
JBoss Enterprise Application Platform
Common Criteria Certification 5

Transactions Development Guide

Developing Applications Using JTA, JTS, and XTS APIs

Edition 5.1.0

Last Updated: 2017-11-20

JBoss Enterprise Application Platform Common Criteria Certification 5

Transactions Development Guide

Developing Applications Using JTA, JTS, and XTS APIs
Edition 5.1.0

Mark Little
Red Hat
mlittle@redhat.com

Andrew Dinn
Red Hat
adinn@redhat.com

Kevin Connor
Red Hat
kconnor@redhat.com

Jonathan Halliday
Red Hat
jhallida@redhat.com

Edited by

Misty Stanley-Jones
Red Hat
misty@redhat.com

Legal Notice

Copyright © 2011 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book is intended to assist Java developers in creating transactional applications using the
JBoss implementations of the JTA, JTS, and XTS APIs.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. JTA DEVELOPMENT

CHAPTER 1. AN INTRODUCTION TO THE JAVA TRANSACTION API (JTA)

CHAPTER 2. THE JBOSS JTA IMPLEMENTATION
2.1. USERTRANSACTION
2.2. TRANSACTIONMANAGER
2.3. SUSPENDING AND RESUMING A TRANSACTION
2.4. THE TRANSACTION INTERFACE
2.5. RESOURCE ENLISTMENT
2.6. TRANSACTION SYNCHRONIZATION
2.7. TRANSACTION EQUALITY

CHAPTER 3. THE RESOURCE MANAGER
3.1. THE XARESOURCE INTERFACE

3.1.1. Extended XAResource Control
3.1.2. Enlisting Multiple One-Phase Aware Resources

3.2. OPENING A RESOURCE MANAGER
3.3. CLOSING A RESOURCE MANAGER
3.4. THREADS OF CONTROL
3.5. TRANSACTION ASSOCIATION
3.6. EXTERNALLY-CONTROLLED CONNECTIONS
3.7. RESOURCE SHARING
3.8. LOCAL AND GLOBAL TRANSACTIONS
3.9. TRANSACTION TIMEOUTS
3.10. DYNAMIC REGISTRATION

CHAPTER 4. TRANSACTION RECOVERY
4.1. FAILURE RECOVERY
4.2. RECOVERING XACONNECTIONS
4.3. ALTERNATIVE TO XARESOURCERECOVERY

CHAPTER 5. JDBC AND TRANSACTIONS
5.1. USING THE TRANSACTIONAL JDBC DRIVER

5.1.1. Managing Transactions
5.1.2. Restrictions

5.2. TRANSACTIONAL DRIVERS
5.2.1. Loading drivers

5.3. CONNECTIONS
5.3.1. Making the connection
5.3.2. JBossJTA JDBC Driver Properties
5.3.3. XADataSources

5.3.3.1. Java Naming and Directory Interface (JNDI)
5.3.3.2. Dynamic class instantiation
5.3.3.3. Using the connection
5.3.3.4. Connection Pooling
5.3.3.5. Reusing Connections
5.3.3.6. Terminating the Transaction
5.3.3.7. AutoCommit
5.3.3.8. Setting Isolation Levels

CHAPTER 6. EXAMPLES
6.1. JDBC EXAMPLE

7

8

9
9
9

10
11
11
12
12

14
14
14
15
16
16
16
17
17
17
18
18
19

20
20
20
22

23
23
23
23
23
23
24
24
24
24
24
25
25
26
26
26
26
26

28
28

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

6.2. BASICXARECOVERY EXAMPLE FOR FAILURE RECOVERY

CHAPTER 7. CONFIGURING JBOSSJTA
7.1. CONFIGURING OPTIONS

CHAPTER 8. USING JBOSSJTA WITH JBOSS ENTERPRISE APPLICATION PLATFORM
8.1. SERVICE CONFIGURATION
8.2. LOGGING
8.3. THE SERVICES
8.4. ENSURING TRANSACTIONAL CONTEXT IS PROPAGATED TO THE SERVER

PART II. JTS DEVELOPMENT

CHAPTER 9. OVERVIEW
9.1. INTRODUCTION
9.2. JBOSS TRANSACTION SERVICE

9.2.1. Saving Object States
9.2.2. The Object Store
9.2.3. Recovery and persistence
9.2.4. The Life cycle of a Transactional Object for Java
9.2.5. The Concurrency Controller
9.2.6. The Transaction Protocol Engine
9.2.7. Example
9.2.8. The Class Hierarchy

CHAPTER 10. USING JBOSS TRANSACTION SERVICE
10.1. INTRODUCTION
10.2. STATE MANAGEMENT

10.2.1. Object States
10.2.2. The Object Store
10.2.3. StateManager
10.2.4. Object Models
10.2.5. JBoss Transaction Service Method Reference
10.2.6. Example

10.3. LOCK MANAGEMENT AND CONCURRENCY CONTROL
10.3.1. Selecting a Lock Store Implementation
10.3.2. LockManager
10.3.3. Locking policy
10.3.4. Object construction and destruction

CHAPTER 11. GENERAL TRANSACTION ISSUES
11.1. ADVANCED TRANSACTION ISSUES WITH JBOSS TRANSACTION SERVICE

11.1.1. Checking Transactions
11.1.2. Gathering Statistics
11.1.3. Last resource commit optimization
11.1.4. Nested Transactions
11.1.5. Asynchronously Committing a Transaction
11.1.6. Independent Top-Level Transactions
11.1.7. Transactions Within the save_state and restore_state Methods
11.1.8. Example
11.1.9. Garbage Collecting Objects
11.1.10. Transaction Timeouts

CHAPTER 12. HINTS AND TIPS
12.1. GENERAL TIPS

30

35
35

36
36
36
37
37

38

39
39
39
40
40
40
41
42
44
44
45

47
47
47
47
49
50
52
54
55
57
57
58
60
60

62
62
62
62
63
64
64
65
65
65
66
67

68
68

Transactions Development Guide

2

. .

. .

. .

. .

. .

. .

. .

12.1.1. Using Transactions in Constructors
12.1.2. More on the save_state and restore_state Methods
12.1.3. Packing Objects

12.2. DIRECT USE OF THE STATEMANAGER CLASS
12.2.1. The activate Method
12.2.2. The deactivate Method
12.2.3. The modified Method

CHAPTER 13. TOOLS
13.1. INTRODUCTION
13.2. STARTING THE TRANSACTION SERVICE TOOLS

13.2.1. File Menu
13.2.2. Performance Menu
13.2.3. Window Menu
13.2.4. Help Menu

13.3. USING THE PERFORMANCE TOOL
13.4. USING THE JMX BROWSER

13.4.1. Using Attributes and Operations
13.4.2. Using the Object Store Browser
13.4.3. Object State Viewers (OSV)

13.4.3.1. Writing an OSV

CHAPTER 14. CONSTRUCTING AN APPLICATION USING TRANSACTIONAL OBJECTS FOR JAVA
14.1. APPLICATION CONSTRUCTION

14.1.1. Queue description
14.1.2. Constructors and deconstructors
14.1.3. The save_state, restore_state, and type Methods
14.1.4. enqueue/dequeue operations
14.1.5. The queueSize Method
14.1.6. The inspectValue and setValue Methods
14.1.7. The Client
14.1.8. Notes

CHAPTER 15. CONFIGURATION OPTIONS
15.1. OPTIONS

APPENDIX A. OBJECT STORE IMPLEMENTATIONS
A.1. THE OBJECTSTORE
A.2. PERSISTENT OBJECT STORES

A.2.1. The Shadowing Store
A.2.2. No file-level locking
A.2.3. The Hashed Store
A.2.4. The JDBC Store
A.2.5. The Cached Store

APPENDIX B. CLASS DEFINITIONS
B.1. INTRODUCTION
B.2. CLASS LIBRARY

PART III. XTS DEVELOPMENT

CHAPTER 16. INTRODUCTION
16.1. MANAGING SERVICE-BASED PROCESSES
16.2. SERVLETS
16.3. SOAP

68
68
69
69
69
70
70

71
71
71
71
71

72
72
72
72
73
73
74
74

78
78
78
79
80
81
82
83
84
84

86
86

89
89
90
91
91
92
92
93

95
95
95

100

101
102
102
103

Table of Contents

3

. .

. .

. .

. .

16.4. WEB SERVICES DESCRIPTION LANGUAGE (WDSL)

CHAPTER 17. TRANSACTIONS OVERVIEW
17.1. THE COORDINATOR
17.2. THE TRANSACTION CONTEXT
17.3. PARTICIPANTS
17.4. ACID TRANSACTIONS
17.5. TWO PHASE COMMIT
17.6. THE SYNCHRONIZATION PROTOCOL
17.7. OPTIMIZATIONS TO THE PROTOCOL
17.8. NON-ATOMIC TRANSACTIONS AND HEURISTIC OUTCOMES
17.9. INTERPOSITION
17.10. A NEW TRANSACTION PROTOCOL

17.10.1. Transaction in Loosely Coupled Systems

CHAPTER 18. OVERVIEW OF PROTOCOLS USED BY XTS
18.1. WS-COORDINATION

18.1.1. Activation
18.1.2. Registration
18.1.3. Completion

18.2. WS-TRANSACTION
18.2.1. WS-Transaction Foundations
18.2.2. WS-Transaction Architecture
18.2.3. WS_Transaction Models

18.2.3.1. Atomic Transactions
18.2.3.2. Business Activities

18.2.4. Application Messages
18.2.4.1. WS-C, WS-Atomic Transaction, and WS-Business Activity Messages

18.3. SUMMARY

CHAPTER 19. GETTING STARTED
19.1. INSTALLING THE XTS SERVICE ARCHIVE INTO JBOSS TRANSACTION SERVICE
19.2. CREATING CLIENT APPLICATIONS

19.2.1. User Transactions
19.2.2. Business Activities
19.2.3. Client-Side Handler Configuration

19.2.3.1. JAX-WS Client Context Handlers
19.3. CREATING TRANSACTIONAL WEB SERVICES

19.3.1. Participants
19.3.2. Service-Side Handler Configuration

19.3.2.1. JAX-WS Service Context Handlers
19.4. SUMMARY

CHAPTER 20. PARTICIPANTS
20.1. OVERVIEW

20.1.1. Atomic Transaction
20.1.1.1. Durable2PCParticipant
20.1.1.2. Volatile2PCParticipant

20.1.2. Business Activity
20.1.2.1. BusinessAgreementWithParticipantCompletion
20.1.2.2. BusinessAgreementWithCoordinatorCompletion
20.1.2.3. BAParticipantManager

20.2. PARTICIPANT CREATION AND DEPLOYMENT
20.2.1. Implementing Participants

103

104
105
105
106
106
107
107
108
109
110
111
111

113
113
114
115
115
116
116
117
118
118
121

124
125
125

126
126
126
126
126
127
127
127
128
128
128
130

132
132
132
132
133
134
134
135
136
136
136

Transactions Development Guide

4

. .

. .

. .

. .

. .

20.2.2. Deploying Participants

CHAPTER 21. THE XTS API
21.1. API FOR THE ATOMIC TRANSACTION PROTOCOL

21.1.1. Vote
21.1.2. TXContext
21.1.3. UserTransaction
21.1.4. UserTransactionFactory
21.1.5. TransactionManager
21.1.6. TransactionManagerFactory

21.2. API FOR THE BUSINESS ACTIVITY PROTOCOL
21.2.1. Compatibility
21.2.2. UserBusinessActivity
21.2.3. UserBusinessActivityFactory
21.2.4. BusinessActivityManager
21.2.5. BusinessActivityManagerFactory

CHAPTER 22. STAND-ALONE COORDINATION
22.1. INTRODUCTION
22.2. CONFIGURING THE ACTIVATION COORDINATOR

22.2.1. Command-Line Options Passed with the -D Parameter, Ordered by Priority

CHAPTER 23. PARTICIPANT CRASH RECOVERY
23.1. WS-AT RECOVERY

23.1.1. WS-AT Coordinator Crash Recovery
23.1.2. WS-AT Participant Crash Recovery

23.1.2.1. WS-AT Participant Crash Recovery APIs
23.1.2.1.1. Saving Participant Recovery State
23.1.2.1.2. Recovering Participants at Reboot

23.2. WS-BA RECOVERY
23.2.1. WS-BA Coordinator Crash Recovery
23.2.2. WS-BA Participant Crash Recovery APIs

23.2.2.1. Saving Participant Recovery State
23.2.2.2. Recovering Participants at Reboot

APPENDIX C. REVISION HISTORY

INDEX

137

138
138
138
139
139
140
140
142
142
142
142
143
143
145

146
146
146
146

148
148
148
149
150
150
151
152
152
152
152
153

155

156

Table of Contents

5

Transactions Development Guide

6

PART I. JTA DEVELOPMENT

This section gives guidance for using the JBoss implementation of the Java Transactions (JTA) API to
add transactional support for your enterprise applications.

PART I. JTA DEVELOPMENT

7

CHAPTER 1. AN INTRODUCTION TO THE JAVA TRANSACTION
API (JTA)
Transactional standards provide extremely low-level interfaces for use by application programmers.
Sun Microsystems has specified higher-level interfaces to assist in the development of distributed
transactional applications. These interfaces are still low-level enough to require the programmer to be
concerned with state management and concurrency for transactional application. They are most
useful for applications which require XA resource integration capabilities, rather than the more
general resources which the other APIs allow.

With reference to [JTA99], distributed transaction services typically involve a number of participants:

Application Server

Provides the infrastructure required to support an application run-time environment which includes
transaction state management, such as an EJB server.

Transaction Manager

Provides the services and management functions required to support transaction demarcation,
transactional resource management, synchronization, and transaction context propagation.

Resource Manager

(through a resource adapter[1]) Provides the application with access to resources. The resource
manager participates in distributed transactions by implementing a transaction resource interface.
The transaction manager uses this interface to communicate transaction association, transaction
completion, and recovery.

Communication Resource Manager (CRM)

Supports transaction context propagation and access to the transaction service for incoming and
outgoing requests.

From the transaction manager’s perspective, the actual implementation of the transaction services
does not need to be exposed. High-level interfaces allow transaction interface users to drive
transaction demarcation, resource enlistment, synchronization, and recovery processes. The JTA is a
high-level application interface that allows a transactional application to demarcate transaction
boundaries, and contains also contains a mapping of the X/Open XA protocol.

NOTE

The JTA support provided by JBossJTA is compliant with the JTA 1.0.1 specification.

[1] A Resource Adapter is used by an application server or client to connect to a Resource Manager. JDBC drivers
which are used to connect to relational databases are examples of Resource Adapters.

Transactions Development Guide

8

CHAPTER 2. THE JBOSS JTA IMPLEMENTATION
The Java Transaction API (JTA) consists of three elements:

A high-level application transaction demarcation interface

A high-level transaction manager interface intended for application server

A standard Java mapping of the X/Open XA protocol intended for transactional resource
manager

All of the JTA classes and interfaces are declared within the javax.transaction package, and the
corresponding JBossJTA implementations are defined within the com.arjuna.ats.jta package.

IMPORTANT

Each Xid that JBoss Transaction Service creates needs a unique node identifier encoded
within it. JBoss Transaction Service will only recover transactions and states that match
a specified node identifier. The node identifier should be provided to JBoss transaction
Service via the com.arjuna.ats.arjuna.xa.nodeIdentifier property. You must ensure this
value is unique across your JBoss Transaction Service instances. If you do not provide a
value, JBoss Transaction Service will generate one and report the value via the logging
infrastructure. The node identifier should be alphanumeric.

2.1. USERTRANSACTION

The UserTransaction interface allows applications to control transaction boundaries. It provides
methods for beginning, committing, and rolling back top-level transactions. Nested transactions are
not supported, and the begin method throws the NotSupportedException when the calling thread
is already associated with a transaction. UserTransaction automatically associates newly created
transactions with the invoking thread.

NOTE

You can obtain a UserTransaction from JNDI.

In order to select the local JTA implementation:

1. Set the com.arjuna.ats.jta.jtaTMImplementation property to
com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerIm
ple.

2. Set the com.arjuna.ats.jta.jtaUTImplementation property to
com.arjuna.ats.internal.jta.transaction.arjunacore.UserTransactionImpl
e.

2.2. TRANSACTIONMANAGER

 InitialContext ic = new InitialContext();
 UserTransaction utx = ic.lookup("java:comp/UserTransaction")

CHAPTER 2. THE JBOSS JTA IMPLEMENTATION

9

The TransactionManager interface allows the application server to control transaction boundaries
on behalf of the application being managed.

NOTE

You can obtain a TransactionManager from JNDI.

The Transaction Manager maintains the transaction context association with threads as part of its
internal data structure. A thread’s transaction context is either null or it refers to a specific global
transaction. Multiple threads can be associated with the same global transaction. Nested transactions
are not supported.

Each transaction context is encapsulated within a Transaction object, which can be used to perform
operations which are specific to the target transaction, regardless of the calling thread’s transaction
context.

The begin method of TransactionManager begins a new top-level transaction, and associates the
transaction context with the calling thread. If the calling thread is already associated with a
transaction then the begin method throws the NotSupportedException.

The getTransaction method returns the Transaction object that represents the transaction context
currently associated with the calling thread. This object can be used to perform various operations on
the target transaction. These operations are described elsewhere.

The commit method completes the transaction currently associated with the calling thread. After it
returns, the calling thread is not associated with any transaction. If commit is called when the thread is
not associated with any transaction context, an exception is thrown. In some implementations, only the
transaction originator can use the commit operation. If the calling thread is not permitted to commit
the transaction, an exception is thrown. JBossJTA does not impose any restrictions on the ability of
threads to terminate transactions.

The rollback method is used to roll back the transaction associated with the current thread. After
the rollback method completes, the thread is not associated with any transaction.

NOTE

In a multi-threaded environment, multiple threads may be active within the same
transaction. If checked transaction semantics have been disabled, or the transaction times
out, then a transaction can be terminated by a thread other than its creator. If this
happens, the creator must be notified. JBoss Transaction Service does this notification
during commit or rollback by throwing the IllegalStateException exception.

2.3. SUSPENDING AND RESUMING A TRANSACTION

The JTA supports the concept of a thread temporarily suspending and resuming transactions to enable
it to perform non-transactional work. The suspend method is called to temporarily suspend the
current transaction associated with the calling thread. If the thread is not associated with any
transaction, a null object reference is returned; otherwise, a valid Transaction object is returned.
The Transaction object can later be passed to the resume method to reinstate the transaction
context.

 InitialContext ic = new InitialContext();
 TransactionManager utm = ic.lookup("java:/TransactionManager")

Transactions Development Guide

10

The resume method associates the specified transaction context with the calling thread. If the
transaction specified is valid, the transaction context is associated with the calling thread. Otherwise,
the thread is not associated with any transaction.

NOTE

If the resume method is invoked when the calling thread is already associated with
another transaction, the Transaction Manager throws the IllegalStateException
exception.

NOTE

JBossJTA supports allowing a suspended transaction to be resumed by a different
thread, even though this feature is not required by the JTA standards.

When a transaction is suspended, the application server de-register and free up the resources that
related to the suspended transaction. When a resource is de-listed this triggers the Transaction
Manager to inform the resource manager to disassociate the transaction from the specified resource
object. When the application’s transaction context is resumed, the application server must give the
transaction back its resources. Enlisting a resource as a result of resuming a transaction triggers the
Transaction Manager to inform the resource manager to re-associate the resource object with the
resumed transaction.

2.4. THE TRANSACTION INTERFACE

The Transaction interface allows operations to be performed on the transaction associated with the
target object. Every top-level transaction is associated with one Transaction object when the
transaction is created. The Transaction object can be used to:

Enlist the transactional resources in use by the application.

Register for transaction synchronization call backs.

Commit or rollback the transaction.

Obtain the status of the transaction.

The commit and rollback methods allow the target object to be committed or rolled back. The
calling thread is not required to have the same transaction associated with the thread. If the calling
thread is not allowed to commit the transaction, the transaction manager throws an exception.
JBossJTA does not impose restrictions on threads terminating transactions.

2.5. RESOURCE ENLISTMENT

Transactional resources, such as database connections, are typically managed by the application
server in conjunction with some resource adapter, and optionally, with connection pooling
optimization. In order for an external transaction manager to coordinate transactional work performed

Transaction tobj = TransactionManager.suspend();
..
TransactionManager.resume(tobj);

CHAPTER 2. THE JBOSS JTA IMPLEMENTATION

11

by the resource managers, the application server must enlist and de-list the resources used in the
transaction. These resources (participants) are enlisted with the transaction so that they can be
informed when the transaction terminates.

As stated previously, the JTA is much more closely integrated with the XA concept of resources than
the arbitrary objects. For each resource in use by the application, the application server invokes the
enlistResource method with an XAResource object which identifies the resource in use. See for
details on how the implementation of the XAResource can affect recovery in the event of a failure.

The enlistment request causes the transaction manager to inform the resource manager to start
associating the transaction with the work performed through the corresponding resource. The
transaction manager is responsible for passing the appropriate flag in its XAResource.start method
call to the resource manager.

The delistResource method is used to dissociate the specified resource from the transaction
context in the target object. The application server invokes the method with two parameters:

An XAResources object, which represents the resource.

A flag to indicate whether the operation is due to the transaction being suspended
(TMSUSPEND), a portion of the work has failed (TMFAIL), or a normal resource release by the
application (TMSUCCESS).

The de-list request causes the transaction manager to inform the resource manager to end the
association of the transaction with the target XAResource. The flag value allows the application server
to indicate whether it intends to come back to the same resource, in which case the resource states
must be kept intact. The transaction manager passes the appropriate flag value in its
XAResource.end method call to the underlying resource manager.

2.6. TRANSACTION SYNCHRONIZATION

Transaction synchronization allows the application server to be notified before and after the
transaction completes. For each transaction started, the application server may optionally register a
Synchronization callback object to be invoked by the transaction manager either before or after
completion:

The beforeCompletion method is called prior to the start of the two-phase transaction
complete process. This call is executed in the same transaction context of the caller who
initiates the TransactionManager.commit, or with no transaction context if
Transaction.commit is used.

The afterCompletion method is called after the transaction has completed. The status of
the transaction is supplied in the parameter. This method is executed without a transaction
context.

2.7. TRANSACTION EQUALITY

The transaction manager implements the Transaction object’s equals method to allow comparison
between the target object and another Transaction object. The equals method returns true if the
target object and the parameter object both refer to the same global transaction.

Transaction txObj = TransactionManager.getTransaction();
Transaction someOtherTxObj = ..
 ..

Transactions Development Guide

12

boolean isSame = txObj.equals(someOtherTxObj);

CHAPTER 2. THE JBOSS JTA IMPLEMENTATION

13

CHAPTER 3. THE RESOURCE MANAGER

3.1. THE XARESOURCE INTERFACE

Some transaction specifications and systems define a generic resource which can be used to register
arbitrary resources with a transaction. The JTA is much more XA specific. The
javax.transaction.xa.XAResource interface is a Java mapping of the XA interface, and defines
the contract between a Resource Manager and a Transaction Manager in a distributed transaction
processing environment. A resource adapter implements the XAResource interface to support
association of a top-level transaction to a resource. A relational database is an example of such a
resource.

The XAResource interface can be supported by any transactional resource adapter that is intended to
be used in an environment where transactions are controlled by an external transaction manager. An
application can access data through multiple database connections. Each database connection is
associated with an XAResource object that serves as a proxy object to the underlying resource
manager instance. The transaction manager obtains an XAResource for each resource manager
participating in a top-level transaction. The start and end methods associates and dissociate the
transaction from the resource.

The resource manager associates the transaction with all work performed on its data between the
start and end invocations. At transaction commit time, these transactional resource managers are
instructed by the transaction manager to prepare, commit, or rollback the transaction according to the
two-phase commit protocol.

In order to be better integrated with Java, the XAResource differs from the standard XA interface in
the following ways:

The resource manager initialization is done implicitly by the resource adapter when the
connection is acquired. There is no xa_open equivalent.

Rmid is not passed as an argument. Each Rmid is represented by a separate XAResource
object.

Asynchronous operations are not supported because Java supports multi-threaded processing
and most databases do not support asynchronous operations.

Error return values caused by the improper handling of the XAResource object by the
transaction manager are mapped to Java exceptions by the XAException class.

The DTP concept of Thread of Control maps to all Java threads with access to the XAResource
and Connection objects. For example, two different threads are able to perform the start
and end operations on the same XAResource object.

3.1.1. Extended XAResource Control

By default, whenever an XAResource object is registered with a JTA-compliant transaction service,
you have no control over the order in which it will be invoked during the two-phase commit protocol,
with respect to other XAResource objects. However, JBoss Transaction Service supports controlling
the order with the two interfaces com.arjuna.ats.jta.resources.StartXAResource and
com.arjuna.ats.jta.resources.EndXAResource. By inheriting your XAResource instance
from either of these interfaces, you control whether an instance of your class will be invoked at the
beginning or end of the commit protocol.

Transactions Development Guide

14

NOTE

Only one instance of each interface type may be registered with a specific transaction.

Last Resource Commit optimization (LRCO) allows a single resource that is only one-phase aware
(does not support prepare) to be enlisted with a transaction which manipulates two-phase aware
participants. JBossJTA provides LRCO support.

In order to use the LRCO feature, your XAResource implementation must extend the
com.arjuna.ats.jta.resources.LastResourceCommitOptimisation marker interface. When
enlisting the resource via Transaction.enlistResource, JBoss Transaction Service allows only a
single LastResourceCommitOptimisation participant to be used within each transaction. Your
resource is driven last in the commit protocol, and the prepare method is not invoked.

NOTE

By default, an attempt to enlist more than one instance of a
LastResourceCommitOptimisation class will fail and false is returned from
Transaction.enlistResource. You can override this behavior by setting the
com.arjuna.ats.jta.allowMultipleLastResources property to true. Be sure to read the
section on enlisting multiple one-phase aware resources fore more information.

To use the LRCO in a distributed environment, you must disable interposition support. You are still able
to use implicit context propagation.

3.1.2. Enlisting Multiple One-Phase Aware Resources

In order to guarantee consistency (atomicity) of outcome between multiple participants (resources)
within the same transaction, the two-phase commit protocol is used with a durable transaction log.
When possessing a single one-phase aware resource, you can still achieve an atomic (all or nothing)
outcome across resources by utilizing LRCO, as explained earlier.

However, you may have enlisted multiple one-phase aware resources within the same transaction. For
example, a legacy database running within the same transaction as a legacy JMS implementation. In
these situations, you cannot achieve atomicity of transaction outcome across multiple resources,
because none of them enter the prepare state. They commit or rollback immediately when instructed
by the transaction coordinator, without knowledge of other resource states and without any way of
undoing their actions if subsequent resources make a different choice. This can cause data corruption
or heuristic outcomes.

In these situations, use either of the following approaches:

Wrap the resources in compensating transactions.

Migrate the legacy implementations to two-phase aware equivalents.

If neither of these options are viable, JBoss Transaction Service supports the enlistment of multiple
one-phase aware resources within the same transaction, using LRCO. LRCO is covered earlier in this
chapter.

CHAPTER 3. THE RESOURCE MANAGER

15

IMPORTANT

Even when LRCO support is enabled, JBoss Transaction Service issues warnings when it
detects this support. The log message is "You have chosen to enable multiple
last resources in the transaction manager. This is transactionally
unsafe and should not be relied upon.” or, when multiple one-phase
resources are enlisted within the transaction, “This is transactionally unsafe
and should not be relied on.”.

3.2. OPENING A RESOURCE MANAGER

The X/Open XA interface requires the transaction manager to initialize a resource manager using the
xa_open prior to issuing any other xa_ calls. JTA requires initialization of a resource manager to be
embedded within the resource adapter representing the resource manager. The transaction manager
does not need to know how to initialize a resource manager. It must only tell the resource manager
when to start and end work associated with a transaction and when to complete the transaction. The
resource adapter is responsible for opening (initializing) the resource manager when the connection to
the resource manager is established.

3.3. CLOSING A RESOURCE MANAGER

A resource manager is closed by the resource adapter as a result of destroying the transactional
resource. A transaction resource at the resource adapter level is comprised of two separate objects:

An XAResource object that allows the transaction manager to start and end the transaction
association with the resource in use, and to coordinate the transaction completion process.

A connection object that allows the application to perform operations on the underlying
resource (for example, JDBC operations on an RDBMS).

Once opened, the resource manager is kept open until the resource is explicitly released (closed).
When the application invokes the connection’s close method, the resource adapter invalidates the
connection object reference that was held by the application, notifying the application server about
the close. The transaction manager needs to invoke the XAResource.end method to dissociate the
transaction from that connection.

The close notification allows the application server to perform any necessary garbage collection and
mark the physical XA connection as free for reuse, in the case of connection pooling.

3.4. THREADS OF CONTROL

The X/Open XA interface specifies that the XA calls related to transaction associations must be
invoked from the same thread context. This thread-of-control requirement is not applicable to the
object-oriented component-based application run-time environment, in which application threads are
dispatched dynamically at method invocation time. Different threads may use the same connection
resource to access the resource manager if the connection spans multiple method invocations.
Depending on the implementation of the application server, different threads may be involved with the
same XAResource object. The resource context and the transaction context may operate
independent of thread context. Therefore, different threads may invoke the start and end methods.

If the application server allows multiple threads to use a single XAResource object and its associated
connection to the resource manager, the application server must ensure that only one transaction
context is associated with the resource at any point in time. Therefore, the XAResource interface

Transactions Development Guide

16

requires the resource managers to be able to support the two-phase commit protocol from any thread
context.

3.5. TRANSACTION ASSOCIATION

Transactions are associated with a transactional resource via the start method, and dissociated from
the resource via the end method. The resource adapter internally maintains an association between
the resource connection object and the XAResource object. At any given time, a connection is
associated with zero or one transactions. Because JTA does not support nested transactions, the
start method cannot be invoked on a connection that is currently associated with a different
transaction.

The transaction manager may interleave multiple transaction contexts with the same resource, as long
as start and end are invoked properly for each transaction context switch. Each time the resource is
used with a different transaction, the end method must be invoked for the previous transaction that
was associated with the resource, and the start method must be invoked for the current transaction
context.

3.6. EXTERNALLY-CONTROLLED CONNECTIONS

If a transactional application's transaction states are managed by an application server, its resources
must also be managed by the application server so that transaction association is performed properly.
If an application is associated with a transaction, it is incorrect for the application to perform
transactional work through the connection without having the connection’s resource object already
associated with the global transaction. The application server must associate the XAResource object
in use with the transaction by invoking the Transaction.enlistResource method.

If a server-side transactional application retains its database connection across multiple client
requests, the application server must enlist the resource with the application's current transaction
context. In this way, the application server manages the connection resource usage status across
multiple method invocations.

3.7. RESOURCE SHARING

When the same transactional resource is used to interleave multiple transactions, the application
server is responsible for ensuring that only one transaction is enlisted with the resource at any given
time. To initiate the transaction commit process, the transaction manager can use any of the resource
objects connected to the same resource manager instance. The resource object used for the two-
phase commit protocol does not need to be associated with the transaction being completed.

The resource adapter must be able to handle multiple threads invoking the XAResource methods
concurrently for transaction commit processing. The code below declares a transactional resource r1.
Global transaction xid1 is started and ended with r1. Then a different global transaction xid2 is
associated with r1. In the meantime, the transaction manager may start the two phase commit process
for xid1 using r1 or any other transactional resource connected to the same resource manager. The
resource adapter needs to allow the commit process to be executed while the resource is currently
associated with a different global transaction.

XAResource xares = r1.getXAResource();

xares.start(xid1); // associate xid1 to the connection

..

CHAPTER 3. THE RESOURCE MANAGER

17

3.8. LOCAL AND GLOBAL TRANSACTIONS

The resource adapter must support the usage of both local and global transactions within the same
transactional connection. Local transactions are started and coordinated by the resource manager
internally. The XAResource interface is not used for local transactions. When using the same
connection to perform both local and global transactions, the following rules apply:

The local transaction must be committed (or rolled back) before starting a global transaction in
the connection.

The global transaction must be dissociated from the connection before any local transaction is
started.

3.9. TRANSACTION TIMEOUTS

Timeout values can be associated with transactions for life cycle control. If a transaction has not
terminated (committed or rolled back) before the timeout value elapses, the transaction system
automatically rolls it back. The XAResource interface supports a operation allowing the timeout
associated with the current transaction to be propagated to the resource manager and, if supported,
overrides any default timeout associated with the resource manager. This is useful when long-running
transactions have lifetimes that exceed the default. If the timeout is not altered, the resource manager
will rollback before the transaction terminates and subsequently cause the transaction to roll back as
well.

If no timeout value is explicitly set for a transaction, or a value of 0 is specified, then an
implementation-specific default value may be used. In the case of JBoss Transaction Service, how this
default value is set depends upon which JTA implementation you are using.

