService in YAML format.

You have configured Service Mesh to route to the v1 version of the Bookinfo microservices including
the reviews service version 1.

1.14.8.3. Testing the new route configuration

Test the new configuration by refreshing the /productpage of the Bookinfo application.

Procedure

1. Set the value for the GATEWAY_URL parameter. You can use this variable to find the URL for
your Bookinfo product page later. In this example, istio-system is the name of the control plane
project.

2. Run the following command to retrieve the URL for the product page.

3. Open the Bookinfo site in your browser.

The reviews part of the page displays with no rating stars, no matter how many times you refresh. This is
because you configured Service Mesh to route all traffic for the reviews service to the version
reviews:v1 and this version of the service does not access the star ratings service.

Your service mesh now routes traffic to one version of a service.

1.14.8.4. Route based on user identity

Change the route configuration so that all traffic from a specific user is routed to a specific service
version. In this case, all traffic from a user named jason will be routed to the service reviews:v2.

Service Mesh does not have any special, built-in understanding of user identity. This example is enabled
by the fact that the productpage service adds a custom end-user header to all outbound HTTP
requests to the reviews service.

Procedure

1. Run the following command to enable user-based routing in the Bookinfo sample application.

$ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.3/samples/bookinfo/networking/virtual-service-all-v1.yaml

$ oc get virtualservices -o yaml

export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.host}')

echo "http://$GATEWAY_URL/productpage"

$ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.3/samples/bookinfo/networking/virtual-service-reviews-test-v2.yaml

OpenShift Container Platform 4.9 Service Mesh

134

2. Run the following command to confirm the rule is created. This command returns all resources
of kind: VirtualService in YAML format.

3. On the /productpage of the Bookinfo app, log in as user jason with no password.

4. Refresh the browser. The star ratings appear next to each review.

5. Log in as another user (pick any name you want). Refresh the browser. Now the stars are gone.
Traffic is now routed to reviews:v1 for all users except Jason.

You have successfully configured the Bookinfo sample application to route traffic based on user
identity.

1.15. METRICS, LOGS, AND TRACES

Once you have added your application to the mesh, you can observe the data flow through your
application. If you do not have your own application installed, you can see how observability works in Red
Hat OpenShift Service Mesh by installing the Bookinfo sample application.

1.15.1. Discovering console addresses

Red Hat OpenShift Service Mesh provides the following consoles to view your service mesh data:

Kiali console - Kiali is the management console for Red Hat OpenShift Service Mesh.

Jaeger console - Jaeger is the management console for Red Hat OpenShift distributed
tracing.

Grafana console - Grafana provides mesh administrators with advanced query and metrics
analysis and dashboards for Istio data. Optionally, Grafana can be used to analyze service mesh
metrics.

Prometheus console - Red Hat OpenShift Service Mesh uses Prometheus to store telemetry
information from services.

When you install the Service Mesh control plane, it automatically generates routes for each of the
installed components. Once you have the route address, you can access the Kiali, Jaeger, Prometheus,
or Grafana console to view and manage your service mesh data.

Prerequisite

The component must be enabled and installed. For example, if you did not install distributed
tracing, you will not be able to access the Jaeger console.

Procedure from OpenShift console

1. Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If
you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Navigate to Networking → Routes.

3. On the Routes page, select the Service Mesh control plane project, for example istio-system,

$ oc get virtualservice reviews -o yaml

CHAPTER 1. SERVICE MESH 2.X

135

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-tutorial-bookinfo-overview_ossm-create-mesh

3. On the Routes page, select the Service Mesh control plane project, for example istio-system,
from the Namespace menu.
The Location column displays the linked address for each route.

4. If necessary, use the filter to find the component console whose route you want to access. Click
the route Location to launch the console.

5. Click Log In With OpenShift.

Procedure from the CLI

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. If you use
Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.

2. Switch to the Service Mesh control plane project. In this example, istio-system is the Service
Mesh control plane project. Run the following command:

3. To get the routes for the various Red Hat OpenShift Service Mesh consoles, run the folowing
command:

This command returns the URLs for the Kiali, Jaeger, Prometheus, and Grafana web consoles,
and any other routes in your service mesh. You should see output similar to the following:

4. Copy the URL for the console you want to access from the HOST/PORT column into a browser
to open the console.

5. Click Log In With OpenShift.

1.15.2. Accessing the Kiali console

You can view your application’s topology, health, and metrics in the Kiali console. If your service is
experiencing problems, the Kiali console lets you view the data flow through your service. You can view
insights about the mesh components at different levels, including abstract applications, services, and
workloads. Kiali also provides an interactive graph view of your namespace in real time.

To access the Kiali console you must have Red Hat OpenShift Service Mesh installed, Kiali installed and
configured.

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

$ oc project istio-system

$ oc get routes

NAME HOST/PORT SERVICES PORT TERMINATION
bookinfo-gateway bookinfo-gateway-yourcompany.com istio-ingressgateway http2
grafana grafana-yourcompany.com grafana <all>
reencrypt/Redirect
istio-ingressgateway istio-ingress-yourcompany.com istio-ingressgateway 8080
jaeger jaeger-yourcompany.com jaeger-query <all> reencrypt
kiali kiali-yourcompany.com kiali 20001 reencrypt/Redirect
prometheus prometheus-yourcompany.com prometheus <all>
reencrypt/Redirect

OpenShift Container Platform 4.9 Service Mesh

136

The installation process creates a route to access the Kiali console.

If you know the URL for the Kiali console, you can access it directly. If you do not know the URL, use the
following directions.

Procedure for administrators

1. Log in to the OpenShift Container Platform web console with an administrator role.

2. Click Home → Projects.

3. On the Projects page, if necessary, use the filter to find the name of your project.

4. Click the name of your project, for example, bookinfo.

5. On the Project details page, in the Launcher section, click the Kiali link.

6. Log in to the Kiali console with the same user name and password that you use to access the
OpenShift Container Platform console.
When you first log in to the Kiali Console, you see the Overview page which displays all the
namespaces in your service mesh that you have permission to view.

If you are validating the console installation and namespaces have not yet been added to the
mesh, there might not be any data to display other than istio-system.

Procedure for developers

1. Log in to the OpenShift Container Platform web console with a developer role.

2. Click Project.

3. On the Project Details page, if necessary, use the filter to find the name of your project.

4. Click the name of your project, for example, bookinfo.

5. On the Project page, in the Launcher section, click the Kiali link.

6. Click Log In With OpenShift.

1.15.3. Viewing service mesh data in the Kiali console

The Kiali Graph offers a powerful visualization of your mesh traffic. The topology combines real-time
request traffic with your Istio configuration information to present immediate insight into the behavior
of your service mesh, letting you quickly pinpoint issues. Multiple Graph Types let you visualize traffic as a
high-level service topology, a low-level workload topology, or as an application-level topology.

There are several graphs to choose from:

The App graph shows an aggregate workload for all applications that are labeled the same.

The Service graph shows a node for each service in your mesh but excludes all applications and
workloads from the graph. It provides a high level view and aggregates all traffic for defined
services.

The Versioned App graph shows a node for each version of an application. All versions of an
application are grouped together.

The Workload graph shows a node for each workload in your service mesh. This graph does not

CHAPTER 1. SERVICE MESH 2.X

137

The Workload graph shows a node for each workload in your service mesh. This graph does not
require you to use the application and version labels. If your application does not use version
labels, use this the graph.

Graph nodes are decorated with a variety of information, pointing out various route routing options like
virtual services and service entries, as well as special configuration like fault-injection and circuit
breakers. It can identify mTLS issues, latency issues, error traffic and more. The Graph is highly
configurable, can show traffic animation, and has powerful Find and Hide abilities.

Click the Legend button to view information about the shapes, colors, arrows, and badges displayed in
the graph.

To view a summary of metrics, select any node or edge in the graph to display its metric details in the
summary details panel.

1.15.3.1. Changing graph layouts in Kiali

The layout for the Kiali graph can render differently depending on your application architecture and the
data to display. For example, the number of graph nodes and their interactions can determine how the
Kiali graph is rendered. Because it is not possible to create a single layout that renders nicely for every
situation, Kiali offers a choice of several different layouts.

Prerequisites

If you do not have your own application installed, install the Bookinfo sample application. Then
generate traffic for the Bookinfo application by entering the following command several times.

This command simulates a user visiting the productpage microservice of the application.

Procedure

1. Launch the Kiali console.

2. Click Log In With OpenShift.

3. In Kiali console, click Graph to view a namespace graph.

4. From the Namespace menu, select your application namespace, for example, bookinfo.

5. To choose a different graph layout, do either or both of the following:

Select different graph data groupings from the menu at the top of the graph.

App graph

Service graph

Versioned App graph (default)

Workload graph

Select a different graph layout from the Legend at the bottom of the graph.

Layout default dagre

$ curl "http://$GATEWAY_URL/productpage"

OpenShift Container Platform 4.9 Service Mesh

138

Layout 1 cose-bilkent

Layout 2 cola

1.15.3.2. Viewing logs in the Kiali console

You can view logs for your workloads in the Kiali console. The Workload Detail page includes a Logs tab
which displays a unified logs view that displays both application and proxy logs. You can select how often
you want the log display in Kiali to be refreshed.

To change the logging level on the logs displayed in Kiali, you change the logging configuration for the
workload or the proxy.

Prerequisites

Service Mesh installed and configured.

Kiali installed and configured.

The address for the Kiali console.

Application or Bookinfo sample application added to the mesh.

Procedure

1. Launch the Kiali console.

2. Click Log In With OpenShift.
The Kiali Overview page displays namespaces that have been added to the mesh that you have
permissions to view.

3. Click Workloads.

4. On the Workloads page, select the project from the Namespace menu.

5. If necessary, use the filter to find the workload whose logs you want to view. Click the workload
Name. For example, click ratings-v1.

6. On the Workload Details page, click the Logs tab to view the logs for the workload.

TIP

If you do not see any log entries, you may need to adjust either the Time Range or the Refresh interval.

1.15.3.3. Viewing metrics in the Kiali console

You can view inbound and outbound metrics for your applications, workloads, and services in the Kiali
console. The Detail pages include the following tabs:

inbound Application metrics

outbound Application metrics

inbound Workload metrics

outbound Workload metrics

CHAPTER 1. SERVICE MESH 2.X

139

inbound Service metrics

These tabs display predefined metrics dashboards, tailored to the relevant application, workload or
service level. The application and workload detail views show request and response metrics such as
volume, duration, size, or TCP traffic. The service detail view shows request and response metrics for
inbound traffic only.

Kiali lets you customize the charts by choosing the charted dimensions. Kiali can also present metrics
reported by either source or destination proxy metrics. And for troubleshooting, Kiali can overlay trace
spans on the metrics.

Prerequisites

Service Mesh installed and configured.

Kiali installed and configured.

The address for the Kiali console.

(Optional) Distributed tracing installed and configured.

Procedure

1. Launch the Kiali console.

2. Click Log In With OpenShift.
The Kiali Overview page displays namespaces that have been added to the mesh that you have
permissions to view.

3. Click either Applications, Workloads, or Services.

4. On the Applications, Workloads, or Services page, select the project from the Namespace
menu.

5. If necessary, use the filter to find the application, workload, or service whose logs you want to
view. Click the Name.

6. On the Application Detail, Workload Details, or Service Details page, click either the Inbound
Metrics or Outbound Metrics tab to view the metrics.

1.15.4. Distributed tracing

Distributed tracing is the process of tracking the performance of individual services in an application by
tracing the path of the service calls in the application. Each time a user takes action in an application, a
request is executed that might require many services to interact to produce a response. The path of this
request is called a distributed transaction.

Red Hat OpenShift Service Mesh uses Red Hat OpenShift distributed tracing to allow developers to
view call flows in a microservice application.

1.15.4.1. Connecting an existing distributed tracing instance

If you already have an existing Red Hat OpenShift distributed tracing platform instance in OpenShift
Container Platform, you can configure your ServiceMeshControlPlane resource to use that instance
for distributed tracing.

Prerequisites

OpenShift Container Platform 4.9 Service Mesh

140

Prerequisites

Red Hat OpenShift distributed tracing instance installed and configured.

Procedure

1. In the OpenShift Container Platform web console, click Operators → Installed Operators.

2. Click the Project menu and select the project where you installed the Service Mesh control
plane, for example istio-system.

3. Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane
column, click the name of your ServiceMeshControlPlane resource, for example basic.

4. Add the name of your distributed tracing platform instance to the ServiceMeshControlPlane.

a. Click the YAML tab.

b. Add the name of your distributed tracing platform instance to spec.addons.jaeger.name in
your ServiceMeshControlPlane resource. In the following example, distr-tracing-
production is the name of the distributed tracing platform instance.

Example distributed tracing configuration

c. Click Save.

5. Click Reload to verify the ServiceMeshControlPlane resource was configured correctly.

1.15.4.2. Adjusting the sampling rate

A trace is an execution path between services in the service mesh. A trace is comprised of one or more
spans. A span is a logical unit of work that has a name, start time, and duration. The sampling rate
determines how often a trace is persisted.

The Envoy proxy sampling rate is set to sample 100% of traces in your service mesh by default. A high
sampling rate consumes cluster resources and performance but is useful when debugging issues. Before
you deploy Red Hat OpenShift Service Mesh in production, set the value to a smaller proportion of
traces. For example, set spec.tracing.sampling to 100 to sample 1% of traces.

Configure the Envoy proxy sampling rate as a scaled integer representing 0.01% increments.

In a basic installation, spec.tracing.sampling is set to 10000, which samples 100% of traces. For
example:

Setting the value to 10 samples 0.1% of traces.

Setting the value to 500 samples 5% of traces.

NOTE

spec:
 addons:
 jaeger:
 name: distr-tracing-production

CHAPTER 1. SERVICE MESH 2.X

141

NOTE

The Envoy proxy sampling rate applies for applications that are available to a Service
Mesh, and use the Envoy proxy. This sampling rate determines how much data the Envoy
proxy collects and tracks.

The Jaeger remote sampling rate applies to applications that are external to the Service
Mesh, and do not use the Envoy proxy, such as a database. This sampling rate determines
how much data the distributed tracing system collects and stores. For more information,
see Distributed tracing configuration options .

Procedure

1. In the OpenShift Container Platform web console, click Operators → Installed Operators.

2. Click the Project menu and select the project where you installed the control plane, for example
istio-system.

3. Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane
column, click the name of your ServiceMeshControlPlane resource, for example basic.

4. To adjust the sampling rate, set a different value for spec.tracing.sampling.

a. Click the YAML tab.

b. Set the value for spec.tracing.sampling in your ServiceMeshControlPlane resource. In
the following example, set it to 100.

Jaeger sampling example

c. Click Save.

5. Click Reload to verify the ServiceMeshControlPlane resource was configured correctly.

1.15.5. Accessing the Jaeger console

To access the Jaeger console you must have Red Hat OpenShift Service Mesh installed, Red Hat
OpenShift distributed tracing platform installed and configured.

The installation process creates a route to access the Jaeger console.

If you know the URL for the Jaeger console, you can access it directly. If you do not know the URL, use
the following directions.

Procedure from OpenShift console

1. Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If
you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Navigate to Networking → Routes.

3. On the Routes page, select the Service Mesh control plane project, for example istio-system,

spec:
 tracing:
 sampling: 100

OpenShift Container Platform 4.9 Service Mesh

142

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/distributed_tracing/#distr-tracing-config-sampling_deploying-distributed-tracing-platform

3. On the Routes page, select the Service Mesh control plane project, for example istio-system,
from the Namespace menu.
The Location column displays the linked address for each route.

4. If necessary, use the filter to find the jaeger route. Click the route Location to launch the
console.

5. Click Log In With OpenShift.

Procedure from Kiali console

1. Launch the Kiali console.

2. Click Distributed Tracing in the left navigation pane.

3. Click Log In With OpenShift.

Procedure from the CLI

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. If you use
Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.

2. To query for details of the route using the command line, enter the following command. In this
example, istio-system is the Service Mesh control plane namespace.

3. Launch a browser and navigate to https://<JAEGER_URL>, where <JAEGER_URL> is the
route that you discovered in the previous step.

4. Log in using the same user name and password that you use to access the OpenShift Container
Platform console.

5. If you have added services to the service mesh and have generated traces, you can use the
filters and Find Traces button to search your trace data.
If you are validating the console installation, there is no trace data to display.

For more information about configuring Jaeger, see the distributed tracing documentation.

1.15.6. Accessing the Grafana console

Grafana is an analytics tool you can use to view, query, and analyze your service mesh metrics. In this
example, istio-system is the Service Mesh control plane namespace. To access Grafana, do the
following:

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Click the Project menu and select the project where you installed the Service Mesh control
plane, for example istio-system.

3. Click Routes.

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

$ export JAEGER_URL=$(oc get route -n istio-system jaeger -o jsonpath='{.spec.host}')

CHAPTER 1. SERVICE MESH 2.X

143

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/distributed_tracing/#distr-tracing-deploy-default_deploying-distributed-tracing-platform

4. Click the link in the Location column for the Grafana row.

5. Log in to the Grafana console with your OpenShift Container Platform credentials.

1.15.7. Accessing the Prometheus console

Prometheus is a monitoring and alerting tool that you can use to collect multi-dimensional data about
your microservices. In this example, istio-system is the Service Mesh control plane namespace.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Click the Project menu and select the project where you installed the Service Mesh control
plane, for example istio-system.

3. Click Routes.

4. Click the link in the Location column for the Prometheus row.

5. Log in to the Prometheus console with your OpenShift Container Platform credentials.

1.16. PERFORMANCE AND SCALABILITY

The default ServiceMeshControlPlane settings are not intended for production use; they are designed
to install successfully on a default OpenShift Container Platform installation, which is a resource-limited
environment. After you have verified a successful SMCP installation, you should modify the settings
defined within the SMCP to suit your environment.

1.16.1. Setting limits on compute resources

By default, spec.proxy has the settings cpu: 10m and memory: 128M. If you are using Pilot,
spec.runtime.components.pilot has the same default values.

The settings in the following example are based on 1,000 services and 1,000 requests per second. You
can change the values for cpu and memory in the ServiceMeshControlPlane.

Procedure

1. In the OpenShift Container Platform web console, click Operators → Installed Operators.

2. Click the Project menu and select the project where you installed the Service Mesh control
plane, for example istio-system.

3. Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane
column, click the name of your ServiceMeshControlPlane, for example basic.

4. Add the name of your standalone Jaeger instance to the ServiceMeshControlPlane.

a. Click the YAML tab.

b. Set the values for spec.proxy.runtime.container.resources.requests.cpu and
spec.proxy.runtime.container.resources.requests.memory in your
ServiceMeshControlPlane resource.

OpenShift Container Platform 4.9 Service Mesh

144

Example version 2.3 ServiceMeshControlPlane

c. Click Save.

5. Click Reload to verify the ServiceMeshControlPlane resource was configured correctly.

1.16.2. Load test results

The upstream Istio community load tests mesh consists of 1000 services and 2000 sidecars with
70,000 mesh-wide requests per second. Running the tests using Istio 1.12.3, generated the following
results:

The Envoy proxy uses 0.35 vCPU and 40 MB memory per 1000 requests per second going
through the proxy.

Istiod uses 1 vCPU and 1.5 GB of memory.

The Envoy proxy adds 2.65 ms to the 90th percentile latency.

The legacy istio-telemetry service (disabled by default in Service Mesh 2.0) uses 0.6 vCPU per
1000 mesh-wide requests per second for deployments that use Mixer. The data plane
components, the Envoy proxies, handle data flowing through the system. The Service Mesh
control plane component, Istiod, configures the data plane. The data plane and control plane
have distinct performance concerns.

1.16.2.1. Service Mesh Control plane performance

Istiod configures sidecar proxies based on user authored configuration files and the current state of the
system. In a Kubernetes environment, Custom Resource Definitions (CRDs) and deployments constitute

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
 namespace: istio-system
spec:
 version: v2.3
 proxy:
 runtime:
 container:
 resources:
 requests:
 cpu: 600m
 memory: 50Mi
 limits: {}

 runtime:
 components:
 pilot:
 container:
 resources:
 requests:
 cpu: 1000m
 memory: 1.6Gi
 limits: {}

CHAPTER 1. SERVICE MESH 2.X

145

the configuration and state of the system. The Istio configuration objects like gateways and virtual
services, provide the user-authored configuration. To produce the configuration for the proxies, Istiod
processes the combined configuration and system state from the Kubernetes environment and the
user-authored configuration.

The Service Mesh control plane supports thousands of services, spread across thousands of pods with a
similar number of user authored virtual services and other configuration objects. Istiod’s CPU and
memory requirements scale with the number of configurations and possible system states. The CPU
consumption scales with the following factors:

The rate of deployment changes.

The rate of configuration changes.

The number of proxies connecting to Istiod.

However this part is inherently horizontally scalable.

1.16.2.2. Data plane performance

Data plane performance depends on many factors, for example:

Number of client connections

Target request rate

Request size and response size

Number of proxy worker threads

Protocol

CPU cores

Number and types of proxy filters, specifically telemetry v2 related filters.

The latency, throughput, and the proxies' CPU and memory consumption are measured as a function of
these factors.

1.16.2.2.1. CPU and memory consumption

Since the sidecar proxy performs additional work on the data path, it consumes CPU and memory. As of
Istio 1.12.3, a proxy consumes about 0.5 vCPU per 1000 requests per second.

The memory consumption of the proxy depends on the total configuration state the proxy holds. A large
number of listeners, clusters, and routes can increase memory usage.

Since the proxy normally doesn’t buffer the data passing through, request rate doesn’t affect the
memory consumption.

1.16.2.2.2. Additional latency

Since Istio injects a sidecar proxy on the data path, latency is an important consideration. Istio adds an
authentication filter, a telemetry filter, and a metadata exchange filter to the proxy. Every additional
filter adds to the path length inside the proxy and affects latency.

The Envoy proxy collects raw telemetry data after a response is sent to the client. The time spent

OpenShift Container Platform 4.9 Service Mesh

146

collecting raw telemetry for a request does not contribute to the total time taken to complete that
request. However, since the worker is busy handling the request, the worker won’t start handling the next
request immediately. This process adds to the queue wait time of the next request and affects average
and tail latencies. The actual tail latency depends on the traffic pattern.

Inside the mesh, a request traverses the client-side proxy and then the server-side proxy. In the default
configuration of Istio 1.12.3 (that is, Istio with telemetry v2), the two proxies add about 1.7 ms and 2.7 ms
to the 90th and 99th percentile latency, respectively, over the baseline data plane latency.

1.17. CONFIGURING SERVICE MESH FOR PRODUCTION

When you are ready to move from a basic installation to production, you must configure your control
plane, tracing, and security certificates to meet production requirements.

Prerequisites

Install and configure Red Hat OpenShift Service Mesh.

Test your configuration in a staging environment.

1.17.1. Configuring your ServiceMeshControlPlane resource for production

If you have installed a basic ServiceMeshControlPlane resource to test Service Mesh, you must
configure it to production specification before you use Red Hat OpenShift Service Mesh in production.

You cannot change the metadata.name field of an existing ServiceMeshControlPlane resource. For
production deployments, you must customize the default template.

Procedure

1. Configure the distributed tracing platform for production.

a. Edit the ServiceMeshControlPlane resource to use the production deployment strategy,
by setting spec.addons.jaeger.install.storage.type to Elasticsearch and specify
additional configuration options under install. You can create and configure your Jaeger
instance and set spec.addons.jaeger.name to the name of the Jaeger instance.

Default Jaeger parameters including Elasticsearch

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.3
 tracing:
 sampling: 100
 type: Jaeger
 addons:
 jaeger:
 name: MyJaeger
 install:
 storage:
 type: Elasticsearch
 ingress:

CHAPTER 1. SERVICE MESH 2.X

147

b. Configure the sampling rate for production. For more information, see the Performance and
scalability section.

2. Ensure your security certificates are production ready by installing security certificates from an
external certificate authority. For more information, see the Security section.

3. Verify the results. Enter the following command to verify that the ServiceMeshControlPlane
resource updated properly. In this example, basic is the name of the
ServiceMeshControlPlane resource.

1.17.2. Additional resources

For more information about tuning Service Mesh for performance, see Performance and
scalability.

1.18. CONNECTING SERVICE MESHES

Federation is a deployment model that lets you share services and workloads between separate meshes
managed in distinct administrative domains.

1.18.1. Federation overview

Federation is a set of features that let you connect services between separate meshes, allowing the use
of Service Mesh features such as authentication, authorization, and traffic management across multiple,
distinct administrative domains.

Implementing a federated mesh lets you run, manage, and observe a single service mesh running across
multiple OpenShift clusters. Red Hat OpenShift Service Mesh federation takes an opinionated approach
to a multi-cluster implementation of Service Mesh that assumes minimal trust between meshes.

Service Mesh federation assumes that each mesh is managed individually and retains its own
administrator. The default behavior is that no communication is permitted and no information is shared
between meshes. The sharing of information between meshes is on an explicit opt-in basis. Nothing is
shared in a federated mesh unless it has been configured for sharing. Support functions such as
certificate generation, metrics and trace collection remain local in their respective meshes.

You configure the ServiceMeshControlPlane on each service mesh to create ingress and egress
gateways specifically for the federation, and to specify the trust domain for the mesh.

Federation also involves the creation of additional federation files. The following resources are used to
configure the federation between two or more meshes.

A ServiceMeshPeer resource declares the federation between a pair of service meshes.

An ExportedServiceSet resource declares that one or more services from the mesh are
available for use by a peer mesh.

 enabled: true
 runtime:
 components:
 tracing.jaeger.elasticsearch: # only supports resources and image name
 container:
 resources: {}

$ oc get smcp basic -o yaml

OpenShift Container Platform 4.9 Service Mesh

148

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-performance-scalability

An ImportedServiceSet resource declares which services exported by a peer mesh will be
imported into the mesh.

1.18.2. Federation features

Features of the Red Hat OpenShift Service Mesh federated approach to joining meshes include the
following:

Supports common root certificates for each mesh.

Supports different root certificates for each mesh.

Mesh administrators must manually configure certificate chains, service discovery endpoints,
trust domains, etc for meshes outside of the Federated mesh.

Only export/import the services that you want to share between meshes.

Defaults to not sharing information about deployed workloads with other meshes in the
federation. A service can be exported to make it visible to other meshes and allow requests
from workloads outside of its own mesh.

A service that has been exported can be imported to another mesh, enabling workloads on
that mesh to send requests to the imported service.

Encrypts communication between meshes at all times.

Supports configuring load balancing across workloads deployed locally and workloads that are
deployed in another mesh in the federation.

When a mesh is joined to another mesh it can do the following:

Provide trust details about itself to the federated mesh.

Discover trust details about the federated mesh.

Provide information to the federated mesh about its own exported services.

Discover information about services exported by the federated mesh.

1.18.3. Federation security

Red Hat OpenShift Service Mesh federation takes an opinionated approach to a multi-cluster
implementation of Service Mesh that assumes minimal trust between meshes. Data security is built in as
part of the federation features.

Each mesh is considered to be a unique tenant, with a unique administration.

You create a unique trust domain for each mesh in the federation.

Traffic between the federated meshes is automatically encrypted using mutual Transport Layer
Security (mTLS).

The Kiali graph only displays your mesh and services that you have imported. You cannot see the
other mesh or services that have not been imported into your mesh.

1.18.4. Federation limitations

CHAPTER 1. SERVICE MESH 2.X

149

The Red Hat OpenShift Service Mesh federated approach to joining meshes has the following
limitations:

Federation of meshes is not supported on OpenShift Dedicated.

1.18.5. Federation prerequisites

The Red Hat OpenShift Service Mesh federated approach to joining meshes has the following
prerequisites:

Two or more OpenShift Container Platform 4.6 or above clusters.

Federation was introduced in Red Hat OpenShift Service Mesh 2.1 or later. You must have the
Red Hat OpenShift Service Mesh 2.1 or later Operator installed on each mesh that you want to
federate.

You must have a version 2.1 or later ServiceMeshControlPlane deployed on each mesh that
you want to federate.

You must configure the load balancers supporting the services associated with the federation
gateways to support raw TLS traffic. Federation traffic consists of HTTPS for discovery and raw
encrypted TCP for service traffic.

Services that you want to expose to another mesh should be deployed before you can export
and import them. However, this is not a strict requirement. You can specify service names that
do not yet exist for export/import. When you deploy the services named in the
ExportedServiceSet and ImportedServiceSet they will be automatically made available for
export/import.

1.18.6. Planning your mesh federation

Before you start configuring your mesh federation, you should take some time to plan your
implementation.

How many meshes do you plan to join in a federation? You probably want to start with a limited
number of meshes, perhaps two or three.

What naming convention do you plan to use for each mesh? Having a pre-defined naming
convention will help with configuration and troubleshooting. The examples in this
documentation use different colors for each mesh. You should decide on a naming convention
that will help you determine who owns and manages each mesh, as well as the following
federation resources:

Cluster names

Cluster network names

Mesh names and namespaces

Federation ingress gateways

Federation egress gateways

Security trust domains

NOTE

OpenShift Container Platform 4.9 Service Mesh

150

NOTE

Each mesh in the federation must have its own unique trust domain.

Which services from each mesh do you plan to export to the federated mesh? Each service can
be exported individually, or you can specify labels or use wildcards.

Do you want to use aliases for the service namespaces?

Do you want to use aliases for the exported services?

Which exported services does each mesh plan to import? Each mesh only imports the services
that it needs.

Do you want to use aliases for the imported services?

1.18.7. Mesh federation across clusters

To connect one instance of the OpenShift Service Mesh with one running in a different cluster, the
procedure is not much different as when connecting two meshes deployed in the same cluster. However,
the ingress gateway of one mesh must be reachable from the other mesh. One way of ensuring this is to
configure the gateway service as a LoadBalancer service if the cluster supports this type of service.

The service must be exposed through a load balancer that operates at Layer4 of the OSI model.

1.18.7.1. Exposing the federation ingress on clusters running on bare metal

If the cluster runs on bare metal and fully supports LoadBalancer services, the IP address found in the
.status.loadBalancer.ingress.ip field of the ingress gateway Service object should be specified as one
of the entries in the .spec.remote.addresses field of the ServiceMeshPeer object.

If the cluster does not support LoadBalancer services, using a NodePort service could be an option if
the nodes are accessible from the cluster running the other mesh. In the ServiceMeshPeer object,
specify the IP addresses of the nodes in the .spec.remote.addresses field and the service’s node ports
in the .spec.remote.discoveryPort and .spec.remote.servicePort fields.

1.18.7.2. Exposing the federation ingress on clusters running on IBM Power and IBM Z

If the cluster runs on IBM Power or IBM Z infrastructure and fully supports LoadBalancer services, the
IP address found in the .status.loadBalancer.ingress.ip field of the ingress gateway Service object
should be specified as one of the entries in the .spec.remote.addresses field of the ServiceMeshPeer
object.

If the cluster does not support LoadBalancer services, using a NodePort service could be an option if
the nodes are accessible from the cluster running the other mesh. In the ServiceMeshPeer object,
specify the IP addresses of the nodes in the .spec.remote.addresses field and the service’s node ports
in the .spec.remote.discoveryPort and .spec.remote.servicePort fields.

1.18.7.3. Exposing the federation ingress on Amazon Web Services (AWS)

By default, LoadBalancer services in clusters running on AWS do not support L4 load balancing. In order
for Red Hat OpenShift Service Mesh federation to operate correctly, the following annotation must be
added to the ingress gateway service:

service.beta.kubernetes.io/aws-load-balancer-type: nlb

The Fully Qualified Domain Name found in the .status.loadBalancer.ingress.hostname field of the

CHAPTER 1. SERVICE MESH 2.X

151

The Fully Qualified Domain Name found in the .status.loadBalancer.ingress.hostname field of the
ingress gateway Service object should be specified as one of the entries in the
.spec.remote.addresses field of the ServiceMeshPeer object.

1.18.7.4. Exposing the federation ingress on Azure

On Microsoft Azure, merely setting the service type to LoadBalancer suffices for mesh federation to
operate correctly.

The IP address found in the .status.loadBalancer.ingress.ip field of the ingress gateway Service
object should be specified as one of the entries in the .spec.remote.addresses field of the
ServiceMeshPeer object.

1.18.7.5. Exposing the federation ingress on Google Cloud Platform (GCP)

On Google Cloud Platform, merely setting the service type to LoadBalancer suffices for mesh
federation to operate correctly.

The IP address found in the .status.loadBalancer.ingress.ip field of the ingress gateway Service
object should be specified as one of the entries in the .spec.remote.addresses field of the
ServiceMeshPeer object.

1.18.8. Federation implementation checklist

Federating services meshes involves the following activities:

❏ Configure networking between the clusters that you are going to federate.

❏ Configure the load balancers supporting the services associated with the federation
gateways to support raw TLS traffic.

❏ Installing the Red Hat OpenShift Service Mesh version 2.1 or later Operator in each of your
clusters.

❏ Deploying a version 2.1 or later ServiceMeshControlPlane to each of your clusters.

❏ Configuring the SMCP for federation for each mesh that you want to federate:

❏ Create a federation egress gateway for each mesh you are going to federate with.

❏ Create a federation ingress gateway for each mesh you are going to federate with.

❏ Configure a unique trust domain.

❏ Federate two or more meshes by creating a ServiceMeshPeer resource for each mesh pair.

❏ Export services by creating an ExportedServiceSet resource to make services available from
one mesh to a peer mesh.

❏ Import services by creating an ImportedServiceSet resource to import services shared by a
mesh peer.

1.18.9. Configuring a Service Mesh control plane for federation

Before a mesh can be federated, you must configure the ServiceMeshControlPlane for mesh
federation. Because all meshes that are members of the federation are equal, and each mesh is

OpenShift Container Platform 4.9 Service Mesh

152

managed independently, you must configure the SMCP for each mesh that will participate in the
federation.

In the following example, the administrator for the red-mesh is configuring the SMCP for federation
with both the green-mesh and the blue-mesh.

Sample SMCP for red-mesh

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: red-mesh
 namespace: red-mesh-system
spec:
 version: v2.3
 runtime:
 defaults:
 container:
 imagePullPolicy: Always
 gateways:
 additionalEgress:
 egress-green-mesh:
 enabled: true
 requestedNetworkView:
 - green-network
 routerMode: sni-dnat
 service:
 metadata:
 labels:
 federation.maistra.io/egress-for: egress-green-mesh
 ports:
 - port: 15443
 name: tls
 - port: 8188
 name: http-discovery #note HTTP here
 egress-blue-mesh:
 enabled: true
 requestedNetworkView:
 - blue-network
 routerMode: sni-dnat
 service:
 metadata:
 labels:
 federation.maistra.io/egress-for: egress-blue-mesh
 ports:
 - port: 15443
 name: tls
 - port: 8188
 name: http-discovery #note HTTP here
 additionalIngress:
 ingress-green-mesh:
 enabled: true
 routerMode: sni-dnat
 service:
 type: LoadBalancer
 metadata:

CHAPTER 1. SERVICE MESH 2.X

153

Table 1.6. ServiceMeshControlPlane federation configuration parameters

Parameter Description Values Default value

spec:
 cluster:
 name:

Name of the cluster.
You are not required to
specify a cluster name,
but it is helpful for
troubleshooting.

String N/A

spec:
 cluster:
 network:

Name of the cluster
network. You are not
required to specify a
name for the network,
but it is helpful for
configuration and
troubleshooting.

String N/A

1.18.9.1. Understanding federation gateways

You use a gateway to manage inbound and outbound traffic for your mesh, letting you specify which
traffic you want to enter or leave the mesh.

You use ingress and egress gateways to manage traffic entering and leaving the service mesh (North-
South traffic). When you create a federated mesh, you create additional ingress/egress gateways, to
facilitate service discovery between federated meshes, communication between federated meshes, and
to manage traffic flow between service meshes (East-West traffic).

To avoid naming conflicts between meshes, you must create separate egress and ingress gateways for

 labels:
 federation.maistra.io/ingress-for: ingress-green-mesh
 ports:
 - port: 15443
 name: tls
 - port: 8188
 name: https-discovery #note HTTPS here
 ingress-blue-mesh:
 enabled: true
 routerMode: sni-dnat
 service:
 type: LoadBalancer
 metadata:
 labels:
 federation.maistra.io/ingress-for: ingress-blue-mesh
 ports:
 - port: 15443
 name: tls
 - port: 8188
 name: https-discovery #note HTTPS here
 security:
 trust:
 domain: red-mesh.local

OpenShift Container Platform 4.9 Service Mesh

154

To avoid naming conflicts between meshes, you must create separate egress and ingress gateways for
each mesh. For example, red-mesh would have separate egress gateways for traffic going to green-
mesh and blue-mesh.

Table 1.7. Federation gateway parameters

Parameter Description Values Default value

spec:
 gateways:

additionalEgress:

<egressName>:

Define an additional
egress gateway for each
mesh peer in the
federation.

spec:
 gateways:

additionalEgress:

<egressName>:
 enabled:

This parameter enables
or disables the
federation egress.

true/false true

spec:
 gateways:

additionalEgress:

<egressName>:

requestedNetwork
View:

Networks associated
with exported services.

Set to the value of
spec.cluster.network
in the SMCP for the
mesh, otherwise use
<ServiceMeshPeer-
name>-network. For
example, if the
ServiceMeshPeer
resource for that mesh is
named west, then the
network would be
named west-network.

spec:
 gateways:

additionalEgress:

<egressName>:
 routerMode:

The router mode to be
used by the gateway.

sni-dnat

CHAPTER 1. SERVICE MESH 2.X

155

spec:
 gateways:

additionalEgress:

<egressName>:
 service:
 metadata:
 labels:

federation.maistra.i
o/egress-for:

Specify a unique label
for the gateway to
prevent federated
traffic from flowing
through the cluster’s
default system
gateways.

spec:
 gateways:

additionalEgress:

<egressName>:
 service:
 ports:

Used to specify the
port: and name: used
for TLS and service
discovery. Federation
traffic consists of raw
encrypted TCP for
service traffic.

Port 15443 is required
for sending TLS service
requests to other
meshes in the
federation. Port 8188 is
required for sending
service discovery
requests to other
meshes in the
federation.

spec:
 gateways:

additionalIngress:

Define an additional
ingress gateway
gateway for each mesh
peer in the federation.

spec:
 gateways:
 additionalIgress:

<ingressName>:
 enabled:

This parameter enables
or disables the
federation ingress.

true/false true

spec:
 gateways:

additionalIngress:

<ingressName>:
 routerMode:

The router mode to be
used by the gateway.

sni-dnat

Parameter Description Values Default value

OpenShift Container Platform 4.9 Service Mesh

156

spec:
 gateways:

additionalIngress:

<ingressName>:
 service:
 type:

The ingress gateway
service must be exposed
through a load balancer
that operates at Layer 4
of the OSI model and is
publicly available.

LoadBalancer

spec:
 gateways:

additionalIngress:

<ingressName>:
 service:
 type:

If the cluster does not
support LoadBalancer
services, the ingress
gateway service can be
exposed through a
NodePort service.

NodePort

spec:
 gateways:

additionalIngress:

<ingressName>:
 service:
 metadata:
 labels:

federation.maistra.i
o/ingress-for:

Specify a unique label
for the gateway to
prevent federated
traffic from flowing
through the cluster’s
default system
gateways.

spec:
 gateways:

additionalIngress:

<ingressName>:
 service:
 ports:

Used to specify the
port: and name: used
for TLS and service
discovery. Federation
traffic consists of raw
encrypted TCP for
service traffic.
Federation traffic
consists of HTTPS for
discovery.

Port 15443 is required
for receiving TLS
service requests to other
meshes in the
federation. Port 8188 is
required for receiving
service discovery
requests to other
meshes in the
federation.

Parameter Description Values Default value

CHAPTER 1. SERVICE MESH 2.X

157

spec:
 gateways:

additionalIngress:

<ingressName>:
 service:
 ports:
 nodePort:

Used to specify the
nodePort: if the cluster
does not support
LoadBalancer
services.

If specified, is required in
addition to port: and
name: for both TLS and
service discovery.
nodePort: must be in
the range
30000-32767.

Parameter Description Values Default value

In the following example, the administrator is configuring the SMCP for federation with the green-mesh
using a NodePort service.

Sample SMCP for NodePort

1.18.9.2. Understanding federation trust domain parameters

Each mesh in the federation must have its own unique trust domain. This value is used when configuring
mesh federation in the ServiceMeshPeer resource.

Table 1.8. Federation security parameters

 gateways:
 additionalIngress:
 ingress-green-mesh:
 enabled: true
 routerMode: sni-dnat
 service:
 type: NodePort
 metadata:
 labels:
 federation.maistra.io/ingress-for: ingress-green-mesh
 ports:
 - port: 15443
 nodePort: 30510
 name: tls
 - port: 8188
 nodePort: 32359
 name: https-discovery

kind: ServiceMeshControlPlane
metadata:
 name: red-mesh
 namespace: red-mesh-system
spec:
 security:
 trust:
 domain: red-mesh.local

OpenShift Container Platform 4.9 Service Mesh

158

Parameter Description Values Default value

spec:
 security:
 trust:
 domain:

Used to specify a unique
name for the trust
domain for the mesh.
Domains must be unique
for every mesh in the
federation.

<mesh-name>.local N/A

Procedure from the Console

Follow this procedure to edit the ServiceMeshControlPlane with the OpenShift Container Platform
web console. This example uses the red-mesh as an example.

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Navigate to Operators → Installed Operators.

3. Click the Project menu and select the project where you installed the Service Mesh control
plane. For example, red-mesh-system.

4. Click the Red Hat OpenShift Service Mesh Operator.

5. On the Istio Service Mesh Control Plane tab, click the name of your
ServiceMeshControlPlane, for example red-mesh.

6. On the Create ServiceMeshControlPlane Details page, click YAML to modify your
configuration.

7. Modify your ServiceMeshControlPlane to add federation ingress and egress gateways and to
specify the trust domain.

8. Click Save.

Procedure from the CLI

Follow this procedure to create or edit the ServiceMeshControlPlane with the command line. This
example uses the red-mesh as an example.

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. Enter the
following command. Then, enter your username and password when prompted.

2. Change to the project where you installed the Service Mesh control plane, for example red-
mesh-system.

3. Edit the ServiceMeshControlPlane file to add federation ingress and egress gateways and to
specify the trust domain.

4. Run the following command to edit the Service Mesh control plane where red-mesh-system is
the system namespace and red-mesh is the name of the ServiceMeshControlPlane object:

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

$ oc project red-mesh-system

CHAPTER 1. SERVICE MESH 2.X

159

5. Enter the following command, where red-mesh-system is the system namespace, to see the
status of the Service Mesh control plane installation.

The installation has finished successfully when the READY column indicates that all components
are ready.

NAME READY STATUS PROFILES VERSION AGE
red-mesh 10/10 ComponentsReady ["default"] 2.1.0 4m25s

1.18.10. Joining a federated mesh

You declare the federation between two meshes by creating a ServiceMeshPeer resource. The
ServiceMeshPeer resource defines the federation between two meshes, and you use it to configure
discovery for the peer mesh, access to the peer mesh, and certificates used to validate the other mesh’s
clients.

Meshes are federated on a one-to-one basis, so each pair of peers requires a pair of ServiceMeshPeer
resources specifying the federation connection to the other service mesh. For example, federating two
meshes named red and green would require two ServiceMeshPeer files.

1. On red-mesh-system, create a ServiceMeshPeer for the green mesh.

2. On green-mesh-system, create a ServiceMeshPeer for the red mesh.

Federating three meshes named red, blue, and green would require six ServiceMeshPeer files.

1. On red-mesh-system, create a ServiceMeshPeer for the green mesh.

2. On red-mesh-system, create a ServiceMeshPeer for the blue mesh.

3. On green-mesh-system, create a ServiceMeshPeer for the red mesh.

$ oc edit -n red-mesh-system smcp red-mesh

$ oc get smcp -n red-mesh-system

OpenShift Container Platform 4.9 Service Mesh

160

4. On green-mesh-system, create a ServiceMeshPeer for the blue mesh.

5. On blue-mesh-system, create a ServiceMeshPeer for the red mesh.

6. On blue-mesh-system, create a ServiceMeshPeer for the green mesh.

Configuration in the ServiceMeshPeer resource includes the following:

The address of the other mesh’s ingress gateway, which is used for discovery and service
requests.

The names of the local ingress and egress gateways that is used for interactions with the
specified peer mesh.

The client ID used by the other mesh when sending requests to this mesh.

The trust domain used by the other mesh.

The name of a ConfigMap containing a root certificate that is used to validate client certificates
in the trust domain used by the other mesh.

In the following example, the administrator for the red-mesh is configuring federation with the green-
mesh.

Example ServiceMeshPeer resource for red-mesh

Table 1.9. ServiceMeshPeer configuration parameters

Parameter Description Values

metadata:
 name:

Name of the peer mesh that this
resource is configuring federation
with.

String

kind: ServiceMeshPeer
apiVersion: federation.maistra.io/v1
metadata:
 name: green-mesh
 namespace: red-mesh-system
spec:
 remote:
 addresses:
 - ingress-red-mesh.green-mesh-system.apps.domain.com
 gateways:
 ingress:
 name: ingress-green-mesh
 egress:
 name: egress-green-mesh
 security:
 trustDomain: green-mesh.local
 clientID: green-mesh.local/ns/green-mesh-system/sa/egress-red-mesh-service-account
 certificateChain:
 kind: ConfigMap
 name: green-mesh-ca-root-cert

CHAPTER 1. SERVICE MESH 2.X

161

metadata:
 namespace:

System namespace for this mesh,
that is, where the Service Mesh
control plane is installed.

String

spec:
 remote:
 addresses:

List of public addresses of the
peer meshes' ingress gateways
that are servicing requests from
this mesh.

spec:
 remote:
 discoveryPort:

The port on which the addresses
are handling discovery requests.

Defaults to 8188

spec:
 remote:
 servicePort:

The port on which the addresses
are handling service requests.

Defaults to 15443

spec:
 gateways:
 ingress:
 name:

Name of the ingress on this mesh
that is servicing requests received
from the peer mesh. For example,
ingress-green-mesh.

spec:
 gateways:
 egress:
 name:

Name of the egress on this mesh
that is servicing requests sent to
the peer mesh. For example,
egress-green-mesh.

spec:
 security:
 trustDomain:

The trust domain used by the peer
mesh.

<peerMeshName>.local

spec:
 security:
 clientID:

The client ID used by the peer
mesh when calling into this mesh.

<peerMeshTrustDomain>/ns/<pe
erMeshSystem>/sa/<peerMeshEg
ressGatewayName>-service-
account

Parameter Description Values

OpenShift Container Platform 4.9 Service Mesh

162

spec:
 security:
 certificateChain:
 kind: ConfigMap
 name:

The kind (for example,
ConfigMap) and name of a
resource containing the root
certificate used to validate the
client and server certificate(s)
presented to this mesh by the
peer mesh. The key of the config
map entry containing the
certificate should be root-
cert.pem.

kind: ConfigMap name:
<peerMesh>-ca-root-cert

Parameter Description Values

1.18.10.1. Creating a ServiceMeshPeer resource

Prerequisites

Two or more OpenShift Container Platform 4.6 or above clusters.

The clusters must already be networked.

The load balancers supporting the services associated with the federation gateways must be
configured to support raw TLS traffic.

Each cluster must have a version 2.1 or later ServiceMeshControlPlane configured to support
federation deployed.

An account with the cluster-admin role.

Procedure from the CLI

Follow this procedure to create a ServiceMeshPeer resource from the command line. This example
shows the red-mesh creating a peer resource for the green-mesh.

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. Enter the
following command. Then, enter your username and password when prompted.

2. Change to the project where you installed the control plane, for example, red-mesh-system.

3. Create a ServiceMeshPeer file based the following example for the two meshes that you want
to federate.

Example ServiceMeshPeer resource for red-mesh to green-mesh

$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

$ oc project red-mesh-system

kind: ServiceMeshPeer
apiVersion: federation.maistra.io/v1
metadata:

CHAPTER 1. SERVICE MESH 2.X

163

4. Run the following command to deploy the resource, where red-mesh-system is the system
namespace and servicemeshpeer.yaml includes a full path to the file you edited:

5. To confirm that connection between the red mesh and green mesh is established, inspect the
status of the green-mesh ServiceMeshPeer in the red-mesh-system namespace:

Example ServiceMeshPeer connection between red-mesh and green-mesh

The status.discoveryStatus.active.remotes field shows that istiod in the peer mesh (in this
example, the green mesh) is connected to istiod in the current mesh (in this example, the red
mesh).

The status.discoveryStatus.active.watch field shows that istiod in the current mesh is
connected to istiod in the peer mesh.

If you check the servicemeshpeer named red-mesh in green-mesh-system, you’ll find
information about the same two connections from the perspective of the green mesh.

 name: green-mesh
 namespace: red-mesh-system
spec:
 remote:
 addresses:
 - ingress-red-mesh.green-mesh-system.apps.domain.com
 gateways:
 ingress:
 name: ingress-green-mesh
 egress:
 name: egress-green-mesh
 security:
 trustDomain: green-mesh.local
 clientID: green-mesh.local/ns/green-mesh-system/sa/egress-red-mesh-service-account
 certificateChain:
 kind: ConfigMap
 name: green-mesh-ca-root-cert

$ oc create -n red-mesh-system -f servicemeshpeer.yaml

$ oc -n red-mesh-system get servicemeshpeer green-mesh -o yaml

status:
 discoveryStatus:
 active:
 - pod: istiod-red-mesh-b65457658-9wq5j
 remotes:
 - connected: true
 lastConnected: "2021-10-05T13:02:25Z"
 lastFullSync: "2021-10-05T13:02:25Z"
 source: 10.128.2.149
 watch:
 connected: true
 lastConnected: "2021-10-05T13:02:55Z"
 lastDisconnectStatus: 503 Service Unavailable
 lastFullSync: "2021-10-05T13:05:43Z"

OpenShift Container Platform 4.9 Service Mesh

164

When the connection between two meshes is not established, the ServiceMeshPeer status
indicates this in the status.discoveryStatus.inactive field.

For more information on why a connection attempt failed, inspect the Istiod log, the access log
of the egress gateway handling egress traffic for the peer, and the ingress gateway handling
ingress traffic for the current mesh in the peer mesh.

For example, if the red mesh can’t connect to the green mesh, check the following logs:

istiod-red-mesh in red-mesh-system

egress-green-mesh in red-mesh-system

ingress-red-mesh in green-mesh-system

1.18.11. Exporting a service from a federated mesh

Exporting services allows a mesh to share one or more of its services with another member of the
federated mesh.

You use an ExportedServiceSet resource to declare the services from one mesh that you are making
available to another peer in the federated mesh. You must explicitly declare each service to be shared
with a peer.

You can select services by namespace or name.

You can use wildcards to select services; for example, to export all the services in a namespace.

You can export services using an alias. For example, you can export the foo/bar service as
custom-ns/bar.

You can only export services that are visible to the mesh’s system namespace. For example, a
service in another namespace with a networking.istio.io/exportTo label set to ‘.’ would not be a
candidate for export.

For exported services, their target services will only see traffic from the ingress gateway, not the
original requestor (that is, they won’t see the client ID of either the other mesh’s egress gateway
or the workload originating the request)

CHAPTER 1. SERVICE MESH 2.X

165

The following example is for services that red-mesh is exporting to green-mesh.

Example ExportedServiceSet resource

Table 1.10. ExportedServiceSet parameters

Parameter Description Values

metadata:
 name:

Name of the ServiceMeshPeer
you are exposing this service to.

Must match the name value for
the mesh in the
ServiceMeshPeer resource.

metadata:
 namespace:

Name of the project/namespace
containing this resource (should
be the system namespace for the
mesh) .

spec:
 exportRules:
 - type:

Type of rule that will govern the
export for this service. The first
matching rule found for the
service will be used for the export.

NameSelector, LabelSelector

kind: ExportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: green-mesh
 namespace: red-mesh-system
spec:
 exportRules:
 # export ratings.mesh-x-bookinfo as ratings.bookinfo
 - type: NameSelector
 nameSelector:
 namespace: red-mesh-bookinfo
 name: red-ratings
 alias:
 namespace: bookinfo
 name: ratings
 # export any service in red-mesh-bookinfo namespace with label export-service=true
 - type: LabelSelector
 labelSelector:
 namespace: red-mesh-bookinfo
 selector:
 matchLabels:
 export-service: "true"
 aliases: # export all matching services as if they were in the bookinfo namespace
 - namespace: "*"
 name: "*"
 alias:
 namespace: bookinfo

OpenShift Container Platform 4.9 Service Mesh

166

spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 namespace:
 name:

To create a NameSelector rule,
specify the namespace of the
service and the name of the
service as defined in the Service
resource.

spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 alias:
 namespace:
 name:

To create a NameSelector rule
that uses an alias for the service,
after specifying the namespace
and name for the service, then
specify the alias for the
namespace and the alias to be
used for name of the service.

spec:
 exportRules:
 - type: LabelSelector
 labelSelector:
 namespace:
<exportingMesh>
 selector:
 matchLabels:
 <labelKey>:
<labelValue>

To create a LabelSelector rule,
specify the namespace of the
service and specify the label
defined in the Service resource.
In the example above, the label is
export-service.

spec:
 exportRules:
 - type: LabelSelector
 labelSelector:
 namespace:
<exportingMesh>
 selector:
 matchLabels:
 <labelKey>:
<labelValue>
 aliases:
 - namespace:
 name:
 alias:
 namespace:
 name:

To create a LabelSelector rule
that uses aliases for the services,
after specifying the selector,
specify the aliases to be used for
name or namespace of the
service. In the example above, the
namespace alias is bookinfo for
all matching services.

Parameter Description Values

CHAPTER 1. SERVICE MESH 2.X

167

Export services with the name "ratings" from all namespaces in the red-mesh to blue-mesh.

Export all services from the west-data-center namespace to green-mesh

1.18.11.1. Creating an ExportedServiceSet

You create an ExportedServiceSet resource to explicitly declare the services that you want to be
available to a mesh peer.

Services are exported as <export-name>.<export-namespace>.svc.<ServiceMeshPeer.name>-
exports.local and will automatically route to the target service. This is the name by which the exported
service is known in the exporting mesh. When the ingress gateway receives a request destined for this
name, it will be routed to the actual service being exported. For example, if a service named ratings.red-
mesh-bookinfo is exported to green-mesh as ratings.bookinfo, the service will be exported under the
name ratings.bookinfo.svc.green-mesh-exports.local, and traffic received by the ingress gateway for
that hostname will be routed to the ratings.red-mesh-bookinfo service.

Prerequisites

The cluster and ServiceMeshControlPlane have been configured for mesh federation.

An account with the cluster-admin role.

NOTE

You can configure services for export even if they don’t exist yet. When a service that
matches the value specified in the ExportedServiceSet is deployed, it will be
automatically exported.

Procedure from the CLI

kind: ExportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: blue-mesh
 namespace: red-mesh-system
spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 namespace: "*"
 name: ratings

kind: ExportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: green-mesh
 namespace: red-mesh-system
spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 namespace: west-data-center
 name: "*"

OpenShift Container Platform 4.9 Service Mesh

168

Follow this procedure to create an ExportedServiceSet from the command line.

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. Enter the
following command. Then, enter your username and password when prompted.

