
OpenShift Container Platform 4.5

Storage

Configuring and managing storage in OpenShift Container Platform

Last Updated: 2021-07-20

OpenShift Container Platform 4.5 Storage

Configuring and managing storage in OpenShift Container Platform

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring persistent volumes from various storage back
ends and managing dynamic allocation from Pods.

. .

. .

. .

Table of Contents

CHAPTER 1. UNDERSTANDING EPHEMERAL STORAGE
1.1. OVERVIEW
1.2. TYPES OF EPHEMERAL STORAGE

Root
Runtime

1.3. EPHEMERAL STORAGE MANAGEMENT
1.4. MONITORING EPHEMERAL STORAGE

CHAPTER 2. UNDERSTANDING PERSISTENT STORAGE
2.1. PERSISTENT STORAGE OVERVIEW
2.2. LIFECYCLE OF A VOLUME AND CLAIM

2.2.1. Provision storage
2.2.2. Bind claims
2.2.3. Use pods and claimed PVs
2.2.4. Storage Object in Use Protection
2.2.5. Release a persistent volume
2.2.6. Reclaim policy for persistent volumes
2.2.7. Reclaiming a persistent volume manually
2.2.8. Changing the reclaim policy of a persistent volume

2.3. PERSISTENT VOLUMES
2.3.1. Types of PVs
2.3.2. Capacity
2.3.3. Access modes
2.3.4. Phase

2.3.4.1. Mount options
2.4. PERSISTENT VOLUME CLAIMS

2.4.1. Storage classes
2.4.2. Access modes
2.4.3. Resources
2.4.4. Claims as volumes

2.5. BLOCK VOLUME SUPPORT
2.5.1. Block volume examples

CHAPTER 3. CONFIGURING PERSISTENT STORAGE
3.1. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE

3.1.1. Additional resources
3.1.2. Creating the EBS storage class
3.1.3. Creating the persistent volume claim
3.1.4. Volume format
3.1.5. Maximum number of EBS volumes on a node

3.2. PERSISTENT STORAGE USING AZURE
3.2.1. Creating the Azure storage class
3.2.2. Creating the persistent volume claim
3.2.3. Volume format

3.3. PERSISTENT STORAGE USING AZURE FILE
3.3.1. Create the Azure File share persistent volume claim
3.3.2. Mount the Azure File share in a pod

3.4. PERSISTENT STORAGE USING CINDER
3.4.1. Manual provisioning with Cinder

3.4.1.1. Creating the persistent volume
3.4.1.2. Persistent volume formatting

6
6
6
6
6
6
6

8
8
8
8
8
9
9
9
9

10
10
11

12
12
12
14
15
16
16
17
17
17
17
18

21
21
21
21
21
22
22
22
23
23
24
24
25
26
27
27
27
28

Table of Contents

1

3.4.1.3. Cinder volume security
3.5. PERSISTENT STORAGE USING FIBRE CHANNEL

3.5.1. Provisioning
3.5.1.1. Enforcing disk quotas
3.5.1.2. Fibre Channel volume security

3.6. PERSISTENT STORAGE USING FLEXVOLUME
3.6.1. About FlexVolume drivers
3.6.2. FlexVolume driver example
3.6.3. Installing FlexVolume drivers
3.6.4. Consuming storage using FlexVolume drivers

3.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK
3.7.1. Creating the GCE storage class
3.7.2. Creating the persistent volume claim
3.7.3. Volume format

3.8. PERSISTENT STORAGE USING HOSTPATH
3.8.1. Overview
3.8.2. Statically provisioning hostPath volumes
3.8.3. Mounting the hostPath share in a privileged pod

3.9. PERSISTENT STORAGE USING ISCSI
3.9.1. Provisioning
3.9.2. Enforcing disk quotas
3.9.3. iSCSI volume security

3.9.3.1. Challenge Handshake Authentication Protocol (CHAP) configuration
3.9.4. iSCSI multipathing
3.9.5. iSCSI custom initiator IQN

3.10. PERSISTENT STORAGE USING LOCAL VOLUMES
3.10.1. Installing the Local Storage Operator
3.10.2. Provisioning local volumes by using the Local Storage Operator
3.10.3. Provisioning local volumes without the Local Storage Operator
3.10.4. Creating the local volume persistent volume claim
3.10.5. Attach the local claim
3.10.6. Using tolerations with Local Storage Operator pods
3.10.7. Deleting the Local Storage Operator’s resources

3.10.7.1. Removing a local volume
3.10.7.2. Uninstalling the Local Storage Operator

3.11. PERSISTENT STORAGE USING NFS
3.11.1. Provisioning
3.11.2. Enforcing disk quotas
3.11.3. NFS volume security

3.11.3.1. Group IDs
3.11.3.2. User IDs
3.11.3.3. SELinux
3.11.3.4. Export settings

3.11.4. Reclaiming resources
3.11.5. Additional configuration and troubleshooting

3.12. RED HAT OPENSHIFT CONTAINER STORAGE
3.13. PERSISTENT STORAGE USING VMWARE VSPHERE VOLUMES

3.13.1. Dynamically provisioning VMware vSphere volumes
3.13.2. Prerequisites

3.13.2.1. Dynamically provisioning VMware vSphere volumes using the UI
3.13.2.2. Dynamically provisioning VMware vSphere volumes using the CLI

3.13.3. Statically provisioning VMware vSphere volumes
3.13.3.1. Formatting VMware vSphere volumes

28
29
29
30
30
31
31
31
32
33
34
35
35
36
36
36
36
37
38
39
39
39
39
40
40
41
41

43
46
49
49
50
51
51

53
54
54
55
55
56
57
58
58
59
60
60
61

62
62
62
63
63
65

OpenShift Container Platform 4.5 Storage

2

. .

. .

. .

CHAPTER 4. USING CONTAINER STORAGE INTERFACE (CSI)
4.1. CONFIGURING CSI VOLUMES

4.1.1. CSI Architecture
4.1.1.1. External CSI controllers
4.1.1.2. CSI driver daemon set

4.1.2. CSI drivers supported by OpenShift Container Platform
4.1.3. Dynamic provisioning
4.1.4. Example using the CSI driver

4.2. CSI INLINE EPHEMERAL VOLUMES
4.2.1. Overview of CSI inline ephemeral volumes

4.2.1.1. Support limitations
4.2.2. Embedding a CSI inline ephemeral volume in the Pod specification

4.3. CSI VOLUME SNAPSHOTS
4.3.1. Overview of CSI volume snapshots
4.3.2. CSI snapshot controller and sidecar

4.3.2.1. External controller
4.3.2.2. External sidecar

4.3.3. About the CSI Snapshot Controller Operator
4.3.3.1. Volume snapshot CRDs

4.3.4. Volume snapshot provisioning
4.3.4.1. Dynamic provisioning
4.3.4.2. Manual provisioning

4.3.5. Creating a volume snapshot
4.3.6. Deleting a volume snapshot
4.3.7. Restoring a volume snapshot

4.4. CSI VOLUME CLONING
4.4.1. Overview of CSI volume cloning

4.4.1.1. Support limitations
4.4.2. Provisioning a CSI volume clone

4.5. AWS ELASTIC BLOCK STORE CSI DRIVER OPERATOR
4.5.1. Overview
4.5.2. About CSI
4.5.3. Installing the AWS Elastic Block Store CSI Driver Operator
4.5.4. Installing the AWS Elastic Block Store CSI driver
4.5.5. Uninstalling the AWS Elastic Block Store CSI Driver Operator

4.6. OPENSTACK MANILA CSI DRIVER OPERATOR
4.6.1. Overview
4.6.2. Installing the Manila CSI Driver Operator
4.6.3. Installing the OpenStack Manila CSI driver
4.6.4. Dynamically provisioning Manila CSI volumes
4.6.5. Uninstalling the Manila CSI Driver Operator

CHAPTER 5. EXPANDING PERSISTENT VOLUMES
5.1. ENABLING VOLUME EXPANSION SUPPORT
5.2. EXPANDING CSI VOLUMES
5.3. EXPANDING FLEXVOLUME WITH A SUPPORTED DRIVER
5.4. EXPANDING PERSISTENT VOLUME CLAIMS (PVCS) WITH A FILE SYSTEM
5.5. RECOVERING FROM FAILURE WHEN EXPANDING VOLUMES

CHAPTER 6. DYNAMIC PROVISIONING
6.1. ABOUT DYNAMIC PROVISIONING
6.2. AVAILABLE DYNAMIC PROVISIONING PLUG-INS
6.3. DEFINING A STORAGE CLASS

66
66
66
66
67
67
68
68
69
69
69
70
70
71
71
72
72
72
72
73
73
73
73
76
77
78
78
78
79
80
80
81
81

82
83
83
83
84
84
86
88

89
89
89
89
90
91

92
92
92
93

Table of Contents

3

6.3.1. Basic StorageClass object definition
6.3.2. Storage class annotations
6.3.3. RHOSP Cinder object definition
6.3.4. RHOSP Manila Container Storage Interface (CSI) object definition
6.3.5. AWS Elastic Block Store (EBS) object definition
6.3.6. Azure Disk object definition
6.3.7. Azure File object definition

6.3.7.1. Considerations when using Azure File
6.3.8. GCE PersistentDisk (gcePD) object definition
6.3.9. VMware vSphere object definition

6.4. CHANGING THE DEFAULT STORAGE CLASS

93
94
95
95
95
96
97
98
99
99
99

OpenShift Container Platform 4.5 Storage

4

Table of Contents

5

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

CHAPTER 1. UNDERSTANDING EPHEMERAL STORAGE

1.1. OVERVIEW

In addition to persistent storage, pods and containers can require ephemeral or transient local storage
for their operation. The lifetime of this ephemeral storage does not extend beyond the life of the
individual pod, and this ephemeral storage cannot be shared across pods.

Pods use ephemeral local storage for scratch space, caching, and logs. Issues related to the lack of local
storage accounting and isolation include the following:

Pods do not know how much local storage is available to them.

Pods cannot request guaranteed local storage.

Local storage is a best effort resource.

Pods can be evicted due to other pods filling the local storage, after which new pods are not
admitted until sufficient storage has been reclaimed.

Unlike persistent volumes, ephemeral storage is unstructured and the space is shared between all pods
running on a node, in addition to other uses by the system, the container runtime, and OpenShift
Container Platform. The ephemeral storage framework allows pods to specify their transient local
storage needs. It also allows OpenShift Container Platform to schedule pods where appropriate, and to
protect the node against excessive use of local storage.

While the ephemeral storage framework allows administrators and developers to better manage this
local storage, it does not provide any promises related to I/O throughput and latency.

1.2. TYPES OF EPHEMERAL STORAGE

Ephemeral local storage is always made available in the primary partition. There are two basic ways of
creating the primary partition: root and runtime.

Root
This partition holds the kubelet root directory, /var/lib/kubelet/ by default, and /var/log/ directory. This
partition can be shared between user pods, the OS, and Kubernetes system daemons. This partition can
be consumed by pods through EmptyDir volumes, container logs, image layers, and container-writable
layers. Kubelet manages shared access and isolation of this partition. This partition is ephemeral, and
applications cannot expect any performance SLAs, such as disk IOPS, from this partition.

Runtime
This is an optional partition that runtimes can use for overlay file systems. OpenShift Container Platform
attempts to identify and provide shared access along with isolation to this partition. Container image
layers and writable layers are stored here. If the runtime partition exists, the root partition does not hold
any image layer or other writable storage.

1.3. EPHEMERAL STORAGE MANAGEMENT

Cluster administrators can manage ephemeral storage within a project by setting quotas that define the
limit ranges and number of requests for ephemeral storage across all pods in a non-terminal state.
Developers can also set requests and limits on this compute resource at the pod and container level.

1.4. MONITORING EPHEMERAL STORAGE

OpenShift Container Platform 4.5 Storage

6

You can use /bin/df as a tool to monitor ephemeral storage usage on the volume where ephemeral
container data is located, which is /var/lib/kubelet and /var/lib/containers. The available space for only
/var/lib/kubelet is shown when you use the df command if /var/lib/containers is placed on a separate
disk by the cluster administrator.

To show the human-readable values of used and available space in /var/lib, enter the following
command:

The output shows the ephemeral storage usage in /var/lib:

Example output

$ df -h /var/lib

Filesystem Size Used Avail Use% Mounted on
/dev/sda1 69G 32G 34G 49% /

CHAPTER 1. UNDERSTANDING EPHEMERAL STORAGE

7

CHAPTER 2. UNDERSTANDING PERSISTENT STORAGE

2.1. PERSISTENT STORAGE OVERVIEW

Managing storage is a distinct problem from managing compute resources. OpenShift Container
Platform uses the Kubernetes persistent volume (PV) framework to allow cluster administrators to
provision persistent storage for a cluster. Developers can use persistent volume claims (PVCs) to
request PV resources without having specific knowledge of the underlying storage infrastructure.

PVCs are specific to a project, and are created and used by developers as a means to use a PV. PV
resources on their own are not scoped to any single project; they can be shared across the entire
OpenShift Container Platform cluster and claimed from any project. After a PV is bound to a PVC, that
PV can not then be bound to additional PVCs. This has the effect of scoping a bound PV to a single
namespace, that of the binding project.

PVs are defined by a PersistentVolume API object, which represents a piece of existing storage in the
cluster that was either statically provisioned by the cluster administrator or dynamically provisioned
using a StorageClass object. It is a resource in the cluster just like a node is a cluster resource.

PVs are volume plug-ins like Volumes but have a lifecycle that is independent of any individual pod that
uses the PV. PV objects capture the details of the implementation of the storage, be that NFS, iSCSI, or
a cloud-provider-specific storage system.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

PVCs are defined by a PersistentVolumeClaim API object, which represents a request for storage by a
developer. It is similar to a pod in that pods consume node resources and PVCs consume PV resources.
For example, pods can request specific levels of resources, such as CPU and memory, while PVCs can
request specific storage capacity and access modes. For example, they can be mounted once read-
write or many times read-only.

2.2. LIFECYCLE OF A VOLUME AND CLAIM

PVs are resources in the cluster. PVCs are requests for those resources and also act as claim checks to
the resource. The interaction between PVs and PVCs have the following lifecycle.

2.2.1. Provision storage

In response to requests from a developer defined in a PVC, a cluster administrator configures one or
more dynamic provisioners that provision storage and a matching PV.

Alternatively, a cluster administrator can create a number of PVs in advance that carry the details of the
real storage that is available for use. PVs exist in the API and are available for use.

2.2.2. Bind claims

When you create a PVC, you request a specific amount of storage, specify the required access mode,
and create a storage class to describe and classify the storage. The control loop in the master watches
for new PVCs and binds the new PVC to an appropriate PV. If an appropriate PV does not exist, a
provisioner for the storage class creates one.

The size of all PVs might exceed your PVC size. This is especially true with manually provisioned PVs. To

OpenShift Container Platform 4.5 Storage

8

The size of all PVs might exceed your PVC size. This is especially true with manually provisioned PVs. To
minimize the excess, OpenShift Container Platform binds to the smallest PV that matches all other
criteria.

Claims remain unbound indefinitely if a matching volume does not exist or can not be created with any
available provisioner servicing a storage class. Claims are bound as matching volumes become available.
For example, a cluster with many manually provisioned 50Gi volumes would not match a PVC requesting
100Gi. The PVC can be bound when a 100Gi PV is added to the cluster.

2.2.3. Use pods and claimed PVs

Pods use claims as volumes. The cluster inspects the claim to find the bound volume and mounts that
volume for a pod. For those volumes that support multiple access modes, you must specify which mode
applies when you use the claim as a volume in a pod.

Once you have a claim and that claim is bound, the bound PV belongs to you for as long as you need it.
You can schedule pods and access claimed PVs by including persistentVolumeClaim in the pod’s
volumes block.

2.2.4. Storage Object in Use Protection

The Storage Object in Use Protection feature ensures that PVCs in active use by a pod and PVs that are
bound to PVCs are not removed from the system, as this can result in data loss.

Storage Object in Use Protection is enabled by default.

NOTE

A PVC is in active use by a pod when a Pod object exists that uses the PVC.

If a user deletes a PVC that is in active use by a pod, the PVC is not removed immediately. PVC removal
is postponed until the PVC is no longer actively used by any pods. Also, if a cluster admin deletes a PV
that is bound to a PVC, the PV is not removed immediately. PV removal is postponed until the PV is no
longer bound to a PVC.

2.2.5. Release a persistent volume

When you are finished with a volume, you can delete the PVC object from the API, which allows
reclamation of the resource. The volume is considered released when the claim is deleted, but it is not
yet available for another claim. The previous claimant’s data remains on the volume and must be
handled according to policy.

2.2.6. Reclaim policy for persistent volumes

The reclaim policy of a persistent volume tells the cluster what to do with the volume after it is released.
A volume’s reclaim policy can be Retain, Recycle, or Delete.

Retain reclaim policy allows manual reclamation of the resource for those volume plug-ins that
support it.

Recycle reclaim policy recycles the volume back into the pool of unbound persistent volumes
once it is released from its claim.

IMPORTANT

CHAPTER 2. UNDERSTANDING PERSISTENT STORAGE

9

IMPORTANT

The Recycle reclaim policy is deprecated in OpenShift Container Platform 4. Dynamic
provisioning is recommended for equivalent and better functionality.

Delete reclaim policy deletes both the PersistentVolume object from OpenShift Container
Platform and the associated storage asset in external infrastructure, such as AWS EBS or
VMware vSphere.

NOTE

Dynamically provisioned volumes are always deleted.

2.2.7. Reclaiming a persistent volume manually

When a persistent volume claim (PVC) is deleted, the persistent volume (PV) still exists and is
considered "released". However, the PV is not yet available for another claim because the data of the
previous claimant remains on the volume.

Procedure

To manually reclaim the PV as a cluster administrator:

1. Delete the PV.

The associated storage asset in the external infrastructure, such as an AWS EBS, GCE PD, Azure
Disk, or Cinder volume, still exists after the PV is deleted.

2. Clean up the data on the associated storage asset.

3. Delete the associated storage asset. Alternately, to reuse the same storage asset, create a new
PV with the storage asset definition.

The reclaimed PV is now available for use by another PVC.

2.2.8. Changing the reclaim policy of a persistent volume

To change the reclaim policy of a persistent volume:

1. List the persistent volumes in your cluster:

Example output

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
CLAIM STORAGECLASS REASON AGE
 pvc-b6efd8da-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim1 manual 10s
 pvc-b95650f8-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound

$ oc delete <pv-name>

$ oc get pv

OpenShift Container Platform 4.5 Storage

10

1

2

3

4

default/claim2 manual 6s
 pvc-bb3ca71d-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim3 manual 3s

2. Choose one of your persistent volumes and change its reclaim policy:

3. Verify that your chosen persistent volume has the right policy:

Example output

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
CLAIM STORAGECLASS REASON AGE
 pvc-b6efd8da-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim1 manual 10s
 pvc-b95650f8-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Delete Bound
default/claim2 manual 6s
 pvc-bb3ca71d-b7b5-11e6-9d58-0ed433a7dd94 4Gi RWO Retain Bound
default/claim3 manual 3s

In the preceding output, the volume bound to claim default/claim3 now has a Retain reclaim
policy. The volume will not be automatically deleted when a user deletes claim default/claim3.

2.3. PERSISTENT VOLUMES

Each PV contains a spec and status, which is the specification and status of the volume, for example:

PersistentVolume object definition example

Name of the persistent volume.

The amount of storage available to the volume.

The access mode, defining the read-write and mount permissions.

The reclaim policy, indicating how the resource should be handled once it is released.

$ oc patch pv <your-pv-name> -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'

$ oc get pv

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001 1
spec:
 capacity:
 storage: 5Gi 2
 accessModes:
 - ReadWriteOnce 3
 persistentVolumeReclaimPolicy: Retain 4
 ...
status:
 ...