Local JTA

Set the com.arjuna.ats.arjuna.coordinator.defaultTimeout property to a value expressed in seconds.
The default value is 60 seconds.

JTS

Set the com.arjuna.ats.jts.defaultTimeout property to a value expressed in seconds. The default
value is 0, meaning that transactions do not time out.

Unfortunately there are situations where imposing the same timeout as the transaction on a resource
manager may not be appropriate. For example, the system administrator may need control over the
lifetimes of resource managers without allowing that control to be passed to some external entity.
JBoss Transaction Service supports an all-or-nothing approach to whether
setTransactionTimeout is called on XAResource instances.

xares.end(xid1); // disassociate xid1 to the connection
..
xares.start(xid2); // associate xid2 to the connection
..
// While the connection is associated with xid2,
// the TM starts the commit process for xid1
status = xares.prepare(xid1);
..
xares.commit(xid1, false);

Transactions Development Guide

18

If the com.arjuna.ats.jta.xaTransactionTimeoutEnabled property is set to true (the default), it is called
on all instances. Alternatively, the setXATransactionTimeoutEnabled method of
com.arjuna.ats.jta.common.Configuration can be used.

3.10. DYNAMIC REGISTRATION

Dynamic registration is not supported in XAResource for the following reasons:

In the Java component-based application server environment, connections to the resource
manager are acquired dynamically when the application explicitly requests a connection.
These resources are enlisted with the transaction manager on an as-needed basis.

If a resource manager needs to dynamically register its work to the global transaction, it can
be done at the resource adapter level via a private interface between the resource adapter and
the underlying resource manager.

CHAPTER 3. THE RESOURCE MANAGER

19

CHAPTER 4. TRANSACTION RECOVERY

4.1. FAILURE RECOVERY

During recovery, the Transaction Manager needs the ability to communicate to all resource managers
that are in use by the applications in the system. For each resource manager, the Transaction Manager
uses the XAResource.recover method to retrieve the list of transactions currently in a prepared
or heuristically completed state. Typically, the system administrator configures all
transactional resource factories that are used by the applications deployed on the system. The JDBC
XADataSource object, for example, is a factory for the JDBC XAConnection objects.

Because XAResource objects are not persistent across system failures, the Transaction Manager
needs the ability to acquire the XAResource objects that represent the resource managers which
might have participated in the transactions prior to a system failure. For example, a Transaction
Manager might use the JNDI look-up mechanism to acquire a connection from each of the transactional
resource factories, and then obtain the corresponding XAResource object for each connection. The
Transaction Manager then invokes the XAResource.recover method to ask each resource manager
to return the transactions that are currently in a prepared or heuristically completed state.

NOTE

When running XA recovery, you must tell JBoss Transaction Service which types of Xid it
can recover. Each Xid that JBoss Transaction Service creates has a unique node
identifier encoded within it, and JBoss Transaction Service only recovers transactions
and states that match the requested node identifier. The node identifier to use should be
provided to JBoss Transaction Service in a property that starts with the name
com.arjuna.ats.jta.xaRecoveryNode. Multiple values are allowed. A value of * forces
recovery, and possibly rollback, of all transactions, regardless of their node identifier.
Use it with caution.

If the JBossJTA JDBC 2.0 driver is in use, JBossJTA manages all XAResource crash recovery
automatically. Otherwise one, of the following recovery mechanisms is used:

If the XAResource is able to be serialized, then the serialized form will be saved during
transaction commitment, and used during recovery. The recreated XAResource is assumed to
be valid and able to drive recovery on the associated database.

The com.arjuna.ats.jta.recovery.XAResourceRecovery,
com.arjuna.ats.jta.recovery.XARecoveryResourceManager and
com.arjuna.ats.jta.recovery.XARecoveryResource interfaces are used. Refer to the
JDBC chapters on failure recovery for more information.

4.2. RECOVERING XACONNECTIONS

When recovering from failures, JBossJTA requires the ability to reconnect to databases that were in
use prior to the failures, in order to resolve outstanding transactions. Most connection information is
saved by the transaction service during its normal execution, and can be used during recovery to
recreate the connection. However, it is possible that some of the information is lost during the failure, if
the failure occurs while it is being written. In order to recreate those connections, you must provide
one implementations of the JBossJTA interface
com.arjuna.ats.jta.recovery.XAResourceRecovery for each database that may be used by
an application.

Transactions Development Guide

20

NOTE

If you are using the transactional JDBC 2.0 driver provided with JBossJTA, no additional
work is necessary in order to ensure that recovery occurs.

To inform the recovery system about each of the XAResourceRecovery instances, specify their class
names through properties. Any property found in the properties file, or registered at run-time,
starting with the name com.arjuna.ats.jta.recovery.XAResourceRecovery is recognized as
representing one of these instances. Its value is the class name, such as:
com.arjuna.ats.jta.recovery.XAResourceRecoveryOracle=com.foo.barRecovery

Additional information to be passed to the instance at creation can be specified after a semicolon:
com.arjuna.ats.jta.recovery.XAResourceRecoveryOracle=com.foo.barRecovery;myDa
ta=hello

NOTE

These properties should be in the JTA section of the property file.

Any errors will be reported during recovery.

Each method should return the following information:

initialize

After the instance is created, any additional information found after the first semicolon in the
property value definition is passed to the object. The object can use this information in an
implementation-specific manner.

hasMoreResources

Each XAResourceRecovery implementation can provide multiple XAResource instances. Before
calling to getXAResource, hasMoreResources is called to determine whether any further
connections need to be obtained. If the return value is false, getXAResource is not called called
again during this recovery sweep and the instance is ignored until the next recovery scan.

getXAResource

Returns an instance of the XAResource object. How this is created (and how the parameters to its
constructors are obtained) is up to the XAResourceRecovery implementation. The parameters to
the constructors of this class should be similar to those used when creating the initial driver or data
source, and should be sufficient to create new XAResources instances that can be used to drive
recovery.

public interface XAResourceRecovery
{
 public XAResource getXAResource () throws SQLException;

 public boolean initialise (String p);

 public boolean hasMoreResources ();
};

CHAPTER 4. TRANSACTION RECOVERY

21

NOTE

If you want your XAResourceRecovery instance to be called during each sweep of the
recovery manager, ensure that once hasMoreResources returns false to indicate
the end of work for the current scan, it then returns true for the next recovery scan.

4.3. ALTERNATIVE TO XARESOURCERECOVERY

The iterator-based approach that XAResourceRecovery uses needs to be implemented with the
ability to manage states. This leads to unnecessary complexity. In JBoss Transaction Service, you can
provide an implementation of the public interface, as below:

During each recovery sweep, the getXAResources method is called, and attempts recovery on each
element of the array. For the majority of resource managers, you only need one XAResource in the
array, since the recover method can return multiple Xids.

Unlike instances of XAResourceRecovery instances, which are configured via the XML properties file
and instantiated by JBoss Transaction Service, instances of XAResourceRecoveryHelper are
constructed by the application code and registered with JBoss Transaction Service by calling
XARecoveryModule.addXAResourceRecoveryHelper.

The initialize method is not currently called by JBoss Transaction Service, but is provided to allow
for the addition of further configuration options in later releases.

You can deregister XAResourceRecoveryHelper instances, after which they will no longer be called
by the recovery manager. Deregistration may block for a while, if a recovery scan is in progress.

The ability to dynamically add and remove instances of XAResourceRecoveryHelper while the
system is running is beneficial for environments where datasources may be deployed or undeployed,
such as application servers. Be careful when classloading behavior in these cases.

com.arjuna.ats.jta.recovery.XAResourceRecoveryHelper
{
 public boolean initialise(String p) throws Exception;
 public XAResource[] getXAResources() throws Exception;
}

Transactions Development Guide

22

CHAPTER 5. JDBC AND TRANSACTIONS

5.1. USING THE TRANSACTIONAL JDBC DRIVER

JBossJTA supports the construction of local and distributed transactional applications which access
databases using the JDBC 2.0 APIs. JDBC 2.0 supports two-phase commit of transactions, and is
similar to the XA X/Open standard. The JDBC 2.0 support is found in the com.arjuna.ats.jdbc package.

The JDBC 2.0 support has been certified with current versions of most enterprise database vendors.
See http://www.jboss.com/products/platforms/application/supportedconfigurations/ for supported
configurations.

5.1.1. Managing Transactions

JBossJTA needs to associate work performed on a JDBC connection with a specific transaction.
Therefore, applications must use implicit transaction propagation and indirect transaction
management. For each JDBC connection, JBossJTA must be able to determine the invoking thread’s
current transaction context.

5.1.2. Restrictions

Nested transactions are not supported by JDBC 2.0. If you try to use a JDBC connection within a
subtransaction, JBossJTA throws an exception and no work is performed using that connection.

5.2. TRANSACTIONAL DRIVERS

The JBossJTA provides JDBC drivers to incorporate JDBC connections within transactions. These
drivers intercept all invocations and connect them to the appropriate transactions. A given JDBC
driver can only be driven by a single type of transactional driver. If the database is not transactional,
ACID (atomicity, consistency, isolation, durability) properties cannot be guaranteed. Invoke the driver
using the com.arjuna.ats.jdbc.TransactionalDriver interface, which implements the
java.sql.Driver interface.

5.2.1. Loading drivers

You can instantiate and use the driver from within an application. For example:

The JDBC driver manager (java.sql.DriverManager) to manage driver instances by adding them
to the Java system properties. The jdbc.drivers property contains a list of driver class names,
separated by colons, which the JDBC driver manager loads when it is initialized.

Alternatively, you can use the Class.forName() method to load the driver or drivers.

Calling the Class.forName() method automatically registers the driver with the JDBC driver
manager. You can also explicitly create an instance of the JDBC driver.

TransactionalDriver arjunaJDBC2Driver = new TransactionalDriver();

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

sun.jdbc.odbc.JdbcOdbcDriver drv = new sun.jdbc.odbc.JdbcOdbcDriver();
DriverManager.registerDriver(drv);

CHAPTER 5. JDBC AND TRANSACTIONS

23

http://www.jboss.com/products/platforms/application/supportedconfigurations/

After you load the driver, it is available for making a connection with a DBMS.

5.3. CONNECTIONS

The JBossJTA provides management for transactional JDBC connections. There are some
implications to using them within an application, which the developer should be aware of.

5.3.1. Making the connection

Because JBossJTA provides a new JDBC driver, application code is only lightly impacted by adding
transaction support. The only thing you need to do in your code is start and end transactions.

5.3.2. JBossJTA JDBC Driver Properties

The following properties can be set and passed to the JBossJTA driver. Set them in the
com.arjuna.ats.jdbc.TransactionalDriver class.

userName

the user name to use when attempting to connect to the database.

password

the password to use when attempting to connect to the database.

createDb

set this to true to cause the driver to try to create the database when it connects. This may not be
supported by all JDBC 2.0 implementations.

dynamicClass

dynamicClass: this specifies a class to instantiate to connect to the database, rather than using
JNDI.

5.3.3. XADataSources

JDBC 2.0 connections are created from appropriate DataSources. Those connections, which
participate within distributed transactions, are obtained from XADataSources. JBossJTA uses the
appropriate DataSource when a connection to the database is made. It then obtains XAResources and
registers them with the transaction using the JTA interfaces. The transaction service uses these
XAResources when the transaction terminates, triggering the database to either commit or rollback
the changes made via the JDBC connection.

The JBossJTA JDBC 2.0 driver can obtain XADataSources in one of two ways. For simplicity, it is
assumed that the JDBC 2.0 driver is instantiated directly by the application.

5.3.3.1. Java Naming and Directory Interface (JNDI)

JNDI is used so that JDBC drivers can use arbitrary DataSources without knowing implementations-
specific details. You can create a specific (XA)DataSource and register it with an appropriate JNDI
implementation, which allows either the application or the JDBC driver to bind to and use it. Since JNDI
only allows the application to see the (XA)DataSource as an instance of the interface, rather than as an
instance of the implementation class, the application is not limited to only using a specific
(XA)DataSource implementation.

Transactions Development Guide

24

To make the TransactionalDriver class use a JNDI registered XADataSource you need to create
the XADataSource instance and store it in an appropriate JNDI implementation.

The Context.INITIAL_CONTEXT_FACTORY property is how JNDI specifies the type of JNDI
implementation to use.

The next step is for the application must pass an appropriate connection URL to the JDBC 2.0 driver.

The JNDI URL must begin with jdbc:arjuna: in order for the ArjunaJDBC2Driver interface to
recognize that the DataSource needs to participate within transactions and be driven accordingly.

5.3.3.2. Dynamic class instantiation

Dynamic class instantiation is not supported or recommended. Instead, use JNDI. Refer to
Section 5.3.3.1, “Java Naming and Directory Interface (JNDI)” for details.

5.3.3.3. Using the connection

Once the connection has been established using the appropriate method, JBossJTA monitors all
operations on the connection. If a transaction is not present when the connection is used, then
operations are performed directly on the database.

You can use transaction timeouts to automatically terminate transactions if the connection has
outlived its usefulness.

You can use JBossJTA connections within multiple transactions simultaneously. JBossJTA does
connection pooling for each transaction within the JDBC connection. So, although multiple threads
may use the same instance of the JDBC connection, internally each transaction may be using a
different connection instances. With the exception of the close method, all operations performed on
the connection at the application level use this transaction-specific connection exclusively.

JBossJTA automatically registers the JDBC driver connection with the transaction using an
appropriate resource. When the transaction terminates, this resource either commits or rolls back any
changes made to the underlying database using appropriate calls on the JDBC driver.

XADataSource ds = MyXADataSource();
Hashtable env = new Hashtable();
String initialCtx =
PropertyManager.getProperty("Context.INITIAL_CONTEXT_FACTORY");

env.put(Context.INITIAL_CONTEXT_FACTORY, initialCtx);

initialContext ctx = new InitialContext(env);

ctx.bind("jdbc/foo", ds);

Properties dbProps = new Properties();

dbProps.setProperty(TransactionalDriver.userName, "user");
dbProps.setProperty(TransactionalDriver.password, "password");

TransactionalDriver arjunaJDBC2Driver = new TransactionalDriver();
Connection connection = arjunaJDBC2Driver.connect("jdbc:arjuna:jdbc/foo",
dbProps);

CHAPTER 5. JDBC AND TRANSACTIONS

25

After the driver and connection are created, they can be used in the same way as any other JDBC
driver or connection.

5.3.3.4. Connection Pooling

For each user name and password, JBossJTA maintains a single instance of each connection for as
long as that connection is in use. Subsequent requests for the same connection get a reference to the
original connection, instead of a new instance. You can explicitly close the connection, but your request
will be ignored until all users, including transactions, have either finished with the connection, or issued
close method requests.

5.3.3.5. Reusing Connections

A very few JDBC drivers allow you to reuse a connection for multiple transactions. Most drivers require
a new connection for each new transaction. By default, the JBossJTA transactional driver always
obtains a new connection for each new transaction. However, if an existing connection is available and
is currently unused, you can use the set the reuseconnection property to true on the JDBC URL.

 jdbc:arjuna:sequelink://host:port;databaseName=foo;reuseconnection=true

5.3.3.6. Terminating the Transaction

Whenever a transaction terminates and has a JDBC connection registered with it, the JBossJTA JDBC
driver instructs the database to either commit or roll back pending changes. This happens in the
background, out of the purview of the application.

5.3.3.7. AutoCommit

If the AutoCommit property of the java.sql.Connection property is set to true for JDBC 1.0, the
execution of every SQL statement is a separate top-level transaction, and it is not possible to group
multiple statements to be managed within a single OTS transaction. Therefore, JBossJTA disables
AutoCommit on JDBC 1.0 connections before using them. If AutoCommit is subsequently set to true
by the application, JBossJTA raises the java.sql.SQLException exception.

5.3.3.8. Setting Isolation Levels

When you use the JBossJTA JDBC driver, you may need to set the underlying transaction isolation
level on the XA connection. Its default value is TRANSACTION_SERIALIZABLE, but you can set this to

Statement stmt = conn.createStatement();

try
 {
 stmt.executeUpdate("CREATE TABLE test_table (a INTEGER,b INTEGER)");
 }
catch (SQLException e)
 {
 // table already exists
 }

stmt.executeUpdate("INSERT INTO test_table (a, b) VALUES (1,2)");

ResultSet res1 = stmt.executeQuery("SELECT * FROM test_table");

Transactions Development Guide

26

something more appropriate for your application by setting the com.arjuna.ats.jdbc.isolationLevel
property to the appropriate isolation level in string form. Possible values include
TRANSACTION_READ_COMMITTED and TRANSACTION_REPEATABLE_READ.

NOTE

At present this property applies to all XA connections created in the JVM.

CHAPTER 5. JDBC AND TRANSACTIONS

27

CHAPTER 6. EXAMPLES

6.1. JDBC EXAMPLE

The example in Example 6.1, “JDBCTest Example” illustrates many of the points described in the JDBC
chapter. Refer back to it for more information.

Example 6.1. JDBCTest Example

public class JDBCTest
{
 public static void main (String[] args)
 {
 /*
 */

 Connection conn = null;
 Connection conn2 = null;
 Statement stmt = null; // non-tx statement
 Statement stmtx = null; // will be a tx-statement
 Properties dbProperties = new Properties();

 try
 {
 System.out.println("\nCreating connection to database: "+url);

 /*
 * Create conn and conn2 so that they are bound to the JBossTS
 * transactional JDBC driver. The details of how to do this will
 * depend on your environment, the database you wish to use and
 * whether or not you want to use the Direct or JNDI approach. See
 * the appropriate chapter in the JTA Programmers Guide.
 */

 stmt = conn.createStatement(); // non-tx statement

 try
 {
 stmt.executeUpdate("DROP TABLE test_table");
 stmt.executeUpdate("DROP TABLE test_table2");
 }
 catch (Exception e)
 {
 // assume not in database.
 }

 try
 {
 stmt.executeUpdate("CREATE TABLE test_table (a INTEGER,b INTEGER)");
 stmt.executeUpdate("CREATE TABLE test_table2 (a INTEGER,b INTEGER)");
 }
 catch (Exception e)
 {
 }

Transactions Development Guide

28

 try
 {
 System.out.println("Starting top-level transaction.");

 com.arjuna.ats.jta.UserTransaction.userTransaction().begin();

 stmtx = conn.createStatement(); // will be a tx-statement

 System.out.println("\nAdding entries to table 1.");

 stmtx.executeUpdate("INSERT INTO test_table (a, b) VALUES (1,2)");

 ResultSet res1 = null;

 System.out.println("\nInspecting table 1.");

 res1 = stmtx.executeQuery("SELECT * FROM test_table");
 while (res1.next())
 {
 System.out.println("Column 1: "+res1.getInt(1));
 System.out.println("Column 2: "+res1.getInt(2));
 }

 System.out.println("\nAdding entries to table 2.");

 stmtx.executeUpdate("INSERT INTO test_table2 (a, b) VALUES (3,4)");

 res1 = stmtx.executeQuery("SELECT * FROM test_table2");

 System.out.println("\nInspecting table 2.");

 while (res1.next())
 {
 System.out.println("Column 1: "+res1.getInt(1));
 System.out.println("Column 2: "+res1.getInt(2));
 }
 System.out.print("\nNow attempting to rollback changes.");

 com.arjuna.ats.jta.UserTransaction.userTransaction().rollback();

 com.arjuna.ats.jta.UserTransaction.userTransaction().begin();

 stmtx = conn.createStatement();
 ResultSet res2 = null;

 System.out.println("\nNow checking state of table 1.");

 res2 = stmtx.executeQuery("SELECT * FROM test_table");
 while (res2.next())
 {
 System.out.println("Column 1: "+res2.getInt(1));
 System.out.println("Column 2: "+res2.getInt(2));
 }

 System.out.println("\nNow checking state of table 2.");

CHAPTER 6. EXAMPLES

29

6.2. BASICXARECOVERY EXAMPLE FOR FAILURE RECOVERY

This class implements the XAResourceRecovery interface for XAResources. The parameter
supplied in setParameters can contain arbitrary information necessary to initialize the class once
created. Here, it contains the name of the property file containing database connection information, as
well as the number of connections that this file knows about. Values are separated by semi-colons.

It is important to understand that this is only an example, and does not contain everything which the
XAResourceRecovery is capable of. In real life, it is not recommended to store database connection
information such as user names and passwords in a raw text file, as this example does.

The db parameters specified in the property file are assumed to be in the format:

DB_x_DatabaseURL=

DB_x_DatabaseUser=

DB_x_DatabasePassword=

DB_x_DatabaseDynamicClass=

Where x is the number of the connection information.

NOTE

Some error handling code has been removed from this text to make it more concise.

Example 6.2. XAResourceRecovery Example

 stmtx = conn.createStatement();
 res2 = stmtx.executeQuery("SELECT * FROM test_table2");
 while (res2.next())
 {
 System.out.println("Column 1: "+res2.getInt(1));
 System.out.println("Column 2: "+res2.getInt(2));
 }

 com.arjuna.ats.jta.UserTransaction.userTransaction().commit(true);
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 System.exit(0);
 }
 }
 catch (Exception sysEx)
 {
 sysEx.printStackTrace();
 System.exit(0);
 }
 }

Transactions Development Guide

30

/*
 * Some XAResourceRecovery implementations will do their startup work
here,
 * and then do little or nothing in setDetails. Since this one needs to
know
 * dynamic class name, the constructor does nothing.
 */

public BasicXARecovery () throws SQLException
{
 numberOfConnections = 1;
 connectionIndex = 0;
 props = null;
}

/*
 * The recovery module will have chopped off this class name already.
The
 * parameter should specify a property file from which the url, user
name,
 * password, etc. can be read.
 *
 * @message com.arjuna.ats.internal.jdbc.recovery.initexp An exception
 * occurred during initialisation.
 */

public boolean initialise (String parameter) throws SQLException
{
 if (parameter == null)
 return true;

 int breakPosition = parameter.indexOf(BREAKCHARACTER);
 String fileName = parameter;

 if (breakPosition != -1)
 {
 fileName = parameter.substring(0, breakPosition - 1);

 try
 {
 numberOfConnections =
Integer.parseInt(parameter.substring(breakPosition + 1));
 }
 catch (NumberFormatException e)
 {
 return false;
 }
 }

 try
 {
 String uri =
com.arjuna.common.util.FileLocator.locateFile(fileName);

jdbcPropertyManager.propertyManager.load(XMLFilePlugin.class.getName(),
uri);

CHAPTER 6. EXAMPLES

31

 props = jdbcPropertyManager.propertyManager.getProperties();
 }
 catch (Exception e)
 {
 return false;
 }

 return true;
}

/*
 * @message com.arjuna.ats.internal.jdbc.recovery.xarec {0} could not
find
 * information for connection!
 */

public synchronized XAResource getXAResource () throws SQLException
{
 JDBC2RecoveryConnection conn = null;

 if (hasMoreResources())
 {
 connectionIndex++;

 conn = getStandardConnection();

 if (conn == null) conn = getJNDIConnection();
 }

 return conn.recoveryConnection().getConnection().getXAResource();
}

public synchronized boolean hasMoreResources ()
{
 if (connectionIndex == numberOfConnections)
 return false;
 else
 return true;
}

private final JDBC2RecoveryConnection getStandardConnection ()
 throws SQLException
{
 String number = new String("" + connectionIndex);
 String url = new String(dbTag + number + urlTag);
 String password = new String(dbTag + number + passwordTag);
 String user = new String(dbTag + number + userTag);
 String dynamicClass = new String(dbTag + number + dynamicClassTag);

 Properties dbProperties = new Properties();

 String theUser = props.getProperty(user);
 String thePassword = props.getProperty(password);

 if (theUser != null)

Transactions Development Guide

32

 {
 dbProperties.put(TransactionalDriver.userName, theUser);
 dbProperties.put(TransactionalDriver.password, thePassword);

 String dc = props.getProperty(dynamicClass);

 if (dc != null)
 dbProperties.put(TransactionalDriver.dynamicClass, dc);

 return new JDBC2RecoveryConnection(url, dbProperties);
 }
 else
 return null;
}

private final JDBC2RecoveryConnection getJNDIConnection ()
 throws SQLException
{
 String number = new String("" + connectionIndex);
 String url = new String(dbTag + jndiTag + number + urlTag);
 String password = new String(dbTag + jndiTag + number +
passwordTag);
 String user = new String(dbTag + jndiTag + number + userTag);

 Properties dbProperties = new Properties();

 String theUser = props.getProperty(user);
 String thePassword = props.getProperty(password);

 if (theUser != null)
 {
 dbProperties.put(TransactionalDriver.userName, theUser);
 dbProperties.put(TransactionalDriver.password, thePassword);

 return new JDBC2RecoveryConnection(url, dbProperties);
 }
 else
 return null;
}

private int numberOfConnections;
private int connectionIndex;
private Properties props;
private static final String dbTag = "DB_";
private static final String urlTag = "_DatabaseURL";
private static final String passwordTag = "_DatabasePassword";
private static final String userTag = "_DatabaseUser";
private static final String dynamicClassTag = "_DatabaseDynamicClass";
private static final String jndiTag = "JNDI_";

/*
 * Example:
 *
 * DB2_DatabaseURL=jdbc\:arjuna\:sequelink\://qa02\:20001
 * DB2_DatabaseUser=tester2 DB2_DatabasePassword=tester
 *

CHAPTER 6. EXAMPLES

33

The com.arjuna.ats.internal.jdbc.recovery.JDBC2RecoveryConnection class can create
a new connection to the database using the same parameters used to create the initial connection.

DB2_DatabaseDynamicClass=com.arjuna.ats.internal.jdbc.drivers.sequelink_
5_1
 *
 * DB_JNDI_DatabaseURL=jdbc\:arjuna\:jndi DB_JNDI_DatabaseUser=tester1
 * DB_JNDI_DatabasePassword=tester DB_JNDI_DatabaseName=empay
 * DB_JNDI_Host=qa02 DB_JNDI_Port=20000
 */

private static final char BREAKCHARACTER = ';'; // delimiter for
parameters

Transactions Development Guide

34

CHAPTER 7. CONFIGURING JBOSSJTA

7.1. CONFIGURING OPTIONS

JTA Configuration Options and Default Values shows the configuration features with default values and
relevant section numbers for more detailed information.

JTA Configuration Options and Default Values

com.arjuna.ats.jta.supportSubtransactions

Default Values: Yes/No

com.arjuna.ats.jta.jtaTMImplementation

com.arjuna.ats.jta.jtaUTImplementation

Default Values:
com.arjuna.ats.internal.jta.transaction.arjunacore.TransactionManagerImple/com.arjuna.ats.internal.jta.transaction.jts.TransactionManagerImple

com.arjuna.ats.jta.xaBackoffPeriod

com.arjuna.ats.jdbc.isolationLevel

Default Values: Any supported JDBC isolation level.

com.arjuna.ats.jta.xaTransactionTimetouEnabled

Default Values: true / false

CHAPTER 7. CONFIGURING JBOSSJTA

35

CHAPTER 8. USING JBOSSJTA WITH JBOSS ENTERPRISE
APPLICATION PLATFORM

8.1. SERVICE CONFIGURATION

Most of the configuration for The JBoss Transaction Service is done using the XML files stored in the
etc directory. Several extra attributes can be configured when it is run as a JBOSS service, however.

TransactionTimeout

The default transaction timeout to be used for new transactions. An integer value, expressed in
seconds.

StatisticsEnabled

Determines whether or not the transaction service should gather statistical information. Viable
using the PerformanceStatistics MBean. A Boolean value, whose default is NO.

PropagateFullContext

Determines whether a full transactional context is propagated by context importer/exporter. If set
to false, only the current transaction context is propagated. If set to true, the full transaction
context is propagated, including any parent transactions.

These attributes are specified as MBean attributes in the jboss-service.xml file located in the
server/all/conf directory, See Example 8.1, “Example jboss-services.xml” for an example.

Example 8.1. Example jboss-services.xml

The transaction service can also be configured via the standard JBoss Transaction Service property
files. These are located in the JBoss Transaction Service install location under the etc directory. You
can edit these files manually or through JMX. Each property file is exposed using an object whose
name is derived from a combination of com.arjuna.ts.properties and the name of the module
containing the attribute to be configured An example example is
com.arjuna.ts.properties:module=arjuna.

8.2. LOGGING

In order to make JBoss Transaction Service logging semantically consistent with JBoss Enterprise
Application Platform, the TransactionManagerService service modifies the level of some log
messages by overriding the value of the com.arjuna.common.util.logger property given in the
jbossjta-properties.xml file. Therefore, the value of this property has no effect on the logging
behavior when the transaction service is embedded in JBoss Enterprise Application Platform. By

<mbean code="com.arjuna.ats.jbossatx.jts.TransactionManagerService"
name="jboss:service=TransactionManager">

 <attribute name="TransactionTimeout">300</attribute>
 <attribute name="StatisticsEnabled>true</attribute>>

</mbean>

Transactions Development Guide

36

forcing use of the log4j_releveler logger, the TransactionManagerService service causes all
INFO level messages in the transaction code to be modified to be shown as DEBUG messages. As a side
effect, these messages do not appear in log files if the filter level is INFO. All other log messages
behave as normal.

8.3. THE SERVICES

The only service provided by the integration with the JBoss Enterprise Application Platform is
TransactionManagerService. This service ensures the recovery manager is started, and binds the
JBoss Transaction Service JTA transaction manager to the JNDI provider using the name
java:/TransactionManager. This service depends upon the existence of the CORBA ORB Service
and it must be using JacORB as the underlying ORB implementation.

There are two instances of this service:

Distributed

Uses the JBoss Transaction Service-enabled transaction manager implementation and supports
distributed transactions and recovery. Configured with the
com.arjuna.ats.jbossatx.jts.TransactionManagerService class. This is the default
configuration.

Local

Uses the purely local JTA implementation. Configured using the
com.arjuna.ats.jbossatx.jta.TransactionManagerService class.

8.4. ENSURING TRANSACTIONAL CONTEXT IS PROPAGATED TO THE
SERVER

Transactions can be coordinated by a coordinator which is external to the JBoss server. To ensure that
the transaction context is propagated via JRMP invocations to the server, the transaction propagation
context factory needs to be explicitly set for the JRMP invoker proxy. Here is an example:
JRMPInvokerProxy.setTPCFactory(new
com.arjuna.ats.internal.jbossatx.jts.PropagationContextManager());

CHAPTER 8. USING JBOSSJTA WITH JBOSS ENTERPRISE APPLICATION PLATFORM

37

PART II. JTS DEVELOPMENT

This section gives guidance for using the JBoss implementation of the Java Transaction Service (JTS)
API to add transactional support for your enterprise applications.

Transactions Development Guide

38

CHAPTER 9. OVERVIEW

9.1. INTRODUCTION

This chapter contains a description of the use of the JBoss Transaction Service and the Transactional
Objects for Java toolkit. The classes mentioned in this chapter are the key to writing fault-tolerant
applications using transactions. After describing them, their application in a simple application is
illustrated. The classes discussed in this chapter can be found in the com.arjuna.ats.txoj and
com.arjuna.ats.arjuna packages.

9.2. JBOSS TRANSACTION SERVICE

In keeping with the object-oriented view, the mechanisms needed to construct reliable distributed
applications are presented to programmers in an object-oriented manner. Some mechanisms, such as
concurrency control and state management, need to be inherited. Others, such as object storage and
transactions, are implemented as JBoss Transaction Service objects that are created and manipulated
like any other object.

NOTE

When using persistence and concurrency control facilities, it is assumed that the
Transactional Objects for Java (TXOJ) classes are being used. Other mechanisms are
not discussed here.

JBoss Transaction Service uses object-oriented techniques to present programmers with a toolkit of
Java classes which application classes can inherit to obtain desired properties, such as persistence and
concurrency control. These classes form a hierarchy, part of which is shown below and which will be
described later in this document.

Figure 9.1. JBoss Transaction Service Class Hierarchy

The programmer is only responsible for specifying the scopes of transactions and setting appropriate
locks within objects. JBoss Transaction Service and Transactional Objects for Java (TXOJ) ensure
registration and function with the appropriate transactions, as well as crash recovery in the case of
failure.

CHAPTER 9. OVERVIEW

39

9.2.1. Saving Object States

JBoss Transaction Service remembers the state of an object. It needs this information for recovery , in
which the state represents some past state of the object, and persistence, in which the state
represents the final state of an object at application termination. All of these requirements are
implemented using the same mechanism: the InputObjectState class and the
OutputObjectState class. The classes maintain an internal array into which instances of the
standard types can be contiguously packed and unpacked using pack and unpack operations. This
buffer is automatically resized as required. The instances are all stored in the buffer in a standard
machine-independent form called network byte order. Any other architecture-independent format,
such as XDR or ASN.1), can be implemented by replacing the classes with the ones corresponding to
the pack and unpack function in the required format.

9.2.2. The Object Store

The Java SecurityManager imposes some restrictions on the implementation of persistence.
Therefore, the object store provided with JBoss Transaction Service uses the techniques of
interface/implementation. The implementations in JBoss Transaction Service write object states to
the local file system or a database, or use a client stub to implement an interface to remote services.

