
OpenShift Container Platform 3.9

Upgrading Clusters

OpenShift Container Platform 3.9 Upgrading Clusters

Last Updated: 2019-12-17

OpenShift Container Platform 3.9 Upgrading Clusters

OpenShift Container Platform 3.9 Upgrading Clusters

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Upgrade your OpenShift Container Platform 3.9 cluster with this guide

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UPGRADE METHODS AND STRATEGIES
1.1. INTRODUCTION TO UPGRADING CLUSTERS
1.2. UPGRADE METHODS

1.2.1. Automated Method
1.2.2. Manual Method

1.3. UPGRADE STRATEGIES
1.3.1. In-place Upgrades
1.3.2. Blue-green Deployments

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES
2.1. OVERVIEW
2.2. PREPARING FOR AN AUTOMATED UPGRADE

2.2.1. Upgrading the Control Plane and Nodes in Separate Phases
2.2.2. Customizing Node Upgrades
2.2.3. Customizing Upgrades With Ansible Hooks

2.2.3.1. Limitations
2.2.3.2. Using Hooks
2.2.3.3. Available Upgrade Hooks

2.3. UPGRADING TO THE LATEST OPENSHIFT CONTAINER PLATFORM 3.9 RELEASE
2.4. UPGRADING THE EFK LOGGING STACK
2.5. UPGRADING CLUSTER METRICS
2.6. SPECIAL CONSIDERATIONS FOR LARGE-SCALE UPGRADES
2.7. SPECIAL CONSIDERATIONS FOR MIXED ENVIRONMENTS
2.8. SPECIAL CONSIDERATIONS WHEN USING CONTAINERIZED GLUSTERFS
2.9. SPECIAL CONSIDERATIONS WHEN USING GCEPD
2.10. VERIFYING THE UPGRADE

CHAPTER 3. PERFORMING MANUAL IN-PLACE CLUSTER UPGRADES
3.1. OVERVIEW
3.2. PREPARING FOR A MANUAL UPGRADE
3.3. UPGRADING MASTER COMPONENTS
3.4. UPDATING POLICY DEFINITIONS
3.5. UPGRADING NODES
3.6. UPGRADING THE ROUTER
3.7. UPGRADING THE REGISTRY
3.8. UPDATING THE DEFAULT IMAGE STREAMS AND TEMPLATES
3.9. IMPORTING THE LATEST IMAGES
3.10. UPGRADING THE WEB CONSOLE
3.11. UPGRADING THE SERVICE CATALOG
3.12. UPGRADING THE EFK LOGGING STACK
3.13. UPGRADING CLUSTER METRICS
3.14. ADDITIONAL MANUAL STEPS PER RELEASE
3.15. VERIFYING THE UPGRADE

CHAPTER 4. BLUE-GREEN DEPLOYMENTS
4.1. OVERVIEW
4.2. PREPARING FOR A BLUE-GREEN UPGRADE

4.2.1. Sharing Software Entitlements
4.2.2. Labeling Blue Nodes
4.2.3. Creating and Labeling Green Nodes
4.2.4. Verifying Green Nodes

4.3. REGISTRY AND ROUTER CANARY DEPLOYMENTS

4
4
4
4
4
5
5
5

6
6
7
9
9

10
11
11
11

12
13
14
15
15
15
17
17

19
19
19

20
25
26
28
28
29
31
32
32
33
34
35
35

36
36
37
37
38
38
39
40

Table of Contents

1

. .

. .

. .

4.4. WARMING THE GREEN NODES
4.5. EVACUATING AND DECOMMISSIONING BLUE NODES

CHAPTER 5. UPDATING OPERATING SYSTEMS
5.1. PURPOSE
5.2. UPDATING THE OPERATING SYSTEM ON A HOST

CHAPTER 6. DOWNGRADING OPENSHIFT
6.1. OVERVIEW
6.2. VERIFYING BACKUPS
6.3. SHUTTING DOWN THE CLUSTER
6.4. REMOVING RPMS
6.5. DOWNGRADING DOCKER
6.6. REINSTALLING RPMS
6.7. RESTORING ETCD

6.7.1. Restoring etcd v2 & v3 data
Procedure
6.7.1.1. Fix the peerURLS parameter

6.7.1.1.1. Procedure
6.7.2. Restoring etcd for v3

Procedure
6.8. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK ONLINE

Procedure
6.9. VERIFYING THE DOWNGRADE

CHAPTER 7. KNOWN ISSUES
7.1. OVERVIEW
7.2. DUPLICATE PORTS IN SERVICE DEFINITION

40
41

43
43
43

44
44
44
44
45
45
46
47
47
47
49
49
49
49
50
50
51

52
52
52

OpenShift Container Platform 3.9 Upgrading Clusters

2

Table of Contents

3

CHAPTER 1. UPGRADE METHODS AND STRATEGIES

1.1. INTRODUCTION TO UPGRADING CLUSTERS

When new versions of OpenShift Container Platform are released, you can upgrade your existing cluster
to apply the latest enhancements and bug fixes. This includes upgrading from previous minor versions,
such as release 3.7 to 3.9, and applying asynchronous errata updates within a minor version (3.9.z
releases). See the OpenShift Container Platform 3.9 Release Notes to review the latest changes.

NOTE

Due to the core architectural changes between the major versions, OpenShift Enterprise
2 environments cannot be upgraded to OpenShift Container Platform 3 and require a
fresh installation.

Unless noted otherwise, node and masters within a major version are forward and backward compatible
across one minor version , so upgrading your cluster should go smoothly. However, you should not run
mismatched versions longer than necessary to upgrade the entire cluster.

Before upgrading, ensure that all OpenShift Container Platform services are running well.

In the event of a control plane upgrade failure, check the versions of your masters to ensure that all
versions are the same. If your masters are all the same version, re-run the upgrade. If they differ,
downgrade the masters to match the lower versioned master, then re-run the upgrade.

IMPORTANT

The OpenShift Container Platform 3.9 release includes a merge of features and fixes
from Kubernetes 1.8 and 1.9. As a result, the upgrade process from OpenShift Container
Platform 3.7 completes with the cluster fully upgraded to OpenShift Container Platform
3.9, seemingly "skipping" the 3.8 release. Technically, the OpenShift Container Platform
3.7 cluster is first upgraded to 3.8-versioned packages, and then the process immediately
continues upgrading to OpenShift Container Platform 3.9 automatically. Your cluster
should only remain at 3.8-versioned packages for as long as it takes to successfully
complete the upgrade to OpenShift Container Platform 3.9.

1.2. UPGRADE METHODS

There are two methods available for performing OpenShift Container Platform cluster upgrades:
automated or manual.

1.2.1. Automated Method

The automated upgrade method uses Ansible playbooks to automate the tasks needed to upgrade a
OpenShift Container Platform cluster. You should use the inventory file that you used during initial
installation or during the last time that the upgrade was successful to run the upgrade playbook. Using
this method allows you to choose between either upgrade strategy: in-place upgrades or blue-green
deployments.

1.2.2. Manual Method

The manual upgrade method breaks down the steps that happen during an automated Ansible-based

OpenShift Container Platform 3.9 Upgrading Clusters

4

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/release_notes/#release-notes-ocp-3-9-release-notes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/release_notes/#release-notes-v2-vs-v3

The manual upgrade method breaks down the steps that happen during an automated Ansible-based
upgrade and provides the equivalent commands to run manually. Using this method describes the in-
place upgrade strategy.

1.3. UPGRADE STRATEGIES

When using the automated upgrade method, there are two strategies you can take for performing the
OpenShift Container Platform cluster upgrade: in-place upgrades or blue-green deployments. When
using the manual upgrade method, an in-place upgrade is described.

1.3.1. In-place Upgrades

With in-place upgrades, the cluster upgrade is performed on all hosts in a single, running cluster: first
masters and then nodes. Pods are evacuated off of nodes and recreated on other running nodes before
a node upgrade begins; this helps reduce downtime of user applications.

If you installed using the quick or advanced installation, you can perform an automated in-place
upgrade. Alternatively, you can upgrade in-place manually.

NOTE

Quick Installation is now deprecated in OpenShift Container Platform 3.9 and will be
completely removed in a future release.

Quick installation will only be capable of installing 3.9. It will not be able to upgrade from
3.7 or 3.8 to 3.9.

1.3.2. Blue-green Deployments

The blue-green deployment upgrade method follows a similar flow to the in-place method: masters and
etcd servers are still upgraded first, however a parallel environment is created for new nodes instead of
upgrading them in-place.

This method allows administrators to switch traffic from the old set of nodes (e.g., the "blue"
deployment) to the new set (e.g., the "green" deployment) after the new deployment has been verified.
If a problem is detected, it is also then easy to rollback to the old deployment quickly.

CHAPTER 1. UPGRADE METHODS AND STRATEGIES

5

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-quick-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-advanced-install

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER
UPGRADES

2.1. OVERVIEW

If you installed using the advanced installation and the inventory file that was used is available, you can
use upgrade playbooks to automate the OpenShift cluster upgrade process.

The OpenShift Container Platform 3.9 release includes a merge of features and fixes from Kubernetes
1.8 and 1.9. As a result, the upgrade process from OpenShift Container Platform 3.7 completes with the
cluster fully upgraded to OpenShift Container Platform 3.9, seemingly "skipping" the 3.8 release.
Technically, the OpenShift Container Platform 3.7 cluster is first upgraded to 3.8-versioned packages,
and then the process immediately continues upgrading to OpenShift Container Platform 3.9
automatically. Your cluster should only remain at 3.8-versioned packages for as long as it takes to
successfully complete the upgrade to OpenShift Container Platform 3.9.

IMPORTANT

As of OpenShift Container Platform 3.9, the quick installation method is deprecated. In a
future release, it will be removed completely. In addition, using the quick installer to
upgrade from version 3.7 to 3.9 is not supported.

The automated 3.7 to 3.9 control plane upgrade performs the following steps for you:

A backup of all etcd data is taken for recovery purposes.

The API and controllers are updated from 3.7 to 3.8.

Internal data structures are updated to 3.8.

A second backup of all etcd data is taken for recovery purposes.

The API and controllers are updated from 3.8 to 3.9.

Internal data structures are updated to 3.9.

The default router, if one exists, is updated from 3.7 to 3.9.

The default registry, if one exists, is updated from 3.7 to 3.9.

The default image streams and InstantApp templates are updated.

The automated 3.7 to 3.9 node upgrade performs a rolling update of nodes, which:

Marks a subset of nodes unschedulable and drains them of pods.

Updates node components from 3.7 to 3.9 (including openvswitch and container runtime).

Returns those nodes to service.

IMPORTANT

OpenShift Container Platform 3.9 Upgrading Clusters

6

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-advanced-install

IMPORTANT

Ensure that you have met all prerequisites before proceeding with an upgrade.
Failure to do so can result in a failed upgrade.

If you are using GlusterFS, see Special Considerations When Using Containerized
GlusterFS before proceeding.

If you are using GCE Persistent Disk (gcePD), see Special Considerations When
Using gcePD before proceeding.

The day before the upgrade, validate OpenShift Container Platform storage
migration to ensure potential issues are resolved prior to the outage window:

$ oc adm migrate storage --include=* --loglevel=2 --confirm --config
/etc/origin/master/admin.kubeconfig

Automated upgrade playbooks are run via Ansible directly using the ansible-playbook command with
an inventory file, similar to the advanced installation method. The same v3_9 upgrade playbooks can be
used for either of the following scenarios:

Upgrading existing OpenShift Container Platform 3.7 clusters to 3.9

Upgrading existing OpenShift Container Platform 3.9 clusters to the latest asynchronous errata
updates

IMPORTANT

Running Ansible playbooks with the --tags or --check options is not supported by Red
Hat.

2.2. PREPARING FOR AN AUTOMATED UPGRADE

IMPORTANT

Before upgrading Upgrading your cluster to OpenShift Container Platform 3.9 , the
cluster must be already upgraded to the latest asynchronous release of version 3.7 . If
your cluster is at a version earlier than 3.7, you must first upgrade incrementally (e.g., 3.5
to 3.6, then 3.6 to 3.7).

NOTE

Before attempting the upgrade, follow the guidance in Environment health checks to
verify the cluster’s health. This will confirm that nodes are in the Ready state, running the
expected starting version, and will ensure that there are no diagnostic errors or warnings.

If you are completing a large-scale upgrade, which involves at least 10 worker nodes and thousands of
projects and pods, review Special considerations for large-scale upgrades to prevent upgrade failures.

