Red Hat Training

A Red Hat training course is available for RHEL 8

Packaging and distributing software

Red Hat Enterprise Linux 8

Packaging software by using the RPM package management system

Red Hat Customer Content Services

Abstract

Package software into an RPM package by using the RPM package manager. Prepare source code for packaging, package software, and investigate advanced packaging scenarios, such as packaging Python projects or RubyGems into RPM packages.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.

Providing feedback on Red Hat documentation

We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

  1. Log in to the Jira website.
  2. Click Create in the top navigation bar.
  3. Enter a descriptive title in the Summary field.
  4. Enter your suggestion for improvement in the Description field. Include links to the relevant parts of the documentation.
  5. Click Create at the bottom of the dialogue.

Chapter 1. Introduction to RPM

The RPM Package Manager (RPM) is a package management system that runs on Red Hat Enterprise Linux (RHEL), CentOS, and Fedora. You can use RPM to distribute, manage, and update software that you create for any of these operating systems.

The RPM package management system has the following advantages over distributing software in conventional archive files:

  • RPM manages software in the form of packages that you can install, update, or remove independently of each other, which makes the maintenance of an operating system easier.
  • RPM simplifies the distribution of software because RPM packages are standalone binary files, similar to compressed archives. These packages are built for a specific operating system and hardware architecture. RPMs contain files such as compiled executables and libraries that are placed into the appropriate paths on the filesystem when the package is installed.

With RPM, you can perform the following tasks:

  • Install, upgrade, and remove packaged software.
  • Query detailed information about packaged software.
  • Verify the integrity of packaged software.
  • Build your own packages from software sources and complete build instructions.
  • Digitally sign your packages by using the GNU Privacy Guard (GPG) utility.
  • Publish your packages in a YUM repository.

In Red Hat Enterprise Linux, RPM is fully integrated into the higher-level package management software, such as YUM or PackageKit. Although RPM provides its own command-line interface, most users need to interact with RPM only through this software. However, when building RPM packages, you must use the RPM utilities such as rpmbuild(8).

1.1. RPM packages

An RPM package consists of an archive of files and metadata used to install and erase these files. Specifically, the RPM package contains the following parts:

GPG signature
The GPG signature is used to verify the integrity of the package.
Header (package metadata)
The RPM package manager uses this metadata to determine package dependencies, where to install files, and other information.
Payload
The payload is a cpio archive that contains files to install to the system.

There are two types of RPM packages. Both types share the file format and tooling, but have different contents and serve different purposes:

Source RPM (SRPM)
An SRPM contains source code and a SPEC file, which describes how to build the source code into a binary RPM. Optionally, the SRPM can contain patches to source code.
Binary RPM
A binary RPM contains the binaries built from the sources and patches.

1.2. Listing RPM packaging utilities

In addition to the rpmbuild(8) program for building packages, RPM provides other utilities to make the process of creating packages easier. You can find these programs in the rpmdevtools package.

Prerequisites

  • The rpmdevtools package has been installed:

    # yum install rpmdevtools

Procedure

  • Use one of the following methods to list RPM packaging utilities:

    • To list certain utilities provided by the rpmdevtools package and their short descriptions, enter:

      $ rpm -qi rpmdevtools
    • To list all utilities, enter:

      $ rpm -ql rpmdevtools | grep ^/usr/bin

Additional resources

  • RPM utilities man pages

Chapter 2. Creating software for RPM packaging

To prepare software for RPM packaging, you must understand what source code is and how to create software.

2.1. What is source code

Source code is human-readable instructions to the computer that describe how to perform a computation. Source code is expressed by using a programming language.

The following versions of the Hello World program written in three different programming languages cover major RPM Package Manager use cases:

  • Hello World written in Bash

    The bello project implements Hello World in Bash. The implementation contains only the bello shell script. The purpose of this program is to output Hello World on the command line.

    The bello file has the following contents:

    #!/bin/bash
    
    printf "Hello World\n"
  • Hello World written in Python

    The pello project implements Hello World in Python. The implementation contains only the pello.py program. The purpose of the program is to output Hello World on the command line.

    The pello.py file has the following contents:

    #!/usr/bin/python3
    
    print("Hello World")
  • Hello World written in C

    The cello project implements Hello World in C. The implementation contains only the cello.c and Makefile files. The resulting tar.gz archive therefore has two files in addition to the LICENSE file. The purpose of the program is to output Hello World on the command line.

    The cello.c file has the following contents:

    #include <stdio.h>
    
    int main(void) {
        printf("Hello World\n");
        return 0;
    }
Note

The packaging process is different for each version of the Hello World program.

2.2. Methods of creating software

You can convert the human-readable source code into machine code by using one the following methods:

2.2.1. Natively compiled software

Natively compiled software is software written in a programming language that compiles to machine code with a resulting binary executable file. Natively compiled software is standalone software.

Note

Natively compiled RPM packages are architecture-specific.

If you compile such software on a computer that uses a 64-bit (x86_64) AMD or Intel processor, it does not run on a 32-bit (x86) AMD or Intel processor. The resulting package has the architecture specified in its name.

2.2.2. Interpreted software

Some programming languages, such as Bash or Python, do not compile to machine code. Instead, a language interpreter or a language virtual machine executes the programs' source code step-by-step without prior transformations.

Note

Software written entirely in interpreted programming languages is not architecture-specific. Therefore, the resulting RPM package has the noarch string in its name.

You can either raw-interpret or byte-compile software written in interpreted languages:

  • Raw-interpreted software

    You do not need to compile this type of software. Raw-interpreted software is directly executed by the interpreter.

  • Byte-compiled software

    You must first compile this type of software into bytecode, which is then executed by the language virtual machine.

    Note

    Some byte-compiled languages can be either raw-interpreted or byte-compiled.

Note that the way you build and package software by using RPM is different for these two software types.

2.3. Building software from source

During the software building process, the source code is turned into software artifacts that you can package by using RPM.

2.3.1. Building software from natively compiled code

You can build software written in a compiled language into an executable by using one of the following methods:

  • Manual building
  • Automated building

In the following sections, learn how to build the Hello World program written in the C programming language by using either manual or automated building.

2.3.1.1. Manually building the cello software

You can use manual building to build software written in a compiled language.

Hello World written in C (cello.c) has the following contents:

#include <stdio.h>

int main(void) {
    printf("Hello World\n");
    return 0;
}

Procedure

  1. Invoke the C compiler from the GNU Compiler Collection to compile the source code into binary:

    $ gcc -g -o cello cello.c
  2. Run the resulting binary cello:

    $ ./cello
    Hello World

2.3.1.2. Setting up automated building for the cello program

Large-scale software commonly uses automated building. You can set up automated building by creating the Makefile file and then running the GNU make utility.