CHAPTER 2. UNDERSTANDING PERSISTENT STORAGE

11

2.3.1. Types of PVs

OpenShift Container Platform supports the following persistent volume plug-ins:

AWS Elastic Block Store (EBS)

Azure Disk

Azure File

Cinder

Fibre Channel

GCE Persistent Disk

HostPath

iSCSI

Local volume

NFS

OpenStack Manila

Red Hat OpenShift Container Storage

VMware vSphere

2.3.2. Capacity

Generally, a persistent volume (PV) has a specific storage capacity. This is set by using the capacity
attribute of the PV.

Currently, storage capacity is the only resource that can be set or requested. Future attributes may
include IOPS, throughput, and so on.

2.3.3. Access modes

A persistent volume can be mounted on a host in any way supported by the resource provider. Providers
have different capabilities and each PV’s access modes are set to the specific modes supported by that
particular volume. For example, NFS can support multiple read-write clients, but a specific NFS PV
might be exported on the server as read-only. Each PV gets its own set of access modes describing that
specific PV’s capabilities.

Claims are matched to volumes with similar access modes. The only two matching criteria are access
modes and size. A claim’s access modes represent a request. Therefore, you might be granted more, but
never less. For example, if a claim requests RWO, but the only volume available is an NFS PV
(RWO+ROX+RWX), the claim would then match NFS because it supports RWO.

Direct matches are always attempted first. The volume’s modes must match or contain more modes
than you requested. The size must be greater than or equal to what is expected. If two types of volumes,
such as NFS and iSCSI, have the same set of access modes, either of them can match a claim with those
modes. There is no ordering between types of volumes and no way to choose one type over another.

All volumes with the same modes are grouped, and then sorted by size, smallest to largest. The binder

OpenShift Container Platform 4.5 Storage

12

All volumes with the same modes are grouped, and then sorted by size, smallest to largest. The binder
gets the group with matching modes and iterates over each, in size order, until one size matches.

The following table lists the access modes:

Table 2.1. Access modes

Access Mode CLI abbreviation Description

ReadWriteOnce RWO The volume can be mounted as read-write by a single node.

ReadOnlyMany ROX The volume can be mounted as read-only by many nodes.

ReadWriteMany RWX The volume can be mounted as read-write by many nodes.

IMPORTANT

Volume access modes are descriptors of volume capabilities. They are not enforced
constraints. The storage provider is responsible for runtime errors resulting from invalid
use of the resource.

For example, NFS offers ReadWriteOnce access mode. You must mark the claims as
read-only if you want to use the volume’s ROX capability. Errors in the provider show up
at runtime as mount errors.

iSCSI and Fibre Channel volumes do not currently have any fencing mechanisms. You
must ensure the volumes are only used by one node at a time. In certain situations, such
as draining a node, the volumes can be used simultaneously by two nodes. Before draining
the node, first ensure the pods that use these volumes are deleted.

Table 2.2. Supported access modes for PVs

Volume plug-in ReadWriteOnce [1] ReadOnlyMany ReadWriteMany

AWS EBS [2] � - -

Azure File � � �

Azure Disk � - -

Cinder � - -

Fibre Channel � � -

GCE Persistent Disk � - -

CHAPTER 2. UNDERSTANDING PERSISTENT STORAGE

13

HostPath � - -

iSCSI � � -

Local volume � - -

NFS � � �

OpenStack Manila - - �

Red Hat OpenShift
Container Storage

 � - �

VMware vSphere � - -

Volume plug-in ReadWriteOnce [1] ReadOnlyMany ReadWriteMany

1. ReadWriteOnce (RWO) volumes cannot be mounted on multiple nodes. If a node fails, the
system does not allow the attached RWO volume to be mounted on a new node because it is
already assigned to the failed node. If you encounter a multi-attach error message as a result,
force delete the pod on a shutdown or crashed node to avoid data loss in critical workloads, such
as when dynamic persistent volumes are attached.

2. Use a recreate deployment strategy for pods that rely on AWS EBS.

2.3.4. Phase

Volumes can be found in one of the following phases:

Table 2.3. Volume phases

Phase Description

Available A free resource not yet bound to a claim.

Bound The volume is bound to a claim.

Released The claim was deleted, but the resource is not yet reclaimed by the
cluster.

Failed The volume has failed its automatic reclamation.

You can view the name of the PVC bound to the PV by running:

OpenShift Container Platform 4.5 Storage

14

1

2.3.4.1. Mount options

You can specify mount options while mounting a PV by using the annotation
volume.beta.kubernetes.io/mount-options.

For example:

Mount options example

Specified mount options are used while mounting the PV to the disk.

The following PV types support mount options:

AWS Elastic Block Store (EBS)

Azure Disk

Azure File

Cinder

GCE Persistent Disk

iSCSI

Local volume

NFS

Red Hat OpenShift Container Storage (Ceph RBD only)

VMware vSphere

NOTE

$ oc get pv <pv-claim>

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
 annotations:
 volume.beta.kubernetes.io/mount-options: rw,nfsvers=4,noexec 1
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 nfs:
 path: /tmp
 server: 172.17.0.2
 persistentVolumeReclaimPolicy: Retain
 claimRef:
 name: claim1
 namespace: default

CHAPTER 2. UNDERSTANDING PERSISTENT STORAGE

15

1

2

3

4

NOTE

Fibre Channel and HostPath PVs do not support mount options.

2.4. PERSISTENT VOLUME CLAIMS

Each PersistentVolumeClaim object contains a spec and status, which is the specification and status
of the persistent volume claim (PVC), for example:

PersistentVolumeClaim object definition example

Name of the PVC

The access mode, defining the read-write and mount permissions

The amount of storage available to the PVC

Name of the StorageClass required by the claim

2.4.1. Storage classes

Claims can optionally request a specific storage class by specifying the storage class’s name in the
storageClassName attribute. Only PVs of the requested class, ones with the same storageClassName
as the PVC, can be bound to the PVC. The cluster administrator can configure dynamic provisioners to
service one or more storage classes. The cluster administrator can create a PV on demand that matches
the specifications in the PVC.

IMPORTANT

The Cluster Storage Operator might install a default storage class depending on the
platform in use. This storage class is owned and controlled by the operator. It cannot be
deleted or modified beyond defining annotations and labels. If different behavior is
desired, you must define a custom storage class.

The cluster administrator can also set a default storage class for all PVCs. When a default storage class
is configured, the PVC must explicitly ask for StorageClass or storageClassName annotations set to
"" to be bound to a PV without a storage class.

NOTE

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: myclaim 1
spec:
 accessModes:
 - ReadWriteOnce 2
 resources:
 requests:
 storage: 8Gi 3
 storageClassName: gold 4
status:
 ...

OpenShift Container Platform 4.5 Storage

16

1

2

3

NOTE

If more than one storage class is marked as default, a PVC can only be created if the
storageClassName is explicitly specified. Therefore, only one storage class should be set
as the default.

2.4.2. Access modes

Claims use the same conventions as volumes when requesting storage with specific access modes.

2.4.3. Resources

Claims, such as pods, can request specific quantities of a resource. In this case, the request is for storage.
The same resource model applies to volumes and claims.

2.4.4. Claims as volumes

Pods access storage by using the claim as a volume. Claims must exist in the same namespace as the
pod by using the claim. The cluster finds the claim in the pod’s namespace and uses it to get the
PersistentVolume backing the claim. The volume is mounted to the host and into the pod, for example:

Mount volume to the host and into the pod example

Path to mount the volume inside the pod

Name of the volume to mount

Name of the PVC, that exists in the same namespace, to use

2.5. BLOCK VOLUME SUPPORT

OpenShift Container Platform can statically provision raw block volumes. These volumes do not have a
file system, and can provide performance benefits for applications that either write to the disk directly
or implement their own storage service.

Raw block volumes are provisioned by specifying volumeMode: Block in the PV and PVC specification.

IMPORTANT

kind: Pod
apiVersion: v1
metadata:
 name: mypod
spec:
 containers:
 - name: myfrontend
 image: dockerfile/nginx
 volumeMounts:
 - mountPath: "/var/www/html" 1
 name: mypd 2
 volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim 3

CHAPTER 2. UNDERSTANDING PERSISTENT STORAGE

17

IMPORTANT

Pods using raw block volumes must be configured to allow privileged containers.

The following table displays which volume plug-ins support block volumes.

Table 2.4. Block volume support

Volume Plug-in Manually provisioned Dynamically
provisioned

Fully supported

AWS EBS � � �

Azure Disk � � �

Azure File

Cinder � �

Fibre Channel �

GCP � � �

HostPath

iSCSI � �

Local volume � �

NFS

Red Hat OpenShift
Container Storage

� � �

VMware vSphere � � �

NOTE

Any of the block volumes that can be provisioned manually, but are not provided as fully
supported, are included as a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

2.5.1. Block volume examples

PV example

OpenShift Container Platform 4.5 Storage

18

https://access.redhat.com/support/offerings/techpreview/

1

1

volumeMode must be set to Block to indicate that this PV is a raw block volume.

PVC example

volumeMode must be set to Block to indicate that a raw block PVC is requested.

Pod specification example

apiVersion: v1
kind: PersistentVolume
metadata:
 name: block-pv
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 volumeMode: Block 1
 persistentVolumeReclaimPolicy: Retain
 fc:
 targetWWNs: ["50060e801049cfd1"]
 lun: 0
 readOnly: false

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: block-pvc
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Block 1
 resources:
 requests:
 storage: 10Gi

apiVersion: v1
kind: Pod
metadata:
 name: pod-with-block-volume
spec:
 containers:
 - name: fc-container
 image: fedora:26
 command: ["/bin/sh", "-c"]
 args: ["tail -f /dev/null"]
 volumeDevices: 1
 - name: data
 devicePath: /dev/xvda 2
 volumes:

CHAPTER 2. UNDERSTANDING PERSISTENT STORAGE

19

1

2

3

volumeDevices, instead of volumeMounts, is used for block devices. Only
PersistentVolumeClaim sources can be used with raw block volumes.

devicePath, instead of mountPath, represents the path to the physical device where the raw block
is mapped to the system.

The volume source must be of type persistentVolumeClaim and must match the name of the
PVC as expected.

Table 2.5. Accepted values for volumeMode

Value Default

Filesystem Yes

Block No

Table 2.6. Binding scenarios for block volumes

PV
volumeMode

PVC volumeMode Binding result

Filesystem Filesystem Bind

Unspecified Unspecified Bind

Filesystem Unspecified Bind

Unspecified Filesystem Bind

Block Block Bind

Unspecified Block No Bind

Block Unspecified No Bind

Filesystem Block No Bind

Block Filesystem No Bind

IMPORTANT

Unspecified values result in the default value of Filesystem.

 - name: data
 persistentVolumeClaim:
 claimName: block-pvc 3

OpenShift Container Platform 4.5 Storage

20

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

3.1. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE

OpenShift Container Platform supports AWS Elastic Block Store volumes (EBS). You can provision your
OpenShift Container Platform cluster with persistent storage by using Amazon EC2. Some familiarity
with Kubernetes and AWS is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. AWS Elastic Block Store volumes can be provisioned dynamically. Persistent
volumes are not bound to a single project or namespace; they can be shared across the OpenShift
Container Platform cluster. Persistent volume claims are specific to a project or namespace and can be
requested by users.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

3.1.1. Additional resources

See AWS Elastic Block Store CSI Driver Operator for information about accessing additional
storage options, such as volume snapshots, that are not possible with in-tree volume plug-ins.

3.1.2. Creating the EBS storage class

Storage classes are used to differentiate and delineate storage levels and usages. By defining a storage
class, users can obtain dynamically provisioned persistent volumes.

Procedure

1. In the OpenShift Container Platform console, click Storage → Storage Classes.

2. In the storage class overview, click Create Storage Class.

3. Define the desired options on the page that appears.

a. Enter a name to reference the storage class.

b. Enter an optional description.

c. Select the reclaim policy.

d. Select kubernetes.io/aws-ebs from the drop down list.

e. Enter additional parameters for the storage class as desired.

4. Click Create to create the storage class.

3.1.3. Creating the persistent volume claim

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

21

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/storage/#persistent-storage-csi-ebs

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform.

Procedure

1. In the OpenShift Container Platform console, click Storage → Persistent Volume Claims.

2. In the persistent volume claims overview, click Create Persistent Volume Claim.

3. Define the desired options on the page that appears.

a. Select the storage class created previously from the drop-down menu.

b. Enter a unique name for the storage claim.

c. Select the access mode. This determines the read and write access for the created storage
claim.

d. Define the size of the storage claim.

4. Click Create to create the persistent volume claim and generate a persistent volume.

3.1.4. Volume format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows using unformatted AWS volumes as persistent volumes, because OpenShift Container
Platform formats them before the first use.

3.1.5. Maximum number of EBS volumes on a node

By default, OpenShift Container Platform supports a maximum of 39 EBS volumes attached to one
node. This limit is consistent with the AWS volume limits . The volume limit depends on the instance type.

IMPORTANT

As a cluster administrator, you must use either in-tree or Container Storage Interface
(CSI) volumes and their respective storage classes, but never both volume types at the
same time. The maximum attached EBS volume number is counted separately for in-tree
and CSI volumes.

3.2. PERSISTENT STORAGE USING AZURE

OpenShift Container Platform supports Microsoft Azure Disk volumes. You can provision your
OpenShift Container Platform cluster with persistent storage using Azure. Some familiarity with
Kubernetes and Azure is assumed. The Kubernetes persistent volume framework allows administrators
to provision a cluster with persistent storage and gives users a way to request those resources without
having any knowledge of the underlying infrastructure. Azure Disk volumes can be provisioned
dynamically. Persistent volumes are not bound to a single project or namespace; they can be shared
across the OpenShift Container Platform cluster. Persistent volume claims are specific to a project or
namespace and can be requested by users.

IMPORTANT

OpenShift Container Platform 4.5 Storage

22

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html#linux-specific-volume-limits

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional resources

Microsoft Azure Disk

3.2.1. Creating the Azure storage class

Storage classes are used to differentiate and delineate storage levels and usages. By defining a storage
class, users can obtain dynamically provisioned persistent volumes.

Procedure

1. In the OpenShift Container Platform console, click Storage → Storage Classes.

2. In the storage class overview, click Create Storage Class.

3. Define the desired options on the page that appears.

a. Enter a name to reference the storage class.

b. Enter an optional description.

c. Select the reclaim policy.

d. Select kubernetes.io/azure-disk from the drop down list.

i. Enter the storage account type. This corresponds to your Azure storage account SKU
tier. Valid options are Premium_LRS, Standard_LRS, StandardSSD_LRS, and
UltraSSD_LRS.

ii. Enter the kind of account. Valid options are shared, dedicated, and managed.

IMPORTANT

Red Hat only supports the use of kind: Managed in the storage class.

With Shared and Dedicated, Azure creates unmanaged disks, while
OpenShift Container Platform creates a managed disk for machine OS
(root) disks. But because Azure Disk does not allow the use of both
managed and unmanaged disks on a node, unmanaged disks created
with Shared or Dedicated cannot be attached to OpenShift Container
Platform nodes.

e. Enter additional parameters for the storage class as desired.

4. Click Create to create the storage class.

Additional resources

Azure Disk Storage Class

3.2.2. Creating the persistent volume claim

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

23

https://azure.microsoft.com/en-us/services/storage/disks
https://kubernetes.io/docs/concepts/storage/storage-classes/#new-azure-disk-storage-class-starting-from-v1-7-2

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform.

Procedure

1. In the OpenShift Container Platform console, click Storage → Persistent Volume Claims.

2. In the persistent volume claims overview, click Create Persistent Volume Claim.

3. Define the desired options on the page that appears.

a. Select the storage class created previously from the drop-down menu.

b. Enter a unique name for the storage claim.

c. Select the access mode. This determines the read and write access for the created storage
claim.

d. Define the size of the storage claim.

4. Click Create to create the persistent volume claim and generate a persistent volume.

3.2.3. Volume format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows using unformatted Azure volumes as persistent volumes, because OpenShift Container
Platform formats them before the first use.

3.3. PERSISTENT STORAGE USING AZURE FILE

OpenShift Container Platform supports Microsoft Azure File volumes. You can provision your OpenShift
Container Platform cluster with persistent storage using Azure. Some familiarity with Kubernetes and
Azure is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. Azure File volumes can be provisioned dynamically.

Persistent volumes are not bound to a single project or namespace; they can be shared across the
OpenShift Container Platform cluster. Persistent volume claims are specific to a project or namespace
and can be requested by users for use in applications.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional resources

Azure Files

OpenShift Container Platform 4.5 Storage

24

https://azure.microsoft.com/en-us/services/storage/files/

1

2

1

2

3

4

3.3.1. Create the Azure File share persistent volume claim

To create the persistent volume claim, you must first define a Secret object that contains the Azure
account and key. This secret is used in the PersistentVolume definition, and will be referenced by the
persistent volume claim for use in applications.

Prerequisites

An Azure File share exists.

The credentials to access this share, specifically the storage account and key, are available.

Procedure

1. Create a Secret object that contains the Azure File credentials:

The Azure File storage account name.

The Azure File storage account key.

2. Create a PersistentVolume object that references the Secret object you created:

The name of the persistent volume.

The size of this persistent volume.

The name of the secret that contains the Azure File share credentials.

The name of the Azure File share.

3. Create a PersistentVolumeClaim object that maps to the persistent volume you created:

$ oc create secret generic <secret-name> --from-literal=azurestorageaccountname=
<storage-account> \ 1
 --from-literal=azurestorageaccountkey=<storage-account-key> 2

apiVersion: "v1"
kind: "PersistentVolume"
metadata:
 name: "pv0001" 1
spec:
 capacity:
 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"
 storageClassName: azure-file-sc
 azureFile:
 secretName: <secret-name> 3
 shareName: share-1 4
 readOnly: false

apiVersion: "v1"
kind: "PersistentVolumeClaim"

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

25

1

2

3

4

1

2

3

The name of the persistent volume claim.

The size of this persistent volume claim.

The name of the storage class that is used to provision the persistent volume. Specify the
storage class used in the PersistentVolume definition.

The name of the existing PersistentVolume object that references the Azure File share.

3.3.2. Mount the Azure File share in a pod

After the persistent volume claim has been created, it can be used inside by an application. The following
example demonstrates mounting this share inside of a pod.

Prerequisites

A persistent volume claim exists that is mapped to the underlying Azure File share.

Procedure

Create a pod that mounts the existing persistent volume claim:

The name of the pod.

The path to mount the Azure File share inside the pod.

The name of the PersistentVolumeClaim object that has been previously created.

metadata:
 name: "claim1" 1
spec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: "5Gi" 2
 storageClassName: azure-file-sc 3
 volumeName: "pv0001" 4

apiVersion: v1
kind: Pod
metadata:
 name: pod-name 1
spec:
 containers:
 ...
 volumeMounts:
 - mountPath: "/data" 2
 name: azure-file-share
 volumes:
 - name: azure-file-share
 persistentVolumeClaim:
 claimName: claim1 3

OpenShift Container Platform 4.5 Storage

26

1

2

3.4. PERSISTENT STORAGE USING CINDER

OpenShift Container Platform supports OpenStack Cinder. Some familiarity with Kubernetes and
OpenStack is assumed.

Cinder volumes can be provisioned dynamically. Persistent volumes are not bound to a single project or
namespace; they can be shared across the OpenShift Container Platform cluster. Persistent volume
claims are specific to a project or namespace and can be requested by users.

Additional resources

For more information about how OpenStack Block Storage provides persistent block storage
management for virtual hard drives, see OpenStack Cinder.

3.4.1. Manual provisioning with Cinder

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform.

Prerequisites

OpenShift Container Platform configured for Red Hat OpenStack Platform (RHOSP)

Cinder volume ID

3.4.1.1. Creating the persistent volume

You must define your persistent volume (PV) in an object definition before creating it in OpenShift
Container Platform:

Procedure

1. Save your object definition to a file.

cinder-persistentvolume.yaml

The name of the volume that is used by persistent volume claims or pods.

The amount of storage allocated to this volume.

apiVersion: "v1"
kind: "PersistentVolume"
metadata:
 name: "pv0001" 1
spec:
 capacity:
 storage: "5Gi" 2
 accessModes:
 - "ReadWriteOnce"
 cinder: 3
 fsType: "ext3" 4
 volumeID: "f37a03aa-6212-4c62-a805-9ce139fab180" 5

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

27

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/8/html-single/architecture_guide/index#comp-cinder

3

4

5

Indicates cinder for Red Hat OpenStack Platform (RHOSP) Cinder volumes.