When persistent objects are created, they are given unique identifiers, which are actually instances of
the Uid class. They can be identified within the object store by using these UIDs. States are read using
the read_committed operation and written by the write_committed and write_uncommitted
operations.

9.2.3. Recovery and persistence

The StateManager class is at the root of the class hierarchy, and is responsible for object activation
and deactivation and object recovery. See Example 9.1, “StateManager Implementation”.

Example 9.1. StateManager Implementation

Objects can be classified as recoverable, recoverable and persistent, or neither recoverable nor
persistent.

Recoverable

public abstract class StateManager
{
public boolean activate ();
public boolean deactivate (boolean commit);

public Uid get_uid (); // object’s identifier.

// methods to be provided by a derived class

public boolean restore_state (InputObjectState os);
public boolean save_state (OutputObjectState os);

protected StateManager ();
protected StateManager (Uid id);
};

Transactions Development Guide

40

StateManager attempts to generate and maintain appropriate recovery information for the
object. The lifetimes of such objects do not exceed the application that created them.

Recoverable and Persistent

The lifetime of the object is greater than that of the creating or accessing application. In addition to
maintaining recovery information, StateManager attempts to automatically load or unload any
existing persistent state for the object by calling the activate or deactivate operation at the
appropriate times.

Neither Recoverable Nor Persistent

No recovery information is ever kept nor is object activation or deactivation ever automatically
attempted.

If an object is recoverable or recoverable and persistent, then StateManager invokes the
save_state method, as part of performing the deactivate method, and the restore_state, as
part of performing the activate, at various points during the execution of the application. The
programmer must implement these methods, since StateManager cannot detect user-level state
changes. The programmer decides which parts of an object’s state should be made persistent. For
example, in the case of a spreadsheet, you may not need to save all entries if some values can be
recomputed instead. The Example 9.2, “save_state Example” example shows the save_state
implementation for a class Example that has integer member variables called A, B and C.

Example 9.2. save_state Example

NOTE

All save_state and restore_state methods need to call super.save_state and
super.restore_state, to take advantage of improvements in the crash recovery
mechanisms.

9.2.4. The Life cycle of a Transactional Object for Java

public boolean save_state(OutputObjectState o)
{
 if (!super.save_state(o))
 return false;

 try
 {
 o.packInt(A);
 o.packInt(B);
 o.packInt(C));
}
catch (Exception e)
 {
 return false;
 }

return true;
}

CHAPTER 9. OVERVIEW

41

A persistent object which is not in use is assumed to be in a passive state, with its state residing in an
object store and activated on demand. See the Figure 9.2, “Fundamental Life cycle of a Persistent
Object in TXOJ”.

Figure 9.2. Fundamental Life cycle of a Persistent Object in TXOJ

The object is initially passive, and is stored in the object store as an instance of the class
OutputObjectState.

When required by an application, the object is automatically activated by reading it from the
store using a read_committed operation and is then converted from an InputObjectState
instance into a fully-fledged object by the restore_state operation of the object.

When the application finishes with the object, it is deactivated by converting it back into an
OutputObjectState instance using the save_state operation, and is then stored back into
the object store as a shadow copy using the write_uncommitted method. This shadow copy
can be committed, overwriting the previous version, using the commit_state operation. The
existence of shadow copies is normally hidden from the programmer by the transaction
system. Object de-activation normally only occurs when the top-level transaction within which
the object was activated commits.

NOTE

During its lifetime, a persistent object may change from passive to active and back
again, many times.

9.2.5. The Concurrency Controller

The concurrency controller is implemented by the LockManager class, which provides sensible
default behavior which the programmer can override if necessary, by the particular semantics of the
class being programmed. As with the StateManager class and persistence, concurrency control

Transactions Development Guide

42

implementations are accessed through interfaces. The current implementations of concurrency control
available to interfaces include:

Access to remote services

Both local disk and database implementations, where locks are written to the local file system
or database to make them persistent.

A purely local implementation, where locks are maintained within the memory of the virtual
machine which created them. This implementation performs better than writing locks to the
local disk, but objects cannot be shared between virtual machines. Importantly, it is a basic
Java object with no requirements which can be affected by the SecurityManager

The primary API to the concurrency controller is via the setlock operation. By default, the runtime
system enforces strict two-phase locking following a multiple reader, single writer policy on a per
object basis. However, as shown in Figure 9.1, “JBoss Transaction Service Class Hierarchy” , by
inheriting from the Lock class, programmers can provide their own lock implementations with
different lock conflict rules to enable type specific concurrency control.

Lock acquisition is, of necessity, under programmer control. Just as StateManager cannot determine
if an operation modifies an object, LockManager cannot determine if an operation needs a read or
write lock. Lock release, however, is under control of the system and requires no further intervention
by the programmer. This ensures that the two-phase property can be correctly maintained.

The LockManager class manages requests to set or release a lock on an object as appropriate. Since it
is derived from the StateManager class, it can also control when some of the inherited facilities are
invoked. For example, LockManager assumes that the setting of a write lock implies that the invoking
operation must be about to modify the object, and may trigger the saving of recovery information if the
object is recoverable. In a similar fashion, successful lock acquisition causes activate to be invoked.

Example 9.3. Trying to Obtain A Write Lock

public abstract class LockManager extends StateManager
{
 public LockResult setlock (Lock toSet, int retry, int timeout);
};

public class Example extends LockManager
{
 public boolean foobar ()
 {
 AtomicAction A = new AtomicAction;
 boolean result = false;

 A.begin();

 if (setlock(new Lock(LockMode.WRITE), 0) == Lock.GRANTED)
 {
 /*
 * Do some work, and TXOJ will
 * guarantee ACID properties.
 */

 // automatically aborts if fails

CHAPTER 9. OVERVIEW

43

9.2.6. The Transaction Protocol Engine

The transaction protocol engine is represented by the AtomicAction class, which uses
StateManager to record sufficient information for crash recovery mechanisms to complete the
transaction in the event of failures. It has methods for starting and terminating the transaction. For
those situations where programmers need to implement their own resources, methods for registering
them with the current transaction are also provided. Because JBoss Transaction Service supports
subtransactions, if a transaction is begun within the scope of an already executing transaction, it is
automatically nested.

NOTE

JBoss Transaction Service is multi-thread aware, allowing each thread within an
application to share a transaction or execute within its own transaction. Therefore, all
JBoss Transaction Service classes are also thread safe.

9.2.7. Example

The simple example below illustrates the relationships between activation, termination and
commitment:

Example 9.4. Relationships Between Activation, Termination, and Commitment

The execution of the above code involves the following sequence of activities:

1. Creation of bindings to persistent objects. This might involve the creation of stub objects

 if (A.commit() == AtomicAction.COMMITTED)
 {
 result = true;
 }
 }
 else
 A.rollback();

 return result;
 }
}

{
 . . .
 O1 objct1 = new objct1(Name-A);/* (i) bind to "old" persistent
object A */
 O2 objct2 = new objct2(); /* create a "new" persistent object */
 OTS.current().begin(); /* (ii) start of atomic action */

 objct1.op(...); /* (iii) object activation and invocations
*/
 objct2.op(...);
 . . .
 OTS.current().commit(true); /* (iv) tx commits & objects
deactivated */
 } /* (v) */

Transactions Development Guide

44

and a call to remote objects. The above example re-binds to an existing persistent object
identified by Name-A, and a new persistent object. A naming system for remote objects
maintains the mapping between object names and locations and is described in a later
chapter.

2. Start of the atomic transaction.

3. Operation invocations. As a part of a given invocation, the object implementation ensures
that it is locked in read or write mode, assuming no lock conflict, and initialized, if
necessary, with the latest committed state from the object store. The first time a lock is
acquired on an object within a transaction, the object’s state is also acquired from the
object store.

4. Commit of the top-level action. This includes updating the state of any modified objects in
the object store.

5. Breaking of the previously created bindings.

9.2.8. The Class Hierarchy

The principal classes which make up the class hierarchy of JBoss Transaction Service are depicted in
Example 9.5, “JBoss Transaction Service Class Hierarchy” .

Example 9.5. JBoss Transaction Service Class Hierarchy

Programmers of fault-tolerant applications need the LockManager, Lock and AtomicAction
classes. Other classes important to a programmer are Uid, and ObjectState. Most JBoss
Transaction Service classes are derived from the base class StateManager, which provides primitive
facilities necessary for managing persistent and recoverable objects. These facilities include support
for the activation and deactivation of objects, and state-based object recovery. The class
LockManager uses the facilities of StateManager and Lock to provide the concurrency control
required for implementing the serializability property of atomic actions. The implementation of atomic
action facilities is supported by AtomicAction and TopLevelTransaction.

Consider a simple example. Assume that Example is a user-defined persistent class suitably derived

StateManager // Basic naming, persistence and recovery control
LockManager // Basic two-phase locking concurrency control service
User-Defined Classes
Lock // Standard lock type for multiple readers/single writer
User-Defined Lock Classes
AbstractRecord // Important utility class, similar to Resource
RecoveryRecord // handles object recovery
LockRecord // handles object locking
RecordList // Intentions list
other management record types
AtomicAction // Implements transaction control abstraction
TopLevelTransaction
Input/OutputBuffer // Architecture neutral representation of an objects’
state
Input/OutputObjectState // Convenient interface to Buffer
ObjectStore // Interface to the object storage services

CHAPTER 9. OVERVIEW

45

from the LockManager. An application containing an atomic transaction Trans accesses an object
(called O) of type Example by invoking the operation op1 which involves state changes to O. The
serialisability property requires that a write lock must be acquired on O before it is modified; thus the
body of op1 should contain a call to the setlock operation of the concurrency controller:

The setlock method, provided by the LockManager class, performs the following functions in this
case:

Check write lock compatibility with the currently held locks, and if allowed:

Call the StateManager operation activate, which loads, if not done already, the latest
persistent state of O from the object store. Then call the StateManager operation modified,
which creates an instance of either RecoveryRecord or PersistenceRecord for O,
depending upon whether O is persistent or not, and inserts it into the RecordList of Trans.

Create and insert a LockRecord instance in the RecordList of Trans.

If Trans is aborted some time after the lock has been acquired, the rollback operation of
AtomicAction processes the RecordList instance associated with Trans by invoking an
appropriate Abort operation on the various records. The implementation of this operation by the
LockRecord class releases the WRITE lock while that of RecoveryRecord/PersistenceRecord
restores the prior state of O.

All of the above work is automatically being performed by JBoss Transaction Service on behalf of the
application programmer. The programmer only starts the transaction and sets an appropriate lock.
JBoss Transaction Service and Transactional Objects for Java take care of participant registration,
persistence, concurrency control and recovery.

public boolean op1 (...)
{
 if (setlock (new Lock(LockMode.WRITE) == LockResult.GRANTED)
 {
 // actual state change operations follow
 ...
 }
 }

Transactions Development Guide

46

CHAPTER 10. USING JBOSS TRANSACTION SERVICE

10.1. INTRODUCTION

This section covers JBoss Transaction Service and Transactional Objects for Java in detail, as well as
how you can use it to construct transactional applications.

10.2. STATE MANAGEMENT

10.2.1. Object States

JBoss Transaction Service remembers the state of an object for the purposes of recovery and
persistence. In the case of recovery, the state represents some past state of the object. When
persistence is involved, the state represents the final state of an object at application termination.
Since recovery and persistence include common functionality, they are both implemented using the
Input/OutputObjectState and Input/OutputBuffer classes.

The InputBuffer class in Example 10.2, “InputBuffer” and the OutputBuffer classe in
Example 10.1, “OutputBuffer Example” maintain an internal array into which instances of the standard
Java types can be contiguously packed (unpacked) using the pack (unpack) operations. This buffer is
automatically resized as required. The instances are all stored in the buffer in a standard form called
network byte order, making them machine-independent.

Example 10.1. OutputBuffer Example

Example 10.2. InputBuffer

public class OutputBuffer
{
 public OutputBuffer ();

 public final synchronized boolean valid ();
 public synchronized byte[] buffer();
 public synchronized int length ();

 /* pack operations for standard Java types */

 public synchronized void packByte (byte b) throws IOException;
 public synchronized void packBytes (byte[] b) throws IOException;
 public synchronized void packBoolean (boolean b) throws
IOException;
 public synchronized void packChar (char c) throws IOException;
 public synchronized void packShort (short s) throws IOException;
 public synchronized void packInt (int i) throws IOException;
 public synchronized void packLong (long l) throws IOException;
 public synchronized void packFloat (float f) throws IOException;
 public synchronized void packDouble (double d) throws IOException;
 public synchronized void packString (String s) throws IOException;
};

public class InputBuffer

CHAPTER 10. USING JBOSS TRANSACTION SERVICE

47

Example 10.3. OutputObjectState

Example 10.4. InputObjectState

{
 public InputBuffer ();

 public final synchronized boolean valid ();
 public synchronized byte[] buffer();
 public synchronized int length ();

 /* unpack operations for standard Java types */

 public synchronized byte unpackByte () throws IOException;
 public synchronized byte[] unpackBytes () throws IOException;
 public synchronized boolean unpackBoolean () throws IOException;
 public synchronized char unpackChar () throws IOException;
 public synchronized short unpackShort () throws IOException;
 public synchronized int unpackInt () throws IOException;
 public synchronized long unpackLong () throws IOException;
 public synchronized float unpackFloat () throws IOException;
 public synchronized double unpackDouble () throws IOException;
 public synchronized String unpackString () throws IOException;
};

class OutputObjectState extends OutputBuffer
{
 public OutputObjectState (Uid newUid, String typeName);

 public boolean notempty ();
 public int size ();
 public Uidpublic class InputBuffer
 {
 public InputBuffer ();

 public final synchronized boolean valid ();
 public synchronized byte[] buffer();
 public synchronized int length ();

 /* unpack operations for standard Java types */

 public synchronized byte unpackByte () throws IOException;
 public synchronized byte[] unpackBytes () throws IOException;
 public synchronized boolean unpackBoolean () throws IOException;
 public synchronized char unpackChar () throws IOException;
 public synchronized short unpackShort () throws IOException;
 public synchronized int unpackInt () throws IOException;
 public synchronized long unpackLong () throws IOException;
 public synchronized float unpackFloat () throws IOException;
 public synchronized double unpackDouble () throws IOException;
 public synchronized String unpackString () throws IOException;
 };

Transactions Development Guide

48

The Example 10.4, “InputObjectState” and Example 10.3, “OutputObjectState” classes provides all the
functionality of the InputBuffer and OutputBuffer classes, through inheritance. They also add two
additional instance variables that signify the Uid and type of the object for which the
InputObjectState or OutputObjectState instance is a compressed image. These are used when
accessing the object store during storage and retrieval of the object state.

10.2.2. The Object Store

The Object Store provided with JBoss Transaction Service has a fairly restricted interface so that it
can be implemented in a variety of ways. For example, object stores may reside in shared memory, in a
local filesystem, or in a remote database. More complete information about the Object Stores available
in JBoss Transaction Service can be found in the Appendix.

NOTE

As with all JBoss Transaction Service classes, the default Object Stores are pure Java
implementations. You need to use native methods to access the shared memory and
other more complex object store implementations.

All of the object stores hold and retrieve instances of the InputObjectState and
OutputObjectState classes, which are named by the Uid and Type of the object that they represent.
States are read using the read_committed method and written by the system using the
write_uncommitted method. Normally, new object states do not overwrite old object states, but are
written to the store as shadow copies. These shadows replace the original only when the
commit_state method is invoked. All interaction with the object store is performed by JBoss
Transaction Service system components as appropriate, hiding the existence of any shadow versions of
objects from the programmer.

class InputObjectState extends InputBuffer
{
 public InputObjectState (Uid newUid, String typeName, byte[] b);

 public boolean notempty ();
 public int size ();
 public Uid stateUid ();
 public String type ();
};

public class ObjectStore
{
 public static final int OS_COMMITTED;
 public static final int OS_UNCOMMITTED;
 public static final int OS_COMMITTED_HIDDEN;
 public static final int OS_UNCOMMITTED_HIDDEN;
 public static final int OS_UNKNOWN;

 /* The abstract interface */
 public abstract boolean commit_state (Uid u, String name)
 throws ObjectStoreException;
 public abstract InputObjectState read_committed (Uid u, String name)
 throws ObjectStoreException;
 public abstract boolean write_uncommitted (Uid u, String name,

CHAPTER 10. USING JBOSS TRANSACTION SERVICE

49

When a transactional object is committing, it needs to make certain state changes persistent, so that it
can recover in the event of a failure and either continue to commit, or rollback. When using
Transactional Objects for Java, JBoss Transaction Service manages this persistence automatically. To
guarantee ACID properties, these state changes are flushed to the persistence store implementation
before the transaction commits. Otherwise, the application assumes that the transaction has
committed, even though the state changes may still exist within an operating system cache, vulnerable
to a system failure. By default, JBoss Transaction Service flushes such state changes. As a trade-off,
this behavior can impose a significant performance penalty on the application. To prevent transactional
object state flushes, set the com.arjuna.ats.arjuna.objectstore.objectStoreSync variable
to OFF.

10.2.3. StateManager

The JBoss Transaction Service class StateManager manages the state of an object and provides all
of the basic state-management support mechanisms. StateManager creates and registers
appropriate resources for persistence and recovery of the transactional object. If a transaction is
nested, then StateManager propagates these resources between child transactions and their parents
during the commit phase.

Objects in JBoss Transaction Service might be recoverable, persistent, both, or neither. If recoverable,
StateManager tries to generate and maintain appropriate recovery information for the object, storing
the information in instances of the Input/OutputObjectState class. The lifetimes of these objects
are assumed to be shorter than the application which created them. Recoverable and persistent
objects are assumed to live longer than the applications that created them, so StateManager loads or
unloads persistent states for the object by calling the activate or deactivate method. Objects
which are neither recoverable nor persistent do not have any state data stored.

 OutputObjectState os) throws ObjectStoreException;
 . . .
};

public class ObjectStatus
{
 public static final int PASSIVE;
 public static final int PASSIVE_NEW;
 public static final int ACTIVE;
 public static final int ACTIVE_NEW;
 public static final int UNKNOWN_STATUS;
};

public class ObjectType
{
 public static final int RECOVERABLE;
 public static final int ANDPERSISTENT;
 public static final int NEITHER;
};

public abstract class StateManager
{
 public synchronized boolean activate ();
 public synchronized boolean activate (String storeRoot);
 public synchronized boolean deactivate ();
 public synchronized boolean deactivate (String storeRoot, boolean
commit);

Transactions Development Guide

50

If an object is recoverable or persistent, StateManager invokes the save_state method during the
deactivation method. The restore_state is called during the activate. The type is called at
various points during the execution of the application. The programmer must implement these
methods, since StateManager does not have access to a runtime description of the layout of an
arbitrary Java object in memory. However, the capabilities provided by InputObjectState and
OutputObjectState classes simplify the writing of these routines. For example, the save_state
implementation for a class Example that had member variables called A, B and C might adhere to
Example 10.5, “save_state Example”

Example 10.5. save_state Example

 public synchronized void destroy ();

 public final Uid get_uid ();

 public boolean restore_state (InputObjectState, int ObjectType);
 public boolean save_state (OutputObjectState, int ObjectType);
 public String type ();
 . . .

 protected StateManager ();
 protected StateManager (int ObjectType, ObjectName attr);
 protected StateManager (Uid uid);
 protected StateManager (Uid uid, ObjectName attr);
 . . .

 protected final void modified ();
 . . .
};

public class ObjectModel
{
 public static final int SINGLE;
 public static final int MULTIPLE;
};

public boolean save_state (OutputObjectState os, int ObjectType)
{
 if (!super.save_state(os, ObjectType))
 return false;

 try
 {
 os.packInt(A);
 os.packString(B);
 os.packFloat(C);

 return true;
 }
 catch (IOException e)
 {
 return false;
 }
}

CHAPTER 10. USING JBOSS TRANSACTION SERVICE

51

To support crash recovery for persistent objects, all save_state and restore_state methods of
user objects must call super.save_state and super.restore_state.

NOTE

The type method determines the location in the object store where the state of
instances of that class will be saved and ultimately restored. This can be any valid string.
However, avoid using the hash character #, which is reserved for special directories
required by JBoss Transaction Service.

The get_uid method of StateManager provides read-only access to an object’s internal system
name. The value of the internal system name can only be set when an object is created,by providing it
as an explicit parameter or by generating a new identifier when the object is created.

The destroy method removes the object’s state from the object store. This is an atomic operation,
which only removes the state if its invoking transaction commits. The programmer must guarante
eexclusive access to the object before invoking this operation.

Since object recovery and persistence have complimentary requirements, the StateManager class
combines the management of both into a single mechanism. That is, it uses instances of the class
Input/OutputObjectState both for recovery and persistence purposes. An additional argument passed
to the save_state and restore_state operations allows the programmer to determine the
purpose for which any given invocation is being made thus allowing different information to be saved
for recovery and persistence purposes.

10.2.4. Object Models

JBoss Transaction Service supports two models for objects. Implementation of the state and
concurrency controls depend on which model is used.

Single

The application only contains a single copy of the object The object resides within a single JVM, and
all clients must address their invocations to this server. The single model provides better
performance, but creates a single point of failure. In a multi-threaded environment, the object may
not be protected from corruption if a single thread fails.

Transactions Development Guide

52

Single Object Model

Multiple

Logically, a single instance of the object exists. Copies of the object are distributed across multiple
JVMs. Performance suffers compared to the single model, better failure isolation is achieved.

Multiple Object Model

CHAPTER 10. USING JBOSS TRANSACTION SERVICE

53

The single model is the default. You can override this on a per-object basis by providing an appropriate
instance of the com.arjuna.ats.arjuna.gandiva.ObjectName class when you create your
object.

NOTE

You can change the model before any instantiation of the object There is no need for it
to remain the same during the object's lifetime.

Use the following method to provide a suitable ObjectName class. Refer to Example 10.6, “Object
Models” for an example.

1. Create a new instance of ObjectName.

2. Set the object model attribute using the
com.arjuna.ats.arjuna.ArjunaNames.StateManager_objectModel() name.

Example 10.6. Object Models

10.2.5. JBoss Transaction Service Method Reference

The JBoss Transaction Service class StateManager manages the state of objects and provides all of
the basic support mechanisms required for recovery, persistence, or both. Some operations must be
defined by you. These operations are: save_state, restore_state, and type.

boolean save_state(OutputObjectState state, int ObjectType)

Invoked to save the state of an object for future use, for recovery or persistence. The ObjectType
parameter indicates the reason for invocation. This allows you to save different pieces of
information into the OutputObjectState supplied as the first parameter, depending on whether
recovery or persistence is desired. For example, pointers to other JBoss Transaction Service
objects may be saved as pointers for recovery, but as UIDs for persistence. The
OutputObjectState class provides convenient operations, so that you can save instances of all of
the basic types in Java. To support crash recovery for persistent objects all save_state methods
need to call super.save_state.

NOTE

The save_state method assumes that an object is internally consistent and that all
variables saved have valid values. Write and test your code to be sure this is true.

boolean restore_state(InputObjectState state, int ObjectType)

{
 ObjectName attr = new ObjectName(“SNS:myObjectName”);

 attr.setLongAttribute(ArjunaNames.StateManager_objectModel(),
 ObjectModel.SINGLE);

 AtomicObject obj = new AtomicObject(ObjectType.ANDPERSISTENT, attr);
}

Transactions Development Guide

54

Restores an object to the specified state. The second parameter allows different interpretations of
the supplied state. To support crash recovery for persistent objects all restore_state methods
need to call super.restore_state.

String type ()

The JBoss Transaction Service persistence mechanism needs a way to determine the type of an
object as a string, so that it can save and restore the state of the object. By convention, the position
of the class in the hierarchy is used. For example, StateManager/LockManager/Object.

NOTE

The type method determines the location of the state of instanes of a specified class
are saved into the object store. This can actually be any valid string. However, avoid
using the hash character #, which is reserved for special directories required by
JBoss Transaction Service.

10.2.6. Example

Example 10.7, “Saving and Restoring an Object's State” shows a basic Array class derived from the
StateManager class. To illustrate saving and restoring of an object’s state, the highestIndex
variable keeps track of the highest element of the array that has a non-zero value.

Example 10.7. Saving and Restoring an Object's State

The save_state, restore_state and type operations can be defined as follows:

public class Array extends StateManager
{
 public Array ();
 public Array (Uid objUid);
 public void finalize (super.terminate(); };

 /* Class specific operations. */

 public boolean set (int index, int value);
 public int get (int index);

 /* State management specific operations. */

 public boolean save_state (OutputObjectState os, int ObjectType);
 public boolean restore_state (InputObjectState os, int ObjectType);
 public String type ();

 public static final int ARRAY_SIZE = 10;

 private int[] elements = new int[ARRAY_SIZE];
 private int highestIndex;
};

/* Ignore ObjectType parameter for simplicity */

public boolean save_state (OutputObjectState os, int ObjectType)

CHAPTER 10. USING JBOSS TRANSACTION SERVICE

55

{
 if (!super.save_state(os, ObjectType))
 return false;

 try
 {
 packInt(highestIndex);

 /*
 * Traverse array state that we wish to save. Only save active
elements
 */

 for (int i = 0; i <= highestIndex; i++)
 os.packInt(elements[i]);

 return true;
 }
 catch (IOException e)
 {
 return false;
 }
}

public boolean restore_state (InputObjectState os, int ObjectType)
{
 if (!super.restore_state(os, ObjectType))
 return false;

 try
 {
 int i = 0;

 highestIndex = os.unpackInt();

 while (i < ARRAY_SIZE)
 {
 if (i <= highestIndex)
 elements[i] = os.unpackInt();
 else
 elements[i] = 0;
 i++;
 }

 return true;
 }
 catch (IOException e)
 {
 return false;
 }
}

public String type ()
{
 return '/StateManager/Array';
}

Transactions Development Guide

56

10.3. LOCK MANAGEMENT AND CONCURRENCY CONTROL

Concurrency control information within JBoss Transaction Service is maintained by locks. Some of
these locks need to be used by multiple objects in different processes. They can be held in a lock store,
similar to the object store used for state information. The lock store used with JBoss Transaction
Service has a restricted interface which allows flexibility with regard to implementation. Lock stores
can be implemented in shared memory, on the Unix file system in several different formats, or as a
remotely accessible store.

NOTE

As with all JBoss Transaction Service classes, the default lock stores are pure Java
implementations. If you want to use more complex lock implementations, you must use
native methods.

Example 10.8. Example LockStore Class

10.3.1. Selecting a Lock Store Implementation

JBoss Transaction Service supports several different object store implementations. If the object model
being used is Single, no lock store is required for maintaining locks, because the information about the
object is not exported from it. However, if you use the Multiple model, different run-time environments
may need to share concurrency control information. You can specify the implementation type of the
lock store to use for all objects within a given execution environment using the
com.arjuna.ats.txoj.lockstore.lockStoreType property. This variable can be either:

BasicLockStore

This is an in-memory implementation which does not include support for sharing of stored
information between execution environments. You can extend it to include this functionality, if
needed.

BasicPersistentLockStore

This is the default implementation. It stores locking information within the local file system.
Execution environments that share the same file store can share concurrency control information.
The root of the file system into which locking information is written is the LockStore/ directory
within the JBoss Transaction Service installation directory. To override this location, set the
com.arjuna.ats.txoj.lockstore.lockStoreDir property accordingly, or include the
location in the CLASSPATH:

public class LockStore
{
 public abstract InputObjectState read_state (Uid u, String tName)
 throws LockStoreException;

 public abstract boolean remove_state (Uid u, String tname);
 public abstract boolean write_committed (Uid u, String tName,
 OutputObjectState state);
};

CHAPTER 10. USING JBOSS TRANSACTION SERVICE

57

How to Override the lockStoreDir Property

java -D
com.arjuna.ats.txoj.lockstore.lockStoreDir=/var/tmp/LockStore
myprogram

java –classpath $CLASSPATH;/var/tmp/LockStore myprogram

10.3.2. LockManager

The concurrency controller is implemented by the class LockManager, which provides sensible
default behavior that you can override if necessary. The setlock method is the primary interface to
the concurrency controller. By default, the JBoss Transaction Service runtime system enforces strict
two-phase locking, following a multiple reader, single writer policy on a per-object basis. You, as the
programmer, control lock acquisition, since the LockManager class cannot predict whether an
operation needs a read or write lock. Lock release, however, is normally under control of the system,
requiring no action by the programmer.

The LockManager class manages requests to set a lock on an object or to release a lock. However,
since it is derived from StateManager, it can also control invocation of some of the inherited facilities.
For example, if a request to set a write lock is granted, then LockManager invokes the modified
method directly, since setting a write lock implies that the invoking method is about to modify the
object. This may cause recovery information to be saved, if the object is recoverable. Successful lock
acquisition also triggers invocation of the activate.

Therefore, LockManager activates and deactivates persistent objects, and also registers Resources
used for managing concurrency control. By driving the StateManager class, it also registers
Resources for persistent and recoverable state manipulation and object recovery. You only set the
appropriate locks, start and end transactions, and extend the save_state and restore_state
methods of the StateManager class.

Example 10.9. LockResult Example

public class LockResult
{
 public static final int GRANTED;
 public static final int REFUSED;
 public static final int RELEASED;
};

public class ConflictType
{
 public static final int CONFLICT;
 public static final int COMPATIBLE;
 public static final int PRESENT;
};

public abstract class LockManager extends StateManager
{
 public static final int defaultTimeout;
 public static final int defaultRetry;
 public static final int waitTotalTimeout;

 public synchronized int setlock (Lock l);

Transactions Development Guide

58

You need to pass the type of lock required and the number of retries to acquire the lock,as parameters
to the setlock method. The type is either READ or WRITE. If a lock conflict occurs, one of the following
scenarios will take place:

If the retry value is equal to LockManager.waitTotalTimeout, the thread which called the
setlock method is blocked until the lock is released, or the total timeout specified has
elapsed. In the case of a time-out, a value of REFUSED is returned.

If the lock cannot be obtained initially,LockManager retries the specified number of times,
waiting for the specified timeout value between each failed attempt. The default is 100
attempts, each attempt being separated by a 0.25 seconds delay.

If a lock conflict occurs, the lock request is timed out, to prevent deadlocks. A full deadlock detection
scheme is not provided. If the requested lock is obtained, the setlock method returns a value of
GRANTED. Otherwise, a value of REFUSED is returned. You need to ensure that the remainder of the
code for an operation is only executed if a lock request is granted. Refer to Example 10.10, “setlock
Example” for a working example.

Example 10.10. setlock Example

 public synchronized int setlock (Lock l, int retry);
 public synchronized int setlock (Lock l, int retry, int sleepTime);
 public synchronized boolean releaselock (Uid uid);

 /* abstract methods inherited from StateManager */

 public boolean restore_state (InputObjectState os, int ObjectType);
 public boolean save_state (OutputObjectState os, int ObjectType);
 public String type ();

 protected LockManager ();
 protected LockManager (int ObjectType, ObjectName attr);
 protected LockManager (Uid storeUid);
 protected LockManager (Uid storeUid, int ObjectType, ObjectName
attr);
 . . .
};

res = setlock(new Lock(WRITE), 10);
// Attempts to set a write
// lock 11 times (10 retries)
// before giving up.

res = setlock(new Lock(READ), 0);
// Attempts to set a read lock
// 1 time (no retries) before
// giving up.

res = setlock(new Lock(WRITE);
// Attempts to set a write lock
// 101 times (default of 100
// retries) before giving up.

CHAPTER 10. USING JBOSS TRANSACTION SERVICE

59

The concurrency control mechanism is integrated into the atomic action mechanism to ensure that as
locks are granted on an object, appropriate information is registered with the currently running atomic
action. This guarantees that the locks are released at the correct time, and removes the need to
explicitly free locks which were acquired within atomic actions. However, if locks are acquired on an
object outside of the scope of an atomic action, you must use the releaselock method to release the
locks.

10.3.3. Locking policy

Locks in JBoss Transaction Service are not special system types. They are, instead, instances of other
JBoss Transaction Service objects. The Lock class is derived from StateManager so that locks can
be made persistent and can be named in a simple way. Furthermore, the LockManager class does not
know about the semantics of the actual policy for granting lock requests. Instances of the Lock class
maintain this information, and provide the conflictsWith method, which LockManager uses to
determine whether two locks conflict. This separation allows you to derive new lock types from the
basic Lock class and provides appropriate definitions of the conflict operations, allowing enhanced
levels of concurrency.

The Lock class provides a modifiesObject method, which LockManager uses to determine a call or
method is needed to grant a locking request. This allows locking modes other than simple read and
write to be supported. The supplied Lock class supports the traditional multiple reader/single writer
policy.