Procedure

  1. Create the Makefile file with the following content in the same directory as cello.c:

    cello:
    	gcc -g -o cello cello.c
    clean:
    	rm cello

    Note that the lines under cello: and clean: must begin with a tabulation character (tab).

  2. Build the software:

    $ make
    make: 'cello' is up to date.
  3. Because a build is already available in the current directory, enter the make clean command, and then enter the make command again:

    $ make clean
    rm cello
    
    $ make
    gcc -g -o cello cello.c

    Note that trying to build the program again at this point has no effect because the GNU make system detects the existing binary:

    $ make
    make: 'cello' is up to date.
  4. Run the program:

    $ ./cello
    Hello World

2.3.2. Interpreting source code

You can convert the source code written in an interpreted programming language into machine code by using one of the following methods:

  • Byte-compiling

    The procedure for byte-compiling software varies depending on the following factors:

    • Programming language
    • Language’s virtual machine
    • Tools and processes used with that language

      Note

      You can byte-compile software written, for example, in Python. Python software intended for distribution is often byte-compiled, but not in the way described in this document. The described procedure aims not to conform to the community standards, but to be simple. For real-world Python guidelines, see Software Packaging and Distribution.

    You can also raw-interpret Python source code. However, the byte-compiled version is faster. Therefore, RPM packagers prefer to package the byte-compiled version for distribution to end users.

  • Raw-interpreting

    Software written in shell scripting languages, such as Bash, is always executed by raw-interpreting.

In the following sections, learn how to byte-compile the Hello World program written in Python and how to raw-interpret the Hello World program written in Bash.

2.3.2.1. Byte-compiling the pello program

By choosing byte-compiling over raw-interpreting of Python source code, you can create faster software.

The Hello World program written in the Python programming language (pello.py) has the following contents:

print("Hello World")

Procedure

  1. Byte-compile the pello.py file:

    $ python -m compileall pello.py
  2. Verify that a byte-compiled version of the file is created:

    $ ls __pycache__
    pello.cpython-311.pyc

    Note that the package version in the output might differ depending on which Python version is installed.

  3. Run the program in pello.py:

    $ python pello.py
    Hello World

2.3.2.2. Raw-interpreting the bello program

The Hello World program written in Bash shell built-in language (bello) has the following contents:

#!/bin/bash

printf "Hello World\n"
Note

The shebang (#!) sign at the top of the bello file is not part of the programming language source code.

Use the shebang to turn a text file into an executable. The system program loader parses the line containing the shebang to get a path to the binary executable, which is then used as the programming language interpreter.

Procedure

  1. Make the file with source code executable:

    $ chmod +x bello
  2. Run the created file:

    $ ./bello
    Hello World

Chapter 3. Preparing software for RPM packaging

In the following sections, learn how to prepare software for RPM packaging:

3.1. Patching software

When packaging software, you might need to make certain changes to the original source code, such as fixing a bug or changing a configuration file. In RPM packaging, you can leave the original source code intact and just apply patches on it.

A patch is a piece of text that updates a source code file. The patch has a diff format, because it represents the difference between two versions of the text. You can create a patch by using the diff utility, and then apply the patch to the source code by using the patch utility.

Note

Software developers often use Version Control Systems such as Git to manage their code base. Such tools offer their own methods of creating diffs or patching software.

In the following sections, learn how to create a patch for the Hello World program written in the C programming language and how to patch this program.

3.1.1. Creating a patch file for the cello program

You can create a patch from the original source code by using the diff utility.

Procedure

  1. Preserve the original source code:

    $ cp -p cello.c cello.c.orig

    The -p option preserves mode, ownership, and timestamps.

  2. Modify cello.c as needed:

    #include <stdio.h>
    
    int main(void) {
        printf("Hello World from my very first patch!\n");
        return 0;
    }
  3. Generate a patch:

    $ diff -Naur cello.c.orig cello.c
    --- cello.c.orig        2016-05-26 17:21:30.478523360 -0500
    + cello.c     2016-05-27 14:53:20.668588245 -0500
    @@ -1,6 +1,6 @@
     #include<stdio.h>
    
     int main(void){
    -    printf("Hello World!\n");
    +    printf("Hello World from my very first patch!\n");
         return 0;
     }
    \ No newline at end of file

    Lines that start with + replace the lines that start with -.

    Note

    Using the Naur options with the diff command is recommended because it fits the majority of use cases:

    • -N (--new-file)

      The -N option handles absent files as empty files.

    • -a (--text)

      The -a option treats all files as text. As a result, the diff utility does not ignore the files it classified as binaries.

    • -u (-U NUM or --unified[=NUM])

      The -u option returns output in the form of output NUM (default 3) lines of unified context. This is a compact and an easily readable format commonly used in patch files.

    • -r (--recursive)

      The -r option recursively compares any subdirectories that the diff utility found.

    However, note that in this particular case, only the -u option is necessary.

  4. Save the patch to a file:

    $ diff -Naur cello.c.orig cello.c > cello.patch
  5. Restore the original cello.c:

    $ mv cello.c.orig cello.c

    You must retain the original cello.c because the RPM package manager uses the original file, not the modified one, when building an RPM package. For more information, see Working with SPEC files.

Additional resources

  • diff(1) man page

3.1.2. Patching the cello program

You can use the patch utility to patch software.

Prerequisites

Procedure

  1. Redirect the patch file to the patch command:

    $ patch < cello.patch
    patching file cello.c
  2. Check that the contents of cello.c now reflect the desired change:

    $ cat cello.c
    #include<stdio.h>
    
    int main(void){
        printf("Hello World from my very first patch!\n");
        return 1;
    }
  3. Build the patched cello.c program:

    $ make
    gcc -g -o cello cello.c
  4. Run the built cello.c program:

    $ ./cello
    Hello World from my very first patch!

3.2. Creating a LICENSE file

A software license file informs users of what they can and cannot do with a source code.

Having no license for your source code means that you retain all rights to this code and no one can reproduce, distribute, or create derivative works from your source code.

Important

It is recommended that you distribute your software with a software license.

Procedure

  • Create the LICENSE file with the required license statement:

    $ vim LICENSE

Example 3.1. Example GPLv3 LICENSE file text

$ cat /tmp/LICENSE
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

Additional resources

3.3. Putting source code into a tarball

A tarball is an archive file with the .tar.gz or .tgz suffix. Putting source code into the tarball is a common way to release the software to be later packaged for distribution.

In the following sections, learn how to put each of the three Hello World program versions into a gzip-compressed tarball:

3.3.1. Putting the bello program into a tarball

The bello project implements Hello World in Bash. The implementation contains only the bello shell script. Therefore, the resulting tar.gz archive has only one file in addition to the LICENSE file.

Prerequisites

  • Assume that the 0.1 version of the bello program is used.

