& RedHat

Red Hat Enterprise Linux 8

Working with vaults in Identity Management

Storing and managing sensitive data in Identity Management in Red Hat Enterprise
Linux 8

Last Updated: 2021-07-01

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

Storing and managing sensitive data in Identity Management in Red Hat Enterprise Linux 8

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This documentation collection provides instructions on how to store, retrieve, and share secrets in
Identity Management on Red Hat Enterprise Linux 8.

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ...\ttt etetetet et et et e e e aeaeaaeeaee 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION uuttitttetinteteteeeteieeeaeieneenens, 4
CHAPTER T VAULTS INIDM ...ttt it ettt ettt e et e e et e e et et e et e et 5
11. VAULTS AND THEIR BENEFITS 5
1.2. VAULT OWNERS, MEMBERS, AND ADMINISTRATORS 6
1.3. STANDARD, SYMMETRIC, AND ASYMMETRIC VAULTS 7
1.4. USER, SERVICE, AND SHARED VAULTS 7
1.5. VAULT CONTAINERS 7
1.6. BASIC IDM VAULT COMMANDS 8
1.7. INSTALLING THE KEY RECOVERY AUTHORITY IN IDM 8
CHAPTER 2. USING IDM USER VAULTS: STORING AND RETRIEVING SECRETScuvevinininnnn... 10
21. STORING A SECRET IN A USER VAULT 10

2.2. RETRIEVING A SECRET FROM A USER VAULT il

CHAPTER 3. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS .. 13

3.1. ENSURING THE PRESENCE OF A STANDARD USER VAULT IN IDM USING ANSIBLE 13
3.2. ARCHIVING A SECRET IN A STANDARD USER VAULT IN IDM USING ANSIBLE 14
3.3. RETRIEVING A SECRET FROM A STANDARD USER VAULT IN IDM USING ANSIBLE 16
CHAPTER 4. MANAGING IDM SERVICE SECRETS: STORING AND RETRIEVING SECRETS 18
4.1.STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT 18
4.2. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE INSTANCE 19
4.3. CHANGING AN IDM SERVICE VAULT SECRET WHEN COMPROMISED 20

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS ..
22

5.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT IN IDM USING ANSIBLE 23
5.2. ADDING MEMBER SERVICES TO AN ASYMMETRIC VAULT USING ANSIBLE 24
5.3. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT USING ANSIBLE 26
5.4. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE USING ANSIBLE 27

5.5. CHANGING AN IDM SERVICE VAULT SECRET WHEN COMPROMISED USING ANSIBLE 30

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.
In Identity Management, planned terminology replacements include:

® block list replaces blacklist

® allow list replaces whitelist

® secondary replaces slave

® The word masteris being replaced with more precise language, depending on the context:

o [dM serverreplaces IdM master
o CA renewal serverreplaces CA renewal master
o CRL publisher server replaces CRL master

o multi-supplier replaces multi-master

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Please let us know how we could make it better. To do
so:

® Forsimple comments on specific passages:

1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition,
ensure you see the Feedback button in the upper right corner of the document.

2. Use your mouse cursor to highlight the part of text that you want to comment on.
3. Click the Add Feedback pop-up that appears below the highlighted text.
4. Follow the displayed instructions.

® For submitting more complex feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.
2. As the Component, use Documentation.

3. Fillin the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 8

CHAPTER 1. VAULTS IN IDM

CHAPTER 1. VAULTS IN IDM

This chapter describes vaults in I[dentity Management (IdM). It introduces the following topics:
® The concept of the vault.
® The different roles associated with a vault .
® The different types of vaults available in IdM based on the level of security and access control .
® The different types of vaults available in IdM based on ownership .
® The concept of vault containers.
® The basic commands for managing vaults in IdM .

® |Installing the key recovery authority (KRA), which is a prerequisite for using vaults in IdM .

1.1. VAULTS AND THEIR BENEFITS

A vault is a useful feature for those Identity Management (IdM) users who want to keep all their sensitive
data stored securely but conveniently in one place. This section explains the various types of vaults and
their uses, and which vault you should choose based on your requirements.

Avaultis a secure location in (IdM) for storing, retrieving, sharing, and recovering a secret. A secret is
security-sensitive data, usually authentication credentials, that only a limited group of people or entities
can access. For example, secrets include:

® passwords

® PINs

® private SSH keys
A vault is comparable to a password manager. Just like a password manager, a vault typically requires a
user to generate and remember one primary password to unlock and access any information stored in

the vault. However, a user can also decide to have a standard vault. A standard vault does not require
the user to enter any password to access the secrets stored in the vault.

NOTE

The purpose of vaults in IdM is to store authentication credentials that allow you to
authenticate to external, non-IdM-related services.

Other important characteristics of the IdM vaults are:

® Vaults are only accessible to the vault owner and those |dM users that the vault owner selects
to be the vault members. In addition, the |[dM administrator has access to the vault.

e |f a user does not have sufficient privileges to create a vault, an IdM administrator can create the
vault and set the user as its owner.

® Users and services can access the secrets stored in a vault from any machine enrolled in the |[dM
domain.

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

® One vault can only contain one secret, for example, one file. However, the file itself can contain
multiple secrets such as passwords, keytabs or certificates.

NOTE

Vault is only available from the IdM command line (CLI), not from the IdM Web UI.

1.2. VAULT OWNERS, MEMBERS, AND ADMINISTRATORS
Identity Management (IdM) distinguishes the following vault user types:

Vault owner

A vault owner is a user or service with basic management privileges on the vault. For example, a vault
owner can modify the properties of the vault or add new vault members.
Each vault must have at least one owner. A vault can also have multiple owners.

Vault member
A vault member is a user or service that can access a vault created by another user or service.
Vault administrator

Vault administrators have unrestricted access to all vaults and are allowed to perform all vault
operations.