10.3.4. Object construction and destruction

JBoss Transaction Service objects can be either recoverable, persistent, both, or neither. Also, each
object has a unique internal name. These attributes can only be set when that object is constructed.
Therefore, LockManager provides two protected constructors for use by derived classes, each of

public class LockMode
{
 public static final int READ;
 public static final int WRITE;
};

public class LockStatus
{
 public static final int LOCKFREE;
 public static final int LOCKHELD;
 public static final int LOCKRETAINED;
};

public class Lock extends StateManager
{
 public Lock (int lockMode);

 public boolean conflictsWith (Lock otherLock);
 public boolean modifiesObject ();

 public boolean restore_state (InputObjectState os, int ObjectType);
 public boolean save_state (OutputObjectState os, int ObjectType);
 public String type ();
 . . .
};

Transactions Development Guide

60

which fulfils a distinct purpose:

LockManager ()

Allows the creation of new objects, which have no prior state.

LockManager(int ObjectType, ObjectName attr)

Allows the creation of new objects, which have no prior state. The ObjectType parameter denotes
whether an object is recoverable, recoverable and persistent (indicated by ANDPERSISTENT) or
neither (NEITHER). If an object is marked as being persistent, its state is stored in one of the object
stores. The shared parameter only has meaning if the object is RECOVERABLE.; If attr is not null
and the object model is SINGLE (the default behavior), then the recoverable state of the object is
maintained within the object itself. Otherwise, the state of the object is stored in an in-memory
object store between atomic actions.

Constructors for new persistent objects should make use of atomic actions within themselves. This
will ensure that the state of the object is automatically written to the object store either when the
action in the constructor commits, or, if an enclosing action exists, when the appropriate top-level
action commits.

LockManager(Uid objUid)

Allows access to the existing persistent object named in the objUid parameter. The object's prior
state, which is identified by the value of the objUid parameter), is loaded from an object store
automatically.

LockManager(Uid objUid, ObjectName attr)

Allows access to the existing persistent object named in the objUid parameter. The object's prior
state, which is identified by the value of the objUid, is loaded from an object store automatically. If
the attr parameter is not null, and the object model is SINGLE (the default behaviour), then the
object is not reactivated at the start of each top-level transaction.

The destructor of a programmer-defined class needs to invoke the inherited operation terminate, to
inform the state management mechanism that the object is about to be destroyed. Otherwise,
unpredictable results may occur.

Because the LockManager class inherits from StateManager, it passes any supplied ObjectName
instances to the StateManager class. As such, you can set the StateManager object model as
described earlier.

CHAPTER 10. USING JBOSS TRANSACTION SERVICE

61

CHAPTER 11. GENERAL TRANSACTION ISSUES

11.1. ADVANCED TRANSACTION ISSUES WITH JBOSS TRANSACTION
SERVICE

Transactions are used by both application programmers and class developers. You can make entire
operations, or parts of operations, transactional. This chapter covers some of the more subtle issues
involved with using transactions in general and, some particulars about JBoss Transaction Service.

11.1.1. Checking Transactions

In a multi-threaded application, multiple threads may be associated with a transaction during its
lifetime, sharing the same context. Also, if one thread terminates a transaction, other threads may still
be active within it. In a distributed environment, it is difficult to guarantee that no threads need a
transaction when it is terminated. By default, JBoss Transaction Service issues a warning if a thread
terminates a transaction when other threads are using it. However, it still allows the transaction to be
terminated. Another possible behavior is to block terminating thread until all other threads have
disassociated themselves from the transaction context. Therefore, JBoss Transaction Service provides
the com.arjuna.ats.arjuna.coordinator.CheckedAction class, which allows you to override
the thread/transaction termination policy. Each transaction has an instance of this class associated
with it, and you can provide your own implementations on a per-transaction basis.

When a thread tries to terminate a transaction and there are active threads within it, the system
invokes the check method on the transaction’s CheckedAction object. The parameters to the check
method are:

isCommit

Indicates whether the transaction is in the process of committing or rolling back.

actUid

The transaction identifier.

list

A list of all of the threads currently active within this transaction.

When the check method returns, the transaction is terminated. The state of the transaction may have
changed from when the check method was called.

11.1.2. Gathering Statistics

By default, the JBoss Transaction Service does not maintain any historical information about
transactions. You can turn on history tracking by setting the
com.arjuna.ats.arjuna.coordinator.enableStatistics property variable to YES. This

public class CheckedAction
{
 public CheckedAction ();

 public synchronized void check (boolean isCommit, Uid actUid,
 BasicList list);
};

Transactions Development Guide

62

information includes the number of transactions created, and the outcomes of the transactions. You
can request this information during the execution of a transactional application via the
com.arjuna.TxCore.Atomic.TxStats class, as in Example 11.1, “Transaction Statistics”.

Example 11.1. Transaction Statistics

11.1.3. Last resource commit optimization

In some cases, you may need enlist participants that are not two-phase commit aware into a two-phase
commit transaction. If there is only a single resource, you do not need two-phase commit.If the
transaction contains multiple transactions, the Last Resource Commit Optimization (LRCO) becomes
relevant. A single resource that is one-phase aware can only commit or roll back, with no prepare
phase. Such a resource may be enlisted in a transaction with two-phase commit aware resources. The
coordinator treats the one-phase aware resource slightly differently, by executing the prepare phase
on all other resource first. Then,the one-phase aware transaction needs to commit the transaction, the
coordinator passes control to it. If it commits, the coordinator logs the decision to commit and
attempts to commit the other resources as well.

To use the LRCO, your participant must implement the
com.arjuna.ats.arjuna.coordinator.OnePhase interface and be registered with the
transaction through the BasicAction.add method. Since this operation expects instances of
AbstractRecord, you need to create an instance of the
com.arjuna.ats.arjuna.LastResourceRecord class and pass your participant as the
constructor parameter, as shown in the Example 11.2, “BasicAction.add Example” .

Example 11.2. BasicAction.add Example

public class TxStats
{

 // Returns the number of transactions (top-level and nested)
 // created so far.

 public static int numberOfTransactions ();

 // Returns the number of nested (sub) transactions created so far.

 public static int numberOfNestedTransactions ();

 // Returns the number of transactions which have terminated with
 // heuristic outcomes.

 public static int numberOfHeuristics ();

 // Returns the number of committed transactions.

 public static int numberOfCommittedTransactions ();

 // Returns the number of transactions which have rolled back.

 public static int numberOfAbortedTransactions ();

}

CHAPTER 11. GENERAL TRANSACTION ISSUES

63

11.1.4. Nested Transactions

You do not need to do anything special to nest transactions. If an action is begun while another action
is running, it is automatically nested. This provides a modular structure to applications,meaning that
the programmer of the object does not need to be concerned about whether the applications to use
the object are also transactional.

If a nested action is aborted then all of its work is rolled back. However, strict two-phase locking means
that any locks the terminating transaction holds are retained until the top-level action commits or
aborts. If a nested action commits, the work it has performed is only committed by the system if the
top-level action commits. If the top-level action aborts, all the work is rolled back.

Committing or aborting a nested action does not automatically affect the outcome of its parent action.
You can choose to implement this behavior programmatically, controlling the way faults are contained
or work is undone, for instance.

11.1.5. Asynchronously Committing a Transaction

By default, JBoss Transaction Service executes the commit protocol of a top-level transaction in a
synchronous, single-threaded manner. All registered resources are directed to prepare in order by a
single thread, and then to commit or rollback. This has several possible disadvantages.

Often, the prepare operating is logically be invoked in parallel on each resource. The
disadvantage is that if an early resource in the list of registered resource forces a rollback
during prepare, many unnecessary prepare operations may have been performed.

If your application does not need heuristic reporting, the second phase of the commit protocol
can be called asynchronously, since its success or failure is not important.

Therefore, JBoss Transaction Service provides runtime options to enable two threading optimizations,
by setting specific variables.

com.arjuna.ats.arjuna.coordinator.asyncPrepare

If set to YES, a separate thread is created during the prepare phase, for each registered
participant within the transaction.

com.arjuna.ats.arjuna.coordinator.asyncCommit

try
 {
 boolean success = false;
 AtomicAction A = new AtomicAction();
 OnePhase opRes = new OnePhase(); // used OnePhase interface

 System.err.println("Starting top-level action.");

 A.begin();
 A.add(new LastResourceRecord(opRes));
 A.add(new ShutdownRecord(ShutdownRecord.FAIL_IN_PREPARE));

 A.commit();
 }

Transactions Development Guide

64

If set to YES, a separate thread is created to complete the second phase of the transaction if you do
not need information about heuristics outcomes.

11.1.6. Independent Top-Level Transactions

In addition to normal top-level and nested transactions, JBoss Transaction Service also supports
independent top-level actions, which you can use to relax strict serializability in a controlled way. You
can execute an independent top-level action from anywhere within another transaction, and it behaves
exactly like a normal top-level action. Its results are made permanent when it commits and are not
undone if any of its parent actions abort.

Figure 11.1. Independent Top-Level Actions

Figure 11.1, “Independent Top-Level Actions” shows a typical nesting of transactions, where action B is
nested within action A. Transaction C is logically nested within action B, because its Begin operation
is invoked while B is active. However, because it is an independent top-level action, it commits or
aborts independently of the other actions within the structure. Because of the nature of independent
top-level actions, use them with caution and only after careful testing and observation.

You can use top-level actions within an application by declaring and using instances of the
TopLevelTransaction class, and using them in exactly the same way as other transactions.

11.1.7. Transactions Within the save_state and restore_state Methods

Exercise caution when you write the save_state and restore_state methods. Make sure not to
start any atomic actions, either explicitly in the method, or implicitly through use of some other
operation. The reason for this caution is that JBoss Transaction Service may invoke the
restore_state method when it commits, resulting in an attempt to execute a transaction during the
commit or abort phase of another action. This might violate the atomicity properties of the action
being committed or aborted, so it is strongly discouraged.

11.1.8. Example

CHAPTER 11. GENERAL TRANSACTION ISSUES

65

The code in Example 11.3, “Nested Transaction Example” is based on the Example 10.7, “Saving and
Restoring an Object's State” example presented earlier, and implements the set and get methods.
The code is simplified, and ignores error conditions and exceptions.

Example 11.3. Nested Transaction Example

11.1.9. Garbage Collecting Objects

Java objects are deleted by the garbage collector when they are no longer needed. Caution must be
used when deleting an object that is currently under the control of a transaction. If the object is being
manipulated within a transaction, the transaction controls what happens to it. Therefore, regardless of

public boolean set (int index, int value)
{
 boolean result = false;
 AtomicAction A = new AtomicAction();

 A.begin();

 // We need to set a WRITE lock as we want to modify the state.

 if (setlock(new Lock(LockMode.WRITE), 0) == LockResult.GRANTED)
 {
 elements[index] = value;
 if ((value > 0) && (index > highestIndex))
 highestIndex = index;
 A.commit(true);
 result = true;
 }
 else
 A.rollback();

 return result;
}

public int get (int index) // assume -1 means error
{
 AtomicAction A = new AtomicAction();

 A.begin();

 // We only need a READ lock as the state is unchanged.

 if (setlock(new Lock(LockMode.READ), 0) == LockResult.GRANTED)
 {
 A.commit(true);

 return elements[index];
 }
 else
 A.rollback();

 return -1;
}

Transactions Development Guide

66

the references to a transactional object maintained by an application, JBoss Transaction Service
always retains its own references to make sure that the object is not deleted by the garbage collector
until all involved transactions have terminated.

11.1.10. Transaction Timeouts

By default, transactions live until the application which created them deletes them, or a failure occurs.
However, you can to set a timeout on a per-transaction basis, causing transactions which do not
terminate before the timeout expires to be rolled back. The timeout value is expressed in seconds.

In JBoss Transaction Service, the timeout value is provided as a parameter to the AtomicAction
constructor. If the default value of AtomicAction.NO_TIMEOUT is provided, the transaction is never
automatically timed out. Any other positive value represents the number of seconds to wait for the
transaction to terminate. A value of 0 is interpreted as a global default timeout, which you can provide
using the property com.arjuna.ats.arjuna.coordinator.defaultTimeout. This property's
default value is 60, or one minute.

When a top-level transaction is created with a non-zero timeout, it will be rolled back if it times out.
JBossTS uses a separate reaper thread to monitor all locally created transactions, forcing them to roll
back if their timeouts elapse. To prevent the reaper thread from consuming application time, it only
runs periodically. The default checking period is 120000 milliseconds, but you can override it by setting
the com.arjuna.ats.arjuna.coordinator.txReaperTimeout property to another value, in microseconds.
Alternatively, if the com.arjuna.ats.arjuna.coordinator.txReaperMode property is set to DYNAMIC, the
transaction reaper wakes up whenever a transaction times out. This has the advantage of terminating
transactions early, but may continually reschedule the reaper thread.

If the timeout value is 0 for a top-level transaction, or no timeout is specified, JBoss Transaction
Service does not impose any timeout on the transaction, and it is allowed to run indefinitely. You can
override this default timeout by setting the com.arjuna.ats.arjuna.coordinator.defaultTimeout
property.

CHAPTER 11. GENERAL TRANSACTION ISSUES

67

CHAPTER 12. HINTS AND TIPS

12.1. GENERAL TIPS

12.1.1. Using Transactions in Constructors

Examples throughout this manual use transactions in the implementation of constructors for new
persistent objects. This it guarantees correct propagation of the state of the object to the object store.
The state of a modified persistent object is only written to the object store when the top-level
transaction commits. Thus, if the constructor transaction is top-level and it commits, the newly-
created object is written to the store, and becomes available immediately. However, if the constructor
transaction commits but is nested because some another transaction, which was started prior to
object creation, is running, then the state is only written if all of the parent transactions commit.

On the other hand, if the constructor does not use transactions, inconsistencies may arise in the
system. For example, if no transaction is active when the object is created, its state is not saved to the
store until the next time the object is modified under the control of a transaction.

Example 12.1. Transactions causing System Inconsistencies

Here, the two objects are created outside of the control of the top-level action A. obj1 is a new
object. obj2 is an old existing object. When the remember method of obj2 is invoked, the object is
activated and the Uid of obj1 is known. Since this action commits, the persistent state of obj2 may
now contain the Uid of obj1. However, the state of obj1 itself has not been saved, since it has not
been manipulated under the control of any action. In fact, unless it is modified under the control of
some action later in the application, it will never be saved. However, if the constructor would have
used an atomic action, the state of obj1 would have automatically been saved at the time it was
constructed, preventing this inconsistency.

12.1.2. More on the save_state and restore_state Methods

JBoss Transaction Service may invoke the user-defined save_state method of an object at any time
during the lifetime of an object, including during the execution of the body of the object’s constructor.
This is especially true if it uses atomic actions. All of the variables saved by save_state are correctly
initialized.

Use caution when writing the save_state and restore_state methods, to ensure that no
transactions are explicitly or implicitly started. The reason is that JBoss Transaction Service may
invoke the restore_state method as part of its commit processing, causing the execution of an
atomic transaction during the commit or abort phase of another transaction. This may violate the
atomicity properties of the transaction being committed or aborted, so it is discouraged.

AtomicAction A = new AtomicAction();
Object obj1;
Object obj2;

obj1 = new Object(); // create new object
obj2 = new Object("old"); // existing object

A.begin(0);
obj2.remember(obj1.get_uid()); // obj2 now contains reference to obj1
A.commit(true); // obj2 saved but obj1 is not

Transactions Development Guide

68

To support crash recovery for persistent objects, all save_state and restore_state methods of
user objects need to call the super.save_state and super.restore_state.

12.1.3. Packing Objects

All of the basic types of Java, such as int and long, can be saved and restored from an
InputObjectState or OutputObjectState instances by using the pack and unpack methods
provided by InputObjectState and OutputObjectState. However, you should handle packing and
unpacking objects differently, because packing objects brings in the additional problems of aliasing.
Alias means that two different object references may actually refer to the same item. See the
Example 12.2, “Aliasing Problem with Packing Objects” .

Example 12.2. Aliasing Problem with Packing Objects

Here, both s1 and s2 point to the same string, and a naive implementation of the save_state
method has the potential to copy the string twice. From the perspective of the save_state
method, this is merely inefficient. However, it would cause the restore_state method to unpack
the two strings into different areas of memory, destroying the original aliasing information. JBoss
Transaction Service packs and unpacks separate object references.

12.2. DIRECT USE OF THE STATEMANAGER CLASS

The examples throughout this manual derive user classes from the LockManager class. There are two
reasons for this.

Most importantly, the serializability constraints of atomic actions require it.

It reduces the need for programmer intervention.

However, if you only require access to the persistence and recovery mechanisms of JBoss Transaction
Service, you can directly derive a user class from StateManager.

Classes derived directly from StateManager must make use of its state management mechanisms
explicitly, rather than relying on LockManager. You need to make appropriate use of the activate,
deactivate, and modified methods, since the constructors of StateManager are effectively
identical to those of LockManager.

12.2.1. The activate Method

public class Test
{
 public Test (String s);
 ...
 private String s1;
 private String s2;
};

public Test (String s)
{
 s1 = s;
 s2 = s;
}

CHAPTER 12. HINTS AND TIPS

69

The activate method loads an object from the object store. The object’s UID needs to already be set
via the constructor, and the object must exist in the store. If the object is successfully read, the
restore_state method is called to build the object in memory. The activate method operates
such that once an object has been activated, further calls are ignored. The parameter represents the
root name of the object store to search for the object. If the value is null, the default store is used.

12.2.2. The deactivate Method

The deactivate is the inverse of activate. It first calls the save_state method to build the
compacted image of the object, then saves the object in the object store. Objects are only saved if they
have been modified since activation. The parameter represents the root name of the object store into
which the object should be saved. If the value is null, the default store is used.

12.2.3. The modified Method

The modified method must be called before modifying the object in memory. Otherwise, the object
will not be saved in the object store by the deactivate method.

boolean activate ()
boolean activate (String storeRoot)

boolean deactivate ()
boolean deactivate (String storeRoot)

void modified ()

Transactions Development Guide

70

CHAPTER 13. TOOLS

13.1. INTRODUCTION

This chapter explains how to start and use the tools framework and discusses the available tools.

13.2. STARTING THE TRANSACTION SERVICE TOOLS

To start the JBoss Transaction Service tools, refer to the section below for your operating system.

Windows

Double-click the Start Tools link in the JBoss Transaction Service program group in the Start
menu.

Linux and UNIX-like Operating Systems

At the command line, type $JBOSS_HOME/run-tools.sh

The Tools window which appears is the launch area for all of the tools shipped with the JBoss
Transaction Service. A menu bar is at the top of the Tools window, and contains the following four
items:

Section 13.2.1, “File Menu”

Section 13.2.2, “Performance Menu”

Section 13.2.3, “Window Menu”

Section 13.2.4, “Help Menu”

13.2.1. File Menu

Open JMX Browser

Displays the JMX browser window

Open Object Store Browser

Displays the Object Store browser window

Settings

Displays the settings dialog used to configure JBoss Transaction Service tools

Exit

Exits the JBoss Transaction Service Tools application, discarding any unsaved changes.

13.2.2. Performance Menu

Open

Opens a performance window. Refer to Section 13.3, “Using the Performance Tool” for more
information on the performance tool.

CHAPTER 13. TOOLS

71

Close All

Closes all open performance windows.

13.2.3. Window Menu

Cascade Windows

Arranges the windows in a diagonal stack, leaving all the title bars visible.

List of Individual Windows

For each window currently visible, an extra menu option is shown When selected, it focuses the
associated window.

13.2.4. Help Menu

About

Displays information about the product, version, authors, and licensing.

13.3. USING THE PERFORMANCE TOOL

The performance tool displays performance information about the transaction service. This
information is gathered using the Performance JMX bean, so the transaction service needs to be
integrated into an Application Server to give any performance information.

The information is displayed using a multi-series graph. To view this graph, open a performance
window by selecting PerformanceOpen.

Items Displayed in the Performance Tool Graph

Number of transactions.

Number of committed transactions.

Number of aborted transactions.

Number of nested transactions.

Number of heuristics raised.

To toggle these series on and off, select the menu option from the Series menu.

If a series is active, it appears in the legend at the bottom of the graph, along with its color in the graph.

The Y-axis represents the number of transactions and the X-axis represents time.

At any point the sampling of data can be stopped and restarted using the Sampling menu and the data
currently visible in the graph can be saved to a Comma Separate Values (CSV) file for importing the
data into a spreadsheet application using the Save to .csv menu option from the Data menu.

13.4. USING THE JMX BROWSER

Transactions Development Guide

72

To open the JMX browser window, choose FileOpen JMX Browser option.

The window consists of the MBean panel and the Details panel. The MBean panel displays the MBeans
exposed by the MBean server, grouped by domain name. The Details panel displays information about
the currently selected MBean. To select an MBean, click it with the mouse.

Information Displayed in the Details Panel

The total number of MBeans registered on this server.

The number of constructors exposed by this MBean.

The number of attributes exposed by this MBean.

The number of operations exposed by this MBean.

The number of notifications exposed by this MBean.

A brief description of the MBean.

A link to the View menu enables display of the attributes and operations exposed by the MBean. You
can view readable attributes, alter writeable attributes and invoke operations.

13.4.1. Using Attributes and Operations

Clicking the View link displays the View JMX Attributes and Operations window. Use this window to
view all readable attributes exposed by the selected MBean, and alter writeable attributes. To alter an
attribute's value, double-click the current value and enter the new value. If the ... button is enabled,
click it to enable an advanced editor. If the attribute is a JMX object name, clicking this button displays
the JMX attributes and operations for that object.

At any point, you can click the Refresh button to refresh the attribute values. If an exception occurs
while retrieving the value of an attribute, the exception is displayed in place of the attributes value.

You can also invoke operations upon an MBean, by selecting them from the list of operations, which is
displayed below the attributes list, and clicking the Invoke button. If the operation requires
parameters a further window will be displayed, from this window you must specify values for each of
the parameters required. You specify parameter values in the same way as you specify JMX attribute
values. Once you have specified a value for each of the parameters click the Invoke button to perform
the invocation. After the invocation has completed, its return value is displayed.

13.4.2. Using the Object Store Browser

To open the Object Store browser window, click the FileOpen Object Store Browser option.

The object store browser window is split into four sections:

Object Store Roots

A drop-down list of the currently-available object store roots. Selecting an option from the list
repopulates the hierarchy view with the contents of the selected root.

Object Store Hierarchy

A tree showing the current object store hierarchy. Selecting a node from this tree displays the
objects stored in that location.

CHAPTER 13. TOOLS

73

Objects

A list of icons representing the objects stored in the selected location.

Object Details

Information about the currently selected object, only displayed if the object’s type is known to the
state viewer repository. Refer to Section 13.4.3.1, “Writing an OSV” to ensure that your object will
be displayed properly.

13.4.3. Object State Viewers (OSV)

When an object is selected in the Objects pane of the main window, the registered Object State
Viewer (OSV) for the object's type is invoked. An OSV makes information about the selected object
available via the user interface. An OSV for Atomic Actions (transactions) is distributed with the
standard tools. It displays information on the Abstract Records in its lists of methods, such as
heuristic, failed, read-only, and others. You can write your own OSVs to display information about
object types you have defined.

13.4.3.1. Writing an OSV

You can write an OSV plug-in so that the Object Store browser can show the state of user-defined
abstract records. An OSV plug-in is a class which implements the
com.arjuna.ats.tools.objectstorebrowser.stateviewers.StateViewerInterface
interface.

It must be packaged in a JAR within the plugins/ directory. The example at Example 13.1,
“AbstractRecord Class” creates an OSV plugin for the AbstractRecord class.

Example 13.1. AbstractRecord Class

 public class SimpleRecord extends AbstractRecord
 {
 private int _value = 0;

 public void increase()
 {
 _value++;
 }

 public int get()
 {
 return _value;
 }

 public String type()
 {
 return “/StateManager/AbstractRecord/SimpleRecord”;
 }

 public boolean restore_state(InputObjectState os, int i)
 {
 boolean returnValue = true;

Transactions Development Guide

74

The goal is to show the current value of the abstract record when it is viewed in the object store
browser. You can read the state into an instance of your abstract record, and call the getValue()
method to accomplish this easily.

 try
 {
 _value = os.unpackInt();
 }
 catch (java.io.IOException e)
 {
 returnValue = false;
 }

 return returnValue;
 }

 public boolean save_state(OutputObjectState os, int i)
 {
 boolean returnValue = true;

 try
 {
 os.packInt(_value);
 }
 catch (java.io.IOException e)
 {
 returnValue = false;
 }

 return returnValue;
 }
 }

 public class SimpleRecordOSVPlugin implements StateViewerInterface
 {
 /**
 * A uid node of the type this viewer is registered against has been
expanded.
 * @param os
 * @param type
 * @param manipulator
 * @param node
 * @throws ObjectStoreException
 */
 public void uidNodeExpanded(ObjectStore os,
 String type,
 ObjectStoreBrowserTreeManipulationInterface
 manipulator,
 UidNode node,
 StatePanel infoPanel)
 throws ObjectStoreException
 {
 // Do nothing

CHAPTER 13. TOOLS

75

The uidNodeExpanded method is invoked when a Unique Identification (UID) representing the given
type is expanded in the object store hierarchy tree. This abstract record is not visible in the object
store directly. It is only viewable via one of the lists in an atomic action. The entrySelected method
is invoked when an entry is selected from the Object view, which represents an object with the given
type. In both methods, the StatePanel is used to display information regarding the state of the object.
The StatePanel includes the methods listed in StatePanel Methods to assist in display this information.

StatePanel Methods

setInfo(String info)

Shows general information.

setData(String name, String value)

Puts information into the table which is displayed by the object store browser tool.

 }

 /**
 * An entry has been selected of the type this viewer is registered
against.
 *
 * @param os
 * @param type
 * @param uid
 * @param entry
 * @param statePanel
 * @throws ObjectStoreException
 */
 public void entrySelected(ObjectStore os,
 String type,
 Uid uid,
 ObjectStoreViewEntry entry,
 StatePanel statePanel)
 throws ObjectStoreException
 {
 SimpleRecord rec = new SimpleRecord();

 if (rec.restore_state(os.read_committed(uid, type),
ObjectType.ANDPERSISTENT))
 {
 statePanel.setData(“Value”, rec.getValue());
 }
 }

 /**
 * Get the type this state viewer is intended to be registered against.
 * @return
 */
 public String getType()
 {
 return “/StateManager/AbstractRecord/SimpleRecord”;
 }
 }

Transactions Development Guide

76

enableDetailsButton(DetailsButtonListener listener)

Enable the Details button. The listener interface allows a plug-in to be informed when the button
is pressed. You, as the developer, control how to display this information.

In this example, the state is read from the object store and the value returned by the getValue()
method is used to put an entry into the state panel table. The getType() method returns the type of
this plug-in for registration.

To add this plug-in to the object store browser, package it into a JAR file with a name that is prefixed
with osbv-. The JAR file must contain certain information within the manifest file, to inform the object
store browser which classes are plug-ins. Refer to Example 13.2, “Packing the Plug-In with Ant” to do
this using an Apache Ant script.

Example 13.2. Packing the Plug-In with Ant

After you have created the JAR with the correct information in the manifest file, place it in the
bin/tools/plugins directory.

 <jar jarfile="osbv-simplerecord.jar">
 <fileset dir="build" includes="*.class”/>
 <manifest>
 <section name="arjuna-tools-objectstorebrowser">
 <attribute name="plugin-classname-1" value=" SimpleRecordOSVPlugin
"/>
 </section>
 </manifest>
 </jar>

CHAPTER 13. TOOLS

77

CHAPTER 14. CONSTRUCTING AN APPLICATION USING
TRANSACTIONAL OBJECTS FOR JAVA

14.1. APPLICATION CONSTRUCTION

Developing a JBoss Transaction Service application involves two distinct phases. First, the class
developer writes new classes which need to be persistent, recoverable, or concurrency-controlled.
Then, the application developer uses the classes you've created in your application. These developers
may be the same person, but the two different roles imply different concerns. The class developer
needs to focus on developing appropriate save_state and restore_state methods, as well as
setting appropriate locks in operations and invoking the appropriate JBoss Transaction Service class
constructors. The application developer's concern is defining the general structure of the application,
particularly with regard to the use of atomic actions, or transactions.

This chapter outlines a simple application, a simple FIFO Queue class for integer values. The Queue
uses a double linked list structure, and is implemented as a single object. The example is used
throughout the remainder of this manual, to illustrate the various mechanisms provided by JBoss
Transaction Service. Although the example is simplistic, it shows all possible modifications to JBoss
Transaction Service without requiring in-depth knowledge of the application code.

Examples in this chapter assume that the application is not distributed. In a distributed application,
context information must be propagated either implicitly or explicitly.

14.1.1. Queue description

The queue is a traditional FIFO queue, where elements are added to the front and removed from the
back. The operations provided by the queue class allow the values to be placed into the queue
(enqueue) and to be removed from it (dequeue), as well as the ability to change or inspect the values of
elements in the queue. In this example implementation, an array is used to represent the queue. A limit
of QUEUE_SIZE elements has been imposed for this example.

Example 14.1. Java Interface Definition of the Que Class

 public class TransactionalQueue extends LockManager
 {
 public TransactionalQueue (Uid uid);
 public TransactionalQueue ();
 public void finalize ();

 public void enqueue (int v) throws OverFlow, UnderFlow,
 QueueError, Conflict;
 public int dequeue () throws OverFlow, UnderFlow,
 QueueError, Conflict;

 public int queueSize ();
 public int inspectValue (int i) throws OverFlow,
 UnderFlow, QueueError, Conflict;
 public void setValue (int i, int v) throws OverFlow,
 UnderFlow, QueueError, Conflict;

 public boolean save_state (OutputObjectState os, int ObjectType);
 public boolean restore_state (InputObjectState os, int ObjectType);
 public String type ();

Transactions Development Guide

78

14.1.2. Constructors and deconstructors

Example 14.2. Using an Existing Persistent Object

To use an existing persistent object, you need to use a special constructor that is required to take
the Uid of the persistent object.

Example 14.3. Creating a New Persistent Object

 public static final int QUEUE_SIZE = 40; // maximum size of the
queue

 private int[QUEUE_SIZE] elements;
 private int numberOfElements;
 };

 public TransactionalQueue (Uid u)
 {
 super(u);

 numberOfElements = 0;
 }

 public TransactionalQueue ()
 {
 super(ObjectType.ANDPERSISTENT);

 numberOfElements = 0;

 try
 {
 AtomicAction A = new AtomicAction();

 A.begin(0); // Try to start atomic action

 // Try to set lock

 if (setlock(new Lock(LockMode.WRITE), 0) == LockResult.GRANTED)
 {
 A.commit(true); // Commit
 }
 else // Lock refused so abort the atomic action
 A.rollback();
 }
 catch (Exception e)
 {
 System.err.println(“Object construction error: “+e);
 System.exit(1);
 }
 }

CHAPTER 14. CONSTRUCTING AN APPLICATION USING TRANSACTIONAL OBJECTS FOR JAVA

79

To use an atomic action within the constructor for a new object, follow the guidelines outlined earlier,
which ensure that the state of the object is written to the object store when the appropriate top-level
atomic action commits. To use atomic actions in a constructor, you need to first declare the action and
invoke its begin method. Then, the operation must set an appropriate lock on the object. Afterward,
the main body of the constructor is executed. If successful, the atomic action is committed. Otherwise,
it is aborted.

The destructor of the queue class only needs to call the terminate method of the LockManager
method.

Example 14.4. Destructor of the Queue Class

14.1.3. The save_state, restore_state, and type Methods

Example 14.5. The save_state Method

Example 14.6. The restore_state Method

 public void finalize ()
 {
 super.terminate();
 }

 public boolean save_state (OutputObjectState os, int ObjectType)
 {
 if (!super.save_state(os, ObjectType))
 return false;

 try
 {
 os.packInt(numberOfElements);

 if (numberOfElements > 0)
 {
 for (int i = 0; i < numberOfElements; i++)
 os.packInt(elements[i]);
 }

 return true;
 }
 catch (IOException e)
 {
 return false;
 }
 }

 public boolean restore_state (InputObjectState os, int ObjectType)
 {
 if (!super.restore_state(os, ObjectType))
 return false;

Transactions Development Guide

80

Example 14.7. The type Method

Because the Queue class is derived from the LockManager class, the operation type should return
a transactional queue.

14.1.4. enqueue/dequeue operations

If the operations of the queue class will be atomic actions, then the enqueue operation in
Example 14.8, “The enqueue Method” is appropriate as a guideline. The dequeue would have a similar
structure, but is not included as an example.

