
OpenShift Container Platform 4.13

Builds

Builds

Last Updated: 2024-05-30

OpenShift Container Platform 4.13 Builds

Builds

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Builds for OpenShift Container Platform

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UNDERSTANDING IMAGE BUILDS
1.1. BUILDS

1.1.1. Docker build
1.1.2. Source-to-image build
1.1.3. Custom build
1.1.4. Pipeline build

CHAPTER 2. UNDERSTANDING BUILD CONFIGURATIONS
2.1. BUILDCONFIGS

CHAPTER 3. CREATING BUILD INPUTS
3.1. BUILD INPUTS
3.2. DOCKERFILE SOURCE
3.3. IMAGE SOURCE
3.4. GIT SOURCE

3.4.1. Using a proxy
3.4.2. Source Clone Secrets

3.4.2.1. Automatically adding a source clone secret to a build configuration
3.4.2.2. Manually adding a source clone secret
3.4.2.3. Creating a secret from a .gitconfig file
3.4.2.4. Creating a secret from a .gitconfig file for secured Git
3.4.2.5. Creating a secret from source code basic authentication
3.4.2.6. Creating a secret from source code SSH key authentication
3.4.2.7. Creating a secret from source code trusted certificate authorities
3.4.2.8. Source secret combinations

3.4.2.8.1. Creating a SSH-based authentication secret with a .gitconfig file
3.4.2.8.2. Creating a secret that combines a .gitconfig file and CA certificate
3.4.2.8.3. Creating a basic authentication secret with a CA certificate
3.4.2.8.4. Creating a basic authentication secret with a .gitconfig file
3.4.2.8.5. Creating a basic authentication secret with a .gitconfig file and CA certificate

3.5. BINARY (LOCAL) SOURCE
3.6. INPUT SECRETS AND CONFIG MAPS

3.6.1. What is a secret?
3.6.1.1. Properties of secrets
3.6.1.2. Types of Secrets
3.6.1.3. Updates to secrets

3.6.2. Creating secrets
3.6.3. Using secrets
3.6.4. Adding input secrets and config maps
3.6.5. Source-to-image strategy
3.6.6. Docker strategy
3.6.7. Custom strategy

3.7. EXTERNAL ARTIFACTS
3.8. USING DOCKER CREDENTIALS FOR PRIVATE REGISTRIES
3.9. BUILD ENVIRONMENTS

3.9.1. Using build fields as environment variables
3.9.2. Using secrets as environment variables

3.10. SERVICE SERVING CERTIFICATE SECRETS
3.11. SECRETS RESTRICTIONS

CHAPTER 4. MANAGING BUILD OUTPUT
4.1. BUILD OUTPUT

6
6
6
6
7
7

8
8

10
10
11
11

13
14
14
14
16
16
17
18
18
19

20
20
20
20
21
21
22
23
23
24
24
25
25
26
28
30
30
31
31
32
34
35
35
36
36

38
38

Table of Contents

1

. .

. .

. .

4.2. OUTPUT IMAGE ENVIRONMENT VARIABLES
4.3. OUTPUT IMAGE LABELS

CHAPTER 5. USING BUILD STRATEGIES
5.1. DOCKER BUILD

5.1.1. Replacing Dockerfile FROM image
5.1.2. Using Dockerfile path
5.1.3. Using docker environment variables
5.1.4. Adding docker build arguments
5.1.5. Squashing layers with docker builds
5.1.6. Using build volumes

5.2. SOURCE-TO-IMAGE BUILD
5.2.1. Performing source-to-image incremental builds
5.2.2. Overriding source-to-image builder image scripts
5.2.3. Source-to-image environment variables

5.2.3.1. Using source-to-image environment files
5.2.3.2. Using source-to-image build configuration environment

5.2.4. Ignoring source-to-image source files
5.2.5. Creating images from source code with source-to-image

5.2.5.1. Understanding the source-to-image build process
5.2.5.2. How to write source-to-image scripts

5.2.6. Using build volumes
5.3. CUSTOM BUILD

5.3.1. Using FROM image for custom builds
5.3.2. Using secrets in custom builds
5.3.3. Using environment variables for custom builds
5.3.4. Using custom builder images

5.3.4.1. Custom builder image
5.3.4.2. Custom builder workflow

5.4. PIPELINE BUILD
5.4.1. Understanding OpenShift Container Platform pipelines
5.4.2. Providing the Jenkins file for pipeline builds
5.4.3. Using environment variables for pipeline builds

5.4.3.1. Mapping between BuildConfig environment variables and Jenkins job parameters
5.4.4. Pipeline build tutorial

5.5. ADDING SECRETS WITH WEB CONSOLE
5.6. ENABLING PULLING AND PUSHING

CHAPTER 6. CUSTOM IMAGE BUILDS WITH BUILDAH
6.1. PREREQUISITES
6.2. CREATING CUSTOM BUILD ARTIFACTS
6.3. BUILD CUSTOM BUILDER IMAGE
6.4. USE CUSTOM BUILDER IMAGE

CHAPTER 7. PERFORMING AND CONFIGURING BASIC BUILDS
7.1. STARTING A BUILD

7.1.1. Re-running a build
7.1.2. Streaming build logs
7.1.3. Setting environment variables when starting a build
7.1.4. Starting a build with source

7.2. CANCELING A BUILD
7.2.1. Canceling multiple builds
7.2.2. Canceling all builds
7.2.3. Canceling all builds in a given state

38
39

40
40
40
40
40
41
41

42
43
43
44
44
44
45
45
45
45
46
48
49
50
50
50
51
51
52
52
52
53
55
55
56
60
61

62
62
62
63
63

66
66
66
66
66
66
67
67
67
68

OpenShift Container Platform 4.13 Builds

2

. .

. .

. .

. .

. .

. .

7.3. EDITING A BUILDCONFIG
7.4. DELETING A BUILDCONFIG
7.5. VIEWING BUILD DETAILS
7.6. ACCESSING BUILD LOGS

7.6.1. Accessing BuildConfig logs
7.6.2. Accessing BuildConfig logs for a given version build
7.6.3. Enabling log verbosity

CHAPTER 8. TRIGGERING AND MODIFYING BUILDS
8.1. BUILD TRIGGERS

8.1.1. Webhook triggers
8.1.1.1. Using GitHub webhooks
8.1.1.2. Using GitLab webhooks
8.1.1.3. Using Bitbucket webhooks
8.1.1.4. Using generic webhooks
8.1.1.5. Displaying webhook URLs

8.1.2. Using image change triggers
8.1.3. Identifying the image change trigger of a build
8.1.4. Configuration change triggers

8.1.4.1. Setting triggers manually
8.2. BUILD HOOKS

8.2.1. Configuring post commit build hooks
8.2.2. Using the CLI to set post commit build hooks

CHAPTER 9. PERFORMING ADVANCED BUILDS
9.1. SETTING BUILD RESOURCES
9.2. SETTING MAXIMUM DURATION
9.3. ASSIGNING BUILDS TO SPECIFIC NODES
9.4. CHAINED BUILDS
9.5. PRUNING BUILDS
9.6. BUILD RUN POLICY

CHAPTER 10. USING RED HAT SUBSCRIPTIONS IN BUILDS
10.1. CREATING AN IMAGE STREAM TAG FOR THE RED HAT UNIVERSAL BASE IMAGE
10.2. ADDING SUBSCRIPTION ENTITLEMENTS AS A BUILD SECRET
10.3. RUNNING BUILDS WITH SUBSCRIPTION MANAGER

10.3.1. Docker builds using Subscription Manager
10.4. RUNNING BUILDS WITH RED HAT SATELLITE SUBSCRIPTIONS

10.4.1. Adding Red Hat Satellite configurations to builds
10.4.2. Docker builds using Red Hat Satellite subscriptions

10.5. RUNNING ENTITLED BUILDS USING SHAREDSECRET OBJECTS
10.6. ADDITIONAL RESOURCES

CHAPTER 11. SECURING BUILDS BY STRATEGY
11.1. DISABLING ACCESS TO A BUILD STRATEGY GLOBALLY
11.2. RESTRICTING BUILD STRATEGIES TO USERS GLOBALLY
11.3. RESTRICTING BUILD STRATEGIES TO A USER WITHIN A PROJECT

CHAPTER 12. BUILD CONFIGURATION RESOURCES
12.1. BUILD CONTROLLER CONFIGURATION PARAMETERS
12.2. CONFIGURING BUILD SETTINGS

CHAPTER 13. TROUBLESHOOTING BUILDS
13.1. RESOLVING DENIAL FOR ACCESS TO RESOURCES
13.2. SERVICE CERTIFICATE GENERATION FAILURE

68
69
70
70
70
70
71

72
72
72
73
74
75
76
77
78
79
81

82
82
82
83

85
85
85
86
87
88
89

90
90
91

92
92
92
92
93
93
97

99
99
101
101

102
102
103

105
105
105

Table of Contents

3

. .CHAPTER 14. SETTING UP ADDITIONAL TRUSTED CERTIFICATE AUTHORITIES FOR BUILDS
14.1. ADDING CERTIFICATE AUTHORITIES TO THE CLUSTER
14.2. ADDITIONAL RESOURCES

106
106
106

OpenShift Container Platform 4.13 Builds

4

Table of Contents

5

CHAPTER 1. UNDERSTANDING IMAGE BUILDS

1.1. BUILDS

A build is the process of transforming input parameters into a resulting object. Most often, the process
is used to transform input parameters or source code into a runnable image. A BuildConfig object is the
definition of the entire build process.

OpenShift Container Platform uses Kubernetes by creating containers from build images and pushing
them to a container image registry.

Build objects share common characteristics including inputs for a build, the requirement to complete a
build process, logging the build process, publishing resources from successful builds, and publishing the
final status of the build. Builds take advantage of resource restrictions, specifying limitations on
resources such as CPU usage, memory usage, and build or pod execution time.

The OpenShift Container Platform build system provides extensible support for build strategies that are
based on selectable types specified in the build API. There are three primary build strategies available:

Docker build

Source-to-image (S2I) build

Custom build

By default, docker builds and S2I builds are supported.

The resulting object of a build depends on the builder used to create it. For docker and S2I builds, the
resulting objects are runnable images. For custom builds, the resulting objects are whatever the builder
image author has specified.

Additionally, the pipeline build strategy can be used to implement sophisticated workflows:

Continuous integration

Continuous deployment

1.1.1. Docker build

OpenShift Container Platform uses Buildah to build a container image from a Dockerfile. For more
information on building container images with Dockerfiles, see the Dockerfile reference documentation.

TIP

If you set Docker build arguments by using the buildArgs array, see Understand how ARG and FROM
interact in the Dockerfile reference documentation.

1.1.2. Source-to-image build

Source-to-image (S2I) is a tool for building reproducible container images. It produces ready-to-run
images by injecting application source into a container image and assembling a new image. The new
image incorporates the base image, the builder, and built source and is ready to use with the buildah
run command. S2I supports incremental builds, which re-use previously downloaded dependencies,
previously built artifacts, and so on.

OpenShift Container Platform 4.13 Builds

6

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

1.1.3. Custom build

The custom build strategy allows developers to define a specific builder image responsible for the entire
build process. Using your own builder image allows you to customize your build process.

A custom builder image is a plain container image embedded with build process logic, for example for
building RPMs or base images.

Custom builds run with a high level of privilege and are not available to users by default. Only users who
can be trusted with cluster administration permissions should be granted access to run custom builds.

1.1.4. Pipeline build

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

The Pipeline build strategy allows developers to define a Jenkins pipeline for use by the Jenkins pipeline
plugin. The build can be started, monitored, and managed by OpenShift Container Platform in the same
way as any other build type.

Pipeline workflows are defined in a jenkinsfile, either embedded directly in the build configuration, or
supplied in a Git repository and referenced by the build configuration.

CHAPTER 1. UNDERSTANDING IMAGE BUILDS

7

CHAPTER 2. UNDERSTANDING BUILD CONFIGURATIONS
The following sections define the concept of a build, build configuration, and outline the primary build
strategies available.

2.1. BUILDCONFIGS

A build configuration describes a single build definition and a set of triggers for when a new build is
created. Build configurations are defined by a BuildConfig, which is a REST object that can be used in a
POST to the API server to create a new instance.

A build configuration, or BuildConfig, is characterized by a build strategy and one or more sources. The
strategy determines the process, while the sources provide its input.

Depending on how you choose to create your application using OpenShift Container Platform, a
BuildConfig is typically generated automatically for you if you use the web console or CLI, and it can be
edited at any time. Understanding the parts that make up a BuildConfig and their available options can
help if you choose to manually change your configuration later.

The following example BuildConfig results in a new build every time a container image tag or the source
code changes:

BuildConfig object definition

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
 name: "ruby-sample-build" 1
spec:
 runPolicy: "Serial" 2
 triggers: 3
 -
 type: "GitHub"
 github:
 secret: "secret101"
 - type: "Generic"
 generic:
 secret: "secret101"
 -
 type: "ImageChange"
 source: 4
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy: 5
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"
 output: 6
 to:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 postCommit: 7
 script: "bundle exec rake test"

OpenShift Container Platform 4.13 Builds

8

1

2

3

4

5

6

7

This specification creates a new BuildConfig named ruby-sample-build.

The runPolicy field controls whether builds created from this build configuration can be run
simultaneously. The default value is Serial, which means new builds run sequentially, not
simultaneously.

You can specify a list of triggers, which cause a new build to be created.

The source section defines the source of the build. The source type determines the primary
source of input, and can be either Git, to point to a code repository location, Dockerfile, to build
from an inline Dockerfile, or Binary, to accept binary payloads. It is possible to have multiple
sources at once. See the documentation for each source type for details.

The strategy section describes the build strategy used to execute the build. You can specify a
Source , Docker, or Custom strategy here. This example uses the ruby-20-centos7 container
image that Source-to-image (S2I) uses for the application build.

After the container image is successfully built, it is pushed into the repository described in the
output section.

The postCommit section defines an optional build hook.

CHAPTER 2. UNDERSTANDING BUILD CONFIGURATIONS

9

CHAPTER 3. CREATING BUILD INPUTS
Use the following sections for an overview of build inputs, instructions on how to use inputs to provide
source content for builds to operate on, and how to use build environments and create secrets.

3.1. BUILD INPUTS

A build input provides source content for builds to operate on. You can use the following build inputs to
provide sources in OpenShift Container Platform, listed in order of precedence:

Inline Dockerfile definitions

Content extracted from existing images

Git repositories

Binary (Local) inputs

Input secrets

External artifacts

You can combine multiple inputs in a single build. However, as the inline Dockerfile takes precedence, it
can overwrite any other file named Dockerfile provided by another input. Binary (local) input and Git
repositories are mutually exclusive inputs.

You can use input secrets when you do not want certain resources or credentials used during a build to
be available in the final application image produced by the build, or want to consume a value that is
defined in a secret resource. External artifacts can be used to pull in additional files that are not available
as one of the other build input types.

When you run a build:

1. A working directory is constructed and all input content is placed in the working directory. For
example, the input Git repository is cloned into the working directory, and files specified from
input images are copied into the working directory using the target path.

2. The build process changes directories into the contextDir, if one is defined.

3. The inline Dockerfile, if any, is written to the current directory.

4. The content from the current directory is provided to the build process for reference by the
Dockerfile, custom builder logic, or assemble script. This means any input content that resides
outside the contextDir is ignored by the build.

The following example of a source definition includes multiple input types and an explanation of how
they are combined. For more details on how each input type is defined, see the specific sections for
each input type.

source:
 git:
 uri: https://github.com/openshift/ruby-hello-world.git 1
 ref: "master"
 images:
 - from:
 kind: ImageStreamTag

OpenShift Container Platform 4.13 Builds

10

1

2

3

4

1

The repository to be cloned into the working directory for the build.

/usr/lib/somefile.jar from myinputimage is stored in <workingdir>/app/dir/injected/dir.

The working directory for the build becomes <original_workingdir>/app/dir.

A Dockerfile with this content is created in <original_workingdir>/app/dir, overwriting any existing
file with that name.

3.2. DOCKERFILE SOURCE

When you supply a dockerfile value, the content of this field is written to disk as a file named dockerfile.
This is done after other input sources are processed, so if the input source repository contains a
Dockerfile in the root directory, it is overwritten with this content.

The source definition is part of the spec section in the BuildConfig:

The dockerfile field contains an inline Dockerfile that is built.

Additional resources

The typical use for this field is to provide a Dockerfile to a docker strategy build.

3.3. IMAGE SOURCE

You can add additional files to the build process with images. Input images are referenced in the same
way the From and To image targets are defined. This means both container images and image stream
tags can be referenced. In conjunction with the image, you must provide one or more path pairs to
indicate the path of the files or directories to copy the image and the destination to place them in the
build context.

The source path can be any absolute path within the image specified. The destination must be a relative
directory path. At build time, the image is loaded and the indicated files and directories are copied into
the context directory of the build process. This is the same directory into which the source repository
content is cloned. If the source path ends in /. then the content of the directory is copied, but the
directory itself is not created at the destination.

Image inputs are specified in the source definition of the BuildConfig:

 name: myinputimage:latest
 namespace: mynamespace
 paths:
 - destinationDir: app/dir/injected/dir 2
 sourcePath: /usr/lib/somefile.jar
 contextDir: "app/dir" 3
 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 4

source:
 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 1

source:
 git:

CHAPTER 3. CREATING BUILD INPUTS

11

1

2

3

4

5

6

An array of one or more input images and files.

A reference to the image containing the files to be copied.

An array of source/destination paths.

The directory relative to the build root where the build process can access the file.

The location of the file to be copied out of the referenced image.

An optional secret provided if credentials are needed to access the input image.

NOTE

If your cluster uses an ImageDigestMirrorSet, ImageTagMirrorSet, or
ImageContentSourcePolicy object to configure repository mirroring, you can use only
global pull secrets for mirrored registries. You cannot add a pull secret to a project.

Images that require pull secrets

When using an input image that requires a pull secret, you can link the pull secret to the service account
used by the build. By default, builds use the builder service account. The pull secret is automatically
added to the build if the secret contains a credential that matches the repository hosting the input
image. To link a pull secret to the service account used by the build, run:

NOTE

This feature is not supported for builds using the custom strategy.

Images on mirrored registries that require pull secrets

When using an input image from a mirrored registry, if you get a build error: failed to pull image

 uri: https://github.com/openshift/ruby-hello-world.git
 ref: "master"
 images: 1
 - from: 2
 kind: ImageStreamTag
 name: myinputimage:latest
 namespace: mynamespace
 paths: 3
 - destinationDir: injected/dir 4
 sourcePath: /usr/lib/somefile.jar 5
 - from:
 kind: ImageStreamTag
 name: myotherinputimage:latest
 namespace: myothernamespace
 pullSecret: mysecret 6
 paths:
 - destinationDir: injected/dir
 sourcePath: /usr/lib/somefile.jar

$ oc secrets link builder dockerhub

OpenShift Container Platform 4.13 Builds

12

1

2

3

When using an input image from a mirrored registry, if you get a build error: failed to pull image
message, you can resolve the error by using either of the following methods:

Create an input secret that contains the authentication credentials for the builder image’s
repository and all known mirrors. In this case, create a pull secret for credentials to the image
registry and its mirrors.

Use the input secret as the pull secret on the BuildConfig object.

3.4. GIT SOURCE

When specified, source code is fetched from the supplied location.

If you supply an inline Dockerfile, it overwrites the Dockerfile in the contextDir of the Git repository.

The source definition is part of the spec section in the BuildConfig:

The git field contains the Uniform Resource Identifier (URI) to the remote Git repository of the
source code. You must specify the value of the ref field to check out a specific Git reference. A
valid ref can be a SHA1 tag or a branch name. The default value of the ref field is master.

The contextDir field allows you to override the default location inside the source code repository
where the build looks for the application source code. If your application exists inside a sub-
directory, you can override the default location (the root folder) using this field.

If the optional dockerfile field is provided, it should be a string containing a Dockerfile that
overwrites any Dockerfile that may exist in the source repository.

If the ref field denotes a pull request, the system uses a git fetch operation and then checkout
FETCH_HEAD.