NOTE

Symmetric and asymmetric vaults are protected with a password or key and apply
special access control rules (see Vault types). The administrator must meet these
rules to:

® Access secrets in symmetric and asymmetric vaults.

® Change or reset the vault password or key.

A vault administrator is any user with the Vault Administrators privilege. In the context of the role-
based access control (RBAC) in IdM, a privilege is a group of permissions that you can apply to a role.

Vault User

The vault user represents the user in whose container the vault is located. The Vault user
information is displayed in the output of specific commands, such as ipa vault-show:

$ ipa vault-show my_vault
Vault name: my_vault
Type: standard
Owner users: user
Vault user: user

For details on vault containers and user vaults, see Vault containers.

Additional resources

® Certain owner and member privileges depend on the type of the vault. See Standard,
symmetric and asymmetric vaults for details.

CHAPTER 1. VAULTS IN IDM

1.3. STANDARD, SYMMETRIC, AND ASYMMETRIC VAULTS
Based on the level of security and access control, IdM classifies vaults into the following types:

Standard vaults

Vault owners and vault members can archive and retrieve the secrets without having to use a
password or key.

Symmetric vaults

Secrets in the vault are protected with a symmetric key. Vault owners and members can archive and
retrieve the secrets, but they must provide the vault password.

Asymmetric vaults

Secrets in the vault are protected with an asymmetric key. Users archive the secret using a public key
and retrieve it using a private key. Vault members can only archive secrets, while vault owners can do
both, archive and retrieve secrets.

1.4. USER, SERVICE, AND SHARED VAULTS

Based on ownership, IdM classifies vaults into several types. The table below contains information about
each type, its owner and use.

Table 1.1. IdM vaults based on ownership

Type Description Owner Note

User vault A private vault forauser Asingle user Any user can own one or more user
vaults if allowed by IdM administrator

Service A private vault for a Asingle service Any service can own one or more user
vault service vaults if allowed by IdM administrator
Shared A vault shared by The vault administrator Users and services can own one or
vault multiple users and who created the vault more user vaults if allowed by IdM
services administrator. The vault administrators

other than the one that created the
vault also have full access to the vault.

1.5. VAULT CONTAINERS

A vault container is a collection of vaults. The table below lists the default vault containers that
Identity Management (IdM) provides.

Table 1.2. Default vault containers in IdM

Type Description Purpose

User container A private container for a Stores user vaults for a particular user
user

Service container A private container for a Stores service vaults for a particular service
service

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

Type Description Purpose
Shared container A container for multiple Stores vaults that can be shared by multiple users or
users and services services

IdM creates user and service containers for each user or service automatically when the first private
vault for the user or service is created. After the user or service is deleted, IdM removes the container
and its contents.

1.6. BASIC IDM VAULT COMMANDS

This section describes basic commands you can use to manage Identity Management (IdM) vaults. The
table below contains a list of ipa vault-* commands with the explanation of their purpose.

NOTE

Before running any ipa vault-* command, install the Key Recovery Authority (KRA)
certificate system component on one or more of the servers in your IdM domain. For
details, see Installing the Key Recovery Authority in IdM .

Table 1.3. Basic IdM vault commands with explanations

Command Purpose

ipa help vault Displays conceptual information about IdM vaults and sample vault commands.
ipa vault-add --help, Adding the --help option to a specificipa vault-* command displays the options
ipa vault-find --help and detailed help available for that command.

ipa vault-show When accessing a vault as a vault member, you must specify the vault owner. If
user_vault --user you do not specify the vault owner, IdM informs you that it did not find the vault:
idm_user

[admin@server ~]$ ipa vault-show user_vault
ipa: ERROR: user_vault: vault not found

ipa vault-show When accessing a shared vault, you must specify that the vault you want to
shared_vault -- access is a shared vault. Otherwise, [dM informs you it did not find the vault:
shared

[admin@server ~]$ ipa vault-show shared_vault
ipa: ERROR: shared_vault: vault not found

1.7.INSTALLING THE KEY RECOVERY AUTHORITY IN IDM

This section describes how you can enable vaults in Identity Management (IdM) by installing the Key
Recovery Authority (KRA) Certificate System (CS) component.

Prerequisites

® You are logged in as [dM administrator.

CHAPTER 1. VAULTS IN IDM

® You are loggedin asroot on an IdM client.

Procedure

® |nstall the KRA:

I # ipa-kra-install

IMPORTANT

You can install the first KRA of an IdM cluster on a hidden replica. However, installing
additional KRAs requires temporarily activating the hidden replica before you install the
KRA clone on a non-hidden replica. Then you can hide the originally hidden replica again.

NOTE

To make the vault service highly available, install the KRA on two IdM servers or more.

_,f"

Additional resources

® For more information on how to activate an IdM replica and how to hide it, see Demoting or
promoting hidden replicas.

® For more information on hidden replicas in IdM, see The hidden replica mode.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/demoting-or-promoting-hidden-replicas_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-dns-and-host-names#the-hidden-replica-mode_planning-the-replica-topology

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

CHAPTER 2. USING IDM USER VAULTS: STORING AND
RETRIEVING SECRETS

This chapter describes how to use user vaults in Identity Management. Specifically, it describes how a
user can store a secret in an IdM vault, and how the user can retrieve it. The user can do the storing and
the retrieving from two different IdM clients.

Prerequisites

® The Key Recovery Authority (KRA) Certificate System component has been installed on one or
more of the servers in your IdM domain. For details, see Installing the Key Recovery Authority in
[dM.

2.1.STORING ASECRET IN AUSER VAULT
This section shows how a user can create a vault container with one or more private vaults to securely
store files with sensitive information. In the example used in the procedure below, the idm_user user
creates a vault of the standard type. The standard vault type ensures that idm_user will not be required
to authenticate when accessing the file. idm_user will be able to retrieve the file from any IdM client to
which the user is logged in.
In the procedure:

® idm_useris the user who wants to create the vault.