Example 14.8. The enqueue Method

 try
 {
 numberOfElements = os.unpackInt();

 if (numberOfElements > 0)
 {
 for (int i = 0; i < numberOfElements; i++)
 elements[i] = os.unpackInt();
 }

 return true;
 }
 catch (IOException e)
 {
 return false;
 }
 }

 public String type ()
 {
 return "/StateManager/LockManager/TransactionalQueue";
 }

 public void enqueue (int v) throws OverFlow, UnderFlow, QueueError
 {
 AtomicAction A = new AtomicAction();
 boolean res = false;

 try
 {
 A.begin(0);

 if (setlock(new Lock(LockMode.WRITE), 0) == LockResult.GRANTED)
 {
 if (numberOfElements < QUEUE_SIZE)
 {
 elements[numberOfElements] = v;
 numberOfElements++;
 res = true;

CHAPTER 14. CONSTRUCTING AN APPLICATION USING TRANSACTIONAL OBJECTS FOR JAVA

81

14.1.5. The queueSize Method

 }
 else
 {
 A.rollback();
 throw new UnderFlow();
 }
 }

 if (res)
 A.commit(true);
 else
 {
 A.rollback();
 throw new Conflict();
 }
 }
 catch (Exception e1)
 {
 throw new QueueError();
 }
 }

 public int queueSize () throws QueueError, Conflict
 {
 AtomicAction A = new AtomicAction();
 int size = -1;

 try
 {
 A.begin(0);

 if (setlock(new Lock(LockMode.READ), 0) == LockResult.GRANTED)
 size = numberOfElements;

 if (size != -1)
 A.commit(true);
 else
 {
 A.rollback();

 throw new Conflict();
 }
 }
 catch (Exception e1)
 {
 throw new QueueError();
 }

 return size;
 }

Transactions Development Guide

82

14.1.6. The inspectValue and setValue Methods

NOTE

The implementation of the setValue is not shown, but it can be inferred from the
inspectValue method which is shown.

 public int inspectValue (int index) throws UnderFlow,
 OverFlow, Conflict, QueueError
 {
 AtomicAction A = new AtomicAction();
 boolean res = false;
 int val = -1;

 try
 {
 A.begin();

 if (setlock(new Lock(LockMode.READ), 0) == LockResult.GRANTED)
 {
 if (index < 0)
 {
 A.rollback();
 throw new UnderFlow();
 }
 else
 {
 // array is 0 - numberOfElements -1

 if (index > numberOfElements -1)
 {
 A.rollback();
 throw new OverFlow();
 }
 else
 {
 val = elements[index];
 res = true;
 }
 }
 }

 if (res)
 A.commit(true);
 else
 {
 A.rollback();
 throw new Conflict();
 }
 }
 catch (Exception e1)
 {
 throw new QueueError();
 }

CHAPTER 14. CONSTRUCTING AN APPLICATION USING TRANSACTIONAL OBJECTS FOR JAVA

83

14.1.7. The Client

The example code for the client only includes a representative portion, rather than the full code.
Before invoking operations on the object, the client needs to bind to it. If the client is run locally, it only
needs to create an instance of the object.

Example 14.9. Creating an Instance of the TransactionalQueue Object

Before invoking one of the queue’s operations, the client starts a transaction, using the queueSize
method.

Example 14.10. The queueSize Method

14.1.8. Notes

 return val;
 }

 public static void main (String[] args)
 {
 TransactionalQueue myQueue = new TransactionalQueue();

 AtomicAction A = new AtomicAction();
 int size = 0;

 try
 {
 A.begin(0);
 s
 try
 {
 size = queue.queueSize();
 }
 catch (Exception e)
 {
 }

 if (size >= 0)
 {
 A.commit(true);

 System.out.println(“Size of queue: “+size);
 }
 else
 A.rollback();
 }
 catch (Exception e)
 {
 System.err.println(“Caught unexpected exception!”);
 }

Transactions Development Guide

84

Because the queue object is persistent, the state of the object will survive any failures of the node on
which it is located. The preserved state will be the one produced by the last top-level committed
atomic action performed on the object. If the application needs to perform two enqueue operations
atomically, you can nest the enqueue operations inside another enclosing atomic action. In addition,
concurrent operations on a persistent object are serialized, preventing inconsistencies in the state of
the object. Be aware that since the elements of the queue objects are not individually concurrency
controlled, certain combinations of concurrent operation invocations are executed serially, when
logically they could be executed concurrently. This happens when modifying the states of two different
elements in the queue.

CHAPTER 14. CONSTRUCTING AN APPLICATION USING TRANSACTIONAL OBJECTS FOR JAVA

85

CHAPTER 15. CONFIGURATION OPTIONS

15.1. OPTIONS

Table 15.1, “Configuration Options” shows the configuration options, with possible values. More details
about each option can be found in the relevant sections of this document.

Table 15.1. Configuration Options

Name Values Description

com.arjuna.ats.arjuna.objectstore.storeSync ON/OFF Enables or disables
synchronization of
the object store.
Use with caution.

com.arjuna.ats.arjuna.objectstore.storeType
ShadowStore

ShadowNoFileLockStore

JDBCStore

HashedStore

Specifies the type
of object store
implementation to
use.

com.arjuna.ats.arjuna.objectstore.hashedDirectories Any integer Sets the number of
directories to hash
object states over
for the
HashedStore
object store
implementation.

com.arjuna.ats.txoj.lockstore.lockStoreType
BasicLockStore

BasicPersistentLockStor
e

Specifies the type
of lock store
implementation to
use.

com.arjuna.ats.txoj.lockstore.lockStoreDir
Windows: .\LockStore

Unix: ./LockStore

Specifies the
location of the lock
store.

com.arjuna.ats.arjuna.objectstore.objectStoreDir Any location the
application can write to.

Specifies the
location of the
object store.

com.arjuna.ats.arjuna.objectstore.localOSRoot defaultStore Specifies the name
of the object store
root.

Transactions Development Guide

86

com.arjuna.ats.arjuna.coordinator.actionStore
ActionStore

HashedActionStore

JDBCActionStore

The transaction
log
implementation to
use.

com.arjuna.ats.arjuna.coordinator.asyncCommit YES/NO Turns on or off
asynchronous
commit. Off by
default.

Name Values Description

Table 15.2. Configuration Options (part 2)

Name Values Description

com.arjuna.ats.arjuna.coordinator.asyncPrepare YES/NO Turns on or off
asynchronous
prepare. Off by
default.

com.arjuna.ats.arjuna.objectstore.transactionSync ON/OFF Turns
synchronization
of the object
store on or off.
Use with caution.

com.arjuna.ats.arjuna.objectstore.jdbcUserDbAccess JDBCAccess class name Specifies the
JDBCAccess
implementation
to use for user-
level object
stores.

com.arjuna.ats.arjuna.objectstore.jdbcTxDbAccess JDBCAccess class name Specifies the
JDBCAccess
implementation
to use for
transaction
object stores.

com.arjuna.ats.arjuna.coordinator.commitOnePhase YES/NO Enables or
disables the one-
phase commit
optimization.

CHAPTER 15. CONFIGURATION OPTIONS

87

com.arjuna.ats.arjuna.coordinator.readonlyOptimisation YES/NO Enables or
disables read-
only optimization
for the second
phase abort.

com.arjuna.ats.arjuna.coordinator.enableStatistics YES/NO Starts or stops
collecting
transaction
statistic
information.

com.arjuna.ats.arjuna.coordinator.startDisabled YES/NO Start with the
transaction
system enabled
or disabled.
Toggle via the
class mentioned
in the
footnote.[a]

com.arjuna.ats.arjuna.coordinator.defaultTimeout Any integer Timeout, in
milliseconds

[a] Toggle via the com.arjuna.ats.arjuna.coordinator.TxControl class.

Name Values Description

Transactions Development Guide

88

APPENDIX A. OBJECT STORE IMPLEMENTATIONS

A.1. THE OBJECTSTORE

This chapter covers the various JBoss Transaction Service object store implementations and provides
guidelines for creating new implementations and using them in an application.

JBoss Transaction Service includes several different implementations of a basic object store. Each
implementation is optimized for a particular purpose. All of the implementations are derived from the
ObjectStore interface, which defines the minimum operations which is needed for an object store
implementation to be used by JBoss Transaction Service. You can override the default object store
implementation at runtime by setting the com.arjuna.ats.arjuna.objectstore.objectStoreType property
to one of the types described below in Example A.1, “Object Store Type”.

Example A.1. Object Store Type

 /*
 * This is the base class from which all object store types are derived.
 * Note that because object store instances are stateless, to improve
 * efficiency we try to only create one instance of each type per
process.
 * Therefore, the create and destroy methods are used instead of new
 * and delete. If an object store is accessed via create it *must* be
 * deleted using destroy. Of course it is still possible to make use of
 * new and delete directly and to create instances on the stack.
 */

 public class ObjectStore
 {
 public static final int OS_COMMITTED;
 public static final int OS_COMMITTED_HIDDEN;
 public static final int OS_HIDDEN;
 public static final int OS_INVISIBLE;
 public static final int OS_ORIGINAL;
 public static final int OS_SHADOW;
 public static final int OS_UNCOMMITTED;
 public static final int OS_UNCOMMITTED_HIDDEN;
 public static final int OS_UNKNOWN;
 public ObjectStore (ClassName type);
 public ObjectStore (ClassName type, String osRoot);
 public ObjectStore (String osRoot);
 public synchronized boolean allObjUids (String s, InputObjectState
buff)
 throws ObjectStoreException;
 public synchronized boolean allObjUids (String s, InputObjectState
buff,
 int m) throws ObjectStoreException;

 public synchronized boolean allTypes (InputObjectState buff)
 throws ObjectStoreException;
 public synchronized int currentState(Uid u, String tn)
 throws ObjectStoreException;
 public synchronized boolean commit_state (Uid u, String tn)
 throws ObjectStoreException;
 public synchronized boolean hide_state (Uid u, String tn)

APPENDIX A. OBJECT STORE IMPLEMENTATIONS

89

You do not usually need to interact with any of the object store implementations directly, except for
creating them if you are not using the default store type. All stores manipulate instances of the class
ObjectState, which are named using a type derived via the object's type() operation, and a Uid.
Object states in the store are usually in one of two distinct states OS_COMMITTED or
OS_UNCOMMITTED. An object state starts in the OS_COMMITTED state, but when modified under the
control of an atomic action, a new second object state may be written that is in the OS_UNCOMMITTED
state. If the action commits, this second object state replaces the original and becomes
OS_COMMITTED. If the action aborts, this second object state is discarded. All of the implementations
provided with this release use shadow copies to handle these state transitions. However, you are
allowed to implement them in a different way. Object states may become hidden and inaccessible
under the control of the crash recovery system.

The allTypes and allObjUids methods provide the ability to browse the contents of a store. The
allTypes method returns an InputObjectState containing all of the type names of all objects in a
store, terminated by a null name. The allObjUids method returns an InputObjectState that contains
all of the Uids of all objects of a given type terminated by the special Uid.nullUid() type.

A.2. PERSISTENT OBJECT STORES

This section briefly describes the characteristics and optimizations of each of the supplied
implementations of the persistent object store. Persistent object states are mapped onto the structure
of the file system supported by the host operating system.

Common Functionality

In addition to the features mentioned earlier, all of the supplied persistent object stores obey the
following rules:

Each object state is stored in its own file, which is named using the Uid of the object.

The type of an object, provided by the type() operation, determines the directory where the
object is placed.

 throws ObjectStoreException;
 public synchronized boolean reveal_state (Uid u, String tn)
 throws ObjectStoreException;
 public synchronized InputObjectState read_committed (Uid u, String tn)
 throws ObjectStoreException;
 public synchronized InputObjectState read_uncommitted (Uid u, String
tn)
 throws ObjectStoreException;
 public synchronized boolean remove_committed (Uid u, String tn)
 throws ObjectStoreException;
 public synchronized boolean remove_uncommitted (Uid u, String tn)
 throws ObjectStoreException;
 public synchronized boolean write_committed (Uid u, String tn,
 OutputObjectState buff)
 throws ObjectStoreException;
 public synchronized boolean write_uncommitted (Uid u, String tn,
 OutputObjectState buff)
 throws ObjectStoreException;
 public static void printState (PrintStream strm, int res);
 };

Transactions Development Guide

90

All of the stores have a common root directory which is determined by the JBoss Transaction
Service configuration. This directory name is automatically prepended to any store-specific
root information.

All stores can also use a localized root directory that is automatically prepended to the type of
the object to determine the ultimate directory name. The localized root name is specified when
the store is created. The default localized root name is defaultStore.

Table A.1. Example Object Store Information

Item Example Value

ObjectStore root Directory from configure /JBossTS/ObjectStore/

ObjectStore Type 1 FragmentedStore/

Default root defaultStore/

StateManager StateManager

LockManager LockManager/

User Types

Localised root 2 myStore/

StateManager StateManager/

ObjectStore Type2 ActionStore/

Default root defaultStore/

A.2.1. The Shadowing Store

The shadowing store is the original version of the object store as provided in prior releases. It is
implemented by the ShadowingStore class. It is simple but slow, using pairs of files to represent
objects: the shadow version and the committed version. Files are opened, locked, operated upon,
unlocked, and closed during every interaction with the object store. This can take more resources than
strictly necessary just to open, close, and rename files.

The type of this object store is ShadowingStore.

A.2.2. No file-level locking

Since transactional objects are concurrency-controlled through the LockManager method, no
additional locking is needed at the file level. Therefore, the default object store implementation for
JBoss Transaction Service, ShadowNoFileLockStore, relies upon user-level locking, enabling it to
provide better performance than the ShadowingStore implementation.

The type of this object store is ShadowNoFileLockStore.

APPENDIX A. OBJECT STORE IMPLEMENTATIONS

91

A.2.3. The Hashed Store

The HashedStore implementation uses the same structure for object states as the shadowing store,
but uses an alternate directory structure that is designed to store large numbers of objects of the
same type. Objects are scattered throughout a set of directories by means of a hashing function which
uses the object's Uid. By default, 255 sub-directories are used, but you can override this by setting the
HASHED_DIRECTORIES environment variable.

The type of this object store is HashedStore.

A.2.4. The JDBC Store

The JDBCStore implementation stores persistent object states in a JDBC database. Nested
transaction support is available when the JBDCStore is used in conjunction with the Transactional
Objects for Java API. All object states are stored as Binary Large Objects (BLOBs) within a single table.
Object state size is limited to 64k. If you try to store an object state which exceeds this limit, an
exception is thrown and the state is not stored. The transaction is forced to roll back.

When using the JDBC object store, the application needs to provide an implementation of the
JDBCAccess interface, located in the com.arjuna.ats.arjuna.objectstore package. See the
Example A.2, “JDBCAccess Implementation Example” .

Example A.2. JDBCAccess Implementation Example

The implementation of the JDBCAccess class provides the Connection used by the JDBC
ObjectStore to save and restore object states. Refer to JDBCAccess Connection Methods for
details.

JDBCAccess Connection Methods

getConnection

Returns the Connection to use. This method will be called whenever a connection is required and
the implementation should use whatever policy is necessary for determining what connection to
return. This method need not return the same Connection instance more than once.

putConnection

Returns one of the Connections acquired from getConnection. Connections are returned if any
errors occur when using them.

initialise

Passes additional arbitrary information to the implementation.

The JDBC object store initially requests the number of Connections defined in the
com.arjuna.ats.arjuna.objectstore.jdbcPoolSizeInitial property, and uses no more than defined in the

 public interface JDBCAccess
 {
 public Connection getConnection () throws SQLException;
 public void putConnection (Connection conn) throws SQLException;
 public void initialise (ObjectName objName);
 }

Transactions Development Guide

92

com.arjuna.ats.arjuna.objectstore.jdbcPoolSizeMaximum property.

The implementation of the JDBCAccess interface to use should be set in the
com.arjuna.ats.arjuna.objectstore.jdbcUserDbAccess property variable.

The type of this object store is JDBCStore.

A JDBC object store can manage the transaction log. The transaction log implementation should be set
to JDBCActionStore, and the JDBCAccess method should be provided via the
com.arjuna.ats.arjuna.objectstore.jdbcTxDbAccess property. The default table name is
JBossTSTxTable.

NOTE

You can use the same JDBCAccess implementation for both the user object store and
the transaction log.

A.2.5. The Cached Store

The cached store uses the hashed object store, but does not read or write states to the persistent
backing store immediately. It maintains the states in a volatile memory cache, flushing the cache
periodically or when it is full. The failure semantics associated with this object store are different from
the semantics used with the normal persistent object stores, because data about states could be lost in
the event of a failure.

The type of this object store is CachedStore.

Configuration Options for the Cached Store

com.arjuna.ats.internal.arjuna.objectstore.cacheStore.hash

Sets the number of internal stores to hash the states over. The default value is 128.

com.arjuna.ats.internal.arjuna.objectstore.cacheStore.size

The maximum size the cache can reach before a flush is triggered. The default is value is 10240
bytes.

com.arjuna.ats.internal.arjuna.objectstore.cacheStore.removedItems

The maximum number of removed items that the cache can contain before a flush is triggered. By
default, calls to remove a state that is in the cache actually only remove the state from the cache,
leaving a blank entry. This improves performance. The entries are removed when the cache is
flushed. The default value is twice the size of the hash.

com.arjuna.ats.internal.arjuna.objectstore.cacheStore.workItems

The maximum number of items the cache is able to contain before it is flushed. The default value is
100.

com.arjuna.ats.internal.arjuna.objectstore.cacheStore.scanPeriod

The length of time, in milliseconds, for periodically flushing the cache. The default is 120 seconds.

com.arjuna.ats.internal.arjuna.objectstore.cacheStore.sync

APPENDIX A. OBJECT STORE IMPLEMENTATIONS

93

Determines whether flushes of the cache are synchronized to disk. The default is OFF, and the other
possible value is ON.

Transactions Development Guide

94

APPENDIX B. CLASS DEFINITIONS

B.1. INTRODUCTION

This appendix contains an overview of the most typically-used classes, as a quick reference guide for
JBoss Transaction Service. For clarity, only the public and protected interfaces of the classes are
given.

B.2. CLASS LIBRARY

Example B.1. Lock Manager

 public class LockResult
 {
 public static final int GRANTED;
 public static final int REFUSED;
 public static final int RELEASED;
 };

 public class ConflictType
 {
 public static final int CONFLICT;
 public static final int COMPATIBLE;
 public static final int PRESENT;
 };

 public abstract class LockManager extends StateManager
 {
 public static final int defaultRetry;
 public static final int defaultTimeout;
 public static final int waitTotalTimeout;

 public final synchronized boolean releaselock (Uid lockUid);
 public final synchronized int setlock (Lock toSet);
 public final synchronized int setlock (Lock toSet, int retry);
 public final synchronized int setlock (Lock toSet, int retry, int
sleepTime);
 public void print (PrintStream strm);
 public String type ();
 public boolean save_state (OutputObjectState os, int ObjectType);
 public boolean restore_state (InputObjectState os, int ObjectType);

 protected LockManager ();
 protected LockManager (int ot);
 protected LockManager (int ot, ObjectName attr);
 protected LockManager (Uid storeUid);
 protected LockManager (Uid storeUid, int ot);
 protected LockManager (Uid storeUid, int ot, ObjectName attr);

 protected void terminate ();
 };

APPENDIX B. CLASS DEFINITIONS

95

Example B.2. StateManager

Example B.3. Input/OutputObjectState

 public class ObjectStatus
 {
 public static final int PASSIVE;
 public static final int PASSIVE_NEW;
 public static final int ACTIVE;
 public static final int ACTIVE_NEW;
 };

 public class ObjectType
 {
 public static final int RECOVERABLE;
 public static final int ANDPERSISTENT;
 public static final int NEITHER;
 };

 public abstract class StateManager
 {
 public boolean restore_state (InputObjectState os, int ot);
 public boolean save_state (OutputObjectState os, int ot);
 public String type ();

 public synchronized boolean activate ();
 public synchronized boolean activate (String rootName);
 public synchronized boolean deactivate ();
 public synchronized boolean deactivate (String rootName);
 public synchronized boolean deactivate (String rootName, boolean
commit);

 public synchronized int status ();
 public final Uid get_uid ();
 public void destroy ();
 public void print (PrintStream strm);

 protected void terminate ();

 protected StateManager ();
 protected StateManager (int ot);
 protected StateManager (int ot, ObjectName objName);
 protected StateManager (Uid objUid);
 protected StateManager (Uid objUid, int ot);
 protected StateManager (Uid objUid, int ot, ObjectName objName);
 protected synchronized final void modified ();
 };

 class OutputObjectState extends OutputBuffer
 {
 public OutputObjectState (Uid newUid, String typeName);

 public boolean notempty ();
 public int size ();

Transactions Development Guide

96

Example B.4. Input/OutputBuffer

 public Uid stateUid ();
 public String type ();
 };
 class InputObjectState extends ObjectState
 {
 public OutputObjectState (Uid newUid, String typeName, byte[] b);

 public boolean notempty ();
 public int size ();
 public Uid stateUid ();
 public String type ();
 };

 public class OutputBuffer
 {
 public OutputBuffer ();

 public final synchronized boolean valid ();
 public synchronized byte[] buffer();
 public synchronized int length ();

 /* pack operations for standard Java types */

 public synchronized void packByte (byte b) throws IOException;
 public synchronized void packBytes (byte[] b) throws IOException;
 public synchronized void packBoolean (boolean b) throws IOException;
 public synchronized void packChar (char c) throws IOException;
 public synchronized void packShort (short s) throws IOException;
 public synchronized void packInt (int i) throws IOException;
 public synchronized void packLong (long l) throws IOException;
 public synchronized void packFloat (float f) throws IOException;
 public synchronized void packDouble (double d) throws IOException;
 public synchronized void packString (String s) throws IOException;
 };
 public class InputBuffer
 {
 public InputBuffer ();

 public final synchronized boolean valid ();
 public synchronized byte[] buffer();
 public synchronized int length ();

 /* unpack operations for standard Java types */

 public synchronized byte unpackByte () throws IOException;
 public synchronized byte[] unpackBytes () throws IOException;
 public synchronized boolean unpackBoolean () throws IOException;
 public synchronized char unpackChar () throws IOException;
 public synchronized short unpackShort () throws IOException;
 public synchronized int unpackInt () throws IOException;
 public synchronized long unpackLong () throws IOException;
 public synchronized float unpackFloat () throws IOException;

APPENDIX B. CLASS DEFINITIONS

97

Example B.5. Uid

Example B.6. AtomicAction

 public synchronized double unpackDouble () throws IOException;
 public synchronized String unpackString () throws IOException;
 };

 public class Uid implements Cloneable
 {
 public Uid ();
 public Uid (Uid copyFrom);
 public Uid (String uidString);
 public Uid (String uidString, boolean errorsOk);
 public synchronized void pack (OutputBuffer packInto) throws
IOException;
 public synchronized void unpack (InputBuffer unpackFrom) throws
IOException;

 public void print (PrintStream strm);
 public String toString ();
 public Object clone () throws CloneNotSupportedException;
 public synchronized void copy (Uid toCopy) throws UidException;
 public boolean equals (Uid u);
 public boolean notEquals (Uid u);
 public boolean lessThan (Uid u);
 public boolean greaterThan (Uid u);

 public synchronized final boolean valid ();
 public static synchronized Uid nullUid ();
 };

 public class AtomicAction
 {
 public AtomicAction ();

 public void begin () throws SystemException,
SubtransactionsUnavailable,
 NoTransaction;
 public void commit (boolean report_heuristics) throws SystemException,
 NoTransaction, HeuristicMixed,
 HeuristicHazard,TransactionRolledBack;
 public void rollback () throws SystemException, NoTransaction;
 public Control control () throws SystemException, NoTransaction;
 public Status get_status () throws SystemException;
 /* Allow action commit to be supressed */
 public void rollbackOnly () throws SystemException, NoTransaction;

 public void registerResource (Resource r) throws SystemException,
Inactive;
 public void registerSubtransactionAwareResource
(SubtransactionAwareResource sr)

Transactions Development Guide

98

 throws SystemException, NotSubtransaction;
 public void registerSynchronization (Synchronization s) throws
SystemException,
 Inactive;
 };

APPENDIX B. CLASS DEFINITIONS

99

PART III. XTS DEVELOPMENT

This section gives guidance for using the JBoss implementation of the XML Transactions (XTS) API to
add transactional support for your Web Services applications, and interact with third-party
applications across a distributed web environment, in a reliable and data-safe way.

Transactions Development Guide

100

CHAPTER 16. INTRODUCTION
The XML Transaction Service (XTS) component of JBoss Transaction Service supports the coordination
of private and public Web Services in a business transaction. Therefore, to understand XTS, you must
be familiar with Web Services, and also understand something about transactions. This chapter
introduces XTS and provides a brief overview of the technologies that form the Web Services standard.
Additionally, this chapter explores some of the fundamentals of transactioning technology and how it
can be applied to Web Services. Much of the content presented in this chapter is detailed throughout
this guide. However, only overview information about Web Services is provided. If you are new to
creating Web services, please see consult your Web Services platform documentation.

JBoss Transaction Service provides the XTS component as a transaction solution for Web Services.
Using XTS, business partners can coordinate complex business transactions in a controlled and
reliable manner. The XTS API supports a transactional coordination model based on the WS-
Coordination, WS-Atomic Transaction, and WS-Business Activity specifications.

Protocols Included in XTS

WS-Coordination (WS-C) is a generic coordination framework developed by IBM, Microsoft and
BEA.

WS-Atomic Transaction (WS-AT) and WS-Business Activity (WS-BA) together comprise the
WS-Transaction (WS-T) transaction protocols that utilize this framework.

JBoss Transaction Service implements versions 1.0, 1.1, and 1.2 of these three specifications. Version
specifications are available from http://www.oasis-open.org/specs/.

NOTE

The 1.0, 1.1, and 1.2 specifications only differ in a small number of details. The rest of this
document employs version 1.1 of these specifications when providing explanations and
example code. On the few occasions where the modifications required to adapt these to
the 1.1 specifications are not obvious, an explanatory note is provided.

Web Services are modular, reusable software components that are created by exposing business
functionality through a Web service interface. Web Services communicate directly with other Web
Services using standards-based technologies such as SOAP and HTTP. These standards-based
communication technologies enable customers, suppliers, and trading partners to access Web
Services, independent of hardware operating system, or programming environment. The result is a
vastly improved collaboration environment as compared to today's EDI and business-to-business (B2B)
solutions, an environment where businesses can expose their current and future business applications
as Web Services that can be easily discovered and accessed by external partners.

Web Services, by themselves, are not fault-tolerant. In fact, some of the reasons that the Web Services
model is an attractive development solution are also the same reasons that service-based applications
may have drawbacks.

Properties of Web Services

Application components that are exposed as Web Services may be owned by third parties,
which provides benefits in terms of cost of maintenance, but drawbacks in terms of having
exclusive control over their behavior.

Web Services are usually remotely located, increasing risk of failure due to increased network
travel for invocations.

CHAPTER 16. INTRODUCTION

101

http://www.oasis-open.org/specs/

Applications that have high dependability requirements need a method of minimizing the effects of
errors that may occur when an application consumes Web Services. One method of safeguarding
against such failures is to interact with an application’s Web Services within the context of a
transaction. A transaction is a unit of work which is completed entirely, or in the case of failures is
reversed to some agreed consistent state. The goal, in the event of a failure, is normally to appear as if
the work had never occurred in the first place. With XTS, transactions can span multiple Web Services,
meaning that work performed across multiple enterprises can be managed with transactional support.

16.1. MANAGING SERVICE-BASED PROCESSES

XTS allows you to create transactions that drive complex business processes, spanning multiple Web
Services. Current Web Services standards do not address the requirements for a high-level
coordination of services. This is because in today’s Web Services applications, which use single
request/receive interactions, coordination is typically not a problem. However, for applications that
engage multiple services among multiple business partners, coordinating and controlling the resulting
interactions is essential. This becomes even more apparent when you realize that you generally have
little in the way of formal guarantees when interacting with third-party Web Services.

XTS provides the infrastructure for coordinating services during a business process. By organizing
processes as transactions, business partners can collaborate on complex business interactions in a
reliable manner, insuring the integrity of their data - usually represented by multiple changes to a
database – but without the usual overheads and drawbacks of directly exposing traditional transaction-
processing engines directly onto the web. An Evening On the Town demonstrates how an application
may manage service-based processes as transactions:

An Evening On the Town

The application in question allows a user to plan a social evening. This application is responsible for
reserving a table at a restaurant, and reserving tickets to a show. Both activities are paid for using a
credit card. In this example, each service represents exposed Web Services provided by different
service providers. XTS is used to envelop the interactions between the theater and restaurant services
into a single (potentially) long-running business transaction. The business transaction must insure that
seats are reserved both at the restaurant and the theater. If one event fails the user has the ability to
decline both events, thus returning both services back to their original state. If both events are
successful, the user’s credit card is charged and both seats are booked. As you may expect, the
interaction between the services must be controlled in a reliable manner over a period of time. In
addition, management must span several third-party services that are remotely deployed.

Without the backing of a transaction, an undesirable outcome may occur. For example, the user credit
card may be charged, even if one or both of the bookings fail.

An Evening On the Town describes the situations where XTS excels at supporting business processes
across multiple enterprises. This example is further refined throughout this guide, and appears as a
standard demonstrator (including source code) with the XTS distribution.

16.2. SERVLETS

The WS-Coordination, WS-Atomic Transaction, and WS-Business Activity protocols are based on one-
way interactions of entities rather than traditional synchronous request/response RPC-style
interactions. One group of entities, called transaction participants, invoke operations on other entities,
such as the transaction coordinator, in order to return responses to requests. The programming model
is based on peer-to-peer relationships, with the result that all services, whether they are participants,
coordinators or clients, must have an active component that allows them to receive unsolicited
messages.

In XTS, the active component is achieved through deployment of JaxWS endpoints. Each XTS endpoint

Transactions Development Guide

102

that is reachable through SOAP/XML is published via JaxWS, without developer intevention. The only
requirement is that transactional client applications and transactional web services must reside within
a domain capable of hosting JaxWS endpoints, such as an application server. In the case of the
Enterprise Application Platform, JBoss Application Server provides this functionality.

NOTE

The XTS 1.0 protocol implementation is based on servlets.

16.3. SOAP

SOAP has emerged as the de facto message format for XML-based communication in the Web Services
arena. It is a lightweight protocol that allows the user to define the content of a message and to provide
hints as to how recipients should process that message.

16.4. WEB SERVICES DESCRIPTION LANGUAGE (WDSL)

Web Services Description Language (WSDL) is an XML-based language used to define Web service
interfaces. An application that consumes a Web service parses the service’s WSDL document to
discover the location of the service, the operations that the service supports, the protocol bindings the
service supports (SOAP, HTTP, etc), and how to access them. For each operation, WSDL describes the
format that the client must follow.

CHAPTER 16. INTRODUCTION

103

CHAPTER 17. TRANSACTIONS OVERVIEW

NOTE

This chapter deals with the theory of transactional Web Services. If you are familiar with
these principles, consider this chapter a reference.

Transactions have emerged as the dominant paradigm for coordinating interactions between parties in
a distributed system, and in particular to manage applications that require concurrent access to
shared data. Much of the JBoss Transaction Service Web Service API is based on contemporary
transaction APIs whose familiarity will enhance developer productivity and lessen the learning curve.
While the following section provides the essential information that you should know before starting to
use XTS for building transactional Web Services, it should not be treated as a definitive reference to all
transactional technology.

A classic transaction is a unit of work that either completely succeeds, or fails with all partially
completed work being undone. When a transaction is committed, all changes made by the associated
requests are made durable, normally by committing the results of the work to a database. If a
transaction should fail and is rolled back, all changes made by the associated work are undone.
Transactions in distributed systems typically require the use of a transaction manager that is
responsible for coordinating all of the participants that are part of the transaction.

The main components involved in using and defining transactional Web Services using XTS are
illustrated in Figure 17.1, “Components Involved in an XTS Transaction” .

Figure 17.1. Components Involved in an XTS Transaction

Transactions Development Guide

104

17.1. THE COORDINATOR

Every transaction is associated with a coordinator, which is responsible for governing the outcome of
the transaction. When a client begins a Web Service transaction it posts a create request to a
coordination service, which creates the coordinator and returns its details to the client. This service
may be located in its own container or may be colocated with the application client or with one of the
transactional web services for improved performance. The coordination service is typically responsible
for managing many transactions in parallel, so each coordinator is identified by a unique transaction
identifier.

The coordinator is responsible for ensuring that the web services invoked by the client arrive at a
consistent outcome. When the client asks the coordinator to complete the transaction, the coordinator
ensures that each web service is ready to confirm any provisional changes it has made within the scope
of the transaction. It then asks them all to make their changes permanent. If any of the web services
indicates a problem at the confirmation stage, the coordinator ensures that all web services reject
their provisional changes, reverting to the state before the transaction started. The coordinator also
reverts all changes if the client asks it to cancel the transaction.

The negotiation between the coordinator and the web services is organized to ensure that all services
will make their changes permanent, or all of them will revert to the previous state, even if the
coordinator or one of the web services crashes part of the way through the transaction."