When no ref value is provided, OpenShift Container Platform performs a shallow clone (--depth=1). In
this case, only the files associated with the most recent commit on the default branch (typically master)
are downloaded. This results in repositories downloading faster, but without the full commit history. To
perform a full git clone of the default branch of a specified repository, set ref to the name of the
default branch (for example main).

WARNING

Git clone operations that go through a proxy that is performing man in the middle
(MITM) TLS hijacking or reencrypting of the proxied connection do not work.

source:
 git: 1
 uri: "https://github.com/openshift/ruby-hello-world"
 ref: "master"
 contextDir: "app/dir" 2
 dockerfile: "FROM openshift/ruby-22-centos7\nUSER example" 3

CHAPTER 3. CREATING BUILD INPUTS

13

3.4.1. Using a proxy

If your Git repository can only be accessed using a proxy, you can define the proxy to use in the source
section of the build configuration. You can configure both an HTTP and HTTPS proxy to use. Both fields
are optional. Domains for which no proxying should be performed can also be specified in the NoProxy
field.

NOTE

Your source URI must use the HTTP or HTTPS protocol for this to work.

NOTE

For Pipeline strategy builds, given the current restrictions with the Git plugin for Jenkins,
any Git operations through the Git plugin do not leverage the HTTP or HTTPS proxy
defined in the BuildConfig. The Git plugin only uses the proxy configured in the Jenkins
UI at the Plugin Manager panel. This proxy is then used for all git interactions within
Jenkins, across all jobs.

Additional resources

You can find instructions on how to configure proxies through the Jenkins UI at
JenkinsBehindProxy.

3.4.2. Source Clone Secrets

Builder pods require access to any Git repositories defined as source for a build. Source clone secrets
are used to provide the builder pod with access it would not normally have access to, such as private
repositories or repositories with self-signed or untrusted SSL certificates.

The following source clone secret configurations are supported:

.gitconfig File

Basic Authentication

SSH Key Authentication

Trusted Certificate Authorities

NOTE

You can also use combinations of these configurations to meet your specific needs.

3.4.2.1. Automatically adding a source clone secret to a build configuration

source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 ref: "master"
 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com
 noProxy: somedomain.com, otherdomain.com

OpenShift Container Platform 4.13 Builds

14

https://wiki.jenkins-ci.org/display/JENKINS/JenkinsBehindProxy

When a BuildConfig is created, OpenShift Container Platform can automatically populate its source
clone secret reference. This behavior allows the resulting builds to automatically use the credentials
stored in the referenced secret to authenticate to a remote Git repository, without requiring further
configuration.

To use this functionality, a secret containing the Git repository credentials must exist in the namespace
in which the BuildConfig is later created. This secrets must include one or more annotations prefixed
with build.openshift.io/source-secret-match-uri-. The value of each of these annotations is a Uniform
Resource Identifier (URI) pattern, which is defined as follows. When a BuildConfig is created without a
source clone secret reference and its Git source URI matches a URI pattern in a secret annotation,
OpenShift Container Platform automatically inserts a reference to that secret in the BuildConfig.

Prerequisites

A URI pattern must consist of:

A valid scheme: *://, git://, http://, https:// or ssh://

A host: *` or a valid hostname or IP address optionally preceded by *.

A path: /* or / followed by any characters optionally including * characters

In all of the above, a * character is interpreted as a wildcard.

IMPORTANT

URI patterns must match Git source URIs which are conformant to RFC3986. Do not
include a username (or password) component in a URI pattern.

For example, if you use ssh://git@bitbucket.atlassian.com:7999/ATLASSIAN jira.git
for a git repository URL, the source secret must be specified as
ssh://bitbucket.atlassian.com:7999/* (and not
ssh://git@bitbucket.atlassian.com:7999/*).

Procedure

If multiple secrets match the Git URI of a particular BuildConfig, OpenShift Container Platform selects
the secret with the longest match. This allows for basic overriding, as in the following example.

The following fragment shows two partial source clone secrets, the first matching any server in the
domain mycorp.com accessed by HTTPS, and the second overriding access to servers
mydev1.mycorp.com and mydev2.mycorp.com:

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=ssh://bitbucket.atlassian.com:7999/*'

kind: Secret
apiVersion: v1
metadata:
 name: matches-all-corporate-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://*.mycorp.com/*
data:
 ...

kind: Secret

CHAPTER 3. CREATING BUILD INPUTS

15

https://www.ietf.org/rfc/rfc3986.txt

Add a build.openshift.io/source-secret-match-uri- annotation to a pre-existing secret using:

3.4.2.2. Manually adding a source clone secret

Source clone secrets can be added manually to a build configuration by adding a sourceSecret field to
the source section inside the BuildConfig and setting it to the name of the secret that you created. In
this example, it is the basicsecret.

Procedure

You can also use the oc set build-secret command to set the source clone secret on an existing build
configuration.

To set the source clone secret on an existing build configuration, enter the following command:

3.4.2.3. Creating a secret from a .gitconfig file

If the cloning of your application is dependent on a .gitconfig file, then you can create a secret that
contains it. Add it to the builder service account and then your BuildConfig.

Procedure

apiVersion: v1
metadata:
 name: override-for-my-dev-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://mydev1.mycorp.com/*
 build.openshift.io/source-secret-match-uri-2: https://mydev2.mycorp.com/*
data:
 ...

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=https://*.mycorp.com/*'

apiVersion: "build.openshift.io/v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"
 source:
 git:
 uri: "https://github.com/user/app.git"
 sourceSecret:
 name: "basicsecret"
 strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "python-33-centos7:latest"

$ oc set build-secret --source bc/sample-build basicsecret

OpenShift Container Platform 4.13 Builds

16

Procedure

To create a secret from a .gitconfig file:

NOTE

SSL verification can be turned off if sslVerify=false is set for the http section in your
.gitconfig file:

3.4.2.4. Creating a secret from a .gitconfig file for secured Git

If your Git server is secured with two-way SSL and user name with password, you must add the
certificate files to your source build and add references to the certificate files in the .gitconfig file.

Prerequisites

You must have Git credentials.

Procedure

Add the certificate files to your source build and add references to the certificate files in the .gitconfig
file.

1. Add the client.crt, cacert.crt, and client.key files to the /var/run/secrets/openshift.io/source/
folder in the application source code.

2. In the .gitconfig file for the server, add the [http] section shown in the following example:

Example output

3. Create the secret:

$ oc create secret generic <secret_name> --from-file=<path/to/.gitconfig>

[http]
 sslVerify=false

cat .gitconfig

[user]
 name = <name>
 email = <email>
[http]
 sslVerify = false
 sslCert = /var/run/secrets/openshift.io/source/client.crt
 sslKey = /var/run/secrets/openshift.io/source/client.key
 sslCaInfo = /var/run/secrets/openshift.io/source/cacert.crt

$ oc create secret generic <secret_name> \
--from-literal=username=<user_name> \ 1
--from-literal=password=<password> \ 2
--from-file=.gitconfig=.gitconfig \

CHAPTER 3. CREATING BUILD INPUTS

17

1

2

The user’s Git user name.

The password for this user.

IMPORTANT

To avoid having to enter your password again, be sure to specify the source-to-image
(S2I) image in your builds. However, if you cannot clone the repository, you must still
specify your user name and password to promote the build.

Additional resources

/var/run/secrets/openshift.io/source/ folder in the application source code.

3.4.2.5. Creating a secret from source code basic authentication

Basic authentication requires either a combination of --username and --password, or a token to
authenticate against the software configuration management (SCM) server.

Prerequisites

User name and password to access the private repository.

Procedure

1. Create the secret first before using the --username and --password to access the private
repository:

2. Create a basic authentication secret with a token:

3.4.2.6. Creating a secret from source code SSH key authentication

SSH key based authentication requires a private SSH key.

The repository keys are usually located in the $HOME/.ssh/ directory, and are named id_dsa.pub,
id_ecdsa.pub, id_ed25519.pub, or id_rsa.pub by default.

Procedure

1. Generate SSH key credentials:

--from-file=client.crt=/var/run/secrets/openshift.io/source/client.crt \
--from-file=cacert.crt=/var/run/secrets/openshift.io/source/cacert.crt \
--from-file=client.key=/var/run/secrets/openshift.io/source/client.key

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --type=kubernetes.io/basic-auth

$ oc create secret generic <secret_name> \
 --from-literal=password=<token> \
 --type=kubernetes.io/basic-auth

OpenShift Container Platform 4.13 Builds

18

1

NOTE

Creating a passphrase for the SSH key prevents OpenShift Container Platform
from building. When prompted for a passphrase, leave it blank.

Two files are created: the public key and a corresponding private key (one of id_dsa, id_ecdsa,
id_ed25519, or id_rsa). With both of these in place, consult your source control management
(SCM) system’s manual on how to upload the public key. The private key is used to access your
private repository.

2. Before using the SSH key to access the private repository, create the secret:

Optional: Adding this field enables strict server host key check.

WARNING

Skipping the known_hosts file while creating the secret makes the build
vulnerable to a potential man-in-the-middle (MITM) attack.

NOTE

Ensure that the known_hosts file includes an entry for the host of your source
code.

3.4.2.7. Creating a secret from source code trusted certificate authorities

The set of Transport Layer Security (TLS) certificate authorities (CA) that are trusted during a Git clone
operation are built into the OpenShift Container Platform infrastructure images. If your Git server uses a
self-signed certificate or one signed by an authority not trusted by the image, you can create a secret
that contains the certificate or disable TLS verification.

If you create a secret for the CA certificate, OpenShift Container Platform uses it to access your Git
server during the Git clone operation. Using this method is significantly more secure than disabling Git
SSL verification, which accepts any TLS certificate that is presented.

Procedure

Create a secret with a CA certificate file.

1. If your CA uses Intermediate Certificate Authorities, combine the certificates for all CAs in a
ca.crt file. Enter the following command:

$ ssh-keygen -t ed25519 -C "your_email@example.com"

$ oc create secret generic <secret_name> \
 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --from-file=<path/to/known_hosts> \ 1
 --type=kubernetes.io/ssh-auth

CHAPTER 3. CREATING BUILD INPUTS

19

1

a. Create the secret:

You must use the key name ca.crt.

3.4.2.8. Source secret combinations

You can combine the different methods for creating source clone secrets for your specific needs.

3.4.2.8.1. Creating a SSH-based authentication secret with a .gitconfig file

You can combine the different methods for creating source clone secrets for your specific needs, such
as a SSH-based authentication secret with a .gitconfig file.

Prerequisites

SSH authentication

.gitconfig file

Procedure

To create a SSH-based authentication secret with a .gitconfig file, run:

3.4.2.8.2. Creating a secret that combines a .gitconfig file and CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a .gitconfig file and certificate authority (CA) certificate.

Prerequisites

.gitconfig file

CA certificate

Procedure

To create a secret that combines a .gitconfig file and CA certificate, run:

3.4.2.8.3. Creating a basic authentication secret with a CA certificate

$ cat intermediateCA.crt intermediateCA.crt rootCA.crt > ca.crt

$ oc create secret generic mycert --from-file=ca.crt=</path/to/file> 1

$ oc create secret generic <secret_name> \
 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --from-file=<path/to/.gitconfig> \
 --type=kubernetes.io/ssh-auth

$ oc create secret generic <secret_name> \
 --from-file=ca.crt=<path/to/certificate> \
 --from-file=<path/to/.gitconfig>

OpenShift Container Platform 4.13 Builds

20

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a basic authentication and certificate authority (CA) certificate.

Prerequisites

Basic authentication credentials

CA certificate

Procedure

Create a basic authentication secret with a CA certificate, run:

3.4.2.8.4. Creating a basic authentication secret with a .gitconfig file

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a basic authentication and .gitconfig file.

Prerequisites

Basic authentication credentials

.gitconfig file

Procedure

To create a basic authentication secret with a .gitconfig file, run:

3.4.2.8.5. Creating a basic authentication secret with a .gitconfig file and CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a basic authentication, .gitconfig file, and certificate authority (CA)
certificate.

Prerequisites

Basic authentication credentials

.gitconfig file

CA certificate

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=ca-cert=</path/to/file> \
 --type=kubernetes.io/basic-auth

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=</path/to/.gitconfig> \
 --type=kubernetes.io/basic-auth

CHAPTER 3. CREATING BUILD INPUTS

21

Procedure

To create a basic authentication secret with a .gitconfig file and CA certificate, run:

3.5. BINARY (LOCAL) SOURCE

Streaming content from a local file system to the builder is called a Binary type build. The
corresponding value of BuildConfig.spec.source.type is Binary for these builds.

This source type is unique in that it is leveraged solely based on your use of the oc start-build.

NOTE

Binary type builds require content to be streamed from the local file system, so
automatically triggering a binary type build, like an image change trigger, is not possible.
This is because the binary files cannot be provided. Similarly, you cannot launch binary
type builds from the web console.

To utilize binary builds, invoke oc start-build with one of these options:

--from-file: The contents of the file you specify are sent as a binary stream to the builder. You
can also specify a URL to a file. Then, the builder stores the data in a file with the same name at
the top of the build context.

--from-dir and --from-repo: The contents are archived and sent as a binary stream to the
builder. Then, the builder extracts the contents of the archive within the build context directory.
With --from-dir, you can also specify a URL to an archive, which is extracted.

--from-archive: The archive you specify is sent to the builder, where it is extracted within the
build context directory. This option behaves the same as --from-dir; an archive is created on
your host first, whenever the argument to these options is a directory.

In each of the previously listed cases:

If your BuildConfig already has a Binary source type defined, it is effectively ignored and
replaced by what the client sends.

If your BuildConfig has a Git source type defined, it is dynamically disabled, since Binary and
Git are mutually exclusive, and the data in the binary stream provided to the builder takes
precedence.

Instead of a file name, you can pass a URL with HTTP or HTTPS schema to --from-file and --from-
archive. When using --from-file with a URL, the name of the file in the builder image is determined by
the Content-Disposition header sent by the web server, or the last component of the URL path if the
header is not present. No form of authentication is supported and it is not possible to use custom TLS
certificate or disable certificate validation.

When using oc new-build --binary=true, the command ensures that the restrictions associated with

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=</path/to/.gitconfig> \
 --from-file=ca-cert=</path/to/file> \
 --type=kubernetes.io/basic-auth

OpenShift Container Platform 4.13 Builds

22

binary builds are enforced. The resulting BuildConfig has a source type of Binary, meaning that the
only valid way to run a build for this BuildConfig is to use oc start-build with one of the --from options
to provide the requisite binary data.

The Dockerfile and contextDir source options have special meaning with binary builds.

Dockerfile can be used with any binary build source. If Dockerfile is used and the binary stream is an
archive, its contents serve as a replacement Dockerfile to any Dockerfile in the archive. If Dockerfile is
used with the --from-file argument, and the file argument is named Dockerfile, the value from Dockerfile
replaces the value from the binary stream.

In the case of the binary stream encapsulating extracted archive content, the value of the contextDir
field is interpreted as a subdirectory within the archive, and, if valid, the builder changes into that
subdirectory before executing the build.

3.6. INPUT SECRETS AND CONFIG MAPS

IMPORTANT

To prevent the contents of input secrets and config maps from appearing in build output
container images, use build volumes in your Docker build and source-to-image build
strategies.

In some scenarios, build operations require credentials or other configuration data to access dependent
resources, but it is undesirable for that information to be placed in source control. You can define input
secrets and input config maps for this purpose.

For example, when building a Java application with Maven, you can set up a private mirror of Maven
Central or JCenter that is accessed by private keys. To download libraries from that private mirror, you
have to supply the following:

1. A settings.xml file configured with the mirror’s URL and connection settings.

2. A private key referenced in the settings file, such as ~/.ssh/id_rsa.

For security reasons, you do not want to expose your credentials in the application image.

This example describes a Java application, but you can use the same approach for adding SSL
certificates into the /etc/ssl/certs directory, API keys or tokens, license files, and more.

3.6.1. What is a secret?

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Container Platform client configuration files, dockercfg files, private source repository
credentials, and so on. Secrets decouple sensitive content from the pods. You can mount secrets into
containers using a volume plugin or the system can use secrets to perform actions on behalf of a pod.

YAML Secret Object Definition

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
 namespace: my-namespace

CHAPTER 3. CREATING BUILD INPUTS

23

1

2

3

4

5

Indicates the structure of the secret’s key names and values.

The allowable format for the keys in the data field must meet the guidelines in the
DNS_SUBDOMAIN value in the Kubernetes identifiers glossary.

The value associated with keys in the data map must be base64 encoded.

Entries in the stringData map are converted to base64 and the entry are then moved to the data
map automatically. This field is write-only. The value is only be returned by the data field.

The value associated with keys in the stringData map is made up of plain text strings.

3.6.1.1. Properties of secrets

Key properties include:

Secret data can be referenced independently from its definition.

Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to
rest on a node.

Secret data can be shared within a namespace.

3.6.1.2. Types of Secrets

The value in the type field indicates the structure of the secret’s key names and values. The type can be
used to enforce the presence of user names and keys in the secret object. If you do not want validation,
use the opaque type, which is the default.

Specify one of the following types to trigger minimal server-side validation to ensure the presence of
specific key names in the secret data:

kubernetes.io/service-account-token. Uses a service account token.

kubernetes.io/dockercfg. Uses the .dockercfg file for required Docker credentials.

kubernetes.io/dockerconfigjson. Uses the .docker/config.json file for required Docker
credentials.

kubernetes.io/basic-auth. Use with basic authentication.

kubernetes.io/ssh-auth. Use with SSH key authentication.

kubernetes.io/tls. Use with TLS certificate authorities.

Specify type= Opaque if you do not want validation, which means the secret does not claim to conform
to any convention for key names or values. An opaque secret, allows for unstructured key:value pairs
that can contain arbitrary values.

NOTE

type: Opaque 1
data: 2
 username: <username> 3
 password: <password>
stringData: 4
 hostname: myapp.mydomain.com 5

OpenShift Container Platform 4.13 Builds

24

NOTE

You can specify other arbitrary types, such as example.com/my-secret-type. These
types are not enforced server-side, but indicate that the creator of the secret intended to
conform to the key/value requirements of that type.

3.6.1.3. Updates to secrets

When you modify the value of a secret, the value used by an already running pod does not dynamically
change. To change a secret, you must delete the original pod and create a new pod, in some cases with
an identical PodSpec.

Updating a secret follows the same workflow as deploying a new container image. You can use the
kubectl rolling-update command.

The resourceVersion value in a secret is not specified when it is referenced. Therefore, if a secret is
updated at the same time as pods are starting, the version of the secret that is used for the pod is not
defined.

NOTE

Currently, it is not possible to check the resource version of a secret object that was used
when a pod was created. It is planned that pods report this information, so that a
controller could restart ones using an old resourceVersion. In the interim, do not update
the data of existing secrets, but create new ones with distinct names.

3.6.2. Creating secrets

You must create a secret before creating the pods that depend on that secret.

When creating secrets:

Create a secret object with secret data.

Update the pod service account to allow the reference to the secret.

Create a pod, which consumes the secret as an environment variable or as a file using a secret
volume.

Procedure

Use the create command to create a secret object from a JSON or YAML file:

For example, you can create a secret from your local .docker/config.json file:

This command generates a JSON specification of the secret named dockerhub and creates the
object.

YAML Opaque Secret Object Definition

$ oc create -f <filename>

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

CHAPTER 3. CREATING BUILD INPUTS

25

1

1

2

Specifies an opaque secret.

Docker Configuration JSON File Secret Object Definition

Specifies that the secret is using a docker configuration JSON file.

The output of a base64-encoded the docker configuration JSON file

3.6.3. Using secrets

After creating secrets, you can create a pod to reference your secret, get logs, and delete the pod.

Procedure

1. Create the pod to reference your secret:

2. Get the logs:

3. Delete the pod:

Additional resources

Example YAML files with secret data:

YAML Secret That Will Create Four Files

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque 1
data:
 username: <username>
 password: <password>

apiVersion: v1
kind: Secret
metadata:
 name: aregistrykey
 namespace: myapps
type: kubernetes.io/dockerconfigjson 1
data:

.dockerconfigjson:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cg
YXV0aCBrZXlzCg== 2

$ oc create -f <your_yaml_file>.yaml

$ oc logs secret-example-pod

$ oc delete pod secret-example-pod

OpenShift Container Platform 4.13 Builds

26

1

2

3

4

File contains decoded values.