® my_vaultis the vault used to store the user’s certificate.

e The vault type is standard, so that accessing the archived certificate does not require the user
to provide a vault password.

® secret.txt is the file containing the certificate that the user wants to store in the vault.

Prerequisites

® You know the password of idm_user.

® You are logged in to a host thatis an IdM client.

Procedure

1. Obtain the Kerberos ticket granting ticket (TGT) for idm_user:
I $ kinit idm_user
2. Use theipa vault-add command with the --type standard option to create a standard vault:

$ ipa vault-add my_vault --type standard

Added vault "my_vault"

Vault name: my_vault
Type: standard

Owner users: idm_user
Vault user: idm_user

10

CHAPTER 2. USING IDM USER VAULTS: STORING AND RETRIEVING SECRETS

IMPORTANT

Make sure the first user vault for a user is created by the same user. Creating the
first vault for a user also creates the user’s vault container. The agent of the
creation becomes the owner of the vault container.

For example, if another user, such as admin, creates the first user vault for user1,
the owner of the user’s vault container will also be admin, and user1 will be
unable to access the user vault or create new user vaults.

3. Use the ipa vault-archive command with the --in option to archive the secret.txt file into the
vault:

$ ipa vault-archive my_vault --in secret.txt

Archived data into vault "my_vault"

2.2. RETRIEVING A SECRET FROM A USER VAULT

As an Identity Management (IdM), you can retrieve a secret from your user private vault onto any IdM
client to which you are logged in.

This section shows how to retrieve, as an IdM user named idm_user, a secret from the user private vault
named my_vault onto idm_client.idm.example.com.

Prerequisites

® idm_user is the owner of my_vault.
® idm_user has archived a secret in the vault .

® my_vaultis a standard vault, which means that idm_user does not have to enter any password
to access the contents of the vault.

Procedure

1. SSH to idm_client as idm_user:

I $ ssh idm_user@idm_client.idm.example.com
2. Login asidm_user:

I $ kinit user

3. Use the ipa vault-retrieve --out command with the --out option to retrieve the contents of the
vault and save them into the secret_exported.txt file.

$ ipa vault-retrieve my_vault --out secret_exported.txt

Retrieved data from vault "my_vault"

1

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

Additional resources

® You can use Ansible to automate the process of managing IdM user vaults. For more
information, see Using Ansible to manage |dM user vaults: storing and retrieving secrets .

12

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#using-ansible-to-manage-idm-user-vaults-storing-and-retrieving-secrets_configuring-and-managing-idm

CHAPTER 3. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS

CHAPTER 3. USING ANSIBLE TO MANAGE IDM USER VAULTS:
STORING AND RETRIEVING SECRETS

This chapter describes how to manage user vaults in Identity Management using the Ansible vault
module. Specifically, it describes how a user can use Ansible playbooks to perform the following three
consecutive actions:

® Create anuservaultinIdM .

® Store asecretin the vault.

® Retrieve a secret from the vault.

The user can do the storing and the retrieving from two different IdM clients.

Prerequisites

® The Key Recovery Authority (KRA) Certificate System component has been installed on one or
more of the servers in your IdM domain. For details, see Installing the Key Recovery Authority in
[dM.

3.1. ENSURING THE PRESENCE OF A STANDARD USER VAULT IN IDM
USING ANSIBLE

This section shows how an Identity Management (IdM) user can use an Ansible playbook to create a
vault container with one or more private vaults to securely store sensitive information. In the example
used in the procedure below, the idm_user user creates a vault of the standard type named my_vault.

The standard vault type ensures that idm_user will not be required to authenticate when accessing the
file. idm_user will be able to retrieve the file from any IdM client to which the user is logged in.

Prerequisites

® You have installed the ansible-freeipa package on the Ansible controller, that is the host on
which you execute the steps in the procedure.

® You know the password of idm_user.

Procedure
1. Navigate to the /ust/share/doc/ansible-freeipa/playbooks/vault directory:
I $ cd /usr/share/doc/ansible-freeipa/playbooks/vault
2. Create aninventory file, for example inventory.file:

I $ touch inventory.file

3. Open inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-the-ansible-freeipa-package_server-ansible

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

4. Make a copy of the ensure-standard-vault-is-present.yml Ansible playbook file. For example:
I $ cp ensure-standard-vault-is-present.yml ensure-standard-vault-is-present-copy.yml

5. Open the ensure-standard-vault-is-present-copy.yml file for editing.

6. Adapt the file by setting the following variables in the ipavault task section:

® Set the ipaadmin_principal variable to idm_user.

Set the ipaadmin_password variable to the password of idm_user.

Set the user variable to idm_user.

Set the name variable to my_vault.

Set the vault_type variable to standard.
This the modified Ansible playbook file for the current example:

- name: Tests
hosts: ipaserver
become: true
gather_facts: false

tasks:

- ipavault:
ipaadmin_principal: idm_user
ipaadmin_password: idm_user_password
user: idm_user
name: my_vault
vault_type: standard

7. Save the file.

8. Run the playbook:

I $ ansible-playbook -v -i inventory.file ensure-standard-vault-is-present-copy.yml

3.2. ARCHIVING A SECRET IN ASTANDARD USER VAULT IN IDM
USING ANSIBLE

This section shows how an Identity Management (IdM) user can use an Ansible playbook to store

sensitive information in a personal vault. In the example used, the idm_user user archives a file with
sensitive information named password.txt in a vault named my_vault.

Prerequisites

® You have installed the ansible-freeipa package on the Ansible controller, that is the host on
which you execute the steps in the procedure.

® You know the password of idm_user.

® idm_useris the owner, or at least a member user of my_vault.