Procedure

  1. Put all required files into a single directory:

    $ mkdir bello-0.1
    
    $ mv ~/bello bello-0.1/
    
    $ mv LICENSE bello-0.1/
  2. Create the archive for distribution:

    $ tar -cvzf bello-0.1.tar.gz bello-0.1
    bello-0.1/
    bello-0.1/LICENSE
    bello-0.1/bello
  3. Move the created archive to the ~/rpmbuild/SOURCES/ directory, which is the default directory where the rpmbuild command stores the files for building packages:

    $ mv bello-0.1.tar.gz ~/rpmbuild/SOURCES/

Additional resources

3.3.2. Putting the pello program into a tarball

The pello project implements Hello World in Python. The implementation contains only the pello.py program. Therefore, the resulting tar.gz archive has only one file in addition to the LICENSE file.

Prerequisites

  • Assume that the 0.1.1 version of the pello program is used.

Procedure

  1. Put all required files into a single directory:

    $ mkdir pello-0.1.1
    
    $ mv pello.py pello-0.1.1/
    
    $ mv LICENSE pello-0.1.1/
  2. Create the archive for distribution:

    $ tar -cvzf pello-0.1.1.tar.gz pello-0.1.1
    pello-0.1.1/
    pello-0.1.1/LICENSE
    pello-0.1.1/pello.py
  3. Move the created archive to the ~/rpmbuild/SOURCES/ directory, which is the default directory where the rpmbuild command stores the files for building packages:

    $ mv pello-0.1.1.tar.gz ~/rpmbuild/SOURCES/

Additional resources

3.3.3. Putting the cello program into a tarball

The cello project implements Hello World in C. The implementation contains only the cello.c and the Makefile files. Therefore, the resulting tar.gz archive has two files in addition to the LICENSE file.

Note

The patch file is not distributed in the archive with the program. The RPM package manager applies the patch when the RPM is built. The patch will be placed into the ~/rpmbuild/SOURCES/ directory together with the tar.gz archive.

Prerequisites

  • Assume that the 1.0 version of the cello program is used.

Procedure

  1. Put all required files into a single directory:

    $ mkdir cello-1.0
    
    $ mv cello.c cello-1.0/
    
    $ mv Makefile cello-1.0/
    
    $ mv LICENSE cello-1.0/
  2. Create the archive for distribution:

    $ tar -cvzf cello-1.0.tar.gz cello-1.0
    cello-1.0/
    cello-1.0/Makefile
    cello-1.0/cello.c
    cello-1.0/LICENSE
  3. Move the created archive to the ~/rpmbuild/SOURCES/ directory, which is the default directory where the rpmbuild command stores the files for building packages:

    $ mv /tmp/cello-1.0.tar.gz ~/rpmbuild/SOURCES/

Additional resources

Chapter 4. Packaging software

In the following sections, learn the basics of the packaging process with the RPM package manager.

4.1. Setting up RPM packaging workspace

You can set up a directory layout that is the RPM packaging workspace by using the rpmdev-setuptree utility.

Prerequisites

  • You installed the rpmdevtools package, which provides several utilities for packaging RPMs:

    # yum install rpmdevtools

Procedure

  • Run the rpmdev-setuptree utility:

    $ rpmdev-setuptree
    
    $ tree ~/rpmbuild/
    /home/user/rpmbuild/
    |-- BUILD
    |-- RPMS
    |-- SOURCES
    |-- SPECS
    `-- SRPMS
    
    5 directories, 0 files

The created directories serve the following purposes:

Directory

Purpose

BUILD

When packages are built, various %buildroot directories are created here. This is useful for investigating a failed build if the logs output do not provide enough information.

RPMS

Binary RPMs are created here, in subdirectories for different architectures, for example in subdirectories x86_64 and noarch.

SOURCES

Here, the packager puts compressed source code archives and patches. The rpmbuild command looks for them here.

SPECS

The packager puts SPEC files here.

SRPMS

When rpmbuild is used to build an SRPM instead of a binary RPM, the resulting SRPM is created here.

4.2. What is a SPEC file

You can understand a SPEC file as a recipe that the rpmbuild utility uses to build an RPM. A SPEC file provides necessary information to the build system by defining instructions in a series of sections. The sections are defined in the Preamble and the Body part. The Preamble part contains a series of metadata items that are used in the Body part. The Body part represents the main part of the instructions.

The following sections describe each section of a SPEC file.

4.2.1. Preamble items

The table below presents some of the directives that are used frequently in the Preamble section of the RPM SPEC file.

Table 4.1. Items used in the Preamble section of the RPM SPEC file

SPEC DirectiveDefinition

Name

The base name of the package, which should match the SPEC file name.

Version

The upstream version number of the software.

Release

The number of times this version of the software was released. Normally, set the initial value to 1%{?dist}, and increment it with each new release of the package. Reset to 1 when a new Version of the software is built.

Summary

A brief, one-line summary of the package.

License

The license of the software being packaged.

URL

The full URL for more information about the program. Most often this is the upstream project website for the software being packaged.

Source0

Path or URL to the compressed archive of the upstream source code (unpatched, patches are handled elsewhere). This should point to an accessible and reliable storage of the archive, for example, the upstream page and not the packager’s local storage. If needed, more SourceX directives can be added, incrementing the number each time, for example: Source1, Source2, Source3, and so on.

Patch

The name of the first patch to apply to the source code if necessary.

The directive can be applied in two ways: with or without numbers at the end of Patch.

If no number is given, one is assigned to the entry internally. It is also possible to give the numbers explicitly using Patch0, Patch1, Patch2, Patch3, and so on.

These patches can be applied one by one using the %patch0, %patch1, %patch2 macro and so on. The macros are applied within the %prep directive in the Body section of the RPM SPEC file. Alternatively, you can use the %autopatch macro which automatically applies all patches in the order they are given in the SPEC file.

BuildArch

If the package is not architecture dependent, for example, if written entirely in an interpreted programming language, set this to BuildArch: noarch. If not set, the package automatically inherits the Architecture of the machine on which it is built, for example x86_64.

BuildRequires

A comma or whitespace-separated list of packages required for building the program written in a compiled language. There can be multiple entries of BuildRequires, each on its own line in the SPEC file.

Requires

A comma- or whitespace-separated list of packages required by the software to run once installed. There can be multiple entries of Requires, each on its own line in the SPEC file.

ExcludeArch

If a piece of software can not operate on a specific processor architecture, you can exclude that architecture here.

Conflicts

Conflicts are inverse to Requires. If there is a package matching Conflicts, the package cannot be installed independently on whether the Conflict tag is on the package that has already been installed or on a package that is going to be installed.

Obsoletes

This directive alters the way updates work depending on whether the rpm command is used directly on the command line or the update is performed by an updates or dependency solver. When used on a command line, RPM removes all packages matching obsoletes of packages being installed. When using an update or dependency resolver, packages containing matching Obsoletes: are added as updates and replace the matching packages.