To prepare for an automated upgrade:

1. Pull the latest subscription data from RHSM:

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

7

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-prerequisites
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/release_notes/#ocp-39-asynchronous-errata-updates
https://docs.openshift.com/container-platform/3.7/release_notes/ocp_3_7_release_notes.html#ocp-37-asynchronous-errata-updates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/day_two_operations_guide/#day-two-environment-health-checks

subscription-manager refresh

2. If you are upgrading from OpenShift Container Platform 3.7 to 3.9:

a. Manually disable the 3.7 repository and enable both the 3.8 and 3.9 repositories on each
master and node host. You must also enable the rhel-7-server-ansible-2.4-rpms
repository, which is a new requirement starting with OpenShift Container Platform 3.9:

subscription-manager repos --disable="rhel-7-server-ose-3.7-rpms" \
 --enable="rhel-7-server-ose-3.8-rpms" \
 --enable="rhel-7-server-ose-3.9-rpms" \
 --enable="rhel-7-server-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-server-ansible-2.4-rpms" \
 --enable="rhel-7-fast-datapath-rpms"
yum clean all

b. Remove the openshift_schedulable parameter and its value from the entry for each
master host in the Ansible inventory file.
During upgrade, if a value is not provided for the openshift_schedulable parameter, it is
set to true. If a value is provided for openshift_schedulable, it is not changed.

In previous versions of OpenShift Container Platform, master hosts were marked
unschedulable by default by the installer, meaning that no pods could be placed on the
hosts. Starting with OpenShift Container Platform 3.9, however, masters must be marked
schedulable.

During upgrade, masters are automatically labeled with the master node role, and non-
master, non-infrastructure nodes are labeled with the compute node role.

See the OpenShift Container Platform 3.9 Release Notes on the these notable technical
changes and ensure that you understand their impact on your cluster:

Masters Marked as Schedulable Nodes by Default

Default Node Selector Set By Default and Automatic Node Labeling

c. You must disable swap memory in your cluster before upgrading to OpenShift Container
Platform 3.9, otherwise the upgrade will fail. Whether swap memory was enabled using
openshift_disable_swap=false in your Ansible inventory file or enabled manually per host,
see Disabling Swap Memory in the Cluster Administration guide to disable it on each host.

3. For any upgrade path, always ensure that you have the latest version of the atomic-openshift-
utils package on each RHEL 7 system, which also updates the openshift-ansible-* packages:

yum update atomic-openshift-utils

4. If you have applied manual configuration changes to your master or node configuration files
since your last Ansible playbook run (whether that was initial installation or your most recent
cluster upgrade), and you have not yet made the equivalent changes to your inventory file,
review Configuring Ansible Inventory Files . For any variables that are relevant to the manual
changes you made, apply the equivalent appropriate changes to your inventory files before
running the upgrade. Otherwise, your manual changes may be overwritten by default values
during the upgrade, which could cause pods to not run properly or other cluster stability issues.
In particular, if you made any changes to admissionConfig settings in your master

OpenShift Container Platform 3.9 Upgrading Clusters

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/release_notes/#ocp-39-schedulable-masters
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/release_notes/#ocp-39-default-node-selector
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cluster_administration/#disabling-swap-memory
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-ansible

configuration files, review the openshift_master_admission_plugin_config variable in
Configuring Ansible Inventory Files . Failure to do so could cause pods to get stuck in Pending
state if you had ClusterResourceOverride settings manually configured previously (as
described in Configuring Masters for Overcommitment).

After satisfying these steps, you can review the following sections for more information on how the
upgrade process works and make decisions on additional upgrade customization options if you so
choose. When you are prepared to run the upgrade, you can continue to Upgrading to the Latest
OpenShift Container Platform 3.9 Release.

2.2.1. Upgrading the Control Plane and Nodes in Separate Phases

An OpenShift Container Platform cluster can be upgraded in one or more phases. You can choose
whether to upgrade all hosts in one phase by running a single Ansible playbook, or upgrade the control
plane (master components) and nodes in multiple phases using separate playbooks.

Instructions on the full upgrade process and when to call these playbooks are described in Upgrading to
the Latest OpenShift Container Platform 3.9 Release.

NOTE

If your OpenShift Container Platform cluster uses GlusterFS pods, you must perform the
upgrade in multiple phases. See Special Considerations When Using Containerized
GlusterFS for details on how to upgrade with GlusterFS.

When upgrading in separate phases, the control plane phase includes upgrading:

master components

node services running on masters

Docker running on masters

Docker running on any stand-alone etcd hosts

When upgrading only the nodes, the control plane must already be upgraded. The node phase includes
upgrading:

node services running on stand-alone nodes

Docker running on stand-alone nodes

NOTE

Nodes running master components are not included during the node upgrade phase,
even though they have node services and Docker running on them. Instead, they are
upgraded as part of the control plane upgrade phase. This ensures node services and
Docker on masters are not upgraded twice (once during the control plane phase and
again during the node phase).

2.2.2. Customizing Node Upgrades

Whether upgrading in a single or multiple phases, you can customize how the node portion of the
upgrade progresses by passing certain Ansible variables to an upgrade playbook using the -e option.

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

9

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-ansible
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cluster_administration/#configuring-masters-for-overcommitment

NOTE

Instructions on the full upgrade process and when to call these playbooks are described in
Upgrading to the Latest OpenShift Container Platform 3.7 Release .

The openshift_upgrade_nodes_serial variable can be set to an integer or percentage to control how
many node hosts are upgraded at the same time. The default is 1, upgrading nodes one at a time.

For example, to upgrade 20 percent of the total number of detected nodes at a time:

$ ansible-playbook -i <path/to/inventory/file> \
 </path/to/upgrade/playbook> \
 -e openshift_upgrade_nodes_serial="20%"

The openshift_upgrade_nodes_label variable allows you to specify that only nodes with a certain label
are upgraded. This can also be combined with the openshift_upgrade_nodes_serial variable.

For example, to only upgrade nodes in the group1 region, two at a time:

$ ansible-playbook -i <path/to/inventory/file> \
 </path/to/upgrade/playbook> \
 -e openshift_upgrade_nodes_serial="2" \
 -e openshift_upgrade_nodes_label="region=group1"

NOTE

See Managing Nodes for more on node labels.

The openshift_upgrade_nodes_max_fail_percentage variable allows you to specify how many nodes
may fail in each batch. The percentage of failure must exceed your value before the playbook aborts the
upgrade.

The openshift_upgrade_nodes_drain_timeout variable allows you to specify the length of time to wait
before giving up.

In this example, 10 nodes are upgraded at a time, the upgrade will abort if more than 20 percent of the
nodes fail, and there is a 600-second wait to drain the node:

$ ansible-playbook -i <path/to/inventory/file> \
 </path/to/upgrade/playbook> \
 -e openshift_upgrade_nodes_serial=10 \
 -e openshift_upgrade_nodes_max_fail_percentage=20 \
 -e openshift_upgrade_nodes_drain_timeout=600

2.2.3. Customizing Upgrades With Ansible Hooks

When upgrading OpenShift Container Platform, you can execute custom tasks during specific
operations through a system called hooks. Hooks allow cluster administrators to provide files defining
tasks to execute before and/or after specific areas during upgrades. This can be very helpful to validate
or modify custom infrastructure when upgrading OpenShift Container Platform.

It is important to remember that when a hook fails, the operation fails. This means a good hook can run
multiple times and provide the same results. A great hook is idempotent.

OpenShift Container Platform 3.9 Upgrading Clusters

10

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cluster_administration/#updating-labels-on-nodes

2.2.3.1. Limitations

Hooks have no defined or versioned interface. They can use internal openshift-ansible
variables, but there is no guarantee these will remain in future releases. In the future, hooks may
be versioned, giving you advance warning that your hook needs to be updated to work with the
latest openshift-ansible.

Hooks have no error handling, so an error in a hook will halt the upgrade process. The problem
will need to be addressed and the upgrade re-run.

2.2.3.2. Using Hooks

Hooks are defined in the hosts inventory file under the OSEv3:vars section.

Each hook must point to a YAML file which defines Ansible tasks. This file will be used as an include,
meaning that the file cannot be a playbook, but a set of tasks. Best practice suggests using absolute
paths to the hook file to avoid any ambiguity.

Example Hook Definitions in an Inventory File

[OSEv3:vars]
openshift_master_upgrade_pre_hook=/usr/share/custom/pre_master.yml
openshift_master_upgrade_hook=/usr/share/custom/master.yml
openshift_master_upgrade_post_hook=/usr/share/custom/post_master.yml

Example pre_master.yml Task

Trivial example forcing an operator to ack the start of an upgrade
file=/usr/share/custom/pre_master.yml

- name: note the start of a master upgrade
 debug:
 msg: "Master upgrade of {{ inventory_hostname }} is about to start"

- name: require an operator agree to start an upgrade
 pause:
 prompt: "Hit enter to start the master upgrade"

2.2.3.3. Available Upgrade Hooks

openshift_master_upgrade_pre_hook

Runs before each master is upgraded.

This hook runs against each master in serial.

If a task must run against a different host, said task must use delegate_to or local_action.

openshift_master_upgrade_hook

Runs after each master is upgraded, but before its service or system restart.

This hook runs against each master in serial.

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

11

http://docs.ansible.com/ansible/playbooks_delegation.html#delegation

If a task must run against a different host, said task must use delegate_to or local_action.

openshift_master_upgrade_post_hook

Runs after each master is upgraded and has had its service or system restart.

This hook runs against each master in serial.

If a task must run against a different host, said task must use delegate_to or local_action.

2.3. UPGRADING TO THE LATEST OPENSHIFT CONTAINER
PLATFORM 3.9 RELEASE

To upgrade an existing OpenShift Container Platform 3.7 or 3.9 cluster to the latest 3.9 release:

1. Satisfy the steps in Preparing for an Automated Upgrade to ensure you are using the latest
upgrade playbooks.

2. Ensure the openshift_deployment_type parameter in your inventory file is set to openshift-
enterprise.

3. Starting with OpenShift Container Platform 3.9, the OpenShift Container Platform web console
is deployed as a pod on masters during upgrade, and the openshift_web_console_prefix is
introduced to deploy the web console with a customized image prefix. The
template_service_broker_prefix is updated to match other components. If you use a
customized docker-registry for your installation instead of registry.access.redhat.com, you
must explicitly specify openshift_web_console_prefix and template_service_broker_prefix
to point to the correct image prefix during upgrade:

openshift_web_console_prefix=<registry_ip>:<port>/openshift3/ose-
template_service_broker_prefix=<registry_ip>:<port>/openshift3/ose-

4. If you want to enable rolling, full system restarts of the hosts, you can set the
openshift_rolling_restart_mode parameter in your inventory file to system. Otherwise, the
default value services performs rolling service restarts on HA masters, but does not reboot the
systems. See Configuring Cluster Variables for details.

5. At this point, you can choose to run the upgrade in a single or multiple phases. See Upgrading
the Control Plane and Nodes in Separate Phases for more details which components are
upgraded in each phase.
If your inventory file is located somewhere other than the default /etc/ansible/hosts, add the -i
flag to specify its location. If you previously used the atomic-openshift-installer command to
run your installation, you can check ~/.config/openshift/hosts for the last inventory file that
was used, if needed.

Option A) Upgrade control plane and nodes in a single phase.
Run the upgrade.yml playbook to upgrade the cluster in a single phase using one playbook;
the control plane is still upgraded first, then nodes in-place:

ansible-playbook -i </path/to/inventory/file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/upgrades/v3_9/upgrade.yml

Option B) Upgrade the control plane and nodes in separate phases.

OpenShift Container Platform 3.9 Upgrading Clusters

12

http://docs.ansible.com/ansible/playbooks_delegation.html#delegation
http://docs.ansible.com/ansible/playbooks_delegation.html#delegation
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-cluster-variables

1

a. To upgrade only the control plane, run the upgrade_control_plane.yaml playbook:

ansible-playbook -i </path/to/inventory/file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/upgrades/v3_9/upgrade_control_plane.yml

b. To upgrade only the nodes, run the upgrade_nodes.yaml playbook:

ansible-playbook -i </path/to/inventory/file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/upgrades/v3_9/upgrade_nodes.yml \
 [-e <customized_node_upgrade_variables>] 1

See Customizing Node Upgrades for any desired
<customized_node_upgrade_variables>.