14

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-the-ansible-freeipa-package_server-ansible

CHAPTER 3. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS

® You have access to password.txt, the secret that you want to archive in my_vault.
Procedure
1. Navigate to the /ust/share/doc/ansible-freeipa/playbooks/vault directory:

I $ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the data-archive-in-symmetric-vault.yml Ansible playbook file but replace
"symmetric" by "standard". For example:
I $ cp data-archive-in-symmetric-vault.yml data-archive-in-standard-vault-copy.ymi

4. Open the data-archive-in-standard-vault-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipavault task section:

® Set the ipaadmin_principal variable to idm_user.

Set the ipaadmin_password variable to the password of idm_user.

Set the user variable to idm_user.

Set the name variable to my_vault.

Set the in variable to the full path to the file with sensitive information.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
hosts: ipaserver
become: true
gather_facts: false

tasks:
- ipavault:
ipaadmin_principal: idm_user
ipaadmin_password: idm_user_password
user: idm_user
name: my_vault
in: /usr/share/doc/ansible-freeipa/playbooks/vault/password.txt
action: member

6. Save the file.

7. Run the playbook:

15

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

I $ ansible-playbook -v -i inventory.file data-archive-in-standard-vault-copy.ymi

3.3. RETRIEVING A SECRET FROM A STANDARD USER VAULT IN IDM
USING ANSIBLE

This section shows how an Identity Management (IdM) user can use an Ansible playbook to retrieve a
secret from the user personal vault. In the example used in the procedure below, the idm_user user
retrieves a file with sensitive data from a vault of the standard type named my_vault onto an IdM client

named hostO1. idm_user does not have to authenticate when accessing the file. idm_user can use
Ansible to retrieve the file from any IdM client on which Ansible is installed.

Prerequisites

® You have installed the ansible-freeipa package on the Ansible controller. This is the host on
which you execute the steps in the procedure.

® You know the password of idm_user.

® idm_useris the owner of my_vault.

® idm_user has stored a secretin my_vault.

® Ansible can write into the directory on the IdM host into which you want to retrieve the secret.

® idm_user can read from the directory on the IdM host into which you want to retrieve the secret.

Procedure

1. Navigate to the /ust/share/doc/ansible-freeipa/playbooks/vault directory:

I $ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Open your inventory file and mention, in a clearly defined section, the IdM client onto which you
want to retrieve the secret. For example, to instruct Ansible to retrieve the secret onto
hostOl.idm.example.com, enter:

I [ipahost]

host01.idm.example.com

3. Make a copy of the retrive-data-symmetric-vault.yml Ansible playbook file. Replace
"symmetric” with "standard". For example:

I $ cp retrive-data-symmetric-vault.yml retrieve-data-standard-vault.ymi-copy.yml
4. Open the retrieve-data-standard-vault.yml-copy.yml file for editing.

5. Adapt the file by setting the hosts variable to ipahost.

6. Adapt the file by setting the following variables in the ipavault task section:

® Set the ipaadmin_principal variable to idm_user.

® Set the ipaadmin_password variable to the password of idm_user.

16

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-the-ansible-freeipa-package_server-ansible

CHAPTER 3. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS

Set the user variable to idm_user.
® Set the name variable to my_vault.
® Set the out variable to the full path of the file into which you want to export the secret.

® Set the state variable to retrieved.
This the modified Ansible playbook file for the current example:

- name: Tests
hosts: ipahost
become: true
gather_facts: false

tasks:

- ipavault:
ipaadmin_principal: idm_user
ipaadmin_password: idm_user_password
user: idm_user
name: my_vault
out: /tmp/password_exported.txt
state: retrieved

7. Save the file.
8. Run the playbook:

I $ ansible-playbook -v -i inventory.file retrieve-data-standard-vault.yml-copy.yml

Verification steps

1. SSH to hostO1 as userO1:
I $ ssh user01@host01.idm.example.com

2. View the file specified by the out variable in the Ansible playbook file:
I $ vim /tmp/password_exported.txt

You can now see the exported secret.

® For more information about using Ansible to manage IdM vaults and user secrets and about
playbook variables, see the README-vault.md Markdown file available in the
/usr/share/doc/ansible-freeipa/ directory and the sample playbooks available in the
/usr/share/doc/ansible-freeipa/playbooks/vault/ directory.

17

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

CHAPTER 4. MANAGING IDM SERVICE SECRETS: STORING
AND RETRIEVING SECRETS

This section shows how an administrator can use the ansible-freeipa vault module to securely store a
service secret in a centralized location. The vault used in the example is asymmetric, which means that in
order to use it, the administrator needs to perform the following steps:

1. Generate a private key using, for example, the openssl utility.

2. Generate a public key based on the private key.
The service secret is encrypted with the public key when an administrator archives it into the vault.
Afterwards, a service instance hosted on a specific machine in the domain retrieves the secret using the

private key. Only the service and the administrator are allowed to access the secret.

If the secret is compromised, the administrator can replace it in the service vault and then redistribute it
to those individual service instances that have not been compromised.

Prerequisites

® The Key Recovery Authority (KRA) Certificate System component has been installed on one or
more of the servers in your IdM domain. For details, see Installing the Key Recovery Authority in
[dM.
This section includes these procedure
1. Storing an IdM service secret in an asymmetric vault
2. Retrieving a service secret for an IdM service instance

3. Changing an IdM service vault secret when compromised

Terminology used
In the procedures:
® admin is the administrator who manages the service password.
® private-key-to-an-externally-signed-certificate.pem is the file containing the service secret,
in this case a private key to an externally signed certificate. Do not confuse this private key with
the private key used to retrieve the secret from the vault.
® secret_vaultis the vault created for the service.

e HTTP/webserver.idm.example.com is the service whose secret is being archived.

® service-public.pem is the service public key used to encrypt the password stored in
password_vault.

® service-private.pem is the service private key used to decrypt the password stored in
secret_vault.