2. Change to the project where you installed the Service Mesh control plane; for example, red-
mesh-system.

3. Create an ExportedServiceSet file based on the following example where red-mesh is
exporting services to green-mesh.

Example ExportedServiceSet resource from red-mesh to green-mesh

4. Run the following command to upload and create the ExportedServiceSet resource in the red-
mesh-system namespace.

For example:

5. Create additional ExportedServiceSets as needed for each mesh peer in your federated mesh.

6. To validate the services you’ve exported from red-mesh to share with green-mesh, run the
following command:

For example:

$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

$ oc project red-mesh-system

apiVersion: federation.maistra.io/v1
kind: ExportedServiceSet
metadata:
 name: green-mesh
 namespace: red-mesh-system
spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 namespace: red-mesh-bookinfo
 name: ratings
 alias:
 namespace: bookinfo
 name: red-ratings
 - type: NameSelector
 nameSelector:
 namespace: red-mesh-bookinfo
 name: reviews

$ oc create -n <ControlPlaneNamespace> -f <ExportedServiceSet.yaml>

$ oc create -n red-mesh-system -f export-to-green-mesh.yaml

$ oc get exportedserviceset <PeerMeshExportedTo> -o yaml

CHAPTER 1. SERVICE MESH 2.X

169

7. Run the following command to validate the services the red-mesh exports to share with green-
mesh:

For example:

Example validating the services exported from the red mesh that are shared with
the green mesh.

The status.exportedServices array lists the services that are currently exported (these services
matched the export rules in the ExportedServiceSet object). Each entry in the array indicates
the name of the exported service and details about the local service that is exported.

If a service that you expected to be exported is missing, confirm the Service object exists, its
name or labels match the exportRules defined in the ExportedServiceSet object, and that the
Service object’s namespace is configured as a member of the service mesh using the
ServiceMeshMemberRoll or ServiceMeshMember object.

1.18.12. Importing a service into a federated mesh

Importing services lets you explicitly specify which services exported from another mesh should be
accessible within your service mesh.

$ oc get exportedserviceset green-mesh -o yaml

$ oc get exportedserviceset <PeerMeshExportedTo> -o yaml

$ oc -n red-mesh-system get exportedserviceset green-mesh -o yaml

 status:
 exportedServices:
 - exportedName: red-ratings.bookinfo.svc.green-mesh-exports.local
 localService:
 hostname: ratings.red-mesh-bookinfo.svc.cluster.local
 name: ratings
 namespace: red-mesh-bookinfo
 - exportedName: reviews.red-mesh-bookinfo.svc.green-mesh-exports.local
 localService:
 hostname: reviews.red-mesh-bookinfo.svc.cluster.local
 name: reviews
 namespace: red-mesh-bookinfo

OpenShift Container Platform 4.9 Service Mesh

170

You use an ImportedServiceSet resource to select services for import. Only services exported by a
mesh peer and explicitly imported are available to the mesh. Services that you do not explicitly import
are not made available within the mesh.

You can select services by namespace or name.

You can use wildcards to select services, for example, to import all the services that were
exported to the namespace.

You can select services for export using a label selector, which may be global to the mesh, or
scoped to a specific member namespace.

You can import services using an alias. For example, you can import the custom-ns/bar service
as other-mesh/bar.

You can specify a custom domain suffix, which will be appended to the name.namespace of an
imported service for its fully qualified domain name; for example, bar.other-
mesh.imported.local.

The following example is for the green-mesh importing a service that was exported by red-mesh.

Example ImportedServiceSet

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh #name of mesh that exported the service
 namespace: green-mesh-system #mesh namespace that service is being imported into
spec:
 importRules: # first matching rule is used
 # import ratings.bookinfo as ratings.bookinfo
 - type: NameSelector
 importAsLocal: false
 nameSelector:
 namespace: bookinfo
 name: ratings
 alias:

CHAPTER 1. SERVICE MESH 2.X

171

Table 1.11. ImportedServiceSet parameters

Parameter Description Values

metadata:
 name:

Name of the ServiceMeshPeer
that exported the service to the
federated mesh.

metadata:
 namespace:

Name of the namespace
containing the ServiceMeshPeer
resource (the mesh system
namespace).

spec:
 importRules:
 - type:

Type of rule that will govern the
import for the service. The first
matching rule found for the
service will be used for the import.

NameSelector

spec:
 importRules:
 - type: NameSelector
 nameSelector:
 namespace:
 name:

To create a NameSelector rule,
specify the namespace and the
name of the exported service.

spec:
 importRules:
 - type: NameSelector
 importAsLocal:

Set to true to aggregate remote
endpoint with local services. When
true, services will be imported as
<name>.
<namespace>.svc.cluster.loc
al

true/false

spec:
 importRules:
 - type: NameSelector
 nameSelector:
 namespace:
 name:
 alias:
 namespace:
 name:

To create a NameSelector rule
that uses an alias for the service,
after specifying the namespace
and name for the service, then
specify the alias for the
namespace and the alias to be
used for name of the service.

Import the "bookinfo/ratings" service from the red-mesh into blue-mesh

 # service will be imported as ratings.bookinfo.svc.red-mesh-imports.local
 namespace: bookinfo
 name: ratings

OpenShift Container Platform 4.9 Service Mesh

172

Import all services from the red-mesh’s west-data-center namespace into the green-mesh.
These services will be accessible as <name>.west-data-center.svc.red-mesh-imports.local

1.18.12.1. Creating an ImportedServiceSet

You create an ImportedServiceSet resource to explicitly declare the services that you want to import
into your mesh.

Services are imported with the name <exported-name>.<exported-namespace>.svc.
<ServiceMeshPeer.name>.remote which is a "hidden" service, visible only within the egress gateway
namespace and is associated with the exported service’s hostname. The service will be available locally
as <export-name>.<export-namespace>.<domainSuffix>, where domainSuffix is svc.
<ServiceMeshPeer.name>-imports.local by default, unless importAsLocal is set to true, in which case
domainSuffix is svc.cluster.local. If importAsLocal is set to false, the domain suffix in the import rule
will be applied. You can treat the local import just like any other service in the mesh. It automatically
routes through the egress gateway, where it is redirected to the exported service’s remote name.

Prerequisites

The cluster and ServiceMeshControlPlane have been configured for mesh federation.

An account with the cluster-admin role.

NOTE

You can configure services for import even if they haven’t been exported yet. When a
service that matches the value specified in the ImportedServiceSet is deployed and
exported, it will be automatically imported.

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh
 namespace: blue-mesh-system
spec:
 importRules:
 - type: NameSelector
 importAsLocal: false
 nameSelector:
 namespace: bookinfo
 name: ratings

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh
 namespace: green-mesh-system
spec:
 importRules:
 - type: NameSelector
 importAsLocal: false
 nameSelector:
 namespace: west-data-center
 name: "*"

CHAPTER 1. SERVICE MESH 2.X

173

Procedure from the CLI

Follow this procedure to create an ImportedServiceSet from the command line.

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. Enter the
following command. Then, enter your username and password when prompted.

2. Change to the project where you installed the Service Mesh control plane; for example, green-
mesh-system.

3. Create an ImportedServiceSet file based on the following example where green-mesh is
importing services previously exported by red-mesh.

Example ImportedServiceSet resource from red-mesh to green-mesh

4. Run the following command to upload and create the ImportedServiceSet resource in the
green-mesh-system namespace.

For example:

5. Create additional ImportedServiceSet resources as needed for each mesh peer in your
federated mesh.

6. To validate the services you’ve imported into green-mesh, run the following command:

For example:

$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

$ oc project green-mesh-system

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh
 namespace: green-mesh-system
spec:
 importRules:
 - type: NameSelector
 importAsLocal: false
 nameSelector:
 namespace: bookinfo
 name: red-ratings
 alias:
 namespace: bookinfo
 name: ratings

$ oc create -n <ControlPlaneNamespace> -f <ImportedServiceSet.yaml>

$ oc create -n green-mesh-system -f import-from-red-mesh.yaml

$ oc get importedserviceset <PeerMeshImportedInto> -o yaml

$ oc get importedserviceset green-mesh -o yaml

OpenShift Container Platform 4.9 Service Mesh

174

7. Run the following command to validate the services imported into a mesh.

Example validating that the services exported from the red mesh have been
imported into the green mesh using the status section of the importedserviceset/red-
mesh' object in the 'green-mesh-system namespace:

In the preceding example only the ratings service is imported, as indicated by the populated
fields under localService. The reviews service is available for import, but isn’t currently
imported because it does not match any importRules in the ImportedServiceSet object.

1.18.13. Configuring a federated mesh for failover

Failover is the ability to switch automatically and seamlessly to a reliable backup system, for example
another server. In the case of a federated mesh, you can configure a service in one mesh to failover to a
service in another mesh.

You configure Federation for failover by setting the importAsLocal and locality settings in an
ImportedServiceSet resource and then configuring a DestinationRule that configures failover for the
service to the locality specified in the ImportedServiceSet.

Prerequisites

Two or more OpenShift Container Platform 4.6 or above clusters already networked and
federated.

ExportedServiceSet resources already created for each mesh peer in the federated mesh.

ImportedServiceSet resources already created for each mesh peer in the federated mesh.

An account with the cluster-admin role.

1.18.13.1. Configuring an ImportedServiceSet for failover

Locality-weighted load balancing allows administrators to control the distribution of traffic to endpoints
based on the localities of where the traffic originates and where it will terminate. These localities are
specified using arbitrary labels that designate a hierarchy of localities in {region}/{zone}/{sub-zone}

$ oc get importedserviceset <PeerMeshImportedInto> -o yaml

$ oc -n green-mesh-system get importedserviceset/red-mesh -o yaml

status:
 importedServices:
 - exportedName: red-ratings.bookinfo.svc.green-mesh-exports.local
 localService:
 hostname: ratings.bookinfo.svc.red-mesh-imports.local
 name: ratings
 namespace: bookinfo
 - exportedName: reviews.red-mesh-bookinfo.svc.green-mesh-exports.local
 localService:
 hostname: ""
 name: ""
 namespace: ""

CHAPTER 1. SERVICE MESH 2.X

175

form.

In the examples in this section, the green-mesh is located in the us-east region, and the red-mesh is
located in the us-west region.

Example ImportedServiceSet resource from red-mesh to green-mesh

Table 1.12. ImportedServiceLocality fields table

Name Description Type

region: Region within which imported
services are located.

string

subzone: Subzone within which imported
services are located. I Subzone is
specified, Zone must also be
specified.

string

zone: Zone within which imported
services are located. If Zone is
specified, Region must also be
specified.

string

Procedure

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role, enter the
following command:

2. Change to the project where you installed the Service Mesh control plane, enter the following

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh #name of mesh that exported the service
 namespace: green-mesh-system #mesh namespace that service is being imported into
spec:
 importRules: # first matching rule is used
 # import ratings.bookinfo as ratings.bookinfo
 - type: NameSelector
 importAsLocal: true
 nameSelector:
 namespace: bookinfo
 name: ratings
 alias:
 # service will be imported as ratings.bookinfo.svc.red-mesh-imports.local
 namespace: bookinfo
 name: ratings
 #Locality within which imported services should be associated.
 locality:
 region: us-west

$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

OpenShift Container Platform 4.9 Service Mesh

176

2. Change to the project where you installed the Service Mesh control plane, enter the following
command:

For example, green-mesh-system.

3. Edit the ImportedServiceSet file, where <ImportedServiceSet.yaml> includes a full path to
the file you want to edit, enter the following command:

For example, if you want to modify the file that imports from the red-mesh-system to the
green-mesh-system as shown in the previous ImportedServiceSet example.

4. Modify the file:

a. Set spec.importRules.importAsLocal to true.

b. Set spec.locality to a region, zone, or subzone.

c. Save your changes.

1.18.13.2. Configuring a DestinationRule for failover

Create a DestinationRule resource that configures the following:

Outlier detection for the service. This is required in order for failover to function properly. In
particular, it configures the sidecar proxies to know when endpoints for a service are unhealthy,
eventually triggering a failover to the next locality.

Failover policy between regions. This ensures that failover beyond a region boundary will behave
predictably.

Procedure

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. Enter the
following command. Then, enter your username and password when prompted.

2. Change to the project where you installed the Service Mesh control plane.

For example, green-mesh-system.

3. Create a DestinationRule file based on the following example where if green-mesh is

$ oc project <smcp-system>

$ oc project green-mesh-system

$ oc edit -n <smcp-system> -f <ImportedServiceSet.yaml>

$ oc edit -n green-mesh-system -f import-from-red-mesh.yaml

$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

$ oc project <smcp-system>

$ oc project green-mesh-system

CHAPTER 1. SERVICE MESH 2.X

177

3. Create a DestinationRule file based on the following example where if green-mesh is
unavailable, the traffic should be routed from the green-mesh in the us-east region to the red-
mesh in us-west.

Example DestinationRule

4. Deploy the DestinationRule, where <DestinationRule> includes the full path to your file, enter
the following command:

For example:

1.18.14. Removing a service from the federated mesh

If you need to remove a service from the federated mesh, for example if it has become obsolete or has
been replaced by a different service, you can do so.

1.18.14.1. To remove a service from a single mesh

Remove the entry for the service from the ImportedServiceSet resource for the mesh peer that no
longer should access the service.

1.18.14.2. To remove a service from the entire federated mesh

Remove the entry for the service from the ExportedServiceSet resource for the mesh that owns the
service.

1.18.15. Removing a mesh from the federated mesh

If you need to remove a mesh from the federation, you can do so.

1. Edit the removed mesh’s ServiceMeshControlPlane resource to remove all federation ingress

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
 name: default-failover
 namespace: bookinfo
spec:
 host: "ratings.bookinfo.svc.cluster.local"
 trafficPolicy:
 loadBalancer:
 localityLbSetting:
 enabled: true
 failover:
 - from: us-east
 to: us-west
 outlierDetection:
 consecutive5xxErrors: 3
 interval: 10s
 baseEjectionTime: 1m

$ oc create -n <application namespace> -f <DestinationRule.yaml>

$ oc create -n bookinfo -f green-mesh-us-west-DestinationRule.yaml

OpenShift Container Platform 4.9 Service Mesh

178

1. Edit the removed mesh’s ServiceMeshControlPlane resource to remove all federation ingress
gateways for peer meshes.

2. For each mesh peer that the removed mesh has been federated with:

a. Remove the ServiceMeshPeer resource that links the two meshes.

b. Edit the peer mesh’s ServiceMeshControlPlane resource to remove the egress gateway
that serves the removed mesh.

1.19. EXTENSIONS

You can use WebAssembly extensions to add new features directly into the Red Hat OpenShift Service
Mesh proxies. This lets you move even more common functionality out of your applications, and
implement them in a single language that compiles to WebAssembly bytecode.

NOTE

WebAssembly extensions are not supported on IBM Z and IBM Power Systems.

1.19.1. WebAssembly modules overview

WebAssembly modules can be run on many platforms, including proxies, and have broad language
support, fast execution, and a sandboxed-by-default security model.

Red Hat OpenShift Service Mesh extensions are Envoy HTTP Filters , giving them a wide range of
capabilities:

Manipulating the body and headers of requests and responses.

Out-of-band HTTP requests to services not in the request path, such as authentication or policy
checking.

Side-channel data storage and queues for filters to communicate with each other.

NOTE

When creating new WebAssembly extensions, use the WasmPlugin API. The
ServiceMeshExtension API was deprecated in Red Hat OpenShift Service Mesh version
2.2 and was removed in Red Hat OpenShift Service Mesh version 2.3.

There are two parts to writing a Red Hat OpenShift Service Mesh extension:

1. You must write your extension using an SDK that exposes the proxy-wasm API and compile it to
a WebAssembly module.

2. You must then package the module into a container.

Supported languages

You can use any language that compiles to WebAssembly bytecode to write a Red Hat OpenShift
Service Mesh extension, but the following languages have existing SDKs that expose the proxy-wasm
API so that it can be consumed directly.

Table 1.13. Supported languages

CHAPTER 1. SERVICE MESH 2.X

179

https://www.envoyproxy.io/docs/envoy/v1.20.0/intro/arch_overview/http/http_filters#arch-overview-http-filters
https://github.com/proxy-wasm/spec

Language Maintainer Repository

AssemblyScript solo.io solo-io/proxy-runtime

C++ proxy-wasm team (Istio
Community)

proxy-wasm/proxy-wasm-cpp-
sdk

Go tetrate.io tetratelabs/proxy-wasm-go-sdk

Rust proxy-wasm team (Istio
Community)

proxy-wasm/proxy-wasm-rust-
sdk

1.19.2. WasmPlugin container format

Istio supports Open Container Initiative (OCI) images in its Wasm Plugin mechanism. You can distribute
your Wasm Plugins as a container image, and you can use the spec.url field to refer to a container
registry location. For example, quay.io/my-username/my-plugin:latest.

Because each execution environment (runtime) for a WASM module can have runtime-specific
configuration parameters, a WASM image can be composed of two layers:

plugin.wasm (Required) - Content layer. This layer consists of a .wasm binary containing the
bytecode of your WebAssembly module, to be loaded by the runtime. You must name this file
plugin.wasm.

runtime-config.json (Optional) - Configuration layer. This layer consists of a JSON-formatted
string that describes metadata about the module for the target runtime. The config layer might
also contain additional data, depending on the target runtime. For example, the config for a
WASM Envoy Filter contains root_ids available on the filter.

1.19.3. WasmPlugin API reference

The WasmPlugins API provides a mechanism to extend the functionality provided by the Istio proxy
through WebAssembly filters.

You can deploy multiple WasmPlugins. The phase and priority settings determine the order of
execution (as part of Envoy’s filter chain), allowing the configuration of complex interactions between
user-supplied WasmPlugins and Istio’s internal filters.

In the following example, an authentication filter implements an OpenID flow and populates the
Authorization header with a JSON Web Token (JWT). Istio authentication consumes this token and
deploys it to the ingress gateway. The WasmPlugin file lives in the proxy sidecar filesystem. Note the
field url.

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: openid-connect
 namespace: istio-ingress
spec:
 selector:
 matchLabels:
 istio: ingressgateway

OpenShift Container Platform 4.9 Service Mesh

180

https://github.com/solo-io/proxy-runtime
https://github.com/proxy-wasm/proxy-wasm-cpp-sdk
https://github.com/tetratelabs/proxy-wasm-go-sdk
https://github.com/proxy-wasm/proxy-wasm-rust-sdk

Below is the same example, but this time an Open Container Initiative (OCI) image is used instead of a
file in the filesystem. Note the fields url, imagePullPolicy, and imagePullSecret.

Table 1.14. WasmPlugin Field Reference

Field Type Description Required

spec.selector WorkloadSelector Criteria used to select
the specific set of
pods/VMs on which this
plugin configuration
should be applied. If
omitted, this
configuration will be
applied to all workload
instances in the same
namespace. If the
WasmPlugin field is
present in the config
root namespace, it will
be applied to all
applicable workloads in
any namespace.

No

 url: file:///opt/filters/openid.wasm
 sha256: 1ef0c9a92b0420cf25f7fe5d481b231464bc88f486ca3b9c83ed5cc21d2f6210
 phase: AUTHN
 pluginConfig:
 openid_server: authn
 openid_realm: ingress

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: openid-connect
 namespace: istio-system
spec:
 selector:
 matchLabels:
 istio: ingressgateway
 url: oci://private-registry:5000/openid-connect/openid:latest
 imagePullPolicy: IfNotPresent
 imagePullSecret: private-registry-pull-secret
 phase: AUTHN
 pluginConfig:
 openid_server: authn
 openid_realm: ingress

CHAPTER 1. SERVICE MESH 2.X

181

spec.url string URL of a Wasm module
or OCI container. If no
scheme is present,
defaults to oci://,
referencing an OCI
image. Other valid
schemes are file:// for
referencing .wasm
module files present
locally within the proxy
container, and http[s]://
for .wasm module files
hosted remotely.

No

spec.sha256 string SHA256 checksum that
will be used to verify the
Wasm module or OCI
container. If the url field
already references a
SHA256 (using the
@sha256: notation), it
must match the value of
this field. If an OCI
image is referenced by
tag and this field is set,
its checksum will be
verified against the
contents of this field
after pulling.

No

spec.imagePullPolicy PullPolicy The pull behavior to be
applied when fetching
an OCI image. Only
relevant when images
are referenced by tag
instead of SHA. Defaults
to the value
IfNotPresent, except
when an OCI image is
referenced in the url
field and the latest tag
is used, in which case
the value Always is the
default, mirroring K8s
behavior. Setting is
ignored if the url field is
referencing a Wasm
module directly using
file:// or http[s]://.

No

Field Type Description Required

OpenShift Container Platform 4.9 Service Mesh

182

spec.imagePullSecret string Credentials to use for
OCI image pulling. The
name of a secret in the
same namespace as the
WasmPlugin object
that contains a pull
secret for authenticating
against the registry
when pulling the image.

No

spec.phase PluginPhase Determines where in the
filter chain this
WasmPlugin object is
injected.

No

spec.priority int64 Determines the ordering
of WasmPlugins
objects that have the
same phase value.
When multiple
WasmPlugins objects
are applied to the same
workload in the same
phase, they will be
applied by priority and in
descending order. If the
priority field is not set,
or two WasmPlugins
objects with the same
value, the ordering will
be determined from the
name and namespace of
the WasmPlugins
objects. Defaults to the
value 0.

No

spec.pluginName string The plugin name used in
the Envoy configuration.
Some Wasm modules
might require this value
to select the Wasm
plugin to execute.

No

spec.pluginConfig Struct The configuration that
will be passed on to the
plugin.

No

Field Type Description Required

CHAPTER 1. SERVICE MESH 2.X

183

spec.pluginConfig.verific
ationKey

string The public key used to
verify signatures of
signed OCI images or
Wasm modules. Must be
supplied in PEM format.

No

Field Type Description Required

The WorkloadSelector object specifies the criteria used to determine if a filter can be applied to a
proxy. The matching criteria includes the metadata associated with a proxy, workload instance
information such as labels attached to the pod/VM, or any other information that the proxy provides to
Istio during the initial handshake. If multiple conditions are specified, all conditions need to match in
order for the workload instance to be selected. Currently, only label based selection mechanism is
supported.

Table 1.15. WorkloadSelector

Field Type Description Required

matchLabels map<string, string> One or more labels that
indicate a specific set of
pods/VMs on which a
policy should be applied.
The scope of label
search is restricted to
the configuration
namespace in which the
resource is present.

Yes

The PullPolicy object specifies the pull behavior to be applied when fetching an OCI image.

Table 1.16. PullPolicy

Value Description

<empty> Defaults to the value IfNotPresent, except for OCI
images with tag latest, for which the default will be
the value Always.

IfNotPresent If an existing version of the image has been pulled
before, that will be used. If no version of the image is
present locally, we will pull the latest version.

Always Always pull the latest version of an image when
applying this plugin.

Struct represents a structured data value, consisting of fields which map to dynamically typed values. In
some languages, Struct might be supported by a native representation. For example, in scripting
languages like JavaScript a struct is represented as an object.

Table 1.17. Struct

OpenShift Container Platform 4.9 Service Mesh

184

Field Type Description

fields map<string, Value> Map of dynamically typed values.

PluginPhase specifies the phase in the filter chain where the plugin will be injected.

Table 1.18. PluginPhase

Field Description

<empty> Control plane decides where to insert the plugin. This
will generally be at the end of the filter chain, right
before the Router. Do not specify PluginPhase if the
plugin is independent of others.

AUTHN Insert plugin before Istio authentication filters.

AUTHZ Insert plugin before Istio authorization filters and
after Istio authentication filters.

STATS Insert plugin before Istio stats filters and after Istio
authorization filters.

1.19.3.1. Deploying WasmPlugin resources

You can enable Red Hat OpenShift Service Mesh extensions using the WasmPlugin resource. In this
example, istio-system is the name of the Service Mesh control plane project. The following example
creates an openid-connect filter that performs an OpenID Connect flow to authenticate the user.

Procedure

1. Create the following example resource:

Example plugin.yaml

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: openid-connect
 namespace: istio-system
spec:
 selector:
 matchLabels:
 istio: ingressgateway
 url: oci://private-registry:5000/openid-connect/openid:latest
 imagePullPolicy: IfNotPresent
 imagePullSecret: private-registry-pull-secret
 phase: AUTHN
 pluginConfig:
 openid_server: authn
 openid_realm: ingress

CHAPTER 1. SERVICE MESH 2.X

185

2. Apply your plugin.yaml file with the following command:

1.19.4. ServiceMeshExtension container format

You must have a .wasm file containing the bytecode of your WebAssembly module, and a
manifest.yaml file in the root of the container filesystem to make your container image a valid extension
image.

NOTE

When creating new WebAssembly extensions, use the WasmPlugin API. The
ServiceMeshExtension API was deprecated in Red Hat OpenShift Service Mesh version
2.2 and was removed in Red Hat OpenShift Service Mesh version 2.3.

manifest.yaml

Table 1.19. Field Reference for manifest.yml

Field Description Required

schemaVersion Used for versioning of the
manifest schema. Currently the
only possible value is 1.

This is a required field.

name The name of your extension. This field is just metadata and
currently unused.

description The description of your extension. This field is just metadata and
currently unused.

version The version of your extension. This field is just metadata and
currently unused.

phase The default execution phase of
your extension.

This is a required field.

priority The default priority of your
extension.

This is a required field.

$ oc apply -f plugin.yaml

schemaVersion: 1

name: <your-extension>
description: <description>
version: 1.0.0
phase: PreAuthZ
priority: 100
module: extension.wasm

OpenShift Container Platform 4.9 Service Mesh

186

module The relative path from the
container filesystem’s root to your
WebAssembly module.

This is a required field.

Field Description Required

1.19.5. ServiceMeshExtension reference

The ServiceMeshExtension API provides a mechanism to extend the functionality provided by the Istio
proxy through WebAssembly filters. There are two parts to writing a WebAssembly extension:

1. Write your extension using an SDK that exposes the proxy-wasm API and compile it to a
WebAssembly module.

2. Package it into a container.

NOTE

When creating new WebAssembly extensions, use the WasmPlugin API. The
ServiceMeshExtension API, which was deprecated in Red Hat OpenShift Service Mesh
version 2.2, was removed in Red Hat OpenShift Service Mesh version 2.3.

Table 1.20. ServiceMeshExtension Field Reference

Field Description

metadata.namespace The metadata.namespace field of a
ServiceMeshExtension source has a special
semantic: if it equals the Control Plane Namespace,
the extension will be applied to all workloads in the
Service Mesh that match its workloadSelector
value. When deployed to any other Mesh
Namespace, it will only be applied to workloads in
that same Namespace.

spec.workloadSelector The spec.workloadSelector field has the same
semantic as the spec.selector field of the Istio
Gateway resource. It will match a workload based on
its Pod labels. If no workloadSelector value is
specified, the extension will be applied to all
workloads in the namespace.

spec.config This is a structured field that will be handed over to
the extension, with the semantics dependent on the
extension you are deploying.

spec.image A container image URI pointing to the image that
holds the extension.

CHAPTER 1. SERVICE MESH 2.X

187

https://istio.io/v1.6/docs/reference/config/networking/gateway/#Gateway

spec.phase The phase determines where in the filter chain the
extension is injected, in relation to existing Istio
functionality like Authentication, Authorization and
metrics generation. Valid values are: PreAuthN,
PostAuthN, PreAuthZ, PostAuthZ, PreStats,
PostStats. This field defaults to the value set in the
manifest.yaml file of the extension, but can be
overwritten by the user.

spec.priority If multiple extensions with the same spec.phase
value are applied to the same workload instance, the
spec.priority value determines the ordering of
execution. Extensions with higher priority will be
executed first. This allows for inter-dependent
extensions. This field defaults to the value set in the
manifest.yaml file of the extension, but can be
overwritten by the user.

Field Description

1.19.5.1. Deploying ServiceMeshExtension resources

You can enable Red Hat OpenShift Service Mesh extensions using the ServiceMeshExtension
resource. In this example, istio-system is the name of the Service Mesh control plane project.

NOTE

When creating new WebAssembly extensions, use the WasmPlugin API. The
ServiceMeshExtension API was deprecated in Red Hat OpenShift Service Mesh version
2.2 and removed in Red Hat OpenShift Service Mesh version 2.3.

For a complete example that was built using the Rust SDK, take a look at the header-append-filter. It is a
simple filter that appends one or more headers to the HTTP responses, with their names and values
taken out from the config field of the extension. See a sample configuration in the snippet below.

Procedure

1. Create the following example resource:

Example ServiceMeshExtension resource extension.yaml

apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: header-append
 namespace: istio-system
spec:
 workloadSelector:
 labels:
 app: httpbin
 config:
 first-header: some-value

OpenShift Container Platform 4.9 Service Mesh

188

https://github.com/maistra/header-append-filter

2. Apply your extension.yaml file with the following command:

1.19.6. Migrating from ServiceMeshExtension to WasmPlugin resources

The ServiceMeshExtension API, which was deprecated in Red Hat OpenShift Service Mesh version 2.2,
was removed in Red Hat OpenShift Service Mesh version 2.3. If you are using the
ServiceMeshExtension API, you must migrate to the WasmPlugin API to continue using your
WebAssembly extensions.

The APIs are very similar. The migration consists of two steps:

1. Renaming your plugin file and updating the module packaging.

2. Creating a WasmPlugin resource that references the updated container image.

1.19.6.1. API changes

The new WasmPlugin API is similar to the ServiceMeshExtension, but with a few differences,
especially in the field names:

Table 1.21. Field changes between ServiceMeshExtensions and WasmPlugin

ServiceMeshExtension WasmPlugin

spec.config spec.pluginConfig

spec.workloadSelector spec.selector

spec.image spec.url

spec.phase valid values: PreAuthN, PostAuthN,
PreAuthZ, PostAuthZ, PreStats, PostStats

spec.phase valid values: <empty>, AUTHN, AUTHZ,
STATS

The following is an example of how a ServiceMeshExtension resource could be converted into a
WasmPlugin resource.

ServiceMeshExtension resource

 another-header: another-value
 image: quay.io/maistra-dev/header-append-filter:2.1
 phase: PostAuthZ
 priority: 100

$ oc apply -f <extension>.yaml

apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: header-append
 namespace: istio-system
spec:
 workloadSelector:

CHAPTER 1. SERVICE MESH 2.X

189

New WasmPlugin resource equivalent to the ServiceMeshExtension above

1.19.6.2. Container image format changes

The new WasmPlugin container image format is similar to the ServiceMeshExtensions, with the
following differences:

The ServiceMeshExtension container format required a metadata file named manifest.yaml
in the root directory of the container filesystem. The WasmPlugin container format does not
require a manifest.yaml file.

The .wasm file (the actual plugin) that previously could have any filename now must be named
plugin.wasm and must be located in the root directory of the container filesystem.

1.19.6.3. Migrating to WasmPlugin resources

To upgrade your WebAssembly extensions from the ServiceMeshExtension API to the WasmPlugin
API, you rename your plugin file.

Prerequisites

ServiceMeshControlPlane is upgraded to version 2.2 or later.

Procedure

1. Update your container image. If the plugin is already in /plugin.wasm inside the container, skip
to the next step. If not:

a. Ensure the plugin file is named plugin.wasm. You must name the extension file
plugin.wasm.

b. Ensure the plugin file is located in the root (/) directory. You must store extension files in

 labels:
 app: httpbin
 config:
 first-header: some-value
 another-header: another-value
 image: quay.io/maistra-dev/header-append-filter:2.2
 phase: PostAuthZ
 priority: 100

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: header-append
 namespace: istio-system
spec:
 selector:
 matchLabels:
 app: httpbin
 url: oci://quay.io/maistra-dev/header-append-filter:2.2
 phase: STATS
 pluginConfig:
 first-header: some-value
 another-header: another-value

OpenShift Container Platform 4.9 Service Mesh

190

b. Ensure the plugin file is located in the root (/) directory. You must store extension files in
the root of the container filesystem..

c. Rebuild your container image and push it to a container registry.

2. Remove the ServiceMeshExtension resource and create a WasmPlugin resource that refers
to the new container image you built.

1.20. USING THE 3SCALE WEBASSEMBLY MODULE

NOTE

The threescale-wasm-auth module runs on integrations of 3scale API Management 2.11
or later with Red Hat OpenShift Service Mesh 2.1.0 or later.

The threescale-wasm-auth module is a WebAssembly module that uses a set of interfaces, known as an
application binary interfaces (ABI). This is defined by the Proxy-WASM specification to drive any piece
of software that implements the ABI so it can authorize HTTP requests against 3scale.

As an ABI specification, Proxy-WASM defines the interaction between a piece of software named host
and another named module, program, or extension. The host exposes a set of services used by the
module to perform a task, and in this case, to process proxy requests.

The host environment is composed of a WebAssembly virtual machine interacting with a piece of
software, in this case, an HTTP proxy.

The module itself runs in isolation to the outside world except for the instructions it runs on the virtual
machine and the ABI specified by Proxy-WASM. This is a safe way to provide extension points to
software: the extension can only interact in well-defined ways with the virtual machine and the host. The
interaction provides a computing model and a connection to the outside world the proxy is meant to
have.

1.20.1. Compatibility

The threescale-wasm-auth module is designed to be fully compatible with all implementations of the
Proxy-WASM ABI specification. At this point, however, it has only been thoroughly tested to work with
the Envoy reverse proxy.

1.20.2. Usage as a stand-alone module

Because of its self-contained design, it is possible to configure this module to work with Proxy-WASM
proxies independently of Service Mesh, as well as 3scale Istio adapter deployments.

1.20.3. Prerequisites

The module works with all supported 3scale releases, except when configuring a service to use
OpenID connect (OIDC), which requires 3scale 2.11 or later.

1.20.4. Configuring the threescale-wasm-auth module

Cluster administrators on OpenShift Container Platform can configure the threescale-wasm-auth
module to authorize HTTP requests to 3scale API Management through an application binary interface
(ABI). The ABI defines the interaction between host and the module, exposing the hosts services, and
allows you to use the module to process proxy requests.

CHAPTER 1. SERVICE MESH 2.X

191

https://webassembly.org
https://github.com/proxy-wasm/spec
https://www.envoyproxy.io
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/#configuring-oidc-identity-provider

1

2

1.20.4.1. The WasmPlugin API extension

Service Mesh provides a custom resource definition to specify and apply Proxy-WASM extensions to
sidecar proxies, known as WasmPlugin. Service Mesh applies this custom resource to the set of
workloads that require HTTP API management with 3scale.

See custom resource definition for more information.

NOTE

Configuring the WebAssembly extension is currently a manual process. Support for
fetching the configuration for services from the 3scale system will be available in a future
release.

Prerequisites

Identify a Kubernetes workload and namespace on your Service Mesh deployment that you will
apply this module.

You must have a 3scale tenant account. See SaaS or 3scale 2.11 On-Premises with a matching
service and relevant applications and metrics defined.

If you apply the module to the <product_page> microservice in the bookinfo namespace, see
the Bookinfo sample application.

The following example is the YAML format for the custom resource for threescale-wasm-
auth module. This example refers to the upstream Maistra version of Service Mesh,
WasmPlugin API. You must declare the namespace where the threescale-wasm-auth
module is deployed, alongside a selector to identify the set of applications the module will
apply to:

The namespace.

The selector.

The spec.pluginConfig field depends on the module configuration and it is not populated in
the previous example. Instead, the example uses the <yaml_configuration> placeholder value.
You can use the format of this custom resource example.

The spec.pluginConfig field varies depending on the application. All other fields persist
across multiple instances of this custom resource. As examples:

url: Only changes when newer versions of the module are deployed.

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
 namespace: <bookinfo> 1
spec:
 selector: 2
 labels:
 app: <product_page>
 pluginConfig: <yaml_configuration>
 url: oci://registry.redhat.io/3scale-amp2/3scale-auth-wasm-rhel8:0.0.3
 phase: AUTHZ
 priority: 100

OpenShift Container Platform 4.9 Service Mesh

192

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-extensions-wasmplugin-format_ossm-extensions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/operators/#crd-extending-api-with-crds
https://www.3scale.net/signup
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.11/html-single/installing_3scale/index#install-threescale-on-openshift-guide
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-tutorial-bookinfo-overview_deploying-applications-ossm-v1x

url: Only changes when newer versions of the module are deployed.

phase: Remains the same, since this module needs to be invoked after the proxy has
done any local authorization, such as validating OpenID Connect (OIDC) tokens.

After you have the module configuration in spec.pluginConfig and the rest of the custom
resource, apply it with the oc apply command:

Additional resources

Migrating from ServiceMeshExtension to WasmPlugin resources

Custom Resources

1.20.5. Applying 3scale external ServiceEntry objects

To have the threescale-wasm-auth module authorize requests against 3scale, the module must have
access to 3scale services. You can do this within Red Hat OpenShift Service Mesh by applying an
external ServiceEntry object and a corresponding DestinationRule object for TLS configuration to use
the HTTPS protocol.

The custom resources (CRs) set up the service entries and destination rules for secure access from
within Service Mesh to 3scale Hosted (SaaS) for the backend and system components of the Service
Management API and the Account Management API. The Service Management API receives queries for
the authorization status of each request. The Account Management API provides API management
configuration settings for your services.

Procedure

1. Apply the following external ServiceEntry CR and related DestinationRule CR for 3scale
Hosted backend to your cluster:

a. Add the ServiceEntry CR to a file called service-entry-threescale-saas-backend.yml:

ServiceEntry CR

b. Add the DestinationRule CR to a file called destination-rule-threescale-saas-
backend.yml:

$ oc apply -f threescale-wasm-auth-bookinfo.yaml

apiVersion: networking.istio.io/v1beta1
kind: ServiceEntry
metadata:
 name: service-entry-threescale-saas-backend
spec:
 hosts:
 - su1.3scale.net
 ports:
 - number: 443
 name: https
 protocol: HTTPS
 location: MESH_EXTERNAL
 resolution: DNS

CHAPTER 1. SERVICE MESH 2.X

193

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-extensions-migration-overview_ossm-extensions
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources

DestinationRule CR

c. Apply and save the external ServiceEntry CR for the 3scale Hosted backend to your
cluster, by running the following command:

d. Apply and save the external DestinationRule CR for the 3scale Hosted backend to your
cluster, by running the following command:

2. Apply the following external ServiceEntry CR and related DestinationRule CR for 3scale
Hosted system to your cluster:

a. Add the ServiceEntry CR to a file called service-entry-threescale-saas-system.yml:

ServiceEntry CR

b. Add the DestinationRule CR to a file called destination-rule-threescale-saas-
system.yml:

DestinationRule CR

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
 name: destination-rule-threescale-saas-backend
spec:
 host: su1.3scale.net
 trafficPolicy:
 tls:
 mode: SIMPLE
 sni: su1.3scale.net

$ oc apply -f service-entry-threescale-saas-backend.yml

$ oc apply -f destination-rule-threescale-saas-backend.yml

apiVersion: networking.istio.io/v1beta1
kind: ServiceEntry
metadata:
 name: service-entry-threescale-saas-system
spec:
 hosts:
 - multitenant.3scale.net
 ports:
 - number: 443
 name: https
 protocol: HTTPS
 location: MESH_EXTERNAL
 resolution: DNS

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
 name: destination-rule-threescale-saas-system
spec:

OpenShift Container Platform 4.9 Service Mesh

194

c. Apply and save the external ServiceEntry CR for the 3scale Hosted system to your cluster,
by running the following command:

d. Apply and save the external DestinationRule CR for the 3scale Hosted system to your
cluster, by running the following command:

Alternatively, you can deploy an in-mesh 3scale service. To deploy an in-mesh 3scale service, change
the location of the services in the CR by deploying 3scale and linking to the deployment.

Additional resources

Service entry and destination rule documentation

1.20.6. The 3scale WebAssembly module configuration

The WasmPlugin custom resource spec provides the configuration that the Proxy-WASM module
reads from.

The spec is embedded in the host and read by the Proxy-WASM module. Typically, the configurations
are in the JSON file format for the modules to parse, however the WasmPlugin resource can interpret
the spec value as YAML and convert it to JSON for consumption by the module.

If you use the Proxy-WASM module in stand-alone mode, you must write the configuration using the
JSON format. Using the JSON format means using escaping and quoting where needed within the host
configuration files, for example Envoy. When you use the WebAssembly module with the WasmPlugin
resource, the configuration is in the YAML format. In this case, an invalid configuration forces the
module to show diagnostics based on its JSON representation to a sidecar’s logging stream.

IMPORTANT

The EnvoyFilter custom resource is not a supported API, although it can be used in some
3scale Istio adapter or Service Mesh releases. Using the EnvoyFilter custom resource is
not recommended. Use the WasmPlugin API instead of the EnvoyFilter custom
resource. If you must use the EnvoyFilter custom resource, you must specify the spec in
JSON format.

1.20.6.1. Configuring the 3scale WebAssembly module

The architecture of the 3scale WebAssembly module configuration depends on the 3scale account and
authorization service, and the list of services to handle.

Prerequisites

The prerequisites are a set of minimum mandatory fields in all cases:

 host: multitenant.3scale.net
 trafficPolicy:
 tls:
 mode: SIMPLE
 sni: multitenant.3scale.net

$ oc apply -f service-entry-threescale-saas-system.yml

$ oc apply -f <destination-rule-threescale-saas-system.yml>

CHAPTER 1. SERVICE MESH 2.X

195

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-routing-service-entries_traffic-management

For the 3scale account and authorization service: the backend-listener URL.

For the list of services to handle: the service IDs and at least one credential look up method and
where to find it.

You will find examples for dealing with userkey, appid with appkey, and OpenID Connect
(OIDC) patterns.

The WebAssembly module uses the settings you specified in the static configuration. For
example, if you add a mapping rule configuration to the module, it will always apply, even when
the 3scale Admin Portal has no such mapping rule. The rest of the WasmPlugin resource exists
around the spec.pluginConfig YAML entry.

1.20.6.2. The 3scale WebAssembly module api object

The api top-level string from the 3scale WebAssembly module defines which version of the
configuration the module will use.

NOTE

A non-existent or unsupported version of the api object renders the 3scale
WebAssembly module inoperable.

The api top-level string example

The api entry defines the rest of the values for the configuration. The only accepted value is v1. New
settings that break compatibility with the current configuration or need more logic that modules using
v1 cannot handle, will require different values.

1.20.6.3. The 3scale WebAssembly module system object

The system top-level object specifies how to access the 3scale Account Management API for a
specific account. The upstream field is the most important part of the object. The system object is
optional, but recommended unless you are providing a fully static configuration for the 3scale
WebAssembly module, which is an option if you do not want to provide connectivity to the system
component of 3scale.

When you provide static configuration objects in addition to the system object, the static ones always
take precedence.

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
 namespace: <bookinfo>
spec:
 pluginConfig:
 api: v1
...

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>

OpenShift Container Platform 4.9 Service Mesh

196

Table 1.22. system object fields

Name Description Required

name An identifier for the 3scale
service, currently not referenced
elsewhere.

Optional

upstream The details about a network host
to be contacted. upstream
refers to the 3scale Account
Management API host known as
system.

Yes

token A 3scale personal access token
with read permissions.

Yes

ttl The minimum amount of seconds
to consider a configuration
retrieved from this host as valid
before trying to fetch new
changes. The default is 600
seconds (10 minutes). Note: there
is no maximum amount, but the
module will generally fetch any
configuration within a reasonable
amount of time after this TTL
elapses.

Optional

1.20.6.4. The 3scale WebAssembly module upstream object

The upstream object describes an external host to which the proxy can perform calls.

Table 1.23. upstream object fields

spec:
 pluginConfig:
 system:
 name: <saas_porta>
 upstream: <object>
 token: <my_account_token>
 ttl: 300
 ...

apiVersion: maistra.io/v1
upstream:
 name: outbound|443||multitenant.3scale.net
 url: "https://myaccount-admin.3scale.net/"
 timeout: 5000
...

CHAPTER 1. SERVICE MESH 2.X

197

Name Description Required

name name is not a free-form
identifier. It is the identifier for the
external host as defined by the
proxy configuration. In the case of
stand-alone Envoy
configurations, it maps to the
name of a Cluster, also known as
upstream in other proxies. Note:
the value of this field, because the
Service Mesh and 3scale Istio
adapter control plane configure
the name according to a format
using a vertical bar (|) as the
separator of multiple fields. For
the purposes of this integration,
always use the format:
outbound|<port>||
<hostname>.

Yes

url The complete URL to access the
described service. Unless implied
by the scheme, you must include
the TCP port.

Yes

Timeout Timeout in milliseconds so that
connections to this service that
take more than the amount of
time to respond will be
considered errors. Default is 1000
seconds.

Optional

1.20.6.5. The 3scale WebAssembly module backend object

The backend top-level object specifies how to access the 3scale Service Management API for
authorizing and reporting HTTP requests. This service is provided by the Backend component of 3scale.

Table 1.24. backend object fields

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
 pluginConfig:
 ...
 backend:
 name: backend
 upstream: <object>
 ...

OpenShift Container Platform 4.9 Service Mesh

198

https://www.envoyproxy.io/docs/envoy/v1.19.0/api-v3/config/cluster/v3/cluster.proto#config-cluster-v3-cluster

Name Description Required

name An identifier for the 3scale
backend, currently not referenced
elsewhere.

Optional

upstream The details about a network host
to be contacted. This must refer
to the 3scale Account
Management API host, known,
system.

Yes. The most important and
required field.

1.20.6.6. The 3scale WebAssembly module services object

The services top-level object specifies which service identifiers are handled by this particular instance
of the module.

Since accounts have multiple services, you must specify which ones are handled. The rest of the
configuration revolves around how to configure services.

The services field is required. It is an array that must contain at least one service to be useful.

Each element in the services array represents a 3scale service.

Table 1.25. services object fields

Name Description Required

ID An identifier for this 3scale
service, currently not referenced
elsewhere.

Yes

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
 pluginConfig:
 ...
 services:
 - id: "2555417834789"
 token: service_token
 authorities:
 - "*.app"
 - 0.0.0.0
 - "0.0.0.0:8443"
 credentials: <object>
 mapping_rules: <object>
 ...

CHAPTER 1. SERVICE MESH 2.X

199

token This token can be found in the
proxy configuration for your
service in System or you can
retrieve the it from System with
following curl command:

curl
https://<system_host>/admin
/api/services/<service_id>/pr
oxy/configs/production/lates
t.json?access_token=
<access_token>" | jq
'.proxy_config.content.backe
nd_authentication_value

Optional

authorities An array of strings, each one
representing the Authority of a
URL to match. These strings
accept glob patterns supporting
the asterisk (*), plus sign (+), and
question mark (?) matchers.

Yes

credentials An object defining which kind of
credentials to look for and where.

Yes

mapping_rules An array of objects representing
mapping rules and 3scale
methods to hit.

Optional

Name Description Required

1.20.6.7. The 3scale WebAssembly module credentials object

The credentials object is a component of the service object. credentials specifies which kind of
credentials to be looked up and the steps to perform this action.

All fields are optional, but you must specify at least one, user_key or app_id. The order in which you
specify each credential is irrelevant because it is pre-established by the module. Only specify one
instance of each credential.

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
 pluginConfig:
 ...
 services:
 - credentials:
 user_key: <array_of_lookup_queries>
 app_id: <array_of_lookup_queries>
 app_key: <array_of_lookup_queries>
 ...

OpenShift Container Platform 4.9 Service Mesh

200

Table 1.26. credentials object fields

Name Description Required

user_key This is an array of lookup queries
that defines a 3scale user key. A
user key is commonly known as an
API key.

Optional

app_id This is an array of lookup queries
that define a 3scale application
identifier. Application identifiers
are provided by 3scale or by using
an identity provider like Red Hat
Single Sign-On (RH-SS0), or
OpenID Connect (OIDC). The
resolution of the lookup queries
specified here, whenever it is
successful and resolves to two
values, it sets up the app_id and
the app_key.

Optional

app_key This is an array of lookup queries
that define a 3scale application
key. Application keys without a
resolved app_id are useless, so
only specify this field when
app_id has been specified.

Optional

1.20.6.8. The 3scale WebAssembly module lookup queries

The lookup query object is part of any of the fields in the credentials object. It specifies how a given
credential field should be found and processed. When evaluated, a successful resolution means that one
or more values were found. A failed resolution means that no values were found.

Arrays of lookup queries describe a short-circuit or relationship: a successful resolution of one of the
queries stops the evaluation of any remaining queries and assigns the value or values to the specified
credential-type. Each query in the array is independent of each other.

A lookup query is made up of a single field, a source object, which can be one of a number of source
types. See the following example:

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
 pluginConfig:
 ...
 services:
 - credentials:
 user_key:
 - <source_type>: <object>

CHAPTER 1. SERVICE MESH 2.X

201

https://access.redhat.com/products/red-hat-single-sign-on

1.20.6.9. The 3scale WebAssembly module source object

A source object exists as part of an array of sources within any of the credentials object fields. The
object field name, referred to as a source-type is any one of the following:

header: The lookup query receives HTTP request headers as input.

query_string: The lookup query receives the URL query string parameters as input.

filter: The lookup query receives filter metadata as input.

All source-type objects have at least the following two fields:

Table 1.27. source-type object fields

Name Description Required

keys An array of strings, each one a
key, referring to entries found in
the input data.

Yes

ops An array of operations that
perform a key entry match. The
array is a pipeline where
operations receive inputs and
generate outputs on the next
operation. An operation failing to
provide an output resolves the
lookup query as failed. The
pipeline order of the operations
determines the evaluation order.

Optional

The filter field name has a required path entry to show the path in the metadata you use to look up data.

When a key matches the input data, the rest of the keys are not evaluated and the source resolution
algorithm jumps to executing the operations (ops) specified, if any. If no ops are specified, the result
value of the matching key, if any, is returned.

Operations provide a way to specify certain conditions and transformations for inputs you have after
the first phase looks up a key. Use operations when you need to transform, decode, and assert
properties, however they do not provide a mature language to deal with all needs and lack Turing-
completeness.

A stack stored the outputs of operations. When evaluated, the lookup query finishes by assigning the

 - <source_type>: <object>
 ...
 app_id:
 - <source_type>: <object>
 ...
 app_key:
 - <source_type>: <object>
 ...
 ...

OpenShift Container Platform 4.9 Service Mesh

202

A stack stored the outputs of operations. When evaluated, the lookup query finishes by assigning the
value or values at the bottom of the stack, depending on how many values the credential consumes.

1.20.6.10. The 3scale WebAssembly module operations object

Each element in the ops array belonging to a specific source type is an operation object that either
applies transformations to values or performs tests. The field name to use for such an object is the
name of the operation itself, and any values are the parameters to the operation, which could be
structure objects, for example, maps with fields and values, lists, or strings.

Most operations attend to one or more inputs, and produce one or more outputs. When they consume
inputs or produce outputs, they work with a stack of values: each value consumed by the operations is
popped from the stack of values and initially populated with any source matches. The values outputted
by them are pushed to the stack. Other operations do not consume or produce outputs other than
asserting certain properties, but they inspect a stack of values.

NOTE

When resolution finishes, the values picked up by the next step, such as assigning the
values to be an app_id, app_key, or user_key, are taken from the bottom values of the
stack.

There are a few different operations categories:

decode: These transform an input value by decoding it to get a different format.

string: These take a string value as input and perform transformations and checks on it.

stack: These take a set of values in the input and perform multiple stack transformations and
selection of specific positions in the stack.

check: These assert properties about sets of operations in a side-effect free way.

control: These perform operations that allow for modifying the evaluation flow.

format: These parse the format-specific structure of input values and look up values in it.

All operations are specified by the name identifiers as strings.

Additional resources

Available operations

1.20.6.11. The 3scale WebAssembly module mapping_rules object

The mapping_rules object is part of the service object. It specifies a set of REST path patterns and
related 3scale metrics and count increments to use when the patterns match.

You need the value if no dynamic configuration is provided in the system top-level object. If the object
is provided in addition to the system top-level entry, then the mapping_rules object is evaluated first.

mapping_rules is an array object. Each element of that array is a mapping_rule object. The evaluated
matching mapping rules on an incoming request provide the set of 3scale methods for authorization
and reporting to the APIManager. When multiple matching rules refer to the same methods, there is a
summation of deltas when calling into 3scale. For example, if two rules increase the Hits method twice
with deltas of 1 and 3, a single method entry for Hits reporting to 3scale has a delta of 4.

CHAPTER 1. SERVICE MESH 2.X

203

https://github.com/3scale/threescale-wasm-auth/blob/main/docs/operations.md

1.20.6.12. The 3scale WebAssembly module mapping_rule object

The mapping_rule object is part of an array in the mapping_rules object.

The mapping_rule object fields specify the following information:

The HTTP request method to match.

A pattern to match the path against.

The 3scale methods to report along with the amount to report. The order in which you specify
the fields determines the evaluation order.

Table 1.28. mapping_rule object fields

Name Description Required

method Specifies a string representing an
HTTP request method, also
known as verb. Values accepted
match the any one of the
accepted HTTP method names,
case-insensitive. A special value
of any matches any method.

Yes

pattern The pattern to match the HTTP
request’s URI path component.
This pattern follows the same
syntax as documented by 3scale.
It allows wildcards (use of the
asterisk (*) character) using any
sequence of characters between
braces such as {this}.

Yes

usages A list of usage objects. When the
rule matches, all methods with
their deltas are added to the list
of methods sent to 3scale for
authorization and reporting.

Embed the usages object with
the following required fields:

name: The method
system name to report.

delta: For how much to
increase that method
by.

Yes

OpenShift Container Platform 4.9 Service Mesh

204

last Whether the successful matching
of this rule should stop the
evaluation of more mapping rules.

Optional Boolean. The default is
false

Name Description Required

The following example is independent of existing hierarchies between methods in 3scale. That is,
anything run on the 3scale side will not affect this. For example, the Hits metric might be a parent of
them all, so it stores 4 hits due to the sum of all reported methods in the authorized request and calls
the 3scale Authrep API endpoint.

The example below uses a GET request to a path, /products/1/sold, that matches all the rules.

mapping_rules GET request example

All usages get added to the request the module performs to 3scale with usage data as follows:

Hits: 1

products: 2

sales: 1

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
 pluginConfig:
 ...
 mapping_rules:
 - method: GET
 pattern: /
 usages:
 - name: hits
 delta: 1
 - method: GET
 pattern: /products/
 usages:
 - name: products
 delta: 1
 - method: ANY
 pattern: /products/{id}/sold
 usages:
 - name: sales
 delta: 1
 - name: products
 delta: 1
 ...

CHAPTER 1. SERVICE MESH 2.X

205

1.20.7. The 3scale WebAssembly module examples for credentials use cases

You will spend most of your time applying configuration steps to obtain credentials in the requests to
your services.

The following are credentials examples, which you can modify to adapt to specific use cases.

You can combine them all, although when you specify multiple source objects with their own lookup
queries, they are evaluated in order until one of them successfully resolves.

1.20.7.1. API key (user_key) in query string parameters

The following example looks up a user_key in a query string parameter or header of the same name:

1.20.7.2. Application ID and key

The following example looks up app_key and app_id credentials in a query or headers.

1.20.7.3. Authorization header

A request includes an app_id and app_key in an authorization header. If there is at least one or two
values outputted at the end, then you can assign the app_key.

The resolution here assigns the app_key if there is one or two outputted at the end.

The authorization header specifies a value with the type of authorization and its value is encoded as
Base64. This means you can split the value by a space character, take the second output and then split it
again using a colon (:) as the separator. For example, if you use this format app_id:app_key, the header
looks like the following example for credential:

credentials:
 user_key:
 - query_string:
 keys:
 - user_key
 - header:
 keys:
 - user_key

credentials:
 app_id:
 - header:
 keys:
 - app_id
 - query_string:
 keys:
 - app_id
 app_key:
 - header:
 keys:
 - app_key
 - query_string:
 keys:
 - app_key

OpenShift Container Platform 4.9 Service Mesh

206

aladdin:opensesame: Authorization: Basic YWxhZGRpbjpvcGVuc2VzYW1l

You must use lower case header field names as shown in the following example:

The previous example use case looks at the headers for an authorization:

1. It takes its string value and split it by a space, checking that it generates at least two values of a
credential-type and the credential itself, then dropping the credential-type.

2. It then decodes the second value containing the data it needs, and splits it by using a colon (:)
character to have an operations stack including first the app_id, then the app_key, if it exists.

a. If app_key does not exist in the authorization header then its specific sources are checked,
for example, the header with the key app_key in this case.