If you are upgrading the nodes in groups as described in Customizing Node Upgrades,
continue invoking the upgrade_nodes.yml playbook until all nodes have been
successfully upgraded.

6. After all master and node upgrades have completed, reboot all hosts. After rebooting, if there
are no additional features enabled, you can verify the upgrade. Otherwise, the next step
depends on what additional features you have previously enabled.

Feature Next Step

Aggregated
Logging

Upgrade the EFK logging stack.

Cluster Metrics Upgrade cluster metrics.

2.4. UPGRADING THE EFK LOGGING STACK

To upgrade an existing EFK logging stack deployment, you must use the provided
/usr/share/ansible/openshift-ansible/playbooks/openshift-logging/config.yml Ansible playbook.
This is the playbook to use if you were deploying logging for the first time on an existing cluster, but is
also used to upgrade existing logging deployments.

1. If you have any Elasticsearch SearchGuard indices in the following naming format, you need to
delete and reseed the indices because the naming format has changed. Elastic search might not
work as expected unless you update the indices:

.searchguard.logging-es-*

a. Run the following command to delete the SearchGuard indices:

oc exec -c elasticsearch <pod> -- es_util --query=.searchguard* -XDELETE

b. Run the following command to reseed the SearchGuard indices:

for pod in $(oc get pods -l component=es -o jsonpath={.items[*].metadata.name}); do
oc exec -c elasticsearch $pod -- es_seed_acl; done

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

13

1

2

1

2. If you have not already done so, see Specifying Logging Ansible Variables in the Aggregating
Container Logs topic and update your Ansible inventory file to at least set the following
required variable within the [OSEv3:vars] section:

[OSEv3:vars]

openshift_logging_install_logging=true 1
openshift_logging_image_version=<tag> 2

Enables the ability to upgrade the logging stack.

Replace <tag> with v3.9.102 for the latest version.

3. Add any other openshift_logging_* variables that you want to specify to override the defaults,
as described in Specifying Logging Ansible Variables .

4. When you have finished updating your inventory file, follow the instructions in Deploying the
EFK Stack to run the openshift-logging/config.yml playbook and complete the logging
deployment upgrade.

NOTE

If your Fluentd DeploymentConfig and DaemonSet for the EFK components are already
set with:

 image: <image_name>:<vX.Y>
 imagePullPolicy: IfNotPresent

The latest version <image_name> might not be pulled if there is already one with the same
<image_name:vX.Y> stored locally on the node where the pod is being re-deployed. If so,
manually change the DeploymentConfig and DaemonSet to imagePullPolicy: Always to
make sure it is re-pulled.

2.5. UPGRADING CLUSTER METRICS

To upgrade an existing cluster metrics deployment, you must use the provided
/usr/share/ansible/openshift-ansible/playbooks/openshift-metrics/config.yml Ansible playbook.
This is the playbook to use if you were deploying metrics for the first time on an existing cluster, but is
also used to upgrade existing metrics deployments.

1. If you have not already done so, see Specifying Metrics Ansible Variables in the Enabling Cluster
Metrics topic and update your Ansible inventory file to at least set the following required
variables within the [OSEv3:vars] section:

[OSEv3:vars]

openshift_metrics_install_metrics=true 1
openshift_metrics_image_version=<tag> 2
openshift_metrics_hawkular_hostname=<fqdn> 3
openshift_metrics_cassandra_storage_type=(emptydir|pv|dynamic) 4

Enables the ability to upgrade the metrics deployment.

OpenShift Container Platform 3.9 Upgrading Clusters

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#aggregate-logging-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-aggregate-logging
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#aggregate-logging-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#deploying-the-efk-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#metrics-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-cluster-metrics

2

3

4

Replace <tag> with v3.9.102 for the latest version.

Used for the Hawkular Metrics route. Should correspond to a fully qualified domain name.

Choose a type that is consistent with the previous deployment.

2. Add any other openshift_metrics_* variables that you want to specify to override the defaults,
as described in Specifying Metrics Ansible Variables .

3. When you have finished updating your inventory file, follow the instructions in Deploying the
Metrics Deployment to run the openshift-metrics/config.yml playbook and complete the
metrics deployment upgrade.

2.6. SPECIAL CONSIDERATIONS FOR LARGE-SCALE UPGRADES

For large-scale cluster upgrades, which involve at least 10 worker nodes and thousands of projects and
pods, the API object storage migration should be performed prior to running the upgrade playbooks,
and then again after the upgrade has successfully completed. Otherwise, the upgrade process will fail.

Refer to the Running the pre- and post- API server model object migration outside of the upgrade
window section of the Recommendations for large-scale OpenShift upgrades for further guidance.

2.7. SPECIAL CONSIDERATIONS FOR MIXED ENVIRONMENTS

Before you upgrade a mixed environment, such as one with Red Hat Enterprise Linux (RHEL) and RHEL
Atomic Host, set values in the inventory file for both the openshift_pkg_version and
openshift_image_tag parameters. Setting these values ensures that all nodes in your cluster run the
same version of OpenShift Container Platform.

For example, to upgrade from OpenShift Container Platform 3.7 to OpenShift Container Platform 3.9,
set the following parameters and values:

openshift_pkg_version=-3.9.74
openshift_image_tag=v3.9.74

NOTE

These parameters can also be present in other, non-mixed, environments.

2.8. SPECIAL CONSIDERATIONS WHEN USING CONTAINERIZED
GLUSTERFS

When upgrading OpenShift Container Platform, you must upgrade the set of nodes where GlusterFS
pods are running.

Use care when upgrading these nodes, as drain and unschedule will not terminate and evacuate the
GlusterFS pods because they are running as part of a daemonset.

There is also the potential for someone to run an upgrade on multiple nodes at the same time. If this
occurs, it would lead to data availability issues if more than one node was hosting GlusterFS pods.

Even if a serial upgrade is running, there is no guarantee sufficient time will be given for GlusterFS to

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#metrics-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#deploying-the-metrics-components
https://access.redhat.com/articles/3208381

1

Even if a serial upgrade is running, there is no guarantee sufficient time will be given for GlusterFS to
complete all of its healing operations before GlusterFS on the next node is terminated. This could leave
the cluster in a bad or unknown state. Therefore, the following procedure is recommended.

1. Upgrade the control plane (the master nodes and etcd nodes).

2. Upgrade standard infra nodes (router, registry, logging, and metrics).

NOTE

If any of the nodes in those groups are running GlusterFS, perform step 4 of this
procedure at the same time. GlusterFS nodes must be upgraded along with
other nodes in their class (app versus infra), one at a time.

3. Upgrade standard nodes running application containers.

NOTE

If any of the nodes in those groups are running GlusterFS, perform step 4 of this
procedure at the same time. GlusterFS nodes must be upgraded along with
other nodes in their class (app versus infra), one at a time.

4. Upgrade the OpenShift Container Platform nodes running GlusterFS one at a time.

a. Run oc get daemonset to verify the label found under NODE-SELECTOR. The default
value is storagenode=glusterfs.

b. Add a label (for example, type=upgrade) to the node you want to upgrade.

c. Using the upgrade_nodes.yml playbook on the node where you terminated GlusterFS, run -
e openshift_upgrade_nodes_label="type=upgrade".

NOTE

The upgrade_nodes.yml playbook is located here:

ansible-playbook -i </path/to/inventory/file> \
 /usr/share/ansible/openshift-ansible/playbooks/byo/openshift-
cluster/upgrades/v3_9/upgrade_nodes.yml \
 [-e <customized_node_upgrade_variables>] 1

See Customizing Node Upgrades for any desired
<customized_node_upgrade_variables>.

d. Wait for the GlusterFS pod to respawn and appear.

e. oc rsh into the pod and verify all volumes are healed:

$ oc rsh <GlusterFS_pod_name>
$ for vol in `gluster volume list`; do gluster volume heal $vol info; done

Ensure all of the volumes are healed and there are no outstanding tasks. The heal info
command lists all pending entries for a given volume’s heal process. A volume is considered
healed when Number of entries for that volume is 0.

OpenShift Container Platform 3.9 Upgrading Clusters

16

f. Remove the upgrade label and go to the next GlusterFS node:

$ oc label node <node_name> type-

2.9. SPECIAL CONSIDERATIONS WHEN USING GCEPD

Because the default gcePD storage provider uses an RWO (Read-Write Only) access mode, you cannot
perform a rolling upgrade on the registry or scale the registry to multiple pods. Therefore, when
upgrading OpenShift Container Platform, you must specify the following environment variables in your
Ansible inventory file:

[OSEv3:vars]

openshift_hosted_registry_storage_provider=gcs
openshift_hosted_registry_storage_gcs_bucket=bucket01
openshift_hosted_registry_storage_gcs_keyfile=test.key
openshift_hosted_registry_storage_gcs_rootdirectory=/registry

2.10. VERIFYING THE UPGRADE

Ensure that the:

cluster is healthy,

services (master, node, and etcd) are running well,

the OpenShift Container Platform, docker-registry, and router versions are correct,

the original applications are still available and the new application can be created, and

running oc adm diagnostics produces no errors.

To verify the upgrade:

1. Check that all nodes are marked as Ready:

oc get nodes
NAME STATUS ROLES AGE VERSION
master.example.com Ready master 7h v1.9.1+a0ce1bc657
node1.example.com Ready compute 7h v1.9.1+a0ce1bc657
node2.example.com Ready compute 7h v1.9.1+a0ce1bc657

2. Verify that you are running the expected versions of the docker-registry and router images, if
deployed. Replace <tag> with v3.9.102 for the latest version.

oc get -n default dc/docker-registry -o json | grep \"image\"
 "image": "openshift3/ose-docker-registry:<tag>",
oc get -n default dc/router -o json | grep \"image\"
 "image": "openshift3/ose-haproxy-router:<tag>",

3. Use the diagnostics tool on the master to look for common issues:

oc adm diagnostics

CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES

17

...
[Note] Summary of diagnostics execution:
[Note] Completed with no errors or warnings seen.

OpenShift Container Platform 3.9 Upgrading Clusters

18

CHAPTER 3. PERFORMING MANUAL IN-PLACE CLUSTER
UPGRADES

3.1. OVERVIEW

IMPORTANT

As of OpenShift Container Platform 3.9, manual upgrades are not supported. In a future
release, this process will be removed.

As an alternative to performing an automated upgrade, you can manually upgrade your OpenShift
Container Platform cluster. To manually upgrade without disruption, it is important to upgrade each
component as documented in this topic.

Before you begin your upgrade, familiarize yourself now with the entire procedure. Specific releases may
require additional steps to be performed at key points before or during the standard upgrade process.

IMPORTANT

Ensure that you have met all prerequisites before proceeding with an upgrade. Failure to
do so can result in a failed upgrade.

If you are using GlusterFS, see Special Considerations When Using Containerized
GlusterFS before proceeding.

The day before the upgrade, validate OpenShift Container Platform storage migration to
ensure potential issues are resolved prior to the outage window:

$ oc adm migrate storage --include=* --loglevel=2 --confirm --config
/etc/origin/master/admin.kubeconfig

3.2. PREPARING FOR A MANUAL UPGRADE

NOTE

Before upgrading your cluster to OpenShift Container Platform 3.9, the cluster must be
already upgraded to the latest asynchronous release of version 3.7 . If your cluster is at a
version earlier than 3.7, you must first upgrade incrementally (e.g., 3.5 to 3.6, then 3.6 to
3.7).

To prepare for a manual upgrade, follow these steps:

1. Follow the steps in Verifying the Upgrade to verify the cluster’s health (if you are upgrading from
3.7 to 3.9, check the command outputs for the relevant 3.7 version instead of the stated 3.9).
This will confirm that nodes are in the Ready state, running the expected starting version, and
will ensure that there are no diagnostic errors or warnings.

2. Pull the latest subscription data from Red Hat Subscription Manager (RHSM):

subscription-manager refresh

CHAPTER 3. PERFORMING MANUAL IN-PLACE CLUSTER UPGRADES

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-prerequisites
https://docs.openshift.com/container-platform/3.7/release_notes/ocp_3_7_release_notes.html#ocp-37-asynchronous-errata-updates

3. If you are upgrading from OpenShift Container Platform 3.7 to 3.9:

a. Manually disable the 3.7 repository and enable both the 3.8 and 3.9 repositories on each
master and node host. You must also enable the rhel-7-server-ansible-2.4-rpms
repository, which is a new requirement starting with OpenShift Container Platform 3.9:

subscription-manager repos --disable="rhel-7-server-ose-3.7-rpms" \
 --enable="rhel-7-server-ose-3.8-rpms" \
 --enable="rhel-7-server-ose-3.9-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-server-ansible-2.4-rpms" \
 --enable="rhel-7-fast-datapath-rpms"
yum clean all

b. You must disable swap memory in your cluster before upgrading to OpenShift Container
Platform 3.9, otherwise the upgrade will fail. Whether swap memory was enabled using
openshift_disable_swap=false in your Ansible inventory file or enabled manually per host,
see Disabling Swap Memory in the Cluster Administration guide to disable it on each host.