File contains decoded values.

File contains the provided string.

File contains the provided data.

YAML of a pod populating files in a volume with secret data

YAML of a pod populating environment variables with secret data

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
data:
 username: <username> 1
 password: <password> 2
stringData:
 hostname: myapp.mydomain.com 3
 secret.properties: |- 4
 property1=valueA
 property2=valueB

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "cat /etc/secret-volume/*"]
 volumeMounts:
 # name must match the volume name below
 - name: secret-volume
 mountPath: /etc/secret-volume
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: test-secret
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox

CHAPTER 3. CREATING BUILD INPUTS

27

YAML of a Build Config Populating Environment Variables with Secret Data

3.6.4. Adding input secrets and config maps

To provide credentials and other configuration data to a build without placing them in source control,
you can define input secrets and input config maps.

In some scenarios, build operations require credentials or other configuration data to access dependent
resources. To make that information available without placing it in source control, you can define input
secrets and input config maps.

Procedure

To add an input secret, config maps, or both to an existing BuildConfig object:

1. Create the ConfigMap object, if it does not exist:

This creates a new config map named settings-mvn, which contains the plain text content of
the settings.xml file.

TIP

 command: ["/bin/sh", "-c", "export"]
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username
 restartPolicy: Never

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username

$ oc create configmap settings-mvn \
 --from-file=settings.xml=<path/to/settings.xml>

OpenShift Container Platform 4.13 Builds

28

TIP

You can alternatively apply the following YAML to create the config map:

2. Create the Secret object, if it does not exist:

This creates a new secret named secret-mvn, which contains the base64 encoded content of
the id_rsa private key.

TIP

You can alternatively apply the following YAML to create the input secret:

3. Add the config map and secret to the source section in the existing BuildConfig object:

To include the secret and config map in a new BuildConfig object, run the following command:

apiVersion: core/v1
kind: ConfigMap
metadata:
 name: settings-mvn
data:
 settings.xml: |
 <settings>
 … # Insert maven settings here
 </settings>

$ oc create secret generic secret-mvn \
 --from-file=ssh-privatekey=<path/to/.ssh/id_rsa>
 --type=kubernetes.io/ssh-auth

apiVersion: core/v1
kind: Secret
metadata:
 name: secret-mvn
type: kubernetes.io/ssh-auth
data:
 ssh-privatekey: |
 # Insert ssh private key, base64 encoded

source:
 git:
 uri: https://github.com/wildfly/quickstart.git
 contextDir: helloworld
 configMaps:
 - configMap:
 name: settings-mvn
 secrets:
 - secret:
 name: secret-mvn

$ oc new-build \
 openshift/wildfly-101-centos7~https://github.com/wildfly/quickstart.git \

CHAPTER 3. CREATING BUILD INPUTS

29

During the build, the settings.xml and id_rsa files are copied into the directory where the source code
is located. In OpenShift Container Platform S2I builder images, this is the image working directory, which
is set using the WORKDIR instruction in the Dockerfile. If you want to specify another directory, add a
destinationDir to the definition:

You can also specify the destination directory when creating a new BuildConfig object:

In both cases, the settings.xml file is added to the ./.m2 directory of the build environment, and the
id_rsa key is added to the ./.ssh directory.

3.6.5. Source-to-image strategy

When using a Source strategy, all defined input secrets are copied to their respective destinationDir. If
you left destinationDir empty, then the secrets are placed in the working directory of the builder image.

The same rule is used when a destinationDir is a relative path. The secrets are placed in the paths that
are relative to the working directory of the image. The final directory in the destinationDir path is
created if it does not exist in the builder image. All preceding directories in the destinationDir must
exist, or an error will occur.

NOTE

Input secrets are added as world-writable, have 0666 permissions, and are truncated to
size zero after executing the assemble script. This means that the secret files exist in the
resulting image, but they are empty for security reasons.

Input config maps are not truncated after the assemble script completes.

3.6.6. Docker strategy

When using a docker strategy, you can add all defined input secrets into your container image using the
ADD and COPY instructions in your Dockerfile.

 --context-dir helloworld --build-secret “secret-mvn” \
 --build-config-map "settings-mvn"

source:
 git:
 uri: https://github.com/wildfly/quickstart.git
 contextDir: helloworld
 configMaps:
 - configMap:
 name: settings-mvn
 destinationDir: ".m2"
 secrets:
 - secret:
 name: secret-mvn
 destinationDir: ".ssh"

$ oc new-build \
 openshift/wildfly-101-centos7~https://github.com/wildfly/quickstart.git \
 --context-dir helloworld --build-secret “secret-mvn:.ssh” \
 --build-config-map "settings-mvn:.m2"

OpenShift Container Platform 4.13 Builds

30

https://docs.docker.com/engine/reference/builder/#add
https://docs.docker.com/engine/reference/builder/#copy

If you do not specify the destinationDir for a secret, then the files are copied into the same directory in
which the Dockerfile is located. If you specify a relative path as destinationDir, then the secrets are
copied into that directory, relative to your Dockerfile location. This makes the secret files available to the
Docker build operation as part of the context directory used during the build.

Example of a Dockerfile referencing secret and config map data

FROM centos/ruby-22-centos7

USER root
COPY ./secret-dir /secrets
COPY ./config /

Create a shell script that will output secrets and ConfigMaps when the image is run
RUN echo '#!/bin/sh' > /input_report.sh
RUN echo '(test -f /secrets/secret1 && echo -n "secret1=" && cat /secrets/secret1)' >>
/input_report.sh
RUN echo '(test -f /config && echo -n "relative-configMap=" && cat /config)' >> /input_report.sh
RUN chmod 755 /input_report.sh

CMD ["/bin/sh", "-c", "/input_report.sh"]

IMPORTANT

Users normally remove their input secrets from the final application image so that the
secrets are not present in the container running from that image. However, the secrets
still exist in the image itself in the layer where they were added. This removal is part of the
Dockerfile itself.

To prevent the contents of input secrets and config maps from appearing in the build
output container images and avoid this removal process altogether, use build volumes in
your Docker build strategy instead.

3.6.7. Custom strategy

When using a Custom strategy, all the defined input secrets and config maps are available in the builder
container in the /var/run/secrets/openshift.io/build directory. The custom build image must use these
secrets and config maps appropriately. With the Custom strategy, you can define secrets as described in
Custom strategy options.

There is no technical difference between existing strategy secrets and the input secrets. However, your
builder image can distinguish between them and use them differently, based on your build use case.

The input secrets are always mounted into the /var/run/secrets/openshift.io/build directory, or your
builder can parse the $BUILD environment variable, which includes the full build object.

IMPORTANT

If a pull secret for the registry exists in both the namespace and the node, builds default
to using the pull secret in the namespace.

3.7. EXTERNAL ARTIFACTS

It is not recommended to store binary files in a source repository. Therefore, you must define a build

CHAPTER 3. CREATING BUILD INPUTS

31

It is not recommended to store binary files in a source repository. Therefore, you must define a build
which pulls additional files, such as Java .jar dependencies, during the build process. How this is done
depends on the build strategy you are using.

For a Source build strategy, you must put appropriate shell commands into the assemble script:

.s2i/bin/assemble File

.s2i/bin/run File

For a Docker build strategy, you must modify the Dockerfile and invoke shell commands with the RUN
instruction:

Excerpt of Dockerfile

In practice, you may want to use an environment variable for the file location so that the specific file to
be downloaded can be customized using an environment variable defined on the BuildConfig, rather
than updating the Dockerfile or assemble script.

You can choose between different methods of defining environment variables:

Using the .s2i/environment file] (only for a Source build strategy)

Setting in BuildConfig

Providing explicitly using oc start-build --env (only for builds that are triggered manually)

3.8. USING DOCKER CREDENTIALS FOR PRIVATE REGISTRIES

You can supply builds with a .docker/config.json file with valid credentials for private container
registries. This allows you to push the output image into a private container image registry or pull a
builder image from the private container image registry that requires authentication.

You can supply credentials for multiple repositories within the same registry, each with credentials
specific to that registry path.

NOTE

#!/bin/sh
APP_VERSION=1.0
wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

#!/bin/sh
exec java -jar app.jar

FROM jboss/base-jdk:8

ENV APP_VERSION 1.0
RUN wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

EXPOSE 8080
CMD ["java", "-jar", "app.jar"]

OpenShift Container Platform 4.13 Builds

32

https://docs.docker.com/engine/reference/builder/#run

1

2

3

4

5

NOTE

For the OpenShift Container Platform container image registry, this is not required
because secrets are generated automatically for you by OpenShift Container Platform.

The .docker/config.json file is found in your home directory by default and has the following format:

URL of the registry.

Encrypted password.

Email address for the login.

URL and credentials for a specific image in a namespace.

URL and credentials for a registry namespace.

You can define multiple container image registries or define multiple repositories in the same registry.
Alternatively, you can also add authentication entries to this file by running the docker login command.
The file will be created if it does not exist.

Kubernetes provides Secret objects, which can be used to store configuration and passwords.

Prerequisites

You must have a .docker/config.json file.

Procedure

1. Create the secret from your local .docker/config.json file:

This generates a JSON specification of the secret named dockerhub and creates the object.

2. Add a pushSecret field into the output section of the BuildConfig and set it to the name of
the secret that you created, which in the previous example is dockerhub:

auths:
 index.docker.io/v1/: 1
 auth: "YWRfbGzhcGU6R2labnRib21ifTE=" 2
 email: "user@example.com" 3
 docker.io/my-namespace/my-user/my-image: 4
 auth: "GzhYWRGU6R2fbclabnRgbkSp=""
 email: "user@example.com"
 docker.io/my-namespace: 5
 auth: "GzhYWRGU6R2deesfrRgbkSp=""
 email: "user@example.com"

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

spec:
 output:
 to:

CHAPTER 3. CREATING BUILD INPUTS

33

You can use the oc set build-secret command to set the push secret on the build
configuration:

You can also link the push secret to the service account used by the build instead of specifying
the pushSecret field. By default, builds use the builder service account. The push secret is
automatically added to the build if the secret contains a credential that matches the repository
hosting the build’s output image.

3. Pull the builder container image from a private container image registry by specifying the
pullSecret field, which is part of the build strategy definition:

You can use the oc set build-secret command to set the pull secret on the build configuration:

NOTE

This example uses pullSecret in a Source build, but it is also applicable in Docker
and Custom builds.

You can also link the pull secret to the service account used by the build instead of specifying
the pullSecret field. By default, builds use the builder service account. The pull secret is
automatically added to the build if the secret contains a credential that matches the repository
hosting the build’s input image. To link the pull secret to the service account used by the build
instead of specifying the pullSecret field, run:

NOTE

You must specify a from image in the BuildConfig spec to take advantage of
this feature. Docker strategy builds generated by oc new-build or oc new-app
may not do this in some situations.

3.9. BUILD ENVIRONMENTS

 kind: "DockerImage"
 name: "private.registry.com/org/private-image:latest"
 pushSecret:
 name: "dockerhub"

$ oc set build-secret --push bc/sample-build dockerhub

$ oc secrets link builder dockerhub

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "docker.io/user/private_repository"
 pullSecret:
 name: "dockerhub"

$ oc set build-secret --pull bc/sample-build dockerhub

$ oc secrets link builder dockerhub

OpenShift Container Platform 4.13 Builds

34

As with pod environment variables, build environment variables can be defined in terms of references to
other resources or variables using the Downward API. There are some exceptions, which are noted.

You can also manage environment variables defined in the BuildConfig with the oc set env command.

NOTE

Referencing container resources using valueFrom in build environment variables is not
supported as the references are resolved before the container is created.

3.9.1. Using build fields as environment variables

You can inject information about the build object by setting the fieldPath environment variable source
to the JsonPath of the field from which you are interested in obtaining the value.

NOTE

Jenkins Pipeline strategy does not support valueFrom syntax for environment variables.

Procedure

Set the fieldPath environment variable source to the JsonPath of the field from which you are
interested in obtaining the value:

3.9.2. Using secrets as environment variables

You can make key values from secrets available as environment variables using the valueFrom syntax.

IMPORTANT

This method shows the secrets as plain text in the output of the build pod console. To
avoid this, use input secrets and config maps instead.

Procedure

To use a secret as an environment variable, set the valueFrom syntax:

env:
 - name: FIELDREF_ENV
 valueFrom:
 fieldRef:
 fieldPath: metadata.name

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: MYVAL
 valueFrom:

CHAPTER 3. CREATING BUILD INPUTS

35

Additional resources

Input secrets and config maps

3.10. SERVICE SERVING CERTIFICATE SECRETS

Service serving certificate secrets are intended to support complex middleware applications that need
out-of-the-box certificates. It has the same settings as the server certificates generated by the
administrator tooling for nodes and masters.

Procedure

To secure communication to your service, have the cluster generate a signed serving certificate/key pair
into a secret in your namespace.

Set the service.beta.openshift.io/serving-cert-secret-name annotation on your service with
the value set to the name you want to use for your secret.
Then, your PodSpec can mount that secret. When it is available, your pod runs. The certificate
is good for the internal service DNS name, <service.name>.<service.namespace>.svc.

The certificate and key are in PEM format, stored in tls.crt and tls.key respectively. The
certificate/key pair is automatically replaced when it gets close to expiration. View the expiration
date in the service.beta.openshift.io/expiry annotation on the secret, which is in RFC3339
format.

NOTE

In most cases, the service DNS name <service.name>.<service.namespace>.svc is not
externally routable. The primary use of <service.name>.<service.namespace>.svc is
for intracluster or intraservice communication, and with re-encrypt routes.

Other pods can trust cluster-created certificates, which are only signed for internal DNS names, by using
the certificate authority (CA) bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-
ca.crt file that is automatically mounted in their pod.

The signature algorithm for this feature is x509.SHA256WithRSA. To manually rotate, delete the
generated secret. A new certificate is created.

3.11. SECRETS RESTRICTIONS

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:

To populate environment variables for containers.

As files in a volume mounted on one or more of its containers.

By kubelet when pulling images for the pod.

Volume type secrets write data into the container as a file using the volume mechanism.
imagePullSecrets use service accounts for the automatic injection of the secret into all pods in a
namespaces.

 secretKeyRef:
 key: myval
 name: mysecret

OpenShift Container Platform 4.13 Builds

36

When a template contains a secret definition, the only way for the template to use the provided secret is
to ensure that the secret volume sources are validated and that the specified object reference actually
points to an object of type Secret. Therefore, a secret needs to be created before any pods that
depend on it. The most effective way to ensure this is to have it get injected automatically through the
use of a service account.

Secret API objects reside in a namespace. They can only be referenced by pods in that same
namespace.

Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that would
exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also
exhaust memory.

CHAPTER 3. CREATING BUILD INPUTS

37

CHAPTER 4. MANAGING BUILD OUTPUT
Use the following sections for an overview of and instructions for managing build output.

4.1. BUILD OUTPUT

Builds that use the docker or source-to-image (S2I) strategy result in the creation of a new container
image. The image is then pushed to the container image registry specified in the output section of the
Build specification.

If the output kind is ImageStreamTag, then the image will be pushed to the integrated OpenShift
image registry and tagged in the specified imagestream. If the output is of type DockerImage, then the
name of the output reference will be used as a docker push specification. The specification may contain
a registry or will default to DockerHub if no registry is specified. If the output section of the build
specification is empty, then the image will not be pushed at the end of the build.

Output to an ImageStreamTag

Output to a docker Push Specification

4.2. OUTPUT IMAGE ENVIRONMENT VARIABLES

docker and source-to-image (S2I) strategy builds set the following environment variables on output
images:

Variable Description

OPENSHIFT_BUILD_NAME Name of the build

OPENSHIFT_BUILD_NAMESPACE Namespace of the build

OPENSHIFT_BUILD_SOURCE The source URL of the build

OPENSHIFT_BUILD_REFERENCE The Git reference used in the build

OPENSHIFT_BUILD_COMMIT Source commit used in the build

Additionally, any user-defined environment variable, for example those configured with S2I] or docker

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"

spec:
 output:
 to:
 kind: "DockerImage"
 name: "my-registry.mycompany.com:5000/myimages/myimage:tag"

OpenShift Container Platform 4.13 Builds

38

Additionally, any user-defined environment variable, for example those configured with S2I] or docker
strategy options, will also be part of the output image environment variable list.

4.3. OUTPUT IMAGE LABELS

docker and source-to-image (S2I)` builds set the following labels on output images:

Label Description

io.openshift.build.commit.author Author of the source commit used in the build

io.openshift.build.commit.date Date of the source commit used in the build

io.openshift.build.commit.id Hash of the source commit used in the build

io.openshift.build.commit.message Message of the source commit used in the build

io.openshift.build.commit.ref Branch or reference specified in the source

io.openshift.build.source-location Source URL for the build

You can also use the BuildConfig.spec.output.imageLabels field to specify a list of custom labels that
will be applied to each image built from the build configuration.

Custom Labels to be Applied to Built Images

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "my-image:latest"
 imageLabels:
 - name: "vendor"
 value: "MyCompany"
 - name: "authoritative-source-url"
 value: "registry.mycompany.com"

CHAPTER 4. MANAGING BUILD OUTPUT

39

CHAPTER 5. USING BUILD STRATEGIES
The following sections define the primary supported build strategies, and how to use them.

5.1. DOCKER BUILD

OpenShift Container Platform uses Buildah to build a container image from a Dockerfile. For more
information on building container images with Dockerfiles, see the Dockerfile reference documentation.

TIP

If you set Docker build arguments by using the buildArgs array, see Understand how ARG and FROM
interact in the Dockerfile reference documentation.

5.1.1. Replacing Dockerfile FROM image

You can replace the FROM instruction of the Dockerfile with the from of the BuildConfig object. If the
Dockerfile uses multi-stage builds, the image in the last FROM instruction will be replaced.

Procedure

To replace the FROM instruction of the Dockerfile with the from of the BuildConfig.

5.1.2. Using Dockerfile path

By default, docker builds use a Dockerfile located at the root of the context specified in the
BuildConfig.spec.source.contextDir field.

The dockerfilePath field allows the build to use a different path to locate your Dockerfile, relative to the
BuildConfig.spec.source.contextDir field. It can be a different file name than the default Dockerfile,
such as MyDockerfile, or a path to a Dockerfile in a subdirectory, such as dockerfiles/app1/Dockerfile.

Procedure

To use the dockerfilePath field for the build to use a different path to locate your Dockerfile, set:

5.1.3. Using docker environment variables

To make environment variables available to the docker build process and resulting image, you can add
environment variables to the dockerStrategy definition of the build configuration.

The environment variables defined there are inserted as a single ENV Dockerfile instruction right after
the FROM instruction, so that it can be referenced later on within the Dockerfile.

strategy:
 dockerStrategy:
 from:
 kind: "ImageStreamTag"
 name: "debian:latest"

strategy:
 dockerStrategy:
 dockerfilePath: dockerfiles/app1/Dockerfile

OpenShift Container Platform 4.13 Builds

40

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

Procedure

The variables are defined during build and stay in the output image, therefore they will be present in any
container that runs that image as well.

For example, defining a custom HTTP proxy to be used during build and runtime:

You can also manage environment variables defined in the build configuration with the oc set env
command.

5.1.4. Adding docker build arguments

You can set docker build arguments using the buildArgs array. The build arguments are passed to
docker when a build is started.

TIP

See Understand how ARG and FROM interact in the Dockerfile reference documentation.

Procedure

To set docker build arguments, add entries to the buildArgs array, which is located in the
dockerStrategy definition of the BuildConfig object. For example:

NOTE

Only the name and value fields are supported. Any settings on the valueFrom field are
ignored.

5.1.5. Squashing layers with docker builds

Docker builds normally create a layer representing each instruction in a Dockerfile. Setting the
imageOptimizationPolicy to SkipLayers merges all instructions into a single layer on top of the base
image.