3. To add extra conditions to credentials, allow Basic authorizations, where app_id is either
aladdin or admin, or any app_id being at least 8 characters in length.

4. app_key must contain a value and have a minimum of 64 characters as shown in the following
example:

credentials:
 app_id:
 - header:
 keys:
 - authorization
 ops:
 - split:
 separator: " "
 max: 2
 - length:
 min: 2
 - drop:
 head: 1
 - base64_urlsafe
 - split:
 max: 2
 app_key:
 - header:
 keys:
 - app_key

credentials:
 app_id:
 - header:
 keys:
 - authorization
 ops:
 - split:
 separator: " "
 max: 2
 - length:
 min: 2
 - reverse
 - glob:
 - Basic

CHAPTER 1. SERVICE MESH 2.X

207

5. After picking up the authorization header value, you get a Basic credential-type by reversing
the stack so that the type is placed on top.

6. Run a glob match on it. When it validates, and the credential is decoded and split, you get the
app_id at the bottom of the stack, and potentially the app_key at the top.

7. Run a test: if there are two values in the stack, meaning an app_key was acquired.

a. Ensure the string length is between 1 and 63, including app_id and app_key. If the key’s
length is zero, drop it and continue as if no key exists. If there was only an app_id and no
app_key, the missing else branch indicates a successful test and evaluation continues.

The last operation, assert, indicates that no side-effects make it into the stack. You can then modify the
stack:

1. Reverse the stack to have the app_id at the top.

a. Whether or not an app_key is present, reversing the stack ensures app_id is at the top.

2. Use and to preserve the contents of the stack across tests.
Then use one of the following possibilities:

Make sure app_id has a string length of at least 8.

Make sure app_id matches either aladdin or admin.

1.20.7.4. OpenID Connect (OIDC) use case

For Service Mesh and the 3scale Istio adapter, you must deploy a RequestAuthentication as shown in

 - drop:
 tail: 1
 - base64_urlsafe
 - split:
 max: 2
 - test:
 if:
 length:
 min: 2
 then:
 - strlen:
 max: 63
 - or:
 - strlen:
 min: 1
 - drop:
 tail: 1
 - assert:
 - and:
 - reverse
 - or:
 - strlen:
 min: 8
 - glob:
 - aladdin
 - admin

OpenShift Container Platform 4.9 Service Mesh

208

For Service Mesh and the 3scale Istio adapter, you must deploy a RequestAuthentication as shown in
the following example, filling in your own workload data and jwtRules:

When you apply the RequestAuthentication, it configures Envoy with a native plugin to validate JWT
tokens. The proxy validates everything before running the module so any requests that fail do not make
it to the 3scale WebAssembly module.

When a JWT token is validated, the proxy stores its contents in an internal metadata object, with an
entry whose key depends on the specific configuration of the plugin. This use case gives you the ability
to look up structure objects with a single entry containing an unknown key name.

The 3scale app_id for OIDC matches the OAuth client_id. This is found in the azp or aud fields of JWT
tokens.

To get app_id field from Envoy’s native JWT authentication filter, see the following example:

The example instructs the module to use the filter source type to look up filter metadata for an object
from the Envoy-specific JWT authentication native plugin. This plugin includes the JWT token as part
of a structure object with a single entry and a pre-configured name. Use 0 to specify that you will only
access the single entry.

The resulting value is a structure for which you will resolve two fields:

azp: The value where app_id is found.

aud: The value where this information can also be found.

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: jwt-example
 namespace: bookinfo
spec:
 selector:
 matchLabels:
 app: productpage
 jwtRules:
 - issuer: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak
 jwksUri: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak/protocol/openid-
connect/certs

credentials:
 app_id:
 - filter:
 path:
 - envoy.filters.http.jwt_authn
 - "0"
 keys:
 - azp
 - aud
 ops:
 - take:
 head: 1

CHAPTER 1. SERVICE MESH 2.X

209

https://www.envoyproxy.io/docs/envoy/v1.19.0/api-v3/extensions/filters/http/jwt_authn/v3/config.proto.html

The operation ensures only one value is held for assignment.

1.20.7.5. Picking up the JWT token from a header

Some setups might have validation processes for JWT tokens where the validated token would reach
this module via a header in JSON format.

To get the app_id, see the following example:

1.20.8. 3scale WebAssembly module minimal working configuration

The following is an example of a 3scale WebAssembly module minimal working configuration. You can
copy and paste this and edit it to work with your own configuration.

credentials:
 app_id:
 - header:
 keys:
 - x-jwt-payload
 ops:
 - base64_urlsafe
 - json:
 - keys:
 - azp
 - aud
 - take:
 head: 1

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: <threescale_wasm_plugin_name>
spec:
 url: oci://registry.redhat.io/3scale-amp2/3scale-auth-wasm-rhel8:0.0.3
 imagePullSecret: <optional_pull_secret_resource>
 phase: AUTHZ
 priority: 100
 selector:
 labels:
 app: <product_page>
 pluginConfig:
 api: v1
 system:
 name: <system_name>
 upstream:
 name: outbound|443||multitenant.3scale.net
 url: https://istiodevel-admin.3scale.net/
 timeout: 5000
 token: <token>
 backend:
 name: <backend_name>
 upstream:
 name: outbound|443||su1.3scale.net
 url: https://su1.3scale.net/
 timeout: 5000

OpenShift Container Platform 4.9 Service Mesh

210

1.21. USING THE 3SCALE ISTIO ADAPTER

The 3scale Istio Adapter is an optional adapter that allows you to label a service running within the Red
Hat OpenShift Service Mesh and integrate that service with the 3scale API Management solution. It is
not required for Red Hat OpenShift Service Mesh.

IMPORTANT

You can only use the 3scale Istio adapter with Red Hat OpenShift Service Mesh versions
2.0 and below. The Mixer component was deprecated in release 2.0 and removed in
release 2.1. For Red Hat OpenShift Service Mesh versions 2.1.0 and later you should use
the 3scale WebAssembly module.

If you want to enable 3scale backend cache with the 3scale Istio adapter, you must also
enable Mixer policy and Mixer telemetry. See Deploying the Red Hat OpenShift Service
Mesh control plane.

1.21.1. Integrate the 3scale adapter with Red Hat OpenShift Service Mesh

You can use these examples to configure requests to your services using the 3scale Istio Adapter.

Prerequisites:

Red Hat OpenShift Service Mesh version 2.x

 extensions:
 - no_body
 services:
 - id: '2555417834780'
 authorities:
 - "*"
 credentials:
 user_key:
 - query_string:
 keys:
 - <user_key>
 - header:
 keys:
 - <user_key>
 app_id:
 - query_string:
 keys:
 - <app_id>
 - header:
 keys:
 - <app_id>
 app_key:
 - query_string:
 keys:
 - <app_key>
 - header:
 keys:
 - <app_key>

CHAPTER 1. SERVICE MESH 2.X

211

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#3scale-webassembly-for-2.1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-create-smcp

A working 3scale account (SaaS or 3scale 2.9 On-Premises)

Enabling backend cache requires 3scale 2.9 or greater

Red Hat OpenShift Service Mesh prerequisites

Ensure Mixer policy enforcement is enabled. Update Mixer policy enforcement section provides
instructions to check the current Mixer policy enforcement status and enable policy
enforcement.

Mixer policy and telemetry must be enabled if you are using a mixer plugin.

You will need to properly configure the Service Mesh Control Plane (SMCP) when
upgrading.

NOTE

To configure the 3scale Istio Adapter, refer to Red Hat OpenShift Service Mesh custom
resources for instructions on adding adapter parameters to the custom resource file.

NOTE

Pay particular attention to the kind: handler resource. You must update this with your
3scale account credentials. You can optionally add a service_id to a handler, but this is
kept for backwards compatibility only, since it would render the handler only useful for
one service in your 3scale account. If you add service_id to a handler, enabling 3scale for
other services requires you to create more handlers with different service_ids.

Use a single handler per 3scale account by following the steps below:

Procedure

1. Create a handler for your 3scale account and specify your account credentials. Omit any service
identifier.

Optionally, you can provide a backend_url field within the params section to override the URL
provided by the 3scale configuration. This may be useful if the adapter runs on the same cluster
as the 3scale on-premise instance, and you wish to leverage the internal cluster DNS.

2. Edit or patch the Deployment resource of any services belonging to your 3scale account as
follows:

a. Add the "service-mesh.3scale.net/service-id" label with a value corresponding to a valid

 apiVersion: "config.istio.io/v1alpha2"
 kind: handler
 metadata:
 name: threescale
 spec:
 adapter: threescale
 params:
 system_url: "https://<organization>-admin.3scale.net/"
 access_token: "<ACCESS_TOKEN>"
 connection:
 address: "threescale-istio-adapter:3333"

OpenShift Container Platform 4.9 Service Mesh

212

https://www.3scale.net/signup/
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.9/html/installing_3scale/install-threescale-on-openshift-guide

a. Add the "service-mesh.3scale.net/service-id" label with a value corresponding to a valid
service_id.

b. Add the "service-mesh.3scale.net/credentials" label with its value being the name of the
handler resource from step 1.

3. Do step 2 to link it to your 3scale account credentials and to its service identifier, whenever you
intend to add more services.

4. Modify the rule configuration with your 3scale configuration to dispatch the rule to the
threescale handler.

Rule configuration example

1.21.1.1. Generating 3scale custom resources

The adapter includes a tool that allows you to generate the handler, instance, and rule custom
resources.

Table 1.29. Usage

Option Description Required Default value

-h, --help Produces help output
for available options

No

--name Unique name for this
URL, token pair

Yes

-n, --namespace Namespace to generate
templates

No istio-system

-t, --token 3scale access token Yes

-u, --url 3scale Admin Portal URL Yes

--backend-url 3scale backend URL. If
set, it overrides the
value that is read from
system configuration

No

 apiVersion: "config.istio.io/v1alpha2"
 kind: rule
 metadata:
 name: threescale
 spec:
 match: destination.labels["service-mesh.3scale.net"] == "true"
 actions:
 - handler: threescale.handler
 instances:
 - threescale-authorization.instance

CHAPTER 1. SERVICE MESH 2.X

213

-s, --service 3scale API/Service ID No

--auth 3scale authentication
pattern to specify (1=API
Key, 2=App Id/App Key,
3=OIDC)

No Hybrid

-o, --output File to save produced
manifests to

No Standard output

--version Outputs the CLI version
and exits immediately

No

Option Description Required Default value

1.21.1.1.1. Generate templates from URL examples

NOTE

Run the following commands via oc exec from the 3scale adapter container
image in Generating manifests from a deployed adapter .

Use the 3scale-config-gen command to help avoid YAML syntax and
indentation errors.

You can omit the --service if you use the annotations.

This command must be invoked from within the container image via oc exec.

Procedure

Use the 3scale-config-gen command to autogenerate templates files allowing the token, URL
pair to be shared by multiple services as a single handler:

$ 3scale-config-gen --name=admin-credentials --url="https://<organization>-
admin.3scale.net:443" --token="[redacted]"

The following example generates the templates with the service ID embedded in the handler:

$ 3scale-config-gen --url="https://<organization>-admin.3scale.net" --name="my-unique-id" --
service="123456789" --token="[redacted]"

Additional resources

Tokens.

1.21.1.2. Generating manifests from a deployed adapter

NOTE

OpenShift Container Platform 4.9 Service Mesh

214

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/admin_portal_guide/index#tokens

NOTE

NAME is an identifier you use to identify with the service you are managing with
3scale.

The CREDENTIALS_NAME reference is an identifier that corresponds to the
match section in the rule configuration. This is automatically set to the NAME
identifier if you are using the CLI tool.

Its value does not need to be anything specific: the label value should just match
the contents of the rule. See Routing service traffic through the adapter for
more information.

1. Run this command to generate manifests from a deployed adapter in the istio-system
namespace:

$ export NS="istio-system" URL="https://replaceme-admin.3scale.net:443" NAME="name"
TOKEN="token"
oc exec -n ${NS} $(oc get po -n ${NS} -o jsonpath='{.items[?
(@.metadata.labels.app=="3scale-istio-adapter")].metadata.name}') \
-it -- ./3scale-config-gen \
--url ${URL} --name ${NAME} --token ${TOKEN} -n ${NS}

2. This will produce sample output to the terminal. Edit these samples if required and create the
objects using the oc create command.

3. When the request reaches the adapter, the adapter needs to know how the service maps to an
API on 3scale. You can provide this information in two ways:

a. Label the workload (recommended)

b. Hard code the handler as service_id

4. Update the workload with the required annotations:

NOTE

You only need to update the service ID provided in this example if it is not already
embedded in the handler. The setting in the handler takes precedence.

$ export CREDENTIALS_NAME="replace-me"
export SERVICE_ID="replace-me"
export DEPLOYMENT="replace-me"
patch="$(oc get deployment "${DEPLOYMENT}"
patch="$(oc get deployment "${DEPLOYMENT}" --template='{"spec":{"template":{"metadata":
{"labels":{ {{ range $k,$v := .spec.template.metadata.labels }}"{{ $k }}":"{{ $v }}",{{ end
}}"service-mesh.3scale.net/service-id":"'"${SERVICE_ID}"'","service-
mesh.3scale.net/credentials":"'"${CREDENTIALS_NAME}"'"}}}}}')"
oc patch deployment "${DEPLOYMENT}" --patch ''"${patch}"''

1.21.1.3. Routing service traffic through the adapter

Follow these steps to drive traffic for your service through the 3scale adapter.

Prerequisites

CHAPTER 1. SERVICE MESH 2.X

215

https://github.com/3scale/3scale-istio-adapter/blob/v2.X/README.md#routing-service-traffic-through-the-adapter

Prerequisites

Credentials and service ID from your 3scale administrator.

Procedure

1. Match the rule destination.labels["service-mesh.3scale.net/credentials"] == "threescale"
that you previously created in the configuration, in the kind: rule resource.

2. Add the above label to PodTemplateSpec on the Deployment of the target workload to
integrate a service. the value, threescale, refers to the name of the generated handler. This
handler stores the access token required to call 3scale.

3. Add the destination.labels["service-mesh.3scale.net/service-id"] == "replace-me" label to
the workload to pass the service ID to the adapter via the instance at request time.

1.21.2. Configure the integration settings in 3scale

Follow this procedure to configure the 3scale integration settings.

NOTE

For 3scale SaaS customers, Red Hat OpenShift Service Mesh is enabled as part of the
Early Access program.

Procedure

1. Navigate to [your_API_name] → Integration

2. Click Settings.

3. Select the Istio option under Deployment.

The API Key (user_key) option under Authentication is selected by default.

4. Click Update Product to save your selection.

5. Click Configuration.

6. Click Update Configuration.

1.21.3. Caching behavior

Responses from 3scale System APIs are cached by default within the adapter. Entries will be purged
from the cache when they become older than the cacheTTLSeconds value. Also by default, automatic
refreshing of cached entries will be attempted seconds before they expire, based on the
cacheRefreshSeconds value. You can disable automatic refreshing by setting this value higher than
the cacheTTLSeconds value.

Caching can be disabled entirely by setting cacheEntriesMax to a non-positive value.

By using the refreshing process, cached values whose hosts become unreachable will be retried before
eventually being purged when past their expiry.

1.21.4. Authenticating requests

OpenShift Container Platform 4.9 Service Mesh

216

This release supports the following authentication methods:

Standard API Keys: single randomized strings or hashes acting as an identifier and a secret
token.

Application identifier and key pairs: immutable identifier and mutable secret key strings.

OpenID authentication method: client ID string parsed from the JSON Web Token.

1.21.4.1. Applying authentication patterns

Modify the instance custom resource, as illustrated in the following authentication method examples, to
configure authentication behavior. You can accept the authentication credentials from:

Request headers

Request parameters

Both request headers and query parameters

NOTE

When specifying values from headers, they must be lower case. For example, if you want
to send a header as User-Key, this must be referenced in the configuration as
request.headers["user-key"].

1.21.4.1.1. API key authentication method

Service Mesh looks for the API key in query parameters and request headers as specified in the user
option in the subject custom resource parameter. It checks the values in the order given in the custom
resource file. You can restrict the search for the API key to either query parameters or request headers
by omitting the unwanted option.

In this example, Service Mesh looks for the API key in the user_key query parameter. If the API key is
not in the query parameter, Service Mesh then checks the user-key header.

API key authentication method example

If you want the adapter to examine a different query parameter or request header, change the name as
appropriate. For example, to check for the API key in a query parameter named “key”, change
request.query_params["user_key"] to request.query_params["key"].

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
 namespace: istio-system
spec:
 template: authorization
 params:
 subject:
 user: request.query_params["user_key"] | request.headers["user-key"] | ""
 action:
 path: request.url_path
 method: request.method | "get"

CHAPTER 1. SERVICE MESH 2.X

217

1.21.4.1.2. Application ID and application key pair authentication method

Service Mesh looks for the application ID and application key in query parameters and request headers,
as specified in the properties option in the subject custom resource parameter. The application key is
optional. It checks the values in the order given in the custom resource file. You can restrict the search
for the credentials to either query parameters or request headers by not including the unwanted option.

In this example, Service Mesh looks for the application ID and application key in the query parameters
first, moving on to the request headers if needed.

Application ID and application key pair authentication method example

If you want the adapter to examine a different query parameter or request header, change the name as
appropriate. For example, to check for the application ID in a query parameter named identification,
change request.query_params["app_id"] to request.query_params["identification"].

1.21.4.1.3. OpenID authentication method

To use the OpenID Connect (OIDC) authentication method , use the properties value on the subject
field to set client_id, and optionally app_key.

You can manipulate this object using the methods described previously. In the example configuration
shown below, the client identifier (application ID) is parsed from the JSON Web Token (JWT) under the
label azp. You can modify this as needed.

OpenID authentication method example

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
 namespace: istio-system
spec:
 template: authorization
 params:
 subject:
 app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 action:
 path: request.url_path
 method: request.method | "get"

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
spec:
 template: threescale-authorization
 params:
 subject:
 properties:
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 client_id: request.auth.claims["azp"] | ""
 action:

OpenShift Container Platform 4.9 Service Mesh

218

For this integration to work correctly, OIDC must still be done in 3scale for the client to be created in the
identity provider (IdP). You should create a Request authorization for the service you want to protect in
the same namespace as that service. The JWT is passed in the Authorization header of the request.

In the sample RequestAuthentication defined below, replace issuer, jwksUri, and selector as
appropriate.

OpenID Policy example

1.21.4.1.4. Hybrid authentication method

You can choose to not enforce a particular authentication method and accept any valid credentials for
either method. If both an API key and an application ID/application key pair are provided, Service Mesh
uses the API key.

In this example, Service Mesh checks for an API key in the query parameters, then the request headers. If
there is no API key, it then checks for an application ID and key in the query parameters, then the request
headers.

Hybrid authentication method example

 path: request.url_path
 method: request.method | "get"
 service: destination.labels["service-mesh.3scale.net/service-id"] | ""

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: jwt-example
 namespace: bookinfo
spec:
 selector:
 matchLabels:
 app: productpage
 jwtRules:
 - issuer: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak
 jwksUri: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak/protocol/openid-
connect/certs

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
spec:
 template: authorization
 params:
 subject:
 user: request.query_params["user_key"] | request.headers["user-key"] |
 properties:
 app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 client_id: request.auth.claims["azp"] | ""
 action:

CHAPTER 1. SERVICE MESH 2.X

219

https://istio.io/latest/docs/tasks/security/authorization/authz-jwt/

1.21.5. 3scale Adapter metrics

The adapter, by default reports various Prometheus metrics that are exposed on port 8080 at the
/metrics endpoint. These metrics provide insight into how the interactions between the adapter and
3scale are performing. The service is labeled to be automatically discovered and scraped by
Prometheus.

NOTE

There are incompatible changes in the 3scale Istio Adapter metrics since the previous
releases in Service Mesh 1.x.

In Prometheus, metrics have been renamed with one addition for the backend cache, so that the
following metrics exist as of Service Mesh 2.0:

Table 1.30. Prometheus metrics

Metric Type Description

threescale_latency Histogram Request latency between adapter
and 3scale.

threescale_http_total Counter HTTP Status response codes for
requests to 3scale backend.

threescale_system_cache_hi
ts

Counter Total number of requests to the
3scale system fetched from the
configuration cache.

threescale_backend_cache_
hits

Counter Total number of requests to
3scale backend fetched from the
backend cache.

1.21.6. 3scale backend cache

The 3scale backend cache provides an authorization and reporting cache for clients of the 3scale
Service Management API. This cache is embedded in the adapter to enable lower latencies in responses
in certain situations assuming the administrator is willing to accept the trade-offs.

NOTE

3scale backend cache is disabled by default. 3scale backend cache functionality trades
inaccuracy in rate limiting and potential loss of hits since the last flush was performed for
low latency and higher consumption of resources in the processor and memory.

1.21.6.1. Advantages of enabling backend cache

 path: request.url_path
 method: request.method | "get"
 service: destination.labels["service-mesh.3scale.net/service-id"] | ""

OpenShift Container Platform 4.9 Service Mesh

220

The following are advantages to enabling the backend cache:

Enable the backend cache when you find latencies are high while accessing services managed by
the 3scale Istio Adapter.

Enabling the backend cache will stop the adapter from continually checking with the 3scale API
manager for request authorizations, which will lower the latency.

This creates an in-memory cache of 3scale authorizations for the 3scale Istio Adapter to
store and reuse before attempting to contact the 3scale API manager for authorizations.
Authorizations will then take much less time to be granted or denied.

Backend caching is useful in cases when you are hosting the 3scale API manager in another
geographical location from the service mesh running the 3scale Istio Adapter.

This is generally the case with the 3scale Hosted (SaaS) platform, but also if a user hosts
their 3scale API manager in another cluster located in a different geographical location, in a
different availability zone, or in any case where the network overhead to reach the 3scale
API manager is noticeable.

1.21.6.2. Trade-offs for having lower latencies

The following are trade-offs for having lower latencies:

Each 3scale adapter’s authorization state updates every time a flush happens.

This means two or more instances of the adapter will introduce more inaccuracy between
flushing periods.

There is a greater chance of too many requests being granted that exceed limits and
introduce erratic behavior, which leads to some requests going through and some not,
depending on which adapter processes each request.

An adapter cache that cannot flush its data and update its authorization information risks shut
down or crashing without reporting its information to the API manager.

A fail open or fail closed policy will be applied when an adapter cache cannot determine whether
a request must be granted or denied, possibly due to network connectivity issues in contacting
the API manager.

When cache misses occur, typically right after booting the adapter or after a long period of no
connectivity, latencies will grow in order to query the API manager.

An adapter cache must do much more work on computing authorizations than it would without
an enabled cache, which will tax processor resources.

Memory requirements will grow proportionally to the combination of the amount of limits,
applications, and services managed by the cache.

1.21.6.3. Backend cache configuration settings

The following points explain the backend cache configuration settings:

Find the settings to configure the backend cache in the 3scale configuration options.

The last 3 settings control enabling of backend cache:

CHAPTER 1. SERVICE MESH 2.X

221

PARAM_USE_CACHE_BACKEND - set to true to enable backend cache.

PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS - sets time in seconds
between consecutive attempts to flush cache data to the API manager.

PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED - set whether or not to allow/open
or deny/close requests to the services when there is not enough cached data and the 3scale
API manager cannot be reached.

1.21.7. 3scale Istio Adapter APIcast emulation

The 3scale Istio Adapter performs as APIcast would when the following conditions occur:

When a request cannot match any mapping rule defined, the returned HTTP code is 404 Not
Found. This was previously 403 Forbidden.

When a request is denied because it goes over limits, the returned HTTP code is 429 Too Many
Requests. This was previously 403 Forbidden.

When generating default templates via the CLI, it will use underscores rather than dashes for
the headers, for example: user_key rather than user-key.

1.21.8. 3scale Istio adapter verification

You might want to check whether the 3scale Istio adapter is working as expected. If your adapter is not
working, use the following steps to help troubleshoot the problem.

Procedure

1. Ensure the 3scale-adapter pod is running in the Service Mesh control plane namespace:

2. Check that the 3scale-adapter pod has printed out information about itself booting up, such as
its version:

3. When performing requests to the services protected by the 3scale adapter integration, always
try requests that lack the right credentials and ensure they fail. Check the 3scale adapter logs to
gather additional information.

Additional resources

Inspecting pod and container logs.

1.21.9. 3scale Istio adapter troubleshooting checklist

As the administrator installing the 3scale Istio adapter, there are a number of scenarios that might be
causing your integration to not function properly. Use the following list to troubleshoot your installation:

Incorrect YAML indentation.

Missing YAML sections.

$ oc get pods -n <istio-system>

$ oc logs <istio-system>

OpenShift Container Platform 4.9 Service Mesh

222

https://docs.openshift.com/container-platform/4.7/support/troubleshooting/investigating-pod-issues.html#inspecting-pod-and-container-logs_investigating-pod-issues

Forgot to apply the changes in the YAML to the cluster.

Forgot to label the service workloads with the service-mesh.3scale.net/credentials key.

Forgot to label the service workloads with service-mesh.3scale.net/service-id when using
handlers that do not contain a service_id so they are reusable per account.

The Rule custom resource points to the wrong handler or instance custom resources, or the
references lack the corresponding namespace suffix.

The Rule custom resource match section cannot possibly match the service you are configuring,
or it points to a destination workload that is not currently running or does not exist.

Wrong access token or URL for the 3scale Admin Portal in the handler.

The Instance custom resource’s params/subject/properties section fails to list the right
parameters for app_id, app_key, or client_id, either because they specify the wrong location
such as the query parameters, headers, and authorization claims, or the parameter names do not
match the requests used for testing.

Failing to use the configuration generator without realizing that it actually lives in the adapter
container image and needs oc exec to invoke it.

1.22. TROUBLESHOOTING YOUR SERVICE MESH

This section describes how to identify and resolve common problems in Red Hat OpenShift Service
Mesh. Use the following sections to help troubleshoot and debug problems when deploying Red Hat
OpenShift Service Mesh on OpenShift Container Platform.

1.22.1. Understanding Service Mesh versions

In order to understand what version of Red Hat OpenShift Service Mesh you have deployed on your
system, you need to understand how each of the component versions is managed.

Operator version - The most current Operator version is 2.3.2. The Operator version number
only indicates the version of the currently installed Operator. Because the Red Hat OpenShift
Service Mesh Operator supports multiple versions of the Service Mesh control plane, the
version of the Operator does not determine the version of your deployed
ServiceMeshControlPlane resources.

IMPORTANT

Upgrading to the latest Operator version automatically applies patch updates,
but does not automatically upgrade your Service Mesh control plane to the latest
minor version.

ServiceMeshControlPlane version - The ServiceMeshControlPlane version determines what
version of Red Hat OpenShift Service Mesh you are using. The value of the spec.version field in
the ServiceMeshControlPlane resource controls the architecture and configuration settings
that are used to install and deploy Red Hat OpenShift Service Mesh. When you create the
Service Mesh control plane you can set the version in one of two ways:

To configure in the Form View, select the version from the Control Plane Version menu.

To configure in the YAML View, set the value for spec.version in the YAML file.

CHAPTER 1. SERVICE MESH 2.X

223

Operator Lifecycle Manager (OLM) does not manage Service Mesh control plane upgrades, so the
version number for your Operator and ServiceMeshControlPlane (SMCP) may not match, unless you
have manually upgraded your SMCP.

1.22.2. Troubleshooting Operator installation

In addition to the information in this section, be sure to review the following topics:

What are Operators?

Operator Lifecycle Management concepts.

OpenShift Operator troubleshooting section.

OpenShift installation troubleshooting section.

1.22.2.1. Validating Operator installation

When you install the Red Hat OpenShift Service Mesh Operators, OpenShift automatically creates the
following objects as part of a successful Operator installation:

config maps

custom resource definitions

deployments

pods

replica sets

roles

role bindings

secrets

service accounts

services

From the OpenShift Container Platform console

You can verify that the Operator pods are available and running by using the OpenShift Container
Platform console.

1. Navigate to Workloads → Pods.

2. Select the openshift-operators namespace.

3. Verify that the following pods exist and have a status of running:

istio-operator

jaeger-operator

kiali-operator

OpenShift Container Platform 4.9 Service Mesh

224

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/operators/#what-are-operators?
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/operators/#concepts-and-resources
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/support/#troubleshooting-operator-issues-1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/support/#troubleshooting-installations-1

4. Select the openshift-operators-redhat namespace.

5. Verify that the elasticsearch-operator pod exists and has a status of running.

From the command line

1. Verify the Operator pods are available and running in the openshift-operators namespace with
the following command:

Example output

2. Verify the Elasticsearch operator with the following command:

Example output

1.22.2.2. Troubleshooting service mesh Operators

If you experience Operator issues:

Verify your Operator subscription status.

Verify that you did not install a community version of the Operator, instead of the supported
Red Hat version.

Verify that you have the cluster-admin role to install Red Hat OpenShift Service Mesh.

Check for any errors in the Operator pod logs if the issue is related to installation of Operators.

NOTE

You can install Operators only through the OpenShift console, the OperatorHub is not
accessible from the command line.

1.22.2.2.1. Viewing Operator pod logs

You can view Operator logs by using the oc logs command. Red Hat may request logs to help resolve
support cases.

Procedure

To view Operator pod logs, enter the command:

$ oc get pods -n openshift-operators

NAME READY STATUS RESTARTS AGE
istio-operator-bb49787db-zgr87 1/1 Running 0 15s
jaeger-operator-7d5c4f57d8-9xphf 1/1 Running 0 2m42s
kiali-operator-f9c8d84f4-7xh2v 1/1 Running 0 64s

$ oc get pods -n openshift-operators-redhat

NAME READY STATUS RESTARTS AGE
elasticsearch-operator-d4f59b968-796vq 1/1 Running 0 15s

CHAPTER 1. SERVICE MESH 2.X

225

For example,

1.22.3. Troubleshooting the control plane

The Service Mesh control plane is composed of Istiod, which consolidates several previous control plane
components (Citadel, Galley, Pilot) into a single binary. Deploying the ServiceMeshControlPlane also
creates the other components that make up Red Hat OpenShift Service Mesh as described in the
architecture topic.

1.22.3.1. Validating the Service Mesh control plane installation

When you create the Service Mesh control plane, the Service Mesh Operator uses the parameters that
you have specified in the ServiceMeshControlPlane resource file to do the following:

Creates the Istio components and deploys the following pods:

istiod

istio-ingressgateway

istio-egressgateway

grafana

prometheus

Calls the Kiali Operator to create Kaili deployment based on configuration in either the SMCP or
the Kiali custom resource.

NOTE

You view the Kiali components under the Kiali Operator, not the Service Mesh
Operator.

Calls the Red Hat OpenShift distributed tracing platform Operator to create distributed tracing
platform components based on configuration in either the SMCP or the Jaeger custom
resource.

NOTE

You view the Jaeger components under the Red Hat OpenShift distributed
tracing platform Operator and the Elasticsearch components under the Red Hat
Elasticsearch Operator, not the Service Mesh Operator.

From the OpenShift Container Platform console

You can verify the Service Mesh control plane installation in the OpenShift Container Platform
web console.

1. Navigate to Operators → Installed Operators.

$ oc logs -n openshift-operators <podName>

$ oc logs -n openshift-operators istio-operator-bb49787db-zgr87

OpenShift Container Platform 4.9 Service Mesh

226

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-architecture_ossm-architecture

2. Select the <istio-system> namespace.

3. Select the Red Hat OpenShift Service Mesh Operator.

a. Click the Istio Service Mesh Control Plane tab.

b. Click the name of your control plane, for example basic.

c. To view the resources created by the deployment, click the Resources tab. You can use
the filter to narrow your view, for example, to check that all the Pods have a status of
running.

d. If the SMCP status indicates any problems, check the status: output in the YAML file
for more information.

e. Navigate back to Operators → Installed Operators.

4. Select the OpenShift Elasticsearch Operator.

a. Click the Elasticsearch tab.

b. Click the name of the deployment, for example elasticsearch.

c. To view the resources created by the deployment, click the Resources tab. .

d. If the Status column any problems, check the status: output on the YAML tab for
more information.

e. Navigate back to Operators → Installed Operators.

5. Select the Red Hat OpenShift distributed tracing platform Operator.

a. Click the Jaeger tab.

b. Click the name of your deployment, for example jaeger.

c. To view the resources created by the deployment, click the Resources tab.

d. If the Status column indicates any problems, check the status: output on the YAML
tab for more information.

e. Navigate to Operators → Installed Operators.

6. Select the Kiali Operator.

a. Click the Istio Service Mesh Control Plane tab.

b. Click the name of your deployment, for example kiali.

c. To view the resources created by the deployment, click the Resources tab.

d. If the Status column any problems, check the status: output on the YAML tab for
more information.

From the command line

1. Run the following command to see if the Service Mesh control plane pods are available and
running, where istio-system is the namespace where you installed the SMCP.

CHAPTER 1. SERVICE MESH 2.X

227

Example output

2. Check the status of the Service Mesh control plane deployment by using the following
command. Replace istio-system with the namespace where you deployed the SMCP.

The installation has finished successfully when the STATUS column is ComponentsReady.

Example output

If you have modified and redeployed your Service Mesh control plane, the status should read
UpdateSuccessful.

Example output

3. If the SMCP status indicates anything other than ComponentsReady check the status: output
in the SCMP resource for more information.

Example output

4. Check the status of the Jaeger deployment with the following command, where istio-system is
the namespace where you deployed the SMCP.

Example output

$ oc get pods -n istio-system

NAME READY STATUS RESTARTS AGE
grafana-6776785cfc-6fz7t 2/2 Running 0 102s
istio-egressgateway-5f49dd99-l9ppq 1/1 Running 0 103s
istio-ingressgateway-6dc885c48-jjd8r 1/1 Running 0 103s
istiod-basic-6c9cc55998-wg4zq 1/1 Running 0 2m14s
jaeger-6865d5d8bf-zrfss 2/2 Running 0 100s
kiali-579799fbb7-8mwc8 1/1 Running 0 46s
prometheus-5c579dfb-6qhjk 2/2 Running 0 115s

$ oc get smcp -n <istio-system>

NAME READY STATUS PROFILES VERSION AGE
basic 10/10 ComponentsReady ["default"] 2.1.3 4m2s

NAME READY STATUS TEMPLATE VERSION AGE
basic-install 10/10 UpdateSuccessful default v1.1 3d16h

$ oc describe smcp <smcp-name> -n <controlplane-namespace>

$ oc describe smcp basic -n istio-system

$ oc get jaeger -n <istio-system>

NAME STATUS VERSION STRATEGY STORAGE AGE
jaeger Running 1.30.0 allinone memory 15m

OpenShift Container Platform 4.9 Service Mesh

228

5. Check the status of the Kiali deployment with the following command, where istio-system is the
namespace where you deployed the SMCP.

Example output

1.22.3.1.1. Accessing the Kiali console

You can view your application’s topology, health, and metrics in the Kiali console. If your service is
experiencing problems, the Kiali console lets you view the data flow through your service. You can view
insights about the mesh components at different levels, including abstract applications, services, and
workloads. Kiali also provides an interactive graph view of your namespace in real time.

To access the Kiali console you must have Red Hat OpenShift Service Mesh installed, Kiali installed and
configured.

The installation process creates a route to access the Kiali console.

If you know the URL for the Kiali console, you can access it directly. If you do not know the URL, use the
following directions.

Procedure for administrators

1. Log in to the OpenShift Container Platform web console with an administrator role.

2. Click Home → Projects.

3. On the Projects page, if necessary, use the filter to find the name of your project.

4. Click the name of your project, for example, bookinfo.

5. On the Project details page, in the Launcher section, click the Kiali link.

6. Log in to the Kiali console with the same user name and password that you use to access the
OpenShift Container Platform console.
When you first log in to the Kiali Console, you see the Overview page which displays all the
namespaces in your service mesh that you have permission to view.

If you are validating the console installation and namespaces have not yet been added to the
mesh, there might not be any data to display other than istio-system.

Procedure for developers

1. Log in to the OpenShift Container Platform web console with a developer role.

2. Click Project.

3. On the Project Details page, if necessary, use the filter to find the name of your project.

4. Click the name of your project, for example, bookinfo.

$ oc get kiali -n <istio-system>

NAME AGE
kiali 15m

CHAPTER 1. SERVICE MESH 2.X

229

5. On the Project page, in the Launcher section, click the Kiali link.

6. Click Log In With OpenShift.

1.22.3.1.2. Accessing the Jaeger console

To access the Jaeger console you must have Red Hat OpenShift Service Mesh installed, Red Hat
OpenShift distributed tracing platform installed and configured.

The installation process creates a route to access the Jaeger console.

If you know the URL for the Jaeger console, you can access it directly. If you do not know the URL, use
the following directions.

Procedure from OpenShift console

1. Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If
you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Navigate to Networking → Routes.

3. On the Routes page, select the Service Mesh control plane project, for example istio-system,
from the Namespace menu.
The Location column displays the linked address for each route.

4. If necessary, use the filter to find the jaeger route. Click the route Location to launch the
console.

5. Click Log In With OpenShift.

Procedure from Kiali console

1. Launch the Kiali console.

2. Click Distributed Tracing in the left navigation pane.

3. Click Log In With OpenShift.

Procedure from the CLI

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. If you use
Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.

2. To query for details of the route using the command line, enter the following command. In this
example, istio-system is the Service Mesh control plane namespace.

3. Launch a browser and navigate to https://<JAEGER_URL>, where <JAEGER_URL> is the
route that you discovered in the previous step.

4. Log in using the same user name and password that you use to access the OpenShift Container

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

$ export JAEGER_URL=$(oc get route -n istio-system jaeger -o jsonpath='{.spec.host}')

OpenShift Container Platform 4.9 Service Mesh

230

4. Log in using the same user name and password that you use to access the OpenShift Container
Platform console.

5. If you have added services to the service mesh and have generated traces, you can use the
filters and Find Traces button to search your trace data.
If you are validating the console installation, there is no trace data to display.

1.22.3.2. Troubleshooting the Service Mesh control plane

If you are experiencing issues while deploying the Service Mesh control plane,

Ensure that the ServiceMeshControlPlane resource is installed in a project that is separate
from your services and Operators. This documentation uses the istio-system project as an
example, but you can deploy your control plane in any project as long as it is separate from the
project that contains your Operators and services.

Ensure that the ServiceMeshControlPlane and Jaeger custom resources are deployed in the
same project. For example, use the istio-system project for both.

1.22.4. Troubleshooting the data plane

The data plane is a set of intelligent proxies that intercept and control all inbound and outbound network
communications between services in the service mesh.

Red Hat OpenShift Service Mesh relies on a proxy sidecar within the application’s pod to provide service
mesh capabilities to the application.

1.22.4.1. Troubleshooting sidecar injection

Red Hat OpenShift Service Mesh does not automatically inject proxy sidecars to pods. You must opt in
to sidecar injection.

1.22.4.1.1. Troubleshooting Istio sidecar injection

Check to see if automatic injection is enabled in the Deployment for your application. If automatic
injection for the Envoy proxy is enabled, there should be a sidecar.istio.io/inject:"true" annotation in
the Deployment resource under spec.template.metadata.annotations.

1.22.4.1.2. Troubleshooting Jaeger agent sidecar injection

Check to see if automatic injection is enabled in the Deployment for your application. If automatic
injection for the Jaeger agent is enabled, there should be a sidecar.jaegertracing.io/inject:"true"
annotation in the Deployment resource.

For more information about sidecar injection, see Enabling automatic injection

1.23. TROUBLESHOOTING ENVOY PROXY

The Envoy proxy intercepts all inbound and outbound traffic for all services in the service mesh. Envoy
also collects and reports telemetry on the service mesh. Envoy is deployed as a sidecar to the relevant
service in the same pod.

1.23.1. Enabling Envoy access logs

Envoy access logs are useful in diagnosing traffic failures and flows, and help with end-to-end traffic

CHAPTER 1. SERVICE MESH 2.X

231

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-automatic-sidecar-injection_deploying-applications-ossm

Envoy access logs are useful in diagnosing traffic failures and flows, and help with end-to-end traffic
flow analysis.

To enable access logging for all istio-proxy containers, edit the ServiceMeshControlPlane (SMCP)
object to add a file name for the logging output.

Procedure

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. Enter the
following command. Then, enter your username and password when prompted.

2. Change to the project where you installed the Service Mesh control plane, for example istio-
system.

3. Edit the ServiceMeshControlPlane file.

4. As show in the following example, use name to specify the file name for the proxy log. If you do
not specify a value for name, no log entries will be written.

For more information about troubleshooting pod issues, see Investigating pod issues

1.23.2. Getting support

If you experience difficulty with a procedure described in this documentation, or with OpenShift
Container Platform in general, visit the Red Hat Customer Portal . From the Customer Portal, you can:

Search or browse through the Red Hat Knowledgebase of articles and solutions relating to Red
Hat products.

Submit a support case to Red Hat Support.

Access other product documentation.

To identify issues with your cluster, you can use Insights in OpenShift Cluster Manager. Insights provides
details about issues and, if available, information on how to solve a problem.

If you have a suggestion for improving this documentation or have found an error, submit a Jira issue for
the most relevant documentation component. Please provide specific details, such as the section name
and OpenShift Container Platform version.

1.23.2.1. About the Red Hat Knowledgebase

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

$ oc project istio-system

$ oc edit smcp <smcp_name>

spec:
 proxy:
 accessLogging:
 file:
 name: /dev/stdout #file name

OpenShift Container Platform 4.9 Service Mesh

232

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/support/#investigating-pod-issues-1
http://access.redhat.com
https://console.redhat.com/openshift
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Documentation_issue&issuetype=1&components=12367614&priority=10200&versions=12385632

The Red Hat Knowledgebase provides rich content aimed at helping you make the most of Red Hat’s
products and technologies. The Red Hat Knowledgebase consists of articles, product documentation,
and videos outlining best practices on installing, configuring, and using Red Hat products. In addition, you
can search for solutions to known issues, each providing concise root cause descriptions and remedial
steps.

1.23.2.2. Searching the Red Hat Knowledgebase

In the event of an OpenShift Container Platform issue, you can perform an initial search to determine if
a solution already exists within the Red Hat Knowledgebase.

Prerequisites

You have a Red Hat Customer Portal account.

Procedure

1. Log in to the Red Hat Customer Portal .

2. In the main Red Hat Customer Portal search field, input keywords and strings relating to the
problem, including:

OpenShift Container Platform components (such as etcd)

Related procedure (such as installation)

Warnings, error messages, and other outputs related to explicit failures

3. Click Search.

4. Select the OpenShift Container Platform product filter.

5. Select the Knowledgebase content type filter.

1.23.2.3. About the must-gather tool

The oc adm must-gather CLI command collects the information from your cluster that is most likely
needed for debugging issues, including:

Resource definitions

Service logs

By default, the oc adm must-gather command uses the default plugin image and writes into ./must-
gather.local.

Alternatively, you can collect specific information by running the command with the appropriate
arguments as described in the following sections:

To collect data related to one or more specific features, use the --image argument with an
image, as listed in a following section.
For example:

To collect the audit logs, use the -- /usr/bin/gather_audit_logs argument, as described in a

$ oc adm must-gather --image=registry.redhat.io/container-native-virtualization/cnv-must-
gather-rhel8:v4.9.0

CHAPTER 1. SERVICE MESH 2.X

233

https://access.redhat.com/knowledgebase
http://access.redhat.com

To collect the audit logs, use the -- /usr/bin/gather_audit_logs argument, as described in a
following section.
For example:

NOTE

Audit logs are not collected as part of the default set of information to reduce
the size of the files.

When you run oc adm must-gather, a new pod with a random name is created in a new project on the
cluster. The data is collected on that pod and saved in a new directory that starts with must-
gather.local. This directory is created in the current working directory.

For example:

1.23.2.4. About collecting service mesh data

You can use the oc adm must-gather CLI command to collect information about your cluster, including
features and objects associated with Red Hat OpenShift Service Mesh.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift Container Platform CLI (oc) installed.

Precedure

1. To collect Red Hat OpenShift Service Mesh data with must-gather, you must specify the Red
Hat OpenShift Service Mesh image.

2. To collect Red Hat OpenShift Service Mesh data for a specific Service Mesh control plane
namespace with must-gather, you must specify the Red Hat OpenShift Service Mesh image
and namespace. In this example, replace <namespace> with your Service Mesh control plane
namespace, such as istio-system.

For prompt support, supply diagnostic information for both OpenShift Container Platform and Red Hat
OpenShift Service Mesh.

$ oc adm must-gather -- /usr/bin/gather_audit_logs

NAMESPACE NAME READY STATUS RESTARTS AGE
...
openshift-must-gather-5drcj must-gather-bklx4 2/2 Running 0 72s
openshift-must-gather-5drcj must-gather-s8sdh 2/2 Running 0 72s
...

$ oc adm must-gather --image=registry.redhat.io/openshift-service-mesh/istio-must-gather-
rhel8:2.3

$ oc adm must-gather --image=registry.redhat.io/openshift-service-mesh/istio-must-gather-
rhel8:2.3 gather <namespace>

OpenShift Container Platform 4.9 Service Mesh

234

1.23.2.5. Submitting a support case

Prerequisites

You have installed the OpenShift CLI (oc).

You have a Red Hat Customer Portal account.

You have access to OpenShift Cluster Manager.

Procedure

1. Log in to the Red Hat Customer Portal and select SUPPORT CASES → Open a case.

2. Select the appropriate category for your issue (such as Defect / Bug), product (OpenShift
Container Platform), and product version (4.9, if this is not already autofilled).

3. Review the list of suggested Red Hat Knowledgebase solutions for a potential match against the
problem that is being reported. If the suggested articles do not address the issue, click
Continue.

4. Enter a concise but descriptive problem summary and further details about the symptoms being
experienced, as well as your expectations.

5. Review the updated list of suggested Red Hat Knowledgebase solutions for a potential match
against the problem that is being reported. The list is refined as you provide more information
during the case creation process. If the suggested articles do not address the issue, click
Continue.

6. Ensure that the account information presented is as expected, and if not, amend accordingly.

7. Check that the autofilled OpenShift Container Platform Cluster ID is correct. If it is not,
manually obtain your cluster ID.

To manually obtain your cluster ID using the OpenShift Container Platform web console:

a. Navigate to Home → Dashboards → Overview.

b. Find the value in the Cluster ID field of the Details section.

Alternatively, it is possible to open a new support case through the OpenShift Container
Platform web console and have your cluster ID autofilled.

a. From the toolbar, navigate to (?) Help → Open Support Case.

b. The Cluster ID value is autofilled.

To obtain your cluster ID using the OpenShift CLI (oc), run the following command:

8. Complete the following questions where prompted and then click Continue:

Where are you experiencing the behavior? What environment?

When does the behavior occur? Frequency? Repeatedly? At certain times?

$ oc get clusterversion -o jsonpath='{.items[].spec.clusterID}{"\n"}'

CHAPTER 1. SERVICE MESH 2.X

235

https://console.redhat.com/openshift
http://access.redhat.com

What information can you provide around time-frames and the business impact?

9. Upload relevant diagnostic data files and click Continue. It is recommended to include data
gathered using the oc adm must-gather command as a starting point, plus any issue specific
data that is not collected by that command.

10. Input relevant case management details and click Continue.

11. Preview the case details and click Submit.

1.24. SERVICE MESH CONTROL PLANE CONFIGURATION REFERENCE

You can customize your Red Hat OpenShift Service Mesh by modifying the default
ServiceMeshControlPlane (SMCP) resource or by creating a completely custom SMCP resource. This
reference section documents the configuration options available for the SMCP resource.

1.24.1. Service Mesh Control plane parameters

The following table lists the top-level parameters for the ServiceMeshControlPlane resource.

Table 1.31. ServiceMeshControlPlane resource parameters

Name Description Type

apiVersion APIVersion defines the versioned
schema of this representation of
an object. Servers convert
recognized schemas to the latest
internal value, and may reject
unrecognized values. The value
for the
ServiceMeshControlPlane
version 2.0 is maistra.io/v2.

The value for
ServiceMeshControlPlane
version 2.0 is maistra.io/v2.

kind Kind is a string value that
represents the REST resource this
object represents.

ServiceMeshControlPlane is
the only valid value for a
ServiceMeshControlPlane.

metadata Metadata about this
ServiceMeshControlPlane
instance. You can provide a name
for your Service Mesh control
plane installation to keep track of
your work, for example, basic.

string

spec The specification of the desired
state of this
ServiceMeshControlPlane.
This includes the configuration
options for all components that
comprise the Service Mesh
control plane.

For more information, see Table 2.

OpenShift Container Platform 4.9 Service Mesh

236

status The current status of this
ServiceMeshControlPlane
and the components that
comprise the Service Mesh
control plane.

For more information, see Table 3.

Name Description Type

The following table lists the specifications for the ServiceMeshControlPlane resource. Changing these
parameters configures Red Hat OpenShift Service Mesh components.

Table 1.32. ServiceMeshControlPlane resource spec

Name Description Configurable parameters

addons The addons parameter
configures additional features
beyond core Service Mesh control
plane components, such as
visualization, or metric storage.

3scale, grafana, jaeger, kiali,
and prometheus.

cluster The cluster parameter sets the
general configuration of the
cluster (cluster name, network
name, multi-cluster, mesh
expansion, etc.)

meshExpansion,
multiCluster, name, and
network

gateways You use the gateways
parameter to configure ingress
and egress gateways for the
mesh.

enabled, additionalEgress,
additionalIngress, egress,
ingress, and openshiftRoute

general The general parameter
represents general Service Mesh
control plane configuration that
does not fit anywhere else.

logging and
validationMessages

policy You use the policy parameter to
configure policy checking for the
Service Mesh control plane. Policy
checking can be enabled by
setting spec.policy.enabled to
true.

mixer remote, or type. type can
be set to Istiod, Mixer or None.

profiles You select the
ServiceMeshControlPlane
profile to use for default values
using the profiles parameter.

default

CHAPTER 1. SERVICE MESH 2.X

237

proxy You use the proxy parameter to
configure the default behavior for
sidecars.

accessLogging, adminPort,
concurrency, and
envoyMetricsService

runtime You use the runtime parameter
to configure the Service Mesh
control plane components.

components, and defaults

security The security parameter allows
you to configure aspects of
security for the Service Mesh
control plane.

certificateAuthority,
controlPlane, identity,
dataPlane and trust

techPreview The techPreview parameter
enables early access to features
that are in technology preview.

N/A

telemetry If
spec.mixer.telemetry.enable
d is set to true, telemetry is
enabled.

mixer, remote, and type. type
can be set to Istiod, Mixer or
None.

tracing You use the tracing parameter
to enables distributed tracing for
the mesh.

sampling, type. type can be set
to Jaeger or None.

version You use the version parameter
to specify what Maistra version of
the Service Mesh control plane to
install. When creating a
ServiceMeshControlPlane
with an empty version, the
admission webhook sets the
version to the current version.
New
ServiceMeshControlPlanes
with an empty version are set to
v2.0. Existing
ServiceMeshControlPlanes
with an empty version keep their
setting.

string

Name Description Configurable parameters

ControlPlaneStatus represents the current state of your service mesh.

Table 1.33. ServiceMeshControlPlane resource ControlPlaneStatus

OpenShift Container Platform 4.9 Service Mesh

238

Name Description Type

annotations The annotations parameter
stores additional, usually
redundant status information,
such as the number of
components deployed by the
ServiceMeshControlPlane.
These statuses are used by the
command line tool, oc, which
does not yet allow counting
objects in JSONPath expressions.

Not configurable

conditions Represents the latest available
observations of the object’s
current state. Reconciled
indicates whether the operator
has finished reconciling the actual
state of deployed components
with the configuration in the
ServiceMeshControlPlane
resource. Installed indicates
whether the Service Mesh control
plane has been installed. Ready
indicates whether all Service
Mesh control plane components
are ready.

string

components Shows the status of each
deployed Service Mesh control
plane component.

string

appliedSpec The resulting specification of the
configuration options after all
profiles have been applied.

ControlPlaneSpec

appliedValues The resulting values.yaml used to
generate the charts.

ControlPlaneSpec

chartVersion The version of the charts that
were last processed for this
resource.

string

CHAPTER 1. SERVICE MESH 2.X

239

observedGeneration The generation observed by the
controller during the most recent
reconciliation. The information in
the status pertains to this
particular generation of the
object. The status.conditions
are not up-to-date if the
status.observedGeneration
field doesn’t match
metadata.generation.

integer

operatorVersion The version of the operator that
last processed this resource.

string

readiness The readiness status of
components & owned resources.

string

Name Description Type

This example ServiceMeshControlPlane definition contains all of the supported parameters.

Example ServiceMeshControlPlane resource

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.3
 proxy:
 runtime:
 container:
 resources:
 requests:
 cpu: 100m
 memory: 128Mi
 limits:
 cpu: 500m
 memory: 128Mi
 tracing:
 type: Jaeger
 gateways:
 ingress: # istio-ingressgateway
 service:
 type: ClusterIP
 ports:
 - name: status-port
 port: 15020
 - name: http2
 port: 80
 targetPort: 8080
 - name: https
 port: 443

OpenShift Container Platform 4.9 Service Mesh

240

 targetPort: 8443
 meshExpansionPorts: []
 egress: # istio-egressgateway
 service:
 type: ClusterIP
 ports:
 - name: status-port
 port: 15020
 - name: http2
 port: 80
 targetPort: 8080
 - name: https
 port: 443
 targetPort: 8443
 additionalIngress:
 some-other-ingress-gateway: {}
 additionalEgress:
 some-other-egress-gateway: {}

 policy:
 type: Mixer
 mixer: # only applies if policy.type: Mixer
 enableChecks: true
 failOpen: false

 telemetry:
 type: Istiod # or Mixer
 mixer: # only applies if telemetry.type: Mixer, for v1 telemetry
 sessionAffinity: false
 batching:
 maxEntries: 100
 maxTime: 1s
 adapters:
 kubernetesenv: true
 stdio:
 enabled: true
 outputAsJSON: true
 addons:
 grafana:
 enabled: true
 install:
 config:
 env: {}
 envSecrets: {}
 persistence:
 enabled: true
 storageClassName: ""
 accessMode: ReadWriteOnce
 capacity:
 requests:
 storage: 5Gi
 service:
 ingress:
 contextPath: /grafana
 tls:
 termination: reencrypt

CHAPTER 1. SERVICE MESH 2.X

241

1.24.2. spec parameters

1.24.2.1. general parameters

Here is an example that illustrates the spec.general parameters for the ServiceMeshControlPlane
object and a description of the available parameters with appropriate values.

Example general parameters

 kiali:
 name: kiali
 enabled: true
 install: # install kiali CR if not present
 dashboard:
 viewOnly: false
 enableGrafana: true
 enableTracing: true
 enablePrometheus: true
 service:
 ingress:
 contextPath: /kiali
 jaeger:
 name: jaeger
 install:
 storage:
 type: Elasticsearch # or Memory
 memory:
 maxTraces: 100000
 elasticsearch:
 nodeCount: 3
 storage: {}
 redundancyPolicy: SingleRedundancy
 indexCleaner: {}
 ingress: {} # jaeger ingress configuration
 runtime:
 components:
 pilot:
 deployment:
 replicas: 2
 pod:
 affinity: {}
 container:
 resources:
 requests:
 cpu: 100m
 memory: 128Mi
 limits:
 cpu: 500m
 memory: 128Mi
 grafana:
 deployment: {}
 pod: {}
 kiali:
 deployment: {}
 pod: {}

OpenShift Container Platform 4.9 Service Mesh

242

Table 1.34. Istio general parameters

Parameter Description Values Default value

logging:
Use to configure logging
for the Service Mesh
control plane
components.

 N/A

logging:
 componentLevels:

Use to specify the
component logging
level.

Possible values: trace,
debug, info, warning,
error, fatal, panic.

N/A

logging:
 logLevels:

Possible values: trace,
debug, info, warning,
error, fatal, panic.