The file system that is created when the volume is mounted for the first time.

The Cinder volume to use.

IMPORTANT

Do not change the fstype parameter value after the volume is formatted and
provisioned. Changing this value can result in data loss and pod failure.

2. Create the object definition file you saved in the previous step.

3.4.1.2. Persistent volume formatting

You can use unformatted Cinder volumes as PVs because OpenShift Container Platform formats them
before the first use.

Before OpenShift Container Platform mounts the volume and passes it to a container, the system
checks that it contains a file system as specified by the fsType parameter in the PV definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

3.4.1.3. Cinder volume security

If you use Cinder PVs in your application, configure security for their deployment configurations.

Prerequisites

An SCC must be created that uses the appropriate fsGroup strategy.

Procedure

1. Create a service account and add it to the SCC:

2. In your application’s deployment configuration, provide the service account name and
securityContext:

$ oc create -f cinder-persistentvolume.yaml

$ oc create serviceaccount <service_account>

$ oc adm policy add-scc-to-user <new_scc> -z <service_account> -n <project>

apiVersion: v1
kind: ReplicationController
metadata:
 name: frontend-1
spec:
 replicas: 1 1
 selector: 2
 name: frontend

OpenShift Container Platform 4.5 Storage

28

1

2

3

4

5

6

7

The number of copies of the pod to run.

The label selector of the pod to run.

A template for the pod that the controller creates.

The labels on the pod. They must include labels from the label selector.

The maximum name length after expanding any parameters is 63 characters.

Specifies the service account you created.

Specifies an fsGroup for the pods.

3.5. PERSISTENT STORAGE USING FIBRE CHANNEL

OpenShift Container Platform supports Fibre Channel, allowing you to provision your OpenShift
Container Platform cluster with persistent storage using Fibre channel volumes. Some familiarity with
Kubernetes and Fibre Channel is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure. Persistent volumes are not bound to a single project or namespace; they can
be shared across the OpenShift Container Platform cluster. Persistent volume claims are specific to a
project or namespace and can be requested by users.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional resources

Using Fibre Channel devices

3.5.1. Provisioning

To provision Fibre Channel volumes using the PersistentVolume API the following must be available:

 template: 3
 metadata:
 labels: 4
 name: frontend 5
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always
 serviceAccountName: <service_account> 6
 securityContext:
 fsGroup: 7777 7

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/using-fibre-channel-devices_managing-storage-devices

1

The targetWWNs (array of Fibre Channel target’s World Wide Names).

A valid LUN number.

The filesystem type.

A persistent volume and a LUN have a one-to-one mapping between them.

Prerequisites

Fibre Channel LUNs must exist in the underlying infrastructure.

PersistentVolume object definition

Fibre Channel WWNs are identified as /dev/disk/by-path/pci-<IDENTIFIER>-fc-0x<WWN>-lun-
<LUN#>, but you do not need to provide any part of the path leading up to the WWN, including the
0x, and anything after, including the - (hyphen).

IMPORTANT

Changing the value of the fstype parameter after the volume has been formatted and
provisioned can result in data loss and pod failure.

3.5.1.1. Enforcing disk quotas

Use LUN partitions to enforce disk quotas and size constraints. Each LUN is mapped to a single
persistent volume, and unique names must be used for persistent volumes.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount, such
as 10Gi, and be matched with a corresponding volume of equal or greater capacity.

3.5.1.2. Fibre Channel volume security

Users request storage with a persistent volume claim. This claim only lives in the user’s namespace, and
can only be referenced by a pod within that same namespace. Any attempt to access a persistent
volume across a namespace causes the pod to fail.

Each Fibre Channel LUN must be accessible by all nodes in the cluster.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 fc:
 targetWWNs: ['500a0981891b8dc5', '500a0981991b8dc5'] 1
 lun: 2
 fsType: ext4

OpenShift Container Platform 4.5 Storage

30

1

2

3.6. PERSISTENT STORAGE USING FLEXVOLUME

OpenShift Container Platform supports FlexVolume, an out-of-tree plug-in that uses an executable
model to interface with drivers.

To use storage from a back-end that does not have a built-in plug-in, you can extend OpenShift
Container Platform through FlexVolume drivers and provide persistent storage to applications.

Pods interact with FlexVolume drivers through the flexvolume in-tree plugin.

Additional resources

Expanding persistent volumes

3.6.1. About FlexVolume drivers

A FlexVolume driver is an executable file that resides in a well-defined directory on all nodes in the
cluster. OpenShift Container Platform calls the FlexVolume driver whenever it needs to mount or
unmount a volume represented by a PersistentVolume object with flexVolume as the source.

IMPORTANT

Attach and detach operations are not supported in OpenShift Container Platform for
FlexVolume.

3.6.2. FlexVolume driver example

The first command-line argument of the FlexVolume driver is always an operation name. Other
parameters are specific to each operation. Most of the operations take a JavaScript Object Notation
(JSON) string as a parameter. This parameter is a complete JSON string, and not the name of a file with
the JSON data.

The FlexVolume driver contains:

All flexVolume.options.

Some options from flexVolume prefixed by kubernetes.io/, such as fsType and readwrite.

The content of the referenced secret, if specified, prefixed by kubernetes.io/secret/.

FlexVolume driver JSON input example

All options from flexVolume.options.

The value of flexVolume.fsType.

{
 "fooServer": "192.168.0.1:1234", 1
 "fooVolumeName": "bar",
 "kubernetes.io/fsType": "ext4", 2
 "kubernetes.io/readwrite": "ro", 3
 "kubernetes.io/secret/<key name>": "<key value>", 4
 "kubernetes.io/secret/<another key name>": "<another key value>",
}

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/storage/#expanding-persistent-volumes

3

4

ro/rw based on flexVolume.readOnly.

All keys and their values from the secret referenced by flexVolume.secretRef.

OpenShift Container Platform expects JSON data on standard output of the driver. When not specified,
the output describes the result of the operation.

FlexVolume driver default output example

Exit code of the driver should be 0 for success and 1 for error.

Operations should be idempotent, which means that the mounting of an already mounted volume should
result in a successful operation.

3.6.3. Installing FlexVolume drivers

FlexVolume drivers that are used to extend OpenShift Container Platform are executed only on the
node. To implement FlexVolumes, a list of operations to call and the installation path are all that is
required.

Prerequisites

FlexVolume drivers must implement these operations:

init

Initializes the driver. It is called during initialization of all nodes.

Arguments: none

Executed on: node

Expected output: default JSON

mount

Mounts a volume to directory. This can include anything that is necessary to mount the
volume, including finding the device and then mounting the device.

Arguments: <mount-dir> <json>

Executed on: node

Expected output: default JSON

unmount

Unmounts a volume from a directory. This can include anything that is necessary to clean up
the volume after unmounting.

Arguments: <mount-dir>

{
 "status": "<Success/Failure/Not supported>",
 "message": "<Reason for success/failure>"
}

OpenShift Container Platform 4.5 Storage

32

Executed on: node

Expected output: default JSON

mountdevice

Mounts a volume’s device to a directory where individual pods can then bind mount.

This call-out does not pass "secrets" specified in the FlexVolume spec. If your driver requires secrets, do
not implement this call-out.

Arguments: <mount-dir> <json>

Executed on: node

Expected output: default JSON

unmountdevice

Unmounts a volume’s device from a directory.

Arguments: <mount-dir>

Executed on: node

Expected output: default JSON

All other operations should return JSON with {"status": "Not supported"} and exit code 1.

Procedure

To install the FlexVolume driver:

1. Ensure that the executable file exists on all nodes in the cluster.

2. Place the executable file at the volume plug-in path: /etc/kubernetes/kubelet-
plugins/volume/exec/<vendor>~<driver>/<driver>.

For example, to install the FlexVolume driver for the storage foo, place the executable file at:
/etc/kubernetes/kubelet-plugins/volume/exec/openshift.com~foo/foo.

3.6.4. Consuming storage using FlexVolume drivers

Each PersistentVolume object in OpenShift Container Platform represents one storage asset in the
storage back-end, such as a volume.

Procedure

Use the PersistentVolume object to reference the installed storage.

Persistent volume object definition using FlexVolume drivers example

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001 1
spec:
 capacity:

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

33

1

2

3

4

5

6

7

The name of the volume. This is how it is identified through persistent volume claims or from pods.
This name can be different from the name of the volume on back-end storage.

The amount of storage allocated to this volume.

The name of the driver. This field is mandatory.

The file system that is present on the volume. This field is optional.

The reference to a secret. Keys and values from this secret are provided to the FlexVolume driver
on invocation. This field is optional.

The read-only flag. This field is optional.

The additional options for the FlexVolume driver. In addition to the flags specified by the user in
the options field, the following flags are also passed to the executable:

"fsType":"<FS type>",
"readwrite":"<rw>",
"secret/key1":"<secret1>"
...
"secret/keyN":"<secretN>"

NOTE

Secrets are passed only to mount or unmount call-outs.

3.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK

OpenShift Container Platform supports GCE Persistent Disk volumes (gcePD). You can provision your
OpenShift Container Platform cluster with persistent storage using GCE. Some familiarity with
Kubernetes and GCE is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

GCE Persistent Disk volumes can be provisioned dynamically.

Persistent volumes are not bound to a single project or namespace; they can be shared across the

 storage: 1Gi 2
 accessModes:
 - ReadWriteOnce
 flexVolume:
 driver: openshift.com/foo 3
 fsType: "ext4" 4
 secretRef: foo-secret 5
 readOnly: true 6
 options: 7
 fooServer: 192.168.0.1:1234
 fooVolumeName: bar

OpenShift Container Platform 4.5 Storage

34

Persistent volumes are not bound to a single project or namespace; they can be shared across the
OpenShift Container Platform cluster. Persistent volume claims are specific to a project or namespace
and can be requested by users.

IMPORTANT

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional resources

GCE Persistent Disk

3.7.1. Creating the GCE storage class

Storage classes are used to differentiate and delineate storage levels and usages. By defining a storage
class, users can obtain dynamically provisioned persistent volumes.

Procedure

1. In the OpenShift Container Platform console, click Storage → Storage Classes.

2. In the storage class overview, click Create Storage Class.

3. Define the desired options on the page that appears.

a. Enter a name to reference the storage class.

b. Enter an optional description.

c. Select the reclaim policy.

d. Select kubernetes.io/gce-pd from the drop down list.

e. Enter additional parameters for the storage class as desired.

4. Click Create to create the storage class.

3.7.2. Creating the persistent volume claim

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform.

Procedure

1. In the OpenShift Container Platform console, click Storage → Persistent Volume Claims.

2. In the persistent volume claims overview, click Create Persistent Volume Claim.

3. Define the desired options on the page that appears.

a. Select the storage class created previously from the drop-down menu.

b. Enter a unique name for the storage claim.

c. Select the access mode. This determines the read and write access for the created storage

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

35

https://cloud.google.com/compute/docs/disks/

c. Select the access mode. This determines the read and write access for the created storage
claim.

d. Define the size of the storage claim.

4. Click Create to create the persistent volume claim and generate a persistent volume.

3.7.3. Volume format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it
contains a file system as specified by the fsType parameter in the persistent volume definition. If the
device is not formatted with the file system, all data from the device is erased and the device is
automatically formatted with the given file system.

This allows using unformatted GCE volumes as persistent volumes, because OpenShift Container
Platform formats them before the first use.

3.8. PERSISTENT STORAGE USING HOSTPATH

A hostPath volume in an OpenShift Container Platform cluster mounts a file or directory from the host
node’s filesystem into your pod. Most pods will not need a hostPath volume, but it does offer a quick
option for testing should an application require it.

IMPORTANT

The cluster administrator must configure pods to run as privileged. This grants access to
pods in the same node.

3.8.1. Overview

OpenShift Container Platform supports hostPath mounting for development and testing on a single-
node cluster.

In a production cluster, you would not use hostPath. Instead, a cluster administrator would provision a
network resource, such as a GCE Persistent Disk volume, an NFS share, or an Amazon EBS volume.
Network resources support the use of storage classes to set up dynamic provisioning.

A hostPath volume must be provisioned statically.

3.8.2. Statically provisioning hostPath volumes

A pod that uses a hostPath volume must be referenced by manual (static) provisioning.

Procedure

1. Define the persistent volume (PV). Create a file, pv.yaml, with the PersistentVolume object
definition:

 apiVersion: v1
 kind: PersistentVolume
 metadata:
 name: task-pv-volume 1
 labels:
 type: local

OpenShift Container Platform 4.5 Storage

36

1

2

3

4

The name of the volume. This name is how it is identified by persistent volume claims or
pods.

Used to bind persistent volume claim requests to this persistent volume.

The volume can be mounted as read-write by a single node.

The configuration file specifies that the volume is at /mnt/data on the cluster’s node.

2. Create the PV from the file:

3. Define the persistent volume claim (PVC). Create a file, pvc.yaml, with the
PersistentVolumeClaim object definition:

4. Create the PVC from the file:

3.8.3. Mounting the hostPath share in a privileged pod

After the persistent volume claim has been created, it can be used inside by an application. The following
example demonstrates mounting this share inside of a pod.

Prerequisites

A persistent volume claim exists that is mapped to the underlying hostPath share.

Procedure

 spec:
 storageClassName: manual 2
 capacity:
 storage: 5Gi
 accessModes:
 - ReadWriteOnce 3
 persistentVolumeReclaimPolicy: Retain
 hostPath:
 path: "/mnt/data" 4

$ oc create -f pv.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: task-pvc-volume
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 storageClassName: manual

$ oc create -f pvc.yaml

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

37

1

2

3

4

Create a privileged pod that mounts the existing persistent volume claim:

The name of the pod.

The pod must run as privileged to access the node’s storage.

The path to mount the hostPath share inside the privileged pod.

The name of the PersistentVolumeClaim object that has been previously created.

3.9. PERSISTENT STORAGE USING ISCSI

You can provision your OpenShift Container Platform cluster with persistent storage using iSCSI. Some
familiarity with Kubernetes and iSCSI is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

IMPORTANT

High-availability of storage in the infrastructure is left to the underlying storage provider.

IMPORTANT

When you use iSCSI on Amazon Web Services, you must update the default security
policy to include TCP traffic between nodes on the iSCSI ports. By default, they are ports
860 and 3260.

IMPORTANT

OpenShift assumes that all nodes in the cluster have already configured iSCSI initator, i.e.
have installed iscsi-initiator-utils package and configured their initiator name in
/etc/iscsi/initiatorname.iscsi. See Storage Administration Guide linked above.

apiVersion: v1
kind: Pod
metadata:
 name: pod-name 1
spec:
 containers:
 ...
 securityContext:
 privileged: true 2
 volumeMounts:
 - mountPath: /data 3
 name: hostpath-privileged
 ...
 securityContext: {}
 volumes:
 - name: hostpath-privileged
 persistentVolumeClaim:
 claimName: task-pvc-volume 4

OpenShift Container Platform 4.5 Storage

38

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-iscsi.html

3.9.1. Provisioning

Verify that the storage exists in the underlying infrastructure before mounting it as a volume in
OpenShift Container Platform. All that is required for the iSCSI is the iSCSI target portal, a valid iSCSI
Qualified Name (IQN), a valid LUN number, the filesystem type, and the PersistentVolume API.

PersistentVolume object definition

3.9.2. Enforcing disk quotas

Use LUN partitions to enforce disk quotas and size constraints. Each LUN is one persistent volume.
Kubernetes enforces unique names for persistent volumes.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount (e.g,
10Gi) and be matched with a corresponding volume of equal or greater capacity.

3.9.3. iSCSI volume security

Users request storage with a PersistentVolumeClaim object. This claim only lives in the user’s
namespace and can only be referenced by a pod within that same namespace. Any attempt to access a
persistent volume claim across a namespace causes the pod to fail.

Each iSCSI LUN must be accessible by all nodes in the cluster.

3.9.3.1. Challenge Handshake Authentication Protocol (CHAP) configuration

Optionally, OpenShift can use CHAP to authenticate itself to iSCSI targets:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: iscsi-pv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 iscsi:
 targetPortal: 10.16.154.81:3260
 iqn: iqn.2014-12.example.server:storage.target00
 lun: 0
 fsType: 'ext4'

apiVersion: v1
kind: PersistentVolume
metadata:
 name: iscsi-pv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 iscsi:
 targetPortal: 10.0.0.1:3260

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

39

1

2

3

1

Enable CHAP authentication of iSCSI discovery.

Enable CHAP authentication of iSCSI session.

Specify name of Secrets object with user name + password. This Secret object must be available in
all namespaces that can use the referenced volume.

3.9.4. iSCSI multipathing

For iSCSI-based storage, you can configure multiple paths by using the same IQN for more than one
target portal IP address. Multipathing ensures access to the persistent volume when one or more of the
components in a path fail.

To specify multi-paths in the pod specification use the portals field. For example:

Add additional target portals using the portals field.

3.9.5. iSCSI custom initiator IQN

Configure the custom initiator iSCSI Qualified Name (IQN) if the iSCSI targets are restricted to certain
IQNs, but the nodes that the iSCSI PVs are attached to are not guaranteed to have these IQNs.

To specify a custom initiator IQN, use initiatorName field.

 iqn: iqn.2016-04.test.com:storage.target00
 lun: 0
 fsType: ext4
 chapAuthDiscovery: true 1
 chapAuthSession: true 2
 secretRef:
 name: chap-secret 3

apiVersion: v1
kind: PersistentVolume
metadata:
 name: iscsi-pv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 iscsi:
 targetPortal: 10.0.0.1:3260
 portals: ['10.0.2.16:3260', '10.0.2.17:3260', '10.0.2.18:3260'] 1
 iqn: iqn.2016-04.test.com:storage.target00
 lun: 0
 fsType: ext4
 readOnly: false

apiVersion: v1
kind: PersistentVolume
metadata:

OpenShift Container Platform 4.5 Storage

40

1 Specify the name of the initiator.

3.10. PERSISTENT STORAGE USING LOCAL VOLUMES

OpenShift Container Platform can be provisioned with persistent storage by using local volumes. Local
persistent volumes allow you to access local storage devices, such as a disk or partition, by using the
standard PVC interface.

Local volumes can be used without manually scheduling Pods to nodes, because the system is aware of
the volume node’s constraints. However, local volumes are still subject to the availability of the
underlying node and are not suitable for all applications.

NOTE

Local volumes can only be used as a statically created Persistent Volume.

3.10.1. Installing the Local Storage Operator

The Local Storage Operator is not installed in OpenShift Container Platform by default. Use the
following procedure to install and configure this Operator to enable local volumes in your cluster.

Prerequisites

Access to the OpenShift Container Platform web console or command-line interface (CLI).

Procedure

1. Create the local-storage project:

2. Optional: Allow local storage creation on infrastructure nodes.
You might want to use the Local Storage Operator to create volumes on infrastructure nodes in
support of components such as logging and monitoring.

You must adjust the default node selector so that the Local Storage Operator includes the
infrastructure nodes, and not just worker nodes.

To block the Local Storage Operator from inheriting the cluster-wide default selector, enter the

 name: iscsi-pv
spec:
 capacity:
 storage: 1Gi
 accessModes:
 - ReadWriteOnce
 iscsi:
 targetPortal: 10.0.0.1:3260
 portals: ['10.0.2.16:3260', '10.0.2.17:3260', '10.0.2.18:3260']
 iqn: iqn.2016-04.test.com:storage.target00
 lun: 0
 initiatorName: iqn.2016-04.test.com:custom.iqn 1
 fsType: ext4
 readOnly: false

$ oc new-project local-storage

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

41

To block the Local Storage Operator from inheriting the cluster-wide default selector, enter the
following command:

From the UI

To install the Local Storage Operator from the web console, follow these steps:

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → OperatorHub.

3. Type Local Storage into the filter box to locate the Local Storage Operator.

4. Click Install.

5. On the Install Operator page, select A specific namespace on the cluster. Select local-
storage from the drop-down menu.