Provides

If Provides is added to a package, the package can be referred to by dependencies other than its name.

The Name, Version, and Release directives comprise the file name of the RPM package. RPM package maintainers and system administrators often call these three directives N-V-R or NVR, because RPM package filenames have the NAME-VERSION-RELEASE format.

The following example shows how to obtain the NVR information for a specific package by querying the rpm command.

Example 4.1. Querying rpm to provide the NVR information for the bash package

# rpm -q bash
bash-4.4.19-7.el8.x86_64

Here, bash is the package name, 4.4.19 is the version, and 7.el8 is the release. The final marker is x86_64, which signals the architecture. Unlike the NVR, the architecture marker is not under direct control of the RPM packager, but is defined by the rpmbuild build environment. The exception to this is the architecture-independent noarch package.

4.2.2. Body items

The following are the items used in the Body section of the RPM SPEC file.

Table 4.2. Items used in the Body section of the RPM SPEC file

SPEC DirectiveDefinition

%description

A full description of the software packaged in the RPM. This description can span multiple lines and can be broken into paragraphs.

%prep

Command or series of commands to prepare the software to be built, for example, unpacking the archive in Source0. This directive can contain a shell script.

%build

Command or series of commands for building the software into machine code (for compiled languages) or bytecode (for some interpreted languages).

%install

Command or series of commands for copying the desired build artifacts from the %builddir (where the build happens) to the %buildroot directory (which contains the directory structure with the files to be packaged). This usually means copying files from ~/rpmbuild/BUILD to ~/rpmbuild/BUILDROOT and creating the necessary directories in ~/rpmbuild/BUILDROOT. This is only run when creating a package, not when the end-user installs the package. See Working with SPEC files for details.

%check

Command or series of commands to test the software. This normally includes things such as unit tests.

%files

The list of files that will be insstalled in the end user’s system.

%changelog

A record of changes that have happened to the package between different Version or Release builds.

4.2.3. Advanced items

The SPEC file can also contain advanced items, such as Scriptlets or Triggers.

They take effect at different points during the installation process on the end user’s system, not the build process.

4.3. BuildRoots

In the context of RPM packaging, buildroot is a chroot environment. The build artifacts are placed here by using the same file system hierarchy as the future hierarchy in the end user’s system, with buildroot acting as the root directory. The placement of build artifacts must comply with the file system hierarchy standard of the end user’s system.

The files in buildroot are later put into a cpio archive, which becomes the main part of the RPM. When RPM is installed on the end user’s system, these files are extracted in the root directory, preserving the correct hierarchy.

Note

Starting from Red Hat Enterprise Linux 6, the rpmbuild program has its own defaults. Overriding these defaults leads to several problems. Therefore, it is not recommended to define your own value of this macro. You can use the %{buildroot} macro with the defaults from the rpmbuild directory.

4.4. RPM macros

An rpm macro is a straight text substitution that can be conditionally assigned based on the optional evaluation of a statement when certain built-in functionality is used. Hence, RPM can perform text substitutions for you.

An example use is referencing the packaged software Version multiple times in a SPEC file. You define Version only once in the %{version} macro, and use this macro throughout the SPEC file. Every occurrence will be automatically substituted by Version that you defined previously.

Note

If you see an unfamiliar macro, you can evaluate it with the following command:

$ rpm --eval %{_MACRO}

Evaluating the %{_bindir} and the %{_libexecdir} macros

$ rpm --eval %{_bindir}
/usr/bin

$ rpm --eval %{_libexecdir}
/usr/libexec

One of the commonly-used macros is the %{?dist} macro, which signals which distribution is used for the build (distribution tag).

# On a RHEL 8.x machine
$ rpm --eval %{?dist}
.el8

4.5. Working with SPEC files

To package new software, you must create a SPEC file.

You can create a SPEC file the following ways:

  • Write the new SPEC file manually from scratch.
  • Use the rpmdev-newspec utility.

    This utility creates an unpopulated SPEC file, where you fill in the necessary directives and fields.

Note

Some programmer-focused text editors pre-populate a new .spec file with their own SPEC template. The rpmdev-newspec utility provides an editor-agnostic method.

The following sections use the three example implementations of the Hello World! program:

Software Name

Explanation of example

bello

A program written in a raw interpreted programming language. It demonstrates when the source code does not need to be built, but only needs to be installed. If a pre-compiled binary needs to be packaged, you can also use this method because the binary would also just be a file.

pello

A program written in a byte-compiled interpreted programming language. It demonstrates byte-compiling the source code and installing the bytecode - the resulting pre-optimized files.

cello

A program written in a natively compiled programming language. It demonstrates a common process of compiling the source code into machine code and installing the resulting executables.

The implementations of Hello World! are the following:

As a prerequisite, these implementations need to be placed into the ~/rpmbuild/SOURCES directory.

For more information about the Hello World! program implementations, see What is source code.

In the following section, learn how to work with SPEC files:

4.5.1. Creating a new SPEC file with rpmdev-newspec

To create a SPEC file for each of the three implementations of the Hello World! program by using the rpmdev-newspec utility, complete the following steps.

Procedure

  1. Go to the ~/rpmbuild/SPECS directory and use the rpmdev-newspec utility:

    $ cd ~/rpmbuild/SPECS
  2. Create a SPEC file for each of the three implementations of the Hello World! Program by using the rpmdev-newspec utility:

    $ rpmdev-newspec bello
    bello.spec created; type minimal, rpm version >= 4.11.
    
    $ rpmdev-newspec cello
    cello.spec created; type minimal, rpm version >= 4.11.
    
    $ rpmdev-newspec pello
    pello.spec created; type minimal, rpm version >= 4.11.

    The ~/rpmbuild/SPECS/ directory now contains three SPEC files named bello.spec, cello.spec, and pello.spec.

  3. Examine the created files.

    The directives in the files represent those described in What is a SPEC file. In the following sections, you will populate particular section in the output files of rpmdev-newspec.

Note

The rpmdev-newspec utility does not use guidelines or conventions specific to any particular Linux distribution. However, this document targets Red Hat Enterprise Linux, therefore the %{buildroot} notation is preferred over the $RPM_BUILD_ROOT notation when referencing RPM’s Buildroot for consistency with all other defined or provided macros throughout the SPEC file.

4.5.2. Modifying an original SPEC file for creating RPMs

To modify the output SPEC file provided by the rpmdev-newspec utility for creating RPM packages, complete the following steps.

Prerequisites

  • The source code of the particular program has been placed into the ~/rpmbuild/SOURCES/ directory.
  • The unpopulated ~/rpmbuild/SPECS/<name>.spec SPEC file has been created by the rpmdev-newspec utility.