 N/A

logging:
 logAsJSON:

Use to enable or disable
JSON logging.

true/false N/A

validationMessages
:

Use to enable or disable
validation messages to
the status fields of
istio.io resources. This
can be useful for
detecting configuration
errors in resources.

true/false N/A

1.24.2.2. profiles parameters

You can create reusable configurations with ServiceMeshControlPlane object profiles. If you do not
configure the profile setting, Red Hat OpenShift Service Mesh uses the default profile.

Here is an example that illustrates the spec.profiles parameter for the ServiceMeshControlPlane
object:

Example profiles parameters

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 general:
 logging:
 componentLevels: {}
 # misc: error
 logAsJSON: false
 validationMessages: true

CHAPTER 1. SERVICE MESH 2.X

243

For information about creating profiles, see the Creating control plane profiles .

For more detailed examples of security configuration, see Mutual Transport Layer Security (mTLS) .

1.24.2.3. techPreview parameters

The spec.techPreview parameter enables early access to features that are in Technology Preview.

IMPORTANT

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

1.24.2.4. tracing parameters

The following example illustrates the spec.tracing parameters for the ServiceMeshControlPlane
object, and a description of the available parameters with appropriate values.

Example tracing parameters

Table 1.35. Istio tracing parameters

Parameter Description Values Default value

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 profiles:
 - YourProfileName

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.3
 tracing:
 sampling: 100
 type: Jaeger

OpenShift Container Platform 4.9 Service Mesh

244

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-control-plane-profiles_ossm-profiles-users
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-security-mtls_ossm-security
https://access.redhat.com/support/offerings/techpreview/

tracing:
 sampling:

The sampling rate
determines how often
the Envoy proxy
generates a trace. You
use the sampling rate to
control what percentage
of requests get reported
to your tracing system.

Integer values between
0 and 10000
representing increments
of 0.01% (0 to 100%).
For example, setting the
value to 10 samples
0.1% of requests, setting
the value to 100 will
sample 1% of requests
setting the value to 500
samples 5% of requests,
and a setting of 10000
samples 100% of
requests.

10000 (100% of traces)

tracing:
 type:

Currently the only
tracing type that is
supported is Jaeger.
Jaeger is enabled by
default. To disable
tracing, set the type
parameter to None.

None, Jaeger Jaeger

Parameter Description Values Default value

1.24.2.5. version parameter

The Red Hat OpenShift Service Mesh Operator supports installation of different versions of the
ServiceMeshControlPlane. You use the version parameter to specify what version of the Service Mesh
control plane to install. If you do not specify a version parameter when creating your SMCP, the Operator
sets the value to the latest version: (2.3). Existing ServiceMeshControlPlane objects keep their version
setting during upgrades of the Operator.

1.24.2.6. 3scale configuration

The following table explains the parameters for the 3scale Istio Adapter in the
ServiceMeshControlPlane resource.

Example 3scale parameters

spec:
 addons:
 3Scale:
 enabled: false
 PARAM_THREESCALE_LISTEN_ADDR: 3333
 PARAM_THREESCALE_LOG_LEVEL: info
 PARAM_THREESCALE_LOG_JSON: true
 PARAM_THREESCALE_LOG_GRPC: false
 PARAM_THREESCALE_REPORT_METRICS: true
 PARAM_THREESCALE_METRICS_PORT: 8080
 PARAM_THREESCALE_CACHE_TTL_SECONDS: 300
 PARAM_THREESCALE_CACHE_REFRESH_SECONDS: 180
 PARAM_THREESCALE_CACHE_ENTRIES_MAX: 1000

CHAPTER 1. SERVICE MESH 2.X

245

Table 1.36. 3scale parameters

Parameter Description Values Default value

enabled Whether to use the
3scale adapter

true/false false

PARAM_THREESCA
LE_LISTEN_ADDR

Sets the listen address
for the gRPC server

Valid port number 3333

PARAM_THREESCA
LE_LOG_LEVEL

Sets the minimum log
output level.

debug, info, warn,
error, or none

info

PARAM_THREESCA
LE_LOG_JSON

Controls whether the log
is formatted as JSON

true/false true

PARAM_THREESCA
LE_LOG_GRPC

Controls whether the log
contains gRPC info

true/false true

PARAM_THREESCA
LE_REPORT_METRI
CS

Controls whether 3scale
system and backend
metrics are collected
and reported to
Prometheus

true/false true

PARAM_THREESCA
LE_METRICS_PORT

Sets the port that the
3scale /metrics
endpoint can be
scrapped from

Valid port number 8080

PARAM_THREESCA
LE_CACHE_TTL_SE
CONDS

Time period, in seconds,
to wait before purging
expired items from the
cache

Time period in seconds 300

PARAM_THREESCA
LE_CACHE_REFRES
H_SECONDS

Time period before
expiry when cache
elements are attempted
to be refreshed

Time period in seconds 180

PARAM_THREESCA
LE_CACHE_ENTRIE
S_MAX

Max number of items
that can be stored in the
cache at any time. Set to
0 to disable caching

Valid number 1000

 PARAM_THREESCALE_CACHE_REFRESH_RETRIES: 1
 PARAM_THREESCALE_ALLOW_INSECURE_CONN: false
 PARAM_THREESCALE_CLIENT_TIMEOUT_SECONDS: 10
 PARAM_THREESCALE_GRPC_CONN_MAX_SECONDS: 60
 PARAM_USE_CACHED_BACKEND: false
 PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS: 15
 PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED: true

OpenShift Container Platform 4.9 Service Mesh

246

PARAM_THREESCA
LE_CACHE_REFRES
H_RETRIES

The number of times
unreachable hosts are
retried during a cache
update loop

Valid number 1

PARAM_THREESCA
LE_ALLOW_INSECU
RE_CONN

Allow to skip certificate
verification when calling
3scale APIs. Enabling
this is not
recommended.

true/false false

PARAM_THREESCA
LE_CLIENT_TIMEOU
T_SECONDS

Sets the number of
seconds to wait before
terminating requests to
3scale System and
Backend

Time period in seconds 10

PARAM_THREESCA
LE_GRPC_CONN_M
AX_SECONDS

Sets the maximum
amount of seconds (+/-
10% jitter) a connection
may exist before it is
closed

Time period in seconds 60

PARAM_USE_CACH
E_BACKEND

If true, attempt to
create an in-memory
apisonator cache for
authorization requests

true/false false

PARAM_BACKEND_
CACHE_FLUSH_INT
ERVAL_SECONDS

If the backend cache is
enabled, this sets the
interval in seconds for
flushing the cache
against 3scale

Time period in seconds 15

PARAM_BACKEND_
CACHE_POLICY_FAI
L_CLOSED

Whenever the backend
cache cannot retrieve
authorization data,
whether to deny
(closed) or allow (open)
requests

true/false true

Parameter Description Values Default value

1.24.3. status parameter

The status parameter describes the current state of your service mesh. This information is generated by

CHAPTER 1. SERVICE MESH 2.X

247

The status parameter describes the current state of your service mesh. This information is generated by
the Operator and is read-only.

Table 1.37. Istio status parameters

Name Description Type

observedGeneration The generation observed by the
controller during the most recent
reconciliation. The information in
the status pertains to this
particular generation of the
object. The status.conditions
are not up-to-date if the
status.observedGeneration
field doesn’t match
metadata.generation.

integer

annotations The annotations parameter
stores additional, usually
redundant status information,
such as the number of
components deployed by the
ServiceMeshControlPlane
object. These statuses are used
by the command line tool, oc,
which does not yet allow counting
objects in JSONPath expressions.

Not configurable

readiness The readiness status of
components and owned
resources.

string

operatorVersion The version of the Operator that
last processed this resource.

string

components Shows the status of each
deployed Service Mesh control
plane component.

string

appliedSpec The resulting specification of the
configuration options after all
profiles have been applied.

ControlPlaneSpec

OpenShift Container Platform 4.9 Service Mesh

248

conditions Represents the latest available
observations of the object’s
current state. Reconciled
indicates that the Operator has
finished reconciling the actual
state of deployed components
with the configuration in the
ServiceMeshControlPlane
resource. Installed indicates that
the Service Mesh control plane
has been installed. Ready
indicates that all Service Mesh
control plane components are
ready.

string

chartVersion The version of the charts that
were last processed for this
resource.

string

appliedValues The resulting values.yaml file
that was used to generate the
charts.

ControlPlaneSpec

Name Description Type

1.24.4. Additional resources

For more information about how to configure the features in the ServiceMeshControlPlane
resource, see the following links:

Security

Traffic management

Metrics and traces

1.25. KIALI CONFIGURATION REFERENCE

When the Service Mesh Operator creates the ServiceMeshControlPlane it also processes the Kiali
resource. The Kiali Operator then uses this object when creating Kiali instances.

1.25.1. Specifying Kiali configuration in the SMCP

You can configure Kiali under the addons section of the ServiceMeshControlPlane resource. Kiali is
enabled by default. To disable Kiali, set spec.addons.kiali.enabled to false.

You can specify your Kiali configuration in either of two ways:

Specify the Kiali configuration in the ServiceMeshControlPlane resource under
spec.addons.kiali.install. This approach has some limitations, because the complete list of Kiali
configurations is not available in the SMCP.

Configure and deploy a Kiali instance and specify the name of the Kiali resource as the value for

CHAPTER 1. SERVICE MESH 2.X

249

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-security-mtls_ossm-security
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-routing-bookinfo_traffic-management
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-observability

spec.addons.kiali.name in the ServiceMeshControlPlane resource. You must create the CR
in the same namespace as the Service Mesh control plane, for example, istio-system. If a Kiali
resource matching the value of name exists, the control plane will configure that Kiali resource
for use with the control plane. This approach lets you fully customize your Kiali configuration in
the Kiali resource. Note that with this approach, various fields in the Kiali resource are
overwritten by the Service Mesh Operator, specifically, the accessible_namespaces list, as well
as the endpoints for Grafana, Prometheus, and tracing.

Example SMCP parameters for Kiali

Table 1.38. ServiceMeshControlPlane Kiali parameters

Parameter Description Values Default value

spec:
 addons:
 kiali:
 name:

Name of Kiali custom
resource. If a Kiali CR
matching the value of
name exists, the
Service Mesh Operator
will use that CR for the
installation. If no Kiali CR
exists, the Operator will
create one using this
name and the
configuration options
specified in the SMCP.

string kiali

kiali:
 enabled:

This parameter enables
or disables Kiali. Kiali is
enabled by default.

true/false true

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 addons:
 kiali:
 name: kiali
 enabled: true
 install:
 dashboard:
 viewOnly: false
 enableGrafana: true
 enableTracing: true
 enablePrometheus: true
 service:
 ingress:
 contextPath: /kiali

OpenShift Container Platform 4.9 Service Mesh

250

kiali:
 install:

Install a Kiali resource if
the named Kiali resource
is not present. The
install section is
ignored if
addons.kiali.enabled
is set to false.

kiali:
 install:
 dashboard:

Configuration
parameters for the
dashboards shipped
with Kiali.

kiali:
 install:
 dashboard:
 viewOnly:

This parameter enables
or disables view-only
mode for the Kiali
console. When view-
only mode is enabled,
users cannot use the
Kiali console to make
changes to the Service
Mesh.

true/false false

kiali:
 install:
 dashboard:
 enableGrafana:

Grafana endpoint
configured based on
spec.addons.grafana
configuration.

true/false true

kiali:
 install:
 dashboard:

enablePrometheus:

Prometheus endpoint
configured based on
spec.addons.promet
heus configuration.

true/false true

kiali:
 install:
 dashboard:
 enableTracing:

Tracing endpoint
configured based on
Jaeger custom resource
configuration.

true/false true

kiali:
 install:
 service:

Configuration
parameters for the
Kubernetes service
associated with the Kiali
installation.

Parameter Description Values Default value

CHAPTER 1. SERVICE MESH 2.X

251

kiali:
 install:
 service:
 metadata:

Use to specify additional
metadata to apply to
resources.

N/A N/A

kiali:
 install:
 service:
 metadata:
 annotations:

Use to specify additional
annotations to apply to
the component’s
service.

string N/A

kiali:
 install:
 service:
 metadata:
 labels:

Use to specify additional
labels to apply to the
component’s service.

string N/A

kiali:
 install:
 service:
 ingress:

Use to specify details for
accessing the
component’s service
through an OpenShift
Route.

N/A N/A

kiali:
 install:
 service:
 ingress:
 metadata:
 annotations:

Use to specify additional
annotations to apply to
the component’s service
ingress.

string N/A

kiali:
 install:
 service:
 ingress:
 metadata:
 labels:

Use to specify additional
labels to apply to the
component’s service
ingress.

string N/A

Parameter Description Values Default value

OpenShift Container Platform 4.9 Service Mesh

252

kiali:
 install:
 service:
 ingress:
 enabled:

Use to customize an
OpenShift Route for the
service associated with a
component.

true/false true

kiali:
 install:
 service:
 ingress:
 contextPath:

Use to specify the
context path to the
service.

string N/A

install:
 service:
 ingress:
 hosts:

Use to specify a single
hostname per OpenShift
route. An empty
hostname implies a
default hostname for
the Route.

string N/A

install:
 service:
 ingress:
 tls:

Use to configure the
TLS for the OpenShift
route.

 N/A

kiali:
 install:
 service:
 nodePort:

Use to specify the
nodePort for the
component’s service
Values.
<component>.servic
e.nodePort.port

integer N/A

Parameter Description Values Default value

1.25.2. Specifying Kiali configuration in a Kiali custom resource

You can fully customize your Kiali deployment by configuring Kiali in the Kiali custom resource (CR)
rather than in the ServiceMeshControlPlane (SMCP) resource. This configuration is sometimes called
an "external Kiali" since the configuration is specified outside of the SMCP.

NOTE

You must deploy the ServiceMeshControlPlane and Kiali custom resources in the same
namespace. For example, istio-system.

You can configure and deploy a Kiali instance and then specify the name of the Kiali resource as the
value for spec.addons.kiali.name in the SMCP resource. If a Kiali CR matching the value of name

CHAPTER 1. SERVICE MESH 2.X

253

exists, the Service Mesh control plane will use the existing installation. This approach lets you fully
customize your Kiali configuration.

1.26. JAEGER CONFIGURATION REFERENCE

When the Service Mesh Operator deploys the ServiceMeshControlPlane resource, it can also create
the resources for distributed tracing. Service Mesh uses Jaeger for distributed tracing.

1.26.1. Enabling and disabling tracing

You enable distributed tracing by specifying a tracing type and a sampling rate in the
ServiceMeshControlPlane resource.

Default all-in-one Jaeger parameters

Currently, the only tracing type that is supported is Jaeger.

Jaeger is enabled by default. To disable tracing, set type to None.

The sampling rate determines how often the Envoy proxy generates a trace. You can use the sampling
rate option to control what percentage of requests get reported to your tracing system. You can
configure this setting based upon your traffic in the mesh and the amount of tracing data you want to
collect. You configure sampling as a scaled integer representing 0.01% increments. For example,
setting the value to 10 samples 0.1% of traces, setting the value to 500 samples 5% of traces, and a
setting of 10000 samples 100% of traces.

NOTE

The SMCP sampling configuration option controls the Envoy sampling rate. You
configure the Jaeger trace sampling rate in the Jaeger custom resource.

1.26.2. Specifying Jaeger configuration in the SMCP

You configure Jaeger under the addons section of the ServiceMeshControlPlane resource. However,
there are some limitations to what you can configure in the SMCP.

When the SMCP passes configuration information to the Red Hat OpenShift distributed tracing
platform Operator, it triggers one of three deployment strategies: allInOne, production, or streaming.

1.26.3. Deploying the distributed tracing platform

The distributed tracing platform has predefined deployment strategies. You specify a deployment
strategy in the Jaeger custom resource (CR) file. When you create an instance of the distributed tracing
platform, the Red Hat OpenShift distributed tracing platform Operator uses this configuration file to

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.3
 tracing:
 sampling: 100
 type: Jaeger

OpenShift Container Platform 4.9 Service Mesh

254

create the objects necessary for the deployment.

The Red Hat OpenShift distributed tracing platform Operator currently supports the following
deployment strategies:

allInOne (default) - This strategy is intended for development, testing, and demo purposes and
it is not for production use. The main back-end components, Agent, Collector, and Query
service, are all packaged into a single executable, which is configured (by default) to use in-
memory storage. You can configure this deployment strategy in the SMCP.

NOTE

In-memory storage is not persistent, which means that if the Jaeger instance
shuts down, restarts, or is replaced, your trace data will be lost. And in-memory
storage cannot be scaled, since each pod has its own memory. For persistent
storage, you must use the production or streaming strategies, which use
Elasticsearch as the default storage.

production - The production strategy is intended for production environments, where long term
storage of trace data is important, and a more scalable and highly available architecture is
required. Each back-end component is therefore deployed separately. The Agent can be
injected as a sidecar on the instrumented application. The Query and Collector services are
configured with a supported storage type, which is currently Elasticsearch. Multiple instances of
each of these components can be provisioned as required for performance and resilience
purposes. You can configure this deployment strategy in the SMCP, but in order to be fully
customized, you must specify your configuration in the Jaeger CR and link that to the SMCP.

streaming - The streaming strategy is designed to augment the production strategy by
providing a streaming capability that sits between the Collector and the Elasticsearch back-end
storage. This provides the benefit of reducing the pressure on the back-end storage, under high
load situations, and enables other trace post-processing capabilities to tap into the real-time
span data directly from the streaming platform (AMQ Streams/ Kafka). You cannot configure
this deployment strategy in the SMCP; you must configure a Jaeger CR and link that to the
SMCP.

NOTE

The streaming strategy requires an additional Red Hat subscription for AMQ Streams.

1.26.3.1. Default distributed tracing platform deployment

If you do not specify Jaeger configuration options, the ServiceMeshControlPlane resource will use the
allInOne Jaeger deployment strategy by default. When using the default allInOne deployment strategy,
set spec.addons.jaeger.install.storage.type to Memory. You can accept the defaults or specify
additional configuration options under install.

Control plane default Jaeger parameters (Memory)

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.3
 tracing:

CHAPTER 1. SERVICE MESH 2.X

255

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html/using_amq_streams_on_openshift/index
https://kafka.apache.org/documentation/

1.26.3.2. Production distributed tracing platform deployment (minimal)

To use the default settings for the production deployment strategy, set
spec.addons.jaeger.install.storage.type to Elasticsearch and specify additional configuration
options under install. Note that the SMCP only supports configuring Elasticsearch resources and image
name.

Control plane default Jaeger parameters (Elasticsearch)

1.26.3.3. Production distributed tracing platform deployment (fully customized)

The SMCP supports only minimal Elasticsearch parameters. To fully customize your production
environment and access all of the Elasticsearch configuration parameters, use the Jaeger custom
resource (CR) to configure Jaeger.

Create and configure your Jaeger instance and set spec.addons.jaeger.name to the name of the
Jaeger instance, in this example: MyJaegerInstance.

Control plane with linked Jaeger production CR

 sampling: 10000
 type: Jaeger
 addons:
 jaeger:
 name: jaeger
 install:
 storage:
 type: Memory

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.3
 tracing:
 sampling: 10000
 type: Jaeger
 addons:
 jaeger:
 name: jaeger #name of Jaeger CR
 install:
 storage:
 type: Elasticsearch
 ingress:
 enabled: true
 runtime:
 components:
 tracing.jaeger.elasticsearch: # only supports resources and image name
 container:
 resources: {}

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane

OpenShift Container Platform 4.9 Service Mesh

256

1.26.3.4. Streaming Jaeger deployment

To use the streaming deployment strategy, you create and configure your Jaeger instance first, then
set spec.addons.jaeger.name to the name of the Jaeger instance, in this example: MyJaegerInstance.

Control plane with linked Jaeger streaming CR

1.26.4. Specifying Jaeger configuration in a Jaeger custom resource

You can fully customize your Jaeger deployment by configuring Jaeger in the Jaeger custom resource
(CR) rather than in the ServiceMeshControlPlane (SMCP) resource. This configuration is sometimes
referred to as an "external Jaeger" since the configuration is specified outside of the SMCP.

NOTE

You must deploy the SMCP and Jaeger CR in the same namespace. For example, istio-
system.

You can configure and deploy a standalone Jaeger instance and then specify the name of the Jaeger
resource as the value for spec.addons.jaeger.name in the SMCP resource. If a Jaeger CR matching the
value of name exists, the Service Mesh control plane will use the existing installation. This approach lets
you fully customize your Jaeger configuration.

1.26.4.1. Deployment best practices

Red Hat OpenShift distributed tracing instance names must be unique. If you want to have

metadata:
 name: basic
spec:
 version: v2.3
 tracing:
 sampling: 1000
 type: Jaeger
 addons:
 jaeger:
 name: MyJaegerInstance #name of Jaeger CR
 install:
 storage:
 type: Elasticsearch
 ingress:
 enabled: true

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.3
 tracing:
 sampling: 1000
 type: Jaeger
 addons:
 jaeger:
 name: MyJaegerInstance #name of Jaeger CR

CHAPTER 1. SERVICE MESH 2.X

257

Red Hat OpenShift distributed tracing instance names must be unique. If you want to have
multiple Red Hat OpenShift distributed tracing platform instances and are using sidecar
injected agents, then the Red Hat OpenShift distributed tracing platform instances should have
unique names, and the injection annotation should explicitly specify the Red Hat OpenShift
distributed tracing platform instance name the tracing data should be reported to.

If you have a multitenant implementation and tenants are separated by namespaces, deploy a
Red Hat OpenShift distributed tracing platform instance to each tenant namespace.

Agent as a daemonset is not supported for multitenant installations or Red Hat OpenShift
Dedicated. Agent as a sidecar is the only supported configuration for these use cases.

If you are installing distributed tracing as part of Red Hat OpenShift Service Mesh, the
distributed tracing resources must be installed in the same namespace as the
ServiceMeshControlPlane resource.

For information about configuring persistent storage, see Understanding persistent storage and the
appropriate configuration topic for your chosen storage option.

1.26.4.2. Configuring distributed tracing security for service mesh

The distributed tracing platform uses OAuth for default authentication. However Red Hat OpenShift
Service Mesh uses a secret called htpasswd to facilitate communication between dependent services
such as Grafana, Kiali, and the distributed tracing platform. When you configure your distributed tracing
platform in the ServiceMeshControlPlane the Service Mesh automatically configures security settings
to use htpasswd.

If you are specifying your distributed tracing platform configuration in a Jaeger custom resource, you
must manually configure the htpasswd settings and ensure the htpasswd secret is mounted into your
Jaeger instance so that Kiali can communicate with it.

1.26.4.2.1. Configuring distributed tracing security for service mesh from the OpenShift console

You can modify the Jaeger resource to configure distributed tracing platform security for use with
Service Mesh in the OpenShift console.

Prerequisites

You have access to the cluster as a user with the cluster-admin role. If you use Red Hat
OpenShift Dedicated, you must have an account with the dedicated-admin role.

The Red Hat OpenShift Service Mesh Operator must be installed.

The ServiceMeshControlPlane deployed to the cluster.

You have access to the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Navigate to Operators → Installed Operators.

3. Click the Project menu and select the project where your ServiceMeshControlPlane resource
is deployed from the list, for example istio-system.

OpenShift Container Platform 4.9 Service Mesh

258

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/storage/#understanding-persistent-storage-1

4. Click the Red Hat OpenShift distributed tracing platform Operator.

5. On the Operator Details page, click the Jaeger tab.

6. Click the name of your Jaeger instance.

7. On the Jaeger details page, click the YAML tab to modify your configuration.

8. Edit the Jaeger custom resource file to add the htpasswd configuration as shown in the
following example.

spec.ingress.openshift.htpasswdFile

spec.volumes

spec.volumeMounts

Example Jaeger resource showing htpasswd configuration

9. Click Save.

1.26.4.2.2. Configuring distributed tracing security for service mesh from the command line

You can modify the Jaeger resource to configure distributed tracing platform security for use with
Service Mesh from the command line using the oc utility.

apiVersion: jaegertracing.io/v1
kind: Jaeger
spec:
 ingress:
 enabled: true
 openshift:
 htpasswdFile: /etc/proxy/htpasswd/auth
 sar: '{"namespace": "istio-system", "resource": "pods", "verb": "get"}'
 options: {}
 resources: {}
 security: oauth-proxy
 volumes:
 - name: secret-htpasswd
 secret:
 secretName: htpasswd
 - configMap:
 defaultMode: 420
 items:
 - key: ca-bundle.crt
 path: tls-ca-bundle.pem
 name: trusted-ca-bundle
 optional: true
 name: trusted-ca-bundle
 volumeMounts:
 - mountPath: /etc/proxy/htpasswd
 name: secret-htpasswd
 - mountPath: /etc/pki/ca-trust/extracted/pem/
 name: trusted-ca-bundle
 readOnly: true

CHAPTER 1. SERVICE MESH 2.X

259

Prerequisites

You have access to the cluster as a user with the cluster-admin role. If you use Red Hat
OpenShift Dedicated, you must have an account with the dedicated-admin role.

The Red Hat OpenShift Service Mesh Operator must be installed.

The ServiceMeshControlPlane deployed to the cluster.

You have access to the OpenShift CLI (oc) that matches your OpenShift Container Platform
version.

Procedure

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. If you use
Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.

2. Change to the project where you installed the control plane, for example istio-system, by
entering the following command:

3. Run the following command to edit the Jaeger custom resource file, where jaeger.yaml is the
name of your Jaeger custom resource.

4. Edit the Jaeger custom resource file to add the htpasswd configuration as shown in the
following example.

spec.ingress.openshift.htpasswdFile

spec.volumes

spec.volumeMounts

Example Jaeger resource showing htpasswd configuration

$ oc login https://<HOSTNAME>:6443

$ oc project istio-system

$ oc edit -n tracing-system -f jaeger.yaml

apiVersion: jaegertracing.io/v1
kind: Jaeger
spec:
 ingress:
 enabled: true
 openshift:
 htpasswdFile: /etc/proxy/htpasswd/auth
 sar: '{"namespace": "istio-system", "resource": "pods", "verb": "get"}'
 options: {}
 resources: {}
 security: oauth-proxy
 volumes:
 - name: secret-htpasswd
 secret:
 secretName: htpasswd

OpenShift Container Platform 4.9 Service Mesh

260

5. Run the following command to apply your changes, where <jaeger.yaml> is the name of your
Jaeger custom resource.

6. Run the following command to watch the progress of the pod deployment:

1.26.4.3. Distributed tracing default configuration options

The Jaeger custom resource (CR) defines the architecture and settings to be used when creating the
distributed tracing platform resources. You can modify these parameters to customize your distributed
tracing platform implementation to your business needs.

Jaeger generic YAML example

 - configMap:
 defaultMode: 420
 items:
 - key: ca-bundle.crt
 path: tls-ca-bundle.pem
 name: trusted-ca-bundle
 optional: true
 name: trusted-ca-bundle
 volumeMounts:
 - mountPath: /etc/proxy/htpasswd
 name: secret-htpasswd
 - mountPath: /etc/pki/ca-trust/extracted/pem/
 name: trusted-ca-bundle
 readOnly: true

$ oc apply -n tracing-system -f <jaeger.yaml>

$ oc get pods -n tracing-system -w

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: name
spec:
 strategy: <deployment_strategy>
 allInOne:
 options: {}
 resources: {}
 agent:
 options: {}
 resources: {}
 collector:
 options: {}
 resources: {}
 sampling:
 options: {}
 storage:
 type:
 options: {}
 query:
 options: {}

CHAPTER 1. SERVICE MESH 2.X

261

Table 1.39. Jaeger parameters

Parameter Description Values Default value

apiVersion: API version to use when
creating the object.

jaegertracing.io/v1

jaegertracing.io/v1 kind: Defines the kind of
Kubernetes object to
create.

jaeger

 metadata: Data that helps uniquely
identify the object,
including a name string,
UID, and optional
namespace.

OpenShift Container
Platform automatically
generates the UID and
completes the
namespace with the
name of the project
where the object is
created.

name: Name for the object. The name of your
distributed tracing
platform instance.

jaeger-all-in-one-
inmemory

spec: Specification for the
object to be created.

Contains all of the
configuration
parameters for your
distributed tracing
platform instance. When
a common definition for
all Jaeger components
is required, it is defined
under the spec node.
When the definition
relates to an individual
component, it is placed
under the
spec/<component>
node.

N/A strategy: Jaeger deployment
strategy

allInOne, production,
or streaming

 resources: {}
 ingester:
 options: {}
 resources: {}
 options: {}

OpenShift Container Platform 4.9 Service Mesh

262

allInOne allInOne: Because the allInOne
image deploys the
Agent, Collector, Query,
Ingester, and Jaeger UI
in a single pod,
configuration for this
deployment must nest
component
configuration under the
allInOne parameter.

 agent: Configuration options
that define the Agent.

 collector: Configuration options
that define the Jaeger
Collector.

 sampling: Configuration options
that define the sampling
strategies for tracing.

 storage: Configuration options
that define the storage.
All storage-related
options must be placed
under storage, rather
than under the allInOne
or other component
options.

 query: Configuration options
that define the Query
service.

 ingester: Configuration options
that define the Ingester
service.

Parameter Description Values Default value

The following example YAML is the minimum required to create a Red Hat OpenShift distributed tracing
platform deployment using the default settings.

Example minimum required dist-tracing-all-in-one.yaml

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-all-in-one-inmemory

CHAPTER 1. SERVICE MESH 2.X

263

1.26.4.4. Jaeger Collector configuration options

The Jaeger Collector is the component responsible for receiving the spans that were captured by the
tracer and writing them to persistent Elasticsearch storage when using the production strategy, or to
AMQ Streams when using the streaming strategy.

The Collectors are stateless and thus many instances of Jaeger Collector can be run in parallel.
Collectors require almost no configuration, except for the location of the Elasticsearch cluster.

Table 1.40. Parameters used by the Operator to define the Jaeger Collector

Parameter Description Values

collector:
 replicas:

Specifies the number of Collector
replicas to create.

Integer, for example, 5

Table 1.41. Configuration parameters passed to the Collector

Parameter Description Values

spec:
 collector:
 options: {}

Configuration options that define
the Jaeger Collector.

options:
 collector:
 num-workers:

The number of workers pulling
from the queue.

Integer, for example, 50

options:
 collector:
 queue-size:

The size of the Collector queue. Integer, for example, 2000

options:
 kafka:
 producer:
 topic: jaeger-spans

The topic parameter identifies
the Kafka configuration used by
the Collector to produce the
messages, and the Ingester to
consume the messages.

Label for the producer.

options:
 kafka:
 producer:
 brokers: my-cluster-
kafka-brokers.kafka:9092

Identifies the Kafka configuration
used by the Collector to produce
the messages. If brokers are not
specified, and you have AMQ
Streams 1.4.0+ installed, the Red
Hat OpenShift distributed tracing
platform Operator will self-
provision Kafka.

OpenShift Container Platform 4.9 Service Mesh

264

options:
 log-level:

Logging level for the Collector. Possible values: debug, info,
warn, error, fatal, panic.

Parameter Description Values

1.26.4.5. Distributed tracing sampling configuration options

The Red Hat OpenShift distributed tracing platform Operator can be used to define sampling strategies
that will be supplied to tracers that have been configured to use a remote sampler.

While all traces are generated, only a few are sampled. Sampling a trace marks the trace for further
processing and storage.

NOTE

This is not relevant if a trace was started by the Envoy proxy, as the sampling decision is
made there. The Jaeger sampling decision is only relevant when the trace is started by an
application using the client.

When a service receives a request that contains no trace context, the client starts a new trace, assigns it
a random trace ID, and makes a sampling decision based on the currently installed sampling strategy.
The sampling decision propagates to all subsequent requests in the trace so that other services are not
making the sampling decision again.

distributed tracing platform libraries support the following samplers:

Probabilistic - The sampler makes a random sampling decision with the probability of sampling
equal to the value of the sampling.param property. For example, using sampling.param=0.1
samples approximately 1 in 10 traces.

Rate Limiting - The sampler uses a leaky bucket rate limiter to ensure that traces are sampled
with a certain constant rate. For example, using sampling.param=2.0 samples requests with the
rate of 2 traces per second.

Table 1.42. Jaeger sampling options

Parameter Description Values Default value

spec:
 sampling:
 options: {}
 default_strategy:

service_strategy:

Configuration options
that define the sampling
strategies for tracing.

 If you do not provide
configuration, the
Collectors will return the
default probabilistic
sampling policy with
0.001 (0.1%) probability
for all services.

CHAPTER 1. SERVICE MESH 2.X

265

default_strategy:
 type:
service_strategy:
 type:

Sampling strategy to
use. See descriptions
above.

Valid values are
probabilistic, and
ratelimiting.

probabilistic

default_strategy:
 param:
service_strategy:
 param:

Parameters for the
selected sampling
strategy.

Decimal and integer
values (0, .1, 1, 10)

1

Parameter Description Values Default value

This example defines a default sampling strategy that is probabilistic, with a 50% chance of the trace
instances being sampled.

Probabilistic sampling example

If there are no user-supplied configurations, the distributed tracing platform uses the following settings:

Default sampling

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: with-sampling
spec:
 sampling:
 options:
 default_strategy:
 type: probabilistic
 param: 0.5
 service_strategies:
 - service: alpha
 type: probabilistic
 param: 0.8
 operation_strategies:
 - operation: op1
 type: probabilistic
 param: 0.2
 - operation: op2
 type: probabilistic
 param: 0.4
 - service: beta
 type: ratelimiting
 param: 5

spec:
 sampling:
 options:

OpenShift Container Platform 4.9 Service Mesh

266

1.26.4.6. Distributed tracing storage configuration options

You configure storage for the Collector, Ingester, and Query services under spec.storage. Multiple
instances of each of these components can be provisioned as required for performance and resilience
purposes.

Table 1.43. General storage parameters used by the Red Hat OpenShift distributed tracing
platform Operator to define distributed tracing storage

Parameter Description Values Default value

spec:
 storage:
 type:

Type of storage to use
for the deployment.

memory or
elasticsearch.
Memory storage is only
appropriate for
development, testing,
demonstrations, and
proof of concept
environments as the
data does not persist if
the pod is shut down.
For production
environments
distributed tracing
platform supports
Elasticsearch for
persistent storage.

memory

storage:
 secretname:

Name of the secret, for
example tracing-
secret.

 N/A

storage:
 options: {}

Configuration options
that define the storage.

Table 1.44. Elasticsearch index cleaner parameters

Parameter Description Values Default value

 default_strategy:
 type: probabilistic
 param: 1

CHAPTER 1. SERVICE MESH 2.X

267

storage:
 esIndexCleaner:
 enabled:

When using
Elasticsearch storage,
by default a job is
created to clean old
traces from the index.
This parameter enables
or disables the index
cleaner job.

true/ false true

storage:
 esIndexCleaner:
 numberOfDays:

Number of days to wait
before deleting an index.

Integer value 7

storage:
 esIndexCleaner:
 schedule:

Defines the schedule for
how often to clean the
Elasticsearch index.

Cron expression "55 23 * * *"

Parameter Description Values Default value

1.26.4.6.1. Auto-provisioning an Elasticsearch instance

When you deploy a Jaeger custom resource, the Red Hat OpenShift distributed tracing platform
Operator uses the OpenShift Elasticsearch Operator to create an Elasticsearch cluster based on the
configuration provided in the storage section of the custom resource file. The Red Hat OpenShift
distributed tracing platform Operator will provision Elasticsearch if the following configurations are set:

spec.storage:type is set to elasticsearch

spec.storage.elasticsearch.doNotProvision set to false

spec.storage.options.es.server-urls is not defined, that is, there is no connection to an
Elasticsearch instance that was not provisioned by the Red Hat Elasticsearch Operator.

When provisioning Elasticsearch, the Red Hat OpenShift distributed tracing platform Operator sets the
Elasticsearch custom resource name to the value of spec.storage.elasticsearch.name from the
Jaeger custom resource. If you do not specify a value for spec.storage.elasticsearch.name, the
Operator uses elasticsearch.

Restrictions

You can have only one distributed tracing platform with self-provisioned Elasticsearch instance
per namespace. The Elasticsearch cluster is meant to be dedicated for a single distributed
tracing platform instance.

There can be only one Elasticsearch per namespace.

NOTE

OpenShift Container Platform 4.9 Service Mesh

268

NOTE

If you already have installed Elasticsearch as part of OpenShift Logging, the Red Hat
OpenShift distributed tracing platform Operator can use the installed OpenShift
Elasticsearch Operator to provision storage.

The following configuration parameters are for a self-provisioned Elasticsearch instance, that is an
instance created by the Red Hat OpenShift distributed tracing platform Operator using the OpenShift
Elasticsearch Operator. You specify configuration options for self-provisioned Elasticsearch under
spec:storage:elasticsearch in your configuration file.

Table 1.45. Elasticsearch resource configuration parameters

Parameter Description Values Default value

elasticsearch:
 properties:
 doNotProvision:

Use to specify whether
or not an Elasticsearch
instance should be
provisioned by the Red
Hat OpenShift
distributed tracing
platform Operator.

true/false true

elasticsearch:
 properties:
 name:

Name of the
Elasticsearch instance.
The Red Hat OpenShift
distributed tracing
platform Operator uses
the Elasticsearch
instance specified in this
parameter to connect to
Elasticsearch.

string elasticsearch

elasticsearch:
 nodeCount:

Number of Elasticsearch
nodes. For high
availability use at least 3
nodes. Do not use 2
nodes as “split brain”
problem can happen.

Integer value. For
example, Proof of
concept = 1, Minimum
deployment =3

3

elasticsearch:
 resources:
 requests:
 cpu:

Number of central
processing units for
requests, based on your
environment’s
configuration.

Specified in cores or
millicores, for example,
200m, 0.5, 1. For
example, Proof of
concept = 500m,
Minimum deployment =1

1

elasticsearch:
 resources:
 requests:
 memory:

Available memory for
requests, based on your
environment’s
configuration.

Specified in bytes, for
example, 200Ki, 50Mi,
5Gi. For example, Proof
of concept = 1Gi,
Minimum deployment =
16Gi*

16Gi

CHAPTER 1. SERVICE MESH 2.X

269

elasticsearch:
 resources:
 limits:
 cpu:

Limit on number of
central processing units,
based on your
environment’s
configuration.

Specified in cores or
millicores, for example,
200m, 0.5, 1. For
example, Proof of
concept = 500m,
Minimum deployment =1

elasticsearch:
 resources:
 limits:
 memory:

Available memory limit
based on your
environment’s
configuration.

Specified in bytes, for
example, 200Ki, 50Mi,
5Gi. For example, Proof
of concept = 1Gi,
Minimum deployment =
16Gi*

elasticsearch:

redundancyPolicy:

Data replication policy
defines how
Elasticsearch shards are
replicated across data
nodes in the cluster. If
not specified, the Red
Hat OpenShift
distributed tracing
platform Operator
automatically
determines the most
appropriate replication
based on number of
nodes.

ZeroRedundancy(no
replica shards),
SingleRedundancy(o
ne replica shard),
MultipleRedundancy
(each index is spread
over half of the Data
nodes),
FullRedundancy
(each index is fully
replicated on every Data
node in the cluster).

elasticsearch:

useCertManageme
nt:

Use to specify whether
or not distributed tracing
platform should use the
certificate management
feature of the Red Hat
Elasticsearch Operator.
This feature was added
to logging subsystem
for Red Hat OpenShift
5.2 in OpenShift
Container Platform 4.7
and is the preferred
setting for new Jaeger
deployments.

true/false true

*Each Elasticsearch node can operate with a lower memory setting though this is
NOT recommended for production deployments. For production use, you should
have no less than 16Gi allocated to each pod by default, but preferably allocate as
much as you can, up to 64Gi per pod.

Parameter Description Values Default value

Production storage example

OpenShift Container Platform 4.9 Service Mesh

270

1

Storage example with persistent storage:

Persistent storage configuration. In this case AWS gp2 with 5Gi size. When no value is specified,
distributed tracing platform uses emptyDir. The OpenShift Elasticsearch Operator provisions
PersistentVolumeClaim and PersistentVolume which are not removed with distributed tracing
platform instance. You can mount the same volumes if you create a distributed tracing platform
instance with the same name and namespace.

1.26.4.6.2. Connecting to an existing Elasticsearch instance

You can use an existing Elasticsearch cluster for storage with distributed tracing. An existing
Elasticsearch cluster, also known as an external Elasticsearch instance, is an instance that was not
installed by the Red Hat OpenShift distributed tracing platform Operator or by the Red Hat
Elasticsearch Operator.

When you deploy a Jaeger custom resource, the Red Hat OpenShift distributed tracing platform

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 elasticsearch:
 nodeCount: 3
 resources:
 requests:
 cpu: 1
 memory: 16Gi
 limits:
 memory: 16Gi

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 elasticsearch:
 nodeCount: 1
 storage: 1
 storageClassName: gp2
 size: 5Gi
 resources:
 requests:
 cpu: 200m
 memory: 4Gi
 limits:
 memory: 4Gi
 redundancyPolicy: ZeroRedundancy

CHAPTER 1. SERVICE MESH 2.X

271

When you deploy a Jaeger custom resource, the Red Hat OpenShift distributed tracing platform
Operator will not provision Elasticsearch if the following configurations are set:

spec.storage.elasticsearch.doNotProvision set to true

spec.storage.options.es.server-urls has a value

spec.storage.elasticsearch.name has a value, or if the Elasticsearch instance name is
elasticsearch.

The Red Hat OpenShift distributed tracing platform Operator uses the Elasticsearch instance specified
in spec.storage.elasticsearch.name to connect to Elasticsearch.

Restrictions

You cannot share or reuse a OpenShift Container Platform logging Elasticsearch instance with
distributed tracing platform. The Elasticsearch cluster is meant to be dedicated for a single
distributed tracing platform instance.

NOTE

Red Hat does not provide support for your external Elasticsearch instance. You can
review the tested integrations matrix on the Customer Portal.

The following configuration parameters are for an already existing Elasticsearch instance, also known as
an external Elasticsearch instance. In this case, you specify configuration options for Elasticsearch under
spec:storage:options:es in your custom resource file.

Table 1.46. General ES configuration parameters

Parameter Description Values Default value

es:
 server-urls:

URL of the Elasticsearch
instance.

The fully-qualified
domain name of the
Elasticsearch server.

http://elasticsearch.
<namespace>.svc:92
00

es:
 max-doc-count:

The maximum document
count to return from an
Elasticsearch query. This
will also apply to
aggregations. If you set
both es.max-doc-
count and es.max-
num-spans,
Elasticsearch will use the
smaller value of the two.

 10000

OpenShift Container Platform 4.9 Service Mesh

272

https://access.redhat.com/articles/5381021
http://:9200

es:
 max-num-spans:

[Deprecated - Will be
removed in a future
release, use es.max-
doc-count instead.]
The maximum number
of spans to fetch at a
time, per query, in
Elasticsearch. If you set
both es.max-num-
spans and es.max-
doc-count,
Elasticsearch will use the
smaller value of the two.

 10000

es:
 max-span-age:

The maximum lookback
for spans in
Elasticsearch.

 72h0m0s

es:
 sniffer:

The sniffer configuration
for Elasticsearch. The
client uses the sniffing
process to find all nodes
automatically. Disabled
by default.

true/ false false

es:
 sniffer-tls-
enabled:

Option to enable TLS
when sniffing an
Elasticsearch Cluster.
The client uses the
sniffing process to find
all nodes automatically.
Disabled by default

true/ false false

es:
 timeout:

Timeout used for
queries. When set to
zero there is no timeout.

 0s

es:
 username:

The username required
by Elasticsearch. The
basic authentication also
loads CA if it is specified.
See also es.password.

es:
 password:

The password required
by Elasticsearch. See
also, es.username.

Parameter Description Values Default value

CHAPTER 1. SERVICE MESH 2.X

273

es:
 version:

The major Elasticsearch
version. If not specified,
the value will be auto-
detected from
Elasticsearch.

 0

Parameter Description Values Default value

Table 1.47. ES data replication parameters

Parameter Description Values Default value

es:
 num-replicas:

The number of replicas
per index in
Elasticsearch.

 1

es:
 num-shards:

The number of shards
per index in
Elasticsearch.

 5

Table 1.48. ES index configuration parameters

Parameter Description Values Default value

es:
 create-index-
templates:

Automatically create
index templates at
application startup when
set to true. When
templates are installed
manually, set to false.

true/ false true

es:
 index-prefix:

Optional prefix for
distributed tracing
platform indices. For
example, setting this to
"production" creates
indices named
"production-tracing-*".

Table 1.49. ES bulk processor configuration parameters

Parameter Description Values Default value

es:
 bulk:
 actions:

The number of requests
that can be added to the
queue before the bulk
processor decides to
commit updates to disk.

 1000

OpenShift Container Platform 4.9 Service Mesh

274

es:
 bulk:
 flush-interval:

A time.Duration after
which bulk requests are
committed, regardless
of other thresholds. To
disable the bulk
processor flush interval,
set this to zero.

 200ms

es:
 bulk:
 size:

The number of bytes
that the bulk requests
can take up before the
bulk processor decides
to commit updates to
disk.

 5000000

es:
 bulk:
 workers:

The number of workers
that are able to receive
and commit bulk
requests to
Elasticsearch.

 1

Parameter Description Values Default value

Table 1.50. ES TLS configuration parameters

Parameter Description Values Default value

es:
 tls:
 ca:

Path to a TLS
Certification Authority
(CA) file used to verify
the remote servers.

 Will use the system
truststore by default.

es:
 tls:
 cert:

Path to a TLS
Certificate file, used to
identify this process to
the remote servers.

es:
 tls:
 enabled:

Enable transport layer
security (TLS) when
talking to the remote
servers. Disabled by
default.

true/ false false

es:
 tls:
 key:

Path to a TLS Private
Key file, used to identify
this process to the
remote servers.

CHAPTER 1. SERVICE MESH 2.X

275

es:
 tls:
 server-name:

Override the expected
TLS server name in the
certificate of the remote
servers.

es:
 token-file:

Path to a file containing
the bearer token. This
flag also loads the
Certification Authority
(CA) file if it is specified.

Parameter Description Values Default value

Table 1.51. ES archive configuration parameters

Parameter Description Values Default value

es-archive:
 bulk:
 actions:

The number of requests
that can be added to the
queue before the bulk
processor decides to
commit updates to disk.

 0

es-archive:
 bulk:
 flush-interval:

A time.Duration after
which bulk requests are
committed, regardless
of other thresholds. To
disable the bulk
processor flush interval,
set this to zero.

 0s

es-archive:
 bulk:
 size:

The number of bytes
that the bulk requests
can take up before the
bulk processor decides
to commit updates to
disk.

 0

es-archive:
 bulk:
 workers:

The number of workers
that are able to receive
and commit bulk
requests to
Elasticsearch.

 0

es-archive:
 create-index-
templates:

Automatically create
index templates at
application startup when
set to true. When
templates are installed
manually, set to false.

true/ false false

OpenShift Container Platform 4.9 Service Mesh

276

es-archive:
 enabled:

Enable extra storage. true/ false false

es-archive:
 index-prefix:

Optional prefix for
distributed tracing
platform indices. For
example, setting this to
"production" creates
indices named
"production-tracing-*".

es-archive:
 max-doc-count:

The maximum document
count to return from an
Elasticsearch query. This
will also apply to
aggregations.

 0

es-archive:
 max-num-spans:

[Deprecated - Will be
removed in a future
release, use es-
archive.max-doc-
count instead.] The
maximum number of
spans to fetch at a time,
per query, in
Elasticsearch.

 0

es-archive:
 max-span-age:

The maximum lookback
for spans in
Elasticsearch.

 0s

es-archive:
 num-replicas:

The number of replicas
per index in
Elasticsearch.

 0

es-archive:
 num-shards:

The number of shards
per index in
Elasticsearch.

 0

es-archive:
 password:

The password required
by Elasticsearch. See
also, es.username.

Parameter Description Values Default value

CHAPTER 1. SERVICE MESH 2.X

277

es-archive:
 server-urls:

The comma-separated
list of Elasticsearch
servers. Must be
specified as fully
qualified URLs, for
example,
http://localhost:9200.

es-archive:
 sniffer:

The sniffer configuration
for Elasticsearch. The
client uses the sniffing
process to find all nodes
automatically. Disabled
by default.

true/ false false

es-archive:
 sniffer-tls-
enabled:

Option to enable TLS
when sniffing an
Elasticsearch Cluster.
The client uses the
sniffing process to find
all nodes automatically.
Disabled by default.

true/ false false

es-archive:
 timeout:

Timeout used for
queries. When set to
zero there is no timeout.

 0s

es-archive:
 tls:
 ca:

Path to a TLS
Certification Authority
(CA) file used to verify
the remote servers.

 Will use the system
truststore by default.

es-archive:
 tls:
 cert:

Path to a TLS
Certificate file, used to
identify this process to
the remote servers.

es-archive:
 tls:
 enabled:

Enable transport layer
security (TLS) when
talking to the remote
servers. Disabled by
default.

true/ false false

es-archive:
 tls:
 key:

Path to a TLS Private
Key file, used to identify
this process to the
remote servers.

Parameter Description Values Default value

OpenShift Container Platform 4.9 Service Mesh

278

es-archive:
 tls:
 server-name:

Override the expected
TLS server name in the
certificate of the remote
servers.

es-archive:
 token-file:

Path to a file containing
the bearer token. This
flag also loads the
Certification Authority
(CA) file if it is specified.

es-archive:
 username:

The username required
by Elasticsearch. The
basic authentication also
loads CA if it is specified.
See also es-
archive.password.

es-archive:
 version:

The major Elasticsearch
version. If not specified,
the value will be auto-
detected from
Elasticsearch.

 0

Parameter Description Values Default value

Storage example with volume mounts

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 options:
 es:
 server-urls: https://quickstart-es-http.default.svc:9200
 index-prefix: my-prefix
 tls:
 ca: /es/certificates/ca.crt
 secretName: tracing-secret
 volumeMounts:
 - name: certificates
 mountPath: /es/certificates/
 readOnly: true
 volumes:
 - name: certificates
 secret:
 secretName: quickstart-es-http-certs-public

CHAPTER 1. SERVICE MESH 2.X

279

1

2

3

4

The following example shows a Jaeger CR using an external Elasticsearch cluster with TLS CA
certificate mounted from a volume and user/password stored in a secret.

External Elasticsearch example:

URL to Elasticsearch service running in default namespace.

TLS configuration. In this case only CA certificate, but it can also contain es.tls.key and es.tls.cert
when using mutual TLS.

Secret which defines environment variables ES_PASSWORD and ES_USERNAME. Created by
kubectl create secret generic tracing-secret --from-literal=ES_PASSWORD=changeme --from-
literal=ES_USERNAME=elastic

Volume mounts and volumes which are mounted into all storage components.

1.26.4.7. Managing certificates with Elasticsearch

You can create and manage certificates using the Red Hat Elasticsearch Operator. Managing
certificates using the Red Hat Elasticsearch Operator also lets you use a single Elasticsearch cluster with
multiple Jaeger Collectors.

IMPORTANT

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 options:
 es:
 server-urls: https://quickstart-es-http.default.svc:9200 1
 index-prefix: my-prefix
 tls: 2
 ca: /es/certificates/ca.crt
 secretName: tracing-secret 3
 volumeMounts: 4
 - name: certificates
 mountPath: /es/certificates/
 readOnly: true
 volumes:
 - name: certificates
 secret:
 secretName: quickstart-es-http-certs-public

OpenShift Container Platform 4.9 Service Mesh

280

IMPORTANT

Managing certificates with Elasticsearch is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Starting with version 2.4, the Red Hat OpenShift distributed tracing platform Operator delegates
certificate creation to the Red Hat Elasticsearch Operator by using the following annotations in the
Elasticsearch custom resource:

logging.openshift.io/elasticsearch-cert-management: "true"

logging.openshift.io/elasticsearch-cert.jaeger-<shared-es-node-name>: "user.jaeger"

logging.openshift.io/elasticsearch-cert.curator-<shared-es-node-name>:
"system.logging.curator"

Where the <shared-es-node-name> is the name of the Elasticsearch node. For example, if you create
an Elasticsearch node named custom-es, your custom resource might look like the following example.

Example Elasticsearch CR showing annotations

apiVersion: logging.openshift.io/v1
kind: Elasticsearch
metadata:
 annotations:
 logging.openshift.io/elasticsearch-cert-management: "true"
 logging.openshift.io/elasticsearch-cert.jaeger-custom-es: "user.jaeger"
 logging.openshift.io/elasticsearch-cert.curator-custom-es: "system.logging.curator"
 name: custom-es
spec:
 managementState: Managed
 nodeSpec:
 resources:
 limits:
 memory: 16Gi
 requests:
 cpu: 1
 memory: 16Gi
 nodes:
 - nodeCount: 3
 proxyResources: {}
 resources: {}
 roles:
 - master
 - client
 - data
 storage: {}
 redundancyPolicy: ZeroRedundancy

CHAPTER 1. SERVICE MESH 2.X

281

https://access.redhat.com/support/offerings/techpreview/

Prerequisites

OpenShift Container Platform 4.7

logging subsystem for Red Hat OpenShift 5.2

The Elasticsearch node and the Jaeger instances must be deployed in the same namespace.
For example, tracing-system.

You enable certificate management by setting spec.storage.elasticsearch.useCertManagement to
true in the Jaeger custom resource.

Example showing useCertManagement

The Red Hat OpenShift distributed tracing platform Operator sets the Elasticsearch custom resource
name to the value of spec.storage.elasticsearch.name from the Jaeger custom resource when
provisioning Elasticsearch.

The certificates are provisioned by the Red Hat Elasticsearch Operator and the Red Hat OpenShift
distributed tracing platform Operator injects the certificates.

For more information about configuring Elasticsearch with OpenShift Container Platform, see
Configuring the log store or Configuring and deploying distributed tracing.

1.26.4.8. Query configuration options

Query is a service that retrieves traces from storage and hosts the user interface to display them.

Table 1.52. Parameters used by the Red Hat OpenShift distributed tracing platform Operator to
define Query

Parameter Description Values Default value

spec:
 query:
 replicas:

Specifies the number of
Query replicas to create.

Integer, for example, 2

Table 1.53. Configuration parameters passed to Query

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 elasticsearch:
 name: custom-es
 doNotProvision: true
 useCertManagement: true

OpenShift Container Platform 4.9 Service Mesh

282

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/logging/#configuring-the-log-store
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/distributed_tracing/#configuring-the-distributed-tracing-platform

Parameter Description Values Default value

spec:
 query:
 options: {}

Configuration options
that define the Query
service.

options:
 log-level:

Logging level for Query. Possible values: debug,
info, warn, error, fatal,
panic.

options:
 query:
 base-path:

The base path for all
jaeger-query HTTP
routes can be set to a
non-root value, for
example, /jaeger would
cause all UI URLs to
start with /jaeger. This
can be useful when
running jaeger-query
behind a reverse proxy.

/<path>

Sample Query configuration

1.26.4.9. Ingester configuration options

Ingester is a service that reads from a Kafka topic and writes to the Elasticsearch storage backend. If you
are using the allInOne or production deployment strategies, you do not need to configure the Ingester
service.

Table 1.54. Jaeger parameters passed to the Ingester

Parameter Description Values

spec:
 ingester:
 options: {}

Configuration options that define
the Ingester service.

apiVersion: jaegertracing.io/v1
kind: "Jaeger"
metadata:
 name: "my-jaeger"
spec:
 strategy: allInOne
 allInOne:
 options:
 log-level: debug
 query:
 base-path: /jaeger

CHAPTER 1. SERVICE MESH 2.X

283

options:
 deadlockInterval:

Specifies the interval, in seconds
or minutes, that the Ingester must
wait for a message before
terminating. The deadlock interval
is disabled by default (set to 0), to
avoid terminating the Ingester
when no messages arrive during
system initialization.