Procedure

Set the imageOptimizationPolicy to SkipLayers:

dockerStrategy:
...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

dockerStrategy:
...
 buildArgs:
 - name: "foo"
 value: "bar"

strategy:
 dockerStrategy:
 imageOptimizationPolicy: SkipLayers

CHAPTER 5. USING BUILD STRATEGIES

41

https://docs.docker.com/engine/reference/builder/#arg
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

1 5 9

2 6 10

5.1.6. Using build volumes

You can mount build volumes to give running builds access to information that you don’t want to persist
in the output container image.

Build volumes provide sensitive information, such as repository credentials, that the build environment
or configuration only needs at build time. Build volumes are different from build inputs, whose data can
persist in the output container image.

The mount points of build volumes, from which the running build reads data, are functionally similar to
pod volume mounts.

Prerequisites

You have added an input secret, config map, or both to a BuildConfig object .

Procedure

In the dockerStrategy definition of the BuildConfig object, add any build volumes to the
volumes array. For example:

Required. A unique name.

Required. The absolute path of the mount point. It must not contain .. or : and doesn’t

spec:
 dockerStrategy:
 volumes:
 - name: secret-mvn 1
 mounts:
 - destinationPath: /opt/app-root/src/.ssh 2
 source:
 type: Secret 3
 secret:
 secretName: my-secret 4
 - name: settings-mvn 5
 mounts:
 - destinationPath: /opt/app-root/src/.m2 6
 source:
 type: ConfigMap 7
 configMap:
 name: my-config 8
 - name: my-csi-volume 9
 mounts:
 - destinationPath: /opt/app-root/src/some_path 10
 source:
 type: CSI 11
 csi:
 driver: csi.sharedresource.openshift.io 12
 readOnly: true 13
 volumeAttributes: 14
 attribute: value

OpenShift Container Platform 4.13 Builds

42

https://kubernetes.io/docs/concepts/storage/volumes/

3 7 11

4 8

12

13

14

1

2

Required. The type of source, ConfigMap, Secret, or CSI.

Required. The name of the source.

Required. The driver that provides the ephemeral CSI volume.

Required. This value must be set to true. Provides a read-only volume.

Optional. The volume attributes of the ephemeral CSI volume. Consult the CSI driver’s
documentation for supported attribute keys and values.

NOTE

The Shared Resource CSI Driver is supported as a Technology Preview feature.

5.2. SOURCE-TO-IMAGE BUILD

Source-to-image (S2I) is a tool for building reproducible container images. It produces ready-to-run
images by injecting application source into a container image and assembling a new image. The new
image incorporates the base image, the builder, and built source and is ready to use with the buildah
run command. S2I supports incremental builds, which re-use previously downloaded dependencies,
previously built artifacts, and so on.

5.2.1. Performing source-to-image incremental builds

Source-to-image (S2I) can perform incremental builds, which means it reuses artifacts from previously-
built images.

Procedure

To create an incremental build, create a with the following modification to the strategy
definition:

Specify an image that supports incremental builds. Consult the documentation of the
builder image to determine if it supports this behavior.

This flag controls whether an incremental build is attempted. If the builder image does not
support incremental builds, the build will still succeed, but you will get a log message
stating the incremental build was not successful because of a missing save-artifacts script.

Additional resources

See S2I Requirements for information on how to create a builder image supporting incremental
builds.

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "incremental-image:latest" 1
 incremental: true 2

CHAPTER 5. USING BUILD STRATEGIES

43

1

5.2.2. Overriding source-to-image builder image scripts

You can override the assemble, run, and save-artifacts source-to-image (S2I) scripts provided by the
builder image.

Procedure

To override the assemble, run, and save-artifacts S2I scripts provided by the builder image, either:

Provide an assemble, run, or save-artifacts script in the .s2i/bin directory of your application
source repository.

Provide a URL of a directory containing the scripts as part of the strategy definition. For
example:

This path will have run, assemble, and save-artifacts appended to it. If any or all scripts
are found they will be used in place of the same named scripts provided in the image.

NOTE

Files located at the scripts URL take precedence over files located in .s2i/bin of the
source repository.

5.2.3. Source-to-image environment variables

There are two ways to make environment variables available to the source build process and resulting
image. Environment files and BuildConfig environment values. Variables provided will be present during
the build process and in the output image.

5.2.3.1. Using source-to-image environment files

Source build enables you to set environment values, one per line, inside your application, by specifying
them in a .s2i/environment file in the source repository. The environment variables specified in this file
are present during the build process and in the output image.

If you provide a .s2i/environment file in your source repository, source-to-image (S2I) reads this file
during the build. This allows customization of the build behavior as the assemble script may use these
variables.

Procedure

For example, to disable assets compilation for your Rails application during the build:

Add DISABLE_ASSET_COMPILATION=true in the .s2i/environment file.

In addition to builds, the specified environment variables are also available in the running application
itself. For example, to cause the Rails application to start in development mode instead of production:

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "builder-image:latest"
 scripts: "http://somehost.com/scripts_directory" 1

OpenShift Container Platform 4.13 Builds

44

Add RAILS_ENV=development to the .s2i/environment file.

The complete list of supported environment variables is available in the using images section for each
image.

5.2.3.2. Using source-to-image build configuration environment

You can add environment variables to the sourceStrategy definition of the build configuration. The
environment variables defined there are visible during the assemble script execution and will be defined
in the output image, making them also available to the run script and application code.

Procedure

For example, to disable assets compilation for your Rails application:

Additional resources

The build environment section provides more advanced instructions.

You can also manage environment variables defined in the build configuration with the oc set
env command.

5.2.4. Ignoring source-to-image source files

Source-to-image (S2I) supports a .s2iignore file, which contains a list of file patterns that should be
ignored. Files in the build working directory, as provided by the various input sources, that match a
pattern found in the .s2iignore file will not be made available to the assemble script.

5.2.5. Creating images from source code with source-to-image

Source-to-image (S2I) is a framework that makes it easy to write images that take application source
code as an input and produce a new image that runs the assembled application as output.

The main advantage of using S2I for building reproducible container images is the ease of use for
developers. As a builder image author, you must understand two basic concepts in order for your images
to provide the best S2I performance, the build process and S2I scripts.

5.2.5.1. Understanding the source-to-image build process

The build process consists of the following three fundamental elements, which are combined into a final
container image:

Sources

Source-to-image (S2I) scripts

Builder image

sourceStrategy:
...
 env:
 - name: "DISABLE_ASSET_COMPILATION"
 value: "true"

CHAPTER 5. USING BUILD STRATEGIES

45

S2I generates a Dockerfile with the builder image as the first FROM instruction. The Dockerfile
generated by S2I is then passed to Buildah.

5.2.5.2. How to write source-to-image scripts

You can write source-to-image (S2I) scripts in any programming language, as long as the scripts are
executable inside the builder image. S2I supports multiple options providing assemble/run/save-
artifacts scripts. All of these locations are checked on each build in the following order:

1. A script specified in the build configuration.

2. A script found in the application source .s2i/bin directory.

3. A script found at the default image URL with the io.openshift.s2i.scripts-url label.

Both the io.openshift.s2i.scripts-url label specified in the image and the script specified in a build
configuration can take one of the following forms:

image:///path_to_scripts_dir: absolute path inside the image to a directory where the S2I
scripts are located.

file:///path_to_scripts_dir: relative or absolute path to a directory on the host where the S2I
scripts are located.

http(s)://path_to_scripts_dir: URL to a directory where the S2I scripts are located.

Table 5.1. S2I scripts

Script Description

assemble The assemble script builds the application artifacts from a source and places
them into appropriate directories inside the image. This script is required. The
workflow for this script is:

1. Optional: Restore build artifacts. If you want to support incremental
builds, make sure to define save-artifacts as well.

2. Place the application source in the desired location.

3. Build the application artifacts.

4. Install the artifacts into locations appropriate for them to run.

run The run script executes your application. This script is required.

save-artifacts The save-artifacts script gathers all dependencies that can speed up the
build processes that follow. This script is optional. For example:

For Ruby, gems installed by Bundler.

For Java, .m2 contents.

These dependencies are gathered into a tar file and streamed to the standard
output.

OpenShift Container Platform 4.13 Builds

46

usage The usage script allows you to inform the user how to properly use your image.
This script is optional.

test/run The test/run script allows you to create a process to check if the image is
working correctly. This script is optional. The proposed flow of that process is:

1. Build the image.

2. Run the image to verify the usage script.

3. Run s2i build to verify the assemble script.

4. Optional: Run s2i build again to verify the save-artifacts and
assemble scripts save and restore artifacts functionality.

5. Run the image to verify the test application is working.

NOTE

The suggested location to put the test application built by your
test/run script is the test/test-app directory in your image
repository.

Script Description

Example S2I scripts

The following example S2I scripts are written in Bash. Each example assumes its tar contents are
unpacked into the /tmp/s2i directory.

assemble script:

run script:

#!/bin/bash

restore build artifacts
if ["$(ls /tmp/s2i/artifacts/ 2>/dev/null)"]; then
 mv /tmp/s2i/artifacts/* $HOME/.
fi

move the application source
mv /tmp/s2i/src $HOME/src

build application artifacts
pushd ${HOME}
make all

install the artifacts
make install
popd

#!/bin/bash

CHAPTER 5. USING BUILD STRATEGIES

47

save-artifacts script:

usage script:

Additional resources

S2I Image Creation Tutorial

5.2.6. Using build volumes

You can mount build volumes to give running builds access to information that you don’t want to persist
in the output container image.

Build volumes provide sensitive information, such as repository credentials, that the build environment
or configuration only needs at build time. Build volumes are different from build inputs, whose data can
persist in the output container image.

The mount points of build volumes, from which the running build reads data, are functionally similar to
pod volume mounts.

Prerequisites

You have added an input secret, config map, or both to a BuildConfig object .

Procedure

In the sourceStrategy definition of the BuildConfig object, add any build volumes to the
volumes array. For example:

run the application
/opt/application/run.sh

#!/bin/bash

pushd ${HOME}
if [-d deps]; then
 # all deps contents to tar stream
 tar cf - deps
fi
popd

#!/bin/bash

inform the user how to use the image
cat <<EOF
This is a S2I sample builder image, to use it, install
https://github.com/openshift/source-to-image
EOF

spec:
 sourceStrategy:
 volumes:
 - name: secret-mvn 1

OpenShift Container Platform 4.13 Builds

48

https://blog.openshift.com/create-s2i-builder-image/
https://kubernetes.io/docs/concepts/storage/volumes/

1 5 9

2 6 10

3 7 11

4 8

12

13

14

Required. A unique name.

Required. The absolute path of the mount point. It must not contain .. or : and doesn’t collide
with the destination path generated by the builder. The /opt/app-root/src is the default home

directory for many Red Hat S2I-enabled images.

Required. The type of source, ConfigMap, Secret, or CSI.

Required. The name of the source.

Required. The driver that provides the ephemeral CSI volume.

Required. This value must be set to true. Provides a read-only volume.

Optional. The volume attributes of the ephemeral CSI volume. Consult the CSI driver’s
documentation for supported attribute keys and values.

NOTE

The Shared Resource CSI Driver is supported as a Technology Preview feature.

5.3. CUSTOM BUILD

The custom build strategy allows developers to define a specific builder image responsible for the entire
build process. Using your own builder image allows you to customize your build process.

A custom builder image is a plain container image embedded with build process logic, for example for
building RPMs or base images.

 mounts:
 - destinationPath: /opt/app-root/src/.ssh 2
 source:
 type: Secret 3
 secret:
 secretName: my-secret 4
 - name: settings-mvn 5
 mounts:
 - destinationPath: /opt/app-root/src/.m2 6
 source:
 type: ConfigMap 7
 configMap:
 name: my-config 8
 - name: my-csi-volume 9
 mounts:
 - destinationPath: /opt/app-root/src/some_path 10
 source:
 type: CSI 11
 csi:
 driver: csi.sharedresource.openshift.io 12
 readOnly: true 13
 volumeAttributes: 14
 attribute: value

CHAPTER 5. USING BUILD STRATEGIES

49

1

2

Custom builds run with a high level of privilege and are not available to users by default. Only users who
can be trusted with cluster administration permissions should be granted access to run custom builds.

5.3.1. Using FROM image for custom builds

You can use the customStrategy.from section to indicate the image to use for the custom build

Procedure

Set the customStrategy.from section:

5.3.2. Using secrets in custom builds

In addition to secrets for source and images that can be added to all build types, custom strategies allow
adding an arbitrary list of secrets to the builder pod.

Procedure

To mount each secret at a specific location, edit the secretSource and mountPath fields of the
strategy YAML file:

secretSource is a reference to a secret in the same namespace as the build.

mountPath is the path inside the custom builder where the secret should be mounted.

5.3.3. Using environment variables for custom builds

To make environment variables available to the custom build process, you can add environment
variables to the customStrategy definition of the build configuration.

The environment variables defined there are passed to the pod that runs the custom build.

Procedure

1. Define a custom HTTP proxy to be used during build:

strategy:
 customStrategy:
 from:
 kind: "DockerImage"
 name: "openshift/sti-image-builder"

strategy:
 customStrategy:
 secrets:
 - secretSource: 1
 name: "secret1"
 mountPath: "/tmp/secret1" 2
 - secretSource:
 name: "secret2"
 mountPath: "/tmp/secret2"

OpenShift Container Platform 4.13 Builds

50

2. To manage environment variables defined in the build configuration, enter the following
command:

5.3.4. Using custom builder images

OpenShift Container Platform’s custom build strategy enables you to define a specific builder image
responsible for the entire build process. When you need a build to produce individual artifacts such as
packages, JARs, WARs, installable ZIPs, or base images, use a custom builder image using the custom
build strategy.

A custom builder image is a plain container image embedded with build process logic, which is used for
building artifacts such as RPMs or base container images.

Additionally, the custom builder allows implementing any extended build process, such as a CI/CD flow
that runs unit or integration tests.

5.3.4.1. Custom builder image

Upon invocation, a custom builder image receives the following environment variables with the
information needed to proceed with the build:

Table 5.2. Custom Builder Environment Variables

Variable Name Description

BUILD The entire serialized JSON of the Build object definition. If you must use a
specific API version for serialization, you can set the buildAPIVersion parameter
in the custom strategy specification of the build configuration.

SOURCE_REPOSITO
RY

The URL of a Git repository with source to be built.

SOURCE_URI Uses the same value as SOURCE_REPOSITORY. Either can be used.

SOURCE_CONTEXT
_DIR

Specifies the subdirectory of the Git repository to be used when building. Only
present if defined.

SOURCE_REF The Git reference to be built.

ORIGIN_VERSION The version of the OpenShift Container Platform master that created this build
object.

OUTPUT_REGISTRY The container image registry to push the image to.

customStrategy:
...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

$ oc set env <enter_variables>

CHAPTER 5. USING BUILD STRATEGIES

51

OUTPUT_IMAGE The container image tag name for the image being built.

PUSH_DOCKERCFG
_PATH

The path to the container registry credentials for running a podman push
operation.

Variable Name Description

5.3.4.2. Custom builder workflow

Although custom builder image authors have flexibility in defining the build process, your builder image
must adhere to the following required steps necessary for running a build inside of OpenShift Container
Platform:

1. The Build object definition contains all the necessary information about input parameters for
the build.

2. Run the build process.

3. If your build produces an image, push it to the output location of the build if it is defined. Other
output locations can be passed with environment variables.

5.4. PIPELINE BUILD

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

The Pipeline build strategy allows developers to define a Jenkins pipeline for use by the Jenkins pipeline
plugin. The build can be started, monitored, and managed by OpenShift Container Platform in the same
way as any other build type.

Pipeline workflows are defined in a jenkinsfile, either embedded directly in the build configuration, or
supplied in a Git repository and referenced by the build configuration.

5.4.1. Understanding OpenShift Container Platform pipelines

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

OpenShift Container Platform 4.13 Builds

52

Pipelines give you control over building, deploying, and promoting your applications on OpenShift
Container Platform. Using a combination of the Jenkins Pipeline build strategy, jenkinsfiles, and the
OpenShift Container Platform Domain Specific Language (DSL) provided by the Jenkins Client Plugin,
you can create advanced build, test, deploy, and promote pipelines for any scenario.

OpenShift Container Platform Jenkins Sync Plugin

The OpenShift Container Platform Jenkins Sync Plugin keeps the build configuration and build objects
in sync with Jenkins jobs and builds, and provides the following:

Dynamic job and run creation in Jenkins.

Dynamic creation of agent pod templates from image streams, image stream tags, or config
maps.

Injection of environment variables.

Pipeline visualization in the OpenShift Container Platform web console.

Integration with the Jenkins Git plugin, which passes commit information from OpenShift
Container Platform builds to the Jenkins Git plugin.

Synchronization of secrets into Jenkins credential entries.

OpenShift Container Platform Jenkins Client Plugin

The OpenShift Container Platform Jenkins Client Plugin is a Jenkins plugin which aims to provide a
readable, concise, comprehensive, and fluent Jenkins Pipeline syntax for rich interactions with an
OpenShift Container Platform API Server. The plugin uses the OpenShift Container Platform command
line tool, oc, which must be available on the nodes executing the script.

The Jenkins Client Plugin must be installed on your Jenkins master so the OpenShift Container Platform
DSL will be available to use within the jenkinsfile for your application. This plugin is installed and
enabled by default when using the OpenShift Container Platform Jenkins image.

For OpenShift Container Platform Pipelines within your project, you will must use the Jenkins Pipeline
Build Strategy. This strategy defaults to using a jenkinsfile at the root of your source repository, but
also provides the following configuration options:

An inline jenkinsfile field within your build configuration.

A jenkinsfilePath field within your build configuration that references the location of the
jenkinsfile to use relative to the source contextDir.

NOTE

The optional jenkinsfilePath field specifies the name of the file to use, relative to the
source contextDir. If contextDir is omitted, it defaults to the root of the repository. If
jenkinsfilePath is omitted, it defaults to jenkinsfile.

5.4.2. Providing the Jenkins file for pipeline builds

IMPORTANT

CHAPTER 5. USING BUILD STRATEGIES

53

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

The jenkinsfile uses the standard groovy language syntax to allow fine grained control over the
configuration, build, and deployment of your application.

You can supply the jenkinsfile in one of the following ways:

A file located within your source code repository.

Embedded as part of your build configuration using the jenkinsfile field.

When using the first option, the jenkinsfile must be included in your applications source code repository
at one of the following locations:

A file named jenkinsfile at the root of your repository.

A file named jenkinsfile at the root of the source contextDir of your repository.

A file name specified via the jenkinsfilePath field of the JenkinsPipelineStrategy section of
your BuildConfig, which is relative to the source contextDir if supplied, otherwise it defaults to
the root of the repository.

The jenkinsfile is run on the Jenkins agent pod, which must have the OpenShift Container Platform
client binaries available if you intend to use the OpenShift Container Platform DSL.

Procedure

To provide the Jenkins file, you can either:

Embed the Jenkins file in the build configuration.

Include in the build configuration a reference to the Git repository that contains the Jenkins file.

Embedded Definition

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline"
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 node('agent') {
 stage 'build'
 openshiftBuild(buildConfig: 'ruby-sample-build', showBuildLogs: 'true')
 stage 'deploy'
 openshiftDeploy(deploymentConfig: 'frontend')
 }

OpenShift Container Platform 4.13 Builds

54

1

Reference to Git Repository

The optional jenkinsfilePath field specifies the name of the file to use, relative to the source
contextDir. If contextDir is omitted, it defaults to the root of the repository. If jenkinsfilePath is
omitted, it defaults to jenkinsfile.

5.4.3. Using environment variables for pipeline builds

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

To make environment variables available to the Pipeline build process, you can add environment
variables to the jenkinsPipelineStrategy definition of the build configuration.

Once defined, the environment variables will be set as parameters for any Jenkins job associated with
the build configuration.

Procedure

To define environment variables to be used during build, edit the YAML file:

You can also manage environment variables defined in the build configuration with the oc set env
command.

5.4.3.1. Mapping between BuildConfig environment variables and Jenkins job parameters

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline"
spec:
 source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfilePath: some/repo/dir/filename 1

jenkinsPipelineStrategy:
...
 env:
 - name: "FOO"
 value: "BAR"

CHAPTER 5. USING BUILD STRATEGIES

55

When a Jenkins job is created or updated based on changes to a Pipeline strategy build configuration,
any environment variables in the build configuration are mapped to Jenkins job parameters definitions,
where the default values for the Jenkins job parameters definitions are the current values of the
associated environment variables.