Procedure

  1. Open the output template of the ~/rpmbuild/SPECS/<name>.spec file provided by the rpmdev-newspec utility:

    1. Populate the first section of the SPEC file that includes the following directives that rpmdev-newspec grouped together:

      Name
      The Name was already specified as an argument to rpmdev-newspec.
      Version
      Set the Version to match the upstream release version of the source code.
      Release
      The Release is automatically set to 1%{?dist}, which is initially 1. Increase the initial value whenever updating the package without a change in the upstream release Version, for example, when including a patch. Reset Release to 1 when a new upstream release happens.
      Summary
      The Summary is a short, one-line explanation of what this software is.
    2. Populate the License, URL, and Source0 directives:

      License

      The License field is the Software License associated with the source code from the upstream release. The exact format for how to label the License in your SPEC file varies depending on which specific RPM based Linux distribution guidelines you are following.

      For example, you can use GPLv3+.

      URL
      The URL field provides a URL to the upstream software website. For consistency, utilize the RPM macro variable of %{name}, and use https://example.com/%{name}.
      Source
      The Source0 field provides URL to the upstream software source code. It must link directly to the specific version of software that is being packaged. Note that the example URLs given in this documentation include hard-coded values that are possible subject to change in the future. Similarly, the release version can change as well. To simplify these potential future changes, use the %{name} and %{version} macros. By using these, you need to update only one field in the SPEC file.
    3. Populate the BuildRequires, Requires and BuildArch directives:

      BuildRequires
      BuildRequires specifies build-time dependencies for the package.
      Requires
      Requires specifies run-time dependencies for the package.
      BuildArch
      This is a software written in an interpreted programming language with no natively compiled extensions. Therefore, add the BuildArch directive with the noarch value. This tells RPM that this package does not need to be bound to the processor architecture on which it is built.
    4. Populate the %description, %prep, %build, %install, %files, and %license directives. You can think of these directives as section headings, because they are directives that can define multi-line, multi-instruction, or scripted tasks to occur.

      %description
      The %description is a longer, fuller description of the software than Summary. This directive contains one or more paragraphs.
      %prep
      The %prep section specifies how to prepare the build environment. This usually involves expansion of compressed archives of the source code, application of patches, and, potentially, parsing of information provided in the source code for use in a later portion of the SPEC file. In this section you can use the built-in %setup -q macro.
      %build
      The %build section specifies how to build the software.
      %install

      The %install section contains instructions for rpmbuild on how to install the software, once it has been built, into the BUILDROOT directory.

      This directory is an empty chroot base directory, which resembles the end user’s root directory. Here you can create any directories that will contain the installed files. To create such directories, you can use the RPM macros without having to hardcode the paths.

      %files

      The %files section specifies the list of files provided by this RPM and their full path location on the end user’s system.

      Within this section, you can indicate the role of various files using built-in macros. This is useful for querying the package file manifest metadata by using the rpm command. For example, to indicate that the LICENSE file is a software license file, use the %license macro.

    5. The last section, %changelog, is a list of datestamped entries for each Version-Release of the package. They log packaging changes, not software changes. Examples of packaging changes: adding a patch, changing the build procedure in the %build section.

      Start the first line of the %changelog section with an * character followed by Day-of-Week Month Day Year Name Surname <email> - Version-Release.

      For the actual change entry, follow these rules:

      • Each change entry can contain multiple items, one for each change.
      • Each item starts on a new line.
      • Each item begins with a - character.

You have now written an entire SPEC file for the required program.

4.5.3. An example SPEC file for a program written in bash

You can use the following example SPEC file for the bello program that was written in bash for your reference.

An example SPEC file for the bello program written in bash

Name:           bello
Version:        0.1
Release:        1%{?dist}
Summary:        Hello World example implemented in bash script

License:        GPLv3+
URL:            https://www.example.com/%{name}
Source0:        https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

Requires:       bash

BuildArch:      noarch

%description
The long-tail description for our Hello World Example implemented in
bash script.

%prep
%setup -q

%build

%install

mkdir -p %{buildroot}/%{_bindir}

install -m 0755 %{name} %{buildroot}/%{_bindir}/%{name}

%files
%license LICENSE
%{_bindir}/%{name}

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 0.1-1
- First bello package
- Example second item in the changelog for version-release 0.1-1

  • The BuildRequires directive, which specifies build-time dependencies for the package, was deleted because there is no building step for bello. Bash is a raw interpreted programming language, and the files are just installed to their location on the system.
  • The Requires directive, which specifies run-time dependencies for the package, include only bash, because the bello script requires only the bash shell environment to execute.
  • The %build section, which specifies how to build the software, is blank, because a bash does not need to be built.
Note

For installing bello you only need to create the destination directory and install the executable bash script file there. Therefore, you can use the install command in the %install section. You can use RPM macros to do this without hardcoding paths.

Additional resources

4.5.4. An example SPEC file for a program written in Python

You can use the following example SPEC file for the pello program written in the Python programming language for your reference.

An example SPEC file for the pello program written in Python

Name:           pello
Version:        0.1.1
Release:        1%{?dist}
Summary:        Hello World example implemented in Python

License:        GPLv3+
URL:            https://www.example.com/%{name}
Source0:        https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

BuildRequires:  python
Requires:       python
Requires:       bash

BuildArch:      noarch

%description
The long-tail description for our Hello World Example implemented in Python.

%prep
%setup -q

%build

python -m compileall %{name}.py

%install

mkdir -p %{buildroot}/%{_bindir}
mkdir -p %{buildroot}/usr/lib/%{name}

cat > %{buildroot}/%{_bindir}/%{name} <<EOF
#!/bin/bash
/usr/bin/python /usr/lib/%{name}/%{name}.pyc
EOF

chmod 0755 %{buildroot}/%{_bindir}/%{name}

install -m 0644 %{name}.py* %{buildroot}/usr/lib/%{name}/

%files
%license LICENSE
%dir /usr/lib/%{name}/
%{_bindir}/%{name}
/usr/lib/%{name}/%{name}.py*

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 0.1.1-1
  - First pello package

Important

The pello program is written in a byte-compiled interpreted language. Therefore, the shebang is not applicable because the resulting file does not contain the entry.

Because the shebang is not applicable, you might want to apply one of the following approaches:

  • Create a non-byte-compiled shell script that will call the executable.
  • Provide a small bit of the Python code that is not byte-compiled as the entry point into the program’s execution.

These approaches are useful especially for large software projects with many thousands of lines of code, where the performance increase of pre-byte-compiled code is sizeable.

  • The Requires directive, which specifies run-time dependencies for the package, includes two packages:

    • The python package is needed to execute the byte-compiled code at runtime
    • The bash package is needed to execute the small entry-point script
  • The BuildRequires directive, which specifies build-time dependencies for the package, includes only the python package. The pello program requires the python package to perform the byte-compile build process.
  • The %build section, which specifies how to build the software, corresponds to the fact that the software is byte-compiled.