Minutes and seconds, for
example, 1m0s. Default value is
0.

options:
 kafka:
 consumer:
 topic:

The topic parameter identifies
the Kafka configuration used by
the collector to produce the
messages, and the Ingester to
consume the messages.

Label for the consumer. For
example, jaeger-spans.

options:
 kafka:
 consumer:
 brokers:

Identifies the Kafka configuration
used by the Ingester to consume
the messages.

Label for the broker, for example,
my-cluster-kafka-
brokers.kafka:9092.

options:
 log-level:

Logging level for the Ingester. Possible values: debug, info,
warn, error, fatal, dpanic,
panic.

Parameter Description Values

Streaming Collector and Ingester example

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-streaming
spec:
 strategy: streaming
 collector:
 options:
 kafka:
 producer:
 topic: jaeger-spans
 brokers: my-cluster-kafka-brokers.kafka:9092
 ingester:
 options:
 kafka:
 consumer:
 topic: jaeger-spans
 brokers: my-cluster-kafka-brokers.kafka:9092
 ingester:
 deadlockInterval: 5
 storage:
 type: elasticsearch

OpenShift Container Platform 4.9 Service Mesh

284

1.27. UNINSTALLING SERVICE MESH

To uninstall Red Hat OpenShift Service Mesh from an existing OpenShift Container Platform instance
and remove its resources, you must delete the control plane, delete the Operators, and run commands
to manually remove some resources.

1.27.1. Removing the Red Hat OpenShift Service Mesh control plane

To uninstall Service Mesh from an existing OpenShift Container Platform instance, first you delete the
Service Mesh control plane and the Operators. Then, you run commands to remove residual resources.

1.27.1.1. Removing the Service Mesh control plane using the web console

You can remove the Red Hat OpenShift Service Mesh control plane by using the web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Click the Project menu and select the project where you installed the Service Mesh control
plane, for example istio-system.

3. Navigate to Operators → Installed Operators.

4. Click Service Mesh Control Plane under Provided APIs.

5. Click the ServiceMeshControlPlane menu .

6. Click Delete Service Mesh Control Plane.

7. Click Delete on the confirmation dialog window to remove the ServiceMeshControlPlane.

1.27.1.2. Removing the Service Mesh control plane using the CLI

You can remove the Red Hat OpenShift Service Mesh control plane by using the CLI. In this example,
istio-system is the name of the control plane project.

Procedure

1. Log in to the OpenShift Container Platform CLI.

2. Run the following command to delete the ServiceMeshMemberRoll resource.

3. Run this command to retrieve the name of the installed ServiceMeshControlPlane:

4. Replace <name_of_custom_resource> with the output from the previous command, and run

 options:
 es:
 server-urls: http://elasticsearch:9200

$ oc delete smmr -n istio-system default

$ oc get smcp -n istio-system

CHAPTER 1. SERVICE MESH 2.X

285

4. Replace <name_of_custom_resource> with the output from the previous command, and run
this command to remove the custom resource:

1.27.2. Removing the installed Operators

You must remove the Operators to successfully remove Red Hat OpenShift Service Mesh. After you
remove the Red Hat OpenShift Service Mesh Operator, you must remove the Kiali Operator, the Red
Hat OpenShift distributed tracing platform Operator, and the OpenShift Elasticsearch Operator.

1.27.2.1. Removing the Operators

Follow this procedure to remove the Operators that make up Red Hat OpenShift Service Mesh. Repeat
the steps for each of the following Operators.

Red Hat OpenShift Service Mesh

Kiali

Red Hat OpenShift distributed tracing platform

OpenShift Elasticsearch

Procedure

1. Log in to the OpenShift Container Platform web console.

2. From the Operators → Installed Operators page, scroll or type a keyword into the Filter by
name to find each Operator. Then, click the Operator name.

3. On the Operator Details page, select Uninstall Operator from the Actions menu. Follow the
prompts to uninstall each Operator.

1.27.3. Clean up Operator resources

You can manually remove resources left behind after removing the Red Hat OpenShift Service Mesh
Operator using the OpenShift Container Platform web console.

Prerequisites

An account with cluster administration access. If you use Red Hat OpenShift Dedicated, you
must have an account with the dedicated-admin role.

Access to the OpenShift CLI (oc).

Procedure

1. Log in to the OpenShift Container Platform CLI as a cluster administrator.

2. Run the following commands to clean up resources after uninstalling the Operators. If you
intend to keep using distributed tracing platform as a stand-alone service without service mesh,
do not delete the Jaeger resources.

NOTE

$ oc delete smcp -n istio-system <name_of_custom_resource>

OpenShift Container Platform 4.9 Service Mesh

286

NOTE

The OpenShift Elasticsearch Operator is installed in openshift-operators-redhat
by default. The other Operators are installed in the openshift-operators
namespace by default. If you installed the Operators in another namespace,
replace openshift-operators with the name of the project where the Red Hat
OpenShift Service Mesh Operator was installed.

$ oc delete validatingwebhookconfiguration/openshift-operators.servicemesh-
resources.maistra.io

$ oc delete mutatingwebhookconfiguration/openshift-operators.servicemesh-
resources.maistra.io

$ oc delete svc maistra-admission-controller -n openshift-operators

$ oc -n openshift-operators delete ds -lmaistra-version

$ oc delete clusterrole/istio-admin clusterrole/istio-cni clusterrolebinding/istio-cni

$ oc delete clusterrole istio-view istio-edit

$ oc delete clusterrole jaegers.jaegertracing.io-v1-admin jaegers.jaegertracing.io-v1-crdview
jaegers.jaegertracing.io-v1-edit jaegers.jaegertracing.io-v1-view

$ oc get crds -o name | grep '.*\.istio\.io' | xargs -r -n 1 oc delete

$ oc get crds -o name | grep '.*\.maistra\.io' | xargs -r -n 1 oc delete

$ oc get crds -o name | grep '.*\.kiali\.io' | xargs -r -n 1 oc delete

$ oc delete crds jaegers.jaegertracing.io

$ oc delete cm -n openshift-operators maistra-operator-cabundle

$ oc delete cm -n openshift-operators istio-cni-config istio-cni-config-v2-3

$ oc delete sa -n openshift-operators istio-cni

CHAPTER 1. SERVICE MESH 2.X

287

CHAPTER 2. SERVICE MESH 1.X

2.1. SERVICE MESH RELEASE NOTES

WARNING

You are viewing documentation for a Red Hat OpenShift Service Mesh release
that is no longer supported.

Service Mesh version 1.0 and 1.1 control planes are no longer supported. For
information about upgrading your service mesh control plane, see Upgrading
Service Mesh.

For information about the support status of a particular Red Hat OpenShift Service
Mesh release, see the Product lifecycle page .

2.1.1. Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

2.1.2. Introduction to Red Hat OpenShift Service Mesh

Red Hat OpenShift Service Mesh addresses a variety of problems in a microservice architecture by
creating a centralized point of control in an application. It adds a transparent layer on existing distributed
applications without requiring any changes to the application code.

Microservice architectures split the work of enterprise applications into modular services, which can
make scaling and maintenance easier. However, as an enterprise application built on a microservice
architecture grows in size and complexity, it becomes difficult to understand and manage. Service Mesh
can address those architecture problems by capturing or intercepting traffic between services and can
modify, redirect, or create new requests to other services.

Service Mesh, which is based on the open source Istio project, provides an easy way to create a network
of deployed services that provides discovery, load balancing, service-to-service authentication, failure
recovery, metrics, and monitoring. A service mesh also provides more complex operational functionality,
including A/B testing, canary releases, access control, and end-to-end authentication.

2.1.3. Getting support

If you experience difficulty with a procedure described in this documentation, or with OpenShift
Container Platform in general, visit the Red Hat Customer Portal . From the Customer Portal, you can:

Search or browse through the Red Hat Knowledgebase of articles and solutions relating to Red
Hat products.

Submit a support case to Red Hat Support.



OpenShift Container Platform 4.9 Service Mesh

288

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-versions_ossm-upgrade
https://access.redhat.com/support/policy/updates/openshift#ossm
https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://istio.io/
http://access.redhat.com

Access other product documentation.

To identify issues with your cluster, you can use Insights in OpenShift Cluster Manager. Insights provides
details about issues and, if available, information on how to solve a problem.

If you have a suggestion for improving this documentation or have found an error, submit a Jira issue for
the most relevant documentation component. Please provide specific details, such as the section name
and OpenShift Container Platform version.

When opening a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support.

The must-gather tool enables you to collect diagnostic information about your OpenShift Container
Platform cluster, including virtual machines and other data related to Red Hat OpenShift Service Mesh.

For prompt support, supply diagnostic information for both OpenShift Container Platform and Red Hat
OpenShift Service Mesh.

2.1.3.1. About the must-gather tool

The oc adm must-gather CLI command collects the information from your cluster that is most likely
needed for debugging issues, including:

Resource definitions

Service logs

By default, the oc adm must-gather command uses the default plugin image and writes into ./must-
gather.local.

Alternatively, you can collect specific information by running the command with the appropriate
arguments as described in the following sections:

To collect data related to one or more specific features, use the --image argument with an
image, as listed in a following section.
For example:

To collect the audit logs, use the -- /usr/bin/gather_audit_logs argument, as described in a
following section.
For example:

NOTE

Audit logs are not collected as part of the default set of information to reduce
the size of the files.

When you run oc adm must-gather, a new pod with a random name is created in a new project on the
cluster. The data is collected on that pod and saved in a new directory that starts with must-
gather.local. This directory is created in the current working directory.

$ oc adm must-gather --image=registry.redhat.io/container-native-virtualization/cnv-must-
gather-rhel8:v4.9.0

$ oc adm must-gather -- /usr/bin/gather_audit_logs

CHAPTER 2. SERVICE MESH 1.X

289

https://console.redhat.com/openshift
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Documentation_issue&issuetype=1&components=12367614&priority=10200&versions=12385632

For example:

2.1.3.2. Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift Container Platform CLI (oc) installed.

2.1.3.3. About collecting service mesh data

You can use the oc adm must-gather CLI command to collect information about your cluster, including
features and objects associated with Red Hat OpenShift Service Mesh.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

The OpenShift Container Platform CLI (oc) installed.

Precedure

1. To collect Red Hat OpenShift Service Mesh data with must-gather, you must specify the Red
Hat OpenShift Service Mesh image.

2. To collect Red Hat OpenShift Service Mesh data for a specific Service Mesh control plane
namespace with must-gather, you must specify the Red Hat OpenShift Service Mesh image
and namespace. In this example, replace <namespace> with your Service Mesh control plane
namespace, such as istio-system.

2.1.4. Red Hat OpenShift Service Mesh supported configurations

The following are the only supported configurations for the Red Hat OpenShift Service Mesh:

OpenShift Container Platform version 4.6 or later.

NOTE

OpenShift Online and Red Hat OpenShift Dedicated are not supported for Red Hat
OpenShift Service Mesh.

The deployment must be contained within a single OpenShift Container Platform cluster that is

NAMESPACE NAME READY STATUS RESTARTS AGE
...
openshift-must-gather-5drcj must-gather-bklx4 2/2 Running 0 72s
openshift-must-gather-5drcj must-gather-s8sdh 2/2 Running 0 72s
...

$ oc adm must-gather --image=registry.redhat.io/openshift-service-mesh/istio-must-gather-
rhel8:2.3

$ oc adm must-gather --image=registry.redhat.io/openshift-service-mesh/istio-must-gather-
rhel8:2.3 gather <namespace>

OpenShift Container Platform 4.9 Service Mesh

290

The deployment must be contained within a single OpenShift Container Platform cluster that is
not federated.

This release of Red Hat OpenShift Service Mesh is only available on OpenShift Container
Platform x86_64.

This release only supports configurations where all Service Mesh components are contained in
the OpenShift Container Platform cluster in which it operates. It does not support management
of microservices that reside outside of the cluster, or in a multi-cluster scenario.

This release only supports configurations that do not integrate external services such as virtual
machines.

For additional information about Red Hat OpenShift Service Mesh lifecycle and supported
configurations, refer to the Support Policy.

2.1.4.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh

The Kiali observability console is only supported on the two most recent releases of the Chrome,
Edge, Firefox, or Safari browsers.

2.1.4.2. Supported Mixer adapters

This release only supports the following Mixer adapter:

3scale Istio Adapter

2.1.5. New Features

Red Hat OpenShift Service Mesh provides a number of key capabilities uniformly across a network of
services:

Traffic Management - Control the flow of traffic and API calls between services, make calls
more reliable, and make the network more robust in the face of adverse conditions.

Service Identity and Security - Provide services in the mesh with a verifiable identity and
provide the ability to protect service traffic as it flows over networks of varying degrees of
trustworthiness.

Policy Enforcement - Apply organizational policy to the interaction between services, ensure
access policies are enforced and resources are fairly distributed among consumers. Policy
changes are made by configuring the mesh, not by changing application code.

Telemetry - Gain understanding of the dependencies between services and the nature and flow
of traffic between them, providing the ability to quickly identify issues.

2.1.5.1. New features Red Hat OpenShift Service Mesh 1.1.18.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs).

2.1.5.1.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.18.2

CHAPTER 2. SERVICE MESH 1.X

291

https://access.redhat.com/support/policy/updates/openshift#ossm

Component Version

Istio 1.4.10

Jaeger 1.30.2

Kiali 1.12.21.1

3scale Istio Adapter 1.0.0

2.1.5.2. New features Red Hat OpenShift Service Mesh 1.1.18.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs).

2.1.5.2.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.18.1

Component Version

Istio 1.4.10

Jaeger 1.30.2

Kiali 1.12.20.1

3scale Istio Adapter 1.0.0

2.1.5.3. New features Red Hat OpenShift Service Mesh 1.1.18

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs).

2.1.5.3.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.18

Component Version

Istio 1.4.10

Jaeger 1.24.0

Kiali 1.12.18

3scale Istio Adapter 1.0.0

2.1.5.4. New features Red Hat OpenShift Service Mesh 1.1.17.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures

OpenShift Container Platform 4.9 Service Mesh

292

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs).

2.1.5.4.1. Change in how Red Hat OpenShift Service Mesh handles URI fragments

Red Hat OpenShift Service Mesh contains a remotely exploitable vulnerability, CVE-2021-39156, where
an HTTP request with a fragment (a section in the end of a URI that begins with a # character) in the URI
path could bypass the Istio URI path-based authorization policies. For instance, an Istio authorization
policy denies requests sent to the URI path /user/profile. In the vulnerable versions, a request with URI
path /user/profile#section1 bypasses the deny policy and routes to the backend (with the normalized
URI path /user/profile%23section1), possibly leading to a security incident.

You are impacted by this vulnerability if you use authorization policies with DENY actions and
operation.paths, or ALLOW actions and operation.notPaths.

With the mitigation, the fragment part of the request’s URI is removed before the authorization and
routing. This prevents a request with a fragment in its URI from bypassing authorization policies which
are based on the URI without the fragment part.

2.1.5.4.2. Required update for authorization policies

Istio generates hostnames for both the hostname itself and all matching ports. For instance, a virtual
service or Gateway for a host of "httpbin.foo" generates a config matching "httpbin.foo and
httpbin.foo:*". However, exact match authorization policies only match the exact string given for the
hosts or notHosts fields.

Your cluster is impacted if you have AuthorizationPolicy resources using exact string comparison for
the rule to determine hosts or notHosts.

You must update your authorization policy rules to use prefix match instead of exact match. For
example, replacing hosts: ["httpbin.com"] with hosts: ["httpbin.com:*"] in the first
AuthorizationPolicy example.

First example AuthorizationPolicy using prefix match

Second example AuthorizationPolicy using prefix match

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: foo
spec:
 action: DENY
 rules:
 - from:
 - source:
 namespaces: ["dev"]
 to:
 - operation:
 hosts: [“httpbin.com”,"httpbin.com:*"]

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:

CHAPTER 2. SERVICE MESH 1.X

293

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39156
https://istio.io/latest/docs/reference/config/security/authorization-policy/#Operation
https://istio.io/latest/docs/reference/config/security/authorization-policy/#Rule

2.1.5.5. New features Red Hat OpenShift Service Mesh 1.1.17

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

2.1.5.6. New features Red Hat OpenShift Service Mesh 1.1.16

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

2.1.5.7. New features Red Hat OpenShift Service Mesh 1.1.15

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

2.1.5.8. New features Red Hat OpenShift Service Mesh 1.1.14

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

IMPORTANT

There are manual steps that must be completed to address CVE-2021-29492 and CVE-
2021-31920.

2.1.5.8.1. Manual updates required by CVE-2021-29492 and CVE-2021-31920

Istio contains a remotely exploitable vulnerability where an HTTP request path with multiple slashes or
escaped slash characters (%2F` or %5C`) could potentially bypass an Istio authorization policy when
path-based authorization rules are used.

For example, assume an Istio cluster administrator defines an authorization DENY policy to reject the
request at path /admin. A request sent to the URL path //admin will NOT be rejected by the
authorization policy.

According to RFC 3986, the path //admin with multiple slashes should technically be treated as a
different path from the /admin. However, some backend services choose to normalize the URL paths by
merging multiple slashes into a single slash. This can result in a bypass of the authorization policy
(//admin does not match /admin), and a user can access the resource at path /admin in the backend;
this would represent a security incident.

Your cluster is impacted by this vulnerability if you have authorization policies using ALLOW action +
notPaths field or DENY action + paths field patterns. These patterns are vulnerable to unexpected
policy bypasses.

 name: httpbin
 namespace: default
spec:
 action: DENY
 rules:
 - to:
 - operation:
 hosts: ["httpbin.example.com:*"]

OpenShift Container Platform 4.9 Service Mesh

294

https://tools.ietf.org/html/rfc3986#section-6

Your cluster is NOT impacted by this vulnerability if:

You don’t have authorization policies.

Your authorization policies don’t define paths or notPaths fields.

Your authorization policies use ALLOW action + paths field or DENY action + notPaths field
patterns. These patterns could only cause unexpected rejection instead of policy bypasses. The
upgrade is optional for these cases.

NOTE

The Red Hat OpenShift Service Mesh configuration location for path normalization is
different from the Istio configuration.

2.1.5.8.2. Updating the path normalization configuration

Istio authorization policies can be based on the URL paths in the HTTP request. Path normalization, also
known as URI normalization, modifies and standardizes the incoming requests' paths so that the
normalized paths can be processed in a standard way. Syntactically different paths may be equivalent
after path normalization.

Istio supports the following normalization schemes on the request paths before evaluating against the
authorization policies and routing the requests:

Table 2.1. Normalization schemes

Option Description Example Notes

NONE No normalization is
done. Anything received
by Envoy will be
forwarded exactly as-is
to any backend service.

../%2Fa../b is evaluated
by the authorization
policies and sent to your
service.

This setting is vulnerable
to CVE-2021-31920.

BASE This is currently the
option used in the
default installation of
Istio. This applies the
normalize_path
option on Envoy proxies,
which follows RFC 3986
with extra normalization
to convert backslashes
to forward slashes.

/a/../b is normalized to
/b. \da is normalized to
/da.

This setting is vulnerable
to CVE-2021-31920.

MERGE_SLASHES Slashes are merged
after the BASE
normalization.

/a//b is normalized to
/a/b.

Update to this setting to
mitigate CVE-2021-
31920.

CHAPTER 2. SERVICE MESH 1.X

295

https://en.wikipedia.org/wiki/URI_normalization
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-normalize-path
https://tools.ietf.org/html/rfc3986

DECODE_AND_MER
GE_SLASHES

The strictest setting
when you allow all traffic
by default. This setting is
recommended, with the
caveat that you must
thoroughly test your
authorization policies
routes. Percent-
encoded slash and
backslash characters
(%2F, %2f, %5C and
%5c) are decoded to /
or \, before the
MERGE_SLASHES
normalization.

/a%2fb is normalized to
/a/b.

Update to this setting to
mitigate CVE-2021-
31920. This setting is
more secure, but also
has the potential to
break applications. Test
your applications before
deploying to production.

Option Description Example Notes

The normalization algorithms are conducted in the following order:

1. Percent-decode %2F, %2f, %5C and %5c.

2. The RFC 3986 and other normalization implemented by the normalize_path option in Envoy.

3. Merge slashes.

WARNING

While these normalization options represent recommendations from HTTP
standards and common industry practices, applications may interpret a URL in any
way it chooses to. When using denial policies, ensure that you understand how your
application behaves.

2.1.5.8.3. Path normalization configuration examples

Ensuring Envoy normalizes request paths to match your backend services' expectations is critical to the
security of your system. The following examples can be used as a reference for you to configure your
system. The normalized URL paths, or the original URL paths if NONE is selected, will be:

1. Used to check against the authorization policies.

2. Forwarded to the backend application.

Table 2.2. Configuration examples

If your application…​ Choose…​



OpenShift Container Platform 4.9 Service Mesh

296

https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-normalize-path

Relies on the proxy to do normalization BASE, MERGE_SLASHES or
DECODE_AND_MERGE_SLASHES

Normalizes request paths based on RFC 3986 and
does not merge slashes.

BASE

Normalizes request paths based on RFC 3986 and
merges slashes, but does not decode percent-
encoded slashes.

MERGE_SLASHES

Normalizes request paths based on RFC 3986,
decodes percent-encoded slashes, and merges
slashes.

DECODE_AND_MERGE_SLASHES

Processes request paths in a way that is
incompatible with RFC 3986.

NONE

If your application…​ Choose…​

2.1.5.8.4. Configuring your SMCP for path normalization

To configure path normalization for Red Hat OpenShift Service Mesh, specify the following in your
ServiceMeshControlPlane. Use the configuration examples to help determine the settings for your
system.

SMCP v1 pathNormalization

2.1.5.9. New features Red Hat OpenShift Service Mesh 1.1.13

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

2.1.5.10. New features Red Hat OpenShift Service Mesh 1.1.12

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

2.1.5.11. New features Red Hat OpenShift Service Mesh 1.1.11

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

2.1.5.12. New features Red Hat OpenShift Service Mesh 1.1.10

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures

spec:
 global:
 pathNormalization: <option>

CHAPTER 2. SERVICE MESH 1.X

297

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

2.1.5.13. New features Red Hat OpenShift Service Mesh 1.1.9

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

2.1.5.14. New features Red Hat OpenShift Service Mesh 1.1.8

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

2.1.5.15. New features Red Hat OpenShift Service Mesh 1.1.7

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

2.1.5.16. New features Red Hat OpenShift Service Mesh 1.1.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

2.1.5.17. New features Red Hat OpenShift Service Mesh 1.1.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

This release also added support for configuring cipher suites.

2.1.5.18. New features Red Hat OpenShift Service Mesh 1.1.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

NOTE

There are manual steps that must be completed to address CVE-2020-8663.

2.1.5.18.1. Manual updates required by CVE-2020-8663

The fix for CVE-2020-8663: envoy: Resource exhaustion when accepting too many connections
added a configurable limit on downstream connections. The configuration option for this limit must be
configured to mitigate this vulnerability.

IMPORTANT

These manual steps are required to mitigate this CVE whether you are using the 1.1
version or the 1.0 version of Red Hat OpenShift Service Mesh.

This new configuration option is called overload.global_downstream_max_connections, and it is
configurable as a proxy runtime setting. Perform the following steps to configure limits at the Ingress
Gateway.

OpenShift Container Platform 4.9 Service Mesh

298

https://bugzilla.redhat.com/show_bug.cgi?id=1844254

Procedure

1. Create a file named bootstrap-override.json with the following text to force the proxy to
override the bootstrap template and load runtime configuration from disk:

 {
 "runtime": {
 "symlink_root": "/var/lib/istio/envoy/runtime"
 }
 }

2. Create a secret from the bootstrap-override.json file, replacing <SMCPnamespace> with the
namespace where you created the service mesh control plane (SMCP):

3. Update the SMCP configuration to activate the override.

Updated SMCP configuration example #1

4. To set the new configuration option, create a secret that has the desired value for the
overload.global_downstream_max_connections setting. The following example uses a value
of 10000:

5. Update the SMCP again to mount the secret in the location where Envoy is looking for runtime
configuration:

Updated SMCP configuration example #2

$ oc create secret generic -n <SMCPnamespace> gateway-bootstrap --from-file=bootstrap-
override.json

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 gateways:
 istio-ingressgateway:
 env:
 ISTIO_BOOTSTRAP_OVERRIDE: /var/lib/istio/envoy/custom-bootstrap/bootstrap-
override.json
 secretVolumes:
 - mountPath: /var/lib/istio/envoy/custom-bootstrap
 name: custom-bootstrap
 secretName: gateway-bootstrap

$ oc create secret generic -n <SMCPnamespace> gateway-settings --from-
literal=overload.global_downstream_max_connections=10000

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 template: default
#Change the version to "v1.0" if you are on the 1.0 stream.
 version: v1.1
 istio:

CHAPTER 2. SERVICE MESH 1.X

299

2.1.5.18.2. Upgrading from Elasticsearch 5 to Elasticsearch 6

When updating from Elasticsearch 5 to Elasticsearch 6, you must delete your Jaeger instance, then
recreate the Jaeger instance because of an issue with certificates. Re-creating the Jaeger instance
triggers creating a new set of certificates. If you are using persistent storage the same volumes can be
mounted for the new Jaeger instance as long as the Jaeger name and namespace for the new Jaeger
instance are the same as the deleted Jaeger instance.

Procedure if Jaeger is installed as part of Red Hat Service Mesh

1. Determine the name of your Jaeger custom resource file:

You should see something like the following:

2. Copy the generated custom resource file into a temporary directory:

3. Delete the Jaeger instance:

4. Recreate the Jaeger instance from your copy of the custom resource file:

5. Delete the copy of the generated custom resource file:

Procedure if Jaeger not installed as part of Red Hat Service Mesh

Before you begin, create a copy of your Jaeger custom resource file.

1. Delete the Jaeger instance by deleting the custom resource file:

 gateways:
 istio-ingressgateway:
 env:
 ISTIO_BOOTSTRAP_OVERRIDE: /var/lib/istio/envoy/custom-bootstrap/bootstrap-override.json
 secretVolumes:
 - mountPath: /var/lib/istio/envoy/custom-bootstrap
 name: custom-bootstrap
 secretName: gateway-bootstrap
 # below is the new secret mount
 - mountPath: /var/lib/istio/envoy/runtime
 name: gateway-settings
 secretName: gateway-settings

$ oc get jaeger -n istio-system

NAME AGE
jaeger 3d21h

$ oc get jaeger jaeger -oyaml -n istio-system > /tmp/jaeger-cr.yaml

$ oc delete jaeger jaeger -n istio-system

$ oc create -f /tmp/jaeger-cr.yaml -n istio-system

$ rm /tmp/jaeger-cr.yaml

OpenShift Container Platform 4.9 Service Mesh

300

For example:

2. Recreate your Jaeger instance from the backup copy of your custom resource file:

3. Validate that your Pods have restarted:

2.1.5.19. New features Red Hat OpenShift Service Mesh 1.1.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

2.1.5.20. New features Red Hat OpenShift Service Mesh 1.1.2

This release of Red Hat OpenShift Service Mesh addresses a security vulnerability.

2.1.5.21. New features Red Hat OpenShift Service Mesh 1.1.1

This release of Red Hat OpenShift Service Mesh adds support for a disconnected installation.

2.1.5.22. New features Red Hat OpenShift Service Mesh 1.1.0

This release of Red Hat OpenShift Service Mesh adds support for Istio 1.4.6 and Jaeger 1.17.1.

2.1.5.22.1. Manual updates from 1.0 to 1.1

If you are updating from Red Hat OpenShift Service Mesh 1.0 to 1.1, you must update the
ServiceMeshControlPlane resource to update the control plane components to the new version.

1. In the web console, click the Red Hat OpenShift Service Mesh Operator.

2. Click the Project menu and choose the project where your ServiceMeshControlPlane is
deployed from the list, for example istio-system.

3. Click the name of your control plane, for example basic-install.

4. Click YAML and add a version field to the spec: of your ServiceMeshControlPlane resource.
For example, to update to Red Hat OpenShift Service Mesh 1.1.0, add version: v1.1.

spec:
 version: v1.1
 ...

The version field specifies the version of Service Mesh to install and defaults to the latest available
version.

NOTE

$ oc delete -f <jaeger-cr-file>

$ oc delete -f jaeger-prod-elasticsearch.yaml

$ oc create -f <jaeger-cr-file>

$ oc get pods -n jaeger-system -w

CHAPTER 2. SERVICE MESH 1.X

301

NOTE

Note that support for Red Hat OpenShift Service Mesh v1.0 ended in October, 2020. You
must upgrade to either v1.1 or v2.0.

2.1.6. Deprecated features

Some features available in previous releases have been deprecated or removed.

Deprecated functionality is still included in OpenShift Container Platform and continues to be
supported; however, it will be removed in a future release of this product and is not recommended for
new deployments.

2.1.6.1. Deprecated features Red Hat OpenShift Service Mesh 1.1.5

The following custom resources were deprecated in release 1.1.5 and were removed in release 1.1.12

Policy - The Policy resource is deprecated and will be replaced by the PeerAuthentication
resource in a future release.

MeshPolicy - The MeshPolicy resource is deprecated and will be replaced by the
PeerAuthentication resource in a future release.

v1alpha1 RBAC API -The v1alpha1 RBAC policy is deprecated by the v1beta1
AuthorizationPolicy. RBAC (Role Based Access Control) defines ServiceRole and
ServiceRoleBinding objects.

ServiceRole

ServiceRoleBinding

RbacConfig - RbacConfig implements the Custom Resource Definition for controlling Istio
RBAC behavior.

ClusterRbacConfig(versions prior to Red Hat OpenShift Service Mesh 1.0)

ServiceMeshRbacConfig (Red Hat OpenShift Service Mesh version 1.0 and later)

In Kiali, the login and LDAP strategies are deprecated. A future version will introduce
authentication using OpenID providers.

The following components are also deprecated in this release and will be replaced by the Istiod
component in a future release.

Mixer - access control and usage policies

Pilot - service discovery and proxy configuration

Citadel - certificate generation

Galley - configuration validation and distribution

2.1.7. Known issues

These limitations exist in Red Hat OpenShift Service Mesh:

Red Hat OpenShift Service Mesh does not support IPv6 , as it is not supported by the upstream

OpenShift Container Platform 4.9 Service Mesh

302

Red Hat OpenShift Service Mesh does not support IPv6 , as it is not supported by the upstream
Istio project, nor fully supported by OpenShift Container Platform.

Graph layout - The layout for the Kiali graph can render differently, depending on your
application architecture and the data to display (number of graph nodes and their interactions).
Because it is difficult if not impossible to create a single layout that renders nicely for every
situation, Kiali offers a choice of several different layouts. To choose a different layout, you can
choose a different Layout Schema from the Graph Settings menu.

The first time you access related services such as Jaeger and Grafana, from the Kiali console,
you must accept the certificate and re-authenticate using your OpenShift Container Platform
login credentials. This happens due to an issue with how the framework displays embedded
pages in the console.

2.1.7.1. Service Mesh known issues

These are the known issues in Red Hat OpenShift Service Mesh:

Jaeger/Kiali Operator upgrade blocked with operator pending When upgrading the Jaeger or
Kiali Operators with Service Mesh 1.0.x installed, the operator status shows as Pending.
Workaround: See the linked Knowledge Base article for more information.

Istio-14743 Due to limitations in the version of Istio that this release of Red Hat OpenShift
Service Mesh is based on, there are several applications that are currently incompatible with
Service Mesh. See the linked community issue for details.

MAISTRA-858 The following Envoy log messages describing deprecated options and
configurations associated with Istio 1.1.x are expected:

[2019-06-03 07:03:28.943][19][warning][misc]
[external/envoy/source/common/protobuf/utility.cc:129] Using deprecated option
'envoy.api.v2.listener.Filter.config'. This configuration will be removed from Envoy soon.

[2019-08-12 22:12:59.001][13][warning][misc]
[external/envoy/source/common/protobuf/utility.cc:174] Using deprecated option
'envoy.api.v2.Listener.use_original_dst' from file lds.proto. This configuration will be
removed from Envoy soon.

MAISTRA-806 Evicted Istio Operator Pod causes mesh and CNI not to deploy.
Workaround: If the istio-operator pod is evicted while deploying the control pane, delete the
evicted istio-operator pod.

MAISTRA-681 When the control plane has many namespaces, it can lead to performance issues.

MAISTRA-465 The Maistra Operator fails to create a service for operator metrics.

MAISTRA-453 If you create a new project and deploy pods immediately, sidecar injection does
not occur. The operator fails to add the maistra.io/member-of before the pods are created,
therefore the pods must be deleted and recreated for sidecar injection to occur.

MAISTRA-158 Applying multiple gateways referencing the same hostname will cause all
gateways to stop functioning.

2.1.7.2. Kiali known issues

NOTE

CHAPTER 2. SERVICE MESH 1.X

303

https://github.com/istio/old_issues_repo/issues/115
https://access.redhat.com/solutions/4970771
https://github.com/istio/istio/issues/14743
https://issues.jboss.org/browse/MAISTRA-858
https://www.envoyproxy.io/docs/envoy/latest/intro/deprecated
https://issues.jboss.org/browse/MAISTRA-806
https://issues.jboss.org/browse/MAISTRA-681
https://issues.jboss.org/browse/MAISTRA-465
https://issues.jboss.org/browse/MAISTRA-453
https://issues.jboss.org/browse/MAISTRA-158

NOTE

New issues for Kiali should be created in the OpenShift Service Mesh project with the
Component set to Kiali.

These are the known issues in Kiali:

KIALI-2206 When you are accessing the Kiali console for the first time, and there is no cached
browser data for Kiali, the “View in Grafana” link on the Metrics tab of the Kiali Service Details
page redirects to the wrong location. The only way you would encounter this issue is if you are
accessing Kiali for the first time.

KIALI-507 Kiali does not support Internet Explorer 11. This is because the underlying frameworks
do not support Internet Explorer. To access the Kiali console, use one of the two most recent
versions of the Chrome, Edge, Firefox or Safari browser.

2.1.7.3. Red Hat OpenShift distributed tracing known issues

These limitations exist in Red Hat OpenShift distributed tracing:

Apache Spark is not supported.

The streaming deployment via AMQ/Kafka is unsupported on IBM Z and IBM Power Systems.

These are the known issues for Red Hat OpenShift distributed tracing:

OBSDA-220 In some cases, if you try to pull an image using distributed tracing data collection,
the image pull fails and a Failed to pull image error message appears. There is no workaround
for this issue.

TRACING-2057 The Kafka API has been updated to v1beta2 to support the Strimzi Kafka
Operator 0.23.0. However, this API version is not supported by AMQ Streams 1.6.3. If you have
the following environment, your Jaeger services will not be upgraded, and you cannot create
new Jaeger services or modify existing Jaeger services:

Jaeger Operator channel: 1.17.x stable or 1.20.x stable

AMQ Streams Operator channel: amq-streams-1.6.x
To resolve this issue, switch the subscription channel for your AMQ Streams Operator to
either amq-streams-1.7.x or stable.

2.1.8. Fixed issues

The following issues been resolved in the current release:

2.1.8.1. Service Mesh fixed issues

MAISTRA-2371 Handle tombstones in listerInformer. The updated cache codebase was not
handling tombstones when translating the events from the namespace caches to the
aggregated cache, leading to a panic in the go routine.

OSSM-542 Galley is not using the new certificate after rotation.

OSSM-99 Workloads generated from direct pod without labels may crash Kiali.

OSSM-93 IstioConfigList can’t filter by two or more names.

OpenShift Container Platform 4.9 Service Mesh

304

https://issues.redhat.com/projects/OSSM/
https://issues.jboss.org/browse/KIALI-2206
https://github.com/kiali/kiali/issues/507
https://issues.redhat.com/browse/OBSDA-220
https://issues.redhat.com/browse/TRACING-2057
https://issues.redhat.com/browse/MAISTRA-2371
https://issues.redhat.com/browse/OSSM-542
https://issues.jboss.org/browse/OSSM-99
https://issues.jboss.org/browse/OSSM-93

OSSM-92 Cancelling unsaved changes on the VS/DR YAML edit page does not cancel the
changes.

OSSM-90 Traces not available on the service details page.

MAISTRA-1649 Headless services conflict when in different namespaces. When deploying
headless services within different namespaces the endpoint configuration is merged and results
in invalid Envoy configurations being pushed to the sidecars.

MAISTRA-1541 Panic in kubernetesenv when the controller is not set on owner reference. If a
pod has an ownerReference which does not specify the controller, this will cause a panic within
the kubernetesenv cache.go code.

MAISTRA-1352 Cert-manager Custom Resource Definitions (CRD) from the control plane
installation have been removed for this release and future releases. If you have already installed
Red Hat OpenShift Service Mesh, the CRDs must be removed manually if cert-manager is not
being used.

MAISTRA-1001 Closing HTTP/2 connections could lead to segmentation faults in istio-proxy.

MAISTRA-932 Added the requires metadata to add dependency relationship between Jaeger
Operator and OpenShift Elasticsearch Operator. Ensures that when the Jaeger Operator is
installed, it automatically deploys the OpenShift Elasticsearch Operator if it is not available.

MAISTRA-862 Galley dropped watches and stopped providing configuration to other
components after many namespace deletions and re-creations.

MAISTRA-833 Pilot stopped delivering configuration after many namespace deletions and re-
creations.

MAISTRA-684 The default Jaeger version in the istio-operator is 1.12.0, which does not match
Jaeger version 1.13.1 that shipped in Red Hat OpenShift Service Mesh 0.12.TechPreview.

MAISTRA-622 In Maistra 0.12.0/TP12, permissive mode does not work. The user has the option
to use Plain text mode or Mutual TLS mode, but not permissive.

MAISTRA-572 Jaeger cannot be used with Kiali. In this release Jaeger is configured to use the
OAuth proxy, but is also only configured to work through a browser and does not allow service
access. Kiali cannot properly communicate with the Jaeger endpoint and it considers Jaeger to
be disabled. See also TRACING-591.

MAISTRA-357 In OpenShift 4 Beta on AWS, it is not possible, by default, to access a TCP or
HTTPS service through the ingress gateway on a port other than port 80. The AWS load
balancer has a health check that verifies if port 80 on the service endpoint is active. Without a
service running on port 80, the load balancer health check fails.

MAISTRA-348 OpenShift 4 Beta on AWS does not support ingress gateway traffic on ports
other than 80 or 443. If you configure your ingress gateway to handle TCP traffic with a port
number other than 80 or 443, you have to use the service hostname provided by the AWS load
balancer rather than the OpenShift router as a workaround.

MAISTRA-193 Unexpected console info messages are visible when health checking is enabled
for citadel.

Bug 1821432 Toggle controls in OpenShift Container Platform Control Resource details page do
not update the CR correctly. UI Toggle controls in the Service Mesh Control Plane (SMCP)
Overview page in the OpenShift Container Platform web console sometimes update the wrong

CHAPTER 2. SERVICE MESH 1.X

305

https://issues.jboss.org/browse/OSSM-92
https://issues.jboss.org/browse/OSSM-90
https://issues.redhat.com/projects/MAISTRA/issues/MAISTRA-1649
https://issues.redhat.com/browse/MAISTRA-1541
https://issues.redhat.com/browse/MAISTRA-1352
https://issues.jboss.org/browse/MAISTRA-1001
https://issues.jboss.org/browse/MAISTRA-932
https://issues.jboss.org/browse/MAISTRA-862
https://issues.jboss.org/browse/MAISTRA-833
https://issues.jboss.org/browse/MAISTRA-684
https://issues.jboss.org/browse/MAISTRA-622
https://issues.jboss.org/browse/MAISTRA-572
https://issues.jboss.org/browse/TRACING-591
https://issues.jboss.org/browse/MAISTRA-357
https://issues.jboss.org/browse/MAISTRA-348
https://issues.jboss.org/browse/MAISTRA-193
https://bugzilla.redhat.com/show_bug.cgi?id=1821432

field in the resource. To update a ServiceMeshControlPlane resource, edit the YAML content
directly or update the resource from the command line instead of clicking the toggle controls.

2.1.8.2. Kiali fixed issues

KIALI-3239 If a Kiali Operator pod has failed with a status of “Evicted” it blocks the Kiali
operator from deploying. The workaround is to delete the Evicted pod and redeploy the Kiali
operator.

KIALI-3118 After changes to the ServiceMeshMemberRoll, for example adding or removing
projects, the Kiali pod restarts and then displays errors on the Graph page while the Kiali pod is
restarting.

KIALI-3096 Runtime metrics fail in Service Mesh. There is an OAuth filter between the Service
Mesh and Prometheus, requiring a bearer token to be passed to Prometheus before access is
granted. Kiali has been updated to use this token when communicating to the Prometheus
server, but the application metrics are currently failing with 403 errors.

KIALI-3070 This bug only affects custom dashboards, not the default dashboards. When you
select labels in metrics settings and refresh the page, your selections are retained in the menu
but your selections are not displayed on the charts.

KIALI-2686 When the control plane has many namespaces, it can lead to performance issues.

2.1.8.3. Red Hat OpenShift distributed tracing fixed issues

OSSM-1910 Because of an issue introduced in version 2.6, TLS connections could not be
established with OpenShift Container Platform Service Mesh. This update resolves the issue by
changing the service port names to match conventions used by OpenShift Container Platform
Service Mesh and Istio.

OBSDA-208 Before this update, the default 200m CPU and 256Mi memory resource limits
could cause distributed tracing data collection to restart continuously on large clusters. This
update resolves the issue by removing these resource limits.

OBSDA-222 Before this update, spans could be dropped in the OpenShift Container Platform
distributed tracing platform. To help prevent this issue from occurring, this release updates
version dependencies.

TRACING-2337 Jaeger is logging a repetitive warning message in the Jaeger logs similar to the
following:

This issue was resolved by exposing only the HTTP(S) port of the query service, and not the
gRPC port.

TRACING-2009 The Jaeger Operator has been updated to include support for the Strimzi
Kafka Operator 0.23.0.

TRACING-1907 The Jaeger agent sidecar injection was failing due to missing config maps in the
application namespace. The config maps were getting automatically deleted due to an incorrect

{"level":"warn","ts":1642438880.918793,"caller":"channelz/logging.go:62","msg":"[core]grpc:
Server.Serve failed to create ServerTransport: connection error: desc = \"transport:
http2Server.HandleStreams received bogus greeting from client:
\\\"\\\\x16\\\\x03\\\\x01\\\\x02\\\\x00\\\\x01\\\\x00\\\\x01\\\\xfc\\\\x03\\\\x03vw\\\\x1a\\\\xc9T\\\\xe7\\\\x
daCj\\\\xb7\\\\x8dK\\\\xa6\\\"\"","system":"grpc","grpc_log":true}

OpenShift Container Platform 4.9 Service Mesh

306

https://issues.jboss.org/browse/KIALI-3239
https://issues.jboss.org/browse/KIALI-3118
https://issues.jboss.org/browse/KIALI-3096
https://issues.jboss.org/browse/KIALI-3070
https://github.com/kiali/kiali/issues/1603
https://issues.redhat.com/browse/OSSM-1910
https://issues.redhat.com/browse/OBSDA-208
https://issues.redhat.com/browse/OBSDA-222
https://issues.redhat.com/browse/TRACING-2337
https://issues.redhat.com/browse/TRACING-2009
https://issues.redhat.com/browse/TRACING-1907

OwnerReference field setting and as a result, the application pods were not moving past the
"ContainerCreating" stage. The incorrect settings have been removed.

TRACING-1725 Follow-up to TRACING-1631. Additional fix to ensure that Elasticsearch
certificates are properly reconciled when there are multiple Jaeger production instances, using
same name but within different namespaces. See also BZ-1918920.

TRACING-1631 Multiple Jaeger production instances, using same name but within different
namespaces, causing Elasticsearch certificate issue. When multiple service meshes were
installed, all of the Jaeger Elasticsearch instances had the same Elasticsearch secret instead of
individual secrets, which prevented the OpenShift Elasticsearch Operator from communicating
with all of the Elasticsearch clusters.

TRACING-1300 Failed connection between Agent and Collector when using Istio sidecar. An
update of the Jaeger Operator enabled TLS communication by default between a Jaeger
sidecar agent and the Jaeger Collector.

TRACING-1208 Authentication "500 Internal Error" when accessing Jaeger UI. When trying to
authenticate to the UI using OAuth, I get a 500 error because oauth-proxy sidecar doesn’t trust
the custom CA bundle defined at installation time with the additionalTrustBundle.

TRACING-1166 It is not currently possible to use the Jaeger streaming strategy within a
disconnected environment. When a Kafka cluster is being provisioned, it results in a error: Failed
to pull image registry.redhat.io/amq7/amq-streams-kafka-24-
rhel7@sha256:f9ceca004f1b7dccb3b82d9a8027961f9fe4104e0ed69752c0bdd8078b4a1076.

TRACING-809 Jaeger Ingester is incompatible with Kafka 2.3. When there are two or more
instances of the Jaeger Ingester and enough traffic it will continuously generate rebalancing
messages in the logs. This is due to a regression in Kafka 2.3 that was fixed in Kafka 2.3.1. For
more information, see Jaegertracing-1819.

BZ-1918920/LOG-1619 The Elasticsearch pods does not get restarted automatically after an
update.
Workaround: Restart the pods manually.

2.2. UNDERSTANDING SERVICE MESH

WARNING

You are viewing documentation for a Red Hat OpenShift Service Mesh release
that is no longer supported.

Service Mesh version 1.0 and 1.1 control planes are no longer supported. For
information about upgrading your service mesh control plane, see Upgrading
Service Mesh.

For information about the support status of a particular Red Hat OpenShift Service
Mesh release, see the Product lifecycle page .

Red Hat OpenShift Service Mesh provides a platform for behavioral insight and operational control over



CHAPTER 2. SERVICE MESH 1.X

307

https://issues.redhat.com/browse/TRACING-1725
https://bugzilla.redhat.com/show_bug.cgi?id=1918920
https://issues.jboss.org/browse/TRACING-1631
https://issues.redhat.com/browse/TRACING-1300
https://issues.redhat.com/browse/TRACING-1208
https://issues.redhat.com/browse/TRACING-1166
https://issues.redhat.com/browse/TRACING-809
https://github.com/jaegertracing/jaeger/issues/1819
https://bugzilla.redhat.com/show_bug.cgi?id=1918920
https://issues.redhat.com/browse/LOG-1619
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-versions_ossm-upgrade
https://access.redhat.com/support/policy/updates/openshift#ossm

Red Hat OpenShift Service Mesh provides a platform for behavioral insight and operational control over
your networked microservices in a service mesh. With Red Hat OpenShift Service Mesh, you can
connect, secure, and monitor microservices in your OpenShift Container Platform environment.

2.2.1. Understanding service mesh

A service mesh is the network of microservices that make up applications in a distributed microservice
architecture and the interactions between those microservices. When a Service Mesh grows in size and
complexity, it can become harder to understand and manage.

Based on the open source Istio project, Red Hat OpenShift Service Mesh adds a transparent layer on
existing distributed applications without requiring any changes to the service code. You add Red Hat
OpenShift Service Mesh support to services by deploying a special sidecar proxy to relevant services in
the mesh that intercepts all network communication between microservices. You configure and manage
the Service Mesh using the Service Mesh control plane features.

Red Hat OpenShift Service Mesh gives you an easy way to create a network of deployed services that
provide:

Discovery

Load balancing

Service-to-service authentication

Failure recovery

Metrics

Monitoring

Red Hat OpenShift Service Mesh also provides more complex operational functions including:

A/B testing

Canary releases

Access control

End-to-end authentication

2.2.2. Red Hat OpenShift Service Mesh Architecture

Red Hat OpenShift Service Mesh is logically split into a data plane and a control plane:

The data plane is a set of intelligent proxies deployed as sidecars. These proxies intercept and control all
inbound and outbound network communication between microservices in the service mesh. Sidecar
proxies also communicate with Mixer, the general-purpose policy and telemetry hub.

Envoy proxy intercepts all inbound and outbound traffic for all services in the service mesh.
Envoy is deployed as a sidecar to the relevant service in the same pod.

The control plane manages and configures proxies to route traffic, and configures Mixers to enforce
policies and collect telemetry.

Mixer enforces access control and usage policies (such as authorization, rate limits, quotas,

OpenShift Container Platform 4.9 Service Mesh

308

https://istio.io/

Mixer enforces access control and usage policies (such as authorization, rate limits, quotas,
authentication, and request tracing) and collects telemetry data from the Envoy proxy and
other services.

Pilot configures the proxies at runtime. Pilot provides service discovery for the Envoy sidecars,
traffic management capabilities for intelligent routing (for example, A/B tests or canary
deployments), and resiliency (timeouts, retries, and circuit breakers).

Citadel issues and rotates certificates. Citadel provides strong service-to-service and end-user
authentication with built-in identity and credential management. You can use Citadel to
upgrade unencrypted traffic in the service mesh. Operators can enforce policies based on
service identity rather than on network controls using Citadel.

Galley ingests the service mesh configuration, then validates, processes, and distributes the
configuration. Galley protects the other service mesh components from obtaining user
configuration details from OpenShift Container Platform.

Red Hat OpenShift Service Mesh also uses the istio-operator to manage the installation of the control
plane. An Operator is a piece of software that enables you to implement and automate common
activities in your OpenShift Container Platform cluster. It acts as a controller, allowing you to set or
change the desired state of objects in your cluster.

2.2.3. Understanding Kiali

Kiali provides visibility into your service mesh by showing you the microservices in your service mesh, and
how they are connected.

2.2.3.1. Kiali overview

Kiali provides observability into the Service Mesh running on OpenShift Container Platform. Kiali helps
you define, validate, and observe your Istio service mesh. It helps you to understand the structure of your
service mesh by inferring the topology, and also provides information about the health of your service
mesh.

Kiali provides an interactive graph view of your namespace in real time that provides visibility into
features like circuit breakers, request rates, latency, and even graphs of traffic flows. Kiali offers insights
about components at different levels, from Applications to Services and Workloads, and can display the
interactions with contextual information and charts on the selected graph node or edge. Kiali also
provides the ability to validate your Istio configurations, such as gateways, destination rules, virtual
services, mesh policies, and more. Kiali provides detailed metrics, and a basic Grafana integration is
available for advanced queries. Distributed tracing is provided by integrating Jaeger into the Kiali
console.

Kiali is installed by default as part of the Red Hat OpenShift Service Mesh.

2.2.3.2. Kiali architecture

Kiali is based on the open source Kiali project. Kiali is composed of two components: the Kiali application
and the Kiali console.

Kiali application (back end) – This component runs in the container application platform and
communicates with the service mesh components, retrieves and processes data, and exposes
this data to the console. The Kiali application does not need storage. When deploying the
application to a cluster, configurations are set in ConfigMaps and secrets.

Kiali console (front end) – The Kiali console is a web application. The Kiali application serves the

CHAPTER 2. SERVICE MESH 1.X

309

https://kiali.io/

Kiali console (front end) – The Kiali console is a web application. The Kiali application serves the
Kiali console, which then queries the back end for data to present it to the user.

In addition, Kiali depends on external services and components provided by the container application
platform and Istio.

Red Hat Service Mesh (Istio) - Istio is a Kiali requirement. Istio is the component that provides
and controls the service mesh. Although Kiali and Istio can be installed separately, Kiali depends
on Istio and will not work if it is not present. Kiali needs to retrieve Istio data and configurations,
which are exposed through Prometheus and the cluster API.

Prometheus - A dedicated Prometheus instance is included as part of the Red Hat OpenShift
Service Mesh installation. When Istio telemetry is enabled, metrics data are stored in
Prometheus. Kiali uses this Prometheus data to determine the mesh topology, display metrics,
calculate health, show possible problems, and so on. Kiali communicates directly with
Prometheus and assumes the data schema used by Istio Telemetry. Prometheus is an Istio
dependency and a hard dependency for Kiali, and many of Kiali’s features will not work without
Prometheus.

Cluster API - Kiali uses the API of the OpenShift Container Platform (cluster API) to fetch and
resolve service mesh configurations. Kiali queries the cluster API to retrieve, for example,
definitions for namespaces, services, deployments, pods, and other entities. Kiali also makes
queries to resolve relationships between the different cluster entities. The cluster API is also
queried to retrieve Istio configurations like virtual services, destination rules, route rules,
gateways, quotas, and so on.

Jaeger - Jaeger is optional, but is installed by default as part of the Red Hat OpenShift Service
Mesh installation. When you install the distributed tracing platform as part of the default Red
Hat OpenShift Service Mesh installation, the Kiali console includes a tab to display distributed
tracing data. Note that tracing data will not be available if you disable Istio’s distributed tracing
feature. Also note that user must have access to the namespace where the Service Mesh
control plane is installed to view tracing data.

Grafana - Grafana is optional, but is installed by default as part of the Red Hat OpenShift
Service Mesh installation. When available, the metrics pages of Kiali display links to direct the
user to the same metric in Grafana. Note that user must have access to the namespace where
the Service Mesh control plane is installed to view links to the Grafana dashboard and view
Grafana data.

2.2.3.3. Kiali features

The Kiali console is integrated with Red Hat Service Mesh and provides the following capabilities:

Health – Quickly identify issues with applications, services, or workloads.

Topology – Visualize how your applications, services, or workloads communicate via the Kiali
graph.

Metrics – Predefined metrics dashboards let you chart service mesh and application
performance for Go, Node.js. Quarkus, Spring Boot, Thorntail and Vert.x. You can also create
your own custom dashboards.

Tracing – Integration with Jaeger lets you follow the path of a request through various
microservices that make up an application.

Validations – Perform advanced validations on the most common Istio objects (Destination
Rules, Service Entries, Virtual Services, and so on).

OpenShift Container Platform 4.9 Service Mesh

310

Configuration – Optional ability to create, update and delete Istio routing configuration using
wizards or directly in the YAML editor in the Kiali Console.

2.2.4. Understanding Jaeger

Every time a user takes an action in an application, a request is executed by the architecture that may
require dozens of different services to participate to produce a response. The path of this request is a
distributed transaction. Jaeger lets you perform distributed tracing, which follows the path of a request
through various microservices that make up an application.

Distributed tracing is a technique that is used to tie the information about different units of work
together—usually executed in different processes or hosts—to understand a whole chain of events in a
distributed transaction. Distributed tracing lets developers visualize call flows in large service oriented
architectures. It can be invaluable in understanding serialization, parallelism, and sources of latency.

Jaeger records the execution of individual requests across the whole stack of microservices, and
presents them as traces. A trace is a data/execution path through the system. An end-to-end trace is
comprised of one or more spans.

A span represents a logical unit of work in Jaeger that has an operation name, the start time of the
operation, and the duration. Spans may be nested and ordered to model causal relationships.

2.2.4.1. Distributed tracing overview

As a service owner, you can use distributed tracing to instrument your services to gather insights into
your service architecture. You can use distributed tracing for monitoring, network profiling, and
troubleshooting the interaction between components in modern, cloud-native, microservices-based
applications.

With distributed tracing you can perform the following functions:

Monitor distributed transactions

Optimize performance and latency

Perform root cause analysis

Red Hat OpenShift distributed tracing consists of two main components:

Red Hat OpenShift distributed tracing platform - This component is based on the open
source Jaeger project.

Red Hat OpenShift distributed tracing data collection - This component is based on the open
source OpenTelemetry project.

Both of these components are based on the vendor-neutral OpenTracing APIs and instrumentation.

2.2.4.2. Distributed tracing architecture

The distributed tracing platform is based on the open source Jaeger project. The distributed tracing
platform is made up of several components that work together to collect, store, and display tracing data.