4.1. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT

This section describes how to create an asymmetric vault and use it to archive a service secret.

18

CHAPTER 4. MANAGING IDM SERVICE SECRETS: STORING AND RETRIEVING SECRETS

Prerequisites

® You know the IdM administrator password.
Procedure
1. Log in as the administrator:
I $ kinit admin
2. Obtain the public key of the service instance. For example, using the openssl utility:
a. Generate the service-private.pem private key.
$ openssl genrsa -out service-private.pem 2048

Generating RSA private key, 2048 bit long modulus
A+

e is 65537 (0x10001)

b. Generate the service-public.pem public key based on the private key.

$ openssl rsa -in service-private.pem -out service-public.pem -pubout
writing RSA key
3. Create an asymmetric vault as the service instance vault, and provide the public key:

$ ipa vault-add secret_vault --service HTTP/webserver.idm.example.com --type
asymmetric --public-key-file service-public.pem

Added vault "secret_vault"

Vault name: secret_vault

Type: asymmetric

Public key: LSO0tLS1C...S0tLSOtCg==

Owner users: admin

Vault service: HTTP/webserver.idm.example.com@I|DM.EXAMPLE.COM

The password archived into the vault will be protected with the key.

4. Archive the service secret into the service vault:

$ ipa vault-archive secret_vault --service HTTP/webserver.idm.example.com --in
private-key-to-an-externally-signed-certificate.pem

Archived data into vault "secret_vault"

This encrypts the secret with the service instance public key.

Repeat these steps for every service instance that requires the secret. Create a new asymmetric vault
for each service instance.

4.2. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE INSTANCE

19

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

This section describes how a service instance can retrieve the service vault secret using a locally-stored
service private key.

Prerequisites

® You have access to the keytab of the service principal owning the service vault, for example
HTTP/webserver.idm.example.com.

® You have created an asymmetric vault and archived a secret in the vault .

® You have access to the private key used to retrieve the service vault secret.

Procedure
1. Login as the administrator:
I $ kinit admin
2. Obtain a Kerberos ticket for the service:

I # kinit HTTP/webserver.idm.example.com -k -t /etc/httpd/conf/ipa.keytab

3. Retrieve the service vault password:

$ ipa vault-retrieve secret_vault --service HTTP/webserver.idm.example.com --private-
key-file service-private.pem --out secret.txt

Retrieved data from vault "secret_vault"

4.3. CHANGING AN IDM SERVICE VAULT SECRET WHEN
COMPROMISED

This section describes how to isolate a compromised service instance by changing the service vault
secret.

Prerequisites

® You know the IdM administrator password.
® You have created an asymmetric vault to store the service secret.

® You have generated the new secret and have access to it, for example in the new-private-key-
to-an-externally-signed-certificate.pem file.

Procedure
1. Archive the new secret into the service instance vault:

$ ipa vault-archive secret_vault --service HTTP/webserver.idm.example.com --in new-
private-key-to-an-externally-signed-certificate.pem

20

CHAPTER 4. MANAGING IDM SERVICE SECRETS: STORING AND RETRIEVING SECRETS

I Archived data into vault "secret_vault"

This overwrites the current secret stored in the vault.

2. Retrieve the new secret on non-compromised service instances only. For details, see Retrieving
a service secret for an IdM service instance.

Additional resources

® You can use Ansible to automate the process of managing IdM service vaults. For more
information, see Using Ansible to manage |dM service vaults: storing and retrieving secrets .

21

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#using-ansible-to-manage-idm-service-vaults-storing-and-retrieving-secrets_configuring-and-managing-idm

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE
VAULTS: STORING AND RETRIEVING SECRETS

This section shows how an administrator can use the ansible-freeipa vault module to securely store a
service secret in a centralized location. The vault used in the example is asymmetric, which means that in
order to use it, the administrator needs to perform the following steps:

1. Generate a private key using, for example, the openssl utility.

2. Generate a public key based on the private key.
The service secret is encrypted with the public key when an administrator archives it into the vault.
Afterwards, a service instance hosted on a specific machine in the domain retrieves the secret using the

private key. Only the service and the administrator are allowed to access the secret.

If the secret is compromised, the administrator can replace it in the service vault and then redistribute it
to those individual service instances that have not been compromised.

Prerequisites

® The Key Recovery Authority (KRA) Certificate System component has been installed on one or
more of the servers in your IdM domain. For details, see Installing the Key Recovery Authority in
[dM.
This section includes these procedures:
® Ensuring the presence of an asymmetric service vault in IdM using Ansible
® Storing an IdM service secret in an asymmetric vault using Ansible
® Retrieving a service secret for an I[dM service using Ansible
® Changing an IdM service vault secret when compromised using Ansible
In the procedures:
® admin is the administrator who manages the service password.
® private-key-to-an-externally-signed-certificate.pem is the file containing the service secret,
in this case a private key to an externally signed certificate. Do not confuse this private key with
the private key used to retrieve the secret from the vault.
® secret_vaultis the vault created to store the service secret.

e HTTP/webserverlidm.example.com is the service that is the owner of the vault.

® HTTP/webserver2.idm.example.com and HTTP/webserver3.idm.example.com are the vault
member services.

® service-public.pem is the service public key used to encrypt the password stored in
password_vault.

® service-private.pem is the service private key used to decrypt the password stored in
secret_vault.

22

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

5.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT
IN IDM USING ANSIBLE

This section shows how an Identity Management (IdM) administrator can use an Ansible playbook to
create a service vault container with one or more private vaults to securely store sensitive information. In
the example used in the procedure below, the administrator creates an asymmetric vault named

secret_vault. This ensures that the vault members have to authenticate using a private key in order to
retrieve the secret in the vault. The vault members will be able to retrieve the file from any IdM client.

Prerequisites

® You have installed the ansible-freeipa package on the Ansible controller. This is the host on
which you execute the steps in the procedure.