To install pello, you need to create a wrapper script because the shebang is not applicable in byte-compiled languages. You can create this script either of the following ways:

  • Make a separate script and use it as a separate SourceX directive.
  • Create the file in-line in the SPEC file.

This example shows creating a wrapper script in-line in the SPEC file to demonstrate that the SPEC file itself is scriptable. This wrapper script will execute the Python byte-compiled code by using a here document.

The %install section in this example also corresponds to the fact that you will need to install the byte-compiled file into a library directory on the system such that it can be accessed.

Additional resources

4.5.5. An example SPEC file for a program written in C

You can use the following example SPEC file for the cello program that was written in the C programming language for your reference.

An example SPEC file for the cello program written in C

Name:           cello
Version:        1.0
Release:        1%{?dist}
Summary:        Hello World example implemented in C

License:        GPLv3+
URL:            https://www.example.com/%{name}
Source0:        https://www.example.com/%{name}/releases/%{name}-%{version}.tar.gz

Patch0:         cello-output-first-patch.patch

BuildRequires:  gcc
BuildRequires:  make

%description
The long-tail description for our Hello World Example implemented in
C.

%prep
%setup -q

%patch0

%build
make %{?_smp_mflags}

%install
%make_install

%files
%license LICENSE
%{_bindir}/%{name}

%changelog
* Tue May 31 2016 Adam Miller <maxamillion@fedoraproject.org> - 1.0-1
- First cello package

  • The BuildRequires directive, which specifies build-time dependencies for the package, includes two packages that are needed to perform the compilation build process:

    • The gcc package
    • The make package
  • The Requires directive, which specifies run-time dependencies for the package, is omitted in this example. All runtime requirements are handled by rpmbuild, and the cello program does not require anything outside of the core C standard libraries.
  • The %build section reflects the fact that in this example a Makefile for the cello program was written, therefore, you can use the GNU make command provided by the rpmdev-newspec utility. However, you need to remove the call to %configure because you did not provide a configure script.

You can install the cello program by using the %make_install macro that is provided by the rpmdev-newspec command. This is possible because the Makefile for the cello program is available.

Additional resources

4.6. Building RPMs

You can build RPM packages by using the rpmbuild command. This command expects a certain directory and file structure, which is the same as the structure that was set up by the rpmdev-setuptree utility.

Different use cases and desired outcomes require different combinations of arguments to the rpmbuild command. The two main use cases are:

  • Building source RPMs
  • Building binary RPM

    • Rebuilding a binary RPM from a source RPM
    • Building a binary RPM from the SPEC file
    • Building a binary RPM from a source RPM

In the following sections, learn how to build an RPM after you have created a SPEC file for a program:

4.6.1. Building source RPMs

To build a source RPM, complete the following steps.

Prerequisites

  • A SPEC file for the program that you want to package must already exist.

Procedure

  • Run the rpmbuild command with the specified SPEC file:

    $ rpmbuild -bs specfile

    Replace specfile with the name of the SPEC file. The -bs option stands for the build source.

Verification steps

  • Verify that the rpmbuild/SRPMS directory includes the resulting source RPMs. The directory is a part of the structure expected by rpmbuild.

Example 4.2. Building source RPMs for bello, pello, and cello.

The following is an example of building source RPMs for the bello, pello, and cello projects.

  1. Go to the ~/rpmbuild/SPECS/ directive, which contains the created SPEC file:

    $ cd ~/rpmbuild/SPECS/
  2. Run the rpmbuild command with the specified SPEC file:

    $ rpmbuild -bs bello.spec
    Wrote: /home/admiller/rpmbuild/SRPMS/bello-0.1-1.el8.src.rpm
    
    $ rpmbuild -bs pello.spec
    Wrote: /home/admiller/rpmbuild/SRPMS/pello-0.1.2-1.el8.src.rpm
    
    $ rpmbuild -bs cello.spec
    Wrote: /home/admiller/rpmbuild/SRPMS/cello-1.0-1.el8.src.rpm

4.6.2. Rebuilding a binary RPM from a source RPM

To rebuild a binary RPM from a source RPM (SRPM), complete the following steps.

Procedure

  • To rebuild bello, pello, and cello from their SRPMs, run:

    $ rpmbuild --rebuild ~/rpmbuild/SRPMS/bello-0.1-1.el8.src.rpm
    [output truncated]
    
    $ rpmbuild --rebuild ~/rpmbuild/SRPMS/pello-0.1.2-1.el8.src.rpm
    [output truncated]
    
    $ rpmbuild --rebuild ~/rpmbuild/SRPMS/cello-1.0-1.el8.src.rpm
    [output truncated]
Note

Invoking rpmbuild --rebuild involves:

  • Installing the contents of the SRPM (SPEC file and the source code) into the ~/rpmbuild/ directory.
  • Building an RPM by using the installed contents.
  • Removing the SPEC file and the source code.

To retain the SPEC file and the source code after building, complete either of the following steps:

  • When building an RPM, use the rpmbuild command with the --recompile option instead of the --rebuild option.
  • Install the SRPMs for bello, pello, and cello:

    $ rpm -Uvh ~/rpmbuild/SRPMS/bello-0.1-1.el8.src.rpm
    Updating / installing…​
       1:bello-0.1-1.el8               [100%]
    
    $ rpm -Uvh ~/rpmbuild/SRPMS/pello-0.1.2-1.el8.src.rpm
    Updating / installing…​
    …​1:pello-0.1.2-1.el8              [100%]
    
    $ rpm -Uvh ~/rpmbuild/SRPMS/cello-1.0-1.el8.src.rpm
    Updating / installing…​
    …​1:cello-1.0-1.el8            [100%]

The output generated when creating a binary RPM is verbose, which is helpful for debugging. The output varies for different examples and corresponds to their SPEC files.

The resulting binary RPMs are located in the ~/rpmbuild/RPMS/YOURARCH directory where YOURARCH is your architecture or in the ~/rpmbuild/RPMS/noarch/ directory, if the package is not architecture-specific.

4.6.3. Building a binary RPM from the SPEC file

To build bello, pello, and cello binary RPMs from their SPEC files, complete the following steps.

Procedure

  • Run the rpmbuild command with the bb option:

    $ rpmbuild -bb ~/rpmbuild/SPECS/bello.spec
    
    $ rpmbuild -bb ~/rpmbuild/SPECS/pello.spec
    
    $ rpmbuild -bb ~/rpmbuild/SPECS/cello.spec

4.6.4. Building binary RPMs from source RPMs

You build any kind of RPM from a source RPM. To do so, complete the following steps.