After the Jenkins job’s initial creation, you can still add additional parameters to the job from the Jenkins
console. The parameter names differ from the names of the environment variables in the build
configuration. The parameters are honored when builds are started for those Jenkins jobs.

How you start builds for the Jenkins job dictates how the parameters are set.

If you start with oc start-build, the values of the environment variables in the build configuration
are the parameters set for the corresponding job instance. Any changes you make to the
parameters' default values from the Jenkins console are ignored. The build configuration values
take precedence.

If you start with oc start-build -e, the values for the environment variables specified in the -e
option take precedence.

If you specify an environment variable not listed in the build configuration, they will be
added as a Jenkins job parameter definitions.

Any changes you make from the Jenkins console to the parameters corresponding to the
environment variables are ignored. The build configuration and what you specify with oc
start-build -e takes precedence.

If you start the Jenkins job with the Jenkins console, then you can control the setting of the
parameters with the Jenkins console as part of starting a build for the job.

NOTE

It is recommended that you specify in the build configuration all possible environment
variables to be associated with job parameters. Doing so reduces disk I/O and improves
performance during Jenkins processing.

5.4.4. Pipeline build tutorial

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

This example demonstrates how to create an OpenShift Container Platform Pipeline that will build,
deploy, and verify a Node.js/MongoDB application using the nodejs-mongodb.json template.

Procedure

1. Create the Jenkins master:

 $ oc project <project_name>

OpenShift Container Platform 4.13 Builds

56

Select the project that you want to use or create a new project with oc new-project
<project_name>.

If you want to use persistent storage, use jenkins-persistent instead.

2. Create a file named nodejs-sample-pipeline.yaml with the following content:

NOTE

This creates a BuildConfig object that employs the Jenkins pipeline strategy to
build, deploy, and scale the Node.js/MongoDB example application.

3. After you create a BuildConfig object with a jenkinsPipelineStrategy, tell the pipeline what to
do by using an inline jenkinsfile:

NOTE

This example does not set up a Git repository for the application.

The following jenkinsfile content is written in Groovy using the OpenShift
Container Platform DSL. For this example, include inline content in the
BuildConfig object using the YAML Literal Style, though including a jenkinsfile
in your source repository is the preferred method.

 $ oc new-app jenkins-ephemeral 1

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "nodejs-sample-pipeline"
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: <pipeline content from below>
 type: JenkinsPipeline

def templatePath = 'https://raw.githubusercontent.com/openshift/nodejs-
ex/master/openshift/templates/nodejs-mongodb.json' 1
def templateName = 'nodejs-mongodb-example' 2
pipeline {
 agent {
 node {
 label 'nodejs' 3
 }
 }
 options {
 timeout(time: 20, unit: 'MINUTES') 4
 }
 stages {
 stage('preamble') {
 steps {
 script {

CHAPTER 5. USING BUILD STRATEGIES

57

 openshift.withCluster() {
 openshift.withProject() {
 echo "Using project: ${openshift.project()}"
 }
 }
 }
 }
 }
 stage('cleanup') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.selector("all", [template : templateName]).delete() 5
 if (openshift.selector("secrets", templateName).exists()) { 6
 openshift.selector("secrets", templateName).delete()
 }
 }
 }
 }
 }
 }
 stage('create') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.newApp(templatePath) 7
 }
 }
 }
 }
 }
 stage('build') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 def builds = openshift.selector("bc", templateName).related('builds')
 timeout(5) { 8
 builds.untilEach(1) {
 return (it.object().status.phase == "Complete")
 }
 }
 }
 }
 }
 }
 }
 stage('deploy') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 def rm = openshift.selector("dc", templateName).rollout()
 timeout(5) { 9

OpenShift Container Platform 4.13 Builds

58

1

1 2

3

4

5

6

7

8

9

10

Path of the template to use.

Name of the template that will be created.

Spin up a node.js agent pod on which to run this build.

Set a timeout of 20 minutes for this pipeline.

Delete everything with this template label.

Delete any secrets with this template label.

Create a new application from the templatePath.

Wait up to five minutes for the build to complete.

Wait up to five minutes for the deployment to complete.

If everything else succeeded, tag the $ {templateName}:latest image as $
{templateName}-staging:latest. A pipeline build configuration for the staging
environment can watch for the $ {templateName}-staging:latest image to change and
then deploy it to the staging environment.

NOTE

The previous example was written using the declarative pipeline style, but the
older scripted pipeline style is also supported.

4. Create the Pipeline BuildConfig in your OpenShift Container Platform cluster:

 openshift.selector("dc", templateName).related('pods').untilEach(1) {
 return (it.object().status.phase == "Running")
 }
 }
 }
 }
 }
 }
 }
 stage('tag') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.tag("${templateName}:latest", "${templateName}-staging:latest") 10
 }
 }
 }
 }
 }
 }
}

$ oc create -f nodejs-sample-pipeline.yaml

CHAPTER 5. USING BUILD STRATEGIES

59

a. If you do not want to create your own file, you can use the sample from the Origin repository
by running:

5. Start the Pipeline:

NOTE

Alternatively, you can start your pipeline with the OpenShift Container Platform
web console by navigating to the Builds → Pipeline section and clicking Start
Pipeline, or by visiting the Jenkins Console, navigating to the Pipeline that you
created, and clicking Build Now.

Once the pipeline is started, you should see the following actions performed within your project:

A job instance is created on the Jenkins server.

An agent pod is launched, if your pipeline requires one.

The pipeline runs on the agent pod, or the master if no agent is required.

Any previously created resources with the template=nodejs-mongodb-example label
will be deleted.

A new application, and all of its associated resources, will be created from the nodejs-
mongodb-example template.

A build will be started using the nodejs-mongodb-example BuildConfig.

The pipeline will wait until the build has completed to trigger the next stage.

A deployment will be started using the nodejs-mongodb-example deployment
configuration.

The pipeline will wait until the deployment has completed to trigger the next stage.

If the build and deploy are successful, the nodejs-mongodb-example:latest image will
be tagged as nodejs-mongodb-example:stage.

The agent pod is deleted, if one was required for the pipeline.

NOTE

The best way to visualize the pipeline execution is by viewing it in the
OpenShift Container Platform web console. You can view your pipelines by
logging in to the web console and navigating to Builds → Pipelines.

5.5. ADDING SECRETS WITH WEB CONSOLE

You can add a secret to your build configuration so that it can access a private repository.

$ oc create -f
https://raw.githubusercontent.com/openshift/origin/master/examples/jenkins/pipeline/nodejs-
sample-pipeline.yaml

$ oc start-build nodejs-sample-pipeline

OpenShift Container Platform 4.13 Builds

60

Procedure

To add a secret to your build configuration so that it can access a private repository from the OpenShift
Container Platform web console:

1. Create a new OpenShift Container Platform project.

2. Create a secret that contains credentials for accessing a private source code repository.

3. Create a build configuration.

4. On the build configuration editor page or in the create app from builder image page of the
web console, set the Source Secret.

5. Click Save.

5.6. ENABLING PULLING AND PUSHING

You can enable pulling to a private registry by setting the pull secret and pushing by setting the push
secret in the build configuration.

Procedure

To enable pulling to a private registry:

Set the pull secret in the build configuration.

To enable pushing:

Set the push secret in the build configuration.

CHAPTER 5. USING BUILD STRATEGIES

61

CHAPTER 6. CUSTOM IMAGE BUILDS WITH BUILDAH
With OpenShift Container Platform 4.13, a docker socket will not be present on the host nodes. This
means the mount docker socket option of a custom build is not guaranteed to provide an accessible
docker socket for use within a custom build image.

If you require this capability in order to build and push images, add the Buildah tool your custom build
image and use it to build and push the image within your custom build logic. The following is an example
of how to run custom builds with Buildah.

NOTE

Using the custom build strategy requires permissions that normal users do not have by
default because it allows the user to execute arbitrary code inside a privileged container
running on the cluster. This level of access can be used to compromise the cluster and
therefore should be granted only to users who are trusted with administrative privileges
on the cluster.

6.1. PREREQUISITES

Review how to grant custom build permissions.

6.2. CREATING CUSTOM BUILD ARTIFACTS

You must create the image you want to use as your custom build image.

Procedure

1. Starting with an empty directory, create a file named Dockerfile with the following content:

2. In the same directory, create a file named dockerfile.sample. This file is included in the custom
build image and defines the image that is produced by the custom build:

3. In the same directory, create a file named build.sh. This file contains the logic that is run when
the custom build runs:

FROM registry.redhat.io/rhel8/buildah
In this example, `/tmp/build` contains the inputs that build when this
custom builder image is run. Normally the custom builder image fetches
this content from some location at build time, by using git clone as an example.
ADD dockerfile.sample /tmp/input/Dockerfile
ADD build.sh /usr/bin
RUN chmod a+x /usr/bin/build.sh
/usr/bin/build.sh contains the actual custom build logic that will be run when
this custom builder image is run.
ENTRYPOINT ["/usr/bin/build.sh"]

FROM registry.access.redhat.com/ubi9/ubi
RUN touch /tmp/build

#!/bin/sh
Note that in this case the build inputs are part of the custom builder image, but normally this
is retrieved from an external source.

OpenShift Container Platform 4.13 Builds

62

6.3. BUILD CUSTOM BUILDER IMAGE

You can use OpenShift Container Platform to build and push custom builder images to use in a custom
strategy.

Prerequisites

Define all the inputs that will go into creating your new custom builder image.

Procedure

1. Define a BuildConfig object that will build your custom builder image:

2. From the directory in which you created your custom build image, run the build:

After the build completes, your new custom builder image is available in your project in an image
stream tag that is named custom-builder-image:latest.

6.4. USE CUSTOM BUILDER IMAGE

You can define a BuildConfig object that uses the custom strategy in conjunction with your custom
builder image to execute your custom build logic.

Prerequisites

Define all the required inputs for new custom builder image.

Build your custom builder image.

Procedure

cd /tmp/input
OUTPUT_REGISTRY and OUTPUT_IMAGE are env variables provided by the custom
build framework
TAG="${OUTPUT_REGISTRY}/${OUTPUT_IMAGE}"

performs the build of the new image defined by dockerfile.sample
buildah --storage-driver vfs bud --isolation chroot -t ${TAG} .

buildah requires a slight modification to the push secret provided by the service
account to use it for pushing the image
cp /var/run/secrets/openshift.io/push/.dockercfg /tmp
(echo "{ \"auths\": " ; cat /var/run/secrets/openshift.io/push/.dockercfg ; echo "}") >
/tmp/.dockercfg

push the new image to the target for the build
buildah --storage-driver vfs push --tls-verify=false --authfile /tmp/.dockercfg ${TAG}

$ oc new-build --binary --strategy=docker --name custom-builder-image

$ oc start-build custom-builder-image --from-dir . -F

CHAPTER 6. CUSTOM IMAGE BUILDS WITH BUILDAH

63

1

Procedure

1. Create a file named buildconfig.yaml. This file defines the BuildConfig object that is created
in your project and executed:

Specify your project name.

2. Create the BuildConfig:

3. Create a file named imagestream.yaml. This file defines the image stream to which the build
will push the image:

4. Create the imagestream:

5. Run your custom build:

When the build runs, it launches a pod running the custom builder image that was built earlier.
The pod runs the build.sh logic that is defined as the entrypoint for the custom builder image.
The build.sh logic invokes Buildah to build the dockerfile.sample that was embedded in the

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
 name: sample-custom-build
 labels:
 name: sample-custom-build
 annotations:
 template.alpha.openshift.io/wait-for-ready: 'true'
spec:
 strategy:
 type: Custom
 customStrategy:
 forcePull: true
 from:
 kind: ImageStreamTag
 name: custom-builder-image:latest
 namespace: <yourproject> 1
 output:
 to:
 kind: ImageStreamTag
 name: sample-custom:latest

$ oc create -f buildconfig.yaml

kind: ImageStream
apiVersion: image.openshift.io/v1
metadata:
 name: sample-custom
spec: {}

$ oc create -f imagestream.yaml

$ oc start-build sample-custom-build -F

OpenShift Container Platform 4.13 Builds

64

custom builder image, and then uses Buildah to push the new image to the sample-custom
image stream.

CHAPTER 6. CUSTOM IMAGE BUILDS WITH BUILDAH

65

CHAPTER 7. PERFORMING AND CONFIGURING BASIC BUILDS
The following sections provide instructions for basic build operations, including starting and canceling
builds, editing BuildConfigs, deleting BuildConfigs, viewing build details, and accessing build logs.

7.1. STARTING A BUILD

You can manually start a new build from an existing build configuration in your current project.

Procedure

To manually start a build, enter the following command:

7.1.1. Re-running a build

You can manually re-run a build using the --from-build flag.

Procedure

To manually re-run a build, enter the following command:

7.1.2. Streaming build logs

You can specify the --follow flag to stream the build’s logs in stdout.

Procedure

To manually stream a build’s logs in stdout, enter the following command:

7.1.3. Setting environment variables when starting a build

You can specify the --env flag to set any desired environment variable for the build.

Procedure

To specify a desired environment variable, enter the following command:

7.1.4. Starting a build with source

Rather than relying on a Git source pull or a Dockerfile for a build, you can also start a build by directly
pushing your source, which could be the contents of a Git or SVN working directory, a set of pre-built
binary artifacts you want to deploy, or a single file. This can be done by specifying one of the following
options for the start-build command:

$ oc start-build <buildconfig_name>

$ oc start-build --from-build=<build_name>

$ oc start-build <buildconfig_name> --follow

$ oc start-build <buildconfig_name> --env=<key>=<value>

OpenShift Container Platform 4.13 Builds

66

Option Description

--from-dir=<directory> Specifies a directory that will be archived and used as a binary input for
the build.

--from-file=<file> Specifies a single file that will be the only file in the build source. The file
is placed in the root of an empty directory with the same file name as the
original file provided.

--from-repo=
<local_source_repo>

Specifies a path to a local repository to use as the binary input for a
build. Add the --commit option to control which branch, tag, or commit
is used for the build.

When passing any of these options directly to the build, the contents are streamed to the build and
override the current build source settings.

NOTE

Builds triggered from binary input will not preserve the source on the server, so rebuilds
triggered by base image changes will use the source specified in the build configuration.

Procedure

Start a build from a source using the following command to send the contents of a local Git
repository as an archive from the tag v2:

7.2. CANCELING A BUILD

You can cancel a build using the web console, or with the following CLI command.

Procedure

To manually cancel a build, enter the following command:

7.2.1. Canceling multiple builds

You can cancel multiple builds with the following CLI command.

Procedure

To manually cancel multiple builds, enter the following command:

7.2.2. Canceling all builds

$ oc start-build hello-world --from-repo=../hello-world --commit=v2

$ oc cancel-build <build_name>

$ oc cancel-build <build1_name> <build2_name> <build3_name>

CHAPTER 7. PERFORMING AND CONFIGURING BASIC BUILDS

67

You can cancel all builds from the build configuration with the following CLI command.

Procedure

To cancel all builds, enter the following command:

7.2.3. Canceling all builds in a given state

You can cancel all builds in a given state, such as new or pending, while ignoring the builds in other
states.

Procedure

To cancel all in a given state, enter the following command:

7.3. EDITING A BUILDCONFIG

To edit your build configurations, you use the Edit BuildConfig option in the Builds view of the
Developer perspective.

You can use either of the following views to edit a BuildConfig:

The Form view enables you to edit your BuildConfig using the standard form fields and
checkboxes.

The YAML view enables you to edit your BuildConfig with full control over the operations.

You can switch between the Form view and YAML view without losing any data. The data in the Form
view is transferred to the YAML view and vice versa.

Procedure

1. In the Builds view of the Developer perspective, click the menu to see the Edit
BuildConfig option.

2. Click Edit BuildConfig to see the Form view option.

3. In the Git section, enter the Git repository URL for the codebase you want to use to create an
application. The URL is then validated.

Optional: Click Show Advanced Git Options to add details such as:

Git Reference to specify a branch, tag, or commit that contains code you want to use
to build the application.

Context Dir to specify the subdirectory that contains code you want to use to build the
application.

Source Secret to create a Secret Name with credentials for pulling your source code

$ oc cancel-build bc/<buildconfig_name>

$ oc cancel-build bc/<buildconfig_name>

OpenShift Container Platform 4.13 Builds

68

Source Secret to create a Secret Name with credentials for pulling your source code
from a private repository.

4. In the Build from section, select the option that you would like to build from. You can use the
following options:

Image Stream tag references an image for a given image stream and tag. Enter the project,
image stream, and tag of the location you would like to build from and push to.

Image Stream image references an image for a given image stream and image name. Enter
the image stream image you would like to build from. Also enter the project, image stream,
and tag to push to.

Docker image: The Docker image is referenced through a Docker image repository. You will
also need to enter the project, image stream, and tag to refer to where you would like to
push to.

5. Optional: In the Environment Variables section, add the environment variables associated with
the project by using the Name and Value fields. To add more environment variables, use Add
Value, or Add from ConfigMap and Secret .

6. Optional: To further customize your application, use the following advanced options:

Trigger

Triggers a new image build when the builder image changes. Add more triggers by clicking
Add Trigger and selecting the Type and Secret.

Secrets

Adds secrets for your application. Add more secrets by clicking Add secret and selecting the
Secret and Mount point.

Policy

Click Run policy to select the build run policy. The selected policy determines the order in
which builds created from the build configuration must run.

Hooks

Select Run build hooks after image is built to run commands at the end of the build and
verify the image. Add Hook type, Command, and Arguments to append to the command.

7. Click Save to save the BuildConfig.

7.4. DELETING A BUILDCONFIG

You can delete a BuildConfig using the following command.

Procedure

To delete a BuildConfig, enter the following command:

This also deletes all builds that were instantiated from this BuildConfig.

To delete a BuildConfig and keep the builds instatiated from the BuildConfig, specify the --
cascade=false flag when you enter the following command:

$ oc delete bc <BuildConfigName>

$ oc delete --cascade=false bc <BuildConfigName>

CHAPTER 7. PERFORMING AND CONFIGURING BASIC BUILDS

69

7.5. VIEWING BUILD DETAILS

You can view build details with the web console or by using the oc describe CLI command.

This displays information including:

The build source.

The build strategy.

The output destination.

Digest of the image in the destination registry.

How the build was created.

If the build uses the Docker or Source strategy, the oc describe output also includes information about
the source revision used for the build, including the commit ID, author, committer, and message.

Procedure

To view build details, enter the following command:

7.6. ACCESSING BUILD LOGS

You can access build logs using the web console or the CLI.

Procedure

To stream the logs using the build directly, enter the following command:

7.6.1. Accessing BuildConfig logs

You can access BuildConfig logs using the web console or the CLI.

Procedure

To stream the logs of the latest build for a BuildConfig, enter the following command:

7.6.2. Accessing BuildConfig logs for a given version build

You can access logs for a given version build for a BuildConfig using the web console or the CLI.

Procedure

$ oc describe build <build_name>

$ oc describe build <build_name>

$ oc logs -f bc/<buildconfig_name>

OpenShift Container Platform 4.13 Builds

70

1

To stream the logs for a given version build for a BuildConfig, enter the following command:

7.6.3. Enabling log verbosity

You can enable a more verbose output by passing the BUILD_LOGLEVEL environment variable as part
of the sourceStrategy or dockerStrategy in a BuildConfig.

NOTE

An administrator can set the default build verbosity for the entire OpenShift Container
Platform instance by configuring env/BUILD_LOGLEVEL. This default can be overridden
by specifying BUILD_LOGLEVEL in a given BuildConfig. You can specify a higher
priority override on the command line for non-binary builds by passing --build-loglevel to
oc start-build.

Available log levels for source builds are as follows:

Level 0 Produces output from containers running the assemble script and all encountered errors.
This is the default.

Level 1 Produces basic information about the executed process.

Level 2 Produces very detailed information about the executed process.

Level 3 Produces very detailed information about the executed process, and a listing of the archive
contents.

Level 4 Currently produces the same information as level 3.

Level 5 Produces everything mentioned on previous levels and additionally provides docker push
messages.