17.2. THE TRANSACTION CONTEXT

In order for a transaction to span a number of services, certain information has to be shared between
those services, to propagate information about the transaction. This information is known as the
Context. The coordination service hands a context back to the application client when it begins a
transaction. This context is passed as an extra, hidden parameter whenever the client invokes a
transactional web service. The XTS implementation saves and propagates this context automatically
with only minimal involvement required on the part of the client. However, it is still helpful to
understand what information is captured in a context. This information is listed in Contents of a
Context.

Contents of a Context

Transaction Identifier

Guarantees global uniqueness for an individual transaction.

Transaction Coordinator Location

The endpoint address participants contact to enroll.

CHAPTER 17. TRANSACTIONS OVERVIEW

105

Figure 17.2. Web Services and Context Flow

17.3. PARTICIPANTS

The coordinator cannot know the details of how every transactional service is implemented. In fact this
knowledge is not even necessary for it to negotiate a transactional outcome. It treats each service
taking part in a transaction as a participant and communicates with it according to some predefined
participant coordination models appropriate to the type of transaction. When a web service receives its
first service request in some given transaction, it enrolls with the coordinator as a participant,
specifying the participant model it wishes to follow. The context contains a URL for the endpoint of the
coordination service which handles enrollment requests. So, the term participant merely refers a
transactional service enrolled in a specific transaction using a specific participant model.

17.4. ACID TRANSACTIONS

Traditionally, transaction processing systems support ACID properties. ACID is an acronym for Atomic,
Consistent, Isolated, and Durable. A unit of work has traditionally been considered transactional only if
the ACID properties are maintained, as describe in ACID Properties .

ACID Properties

Atomicity

The transaction executes completely, or not at all.

Consistency

The effects of the transaction preserve the internal consistency of an underlying data structure.

Isolated

The transaction runs as if it were running alone, with no other transactions running, and is not
visible to other transactions.

Durable

The transaction's results are not lost in the event of a failure.

Transactions Development Guide

106

17.5. TWO PHASE COMMIT

The classical two-phase commit approach is the bedrock of JBoss Transaction Service, and more
generally of Web Services transactions. Two-phase commit provides coordination of parties that are
involved in a transaction. The general flow of a two-phase commit transaction is described in
Figure 17.3, “Two-Phase Commit Overview” .

Figure 17.3. Two-Phase Commit Overview

NOTE

During two-phase commit transactions, coordinators and resources keep track of
activity in non-volatile data stores so that they can recover in the case of a failure.

17.6. THE SYNCHRONIZATION PROTOCOL

Besides the two-phase commit protocol, traditional transaction processing systems employ an
additional protocol, often referred to as the synchronization protocol. With the original ACID properties,
Durability is important when state changes need to be available despite failures. Applications interact
with a persistence store of some kind, such as a database, and this interaction can impose a significant
overhead, because disk access is much slower to access than main computer memory.

One solution to the problem disk access time is to cache the state in main memory and only operate on
the cache for the duration of a transaction. Unfortunately, this solution needs a way to flush the state
back to the persistent store before the transaction terminates, or risk losing the full ACID properties.
This is what the synchronization protocol does, with Synchronization Participants.

Synchronizations are informed that a transaction is about to commit. At that point, they can flush
cached state, which might be used to improve performance of an application, to a durable
representation prior to the transaction committing. The synchronizations are then informed about
when the transaction completes and its completion state.

Procedure 17.1. The "Four Phase Protocol" Created By Synchronizations

Synchronizations essentially turn the two-phase commit protocol into a four-phase protocol:

CHAPTER 17. TRANSACTIONS OVERVIEW

107

1. Step 1
Before the transaction starts the two-phase commit, all registered Synchronizations are
informed. Any failure at this point will cause the transaction to roll back.

2. Steps 2 and 3
The coordinator then conducts the normal two-phase commit protocol.

3. Step 4
Once the transaction has terminated, all registered Synchronizations are informed. However,
this is a courtesy invocation because any failures at this stage are ignored: the transaction has
terminated so there’s nothing to affect.

The synchronization protocol does not have the same failure requirements as the traditional two-
phase commit protocol. For example, Synchronization participants do not need the ability to recover in
the event of failures, because any failure before the two-phase commit protocol completes cause the
transaction to roll back, and failures after it completes have no effect on the data which the
Synchronization participants are responsible for.

17.7. OPTIMIZATIONS TO THE PROTOCOL

There are several variants to the standard two-phase commit protocol that are worth knowing about,
because they can have an impact on performance and failure recovery. Table 17.1, “Variants to the
Two-Phase Commit Protocol” gives more information about each one.

Table 17.1. Variants to the Two-Phase Commit Protocol

Variant Description

Presumed Abort If a transaction is going to roll back, the coordinator
may record this information locally and tell all
enlisted participants. Failure to contact a
participant has no effect on the transaction
outcome. The coordinator is informing participants
only as a courtesy. Once all participants have been
contacted, the information about the transaction can
be removed. If a subsequent request for the status of
the transaction occurs, no information will be
available and the requester can assume that the
transaction has aborted. This optimization has the
benefit that no information about participants need
be made persistent until the transaction has
progressed to the end of the prepare phase and
decided to commit, since any failure prior to this
point is assumed to be an abort of the transaction.

One-Phase If only a single participant is involved in the
transaction, the coordinator does not need to drive it
through the prepare phase. Thus, the participant is
told to commit, and the coordinator does not need to
record information about the decision, since the
outcome of the transaction is the responsibility of
the participant.

Transactions Development Guide

108

Read-Only When a participant is asked to prepare, it can
indicate to the coordinator that no information or
data that it controls has been modified during the
transaction. Such a participant does not need to be
informed about the outcome of the transaction since
the fate of the participant has no affect on the
transaction. Therefore, a read-only participant can
be omitted from the second phase of the commit
protocol.

Variant Description

NOTE

The WS-Atomic Transaction protocol does not support the one-phase commit
optimization.

17.8. NON-ATOMIC TRANSACTIONS AND HEURISTIC OUTCOMES

In order to guarantee atomicity, the two-phase commit protocol is blocking. As a result of failures,
participants may remain blocked for an indefinite period of time, even if failure recovery mechanisms
exist. Some applications and participants cannot tolerate this blocking.

To break this blocking nature, participants that are past the prepare phase are allowed to make
autonomous decisions about whether to commit or rollback. Such a participant must record its
decision, so that it can complete the original transaction if it eventually gets a request to do so. If the
coordinator eventually informs the participant of the transaction outcome, and it is the same as the
choice the participant made, no conflict exists. If the decisions of the participant and coordinator are
different, the situation is referred to as a non-atomic outcome, and more specifically as a heuristic
outcome.

Resolving and reporting heuristic outcomes to the application is usually the domain of complex,
manually driven system administration tools, because attempting an automatic resolution requires
semantic information about the nature of participants involved in the transactions.

Precisely when a participant makes a heuristic decision depends on the specific implementation.
Likewise, the choice the participant makes about whether to commit or to roll back depends upon the
implementation, and possibly the application and the environment in which it finds itself. The possible
heuristic outcomes are discussed in Table 17.2, “Heuristic Outcomes” .

Table 17.2. Heuristic Outcomes

Outcome Description

Heuristic Rollback The commit operation failed because some or all of
the participants unilaterally rolled back the
transaction.

CHAPTER 17. TRANSACTIONS OVERVIEW

109

Heuristic Commit An attempted rollback operation failed because all
of the participants unilaterally committed. One
situation where this might happen is if the
coordinator is able to successfully prepare the
transaction, but then decides to roll it back because
its transaction log could not be updated. While the
coordinator is making its decision, the participants
decides to commit.

Heuristic Mixed Some participants commit ed, while others were
rolled back.

Heuristic Hazard The disposition of some of the updates is unknown.
For those which are known, they have either all been
committed or all rolled back.

Outcome Description

Heuristic decisions should be used with care and only in exceptional circumstances, since the decision
may possibly differ from that determined by the transaction service. This type of difference can lead to
a loss of integrity in the system. Try to avoid needing to perform resolution of heuristics, either by
working with services and participants that do not cause heuristics, or by using a transaction service
that provides assistance in the resolution process.

17.9. INTERPOSITION

Interposition is a scoping mechanism which allows coordination of a transaction to be delegated across
a hierarchy of coordinators. See Figure 17.4, “Interpositions” for a graphical representation of this
concept.

Figure 17.4. Interpositions

Interposition is particularly useful for Web Services transactions, as a way of limiting the amount of

Transactions Development Guide

110

network traffic required for coordination. For example, if communications between the top-level
coordinator and a web service are slow because of network traffic or distance, the web service might
benefit from executing in a subordinate transaction which employs a local coordinator service. In
Figure 17.4, “Interpositions”,to prepare, the top-level coordinator only needs to send one prepare
message to the subordinate coordinator, and receive one prepared or aborted reply. The
subordinate coordinator forwards a prepare locally to each participant and combines the results to
decide whether to send a single prepared or aborted reply.

17.10. A NEW TRANSACTION PROTOCOL

Many component technologies offer mechanisms for coordinating ACID transactions based on two-
phase commit semantics. Some of these are CORBA/OTS, JTS/JTA, and MTS/MSDTC. ACID
transactions are not suitable for all Web Services transactions, as explained in Reasons ACID is Not
Suitable for Web Services.

Reasons ACID is Not Suitable for Web Services

Classic ACID transactions assume that an organization that develops and deploys applications
owns the entire infrastructure for the applications. This infrastructure has traditionally taken
the form of an Intranet. Ownership implies that transactions operate in a trusted and
predictable manner. To assure ACIDity, potentially long-lived locks can be kept on underlying
data structures during two-phase commit. Resources can be used for any period of time and
released when the transaction is complete.

In Web Services, these assumptions are no longer valid. One obvious reason is that the owners
of data exposed through a Web service refuse to allow their data to be locked for extended
periods, since allowing such locks invites denial-of-service attacks.

All application infrastructures are generally owned by a single party. Systems using classical
ACID transactions normally assume that participants in a transaction will obey the directives
of the transaction manager and only infrequently make unilateral decisions which harm other
participants in a transaction.

Web Services participating in a transaction can effectively decide to resign from the
transaction at any time, and the consumer of the service generally has little in the way of
quality of service guarantees to prevent this.

17.10.1. Transaction in Loosely Coupled Systems

Extended transaction models which relax the ACID properties have been proposed over the years. WS-
T provides a new transaction protocol to implement these concepts for the Web Services architecture.
XTS is designed to accommodate four underlying requirements inherent in any loosely coupled
architecture like Web Services. These requirements are discussed in Requirements of Web Services .

Requirements of Web Services

Ability to handle multiple successful outcomes to a transaction, and to involve operations
whose effects may not be isolated or durable.

Coordination of autonomous parties whose relationships are governed by contracts, rather
than the dictates of a central design authority.

Discontinuous service, where parties are expected to suffer outages during their lifetimes, and
coordinated work must be able to survive such outages.

CHAPTER 17. TRANSACTIONS OVERVIEW

111

Interoperation using XML over multiple communication protocols. XTS uses SOAP encoding
carried over HTTP.

Transactions Development Guide

112

CHAPTER 18. OVERVIEW OF PROTOCOLS USED BY XTS
This section discusses fundamental concepts associated with the WS-Coordination, WS-Atomic
Transaction and WS-Business Activity protocols, as defined in each protocol's specification.
Foundational information about these protocols is important to understanding the remaining material
covered in this guide.

NOTE

If you are familiar with the WS-Coordination, WS-Atomic Transaction, and WS-Business
Activity specifications you may only need to skim this chapter.

18.1. WS-COORDINATION

In general terms, coordination is the act of one entity,known as the coordinator, disseminating
information to a number of participants for some domain-specific reason. This reason could be to reach
consensus on a decision by a distributed transaction protocol, or to guarantee that all participants
obtain a specific message, such as in a reliable multicast environment. When parties are being
coordinated, information, known as the coordination context, is propagated to tie together operations
which are logically part of the same coordinated work or activity. This context information may flow
with normal application messages, or may be an explicit part of a message exchange. It is specific to
the type of coordination being performed.

The fundamental idea underpinning WS-Coordination (WS-C) is that a coordination infrastructure is
needed in a Web Services environment. The WS-C specification defines a framework that allows
different coordination protocols to be plugged in to coordinate work between clients, services, and
participants, as shown in Figure 18.1, “WS-C Architecture”.

Figure 18.1. WS-C Architecture

Whatever coordination protocol is used, and in whatever domain it is deployed, the same generic
requirements are present.

CHAPTER 18. OVERVIEW OF PROTOCOLS USED BY XTS

113

Generic Requirements for WS-C

Instantiation, or activation, of a new coordinator for the specific coordination protocol, for a
particular application instance.

Registration of participants with the coordinator, such that they will receive that coordinator’s
protocol messages during (some part of) the application’s lifetime.

Propagation of contextual information between Web Services that comprise the application.

An entity to drive the coordination protocol through to completion.

The first three of the points in Generic Requirements for WS-C are the direct responsibility of WS-C,
while the fourth is the responsibility of a third-party entity. The third-party entity is usually the client
component of the overall application. These four WS-C roles and their relationships are shown in
Figure 18.2, “Four Roles in WS-C” .

Figure 18.2. Four Roles in WS-C

18.1.1. Activation

The WS-C framework exposes an Activation Service which supports the creation of coordinators for
specific coordination protocols and retrieval of associated contexts. Activation services are invoked
synchronously using an RPC style exchange. So, the service WSDL defines a single port declaring a
CreateCoordinationContext operation. This operation takes an input specfying the details of the
transaction to be created, including the type of coordination required, timeout, and other relevant
information. It returns an output containing the details of the newly-created transaction context: the
transaction identifier, coordination type, and registration service URL.

Example 18.1.

<!-- Activation Service portType Declaration -->
<wsdl:portType name="ActivationCoordinatorPortType">
 <wsdl:operation name="CreateCoordinationContext">
 <wsdl:input message="wscoor:CreateCoordinationContext"/>

Transactions Development Guide

114

NOTE

The 1.0 Activation Coordinator service employs an asynchronous message exchange
comprised of two one-way messages, so an Activation Requester service is also
necessary.

18.1.2. Registration

The context returned by the activation service includes the URL of a Registration Service. When a web
service receieves a service request accompanied by a transaction context, it contacts the Registration
Service to enroll as a participant in the transaction. The registration request includes a participant
protocol defining the role the web service wishes to take in the transaction. Depending upon the
coordination protocol, more than one choice of participant protocol may be available.

Like the activation service, the registration service assumes synchronous communication. Thus, the
service WSDL exposes a single port declaring a Register operation. This operation takes an input
specifying the details of the participant which is to be registered, including the participant protocol
type. It returns a corresponding output response.

Example 18.2. Registration ServiceWSDL Interface

Once a participant is registered with a coordinator through the registration service, it receives
coordination messages from the coordinator. Typical messages include such things as “prepare to
complete” and “complete” messages, if a two-phase protocol is used. Where the coordinator’s protocol
supports it, participants can also send messages back to the coordinator.

NOTE

The 1.0 Registration Coordinator service employs an asynchronous message exchange
comprised of two one way messages, so a Registration Requester service is also
necessary

18.1.3. Completion

The role of terminator is generally filled by the client application. At an appropriate point, the client
asks the coordinator to perform its particular coordination function with any registered participants, to
drive the protocol through to its completion. After completion, the client application may be informed
of an outcome for the activity. This outcome may take any form along the spectrum from simple
success or failure notification, to complex structured data detailing the activity’s status.

 <wsdl:output message="wscoor:CreateCoordinationContextResponse"/>
 </wsdl:operation>
</wsdl:portType>

<!-- Registration Service portType Declaration -->
<wsdl:portType name="RegistrationCoordinatorPortType">
 <wsdl:operation name="Register">
 <wsdl:input message="wscoor:Register"/>
 <wsdl:output message="wscoor:RegisterResponse"/>
 </wsdl:operation>
</wsdl:portType>

CHAPTER 18. OVERVIEW OF PROTOCOLS USED BY XTS

115

18.2. WS-TRANSACTION

WS-Transaction (WS-T) comprises the pair of transaction coordination protocols, WS-Atomic Transaction
(WS-AT) and WS-Business Activity (WS-BA), which utilize the coordination framework provided by WS-
Coordination (WS-C).

WS-Transactions was developed to unify existing traditional transaction processing systems, allowing
them to communicate reliably with one another without changes to the systems' own function.

18.2.1. WS-Transaction Foundations

WS-Transaction is layered upon the WS-Coordination protocol, as shown in as shown in Figure 18.3,
“WS-Coordination, WS-Transaction, and WS-Business Activity”.

Figure 18.3. WS-Coordination, WS-Transaction, and WS-Business Activity

WS-C provides a generic framework for specific coordination protocols, like WS-Transaction, used in a
modular fashion. WS-C provides only context management, allowing contexts to be created and
activities to be registered with those contexts. WS-Transaction leverages the context management
framework provided by WS-C in two ways.

1. It extends the WS-C context to create a transaction context.

2. It augments the activation and registration services with a number of additional services
(Completion, Volatile2PC, Durable2PC, BusinessAgreementWithParticipantCompletion, and
BusinessAgreementWithCoordinatorCompletion) and two protocol message sets (one for each
of the transaction models supported in WS-Transaction), to build a fully-fledged transaction
coordinator on top of the WS-C protocol infrastructure.

3. An important aspect of WS-Transaction that differs from traditional transaction protocols is
that a synchronous request/response model is not assumed. Sequences of one way messages
are used to implement communications between the client/participant and the coordination
services appropriate to the transaction's coordination and participant protocols. This is
significant because it means that the client and participant containers must deploy XTS service
endpoints to receive messages from the coordinator service.

This requirement is visible in the details of the Register and RegisterResponse messages
declared in the Registration Service WSDL in Example 18.2, “Registration ServiceWSDL
Interface”. The Register message contains the URL of an endpoint in the client or web
service container. This URL is used when a WS-Transaction coordination service wishes to
dispatch a message to the client or web service. Similarly, the RegisterResponse message

Transactions Development Guide

116

contains a URL identifying an endpoint for the protocol-specific WS-Transaction coordination
service for which the client/web service is registered, allowing messages to be addressed to
the transaction coordinator.

18.2.2. WS-Transaction Architecture

WS-Transaction distnguishes the transaction-aware web service in its role executing business-logic,
from the web service acting as a participant in the transaction, communicating with and responding to
its transaction coordinator. Transaction-aware web services deal with application clients using
business-level protocols, while the participant handles the underlying WS-Transaction protocols, as
shown in Figure 18.4, “WS-Transaction Global View” .

Figure 18.4. WS-Transaction Global View

A transaction-aware web service encapsulates the business logic or work that needs to be conducted
within the scope of a transaction. This work cannot be confirmed by the application unless the
transaction also commits. Thus, control is ultimately removed from the application and given to the
transaction.

The participant is the entity that, under the dictates of the transaction coordinator, controls the
outcome of the work performed by the transaction-aware Web service. In Figure 18.4, “WS-
Transaction Global View”, each web service is shown with one associated participant that manages the
transaction protocol messages on behalf of its web service. Figure 18.5, “WS-Transaction Web Services
and Participants”, however, shows a close-up view of a single web service, and a client application with
their associated participants.

CHAPTER 18. OVERVIEW OF PROTOCOLS USED BY XTS

117

Figure 18.5. WS-Transaction Web Services and Participants

The transaction-aware web service employs a back end database accessed via a JDBC driver, which
sends SQL statements to the database for processing. However, those statements should only commit
if the enclosing web service transaction does. For this to work, the web service must employ
transaction bridging. Transaction bridging registers a participant with the coordinator for the web
service transaction and creates a matching XA transaction within which it can invoke the driver to
make tentative changes to the database. The web service ensures that service requests associated
with a specific web service transaction are executed in the scope of the corresponding XA transaction,
grouping changes common to a given transaction while isolating changes belonging to different
transactions. The participant responds to prepare, commit, or rollback requests associated from the
web service transaction coordinator by forwarding the same operations to the underlying XA
transaction coordinator, ensuring that the local outcome in the database corresponds with the global
outcome of the web service transaction as a whole.

Things are less complex for the client. Through its API, the client application registers a participant
with the transaction, and uses this participant to control termination of the transaction.

18.2.3. WS_Transaction Models

It has been established that traditional transaction models are not appropriate for Web Services. No
one specific protocol is likely to be sufficient, given the wide range of situations where Web service
transactions are likely to be used. The WS-Transaction specification proposes two distinct models,
where each supports the semantics of a particular kind of B2B interaction.

The following discussion presents the interactions between the client, web service and the transaction
coordinator in great detail for expository purposes only. Most of this activity happens automatically
behind the scenes. The actual APIs used to initiate and complete a transaction and to register a
participant and drive it through the commit or abort process are described in Chapter 21, The XTS API.

18.2.3.1. Atomic Transactions

An atomic transaction (AT) is similar to traditional ACID transactions, and is designed to support short-
duration interactions where ACID semantics are appropriate. Within the scope of an AT, web services
typically employ bridging to allow them to access XA resources, such as databases and message

Transactions Development Guide

118

queues, under the control of the web service transaction. When the transaction terminates, the
participant propagates the outcome decision of the AT to the XA resources, and the appropriate
commit or rollback actions are taken by each.

All services and associated participants are expected to provide ACID semantics, and it is expected
that any use of atomic transactions occurs in environments and situations where ACID is appropriate.
Usually, this environment is a trusted domain, over short durations.

Procedure 18.1. Atomic Transaction Process

1. To begin an atomic transaction, the client application first locates a WS-C Activation
Coordinator web service that supports WS-Transaction.

2. The client sends a WS-C CreateCoordinationContext message to the service, specifying
http://schemas.xmlsoap.org/ws/2004/10/wsat as its coordination type.

3. The client receives an appropriate WS-Transaction context from the activation service.

4. The response to the CreateCoordinationContext message, the transaction context, has
its CoordinationType element set to the WS-Atomic Transaction namespace,
http://schemas.xmlsoap.org/ws/2004/10/wsat. It also contains a reference to the atomic
transaction coordinator endpoint, the WS-C Registration Service, where participants can be
enlisted.

5. The client normally proceeds to invoke Web Services and complete the transaction, either
committing all the changes made by the web services, or rolling them back. In order to be able
to drive this completion activity, the client must register itself as a participant for the
Completion protocol, by sending a Register message to the Registration Service whose
endpoint was returned in the Coordination Context.

6. Once registered for Completion, the client application then interacts with Web Services to
accomplish its business-level work. With each invocation of a business Web service, the client
inserts the transaction context into a SOAP header block, such that each invocation is
implicitly scoped by the transaction. The toolkits that support WS-Atomic Transaction-aware
Web Services provide facilities to correlate contexts found in SOAP header blocks with back-
end operations. This ensures that modifications made by the Web service are done within the
scope of the same transaction as the client and subject to commit or rollback by the
transaction coordinator.

7. Once all the necessary application-level work is complete, the client can terminate the
transaction, with the intent of making any changes to the service state permanent. The
completion participant instructs the coordinator to try to commit or roll back the transaction.
When the commit or roll-back operation completes, a status is returned to the participant to
indicate the outcome of the transaction.

Although this description of the completion protocol seems straightforward, it hides the fact that in
order to resolve the transaction to an outcome, several other participant protocols need to be
followed.

Volatile2pc

The first of these protocols is the optional Volatile2PC (2PC is an abbreviation referring to the two-
phase commit). The Volatile2PC protocol is the WS-Atomic Transaction equivalent of the
synchronization protocol discussed earlier. It is typically executed where a Web service needs to
flush volatile (cached) state, which may be used to improve performance of an application, to a
database prior to the transaction committing. Once flushed, the data is controlled by a two-phase
aware participant.

CHAPTER 18. OVERVIEW OF PROTOCOLS USED BY XTS

119

http://schemas.xmlsoap.org/ws/2004/10/wsat
http://schemas.xmlsoap.org/ws/2004/10/wsat

When the completion participant initiates a commit operation, all Volatile2PC participants are
informed that the transaction is about to complete, via the prepare message. The participants can
respond with one of three messages: prepared, aborted, or readonly. A failure at this stage
causes the transaction to roll back.

Durable2PC

The next protocol in the WS-Atomic Transaction is Durable2PC. The Durable2PC protocol is at the
core of WS-Atomic Transaction. It brings about the necessary consensus between participants in a
transaction, so the transaction can safely be terminated.

The Durable2PC protocol ensures atomicity between participants, and is based on the classic
technique of two-phase commit with presumed abort .

Procedure 18.2. Durable2PC Procedure

1. During the first phase, when the coordinator sends the prepare message, a participant must
make durable any state changes that occurred during the scope of the transaction, so these
changes can either be rolled back or committed later. None of the original state information
can be lost at this point, since the atomic transaction may still roll back. If the participant
cannot prepare, it must inform the coordinator, by means of the aborted message. The
transaction will ultimately roll back. If the participant is responsible for a service that did
not change any of the transaction's data,, it can return the readonly message, causing it to
be omitted from the second phase of the commit protocol. Otherwise, the prepared
message is sent by the participant.

2. If no failures occur during the first phase, Durable2PC proceeds to the second phase, in
which the coordinator sends the commit message to participants. Participants then make
permanent the tentative work done by their associated services, and send a committed
message to the coordinator. If any failures occur, the coordinator sends the rollback
message to all participants, causing them to discard tentative work done by their
associated services, and delete any state information saved to persistent storage at
prepare, if they have reached that stage. Participants respond to a rollback by sending an
aborted message to the coordinator.

NOTE

The semantics of the WS-Atomic Transaction protocol do not include the one-phase
commit optimization. A full two-phase commit is always used, even where only a
single participant is enlisted.

Figure 18.6, “WS-Atomic Two-Phase Participant State Transitions” shows the state transitions of a WS-
Atomic Transaction and the message exchanges between coordinator and participant. Messages
generated by the coordinator are represented by solid lines, while the participants' messages use
dashed lines.

Transactions Development Guide

120

Figure 18.6. WS-Atomic Two-Phase Participant State Transitions

Once the Durable2PC protocol completes, the Completion protocol that originally began the
termination of the transaction can complete, and inform the client application whether the transaction
was committed or rolled back. Additionally, the Volatile2PC protocol may complete.

Like the prepare phase of Volatile2PC, the final phase is optional and can be used to inform
participants about the transaction's completion, so that they can release resources such as database
connections.

Any registered Volatile2PC participants are invoked after the transaction terminates, and are
informed about the transaction's completion state by the coordinator. Since the transaction has
terminated, any failures of participants at this stage are ignored, since they have no impact on
outcomes.

Figure 18.7, “” illustrates the intricate interweaving of individual protocols comprising the AT as a
whole.

Figure 18.7.

18.2.3.2. Business Activities

Most B2B applications require transactional support in order to guarantee consistent outcome and
correct execution. These applications often involve long-running computations, loosely coupled
systems, and components that do not share data, location, or administration. It is difficult to
incorporate atomic transactions within such architectures.

CHAPTER 18. OVERVIEW OF PROTOCOLS USED BY XTS

121

For example, an online bookshop may reserve books for an individual for a specific period of time.
However, if the individual does not purchase the books within that period, they become available again
for purchase by other customers. Because it is not possible to have an infinite supply of stock, some
online shops may seem, from the user's perspective, to reserve items for them, while actually allow
others to preempt the reservation. A user may discover, to his disappointment, that the item is no
longer available.

A Business Activity (BA) is designed specifically for these kinds of long-duration interactions, where it is
impossible or impractical to exclusively lock resources.

Procedure 18.3. BA Process Overview

1. Services are requested to do work.

2. Where those services have the ability to undo any work, they inform the BA, in case the BA
later decides the cancel the work. If the BA suffers a failure. it can instruct the service to
execute its undo behavior.

The key to BA is that how services do their work and provide compensation mechanisms is not the
responsibility of the WS-BA specification. It is delegated to the service provider.

The WS-BA defines a protocol for Web Services-based applications to enable existing business
processing and work-flow systems to wrap their proprietary mechanisms and interoperate across
implementations and business boundaries.

Unlike the WS-AT protocol model, where participants inform the coordinator of their state only when
asked, a child activity within a BA can specify its outcome to the coordinator directly, without waiting
for a request. A participant may choose to exit the activity or may notify the coordinator of a failure at
any point. This feature is useful when tasks fail, since the notification can be used to modify the goals
and drive processing forward, without the need to wait until the end of the transaction to identify
failures. A well-designed Business Activity should be proactive.

The BA protocols employ a compensation-based transaction model. When a participant in a business
activity completes its work, it may choose to exit the activity. This choice does not allow any
subsequent rollback. Alternatively, the participant can complete its activity, signaling to the
coordinator that the work it has done can be compensated if, at some later point, another participant
notifies a failure to the coordinator. In this latter case, the coordinator asks each non-exited
participant to compensate for the failure, giving them the opportunity to execute whatever
compensating action they consider appropriate. For instance, participant might credit a bank account
which it previously debited. If all participants exit or complete without failure, the coordinator notifies
each completed participant that the activity has been closed.

Underpinning all of this are three fundamental assumptions, detailed in Assumptions of WS-BA.

Assumptions of WS-BA

All state transitions are reliably recorded, including application state and coordination
metadata (the record of sent and received messages).

All request messages are acknowledged, so that problems are detected as early as possible.
This avoids executing unnecessary tasks and can also detect a problem earlier when rectifying
it is simpler and less expensive.

As with atomic transactions, a response is defined as a separate operation, not as the output of
the request. Message I/O implementations typically have timeout requirements too short for
BA responses. If the response is not received after a timeout, it is re-sent, repeatedly, until a

Transactions Development Guide

122

response is received. The receiver discards all but one identical request received.

The BA model has two participant protocols: BusinessAgreementWithParticipantCompletion
and BusinessAgreementWithCoordinatorCompletion. Unlike the AT protocols which are driven
from the coordinator down to participants, this protocol takes the opposite approach.

BusinessAgreementWithParticipantCompletion

1. A participant is initially created in the Active state.

2. If it finishes its work and it is no longer needed within the scope of the BA (such as when the
activity operates on immutable data), the participant can unilaterally decide to exit, sending
an exited message to the coordinator. However, if the participant finishes and wishes to
continue in the BA, it must be able to compensate for the work it has performed. In this
case, it sends a completed message to the coordinator and waits for the coordinator to
notify it about the final outcome of the BA. This outcome is either a close message,
meaning the BA has completed successfully, or a compensate message indicating that the
participant needs to reverse its work.

BusinessAgreementWithCoordinatorCompletion

The BusinessAgreementWithCoordinatorCompletion differs from the
BusinessAgreementWithParticipantCompletion protocol in that the participant cannot
autonomously decide to complete its participation in the BA, even if it can be compensated.

1. Instead, the completion stage is driven by the client which created the BA, which sends a
completed message to the coordinator.

2. The coordinator sends a complete message to each participant, indicating that no further
requests will be sent to the service associated with the participant.

3. The participant continues on in the same manner as in the
BusinessAgreementWithParticipantCompletion protocol.

The advantage of the BA model, compared to the AT model, is that it allows the participation of
services that cannot lock resources for extended periods.

While the full ACID semantics are not maintained by a BA, consistency can still be maintained through
compensation. The task of writing correct compensating actions to preserve overall system
consistency is the responsibility of the developers of the individual services under control of the BA.
Such compensations may use backward error recovery, but forward recovery is more common.

Figure 18.8, “” shows the state transitions of a WS-BA
BusinessAgreementWithParticipantCompletion participant and the message exchanges
between coordinator and participant. Messages generated by the coordinator are shown with solid
lines, while the participants' messages are illustrated with dashed lines.

CHAPTER 18. OVERVIEW OF PROTOCOLS USED BY XTS

123

Figure 18.8.

Figure 18.9, “” shows the state transitions of a WS-BA
BusinessAgreementWithCoordinatorCompletion participant and the message exchanges
between coordinator and participant. Messages generated by the coordinator are shown with solid
lines, while the participants' messages are illustrated with dashed lines.

Figure 18.9.

18.2.4. Application Messages

Application messages are the requests and responses sent between parties, that constitute the work of
a business process. Any such messages are considered opaque by XTS, and there is no mandatory
message format, protocol binding, or encoding style. This means that you are free to use any
appropriate Web Services protocol. In XTS, the transaction context is propagated within the headers of
SOAP messages.

XTS ships with support for service developers building WS-Transactions-aware services on the JBoss

Transactions Development Guide

124

Enterprise Application Platform. Interceptors are provided for automatic context handling at both
client and service, which significantly simplifies development, allowing you to concentrate on writing
the business logic without being sidetracked by the transactional infrastructure. The interceptors add
and remove context elements to application messages, without altering the semantics of the messages
themselves. Any service which understands what to do with a WS-C context can use it. Services which
are not aware of WS-C, WS-Atomic Transaction and WS-Business Activity can ignore the context. XTS
manages contexts without user intervention.