Procedure

  • Run the rpmbuild command with one of the following options and with the source package specified:

    # rpmbuild {-ra|-rb|-rp|-rc|-ri|-rl|-rs} [rpmbuild-options] source-package

    Replace source-package with the name of the source RPM.

Additional resources

  • rpmbuild(8) man page

4.7. Checking RPMs for sanity

After creating a package, you must check the quality of the package.

The main tool for checking package quality is rpmlint.

The rpmlint tool does the following:

  • Improves RPM maintainability.
  • Enables sanity checking by performing static analysis of the RPM.
  • Enables error checking by performing static analysis of the RPM.

The rpmlint tool can check binary RPMs, source RPMs (SRPMs), and SPEC files. Therefore, this tool is useful for all stages of packaging.

Note that rpmlint has strict guidelines. Therefore, it is sometimes acceptable to skip some of its errors and warnings, as shown in the following examples.

Note

In the examples described in the following sections, rpmlint is run without any options, which produces a non-verbose output. For detailed explanations of each error or warning, run rpmlint -i instead.

4.7.1. Checking bello for sanity

In the following sections, investigate possible warnings and errors that can occur when checking an RPM for sanity on the example of the bello SPEC file and bello binary RPM.

4.7.1.1. Checking the bello SPEC File for sanity

Inspect the outputs of the following examples to learn how to check a bello SPEC file for sanity.

Example 4.3. Output of running the rpmlint command on the SPEC file for bello

The following is an example output of the rpmlint command run on the bello SPEC file.

$ rpmlint bello.spec
bello.spec: W: invalid-url Source0: https://www.example.com/bello/releases/bello-0.1.tar.gz HTTP Error 404: Not Found
0 packages and 1 specfiles checked; 0 errors, 1 warnings.

For bello.spec, there is only one warning. The invalid-url Source0 warning means that the URL listed in the Source0 directive is unreachable. This is expected, because the specified example.com URL does not exist. Assuming that this URL will be valid in the future, you can ignore this warning.

Example 4.4. Output of running the rpmlint command on the SRPM for bello

The following is an example output of the rpmlint command run on the bello source RPM (SRPM).

$ rpmlint ~/rpmbuild/SRPMS/bello-0.1-1.el8.src.rpm
bello.src: W: invalid-url URL: https://www.example.com/bello HTTP Error 404: Not Found
bello.src: W: invalid-url Source0: https://www.example.com/bello/releases/bello-0.1.tar.gz HTTP Error 404: Not Found
1 packages and 0 specfiles checked; 0 errors, 2 warnings.

For the bello SRPM, there is a new invalid-url URL warning. This warning means that the URL specified in the URL directive is unreachable. Assuming that this URL will be valid in the future, you can ignore this warning.

4.7.1.2. Checking the bello binary RPM for sanity

When checking binary RPMs, the rpmlint command checks the following items:

  • Documentation
  • Manual pages
  • Consistent use of the filesystem hierarchy standard

Inspect the outputs of the following example to learn how to check a bello binary RPM for sanity.

Example 4.5. Output of running the rpmlint command on the binary RPM for bello

The following is an example output of the rpmlint command run on the bello binary RPM.

$ rpmlint ~/rpmbuild/RPMS/noarch/bello-0.1-1.el8.noarch.rpm
bello.noarch: W: invalid-url URL: https://www.example.com/bello HTTP Error 404: Not Found
bello.noarch: W: no-documentation
bello.noarch: W: no-manual-page-for-binary bello
1 packages and 0 specfiles checked; 0 errors, 3 warnings.

The no-documentation and no-manual-page-for-binary warnings mean that the RPM has no documentation or manual pages, because you did not provide any. Apart from the output warnings, the RPM passed rpmlint checks.

4.7.2. Checking pello for sanity

In the following sections, investigate possible warnings and errors that can occur when checking RPM sanity on the example of the pello SPEC file and pello binary RPM.

4.7.2.1. Checking the pello SPEC File for sanity

Inspect the outputs of the following examples to learn how to check a pello SPEC file for sanity.

Example 4.6. Output of running the rpmlint command on the SPEC file for pello

The following is an example output of the rpmlint command run on the pello SPEC file.

$ rpmlint pello.spec
pello.spec:30: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}
pello.spec:34: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.pyc
pello.spec:39: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}/
pello.spec:43: E: hardcoded-library-path in /usr/lib/%{name}/
pello.spec:45: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.py*
pello.spec: W: invalid-url Source0: https://www.example.com/pello/releases/pello-0.1.2.tar.gz HTTP Error 404: Not Found
0 packages and 1 specfiles checked; 5 errors, 1 warnings.
  • The invalid-url Source0 warning means that the URL listed in the Source0 directive is unreachable. This is expected, because the specified example.com URL does not exist. Assuming that this URL will be valid in the future, you can ignore this warning.
  • The hardcoded-library-path errors suggest using the %{_libdir} macro instead of hard-coding the library path. For the sake of this example, you can safely ignore these errors. However, for packages going into production, check all errors carefully.

Example 4.7. Output of running the rpmlint command on the SRPM for pello

The following is an example output of the rpmlint command run on the pello source RPM (SRPM).

$ rpmlint ~/rpmbuild/SRPMS/pello-0.1.2-1.el8.src.rpm
pello.src: W: invalid-url URL: https://www.example.com/pello HTTP Error 404: Not Found
pello.src:30: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}
pello.src:34: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.pyc
pello.src:39: E: hardcoded-library-path in %{buildroot}/usr/lib/%{name}/
pello.src:43: E: hardcoded-library-path in /usr/lib/%{name}/
pello.src:45: E: hardcoded-library-path in /usr/lib/%{name}/%{name}.py*
pello.src: W: invalid-url Source0: https://www.example.com/pello/releases/pello-0.1.2.tar.gz HTTP Error 404: Not Found
1 packages and 0 specfiles checked; 5 errors, 2 warnings.

The invalid-url URL error is about the URL directive, which is unreachable. Assuming that this URL will be valid in the future, you can ignore this warning.

4.7.2.2. Checking the pello binary RPM for sanity

When checking binary RPMs, the rpmlint command checks the following items:

  • Documentation
  • Manual pages
  • Consistent use of the Filesystem Hierarchy Standard

Inspect the outputs of the following example to learn how to check a pello binary RPM for sanity.

Example 4.8. Output of running the rpmlint command on the binary RPM for pello

The following is an example output of the rpmlint command run on the pello binary RPM.

$ rpmlint ~/rpmbuild/RPMS/noarch/pello-0.1.2-1.el8.noarch.rpm
pello.noarch: W: invalid-url URL: https://www.example.com/pello HTTP Error 404: Not Found
pello.noarch: W: only-non-binary-in-usr-lib
pello.noarch: W: no-documentation
pello.noarch: E: non-executable-script /usr/lib/pello/pello.py 0644L /usr/bin/env
pello.noarch: W: no-manual-page-for-binary pello
1 packages and 0 specfiles checked; 1 errors, 4 warnings.
  • The no-documentation and no-manual-page-for-binary warnings mean that the RPM has no documentation or manual pages, because you did not provide any.
  • The only-non-binary-in-usr-lib warning means that you provided only non-binary artifacts in the /usr/lib/ directory. This directory is normally reserved for shared object files, which are binary files. Therefore, rpmlint expects at least one or more files in /usr/lib/ to be binary.