Procedure

To enable more verbose output, pass the BUILD_LOGLEVEL environment variable as part of
the sourceStrategy or dockerStrategy in a BuildConfig:

Adjust this value to the desired log level.

$ oc logs --version=<number> bc/<buildconfig_name>

sourceStrategy:
...
 env:
 - name: "BUILD_LOGLEVEL"
 value: "2" 1

CHAPTER 7. PERFORMING AND CONFIGURING BASIC BUILDS

71

CHAPTER 8. TRIGGERING AND MODIFYING BUILDS
The following sections outline how to trigger builds and modify builds using build hooks.

8.1. BUILD TRIGGERS

When defining a BuildConfig, you can define triggers to control the circumstances in which the
BuildConfig should be run. The following build triggers are available:

Webhook

Image change

Configuration change

8.1.1. Webhook triggers

Webhook triggers allow you to trigger a new build by sending a request to the OpenShift Container
Platform API endpoint. You can define these triggers using GitHub, GitLab, Bitbucket, or Generic
webhooks.

Currently, OpenShift Container Platform webhooks only support the analogous versions of the push
event for each of the Git-based Source Code Management (SCM) systems. All other event types are
ignored.

When the push events are processed, the OpenShift Container Platform control plane host confirms if
the branch reference inside the event matches the branch reference in the corresponding BuildConfig.
If so, it then checks out the exact commit reference noted in the webhook event on the OpenShift
Container Platform build. If they do not match, no build is triggered.

NOTE

oc new-app and oc new-build create GitHub and Generic webhook triggers
automatically, but any other needed webhook triggers must be added manually. You can
manually add triggers by setting triggers.

For all webhooks, you must define a secret with a key named WebHookSecretKey and the value being
the value to be supplied when invoking the webhook. The webhook definition must then reference the
secret. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The
value of the key is compared to the secret provided during the webhook invocation.

For example here is a GitHub webhook with a reference to a secret named mysecret:

The secret is then defined as follows. Note that the value of the secret is base64 encoded as is required
for any data field of a Secret object.

type: "GitHub"
github:
 secretReference:
 name: "mysecret"

- kind: Secret
 apiVersion: v1
 metadata:

OpenShift Container Platform 4.13 Builds

72

8.1.1.1. Using GitHub webhooks

GitHub webhooks handle the call made by GitHub when a repository is updated. When defining the
trigger, you must specify a secret, which is part of the URL you supply to GitHub when configuring the
webhook.

Example GitHub webhook definition:

NOTE

The secret used in the webhook trigger configuration is not the same as secret field you
encounter when configuring webhook in GitHub UI. The former is to make the webhook
URL unique and hard to predict, the latter is an optional string field used to create HMAC
hex digest of the body, which is sent as an X-Hub-Signature header.

The payload URL is returned as the GitHub Webhook URL by the oc describe command (see Displaying
Webhook URLs), and is structured as follows:

Example output

Prerequisites

Create a BuildConfig from a GitHub repository.

Procedure

1. To configure a GitHub Webhook:

a. After creating a BuildConfig from a GitHub repository, run:

This generates a webhook GitHub URL that looks like:

Example output

 name: mysecret
 creationTimestamp:
 data:
 WebHookSecretKey: c2VjcmV0dmFsdWUx

type: "GitHub"
github:
 secretReference:
 name: "mysecret"

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/github

$ oc describe bc/<name-of-your-BuildConfig>

<https://api.starter-us-east-
1.openshift.com:443/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/github

CHAPTER 8. TRIGGERING AND MODIFYING BUILDS

73

b. Cut and paste this URL into GitHub, from the GitHub web console.

c. In your GitHub repository, select Add Webhook from Settings → Webhooks.

d. Paste the URL output into the Payload URL field.

e. Change the Content Type from GitHub’s default application/x-www-form-urlencoded to
application/json.

f. Click Add webhook.
You should see a message from GitHub stating that your webhook was successfully
configured.

Now, when you push a change to your GitHub repository, a new build automatically starts,
and upon a successful build a new deployment starts.

NOTE

Gogs supports the same webhook payload format as GitHub. Therefore, if
you are using a Gogs server, you can define a GitHub webhook trigger on
your BuildConfig and trigger it by your Gogs server as well.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook with curl:

The -k argument is only necessary if your API server does not have a properly signed certificate.

NOTE

The build will only be triggered if the ref value from GitHub webhook event matches the
ref value specified in the source.git field of the BuildConfig resource.

Additional resources

Gogs

8.1.1.2. Using GitLab webhooks

GitLab webhooks handle the call made by GitLab when a repository is updated. As with the GitHub
triggers, you must specify a secret. The following example is a trigger definition YAML within the
BuildConfig:

The payload URL is returned as the GitLab Webhook URL by the oc describe command, and is
structured as follows:

$ curl -H "X-GitHub-Event: push" -H "Content-Type: application/json" -k -X POST --data-
binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/github

type: "GitLab"
gitlab:
 secretReference:
 name: "mysecret"

OpenShift Container Platform 4.13 Builds

74

https://gogs.io
https://gogs.io

Example output

Procedure

1. To configure a GitLab Webhook:

a. Describe the BuildConfig to get the webhook URL:

b. Copy the webhook URL, replacing <secret> with your secret value.

c. Follow the GitLab setup instructions to paste the webhook URL into your GitLab repository
settings.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook with curl:

The -k argument is only necessary if your API server does not have a properly signed certificate.

8.1.1.3. Using Bitbucket webhooks

Bitbucket webhooks handle the call made by Bitbucket when a repository is updated. Similar to the
previous triggers, you must specify a secret. The following example is a trigger definition YAML within
the BuildConfig:

The payload URL is returned as the Bitbucket Webhook URL by the oc describe command, and is
structured as follows:

Example output

Procedure

1. To configure a Bitbucket Webhook:

a. Describe the 'BuildConfig' to get the webhook URL:

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/gitlab

$ oc describe bc <name>

$ curl -H "X-GitLab-Event: Push Hook" -H "Content-Type: application/json" -k -X POST --
data-binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/gitlab

type: "Bitbucket"
bitbucket:
 secretReference:
 name: "mysecret"

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/bitbucket

CHAPTER 8. TRIGGERING AND MODIFYING BUILDS

75

https://docs.gitlab.com/ce/user/project/integrations/webhooks.html#webhooks
https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

1

b. Copy the webhook URL, replacing <secret> with your secret value.

c. Follow the Bitbucket setup instructions to paste the webhook URL into your Bitbucket
repository settings.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook with curl:

The -k argument is only necessary if your API server does not have a properly signed certificate.

8.1.1.4. Using generic webhooks

Generic webhooks are invoked from any system capable of making a web request. As with the other
webhooks, you must specify a secret, which is part of the URL that the caller must use to trigger the
build. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The
following is an example trigger definition YAML within the BuildConfig:

Set to true to allow a generic webhook to pass in environment variables.

Procedure

1. To set up the caller, supply the calling system with the URL of the generic webhook endpoint for
your build:

Example output

The caller must invoke the webhook as a POST operation.

2. To invoke the webhook manually you can use curl:

The HTTP verb must be set to POST. The insecure -k flag is specified to ignore certificate
validation. This second flag is not necessary if your cluster has properly signed certificates.

$ oc describe bc <name>

$ curl -H "X-Event-Key: repo:push" -H "Content-Type: application/json" -k -X POST --data-
binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/bitbucket

type: "Generic"
generic:
 secretReference:
 name: "mysecret"
 allowEnv: true 1

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

$ curl -X POST -k
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

OpenShift Container Platform 4.13 Builds

76

https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

1

The endpoint can accept an optional payload with the following format:

Similar to the BuildConfig environment variables, the environment variables defined here
are made available to your build. If these variables collide with the BuildConfig
environment variables, these variables take precedence. By default, environment variables
passed by webhook are ignored. Set the allowEnv field to true on the webhook definition
to enable this behavior.

3. To pass this payload using curl, define it in a file named payload_file.yaml and run:

The arguments are the same as the previous example with the addition of a header and a
payload. The -H argument sets the Content-Type header to application/yaml or
application/json depending on your payload format. The --data-binary argument is used to
send a binary payload with newlines intact with the POST request.

NOTE

OpenShift Container Platform permits builds to be triggered by the generic webhook
even if an invalid request payload is presented, for example, invalid content type,
unparsable or invalid content, and so on. This behavior is maintained for backwards
compatibility. If an invalid request payload is presented, OpenShift Container Platform
returns a warning in JSON format as part of its HTTP 200 OK response.

8.1.1.5. Displaying webhook URLs

You can use the following command to display webhook URLs associated with a build configuration. If
the command does not display any webhook URLs, then no webhook trigger is defined for that build
configuration.

Procedure

To display any webhook URLs associated with a BuildConfig, run:

git:
 uri: "<url to git repository>"
 ref: "<optional git reference>"
 commit: "<commit hash identifying a specific git commit>"
 author:
 name: "<author name>"
 email: "<author e-mail>"
 committer:
 name: "<committer name>"
 email: "<committer e-mail>"
 message: "<commit message>"
env: 1
 - name: "<variable name>"
 value: "<variable value>"

$ curl -H "Content-Type: application/yaml" --data-binary @payload_file.yaml -X POST -k
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

$ oc describe bc <name>

CHAPTER 8. TRIGGERING AND MODIFYING BUILDS

77

1

2

8.1.2. Using image change triggers

As a developer, you can configure your build to run automatically every time a base image changes.

You can use image change triggers to automatically invoke your build when a new version of an
upstream image is available. For example, if a build is based on a RHEL image, you can trigger that build
to run any time the RHEL image changes. As a result, the application image is always running on the
latest RHEL base image.

NOTE

Image streams that point to container images in v1 container registries only trigger a build
once when the image stream tag becomes available and not on subsequent image
updates. This is due to the lack of uniquely identifiable images in v1 container registries.

Procedure

1. Define an ImageStream that points to the upstream image you want to use as a trigger:

This defines the image stream that is tied to a container image repository located at <system-
registry>/<namespace>/ruby-20-centos7. The <system-registry> is defined as a service with
the name docker-registry running in OpenShift Container Platform.

2. If an image stream is the base image for the build, set the from field in the build strategy to
point to the ImageStream:

In this case, the sourceStrategy definition is consuming the latest tag of the image stream
named ruby-20-centos7 located within this namespace.

3. Define a build with one or more triggers that point to ImageStreams:

An image change trigger that monitors the ImageStream and Tag as defined by the build
strategy’s from field. The imageChange object here must be empty.

An image change trigger that monitors an arbitrary image stream. The imageChange part,
in this case, must include a from field that references the ImageStreamTag to monitor.

kind: "ImageStream"
apiVersion: "v1"
metadata:
 name: "ruby-20-centos7"

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"

type: "ImageChange" 1
imageChange: {}
type: "ImageChange" 2
imageChange:
 from:
 kind: "ImageStreamTag"
 name: "custom-image:latest"

OpenShift Container Platform 4.13 Builds

78

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

When using an image change trigger for the strategy image stream, the generated build is supplied with
an immutable docker tag that points to the latest image corresponding to that tag. This new image
reference is used by the strategy when it executes for the build.

For other image change triggers that do not reference the strategy image stream, a new build is started,
but the build strategy is not updated with a unique image reference.

Since this example has an image change trigger for the strategy, the resulting build is:

This ensures that the triggered build uses the new image that was just pushed to the repository, and the
build can be re-run any time with the same inputs.

You can pause an image change trigger to allow multiple changes on the referenced image stream
before a build is started. You can also set the paused attribute to true when initially adding an
ImageChangeTrigger to a BuildConfig to prevent a build from being immediately triggered.

In addition to setting the image field for all Strategy types, for custom builds, the
OPENSHIFT_CUSTOM_BUILD_BASE_IMAGE environment variable is checked. If it does not exist,
then it is created with the immutable image reference. If it does exist, then it is updated with the
immutable image reference.

If a build is triggered due to a webhook trigger or manual request, the build that is created uses the
<immutableid> resolved from the ImageStream referenced by the Strategy. This ensures that builds
are performed using consistent image tags for ease of reproduction.

Additional resources

v1 container registries

8.1.3. Identifying the image change trigger of a build

As a developer, if you have image change triggers, you can identify which image change initiated the last
build. This can be useful for debugging or troubleshooting builds.

Example BuildConfig

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "172.30.17.3:5001/mynamespace/ruby-20-centos7:<immutableid>"

type: "ImageChange"
imageChange:
 from:
 kind: "ImageStreamTag"
 name: "custom-image:latest"
 paused: true

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: bc-ict-example
 namespace: bc-ict-example-namespace
spec:

CHAPTER 8. TRIGGERING AND MODIFYING BUILDS

79

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

NOTE

This example omits elements that are not related to image change triggers.

Prerequisites

You have configured multiple image change triggers. These triggers have triggered one or more
builds.

Procedure

1. In buildConfig.status.imageChangeTriggers to identify the lastTriggerTime that has the
latest timestamp.
This ImageChangeTriggerStatus

Then you use the `name` and `namespace` from that build to find the corresponding image
change trigger in `buildConfig.spec.triggers`.

2. Under imageChangeTriggers, compare timestamps to identify the latest

Image change triggers

...

 triggers:
 - imageChange:
 from:
 kind: ImageStreamTag
 name: input:latest
 namespace: bc-ict-example-namespace
 - imageChange:
 from:
 kind: ImageStreamTag
 name: input2:latest
 namespace: bc-ict-example-namespace
 type: ImageChange
status:
 imageChangeTriggers:
 - from:
 name: input:latest
 namespace: bc-ict-example-namespace
 lastTriggerTime: "2021-06-30T13:47:53Z"
 lastTriggeredImageID: image-registry.openshift-image-registry.svc:5000/bc-ict-example-
namespace/input@sha256:0f88ffbeb9d25525720bfa3524cb1bf0908b7f791057cf1acfae917b11266a69

 - from:
 name: input2:latest
 namespace: bc-ict-example-namespace
 lastTriggeredImageID: image-registry.openshift-image-registry.svc:5000/bc-ict-example-
namespace/input2@sha256:0f88ffbeb9d25525720bfa3524cb2ce0908b7f791057cf1acfae917b11266a6
9

 lastVersion: 1

OpenShift Container Platform 4.13 Builds

80

In your build configuration, buildConfig.spec.triggers is an array of build trigger policies,
BuildTriggerPolicy.

Each BuildTriggerPolicy has a type field and set of pointers fields. Each pointer field corresponds to
one of the allowed values for the type field. As such, you can only set BuildTriggerPolicy to only one
pointer field.

For image change triggers, the value of type is ImageChange. Then, the imageChange field is the
pointer to an ImageChangeTrigger object, which has the following fields:

lastTriggeredImageID: This field, which is not shown in the example, is deprecated in OpenShift
Container Platform 4.8 and will be ignored in a future release. It contains the resolved image
reference for the ImageStreamTag when the last build was triggered from this BuildConfig.

paused: You can use this field, which is not shown in the example, to temporarily disable this
particular image change trigger.

from: You use this field to reference the ImageStreamTag that drives this image change
trigger. Its type is the core Kubernetes type, OwnerReference.

The from field has the following fields of note: kind: For image change triggers, the only supported
value is ImageStreamTag. namespace: You use this field to specify the namespace of the
ImageStreamTag. ** name: You use this field to specify the ImageStreamTag.

Image change trigger status

In your build configuration, buildConfig.status.imageChangeTriggers is an array of
ImageChangeTriggerStatus elements. Each ImageChangeTriggerStatus element includes the from,
lastTriggeredImageID, and lastTriggerTime elements shown in the preceding example.

The ImageChangeTriggerStatus that has the most recent lastTriggerTime triggered the most recent
build. You use its name and namespace to identify the image change trigger in
buildConfig.spec.triggers that triggered the build.

The lastTriggerTime with the most recent timestamp signifies the ImageChangeTriggerStatus of the
last build. This ImageChangeTriggerStatus has the same name and namespace as the image change
trigger in buildConfig.spec.triggers that triggered the build.

Additional resources

v1 container registries

8.1.4. Configuration change triggers

A configuration change trigger allows a build to be automatically invoked as soon as a new BuildConfig
is created.

The following is an example trigger definition YAML within the BuildConfig:

NOTE

Configuration change triggers currently only work when creating a new BuildConfig. In a
future release, configuration change triggers will also be able to launch a build whenever a
BuildConfig is updated.

 type: "ConfigChange"

CHAPTER 8. TRIGGERING AND MODIFYING BUILDS

81

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

8.1.4.1. Setting triggers manually

Triggers can be added to and removed from build configurations with oc set triggers.

Procedure

To set a GitHub webhook trigger on a build configuration, use:

To set an imagechange trigger, use:

To remove a trigger, add --remove:

NOTE

When a webhook trigger already exists, adding it again regenerates the webhook secret.

For more information, consult the help documentation with by running:

8.2. BUILD HOOKS

Build hooks allow behavior to be injected into the build process.

The postCommit field of a BuildConfig object runs commands inside a temporary container that is
running the build output image. The hook is run immediately after the last layer of the image has been
committed and before the image is pushed to a registry.

The current working directory is set to the image’s WORKDIR, which is the default working directory of
the container image. For most images, this is where the source code is located.

The hook fails if the script or command returns a non-zero exit code or if starting the temporary
container fails. When the hook fails it marks the build as failed and the image is not pushed to a registry.
The reason for failing can be inspected by looking at the build logs.

Build hooks can be used to run unit tests to verify the image before the build is marked complete and
the image is made available in a registry. If all tests pass and the test runner returns with exit code 0, the
build is marked successful. In case of any test failure, the build is marked as failed. In all cases, the build
log contains the output of the test runner, which can be used to identify failed tests.

The postCommit hook is not only limited to running tests, but can be used for other commands as well.
Since it runs in a temporary container, changes made by the hook do not persist, meaning that running
the hook cannot affect the final image. This behavior allows for, among other uses, the installation and
usage of test dependencies that are automatically discarded and are not present in the final image.

8.2.1. Configuring post commit build hooks

There are different ways to configure the post build hook. All forms in the following examples are

$ oc set triggers bc <name> --from-github

$ oc set triggers bc <name> --from-image='<image>'

$ oc set triggers bc <name> --from-bitbucket --remove

$ oc set triggers --help

OpenShift Container Platform 4.13 Builds

82

There are different ways to configure the post build hook. All forms in the following examples are
equivalent and run bundle exec rake test --verbose.

Procedure

Shell script:

The script value is a shell script to be run with /bin/sh -ic. Use this when a shell script is
appropriate to execute the build hook. For example, for running unit tests as above. To control
the image entry point, or if the image does not have /bin/sh, use command and/or args.

NOTE

The additional -i flag was introduced to improve the experience working with
CentOS and RHEL images, and may be removed in a future release.

Command as the image entry point:

In this form, command is the command to run, which overrides the image entry point in the exec
form, as documented in the Dockerfile reference. This is needed if the image does not have
/bin/sh, or if you do not want to use a shell. In all other cases, using script might be more
convenient.

Command with arguments:

This form is equivalent to appending the arguments to command.

NOTE

Providing both script and command simultaneously creates an invalid build hook.

8.2.2. Using the CLI to set post commit build hooks

The oc set build-hook command can be used to set the build hook for a build configuration.

Procedure

1. To set a command as the post-commit build hook:

postCommit:
 script: "bundle exec rake test --verbose"

postCommit:
 command: ["/bin/bash", "-c", "bundle exec rake test --verbose"]

postCommit:
 command: ["bundle", "exec", "rake", "test"]
 args: ["--verbose"]

$ oc set build-hook bc/mybc \
 --post-commit \
 --command \
 -- bundle exec rake test --verbose

CHAPTER 8. TRIGGERING AND MODIFYING BUILDS

83

https://docs.docker.com/engine/reference/builder/#entrypoint

2. To set a script as the post-commit build hook:

$ oc set build-hook bc/mybc --post-commit --script="bundle exec rake test --verbose"

OpenShift Container Platform 4.13 Builds

84

1

2

1

CHAPTER 9. PERFORMING ADVANCED BUILDS
The following sections provide instructions for advanced build operations including setting build
resources and maximum duration, assigning builds to nodes, chaining builds, build pruning, and build run
policies.

9.1. SETTING BUILD RESOURCES

By default, builds are completed by pods using unbound resources, such as memory and CPU. These
resources can be limited.