® You know the IdM administrator password.
Procedure
1. Navigate to the /ust/share/doc/ansible-freeipa/playbooks/vault directory:

I $ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Obtain the public key of the service instance. For example, using the openssl utility:

a. Generate the service-private.pem private key.

$ openssl genrsa -out service-private.pem 2048
Generating RSA private key, 2048 bit long modulus
A+

e is 65537 (0x10001)
b. Generate the service-public.pem public key based on the private key.

$ openssl rsa -in service-private.pem -out service-public.pem -pubout
writing RSA key

3. Optional: Create an inventory file if it does not exist, for example inventory.file:

I $ touch inventory.file

4. Open yourinventory file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

5. Make a copy of the ensure-asymmetric-vault-is-present.yml Ansible playbook file. For
example:

$ cp ensure-asymmetric-vault-is-present.yml ensure-asymmetric-service-vault-is-
present-copy.yml

23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-the-ansible-freeipa-package_server-ansible

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

6. Open the ensure-asymmetric-vault-is-present-copy.yml file for editing.

7. Add a task that copies the service-public.pem public key from the Ansible controller to the
server.idm.example.com server.

8. Modify the rest of the file by setting the following variables in the ipavault task section:

® Set the ipaadmin_password variable to the IdM administrator password.

Define the name of the vault using the name variable, for example secret_vault.

Set the vault_type variable to asymmetric.

Set the service variable to the principal of the service that owns the vault, for example
HTTP/webserverl.idm.example.com.

Set the public_key _file to the location of your public key.
This is the modified Ansible playbook file for the current example:

- name: Tests
hosts: ipaserver
become: true
gather_facts: false
tasks:
- name: Copy public key to ipaserver.
copy:
src: /path/to/service-public.pem
dest: /usr/share/doc/ansible-freeipa/playbooks/vault/service-public.pem
mode: 0600
- name: Add data to vault, from a LOCAL file.
ipavault:
ipaadmin_password: Secret123
name: secret_vault
vault_type: asymmetric
service: HTTP/webserveri.idm.example.com
public_key_file: /usr/share/doc/ansible-freeipa/playbooks/vault/service-public.pem

9. Save thefile.

10. Run the playbook:

I $ ansible-playbook -v -i inventory.file ensure-asymmetric-service-vault-is-present-
copy.yml

5.2. ADDING MEMBER SERVICES TO AN ASYMMETRIC VAULT USING
ANSIBLE

This section shows how an Identity Management (IdM) administrator can use an Ansible playbook to add
member services to a service vault so that they can all retrieve the secret stored in the vault. In the
example used in the procedure below, the IdM administrator adds the
HTTP/webserver2.idm.example.com and HTTP/webserver3.idm.example.com service principals to
the secret_vault vault that is owned by HTTP/webserverl.idm.example.com.

24

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

Prerequisites

You have installed the ansible-freeipa package on the Ansible controller. This is the host on
which you execute the steps in the procedure.

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

Procedure

1. Navigate to the /ust/share/doc/ansible-freeipa/playbooks/vault directory:

I $ cd /usr/share/doc/ansible-freeipa/playbooks/vault

Optional: Create an inventory file if it does not exist, for example inventory.file:

I $ touch inventory.file

Open your inventory file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

Make a copy of the data-archive-in-asymmetric-vault.yml Ansible playbook file. For example:
I $ cp data-archive-in-asymmetric-vault.yml add-services-to-an-asymmetric-vault.yml

Open the data-archive-in-asymmetric-vault-copy.yml file for editing.

Modify the file by setting the following variables in the ipavault task section:

® Set the ipaadmin_password variable to the IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserverl.idm.example.com.

Define the services that you want to have access to the vault secret using the services
variable.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
hosts: ipaserver
become: true
gather_facts: false

tasks:

- ipavault:
ipaadmin_password: Secret123

25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-the-ansible-freeipa-package_server-ansible

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

name: secret_vault

service: HTTP/webserveri.idm.example.com
services:

- HTTP/webserver2.idm.example.com

- HTTP/webserver3.idm.example.com
action: member

7. Save the file.

8. Run the playbook:

I $ ansible-playbook -v -i inventory.file add-services-to-an-asymmetric-vault.yml

5.3.STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT
USING ANSIBLE

This section shows how an Identity Management (IdM) administrator can use an Ansible playbook to
store a secret in a service vault so that it can be later retrieved by the service. In the example used in the
procedure below, the administrator stores a PEM file with the secret in an asymmetric vault named

secret_vault. This ensures that the service will have to authenticate using a private key in order to
retrieve the secret from the vault. The vault members will be able to retrieve the file from any IdM client.

Prerequisites

® You have installed the ansible-freeipa package on the Ansible controller. This is the host on
which you execute the steps in the procedure.

® You know the IdM administrator password.
® You have created an asymmetric vault to store the service secret.

® The secretis stored locally on the Ansible controller, for example in the
/usr/share/doc/ansible-freeipa/playbooks/vault/private-key-to-an-externally-signed-
certificate.pem file.

Procedure

1. Navigate to the /ust/share/doc/ansible-freeipa/playbooks/vault directory:

I $ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Optional: Create an inventory file if it does not exist, for example inventory.file:

I $ touch inventory.file

3. Open your inventory file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

4. Make a copy of the data-archive-in-asymmetric-vault.yml Ansible playbook file. For example:

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-the-ansible-freeipa-package_server-ansible

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

I $ cp data-archive-in-asymmetric-vault.yml data-archive-in-asymmetric-vault-copy.yml

5. Open the data-archive-in-asymmetric-vault-copy.yml file for editing.

6. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to the IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserverl.idm.example.com.