6. Adjust the values for Update Channel and Approval Strategy to the values that you want.

7. Click Install.

Once finished, the Local Storage Operator will be listed in the Installed Operators section of the web
console.

From the CLI

1. Install the Local Storage Operator from the CLI.

a. Run the following command to get the OpenShift Container Platform major and minor
version. It is required for the channel value in the next step.

b. Create an object YAML file to define an Operator group and subscription for the Local
Storage Operator, such as local-storage.yaml:

Example local-storage

$ oc annotate project local-storage openshift.io/node-selector=''

$ OC_VERSION=$(oc version -o yaml | grep openshiftVersion | \
 grep -o '[0-9]*[.][0-9]*' | head -1)

apiVersion: operators.coreos.com/v1alpha2
kind: OperatorGroup
metadata:
 name: local-operator-group
 namespace: local-storage
spec:
 targetNamespaces:
 - local-storage

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: local-storage-operator
 namespace: local-storage

OpenShift Container Platform 4.5 Storage

42

1 The user approval policy for an install plan.

2. Create the Local Storage Operator object by entering the following command:

At this point, the Operator Lifecycle Manager (OLM) is now aware of the Local Storage
Operator. A ClusterServiceVersion (CSV) for the Operator should appear in the target
namespace, and APIs provided by the Operator should be available for creation.

3. Verify local storage installation by checking that all pods and the Local Storage Operator have
been created:

a. Check that all the required pods have been created:

Example output

b. Check the ClusterServiceVersion (CSV) YAML manifest to see that the Local Storage
Operator is available in the local-storage project:

Example output

After all checks have passed, the Local Storage Operator is installed successfully.

3.10.2. Provisioning local volumes by using the Local Storage Operator

Local volumes cannot be created by dynamic provisioning. Instead, persistent volumes can be created
by the Local Storage Operator. The local volume provisioner looks for any file system or block volume
devices at the paths specified in the defined resource.

Prerequisites

The Local Storage Operator is installed.

spec:
 channel: "${OC_VERSION}"
 installPlanApproval: Automatic 1
 name: local-storage-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc apply -f local-storage.yaml

$ oc -n local-storage get pods

NAME READY STATUS RESTARTS AGE
local-storage-operator-746bf599c9-vlt5t 1/1 Running 0 19m

$ oc get csvs -n local-storage

NAME DISPLAY VERSION REPLACES PHASE
local-storage-operator.4.2.26-202003230335 Local Storage 4.2.26-202003230335
Succeeded

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

43

1

2

3

4

5

6

Local disks are attached to the OpenShift Container Platform nodes.

Procedure

1. Create the local volume resource. This must define the nodes and paths to the local volumes.

NOTE

Do not use different storage class names for the same device. Doing so will
create multiple persistent volumes (PV)s.

Example: Filesystem

The namespace where the Local Storage Operator is installed.

Optional: A node selector containing a list of nodes where the local storage volumes are
attached. This example uses the node host names, obtained from oc get node. If a value is
not defined, then the Local Storage Operator will attempt to find matching disks on all
available nodes.

The volume mode, either Filesystem or Block, defining the type of the local volumes.

The file system that is created when the local volume is mounted for the first time.

The path containing a list of local storage devices to choose from.

Replace this value with your actual local disks filepath to the LocalVolume resource, such as
/dev/xvdg. PVs are created for these local disks when the provisioner is deployed
successfully.

NOTE

apiVersion: "local.storage.openshift.io/v1"
kind: "LocalVolume"
metadata:
 name: "local-disks"
 namespace: "local-storage" 1
spec:
 nodeSelector: 2
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - ip-10-0-140-183
 - ip-10-0-158-139
 - ip-10-0-164-33
 storageClassDevices:
 - storageClassName: "local-sc"
 volumeMode: Filesystem 3
 fsType: xfs 4
 devicePaths: 5
 - /path/to/device 6

OpenShift Container Platform 4.5 Storage

44

1

2

3

4

5

NOTE

A raw block volume (volumeMode: block) is not formatted with a file system.
You should use this mode only if any application running on the pod can use raw
block devices.

Example: Block

The namespace where the Local Storage Operator is installed.

Optional: A node selector containing a list of nodes where the local storage volumes are
attached. This example uses the node host names, obtained from oc get node. If a value is
not defined, then the Local Storage Operator will attempt to find matching disks on all
available nodes.

The volume mode, either Filesystem or Block, defining the type of the local volumes.

The path containing a list of local storage devices to choose from.

Replace this value with your actual local disks filepath to the LocalVolume resource, such as
/dev/xvdg. PVs are created for these local disks when the provisioner is deployed
successfully.

2. Create the local volume resource in your OpenShift Container Platform cluster, specifying the
file you just created:

3. Verify that the provisioner was created, and that the corresponding daemon sets were created:

apiVersion: "local.storage.openshift.io/v1"
kind: "LocalVolume"
metadata:
 name: "local-disks"
 namespace: "local-storage" 1
spec:
 nodeSelector: 2
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - ip-10-0-136-143
 - ip-10-0-140-255
 - ip-10-0-144-180
 storageClassDevices:
 - storageClassName: "localblock-sc"
 volumeMode: Block 3
 devicePaths: 4
 - /path/to/device 5

$ oc create -f <local-volume>.yaml

$ oc get all -n local-storage

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

45

Example output

Note the desired and current number of daemon set processes. If the desired count is 0, it
indicates that the label selectors were invalid.

4. Verify that the persistent volumes were created:

Example output

IMPORTANT

Editing the LocalVolume object does not change the fsType or volumeMode of existing
persistent volumes because doing so might result in a destructive operation.

3.10.3. Provisioning local volumes without the Local Storage Operator

Local volumes cannot be created by dynamic provisioning. Instead, persistent volumes can be created
by defining the persistent volume (PV) in an object definition. The local volume provisioner looks for any
file system or block volume devices at the paths specified in the defined resource.

NAME READY STATUS RESTARTS AGE
pod/local-disks-local-provisioner-h97hj 1/1 Running 0 46m
pod/local-disks-local-provisioner-j4mnn 1/1 Running 0 46m
pod/local-disks-local-provisioner-kbdnx 1/1 Running 0 46m
pod/local-disks-local-diskmaker-ldldw 1/1 Running 0 46m
pod/local-disks-local-diskmaker-lvrv4 1/1 Running 0 46m
pod/local-disks-local-diskmaker-phxdq 1/1 Running 0 46m
pod/local-storage-operator-54564d9988-vxvhx 1/1 Running 0 47m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/local-storage-operator ClusterIP 172.30.49.90 <none> 60000/TCP 47m

NAME DESIRED CURRENT READY UP-TO-DATE
AVAILABLE NODE SELECTOR AGE
daemonset.apps/local-disks-local-provisioner 3 3 3 3 3 <none>
46m
daemonset.apps/local-disks-local-diskmaker 3 3 3 3 3 <none>
46m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/local-storage-operator 1/1 1 1 47m

NAME DESIRED CURRENT READY AGE
replicaset.apps/local-storage-operator-54564d9988 1 1 1 47m

$ oc get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
local-pv-1cec77cf 100Gi RWO Delete Available local-sc 88m
local-pv-2ef7cd2a 100Gi RWO Delete Available local-sc
82m
local-pv-3fa1c73 100Gi RWO Delete Available local-sc 48m

OpenShift Container Platform 4.5 Storage

46

1

2

3

IMPORTANT

Manual provisioning of PVs includes the risk of potential data leaks across PV reuse when
PVCs are deleted. The Local Storage Operator is recommended for automating the life
cycle of devices when provisioning local PVs.

Prerequisites

Local disks are attached to the OpenShift Container Platform nodes.

Procedure

1. Define the PV. Create a file, such as example-pv-filesystem.yaml or example-pv-block.yaml,
with the PersistentVolume object definition. This resource must define the nodes and paths to
the local volumes.

NOTE

Do not use different storage class names for the same device. Doing so will
create multiple PVs.

example-pv-filesystem.yaml

The volume mode, either Filesystem or Block, that defines the type of PVs.

The name of the storage class to use when creating PV resources. Use a storage class that
uniquely identifies this set of PVs.

The path containing a list of local storage devices to choose from.

NOTE

apiVersion: v1
kind: PersistentVolume
metadata:
 name: example-pv-filesystem
spec:
 capacity:
 storage: 100Gi
 volumeMode: Filesystem 1
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local-storage 2
 local:
 path: /dev/xvdf 3
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - example-node

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

47

1

2

3

NOTE

A raw block volume (volumeMode: block) is not formatted with a file system.
Use this mode only if any application running on the pod can use raw block
devices.

example-pv-block.yaml

The volume mode, either Filesystem or Block, that defines the type of PVs.

The name of the storage class to use when creating PV resources. Be sure to use a storage
class that uniquely identifies this set of PVs.

The path containing a list of local storage devices to choose from.

2. Create the PV resource in your OpenShift Container Platform cluster. Specify the file you just
created:

3. Verify that the local PV was created:

Example output

apiVersion: v1
kind: PersistentVolume
metadata:
 name: example-pv-block
spec:
 capacity:
 storage: 100Gi
 volumeMode: Block 1
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local-storage 2
 local:
 path: /dev/xvdf 3
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - example-node

$ oc create -f <example-pv>.yaml

$ oc get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
example-pv-filesystem 100Gi RWO Delete Available local-
storage 3m47s

OpenShift Container Platform 4.5 Storage

48

1

2

3

4

3.10.4. Creating the local volume persistent volume claim

Local volumes must be statically created as a persistent volume claim (PVC) to be accessed by the pod.

Prerequisites

Persistent volumes have been created using the local volume provisioner.

Procedure

1. Create the PVC using the corresponding storage class:

Name of the PVC.

The type of the PVC. Defaults to Filesystem.

The amount of storage available to the PVC.

Name of the storage class required by the claim.

2. Create the PVC in the OpenShift Container Platform cluster, specifying the file you just
created:

3.10.5. Attach the local claim

After a local volume has been mapped to a PersistentVolumeClaim (PVC) it can be specified inside of a
resource.

Prerequisites

example-pv1 1Gi RWO Delete Bound local-storage/pvc1 local-
storage 12h
example-pv2 1Gi RWO Delete Bound local-storage/pvc2 local-
storage 12h
example-pv3 1Gi RWO Delete Bound local-storage/pvc3 local-
storage 12h

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: local-pvc-name 1
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Filesystem 2
 resources:
 requests:
 storage: 100Gi 3
 storageClassName: local-sc 4

$ oc create -f <local-pvc>.yaml

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

49

1

2

3

A PVC exists in the same namespace.

Procedure

1. Include the defined claim in the resource’s Spec. The following example declares the PVC inside
a Pod:

apiVersion: v1
kind: Pod
spec:
 ...
 containers:
 volumeMounts:
 - name: localpvc 1
 mountPath: "/data" 2
 volumes:
 - name: localpvc
 persistentVolumeClaim:
 claimName: localpvc 3

Name of the volume to mount.

Path inside the Pod where the volume is mounted.

Name of the existing PVC to use.

2. Create the resource in the OpenShift Container Platform cluster, specifying the file you just
created:

3.10.6. Using tolerations with Local Storage Operator pods

Taints can be applied to nodes to prevent them from running general workloads. To allow the Local
Storage Operator to use tainted nodes, you must add tolerations to the Pod or DaemonSet definition.
This allows the created resources to run on these tainted nodes.

You apply tolerations to the Local Storage Operator pod through the LocalVolume resource and apply
taints to a node through the node specification. A taint on a node instructs the node to repel all pods
that do not tolerate the taint. Using a specific taint that is not on other pods ensures that the Local
Storage Operator pod can also run on that node.

IMPORTANT

Taints and tolerations consist of a key, value, and effect. As an argument, it is expressed
as key=value:effect. An operator allows you to leave one of these parameters empty.

Prerequisites

The Local Storage Operator is installed.

Local disks are attached to OpenShift Container Platform nodes with a taint.

$ oc create -f <local-pod>.yaml

OpenShift Container Platform 4.5 Storage

50

1

2

3

4

5

Tainted nodes are expected to provision local storage.

Procedure

To configure local volumes for scheduling on tainted nodes:

1. Modify the YAML file that defines the Pod and add the LocalVolume spec, as shown in the
following example:

Specify the key that you added to the node.

Specify the Equal operator to require the key/value parameters to match. If operator is
Exists, the system checks that the key exists and ignores the value. If operator is Equal,
then the key and value must match.

Specify the value local of the tainted node.

The volume mode, either Filesystem or Block, defining the type of the local volumes.

The path containing a list of local storage devices to choose from.

The defined tolerations will be passed to the resulting daemon sets, allowing the diskmaker and
provisioner pods to be created for nodes that contain the specified taints.

3.10.7. Deleting the Local Storage Operator’s resources

3.10.7.1. Removing a local volume

Occasionally, local volumes must be deleted. While removing the entry in the LocalVolume resource and
deleting the PersistentVolume is typically enough, if you want to re-use the same device path or have it
managed by a different storage class, then additional steps are needed.

 apiVersion: "local.storage.openshift.io/v1"
 kind: "LocalVolume"
 metadata:
 name: "local-disks"
 namespace: "local-storage"
 spec:
 tolerations:
 - key: localstorage 1
 operator: Equal 2
 value: "localstorage" 3
 storageClassDevices:
 - storageClassName: "localblock-sc"
 volumeMode: Block 4
 devicePaths: 5
 - /dev/xvdg

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

51

1

WARNING

The following procedure involves accessing a node as the root user. Modifying the
state of the node beyond the steps in this procedure could result in cluster
instability.

Prerequisites

The persistent volume must be in a Released or Available state.

WARNING

Deleting a persistent volume that is still in use can result in data loss or
corruption.

Procedure

1. Edit the previously created local volume to remove any unwanted disks.

a. Edit the cluster resource:

b. Navigate to the lines under devicePaths, and delete any representing unwanted disks.

2. Delete any persistent volumes created.

3. Delete any symlinks on the node.

a. Create a debug pod on the node:

b. Change your root directory to the host:

c. Navigate to the directory containing the local volume symlinks.

The name of the storage class used to create the local volumes.





$ oc edit localvolume <name> -n local-storage

$ oc delete pv <pv-name>

$ oc debug node/<node-name>

$ chroot /host

$ cd /mnt/local-storage/<sc-name> 1

OpenShift Container Platform 4.5 Storage

52

d. Delete the symlink belonging to the removed device.

3.10.7.2. Uninstalling the Local Storage Operator

To uninstall the Local Storage Operator, you must remove the Operator and all created resources in the
local-storage project.

WARNING

Uninstalling the Local Storage Operator while local storage PVs are still in use is not
recommended. While the PVs will remain after the Operator’s removal, there might
be indeterminate behavior if the Operator is uninstalled and reinstalled without
removing the PVs and local storage resources.

Prerequisites

Access to the OpenShift Container Platform web console.

Procedure

1. Delete any local volume resources in the project:

2. Uninstall the Local Storage Operator from the web console.

a. Log in to the OpenShift Container Platform web console.

b. Navigate to Operators → Installed Operators.

c. Type Local Storage into the filter box to locate the Local Storage Operator.

d. Click the Options menu at the end of the Local Storage Operator.

e. Click Uninstall Operator.

f. Click Remove in the window that appears.

3. The PVs created by the Local Storage Operator will remain in the cluster until deleted. Once
these volumes are no longer in use, delete them by running the following command:

4. Delete the local-storage project:

$ rm <symlink>



$ oc delete localvolume --all --all-namespaces

$ oc delete pv <pv-name>

$ oc delete project local-storage

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

53

1

2

3

4

5

6

7

3.11. PERSISTENT STORAGE USING NFS

OpenShift Container Platform clusters can be provisioned with persistent storage using NFS. Persistent
volumes (PVs) and persistent volume claims (PVCs) provide a convenient method for sharing a volume
across a project. While the NFS-specific information contained in a PV definition could also be defined
directly in a Pod definition, doing so does not create the volume as a distinct cluster resource, making
the volume more susceptible to conflicts.

Additional resources

Network File System (NFS)

3.11.1. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift
Container Platform. To provision NFS volumes, a list of NFS servers and export paths are all that is
required.

Procedure

1. Create an object definition for the PV:

The name of the volume. This is the PV identity in various oc <command> pod
commands.

The amount of storage allocated to this volume.

Though this appears to be related to controlling access to the volume, it is actually used
similarly to labels and used to match a PVC to a PV. Currently, no access rules are enforced
based on the accessModes.

The volume type being used, in this case the nfs plug-in.

The path that is exported by the NFS server.

The host name or IP address of the NFS server.

The reclaim policy for the PV. This defines what happens to a volume when released.

NOTE

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv0001 1
spec:
 capacity:
 storage: 5Gi 2
 accessModes:
 - ReadWriteOnce 3
 nfs: 4
 path: /tmp 5
 server: 172.17.0.2 6
 persistentVolumeReclaimPolicy: Retain 7

OpenShift Container Platform 4.5 Storage

54

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/storage_administration_guide/ch-nfs

1

2

NOTE

Each NFS volume must be mountable by all schedulable nodes in the cluster.

2. Verify that the PV was created:

Example output

3. Create a persistent volume claim that binds to the new PV:

As mentioned above for PVs, the accessModes do not enforce security, but rather act as
labels to match a PV to a PVC.

This claim looks for PVs offering 5Gi or greater capacity.

4. Verify that the persistent volume claim was created:

$ oc get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
nfs-claim1 Bound pv0001 5Gi RWO gp2 2m

3.11.2. Enforcing disk quotas

You can use disk partitions to enforce disk quotas and size constraints. Each partition can be its own
export. Each export is one PV. OpenShift Container Platform enforces unique names for PVs, but the
uniqueness of the NFS volume’s server and path is up to the administrator.

Enforcing quotas in this way allows the developer to request persistent storage by a specific amount,
such as 10Gi, and be matched with a corresponding volume of equal or greater capacity.

3.11.3. NFS volume security

This section covers NFS volume security, including matching permissions and SELinux considerations.
The user is expected to understand the basics of POSIX permissions, process UIDs, supplemental
groups, and SELinux.

Developers request NFS storage by referencing either a PVC by name or the NFS volume plug-in

$ oc get pv

NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
pv0001 <none> 5Gi RWO Available 31s

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: nfs-claim1
spec:
 accessModes:
 - ReadWriteOnce 1
 resources:
 requests:
 storage: 5Gi 2

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

55

Developers request NFS storage by referencing either a PVC by name or the NFS volume plug-in
directly in the volumes section of their Pod definition.

The /etc/exports file on the NFS server contains the accessible NFS directories. The target NFS
directory has POSIX owner and group IDs. The OpenShift Container Platform NFS plug-in mounts the
container’s NFS directory with the same POSIX ownership and permissions found on the exported NFS
directory. However, the container is not run with its effective UID equal to the owner of the NFS mount,
which is the desired behavior.

As an example, if the target NFS directory appears on the NFS server as:

Example output

Example output

Then the container must match SELinux labels, and either run with a UID of 65534, the nfsnobody
owner, or with 5555 in its supplemental groups to access the directory.

NOTE

The owner ID of 65534 is used as an example. Even though NFS’s root_squash maps
root, uid 0, to nfsnobody, uid 65534, NFS exports can have arbitrary owner IDs. Owner
65534 is not required for NFS exports.

3.11.3.1. Group IDs

The recommended way to handle NFS access, assuming it is not an option to change permissions on the
NFS export, is to use supplemental groups. Supplemental groups in OpenShift Container Platform are
used for shared storage, of which NFS is an example. In contrast, block storage such as iSCSI uses the
fsGroup SCC strategy and the fsGroup value in the securityContext of the pod.

NOTE

To gain access to persistent storage, it is generally preferable to use supplemental group
IDs versus user IDs.

Because the group ID on the example target NFS directory is 5555, the Pod can define that group ID
using supplementalGroups under the securityContext definition of the pod. For example:

$ ls -lZ /opt/nfs -d

drwxrws---. nfsnobody 5555 unconfined_u:object_r:usr_t:s0 /opt/nfs

$ id nfsnobody

uid=65534(nfsnobody) gid=65534(nfsnobody) groups=65534(nfsnobody)

spec:
 containers:
 - name:

OpenShift Container Platform 4.5 Storage

56

1

2

1

2

securityContext must be defined at the pod level, not under a specific container.