18.2.4.1. WS-C, WS-Atomic Transaction, and WS-Business Activity Messages

Although the application or service developer is rarely interested in the messages exchanged by the
transactional infrastructure, it is useful to understand what kinds of exchanges occur so that the
underlying model can be fitted in to an overall architecture.

WS-Coordination, WS-Atomic Transaction and WS-Business Activity-specific messages are
transported using SOAP messaging over HTTP. The types of messages that are propagated include
instructions to perform standard transaction operations like begin and prepare.

NOTE

XTS messages do not interfere with messages from the application, an application need
not use the same transport as the transaction-specific messages. For example, a client
application might deliver its application-specific messages using SOAP RPC over SMTP,
even though the XTS messages are delivered using a different mechanism.

18.3. SUMMARY

XTS provides a coordination infrastructure which allows transactions to run between services owned
by different business, across the Internet. That infrastructure is based on the WS-C, WS-Atomic
Transaction and WS-Business Activity specifications. It supports two kinds of transactions: atomic
transactions and business activities, which can be combined in arbitrary ways to map elegantly onto
the transactional requirements of the underlying problem. The use of the whole infrastructure is
simple, because its functionality is exposed through a simple transactioning API. XTS provides
everything necessary to keep application and transactional aspects of an application separate, and to
ensure that a system's use of transactions does not interfere with the functional aspects of the system
itself.

CHAPTER 18. OVERVIEW OF PROTOCOLS USED BY XTS

125

CHAPTER 19. GETTING STARTED

19.1. INSTALLING THE XTS SERVICE ARCHIVE INTO JBOSS
TRANSACTION SERVICE

XTS, which is the Web Services component of JBoss Transaction Service, provides WS-AT and WS-BA
support for Web Services hosted on the Enterprise Application Platform. The module is packaged as a
Service Archive (.sar) located in $JBOSS_HOME/docs/examples/transactions/. To install it, follow
Procedure 19.1, “Installing the XTS Module” .

Procedure 19.1. Installing the XTS Module

1. Create a sub-directory in the $JBOSS_HOME/server/[name]/deploy/ directory, called
jbossxts.sar/.

2. Unpack the SAR, which is a ZIP archive, into this new directory.

3. Restart JBoss Enterprise Application Platform to activate the module.

19.2. CREATING CLIENT APPLICATIONS

There are two aspects to a client application using XTS, the transaction declaration aspects, and the
business logic. The business logic includes the invocation of Web Services.

Transaction declaration aspects are handled automatically with the XTS client API. This API provides
simple transaction directives such as begin, commit, and rollback, which the client application can
use to initialize, manage, and terminate transactions. Internally, this API uses SOAP to invoke
operations on the various WS-C, WS-AT and WS-BA services, in order to create a coordinator and drive
the transaction to completion.

19.2.1. User Transactions

A client uses the UserTransactionFactory and UserTransaction classes to create and manage
WS-AT transactions. These classes provide a simple API which operates in a manner similar to the JTA
API. A WS-AT transaction is started and associated with the client thread by calling the begin method
of the UserTransaction class. The transaction can be committed by calling the commit method, and
rolled back by calling the rollback method.

More complex transaction management, such as suspension and resumption of transactions, is
supported by the TransactionManagerFactory and TransactionManager classes.

Full details of the WS-AT APIs are provided in Chapter 21, The XTS API.

19.2.2. Business Activities

A client creates and manages Business Activities using the UserBusinessActivityFactory and
UserBusinessActivity classes. A WS-BA activity is started and associated with the client thread
by calling the begin method of the UserBusinessActivity class. A client can terminate a business
activity by calling the close method, and cancel it by calling the cancel method.

If any of the Web Services invoked by the client register for the
BusinessActivityWithCoordinatorCompletion protocol, the client can call the completed
method before calling the close method, to notify the services that it has finished making service

Transactions Development Guide

126

invocations in the current activity.

More complex business activity management, such as suspension and resumption of business
activities, is supported by the BusinessActivityManagerFactory and
BusinessActivityManager classes.

Full details of the WS-AT APIs are provided in Chapter 21, The XTS API.

19.2.3. Client-Side Handler Configuration

XTS does not require the client application to use a specific API to perform invocations on
transactional Web Services. The client is free to use any appropriate API to send SOAP messages to
the server and receive SOAP responses. The only requirements imposed on the client are:

It must forward details of the current transaction to the server when invoking a web service.

It must process any responses from the server in the context of the correct transaction.

In order to achieve this, the client must insert details of the current XTS context into the headers of
outgoing SOAP messages, and extract the context details from the headers of incoming messages and
associate the context with the current thread. To simplify this process, the XTS module includes
handlers which can perform this task automatically. These handlers are designed to work with JAX-WS
clients.

NOTE

If you choose to use a different SOAP client/server infrastructure for business service
invocations, you must provide for header processing. XTS only provides interceptors for
or JAX-WS. A JAX-RPC handler is provided only for the 1.0 implementation.

19.2.3.1. JAX-WS Client Context Handlers

In order to register the JAX-WS client-side context handler, the client application uses the APIs
provided by the javax.xml.ws.BindingProvider and javax.xml.ws.Binding classes, to install
a handler chain on the service proxy which is used to invoke the remote endpoint. Refer to the example
application client implementation located in the
src/com/jboss/jbosstm/xts/demo/BasicClient.java file for an example.

You can also specify the handlers by using a configuration file deployed with the application. The file is
identified by attaching a javax.jws.HandlerChain annotation to the interface class, which declares
the JAX-WS client API. This interface is normally generated from the web service WSDL port definition.

You need to instantiate the com.arjuna.mw.wst11.client.JaxWSHeaderContextProcessor
class when registering a JAX-WS client context handler.

19.3. CREATING TRANSACTIONAL WEB SERVICES

The two parts to implementing a Web service using XTS are the transaction management and the
business logic.

The bulk of the transaction management aspects are organized in a clear and easy-to-implement
model by means of the XTS’s Participant API, provides a structured model for negotiation between the
web service and the transaction coordinator. It allows the web service to manage its own local
transactional data, in accordance with the needs of the business logic, while ensuring that its activities

CHAPTER 19. GETTING STARTED

127

are in step with those of the client and other services involved in the transaction. Internally, this API
uses SOAP to invokes operations on the various WS-C, WS-AT and WS-BA services, to drive the
transaction to completion.

19.3.1. Participants

A participant is a software entity which is driven by the transaction manager on behalf of a Web service.
When a web service wants to participate in a particular transaction, it must enroll a participant to act as
a proxy for the service in subsequent negotiations with the coordinator. The participant implements an
API appropriate to the type of transaction it is enrolled in, and the participant model selected when it is
enrolled. For example, a Durable2PC participant, as part of a WS-Atomic Transaction, implements the
Durable2PCParticipant interface. The use of participants allows the transactional control management
aspects of the Web service to be factored into the participant implementation, while staying separate
from the the rest of the Web service's business logic and private transactional data management.

The creation of participants is not trivial, since they ultimately reflect the state of a Web service’s
back-end processing facilities, an aspect normally associated with an enterprise’s own IT
infrastructure. Implementations must use one of the following interfaces, depending upon the protocol
it will participate within: com.arjuna.wst11.Durable2PCParticipant,
com.arjuna.wst11.Volatile2PCParticipant,
com.arjuna.wst11.BusinessAgreementWithParticipantCompletionParticipant, or
com.arjuna.wst11.BusinessAgreementWithCoordinatorCompletionParticipant.

19.3.2. Service-Side Handler Configuration

A transactional Web service must ensure that a service invocation is included in the appropriate
transaction. This usually only affects the operation of the participants and has no impact on the
operation of the rest of the Web service. XTS simplifies this task and decouples it from the business
logic, in much the same way as for transactional clients . XTS provides a handler which detects and
extracts the context details from the headers in incoming SOAP headers, and associates the web
service thread with the transaction. The handler clears this association when dispatching SOAP
responses, and writes the context into the outgoing message headers. This is shown in Figure 19.1,
“Context Handlers Registered with the SOAP Server”.

The service side handlers for JAX-WS come in two different versions. The normal handler resumes any
transaction identified by an incoming context when the service is invoked, and suspends this
transaction when the service call completes. The alternative handler is used to interpose a local
coordinator. The first time an incoming parent context is seen, the local coordinator service creates a
subordinate transaction, which is resumed before the web service is called. The handler ensures that
this subordinate transaction is resumed each time the service is invoked with the same parent context.
When the subordinate transaction completes, the association between the parent transaction and its
subordinate is cleared.

NOTE

The subordinate service side handler is only able to interpose a subordinate coordinator
for an Atomic Transaction.

NOTE

JAX-RPC is provided for the 1.0 implementation only.

19.3.2.1. JAX-WS Service Context Handlers

Transactions Development Guide

128

To register the JAX-WS server-side context handler with the deployed Web Services, you must install
a handler chain on the Server Endpoint Implementation class. The endpoint implementation class
annotation, which is the one annotated with a javax.jws.WebService, must be supplemented with a
javax.jws.HandlerChain annotation which identifies a handler configuration file deployed with the
application. Please refer to the example application configuration file located at dd/jboss/context-
handlers.xml and the endpoint implementation classes located in
src/com/jboss/jbosstm/xts/demo/services for an example.

When registering a normal JAX-WS service context handler, you must instantiate the
com.arjuna.mw.wst11.service.JaxWSHeaderContextProcessor class. If you need
coordinator interposition, employ the
com.arjuna.mw.wst11.service.JaxWSSubordinateHeaderContextProcessor instead.

CHAPTER 19. GETTING STARTED

129

Figure 19.1. Context Handlers Registered with the SOAP Server

19.4. SUMMARY

This chapter gives a high-level overview of each of the major software pieces used by the Web Services
transactions component of JBoss Transaction Service. The Web Services transaction manager
provided by JBoss Transaction Service is the hub of the architecture and is the only piece of software
that user-level software does not bind to directly. XTS provides header-processing infrastructure for
use with Web Services transactions contexts for both client applications and Web Services. XTS
provides a simple interface for developing transaction participants, along with the necessary
document-handling code.

Transactions Development Guide

130

This chapter is only an overview, and does not address the more difficult and subtle aspects of
programming Web Services. For fuller explanations of the components, please continue reading.

CHAPTER 19. GETTING STARTED

131

CHAPTER 20. PARTICIPANTS

20.1. OVERVIEW

The participant is the entity that performs the work pertaining to transaction management on behalf of
the business services involved in an application. The Web service (in the example code, a theater
booking system) contains some business logic to reserve a seat and inquire about availability, but it
needs to be supported by something that maintains information in a durable manner. Typically this is a
database, but it could be a file system, NVRAM, or other storage mechanism.

Although the service may talk to the back-end database directly, it cannot commit or undo any
changes, since committing and rolling back are ultimately under the control of a transaction. For the
transaction to exercise this control, it must communicate with the database. In XTS, participant does
this communication, as shown in Figure 20.1, “Transactions, Participants, and Back-End Transaction
Control”.

Figure 20.1. Transactions, Participants, and Back-End Transaction Control

20.1.1. Atomic Transaction

All Atomic Transaction participants are instances of the Section 20.1.1.1, “Durable2PCParticipant” or
Section 20.1.1.2, “Volatile2PCParticipant”.

20.1.1.1. Durable2PCParticipant

A Durable2PCParticipant supports the WS-Atomic Transaction Durable2PC protocol with the
signatures listed in Durable2PCParticipant Signatures, as per the
com.arjuna.wst11.Durable2Participant interface.

Durable2PCParticipant Signatures

prepare

The participant should perform any work necessary, so that it can either commit or roll back the
work performed by the Web service under the scope of the transaction. The implementation is free
to do whatever it needs to in order to fulfill the implicit contract between it and the coordinator.

The participant indicates whether it can prepare by returning an instance of the
com.arjuna.wst11.Vote, with one of three values.

Transactions Development Guide

132

ReadOnly indicates that the participant does not need to be informed of the transaction
outcome, because it did not update any state information.

Prepared indicates that the participant is ready to commit or roll back, depending on the
final transaction outcome. Sufficient state updates have been made persistent to
accomplish this.

Aborted indicates that the participant has aborted and the transaction should also attempt
to do so.

commit

The participant should make its work permanent. How it accomplishes this depends upon its
implementation. For instance, in the theater example, the reservation of the ticket is committed. If
commit processing cannot complete, the participant should throw a SystemException error,
potentially leading to a heuristic outcome for the transaction.

rollback

The participant should undo its work. If rollback processing cannot complete, the participant should
throw a SystemException error, potentially leading to a heuristic outcome for the transaction.

unknown

This method has been deprecated and is slated to be removed from XTS in the future.

error

In rare cases when recovering from a system crash, it may be impossible to complete or roll back a
previously prepared participant, causing the error operation to be invoked.

20.1.1.2. Volatile2PCParticipant

This participant supports the WS-Atomic Transaction Volatile2PC protocol with the signatures listed
in Volatile2PCParticipant Signatures, as per the com.arjuna.wst11.Volatile2Participant
interface.

Volatile2PCParticipant Signatures

prepare

The participant should perform any work necessary to flush any volatile data created by the Web
service under the scope of the transaction, to the system store. The implementation is free to do
whatever it needs to in order to fulfill the implicit contract between it and the coordinator.

The participant indicates whether it can prepare by returning an instance of the
com.arjuna.wst11.Vote, with one of three values.

ReadOnly indicates that the participant does not need to be informed of the transaction
outcome, because it did not change any state information during the life of the transaction.

Prepared indicates that the participant wants to be notified of the final transaction
outcome via a call to commit or rollback.

Aborted indicates that the participant has aborted and the transaction should also attempt
to do so.

CHAPTER 20. PARTICIPANTS

133

commit

The participant should perform any cleanup activities required, in response to a successful
transaction commit. These cleanup activities depend upon its implementation. For instance, it may
flush cached backup copies of data modified during the transaction. In the unlikely event that
commit processing cannot complete, the participant should throw a SystemException error. This
will not affect the outcome of the transaction but will cause an error to be logged. This method may
not be called if a crash occurs during commit processing.

rollback

The participant should perform any cleanup activities required, in response to a transaction abort.
In the unlikely event that rollback processing cannot complete, the participant should throw a
SystemException error. This will not affect the outcome of the transaction but will cause an error
to be logged. This method may not be called if a crash occurs during commit processing.

unknown

This method is deprecated and will be removed in a future release of XTS.

error

This method should never be called, since volatile participants are not involved in recovery
processing.

20.1.2. Business Activity

All Business Activity participants are instances one or the other of the interfaces described in
Section 20.1.2.1, “BusinessAgreementWithParticipantCompletion” or Section 20.1.2.2,
“BusinessAgreementWithCoordinatorCompletion” interface.

20.1.2.1. BusinessAgreementWithParticipantCompletion

The BusinessAgreementWithParticipantCompletion interface supports the WS-Transactions
BusinessAgreementWithParticipantCompletion protocol with the signatures listed in
BusinessAgreementWithParticipantCompletion Signatures, as per interface
com.arjuna.wst11.BusinessAgreementWithParticipantCompletionParticipant.

BusinessAgreementWithParticipantCompletion Signatures

close

The transaction has completed successfully. The participant has previously informed the
coordinator that it was ready to complete.

cancel

The transaction has canceled, and the participant should undo any work. The participant cannot
have informed the coordinator that it has completed.

compensate

The transaction has canceled. The participant previously informed the coordinator that it had
finished work but could compensate later if required, and it is now requested to do so. If
compensation cannot be performed, the participant should throw a FaultedException error,
potentially leading to a heuristic outcome for the transaction. If compensation processing cannot

Transactions Development Guide

134

complete because of a transient condition then the participant should throw a SystemException
error, in which case the compensation action may be retried or the transaction may finish with a
heuristic outcome.

status

Return the status of the participant.

unknown

This method is deprecated and will be removed a future XTS release.

error

In rare cases when recovering from a system crash, it may be impossible to compensate a
previously-completed participant. In such cases the error operation is invoked.

20.1.2.2. BusinessAgreementWithCoordinatorCompletion

The BusinessAgreementWithCoordinatorCompletion participant supports the WS-Transactions
BusinessAgreementWithCoordinatorCompletion protocol with the signatures listed in
BusinessAgreementWithCoordinatorCompletion Signatures, as per the
com.arjuna.wst11.BusinessAgreementWithCoordinatorCompletionParticipant
interface.

BusinessAgreementWithCoordinatorCompletion Signatures

close

The transaction completed successfully. The participant previously informed the coordinator that it
was ready to complete.

cancel

The transaction canceled, and the participant should undo any work.

compensate

The transaction canceled. The participant previously informed the coordinator that it had finished
work but could compensate later if required, and it is now requested to do so. In the unlikely event
that compensation cannot be performed the participant should throw a FaultedException error,
potentially leading to a heuristic outcome for the transaction. If compensation processing cannot
complete because of a transient condition, the participant should throw a SystemException
error, in which case the compensation action may be retried or the transaction may finish with a
heuristic outcome.

complete

The coordinator is informing the participant all work it needs to do within the scope of this business
activity has been completed and that it should make permanent any provisional changes it has
made.

status

Returns the status of the participant.

unknown

CHAPTER 20. PARTICIPANTS

135

This method is deprecated and will be removed in a future release of XTS.

error

In rare cases when recovering from a system crash, it may be impossible to compensate a previously
completed participant. In such cases, the error method is invoked.

20.1.2.3. BAParticipantManager

In order for the Business Activity protocol to work correctly, the participants must be able to
autonomously notify the coordinator about changes in their status. Unlike the Atomic Transaction
protocol, where all interactions between the coordinator and participants are instigated by the
coordinator when the transaction terminates, the BAParticipantManager interaction pattern requires
the participant to be able to talk to the coordinator at any time during the lifetime of the business
activity.

Whenever a participant is registered with a business activity, it receives a handle on the coordinator.
This handle is an instance of interface com.arjuna.wst11.BAParticipantManager with the methods listed
in BAParticipantManager Methods.

BAParticipantManager Methods

exit

The participant uses the method exit to inform the coordinator that it has left the activity. It will
not be informed when and how the business activity terminates. This method may only be invoked
while the participant is in the active state (or the completing state, in the case of a participant
registered for the ParticipantCompletion protocol). If it is called when the participant is in any
other state, a WrongStateException error is thrown. An exit does not stop the activity as a
whole from subsequently being closed or canceled/compensated, but only ensures that the exited
participant is no longer involved in completion, close or compensation of the activity.

completed

The participant has completed its work, but wishes to continue in the business activity, so that it
will eventually be informed when, and how, the activity terminates. The participant may later be
asked to compensate for the work it has done or learn that the activity has been closed.

fault

The participant encountered an error during normal activation and has done whatever it can to
compensate the activity. The fault method places the business activity into a mandatory
cancel-only mode. The faulted participant is no longer involved in completion, close or
compensation of the activity.

20.2. PARTICIPANT CREATION AND DEPLOYMENT

The participant provides the plumbing that drives the transactional aspects of the service. This section
discusses the specifics of Participant programming and usage.

20.2.1. Implementing Participants

Implementing a participant is a relatively straightforward task. However, depending on the complexity
of the transactional infrastructure that the participant needs to manage, the task can vary greatly in

Transactions Development Guide

136

complexity and scope. Your implementation needs to implement one of the interfaces found under
com.arjuna.wst11.

NOTE

The corresponding participant interfaces used in the 1.0 protocol implementation are
located in package com.arjuna.wst.

20.2.2. Deploying Participants

Transactional web services and transactional clients are deployed by placing them in the application
server deploy directory alongside the XTS service archive (SAR). The SAR exports all the client and
web service API classes needed to manage transactions and enroll and manage participant web
services. It provides implementations of all the WS-C and WS-T coordination services, not just the
coordinator services. In particular, it exposes the client and web service participant endpoints which
are needed to receive incoming messages originating from the coordinator.

Normally, a transactional application client and the transaction web service it invokes will be deployed
in different application servers. As long as the XTS SAR is deployed to each of these containers XTS
will transparently route coordination messages from clients or web services to their coordinator and
vice versa. When the the client begins a transaction by default it creates a context using the
coordination services in its local container. The context holds a reference to the local Registration
Service which means that any web services enlisted in the transaction enrol with the coordination
services in the same container."

The coordinator does not need to reside in the same container as the client application. By configuring
the client deployment appropriately it is possible to use the coordinator services co-located with one
of the web services or even to use services deployed in a separate, dedicated container. See Chapter 8
Stand-Alone Coordination for details of how to configure a coordinator located in a different container
to the client.

WARNING

In previous releases, XTS applications were deployed using the appropriate XTS
and Transaction Manager .jar, .war, and configuration files bundled with the
application. This deployment method is no longer supported in the Enterprise
Application Platform.

CHAPTER 20. PARTICIPANTS

137

CHAPTER 21. THE XTS API
This chapter discusses the XTS API. You can use this information to write client and server applications
which consume transactional Web Services and coordinate back-end systems.

21.1. API FOR THE ATOMIC TRANSACTION PROTOCOL

21.1.1. Vote

During the two-phase commit protocol, a participant is asked to vote on whether it can prepare to
confirm the work that it controls. It must return an instance of one of the subtypes of
com.arjuna.wst11.Vote listed in Subclasses of com.arjuna.wst11.Vote.

Subclasses of com.arjuna.wst11.Vote

Prepared

Indicates that the participant can prepare if the coordinator requests it. Nothing has been
committed, because the participant does not know the final outcome of the transaction.

Aborted

The participant cannot prepare, and has rolled back. The participant should not expect to get a
second phase message.

ReadOnly

The participant has not made any changes to state, and it does not need to know the final outcome
of the transaction. Essentially the participant is resigning from the transaction.

Example 21.1. Example Implementation of 2PC Participant's prepare Method

public Vote prepare () throws WrongStateException, SystemException
{
 // Some participant logic here

 if(/* some condition based on the outcome of the business logic */)
 {
 // Vote to confirm
 return new com.arjuna.wst.Prepared();
 }
 else if(/*another condition based on the outcome of the business
logic*/)
 {
 // Resign
 return new com.arjuna.wst.ReadOnly();
 }
 else
 {
 // Vote to cancel
 return new com.arjuna.wst.Aborted();
 }
}

Transactions Development Guide

138

21.1.2. TXContext

com.arjuna.mw.wst11.TxContext is an opaque representation of a transaction context. It returns one of
two possible values, as listed in TxContext Return Values.

TxContext Return Values

valid

Indicates whether the contents are valid.

equals

Can be used to compare two instances for equality.

NOTE

The corresponding participant interfaces used in the 1.0 protocol implementation are
located in package com.arjuna.wst.

21.1.3. UserTransaction

com.arjuna.mw.wst11.UserTransaction is the class that clients typically employ. Before a client
can begin a new atomic transaction, it must first obtain a UserTransaction from the
UserTransactionFactory. This class isolates the user from the underlying protocol-specific
aspects of the XTS implementation. A UserTransaction does not represent a specific transaction.
Instead, it provides access to an implicit per-thread transaction context, similar to the
UserTransaction in the JTA specification. All of the UserTransaction methods implicitly act on
the current thread of control.

userTransaction Methods

begin

Used to begin a new transaction and associate it with the invoking thread.

Parameters

timeout

This optional parameter, measured in milliseconds, specifies a time interval after which the
newly created transaction may be automatically rolled back by the coordinator

Exceptions

WrongStateException

A transaction is already associated with the thread.

commit

Volatile2PC and Durable2PC participants enrolled in the transaction are requested first to prepare
and then to commit their changes. If any of the participants fails to prepare in the first phase then all
other participants are requested to abort.

CHAPTER 21. THE XTS API

139

Exceptions

UnknownTransactionException

No transaction is associated with the invoking thread.

TransactionRolledBackException

The transaction was rolled back either because of a timeout or because a participant was unable
to commit.

rollback

Terminates the transaction. Upon completion, the rollback method disassociates the transaction
from the current leaving it unassociated with any transactions.

Exceptions

UnknownTransactionException

No transaction is associated with the invoking thread.

21.1.4. UserTransactionFactory

Call the getUserTransaction method to obtain a Section 21.1.3, “UserTransaction” instance from a
UserTransactionFactory.

21.1.5. TransactionManager

Defines the interaction between a transactional web service and the underlying transaction service
implementation. A TransactionManager does not represent a specific transaction. Instead, it
provides access to an implicit per-thread transaction context.

Methods

currentTransaction

Returns a TxContext for the current transaction, or null if there is no context. Use the
currentTransaction method to determine whether a web service has been invoked from within
an existing transaction. You can also use the returned value to enable multiple threads to execute
within the scope of the same transaction. Calling the currentTransaction method does not
disassociate the current thread from the transaction.

suspend

Dissociates a thread from any transaction. This enables a thread to do work that is not associated
with a specific transaction.

The suspend method returns a TxContext instance, which is a handle on the transaction.

resume

Associates or re-associates a thread with a transaction, using its TxContext. Prior to association
or re-association, the thread is disassociated from any transaction with which it may be currently
associated. If the TxContext is null, then the thread is associated with no transaction. In this way,

Transactions Development Guide

140

the result is the same as if the suspend method were used instead.

Parameters

txContext

A TxContext instance as return by suspend, identifying the transaction to be resumed.

Exceptions

UnknownTransactionException

The transaction referred to by the TxContext is invalid in the scope of the invoking thread.

enlistForVolitaleTwoPhase

Enroll the specified participant with the current transaction, causing it to participate in the
Volatile2PC protocol. You must pass a unique identifier for the participant.

Parameters

participant

An implementation of interface Volatile2PCParticipant whose prepare, commit and abort
methods are called when the corresponding coordinator message is received.

id

A unique identifier for the participant. The value of this String should differ for each enlisted
participant. It should also be possible for a given identifier to determine that the participant
belongs to the enlisting web service rather than some other web service deployed to the same
container.

Exceptions

UnknownTransactionException

No transaction is associated with the invoking thread.

WrongStateException

The transaction is not in a state that allows participants to be enrolled. For instance, it may be in
the process of terminating.

enlistForDurableTwoPhase

Enroll the specified participant with the current transaction, causing it to participate in the
Durable2PC protocol. You must pass a unique identifier for the participant.

Exceptions

UnknownTransactionException

No transaction is associated with the invoking thread.

CHAPTER 21. THE XTS API

141

WrongStateException

The transaction is not in a state that allows participants to be enrolled. For instance, it may be in
the process of terminating.

21.1.6. TransactionManagerFactory

Use the getTransactionManager method to obtain a Section 21.1.5, “TransactionManager” from a
TransactionManagerFactory.

21.2. API FOR THE BUSINESS ACTIVITY PROTOCOL

21.2.1. Compatibility

Previous implementations of XTS locate the Business Activity Protocol classes in the
com.arjuna.mw.wst package. In the current implementation, these classes are located in the
com.arjuna.mw.wst11 package.

21.2.2. UserBusinessActivity

com.arjuna.wst11.UserBusinessActivity is the class that most clients employ. A client begins
a new business activity by first obtaining a UserBusinessActivity from the
UserBusinessActivityFactory. This class isolates them from the underlying protocol-specific
aspects of the XTS implementation. A UserBusinessActivity does not represent a specific business
activity. Instead, it provides access to an implicit per-thread activity. Therefore, all of the
UserBusinessActivity methods implicitly act on the current thread of control.

Methods

begin

Begins a new activity, associating it with the invoking thread.

Parameters

timeout

The interval, in milliseconds, after which an activity times out. Optional.

Exceptions

WrongStateException

The thread is already associated with a business activity.

close

First, all Coordinator Completion participants enlisted in the activity are requested to complete the
activity. Next all participants, whether they enlisted for Coordinator or Participant Completion, are
requested to close the activity. If any of the Coordinator Completion participants fails to complete
at the first stage then all completed participants are asked to compensate the activity while any
remaining uncompleted participants are requested to cancel the activity.

Transactions Development Guide

142

Exceptions

UnknownTransactionException

No activity is associated with the invoking thread.

TransactionRolledBackException

The activity has been cancelled because one of the Coordinator Completion participants failed
to complete. This exception may also thrown if one of the Participant Completion participants
has not completed before the client calls close.

cancel

Terminates the business activity. All Participant Completion participants enlisted in the activity
which have already completed are requested to compensate the activity. All uncompleted
Participant Completion participants and all Coordinator Completion participants are requested to
cancel the activity.

Exceptions

UnknownTransactionException

No activity is associated with the invoking thread. Any participants that previous completed are
directed to compensate their work.

21.2.3. UserBusinessActivityFactory

Use the getuserbusinessActivity method to obtain a Section 21.2.2, “UserBusinessActivity”
instance from a userBusinessActivityFactory.

21.2.4. BusinessActivityManager

com.arjuna.mw.wst11.BusinessActivityManager is the class that web services typically employ. Defines
how a web service interacts with the underlying business activity service implementation. A
BusinessActivityManager does not represent a specific activity. Instead, it provides access to an
implicit per-thread activity.

Methods

currentTransaction

Returns the TxContext for the current business activity, or NULL if there is no TxContext. The
returned value can be used to enable multiple threads to execute within the scope of the same
business activity. Calling the currenTransaction method does not dissociate the current thread
from its activity.

suspend

Dissociates a thread from any current business activity, so that it can perform work not associated
with a specific activity. The suspend method returns a TxContext instance, which is a handle on
the activity. The thread is then no longer associated with any activity.

resume

CHAPTER 21. THE XTS API

143

Associates or re-associates a thread with a business activity, using its TxContext. Before
associating or re-associating the thread, it is disassociated from any business activity with which it
is currently associated. If the TxContext is NULL, the thread is disassociated with all business
activities, as though the suspend method were called.

Parameters

txContext

A TxContext instance as returned by suspend, identifying the transaction to be resumed.

Exceptions

UnknownTransactionException

The business activity to which the TxContext refers is invalid in the scope of the invoking
thread.

enlistForBusinessAgreementWithParticipantCompletion

Enroll the specified participant with current business activity, causing it to participate in the
BusinessAgreementWithParticipantCompletion protocol. A unique identifier for the
participant is also required.

The return value is an instance of BAParticipantManager which can be used to notify the
coordinator of changes in the participant state. In particular, since the participant is enlisted for the
Participant Completion protcol it is expected to call the completed method of this returned
instance when it has completed all the work it expects to do in this activity and has made all its
changes permanent. Alternatively, if the participant does not need to perform any compensation
actions should some other participant fail it can leave the activity by calling the exit method of the
returned BAParticipantManager instance.

Parameters

participant

An implementation of interface
BusinessAgreementWithParticipantCompletionParticipant whose close, cancel,
and compensate methods are called when the corresponding coordinator message is received.

id

A unique identifier for the participant. The value of this String should differ for each enlisted
participant. It should also be possible for a given identifier to determine that the participant
belongs to the enlisting web service rather than some other web service deployed to the same
container.

Exceptions

UnknownTransactionException

No transaction is associated with the invoking thread.

WrongStateException

Transactions Development Guide

144

The transaction is not in a state where new participants may be enrolled, as when it is
terminating.

enlistForBusinessAgreementWithCoordinatorCompletion

Enroll the specified participant with current activity, causing it to participate in the
BusinessAgreementWithCoordinatorCompletion protocol. A unique identifier for the
participant is also required.

The return value is an instance of BAParticipantManager which can be used to notify the
coordinator of changes in the participant state. Note that in this case it is an error to call the
completed method of this returned instance. With the Coordinator Completion protocol the
participant is expected to wait until its completed method is called before it makes all its changes
permanent. Alternatively, if the participant determiens that it has no changes to make, it can leave
the activity by calling the exit method of the returned BAParticipantManager instance.

Parameters

participant

An implementation of interface BusinessAgreementWithCoordinatorCompletionParticipant
whose completed, close, cancel and compensate methods are called when the corresponding
coordinator message is received.

id

A unique identifier for the participant. The value of this String should differ for each enlisted
participant. It should also be possible for a given identifier to determine that the participant
belongs to the enlisting web service rather than some other web service deployed to the same
container.

Exceptions

>UnknownTransactionException

No transaction is associated with the invoking thread.

WrongStateException

The transaction is not in a state where new participants may be enrolled, as when it is
terminating.

21.2.5. BusinessActivityManagerFactory

Use the getBusinessActivityManager method to obtain a Section 21.2.4,
“BusinessActivityManager” instance from a BusinessActivityManagerFactory.

CHAPTER 21. THE XTS API

145

CHAPTER 22. STAND-ALONE COORDINATION

22.1. INTRODUCTION

The XTS service is deployed as a JBoss service archive (SAR). The version of the service archive
provided with the Transaction Service implements version 1.1 of the WS-C, WS-AT and WS-BA services.
You can rebuild the XTS service archive to include both the 1.0 and 1.1 implementations and deploy
them side by side. See the service archive build script for for further details.

The release service archive obtains coordination contexts from the Activation Coordinator service
running on the deployed host. Therefore, WS-AT transactions or WS-BA activities created by a locally-
deployed client application are supplied with a context which identifies the Registration Service
running on the client's machine. Any Web Services invoked by the client are coordinated by the
Transaction Protocol services running on the client's host. This is the case whether the Web Services
are running locally or remotely. Such a configuration is called local coordination.