Set the in variable to "{{ lookup('file', 'private-key-to-an-externally-signed-
certificate.pem') | b64encode }}". This ensures that Ansible retrieves the file with the
private key from the working directory on the Ansible controller rather than from the |dM
server.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
hosts: ipaserver
become: true
gather_facts: false

tasks:
- ipavault:
ipaadmin_password: Secret123
name: secret_vault
service: HTTP/webserveri.idm.example.com
in: "{{ lookup('file', 'private-key-to-an-externally-signed-certificate.pem’) | b64encode }}"
action: member

7. Save the file.

8. Run the playbook:

I $ ansible-playbook -v -i inventory.file data-archive-in-asymmetric-vault-copy.ymi

5.4. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE USING
ANSIBLE

This section shows how an Identity Management (IdM) user can use an Ansible playbook to retrieve a
secret from a service vault on behalf of the service. In the example used in the procedure below, running
the playbook retrieves a PEM file with the secret from an asymmetric vault named secret_vault, and
stores it in the specified location on all the hosts listed in the Ansible inventory file as ipaservers.

The services authenticate to IdM using keytabs, and they authenticate to the vault using a private key.
You can retrieve the file on behalf of the service from any IdM client on which ansible-freeipa is
installed.

Prerequisites

27

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

® You have installed the ansible-freeipa package on the Ansible controller. This is the host on
which you execute the steps in the procedure.

® You know the IdM administrator password.
® You have created an asymmetric vault to store the service secret.
® You have archived the secret in the vault.

® You have stored the private key used to retrieve the service vault secret in the location
specified by the private_key_file variable on the Ansible controller.

Procedure

1. Navigate to the /ust/share/doc/ansible-freeipa/playbooks/vault directory:

I $ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Optional: Create an inventory file if it does not exist, for example inventory.file:

I $ touch inventory.file

3. Open your inventory file and define the following hosts:

e Define your IdM server in the [ipaserver] section.
e Define the hosts onto which you want to retrieve the secret in the [webservers] section.

For example, to instruct Ansible to retrieve the secret to webserverl.idm.example.com,
webserver2.idm.example.com, and webserver3.idm.example.com, enter:

[ipaserver]
server.idm.example.com

[webservers]
webserver1.idm.example.com

webserver2.idm.example.com
webserver3.idm.example.com

4. Make a copy of the retrieve-data-asymmetric-vault.yml Ansible playbook file. For example:

I $ cp retrieve-data-asymmetric-vault.yml retrieve-data-asymmetric-vault-copy.yml

5. Open the retrieve-data-asymmetric-vault-copy.yml file for editing.

6. Modify the file by setting the following variables in the ipavault task section:

® Set the ipaadmin_password variable to your IdM administrator password.
® Set the name variable to the name of the vault, for example secret_vault.

® Set the service variable to the service owner of the vault, for example
HTTP/webserverl.idm.example.com.

e Setthe private_key_file variable to the location of the private key used to retrieve the
service vault secret.

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-the-ansible-freeipa-package_server-ansible

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

® Set the out variable to the location on the IdM server where you want to retrieve the
private-key-to-an-externally-signed-certificate.pem secret, for example the current
working directory.

® Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Retrieve data from vault
hosts: ipaserver
become: no
gather_facts: false

tasks:
- name: Retrieve data from the service vault
ipavault:
ipaadmin_password: Secret123
name: secret_vault
service: HTTP/webserveri.idm.example.com
vault_type: asymmetric
private_key: "{{ lookup('file', 'service-private.pem’) | b64encode }}"
out: private-key-to-an-externally-signed-certificate.pem
state: retrieved

7. Add a section to the playbook that retrieves the data file from the |dM server to the Ansible
controller:

- name: Retrieve data from vault
hosts: ipaserver
become: no
gather_facts: false
tasks:
[--]
- name: Retrieve data file
fetch:
src: private-key-to-an-externally-signed-certificate.pem
dest: ./
flat: yes
mode: 0600

8. Add a section to the playbook that transfers the retrieved private-key-to-an-externally-
signed-certificate.pem file from the Ansible controller on to the webservers listed in the
webservers section of the inventory file:

- name: Send data file to webservers
become: no
gather_facts: no
hosts: webservers
tasks:
- name: Send data to webservers

copy:

29

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

src: private-key-to-an-externally-signed-certificate.pem
dest: /etc/pki/tls/private/httpd.key
mode: 0444

9. Save thefile.

10. Run the playbook:

I $ ansible-playbook -v -i inventory.file retrieve-data-asymmetric-vault-copy.ymi

5.5. CHANGING AN IDM SERVICE VAULT SECRET WHEN
COMPROMISED USING ANSIBLE

This section shows how an Identity Management (IdM) administrator can reuse an Ansible playbook to
change the secret stored in a service vault when a service instance has been compromised. The scenario
in the following example assumes that on webserver3.idm.example.com, the retrieved secret has been
compromised, but not the key to the asymmetric vault storing the secret. In the example, the
administrator reuses the Ansible playbooks used when storing a secret in an asymmetric vault and
retrieving a secret from the asymmetric vault onto IdM hosts . At the start of the procedure, the IdM
administrator stores a new PEM file with a new secret in the asymmetric vault, adapts the inventory file
so as not to retrieve the new secret on to the compromised web server, webserver3.idm.example.com,
and then re-runs the two procedures.

Prerequisites

® You have installed the ansible-freeipa package on the Ansible controller. This is the host on
which you execute the steps in the procedure.

® You know the IdM administrator password.
® You have created an asymmetric vault to store the service secret.

® You have generated a new httpd key for the web services running on IdM hosts to replace the
compromised old key.

® The new httpd key is stored locally on the Ansible controller, for example in the

/usr/share/doc/ansible-freeipa/playbooks/vault/private-key-to-an-externally-signed-
certificate.pem file.