Jaeger Client (Tracer, Reporter, instrumented application, client libraries)- Jaeger clients are
language specific implementations of the OpenTracing API. They can be used to instrument
applications for distributed tracing either manually or with a variety of existing open source

CHAPTER 2. SERVICE MESH 1.X

311

https://www.jaegertracing.io/
https://opentelemetry.io/
https://opentracing.io/
https://www.jaegertracing.io/

frameworks, such as Camel (Fuse), Spring Boot (RHOAR), MicroProfile (RHOAR/Thorntail),
Wildfly (EAP), and many more, that are already integrated with OpenTracing.

Jaeger Agent (Server Queue, Processor Workers) - The Jaeger agent is a network daemon
that listens for spans sent over User Datagram Protocol (UDP), which it batches and sends to
the collector. The agent is meant to be placed on the same host as the instrumented
application. This is typically accomplished by having a sidecar in container environments like
Kubernetes.

Jaeger Collector (Queue, Workers) - Similar to the Agent, the Collector is able to receive
spans and place them in an internal queue for processing. This allows the collector to return
immediately to the client/agent instead of waiting for the span to make its way to the storage.

Storage (Data Store) - Collectors require a persistent storage backend. Jaeger has a pluggable
mechanism for span storage. Note that for this release, the only supported storage is
Elasticsearch.

Query (Query Service) - Query is a service that retrieves traces from storage.

Ingester (Ingester Service) - Jaeger can use Apache Kafka as a buffer between the collector
and the actual backing storage (Elasticsearch). Ingester is a service that reads data from Kafka
and writes to another storage backend (Elasticsearch).

Jaeger Console – Jaeger provides a user interface that lets you visualize your distributed
tracing data. On the Search page, you can find traces and explore details of the spans that
make up an individual trace.

2.2.4.3. Red Hat OpenShift distributed tracing features

Red Hat OpenShift distributed tracing provides the following capabilities:

Integration with Kiali – When properly configured, you can view distributed tracing data from the
Kiali console.

High scalability – The distributed tracing back end is designed to have no single points of failure
and to scale with the business needs.

Distributed Context Propagation – Enables you to connect data from different components
together to create a complete end-to-end trace.

Backwards compatibility with Zipkin – Red Hat OpenShift distributed tracing has APIs that
enable it to be used as a drop-in replacement for Zipkin, but Red Hat is not supporting Zipkin
compatibility in this release.

2.2.5. Next steps

Prepare to install Red Hat OpenShift Service Mesh in your OpenShift Container Platform
environment.

2.3. SERVICE MESH AND ISTIO DIFFERENCES

OpenShift Container Platform 4.9 Service Mesh

312

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#preparing-ossm-installation-v1x

WARNING

You are viewing documentation for a Red Hat OpenShift Service Mesh release
that is no longer supported.

Service Mesh version 1.0 and 1.1 control planes are no longer supported. For
information about upgrading your service mesh control plane, see Upgrading
Service Mesh.

For information about the support status of a particular Red Hat OpenShift Service
Mesh release, see the Product lifecycle page .

An installation of Red Hat OpenShift Service Mesh differs from upstream Istio community installations in
multiple ways. The modifications to Red Hat OpenShift Service Mesh are sometimes necessary to
resolve issues, provide additional features, or to handle differences when deploying on OpenShift
Container Platform.

The current release of Red Hat OpenShift Service Mesh differs from the current upstream Istio
community release in the following ways:

2.3.1. Multitenant installations

Whereas upstream Istio takes a single tenant approach, Red Hat OpenShift Service Mesh supports
multiple independent control planes within the cluster. Red Hat OpenShift Service Mesh uses a
multitenant operator to manage the control plane lifecycle.

Red Hat OpenShift Service Mesh installs a multitenant control plane by default. You specify the projects
that can access the Service Mesh, and isolate the Service Mesh from other control plane instances.

2.3.1.1. Multitenancy versus cluster-wide installations

The main difference between a multitenant installation and a cluster-wide installation is the scope of
privileges used by istod. The components no longer use cluster-scoped Role Based Access Control
(RBAC) resource ClusterRoleBinding.

Every project in the ServiceMeshMemberRoll members list will have a RoleBinding for each service
account associated with the control plane deployment and each control plane deployment will only
watch those member projects. Each member project has a maistra.io/member-of label added to it,
where the member-of value is the project containing the control plane installation.

Red Hat OpenShift Service Mesh configures each member project to ensure network access between
itself, the control plane, and other member projects. The exact configuration differs depending on how
OpenShift Container Platform software-defined networking (SDN) is configured. See About OpenShift
SDN for additional details.

If the OpenShift Container Platform cluster is configured to use the SDN plugin:

NetworkPolicy: Red Hat OpenShift Service Mesh creates a NetworkPolicy resource in each
member project allowing ingress to all pods from the other members and the control plane. If
you remove a member from Service Mesh, this NetworkPolicy resource is deleted from the
project.

NOTE



CHAPTER 2. SERVICE MESH 1.X

313

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-versions_ossm-upgrade
https://access.redhat.com/support/policy/updates/openshift#ossm

NOTE

This also restricts ingress to only member projects. If you require ingress from
non-member projects, you need to create a NetworkPolicy to allow that traffic
through.

Multitenant: Red Hat OpenShift Service Mesh joins the NetNamespace for each member
project to the NetNamespace of the control plane project (the equivalent of running oc adm
pod-network join-projects --to control-plane-project member-project). If you remove a
member from the Service Mesh, its NetNamespace is isolated from the control plane (the
equivalent of running oc adm pod-network isolate-projects member-project).

Subnet: No additional configuration is performed.

2.3.1.2. Cluster scoped resources

Upstream Istio has two cluster scoped resources that it relies on. The MeshPolicy and the
ClusterRbacConfig. These are not compatible with a multitenant cluster and have been replaced as
described below.

ServiceMeshPolicy replaces MeshPolicy for configuration of control-plane-wide authentication
policies. This must be created in the same project as the control plane.

ServicemeshRbacConfig replaces ClusterRbacConfig for configuration of control-plane-wide
role based access control. This must be created in the same project as the control plane.

2.3.2. Differences between Istio and Red Hat OpenShift Service Mesh

An installation of Red Hat OpenShift Service Mesh differs from an installation of Istio in multiple ways.
The modifications to Red Hat OpenShift Service Mesh are sometimes necessary to resolve issues,
provide additional features, or to handle differences when deploying on OpenShift Container Platform.

2.3.2.1. Command line tool

The command line tool for Red Hat OpenShift Service Mesh is oc. Red Hat OpenShift Service Mesh
does not support istioctl.

2.3.2.2. Automatic injection

The upstream Istio community installation automatically injects the sidecar into pods within the projects
you have labeled.

Red Hat OpenShift Service Mesh does not automatically inject the sidecar to any pods, but requires you
to opt in to injection using an annotation without labeling projects. This method requires fewer privileges
and does not conflict with other OpenShift capabilities such as builder pods. To enable automatic
injection you specify the sidecar.istio.io/inject annotation as described in the Automatic sidecar
injection section.

2.3.2.3. Istio Role Based Access Control features

Istio Role Based Access Control (RBAC) provides a mechanism you can use to control access to a
service. You can identify subjects by user name or by specifying a set of properties and apply access
controls accordingly.

The upstream Istio community installation includes options to perform exact header matches, match

OpenShift Container Platform 4.9 Service Mesh

314

The upstream Istio community installation includes options to perform exact header matches, match
wildcards in headers, or check for a header containing a specific prefix or suffix.

Red Hat OpenShift Service Mesh extends the ability to match request headers by using a regular
expression. Specify a property key of request.regex.headers with a regular expression.

Upstream Istio community matching request headers example

Red Hat OpenShift Service Mesh matching request headers by using regular expressions

2.3.2.4. OpenSSL

Red Hat OpenShift Service Mesh replaces BoringSSL with OpenSSL. OpenSSL is a software library that
contains an open source implementation of the Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocols. The Red Hat OpenShift Service Mesh Proxy binary dynamically links the
OpenSSL libraries (libssl and libcrypto) from the underlying Red Hat Enterprise Linux operating system.

2.3.2.5. Component modifications

A maistra-version label has been added to all resources.

All Ingress resources have been converted to OpenShift Route resources.

Grafana, Tracing (Jaeger), and Kiali are enabled by default and exposed through OpenShift
routes.

Godebug has been removed from all templates

The istio-multi ServiceAccount and ClusterRoleBinding have been removed, as well as the istio-
reader ClusterRole.

2.3.2.6. Envoy, Secret Discovery Service, and certificates

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: httpbin-client-binding
 namespace: httpbin
spec:
 subjects:
 - user: "cluster.local/ns/istio-system/sa/istio-ingressgateway-service-account"
 properties:
 request.headers[<header>]: "value"

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: httpbin-client-binding
 namespace: httpbin
spec:
 subjects:
 - user: "cluster.local/ns/istio-system/sa/istio-ingressgateway-service-account"
 properties:
 request.regex.headers[<header>]: "<regular expression>"

CHAPTER 2. SERVICE MESH 1.X

315

Red Hat OpenShift Service Mesh does not support QUIC-based services.

Deployment of TLS certificates using the Secret Discovery Service (SDS) functionality of Istio is
not currently supported in Red Hat OpenShift Service Mesh. The Istio implementation depends
on a nodeagent container that uses hostPath mounts.

2.3.2.7. Istio Container Network Interface (CNI) plugin

Red Hat OpenShift Service Mesh includes CNI plugin, which provides you with an alternate way to
configure application pod networking. The CNI plugin replaces the init-container network configuration
eliminating the need to grant service accounts and projects access to Security Context Constraints
(SCCs) with elevated privileges.

2.3.2.8. Routes for Istio Gateways

OpenShift routes for Istio Gateways are automatically managed in Red Hat OpenShift Service Mesh.
Every time an Istio Gateway is created, updated or deleted inside the service mesh, an OpenShift route
is created, updated or deleted.

A Red Hat OpenShift Service Mesh control plane component called Istio OpenShift Routing (IOR)
synchronizes the gateway route. For more information, see Automatic route creation.

2.3.2.8.1. Catch-all domains

Catch-all domains ("*") are not supported. If one is found in the Gateway definition, Red Hat OpenShift
Service Mesh will create the route, but will rely on OpenShift to create a default hostname. This means
that the newly created route will not be a catch all ("*") route, instead it will have a hostname in the form
<route-name>[-<project>].<suffix>. See the OpenShift documentation for more information about
how default hostnames work and how a cluster administrator can customize it.

2.3.2.8.2. Subdomains

Subdomains (e.g.: "*.domain.com") are supported. However this ability doesn’t come enabled by default
in OpenShift Container Platform. This means that Red Hat OpenShift Service Mesh will create the route
with the subdomain, but it will only be in effect if OpenShift Container Platform is configured to enable
it.

2.3.2.8.3. Transport layer security

Transport Layer Security (TLS) is supported. This means that, if the Gateway contains a tls section, the
OpenShift Route will be configured to support TLS.

Additional resources

Automatic route creation

2.3.3. Kiali and service mesh

Installing Kiali via the Service Mesh on OpenShift Container Platform differs from community Kiali
installations in multiple ways. These modifications are sometimes necessary to resolve issues, provide
additional features, or to handle differences when deploying on OpenShift Container Platform.

Kiali has been enabled by default.

Ingress has been enabled by default.

OpenShift Container Platform 4.9 Service Mesh

316

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-auto-route-1x_routing-traffic-v1x

Updates have been made to the Kiali ConfigMap.

Updates have been made to the ClusterRole settings for Kiali.

Do not edit the ConfigMap, because your changes might be overwritten by the Service Mesh or
Kiali Operators. Files that the Kiali Operator manages have a kiali.io/ label or annotation.
Updating the Operator files should be restricted to those users with cluster-admin privileges. If
you use Red Hat OpenShift Dedicated, updating the Operator files should be restricted to
those users with dedicated-admin privileges.

2.3.4. Distributed tracing and service mesh

Installing the distributed tracing platform with the Service Mesh on OpenShift Container Platform
differs from community Jaeger installations in multiple ways. These modifications are sometimes
necessary to resolve issues, provide additional features, or to handle differences when deploying on
OpenShift Container Platform.

Distributed tracing has been enabled by default for Service Mesh.

Ingress has been enabled by default for Service Mesh.

The name for the Zipkin port name has changed to jaeger-collector-zipkin (from http)

Jaeger uses Elasticsearch for storage by default when you select either the production or
streaming deployment option.

The community version of Istio provides a generic "tracing" route. Red Hat OpenShift Service
Mesh uses a "jaeger" route that is installed by the Red Hat OpenShift distributed tracing
platform Operator and is already protected by OAuth.

Red Hat OpenShift Service Mesh uses a sidecar for the Envoy proxy, and Jaeger also uses a
sidecar, for the Jaeger agent. These two sidecars are configured separately and should not be
confused with each other. The proxy sidecar creates spans related to the pod’s ingress and
egress traffic. The agent sidecar receives the spans emitted by the application and sends them
to the Jaeger Collector.

2.4. PREPARING TO INSTALL SERVICE MESH

WARNING

You are viewing documentation for a Red Hat OpenShift Service Mesh release
that is no longer supported.

Service Mesh version 1.0 and 1.1 control planes are no longer supported. For
information about upgrading your service mesh control plane, see Upgrading
Service Mesh.

For information about the support status of a particular Red Hat OpenShift Service
Mesh release, see the Product lifecycle page .

Before you can install Red Hat OpenShift Service Mesh, review the installation activities, ensure that



CHAPTER 2. SERVICE MESH 1.X

317

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-versions_ossm-upgrade
https://access.redhat.com/support/policy/updates/openshift#ossm

Before you can install Red Hat OpenShift Service Mesh, review the installation activities, ensure that
you meet the prerequisites:

2.4.1. Prerequisites

Possess an active OpenShift Container Platform subscription on your Red Hat account. If you
do not have a subscription, contact your sales representative for more information.

Review the OpenShift Container Platform 4.9 overview .

Install OpenShift Container Platform 4.9.

Install OpenShift Container Platform 4.9 on AWS

Install OpenShift Container Platform 4.9 on user-provisioned AWS

Install OpenShift Container Platform 4.9 on bare metal

Install OpenShift Container Platform 4.9 on vSphere

NOTE

If you are installing Red Hat OpenShift Service Mesh on a restricted network ,
follow the instructions for your chosen OpenShift Container Platform
infrastructure.

Install the version of the OpenShift Container Platform command line utility (the oc client tool)
that matches your OpenShift Container Platform version and add it to your path.

If you are using OpenShift Container Platform 4.9, see About the OpenShift CLI.

2.4.2. Red Hat OpenShift Service Mesh supported configurations

The following are the only supported configurations for the Red Hat OpenShift Service Mesh:

OpenShift Container Platform version 4.6 or later.

NOTE

OpenShift Online and Red Hat OpenShift Dedicated are not supported for Red Hat
OpenShift Service Mesh.

The deployment must be contained within a single OpenShift Container Platform cluster that is
not federated.

This release of Red Hat OpenShift Service Mesh is only available on OpenShift Container
Platform x86_64.

This release only supports configurations where all Service Mesh components are contained in
the OpenShift Container Platform cluster in which it operates. It does not support management
of microservices that reside outside of the cluster, or in a multi-cluster scenario.

This release only supports configurations that do not integrate external services such as virtual
machines.

For additional information about Red Hat OpenShift Service Mesh lifecycle and supported

OpenShift Container Platform 4.9 Service Mesh

318

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/architecture/#installation-overview_architecture-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-aws-account
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-aws-user-infra
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#installing-vsphere
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/installing/#supported-installation-methods-for-different-platforms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/cli_tools/#cli-about-cli_cli-developer-commands

For additional information about Red Hat OpenShift Service Mesh lifecycle and supported
configurations, refer to the Support Policy.

2.4.2.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh

The Kiali observability console is only supported on the two most recent releases of the Chrome,
Edge, Firefox, or Safari browsers.

2.4.2.2. Supported Mixer adapters

This release only supports the following Mixer adapter:

3scale Istio Adapter

2.4.3. Operator overview

Red Hat OpenShift Service Mesh requires the following four Operators:

OpenShift Elasticsearch - (Optional) Provides database storage for tracing and logging with
the distributed tracing platform. It is based on the open source Elasticsearch project.

Red Hat OpenShift distributed tracing platform - Provides distributed tracing to monitor and
troubleshoot transactions in complex distributed systems. It is based on the open source Jaeger
project.

Kiali - Provides observability for your service mesh. Allows you to view configurations, monitor
traffic, and analyze traces in a single console. It is based on the open source Kiali project.

Red Hat OpenShift Service Mesh - Allows you to connect, secure, control, and observe the
microservices that comprise your applications. The Service Mesh Operator defines and
monitors the ServiceMeshControlPlane resources that manage the deployment, updating,
and deletion of the Service Mesh components. It is based on the open source Istio project.

WARNING

See Configuring the log store for details on configuring the default Jaeger
parameters for Elasticsearch in a production environment.

2.4.4. Next steps

Install Red Hat OpenShift Service Mesh in your OpenShift Container Platform environment.

2.5. INSTALLING SERVICE MESH



CHAPTER 2. SERVICE MESH 1.X

319

https://access.redhat.com/support/policy/updates/openshift#ossm
https://www.elastic.co/
https://www.jaegertracing.io/
https://www.kiali.io/
https://istio.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/logging/#configuring-the-log-store
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#installing-ossm-v1x

WARNING

You are viewing documentation for a Red Hat OpenShift Service Mesh release
that is no longer supported.

Service Mesh version 1.0 and 1.1 control planes are no longer supported. For
information about upgrading your service mesh control plane, see Upgrading
Service Mesh.

For information about the support status of a particular Red Hat OpenShift Service
Mesh release, see the Product lifecycle page .

Installing the Service Mesh involves installing the OpenShift Elasticsearch, Jaeger, Kiali and Service
Mesh Operators, creating and managing a ServiceMeshControlPlane resource to deploy the control
plane, and creating a ServiceMeshMemberRoll resource to specify the namespaces associated with
the Service Mesh.

NOTE

Mixer’s policy enforcement is disabled by default. You must enable it to run policy tasks.
See Update Mixer policy enforcement for instructions on enabling Mixer policy
enforcement.

NOTE

Multi-tenant control plane installations are the default configuration.

NOTE

The Service Mesh documentation uses istio-system as the example project, but you can
deploy the service mesh to any project.

2.5.1. Prerequisites

Follow the Preparing to install Red Hat OpenShift Service Mesh process.

An account with the cluster-admin role.

The Service Mesh installation process uses the OperatorHub to install the ServiceMeshControlPlane
custom resource definition within the openshift-operators project. The Red Hat OpenShift Service
Mesh defines and monitors the ServiceMeshControlPlane related to the deployment, update, and
deletion of the control plane.

Starting with Red Hat OpenShift Service Mesh 1.1.18.2, you must install the OpenShift Elasticsearch
Operator, the Jaeger Operator, and the Kiali Operator before the Red Hat OpenShift Service Mesh
Operator can install the control plane.

2.5.2. Installing the OpenShift Elasticsearch Operator

The default Red Hat OpenShift distributed tracing platform deployment uses in-memory storage



OpenShift Container Platform 4.9 Service Mesh

320

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-versions_ossm-upgrade
https://access.redhat.com/support/policy/updates/openshift#ossm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-mixer-policy-1x_deploying-applications-ossm-v1x
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#preparing-ossm-installation-v1x
https://operatorhub.io/

because it is designed to be installed quickly for those evaluating Red Hat OpenShift distributed tracing,
giving demonstrations, or using Red Hat OpenShift distributed tracing platform in a test environment. If
you plan to use Red Hat OpenShift distributed tracing platform in production, you must install and
configure a persistent storage option, in this case, Elasticsearch.

Prerequisites

You have access to the OpenShift Container Platform web console.

You have access to the cluster as a user with the cluster-admin role. If you use Red Hat
OpenShift Dedicated, you must have an account with the dedicated-admin role.

WARNING

Do not install Community versions of the Operators. Community Operators are not
supported.

NOTE

If you have already installed the OpenShift Elasticsearch Operator as part of OpenShift
Logging, you do not need to install the OpenShift Elasticsearch Operator again. The Red
Hat OpenShift distributed tracing platform Operator creates the Elasticsearch instance
using the installed OpenShift Elasticsearch Operator.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Navigate to Operators → OperatorHub.

3. Type Elasticsearch into the filter box to locate the OpenShift Elasticsearch Operator.

4. Click the OpenShift Elasticsearch Operator provided by Red Hat to display information about
the Operator.

5. Click Install.

6. On the Install Operator page, select the stable Update Channel. This automatically updates
your Operator as new versions are released.

7. Accept the default All namespaces on the cluster (default). This installs the Operator in the
default openshift-operators-redhat project and makes the Operator available to all projects in
the cluster.

NOTE



CHAPTER 2. SERVICE MESH 1.X

321

NOTE

The Elasticsearch installation requires the openshift-operators-redhat
namespace for the OpenShift Elasticsearch Operator. The other Red Hat
OpenShift distributed tracing Operators are installed in the openshift-operators
namespace.

Accept the default Automatic approval strategy. By accepting the default, when a new
version of this Operator is available, Operator Lifecycle Manager (OLM) automatically
upgrades the running instance of your Operator without human intervention. If you select
Manual updates, when a newer version of an Operator is available, OLM creates an update
request. As a cluster administrator, you must then manually approve that update request to
have the Operator updated to the new version.

NOTE

The Manual approval strategy requires a user with appropriate credentials to
approve the Operator install and subscription process.

8. Click Install.

9. On the Installed Operators page, select the openshift-operators-redhat project. Wait until
you see that the OpenShift Elasticsearch Operator shows a status of "InstallSucceeded" before
continuing.

2.5.3. Installing the Red Hat OpenShift distributed tracing platform Operator

To install Red Hat OpenShift distributed tracing platform, you use the OperatorHub to install the Red
Hat OpenShift distributed tracing platform Operator.

By default, the Operator is installed in the openshift-operators project.

Prerequisites

You have access to the OpenShift Container Platform web console.

You have access to the cluster as a user with the cluster-admin role. If you use Red Hat
OpenShift Dedicated, you must have an account with the dedicated-admin role.

If you require persistent storage, you must also install the OpenShift Elasticsearch Operator
before installing the Red Hat OpenShift distributed tracing platform Operator.

WARNING

Do not install Community versions of the Operators. Community Operators are not
supported.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.



OpenShift Container Platform 4.9 Service Mesh

322

https://operatorhub.io/

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Navigate to Operators → OperatorHub.

3. Type distributed tracing platform into the filter to locate the Red Hat OpenShift distributed
tracing platform Operator.

4. Click the Red Hat OpenShift distributed tracing platform Operator provided by Red Hat to
display information about the Operator.

5. Click Install.

6. On the Install Operator page, select the stable Update Channel. This automatically updates
your Operator as new versions are released.

7. Accept the default All namespaces on the cluster (default). This installs the Operator in the
default openshift-operators project and makes the Operator available to all projects in the
cluster.

Accept the default Automatic approval strategy. By accepting the default, when a new
version of this Operator is available, Operator Lifecycle Manager (OLM) automatically
upgrades the running instance of your Operator without human intervention. If you select
Manual updates, when a newer version of an Operator is available, OLM creates an update
request. As a cluster administrator, you must then manually approve that update request to
have the Operator updated to the new version.

NOTE

The Manual approval strategy requires a user with appropriate credentials to
approve the Operator install and subscription process.

8. Click Install.

9. Navigate to Operators → Installed Operators.

10. On the Installed Operators page, select the openshift-operators project. Wait until you see
that the Red Hat OpenShift distributed tracing platform Operator shows a status of
"Succeeded" before continuing.

2.5.4. Installing the Kiali Operator

You must install the Kiali Operator for the Red Hat OpenShift Service Mesh Operator to install the
Service Mesh control plane.

WARNING

Do not install Community versions of the Operators. Community Operators are not
supported.

CHAPTER 2. SERVICE MESH 1.X

323

Prerequisites

Access to the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → OperatorHub.

3. Type Kiali into the filter box to find the Kiali Operator.

4. Click the Kiali Operator provided by Red Hat to display information about the Operator.

5. Click Install.

6. On the Operator Installation page, select the stable Update Channel.

7. Select All namespaces on the cluster (default). This installs the Operator in the default
openshift-operators project and makes the Operator available to all projects in the cluster.

8. Select the Automatic Approval Strategy.

NOTE

The Manual approval strategy requires a user with appropriate credentials to
approve the Operator install and subscription process.

9. Click Install.

10. The Installed Operators page displays the Kiali Operator’s installation progress.

2.5.5. Installing the Operators

To install Red Hat OpenShift Service Mesh, install following Operators in this order. Repeat the
procedure for each Operator.

OpenShift Elasticsearch

Red Hat OpenShift distributed tracing platform

Kiali

Red Hat OpenShift Service Mesh

NOTE

If you have already installed the OpenShift Elasticsearch Operator as part of OpenShift
Logging, you do not need to install the OpenShift Elasticsearch Operator again. The Red
Hat OpenShift distributed tracing platform Operator will create the Elasticsearch
instance using the installed OpenShift Elasticsearch Operator.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

OpenShift Container Platform 4.9 Service Mesh

324

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. In the OpenShift Container Platform web console, click Operators → OperatorHub.

3. Type the name of the Operator into the filter box and select the Red Hat version of the
Operator. Community versions of the Operators are not supported.

4. Click Install.

5. On the Install Operator page for each Operator, accept the default settings.

6. Click Install. Wait until the Operator has installed before repeating the steps for the next
Operator in the list.

The OpenShift Elasticsearch Operator is installed in the openshift-operators-redhat
namespace and is available for all namespaces in the cluster.

The Red Hat OpenShift distributed tracing platform is installed in the openshift-
distributed-tracing namespace and is available for all namespaces in the cluster.

The Kiali and Red Hat OpenShift Service Mesh Operators are installed in the openshift-
operators namespace and are available for all namespaces in the cluster.

7. After all you have installed all four Operators, click Operators → Installed Operators to verify
that your Operators installed.

2.5.6. Deploying the Red Hat OpenShift Service Mesh control plane

The ServiceMeshControlPlane resource defines the configuration to be used during installation. You
can deploy the default configuration provided by Red Hat or customize the ServiceMeshControlPlane
file to fit your business needs.

You can deploy the Service Mesh control plane by using the OpenShift Container Platform web console
or from the command line using the oc client tool.

2.5.6.1. Deploying the control plane from the web console

Follow this procedure to deploy the Red Hat OpenShift Service Mesh control plane by using the web
console. In this example, istio-system is the name of the control plane project.

Prerequisites

The Red Hat OpenShift Service Mesh Operator must be installed.

Review the instructions for how to customize the Red Hat OpenShift Service Mesh installation.

An account with the cluster-admin role.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Create a project named istio-system.

a. Navigate to Home → Projects.

CHAPTER 2. SERVICE MESH 1.X

325

b. Click Create Project.

c. Enter istio-system in the Name field.

d. Click Create.

3. Navigate to Operators → Installed Operators.

4. If necessary, select istio-system from the Project menu. You may have to wait a few moments
for the Operators to be copied to the new project.

5. Click the Red Hat OpenShift Service Mesh Operator. Under Provided APIs, the Operator
provides links to create two resource types:

A ServiceMeshControlPlane resource

A ServiceMeshMemberRoll resource

6. Under Istio Service Mesh Control Plane click Create ServiceMeshControlPlane.

7. On the Create Service Mesh Control Plane page, modify the YAML for the default
ServiceMeshControlPlane template as needed.

NOTE

For additional information about customizing the control plane, see customizing
the Red Hat OpenShift Service Mesh installation. For production, you must
change the default Jaeger template.

8. Click Create to create the control plane. The Operator creates pods, services, and Service Mesh
control plane components based on your configuration parameters.

9. Click the Istio Service Mesh Control Plane tab.

10. Click the name of the new control plane.

11. Click the Resources tab to see the Red Hat OpenShift Service Mesh control plane resources
the Operator created and configured.

2.5.6.2. Deploying the control plane from the CLI

Follow this procedure to deploy the Red Hat OpenShift Service Mesh control plane the command line.

Prerequisites

The Red Hat OpenShift Service Mesh Operator must be installed.

Review the instructions for how to customize the Red Hat OpenShift Service Mesh installation.

An account with the cluster-admin role.

Access to the OpenShift CLI (oc).

Procedure

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role.

OpenShift Container Platform 4.9 Service Mesh

326

2. Create a project named istio-system.

3. Create a ServiceMeshControlPlane file named istio-installation.yaml using the example
found in "Customize the Red Hat OpenShift Service Mesh installation". You can customize the
values as needed to match your use case. For production deployments you must change the
default Jaeger template.

4. Run the following command to deploy the control plane:

5. Execute the following command to see the status of the control plane installation.

The installation has finished successfully when the STATUS column is ComponentsReady.

NAME READY STATUS PROFILES VERSION AGE
basic-install 11/11 ComponentsReady ["default"] v1.1.18 4m25s

6. Run the following command to watch the progress of the Pods during the installation process:

$ oc get pods -n istio-system -w

You should see output similar to the following:

Example output

For a multitenant installation, Red Hat OpenShift Service Mesh supports multiple independent control
planes within the cluster. You can create reusable configurations with ServiceMeshControlPlane
templates. For more information, see Creating control plane templates .

2.5.7. Creating the Red Hat OpenShift Service Mesh member roll

The ServiceMeshMemberRoll lists the projects that belong to the Service Mesh control plane. Only

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

$ oc new-project istio-system

$ oc create -n istio-system -f istio-installation.yaml

$ oc get smcp -n istio-system

NAME READY STATUS RESTARTS AGE
grafana-7bf5764d9d-2b2f6 2/2 Running 0 28h
istio-citadel-576b9c5bbd-z84z4 1/1 Running 0 28h
istio-egressgateway-5476bc4656-r4zdv 1/1 Running 0 28h
istio-galley-7d57b47bb7-lqdxv 1/1 Running 0 28h
istio-ingressgateway-dbb8f7f46-ct6n5 1/1 Running 0 28h
istio-pilot-546bf69578-ccg5x 2/2 Running 0 28h
istio-policy-77fd498655-7pvjw 2/2 Running 0 28h
istio-sidecar-injector-df45bd899-ctxdt 1/1 Running 0 28h
istio-telemetry-66f697d6d5-cj28l 2/2 Running 0 28h
jaeger-896945cbc-7lqrr 2/2 Running 0 11h
kiali-78d9c5b87c-snjzh 1/1 Running 0 22h
prometheus-6dff867c97-gr2n5 2/2 Running 0 28h

CHAPTER 2. SERVICE MESH 1.X

327

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-control-plane-templates-1x_deploying-applications-ossm-v1x

The ServiceMeshMemberRoll lists the projects that belong to the Service Mesh control plane. Only
projects listed in the ServiceMeshMemberRoll are affected by the control plane. A project does not
belong to a service mesh until you add it to the member roll for a particular control plane deployment.

You must create a ServiceMeshMemberRoll resource named default in the same project as the
ServiceMeshControlPlane, for example istio-system.

2.5.7.1. Creating the member roll from the web console

You can add one or more projects to the Service Mesh member roll from the web console. In this
example, istio-system is the name of the Service Mesh control plane project.

Prerequisites

An installed, verified Red Hat OpenShift Service Mesh Operator.

List of existing projects to add to the service mesh.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. If you do not already have services for your mesh, or you are starting from scratch, create a
project for your applications. It must be different from the project where you installed the
Service Mesh control plane.

a. Navigate to Home → Projects.

b. Enter a name in the Name field.

c. Click Create.

3. Navigate to Operators → Installed Operators.

4. Click the Project menu and choose the project where your ServiceMeshControlPlane
resource is deployed from the list, for example istio-system.

5. Click the Red Hat OpenShift Service Mesh Operator.

6. Click the Istio Service Mesh Member Roll tab.

7. Click Create ServiceMeshMemberRoll

8. Click Members, then enter the name of your project in the Value field. You can add any number
of projects, but a project can only belong to one ServiceMeshMemberRoll resource.

9. Click Create.

2.5.7.2. Creating the member roll from the CLI

You can add a project to the ServiceMeshMemberRoll from the command line.

Prerequisites

An installed, verified Red Hat OpenShift Service Mesh Operator.

OpenShift Container Platform 4.9 Service Mesh

328

List of projects to add to the service mesh.

Access to the OpenShift CLI (oc).

Procedure

1. Log in to the OpenShift Container Platform CLI.

2. If you do not already have services for your mesh, or you are starting from scratch, create a
project for your applications. It must be different from the project where you installed the
Service Mesh control plane.

3. To add your projects as members, modify the following example YAML. You can add any
number of projects, but a project can only belong to one ServiceMeshMemberRoll resource. In
this example, istio-system is the name of the Service Mesh control plane project.

Example servicemeshmemberroll-default.yaml

4. Run the following command to upload and create the ServiceMeshMemberRoll resource in the
istio-system namespace.

5. Run the following command to verify the ServiceMeshMemberRoll was created successfully.

The installation has finished successfully when the STATUS column is Configured.

2.5.8. Adding or removing projects from the service mesh

You can add or remove projects from an existing Service Mesh ServiceMeshMemberRoll resource
using the web console.

You can add any number of projects, but a project can only belong to one
ServiceMeshMemberRoll resource.

The ServiceMeshMemberRoll resource is deleted when its corresponding
ServiceMeshControlPlane resource is deleted.

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

$ oc new-project <your-project>

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system
spec:
 members:
 # a list of projects joined into the service mesh
 - your-project-name
 - another-project-name

$ oc create -n istio-system -f servicemeshmemberroll-default.yaml

$ oc get smmr -n istio-system default

CHAPTER 2. SERVICE MESH 1.X

329

2.5.8.1. Adding or removing projects from the member roll using the web console

Prerequisites

An installed, verified Red Hat OpenShift Service Mesh Operator.

An existing ServiceMeshMemberRoll resource.

Name of the project with the ServiceMeshMemberRoll resource.

Names of the projects you want to add or remove from the mesh.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → Installed Operators.

3. Click the Project menu and choose the project where your ServiceMeshControlPlane
resource is deployed from the list, for example istio-system.

4. Click the Red Hat OpenShift Service Mesh Operator.

5. Click the Istio Service Mesh Member Roll tab.

6. Click the default link.

7. Click the YAML tab.

8. Modify the YAML to add or remove projects as members. You can add any number of projects,
but a project can only belong to one ServiceMeshMemberRoll resource.

9. Click Save.

10. Click Reload.

2.5.8.2. Adding or removing projects from the member roll using the CLI

You can modify an existing Service Mesh member roll using the command line.

Prerequisites

An installed, verified Red Hat OpenShift Service Mesh Operator.

An existing ServiceMeshMemberRoll resource.

Name of the project with the ServiceMeshMemberRoll resource.

Names of the projects you want to add or remove from the mesh.

Access to the OpenShift CLI (oc).

Procedure

1. Log in to the OpenShift Container Platform CLI.

OpenShift Container Platform 4.9 Service Mesh

330

2. Edit the ServiceMeshMemberRoll resource.

3. Modify the YAML to add or remove projects as members. You can add any number of projects,
but a project can only belong to one ServiceMeshMemberRoll resource.

Example servicemeshmemberroll-default.yaml

2.5.9. Manual updates

If you choose to update manually, the Operator Lifecycle Manager (OLM) controls the installation,
upgrade, and role-based access control (RBAC) of Operators in a cluster. OLM runs by default in
OpenShift Container Platform. OLM uses CatalogSources, which use the Operator Registry API, to
query for available Operators as well as upgrades for installed Operators.

For more information about how OpenShift Container Platform handled upgrades, refer to the
Operator Lifecycle Manager documentation.

2.5.9.1. Updating sidecar proxies

In order to update the configuration for sidecar proxies the application administrator must restart the
application pods.

If your deployment uses automatic sidecar injection, you can update the pod template in the
deployment by adding or modifying an annotation. Run the following command to redeploy the pods:

If your deployment does not use automatic sidecar injection, you must manually update the sidecars by
modifying the sidecar container image specified in the deployment or pod, and then restart the pods.

2.5.10. Next steps

Prepare to deploy applications on Red Hat OpenShift Service Mesh.

2.6. CUSTOMIZING SECURITY IN A SERVICE MESH

$ oc edit smmr -n <controlplane-namespace>

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system #control plane project
spec:
 members:
 # a list of projects joined into the service mesh
 - your-project-name
 - another-project-name

$ oc patch deployment/<deployment> -p '{"spec":{"template":{"metadata":{"annotations":
{"kubectl.kubernetes.io/restartedAt": "'`date -Iseconds`'"}}}}}'

CHAPTER 2. SERVICE MESH 1.X

331

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/operators/#olm-overview_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#deploying-applications-ossm-v1x

WARNING

You are viewing documentation for a Red Hat OpenShift Service Mesh release
that is no longer supported.

Service Mesh version 1.0 and 1.1 control planes are no longer supported. For
information about upgrading your service mesh control plane, see Upgrading
Service Mesh.

For information about the support status of a particular Red Hat OpenShift Service
Mesh release, see the Product lifecycle page .

If your service mesh application is constructed with a complex array of microservices, you can use Red
Hat OpenShift Service Mesh to customize the security of the communication between those services.
The infrastructure of OpenShift Container Platform along with the traffic management features of
Service Mesh can help you manage the complexity of your applications and provide service and identity
security for microservices.

2.6.1. Enabling mutual Transport Layer Security (mTLS)

Mutual Transport Layer Security (mTLS) is a protocol where two parties authenticate each other. It is
the default mode of authentication in some protocols (IKE, SSH) and optional in others (TLS).

mTLS can be used without changes to the application or service code. The TLS is handled entirely by
the service mesh infrastructure and between the two sidecar proxies.

By default, Red Hat OpenShift Service Mesh is set to permissive mode, where the sidecars in Service
Mesh accept both plain-text traffic and connections that are encrypted using mTLS. If a service in your
mesh is communicating with a service outside the mesh, strict mTLS could break communication
between those services. Use permissive mode while you migrate your workloads to Service Mesh.

2.6.1.1. Enabling strict mTLS across the mesh

If your workloads do not communicate with services outside your mesh and communication will not be
interrupted by only accepting encrypted connections, you can enable mTLS across your mesh quickly.
Set spec.istio.global.mtls.enabled to true in your ServiceMeshControlPlane resource. The operator
creates the required resources.

2.6.1.1.1. Configuring sidecars for incoming connections for specific services

You can also configure mTLS for individual services or namespaces by creating a policy.



apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 global:
 mtls:
 enabled: true

OpenShift Container Platform 4.9 Service Mesh

332

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-versions_ossm-upgrade
https://access.redhat.com/support/policy/updates/openshift#ossm

2.6.1.2. Configuring sidecars for outgoing connections

Create a destination rule to configure Service Mesh to use mTLS when sending requests to other
services in the mesh.

2.6.1.3. Setting the minimum and maximum protocol versions

If your environment has specific requirements for encrypted traffic in your service mesh, you can control
the cryptographic functions that are allowed by setting the
spec.security.controlPlane.tls.minProtocolVersion or
spec.security.controlPlane.tls.maxProtocolVersion in your ServiceMeshControlPlane resource.
Those values, configured in your control plane resource, define the minimum and maximum TLS version
used by mesh components when communicating securely over TLS.

The default is TLS_AUTO and does not specify a version of TLS.

Table 2.3. Valid values

Value Description

TLS_AUTO default

TLSv1_0 TLS version 1.0

apiVersion: "authentication.istio.io/v1alpha1"
kind: "Policy"
metadata:
 name: default
 namespace: <NAMESPACE>
spec:
 peers:
 - mtls: {}

apiVersion: "networking.istio.io/v1alpha3"
kind: "DestinationRule"
metadata:
 name: "default"
 namespace: <CONTROL_PLANE_NAMESPACE>>
spec:
 host: "*.local"
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 global:
 tls:
 minProtocolVersion: TLSv1_2
 maxProtocolVersion: TLSv1_3

CHAPTER 2. SERVICE MESH 1.X

333

TLSv1_1 TLS version 1.1

TLSv1_2 TLS version 1.2

TLSv1_3 TLS version 1.3

Value Description

2.6.2. Configuring cipher suites and ECDH curves

Cipher suites and Elliptic-curve Diffie–Hellman (ECDH curves) can help you secure your service mesh.
You can define a comma separated list of cipher suites using spec.istio.global.tls.cipherSuites and
ECDH curves using spec.istio.global.tls.ecdhCurves in your ServiceMeshControlPlane resource. If
either of these attributes are empty, then the default values are used.

The cipherSuites setting is effective if your service mesh uses TLS 1.2 or earlier. It has no effect when
negotiating with TLS 1.3.

Set your cipher suites in the comma separated list in order of priority. For example, ecdhCurves:
CurveP256, CurveP384 sets CurveP256 as a higher priority than CurveP384.

NOTE

You must include either TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 or
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 when you configure the cipher
suite. HTTP/2 support requires at least one of these cipher suites.

The supported cipher suites are:

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

OpenShift Container Platform 4.9 Service Mesh

334

TLS_RSA_WITH_AES_128_GCM_SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384

TLS_RSA_WITH_AES_128_CBC_SHA256

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

The supported ECDH Curves are:

CurveP256

CurveP384

CurveP521

X25519

2.6.3. Adding an external certificate authority key and certificate

By default, Red Hat OpenShift Service Mesh generates self-signed root certificate and key, and uses
them to sign the workload certificates. You can also use the user-defined certificate and key to sign
workload certificates, with user-defined root certificate. This task demonstrates an example to plug
certificates and key into Service Mesh.

Prerequisites

You must have installed Red Hat OpenShift Service Mesh with mutual TLS enabled to configure
certificates.

This example uses the certificates from the Maistra repository. For production, use your own
certificates from your certificate authority.

You must deploy the Bookinfo sample application to verify the results with these instructions.

2.6.3.1. Adding an existing certificate and key

To use an existing signing (CA) certificate and key, you must create a chain of trust file that includes the
CA certificate, key, and root certificate. You must use the following exact file names for each of the
corresponding certificates. The CA certificate is called ca-cert.pem, the key is ca-key.pem, and the root
certificate, which signs ca-cert.pem, is called root-cert.pem. If your workload uses intermediate
certificates, you must specify them in a cert-chain.pem file.

Add the certificates to Service Mesh by following these steps. Save the example certificates from the
Maistra repo locally and replace <path> with the path to your certificates.

1. Create a secret cacert that includes the input files ca-cert.pem, ca-key.pem, root-cert.pem
and cert-chain.pem.

CHAPTER 2. SERVICE MESH 1.X

335

https://github.com/maistra/istio/tree/maistra-2.0/samples/certs
https://github.com/maistra/istio/tree/maistra-1.1/samples/certs

2. In the ServiceMeshControlPlane resource set global.mtls.enabled to true and
security.selfSigned set to false. Service Mesh reads the certificates and key from the secret-
mount files.

3. To make sure the workloads add the new certificates promptly, delete the secrets generated by
Service Mesh, named istio.*. In this example, istio.default. Service Mesh issues new certificates
for the workloads.

2.6.3.2. Verifying your certificates

Use the Bookinfo sample application to verify your certificates are mounted correctly. First, retrieve the
mounted certificates. Then, verify the certificates mounted on the pod.

1. Store the pod name in the variable RATINGSPOD.

2. Run the following commands to retrieve the certificates mounted on the proxy.

The file /tmp/pod-root-cert.pem contains the root certificate propagated to the pod.

The file /tmp/pod-cert-chain.pem contains the workload certificate and the CA certificate
propagated to the pod.

3. Verify the root certificate is the same as the one specified by the Operator. Replace <path> with
the path to your certificates.

$ oc create secret generic cacerts -n istio-system --from-file=<path>/ca-cert.pem \
 --from-file=<path>/ca-key.pem --from-file=<path>/root-cert.pem \
 --from-file=<path>/cert-chain.pem

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 global:
 mtls:
 enabled: true
 security:
 selfSigned: false

$ oc delete secret istio.default

$ RATINGSPOD=`oc get pods -l app=ratings -o jsonpath='{.items[0].metadata.name}'`

$ oc exec -it $RATINGSPOD -c istio-proxy -- /bin/cat /etc/certs/root-cert.pem > /tmp/pod-root-
cert.pem

$ oc exec -it $RATINGSPOD -c istio-proxy -- /bin/cat /etc/certs/cert-chain.pem > /tmp/pod-
cert-chain.pem

$ openssl x509 -in <path>/root-cert.pem -text -noout > /tmp/root-cert.crt.txt

$ openssl x509 -in /tmp/pod-root-cert.pem -text -noout > /tmp/pod-root-cert.crt.txt

OpenShift Container Platform 4.9 Service Mesh

336

Expect the output to be empty.

4. Verify the CA certificate is the same as the one specified by Operator. Replace <path> with the
path to your certificates.

Expect the output to be empty.

5. Verify the certificate chain from the root certificate to the workload certificate. Replace <path>
with the path to your certificates.

Example output

2.6.3.3. Removing the certificates

To remove the certificates you added, follow these steps.

1. Remove the secret cacerts.

2. Redeploy Service Mesh with a self-signed root certificate in the ServiceMeshControlPlane
resource.

$ diff /tmp/root-cert.crt.txt /tmp/pod-root-cert.crt.txt

$ sed '0,/^-----END CERTIFICATE-----/d' /tmp/pod-cert-chain.pem > /tmp/pod-cert-chain-
ca.pem

$ openssl x509 -in <path>/ca-cert.pem -text -noout > /tmp/ca-cert.crt.txt

$ openssl x509 -in /tmp/pod-cert-chain-ca.pem -text -noout > /tmp/pod-cert-chain-ca.crt.txt

$ diff /tmp/ca-cert.crt.txt /tmp/pod-cert-chain-ca.crt.txt

$ head -n 21 /tmp/pod-cert-chain.pem > /tmp/pod-cert-chain-workload.pem

$ openssl verify -CAfile <(cat <path>/ca-cert.pem <path>/root-cert.pem) /tmp/pod-cert-chain-
workload.pem

/tmp/pod-cert-chain-workload.pem: OK

$ oc delete secret cacerts -n istio-system

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 global:
 mtls:
 enabled: true
 security:
 selfSigned: true

CHAPTER 2. SERVICE MESH 1.X

337

2.7. TRAFFIC MANAGEMENT

WARNING

You are viewing documentation for a Red Hat OpenShift Service Mesh release
that is no longer supported.

Service Mesh version 1.0 and 1.1 control planes are no longer supported. For
information about upgrading your service mesh control plane, see Upgrading
Service Mesh.

For information about the support status of a particular Red Hat OpenShift Service
Mesh release, see the Product lifecycle page .

You can control the flow of traffic and API calls between services in Red Hat OpenShift Service Mesh.
For example, some services in your service mesh may need to communicate within the mesh and others
may need to be hidden. Manage the traffic to hide specific backend services, expose services, create
testing or versioning deployments, or add a security layer on a set of services.

2.7.1. Using gateways

You can use a gateway to manage inbound and outbound traffic for your mesh to specify which traffic
you want to enter or leave the mesh. Gateway configurations are applied to standalone Envoy proxies
that are running at the edge of the mesh, rather than sidecar Envoy proxies running alongside your
service workloads.

Unlike other mechanisms for controlling traffic entering your systems, such as the Kubernetes Ingress
APIs, Red Hat OpenShift Service Mesh gateways use the full power and flexibility of traffic routing.

The Red Hat OpenShift Service Mesh gateway resource can use layer 4-6 load balancing properties,
such as ports, to expose and configure Red Hat OpenShift Service Mesh TLS settings. Instead of adding
application-layer traffic routing (L7) to the same API resource, you can bind a regular Red Hat
OpenShift Service Mesh virtual service to the gateway and manage gateway traffic like any other data
plane traffic in a service mesh.

Gateways are primarily used to manage ingress traffic, but you can also configure egress gateways. An
egress gateway lets you configure a dedicated exit node for the traffic leaving the mesh. This enables
you to limit which services have access to external networks, which adds security control to your service
mesh. You can also use a gateway to configure a purely internal proxy.

Gateway example

A gateway resource describes a load balancer operating at the edge of the mesh receiving incoming or
outgoing HTTP/TCP connections. The specification describes a set of ports that should be exposed, the
type of protocol to use, SNI configuration for the load balancer, and so on.

The following example shows a sample gateway configuration for external HTTPS ingress traffic:



apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:

OpenShift Container Platform 4.9 Service Mesh

338

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-versions_ossm-upgrade
https://access.redhat.com/support/policy/updates/openshift#ossm

This gateway configuration lets HTTPS traffic from ext-host.example.com into the mesh on port 443,
but doesn’t specify any routing for the traffic.

To specify routing and for the gateway to work as intended, you must also bind the gateway to a virtual
service. You do this using the virtual service’s gateways field, as shown in the following example:

You can then configure the virtual service with routing rules for the external traffic.

2.7.2. Configuring an ingress gateway

An ingress gateway is a load balancer operating at the edge of the mesh that receives incoming
HTTP/TCP connections. It configures exposed ports and protocols but does not include any traffic
routing configuration. Traffic routing for ingress traffic is instead configured with routing rules, the same
way as for internal service requests.

The following steps show how to create a gateway and configure a VirtualService to expose a service in
the Bookinfo sample application to outside traffic for paths /productpage and /login.

Procedure

1. Create a gateway to accept traffic.

a. Create a YAML file, and copy the following YAML into it.

Gateway example gateway.yaml

 name: ext-host-gwy
spec:
 selector:
 istio: ingressgateway # use istio default controller
 servers:
 - port:
 number: 443
 name: https
 protocol: HTTPS
 hosts:
 - ext-host.example.com
 tls:
 mode: SIMPLE
 serverCertificate: /tmp/tls.crt
 privateKey: /tmp/tls.key

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: virtual-svc
spec:
 hosts:
 - ext-host.example.com
 gateways:
 - ext-host-gwy

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:

CHAPTER 2. SERVICE MESH 1.X

339

b. Apply the YAML file.

2. Create a VirtualService object to rewrite the host header.

a. Create a YAML file, and copy the following YAML into it.

Virtual service example

b. Apply the YAML file.

3. Test that the gateway and VirtualService have been set correctly.

 name: bookinfo-gateway
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"

$ oc apply -f gateway.yaml

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: bookinfo
spec:
 hosts:
 - "*"
 gateways:
 - bookinfo-gateway
 http:
 - match:
 - uri:
 exact: /productpage
 - uri:
 prefix: /static
 - uri:
 exact: /login
 - uri:
 exact: /logout
 - uri:
 prefix: /api/v1/products
 route:
 - destination:
 host: productpage
 port:
 number: 9080

$ oc apply -f vs.yaml

OpenShift Container Platform 4.9 Service Mesh

340

a. Set the Gateway URL.

b. Set the port number. In this example, istio-system is the name of the Service Mesh control
plane project.

c. Test a page that has been explicitly exposed.

The expected result is 200.

2.7.3. Managing ingress traffic

In Red Hat OpenShift Service Mesh, the Ingress Gateway enables features such as monitoring, security,
and route rules to apply to traffic that enters the cluster. Use a Service Mesh gateway to expose a
service outside of the service mesh.

2.7.3.1. Determining the ingress IP and ports

Ingress configuration differs depending on if your environment supports an external load balancer. An
external load balancer is set in the ingress IP and ports for the cluster. To determine if your cluster’s IP
and ports are configured for external load balancers, run the following command. In this example, istio-
system is the name of the Service Mesh control plane project.

That command returns the NAME, TYPE, CLUSTER-IP, EXTERNAL-IP, PORT(S), and AGE of each
item in your namespace.

If the EXTERNAL-IP value is set, your environment has an external load balancer that you can use for
the ingress gateway.

If the EXTERNAL-IP value is <none>, or perpetually <pending>, your environment does not provide an
external load balancer for the ingress gateway. You can access the gateway using the service’s node
port.

2.7.3.1.1. Determining ingress ports with a load balancer

Follow these instructions if your environment has an external load balancer.

Procedure

1. Run the following command to set the ingress IP and ports. This command sets a variable in your
terminal.

export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.host}')

export TARGET_PORT=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.port.targetPort}')

curl -s -I "$GATEWAY_URL/productpage"

$ oc get svc istio-ingressgateway -n istio-system

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.status.loadBalancer.ingress[0].ip}')

CHAPTER 2. SERVICE MESH 1.X

341

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#configuring-the-node-port-service-range

2. Run the following command to set the ingress port.

3. Run the following command to set the secure ingress port.

4. Run the following command to set the TCP ingress port.

NOTE

In some environments, the load balancer may be exposed using a hostname instead of an
IP address. For that case, the ingress gateway’s EXTERNAL-IP value is not an IP address.
Instead, it’s a hostname, and the previous command fails to set the INGRESS_HOST
environment variable.

In that case, use the following command to correct the INGRESS_HOST value:

2.7.3.1.2. Determining ingress ports without a load balancer

If your environment does not have an external load balancer, determine the ingress ports and use a node
port instead.

Procedure

1. Set the ingress ports.

2. Run the following command to set the secure ingress port.

3. Run the following command to set the TCP ingress port.

2.7.4. Automatic route creation

OpenShift routes for Istio Gateways are automatically managed in Red Hat OpenShift Service Mesh.

$ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].port}')

$ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -
o jsonpath='{.spec.ports[?(@.name=="https")].port}')

$ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="tcp")].port}')

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.status.loadBalancer.ingress[0].hostname}')

$ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')

$ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -
o jsonpath='{.spec.ports[?(@.name=="https")].nodePort}')

$ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="tcp")].nodePort}')

OpenShift Container Platform 4.9 Service Mesh

342

OpenShift routes for Istio Gateways are automatically managed in Red Hat OpenShift Service Mesh.
Every time an Istio Gateway is created, updated or deleted inside the service mesh, an OpenShift route
is created, updated or deleted.

2.7.4.1. Enabling Automatic Route Creation

A Red Hat OpenShift Service Mesh control plane component called Istio OpenShift Routing (IOR)
synchronizes the gateway route. Enable IOR as part of the control plane deployment.

If the Gateway contains a TLS section, the OpenShift Route will be configured to support TLS.

1. In the ServiceMeshControlPlane resource, add the ior_enabled parameter and set it to true.
For example, see the following resource snippet:

2.7.4.2. Subdomains

Red Hat OpenShift Service Mesh creates the route with the subdomain, but OpenShift Container
Platform must be configured to enable it. Subdomains, for example *.domain.com, are supported but
not by default. Configure an OpenShift Container Platform wildcard policy before configuring a wildcard
host Gateway. For more information, see the "Links" section.

If the following gateway is created:

Then, the following OpenShift Routes are created automatically. You can check that the routes are
created with the following command.

spec:
 istio:
 gateways:
 istio-egressgateway:
 autoscaleEnabled: false
 autoscaleMin: 1
 autoscaleMax: 5
 istio-ingressgateway:
 autoscaleEnabled: false
 autoscaleMin: 1
 autoscaleMax: 5
 ior_enabled: true

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: gateway1
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - www.bookinfo.com
 - bookinfo.example.com

CHAPTER 2. SERVICE MESH 1.X

343

Expected output

If the gateway is deleted, Red Hat OpenShift Service Mesh deletes the routes. However, routes created
manually are never modified by Red Hat OpenShift Service Mesh.

2.7.5. Understanding service entries

A service entry adds an entry to the service registry that Red Hat OpenShift Service Mesh maintains
internally. After you add the service entry, the Envoy proxies send traffic to the service as if it is a service
in your mesh. Service entries allow you to do the following:

Manage traffic for services that run outside of the service mesh.

Redirect and forward traffic for external destinations (such as, APIs consumed from the web) or
traffic to services in legacy infrastructure.

Define retry, timeout, and fault injection policies for external destinations.

Run a mesh service in a Virtual Machine (VM) by adding VMs to your mesh.

NOTE

Add services from a different cluster to the mesh to configure a multicluster Red Hat
OpenShift Service Mesh mesh on Kubernetes.

Service entry examples

The following example is a mesh-external service entry that adds the ext-resource external dependency
to the Red Hat OpenShift Service Mesh service registry:

Specify the external resource using the hosts field. You can qualify it fully or use a wildcard prefixed
domain name.