You can reconfigure this setting globally for all clients, causing context creation requests to be
redirected to an Activation Coordinator Service running on a remote host. Normally, the rest of the
coordination process is executed from the remote host. This configuration is called stand-alone
coordination.

Reasons for Choosing a Stand-Alone Coordinator

Efficiency: if a client application invokes Web Services on a remote Enterprise Application
Platform server, coordinating the transaction from the remote server might be more efficient,
since the protocol-specific messages between the coordinator and the participants do not
need to travel over the network.

Reliability: if the coordinator service runs on a dedicated host, there is no danger of failing
applications or services affecting the coordinator and causing failures for unrelated
transactions.

A third reason might be to use a coordination service provided by a third party vendor.

22.2. CONFIGURING THE ACTIVATION COORDINATOR

The simplest way to configure a stand-alone coordinator is to provide a command line switch when
starting the Enterprise Application Platform. The -D option specifies a setting for a System property.
Several configuration options can be enabled, taking effect in Section 22.2.1, “Command-Line Options
Passed with the -D Parameter, Ordered by Priority” .

22.2.1. Command-Line Options Passed with the -D Parameter, Ordered by Priority

Absolute URL

Property: org.jboss.jbossts.xts11.coordinatorURL

Format: http://coord.host:coord.port/ws-c11/ActivationService

The value assigned to these URLs depends upon the configuration of the remote coordinator
host. The sample values listed with the property names are appropriate when the coordinator
is another JBoss Transaction Service XTS service. Substitute the coord.host and coord.port
with the appropriate values for the Enterprise Application Platform instance running the
Activation Coordinator service.

Transactions Development Guide

146

Coordinator Host Information

Property

org.jboss.jbossts.xts11.coordinator.host

org.jboss.jbossts.xts11.coordinator.port

org.jboss.jbossts.xts11.coordinator.path

Format

server.bind.address

jboss.web.bind.port

ws-c11/ActivationService

If you set any of these three components, the coordinator URL is constructed using whichever
of the component values is defined and substituting the default values specified for any
undefined components. The values server.bind.address and jboss.web.bind.port represent the
server bind address and the web service listener port obtained either from the application
server command-line or the server configuration files.

CHAPTER 22. STAND-ALONE COORDINATION

147

CHAPTER 23. PARTICIPANT CRASH RECOVERY
A key requirement of a transaction service is to be resilient to a system crash by a host running a
participant, as well as the host running the transaction coordination services. Crashes which happen
before a transaction terminates or before a business activity completes are relatively easy to
accommodate. The transaction service and participants can adopt a presumed abort policy.

Procedure 23.1. Presumed Abort Policy

1. If the coordinator crashes, it can assume that any transaction it does not know about is invalid,
and reject a participant request which refers to such a transaction.

2. If the participant crashes, it can forget any provisional changes it has made, and reject any
request from the coordinator service to prepare a transaction or complete a business activity.

Crash recovery is more complex if the crash happens during a transaction commit operation, or
between completing and closing a business activity. The transaction service must ensure as far as
possible that participants arrive at a consistent outcome for the transaction.

WS-AT Transaction

The transaction needs to commit all provisional changes or roll them all back to the state before the
transaction started.

WS-Business Activity Transaction

All participants need to close the activity or cancel the activity, and run any required compensating
actions.

On the rare occasions where such a consensus cannot be reached, the transaction service must log and
report transaction failures.

XTS includes support for automatic recovery of WS-AT and WS-BA transactions, if either or both of the
coordinator and participant hosts crashes. The XTS recovery manager begins execution on
coordinator and participant hosts when the XTS service restarts. On a coordinator host, the recovery
manager detects any WS-AT transactions which have prepared but not committed, as well as any WS-
BA transactions which have completed but not yet closed. It ensures that all their participants are
rolled forward in the first case, or closed in the second.

On a participant host, the recovery manager detects any prepared WS-AT participants which have not
responded to a transaction rollback, and any completed WS-BA participants which have not yet
responded to an activity cancel request, and ensures that the former are rolled back and the latter are
compensated. The recovery service also allows for recovery of subordinate WS-AT transactions and
their participants if a crash occurs on a host where an interposed WS-AT coordinator has been
employed.

23.1. WS-AT RECOVERY

23.1.1. WS-AT Coordinator Crash Recovery

The WS-AT coordination service tracks the status of each participant in a transaction as the
transaction progresses through its two-phase commit. When all participants have been sent a prepare
message and have responded with a prepared message, the coordinator writes a log record storing
each participant's details, indicating that the transaction is ready to complete. If the coordinator
service crashes after this point has been reached, completion of the two-phase commit protocol is still

Transactions Development Guide

148

guaranteed, by reading the log file after reboot and sending a commit message to each participant.
Once all participants have responded to the commit with a committed message, the coordinator can
safely delete the log entry.

Since the prepared messages returned by the participants imply that they are ready to commit their
provisional changes and make them permanent, this type of recovery is safe. Additionally, the
coordinator does not need to account for any commit messages which may have been sent before the
crash, or resend messages if it crashes several times. The XTS participant implementation is resilient
to redelivery of the commit messages. If the participant has implemented the recovery functions
described in Section 23.1.2.1, “WS-AT Participant Crash Recovery APIs” , the coordinator can
guarantee delivery of commit messages if both it crashes, and one or more of the participant service
hosts also crash, at the same time.

If the coordination service crashes before the prepare phase completes, the presumed abort protocol
ensures that participants are rolled back. After system restart, the coordination service has the
information about about all the transactions which could have entered the commit phase before the
reboot, since they have entries in the log. It also knows about any active transactions started after the
reboot. If a participant is waiting for a response, after sending its prepared message, it automatically
re sends the prepared message at regular intervals. When the coordinator detects a transaction
which is not active and has no entry in the log file after the reboot, it instructs the participant to abort,
ensuring that the web service gets a chance to roll back any provisional state changes it made on
behalf of the transaction.

A web service may decide to unilaterally commit or roll back provisional changes associated with a
given participant, if configured to time out after a specified length of time without a response. In this
situation, the the web service should record this action and log a message to persistent storage. When
the participant receives a request to commit or roll back, it should throw an exception if its unilateral
decision action does not match the requested action. The coordinator detects the exception and logs a
message marking the outcome as heuristic. It also saves the state of the transaction permanently in
the transaction log, to be inspected and reconciled by an administrator.

23.1.2. WS-AT Participant Crash Recovery

WS-AT participants associated with a transactional web service do not need to be involved in crash
recovery if the Web service's host machine crashes before the participant is told to prepare. The
coordinator will assume that the transaction has aborted, and the Web service can discard any
information associated with unprepared transactions when it reboots.

When a participant is told to prepare, the Web service is expected to save to persistent storage the
transactional state it needs to commit or roll back the transaction. The specific information it needs to
save is dependent on the implementation and business logic of the Web Service. However, the
participant must save this state before returning a Prepared vote from the prepare call. If the
participant cannot save the required state, or there is some other problem servicing the request made
by the client, it must return an Aborted vote.

The XTS participant services running on a Web Service's host machine cooperate with the Web service
implementation to facilitate participant crash recovery. These participant services are responsible for
calling the participant's prepare, commit, and rollback methods. The XTS implementation tracks
the local state of every enlisted participant. If the prepare call returns a Prepared vote, the XTS
implementation ensures that the participant state is logged to the local transaction log before
forwarding a prepared message to the coordinator.

A participant log record contains information identifying the participant, its transaction, and its
coordinator. This is enough information to allow the rebooted XTS implementation to reinstate the
participant as active and to continue communication with the coordinator, as though the participant

CHAPTER 23. PARTICIPANT CRASH RECOVERY

149

had been enlisted and driven to the prepared state. However, a participant instance is still necessary
for the commit or rollback process to continue.

Full recovery requires the log record to contain information needed by the Web service which enlisted
the participant. This information must allow it to recreate an equivalent participant instance, which can
continue the commit process to completion, or roll it back if some other Web Service fails to prepare.
This information might be as simple as a String key which the participant can use to locate the data it
made persistent before returning its Prepared vote. It may be as complex as a serialized object tree
containing the original participant instance and other objects created by the Web service.

If a participant instance implements the relevant interface, the XTS implementation will append this
participant recovery state to its log record before writing it to persistent storage. In the event of a
crash, the participant recovery state is retrieved from the log and passed to the Web Service which
created it. The Web Service uses this state to create a new participant, which the XTS implementation
uses to drive the transaction to completion. Log records are only deleted after the participant's
commit or rollback method is called.

WARNING

If a crash happens just before or just after a commit method is called, a commit or
rollback method may be called twice.

23.1.2.1. WS-AT Participant Crash Recovery APIs

23.1.2.1.1. Saving Participant Recovery State

To signal that it is capable of performing recovery processing, a participant can implement the
java.lang.Serializable interface. Alternatively it may implement Example 23.1, “The
PersistableATParticipant Interface”.

Example 23.1. The PersistableATParticipant Interface

If a participant implements the Serializable interface, the XTS participant services implementation
uses the serialization API to create a version of the participant which can be appended to the
participant log entry. If it implements the PersistableATParticipant interface, the XTS
participant services implementation call the getRecoveryState method to obtain the state to be
appended to the participant log entry.

If neither of these APIs is implemented, the XTS implementation logs a warning message and proceeds
without saving any recovery state. In the event of a crash on the host machine for the Web service
during commit, the transaction cannot be recovered and a heuristic outcome may occur. This outcome
is logged on the host running the coordinator services.

 public interface PersistableATParticipant
 {
 byte[] getRecoveryState() throws Exception;
 }

Transactions Development Guide

150

23.1.2.1.2. Recovering Participants at Reboot

A Web service must register with the XTS implementation when it is deployed, and unregister when it
is undeployed, in order to participate in recovery processing. Registration is performed using class
XTSATRecoveryManager defined in package org.jboss.jbossts.xts.recovery.participant.at.

Example 23.2. Registering for Recovery

The Web service must provide an implementation of the XTSATRecoveryModule, located in the
org.jboss.jbossts.xts.recovery.participant.at, as argument to both the register and unregister
calls. This instance is responsible for identifying saved participant recovery records and recreating
new, recovered participant instances.

Example 23.3. XTSATRecoveryModule Implementation

If a participant's recovery state was saved using serialization, the recovery module's deserialize
method is called to recreate the participant. Normally, the recovery module is required to read, cast,
and return an object from the supplied input stream. If a participant's recovery state was saved using
the PersistableATParticipant interface, the recovery module's recreate method is called to
recreate the participant from the byte array it provided when the state was saved.

The XTS implementation cannot identify which participants belong to which recovery modules. A
module only needs to return a participant instance if the recovery state belongs to the module's Web
service. If the participant was created by another Web service, the module should return null. The
participant identifier, which is supplied as argument to the deserialize or recreate method, is the
identifier used by the Web service when the original participant was enlisted in the transaction. Web
Services participating in recovery processing should ensure that participant identifiers are unique per
service. If a module recognizes that a participant identifier belongs to its Web service, but cannot
recreate the participant, it should throw an exception. This situation might arise if the service cannot
associate the participant with any transactional information which is specific to the business logic.

Even if a module relies on serialization to create the participant recovery state saved by the XTS

public abstract class XTSATRecoveryManager {
 . . .
 public static XTSATRecoveryManager getRecoveryManager() ;
 public void registerRecoveryModule(XTSATRecoveryModule module);
 public abstract void unregisterRecoveryModule(XTSATRecoveryModule
module)
 throws NoSuchElementException;
 . . .
}

public interface XTSATRecoveryModule
{
 public Durable2PCParticipant
 deserialize(String id, ObjectInputStream stream)
 throws Exception;
 public Durable2PCParticipant
 recreate(String id, byte[] recoveryState)
 throws Exception;
}

CHAPTER 23. PARTICIPANT CRASH RECOVERY

151

implementation, it still must be registered by the application. The deserialization operation must
employ a class loader capable of loading classes specific to the Web service. XTS fulfills this
requirement by devolving responsibility for the deserialize operation to the recovery module.

23.2. WS-BA RECOVERY

23.2.1. WS-BA Coordinator Crash Recovery

The WS-BA coordination service implementation tracks the status of each participant in an activity as
the activity progresses through completion and closure. A transition point occurs during closure, once
all CoordinatorCompletion participants receive a complete message and respond with a
completed message. At this point, all ParticipantCompletion participants should have sent a
completed message. The coordinator writes a log record storing the details of each participant, and
indicating that the transaction is ready to close. If the coordinator service crashes after the log record
is written, the close operation is still guaranteed to be successful. The coordinator checks the log
after the system reboots and re sends a close message to all participants. After all participants
respond to the close with a closed message, the coordinator can safely delete the log entry.

The coordinator does not need to account for any close messages sent before the crash, nor resend
messages if it crashes several times. The XTS participant implementation is resilient to redelivery of
close messages. Assuming that the participant has implemented the recovery functions described
below, the coordinator can even guarantee delivery of close messages if both it, and one or more of
the participant service hosts, crash simultaneously.

If the coordination service crashes before it has written the log record, it does not need to explicitly
compensate any completed participants. The presumed abort protocol ensures that all completed
participants are eventually sent a compensate message. Recovery must be initiated from the
participant side.

A log record does not need to be written when an activity is being canceled. If a participant does not
respond to a cancel or compensate request, the coordinator logs a warning and continues. The
combination of the presumed abort protocol and participant-led recovery ensures that all participants
eventually get canceled or compensated, as appropriate, even if the participant host crashes.

If a completed participant does not detect a response from its coordinator after resending its
completed response a suitable number of times, it switches to sending getstatus messages, to
determine whether the coordinator still knows about it. If a crash occurs before writing the log record,
the coordinator has no record of the participant when the coordinator restarts, and the getstatus
request returns a fault. The participant recovery manager automatically compensates the participant
in this situation, just as if the activity had been canceled by the client.

After a participant crash, the participant recovery manager detects the log entries for each completed
participant. It sends getstatus messages to each participant's coordinator host, to determine
whether the activity still exists. If the coordinator has not crashed and the activity is still running, the
participant switches back to resending completed messages, and waits for a close or compensate
response. If the coordinator has also crashed or the activity has been canceled, the participant is
automatically canceled.

23.2.2. WS-BA Participant Crash Recovery APIs

23.2.2.1. Saving Participant Recovery State

Transactions Development Guide

152

A participant may signal that it is capable of performing recovery processing, by implementing the
java.lang.Serializable interface. An alternative is to implement the Example 23.4,
“PersistableBAParticipant Interface”.

Example 23.4. PersistableBAParticipant Interface

If a participant implements the Serializable interface, the XTS participant services implementation
uses the serialization API to create a version of the participant which can be appended to the
participant log entry. If the participant implements the PersistableBAParticipant, the XTS
participant services implementation call the getRecoveryState method to obtain the state, which is
appended to the participant log entry.

If neither of these APIs is implemented, the XTS implementation logs a warning message and proceeds
without saving any recovery state. If the Web service's host machine crashes while the activity is being
closed, the activity cannot be recovered and a heuristic outcome will probably be logged on the
coordinator's host machine. If the activity is canceled, the participant is not compensated and the
coordinator host machine may log a heuristic outcome for the activity.

23.2.2.2. Recovering Participants at Reboot

A Web service must register with the XTS implementation when it is deployed, and unregister when it
is undeployed, so it can take part in recovery processing.

Registration is performed using the XTSBARecoveryManager, defined in the
org.jboss.jbossts.xts.recovery.participant.ba package.

Example 23.5. XTSBARecoveryManager Class

The Web service must provide an implementation of the XTSBARecoveryModule in the
org.jboss.jbossts.xts.recovery.participant.ba, as an argument to the register and unregister calls.
This instance identifies saved participant recovery records and recreates new, recovered participant
instances:

Example 23.6. XTSBARecoveryModule Interface

public interface PersistableBAParticipant
{
 byte[] getRecoveryState() throws Exception;
}

public abstract class XTSBARecoveryManager {
 . . .
 public static XTSBARecoveryManager getRecoveryManager() ;
 public void registerRecoveryModule(XTSBARecoveryModule module);
 public abstract void unregisterRecoveryModule(XTSBARecoveryModule
module)
 throws NoSuchElementException;
 . . .
}

public interface XTSATRecoveryModule

CHAPTER 23. PARTICIPANT CRASH RECOVERY

153

If a participant's recovery state was saved using serialization, one of the recovery module's
deserialize methods is called, so that it can recreate the participant. Which method to use depends
on whether the saved participant implemented the ParticipantCompletion protocol or the
CoordinatorCompletion protocol. Normally, the recovery module reads, casts and returns an
object from the supplied input stream. If a participant's recovery state was saved using the
PersistableBAParticipant interface, one of the recovery module's recreate methods is called,
so that it can recreate the participant from the byte array provided when the state was saved. The
method to use depends on which protocol the saved participant implemented.

The XTS implementation does not track which participants belong to which recovery modules. A
module is only expected to return a participant instance if it can identify that the recovery state
belongs to its Web service. If the participant was created by some other Web service, the module
should return null. The participant identifier supplied as an argument to the deserialize or
recreate calls is the identifier used by the Web service when the original participant was enlisted in
the transaction. Web Services which participate in recovery processing should ensure that the
participant identifiers they employ are unique per service. If a module recognizes a participant
identifier as belonging to its Web service, but cannot recreate the participant, it throws an exception.
This situation might arise if the service cannot associate the participant with any transactional
information specific to business logic.

A module must be registered by the application, even when it relies upon serialization to create the
participant recovery state saved by the XTS implementation. The deserialization operation must
employ a class loader capable of loading Web service-specific classes. The XTS implementation
achieves this by delegating responsibility for the deserialize operation to the recovery module.

{
 public BusinessAgreementWithParticipantCompletionParticipant
 deserializeParticipantCompletionParticipant(String id,
 ObjectInputStream stream)
 throws Exception;
 public BusinessAgreementWithParticipantCompletionParticipant
 recreateParticipantCompletionParticipant(String id,
 byte[] recoveryState)
 throws Exception;
 public BusinessAgreementWithCoordinatorCompletionParticipant
 deserializeCoordinatorCompletionParticipant(String id,
 ObjectInputStream stream)
 throws Exception;
 public BusinessAgreementWithCoordinatorCompletionParticipant
 recreateCoordinatorCompletionParticipant(String id,
 byte[] recoveryState)
 throws Exception;
}

Transactions Development Guide

154

APPENDIX C. REVISION HISTORY

Revision 5.1.0-111.400 2013-10-31 Rüdiger Landmann
Rebuild with publican 4.0.0

Revision 5.1.0-111 2012-07-18 Anthony Towns
Rebuild for Publican 3.0

Revision 5.1.0-110 Wed Sep 15 2010 Misty Stanley-Jones
Changed version number in line with new versioning requirements.
Revised for JBoss Enterprise Application Platform 5.1.0.GA, including:
Merged the JTA, JTS, and XTS API guides into one master guide.

APPENDIX C. REVISION HISTORY

155

INDEX

A

ACID, Transactions Overview

activation, Overview of Protocols Used by XTS

Activation Coordinator, Overview of Protocols Used by XTS

activation coordinator, Stand-Alone Coordination

active component, Introduction

API, The XTS API

atomic transactions

atomicity, Participants

B

BAParticipantManager, Participants

business activities, Getting Started

BusinessActivityManager, The XTS API

BusinessActivityManagerFactory, The XTS API

BusinessAgreementWithCoordinatorCompletion, Overview of Protocols Used by XTS , Participants

BusinessAgreementWithParticipantCompletion, Overview of Protocols Used by XTS , Participants

C

com.arjuna.mw.wst11

XTS API, Getting Started

command-line options, Stand-Alone Coordination

completion, Overview of Protocols Used by XTS

context handlers, Getting Started

coordination context, Overview of Protocols Used by XTS

Coordinator, Transactions Overview

D

DE

Document Exchange, Introduction

deployment, Participants

Durable2PC, Overview of Protocols Used by XTS

Durable2PCParticipant, Participants

F

fault-tolerance, Introduction

H

Transactions Development Guide

156

Heuristic Outcomes, Transactions Overview

I

implementation, Participants

Interpositions, Transactions Overview

J

JAX-RPC, Getting Started

N

Non-atomic, Transactions Overview

O

One-Phase Commit

1PC, Transactions Overview, Overview of Protocols Used by XTS

Optimizations to Synchronization Protocols, Transactions Overview

P

Participant, Transactions Overview

participant recovery, Participant Crash Recovery

participants, Getting Started, Participants

transaction participants, Introduction

presumed abort policy, Participant Crash Recovery

R

recovery, Participant Crash Recovery

registration, Overview of Protocols Used by XTS

RPC

Remote Procedure Calls, Introduction

S

SAR

Service Archive, Stand-Alone Coordination

service-side handlers, Getting Started

servlets

Java servlets, Introduction

SOAP, Introduction

stand-alone coordination, Stand-Alone Coordination

Synchronization Protocol, Transactions Overview

INDEX

157

T

Transaction Context, Transactions Overview

Transaction Service, Transactions Overview

TransactionManager, The XTS API

TransactionManagerFactory, The XTS API

transactions, Introduction, Transactions Overview

Two-Phase Commit

2PC, Transactions Overview, Overview of Protocols Used by XTS

TXContext, The XTS API

U

undesirable outcomes, Introduction

user transactions, Getting Started

UserBusinessActivity, The XTS API

UserBusinessActivityFactory, The XTS API

UserTransaction, The XTS API

UserTransactionFactory, The XTS API

V

Volatile2PC, Overview of Protocols Used by XTS

Volatile2PCParticipant, Participants

vote, The XTS API

W

Web Service, Transactions Overview

Web Services, Introduction

WS-Atomic Transaction

WS-AT, Introduction, Overview of Protocols Used by XTS

WS-Business Activity

WS-BA, Introduction, Overview of Protocols Used by XTS

WS-Coordination

WS-C, Introduction, Overview of Protocols Used by XTS

WSDL

Web Services Description Language, Introduction

X

XTS

XML Transaction Service, Introduction

Transactions Development Guide

158

XTS 1.0

XTS 1.1, Introduction

INDEX

159

	Table of Contents
	PART I. JTA DEVELOPMENT
	CHAPTER 1. AN INTRODUCTION TO THE JAVA TRANSACTION API (JTA)
	CHAPTER 2. THE JBOSS JTA IMPLEMENTATION
	2.1. USERTRANSACTION
	2.2. TRANSACTIONMANAGER
	2.3. SUSPENDING AND RESUMING A TRANSACTION
	2.4. THE TRANSACTION INTERFACE
	2.5. RESOURCE ENLISTMENT
	2.6. TRANSACTION SYNCHRONIZATION
	2.7. TRANSACTION EQUALITY

	CHAPTER 3. THE RESOURCE MANAGER
	3.1. THE XARESOURCE INTERFACE
	3.1.1. Extended XAResource Control
	3.1.2. Enlisting Multiple One-Phase Aware Resources

	3.2. OPENING A RESOURCE MANAGER
	3.3. CLOSING A RESOURCE MANAGER
	3.4. THREADS OF CONTROL
	3.5. TRANSACTION ASSOCIATION
	3.6. EXTERNALLY-CONTROLLED CONNECTIONS
	3.7. RESOURCE SHARING
	3.8. LOCAL AND GLOBAL TRANSACTIONS
	3.9. TRANSACTION TIMEOUTS
	3.10. DYNAMIC REGISTRATION

	CHAPTER 4. TRANSACTION RECOVERY
	4.1. FAILURE RECOVERY
	4.2. RECOVERING XACONNECTIONS
	4.3. ALTERNATIVE TO XARESOURCERECOVERY

	CHAPTER 5. JDBC AND TRANSACTIONS
	5.1. USING THE TRANSACTIONAL JDBC DRIVER
	5.1.1. Managing Transactions
	5.1.2. Restrictions

	5.2. TRANSACTIONAL DRIVERS
	5.2.1. Loading drivers

	5.3. CONNECTIONS
	5.3.1. Making the connection
	5.3.2. JBossJTA JDBC Driver Properties
	5.3.3. XADataSources
	5.3.3.1. Java Naming and Directory Interface (JNDI)
	5.3.3.2. Dynamic class instantiation
	5.3.3.3. Using the connection
	5.3.3.4. Connection Pooling
	5.3.3.5. Reusing Connections
	5.3.3.6. Terminating the Transaction
	5.3.3.7. AutoCommit
	5.3.3.8. Setting Isolation Levels

	CHAPTER 6. EXAMPLES
	6.1. JDBC EXAMPLE
	6.2. BASICXARECOVERY EXAMPLE FOR FAILURE RECOVERY

	CHAPTER 7. CONFIGURING JBOSSJTA
	7.1. CONFIGURING OPTIONS

	CHAPTER 8. USING JBOSSJTA WITH JBOSS ENTERPRISE APPLICATION PLATFORM
	8.1. SERVICE CONFIGURATION
	8.2. LOGGING
	8.3. THE SERVICES
	8.4. ENSURING TRANSACTIONAL CONTEXT IS PROPAGATED TO THE SERVER

	PART II. JTS DEVELOPMENT
	CHAPTER 9. OVERVIEW
	9.1. INTRODUCTION
	9.2. JBOSS TRANSACTION SERVICE
	9.2.1. Saving Object States
	9.2.2. The Object Store
	9.2.3. Recovery and persistence
	9.2.4. The Life cycle of a Transactional Object for Java
	9.2.5. The Concurrency Controller
	9.2.6. The Transaction Protocol Engine
	9.2.7. Example
	9.2.8. The Class Hierarchy

	CHAPTER 10. USING JBOSS TRANSACTION SERVICE
	10.1. INTRODUCTION
	10.2. STATE MANAGEMENT
	10.2.1. Object States
	10.2.2. The Object Store
	10.2.3. StateManager
	10.2.4. Object Models
	10.2.5. JBoss Transaction Service Method Reference
	10.2.6. Example

	10.3. LOCK MANAGEMENT AND CONCURRENCY CONTROL
	10.3.1. Selecting a Lock Store Implementation
	10.3.2. LockManager
	10.3.3. Locking policy
	10.3.4. Object construction and destruction

	CHAPTER 11. GENERAL TRANSACTION ISSUES
	11.1. ADVANCED TRANSACTION ISSUES WITH JBOSS TRANSACTION SERVICE
	11.1.1. Checking Transactions
	11.1.2. Gathering Statistics
	11.1.3. Last resource commit optimization
	11.1.4. Nested Transactions
	11.1.5. Asynchronously Committing a Transaction
	11.1.6. Independent Top-Level Transactions
	11.1.7. Transactions Within the save_state and restore_state Methods
	11.1.8. Example
	11.1.9. Garbage Collecting Objects
	11.1.10. Transaction Timeouts

	CHAPTER 12. HINTS AND TIPS
	12.1. GENERAL TIPS
	12.1.1. Using Transactions in Constructors
	12.1.2. More on the save_state and restore_state Methods
	12.1.3. Packing Objects

	12.2. DIRECT USE OF THE STATEMANAGER CLASS
	12.2.1. The activate Method
	12.2.2. The deactivate Method
	12.2.3. The modified Method

	CHAPTER 13. TOOLS
	13.1. INTRODUCTION
	13.2. STARTING THE TRANSACTION SERVICE TOOLS
	13.2.1. File Menu
	13.2.2. Performance Menu
	13.2.3. Window Menu
	13.2.4. Help Menu

	13.3. USING THE PERFORMANCE TOOL
	13.4. USING THE JMX BROWSER
	13.4.1. Using Attributes and Operations
	13.4.2. Using the Object Store Browser
	13.4.3. Object State Viewers (OSV)
	13.4.3.1. Writing an OSV

	CHAPTER 14. CONSTRUCTING AN APPLICATION USING TRANSACTIONAL OBJECTS FOR JAVA
	14.1. APPLICATION CONSTRUCTION
	14.1.1. Queue description
	14.1.2. Constructors and deconstructors
	14.1.3. The save_state, restore_state, and type Methods
	14.1.4. enqueue/dequeue operations
	14.1.5. The queueSize Method
	14.1.6. The inspectValue and setValue Methods
	14.1.7. The Client
	14.1.8. Notes

	CHAPTER 15. CONFIGURATION OPTIONS
	15.1. OPTIONS

	APPENDIX A. OBJECT STORE IMPLEMENTATIONS
	A.1. THE OBJECTSTORE
	A.2. PERSISTENT OBJECT STORES
	A.2.1. The Shadowing Store
	A.2.2. No file-level locking
	A.2.3. The Hashed Store
	A.2.4. The JDBC Store
	A.2.5. The Cached Store

	APPENDIX B. CLASS DEFINITIONS
	B.1. INTRODUCTION
	B.2. CLASS LIBRARY

	PART III. XTS DEVELOPMENT
	CHAPTER 16. INTRODUCTION
	16.1. MANAGING SERVICE-BASED PROCESSES
	16.2. SERVLETS
	16.3. SOAP
	16.4. WEB SERVICES DESCRIPTION LANGUAGE (WDSL)

	CHAPTER 17. TRANSACTIONS OVERVIEW
	17.1. THE COORDINATOR
	17.2. THE TRANSACTION CONTEXT
	17.3. PARTICIPANTS
	17.4. ACID TRANSACTIONS
	17.5. TWO PHASE COMMIT
	17.6. THE SYNCHRONIZATION PROTOCOL
	17.7. OPTIMIZATIONS TO THE PROTOCOL
	17.8. NON-ATOMIC TRANSACTIONS AND HEURISTIC OUTCOMES
	17.9. INTERPOSITION
	17.10. A NEW TRANSACTION PROTOCOL
	17.10.1. Transaction in Loosely Coupled Systems

	CHAPTER 18. OVERVIEW OF PROTOCOLS USED BY XTS
	18.1. WS-COORDINATION
	18.1.1. Activation
	18.1.2. Registration
	18.1.3. Completion

	18.2. WS-TRANSACTION
	18.2.1. WS-Transaction Foundations
	18.2.2. WS-Transaction Architecture
	18.2.3. WS_Transaction Models
	18.2.3.1. Atomic Transactions
	18.2.3.2. Business Activities

	18.2.4. Application Messages
	18.2.4.1. WS-C, WS-Atomic Transaction, and WS-Business Activity Messages

	18.3. SUMMARY

	CHAPTER 19. GETTING STARTED
	19.1. INSTALLING THE XTS SERVICE ARCHIVE INTO JBOSS TRANSACTION SERVICE
	19.2. CREATING CLIENT APPLICATIONS
	19.2.1. User Transactions
	19.2.2. Business Activities
	19.2.3. Client-Side Handler Configuration
	19.2.3.1. JAX-WS Client Context Handlers

	19.3. CREATING TRANSACTIONAL WEB SERVICES
	19.3.1. Participants
	19.3.2. Service-Side Handler Configuration
	19.3.2.1. JAX-WS Service Context Handlers

	19.4. SUMMARY

	CHAPTER 20. PARTICIPANTS
	20.1. OVERVIEW
	20.1.1. Atomic Transaction
	20.1.1.1. Durable2PCParticipant
	20.1.1.2. Volatile2PCParticipant

	20.1.2. Business Activity
	20.1.2.1. BusinessAgreementWithParticipantCompletion
	20.1.2.2. BusinessAgreementWithCoordinatorCompletion
	20.1.2.3. BAParticipantManager

	20.2. PARTICIPANT CREATION AND DEPLOYMENT
	20.2.1. Implementing Participants
	20.2.2. Deploying Participants

	CHAPTER 21. THE XTS API
	21.1. API FOR THE ATOMIC TRANSACTION PROTOCOL
	21.1.1. Vote
	21.1.2. TXContext
	21.1.3. UserTransaction
	21.1.4. UserTransactionFactory
	21.1.5. TransactionManager
	21.1.6. TransactionManagerFactory

	21.2. API FOR THE BUSINESS ACTIVITY PROTOCOL
	21.2.1. Compatibility
	21.2.2. UserBusinessActivity
	21.2.3. UserBusinessActivityFactory
	21.2.4. BusinessActivityManager
	21.2.5. BusinessActivityManagerFactory

	CHAPTER 22. STAND-ALONE COORDINATION
	22.1. INTRODUCTION
	22.2. CONFIGURING THE ACTIVATION COORDINATOR
	22.2.1. Command-Line Options Passed with the -D Parameter, Ordered by Priority

	CHAPTER 23. PARTICIPANT CRASH RECOVERY
	23.1. WS-AT RECOVERY
	23.1.1. WS-AT Coordinator Crash Recovery
	23.1.2. WS-AT Participant Crash Recovery
	23.1.2.1. WS-AT Participant Crash Recovery APIs

	23.2. WS-BA RECOVERY
	23.2.1. WS-BA Coordinator Crash Recovery
	23.2.2. WS-BA Participant Crash Recovery APIs
	23.2.2.1. Saving Participant Recovery State
	23.2.2.2. Recovering Participants at Reboot

	APPENDIX C. REVISION HISTORY
	INDEX