Procedure
1. Navigate to the /ust/share/doc/ansible-freeipa/playbooks/vault directory:

I $ cd /usr/share/doc/ansible-freeipa/playbooks/vault
2. Open your inventory file and make sure that the following hosts are defined correctly:
® The IdM server in the [ipaserver] section.
® The hosts onto which you want to retrieve the secret in the [webservers] section. For

example, to instruct Ansible to retrieve the secret to webserverl.idm.example.com and
webserver2.idm.example.com, enter:

I [ipaserver]

30

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-the-ansible-freeipa-package_server-ansible

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

server.idm.example.com
[webservers]
webserver1.idm.example.com
webserver2.idm.example.com

IMPORTANT

Make sure that the list does not contain the compromised webserver, in the
current example webserver3.idm.example.com.

3. Open the data-archive-in-asymmetric-vault-copy.yml file for editing.

4. Modify the file by setting the following variables in the ipavault task section:

® Set the ipaadmin_password variable to the IdM administrator password.
® Set the name variable to the name of the vault, for example secret_vault.
® Set the service variable to the service owner of the vault, for example
HTTP/webserver.idm.example.com.
® Set the in variable to "{{ lookup('file', 'new-private-key-to-an-externally-signed-
certificate.pem') | b64encode }}". This ensures that Ansible retrieves the file with the
private key from the working directory on the Ansible controller rather than from the |dM
server.
® Set the action variable to member.
This the modified Ansible playbook file for the current example:
- name: Tests
hosts: ipaserver
become: true
gather_facts: false
tasks:
- ipavault:
ipaadmin_password: Secret123
name: secret_vault
service: HTTP/webserver.idm.example.com
in: "{{ lookup('file', 'new-private-key-to-an-externally-signed-certificate.pem’) | b64encode
}}ll

action: member

5. Save the file.

6. Run the playbook:
I $ ansible-playbook -v -i inventory.file data-archive-in-asymmetric-vault-copy.ymi

7. Open the retrieve-data-asymmetric-vault-copy.yml file for editing.

8. Modify the file by setting the following variables in the ipavault task section:

31

Red Hat Enterprise Linux 8 Working with vaults in Identity Management

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserverl.idm.example.com.

Set the private_key_file variable to the location of the private key used to retrieve the
service vault secret.

Set the out variable to the location on the IdM server where you want to retrieve the new-
private-key-to-an-externally-signed-certificate.pem secret, for example the current
working directory.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Retrieve data from vault
hosts: ipaserver
become: no
gather_facts: false

tasks:
- name: Retrieve data from the service vault
ipavault:
ipaadmin_password: Secret123
name: secret_vault
service: HTTP/webserveri.idm.example.com
vault_type: asymmetric
private_key: "{{ lookup('file', 'service-private.pem’) | b64encode }}"
out: new-private-key-to-an-externally-signed-certificate.pem
state: retrieved

9. Add a section to the playbook that retrieves the data file from the IdM server to the Ansible
controller:

- name: Retrieve data from vault
hosts: ipaserver
become: yes
gather_facts: false
tasks:
[--]
- name: Retrieve data file
fetch:
src: new-private-key-to-an-externally-signed-certificate.pem
dest: ./
flat: yes
mode: 0600

10. Add a section to the playbook that transfers the retrieved new-private-key-to-an-externally-
signed-certificate.pem file from the Ansible controller on to the webservers listed in the
webservers section of the inventory file:

32

CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

- name: Send data file to webservers
become: yes
gather_facts: no
hosts: webservers
tasks:
- name: Send data to webservers
copy:
src: new-private-key-to-an-externally-signed-certificate.pem
dest: /etc/pki/tls/private/httpd.key
mode: 0444

11. Save the file.

12. Run the playbook:

I $ ansible-playbook -v -i inventory.file retrieve-data-asymmetric-vault-copy.ymi

Additional resources

® For more information about using Ansible to manage IdM vaults and service secrets and about
playbook variables, see the README-vault.md Markdown file available in the
/usr/share/doc/ansible-freeipa/ directory and the sample playbooks available in the
/usr/share/doc/ansible-freeipa/playbooks/vault/ directory.

33

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. VAULTS IN IDM
	1.1. VAULTS AND THEIR BENEFITS
	1.2. VAULT OWNERS, MEMBERS, AND ADMINISTRATORS
	1.3. STANDARD, SYMMETRIC, AND ASYMMETRIC VAULTS
	1.4. USER, SERVICE, AND SHARED VAULTS
	1.5. VAULT CONTAINERS
	1.6. BASIC IDM VAULT COMMANDS
	1.7. INSTALLING THE KEY RECOVERY AUTHORITY IN IDM

	CHAPTER 2. USING IDM USER VAULTS: STORING AND RETRIEVING SECRETS
	2.1. STORING A SECRET IN A USER VAULT
	2.2. RETRIEVING A SECRET FROM A USER VAULT

	CHAPTER 3. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS
	3.1. ENSURING THE PRESENCE OF A STANDARD USER VAULT IN IDM USING ANSIBLE
	3.2. ARCHIVING A SECRET IN A STANDARD USER VAULT IN IDM USING ANSIBLE
	3.3. RETRIEVING A SECRET FROM A STANDARD USER VAULT IN IDM USING ANSIBLE

	CHAPTER 4. MANAGING IDM SERVICE SECRETS: STORING AND RETRIEVING SECRETS
	4.1. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT
	4.2. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE INSTANCE
	4.3. CHANGING AN IDM SERVICE VAULT SECRET WHEN COMPROMISED

	CHAPTER 5. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS
	5.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT IN IDM USING ANSIBLE
	5.2. ADDING MEMBER SERVICES TO AN ASYMMETRIC VAULT USING ANSIBLE
	5.3. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT USING ANSIBLE
	5.4. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE USING ANSIBLE
	5.5. CHANGING AN IDM SERVICE VAULT SECRET WHEN COMPROMISED USING ANSIBLE