You can configure virtual services and destination rules to control traffic to a service entry in the same

$ oc -n <control_plane_namespace> get routes

NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
gateway1-lvlfn bookinfo.example.com istio-ingressgateway <all> None
gateway1-scqhv www.bookinfo.com istio-ingressgateway <all> None

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: svc-entry
spec:
 hosts:
 - ext-svc.example.com
 ports:
 - number: 443
 name: https
 protocol: HTTPS
 location: MESH_EXTERNAL
 resolution: DNS

OpenShift Container Platform 4.9 Service Mesh

344

way you configure traffic for any other service in the mesh. For example, the following destination rule
configures the traffic route to use mutual TLS to secure the connection to the ext-svc.example.com
external service that is configured using the service entry:

2.7.6. Using VirtualServices

You can route requests dynamically to multiple versions of a microservice through Red Hat OpenShift
Service Mesh with a virtual service. With virtual services, you can:

Address multiple application services through a single virtual service. If your mesh uses
Kubernetes, for example, you can configure a virtual service to handle all services in a specific
namespace. A virtual service enables you to turn a monolithic application into a service
consisting of distinct microservices with a seamless consumer experience.

Configure traffic rules in combination with gateways to control ingress and egress traffic.

2.7.6.1. Configuring VirtualServices

Requests are routed to services within a service mesh with virtual services. Each virtual service consists
of a set of routing rules that are evaluated in order. Red Hat OpenShift Service Mesh matches each
given request to the virtual service to a specific real destination within the mesh.

Without virtual services, Red Hat OpenShift Service Mesh distributes traffic using least requests load
balancing between all service instances. With a virtual service, you can specify traffic behavior for one or
more hostnames. Routing rules in the virtual service tell Red Hat OpenShift Service Mesh how to send
the traffic for the virtual service to appropriate destinations. Route destinations can be versions of the
same service or entirely different services.

Procedure

1. Create a YAML file using the following example to route requests to different versions of the
Bookinfo sample application service depending on which user connects to the application.

Example VirtualService.yaml

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: ext-res-dr
spec:
 host: ext-svc.example.com
 trafficPolicy:
 tls:
 mode: MUTUAL
 clientCertificate: /etc/certs/myclientcert.pem
 privateKey: /etc/certs/client_private_key.pem
 caCertificates: /etc/certs/rootcacerts.pem

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews

CHAPTER 2. SERVICE MESH 1.X

345

2. Run the following command to apply VirtualService.yaml, where VirtualService.yaml is the
path to the file.

2.7.6.2. VirtualService configuration reference

Parameter Description

spec:
 hosts:

The hosts field lists the virtual service’s destination
address to which the routing rules apply. This is the
address(es) that are used to send requests to the
service. The virtual service hostname can be an IP
address, a DNS name, or a short name that resolves
to a fully qualified domain name.

spec:
 http:
 - match:

The http section contains the virtual service’s routing
rules which describe match conditions and actions for
routing HTTP/1.1, HTTP2, and gRPC traffic sent to
the destination as specified in the hosts field. A
routing rule consists of the destination where you
want the traffic to go and any specified match
conditions. The first routing rule in the example has a
condition that begins with the match field. In this
example, this routing applies to all requests from the
user jason. Add the headers, end-user, and exact
fields to select the appropriate requests.

spec:
 http:
 - match:
 - destination:

The destination field in the route section specifies
the actual destination for traffic that matches this
condition. Unlike the virtual service’s host, the
destination’s host must be a real destination that
exists in the Red Hat OpenShift Service Mesh service
registry. This can be a mesh service with proxies or a
non-mesh service added using a service entry. In this
example, the hostname is a Kubernetes service
name:

 http:
 - match:
 - headers:
 end-user:
 exact: jason
 route:
 - destination:
 host: reviews
 subset: v2
 - route:
 - destination:
 host: reviews
 subset: v3

$ oc apply -f <VirtualService.yaml>

OpenShift Container Platform 4.9 Service Mesh

346

2.7.7. Understanding destination rules

Destination rules are applied after virtual service routing rules are evaluated, so they apply to the
traffic’s real destination. Virtual services route traffic to a destination. Destination rules configure what
happens to traffic at that destination.

By default, Red Hat OpenShift Service Mesh uses a least requests load balancing policy, where the
service instance in the pool with the least number of active connections receives the request. Red Hat
OpenShift Service Mesh also supports the following models, which you can specify in destination rules
for requests to a particular service or service subset.

Random: Requests are forwarded at random to instances in the pool.

Weighted: Requests are forwarded to instances in the pool according to a specific percentage.

Least requests: Requests are forwarded to instances with the least number of requests.

Destination rule example

The following example destination rule configures three different subsets for the my-svc destination
service, with different load balancing policies:

This guide references the Bookinfo sample application to provide examples of routing in an example
application. Install the Bookinfo application to learn how these routing examples work.

2.7.8. Bookinfo routing tutorial

The Service Mesh Bookinfo sample application consists of four separate microservices, each with
multiple versions. After installing the Bookinfo sample application, three different versions of the
reviews microservice run concurrently.

When you access the Bookinfo app /product page in a browser and refresh several times, sometimes the

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: my-destination-rule
spec:
 host: my-svc
 trafficPolicy:
 loadBalancer:
 simple: RANDOM
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2
 trafficPolicy:
 loadBalancer:
 simple: ROUND_ROBIN
 - name: v3
 labels:
 version: v3

CHAPTER 2. SERVICE MESH 1.X

347

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-tutorial-bookinfo-overview_deploying-applications-ossm-v1x

When you access the Bookinfo app /product page in a browser and refresh several times, sometimes the
book review output contains star ratings and other times it does not. Without an explicit default service
version to route to, Service Mesh routes requests to all available versions one after the other.

This tutorial helps you apply rules that route all traffic to v1 (version 1) of the microservices. Later, you
can apply a rule to route traffic based on the value of an HTTP request header.

Prerequisites:

Deploy the Bookinfo sample application to work with the following examples.

2.7.8.1. Applying a virtual service

In the following procedure, the virtual service routes all traffic to v1 of each micro-service by applying
virtual services that set the default version for the micro-services.

Procedure

1. Apply the virtual services.

2. To verify that you applied the virtual services, display the defined routes with the following
command:

That command returns a resource of kind: VirtualService in YAML format.

You have configured Service Mesh to route to the v1 version of the Bookinfo microservices including
the reviews service version 1.

2.7.8.2. Testing the new route configuration

Test the new configuration by refreshing the /productpage of the Bookinfo application.

Procedure

1. Set the value for the GATEWAY_URL parameter. You can use this variable to find the URL for
your Bookinfo product page later. In this example, istio-system is the name of the control plane
project.

2. Run the following command to retrieve the URL for the product page.

3. Open the Bookinfo site in your browser.

The reviews part of the page displays with no rating stars, no matter how many times you refresh. This is

$ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.3/samples/bookinfo/networking/virtual-service-all-v1.yaml

$ oc get virtualservices -o yaml

export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.host}')

echo "http://$GATEWAY_URL/productpage"

OpenShift Container Platform 4.9 Service Mesh

348

The reviews part of the page displays with no rating stars, no matter how many times you refresh. This is
because you configured Service Mesh to route all traffic for the reviews service to the version
reviews:v1 and this version of the service does not access the star ratings service.

Your service mesh now routes traffic to one version of a service.

2.7.8.3. Route based on user identity

Change the route configuration so that all traffic from a specific user is routed to a specific service
version. In this case, all traffic from a user named jason will be routed to the service reviews:v2.

Service Mesh does not have any special, built-in understanding of user identity. This example is enabled
by the fact that the productpage service adds a custom end-user header to all outbound HTTP
requests to the reviews service.

Procedure

1. Run the following command to enable user-based routing in the Bookinfo sample application.

2. Run the following command to confirm the rule is created. This command returns all resources
of kind: VirtualService in YAML format.

3. On the /productpage of the Bookinfo app, log in as user jason with no password.

4. Refresh the browser. The star ratings appear next to each review.

5. Log in as another user (pick any name you want). Refresh the browser. Now the stars are gone.
Traffic is now routed to reviews:v1 for all users except Jason.

You have successfully configured the Bookinfo sample application to route traffic based on user
identity.

2.7.9. Additional resources

For more information about configuring an OpenShift Container Platform wildcard policy, see Using
wildcard routes.

2.8. DEPLOYING APPLICATIONS ON SERVICE MESH

$ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.3/samples/bookinfo/networking/virtual-service-reviews-test-v2.yaml

$ oc get virtualservice reviews -o yaml

CHAPTER 2. SERVICE MESH 1.X

349

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#using-wildcard-routes_configuring-ingress

WARNING

You are viewing documentation for a Red Hat OpenShift Service Mesh release
that is no longer supported.

Service Mesh version 1.0 and 1.1 control planes are no longer supported. For
information about upgrading your service mesh control plane, see Upgrading
Service Mesh.

For information about the support status of a particular Red Hat OpenShift Service
Mesh release, see the Product lifecycle page .

When you deploy an application into the Service Mesh, there are several differences between the
behavior of applications in the upstream community version of Istio and the behavior of applications
within a Red Hat OpenShift Service Mesh installation.

2.8.1. Prerequisites

Review Comparing Red Hat OpenShift Service Mesh and upstream Istio community installations

Review Installing Red Hat OpenShift Service Mesh

2.8.2. Creating control plane templates

You can create reusable configurations with ServiceMeshControlPlane templates. Individual users can
extend the templates they create with their own configurations. Templates can also inherit configuration
information from other templates. For example, you can create an accounting control plane for the
accounting team and a marketing control plane for the marketing team. If you create a development
template and a production template, members of the marketing team and the accounting team can
extend the development and production templates with team specific customization.

When you configure control plane templates, which follow the same syntax as the
ServiceMeshControlPlane, users inherit settings in a hierarchical fashion. The Operator is delivered
with a default template with default settings for Red Hat OpenShift Service Mesh. To add custom
templates you must create a ConfigMap named smcp-templates in the openshift-operators project
and mount the ConfigMap in the Operator container at /usr/local/share/istio-operator/templates.

2.8.2.1. Creating the ConfigMap

Follow this procedure to create the ConfigMap.

Prerequisites

An installed, verified Service Mesh Operator.

An account with the cluster-admin role.

Location of the Operator deployment.

Access to the OpenShift CLI (oc).

Procedure



OpenShift Container Platform 4.9 Service Mesh

350

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-versions_ossm-upgrade
https://access.redhat.com/support/policy/updates/openshift#ossm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-vs-community-v1x
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#installing-ossm-v1x

Procedure

1. Log in to the OpenShift Container Platform CLI as a cluster administrator.

2. From the CLI, run this command to create the ConfigMap named smcp-templates in the
openshift-operators project and replace <templates-directory> with the location of the
ServiceMeshControlPlane files on your local disk:

3. Locate the Operator ClusterServiceVersion name.

Example output

4. Edit the Operator cluster service version to instruct the Operator to use the smcp-templates
ConfigMap.

5. Add a volume mount and volume to the Operator deployment.

6. Save your changes and exit the editor.

7. You can now use the template parameter in the ServiceMeshControlPlane to specify a
template.

$ oc create configmap --from-file=<templates-directory> smcp-templates -n openshift-
operators

$ oc get clusterserviceversion -n openshift-operators | grep 'Service Mesh'

maistra.v1.0.0 Red Hat OpenShift Service Mesh 1.0.0 Succeeded

$ oc edit clusterserviceversion -n openshift-operators maistra.v1.0.0

deployments:
 - name: istio-operator
 spec:
 template:
 spec:
 containers:
 volumeMounts:
 - name: discovery-cache
 mountPath: /home/istio-operator/.kube/cache/discovery
 - name: smcp-templates
 mountPath: /usr/local/share/istio-operator/templates/
 volumes:
 - name: discovery-cache
 emptyDir:
 medium: Memory
 - name: smcp-templates
 configMap:
 name: smcp-templates
...

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
metadata:

CHAPTER 2. SERVICE MESH 1.X

351

2.8.3. Enabling automatic sidecar injection

When deploying an application, you must opt-in to injection by configuring the annotation
sidecar.istio.io/inject in spec.template.metadata.annotations to true in the deployment object.
Opting in ensures that the sidecar injection does not interfere with other OpenShift Container Platform
features such as builder pods used by numerous frameworks within the OpenShift Container Platform
ecosystem.

Prerequisites

Identify the namespaces that are part of your service mesh and the deployments that need
automatic sidecar injection.

Procedure

1. To find your deployments use the oc get command.

For example, to view the deployment file for the 'ratings-v1' microservice in the bookinfo
namespace, use the following command to see the resource in YAML format.

2. Open the application’s deployment configuration YAML file in an editor.

3. Add spec.template.metadata.annotations.sidecar.istio/inject to your Deployment YAML and
set sidecar.istio.io/inject to true as shown in the following example.

Example snippet from bookinfo deployment-ratings-v1.yaml

4. Save the Deployment configuration file.

5. Add the file back to the project that contains your app.

 name: minimal-install
spec:
 template: default

$ oc get deployment -n <namespace>

oc get deployment -n bookinfo ratings-v1 -o yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: ratings-v1
 namespace: bookinfo
 labels:
 app: ratings
 version: v1
spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: 'true'

$ oc apply -n <namespace> -f deployment.yaml

OpenShift Container Platform 4.9 Service Mesh

352

In this example, bookinfo is the name of the project that contains the ratings-v1 app and
deployment-ratings-v1.yaml is the file you edited.

6. To verify that the resource uploaded successfully, run the following command.

For example,

2.8.4. Setting proxy environment variables through annotations

Configuration for the Envoy sidecar proxies is managed by the ServiceMeshControlPlane.

You can set environment variables for the sidecar proxy for applications by adding pod annotations to
the deployment in the injection-template.yaml file. The environment variables are injected to the
sidecar.

Example injection-template.yaml

WARNING

You should never include maistra.io/ labels and annotations when creating your
own custom resources. These labels and annotations indicate that the resources
are generated and managed by the Operator. If you are copying content from an
Operator-generated resource when creating your own resources, do not include
labels or annotations that start with maistra.io/. Resources that include these labels
or annotations will be overwritten or deleted by the Operator during the next
reconciliation.

$ oc apply -n bookinfo -f deployment-ratings-v1.yaml

$ oc get deployment -n <namespace> <deploymentName> -o yaml

$ oc get deployment -n bookinfo ratings-v1 -o yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: resource
spec:
 replicas: 7
 selector:
 matchLabels:
 app: resource
 template:
 metadata:
 annotations:
 sidecar.maistra.io/proxyEnv: "{ \"maistra_test_env\": \"env_value\", \"maistra_test_env_2\":
\"env_value_2\" }"



CHAPTER 2. SERVICE MESH 1.X

353

2.8.5. Updating Mixer policy enforcement

In previous versions of Red Hat OpenShift Service Mesh, Mixer’s policy enforcement was enabled by
default. Mixer policy enforcement is now disabled by default. You must enable it before running policy
tasks.

Prerequisites

Access to the OpenShift CLI (oc).

NOTE

The examples use <istio-system> as the control plane namespace. Replace this value
with the namespace where you deployed the Service Mesh Control Plane (SMCP).

Procedure

1. Log in to the OpenShift Container Platform CLI.

2. Run this command to check the current Mixer policy enforcement status:

3. If disablePolicyChecks: true, edit the Service Mesh ConfigMap:

4. Locate disablePolicyChecks: true within the ConfigMap and change the value to false.

5. Save the configuration and exit the editor.

6. Re-check the Mixer policy enforcement status to ensure it is set to false.

2.8.5.1. Setting the correct network policy

Service Mesh creates network policies in the Service Mesh control plane and member namespaces to
allow traffic between them. Before you deploy, consider the following conditions to ensure the services
in your service mesh that were previously exposed through an OpenShift Container Platform route.

Traffic into the service mesh must always go through the ingress-gateway for Istio to work
properly.

Deploy services external to the service mesh in separate namespaces that are not in any service
mesh.

Non-mesh services that need to be deployed within a service mesh enlisted namespace should
label their deployments maistra.io/expose-route: "true", which ensures OpenShift Container
Platform routes to these services still work.

2.8.6. Bookinfo example application

The Bookinfo example application allows you to test your Red Hat OpenShift Service Mesh 2.3.2
installation on OpenShift Container Platform.

The Bookinfo application displays information about a book, similar to a single catalog entry of an online

$ oc get cm -n <istio-system> istio -o jsonpath='{.data.mesh}' | grep disablePolicyChecks

$ oc edit cm -n <istio-system> istio

OpenShift Container Platform 4.9 Service Mesh

354

The Bookinfo application displays information about a book, similar to a single catalog entry of an online
book store. The application displays a page that describes the book, book details (ISBN, number of
pages, and other information), and book reviews.

The Bookinfo application consists of these microservices:

The productpage microservice calls the details and reviews microservices to populate the
page.

The details microservice contains book information.

The reviews microservice contains book reviews. It also calls the ratings microservice.

The ratings microservice contains book ranking information that accompanies a book review.

There are three versions of the reviews microservice:

Version v1 does not call the ratings Service.

Version v2 calls the ratings Service and displays each rating as one to five black stars.

Version v3 calls the ratings Service and displays each rating as one to five red stars.

2.8.6.1. Installing the Bookinfo application

This tutorial walks you through how to create a sample application by creating a project, deploying the
Bookinfo application to that project, and viewing the running application in Service Mesh.

Prerequisites:

OpenShift Container Platform 4.1 or higher installed.

Red Hat OpenShift Service Mesh 2.3.2 installed.

Access to the OpenShift CLI (oc).

An account with the cluster-admin role.

NOTE

The Bookinfo sample application cannot be installed on IBM Z and IBM Power Systems.

NOTE

The commands in this section assume the Service Mesh control plane project is istio-
system. If you installed the control plane in another namespace, edit each command
before you run it.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If
you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Click Home → Projects.

CHAPTER 2. SERVICE MESH 1.X

355

3. Click Create Project.

4. Enter bookinfo as the Project Name, enter a Display Name, and enter a Description, then click
Create.

Alternatively, you can run this command from the CLI to create the bookinfo project.

5. Click Operators → Installed Operators.

6. Click the Project menu and use the Service Mesh control plane namespace. In this example, use
istio-system.

7. Click the Red Hat OpenShift Service Mesh Operator.

8. Click the Istio Service Mesh Member Roll tab.

a. If you have already created a Istio Service Mesh Member Roll, click the name, then click the
YAML tab to open the YAML editor.

b. If you have not created a ServiceMeshMemberRoll, click Create
ServiceMeshMemberRoll.

9. Click Members, then enter the name of your project in the Value field.

10. Click Create to save the updated Service Mesh Member Roll.

a. Or, save the following example to a YAML file.

Bookinfo ServiceMeshMemberRoll example servicemeshmemberroll-
default.yaml

b. Run the following command to upload that file and create the ServiceMeshMemberRoll
resource in the istio-system namespace. In this example, istio-system is the name of the
Service Mesh control plane project.

11. Run the following command to verify the ServiceMeshMemberRoll was created successfully.

The installation has finished successfully when the STATUS column is Configured.

$ oc new-project bookinfo

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
spec:
 members:
 - bookinfo

$ oc create -n istio-system -f servicemeshmemberroll-default.yaml

$ oc get smmr -n istio-system -o wide

NAME READY STATUS AGE MEMBERS
default 1/1 Configured 70s ["bookinfo"]

OpenShift Container Platform 4.9 Service Mesh

356

12. From the CLI, deploy the Bookinfo application in the `bookinfo` project by applying the
bookinfo.yaml file:

You should see output similar to the following:

13. Create the ingress gateway by applying the bookinfo-gateway.yaml file:

You should see output similar to the following:

14. Set the value for the GATEWAY_URL parameter:

2.8.6.2. Adding default destination rules

Before you can use the Bookinfo application, you must first add default destination rules. There are two
preconfigured YAML files, depending on whether or not you enabled mutual transport layer security
(TLS) authentication.

Procedure

1. To add destination rules, run one of the following commands:

If you did not enable mutual TLS:

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.3/samples/bookinfo/platform/kube/bookinfo.yaml

service/details created
serviceaccount/bookinfo-details created
deployment.apps/details-v1 created
service/ratings created
serviceaccount/bookinfo-ratings created
deployment.apps/ratings-v1 created
service/reviews created
serviceaccount/bookinfo-reviews created
deployment.apps/reviews-v1 created
deployment.apps/reviews-v2 created
deployment.apps/reviews-v3 created
service/productpage created
serviceaccount/bookinfo-productpage created
deployment.apps/productpage-v1 created

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.3/samples/bookinfo/networking/bookinfo-gateway.yaml

gateway.networking.istio.io/bookinfo-gateway created
virtualservice.networking.istio.io/bookinfo created

$ export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.host}')

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.3/samples/bookinfo/networking/destination-rule-all.yaml

CHAPTER 2. SERVICE MESH 1.X

357

If you enabled mutual TLS:

You should see output similar to the following:

2.8.6.3. Verifying the Bookinfo installation

To confirm that the sample Bookinfo application was successfully deployed, perform the following
steps.

Prerequisites

Red Hat OpenShift Service Mesh installed.

Complete the steps for installing the Bookinfo sample app.

Procedure from CLI

1. Log in to the OpenShift Container Platform CLI.

2. Verify that all pods are ready with this command:

All pods should have a status of Running. You should see output similar to the following:

3. Run the following command to retrieve the URL for the product page:

4. Copy and paste the output in a web browser to verify the Bookinfo product page is deployed.

Procedure from Kiali web console

1. Obtain the address for the Kiali web console.

a. Log in to the OpenShift Container Platform web console as a user with cluster-admin

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.3/samples/bookinfo/networking/destination-rule-all-mtls.yaml

destinationrule.networking.istio.io/productpage created
destinationrule.networking.istio.io/reviews created
destinationrule.networking.istio.io/ratings created
destinationrule.networking.istio.io/details created

$ oc get pods -n bookinfo

NAME READY STATUS RESTARTS AGE
details-v1-55b869668-jh7hb 2/2 Running 0 12m
productpage-v1-6fc77ff794-nsl8r 2/2 Running 0 12m
ratings-v1-7d7d8d8b56-55scn 2/2 Running 0 12m
reviews-v1-868597db96-bdxgq 2/2 Running 0 12m
reviews-v2-5b64f47978-cvssp 2/2 Running 0 12m
reviews-v3-6dfd49b55b-vcwpf 2/2 Running 0 12m

echo "http://$GATEWAY_URL/productpage"

OpenShift Container Platform 4.9 Service Mesh

358

a. Log in to the OpenShift Container Platform web console as a user with cluster-admin
rights. If you use Red Hat OpenShift Dedicated, you must have an account with the
dedicated-admin role.

b. Navigate to Networking → Routes.

c. On the Routes page, select the Service Mesh control plane project, for example istio-
system, from the Namespace menu.
The Location column displays the linked address for each route.

d. Click the link in the Location column for Kiali.

e. Click Log In With OpenShift. The Kiali Overview screen presents tiles for each project
namespace.

2. In Kiali, click Graph.

3. Select bookinfo from the Namespace list, and App graph from the Graph Type list.

4. Click Display idle nodes from the Display menu.
This displays nodes that are defined but have not received or sent requests. It can confirm that
an application is properly defined, but that no request traffic has been reported.

Use the Duration menu to increase the time period to help ensure older traffic is captured.

Use the Refresh Rate menu to refresh traffic more or less often, or not at all.

5. Click Services, Workloads or Istio Config to see list views of bookinfo components, and
confirm that they are healthy.

2.8.6.4. Removing the Bookinfo application

Follow these steps to remove the Bookinfo application.

Prerequisites

OpenShift Container Platform 4.1 or higher installed.

Red Hat OpenShift Service Mesh 2.3.2 installed.

CHAPTER 2. SERVICE MESH 1.X

359

Access to the OpenShift CLI (oc).

2.8.6.4.1. Delete the Bookinfo project

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Click to Home → Projects.

3. Click the bookinfo menu , and then click Delete Project.

4. Type bookinfo in the confirmation dialog box, and then click Delete.

Alternatively, you can run this command using the CLI to create the bookinfo project.

2.8.6.4.2. Remove the Bookinfo project from the Service Mesh member roll

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Click Operators → Installed Operators.

3. Click the Project menu and choose istio-system from the list.

4. Click the Istio Service Mesh Member Roll link under Provided APIS for the Red Hat
OpenShift Service Mesh Operator.

5. Click the ServiceMeshMemberRoll menu and select Edit Service Mesh Member Roll.

6. Edit the default Service Mesh Member Roll YAML and remove bookinfo from the members list.

Alternatively, you can run this command using the CLI to remove the bookinfo project from
the ServiceMeshMemberRoll. In this example, istio-system is the name of the Service
Mesh control plane project.

7. Click Save to update Service Mesh Member Roll.

2.8.7. Generating example traces and analyzing trace data

Jaeger is an open source distributed tracing system. With Jaeger, you can perform a trace that follows
the path of a request through various microservices which make up an application. Jaeger is installed by
default as part of the Service Mesh.

This tutorial uses Service Mesh and the Bookinfo sample application to demonstrate how you can use

$ oc delete project bookinfo

$ oc -n istio-system patch --type='json' smmr default -p '[{"op": "remove", "path":
"/spec/members", "value":["'"bookinfo"'"]}]'

OpenShift Container Platform 4.9 Service Mesh

360

This tutorial uses Service Mesh and the Bookinfo sample application to demonstrate how you can use
Jaeger to perform distributed tracing.

Prerequisites:

OpenShift Container Platform 4.1 or higher installed.

Red Hat OpenShift Service Mesh 2.3.2 installed.

Jaeger enabled during the installation.

Bookinfo example application installed.

Procedure

1. After installing the Bookinfo sample application, send traffic to the mesh. Enter the following
command several times.

This command simulates a user visiting the productpage microservice of the application.

2. In the OpenShift Container Platform console, navigate to Networking → Routes and search for
the Jaeger route, which is the URL listed under Location.

Alternatively, use the CLI to query for details of the route. In this example, istio-system is
the Service Mesh control plane namespace:

a. Enter the following command to reveal the URL for the Jaeger console. Paste the result
in a browser and navigate to that URL.

3. Log in using the same user name and password as you use to access the OpenShift Container
Platform console.

4. In the left pane of the Jaeger dashboard, from the Service menu, select productpage.bookinfo
and click Find Traces at the bottom of the pane. A list of traces is displayed.

5. Click one of the traces in the list to open a detailed view of that trace. If you click the first one in
the list, which is the most recent trace, you see the details that correspond to the latest refresh
of the /productpage.

2.9. DATA VISUALIZATION AND OBSERVABILITY

$ curl "http://$GATEWAY_URL/productpage"

$ export JAEGER_URL=$(oc get route -n istio-system jaeger -o jsonpath='{.spec.host}')

echo $JAEGER_URL

CHAPTER 2. SERVICE MESH 1.X

361

WARNING

You are viewing documentation for a Red Hat OpenShift Service Mesh release
that is no longer supported.

Service Mesh version 1.0 and 1.1 control planes are no longer supported. For
information about upgrading your service mesh control plane, see Upgrading
Service Mesh.

For information about the support status of a particular Red Hat OpenShift Service
Mesh release, see the Product lifecycle page .

You can view your application’s topology, health and metrics in the Kiali console. If your service is having
issues, the Kiali console offers ways to visualize the data flow through your service. You can view insights
about the mesh components at different levels, including abstract applications, services, and workloads.
It also provides an interactive graph view of your namespace in real time.

Before you begin

You can observe the data flow through your application if you have an application installed. If you don’t
have your own application installed, you can see how observability works in Red Hat OpenShift Service
Mesh by installing the Bookinfo sample application.

2.9.1. Viewing service mesh data

The Kiali operator works with the telemetry data gathered in Red Hat OpenShift Service Mesh to
provide graphs and real-time network diagrams of the applications, services, and workloads in your
namespace.

To access the Kiali console you must have Red Hat OpenShift Service Mesh installed and projects
configured for the service mesh.

Procedure

1. Use the perspective switcher to switch to the Administrator perspective.

2. Click Home → Projects.

3. Click the name of your project. For example, click bookinfo.

4. In the Launcher section, click Kiali.

5. Log in to the Kiali console with the same user name and password that you use to access the
OpenShift Container Platform console.

When you first log in to the Kiali Console, you see the Overview page which displays all the namespaces
in your service mesh that you have permission to view.

If you are validating the console installation, there might not be any data to display.

2.9.2. Viewing service mesh data in the Kiali console



OpenShift Container Platform 4.9 Service Mesh

362

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-versions_ossm-upgrade
https://access.redhat.com/support/policy/updates/openshift#ossm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-tutorial-bookinfo-overview_deploying-applications-ossm-v1x

The Kiali Graph offers a powerful visualization of your mesh traffic. The topology combines real-time
request traffic with your Istio configuration information to present immediate insight into the behavior
of your service mesh, letting you quickly pinpoint issues. Multiple Graph Types let you visualize traffic as a
high-level service topology, a low-level workload topology, or as an application-level topology.

There are several graphs to choose from:

The App graph shows an aggregate workload for all applications that are labeled the same.

The Service graph shows a node for each service in your mesh but excludes all applications and
workloads from the graph. It provides a high level view and aggregates all traffic for defined
services.

The Versioned App graph shows a node for each version of an application. All versions of an
application are grouped together.

The Workload graph shows a node for each workload in your service mesh. This graph does not
require you to use the application and version labels. If your application does not use version
labels, use this the graph.

Graph nodes are decorated with a variety of information, pointing out various route routing options like
virtual services and service entries, as well as special configuration like fault-injection and circuit
breakers. It can identify mTLS issues, latency issues, error traffic and more. The Graph is highly
configurable, can show traffic animation, and has powerful Find and Hide abilities.

Click the Legend button to view information about the shapes, colors, arrows, and badges displayed in
the graph.

To view a summary of metrics, select any node or edge in the graph to display its metric details in the
summary details panel.

2.9.2.1. Changing graph layouts in Kiali

The layout for the Kiali graph can render differently depending on your application architecture and the
data to display. For example, the number of graph nodes and their interactions can determine how the
Kiali graph is rendered. Because it is not possible to create a single layout that renders nicely for every
situation, Kiali offers a choice of several different layouts.

Prerequisites

If you do not have your own application installed, install the Bookinfo sample application. Then
generate traffic for the Bookinfo application by entering the following command several times.

This command simulates a user visiting the productpage microservice of the application.

Procedure

1. Launch the Kiali console.

2. Click Log In With OpenShift.

3. In Kiali console, click Graph to view a namespace graph.

4. From the Namespace menu, select your application namespace, for example, bookinfo.

$ curl "http://$GATEWAY_URL/productpage"

CHAPTER 2. SERVICE MESH 1.X

363

5. To choose a different graph layout, do either or both of the following:

Select different graph data groupings from the menu at the top of the graph.

App graph

Service graph

Versioned App graph (default)

Workload graph

Select a different graph layout from the Legend at the bottom of the graph.

Layout default dagre

Layout 1 cose-bilkent

Layout 2 cola

2.10. CUSTOM RESOURCES

WARNING

You are viewing documentation for a Red Hat OpenShift Service Mesh release
that is no longer supported.

Service Mesh version 1.0 and 1.1 control planes are no longer supported. For
information about upgrading your service mesh control plane, see Upgrading
Service Mesh.

For information about the support status of a particular Red Hat OpenShift Service
Mesh release, see the Product lifecycle page .

You can customize your Red Hat OpenShift Service Mesh by modifying the default Service Mesh
custom resource or by creating a new custom resource.

2.10.1. Prerequisites

An account with the cluster-admin role.

Completed the Preparing to install Red Hat OpenShift Service Mesh process.

Have installed the operators.

2.10.2. Red Hat OpenShift Service Mesh custom resources

NOTE



OpenShift Container Platform 4.9 Service Mesh

364

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-versions_ossm-upgrade
https://access.redhat.com/support/policy/updates/openshift#ossm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#preparing-ossm-installation-v1x

NOTE

The istio-system project is used as an example throughout the Service Mesh
documentation, but you can use other projects as necessary.

A custom resource allows you to extend the API in an Red Hat OpenShift Service Mesh project or
cluster. When you deploy Service Mesh it creates a default ServiceMeshControlPlane that you can
modify to change the project parameters.

The Service Mesh operator extends the API by adding the ServiceMeshControlPlane resource type,
which enables you to create ServiceMeshControlPlane objects within projects. By creating a
ServiceMeshControlPlane object, you instruct the Operator to install a Service Mesh control plane into
the project, configured with the parameters you set in the ServiceMeshControlPlane object.

This example ServiceMeshControlPlane definition contains all of the supported parameters and
deploys Red Hat OpenShift Service Mesh 1.1.18.2 images based on Red Hat Enterprise Linux (RHEL).

IMPORTANT

The 3scale Istio Adapter is deployed and configured in the custom resource file. It also
requires a working 3scale account (SaaS or On-Premises).

Example istio-installation.yaml

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
metadata:
 name: basic-install
spec:

 istio:
 global:
 proxy:
 resources:
 requests:
 cpu: 100m
 memory: 128Mi
 limits:
 cpu: 500m
 memory: 128Mi

 gateways:
 istio-egressgateway:
 autoscaleEnabled: false
 istio-ingressgateway:
 autoscaleEnabled: false
 ior_enabled: false

 mixer:
 policy:
 autoscaleEnabled: false

 telemetry:
 autoscaleEnabled: false
 resources:

CHAPTER 2. SERVICE MESH 1.X

365

https://www.3scale.net/signup/
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.4/html/infrastructure/onpremises-installation

2.10.3. ServiceMeshControlPlane parameters

The following examples illustrate use of the ServiceMeshControlPlane parameters and the tables
provide additional information about supported parameters.

IMPORTANT

The resources you configure for Red Hat OpenShift Service Mesh with these parameters,
including CPUs, memory, and the number of pods, are based on the configuration of your
OpenShift Container Platform cluster. Configure these parameters based on the
available resources in your current cluster configuration.

2.10.3.1. Istio global example

Here is an example that illustrates the Istio global parameters for the ServiceMeshControlPlane and a
description of the available parameters with appropriate values.

NOTE

In order for the 3scale Istio Adapter to work, disablePolicyChecks must be false.

Example global parameters

 requests:
 cpu: 100m
 memory: 1G
 limits:
 cpu: 500m
 memory: 4G

 pilot:
 autoscaleEnabled: false
 traceSampling: 100

 kiali:
 enabled: true

 grafana:
 enabled: true

 tracing:
 enabled: true
 jaeger:
 template: all-in-one

 istio:
 global:
 tag: 1.1.0
 hub: registry.redhat.io/openshift-service-mesh/
 proxy:
 resources:
 requests:
 cpu: 10m
 memory: 128Mi

OpenShift Container Platform 4.9 Service Mesh

366

Table 2.4. Global parameters

Parameter Description Values Default value

disablePolicyChecks This parameter
enables/disables policy
checks.

true/false true

policyCheckFailOpe
n

This parameter indicates
whether traffic is
allowed to pass through
to the Envoy sidecar
when the Mixer policy
service cannot be
reached.

true/false false

tag The tag that the
Operator uses to pull the
Istio images.

A valid container image
tag.

1.1.0

hub The hub that the
Operator uses to pull
Istio images.

A valid image repository. maistra/ or
registry.redhat.io/op
enshift-service-
mesh/

mtls This parameter controls
whether to
enable/disable Mutual
Transport Layer
Security (mTLS)
between services by
default.

true/false false

imagePullSecrets If access to the registry
providing the Istio
images is secure, list an
imagePullSecret here.

redhat-registry-
pullsecret OR quay-
pullsecret

None

These parameters are specific to the proxy subset of global parameters.

Table 2.5. Proxy parameters

 limits:
 mtls:
 enabled: false
 disablePolicyChecks: true
 policyCheckFailOpen: false
 imagePullSecrets:
 - MyPullSecret

CHAPTER 2. SERVICE MESH 1.X

367

https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod

Type Parameter Description Values Default value

requests cpu The amount of
CPU resources
requested for
Envoy proxy.

CPU resources,
specified in cores
or millicores (for
example, 200m,
0.5, 1) based on
your
environment’s
configuration.

10m

 memory The amount of
memory requested
for Envoy proxy

Available memory
in bytes(for
example, 200Ki,
50Mi, 5Gi) based
on your
environment’s
configuration.

128Mi

limits cpu The maximum
amount of CPU
resources
requested for
Envoy proxy.

CPU resources,
specified in cores
or millicores (for
example, 200m,
0.5, 1) based on
your
environment’s
configuration.

2000m

 memory The maximum
amount of memory
Envoy proxy is
permitted to use.

Available memory
in bytes (for
example, 200Ki,
50Mi, 5Gi) based
on your
environment’s
configuration.

1024Mi

2.10.3.2. Istio gateway configuration

Here is an example that illustrates the Istio gateway parameters for the ServiceMeshControlPlane and
a description of the available parameters with appropriate values.

Example gateway parameters

 gateways:
 egress:
 enabled: true
 runtime:
 deployment:
 autoScaling:
 enabled: true
 maxReplicas: 5
 minReplicas: 1

OpenShift Container Platform 4.9 Service Mesh

368

Table 2.6. Istio Gateway parameters

Parameter Description Values Default value

gateways.egress.run
time.deployment.aut
oScaling.enabled

This parameter
enables/disables
autoscaling.

true/false true

gateways.egress.run
time.deployment.aut
oScaling.minReplica
s

The minimum number of
pods to deploy for the
egress gateway based
on the
autoscaleEnabled
setting.

A valid number of
allocatable pods based
on your environment’s
configuration.

1

gateways.egress.run
time.deployment.aut
oScaling.maxReplica
s

The maximum number
of pods to deploy for the
egress gateway based
on the
autoscaleEnabled
setting.

A valid number of
allocatable pods based
on your environment’s
configuration.

5

gateways.ingress.ru
ntime.deployment.au
toScaling.enabled

This parameter
enables/disables
autoscaling.

true/false true

gateways.ingress.ru
ntime.deployment.au
toScaling.minReplic
as

The minimum number of
pods to deploy for the
ingress gateway based
on the
autoscaleEnabled
setting.

A valid number of
allocatable pods based
on your environment’s
configuration.

1

gateways.ingress.ru
ntime.deployment.au
toScaling.maxReplic
as

The maximum number
of pods to deploy for the
ingress gateway based
on the
autoscaleEnabled
setting.

A valid number of
allocatable pods based
on your environment’s
configuration.

5

Cluster administrators can refer to Using wildcard routes for instructions on how to enable subdomains.

 enabled: true
 ingress:
 enabled: true
 runtime:
 deployment:
 autoScaling:
 enabled: true
 maxReplicas: 5
 minReplicas: 1

CHAPTER 2. SERVICE MESH 1.X

369

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/networking/#using-wildcard-routes_configuring-ingress

2.10.3.3. Istio Mixer configuration

Here is an example that illustrates the Mixer parameters for the ServiceMeshControlPlane and a
description of the available parameters with appropriate values.

Example mixer parameters

Table 2.7. Istio Mixer policy parameters

Parameter Description Values Default value

enabled This parameter
enables/disables Mixer.

true/false true

autoscaleEnabled This parameter
enables/disables
autoscaling. Disable this
for small environments.

true/false true

autoscaleMin The minimum number of
pods to deploy based on
the autoscaleEnabled
setting.

A valid number of
allocatable pods based
on your environment’s
configuration.

1

autoscaleMax The maximum number
of pods to deploy based
on the
autoscaleEnabled
setting.

A valid number of
allocatable pods based
on your environment’s
configuration.

5

Table 2.8. Istio Mixer telemetry parameters

Type Parameter Description Values Default

requests cpu The percentage of
CPU resources
requested for
Mixer telemetry.

CPU resources in
millicores based
on your
environment’s
configuration.

10m

mixer:
 enabled: true
 policy:
 autoscaleEnabled: false
 telemetry:
 autoscaleEnabled: false
 resources:
 requests:
 cpu: 10m
 memory: 128Mi
 limits:

OpenShift Container Platform 4.9 Service Mesh

370

 memory The amount of
memory requested
for Mixer
telemetry.

Available memory
in bytes (for
example, 200Ki,
50Mi, 5Gi) based
on your
environment’s
configuration.

128Mi

limits cpu The maximum
percentage of
CPU resources
Mixer telemetry is
permitted to use.

CPU resources in
millicores based
on your
environment’s
configuration.

4800m

 memory The maximum
amount of memory
Mixer telemetry is
permitted to use.

Available memory
in bytes (for
example, 200Ki,
50Mi, 5Gi) based
on your
environment’s
configuration.

4G

Type Parameter Description Values Default

2.10.3.4. Istio Pilot configuration

You can configure Pilot to schedule or set limits on resource allocation. The following example illustrates
the Pilot parameters for the ServiceMeshControlPlane and a description of the available parameters
with appropriate values.

Example pilot parameters

spec:
 runtime:
 components:
 pilot:
 deployment:
 autoScaling:
 enabled: true
 minReplicas: 1
 maxReplicas: 5
 targetCPUUtilizationPercentage: 85
 pod:
 tolerations:
 - key: node.kubernetes.io/unreachable
 operator: Exists
 effect: NoExecute
 tolerationSeconds: 60
 affinity:
 podAntiAffinity:
 requiredDuringScheduling:

CHAPTER 2. SERVICE MESH 1.X

371

Table 2.9. Istio Pilot parameters

Parameter Description Values Default value

cpu The percentage of CPU
resources requested for
Pilot.

CPU resources in
millicores based on your
environment’s
configuration.

10m

memory The amount of memory
requested for Pilot.

Available memory in
bytes (for example,
200Ki, 50Mi, 5Gi) based
on your environment’s
configuration.

128Mi

autoscaleEnabled This parameter
enables/disables
autoscaling. Disable this
for small environments.

true/false true

traceSampling This value controls how
often random sampling
occurs. Note: Increase
for development or
testing.

A valid percentage. 1.0

2.10.4. Configuring Kiali

When the Service Mesh Operator creates the ServiceMeshControlPlane it also processes the Kiali
resource. The Kiali Operator then uses this object when creating Kiali instances.

The default Kiali parameters specified in the ServiceMeshControlPlane are as follows:

Example Kiali parameters

 - key: istio
 topologyKey: kubernetes.io/hostname
 operator: In
 values:
 - pilot
 container:
 resources:
 limits:
 cpu: 100m
 memory: 128M

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 kiali:
 enabled: true
 dashboard:

OpenShift Container Platform 4.9 Service Mesh

372

Table 2.10. Kiali parameters

Parameter Description Values Default value

enabled
This parameter
enables/disables Kiali.
Kiali is enabled by
default.

true/false true

dashboard
 viewOnlyMode

This parameter
enables/disables view-
only mode for the Kiali
console. When view-
only mode is enabled,
users cannot use the
console to make
changes to the Service
Mesh.

true/false false

ingress
 enabled

This parameter
enables/disables ingress
for Kiali.

true/false true

2.10.4.1. Configuring Kiali for Grafana

When you install Kiali and Grafana as part of Red Hat OpenShift Service Mesh the Operator configures
the following by default:

Grafana is enabled as an external service for Kiali

Grafana authorization for the Kiali console

Grafana URL for the Kiali console

Kiali can automatically detect the Grafana URL. However if you have a custom Grafana installation that
is not easily auto-detectable by Kiali, you must update the URL value in the ServiceMeshControlPlane
resource.

Additional Grafana parameters

 viewOnlyMode: false
 ingress:
 enabled: true

spec:
 kiali:
 enabled: true
 dashboard:
 viewOnlyMode: false
 grafanaURL: "https://grafana-istio-system.127.0.0.1.nip.io"
 ingress:
 enabled: true

CHAPTER 2. SERVICE MESH 1.X

373

2.10.4.2. Configuring Kiali for Jaeger

When you install Kiali and Jaeger as part of Red Hat OpenShift Service Mesh the Operator configures
the following by default:

Jaeger is enabled as an external service for Kiali

Jaeger authorization for the Kiali console

Jaeger URL for the Kiali console

Kiali can automatically detect the Jaeger URL. However if you have a custom Jaeger installation that is
not easily auto-detectable by Kiali, you must update the URL value in the ServiceMeshControlPlane
resource.

Additional Jaeger parameters

2.10.5. Configuring Jaeger

When the Service Mesh Operator creates the ServiceMeshControlPlane resource it can also create
the resources for distributed tracing. Service Mesh uses Jaeger for distributed tracing.

You can specify your Jaeger configuration in either of two ways:

Configure Jaeger in the ServiceMeshControlPlane resource. There are some limitations with
this approach.

Configure Jaeger in a custom Jaeger resource and then reference that Jaeger instance in the
ServiceMeshControlPlane resource. If a Jaeger resource matching the value of name exists,
the control plane will use the existing installation. This approach lets you fully customize your
Jaeger configuration.

The default Jaeger parameters specified in the ServiceMeshControlPlane are as follows:

Default all-in-one Jaeger parameters

spec:
 kiali:
 enabled: true
 dashboard:
 viewOnlyMode: false
 jaegerURL: "http://jaeger-query-istio-system.127.0.0.1.nip.io"
 ingress:
 enabled: true

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 version: v1.1
 istio:
 tracing:
 enabled: true
 jaeger:
 template: all-in-one

OpenShift Container Platform 4.9 Service Mesh

374

Table 2.11. Jaeger parameters

Parameter Description Values Default value

tracing:
 enabled:

This parameter
enables/disables
installing and deploying
tracing by the Service
Mesh Operator.
Installing Jaeger is
enabled by default. To
use an existing Jaeger
deployment, set this
value to false.

true/false true

jaeger:
 template:

This parameter specifies
which Jaeger
deployment strategy to
use.

all-in-one-
For
development,
testing,
demonstrations
, and proof of
concept.

production-
elasticsearch
- For
production use.

all-in-one

NOTE

The default template in the ServiceMeshControlPlane resource is the all-in-one
deployment strategy which uses in-memory storage. For production, the only supported
storage option is Elasticsearch, therefore you must configure the
ServiceMeshControlPlane to request the production-elasticsearch template when you
deploy Service Mesh within a production environment.

2.10.5.1. Configuring Elasticsearch

The default Jaeger deployment strategy uses the all-in-one template so that the installation can be
completed using minimal resources. However, because the all-in-one template uses in-memory storage,
it is only recommended for development, demo, or testing purposes and should NOT be used for
production environments.

If you are deploying Service Mesh and Jaeger in a production environment you must change the
template to the production-elasticsearch template, which uses Elasticsearch for Jaeger’s storage
needs.

Elasticsearch is a memory intensive application. The initial set of nodes specified in the default
OpenShift Container Platform installation may not be large enough to support the Elasticsearch cluster.
You should modify the default Elasticsearch configuration to match your use case and the resources
you have requested for your OpenShift Container Platform installation. You can adjust both the CPU
and memory limits for each component by modifying the resources block with valid CPU and memory

CHAPTER 2. SERVICE MESH 1.X

375

values. Additional nodes must be added to the cluster if you want to run with the recommended amount
(or more) of memory. Ensure that you do not exceed the resources requested for your OpenShift
Container Platform installation.

Default "production" Jaeger parameters with Elasticsearch

Table 2.12. Elasticsearch parameters

Parameter Description Values Default Value Examples

tracing:
 enabled:

This parameter
enables/disables
tracing in Service
Mesh. Jaeger is
installed by
default.

true/false true

ingress:
 enabled:

This parameter
enables/disables
ingress for Jaeger.

true/false true

jaeger:
 template:

This parameter
specifies which
Jaeger
deployment
strategy to use.

all-in-
one/production
-elasticsearch

all-in-one

elasticsearch:
 nodeCount:

Number of
Elasticsearch
nodes to create.

Integer value. 1 Proof of concept =
1, Minimum
deployment =3

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 tracing:
 enabled: true
 ingress:
 enabled: true
 jaeger:
 template: production-elasticsearch
 elasticsearch:
 nodeCount: 3
 redundancyPolicy:
 resources:
 requests:
 cpu: "1"
 memory: "16Gi"
 limits:
 cpu: "1"
 memory: "16Gi"

OpenShift Container Platform 4.9 Service Mesh

376

requests:
 cpu:

Number of central
processing units
for requests, based
on your
environment’s
configuration.

Specified in cores
or millicores (for
example, 200m,
0.5, 1).

1Gi Proof of concept =
500m, Minimum
deployment =1

requests:
 memory:

Available memory
for requests, based
on your
environment’s
configuration.

Specified in bytes
(for example,
200Ki, 50Mi, 5Gi).

500m Proof of concept =
1Gi, Minimum
deployment =
16Gi*

limits:
 cpu:

Limit on number
of central
processing units,
based on your
environment’s
configuration.

Specified in cores
or millicores (for
example, 200m,
0.5, 1).

 Proof of concept =
500m, Minimum
deployment =1

limits:
 memory:

Available memory
limit based on your
environment’s
configuration.

Specified in bytes
(for example,
200Ki, 50Mi, 5Gi).

 Proof of concept =
1Gi, Minimum
deployment =
16Gi*

* Each Elasticsearch node can operate with a lower memory setting though this is not
recommended for production deployments. For production use, you should have no
less than 16Gi allocated to each pod by default, but preferably allocate as much as you
can, up to 64Gi per pod.

Parameter Description Values Default Value Examples

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Navigate to Operators → Installed Operators.

3. Click the Red Hat OpenShift Service Mesh Operator.

4. Click the Istio Service Mesh Control Plane tab.

5. Click the name of your control plane file, for example, basic-install.

6. Click the YAML tab.

7. Edit the Jaeger parameters, replacing the default all-in-one template with parameters for the
production-elasticsearch template, modified for your use case. Ensure that the indentation is
correct.

8. Click Save.

CHAPTER 2. SERVICE MESH 1.X

377

9. Click Reload. OpenShift Container Platform redeploys Jaeger and creates the Elasticsearch
resources based on the specified parameters.

2.10.5.2. Connecting to an existing Jaeger instance

In order for the SMCP to connect to an existing Jaeger instance, the following must be true:

The Jaeger instance is deployed in the same namespace as the control plane, for example, into
the istio-system namespace.

To enable secure communication between services, you should enable the oauth-proxy, which
secures communication to your Jaeger instance, and make sure the secret is mounted into your
Jaeger instance so Kiali can communicate with it.

To use a custom or already existing Jaeger instance, set spec.istio.tracing.enabled to "false"
to disable the deployment of a Jaeger instance.

Supply the correct jaeger-collector endpoint to Mixer by setting
spec.istio.global.tracer.zipkin.address to the hostname and port of your jaeger-collector
service. The hostname of the service is usually <jaeger-instance-name>-collector.
<namespace>.svc.cluster.local.

Supply the correct jaeger-query endpoint to Kiali for gathering traces by setting
spec.istio.kiali.jaegerInClusterURL to the hostname of your jaeger-query service - the port is
normally not required, as it uses 443 by default. The hostname of the service is usually <jaeger-
instance-name>-query.<namespace>.svc.cluster.local.

Supply the dashboard URL of your Jaeger instance to Kiali to enable accessing Jaeger through
the Kiali console. You can retrieve the URL from the OpenShift route that is created by the
Jaeger Operator. If your Jaeger resource is called external-jaeger and resides in the istio-
system project, you can retrieve the route using the following command:

Example output

The value under HOST/PORT is the externally accessible URL of the Jaeger dashboard.

Example Jaeger resource

$ oc get route -n istio-system external-jaeger

NAME HOST/PORT PATH SERVICES [...]
external-jaeger external-jaeger-istio-system.apps.test external-jaeger-query [...]

apiVersion: jaegertracing.io/v1
kind: "Jaeger"
metadata:
 name: "external-jaeger"
 # Deploy to the Control Plane Namespace
 namespace: istio-system
spec:
 # Set Up Authentication
 ingress:
 enabled: true
 security: oauth-proxy
 openshift:

OpenShift Container Platform 4.9 Service Mesh

378

The following ServiceMeshControlPlane example assumes that you have deployed Jaeger using the
Jaeger Operator and the example Jaeger resource.

Example ServiceMeshControlPlane with external Jaeger

2.10.5.3. Configuring Elasticsearch

The default Jaeger deployment strategy uses the all-in-one template so that the installation can be
completed using minimal resources. However, because the all-in-one template uses in-memory storage,
it is only recommended for development, demo, or testing purposes and should NOT be used for
production environments.

If you are deploying Service Mesh and Jaeger in a production environment you must change the
template to the production-elasticsearch template, which uses Elasticsearch for Jaeger’s storage
needs.

Elasticsearch is a memory intensive application. The initial set of nodes specified in the default
OpenShift Container Platform installation may not be large enough to support the Elasticsearch cluster.
You should modify the default Elasticsearch configuration to match your use case and the resources

 # This limits user access to the Jaeger instance to users who have access
 # to the control plane namespace. Make sure to set the correct namespace here
 sar: '{"namespace": "istio-system", "resource": "pods", "verb": "get"}'
 htpasswdFile: /etc/proxy/htpasswd/auth

 volumeMounts:
 - name: secret-htpasswd
 mountPath: /etc/proxy/htpasswd
 volumes:
 - name: secret-htpasswd
 secret:
 secretName: htpasswd

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
metadata:
 name: external-jaeger
 namespace: istio-system
spec:
 version: v1.1
 istio:
 tracing:
 # Disable Jaeger deployment by service mesh operator
 enabled: false
 global:
 tracer:
 zipkin:
 # Set Endpoint for Trace Collection
 address: external-jaeger-collector.istio-system.svc.cluster.local:9411
 kiali:
 # Set Jaeger dashboard URL
 dashboard:
 jaegerURL: https://external-jaeger-istio-system.apps.test
 # Set Endpoint for Trace Querying
 jaegerInClusterURL: external-jaeger-query.istio-system.svc.cluster.local

CHAPTER 2. SERVICE MESH 1.X

379

you have requested for your OpenShift Container Platform installation. You can adjust both the CPU
and memory limits for each component by modifying the resources block with valid CPU and memory
values. Additional nodes must be added to the cluster if you want to run with the recommended amount
(or more) of memory. Ensure that you do not exceed the resources requested for your OpenShift
Container Platform installation.

Default "production" Jaeger parameters with Elasticsearch

Table 2.13. Elasticsearch parameters

Parameter Description Values Default Value Examples

tracing:
 enabled:

This parameter
enables/disables
tracing in Service
Mesh. Jaeger is
installed by
default.

true/false true

ingress:
 enabled:

This parameter
enables/disables
ingress for Jaeger.

true/false true

jaeger:
 template:

This parameter
specifies which
Jaeger
deployment
strategy to use.

all-in-
one/production
-elasticsearch

all-in-one

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 tracing:
 enabled: true
 ingress:
 enabled: true
 jaeger:
 template: production-elasticsearch
 elasticsearch:
 nodeCount: 3
 redundancyPolicy:
 resources:
 requests:
 cpu: "1"
 memory: "16Gi"
 limits:
 cpu: "1"
 memory: "16Gi"

OpenShift Container Platform 4.9 Service Mesh

380

elasticsearch:
 nodeCount:

Number of
Elasticsearch
nodes to create.

Integer value. 1 Proof of concept =
1, Minimum
deployment =3

requests:
 cpu:

Number of central
processing units
for requests, based
on your
environment’s
configuration.

Specified in cores
or millicores (for
example, 200m,
0.5, 1).

1Gi Proof of concept =
500m, Minimum
deployment =1

requests:
 memory:

Available memory
for requests, based
on your
environment’s
configuration.

Specified in bytes
(for example,
200Ki, 50Mi, 5Gi).

500m Proof of concept =
1Gi, Minimum
deployment =
16Gi*

limits:
 cpu:

Limit on number
of central
processing units,
based on your
environment’s
configuration.

Specified in cores
or millicores (for
example, 200m,
0.5, 1).

 Proof of concept =
500m, Minimum
deployment =1

limits:
 memory:

Available memory
limit based on your
environment’s
configuration.

Specified in bytes
(for example,
200Ki, 50Mi, 5Gi).