4. Install or update to the latest available version of the atomic-openshift-utils package on each
RHEL 7 system, which provides files that will be used in later sections:

yum install atomic-openshift-utils

5. Install or update to the following latest available *-excluder packages on each RHEL 7 system,
which helps ensure your systems stay on the correct versions of atomic-openshift and docker
packages when you are not trying to upgrade, according to the OpenShift Container Platform
version:

yum install atomic-openshift-excluder atomic-openshift-docker-excluder

These packages add entries to the exclude directive in the host’s /etc/yum.conf file.

6. Create an etcd backup on each etcd host.

7. For any upgrade path, ensure that you are running the latest kernel on each RHEL 7 system:

yum update kernel

3.3. UPGRADING MASTER COMPONENTS

Before upgrading any stand-alone nodes, upgrade the master components (which provide the control
plane for the cluster).

1. Run the following command on each master to remove the atomic-openshift packages from
the list of yum excludes on the host:

atomic-openshift-excluder unexclude

2. Upgrade etcd on all master hosts and any external etcd hosts.

a. For RHEL 7 systems using the RPM-based method:

i. Upgrade the etcd package:

OpenShift Container Platform 3.9 Upgrading Clusters

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cluster_administration/#disabling-swap-memory
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/day_two_operations_guide/#etcd-backup_deprecating-etcd

1

yum update etcd

ii. Restart the etcd service and review the logs to ensure it restarts successfully:

systemctl restart etcd
journalctl -r -u etcd

b. For RHEL Atomic Host 7 systems and RHEL 7 systems using the containerized method:

i. Pull the latest rhel7/etcd image:

docker pull registry.access.redhat.com/rhel7/etcd

ii. Restart the etcd_container service and review the logs to ensure it restarts
successfully:

systemctl restart etcd_container
journalctl -r -u etcd_container

3. Configure Dnsmasq. You must perform the following steps to configure dnsmasq as part of the
upgrade.

a. Create a /etc/origin/node/node-dnsmasq.conf node configuration file.

server=/in-addr.arpa/127.0.0.1
server=/cluster.local/127.0.0.1

b. Edit the /etc/dnsmasq.d/origin-dns.conf file as follows:

no-resolv
domain-needed
no-negcache
max-cache-ttl=1
enable-dbus
dns-forward-max=5000
cache-size=5000
bind-dynamic
except-interface=lo

c. Edit the /etc/dnsmasq.d/origin-upstream-dns.conf file as follows:

server=<dns_server1_ip_address>
server=<dns_server2_ip_address>

d. Edit the /etc/origin/node/node-config.yaml as follows:

dnsBindAddress: 127.0.0.1:53
dnsRecursiveResolvConf: /etc/origin/node/resolv.conf
dnsDomain: cluster.local
dnsIP: <node_ip_address> 1

This is the IP address of the node host.

CHAPTER 3. PERFORMING MANUAL IN-PLACE CLUSTER UPGRADES

21

e. Update the /etc/systemd/system/atomic-openshift-node.service node systemd unit file:

[Unit]
Description=OpenShift Node
After=docker.service
Wants=openvswitch.service
After=ovsdb-server.service
After=ovs-vswitchd.service
Wants=docker.service
Documentation=https://github.com/openshift/origin
Requires=dnsmasq.service
After=dnsmasq.service

[Service]
Type=notify
EnvironmentFile=/etc/sysconfig/atomic-openshift-node
Environment=GOTRACEBACK=crash
ExecStartPre=/usr/bin/cp /etc/origin/node/node-dnsmasq.conf /etc/dnsmasq.d/
ExecStartPre=/usr/bin/dbus-send --system --dest=uk.org.thekelleys.dnsmasq
/uk/org/thekelleys/dnsmasq uk.org.thekelleys.SetDomainServers array:string:/in-
addr.arpa/127.0.0.1,/cluster.local/127.0.0.1
ExecStopPost=/usr/bin/rm /etc/dnsmasq.d/node-dnsmasq.conf
ExecStopPost=/usr/bin/dbus-send --system --dest=uk.org.thekelleys.dnsmasq
/uk/org/thekelleys/dnsmasq uk.org.thekelleys.SetDomainServers array:string:
ExecStart=/usr/bin/openshift start node --config=${CONFIG_FILE} $OPTIONS
LimitNOFILE=65536
LimitCORE=infinity
WorkingDirectory=/var/lib/origin/
SyslogIdentifier=atomic-openshift-node
Restart=always
RestartSec=5s
TimeoutStartSec=300
OOMScoreAdjust=-999

[Install]
WantedBy=multi-user.target

f. Reload systemd and restart node service.

systemctl daemon-reload
systemctl restart atomic-openshift-node dnsmaq

g. Restart dnsmasq:

systemctl restart dnsmasq

4. On each master host, upgrade the atomic-openshift packages or related images.

a. For masters using the RPM-based method on a RHEL 7 system, upgrade all installed
atomic-openshift packages and the openvswitch package:

yum upgrade atomic-openshift* openvswitch

b. For masters using the containerized method on a RHEL 7 or RHEL Atomic Host 7 system,

OpenShift Container Platform 3.9 Upgrading Clusters

22

b. For masters using the containerized method on a RHEL 7 or RHEL Atomic Host 7 system,
set the IMAGE_VERSION parameter to the version you are upgrading to in the following
files:

/etc/sysconfig/atomic-openshift-master-controllers

/etc/sysconfig/atomic-openshift-master-api

/etc/sysconfig/atomic-openshift-node

/etc/sysconfig/atomic-openshift-openvswitch

For example:

IMAGE_VERSION=<tag>

Replace <tag> with v3.9.102 for the latest version.

5. Modify host labels and parameters.
In previous versions of OpenShift Container Platform, master hosts were marked unschedulable
by default by the installer, meaning that no pods could be placed on the hosts. Starting with
OpenShift Container Platform 3.9, however, the web console is removed from the master
services and deployed as a pod on the masters, requiring that masters be marked schedulable.
This change also requires hosts to have node role labels, either master or compute.

NOTE

You can see the OpenShift Container Platform 3.9 Release Notes for more information
on how these notable technical changes relate in the context of supported automated
upgrades:

Masters Marked as Schedulable Nodes by Default

Default Node Selector Set By Default and Automatic Node Labeling

If you are upgrading from OpenShift Container Platform 3.7 to 3.9:

a. Add the following label to each master host:

$ oc label node <hostname> node-role.kubernetes.io/master=true

This assigns them the master node role.

b. Add the following label to each non-master, non-infrastructure (e.g., region=infra labeled)
host:

$ oc label node <hostname> node-role.kubernetes.io/compute=true

This assigns them the compute node role.

c. The default node selector must also now be set to ensure that only the web console pods will
be scheduled to the masters. If you already have this set to a custom value via
projectConfig.defaultNodeSelector in the /etc/origin/master/master-config.yaml file, you
can skip this step. If you have not previously set it, set it to the following:

CHAPTER 3. PERFORMING MANUAL IN-PLACE CLUSTER UPGRADES

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/release_notes/#ocp-39-schedulable-masters
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/release_notes/#ocp-39-default-node-selector

projectConfig:
 defaultNodeSelector: node-role.kubernetes.io/compute=true

1. Restart the master service(s) on each master and review logs to ensure they restart
successfully.

systemctl restart atomic-openshift-master-controllers
systemctl restart atomic-openshift-master-api
journalctl -r -u atomic-openshift-master-controllers
journalctl -r -u atomic-openshift-master-api

2. Because masters also have node components running on them in order to be configured as
part of the OpenShift SDN, restart the atomic-openshift-node and openvswitch services:

systemctl restart openvswitch
systemctl restart atomic-openshift-node
journalctl -r -u openvswitch
journalctl -r -u atomic-openshift-node

3. If you are upgrading from OpenShift Container Platform 3.7 to 3.9, run the following for
each master host to mark them schedulable:

$ oc adm manage-node <hostname> --schedulable=true

4. If you are performing a cluster upgrade that requires updating Docker to version 1.13, you
must also perform the following steps if you are not already on Docker 1.13:

d. Upgrade the docker package.

i. For RHEL 7 systems:

yum update docker

Then, restart the docker service and review the logs to ensure it restarts successfully:

systemctl restart docker
journalctl -r -u docker

ii. For RHEL Atomic Host 7 systems, upgrade to the latest Atomic tree if one is available:

atomic host upgrade

e. After the upgrade is completed and prepared for the next boot, reboot the host and ensure the
docker service starts successfully:

systemctl reboot
journalctl -r -u docker

f. Remove the following file, which is no longer required:

rm /etc/systemd/system/docker.service.d/docker-sdn-ovs.conf

1. Run the following command on each master to add the atomic-openshift packages back to

OpenShift Container Platform 3.9 Upgrading Clusters

24

1. Run the following command on each master to add the atomic-openshift packages back to
the list of yum excludes on the host:

atomic-openshift-excluder exclude

NOTE

During the cluster upgrade, it can sometimes be useful to take a master out of rotation
since some DNS client libraries will not properly to the other masters for cluster DNS. In
addition to stopping the master and controller services, you can remove the EndPoint
from the Kubernetes service’s subsets.addresses.

$ oc edit ep/kubernetes -n default

When the master is restarted, the Kubernetes service will be automatically updated.

3.4. UPDATING POLICY DEFINITIONS

During a cluster upgrade, and on every restart of any master, the default cluster roles are automatically
reconciled to restore any missing permissions.

1. If you customized default cluster roles and want to ensure a role reconciliation does not modify
them, protect each role from reconciliation:

$ oc annotate clusterrole.rbac <role_name> --overwrite
rbac.authorization.kubernetes.io/autoupdate=false

WARNING

You must manually update the roles that contain this setting to include any
new or required permissions after upgrading.

2. Generate a default bootstrap policy template file:

$ oc adm create-bootstrap-policy-file --filename=policy.json

NOTE

The contents of the file vary based on the OpenShift Container Platform version,
but the file contains only the default policies.

3. Update the policy.json file to include any cluster role customizations.

4. Use the policy file to automatically reconcile roles and role bindings that are not reconcile
protected:

$ oc process --local -f policy.json | oc auth reconcile -f policy.json

CHAPTER 3. PERFORMING MANUAL IN-PLACE CLUSTER UPGRADES

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#roles

5. Reconcile security context constraints:

oc adm policy reconcile-sccs \
 --additive-only=true \
 --confirm

3.5. UPGRADING NODES

After upgrading your masters, you can upgrade your nodes. When restarting the atomic-openshift-
node service, there will be a brief disruption of outbound network connectivity from running pods to
services while the service proxy is restarted. The length of this disruption should be very short and
scales based on the number of services in the entire cluster.

NOTE

You can alternatively use the blue-green deployment method at this point to create a
parallel environment for new nodes instead of upgrading them in place.

One at at time for each node that is not also a master, you must disable scheduling and evacuate its
pods to other nodes, then upgrade packages and restart services.

1. Run the following command on each node to remove the atomic-openshift packages from the
list of yum excludes on the host:

atomic-openshift-excluder unexclude

2. As a user with cluster-admin privileges, disable scheduling for the node:

oc adm manage-node <node> --schedulable=false

3. Evacuate pods on the node to other nodes:

IMPORTANT

The --force option deletes any pods that are not backed by a replication
controller.

oc adm drain <node> --force --delete-local-data --ignore-daemonsets

4. Upgrade the node component packages or related images.

a. For nodes using the RPM-based method on a RHEL 7 system, upgrade all installed atomic-
openshift packages and the openvswitch package:

yum upgrade atomic-openshift* openvswitch

b. For nodes using the containerized method on a RHEL 7 or RHEL Atomic Host 7 system, set
the IMAGE_VERSION parameter in the /etc/sysconfig/atomic-openshift-node and
/etc/sysconfig/openvswitch files to the version you are upgrading to. For example:

IMAGE_VERSION=<tag>

OpenShift Container Platform 3.9 Upgrading Clusters

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#service-proxy

Replace <tag> with v3.9.102 for the latest version.