An array of GIDs defined for the pod. In this case, there is one element in the array. Additional GIDs
would be comma-separated.

Assuming there are no custom SCCs that might satisfy the pod requirements, the pod likely matches the
restricted SCC. This SCC has the supplementalGroups strategy set to RunAsAny, meaning that any
supplied group ID is accepted without range checking.

As a result, the above pod passes admissions and is launched. However, if group ID range checking is
desired, a custom SCC is the preferred solution. A custom SCC can be created such that minimum and
maximum group IDs are defined, group ID range checking is enforced, and a group ID of 5555 is allowed.

NOTE

To use a custom SCC, you must first add it to the appropriate service account. For
example, use the default service account in the given project unless another has been
specified on the Pod specification.

3.11.3.2. User IDs

User IDs can be defined in the container image or in the Pod definition.

NOTE

It is generally preferable to use supplemental group IDs to gain access to persistent
storage versus using user IDs.

In the example target NFS directory shown above, the container needs its UID set to 65534, ignoring
group IDs for the moment, so the following can be added to the Pod definition:

Pods contain a securityContext definition specific to each container and a pod’s securityContext
which applies to all containers defined in the pod.

65534 is the nfsnobody user.

Assuming that the project is default and the SCC is restricted, the user ID of 65534 as requested by the
pod is not allowed. Therefore, the pod fails for the following reasons:

It requests 65534 as its user ID.

All SCCs available to the Pod are examined to see which SCC allows a user ID of 65534. While all

 ...
 securityContext: 1
 supplementalGroups: [5555] 2

spec:
 containers: 1
 - name:
 ...
 securityContext:
 runAsUser: 65534 2

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

57

All SCCs available to the Pod are examined to see which SCC allows a user ID of 65534. While all
policies of the SCCs are checked, the focus here is on user ID.

Because all available SCCs use MustRunAsRange for their runAsUser strategy, UID range
checking is required.

65534 is not included in the SCC or project’s user ID range.

It is generally considered a good practice not to modify the predefined SCCs. The preferred way to fix
this situation is to create a custom SCC A custom SCC can be created such that minimum and maximum
user IDs are defined, UID range checking is still enforced, and the UID of 65534 is allowed.

NOTE

To use a custom SCC, you must first add it to the appropriate service account. For
example, use the default service account in the given project unless another has been
specified on the Pod specification.

3.11.3.3. SELinux

Red Hat Enterprise Linux (RHEL) and Red Hat Enterprise Linux CoreOS (RHCOS) systems are
configured to use SELinux on remote NFS servers by default.

For non-RHEL and non-RHCOS systems, SELinux does not allow writing from a pod to a remote NFS
server. The NFS volume mounts correctly but it is read-only. You will need to enable the correct SELinux
permissions by using the following procedure.

Prerequisites

The container-selinux package must be installed. This package provides the virt_use_nfs
SELinux boolean.

Procedure

Enable the virt_use_nfs boolean using the following command. The -P option makes this
boolean persistent across reboots.

3.11.3.4. Export settings

To enable arbitrary container users to read and write the volume, each exported volume on the NFS
server should conform to the following conditions:

Every export must be exported using the following format:

The firewall must be configured to allow traffic to the mount point.

For NFSv4, configure the default port 2049 (nfs).

NFSv4

setsebool -P virt_use_nfs 1

/<example_fs> *(rw,root_squash)

OpenShift Container Platform 4.5 Storage

58

For NFSv3, there are three ports to configure: 2049 (nfs), 20048 (mountd), and 111
(portmapper).

NFSv3

The NFS export and directory must be set up so that they are accessible by the target pods.
Either set the export to be owned by the container’s primary UID, or supply the pod group
access using supplementalGroups, as shown in the group IDs above.

3.11.4. Reclaiming resources

NFS implements the OpenShift Container Platform Recyclable plug-in interface. Automatic processes
handle reclamation tasks based on policies set on each persistent volume.

By default, PVs are set to Retain.

Once claim to a PVC is deleted, and the PV is released, the PV object should not be reused. Instead, a
new PV should be created with the same basic volume details as the original.

For example, the administrator creates a PV named nfs1:

The user creates PVC1, which binds to nfs1. The user then deletes PVC1, releasing claim to nfs1. This
results in nfs1 being Released. If the administrator wants to make the same NFS share available, they
should create a new PV with the same NFS server details, but a different PV name:

iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT

iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT

iptables -I INPUT 1 -p tcp --dport 20048 -j ACCEPT

iptables -I INPUT 1 -p tcp --dport 111 -j ACCEPT

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs1
spec:
 capacity:
 storage: 1Mi
 accessModes:
 - ReadWriteMany
 nfs:
 server: 192.168.1.1
 path: "/"

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs2
spec:
 capacity:
 storage: 1Mi

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

59

Deleting the original PV and re-creating it with the same name is discouraged. Attempting to manually
change the status of a PV from Released to Available causes errors and potential data loss.

3.11.5. Additional configuration and troubleshooting

Depending on what version of NFS is being used and how it is configured, there may be additional
configuration steps needed for proper export and security mapping. The following are some that may
apply:

NFSv4 mount incorrectly shows
all files with ownership of
nobody:nobody

Could be attributed to the ID mapping settings, found in
/etc/idmapd.conf on your NFS.

See this Red Hat Solution.

Disabling ID mapping on NFSv4
On both the NFS client and server, run:

3.12. RED HAT OPENSHIFT CONTAINER STORAGE

Red Hat OpenShift Container Storage is a provider of agnostic persistent storage for OpenShift
Container Platform supporting file, block, and object storage, either in-house or in hybrid clouds. As a
Red Hat storage solution, Red Hat OpenShift Container Storage is completely integrated with
OpenShift Container Platform for deployment, management, and monitoring.

Red Hat OpenShift Container Storage provides its own documentation library. The complete set of Red
Hat OpenShift Container Storage documentation identified below is available at
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/

IMPORTANT

OpenShift Container Storage on top of Red Hat Hyperconverged Infrastructure (RHHI)
for Virtualization, which uses hyperconverged nodes that host virtual machines installed
with OpenShift Container Platform, is not a supported configuration. For more
information about supported platforms, see the Red Hat OpenShift Container Storage
Supportability and Interoperability Guide.

 accessModes:
 - ReadWriteMany
 nfs:
 server: 192.168.1.1
 path: "/"

echo 'Y' >
/sys/module/nfsd/parameters/nfs4_disable_idmapping

OpenShift Container Platform 4.5 Storage

60

https://access.redhat.com/solutions/33455
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/
https://access.redhat.com/articles/4731161

If you are looking for Red Hat OpenShift Container
Storage information about…​

See the following Red Hat OpenShift Container
Storage documentation:

What’s new, known issues, notable bug fixes, and
Technology Previews

Red Hat OpenShift Container Storage 4.5 Release
Notes

Supported workloads, layouts, hardware and
software requirements, sizing and scaling
recommendations

Planning your Red Hat OpenShift Container Storage
4.5 deployment

Preparing to deploy when your environment is not
directly connected to the internet

Preparing to deploy OpenShift Container Storage
4.5 in a disconnected environment

Deploying OpenShift Container Storage using
Amazon Web Services for local or cloud storage

Deploying OpenShift Container Storage 4.5 using
Amazon Web Services

Deploying OpenShift Container Storage to local
storage on bare metal infrastructure

Deploying OpenShift Container Storage 4.5 using
bare metal infrastructure

Deploying OpenShift Container Storage on
OpenShift Container Platform VMware vSphere
clusters

Deploying OpenShift Container Storage 4.5 using
VMware

Deploying OpenShift Container Storage to use an
external Red Hat Ceph Storage cluster

Deploying OpenShift Container Storage 4.5 with
external storage

Deploying and managing OpenShift Container
Storage using Google Cloud Platform for local or
cloud storage

Deploying and managing OpenShift Container
Storage 4.5 using Google Cloud Platform

Deploying and managing OpenShift Container
Storage on existing OpenShift Container Platform
Azure clusters

Deploying and managing OpenShift Container
Storage 4.5 using Microsoft Azure

Managing a Red Hat OpenShift Container Storage
4.5 cluster

Managing Red Hat OpenShift Container Storage 4.5

Monitoring a Red Hat OpenShift Container Storage
4.5 cluster

Monitoring Red Hat OpenShift Container Storage
4.5

Troubleshooting errors and issues Troubleshooting OpenShift Container Storage

Migrating your OpenShift Container Platform cluster
from version 3 to version 4

Migration

3.13. PERSISTENT STORAGE USING VMWARE VSPHERE VOLUMES

OpenShift Container Platform allows use of VMware vSphere’s Virtual Machine Disk (VMDK) volumes.
You can provision your OpenShift Container Platform cluster with persistent storage using VMware
vSphere. Some familiarity with Kubernetes and VMware vSphere is assumed.

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

61

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/4.5_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/planning_your_deployment/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/preparing_to_deploy_in_a_disconnected_environment/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/deploying_openshift_container_storage_using_amazon_web_services/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/deploying_openshift_container_storage_using_bare_metal_infrastructure/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/deploying_openshift_container_storage_using_vmware/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/deploying_openshift_container_storage_with_external_storage/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/deploying_and_managing_openshift_container_storage_using_google_cloud/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/deploying_and_managing_openshift_container_storage_using_microsoft_azure/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/managing_openshift_container_storage/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/monitoring_openshift_container_storage/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/troubleshooting_openshift_container_storage/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html/migration/index

VMware vSphere volumes can be provisioned dynamically. OpenShift Container Platform creates the
disk in vSphere and attaches this disk to the correct image.

NOTE

OpenShift Container Platform provisions new volumes as independent persistent disks
that can freely attach and detach the volume on any node in the cluster. Consequently,
you cannot back up volumes that use snapshots, or restore volumes from snapshots. See
Snapshot Limitations for more information.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent
storage and gives users a way to request those resources without having any knowledge of the
underlying infrastructure.

Persistent volumes are not bound to a single project or namespace; they can be shared across the
OpenShift Container Platform cluster. Persistent volume claims are specific to a project or namespace
and can be requested by users.

Additional resources

VMware vSphere

3.13.1. Dynamically provisioning VMware vSphere volumes

Dynamically provisioning VMware vSphere volumes is the recommended method.

3.13.2. Prerequisites

An OpenShift Container Platform cluster installed on a VMware vSphere version that meets the
requirements for the components that you use. See Installing a cluster on vSphere for
information about vSphere version support.

You can use either of the following procedures to dynamically provision these volumes using the default
storage class.

3.13.2.1. Dynamically provisioning VMware vSphere volumes using the UI

OpenShift Container Platform installs a default storage class, named thin, that uses the thin disk format
for provisioning volumes.

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in
OpenShift Container Platform.

Procedure

1. In the OpenShift Container Platform console, click Storage → Persistent Volume Claims.

2. In the persistent volume claims overview, click Create Persistent Volume Claim.

3. Define the required options on the resulting page.

a. Select the thin storage class.

OpenShift Container Platform 4.5 Storage

62

https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.vm_admin.doc/GUID-53F65726-A23B-4CF0-A7D5-48E584B88613.html
https://www.vmware.com/au/products/vsphere.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing/#installing-a-cluster-on-vsphere-with-user-provisioned-infrastructure

1

2

3

b. Enter a unique name for the storage claim.

c. Select the access mode to determine the read and write access for the created storage
claim.

d. Define the size of the storage claim.

4. Click Create to create the persistent volume claim and generate a persistent volume.

3.13.2.2. Dynamically provisioning VMware vSphere volumes using the CLI

OpenShift Container Platform installs a default StorageClass, named thin, that uses the thin disk
format for provisioning volumes.

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in
OpenShift Container Platform.

Procedure (CLI)

1. You can define a VMware vSphere PersistentVolumeClaim by creating a file, pvc.yaml, with the
following contents:

A unique name that represents the persistent volume claim.

The access mode of the persistent volume claim. With ReadWriteOnce, the volume can be
mounted with read and write permissions by a single node.

The size of the persistent volume claim.

2. Create the PersistentVolumeClaim object from the file:

3.13.3. Statically provisioning VMware vSphere volumes

To statically provision VMware vSphere volumes you must create the virtual machine disks for reference
by the persistent volume framework.

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: pvc 1
spec:
 accessModes:
 - ReadWriteOnce 2
 resources:
 requests:
 storage: 1Gi 3

$ oc create -f pvc.yaml

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

63

1

2

3

4

5

Storage must exist in the underlying infrastructure before it can be mounted as a volume in
OpenShift Container Platform.

Procedure

1. Create the virtual machine disks. Virtual machine disks (VMDKs) must be created manually
before statically provisioning VMware vSphere volumes. Use either of the following methods:

Create using vmkfstools. Access ESX through Secure Shell (SSH) and then use following
command to create a VMDK volume:

Create using vmware-diskmanager:

2. Create a persistent volume that references the VMDKs. Create a file, pv1.yaml, with the
PersistentVolume object definition:

The name of the volume. This name is how it is identified by persistent volume claims or
pods.

The amount of storage allocated to this volume.

The volume type used, with vsphereVolume for vSphere volumes. The label is used to
mount a vSphere VMDK volume into pods. The contents of a volume are preserved when it
is unmounted. The volume type supports VMFS and VSAN datastore.

The existing VMDK volume to use. If you used vmkfstools, you must enclose the datastore
name in square brackets, [], in the volume definition, as shown previously.

The file system type to mount. For example, ext4, xfs, or other file systems.

IMPORTANT

Changing the value of the fsType parameter after the volume is formatted and
provisioned can result in data loss and pod failure.

$ vmkfstools -c <size> /vmfs/volumes/<datastore-name>/volumes/<disk-name>.vmdk

$ shell vmware-vdiskmanager -c -t 0 -s <size> -a lsilogic <disk-name>.vmdk

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv1 1
spec:
 capacity:
 storage: 1Gi 2
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain
 vsphereVolume: 3
 volumePath: "[datastore1] volumes/myDisk" 4
 fsType: ext4 5

OpenShift Container Platform 4.5 Storage

64

1

2

3

4

3. Create the PersistentVolume object from the file:

4. Create a persistent volume claim that maps to the persistent volume you created in the previous
step. Create a file, pvc1.yaml, with the PersistentVolumeClaim object definition:

A unique name that represents the persistent volume claim.

The access mode of the persistent volume claim. With ReadWriteOnce, the volume can be
mounted with read and write permissions by a single node.

The size of the persistent volume claim.

The name of the existing persistent volume.

5. Create the PersistentVolumeClaim object from the file:

3.13.3.1. Formatting VMware vSphere volumes

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that the
volume contains a file system that is specified by the fsType parameter value in the PersistentVolume
(PV) definition. If the device is not formatted with the file system, all data from the device is erased, and
the device is automatically formatted with the specified file system.

Because OpenShift Container Platform formats them before the first use, you can use unformatted
vSphere volumes as PVs.

$ oc create -f pv1.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc1 1
spec:
 accessModes:
 - ReadWriteOnce 2
 resources:
 requests:
 storage: "1Gi" 3
 volumeName: pv1 4

$ oc create -f pvc1.yaml

CHAPTER 3. CONFIGURING PERSISTENT STORAGE

65

CHAPTER 4. USING CONTAINER STORAGE INTERFACE (CSI)

4.1. CONFIGURING CSI VOLUMES

The Container Storage Interface (CSI) allows OpenShift Container Platform to consume storage from
storage back ends that implement the CSI interface as persistent storage.

4.1.1. CSI Architecture

CSI drivers are typically shipped as container images. These containers are not aware of OpenShift
Container Platform where they run. To use CSI-compatible storage back end in OpenShift Container
Platform, the cluster administrator must deploy several components that serve as a bridge between
OpenShift Container Platform and the storage driver.

The following diagram provides a high-level overview about the components running in pods in the
OpenShift Container Platform cluster.

It is possible to run multiple CSI drivers for different storage back ends. Each driver needs its own
external controllers deployment and daemon set with the driver and CSI registrar.

4.1.1.1. External CSI controllers

External CSI Controllers is a deployment that deploys one or more pods with three containers:

An external CSI attacher container translates attach and detach calls from OpenShift Container
Platform to respective ControllerPublish and ControllerUnpublish calls to the CSI driver.

An external CSI provisioner container that translates provision and delete calls from OpenShift
Container Platform to respective CreateVolume and DeleteVolume calls to the CSI driver.

OpenShift Container Platform 4.5 Storage

66

https://github.com/container-storage-interface/spec

A CSI driver container

The CSI attacher and CSI provisioner containers communicate with the CSI driver container using UNIX
Domain Sockets, ensuring that no CSI communication leaves the pod. The CSI driver is not accessible
from outside of the pod.

NOTE

attach, detach, provision, and delete operations typically require the CSI driver to use
credentials to the storage backend. Run the CSI controller pods on infrastructure nodes
so the credentials are never leaked to user processes, even in the event of a catastrophic
security breach on a compute node.

NOTE

The external attacher must also run for CSI drivers that do not support third-party attach
or detach operations. The external attacher will not issue any ControllerPublish or
ControllerUnpublish operations to the CSI driver. However, it still must run to implement
the necessary OpenShift Container Platform attachment API.

4.1.1.2. CSI driver daemon set

The CSI driver daemon set runs a pod on every node that allows OpenShift Container Platform to
mount storage provided by the CSI driver to the node and use it in user workloads (pods) as persistent
volumes (PVs). The pod with the CSI driver installed contains the following containers:

A CSI driver registrar, which registers the CSI driver into the openshift-node service running on
the node. The openshift-node process running on the node then directly connects with the CSI
driver using the UNIX Domain Socket available on the node.

A CSI driver.

The CSI driver deployed on the node should have as few credentials to the storage back end as possible.
OpenShift Container Platform will only use the node plug-in set of CSI calls such as
NodePublish/NodeUnpublish and NodeStage/NodeUnstage, if these calls are implemented.

4.1.2. CSI drivers supported by OpenShift Container Platform

OpenShift Container Platform supports certain CSI drivers that give users storage options that are not
possible with in-tree volume plug-ins.

To create CSI-provisioned persistent volumes that mount to these supported storage assets, you can
install and configure the CSI driver Operator, which will install the necessary CSI driver and storage
class. For more details about installing the Operator and driver, see the documentation for the specific
CSI Driver Operator.

The following table describes the CSI drivers that are available with OpenShift Container Platform and
which CSI features they support, such as volume snapshots, cloning, and resize.

Table 4.1. Supported CSI drivers and features in OpenShift Container Platform

CHAPTER 4. USING CONTAINER STORAGE INTERFACE (CSI)

67

1

2

CSI driver CSI volume snapshots CSI cloning CSI resize

AWS EBS (Tech
Preview)

 � - �

OpenStack Manila � � �

IMPORTANT

If your CSI driver is not listed in the preceding table, you must follow the installation
instructions provided by your CSI storage vendor to use their supported CSI features.

4.1.3. Dynamic provisioning

Dynamic provisioning of persistent storage depends on the capabilities of the CSI driver and underlying
storage back end. The provider of the CSI driver should document how to create a storage class in
OpenShift Container Platform and the parameters available for configuration.

The created storage class can be configured to enable dynamic provisioning.

Procedure

Create a default storage class that ensures all PVCs that do not require any special storage class
are provisioned by the installed CSI driver.

The name of the storage class that will be created.

The name of the CSI driver that has been installed

4.1.4. Example using the CSI driver

The following example installs a default MySQL template without any changes to the template.

Prerequisites

The CSI driver has been deployed.

A storage class has been created for dynamic provisioning.

oc create -f - << EOF
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: <storage-class> 1
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
provisioner: <provisioner-name> 2
parameters:
EOF

OpenShift Container Platform 4.5 Storage

68

Procedure

Create the MySQL template:

Example output

Example output

4.2. CSI INLINE EPHEMERAL VOLUMES

Container Storage Interface (CSI) inline ephemeral volumes allow you to define a Pod spec that creates
inline ephemeral volumes when a pod is deployed and delete them when a pod is destroyed.