 Proof of concept =
1Gi, Minimum
deployment =
16Gi*

* Each Elasticsearch node can operate with a lower memory setting though this is not
recommended for production deployments. For production use, you should have no
less than 16Gi allocated to each pod by default, but preferably allocate as much as you
can, up to 64Gi per pod.

Parameter Description Values Default Value Examples

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Navigate to Operators → Installed Operators.

3. Click the Red Hat OpenShift Service Mesh Operator.

4. Click the Istio Service Mesh Control Plane tab.

5. Click the name of your control plane file, for example, basic-install.

6. Click the YAML tab.

7. Edit the Jaeger parameters, replacing the default all-in-one template with parameters for the

CHAPTER 2. SERVICE MESH 1.X

381

7. Edit the Jaeger parameters, replacing the default all-in-one template with parameters for the
production-elasticsearch template, modified for your use case. Ensure that the indentation is
correct.

8. Click Save.

9. Click Reload. OpenShift Container Platform redeploys Jaeger and creates the Elasticsearch
resources based on the specified parameters.

2.10.5.4. Configuring the Elasticsearch index cleaner job

When the Service Mesh Operator creates the ServiceMeshControlPlane it also creates the custom
resource (CR) for Jaeger. The Red Hat OpenShift distributed tracing platform Operator then uses this
CR when creating Jaeger instances.

When using Elasticsearch storage, by default a job is created to clean old traces from it. To configure
the options for this job, you edit the Jaeger custom resource (CR), to customize it for your use case. The
relevant options are listed below.

Table 2.14. Elasticsearch index cleaner parameters

Parameter Values Description

enabled: true/ false Enable or disable the index
cleaner job.

numberOfDays: integer value Number of days to wait before
deleting an index.

schedule: "55 23 * * *" Cron expression for the job to run

For more information about configuring Elasticsearch with OpenShift Container Platform, see
Configuring the log store.

2.10.6. 3scale configuration

The following table explains the parameters for the 3scale Istio Adapter in the
ServiceMeshControlPlane resource.

Example 3scale parameters

 apiVersion: jaegertracing.io/v1
 kind: Jaeger
 spec:
 strategy: production
 storage:
 type: elasticsearch
 esIndexCleaner:
 enabled: false
 numberOfDays: 7
 schedule: "55 23 * * *"

spec:

OpenShift Container Platform 4.9 Service Mesh

382

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/logging/#configuring-the-log-store

Table 2.15. 3scale parameters

Parameter Description Values Default value

enabled Whether to use the
3scale adapter

true/false false

PARAM_THREESCA
LE_LISTEN_ADDR

Sets the listen address
for the gRPC server

Valid port number 3333

PARAM_THREESCA
LE_LOG_LEVEL

Sets the minimum log
output level.

debug, info, warn,
error, or none

info

PARAM_THREESCA
LE_LOG_JSON

Controls whether the log
is formatted as JSON

true/false true

PARAM_THREESCA
LE_LOG_GRPC

Controls whether the log
contains gRPC info

true/false true

PARAM_THREESCA
LE_REPORT_METRI
CS

Controls whether 3scale
system and backend
metrics are collected
and reported to
Prometheus

true/false true

PARAM_THREESCA
LE_METRICS_PORT

Sets the port that the
3scale /metrics
endpoint can be
scrapped from

Valid port number 8080

 addons:
 3Scale:
 enabled: false
 PARAM_THREESCALE_LISTEN_ADDR: 3333
 PARAM_THREESCALE_LOG_LEVEL: info
 PARAM_THREESCALE_LOG_JSON: true
 PARAM_THREESCALE_LOG_GRPC: false
 PARAM_THREESCALE_REPORT_METRICS: true
 PARAM_THREESCALE_METRICS_PORT: 8080
 PARAM_THREESCALE_CACHE_TTL_SECONDS: 300
 PARAM_THREESCALE_CACHE_REFRESH_SECONDS: 180
 PARAM_THREESCALE_CACHE_ENTRIES_MAX: 1000
 PARAM_THREESCALE_CACHE_REFRESH_RETRIES: 1
 PARAM_THREESCALE_ALLOW_INSECURE_CONN: false
 PARAM_THREESCALE_CLIENT_TIMEOUT_SECONDS: 10
 PARAM_THREESCALE_GRPC_CONN_MAX_SECONDS: 60
 PARAM_USE_CACHED_BACKEND: false
 PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS: 15
 PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED: true

CHAPTER 2. SERVICE MESH 1.X

383

PARAM_THREESCA
LE_CACHE_TTL_SE
CONDS

Time period, in seconds,
to wait before purging
expired items from the
cache

Time period in seconds 300

PARAM_THREESCA
LE_CACHE_REFRES
H_SECONDS

Time period before
expiry when cache
elements are attempted
to be refreshed

Time period in seconds 180

PARAM_THREESCA
LE_CACHE_ENTRIE
S_MAX

Max number of items
that can be stored in the
cache at any time. Set to
0 to disable caching

Valid number 1000

PARAM_THREESCA
LE_CACHE_REFRES
H_RETRIES

The number of times
unreachable hosts are
retried during a cache
update loop

Valid number 1

PARAM_THREESCA
LE_ALLOW_INSECU
RE_CONN

Allow to skip certificate
verification when calling
3scale APIs. Enabling
this is not
recommended.

true/false false

PARAM_THREESCA
LE_CLIENT_TIMEOU
T_SECONDS

Sets the number of
seconds to wait before
terminating requests to
3scale System and
Backend

Time period in seconds 10

PARAM_THREESCA
LE_GRPC_CONN_M
AX_SECONDS

Sets the maximum
amount of seconds (+/-
10% jitter) a connection
may exist before it is
closed

Time period in seconds 60

PARAM_USE_CACH
E_BACKEND

If true, attempt to
create an in-memory
apisonator cache for
authorization requests

true/false false

PARAM_BACKEND_
CACHE_FLUSH_INT
ERVAL_SECONDS

If the backend cache is
enabled, this sets the
interval in seconds for
flushing the cache
against 3scale

Time period in seconds 15

Parameter Description Values Default value

OpenShift Container Platform 4.9 Service Mesh

384

PARAM_BACKEND_
CACHE_POLICY_FAI
L_CLOSED

Whenever the backend
cache cannot retrieve
authorization data,
whether to deny
(closed) or allow (open)
requests

true/false true

Parameter Description Values Default value

2.11. USING THE 3SCALE ISTIO ADAPTER

WARNING

You are viewing documentation for a Red Hat OpenShift Service Mesh release
that is no longer supported.

Service Mesh version 1.0 and 1.1 control planes are no longer supported. For
information about upgrading your service mesh control plane, see Upgrading
Service Mesh.

For information about the support status of a particular Red Hat OpenShift Service
Mesh release, see the Product lifecycle page .

The 3scale Istio Adapter is an optional adapter that allows you to label a service running within the Red
Hat OpenShift Service Mesh and integrate that service with the 3scale API Management solution. It is
not required for Red Hat OpenShift Service Mesh.

2.11.1. Integrate the 3scale adapter with Red Hat OpenShift Service Mesh

You can use these examples to configure requests to your services using the 3scale Istio Adapter.

Prerequisites:

Red Hat OpenShift Service Mesh version 1.x

A working 3scale account (SaaS or 3scale 2.5 On-Premises)

Enabling backend cache requires 3scale 2.9 or greater

Red Hat OpenShift Service Mesh prerequisites

NOTE

To configure the 3scale Istio Adapter, refer to Red Hat OpenShift Service Mesh custom
resources for instructions on adding adapter parameters to the custom resource file.

NOTE



CHAPTER 2. SERVICE MESH 1.X

385

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-versions_ossm-upgrade
https://access.redhat.com/support/policy/updates/openshift#ossm
https://www.3scale.net/signup/
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.5/html/installing_3scale/onpremises-installation

NOTE

Pay particular attention to the kind: handler resource. You must update this with your
3scale account credentials. You can optionally add a service_id to a handler, but this is
kept for backwards compatibility only, since it would render the handler only useful for
one service in your 3scale account. If you add service_id to a handler, enabling 3scale for
other services requires you to create more handlers with different service_ids.

Use a single handler per 3scale account by following the steps below:

Procedure

1. Create a handler for your 3scale account and specify your account credentials. Omit any service
identifier.

Optionally, you can provide a backend_url field within the params section to override the URL
provided by the 3scale configuration. This may be useful if the adapter runs on the same cluster
as the 3scale on-premise instance, and you wish to leverage the internal cluster DNS.

2. Edit or patch the Deployment resource of any services belonging to your 3scale account as
follows:

a. Add the "service-mesh.3scale.net/service-id" label with a value corresponding to a valid
service_id.

b. Add the "service-mesh.3scale.net/credentials" label with its value being the name of the
handler resource from step 1.

3. Do step 2 to link it to your 3scale account credentials and to its service identifier, whenever you
intend to add more services.

4. Modify the rule configuration with your 3scale configuration to dispatch the rule to the
threescale handler.

Rule configuration example

 apiVersion: "config.istio.io/v1alpha2"
 kind: handler
 metadata:
 name: threescale
 spec:
 adapter: threescale
 params:
 system_url: "https://<organization>-admin.3scale.net/"
 access_token: "<ACCESS_TOKEN>"
 connection:
 address: "threescale-istio-adapter:3333"

 apiVersion: "config.istio.io/v1alpha2"
 kind: rule
 metadata:
 name: threescale
 spec:
 match: destination.labels["service-mesh.3scale.net"] == "true"
 actions:

OpenShift Container Platform 4.9 Service Mesh

386

2.11.1.1. Generating 3scale custom resources

The adapter includes a tool that allows you to generate the handler, instance, and rule custom
resources.

Table 2.16. Usage

Option Description Required Default value

-h, --help Produces help output
for available options

No

--name Unique name for this
URL, token pair

Yes

-n, --namespace Namespace to generate
templates

No istio-system

-t, --token 3scale access token Yes

-u, --url 3scale Admin Portal URL Yes

--backend-url 3scale backend URL. If
set, it overrides the
value that is read from
system configuration

No

-s, --service 3scale API/Service ID No

--auth 3scale authentication
pattern to specify (1=API
Key, 2=App Id/App Key,
3=OIDC)

No Hybrid

-o, --output File to save produced
manifests to

No Standard output

--version Outputs the CLI version
and exits immediately

No

2.11.1.1.1. Generate templates from URL examples

NOTE

 - handler: threescale.handler
 instances:
 - threescale-authorization.instance

CHAPTER 2. SERVICE MESH 1.X

387

NOTE

Run the following commands via oc exec from the 3scale adapter container
image in Generating manifests from a deployed adapter .

Use the 3scale-config-gen command to help avoid YAML syntax and
indentation errors.

You can omit the --service if you use the annotations.

This command must be invoked from within the container image via oc exec.

Procedure

Use the 3scale-config-gen command to autogenerate templates files allowing the token, URL
pair to be shared by multiple services as a single handler:

$ 3scale-config-gen --name=admin-credentials --url="https://<organization>-
admin.3scale.net:443" --token="[redacted]"

The following example generates the templates with the service ID embedded in the handler:

$ 3scale-config-gen --url="https://<organization>-admin.3scale.net" --name="my-unique-id" --
service="123456789" --token="[redacted]"

Additional resources

Tokens.

2.11.1.2. Generating manifests from a deployed adapter

NOTE

NAME is an identifier you use to identify with the service you are managing with
3scale.

The CREDENTIALS_NAME reference is an identifier that corresponds to the
match section in the rule configuration. This is automatically set to the NAME
identifier if you are using the CLI tool.

Its value does not need to be anything specific: the label value should just match
the contents of the rule. See Routing service traffic through the adapter for
more information.

1. Run this command to generate manifests from a deployed adapter in the istio-system
namespace:

$ export NS="istio-system" URL="https://replaceme-admin.3scale.net:443" NAME="name"
TOKEN="token"
oc exec -n ${NS} $(oc get po -n ${NS} -o jsonpath='{.items[?
(@.metadata.labels.app=="3scale-istio-adapter")].metadata.name}') \
-it -- ./3scale-config-gen \
--url ${URL} --name ${NAME} --token ${TOKEN} -n ${NS}

OpenShift Container Platform 4.9 Service Mesh

388

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/admin_portal_guide/index#tokens
https://github.com/3scale/3scale-istio-adapter/blob/v2.X/README.md#routing-service-traffic-through-the-adapter

2. This will produce sample output to the terminal. Edit these samples if required and create the
objects using the oc create command.

3. When the request reaches the adapter, the adapter needs to know how the service maps to an
API on 3scale. You can provide this information in two ways:

a. Label the workload (recommended)

b. Hard code the handler as service_id

4. Update the workload with the required annotations:

NOTE

You only need to update the service ID provided in this example if it is not already
embedded in the handler. The setting in the handler takes precedence.

$ export CREDENTIALS_NAME="replace-me"
export SERVICE_ID="replace-me"
export DEPLOYMENT="replace-me"
patch="$(oc get deployment "${DEPLOYMENT}"
patch="$(oc get deployment "${DEPLOYMENT}" --template='{"spec":{"template":{"metadata":
{"labels":{ {{ range $k,$v := .spec.template.metadata.labels }}"{{ $k }}":"{{ $v }}",{{ end
}}"service-mesh.3scale.net/service-id":"'"${SERVICE_ID}"'","service-
mesh.3scale.net/credentials":"'"${CREDENTIALS_NAME}"'"}}}}}')"
oc patch deployment "${DEPLOYMENT}" --patch ''"${patch}"''

2.11.1.3. Routing service traffic through the adapter

Follow these steps to drive traffic for your service through the 3scale adapter.

Prerequisites

Credentials and service ID from your 3scale administrator.

Procedure

1. Match the rule destination.labels["service-mesh.3scale.net/credentials"] == "threescale"
that you previously created in the configuration, in the kind: rule resource.

2. Add the above label to PodTemplateSpec on the Deployment of the target workload to
integrate a service. the value, threescale, refers to the name of the generated handler. This
handler stores the access token required to call 3scale.

3. Add the destination.labels["service-mesh.3scale.net/service-id"] == "replace-me" label to
the workload to pass the service ID to the adapter via the instance at request time.

2.11.2. Configure the integration settings in 3scale

Follow this procedure to configure the 3scale integration settings.

NOTE

CHAPTER 2. SERVICE MESH 1.X

389

NOTE

For 3scale SaaS customers, Red Hat OpenShift Service Mesh is enabled as part of the
Early Access program.

Procedure

1. Navigate to [your_API_name] → Integration

2. Click Settings.

3. Select the Istio option under Deployment.

The API Key (user_key) option under Authentication is selected by default.

4. Click Update Product to save your selection.

5. Click Configuration.

6. Click Update Configuration.

2.11.3. Caching behavior

Responses from 3scale System APIs are cached by default within the adapter. Entries will be purged
from the cache when they become older than the cacheTTLSeconds value. Also by default, automatic
refreshing of cached entries will be attempted seconds before they expire, based on the
cacheRefreshSeconds value. You can disable automatic refreshing by setting this value higher than
the cacheTTLSeconds value.

Caching can be disabled entirely by setting cacheEntriesMax to a non-positive value.

By using the refreshing process, cached values whose hosts become unreachable will be retried before
eventually being purged when past their expiry.

2.11.4. Authenticating requests

This release supports the following authentication methods:

Standard API Keys: single randomized strings or hashes acting as an identifier and a secret
token.

Application identifier and key pairs: immutable identifier and mutable secret key strings.

OpenID authentication method: client ID string parsed from the JSON Web Token.

2.11.4.1. Applying authentication patterns

Modify the instance custom resource, as illustrated in the following authentication method examples, to
configure authentication behavior. You can accept the authentication credentials from:

Request headers

Request parameters

Both request headers and query parameters

NOTE

OpenShift Container Platform 4.9 Service Mesh

390

NOTE

When specifying values from headers, they must be lower case. For example, if you want
to send a header as User-Key, this must be referenced in the configuration as
request.headers["user-key"].

2.11.4.1.1. API key authentication method

Service Mesh looks for the API key in query parameters and request headers as specified in the user
option in the subject custom resource parameter. It checks the values in the order given in the custom
resource file. You can restrict the search for the API key to either query parameters or request headers
by omitting the unwanted option.

In this example, Service Mesh looks for the API key in the user_key query parameter. If the API key is
not in the query parameter, Service Mesh then checks the user-key header.

API key authentication method example

If you want the adapter to examine a different query parameter or request header, change the name as
appropriate. For example, to check for the API key in a query parameter named “key”, change
request.query_params["user_key"] to request.query_params["key"].

2.11.4.1.2. Application ID and application key pair authentication method

Service Mesh looks for the application ID and application key in query parameters and request headers,
as specified in the properties option in the subject custom resource parameter. The application key is
optional. It checks the values in the order given in the custom resource file. You can restrict the search
for the credentials to either query parameters or request headers by not including the unwanted option.

In this example, Service Mesh looks for the application ID and application key in the query parameters
first, moving on to the request headers if needed.

Application ID and application key pair authentication method example

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
 namespace: istio-system
spec:
 template: authorization
 params:
 subject:
 user: request.query_params["user_key"] | request.headers["user-key"] | ""
 action:
 path: request.url_path
 method: request.method | "get"

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
 namespace: istio-system
spec:
 template: authorization

CHAPTER 2. SERVICE MESH 1.X

391

If you want the adapter to examine a different query parameter or request header, change the name as
appropriate. For example, to check for the application ID in a query parameter named identification,
change request.query_params["app_id"] to request.query_params["identification"].

2.11.4.1.3. OpenID authentication method

To use the OpenID Connect (OIDC) authentication method , use the properties value on the subject
field to set client_id, and optionally app_key.

You can manipulate this object using the methods described previously. In the example configuration
shown below, the client identifier (application ID) is parsed from the JSON Web Token (JWT) under the
label azp. You can modify this as needed.

OpenID authentication method example

For this integration to work correctly, OIDC must still be done in 3scale for the client to be created in the
identity provider (IdP). You should create a Request authorization for the service you want to protect in
the same namespace as that service. The JWT is passed in the Authorization header of the request.

In the sample RequestAuthentication defined below, replace issuer, jwksUri, and selector as
appropriate.

OpenID Policy example

 params:
 subject:
 app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 action:
 path: request.url_path
 method: request.method | "get"

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
spec:
 template: threescale-authorization
 params:
 subject:
 properties:
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 client_id: request.auth.claims["azp"] | ""
 action:
 path: request.url_path
 method: request.method | "get"
 service: destination.labels["service-mesh.3scale.net/service-id"] | ""

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: jwt-example
 namespace: bookinfo
spec:
 selector:

OpenShift Container Platform 4.9 Service Mesh

392

https://istio.io/latest/docs/tasks/security/authorization/authz-jwt/

2.11.4.1.4. Hybrid authentication method

You can choose to not enforce a particular authentication method and accept any valid credentials for
either method. If both an API key and an application ID/application key pair are provided, Service Mesh
uses the API key.

In this example, Service Mesh checks for an API key in the query parameters, then the request headers. If
there is no API key, it then checks for an application ID and key in the query parameters, then the request
headers.

Hybrid authentication method example

2.11.5. 3scale Adapter metrics

The adapter, by default reports various Prometheus metrics that are exposed on port 8080 at the
/metrics endpoint. These metrics provide insight into how the interactions between the adapter and
3scale are performing. The service is labeled to be automatically discovered and scraped by
Prometheus.

2.11.6. 3scale Istio adapter verification

You might want to check whether the 3scale Istio adapter is working as expected. If your adapter is not
working, use the following steps to help troubleshoot the problem.

Procedure

1. Ensure the 3scale-adapter pod is running in the Service Mesh control plane namespace:

 matchLabels:
 app: productpage
 jwtRules:
 - issuer: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak
 jwksUri: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak/protocol/openid-
connect/certs

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
spec:
 template: authorization
 params:
 subject:
 user: request.query_params["user_key"] | request.headers["user-key"] |
 properties:
 app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 client_id: request.auth.claims["azp"] | ""
 action:
 path: request.url_path
 method: request.method | "get"
 service: destination.labels["service-mesh.3scale.net/service-id"] | ""

CHAPTER 2. SERVICE MESH 1.X

393

2. Check that the 3scale-adapter pod has printed out information about itself booting up, such as
its version:

3. When performing requests to the services protected by the 3scale adapter integration, always
try requests that lack the right credentials and ensure they fail. Check the 3scale adapter logs to
gather additional information.

Additional resources

Inspecting pod and container logs.

2.11.7. 3scale Istio adapter troubleshooting checklist

As the administrator installing the 3scale Istio adapter, there are a number of scenarios that might be
causing your integration to not function properly. Use the following list to troubleshoot your installation:

Incorrect YAML indentation.

Missing YAML sections.

Forgot to apply the changes in the YAML to the cluster.

Forgot to label the service workloads with the service-mesh.3scale.net/credentials key.

Forgot to label the service workloads with service-mesh.3scale.net/service-id when using
handlers that do not contain a service_id so they are reusable per account.

The Rule custom resource points to the wrong handler or instance custom resources, or the
references lack the corresponding namespace suffix.

The Rule custom resource match section cannot possibly match the service you are configuring,
or it points to a destination workload that is not currently running or does not exist.

Wrong access token or URL for the 3scale Admin Portal in the handler.

The Instance custom resource’s params/subject/properties section fails to list the right
parameters for app_id, app_key, or client_id, either because they specify the wrong location
such as the query parameters, headers, and authorization claims, or the parameter names do not
match the requests used for testing.

Failing to use the configuration generator without realizing that it actually lives in the adapter
container image and needs oc exec to invoke it.

2.12. REMOVING SERVICE MESH

$ oc get pods -n <istio-system>

$ oc logs <istio-system>

OpenShift Container Platform 4.9 Service Mesh

394

https://docs.openshift.com/container-platform/4.7/support/troubleshooting/investigating-pod-issues.html#inspecting-pod-and-container-logs_investigating-pod-issues

WARNING

You are viewing documentation for a Red Hat OpenShift Service Mesh release
that is no longer supported.

Service Mesh version 1.0 and 1.1 control planes are no longer supported. For
information about upgrading your service mesh control plane, see Upgrading
Service Mesh.

For information about the support status of a particular Red Hat OpenShift Service
Mesh release, see the Product lifecycle page .

To remove Red Hat OpenShift Service Mesh from an existing OpenShift Container Platform instance,
remove the control plane before removing the operators.

2.12.1. Removing the Red Hat OpenShift Service Mesh control plane

To uninstall Service Mesh from an existing OpenShift Container Platform instance, first you delete the
Service Mesh control plane and the Operators. Then, you run commands to remove residual resources.

2.12.1.1. Removing the Service Mesh control plane using the web console

You can remove the Red Hat OpenShift Service Mesh control plane by using the web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Click the Project menu and select the project where you installed the Service Mesh control
plane, for example istio-system.

3. Navigate to Operators → Installed Operators.

4. Click Service Mesh Control Plane under Provided APIs.

5. Click the ServiceMeshControlPlane menu .

6. Click Delete Service Mesh Control Plane.

7. Click Delete on the confirmation dialog window to remove the ServiceMeshControlPlane.

2.12.1.2. Removing the Service Mesh control plane using the CLI

You can remove the Red Hat OpenShift Service Mesh control plane by using the CLI. In this example,
istio-system is the name of the control plane project.

Procedure

1. Log in to the OpenShift Container Platform CLI.



CHAPTER 2. SERVICE MESH 1.X

395

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/service_mesh/#ossm-versions_ossm-upgrade
https://access.redhat.com/support/policy/updates/openshift#ossm

2. Run the following command to delete the ServiceMeshMemberRoll resource.

3. Run this command to retrieve the name of the installed ServiceMeshControlPlane:

4. Replace <name_of_custom_resource> with the output from the previous command, and run
this command to remove the custom resource:

2.12.2. Removing the installed Operators

You must remove the Operators to successfully remove Red Hat OpenShift Service Mesh. After you
remove the Red Hat OpenShift Service Mesh Operator, you must remove the Kiali Operator, the Red
Hat OpenShift distributed tracing platform Operator, and the OpenShift Elasticsearch Operator.

2.12.2.1. Removing the Operators

Follow this procedure to remove the Operators that make up Red Hat OpenShift Service Mesh. Repeat
the steps for each of the following Operators.

Red Hat OpenShift Service Mesh

Kiali

Red Hat OpenShift distributed tracing platform

OpenShift Elasticsearch

Procedure

1. Log in to the OpenShift Container Platform web console.

2. From the Operators → Installed Operators page, scroll or type a keyword into the Filter by
name to find each Operator. Then, click the Operator name.

3. On the Operator Details page, select Uninstall Operator from the Actions menu. Follow the
prompts to uninstall each Operator.

2.12.2.2. Clean up Operator resources

Follow this procedure to manually remove resources left behind after removing the Red Hat OpenShift
Service Mesh Operator using the OpenShift Container Platform web console.

Prerequisites

An account with cluster administration access.

Access to the OpenShift CLI (oc).

$ oc delete smmr -n istio-system default

$ oc get smcp -n istio-system

$ oc delete smcp -n istio-system <name_of_custom_resource>

OpenShift Container Platform 4.9 Service Mesh

396

Procedure

1. Log in to the OpenShift Container Platform CLI as a cluster administrator.

2. Run the following commands to clean up resources after uninstalling the Operators. If you
intend to keep using Jaeger as a stand alone service without service mesh, do not delete the
Jaeger resources.

NOTE

The Operators are installed in the openshift-operators namespace by default. If
you installed the Operators in another namespace, replace openshift-operators
with the name of the project where the Red Hat OpenShift Service Mesh
Operator was installed.

$ oc delete validatingwebhookconfiguration/openshift-operators.servicemesh-
resources.maistra.io

$ oc delete mutatingwebhookconfiguration/openshift-operators.servicemesh-
resources.maistra.io

$ oc delete -n openshift-operators daemonset/istio-node

$ oc delete clusterrole/istio-admin clusterrole/istio-cni clusterrolebinding/istio-cni

$ oc delete clusterrole istio-view istio-edit

$ oc delete clusterrole jaegers.jaegertracing.io-v1-admin jaegers.jaegertracing.io-v1-crdview
jaegers.jaegertracing.io-v1-edit jaegers.jaegertracing.io-v1-view

$ oc get crds -o name | grep '.*\.istio\.io' | xargs -r -n 1 oc delete

$ oc get crds -o name | grep '.*\.maistra\.io' | xargs -r -n 1 oc delete

$ oc get crds -o name | grep '.*\.kiali\.io' | xargs -r -n 1 oc delete

$ oc delete crds jaegers.jaegertracing.io

$ oc delete svc admission-controller -n <operator-project>

$ oc delete project <istio-system-project>

CHAPTER 2. SERVICE MESH 1.X

397

	Table of Contents
	CHAPTER 1. SERVICE MESH 2.X
	1.1. ABOUT OPENSHIFT SERVICE MESH
	1.1.1. Introduction to Red Hat OpenShift Service Mesh
	1.1.2. Core features

	1.2. SERVICE MESH RELEASE NOTES
	1.2.1. Making open source more inclusive
	1.2.2. New features and enhancements
	1.2.2.1. New features Red Hat OpenShift Service Mesh version 2.3.2
	1.2.2.2. New features Red Hat OpenShift Service Mesh version 2.3.1
	1.2.2.3. New features Red Hat OpenShift Service Mesh version 2.3
	1.2.2.4. New features Red Hat OpenShift Service Mesh version 2.2.6
	1.2.2.5. New features Red Hat OpenShift Service Mesh version 2.2.5
	1.2.2.6. New features Red Hat OpenShift Service Mesh version 2.2.4
	1.2.2.7. New features Red Hat OpenShift Service Mesh version 2.2.3
	1.2.2.8. New features Red Hat OpenShift Service Mesh version 2.2.2
	1.2.2.9. New features Red Hat OpenShift Service Mesh version 2.2.1
	1.2.2.10. New features Red Hat OpenShift Service Mesh 2.2
	1.2.2.11. New features Red Hat OpenShift Service Mesh 2.1.6
	1.2.2.12. New features Red Hat OpenShift Service Mesh 2.1.5.2
	1.2.2.13. New features Red Hat OpenShift Service Mesh 2.1.5.1
	1.2.2.14. New features Red Hat OpenShift Service Mesh 2.1.5
	1.2.2.15. New features Red Hat OpenShift Service Mesh 2.1.4
	1.2.2.16. New features Red Hat OpenShift Service Mesh 2.1.3
	1.2.2.17. New features Red Hat OpenShift Service Mesh 2.1.2.1
	1.2.2.18. New features Red Hat OpenShift Service Mesh 2.1.2
	1.2.2.19. New features Red Hat OpenShift Service Mesh 2.1.1
	1.2.2.20. New features and enhancements Red Hat OpenShift Service Mesh 2.1
	1.2.2.21. New features Red Hat OpenShift Service Mesh 2.0.11.1
	1.2.2.22. New features Red Hat OpenShift Service Mesh 2.0.11
	1.2.2.23. New features Red Hat OpenShift Service Mesh 2.0.10
	1.2.2.24. New features Red Hat OpenShift Service Mesh 2.0.9
	1.2.2.25. New features Red Hat OpenShift Service Mesh 2.0.8
	1.2.2.26. New features Red Hat OpenShift Service Mesh 2.0.7.1
	1.2.2.27. New features Red Hat OpenShift Service Mesh 2.0.7
	1.2.2.28. Red Hat OpenShift Service Mesh on Red Hat OpenShift Dedicated and Microsoft Azure Red Hat OpenShift
	1.2.2.29. New features Red Hat OpenShift Service Mesh 2.0.6
	1.2.2.30. New features Red Hat OpenShift Service Mesh 2.0.5
	1.2.2.31. New features Red Hat OpenShift Service Mesh 2.0.4
	1.2.2.32. New features Red Hat OpenShift Service Mesh 2.0.3
	1.2.2.33. New features Red Hat OpenShift Service Mesh 2.0.2
	1.2.2.34. New features Red Hat OpenShift Service Mesh 2.0.1
	1.2.2.35. New features Red Hat OpenShift Service Mesh 2.0

	1.2.3. Technology Preview
	1.2.4. Deprecated and removed features
	1.2.4.1. Deprecated and removed features Red Hat OpenShift Service Mesh 2.3
	1.2.4.2. Deprecated features Red Hat OpenShift Service Mesh 2.2
	1.2.4.3. Removed features Red Hat OpenShift Service Mesh 2.2
	1.2.4.4. Removed features Red Hat OpenShift Service Mesh 2.1
	1.2.4.5. Deprecated features Red Hat OpenShift Service Mesh 2.0

	1.2.5. Known issues
	1.2.5.1. Service Mesh known issues
	1.2.5.2. Kiali known issues
	1.2.5.3. Red Hat OpenShift distributed tracing known issues

	1.2.6. Fixed issues
	1.2.6.1. Service Mesh fixed issues
	1.2.6.2. Red Hat OpenShift distributed tracing fixed issues

	1.3. UNDERSTANDING SERVICE MESH
	1.3.1. Understanding service mesh
	1.3.2. Service Mesh architecture
	1.3.3. Understanding Kiali
	1.3.3.1. Kiali overview
	1.3.3.2. Kiali architecture
	1.3.3.3. Kiali features

	1.3.4. Understanding distributed tracing
	1.3.4.1. Distributed tracing overview
	1.3.4.2. Red Hat OpenShift distributed tracing architecture
	1.3.4.3. Red Hat OpenShift distributed tracing features

	1.3.5. Next steps

	1.4. SERVICE MESH DEPLOYMENT MODELS
	1.4.1. Single mesh deployment model
	1.4.2. Single tenancy deployment model
	1.4.3. Multitenant deployment model
	1.4.4. Multimesh or federated deployment model

	1.5. SERVICE MESH AND ISTIO DIFFERENCES
	1.5.1. Differences between Istio and Red Hat OpenShift Service Mesh
	1.5.1.1. Command line tool
	1.5.1.2. Installation and upgrades
	1.5.1.3. Automatic injection
	1.5.1.4. Istio Role Based Access Control features
	1.5.1.5. OpenSSL
	1.5.1.6. External workloads
	1.5.1.7. Virtual Machine Support
	1.5.1.8. Component modifications
	1.5.1.9. Envoy filters
	1.5.1.10. Envoy services
	1.5.1.11. Istio Container Network Interface (CNI) plugin
	1.5.1.12. Global mTLS settings
	1.5.1.13. Gateways
	1.5.1.14. Multicluster configurations
	1.5.1.15. Custom Certificate Signing Requests (CSR)
	1.5.1.16. Routes for Istio Gateways

	1.5.2. Multitenant installations
	1.5.2.1. Multitenancy versus cluster-wide installations
	1.5.2.2. Cluster scoped resources

	1.5.3. Kiali and service mesh
	1.5.4. Distributed tracing and service mesh

	1.6. PREPARING TO INSTALL SERVICE MESH
	1.6.1. Prerequisites
	1.6.2. Supported configurations
	1.6.2.1. Supported platforms
	1.6.2.2. Unsupported configurations
	1.6.2.3. Supported network configurations
	1.6.2.4. Supported configurations for Service Mesh
	1.6.2.5. Supported configurations for Kiali
	1.6.2.6. Supported configurations for Distributed Tracing
	1.6.2.7. Supported WebAssembly module

	1.6.3. Next steps

	1.7. INSTALLING THE OPERATORS
	1.7.1. Operator overview
	1.7.2. Installing the Operators
	1.7.3. Next steps

	1.8. CREATING THE SERVICEMESHCONTROLPLANE
	1.8.1. Deploying the Service Mesh control plane from the web console
	1.8.2. Deploying the Service Mesh control plane using the CLI
	1.8.3. Validating your SMCP installation with the CLI
	1.8.4. Validating your SMCP installation with Kiali
	1.8.5. Installing on Red Hat OpenShift Service on AWS (ROSA)
	1.8.5.1. Installation location
	1.8.5.2. Required Service Mesh control plane configuration
	1.8.5.3. Restrictions on Kiali configuration

	1.8.6. Additional resources
	1.8.7. Next steps

	1.9. ADDING SERVICES TO A SERVICE MESH
	1.9.1. Creating the Red Hat OpenShift Service Mesh member roll
	1.9.1.1. Creating the member roll from the web console
	1.9.1.2. Creating the member roll from the CLI

	1.9.2. Adding or removing projects from the service mesh
	1.9.2.1. Adding or removing projects from the member roll using the web console
	1.9.2.2. Adding or removing projects from the member roll using the CLI

	1.9.3. Bookinfo example application
	1.9.3.1. Installing the Bookinfo application
	1.9.3.2. Adding default destination rules
	1.9.3.3. Verifying the Bookinfo installation
	1.9.3.4. Removing the Bookinfo application

	1.9.4. Next steps

	1.10. ENABLING SIDECAR INJECTION
	1.10.1. Prerequisites
	1.10.2. Enabling automatic sidecar injection
	1.10.3. Validating sidecar injection
	1.10.4. Setting proxy environment variables through annotations
	1.10.5. Updating sidecar proxies
	1.10.6. Next steps

	1.11. UPGRADING SERVICE MESH
	1.11.1. Understanding versioning
	1.11.1.1. How versioning affects Service Mesh upgrades
	1.11.1.2. Understanding Service Mesh versions

	1.11.2. Upgrade considerations
	1.11.2.1. Known issues that may affect upgrade

	1.11.3. Upgrading the Operators
	1.11.4. Upgrading the control plane
	1.11.4.1. Upgrade changes from version 2.2 to version 2.3
	1.11.4.2. Upgrade changes from version 2.1 to version 2.2
	1.11.4.3. Upgrade changes from version 2.0 to version 2.1
	1.11.4.4. Upgrading the Service Mesh control plane
	1.11.4.5. Migrating Red Hat OpenShift Service Mesh from version 1.1 to version 2.0

	1.11.5. Upgrading the data plane
	1.11.5.1. Updating your applications and workloads

	1.12. MANAGING USERS AND PROFILES
	1.12.1. Creating the Red Hat OpenShift Service Mesh members
	1.12.2. Creating Service Mesh control plane profiles
	1.12.2.1. Creating the ConfigMap
	1.12.2.2. Setting the correct network policy

	1.13. SECURITY
	1.13.1. About mutual Transport Layer Security (mTLS)
	1.13.1.1. Enabling strict mTLS across the service mesh
	1.13.1.2. Validating encryption with Kiali

	1.13.2. Configuring Role Based Access Control (RBAC)
	1.13.2.1. Configure intra-project communication
	1.13.2.2. Allow or deny access to the ingress gateway
	1.13.2.3. Restrict access with JSON Web Token

	1.13.3. Configuring cipher suites and ECDH curves
	1.13.4. Adding an external certificate authority key and certificate
	1.13.4.1. Adding an existing certificate and key
	1.13.4.2. Verifying your certificates
	1.13.4.3. Removing the certificates

	1.14. MANAGING TRAFFIC IN YOUR SERVICE MESH
	1.14.1. Using gateways
	1.14.1.1. Enabling gateway injection
	1.14.1.2. Deploying automatic gateway injection
	1.14.1.3. Managing ingress traffic
	1.14.1.4. Configuring an ingress gateway

	1.14.2. Understanding automatic routes
	1.14.2.1. Routes with subdomains
	1.14.2.2. Creating subdomain routes
	1.14.2.3. Route labels and annotations
	1.14.2.4. Disabling automatic route creation

	1.14.3. Understanding service entries
	1.14.4. Using VirtualServices
	1.14.4.1. Configuring VirtualServices
	1.14.4.2. VirtualService configuration reference

	1.14.5. Understanding destination rules
	1.14.6. Understanding network policies
	1.14.6.1. Disabling automatic NetworkPolicy creation

	1.14.7. Configuring sidecars for traffic management
	1.14.8. Routing Tutorial
	1.14.8.1. Bookinfo routing tutorial
	1.14.8.2. Applying a virtual service
	1.14.8.3. Testing the new route configuration
	1.14.8.4. Route based on user identity

	1.15. METRICS, LOGS, AND TRACES
	1.15.1. Discovering console addresses
	1.15.2. Accessing the Kiali console
	1.15.3. Viewing service mesh data in the Kiali console
	1.15.3.1. Changing graph layouts in Kiali
	1.15.3.2. Viewing logs in the Kiali console
	1.15.3.3. Viewing metrics in the Kiali console

	1.15.4. Distributed tracing
	1.15.4.1. Connecting an existing distributed tracing instance
	1.15.4.2. Adjusting the sampling rate

	1.15.5. Accessing the Jaeger console
	1.15.6. Accessing the Grafana console
	1.15.7. Accessing the Prometheus console

	1.16. PERFORMANCE AND SCALABILITY
	1.16.1. Setting limits on compute resources
	1.16.2. Load test results
	1.16.2.1. Service Mesh Control plane performance
	1.16.2.2. Data plane performance

	1.17. CONFIGURING SERVICE MESH FOR PRODUCTION
	1.17.1. Configuring your ServiceMeshControlPlane resource for production
	1.17.2. Additional resources

	1.18. CONNECTING SERVICE MESHES
	1.18.1. Federation overview
	1.18.2. Federation features
	1.18.3. Federation security
	1.18.4. Federation limitations
	1.18.5. Federation prerequisites
	1.18.6. Planning your mesh federation
	1.18.7. Mesh federation across clusters
	1.18.7.1. Exposing the federation ingress on clusters running on bare metal
	1.18.7.2. Exposing the federation ingress on clusters running on IBM Power and IBM Z
	1.18.7.3. Exposing the federation ingress on Amazon Web Services (AWS)
	1.18.7.4. Exposing the federation ingress on Azure
	1.18.7.5. Exposing the federation ingress on Google Cloud Platform (GCP)

	1.18.8. Federation implementation checklist
	1.18.9. Configuring a Service Mesh control plane for federation
	1.18.9.1. Understanding federation gateways
	1.18.9.2. Understanding federation trust domain parameters

	1.18.10. Joining a federated mesh
	1.18.10.1. Creating a ServiceMeshPeer resource

	1.18.11. Exporting a service from a federated mesh
	1.18.11.1. Creating an ExportedServiceSet

	1.18.12. Importing a service into a federated mesh
	1.18.12.1. Creating an ImportedServiceSet

	1.18.13. Configuring a federated mesh for failover
	1.18.13.1. Configuring an ImportedServiceSet for failover
	1.18.13.2. Configuring a DestinationRule for failover

	1.18.14. Removing a service from the federated mesh
	1.18.14.1. To remove a service from a single mesh
	1.18.14.2. To remove a service from the entire federated mesh

	1.18.15. Removing a mesh from the federated mesh

	1.19. EXTENSIONS
	1.19.1. WebAssembly modules overview
	1.19.2. WasmPlugin container format
	1.19.3. WasmPlugin API reference
	1.19.3.1. Deploying WasmPlugin resources

	1.19.4. ServiceMeshExtension container format
	1.19.5. ServiceMeshExtension reference
	1.19.5.1. Deploying ServiceMeshExtension resources

	1.19.6. Migrating from ServiceMeshExtension to WasmPlugin resources
	1.19.6.1. API changes
	1.19.6.2. Container image format changes
	1.19.6.3. Migrating to WasmPlugin resources

	1.20. USING THE 3SCALE WEBASSEMBLY MODULE
	1.20.1. Compatibility
	1.20.2. Usage as a stand-alone module
	1.20.3. Prerequisites
	1.20.4. Configuring the threescale-wasm-auth module
	1.20.4.1. The WasmPlugin API extension

	1.20.5. Applying 3scale external ServiceEntry objects
	1.20.6. The 3scale WebAssembly module configuration
	1.20.6.1. Configuring the 3scale WebAssembly module
	1.20.6.2. The 3scale WebAssembly module api object
	1.20.6.3. The 3scale WebAssembly module system object
	1.20.6.4. The 3scale WebAssembly module upstream object
	1.20.6.5. The 3scale WebAssembly module backend object
	1.20.6.6. The 3scale WebAssembly module services object
	1.20.6.7. The 3scale WebAssembly module credentials object
	1.20.6.8. The 3scale WebAssembly module lookup queries
	1.20.6.9. The 3scale WebAssembly module source object
	1.20.6.10. The 3scale WebAssembly module operations object
	1.20.6.11. The 3scale WebAssembly module mapping_rules object
	1.20.6.12. The 3scale WebAssembly module mapping_rule object

	1.20.7. The 3scale WebAssembly module examples for credentials use cases
	1.20.7.1. API key (user_key) in query string parameters
	1.20.7.2. Application ID and key
	1.20.7.3. Authorization header
	1.20.7.4. OpenID Connect (OIDC) use case
	1.20.7.5. Picking up the JWT token from a header

	1.20.8. 3scale WebAssembly module minimal working configuration

	1.21. USING THE 3SCALE ISTIO ADAPTER
	1.21.1. Integrate the 3scale adapter with Red Hat OpenShift Service Mesh
	1.21.1.1. Generating 3scale custom resources
	1.21.1.2. Generating manifests from a deployed adapter
	1.21.1.3. Routing service traffic through the adapter

	1.21.2. Configure the integration settings in 3scale
	1.21.3. Caching behavior
	1.21.4. Authenticating requests
	1.21.4.1. Applying authentication patterns

	1.21.5. 3scale Adapter metrics
	1.21.6. 3scale backend cache
	1.21.6.1. Advantages of enabling backend cache
	1.21.6.2. Trade-offs for having lower latencies
	1.21.6.3. Backend cache configuration settings

	1.21.7. 3scale Istio Adapter APIcast emulation
	1.21.8. 3scale Istio adapter verification
	1.21.9. 3scale Istio adapter troubleshooting checklist

	1.22. TROUBLESHOOTING YOUR SERVICE MESH
	1.22.1. Understanding Service Mesh versions
	1.22.2. Troubleshooting Operator installation
	1.22.2.1. Validating Operator installation
	1.22.2.2. Troubleshooting service mesh Operators

	1.22.3. Troubleshooting the control plane
	1.22.3.1. Validating the Service Mesh control plane installation
	1.22.3.2. Troubleshooting the Service Mesh control plane

	1.22.4. Troubleshooting the data plane
	1.22.4.1. Troubleshooting sidecar injection

	1.23. TROUBLESHOOTING ENVOY PROXY
	1.23.1. Enabling Envoy access logs
	1.23.2. Getting support
	1.23.2.1. About the Red Hat Knowledgebase
	1.23.2.2. Searching the Red Hat Knowledgebase
	1.23.2.3. About the must-gather tool
	1.23.2.4. About collecting service mesh data
	1.23.2.5. Submitting a support case

	1.24. SERVICE MESH CONTROL PLANE CONFIGURATION REFERENCE
	1.24.1. Service Mesh Control plane parameters
	1.24.2. spec parameters
	1.24.2.1. general parameters
	1.24.2.2. profiles parameters
	1.24.2.3. techPreview parameters
	1.24.2.4. tracing parameters
	1.24.2.5. version parameter
	1.24.2.6. 3scale configuration

	1.24.3. status parameter
	1.24.4. Additional resources

	1.25. KIALI CONFIGURATION REFERENCE
	1.25.1. Specifying Kiali configuration in the SMCP
	1.25.2. Specifying Kiali configuration in a Kiali custom resource

	1.26. JAEGER CONFIGURATION REFERENCE
	1.26.1. Enabling and disabling tracing
	1.26.2. Specifying Jaeger configuration in the SMCP
	1.26.3. Deploying the distributed tracing platform
	1.26.3.1. Default distributed tracing platform deployment
	1.26.3.2. Production distributed tracing platform deployment (minimal)
	1.26.3.3. Production distributed tracing platform deployment (fully customized)
	1.26.3.4. Streaming Jaeger deployment

	1.26.4. Specifying Jaeger configuration in a Jaeger custom resource
	1.26.4.1. Deployment best practices
	1.26.4.2. Configuring distributed tracing security for service mesh
	1.26.4.3. Distributed tracing default configuration options
	1.26.4.4. Jaeger Collector configuration options
	1.26.4.5. Distributed tracing sampling configuration options
	1.26.4.6. Distributed tracing storage configuration options
	1.26.4.7. Managing certificates with Elasticsearch
	1.26.4.8. Query configuration options
	1.26.4.9. Ingester configuration options

	1.27. UNINSTALLING SERVICE MESH
	1.27.1. Removing the Red Hat OpenShift Service Mesh control plane
	1.27.1.1. Removing the Service Mesh control plane using the web console
	1.27.1.2. Removing the Service Mesh control plane using the CLI

	1.27.2. Removing the installed Operators
	1.27.2.1. Removing the Operators

	1.27.3. Clean up Operator resources

	CHAPTER 2. SERVICE MESH 1.X
	2.1. SERVICE MESH RELEASE NOTES
	2.1.1. Making open source more inclusive
	2.1.2. Introduction to Red Hat OpenShift Service Mesh
	2.1.3. Getting support
	2.1.3.1. About the must-gather tool
	2.1.3.2. Prerequisites
	2.1.3.3. About collecting service mesh data

	2.1.4. Red Hat OpenShift Service Mesh supported configurations
	2.1.4.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh
	2.1.4.2. Supported Mixer adapters

	2.1.5. New Features
	2.1.5.1. New features Red Hat OpenShift Service Mesh 1.1.18.2
	2.1.5.2. New features Red Hat OpenShift Service Mesh 1.1.18.1
	2.1.5.3. New features Red Hat OpenShift Service Mesh 1.1.18
	2.1.5.4. New features Red Hat OpenShift Service Mesh 1.1.17.1
	2.1.5.5. New features Red Hat OpenShift Service Mesh 1.1.17
	2.1.5.6. New features Red Hat OpenShift Service Mesh 1.1.16
	2.1.5.7. New features Red Hat OpenShift Service Mesh 1.1.15
	2.1.5.8. New features Red Hat OpenShift Service Mesh 1.1.14
	2.1.5.9. New features Red Hat OpenShift Service Mesh 1.1.13
	2.1.5.10. New features Red Hat OpenShift Service Mesh 1.1.12
	2.1.5.11. New features Red Hat OpenShift Service Mesh 1.1.11
	2.1.5.12. New features Red Hat OpenShift Service Mesh 1.1.10
	2.1.5.13. New features Red Hat OpenShift Service Mesh 1.1.9
	2.1.5.14. New features Red Hat OpenShift Service Mesh 1.1.8
	2.1.5.15. New features Red Hat OpenShift Service Mesh 1.1.7
	2.1.5.16. New features Red Hat OpenShift Service Mesh 1.1.6
	2.1.5.17. New features Red Hat OpenShift Service Mesh 1.1.5
	2.1.5.18. New features Red Hat OpenShift Service Mesh 1.1.4
	2.1.5.19. New features Red Hat OpenShift Service Mesh 1.1.3
	2.1.5.20. New features Red Hat OpenShift Service Mesh 1.1.2
	2.1.5.21. New features Red Hat OpenShift Service Mesh 1.1.1
	2.1.5.22. New features Red Hat OpenShift Service Mesh 1.1.0

	2.1.6. Deprecated features
	2.1.6.1. Deprecated features Red Hat OpenShift Service Mesh 1.1.5

	2.1.7. Known issues
	2.1.7.1. Service Mesh known issues
	2.1.7.2. Kiali known issues
	2.1.7.3. Red Hat OpenShift distributed tracing known issues

	2.1.8. Fixed issues
	2.1.8.1. Service Mesh fixed issues
	2.1.8.2. Kiali fixed issues
	2.1.8.3. Red Hat OpenShift distributed tracing fixed issues

	2.2. UNDERSTANDING SERVICE MESH
	2.2.1. Understanding service mesh
	2.2.2. Red Hat OpenShift Service Mesh Architecture
	2.2.3. Understanding Kiali
	2.2.3.1. Kiali overview
	2.2.3.2. Kiali architecture
	2.2.3.3. Kiali features

	2.2.4. Understanding Jaeger
	2.2.4.1. Distributed tracing overview
	2.2.4.2. Distributed tracing architecture
	2.2.4.3. Red Hat OpenShift distributed tracing features

	2.2.5. Next steps

	2.3. SERVICE MESH AND ISTIO DIFFERENCES
	2.3.1. Multitenant installations
	2.3.1.1. Multitenancy versus cluster-wide installations
	2.3.1.2. Cluster scoped resources

	2.3.2. Differences between Istio and Red Hat OpenShift Service Mesh
	2.3.2.1. Command line tool
	2.3.2.2. Automatic injection
	2.3.2.3. Istio Role Based Access Control features
	2.3.2.4. OpenSSL
	2.3.2.5. Component modifications
	2.3.2.6. Envoy, Secret Discovery Service, and certificates
	2.3.2.7. Istio Container Network Interface (CNI) plugin
	2.3.2.8. Routes for Istio Gateways

	2.3.3. Kiali and service mesh
	2.3.4. Distributed tracing and service mesh

	2.4. PREPARING TO INSTALL SERVICE MESH
	2.4.1. Prerequisites
	2.4.2. Red Hat OpenShift Service Mesh supported configurations
	2.4.2.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh
	2.4.2.2. Supported Mixer adapters

	2.4.3. Operator overview
	2.4.4. Next steps

	2.5. INSTALLING SERVICE MESH
	2.5.1. Prerequisites
	2.5.2. Installing the OpenShift Elasticsearch Operator
	2.5.3. Installing the Red Hat OpenShift distributed tracing platform Operator
	2.5.4. Installing the Kiali Operator
	2.5.5. Installing the Operators
	2.5.6. Deploying the Red Hat OpenShift Service Mesh control plane
	2.5.6.1. Deploying the control plane from the web console
	2.5.6.2. Deploying the control plane from the CLI

	2.5.7. Creating the Red Hat OpenShift Service Mesh member roll
	2.5.7.1. Creating the member roll from the web console
	2.5.7.2. Creating the member roll from the CLI

	2.5.8. Adding or removing projects from the service mesh
	2.5.8.1. Adding or removing projects from the member roll using the web console
	2.5.8.2. Adding or removing projects from the member roll using the CLI

	2.5.9. Manual updates
	2.5.9.1. Updating sidecar proxies

	2.5.10. Next steps

	2.6. CUSTOMIZING SECURITY IN A SERVICE MESH
	2.6.1. Enabling mutual Transport Layer Security (mTLS)
	2.6.1.1. Enabling strict mTLS across the mesh
	2.6.1.2. Configuring sidecars for outgoing connections
	2.6.1.3. Setting the minimum and maximum protocol versions

	2.6.2. Configuring cipher suites and ECDH curves
	2.6.3. Adding an external certificate authority key and certificate
	2.6.3.1. Adding an existing certificate and key
	2.6.3.2. Verifying your certificates
	2.6.3.3. Removing the certificates

	2.7. TRAFFIC MANAGEMENT
	2.7.1. Using gateways
	2.7.2. Configuring an ingress gateway
	2.7.3. Managing ingress traffic
	2.7.3.1. Determining the ingress IP and ports

	2.7.4. Automatic route creation
	2.7.4.1. Enabling Automatic Route Creation
	2.7.4.2. Subdomains

	2.7.5. Understanding service entries
	2.7.6. Using VirtualServices
	2.7.6.1. Configuring VirtualServices
	2.7.6.2. VirtualService configuration reference

	2.7.7. Understanding destination rules
	2.7.8. Bookinfo routing tutorial
	2.7.8.1. Applying a virtual service
	2.7.8.2. Testing the new route configuration
	2.7.8.3. Route based on user identity

	2.7.9. Additional resources

	2.8. DEPLOYING APPLICATIONS ON SERVICE MESH
	2.8.1. Prerequisites
	2.8.2. Creating control plane templates
	2.8.2.1. Creating the ConfigMap

	2.8.3. Enabling automatic sidecar injection
	2.8.4. Setting proxy environment variables through annotations
	2.8.5. Updating Mixer policy enforcement
	2.8.5.1. Setting the correct network policy

	2.8.6. Bookinfo example application
	2.8.6.1. Installing the Bookinfo application
	2.8.6.2. Adding default destination rules
	2.8.6.3. Verifying the Bookinfo installation
	2.8.6.4. Removing the Bookinfo application

	2.8.7. Generating example traces and analyzing trace data

	2.9. DATA VISUALIZATION AND OBSERVABILITY
	2.9.1. Viewing service mesh data
	2.9.2. Viewing service mesh data in the Kiali console
	2.9.2.1. Changing graph layouts in Kiali

	2.10. CUSTOM RESOURCES
	2.10.1. Prerequisites
	2.10.2. Red Hat OpenShift Service Mesh custom resources
	2.10.3. ServiceMeshControlPlane parameters
	2.10.3.1. Istio global example
	2.10.3.2. Istio gateway configuration
	2.10.3.3. Istio Mixer configuration
	2.10.3.4. Istio Pilot configuration

	2.10.4. Configuring Kiali
	2.10.4.1. Configuring Kiali for Grafana
	2.10.4.2. Configuring Kiali for Jaeger

	2.10.5. Configuring Jaeger
	2.10.5.1. Configuring Elasticsearch
	2.10.5.2. Connecting to an existing Jaeger instance
	2.10.5.3. Configuring Elasticsearch
	2.10.5.4. Configuring the Elasticsearch index cleaner job

	2.10.6. 3scale configuration

	2.11. USING THE 3SCALE ISTIO ADAPTER
	2.11.1. Integrate the 3scale adapter with Red Hat OpenShift Service Mesh
	2.11.1.1. Generating 3scale custom resources
	2.11.1.2. Generating manifests from a deployed adapter
	2.11.1.3. Routing service traffic through the adapter

	2.11.2. Configure the integration settings in 3scale
	2.11.3. Caching behavior
	2.11.4. Authenticating requests
	2.11.4.1. Applying authentication patterns

	2.11.5. 3scale Adapter metrics
	2.11.6. 3scale Istio adapter verification
	2.11.7. 3scale Istio adapter troubleshooting checklist

	2.12. REMOVING SERVICE MESH
	2.12.1. Removing the Red Hat OpenShift Service Mesh control plane
	2.12.1.1. Removing the Service Mesh control plane using the web console
	2.12.1.2. Removing the Service Mesh control plane using the CLI

	2.12.2. Removing the installed Operators
	2.12.2.1. Removing the Operators
	2.12.2.2. Clean up Operator resources