Procedure

You can limit resource use in two ways:

Limit resource use by specifying resource limits in the default container limits of a project.

Limit resource use by specifying resource limits as part of the build configuration. ** In the
following example, each of the resources, cpu, and memory parameters are optional:

cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).

memory is in bytes: 256Mi represents 268435456 bytes (256 * 2 ^ 20).

However, if a quota has been defined for your project, one of the following two items is required:

A resources section set with an explicit requests:

The requests object contains the list of resources that correspond to the list of
resources in the quota.

A limit range defined in your project, where the defaults from the LimitRange object apply
to pods created during the build process.
Otherwise, build pod creation will fail, citing a failure to satisfy quota.

9.2. SETTING MAXIMUM DURATION

When defining a BuildConfig object, you can define its maximum duration by setting the

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 resources:
 limits:
 cpu: "100m" 1
 memory: "256Mi" 2

resources:
 requests: 1
 cpu: "100m"
 memory: "256Mi"

CHAPTER 9. PERFORMING ADVANCED BUILDS

85

1

When defining a BuildConfig object, you can define its maximum duration by setting the
completionDeadlineSeconds field. It is specified in seconds and is not set by default. When not set,
there is no maximum duration enforced.

The maximum duration is counted from the time when a build pod gets scheduled in the system, and
defines how long it can be active, including the time needed to pull the builder image. After reaching the
specified timeout, the build is terminated by OpenShift Container Platform.

Procedure

To set maximum duration, specify completionDeadlineSeconds in your BuildConfig. The
following example shows the part of a BuildConfig specifying completionDeadlineSeconds
field for 30 minutes:

NOTE

This setting is not supported with the Pipeline Strategy option.

9.3. ASSIGNING BUILDS TO SPECIFIC NODES

Builds can be targeted to run on specific nodes by specifying labels in the nodeSelector field of a build
configuration. The nodeSelector value is a set of key-value pairs that are matched to Node labels when
scheduling the build pod.

The nodeSelector value can also be controlled by cluster-wide default and override values. Defaults will
only be applied if the build configuration does not define any key-value pairs for the nodeSelector and
also does not define an explicitly empty map value of nodeSelector:{}. Override values will replace
values in the build configuration on a key by key basis.

NOTE

If the specified NodeSelector cannot be matched to a node with those labels, the build
still stay in the Pending state indefinitely.

Procedure

Assign builds to run on specific nodes by assigning labels in the nodeSelector field of the
BuildConfig, for example:

Builds associated with this build configuration will run only on nodes with the key1=value2
and key2=value2 labels.

spec:
 completionDeadlineSeconds: 1800

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 nodeSelector: 1
 key1: value1
 key2: value2

OpenShift Container Platform 4.13 Builds

86

9.4. CHAINED BUILDS

For compiled languages such as Go, C, C++, and Java, including the dependencies necessary for
compilation in the application image might increase the size of the image or introduce vulnerabilities
that can be exploited.

To avoid these problems, two builds can be chained together. One build that produces the compiled
artifact, and a second build that places that artifact in a separate image that runs the artifact.

In the following example, a source-to-image (S2I) build is combined with a docker build to compile an
artifact that is then placed in a separate runtime image.

NOTE

Although this example chains a S2I build and a docker build, the first build can use any
strategy that produces an image containing the desired artifacts, and the second build
can use any strategy that can consume input content from an image.

The first build takes the application source and produces an image containing a WAR file. The image is
pushed to the artifact-image image stream. The path of the output artifact depends on the assemble
script of the S2I builder used. In this case, it is output to /wildfly/standalone/deployments/ROOT.war.

The second build uses image source with a path to the WAR file inside the output image from the first
build. An inline dockerfile copies that WAR file into a runtime image.

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: artifact-build
spec:
 output:
 to:
 kind: ImageStreamTag
 name: artifact-image:latest
 source:
 git:
 uri: https://github.com/openshift/openshift-jee-sample.git
 ref: "master"
 strategy:
 sourceStrategy:
 from:
 kind: ImageStreamTag
 name: wildfly:10.1
 namespace: openshift

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: image-build
spec:
 output:
 to:
 kind: ImageStreamTag
 name: image-build:latest
 source:

CHAPTER 9. PERFORMING ADVANCED BUILDS

87

1

2

3

1

2

from specifies that the docker build should include the output of the image from the artifact-
image image stream, which was the target of the previous build.

paths specifies which paths from the target image to include in the current docker build.

The runtime image is used as the source image for the docker build.

The result of this setup is that the output image of the second build does not have to contain any of the
build tools that are needed to create the WAR file. Also, because the second build contains an image
change trigger, whenever the first build is run and produces a new image with the binary artifact, the
second build is automatically triggered to produce a runtime image that contains that artifact.
Therefore, both builds behave as a single build with two stages.

9.5. PRUNING BUILDS

By default, builds that have completed their lifecycle are persisted indefinitely. You can limit the number
of previous builds that are retained.

Procedure

1. Limit the number of previous builds that are retained by supplying a positive integer value for
successfulBuildsHistoryLimit or failedBuildsHistoryLimit in your BuildConfig, for example:

successfulBuildsHistoryLimit will retain up to two builds with a status of completed.

failedBuildsHistoryLimit will retain up to two builds with a status of failed, canceled, or
error.

 dockerfile: |-
 FROM jee-runtime:latest
 COPY ROOT.war /deployments/ROOT.war
 images:
 - from: 1
 kind: ImageStreamTag
 name: artifact-image:latest
 paths: 2
 - sourcePath: /wildfly/standalone/deployments/ROOT.war
 destinationDir: "."
 strategy:
 dockerStrategy:
 from: 3
 kind: ImageStreamTag
 name: jee-runtime:latest
 triggers:
 - imageChange: {}
 type: ImageChange

apiVersion: "v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 successfulBuildsHistoryLimit: 2 1
 failedBuildsHistoryLimit: 2 2

OpenShift Container Platform 4.13 Builds

88

2. Trigger build pruning by one of the following actions:

Updating a build configuration.

Waiting for a build to complete its lifecycle.

Builds are sorted by their creation timestamp with the oldest builds being pruned first.

NOTE

Administrators can manually prune builds using the 'oc adm' object pruning command.

9.6. BUILD RUN POLICY

The build run policy describes the order in which the builds created from the build configuration should
run. This can be done by changing the value of the runPolicy field in the spec section of the Build
specification.

It is also possible to change the runPolicy value for existing build configurations, by:

Changing Parallel to Serial or SerialLatestOnly and triggering a new build from this
configuration causes the new build to wait until all parallel builds complete as the serial build can
only run alone.

Changing Serial to SerialLatestOnly and triggering a new build causes cancellation of all
existing builds in queue, except the currently running build and the most recently created build.
The newest build runs next.

CHAPTER 9. PERFORMING ADVANCED BUILDS

89

CHAPTER 10. USING RED HAT SUBSCRIPTIONS IN BUILDS
Use the following sections to run entitled builds on OpenShift Container Platform.

10.1. CREATING AN IMAGE STREAM TAG FOR THE RED HAT
UNIVERSAL BASE IMAGE

To use Red Hat subscriptions within a build, you create an image stream tag to reference the Universal
Base Image (UBI).

To make the UBI available in every project in the cluster, you add the image stream tag to the
openshift namespace. Otherwise, to make it available in a specific project, you add the image stream
tag to that project.

The benefit of using image stream tags this way is that doing so grants access to the UBI based on the
registry.redhat.io credentials in the install pull secret without exposing the pull secret to other users.
This is more convenient than requiring each developer to install pull secrets with registry.redhat.io
credentials in each project.

Procedure

To create an ImageStreamTag in the openshift namespace, so it is available to developers in all
projects, enter:

TIP

You can alternatively apply the following YAML to create an ImageStreamTag in the openshift
namespace:

To create an ImageStreamTag in a single project, enter:

TIP

$ oc tag --source=docker registry.redhat.io/ubi9/ubi:latest ubi:latest -n openshift

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
 name: ubi
 namespace: openshift
spec:
 tags:
 - from:
 kind: DockerImage
 name: registry.redhat.io/ubi9/ubi:latest
 name: latest
 referencePolicy:
 type: Source

$ oc tag --source=docker registry.redhat.io/ubi9/ubi:latest ubi:latest

OpenShift Container Platform 4.13 Builds

90

TIP

You can alternatively apply the following YAML to create an ImageStreamTag in a single
project:

10.2. ADDING SUBSCRIPTION ENTITLEMENTS AS A BUILD SECRET

Builds that use Red Hat subscriptions to install content must include the entitlement keys as a build
secret.

Prerequisites

You must have access to Red Hat entitlements through your subscription. The entitlement secret is
automatically created by the Insights Operator.

TIP

When you perform an Entitlement Build using Red Hat Enterprise Linux (RHEL) 7, you must have the
following instructions in your Dockerfile before you run any yum commands:

Procedure

1. Add the etc-pki-entitlement secret as a build volume in the build configuration’s Docker
strategy:

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
 name: ubi
spec:
 tags:
 - from:
 kind: DockerImage
 name: registry.redhat.io/ubi9/ubi:latest
 name: latest
 referencePolicy:
 type: Source

RUN rm /etc/rhsm-host

strategy:
 dockerStrategy:
 from:
 kind: ImageStreamTag
 name: ubi:latest
 volumes:
 - name: etc-pki-entitlement
 mounts:
 - destinationPath: /etc/pki/entitlement
 source:
 type: Secret
 secret:
 secretName: etc-pki-entitlement

CHAPTER 10. USING RED HAT SUBSCRIPTIONS IN BUILDS

91

10.3. RUNNING BUILDS WITH SUBSCRIPTION MANAGER

10.3.1. Docker builds using Subscription Manager

Docker strategy builds can use the Subscription Manager to install subscription content.

Prerequisites

The entitlement keys must be added as build strategy volumes.

Procedure

Use the following as an example Dockerfile to install content with the Subscription Manager:

10.4. RUNNING BUILDS WITH RED HAT SATELLITE SUBSCRIPTIONS

10.4.1. Adding Red Hat Satellite configurations to builds

Builds that use Red Hat Satellite to install content must provide appropriate configurations to obtain
content from Satellite repositories.

Prerequisites

You must provide or create a yum-compatible repository configuration file that downloads
content from your Satellite instance.

Sample repository configuration

Procedure

1. Create a ConfigMap containing the Satellite repository configuration file:

2. Add the Satellite repository configuration and entitlement key as a build volumes:

FROM registry.redhat.io/ubi9/ubi:latest
RUN dnf search kernel-devel --showduplicates && \
 dnf install -y kernel-devel

[test-<name>]
name=test-<number>
baseurl = https://satellite.../content/dist/rhel/server/7/7Server/x86_64/os
enabled=1
gpgcheck=0
sslverify=0
sslclientkey = /etc/pki/entitlement/...-key.pem
sslclientcert = /etc/pki/entitlement/....pem

$ oc create configmap yum-repos-d --from-file /path/to/satellite.repo

strategy:
 dockerStrategy:
 from:
 kind: ImageStreamTag

OpenShift Container Platform 4.13 Builds

92

10.4.2. Docker builds using Red Hat Satellite subscriptions

Docker strategy builds can use Red Hat Satellite repositories to install subscription content.

Prerequisites

You have added the entitlement keys and Satellite repository configurations as build volumes.

Procedure

Use the following as an example Dockerfile to install content with Satellite:

Additional resources

How to use builds with Red Hat Satellite subscriptions and which certificate to use

10.5. RUNNING ENTITLED BUILDS USING SHAREDSECRET OBJECTS

You can configure and perform a build in one namespace that securely uses RHEL entitlements from a
Secret object in another namespace.

You can still access RHEL entitlements from OpenShift Builds by creating a Secret object with your
subscription credentials in the same namespace as your Build object. However, now, in OpenShift
Container Platform 4.10 and later, you can access your credentials and certificates from a Secret object
in one of the OpenShift Container Platform system namespaces. You run entitled builds with a CSI
volume mount of a SharedSecret custom resource (CR) instance that references the Secret object.

This procedure relies on the newly introduced Shared Resources CSI Driver feature, which you can use
to declare CSI Volume mounts in OpenShift Container Platform Builds. It also relies on the OpenShift
Container Platform Insights Operator.

IMPORTANT

 name: ubi:latest
 volumes:
 - name: yum-repos-d
 mounts:
 - destinationPath: /etc/yum.repos.d
 source:
 type: ConfigMap
 configMap:
 name: yum-repos-d
 - name: etc-pki-entitlement
 mounts:
 - destinationPath: /etc/pki/entitlement
 source:
 type: Secret
 secret:
 secretName: etc-pki-entitlement

FROM registry.redhat.io/ubi9/ubi:latest
RUN dnf search kernel-devel --showduplicates && \
 dnf install -y kernel-devel

CHAPTER 10. USING RED HAT SUBSCRIPTIONS IN BUILDS

93

https://access.redhat.com/solutions/5847331

IMPORTANT

The Shared Resources CSI Driver and The Build CSI Volumes are both Technology
Preview features, which are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Shared Resources CSI Driver and the Build CSI Volumes features also belong to the
TechPreviewNoUpgrade feature set, which is a subset of the current Technology
Preview features. You can enable the TechPreviewNoUpgrade feature set on test
clusters, where you can fully test them while leaving the features disabled on production
clusters. Enabling this feature set cannot be undone and prevents minor version updates.
This feature set is not recommended on production clusters. See "Enabling Technology
Preview features using feature gates" in the following "Additional resources" section.

Prerequisites

You have enabled the TechPreviewNoUpgrade feature set by using the feature gates.

You have a SharedSecret custom resource (CR) instance that references the Secret object
where the Insights Operator stores the subscription credentials.

You must have permission to perform the following actions:

Create build configs and start builds.

Discover which SharedSecret CR instances are available by entering the oc get
sharedsecrets command and getting a non-empty list back.

Determine if the builder service account available to you in your namespace is allowed to
use the given SharedSecret CR instance. In other words, you can run oc adm policy who-
can use <identifier of specific SharedSecret> to see if the builder service account in your
namespace is listed.

NOTE

If neither of the last two prerequisites in this list are met, establish, or ask someone to
establish, the necessary role-based access control (RBAC) so that you can discover
SharedSecret CR instances and enable service accounts to use SharedSecret CR
instances.

Procedure

1. Grant the builder service account RBAC permissions to use the SharedSecret CR instance by
using oc apply with YAML content:

NOTE

Currently, kubectl and oc have hard-coded special case logic restricting the use
verb to roles centered around pod security. Therefore, you cannot use oc create
role … to create the role needed for consuming SharedSecret CR instances.

OpenShift Container Platform 4.13 Builds

94

https://access.redhat.com/support/offerings/techpreview/

Example oc apply -f command with YAML Role object definition

2. Create the RoleBinding associated with the role by using the oc command:

Example oc create rolebinding command

3. Create a BuildConfig object that accesses the RHEL entitlements.

Example YAML BuildConfig object definition

$ oc apply -f - <<EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: shared-resource-my-share
 namespace: my-namespace
rules:
 - apiGroups:
 - sharedresource.openshift.io
 resources:
 - sharedsecrets
 resourceNames:
 - my-share
 verbs:
 - use
EOF

$ oc create rolebinding shared-resource-my-share --role=shared-resource-my-share --
serviceaccount=my-namespace:builder

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: my-csi-bc
 namespace: my-csi-app-namespace
spec:
 runPolicy: Serial
 source:
 dockerfile: |
 FROM registry.redhat.io/ubi9/ubi:latest
 RUN ls -la /etc/pki/entitlement
 RUN rm /etc/rhsm-host
 RUN yum repolist --disablerepo=*
 RUN subscription-manager repos --enable rhocp-4.9-for-rhel-8-x86_64-rpms
 RUN yum -y update
 RUN yum install -y openshift-clients.x86_64
 strategy:
 type: Docker
 dockerStrategy:
 volumes:
 - mounts:
 - destinationPath: "/etc/pki/entitlement"
 name: my-csi-shared-secret
 source:

CHAPTER 10. USING RED HAT SUBSCRIPTIONS IN BUILDS

95

4. Start a build from the BuildConfig object and follow the logs with the oc command.

Example oc start-build command

Example 10.1. Example output from the oc start-build command

NOTE

Some sections of the following output have been replaced with …

 csi:
 driver: csi.sharedresource.openshift.io
 readOnly: true
 volumeAttributes:
 sharedSecret: my-share-bc
 type: CSI

$ oc start-build my-csi-bc -F

build.build.openshift.io/my-csi-bc-1 started
Caching blobs under "/var/cache/blobs".

Pulling image registry.redhat.io/ubi9/ubi:latest ...
Trying to pull registry.redhat.io/ubi9/ubi:latest...
Getting image source signatures
Copying blob
sha256:5dcbdc60ea6b60326f98e2b49d6ebcb7771df4b70c6297ddf2d7dede6692df6e
Copying blob
sha256:8671113e1c57d3106acaef2383f9bbfe1c45a26eacb03ec82786a494e15956c3
Copying config
sha256:b81e86a2cb9a001916dc4697d7ed4777a60f757f0b8dcc2c4d8df42f2f7edb3a
Writing manifest to image destination
Storing signatures
Adding transient rw bind mount for /run/secrets/rhsm
STEP 1/9: FROM registry.redhat.io/ubi9/ubi:latest
STEP 2/9: RUN ls -la /etc/pki/entitlement
total 360
drwxrwxrwt. 2 root root 80 Feb 3 20:28 .
drwxr-xr-x. 10 root root 154 Jan 27 15:53 ..
-rw-r--r--. 1 root root 3243 Feb 3 20:28 entitlement-key.pem
-rw-r--r--. 1 root root 362540 Feb 3 20:28 entitlement.pem
time="2022-02-03T20:28:32Z" level=warning msg="Adding metacopy option, configured
globally"
--> 1ef7c6d8c1a
STEP 3/9: RUN rm /etc/rhsm-host
time="2022-02-03T20:28:33Z" level=warning msg="Adding metacopy option, configured
globally"
--> b1c61f88b39
STEP 4/9: RUN yum repolist --disablerepo=*
Updating Subscription Management repositories.

...

OpenShift Container Platform 4.13 Builds

96

10.6. ADDITIONAL RESOURCES

Importing simple content access certificates with Insights Operator

--> b067f1d63eb
STEP 5/9: RUN subscription-manager repos --enable rhocp-4.9-for-rhel-8-x86_64-rpms
Repository 'rhocp-4.9-for-rhel-8-x86_64-rpms' is enabled for this system.
time="2022-02-03T20:28:40Z" level=warning msg="Adding metacopy option, configured
globally"
--> 03927607ebd
STEP 6/9: RUN yum -y update
Updating Subscription Management repositories.

...

Upgraded:
 systemd-239-51.el8_5.3.x86_64 systemd-libs-239-51.el8_5.3.x86_64
 systemd-pam-239-51.el8_5.3.x86_64
Installed:
 diffutils-3.6-6.el8.x86_64 libxkbcommon-0.9.1-1.el8.x86_64
 xkeyboard-config-2.28-1.el8.noarch

Complete!
time="2022-02-03T20:29:05Z" level=warning msg="Adding metacopy option, configured
globally"
--> db57e92ff63
STEP 7/9: RUN yum install -y openshift-clients.x86_64
Updating Subscription Management repositories.

...