This feature is only available with supported Container Storage Interface (CSI) drivers.

IMPORTANT

CSI inline ephemeral volumes is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

4.2.1. Overview of CSI inline ephemeral volumes

Traditionally, volumes that are backed by Container Storage Interface (CSI) drivers can only be used
with a PersistentVolume and PersistentVolumeClaim object combination.

This feature allows you to specify CSI volumes directly in the Pod specification, rather than in a
PersistentVolume object. Inline volumes are ephemeral and do not persist across pod restarts.

4.2.1.1. Support limitations

By default, OpenShift Container Platform supports CSI inline ephemeral volumes with these limitations:

Support is only available for CSI drivers. In-tree and FlexVolumes are not supported.

OpenShift Container Platform does not include any CSI drivers. Use the CSI drivers provided by

oc new-app mysql-persistent

--> Deploying template "openshift/mysql-persistent" to project default
...

oc get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE
mysql Bound kubernetes-dynamic-pv-3271ffcb4e1811e8 1Gi
RWO cinder 3s

CHAPTER 4. USING CONTAINER STORAGE INTERFACE (CSI)

69

https://access.redhat.com/support/offerings/techpreview/

1

OpenShift Container Platform does not include any CSI drivers. Use the CSI drivers provided by
community or storage vendors . Follow the installation instructions provided by the CSI driver.

CSI drivers might not have implemented the inline volume functionality, including Ephemeral
capacity. For details, see the CSI driver documentation.

4.2.2. Embedding a CSI inline ephemeral volume in the Pod specification

You can embed a CSI inline ephemeral volume in the Pod specification in OpenShift Container Platform.
At runtime, nested inline volumes follow the ephemeral lifecycle of their associated pods so that the CSI
driver handles all phases of volume operations as pods are created and destroyed.

Procedure

1. Create the Pod object definition and save it to a file.

2. Embed the CSI inline ephemeral volume in the file.

my-csi-app.yaml

The name of the volume that is used by pods.

3. Create the object definition file that you saved in the previous step.

4.3. CSI VOLUME SNAPSHOTS

This document describes how to use volume snapshots with supported Container Storage Interface
(CSI) drivers to help protect against data loss in OpenShift Container Platform. Familiarity with
persistent volumes is suggested.

IMPORTANT

kind: Pod
apiVersion: v1
metadata:
 name: my-csi-app
spec:
 containers:
 - name: my-frontend
 image: busybox
 volumeMounts:
 - mountPath: "/data"
 name: my-csi-inline-vol
 command: ["sleep", "1000000"]
 volumes: 1
 - name: my-csi-inline-vol
 csi:
 driver: inline.storage.kubernetes.io
 volumeAttributes:
 foo: bar

$ oc create -f my-csi-app.yaml

OpenShift Container Platform 4.5 Storage

70

https://kubernetes-csi.github.io/docs/drivers.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/storage/#persistent-volumes_understanding-persistent-storage

IMPORTANT

CSI volume snapshot is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

4.3.1. Overview of CSI volume snapshots

A snapshot represents the state of the storage volume in a cluster at a particular point in time. Volume
snapshots can be used to provision a new volume.

OpenShift Container Platform supports CSI volume snapshots by default. However, a specific CSI driver
is required.

With CSI volume snapshots, a cluster administrator can:

Deploy a third-party CSI driver that supports snapshots.

Create a new persistent volume claim (PVC) from an existing volume snapshot.

Take a snapshot of an existing PVC.

Restore a snapshot as a different PVC.

Delete an existing volume snapshot.

With CSI volume snapshots, an app developer can:

Use volume snapshots as building blocks for developing application- or cluster-level storage
backup solutions.

Rapidly rollback to a previous development version.

Use storage more efficiently by not having to make a full copy each time.

Be aware of the following when using volume snapshots:

Support is only available for CSI drivers. In-tree and FlexVolumes are not supported.

OpenShift Container Platform only ships with select CSI drivers. For CSI drivers that are not
provided by an OpenShift Container Platform Driver Operator, it is recommended to use the
CSI drivers provided by community or storage vendors . Follow the installation instructions
provided by the CSI driver.

CSI drivers may or may not have implemented the volume snapshot functionality. CSI drivers
that have provided support for volume snapshots will likely use the csi-external-snapshotter
sidecar. See documentation provided by the CSI driver for details.

OpenShift Container Platform 4.5 supports version 1.1.0 of the CSI specification.

4.3.2. CSI snapshot controller and sidecar

CHAPTER 4. USING CONTAINER STORAGE INTERFACE (CSI)

71

https://access.redhat.com/support/offerings/techpreview/
https://kubernetes-csi.github.io/docs/drivers.html
https://github.com/container-storage-interface/spec

OpenShift Container Platform provides a snapshot controller that is deployed into the control plane. In
addition, your CSI driver vendor provides the CSI snapshot sidecar as a helper container that is installed
during the CSI driver installation.

The CSI snapshot controller and sidecar provide volume snapshotting through the OpenShift Container
Platform API. These external components run in the cluster.

The external controller is deployed by the CSI Snapshot Controller Operator.

4.3.2.1. External controller

The CSI snapshot controller binds VolumeSnapshot and VolumeSnapshotContent objects. The
controller manages dynamic provisioning by creating and deleting VolumeSnapshotContent objects.

4.3.2.2. External sidecar

Your CSI driver vendor provides the csi-external-snapshotter sidecar. This is a separate helper
container that is deployed with the CSI driver. The sidecar manages snapshots by triggering
CreateSnapshot and DeleteSnapshot operations. Follow the installation instructions provided by your
vendor.

4.3.3. About the CSI Snapshot Controller Operator

The CSI Snapshot Controller Operator runs in the openshift-cluster-storage-operator namespace. It is
installed by the Cluster Version Operator (CVO) in all clusters by default.

The CSI Snapshot Controller Operator installs the CSI snapshot controller, which runs in the openshift-
cluster-storage-operator namespace.

4.3.3.1. Volume snapshot CRDs

During OpenShift Container Platform installation, the CSI Snapshot Controller Operator creates the
following snapshot custom resource definitions (CRDs) in the snapshot.storage.k8s.io/v1beta1 API
group:

VolumeSnapshotContent

A snapshot taken of a volume in the cluster that has been provisioned by a cluster administrator.
Similar to the PersistentVolume object, the VolumeSnapshotContent CRD is a cluster resource
that points to a real snapshot in the storage back end.

For manually pre-provisioned snapshots, a cluster administrator creates a number of
VolumeSnapshotContent CRDs. These carry the details of the real volume snapshot in the storage
system.

The VolumeSnapshotContent CRD is not namespaced and is for use by a cluster administrator.

VolumeSnapshot

Similar to the PersistentVolumeClaim object, the VolumeSnapshot CRD defines a developer
request for a snapshot. The CSI Snapshot Controller Operator runs the CSI snapshot controller,
which handles the binding of a VolumeSnapshot CRD with an appropriate
VolumeSnapshotContent CRD. The binding is a one-to-one mapping.
The VolumeSnapshot CRD is namespaced. A developer uses the CRD as a distinct request for a
snapshot.

OpenShift Container Platform 4.5 Storage

72

VolumeSnapshotClass

Allows a cluster administrator to specify different attributes belonging to a VolumeSnapshot CRD.
These attributes may differ among snapshots taken of the same volume on the storage system, in
which case they would not be expressed by using the same storage class of a persistent volume
claim.
The VolumeSnapshotClass CRD defines the parameters for the csi-external-snapshotter sidecar
to use when creating a snapshot. This allows the storage back end to know what kind of snapshot to
dynamically create if multiple options are supported.

Dynamically provisioned snapshots use the VolumeSnapshotClass CRD to specify storage-
provider-specific parameters to use when creating a snapshot.

The VolumeSnapshotContentClass CRD is not namespaced and is for use by a cluster
administrator to enable global configuration options for their storage back end.

4.3.4. Volume snapshot provisioning

There are two ways to provision snapshots: dynamically and manually.

4.3.4.1. Dynamic provisioning

Instead of using a preexisting snapshot, you can request that a snapshot be taken dynamically from a
persistent volume claim. Parameters are specified using a VolumeSnapshotClass CRD.

4.3.4.2. Manual provisioning

As a cluster administrator, you can manually pre-provision a number of VolumeSnapshotContent
objects. These carry the real volume snapshot details available to cluster users.

4.3.5. Creating a volume snapshot

When you create a VolumeSnapshot object, OpenShift Container Platform creates a volume snapshot.

Prerequisites

Logged in to a running OpenShift Container Platform cluster.

A PVC created using a CSI driver that supports VolumeSnapshot objects.

A storage class to provision the storage back end.

No pods are using the persistent volume claim (PVC) that you want to take a snapshot of.

NOTE

Do not create a volume snapshot of a PVC if a pod is using it. Doing so might
cause data corruption because the PVC is not quiesced (paused). Be sure to first
tear down a running pod to ensure consistent snapshots.

Procedure

To dynamically create a volume snapshot:

CHAPTER 4. USING CONTAINER STORAGE INTERFACE (CSI)

73

1

1

2

1. Create a file with the VolumeSnapshotClass object described by the following YAML:

volumesnapshotclass.yaml

Allows you to specify different attributes belonging to a volume snapshot.

2. Create the object you saved in the previous step by entering the following command:

3. Create a VolumeSnapshot object:

volumesnapshot-dynamic.yaml

The request for a particular class by the volume snapshot. If volumeSnapshotClassName
is empty, then no snapshot is created.

The name of the PersistentVolumeClaim object bound to a persistent volume. This
defines what you want to create a snapshot of. Required for dynamically provisioning a
snapshot.

4. Create the object you saved in the previous step by entering the following command:

To manually provision a snapshot:

1. Provide a value for the volumeSnapshotContentName parameter as the source for the
snapshot, in addition to defining volume snapshot class as shown above.

volumesnapshot-manual.yaml

apiVersion: snapshot.storage.k8s.io
kind: VolumeSnapshotClass 1
metadata:
 name: csi-hostpath-snap
driver: hostpath.csi.k8s.io
deletionPolicy: Delete

$ oc create -f volumesnapshotclass.yaml

apiVersion: snapshot.storage.k8s.io
kind: VolumeSnapshot
metadata:
 name: mysnap
spec:
 volumeSnapshotClassName: csi-hostpath-snap 1
 source:
 persistentVolumeClaimName: myclaim 2

$ oc create -f volumesnapshot-dynamic.yaml

apiVersion: snapshot.storage.k8s.io
kind: VolumeSnapshot
metadata:
 name: snapshot-demo

OpenShift Container Platform 4.5 Storage

74

1

1

2

3

The volumeSnapshotContentName parameter is required for pre-provisioned snapshots.

2. Create the object you saved in the previous step by entering the following command:

Verification

After the snapshot has been created in the cluster, additional details about the snapshot are available.

1. To display details about the volume snapshot that was created, enter the following command:

The following example displays details about the mysnap volume snapshot:

volumesnapshot.yaml

The pointer to the actual storage content that was created by the controller.

The time when the snapshot was created. The snapshot contains the volume content that
was available at this indicated time.

If the value is set to true, the snapshot can be used to restore as a new PVC.
If the value is set to false, the snapshot was created. However, the storage back end needs
to perform additional tasks to make the snapshot usable so that it can be restored as a new
volume. For example, Amazon Elastic Block Store data might be moved to a different, less
expensive location, which can take several minutes.

2. To verify that the volume snapshot was created, enter the following command:

The pointer to the actual content is displayed. If the boundVolumeSnapshotContentName

spec:
 source:
 volumeSnapshotContentName: mycontent 1

$ oc create -f volumesnapshot-manual.yaml

$ oc describe volumesnapshot mysnap

apiVersion: snapshot.storage.k8s.io
kind: VolumeSnapshot
metadata:
 name: mysnap
spec:
 source:
 persistentVolumeClaimName: myclaim
 volumeSnapshotClassName: csi-hostpath-snap
status:
 boundVolumeSnapshotContentName: snapcontent-1af4989e-a365-4286-96f8-
d5dcd65d78d6 1
 creationTime: "2020-01-29T12:24:30Z" 2
 readyToUse: true 3
 restoreSize: 500Mi

$ oc get volumesnapshotcontent

CHAPTER 4. USING CONTAINER STORAGE INTERFACE (CSI)

75

1

The pointer to the actual content is displayed. If the boundVolumeSnapshotContentName
field is populated, a VolumeSnapshotContent object exists and the snapshot was created.

3. To verify that the snapshot is ready, confirm that the VolumeSnapshot object has
readyToUse: true.

4.3.6. Deleting a volume snapshot

You can configure how OpenShift Container Platform deletes volume snapshots.

Procedure

1. Specify the deletion policy that you require in the VolumeSnapshotClass object, as shown in
the following example:

volumesnapshot.yaml

When deleting the volume snapshot, if the Delete value is set, the underlying snapshot is
deleted along with the VolumeSnapshotContent object. If the Retain value is set, both
the underlying snapshot and VolumeSnapshotContent object remain.
If the Retain value is set and the VolumeSnapshot object is deleted without deleting the
corresponding VolumeSnapshotContent object, the content remains. The snapshot itself
is also retained in the storage back end.

2. Delete the volume snapshot by entering the following command:

Example output

3. If the deletion policy is set to Retain, delete the volume snapshot content by entering the
following command:

4. Optional: If the VolumeSnapshot object is not successfully deleted, enter the following
command to remove any finalizers for the leftover resource so that the delete operation can
continue:

IMPORTANT

apiVersion: snapshot.storage.k8s.io
kind: VolumeSnapshotClass
metadata:
 name: csi-hostpath-snap
driver: hostpath.csi.k8s.io
deletionPolicy: Delete 1

$ oc delete volumesnapshot <volumesnapshot_name>

volumesnapshot.snapshot.storage.k8s.io "mysnapshot" deleted

$ oc delete volumesnapshotcontent <volumesnapshotcontent_name>

OpenShift Container Platform 4.5 Storage

76

IMPORTANT

Only remove the finalizers if you are confident that there are no existing
references from either persistent volume claims or volume snapshot contents to
the VolumeSnapshot object. Even with the --force option, the delete operation
does not delete snapshot objects until all finalizers are removed.

Example output

The finalizers are removed and the volume snapshot is deleted.

4.3.7. Restoring a volume snapshot

The VolumeSnapshot CRD content can be used to restore the existing volume to a previous state.

After your VolumeSnapshot CRD is bound and the readyToUse value is set to true, you can use that
resource to provision a new volume that is pre-populated with data from the snapshot.

Prerequisites

Logged in to a running OpenShift Container Platform cluster.

A persistent volume claim (PVC) created using a Container Storage Interface (CSI) driver that
supports volume snapshots.

A storage class to provision the storage back end.

Procedure

1. Specify a VolumeSnapshot data source on a PVC as shown in the following:

pvc-restore.yaml

$ oc patch -n $PROJECT volumesnapshot/$NAME --type=merge -p '{"metadata":
{"finalizers":null}}'

volumesnapshotclass.snapshot.storage.k8s.io "csi-ocs-rbd-snapclass" deleted

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: myclaim-restore
spec:
 storageClassName: csi-hostpath-sc
 dataSource:
 name: mysnap 1
 kind: VolumeSnapshot 2
 apiGroup: snapshot.storage.k8s.io 3
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

CHAPTER 4. USING CONTAINER STORAGE INTERFACE (CSI)

77

1

2

3

Name of the VolumeSnapshot object representing the snapshot to use as source.

Must be set to the VolumeSnapshot value.

Must be set to the snapshot.storage.k8s.io value.

2. Create a PVC by entering the following command:

3. Verify that the restored PVC has been created by entering the following command:

Two different PVCs are displayed.

4.4. CSI VOLUME CLONING

Volume cloning duplicates an existing persistent volume to help protect against data loss in OpenShift
Container Platform. This feature is only available with supported Container Storage Interface (CSI)
drivers. You should be familiar with persistent volumes before you provision a CSI volume clone.

4.4.1. Overview of CSI volume cloning

A Container Storage Interface (CSI) volume clone is a duplicate of an existing persistent volume at a
particular point in time.

Volume cloning is similar to volume snapshots, although it is more efficient. For example, a cluster
administrator can duplicate a cluster volume by creating another instance of the existing cluster volume.

Cloning creates an exact duplicate of the specified volume on the back-end device, rather than creating
a new empty volume. After dynamic provisioning, you can use a volume clone just as you would use any
standard volume.

No new API objects are required for cloning. The existing dataSource field in the
PersistentVolumeClaim object is expanded so that it can accept the name of an existing
PersistentVolumeClaim in the same namespace.

4.4.1.1. Support limitations

By default, OpenShift Container Platform supports CSI volume cloning with these limitations:

The destination persistent volume claim (PVC) must exist in the same namespace as the source
PVC.

The source and destination storage class must be the same.

Support is only available for CSI drivers. In-tree and FlexVolumes are not supported.

OpenShift Container Platform does not include any CSI drivers. Use the CSI drivers provided by
community or storage vendors . Follow the installation instructions provided by the CSI driver.

CSI drivers might not have implemented the volume cloning functionality. For details, see the
CSI driver documentation.

$ oc create -f pvc-restore.yaml

$ oc get pvc

OpenShift Container Platform 4.5 Storage

78

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/storage/#persistent-volumes_understanding-persistent-storage
https://kubernetes-csi.github.io/docs/drivers.html

1

OpenShift Container Platform 4.5 supports version 1.1.0 of the CSI specification.

4.4.2. Provisioning a CSI volume clone

When you create a cloned persistent volume claim (PVC) API object, you trigger the provisioning of a
CSI volume clone. The clone pre-populates with the contents of another PVC, adhering to the same
rules as any other persistent volume. The one exception is that you must add a dataSource that
references an existing PVC in the same namespace.

Prerequisites

You are logged in to a running OpenShift Container Platform cluster.

Your PVC is created using a CSI driver that supports volume cloning.

Your storage back end is configured for dynamic provisioning. Cloning support is not available
for static provisioners.

Procedure

To clone a PVC from an existing PVC:

1. Create and save a file with the PersistentVolumeClaim object described by the following
YAML:

pvc-clone.yaml

The name of the storage class that provisions the storage back end. The default storage
class can be used and storageClassName can be omitted in the spec.

2. Create the object you saved in the previous step by running the following command:

A new PVC pvc-1-clone is created.

3. Verify that the volume clone was created and is ready by running the following command:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-1-clone
 namespace: mynamespace
spec:
 storageClassName: csi-cloning 1
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5Gi
 dataSource:
 kind: PersistentVolumeClaim
 name: pvc-1

$ oc create -f pvc-clone.yaml

CHAPTER 4. USING CONTAINER STORAGE INTERFACE (CSI)

79

https://github.com/container-storage-interface/spec

1

The pvc-1-clone shows that it is Bound.

You are now ready to use the newly cloned PVC to configure a pod.

4. Create and save a file with the Pod object described by the YAML. For example:

The cloned PVC created during the CSI volume cloning operation.

The created Pod object is now ready to consume, clone, snapshot, or delete your cloned PVC
independently of its original dataSource PVC.

4.5. AWS ELASTIC BLOCK STORE CSI DRIVER OPERATOR

4.5.1. Overview

OpenShift Container Platform is capable of provisioning persistent volumes (PVs) using the Container
Storage Interface (CSI) driver for AWS Elastic Block Store (EBS).

Familiarity with PVs, persistent volume claims (PVCs) , dynamic provisioning, and RBAC authorization is
recommended.

Before PVCs can be created, you must install the AWS EBS CSI Driver Operator. The Operator provides
a default StorageClass that you can use to create PVCs. You also have the option to create the EBS
StorageClass as described in Persistent Storage Using AWS Elastic Block Store .

After the Operator is installed, you must also create the AWS EBS CSI custom resource (CR) that is
required in the OpenShift Container Platform cluster.