5. Restart the atomic-openshift-node and openvswitch services and review the logs to ensure
they restart successfully:

systemctl restart openvswitch
systemctl restart atomic-openshift-node
journalctl -r -u atomic-openshift-node
journalctl -r -u openvswitch

6. If you are performing a cluster upgrade that requires updating Docker to version 1.13, you must
also perform the following steps if you are not already on Docker 1.13:

a. Upgrade the docker package.

i. For RHEL 7 systems:

yum update docker

Then, restart the docker service and review the logs to ensure it restarts successfully:

systemctl restart docker
journalctl -r -u docker

After Docker is restarted, restart the atomic-openshift-node service again and review
the logs to ensure it restarts successfully:

systemctl restart atomic-openshift-node
journalctl -r -u atomic-openshift-node

ii. For RHEL Atomic Host 7 systems, upgrade to the latest Atomic tree if one is available:

atomic host upgrade

After the upgrade is completed and prepared for the next boot, reboot the host and
ensure the docker service starts successfully:

systemctl reboot
journalctl -r -u docker

b. Remove the following file, which is no longer required:

rm /etc/systemd/system/docker.service.d/docker-sdn-ovs.conf

7. Re-enable scheduling for the node:

oc adm manage-node <node> --schedulable

8. Run the following command on each node to add the atomic-openshift packages back to the
list of yum excludes on the host:

atomic-openshift-excluder exclude

CHAPTER 3. PERFORMING MANUAL IN-PLACE CLUSTER UPGRADES

27

1

9. Repeat the previous steps on the next node, and continue repeating these steps until all nodes
have been upgraded.

10. After all nodes have been upgraded, as a user with cluster-admin privileges, verify that all
nodes are showing as Ready:

oc get nodes
NAME STATUS ROLES AGE VERSION
master.example.com Ready master 7h v1.9.1+a0ce1bc657
node1.example.com Ready compute 7h v1.9.1+a0ce1bc657
node2.example.com Ready compute 7h v1.9.1+a0ce1bc657

3.6. UPGRADING THE ROUTER

If you have previously deployed a router, the router deployment configuration must be upgraded to
apply updates contained in the router image. To upgrade your router without disrupting services, you
must have previously deployed a highly available routing service .

Edit your router’s deployment configuration. For example, if it has the default router name:

oc edit dc/router

Apply the following changes:

...
spec:
 template:
 spec:
 containers:
 - env:
 ...
 image: registry.access.redhat.com/openshift3/ose-haproxy-router:<tag> 1
 imagePullPolicy: IfNotPresent
 ...

Adjust <tag> to match the version you are upgrading to (use v3.9.102 for the latest version).

You should see one router pod updated and then the next.

3.7. UPGRADING THE REGISTRY

The registry must also be upgraded for changes to take effect in the registry image. If you have used a
PersistentVolumeClaim or a host mount point, you may restart the registry without losing the contents
of your registry. Storage for the Registry details how to configure persistent storage for the registry.

Edit your registry’s deployment configuration:

oc edit dc/docker-registry

Apply the following changes:

...

OpenShift Container Platform 3.9 Upgrading Clusters

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-router-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cluster_administration/#configuring-a-highly-available-service
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#storage-for-the-registry

1

spec:
 template:
 spec:
 containers:
 - env:
 ...
 image: registry.access.redhat.com/openshift3/ose-docker-registry:<tag> 1
 imagePullPolicy: IfNotPresent
 ...

Adjust <tag> to match the version you are upgrading to (use v3.9.102 for the latest version).

If the registry console is deployed, edit its deployment configuration:

oc edit dc/registry-console

Apply the following changes:

...
spec:
 template:
 spec:
 containers:
 - env:
 ...
 image: registry.access.redhat.com/openshift3/registry-console:v3.9
 imagePullPolicy: IfNotPresent
 ...

IMPORTANT

Images that are being pushed or pulled from the internal registry at the time of upgrade
will fail and should be restarted automatically. This will not disrupt pods that are already
running.

3.8. UPDATING THE DEFAULT IMAGE STREAMS AND TEMPLATES

By default, the advanced installation method automatically creates default image streams, InstantApp
templates, and database service templates in the openshift project, which is a default project to which
all users have view access. These objects were created during installation from the JSON files located
under the /usr/share/ansible/openshift-ansible/roles/openshift_examples/files/examples/
directory.

NOTE

Because RHEL Atomic Host 7 cannot use yum to update packages, the following steps
must take place on a RHEL 7 system.

Update the packages that provide the example JSON files. On a subscribed Red Hat Enterprise Linux 7
system where you can run the CLI as a user with cluster-admin permissions, install or update to the
latest version of the atomic-openshift-utils package, which should also update the openshift-ansible-
packages:

CHAPTER 3. PERFORMING MANUAL IN-PLACE CLUSTER UPGRADES

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-advanced-install

yum update atomic-openshift-utils

To persist /usr/share/openshift/examples/ on the first master:

$ scp -R /usr/share/ansible/openshift-ansible/roles/openshift_examples/files/examples/v3.9/*
user@master1:/usr/share/openshift/examples/

To persist /usr/share/openshift/examples/ on all masters:

$ mkdir /usr/share/openshift/examples
$ scp -R /usr/share/ansible/openshift-ansible/roles/openshift_examples/files/examples/v3.9/*
user@masterx:/usr/share/openshift/examples

The openshift-ansible-roles package provides the latest example JSON files.

1. After a manual upgrade, get the latest templates from openshift-ansible-roles:

rpm -ql openshift-ansible-roles | grep examples | grep v3.9

In this example, /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/image-streams/image-streams-
rhel7.json is the latest file that you want in the latest openshift-ansible-roles package.

/usr/share/openshift/examples/image-streams/image-streams-rhel7.json is not owned by a
package, but is updated by Ansible. If you are upgrading outside of Ansible. you need to get the
latest .json files on the system where you are running oc, which can run anywhere that has
access to the master.

2. Install atomic-openshift-utils and its dependencies to install the new content into
/usr/share/ansible/openshift-ansible/roles/openshift_examples/files/examples/v3.9/.:

$ oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/image-streams/image-streams-
rhel7.json
$ oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/image-
streams/dotnet_imagestreams.json
$ oc replace -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/image-streams/image-streams-
rhel7.json
$ oc replace -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/image-
streams/dotnet_imagestreams.json

3. Update the templates:

$ oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/quickstart-templates/
$ oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/db-templates/
$ oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/infrastructure-templates/
$ oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/xpaas-templates/

OpenShift Container Platform 3.9 Upgrading Clusters

30

$ oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/xpaas-streams/
$ oc replace -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/quickstart-templates/
$ oc replace -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/db-templates/
$ oc replace -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/infrastructure-templates/
$ oc replace -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/xpaas-templates/
$ oc replace -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/xpaas-streams/

Errors are generated for items that already exist. This is expected behavior:

oc create -n openshift -f /usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/quickstart-templates/
Error from server: error when creating "/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/quickstart-templates/cakephp-
mysql.json": templates "cakephp-mysql-example" already exists
Error from server: error when creating "/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/quickstart-templates/cakephp.json":
templates "cakephp-example" already exists
Error from server: error when creating "/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/quickstart-templates/dancer-
mysql.json": templates "dancer-mysql-example" already exists
Error from server: error when creating "/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/quickstart-templates/dancer.json":
templates "dancer-example" already exists
Error from server: error when creating "/usr/share/ansible/openshift-
ansible/roles/openshift_examples/files/examples/v3.9/quickstart-templates/django-
postgresql.json": templates "django-psql-example" already exists

Now, content can be updated. Without running the automated upgrade playbooks, the content is not
updated in /usr/share/openshift/.

3.9. IMPORTING THE LATEST IMAGES

After updating the default image streams , you may also want to ensure that the images within those
streams are updated. For each image stream in the default openshift project, you can run:

oc import-image -n openshift <imagestream>

For example, get the list of all image streams in the default openshift project:

oc get is -n openshift
NAME DOCKER REPO TAGS UPDATED
mongodb registry.access.redhat.com/openshift3/mongodb-24-rhel7 2.4,latest,v3.1.1.6 16
hours ago
mysql registry.access.redhat.com/openshift3/mysql-55-rhel7 5.5,latest,v3.1.1.6 16 hours
ago
nodejs registry.access.redhat.com/openshift3/nodejs-010-rhel7 0.10,latest,v3.1.1.6 16 hours
ago
...

CHAPTER 3. PERFORMING MANUAL IN-PLACE CLUSTER UPGRADES

31

Update each image stream one at a time:

oc import-image -n openshift nodejs
The import completed successfully.

Name: nodejs
Created: 10 seconds ago
Labels: <none>
Annotations: openshift.io/image.dockerRepositoryCheck=2016-07-05T19:20:30Z
Docker Pull Spec: 172.30.204.22:5000/openshift/nodejs

Tag Spec Created PullSpec Image
latest 4 9 seconds ago registry.access.redhat.com/rhscl/nodejs-4-rhel7:latest
570ad8ed927fd5c2c9554ef4d9534cef808dfa05df31ec491c0969c3bd372b05
4 registry.access.redhat.com/rhscl/nodejs-4-rhel7:latest 9 seconds ago <same>
570ad8ed927fd5c2c9554ef4d9534cef808dfa05df31ec491c0969c3bd372b05
0.10 registry.access.redhat.com/openshift3/nodejs-010-rhel7:latest 9 seconds ago <same>
a1ef33be788a28ec2bdd48a9a5d174ebcfbe11c8e986d2996b77f5bccaaa4774

IMPORTANT

In order to update your S2I-based applications, you must manually trigger a new build of
those applications after importing the new images using oc start-build <app-name>.

3.10. UPGRADING THE WEB CONSOLE

NOTE

Manual upgrade steps for the web console are not available.

Starting with OpenShift Container Platform 3.9, the web console is deployed as a separate component
rather than as part of the master. The console will be installed by default as part of an automated
upgrade unless you set the openshift_web_console_install variable to false.

Alternatively, you can install the web console separately if needed, for example as part of a manual
upgrade:

1. See the following section in the Advanced Installation topic and update your inventory file
accordingly.

2. Run the following playbook:

ansible-playbook -i </path/to/inventory/file> \
 /usr/share/ansible/openshift-ansible/playbooks/openshift-web-console/config.yml

CAUTION

The way the web console loads extensions has changed in OpenShift Container Platform 3.9. If you are
upgrading from an earlier version, you must host your extension scripts and stylesheets at a URL instead
of on the master file system. See the Loading Extension Scripts and Stylesheets topic for details.

3.11. UPGRADING THE SERVICE CATALOG

OpenShift Container Platform 3.9 Upgrading Clusters

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-web-console-customization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#loading-custom-scripts-and-stylesheets

NOTE

Manual upgrade steps for the service catalog and service brokers are not available.

To upgrade the service catalog:

1. See the following three sections in the Advanced Installation topic and update your inventory
file accordingly:

Configuring the Service Catalog

Configuring the OpenShift Ansible Broker

Configuring the Template Service Broker

2. Run the following playbook:

ansible-playbook -i </path/to/inventory/file> \
 /usr/share/ansible/openshift-ansible/playbooks/openshift-service-catalog/config.yml

3.12. UPGRADING THE EFK LOGGING STACK

NOTE

Manual upgrade steps for logging deployments are no longer available starting in
OpenShift Container Platform 3.5.

To upgrade an existing EFK logging stack deployment, you must use the provided
/usr/share/ansible/openshift-ansible/playbooks/openshift-logging/config.yml Ansible playbook.
This is the playbook to use if you were deploying logging for the first time on an existing cluster, but is
also used to upgrade existing logging deployments.

1. If you have any Elasticsearch SearchGuard indices in the following naming format, you need to
delete and reseed the indices because the naming format has changed. Elastic search might not
work as expected unless you update the indices:

.searchguard.logging-es-*

a. Run the following command to delete the SearchGuard indices:

oc exec -c elasticsearch <pod> -- es_util --query=.searchguard* -XDELETE

b. Run the following command to reseed the SearchGuard indices:

for pod in $(oc get pods -l component=es -o jsonpath={.items[*].metadata.name}); do
oc exec -c elasticsearch $pod -- es_seed_acl; done

2. If you have not already done so, see Specifying Logging Ansible Variables in the Aggregating
Container Logs topic and update your Ansible inventory file to at least set the following
required variable within the [OSEv3:vars] section:

[OSEv3:vars]

CHAPTER 3. PERFORMING MANUAL IN-PLACE CLUSTER UPGRADES

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-advanced-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#enabling-service-catalog
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-openshift-ansible-broker
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-template-service-broker
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#aggregate-logging-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-aggregate-logging

1

2

1

openshift_logging_install_logging=true 1
openshift_logging_image_version=<tag> 2

Enables the ability to upgrade the logging stack.