Installed:
 bash-completion-1:2.7-5.el8.noarch
 libpkgconf-1.4.2-1.el8.x86_64
 openshift-clients-4.9.0-202201211735.p0.g3f16530.assembly.stream.el8.x86_64
 pkgconf-1.4.2-1.el8.x86_64
 pkgconf-m4-1.4.2-1.el8.noarch
 pkgconf-pkg-config-1.4.2-1.el8.x86_64

Complete!
time="2022-02-03T20:29:19Z" level=warning msg="Adding metacopy option, configured
globally"
--> 609507b059e
STEP 8/9: ENV "OPENSHIFT_BUILD_NAME"="my-csi-bc-1"
"OPENSHIFT_BUILD_NAMESPACE"="my-csi-app-namespace"
--> cab2da3efc4
STEP 9/9: LABEL "io.openshift.build.name"="my-csi-bc-1"
"io.openshift.build.namespace"="my-csi-app-namespace"
COMMIT temp.builder.openshift.io/my-csi-app-namespace/my-csi-bc-1:edfe12ca
--> 821b582320b
Successfully tagged temp.builder.openshift.io/my-csi-app-namespace/my-csi-bc-
1:edfe12ca
821b582320b41f1d7bab4001395133f86fa9cc99cc0b2b64c5a53f2b6750db91
Build complete, no image push requested

CHAPTER 10. USING RED HAT SUBSCRIPTIONS IN BUILDS

97

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/support/#insights-operator-simple-access

Enabling features using feature gates

Managing image streams

build strategy

OpenShift Container Platform 4.13 Builds

98

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/nodes/#nodes-cluster-enabling
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/images/#image-streams-managing

CHAPTER 11. SECURING BUILDS BY STRATEGY
Builds in OpenShift Container Platform are run in privileged containers. Depending on the build strategy
used, if you have privileges, you can run builds to escalate their permissions on the cluster and host
nodes. And as a security measure, it limits who can run builds and the strategy that is used for those
builds. Custom builds are inherently less safe than source builds, because they can execute any code
within a privileged container, and are disabled by default. Grant docker build permissions with caution,
because a vulnerability in the Dockerfile processing logic could result in a privileges being granted on the
host node.

By default, all users that can create builds are granted permission to use the docker and Source-to-
image (S2I) build strategies. Users with cluster administrator privileges can enable the custom build
strategy, as referenced in the restricting build strategies to a user globally section.

You can control who can build and which build strategies they can use by using an authorization policy.
Each build strategy has a corresponding build subresource. A user must have permission to create a build
and permission to create on the build strategy subresource to create builds using that strategy. Default
roles are provided that grant the create permission on the build strategy subresource.

Table 11.1. Build Strategy Subresources and Roles

Strategy Subresource Role

Docker builds/docker system:build-strategy-docker

Source-to-Image builds/source system:build-strategy-source

Custom builds/custom system:build-strategy-custom

JenkinsPipeline builds/jenkinspipeline system:build-strategy-
jenkinspipeline

11.1. DISABLING ACCESS TO A BUILD STRATEGY GLOBALLY

To prevent access to a particular build strategy globally, log in as a user with cluster administrator
privileges, remove the corresponding role from the system:authenticated group, and apply the
annotation rbac.authorization.kubernetes.io/autoupdate: "false" to protect them from changes
between the API restarts. The following example shows disabling the docker build strategy.

Procedure

1. Apply the rbac.authorization.kubernetes.io/autoupdate annotation:

Example output

$ oc edit clusterrolebinding system:build-strategy-docker-binding

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "false" 1

CHAPTER 11. SECURING BUILDS BY STRATEGY

99

1 Change the rbac.authorization.kubernetes.io/autoupdate annotation’s value to "false".

2. Remove the role:

3. Ensure the build strategy subresources are also removed from these roles:

4. For each role, specify the subresources that correspond to the resource of the strategy to
disable.

a. Disable the docker Build Strategy for admin:

 creationTimestamp: 2018-08-10T01:24:14Z
 name: system:build-strategy-docker-binding
 resourceVersion: "225"
 selfLink: /apis/rbac.authorization.k8s.io/v1/clusterrolebindings/system%3Abuild-strategy-
docker-binding
 uid: 17b1f3d4-9c3c-11e8-be62-0800277d20bf
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: system:build-strategy-docker
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: system:authenticated

$ oc adm policy remove-cluster-role-from-group system:build-strategy-docker
system:authenticated

$ oc edit clusterrole admin

$ oc edit clusterrole edit

kind: ClusterRole
metadata:
 name: admin
...
- apiGroups:
 - ""
 - build.openshift.io
 resources:
 - buildconfigs
 - buildconfigs/webhooks
 - builds/custom 1
 - builds/source
 verbs:
 - create
 - delete
 - deletecollection
 - get
 - list
 - patch

OpenShift Container Platform 4.13 Builds

100

1 Add builds/custom and builds/source to disable docker builds globally for users with
the admin role.

11.2. RESTRICTING BUILD STRATEGIES TO USERS GLOBALLY

You can allow a set of specific users to create builds with a particular strategy.

Prerequisites

Disable global access to the build strategy.

Procedure

Assign the role that corresponds to the build strategy to a specific user. For example, to add the
system:build-strategy-docker cluster role to the user devuser:

WARNING

Granting a user access at the cluster level to the builds/docker
subresource means that the user can create builds with the docker strategy
in any project in which they can create builds.

11.3. RESTRICTING BUILD STRATEGIES TO A USER WITHIN A PROJECT

Similar to granting the build strategy role to a user globally, you can allow a set of specific users within a
project to create builds with a particular strategy.

Prerequisites

Disable global access to the build strategy.

Procedure

Assign the role that corresponds to the build strategy to a specific user within a project. For
example, to add the system:build-strategy-docker role within the project devproject to the
user devuser:

 - update
 - watch
...

$ oc adm policy add-cluster-role-to-user system:build-strategy-docker devuser

$ oc adm policy add-role-to-user system:build-strategy-docker devuser -n devproject

CHAPTER 11. SECURING BUILDS BY STRATEGY

101

CHAPTER 12. BUILD CONFIGURATION RESOURCES
Use the following procedure to configure build settings.

12.1. BUILD CONTROLLER CONFIGURATION PARAMETERS

The build.config.openshift.io/cluster resource offers the following configuration parameters.

Parameter Description

Build Holds cluster-wide information on how to handle builds. The canonical, and
only valid name is cluster.

spec: Holds user-settable values for the build controller configuration.

buildDefaults Controls the default information for builds.

defaultProxy: Contains the default proxy settings for all build operations,
including image pull or push and source download.

You can override values by setting the HTTP_PROXY, HTTPS_PROXY, and
NO_PROXY environment variables in the BuildConfig strategy.

gitProxy: Contains the proxy settings for Git operations only. If set, this
overrides any proxy settings for all Git commands, such as git clone.

Values that are not set here are inherited from DefaultProxy.

env: A set of default environment variables that are applied to the build if the
specified variables do not exist on the build.

imageLabels: A list of labels that are applied to the resulting image. You can
override a default label by providing a label with the same name in the
BuildConfig.

resources: Defines resource requirements to execute the build.

ImageLabel name: Defines the name of the label. It must have non-zero length.

buildOverrides Controls override settings for builds.

imageLabels: A list of labels that are applied to the resulting image. If you
provided a label in the BuildConfig with the same name as one in this table,
your label will be overwritten.

nodeSelector: A selector which must be true for the build pod to fit on a
node.

tolerations: A list of tolerations that overrides any existing tolerations set on a
build pod.

BuildList items: Standard object’s metadata.

OpenShift Container Platform 4.13 Builds

102

12.2. CONFIGURING BUILD SETTINGS

You can configure build settings by editing the build.config.openshift.io/cluster resource.

Procedure

Edit the build.config.openshift.io/cluster resource:

The following is an example build.config.openshift.io/cluster resource:

$ oc edit build.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Build 1
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: "2019-05-17T13:44:26Z"
 generation: 2
 name: cluster
 resourceVersion: "107233"
 selfLink: /apis/config.openshift.io/v1/builds/cluster
 uid: e2e9cc14-78a9-11e9-b92b-06d6c7da38dc
spec:
 buildDefaults: 2
 defaultProxy: 3
 httpProxy: http://proxy.com
 httpsProxy: https://proxy.com
 noProxy: internal.com
 env: 4
 - name: envkey
 value: envvalue
 gitProxy: 5
 httpProxy: http://gitproxy.com
 httpsProxy: https://gitproxy.com
 noProxy: internalgit.com
 imageLabels: 6
 - name: labelkey
 value: labelvalue
 resources: 7
 limits:
 cpu: 100m
 memory: 50Mi
 requests:
 cpu: 10m
 memory: 10Mi
 buildOverrides: 8
 imageLabels: 9
 - name: labelkey
 value: labelvalue
 nodeSelector: 10
 selectorkey: selectorvalue
 tolerations: 11

CHAPTER 12. BUILD CONFIGURATION RESOURCES

103

1

2

3

4

5

6

7

8

9

10

11

Build: Holds cluster-wide information on how to handle builds. The canonical, and only
valid name is cluster.

buildDefaults: Controls the default information for builds.

defaultProxy: Contains the default proxy settings for all build operations, including image
pull or push and source download.

env: A set of default environment variables that are applied to the build if the specified
variables do not exist on the build.

gitProxy: Contains the proxy settings for Git operations only. If set, this overrides any
Proxy settings for all Git commands, such as git clone.

imageLabels: A list of labels that are applied to the resulting image. You can override a
default label by providing a label with the same name in the BuildConfig.

resources: Defines resource requirements to execute the build.

buildOverrides: Controls override settings for builds.

imageLabels: A list of labels that are applied to the resulting image. If you provided a label
in the BuildConfig with the same name as one in this table, your label will be overwritten.

nodeSelector: A selector which must be true for the build pod to fit on a node.

tolerations: A list of tolerations that overrides any existing tolerations set on a build pod.

 - effect: NoSchedule
 key: node-role.kubernetes.io/builds
operator: Exists

OpenShift Container Platform 4.13 Builds

104

CHAPTER 13. TROUBLESHOOTING BUILDS
Use the following to troubleshoot build issues.

13.1. RESOLVING DENIAL FOR ACCESS TO RESOURCES

If your request for access to resources is denied:

Issue

A build fails with:

Resolution

You have exceeded one of the image quotas set on your project. Check your current quota and
verify the limits applied and storage in use:

13.2. SERVICE CERTIFICATE GENERATION FAILURE

If your request for access to resources is denied:

Issue

If a service certificate generation fails with (service’s service.beta.openshift.io/serving-cert-
generation-error annotation contains):

Example output

Resolution

The service that generated the certificate no longer exists, or has a different serviceUID. You must
force certificates regeneration by removing the old secret, and clearing the following annotations on
the service: service.beta.openshift.io/serving-cert-generation-error and
service.beta.openshift.io/serving-cert-generation-error-num:

NOTE

The command removing annotation has a - after the annotation name to be removed.

requested access to the resource is denied

$ oc describe quota

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not
match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

$ oc delete secret <secret_name>

$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-

$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-num-

CHAPTER 13. TROUBLESHOOTING BUILDS

105

CHAPTER 14. SETTING UP ADDITIONAL TRUSTED
CERTIFICATE AUTHORITIES FOR BUILDS

Use the following sections to set up additional certificate authorities (CA) to be trusted by builds when
pulling images from an image registry.

The procedure requires a cluster administrator to create a ConfigMap and add additional CAs as keys in
the ConfigMap.

The ConfigMap must be created in the openshift-config namespace.

domain is the key in the ConfigMap and value is the PEM-encoded certificate.

Each CA must be associated with a domain. The domain format is hostname[..port].

The ConfigMap name must be set in the image.config.openshift.io/cluster cluster scoped
configuration resource’s spec.additionalTrustedCA field.

14.1. ADDING CERTIFICATE AUTHORITIES TO THE CLUSTER

You can add certificate authorities (CA) to the cluster for use when pushing and pulling images with the
following procedure.

Prerequisites

You must have access to the public certificates of the registry, usually a hostname/ca.crt file
located in the /etc/docker/certs.d/ directory.

Procedure

1. Create a ConfigMap in the openshift-config namespace containing the trusted certificates for
the registries that use self-signed certificates. For each CA file, ensure the key in the
ConfigMap is the hostname of the registry in the hostname[..port] format:

2. Update the cluster image configuration:

14.2. ADDITIONAL RESOURCES

Create a ConfigMap

Secrets and ConfigMaps

Configuring a custom PKI

$ oc create configmap registry-cas -n openshift-config \
--from-file=myregistry.corp.com..5000=/etc/docker/certs.d/myregistry.corp.com:5000/ca.crt \
--from-file=otherregistry.com=/etc/docker/certs.d/otherregistry.com/ca.crt

$ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":
{"name":"registry-cas"}}}' --type=merge

OpenShift Container Platform 4.13 Builds

106

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#create-a-configmap
https://kubectl.docs.kubernetes.io/guides/config_management/secrets_configmaps/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/networking/#configuring-a-custom-pki

CHAPTER 14. SETTING UP ADDITIONAL TRUSTED CERTIFICATE AUTHORITIES FOR BUILDS

107

	Table of Contents
	CHAPTER 1. UNDERSTANDING IMAGE BUILDS
	1.1. BUILDS
	1.1.1. Docker build
	1.1.2. Source-to-image build
	1.1.3. Custom build
	1.1.4. Pipeline build

	CHAPTER 2. UNDERSTANDING BUILD CONFIGURATIONS
	2.1. BUILDCONFIGS

	CHAPTER 3. CREATING BUILD INPUTS
	3.1. BUILD INPUTS
	3.2. DOCKERFILE SOURCE
	3.3. IMAGE SOURCE
	3.4. GIT SOURCE
	3.4.1. Using a proxy
	3.4.2. Source Clone Secrets
	3.4.2.1. Automatically adding a source clone secret to a build configuration
	3.4.2.2. Manually adding a source clone secret
	3.4.2.3. Creating a secret from a .gitconfig file
	3.4.2.4. Creating a secret from a .gitconfig file for secured Git
	3.4.2.5. Creating a secret from source code basic authentication
	3.4.2.6. Creating a secret from source code SSH key authentication
	3.4.2.7. Creating a secret from source code trusted certificate authorities
	3.4.2.8. Source secret combinations

	3.5. BINARY (LOCAL) SOURCE
	3.6. INPUT SECRETS AND CONFIG MAPS
	3.6.1. What is a secret?
	3.6.1.1. Properties of secrets
	3.6.1.2. Types of Secrets
	3.6.1.3. Updates to secrets

	3.6.2. Creating secrets
	3.6.3. Using secrets
	3.6.4. Adding input secrets and config maps
	3.6.5. Source-to-image strategy
	3.6.6. Docker strategy
	3.6.7. Custom strategy

	3.7. EXTERNAL ARTIFACTS
	3.8. USING DOCKER CREDENTIALS FOR PRIVATE REGISTRIES
	3.9. BUILD ENVIRONMENTS
	3.9.1. Using build fields as environment variables
	3.9.2. Using secrets as environment variables

	3.10. SERVICE SERVING CERTIFICATE SECRETS
	3.11. SECRETS RESTRICTIONS

	CHAPTER 4. MANAGING BUILD OUTPUT
	4.1. BUILD OUTPUT
	4.2. OUTPUT IMAGE ENVIRONMENT VARIABLES
	4.3. OUTPUT IMAGE LABELS

	CHAPTER 5. USING BUILD STRATEGIES
	5.1. DOCKER BUILD
	5.1.1. Replacing Dockerfile FROM image
	5.1.2. Using Dockerfile path
	5.1.3. Using docker environment variables
	5.1.4. Adding docker build arguments
	5.1.5. Squashing layers with docker builds
	5.1.6. Using build volumes

	5.2. SOURCE-TO-IMAGE BUILD
	5.2.1. Performing source-to-image incremental builds
	5.2.2. Overriding source-to-image builder image scripts
	5.2.3. Source-to-image environment variables
	5.2.3.1. Using source-to-image environment files
	5.2.3.2. Using source-to-image build configuration environment

	5.2.4. Ignoring source-to-image source files
	5.2.5. Creating images from source code with source-to-image
	5.2.5.1. Understanding the source-to-image build process
	5.2.5.2. How to write source-to-image scripts

	5.2.6. Using build volumes

	5.3. CUSTOM BUILD
	5.3.1. Using FROM image for custom builds
	5.3.2. Using secrets in custom builds
	5.3.3. Using environment variables for custom builds
	5.3.4. Using custom builder images
	5.3.4.1. Custom builder image
	5.3.4.2. Custom builder workflow

	5.4. PIPELINE BUILD
	5.4.1. Understanding OpenShift Container Platform pipelines
	5.4.2. Providing the Jenkins file for pipeline builds
	5.4.3. Using environment variables for pipeline builds
	5.4.3.1. Mapping between BuildConfig environment variables and Jenkins job parameters

	5.4.4. Pipeline build tutorial

	5.5. ADDING SECRETS WITH WEB CONSOLE
	5.6. ENABLING PULLING AND PUSHING

	CHAPTER 6. CUSTOM IMAGE BUILDS WITH BUILDAH
	6.1. PREREQUISITES
	6.2. CREATING CUSTOM BUILD ARTIFACTS
	6.3. BUILD CUSTOM BUILDER IMAGE
	6.4. USE CUSTOM BUILDER IMAGE

	CHAPTER 7. PERFORMING AND CONFIGURING BASIC BUILDS
	7.1. STARTING A BUILD
	7.1.1. Re-running a build
	7.1.2. Streaming build logs
	7.1.3. Setting environment variables when starting a build
	7.1.4. Starting a build with source

	7.2. CANCELING A BUILD
	7.2.1. Canceling multiple builds
	7.2.2. Canceling all builds
	7.2.3. Canceling all builds in a given state

	7.3. EDITING A BUILDCONFIG
	7.4. DELETING A BUILDCONFIG
	7.5. VIEWING BUILD DETAILS
	7.6. ACCESSING BUILD LOGS
	7.6.1. Accessing BuildConfig logs
	7.6.2. Accessing BuildConfig logs for a given version build
	7.6.3. Enabling log verbosity

	CHAPTER 8. TRIGGERING AND MODIFYING BUILDS
	8.1. BUILD TRIGGERS
	8.1.1. Webhook triggers
	8.1.1.1. Using GitHub webhooks
	8.1.1.2. Using GitLab webhooks
	8.1.1.3. Using Bitbucket webhooks
	8.1.1.4. Using generic webhooks
	8.1.1.5. Displaying webhook URLs

	8.1.2. Using image change triggers
	8.1.3. Identifying the image change trigger of a build
	8.1.4. Configuration change triggers
	8.1.4.1. Setting triggers manually

	8.2. BUILD HOOKS
	8.2.1. Configuring post commit build hooks
	8.2.2. Using the CLI to set post commit build hooks

	CHAPTER 9. PERFORMING ADVANCED BUILDS
	9.1. SETTING BUILD RESOURCES
	9.2. SETTING MAXIMUM DURATION
	9.3. ASSIGNING BUILDS TO SPECIFIC NODES
	9.4. CHAINED BUILDS
	9.5. PRUNING BUILDS
	9.6. BUILD RUN POLICY

	CHAPTER 10. USING RED HAT SUBSCRIPTIONS IN BUILDS
	10.1. CREATING AN IMAGE STREAM TAG FOR THE RED HAT UNIVERSAL BASE IMAGE
	10.2. ADDING SUBSCRIPTION ENTITLEMENTS AS A BUILD SECRET
	10.3. RUNNING BUILDS WITH SUBSCRIPTION MANAGER
	10.3.1. Docker builds using Subscription Manager

	10.4. RUNNING BUILDS WITH RED HAT SATELLITE SUBSCRIPTIONS
	10.4.1. Adding Red Hat Satellite configurations to builds
	10.4.2. Docker builds using Red Hat Satellite subscriptions

	10.5. RUNNING ENTITLED BUILDS USING SHAREDSECRET OBJECTS
	10.6. ADDITIONAL RESOURCES

	CHAPTER 11. SECURING BUILDS BY STRATEGY
	11.1. DISABLING ACCESS TO A BUILD STRATEGY GLOBALLY
	11.2. RESTRICTING BUILD STRATEGIES TO USERS GLOBALLY
	11.3. RESTRICTING BUILD STRATEGIES TO A USER WITHIN A PROJECT

	CHAPTER 12. BUILD CONFIGURATION RESOURCES
	12.1. BUILD CONTROLLER CONFIGURATION PARAMETERS
	12.2. CONFIGURING BUILD SETTINGS

	CHAPTER 13. TROUBLESHOOTING BUILDS
	13.1. RESOLVING DENIAL FOR ACCESS TO RESOURCES
	13.2. SERVICE CERTIFICATE GENERATION FAILURE

	CHAPTER 14. SETTING UP ADDITIONAL TRUSTED CERTIFICATE AUTHORITIES FOR BUILDS
	14.1. ADDING CERTIFICATE AUTHORITIES TO THE CLUSTER
	14.2. ADDITIONAL RESOURCES