IMPORTANT

$ oc get pvc pvc-1-clone

kind: Pod
apiVersion: v1
metadata:
 name: mypod
spec:
 containers:
 - name: myfrontend
 image: dockerfile/nginx
 volumeMounts:
 - mountPath: "/var/www/html"
 name: mypd
 volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: pvc-1-clone 1

OpenShift Container Platform 4.5 Storage

80

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
http://blog.kubernetes.io/2016/10/dynamic-provisioning-and-storage-in-kubernetes.html
https://kubernetes.io/docs/admin/authorization/rbac/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/storage/#persistent-storage-aws

IMPORTANT

AWS EBS CSI Driver Operator is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

4.5.2. About CSI

Storage vendors have traditionally provided storage drivers as part of Kubernetes. With the
implementation of the Container Storage Interface (CSI), third-party providers can instead deliver
storage plug-ins using a standard interface without ever having to change the core Kubernetes code.

CSI Operators give OpenShift Container Platform users storage options, such as volume snapshots,
that are not possible with in-tree volume plug-ins.

IMPORTANT

OpenShift Container Platform defaults to using an in-tree, or non-CSI, driver to provision
AWS EBS storage. This in-tree driver will be removed in a subsequent update of
OpenShift Container Platform. Volumes provisioned using the existing in-tree driver are
planned for migration to the CSI driver at that time.

For information about dynamically provisioning AWS EBS persistent volumes in OpenShift Container
Platform, see Persistent storage using AWS Elastic Block Store .

4.5.3. Installing the AWS Elastic Block Store CSI Driver Operator

The AWS Elastic Block Store (EBS) Container Storage Interface (CSI) Driver Operator enables the
replacement of the existing AWS EBS in-tree storage plug-in.

IMPORTANT

AWS EBS CSI Driver Operator is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production.

Installing the AWS EBS CSI Driver Operator provides the CSI driver that allows you to use CSI volumes
with the PersistentVolumeClaims, PersistentVolumes, and StorageClasses API objects in OpenShift
Container Platform. It also deploys the StorageClass that you can use to create persistent volume claims
(PVCs).

The AWS EBS CSI Driver Operator is not installed in OpenShift Container Platform by default. Use the
following procedure to install and configure this Operator to enable the AWS EBS CSI driver in your
cluster.

Prerequisites

Access to the OpenShift Container Platform web console.

CHAPTER 4. USING CONTAINER STORAGE INTERFACE (CSI)

81

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/storage/#persistent-storage-aws

Procedure

To install the AWS EBS CSI Driver Operator from the web console:

1. Log in to the web console.

2. Navigate to Operators → OperatorHub.

3. To locate the AWS EBS CSI Driver Operator, type AWS EBS CSI into the filter box.

4. Click Install.

5. On the Install Operator page, be sure that All namespaces on the cluster (default) is
selected. Select openshift-aws-ebs-csi-driver-operator from the Installed Namespace drop-
down menu.

6. Adjust the values for Update Channel and Approval Strategy to the values that you want.

7. Click Install.

Once finished, the AWS EBS CSI Driver Operator is listed in the Installed Operators section of the web
console.

4.5.4. Installing the AWS Elastic Block Store CSI driver

The AWS Elastic Block Store (EBS) Container Storage Interface (CSI) driver is a custom resource (CR)
that enables you to create and mount AWS EBS persistent volumes.

The driver is not installed in OpenShift Container Platform by default, and must be installed after the
AWS EBS CSI Driver Operator has been installed.

Prerequisites

The AWS EBS CSI Driver Operator has been installed.

You have access to the OpenShift Container Platform web console.

Procedure

To install the AWS EBS CSI driver from the web console, complete the following steps:

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → Installed Operators.

3. Locate the AWS EBS CSI Driver Operator from the list and click on the Operator link.

4. Create the driver:

a. From the Details tab, click Create Instance.

b. Optional: Select YAML view to make modifications, such as adding notations, to the driver
object template.

c. Click Create to finalize.

IMPORTANT

OpenShift Container Platform 4.5 Storage

82

IMPORTANT

Renaming the cluster and specifying a certain namespace are not supported
functions.

4.5.5. Uninstalling the AWS Elastic Block Store CSI Driver Operator

Before you uninstall the AWS EBS CSI Driver Operator, you must delete all persistent volume claims
(PVCs) that are in use by the Operator.

Prerequisites

Access to the OpenShift Container Platform web console.

Procedure

To uninstall the AWS EBS CSI Driver Operator from the web console:

1. Log in to the web console.

2. Navigate to Storage → Persistent Volume Claims.

3. Select any PVCs that are in use by the AWS EBS CSI Driver Operator and click Delete.

4. From the Operators → Installed Operators page, scroll or type AWS EBS CSI into the Filter
by name field to find the Operator. Then, click on it.

5. On the right-hand side of the Installed Operators details page, select Uninstall Operator from
the Actions drop-down menu.

6. When prompted by the Uninstall Operator window, click the Uninstall button to remove the
Operator from the namespace. Any applications deployed by the Operator on the cluster will
need to be cleaned up manually.

Once finished, the AWS EBS CSI Driver Operator is no longer listed in the Installed Operators section
of the web console.

Additional resources

Persistent storage using AWS Elastic Block Store

Configuring CSI volumes

4.6. OPENSTACK MANILA CSI DRIVER OPERATOR

4.6.1. Overview

OpenShift Container Platform is capable of provisioning persistent volumes (PVs) using the Container
Storage Interface (CSI) driver for the OpenStack Manila shared file system service.

Familiarity with PVs, persistent volume claims (PVCs) , dynamic provisioning, and RBAC authorization is
recommended.

Before PVCs can be created, you must install the Manila CSI Driver Operator. The Operator creates the
required storage classes for all available Manila share types needed for dynamic provisioning.

After the Operator is installed, you must also create the ManilaDriver Custom Resource (CR) that is

CHAPTER 4. USING CONTAINER STORAGE INTERFACE (CSI)

83

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/storage/#persistent-storage-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/storage/#persistent-storage-csi
https://wiki.openstack.org/wiki/Manila
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
http://blog.kubernetes.io/2016/10/dynamic-provisioning-and-storage-in-kubernetes.html
https://kubernetes.io/docs/admin/authorization/rbac/

After the Operator is installed, you must also create the ManilaDriver Custom Resource (CR) that is
required in the OpenShift Container Platform cluster.

4.6.2. Installing the Manila CSI Driver Operator

The Manila Container Storage Interface (CSI) Driver Operator is not installed in OpenShift Container
Platform by default. Use the following procedure to install and configure this Operator to enable the
OpenStack Manila CSI driver in your cluster.

Prerequisites

You have access to the OpenShift Container Platform web console.

The underlying Red Hat OpenStack Platform (RHOSP) infrastructure cloud deploys Manila
serving NFS shares.

Procedure

To install the Manila CSI Driver Operator from the web console, follow these steps:

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → OperatorHub.

3. Type Manila CSI Driver Operator into the filter box to locate the Operator.

4. Click Install.

5. On the Install Operator page, select openshift-manila-csi-driver-operator from the Installed
Namespace drop-down menu.

6. Adjust the values for Update Channel and Approval Strategy to the values that you want. The
only supported Installation Mode is All namespaces on the cluster.

7. Click Install.

Once finished, the Manila CSI Driver Operator is listed in the Installed Operators section of the web
console.

4.6.3. Installing the OpenStack Manila CSI driver

The OpenStack Manila Container Storage Interface (CSI) driver is a custom resource (CR) that enables
you to create and mount OpenStack Manila shares. It also supports creating snapshots, and recovering
shares from snapshots.

The driver is not installed in OpenShift Container Platform by default, and must be installed after the
Manila CSI Driver Operator has been installed.

Prerequisites

The Manila CSI Driver Operator has been installed.

Access to the OpenShift Container Platform web console or command-line interface (CLI).

UI procedure

To install the Manila CSI driver from the web console, complete the following steps:

OpenShift Container Platform 4.5 Storage

84

1

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → Installed Operators.

3. Locate the Manila CSI Driver Operator from the list and click on the Operator link.

4. Create the driver:

a. From the Details tab, click Create Instance.

b. Optional: Select YAML view to make modifications, such as adding notations, to the
ManilaDriver object template.

c. Click Create to finalize.

IMPORTANT

Renaming the cluster and specifying a certain namespace are not supported
functions.

CLI procedure

To install the Manila CSI driver from the CLI, complete the following steps:

1. Create an object YAML file, such as maniladriver.yaml, to define the ManilaDriver:

Example maniladriver

Renaming the cluster and specifying a certain namespace are not supported functions.

2. Create the ManilaDriver CR object in your OpenShift Container Platform cluster by specifying
the file you created in the previous step:

$ oc create -f maniladriver.yaml

When the Operator installation is finished, the Manila CSI driver is deployed on OpenShift Container
Platform for dynamic provisioning of RWX persistent volumes on Red Hat OpenStack Platform
(RHOSP).

Verification

1. Verify that the ManilaDriver CR was created successfully by entering the following command:

Example output

 apiVersion: csi.openshift.io/v1alpha1
 kind: ManilaDriver
 metadata:
 name: cluster 1

$ oc get all -n openshift-manila-csi-driver

NAME READY STATUS RESTARTS AGE

CHAPTER 4. USING CONTAINER STORAGE INTERFACE (CSI)

85

2. Verify that the storage class was created successfully by entering the following command:

Example output

4.6.4. Dynamically provisioning Manila CSI volumes

OpenShift Container Platform installs a StorageClass for each available Manila share type.

The YAML files that are created are completely decoupled from Manila and from its Container Storage
Interface (CSI) plug-in. As an application developer, you can dynamically provision ReadWriteMany
(RWX) storage and deploy Pods with applications that safely consume the storage using YAML
manifests. You can also provision other access modes, such as ReadWriteOnce (RWO).

You can use the same Pod and persistent volume claim (PVC) definitions on-premise that you use with
OpenShift Container Platform on AWS, GCP, Azure, and other platforms, with the exception of the
storage class reference in the PVC definition.

Prerequisites

Red Hat OpenStack Platform (RHOSP) is deployed with appropriate Manila share infrastructure
so that it can be used to dynamically provision and mount volumes in OpenShift Container
Platform.

Procedure (UI)

To dynamically create a Manila CSI volume using the web console:

pod/csi-nodeplugin-nfsplugin-lzvpm 1/1 Running 0 18h
pod/csi-nodeplugin-nfsplugin-slvg2 1/1 Running 0 18h
pod/csi-nodeplugin-nfsplugin-xmps9 1/1 Running 0 18h
pod/openstack-manila-csi-controllerplugin-7d4f5d985b-mw4x5 3/3 Running 0
17h
pod/openstack-manila-csi-nodeplugin-6xchs 2/2 Running 0 18h
pod/openstack-manila-csi-nodeplugin-bkcmz 2/2 Running 0 18h
pod/openstack-manila-csi-nodeplugin-rlpps 2/2 Running 0 18h

NAME DESIRED CURRENT READY UP-TO-DATE
AVAILABLE NODE SELECTOR AGE
daemonset.apps/csi-nodeplugin-nfsplugin 3 3 3 3 3
18h
daemonset.apps/openstack-manila-csi-nodeplugin 3 3 3 3 3
18h

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/openstack-manila-csi-controllerplugin 1/1 1 1 18h

NAME DESIRED CURRENT READY AGE
replicaset.apps/openstack-manila-csi-controllerplugin-7d4f5d985b 1 1 1 17h

$ oc get storageclasses | grep -E "NAME|csi-manila-"

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE
csi-manila-gold manila.csi.openstack.org Delete Immediate false 18h

OpenShift Container Platform 4.5 Storage

86

1

2

1. In the OpenShift Container Platform console, click Storage → Persistent Volume Claims.

2. In the persistent volume claims overview, click Create Persistent Volume Claim.

3. Define the required options on the resulting page.

a. Select the appropriate StorageClass.

b. Enter a unique name for the storage claim.

c. Select the access mode to specify read and write access for the PVC you are creating.

IMPORTANT

Use RWX if you want the persistent volume (PV) that fulfills this PVC to
be mounted to multiple Pods on multiple nodes in the cluster.

Use RWO mode if you want to prevent additional Pods from being
dynamically provisioned.

4. Define the size of the storage claim.

5. Click Create to create the persistent volume claim and generate a persistent volume.

Procedure (CLI)

To dynamically create a Manila CSI volume using the command-line interface (CLI):

1. Create and save a file with the PersistentVolumeClaim object described by the following
YAML:

pvc-manila.yaml

Use RWX if you want the persistent volume (PV) that fulfills this PVC to be mounted to
multiple Pods on multiple nodes in the cluster. Use ReadWriteOnce (RWO) mode to
prevent additional Pods from being dynamically provisioned.

The name of the storage class that provisions the storage back end. Manila
StorageClasses are provisioned by the Operator and have the csi-manila- prefix.

2. Create the object you saved in the previous step by running the following command:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-manila
spec:
 accessModes: 1
 - ReadWriteMany
 resources:
 requests:
 storage: 10Gi
 storageClassName: csi-manila-gold 2

$ oc create -f pvc-manila.yaml

CHAPTER 4. USING CONTAINER STORAGE INTERFACE (CSI)

87

A new PVC is created.

3. To verify that the volume was created and is ready, run the following command:

The pvc-manila shows that it is Bound.

You can now use the new PVC to configure a Pod.

4.6.5. Uninstalling the Manila CSI Driver Operator

Before you uninstall the Manila Container Storage Interface (CSI) Driver Operator, you must delete all
persistent volume claims (PVCs) that are in use by the Operator.

Prerequisites

Access to the OpenShift Container Platform web console.

Procedure

To uninstall the Manila CSI Driver Operator from the web console:

1. Log in to the web console.

2. Navigate to Storage → Persistent Volume Claims.

3. Select any PVCs that are in use by the Manila CSI Driver Operator and click Delete.

4. From the Operators → Installed Operators page, scroll or type Manila CSI into the Filter by
name field to find the Operator. Then, click on it.

5. On the right-hand side of the Installed Operators details page, select Uninstall Operator from
the Actions drop-down menu.

6. When prompted by the Uninstall Operator window, click the Uninstall button to remove the
Operator from the namespace. Any applications deployed by the Operator on the cluster will
need to be cleaned up manually.

Once finished, the Manila CSI Driver Operator is no longer listed in the Installed Operators section of
the web console.

Additional resources

Configuring CSI volumes

$ oc get pvc pvc-manila

OpenShift Container Platform 4.5 Storage

88

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/storage/#persistent-storage-csi

1

CHAPTER 5. EXPANDING PERSISTENT VOLUMES

5.1. ENABLING VOLUME EXPANSION SUPPORT

Before you can expand persistent volumes, the StorageClass object must have the
allowVolumeExpansion field set to true.

Procedure

Edit the StorageClass object and add the allowVolumeExpansion attribute. The following
example demonstrates adding this line at the bottom of the storage class configuration.

Setting this attribute to true allows PVCs to be expanded after creation.

5.2. EXPANDING CSI VOLUMES

You can use the Container Storage Interface (CSI) to expand storage volumes after they have already
been created.

OpenShift Container Platform supports CSI volume expansion by default. However, a specific CSI driver
is required.

OpenShift Container Platform 4.5 supports version 1.1.0 of the CSI specification.

IMPORTANT

Expanding CSI volumes is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

5.3. EXPANDING FLEXVOLUME WITH A SUPPORTED DRIVER

When using FlexVolume to connect to your back-end storage system, you can expand persistent
storage volumes after they have already been created. This is done by manually updating the persistent
volume claim (PVC) in OpenShift Container Platform.

FlexVolume allows expansion if the driver is set with RequiresFSResize to true. The FlexVolume can be
expanded on pod restart.

apiVersion: storage.k8s.io/v1
kind: StorageClass
...
parameters:
 type: gp2
reclaimPolicy: Delete
allowVolumeExpansion: true 1

CHAPTER 5. EXPANDING PERSISTENT VOLUMES

89

https://github.com/container-storage-interface/spec
https://access.redhat.com/support/offerings/techpreview/

Similar to other volume types, FlexVolume volumes can also be expanded when in use by a pod.

Prerequisites

The underlying volume driver supports resize.

The driver is set with the RequiresFSResize capability to true.

Dynamic provisioning is used.

The controlling StorageClass object has allowVolumeExpansion set to true.

Procedure

To use resizing in the FlexVolume plugin, you must implement the ExpandableVolumePlugin
interface using these methods:

RequiresFSResize

If true, updates the capacity directly. If false, calls the ExpandFS method to finish the
filesystem resize.

ExpandFS

If true, calls ExpandFS to resize filesystem after physical volume expansion is done. The
volume driver can also perform physical volume resize together with filesystem resize.

IMPORTANT

Because OpenShift Container Platform does not support installation of FlexVolume
plugins on master nodes, it does not support control-plane expansion of FlexVolume.

5.4. EXPANDING PERSISTENT VOLUME CLAIMS (PVCS) WITH A FILE
SYSTEM

Expanding PVCs based on volume types that need file system resizing, such as GCE PD, EBS, and
Cinder, is a two-step process. This process involves expanding volume objects in the cloud provider, and
then expanding the file system on the actual node.

Expanding the file system on the node only happens when a new pod is started with the volume.

Prerequisites

The controlling StorageClass object must have allowVolumeExpansion set to true.

Procedure

1. Edit the PVC and request a new size by editing spec.resources.requests. For example, the
following expands the ebs PVC to 8 Gi.

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: ebs
spec:
 storageClass: "storageClassWithFlagSet"

OpenShift Container Platform 4.5 Storage

90

1 Updating spec.resources.requests to a larger amount will expand the PVC.

2. After the cloud provider object has finished resizing, the PVC is set to
FileSystemResizePending. Check the condition by entering the following command:

3. When the cloud provider object has finished resizing, the PersistentVolume object reflects the
newly requested size in PersistentVolume.Spec.Capacity. At this point, you can create or
recreate a new pod from the PVC to finish the file system resizing. Once the pod is running, the
newly requested size is available and the FileSystemResizePending condition is removed from
the PVC.

5.5. RECOVERING FROM FAILURE WHEN EXPANDING VOLUMES

If expanding underlying storage fails, the OpenShift Container Platform administrator can manually
recover the persistent volume claim (PVC) state and cancel the resize requests. Otherwise, the resize
requests are continuously retried by the controller without administrator intervention.

Procedure

1. Mark the persistent volume (PV) that is bound to the PVC with the Retain reclaim policy. This
can be done by editing the PV and changing persistentVolumeReclaimPolicy to Retain.

2. Delete the PVC. This will be recreated later.

3. To ensure that the newly created PVC can bind to the PV marked Retain, manually edit the PV
and delete the claimRef entry from the PV specs. This marks the PV as Available.

4. Re-create the PVC in a smaller size, or a size that can be allocated by the underlying storage
provider.

5. Set the volumeName field of the PVC to the name of the PV. This binds the PVC to the
provisioned PV only.

6. Restore the reclaim policy on the PV.

 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 8Gi 1

$ oc describe pvc <pvc_name>

CHAPTER 5. EXPANDING PERSISTENT VOLUMES

91

CHAPTER 6. DYNAMIC PROVISIONING

6.1. ABOUT DYNAMIC PROVISIONING

The StorageClass resource object describes and classifies storage that can be requested, as well as
provides a means for passing parameters for dynamically provisioned storage on demand.
StorageClass objects can also serve as a management mechanism for controlling different levels of
storage and access to the storage. Cluster Administrators (cluster-admin) or Storage Administrators
(storage-admin) define and create the StorageClass objects that users can request without needing
any detailed knowledge about the underlying storage volume sources.

The OpenShift Container Platform persistent volume framework enables this functionality and allows
administrators to provision a cluster with persistent storage. The framework also gives users a way to
request those resources without having any knowledge of the underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift Container Platform. While
all of them can be statically provisioned by an administrator, some types of storage are created
dynamically using the built-in provider and plug-in APIs.

6.2. AVAILABLE DYNAMIC PROVISIONING PLUG-INS

OpenShift Container Platform provides the following provisioner plug-ins, which have generic
implementations for dynamic provisioning that use the cluster’s configured provider’s API to create new
storage resources:

Storage type Provisioner plug-in name Notes

Red Hat OpenStack Platform
(RHOSP) Cinder

kubernetes.io/cinder

RHOSP Manila Container Storage
Interface (CSI)

manila.csi.openstack.org Once installed, the OpenStack
Manila CSI Driver Operator and
ManilaDriver automatically create
the required storage classes for
all available Manila share types
needed for dynamic provisioning.