Replace <tag> with v3.9.102 for the latest version.

3. Add any other openshift_logging_* variables that you want to specify to override the defaults,
as described in Specifying Logging Ansible Variables .

4. When you have finished updating your inventory file, follow the instructions in Deploying the
EFK Stack to run the openshift-logging/config.yml playbook and complete the logging
deployment upgrade.

NOTE

If your Fluentd DeploymentConfig and DaemonSet for the EFK components are already
set with:

 image: <image_name>:<vX.Y>
 imagePullPolicy: IfNotPresent

The latest version <image_name> might not be pulled if there is already one with the same
<image_name:vX.Y> stored locally on the node where the pod is being re-deployed. If so,
manually change the DeploymentConfig and DaemonSet to imagePullPolicy: Always to
make sure it is re-pulled.

3.13. UPGRADING CLUSTER METRICS

NOTE

Manual upgrade steps for metrics deployments are no longer available starting in
OpenShift Container Platform 3.5.

To upgrade an existing cluster metrics deployment, you must use the provided
/usr/share/ansible/openshift-ansible/playbooks/openshift-metrics/config.yml Ansible playbook.
This is the playbook to use if you were deploying metrics for the first time on an existing cluster, but is
also used to upgrade existing metrics deployments.

1. If you have not already done so, see Specifying Metrics Ansible Variables in the Enabling Cluster
Metrics topic and update your Ansible inventory file to at least set the following required
variables within the [OSEv3:vars] section:

[OSEv3:vars]

openshift_metrics_install_metrics=true 1
openshift_metrics_image_version=<tag> 2
openshift_metrics_hawkular_hostname=<fqdn> 3
openshift_metrics_cassandra_storage_type=(emptydir|pv|dynamic) 4

Enables the ability to upgrade the metrics deployment.

OpenShift Container Platform 3.9 Upgrading Clusters

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#aggregate-logging-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#deploying-the-efk-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#metrics-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-cluster-metrics

2

3

4

Replace <tag> with v3.9.102 for the latest version.

Used for the Hawkular Metrics route. Should correspond to a fully qualified domain name.

Choose a type that is consistent with the previous deployment.

2. Add any other openshift_metrics_* variables that you want to specify to override the defaults,
as described in Specifying Metrics Ansible Variables .

3. When you have finished updating your inventory file, follow the instructions in Deploying the
Metrics Deployment to run the openshift-metrics/config.yml playbook and complete the
metrics deployment upgrade.

3.14. ADDITIONAL MANUAL STEPS PER RELEASE

Some OpenShift Container Platform releases may have additional instructions specific to that release
that must be performed to fully apply the updates across the cluster. This section will be updated over
time as new asynchronous updates are released for OpenShift Container Platform 3.9.

See the OpenShift Container Platform 3.9 Release Notes to review the latest release notes.

3.15. VERIFYING THE UPGRADE

To verify the upgrade:

1. Check that all nodes are marked as Ready:

oc get nodes
NAME STATUS ROLES AGE VERSION
master.example.com Ready master 7h v1.9.1+a0ce1bc657
node1.example.com Ready compute 7h v1.9.1+a0ce1bc657
node2.example.com Ready compute 7h v1.9.1+a0ce1bc657

2. Verify that you are running the expected versions of the docker-registry and router images, if
deployed. Replace <tag> with v3.9.102 for the latest version.

oc get -n default dc/docker-registry -o json | grep \"image\"
 "image": "openshift3/ose-docker-registry:<tag>",
oc get -n default dc/router -o json | grep \"image\"
 "image": "openshift3/ose-haproxy-router:<tag>",

3. Use the diagnostics tool on the master to look for common issues:

oc adm diagnostics
...
[Note] Summary of diagnostics execution:
[Note] Completed with no errors or warnings seen.

CHAPTER 3. PERFORMING MANUAL IN-PLACE CLUSTER UPGRADES

35

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#metrics-ansible-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#deploying-the-metrics-components
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/release_notes/#release-notes-ocp-3-9-release-notes

CHAPTER 4. BLUE-GREEN DEPLOYMENTS

4.1. OVERVIEW

NOTE

This topic serves as an alternative approach for node host upgrades to the in-place
upgrade method.

The blue-green deployment upgrade method follows a similar flow to the in-place method: masters and
etcd servers are still upgraded first, however a parallel environment is created for new node hosts
instead of upgrading them in-place.

This method allows administrators to switch traffic from the old set of node hosts (e.g., the blue
deployment) to the new set (e.g., the green deployment) after the new deployment has been verified. If
a problem is detected, it is also then easy to rollback to the old deployment quickly.

While blue-green is a proven and valid strategy for deploying just about any software, there are always
trade-offs. Not all environments have the same uptime requirements or the resources to properly
perform blue-green deployments.

In an OpenShift Container Platform environment, the most suitable candidate for blue-green
deployments are the node hosts. All user processes run on these systems and even critical pieces of
OpenShift Container Platform infrastructure are self-hosted on these resources. Uptime is most
important for these workloads and the additional complexity of blue-green deployments can be
justified.

The exact implementation of this approach varies based on your requirements. Often the main
challenge is having the excess capacity to facilitate such an approach.

Figure 4.1. Blue-Green Deployment

OpenShift Container Platform 3.9 Upgrading Clusters

36

Figure 4.1. Blue-Green Deployment

4.2. PREPARING FOR A BLUE-GREEN UPGRADE

After you have upgraded your master and etcd hosts using method described for In-place Upgrades, use
the following sections to prepare your environment for a blue-green upgrade of the remaining node
hosts.

4.2.1. Sharing Software Entitlements

Administrators must temporarily share the Red Hat software entitlements between the blue-green
deployments or provide access to the installation content by means of a system such as Red Hat
Satellite. This can be accomplished by sharing the consumer ID from the previous node host:

1. On each old node host that will be upgraded, note its system identity value, which is the
consumer ID:

subscription-manager identity | grep system
system identity: 6699375b-06db-48c4-941e-689efd6ce3aa

2. On each new RHEL 7 or RHEL Atomic Host 7 system that is going to replace an old node host,
register using the respective consumer ID from the previous step:

subscription-manager register --consumerid=6699375b-06db-48c4-941e-689efd6ce3aa

IMPORTANT

After a successful deployment, remember to unregister the old host with subscription-
manager clean to prevent the environment from being out of compliance.

CHAPTER 4. BLUE-GREEN DEPLOYMENTS

37

4.2.2. Labeling Blue Nodes

You must ensure that your current node hosts in production are labeled either blue or green. In this
example, the current production environment will be blue and the new environment will be green.

1. Get the current list of node names known to the cluster:

$ oc get nodes

2. Ensure that all hosts have appropriate node labels. All master hosts should be configured as
schedulable node hosts (so that they are joined to the pod network and can run the web console
pod). To improve cluster management, add a label to each host that describes its type, such as
type=master or type=node.
For example, to label node hosts that are also masters as type=master, run the following for
each relevant <node_name>:

$ oc label node <node_name> type=master

To label non-master node hosts as type=node, run the following for each relevant
<node_name>:

$ oc label node <node_name> type=node

Alternatively, if you have already finished labeling certain nodes with type=master and just want
to label all remaining nodes as type=node, you can use the --all option and any hosts that
already had a type= set will not be overwritten:

$ oc label node --all type=node

3. Label all non-master node hosts in your current production environment to color=blue. For
example, using the labels described in the previous step:

$ oc label node -l type=node color=blue

In the above command, the -l flag is used to match a subset of the environment using the
selector type=node, and all matches are labeled with color=blue.

4.2.3. Creating and Labeling Green Nodes

Create the new green environment for any node hosts that are to be replaced by adding an equal
number of new node hosts to the existing cluster. You can use the advanced install method as described
in Adding Hosts to an Existing Cluster .

When adding these new nodes, use the following Ansible variables:

Apply the color=green label automatically during the installation of these hosts by setting the
openshift_node_labels variable for each node host. You can always adjust the labels after
installation as well, if needed, using the oc label node command.

In order to delay workload scheduling until the nodes are deemed healthy (which you will verify
in later steps), set the openshift_schedulable=false variable for each node host to ensure
they are unschedulable initially.

Example new_nodes Host Group

OpenShift Container Platform 3.9 Upgrading Clusters

38

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-network-plugins
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-adding-hosts-to-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#node

Add the following to your existing inventory. Everything that was in your inventory previously should
remain.

[new_nodes]
node4.example.com openshift_node_labels="{'region': 'primary', 'color':'green'}"
openshift_schedulable=false
node5.example.com openshift_node_labels="{'region': 'primary', 'color':'green'}"
openshift_schedulable=false
node6.example.com openshift_node_labels="{'region': 'primary', 'color':'green'}"
openshift_schedulable=false
infra-node3.example.com openshift_node_labels="{'region': 'infra', 'color':'green'}"
openshift_schedulable=false
infra-node4.example.com openshift_node_labels="{'region': 'infra', 'color':'green'}"
openshift_schedulable=false

4.2.4. Verifying Green Nodes

Verify that your new green nodes are in a healthy state. Perform the following checklist:

1. Verify that new nodes are detected in the cluster and are in Ready state:

$ oc get nodes

ip-172-31-49-10.ec2.internal Ready 3d

2. Verify that the green nodes have proper labels:

$ oc get nodes --show-labels

ip-172-31-49-10.ec2.internal Ready 4d
beta.kubernetes.io/arch=amd64,beta.kubernetes.io/instance-
type=m4.large,beta.kubernetes.io/os=linux,color=green,failure-
domain.beta.kubernetes.io/region=us-east-1,failure-domain.beta.kubernetes.io/zone=us-
east-1c,hostname=openshift-cluster-1d005,kubernetes.io/hostname=ip-172-31-49-
10.ec2.internal,region=us-east-1,type=infra

3. Perform a diagnostic check for the cluster:

$ oc adm diagnostics

[Note] Determining if client configuration exists for client/cluster diagnostics
Info: Successfully read a client config file at '/root/.kube/config'
Info: Using context for cluster-admin access: 'default/internal-api-upgradetest-openshift-
com:443/system:admin'
[Note] Performing systemd discovery

[Note] Running diagnostic: ConfigContexts[default/api-upgradetest-openshift-
com:443/system:admin]
 Description: Validate client config context is complete and has connectivity
...
 [Note] Running diagnostic: CheckExternalNetwork
 Description: Check that external network is accessible within a pod

 [Note] Running diagnostic: CheckNodeNetwork

CHAPTER 4. BLUE-GREEN DEPLOYMENTS

39

 Description: Check that pods in the cluster can access its own node.

 [Note] Running diagnostic: CheckPodNetwork
 Description: Check pod to pod communication in the cluster. In case of ovs-subnet
network plugin, all pods
should be able to communicate with each other and in case of multitenant network plugin,
pods in non-global projects
should be isolated and pods in global projects should be able to access any pod in the cluster
and vice versa.

 [Note] Running diagnostic: CheckServiceNetwork
 Description: Check pod to service communication in the cluster. In case of ovs-
subnet network plugin, all
pods should be able to communicate with all services and in case of multitenant network
plugin, services in non-global
projects should be isolated and pods in global projects should be able to access any service
in the cluster.
...

4.3. REGISTRY AND ROUTER CANARY DEPLOYMENTS

A common practice is to scale the registry and router pods until they are migrated to new (green)
infrastructure node hosts. For these pods, a canary deployment approach is commonly used.

Scaling these pods up will make them immediately active on the new infrastructure nodes. Pointing their
deployment configuration to the new image initiates a rolling update. However, because of node anti-
affinity, and the fact that the blue nodes are still unschedulable, the deployments to the old nodes will
fail.

At this point, the registry and router deployments can be scaled down to the original number of pods. At
any given point, the original number of pods is still available so no capacity is lost and downtime should
be avoided.

4.4. WARMING THE GREEN NODES

In order for pods to be migrated from the blue environment to the green, the required container images
must be pulled. Network latency and load on the registry can cause delays if there is not sufficient
capacity built in to the environment.

Often, the best way to minimize impact to the running system is to trigger new pod deployments that
will land on the new nodes. Accomplish this by importing new image streams.

Major releases of OpenShift Container Platform (and sometimes asynchronous errata updates)
introduce new image streams for builder images for users of Source-to-Image (S2I). Upon import, any
builds or deployments configured with image change triggers are automatically created.

Another benefit of triggering the builds is that it does a fairly good job of fetching the majority of the
ancillary images to all node hosts such as the various builder images, the pod infrastructure image, and
deployers. The green nodes are then considered warmed (that is, ready for the expected load increase),
and everything else can be migrated over using node evacuation in a later step, proceeding more quickly
as a result.

When you are ready to continue with the upgrade process, follow these steps to warm the green nodes:

1. Set the green nodes to schedulable so that new pods only land on them:

OpenShift Container Platform 3.9 Upgrading Clusters

40

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#canary-deployments
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/developer_guide/#image-change-triggers

$ oc adm manage-node --schedulable=true --selector=color=green

2. Disable the blue nodes so that no new pods are run on them by setting them unschedulable:

$ oc adm manage-node --schedulable=false --selector=color=blue

3. Update the default image streams and templates as described in Manual In-place Upgrades .

4. Import the latest images as described in Manual In-place Upgrades .
It is important to realize that this process can trigger a large number of builds. The good news is
that the builds are performed on the green nodes and, therefore, do not impact any traffic on
the blue deployment.

5. To monitor build progress across all namespaces (projects) in the cluster:

$ oc get events -w --all-namespaces

In large environments, builds rarely completely stop. However, you should see a large increase
and decrease caused by the administrative image import.

4.5. EVACUATING AND DECOMMISSIONING BLUE NODES

For larger deployments, it is possible to have other labels that help determine how evacuation can be
coordinated. The most conservative approach for avoiding downtime is to evacuate one node host at a
time.

If services are composed of pods using zone anti-affinity, then an entire zone can be evacuated at once.
It is important to ensure that the storage volumes used are available in the new zone as this detail can
vary among cloud providers.

In OpenShift Container Platform 3.2 and later, a node host evacuation is triggered whenever the node
service is stopped. Node labeling is very important and can cause issues if nodes are mislabeled or
commands are run on nodes with generalized labels. Exercise caution if master hosts are also labeled
with color=blue.

When you are ready to continue with the upgrade process, follow these steps.

1. Evacuate and delete all blue nodes by following one of the following options:

a. Option A Manually evacuate then delete all the color=blue nodes with the following
commands:

$ oc adm manage-node --selector=color=blue --evacuate
$ oc delete node --selector=color=blue

b. Option B Filter out the masters before running the delete command:

i. Verify the list of blue node hosts to delete by running the following command. The
output of this command includes a list of all node hosts that have the color=blue label
but do not have the type=master label. All of the hosts in your cluster must be assigned
both the color and type labels. You can change the command to apply more filters if
you need to further limit the list of nodes.

CHAPTER 4. BLUE-GREEN DEPLOYMENTS

41

$ oc get nodes -o go-template='{{ range .items }}{{ if (eq .metadata.labels.color
"blue") and (ne .metadata.labels.type "master") }}{{ .metadata.name }}{{ "\n" }}{{end}}{{
end }}'

ii. After you confirm the list of blue nodes to delete, run this command to delete that list
of nodes:

$ for i in $(oc get nodes -o \
 go-template='{{ range .items }}{{ if (eq .metadata.labels.color "blue") and (ne
.metadata.labels.type "master") }}{{ .metadata.name }}{{ "\n" }}{{end}}{{ end }}'); \
do
 oc delete node $i
done

2. After the blue node hosts no longer contain pods and have been removed from OpenShift
Container Platform they are safe to power off. As a safety precaution, leaving the hosts around
for a short period of time can prove beneficial if the upgrade has issues.

3. Ensure that any desired scripts or files are captured before terminating these hosts. After a
determined time period and capacity is not an issue, remove these hosts.

OpenShift Container Platform 3.9 Upgrading Clusters

42

CHAPTER 5. UPDATING OPERATING SYSTEMS

5.1. PURPOSE

Updating the operating system (OS) on a host, by either upgrading across major releases or updating
the system software for a minor release, can impact the OpenShift Container Platform software running
on those machines. In particular, these updates can affect the iptables rules or ovs flows that OpenShift
Container Platform requires to operate.

5.2. UPDATING THE OPERATING SYSTEM ON A HOST

Use the following to safely upgrade the OS on a host:

1. Drain the node in preparation for maintenance:

$ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets

2. In order to protect sensitive packages that do not need to be updated, apply the exclude rules
to the host:

atomic-openshift-docker-excluder exclude
atomic-openshift-excluder exclude

3. Update the host packages and reboot the host. A reboot ensures that the host is running the
newest versions and means that the docker and OpenShift Container Platform processes have
been restarted, which forces them to check that all of the rules in other services are correct.

 # yum update
 # reboot

However, instead of rebooting a node host, you can restart the services that are affected or
preserve the iptables state. Both processes are described in the OpenShift Container Platform
iptables topic. The ovs flow rules do not need to be saved, but restarting the OpenShift
Container Platform node software fixes the flow rules.

4. Configure the host to be schedulable again:

$ oc adm uncordon <node_name>

CHAPTER 5. UPDATING OPERATING SYSTEMS

43

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cluster_administration/#admin-guide-iptables

CHAPTER 6. DOWNGRADING OPENSHIFT

6.1. OVERVIEW

Following an OpenShift Container Platform upgrade, it may be desirable in extreme cases to downgrade
your cluster to a previous version. The following sections outline the required steps for each system in a
cluster to perform such a downgrade for the OpenShift Container Platform 3.9 to 3.7 downgrade path.

NOTE

You can downgrade directly from 3.9 to 3.7, but you must restore from the etcd backup.

If the upgrade failed at the 3.8 step, then the same downgrade procedures apply.

WARNING

These steps are currently only supported for RPM-based installations of OpenShift
Container Platform and assumes downtime of the entire cluster.

6.2. VERIFYING BACKUPS

The Ansible playbook used during the upgrade process should have created a backup of the master-
config.yaml file and the etcd data directory. Ensure these exist on your masters and etcd members:

/etc/origin/master/master-config.yaml.<timestamp>
/var/lib/etcd/openshift-backup-pre-upgrade-<timestamp>
/etc/origin/master/scheduler.json.<timestamp>

Also, back up the node-config.yaml file on each node (including masters, which have the node
component on them) with a timestamp:

/etc/origin/node/node-config.yaml.<timestamp>

If you are using an external etcd cluster (versus the single embedded etcd), the backup is likely created
on all etcd members, though only one is required for the recovery process.

Keep a copy of the .rpmsave backups of the following files:

/etc/sysconfig/atomic-openshift-master-api
/etc/sysconfig/atomic-openshift-master-controller
/etc/etcd/etcd.conf

NOTE

Restore from the first pre-upgrade backup taken on the day of the upgrade.

6.3. SHUTTING DOWN THE CLUSTER

OpenShift Container Platform 3.9 Upgrading Clusters

44

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#install-config-install-rpm-vs-containerized

On all masters, nodes, and etcd members (if using an external etcd cluster), ensure the relevant services
are stopped.

systemctl stop atomic-openshift-master-api atomic-openshift-master-controllers

On all master and node hosts:

systemctl stop atomic-openshift-node

On any external etcd hosts:

systemctl stop etcd

6.4. REMOVING RPMS

The *-excluder packages add entries to the exclude directive in the host’s /etc/yum.conf file when
installed.

1. On all masters, nodes, and etcd members (if using a dedicated etcd cluster), remove the
following packages:

yum remove atomic-openshift \
 atomic-openshift-clients \
 atomic-openshift-node \
 atomic-openshift-master-api \
 atomic-openshift-master-controllers \
 openvswitch \
 atomic-openshift-sdn-ovs \
 tuned-profiles-atomic-openshift-node\
 atomic-openshift-excluder\
 atomic-openshift-docker-excluder

2. If you are using external etcd, also remove the etcd package:

yum remove etcd

6.5. DOWNGRADING DOCKER

OpenShift Container Platform 3.9 requires Docker 1.13, while OpenShift Container Platform 3.7 requires
Docker 1.12.

On any host running Docker 1.13, downgrade to Docker 1.12 using the following steps:

1. Remove all local containers and images on the host. Any pods backed by a replication controller
will be recreated.

CHAPTER 6. DOWNGRADING OPENSHIFT

45

WARNING

The following commands are destructive and should be used with caution.

Delete all containers:

docker rm $(docker ps -a -q) -f

Delete all images:

docker rmi $(docker images -q)

2. Use yum swap (instead of yum downgrade) to install Docker 1.12.6:

yum swap docker-* docker-*1.12.6 -y
sed -i 's/--storage-opt dm.use_deferred_deletion=true//' /etc/sysconfig/docker-storage
systemctl restart docker

3. You should now have Docker 1.12.6 installed and running on the host. Verify with the following:

docker version
systemctl status docker

6.6. REINSTALLING RPMS

Disable the OpenShift Container Platform 3.8 and 3.9 repositories, and re-enable the 3.7 repositories:

subscription-manager repos \
 --disable=rhel-7-server-ose-3.8-rpms \
 --disable=rhel-7-server-ose-3.9-rpms \
 --enable=rhel-7-server-ose-3.7-rpms

On each master, install the following packages:

yum install atomic-openshift \
 atomic-openshift-clients \
 atomic-openshift-node \
 atomic-openshift-master-api \
 atomic-openshift-master-controllers \
 openvswitch \
 atomic-openshift-sdn-ovs \
 tuned-profiles-atomic-openshift-node \
 atomic-openshift-excluder \
 atomic-openshift-docker-excluder

On each node, install the following packages:

yum install atomic-openshift \

OpenShift Container Platform 3.9 Upgrading Clusters

46

 atomic-openshift-node \
 openvswitch \
 atomic-openshift-sdn-ovs \
 tuned-profiles-atomic-openshift-node \
 atomic-openshift-excluder \
 atomic-openshift-docker-excluder

If using an external etcd cluster, install the following package on each etcd member:

yum install etcd

6.7. RESTORING ETCD

The restore procedure for etcd configuration files replaces the appropriate files, then restarts the
service.

If an etcd host has become corrupted and the /etc/etcd/etcd.conf file is lost, restore it using:

$ ssh master-0
cp /backup/yesterday/master-0-files/etcd.conf /etc/etcd/etcd.conf
restorecon -Rv /etc/etcd/etcd.conf
systemctl restart etcd.service

In this example, the backup file is stored in the /backup/yesterday/master-0-files/etcd.conf path where
it can be used as an external NFS share, S3 bucket, or other storage solution.

6.7.1. Restoring etcd v2 & v3 data

The following process restores healthy data files and starts the etcd cluster as a single node, then adds
the rest of the nodes if an etcd cluster is required.

Procedure

1. Stop all etcd services:

systemctl stop etcd.service

2. To ensure the proper backup is restored, delete the etcd directories:

To back up the current etcd data before you delete the directory, run the following
command:

mv /var/lib/etcd /var/lib/etcd.old
mkdir /var/lib/etcd
chown -R etcd.etcd /var/lib/etcd/
restorecon -Rv /var/lib/etcd/

Or, to delete the directory and the etcd, data, run the following command:

rm -Rf /var/lib/etcd/*

NOTE

CHAPTER 6. DOWNGRADING OPENSHIFT

47

NOTE

In an all-in-one cluster, the etcd data directory is located in the
/var/lib/origin/openshift.local.etcd directory.