AWS Elastic Block Store (EBS) kubernetes.io/aws-ebs For dynamic provisioning when
using multiple clusters in different
zones, tag each node with
Key=kubernetes.io/cluster/<c
luster_name>,Value=
<cluster_id> where
<cluster_name> and
<cluster_id> are unique per
cluster.

Azure Disk kubernetes.io/azure-disk

OpenShift Container Platform 4.5 Storage

92

Azure File kubernetes.io/azure-file The persistent-volume-binder
service account requires
permissions to create and get
secrets to store the Azure storage
account and keys.

GCE Persistent Disk (gcePD) kubernetes.io/gce-pd In multi-zone configurations, it is
advisable to run one OpenShift
Container Platform cluster per
GCE project to avoid PVs from
being created in zones where no
node in the current cluster exists.

VMware vSphere kubernetes.io/vsphere-
volume

Storage type Provisioner plug-in name Notes

IMPORTANT

Any chosen provisioner plug-in also requires configuration for the relevant cloud, host, or
third-party provider as per the relevant documentation.

6.3. DEFINING A STORAGE CLASS

StorageClass objects are currently a globally scoped object and must be created by cluster-admin or
storage-admin users.

IMPORTANT

The Cluster Storage Operator might install a default storage class depending on the
platform in use. This storage class is owned and controlled by the operator. It cannot be
deleted or modified beyond defining annotations and labels. If different behavior is
desired, you must define a custom storage class.

The following sections describe the basic definition for a StorageClass object and specific examples for
each of the supported plug-in types.

6.3.1. Basic StorageClass object definition

The following resource shows the parameters and default values that you use to configure a storage
class. This example uses the AWS ElasticBlockStore (EBS) object definition.

Sample StorageClass definition

kind: StorageClass 1
apiVersion: storage.k8s.io/v1 2
metadata:
 name: gp2 3
 annotations: 4

CHAPTER 6. DYNAMIC PROVISIONING

93

https://www.vmware.com/support/vsphere.html

1

2

3

4

5

6

(required) The API object type.

(required) The current apiVersion.

(required) The name of the storage class.

(optional) Annotations for the storage class.

(required) The type of provisioner associated with this storage class.

(optional) The parameters required for the specific provisioner, this will change from plug-in to
plug-in.

6.3.2. Storage class annotations

To set a storage class as the cluster-wide default, add the following annotation to your storage class
metadata:

For example:

This enables any persistent volume claim (PVC) that does not specify a specific storage class to
automatically be provisioned through the default storage class.

NOTE

The beta annotation storageclass.beta.kubernetes.io/is-default-class is still working;
however, it will be removed in a future release.

To set a storage class description, add the following annotation to your storage class metadata:

For example:

 storageclass.kubernetes.io/is-default-class: 'true'
 ...
provisioner: kubernetes.io/aws-ebs 5
parameters: 6
 type: gp2
...

storageclass.kubernetes.io/is-default-class: "true"

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
...

kubernetes.io/description: My Storage Class Description

apiVersion: storage.k8s.io/v1
kind: StorageClass

OpenShift Container Platform 4.5 Storage

94

1

2

3

1

6.3.3. RHOSP Cinder object definition

cinder-storageclass.yaml

Volume type created in Cinder. Default is empty.

Availability Zone. If not specified, volumes are generally round-robined across all active zones
where the OpenShift Container Platform cluster has a node.

File system that is created on dynamically provisioned volumes. This value is copied to the fsType
field of dynamically provisioned persistent volumes and the file system is created when the volume
is mounted for the first time. The default value is ext4.

6.3.4. RHOSP Manila Container Storage Interface (CSI) object definition

Once installed, the OpenStack Manila CSI Driver Operator and ManilaDriver automatically create the
required storage classes for all available Manila share types needed for dynamic provisioning.

6.3.5. AWS Elastic Block Store (EBS) object definition

aws-ebs-storageclass.yaml

(required) Select from io1, gp2, sc1, st1. The default is gp2. See the AWS documentation for valid
Amazon Resource Name (ARN) values.

metadata:
 annotations:
 kubernetes.io/description: My Storage Class Description
...

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: gold
provisioner: kubernetes.io/cinder
parameters:
 type: fast 1
 availability: nova 2
 fsType: ext4 3

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/aws-ebs
parameters:
 type: io1 1
 iopsPerGB: "10" 2
 encrypted: "true" 3
 kmsKeyId: keyvalue 4
 fsType: ext4 5

CHAPTER 6. DYNAMIC PROVISIONING

95

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

2

3

4

5

1

2

3

(optional) Only for io1 volumes. I/O operations per second per GiB. The AWS volume plug-in
multiplies this with the size of the requested volume to compute IOPS of the volume. The value cap

(optional) Denotes whether to encrypt the EBS volume. Valid values are true or false.

(optional) The full ARN of the key to use when encrypting the volume. If none is supplied, but
encypted is set to true, then AWS generates a key. See the AWS documentation for a valid ARN
value.

(optional) File system that is created on dynamically provisioned volumes. This value is copied to
the fsType field of dynamically provisioned persistent volumes and the file system is created when
the volume is mounted for the first time. The default value is ext4.

6.3.6. Azure Disk object definition

azure-advanced-disk-storageclass.yaml

Using WaitForFirstConsumer is strongly recommended. This provisions the volume while allowing
enough storage to schedule the pod on a free worker node from an available zone.

Possible values are Shared (default), Managed, and Dedicated.

IMPORTANT

Red Hat only supports the use of kind: Managed in the storage class.

With Shared and Dedicated, Azure creates unmanaged disks, while OpenShift
Container Platform creates a managed disk for machine OS (root) disks. But
because Azure Disk does not allow the use of both managed and unmanaged disks
on a node, unmanaged disks created with Shared or Dedicated cannot be attached
to OpenShift Container Platform nodes.

Azure storage account SKU tier. Default is empty. Note that Premium VMs can attach both
Standard_LRS and Premium_LRS disks, Standard VMs can only attach Standard_LRS disks,
Managed VMs can only attach managed disks, and unmanaged VMs can only attach unmanaged
disks.

a. If kind is set to Shared, Azure creates all unmanaged disks in a few shared storage
accounts in the same resource group as the cluster.

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: managed-premium
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
provisioner: kubernetes.io/azure-disk
volumeBindingMode: WaitForFirstConsumer 1
allowVolumeExpansion: true
parameters:
 kind: Managed 2
 storageaccounttype: Premium_LRS 3
reclaimPolicy: Delete

OpenShift Container Platform 4.5 Storage

96

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

1

b. If kind is set to Managed, Azure creates new managed disks.

c. If kind is set to Dedicated and a storageAccount is specified, Azure uses the specified
storage account for the new unmanaged disk in the same resource group as the cluster.
For this to work:

The specified storage account must be in the same region.

Azure Cloud Provider must have write access to the storage account.

d. If kind is set to Dedicated and a storageAccount is not specified, Azure creates a new
dedicated storage account for the new unmanaged disk in the same resource group as the
cluster.

6.3.7. Azure File object definition

The Azure File storage class uses secrets to store the Azure storage account name and the storage
account key that are required to create an Azure Files share. These permissions are created as part of
the following procedure.

Procedure

1. Define a ClusterRole object that allows access to create and view secrets:

The name of the cluster role to view and create secrets.

2. Add the cluster role to the service account:

Example output

3. Create the Azure File StorageClass object:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: system:azure-cloud-provider
 name: <persistent-volume-binder-role> 1
rules:
- apiGroups: ['']
 resources: ['secrets']
 verbs: ['get','create']

$ oc adm policy add-cluster-role-to-user <persistent-volume-binder-role>

 system:serviceaccount:kube-system:persistent-volume-binder

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: <azure-file> 1
provisioner: kubernetes.io/azure-file
parameters:

CHAPTER 6. DYNAMIC PROVISIONING

97

1

2

3

4

Name of the storage class. The persistent volume claim uses this storage class for
provisioning the associated persistent volumes.

Location of the Azure storage account, such as eastus. Default is empty, meaning that a
new Azure storage account will be created in the OpenShift Container Platform cluster’s
location.

SKU tier of the Azure storage account, such as Standard_LRS. Default is empty, meaning
that a new Azure storage account will be created with the Standard_LRS SKU.

Name of the Azure storage account. If a storage account is provided, then skuName and
location are ignored. If no storage account is provided, then the storage class searches for
any storage account that is associated with the resource group for any accounts that
match the defined skuName and location.

6.3.7.1. Considerations when using Azure File

The following file system features are not supported by the default Azure File storage class:

Symlinks

Hard links

Extended attributes

Sparse files

Named pipes

Additionally, the owner user identifier (UID) of the Azure File mounted directory is different from the
process UID of the container. The uid mount option can be specified in the StorageClass object to
define a specific user identifier to use for the mounted directory.

The following StorageClass object demonstrates modifying the user and group identifier, along with
enabling symlinks for the mounted directory.

 location: eastus 2
 skuName: Standard_LRS 3
 storageAccount: <storage-account> 4
reclaimPolicy: Delete
volumeBindingMode: Immediate

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: azure-file
mountOptions:
 - uid=1500 1
 - gid=1500 2
 - mfsymlinks 3
provisioner: kubernetes.io/azure-file
parameters:
 location: eastus

OpenShift Container Platform 4.5 Storage

98

1

2

3

1

1

2

Specifies the user identifier to use for the mounted directory.

Specifies the group identifier to use for the mounted directory.

Enables symlinks.

6.3.8. GCE PersistentDisk (gcePD) object definition

gce-pd-storageclass.yaml

Select either pd-standard or pd-ssd. The default is pd-standard.

6.3.9. VMware vSphere object definition

vsphere-storageclass.yaml

For more information about using VMware vSphere with OpenShift Container Platform, see the
VMware vSphere documentation.

diskformat: thin, zeroedthick and eagerzeroedthick are all valid disk formats. See vSphere docs
for additional details regarding the disk format types. The default value is thin.

6.4. CHANGING THE DEFAULT STORAGE CLASS

If you are using AWS, use the following process to change the default storage class. This process

 skuName: Standard_LRS
reclaimPolicy: Delete
volumeBindingMode: Immediate

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: standard
 annotations:
 storageclass.kubernetes.io/is-default-class: "true"
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-standard 1
 replication-type: none
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true
reclaimPolicy: Delete

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: slow
provisioner: kubernetes.io/vsphere-volume 1
parameters:
 diskformat: thin 2

CHAPTER 6. DYNAMIC PROVISIONING

99

https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/index.html

1

If you are using AWS, use the following process to change the default storage class. This process
assumes you have two storage classes defined, gp2 and standard, and you want to change the default
storage class from gp2 to standard.

1. List the storage class:

Example output

(default) denotes the default storage class.

2. Change the value of the annotation storageclass.kubernetes.io/is-default-class to false for
the default storage class:

3. Make another storage class the default by adding or modifying the annotation as
storageclass.kubernetes.io/is-default-class=true.

4. Verify the changes:

Example output

$ oc get storageclass

NAME TYPE
gp2 (default) kubernetes.io/aws-ebs 1
standard kubernetes.io/aws-ebs

$ oc patch storageclass gp2 -p '{"metadata": {"annotations": {"storageclass.kubernetes.io/is-
default-class": "false"}}}'

$ oc patch storageclass standard -p '{"metadata": {"annotations":
{"storageclass.kubernetes.io/is-default-class": "true"}}}'

$ oc get storageclass

NAME TYPE
gp2 kubernetes.io/aws-ebs
standard (default) kubernetes.io/aws-ebs

OpenShift Container Platform 4.5 Storage

100

	Table of Contents
	CHAPTER 1. UNDERSTANDING EPHEMERAL STORAGE
	1.1. OVERVIEW
	1.2. TYPES OF EPHEMERAL STORAGE
	Root
	Runtime

	1.3. EPHEMERAL STORAGE MANAGEMENT
	1.4. MONITORING EPHEMERAL STORAGE

	CHAPTER 2. UNDERSTANDING PERSISTENT STORAGE
	2.1. PERSISTENT STORAGE OVERVIEW
	2.2. LIFECYCLE OF A VOLUME AND CLAIM
	2.2.1. Provision storage
	2.2.2. Bind claims
	2.2.3. Use pods and claimed PVs
	2.2.4. Storage Object in Use Protection
	2.2.5. Release a persistent volume
	2.2.6. Reclaim policy for persistent volumes
	2.2.7. Reclaiming a persistent volume manually
	2.2.8. Changing the reclaim policy of a persistent volume

	2.3. PERSISTENT VOLUMES
	2.3.1. Types of PVs
	2.3.2. Capacity
	2.3.3. Access modes
	2.3.4. Phase
	2.3.4.1. Mount options

	2.4. PERSISTENT VOLUME CLAIMS
	2.4.1. Storage classes
	2.4.2. Access modes
	2.4.3. Resources
	2.4.4. Claims as volumes

	2.5. BLOCK VOLUME SUPPORT
	2.5.1. Block volume examples

	CHAPTER 3. CONFIGURING PERSISTENT STORAGE
	3.1. PERSISTENT STORAGE USING AWS ELASTIC BLOCK STORE
	3.1.1. Additional resources
	3.1.2. Creating the EBS storage class
	3.1.3. Creating the persistent volume claim
	3.1.4. Volume format
	3.1.5. Maximum number of EBS volumes on a node

	3.2. PERSISTENT STORAGE USING AZURE
	3.2.1. Creating the Azure storage class
	3.2.2. Creating the persistent volume claim
	3.2.3. Volume format

	3.3. PERSISTENT STORAGE USING AZURE FILE
	3.3.1. Create the Azure File share persistent volume claim
	3.3.2. Mount the Azure File share in a pod

	3.4. PERSISTENT STORAGE USING CINDER
	3.4.1. Manual provisioning with Cinder
	3.4.1.1. Creating the persistent volume
	3.4.1.2. Persistent volume formatting
	3.4.1.3. Cinder volume security

	3.5. PERSISTENT STORAGE USING FIBRE CHANNEL
	3.5.1. Provisioning
	3.5.1.1. Enforcing disk quotas
	3.5.1.2. Fibre Channel volume security

	3.6. PERSISTENT STORAGE USING FLEXVOLUME
	3.6.1. About FlexVolume drivers
	3.6.2. FlexVolume driver example
	3.6.3. Installing FlexVolume drivers
	3.6.4. Consuming storage using FlexVolume drivers

	3.7. PERSISTENT STORAGE USING GCE PERSISTENT DISK
	3.7.1. Creating the GCE storage class
	3.7.2. Creating the persistent volume claim
	3.7.3. Volume format

	3.8. PERSISTENT STORAGE USING HOSTPATH
	3.8.1. Overview
	3.8.2. Statically provisioning hostPath volumes
	3.8.3. Mounting the hostPath share in a privileged pod

	3.9. PERSISTENT STORAGE USING ISCSI
	3.9.1. Provisioning
	3.9.2. Enforcing disk quotas
	3.9.3. iSCSI volume security
	3.9.3.1. Challenge Handshake Authentication Protocol (CHAP) configuration

	3.9.4. iSCSI multipathing
	3.9.5. iSCSI custom initiator IQN

	3.10. PERSISTENT STORAGE USING LOCAL VOLUMES
	3.10.1. Installing the Local Storage Operator
	3.10.2. Provisioning local volumes by using the Local Storage Operator
	3.10.3. Provisioning local volumes without the Local Storage Operator
	3.10.4. Creating the local volume persistent volume claim
	3.10.5. Attach the local claim
	3.10.6. Using tolerations with Local Storage Operator pods
	3.10.7. Deleting the Local Storage Operator’s resources
	3.10.7.1. Removing a local volume
	3.10.7.2. Uninstalling the Local Storage Operator

	3.11. PERSISTENT STORAGE USING NFS
	3.11.1. Provisioning
	3.11.2. Enforcing disk quotas
	3.11.3. NFS volume security
	3.11.3.1. Group IDs
	3.11.3.2. User IDs
	3.11.3.3. SELinux
	3.11.3.4. Export settings

	3.11.4. Reclaiming resources
	3.11.5. Additional configuration and troubleshooting

	3.12. RED HAT OPENSHIFT CONTAINER STORAGE
	3.13. PERSISTENT STORAGE USING VMWARE VSPHERE VOLUMES
	3.13.1. Dynamically provisioning VMware vSphere volumes
	3.13.2. Prerequisites
	3.13.2.1. Dynamically provisioning VMware vSphere volumes using the UI
	3.13.2.2. Dynamically provisioning VMware vSphere volumes using the CLI

	3.13.3. Statically provisioning VMware vSphere volumes
	3.13.3.1. Formatting VMware vSphere volumes

	CHAPTER 4. USING CONTAINER STORAGE INTERFACE (CSI)
	4.1. CONFIGURING CSI VOLUMES
	4.1.1. CSI Architecture
	4.1.1.1. External CSI controllers
	4.1.1.2. CSI driver daemon set

	4.1.2. CSI drivers supported by OpenShift Container Platform
	4.1.3. Dynamic provisioning
	4.1.4. Example using the CSI driver

	4.2. CSI INLINE EPHEMERAL VOLUMES
	4.2.1. Overview of CSI inline ephemeral volumes
	4.2.1.1. Support limitations

	4.2.2. Embedding a CSI inline ephemeral volume in the Pod specification

	4.3. CSI VOLUME SNAPSHOTS
	4.3.1. Overview of CSI volume snapshots
	4.3.2. CSI snapshot controller and sidecar
	4.3.2.1. External controller
	4.3.2.2. External sidecar

	4.3.3. About the CSI Snapshot Controller Operator
	4.3.3.1. Volume snapshot CRDs

	4.3.4. Volume snapshot provisioning
	4.3.4.1. Dynamic provisioning
	4.3.4.2. Manual provisioning

	4.3.5. Creating a volume snapshot
	4.3.6. Deleting a volume snapshot
	4.3.7. Restoring a volume snapshot

	4.4. CSI VOLUME CLONING
	4.4.1. Overview of CSI volume cloning
	4.4.1.1. Support limitations

	4.4.2. Provisioning a CSI volume clone

	4.5. AWS ELASTIC BLOCK STORE CSI DRIVER OPERATOR
	4.5.1. Overview
	4.5.2. About CSI
	4.5.3. Installing the AWS Elastic Block Store CSI Driver Operator
	4.5.4. Installing the AWS Elastic Block Store CSI driver
	4.5.5. Uninstalling the AWS Elastic Block Store CSI Driver Operator

	4.6. OPENSTACK MANILA CSI DRIVER OPERATOR
	4.6.1. Overview
	4.6.2. Installing the Manila CSI Driver Operator
	4.6.3. Installing the OpenStack Manila CSI driver
	4.6.4. Dynamically provisioning Manila CSI volumes
	4.6.5. Uninstalling the Manila CSI Driver Operator

	CHAPTER 5. EXPANDING PERSISTENT VOLUMES
	5.1. ENABLING VOLUME EXPANSION SUPPORT
	5.2. EXPANDING CSI VOLUMES
	5.3. EXPANDING FLEXVOLUME WITH A SUPPORTED DRIVER
	5.4. EXPANDING PERSISTENT VOLUME CLAIMS (PVCS) WITH A FILE SYSTEM
	5.5. RECOVERING FROM FAILURE WHEN EXPANDING VOLUMES

	CHAPTER 6. DYNAMIC PROVISIONING
	6.1. ABOUT DYNAMIC PROVISIONING
	6.2. AVAILABLE DYNAMIC PROVISIONING PLUG-INS
	6.3. DEFINING A STORAGE CLASS
	6.3.1. Basic StorageClass object definition
	6.3.2. Storage class annotations
	6.3.3. RHOSP Cinder object definition
	6.3.4. RHOSP Manila Container Storage Interface (CSI) object definition
	6.3.5. AWS Elastic Block Store (EBS) object definition
	6.3.6. Azure Disk object definition
	6.3.7. Azure File object definition
	6.3.7.1. Considerations when using Azure File

	6.3.8. GCE PersistentDisk (gcePD) object definition
	6.3.9. VMware vSphere object definition

	6.4. CHANGING THE DEFAULT STORAGE CLASS