3. Restore a healthy backup data file to each of the etcd nodes. Perform this step on all etcd
hosts, including master hosts collocated with etcd.

cp -R /backup/etcd-xxx/* /var/lib/etcd/
mv /var/lib/etcd/db /var/lib/etcd/member/snap/db
chcon -R --reference /backup/etcd-xxx/* /var/lib/etcd/
chown -R etcd:etcd /var/lib/etcd/R

4. Run the etcd service on each host, forcing a new cluster.
This creates a custom file for the etcd service, which overwrites the execution command adding
the --force-new-cluster option:

mkdir -p /etc/systemd/system/etcd.service.d/
echo "[Service]" > /etc/systemd/system/etcd.service.d/temp.conf
echo "ExecStart=" >> /etc/systemd/system/etcd.service.d/temp.conf
sed -n '/ExecStart/s/"$/ --force-new-cluster"/p' \
 /usr/lib/systemd/system/etcd.service \
 >> /etc/systemd/system/etcd.service.d/temp.conf

systemctl daemon-reload
systemctl restart etcd

5. Check for error messages:

$ journalctl -fu etcd.service

6. Check for health status:

etcdctl2 cluster-health
member 5ee217d17301 is healthy: got healthy result from https://192.168.55.8:2379
cluster is healthy

7. Restart the etcd service in cluster mode:

rm -f /etc/systemd/system/etcd.service.d/temp.conf
systemctl daemon-reload
systemctl restart etcd

8. Check for health status and member list:

etcdctl2 cluster-health
member 5ee217d17301 is healthy: got healthy result from https://192.168.55.8:2379
cluster is healthy

etcdctl2 member list
5ee217d17301: name=master-0.example.com peerURLs=http://localhost:2380
clientURLs=https://192.168.55.8:2379 isLeader=true

OpenShift Container Platform 3.9 Upgrading Clusters

48

9. After the first instance is running, you can restore the rest of your etcd servers.

6.7.1.1. Fix the peerURLS parameter

After restoring the data and creating a new cluster, the peerURLs parameter shows localhost instead
of the IP where etcd is listening for peer communication:

etcdctl2 member list
5ee217d17301: name=master-0.example.com peerURLs=http://*localhost*:2380
clientURLs=https://192.168.55.8:2379 isLeader=true

6.7.1.1.1. Procedure

1. Get the member ID using etcdctl member list:

`etcdctl member list`

2. Get the IP where etcd listens for peer communication:

$ ss -l4n | grep 2380

3. Update the member information with that IP:

etcdctl2 member update 5ee217d17301 https://192.168.55.8:2380
Updated member with ID 5ee217d17301 in cluster

4. To verify, check that the IP is in the member list:

$ etcdctl2 member list
5ee217d17301: name=master-0.example.com peerURLs=https://*192.168.55.8*:2380
clientURLs=https://192.168.55.8:2379 isLeader=true

6.7.2. Restoring etcd for v3

The restore procedure for v3 data is similar to the restore procedure for the v2 data.

Snapshot integrity may be optionally verified at restore time. If the snapshot is taken with etcdctl
snapshot save, it will have an integrity hash that is checked by etcdctl snapshot restore. If the
snapshot is copied from the data directory, there is no integrity hash and it will only restore by using --
skip-hash-check.

IMPORTANT

The procedure to restore only the v3 data must be performed on a single etcd host. You
can then add the rest of the nodes to the cluster.

Procedure

1. Stop all etcd services:

systemctl stop etcd.service

2. Clear all old data, because etcdctl recreates it in the node where the restore procedure is going

CHAPTER 6. DOWNGRADING OPENSHIFT

49

2. Clear all old data, because etcdctl recreates it in the node where the restore procedure is going
to be performed:

rm -Rf /var/lib/etcd

3. Run the snapshot restore command, substituting the values from the /etc/etcd/etcd.conf file:

etcdctl3 snapshot restore /backup/etcd-xxxxxx/backup.db \
 --data-dir /var/lib/etcd \
 --name master-0.example.com \
 --initial-cluster "master-0.example.com=https://192.168.55.8:2380" \ --initial-cluster-token
"etcd-cluster-1" \
 --initial-advertise-peer-urls https://192.168.55.8:2380

2017-10-03 08:55:32.440779 I | mvcc: restore compact to 1041269
2017-10-03 08:55:32.468244 I | etcdserver/membership: added member 40bef1f6c79b3163
[https://192.168.55.8:2380] to cluster 26841ebcf610583c

4. Restore permissions and selinux context to the restored files:

chown -R etcd.etcd /var/lib/etcd/
restorecon -Rv /var/lib/etcd

5. Start the etcd service:

systemctl start etcd

6. Check for any error messages:

$ journalctl -fu etcd.service

6.8. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK
ONLINE

After you finish your changes, bring OpenShift Container Platform back online.

Procedure

1. On each OpenShift Container Platform master, restore your master and node configuration
from backup and enable and restart all relevant services:

cp ${MYBACKUPDIR}/etc/sysconfig/atomic-openshift-master-api /etc/sysconfig/atomic-
openshift-master-api
cp ${MYBACKUPDIR}/etc/sysconfig/atomic-openshift-master-controllers
/etc/sysconfig/atomic-openshift-master-controllers
cp ${MYBACKUPDIR}/etc/origin/master/master-config.yaml.<timestamp>
/etc/origin/master/master-config.yaml
cp ${MYBACKUPDIR}/etc/origin/node/node-config.yaml.<timestamp>
/etc/origin/node/node-config.yaml
cp ${MYBACKUPDIR}/etc/origin/master/scheduler.json.<timestamp>
/etc/origin/master/scheduler.json
systemctl enable atomic-openshift-master-api
systemctl enable atomic-openshift-master-controllers

OpenShift Container Platform 3.9 Upgrading Clusters

50

systemctl enable atomic-openshift-node
systemctl start atomic-openshift-master-api
systemctl start atomic-openshift-master-controllers
systemctl start atomic-openshift-node

2. On each OpenShift Container Platform node, restore your node-config.yaml file from backup
and enable and restart the atomic-openshift-node service:

cp /etc/origin/node/node-config.yaml.<timestamp> /etc/origin/node/node-config.yaml
systemctl enable atomic-openshift-node
systemctl start atomic-openshift-node

6.9. VERIFYING THE DOWNGRADE

1. To verify the downgrade, first check that all nodes are marked as Ready:

oc get nodes
NAME STATUS AGE
master.example.com Ready,SchedulingDisabled 165d
node1.example.com Ready 165d
node2.example.com Ready 165d

2. Then, verify that you are running the expected versions of the docker-registry and router
images, if deployed:

oc get -n default dc/docker-registry -o json | grep \"image\"
 "image": "openshift3/ose-docker-registry:v3.7.23",
oc get -n default dc/router -o json | grep \"image\"
 "image": "openshift3/ose-haproxy-router:v3.7.23",

3. You can use the diagnostics tool on the master to look for common issues and provide
suggestions:

oc adm diagnostics
...
[Note] Summary of diagnostics execution:
[Note] Completed with no errors or warnings seen.

CHAPTER 6. DOWNGRADING OPENSHIFT

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cluster_administration/#admin-guide-diagnostics-tool

CHAPTER 7. KNOWN ISSUES

7.1. OVERVIEW

When upgrading your OpenShift Container Platform cluster, there are two primary data migrations that
take place. The first occurs while still running the current version of OpenShift Container Platform, and
the second happens after the upgrade completes.

If the pre-upgrade migration fails, the upgrade will be halted and the cluster administrator must resolve
any data consistency problems before attempting the upgrade again. If the post-upgrade migration
fails, the upgrade will complete and the cluster administrator should investigate the data migration
issues as soon as possible. This document catalogs known data consistency problems and how to resolve
them.

7.2. DUPLICATE PORTS IN SERVICE DEFINITION

Service objects have more strict validation rules, one that does not allow duplicate Ports entries
(considering Protocol and Port pair). (BZ#1563929)

Error Output

TASK [Upgrade all storage]

fatal: [test.linux.lan]: FAILED! => {
 "changed": true,
 "cmd": [
 "oc",
 "adm",
 "--config=/etc/origin/master/admin.kubeconfig",
 "migrate",
 "storage",
 "--include=*",
 "--confirm"
],
 "delta": "0:07:06.574833",
 "end": "2018-04-03 11:22:07.834827",
 "failed_when_result": true,
 "msg": "non-zero return code",
 "rc": 1,
 "start": "2018-04-03 11:15:01.259994",
}

STDOUT

error: Service "my-service" is invalid: spec.ports[5]: Duplicate value: api.ServicePort{Name:"",
Protocol:"TCP", Port:8500, TargetPort:intstr.IntOrString{Type:0, IntVal:0, StrVal:""}, NodePort:0}
summary: total=37768 errors=1 ignored=0 unchanged=37767 migrated=0
info: to rerun only failing resources, add --include=services
error: 1 resources failed to migrate

To resolve this issue:

1. Log in to the CLI as a cluster administrator and inspect the Service objects listed in the error.

OpenShift Container Platform 3.9 Upgrading Clusters

52

https://bugzilla.redhat.com/show_bug.cgi?id=1563929

2. Edit the .spec.ports of the objects removing duplicate ports keeping in mind that pair
.spec.ports[*].name and .spec.ports[*].port must be unique.

CHAPTER 7. KNOWN ISSUES

53

	Table of Contents
	CHAPTER 1. UPGRADE METHODS AND STRATEGIES
	1.1. INTRODUCTION TO UPGRADING CLUSTERS
	1.2. UPGRADE METHODS
	1.2.1. Automated Method
	1.2.2. Manual Method

	1.3. UPGRADE STRATEGIES
	1.3.1. In-place Upgrades
	1.3.2. Blue-green Deployments

	CHAPTER 2. PERFORMING AUTOMATED IN-PLACE CLUSTER UPGRADES
	2.1. OVERVIEW
	2.2. PREPARING FOR AN AUTOMATED UPGRADE
	2.2.1. Upgrading the Control Plane and Nodes in Separate Phases
	2.2.2. Customizing Node Upgrades
	2.2.3. Customizing Upgrades With Ansible Hooks
	2.2.3.1. Limitations
	2.2.3.2. Using Hooks
	2.2.3.3. Available Upgrade Hooks

	2.3. UPGRADING TO THE LATEST OPENSHIFT CONTAINER PLATFORM 3.9 RELEASE
	2.4. UPGRADING THE EFK LOGGING STACK
	2.5. UPGRADING CLUSTER METRICS
	2.6. SPECIAL CONSIDERATIONS FOR LARGE-SCALE UPGRADES
	2.7. SPECIAL CONSIDERATIONS FOR MIXED ENVIRONMENTS
	2.8. SPECIAL CONSIDERATIONS WHEN USING CONTAINERIZED GLUSTERFS
	2.9. SPECIAL CONSIDERATIONS WHEN USING GCEPD
	2.10. VERIFYING THE UPGRADE

	CHAPTER 3. PERFORMING MANUAL IN-PLACE CLUSTER UPGRADES
	3.1. OVERVIEW
	3.2. PREPARING FOR A MANUAL UPGRADE
	3.3. UPGRADING MASTER COMPONENTS
	3.4. UPDATING POLICY DEFINITIONS
	3.5. UPGRADING NODES
	3.6. UPGRADING THE ROUTER
	3.7. UPGRADING THE REGISTRY
	3.8. UPDATING THE DEFAULT IMAGE STREAMS AND TEMPLATES
	3.9. IMPORTING THE LATEST IMAGES
	3.10. UPGRADING THE WEB CONSOLE
	3.11. UPGRADING THE SERVICE CATALOG
	3.12. UPGRADING THE EFK LOGGING STACK
	3.13. UPGRADING CLUSTER METRICS
	3.14. ADDITIONAL MANUAL STEPS PER RELEASE
	3.15. VERIFYING THE UPGRADE

	CHAPTER 4. BLUE-GREEN DEPLOYMENTS
	4.1. OVERVIEW
	4.2. PREPARING FOR A BLUE-GREEN UPGRADE
	4.2.1. Sharing Software Entitlements
	4.2.2. Labeling Blue Nodes
	4.2.3. Creating and Labeling Green Nodes
	4.2.4. Verifying Green Nodes

	4.3. REGISTRY AND ROUTER CANARY DEPLOYMENTS
	4.4. WARMING THE GREEN NODES
	4.5. EVACUATING AND DECOMMISSIONING BLUE NODES

	CHAPTER 5. UPDATING OPERATING SYSTEMS
	5.1. PURPOSE
	5.2. UPDATING THE OPERATING SYSTEM ON A HOST

	CHAPTER 6. DOWNGRADING OPENSHIFT
	6.1. OVERVIEW
	6.2. VERIFYING BACKUPS
	6.3. SHUTTING DOWN THE CLUSTER
	6.4. REMOVING RPMS
	6.5. DOWNGRADING DOCKER
	6.6. REINSTALLING RPMS
	6.7. RESTORING ETCD
	6.7.1. Restoring etcd v2 & v3 data
	Procedure
	6.7.1.1. Fix the peerURLS parameter

	6.7.2. Restoring etcd for v3
	Procedure

	6.8. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK ONLINE
	Procedure

	6.9. VERIFYING THE DOWNGRADE

	CHAPTER 7. KNOWN ISSUES
	7.1. OVERVIEW
	7.2. DUPLICATE PORTS IN SERVICE DEFINITION