    This is an example of an rpmlint check for compliance with Filesystem Hierarchy Standard. Normally, use RPM macros to ensure the correct placement of files. For the sake of this example, you can safely ignore this warning.

  • The non-executable-script error means that the /usr/lib/pello/pello.py file has no execute permissions. The rpmlint tool expects the file to be executable, because the file contains the shebang. For the purpose of this example, you can leave this file without executing permissions and ignore this error.

Apart from the output warnings and errors, the RPM passed rpmlint checks.

4.7.3. Checking cello for sanity

In the following sections, investigate possible warnings and errors that can occur when checking RPM sanity on the example of the cello SPEC file and cello binary RPM.

4.7.3.1. Checking the cello SPEC File for sanity

Inspect the outputs of the following examples to learn how to check a cello SPEC file for sanity.

Example 4.9. Output of running the rpmlint command on the SPEC file for cello

The following is an example output of the rpmlint command run on the cello SPEC file.

$ rpmlint ~/rpmbuild/SPECS/cello.spec
/home/admiller/rpmbuild/SPECS/cello.spec: W: invalid-url Source0: https://www.example.com/cello/releases/cello-1.0.tar.gz HTTP Error 404: Not Found
0 packages and 1 specfiles checked; 0 errors, 1 warnings.

For cello.spec, there is only one warning. The invalid-url Source0 warning means that the URL listed in the Source0 directive is unreachable. This is expected, because the specified example.com URL does not exist. Assuming that this URL will be valid in the future, you can ignore this warning.

Example 4.10. Output of running the rpmlint command on the SRPM for cello

The following is an example output of the rpmlint command run on the cello source RPM (SRPM.)

$ rpmlint ~/rpmbuild/SRPMS/cello-1.0-1.el8.src.rpm
cello.src: W: invalid-url URL: https://www.example.com/cello HTTP Error 404: Not Found
cello.src: W: invalid-url Source0: https://www.example.com/cello/releases/cello-1.0.tar.gz HTTP Error 404: Not Found
1 packages and 0 specfiles checked; 0 errors, 2 warnings.

For the cello SRPM, there is a new invalid-url URL warning. This warning means that the URL specified in the URL directive is unreachable. Assuming that this URL will be valid in the future, you can ignore this warning.

4.7.3.2. Checking the cello binary RPM for sanity

When checking binary RPMs, the rpmlint command checks the following items:

  • Documentation
  • Manual pages
  • Consistent use of the filesystem hierarchy standard

Inspect the outputs of the following example to learn how to check a cello binary RPM for sanity.

Example 4.11. Output of running the rpmlint command on the binary RPM for cello

The following is an example output of the rpmlint command run on the cello binary RPM.

$ rpmlint ~/rpmbuild/RPMS/x86_64/cello-1.0-1.el8.x86_64.rpm
cello.x86_64: W: invalid-url URL: https://www.example.com/cello HTTP Error 404: Not Found
cello.x86_64: W: no-documentation
cello.x86_64: W: no-manual-page-for-binary cello
1 packages and 0 specfiles checked; 0 errors, 3 warnings.

The no-documentation and no-manual-page-for-binary warnings mean that the RPM has no documentation or manual pages, because you did not provide any.

Apart from the output warnings, the RPM passed rpmlint checks.

4.8. Logging RPM activity to syslog

Any RPM activity or transaction can be logged by the System Logging protocol (syslog).

Prerequisites

  • The syslog plug-in is installed on the system:

    # yum install rpm-plugin-syslog
    Note

    The default location for the syslog messages is the /var/log/messages file. However, you can configure syslog to use another location to store the messages.

To see the updates on RPM activity, complete the following steps.

Procedure

  1. Open the file that you configured to store the syslog messages, or if you use the default syslog configuration, open the /var/log/messages file.
  2. Search for new lines including the [RPM] string.

4.9. Extracting RPM content

In particular cases, for example, if a package required by RPM is damaged, it is necessary to extract the content of the package. In such cases, if an RPM installation is still working despite the damage, you can use the rpm2archive utility to convert an .rpm file to a tar archive to use the content of the package.

Note

If the RPM installation is severely damaged, you can use the rpm2cpio utility to convert the RPM package file to a cpio archive.

To convert an RPM payload to a tar archive by using the rpm2archive utility, complete the following steps.

Procedure

  • Run the rpm2archive command on the RPM file:

    $ rpm2archive filename.rpm

    Replace filename with the name of the .rpm file.

    The resulting file has the .tgz suffix. For example, to archive the bash package:

    $ rpm2archive bash-4.4.19-6.el8.x86_64.rpm
    bash-4.4.19-6.el8.x86_64.rpm.tgz

Chapter 5. Advanced topics

This section covers topics that are beyond the scope of the introductory tutorial but are useful in real-world RPM packaging.

5.1. Signing RPM packages

You can sign RPM packages to ensure that no third party can alter their content. To add an additional layer of security, use the HTTPS protocol when downloading the package.

You can sign a package by using the --addsign option provided by the rpm-sign package.

Prerequisites

5.1.1. Creating a GPG key

Use the following procedure to create a GNU Privacy Guard (GPG) key required for signing packages.

Procedure

  1. Generate a GPG key pair:

    # gpg --gen-key
  2. Check the generated key pair:

    # gpg --list-keys
  3. Export the public key:

    # gpg --export -a '<Key_name>' > RPM-GPG-KEY-pmanager

    Replace <Key_name> with the real key name that you have selected.

  4. Import the exported public key into an RPM database:

    # rpm --import RPM-GPG-KEY-pmanager

5.1.2. Configuring RPM to sign a package

To be able to sign an RPM package, you need to specify the %_gpg_name RPM macro.

The following procedure describes how to configure RPM for signing a package.

Procedure

  • Define the %_gpg_name macro in your $HOME/.rpmmacros file as follows:

    %_gpg_name Key ID

    Replace Key ID with the GNU Privacy Guard (GPG) key ID that you will use to sign a package. A valid GPG key ID value is either a full name or email address of the user who created the key.

5.1.3. Adding a signature to an RPM package

The most usual case is when a package is built without a signature. The signature is added just before the release of the package.

To add a signature to an RPM package, use the --addsign option provided by the rpm-sign package.

Procedure

  • Add a signature to a package:

    $ rpm --addsign package-name.rpm

    Replace package-name with the name of an RPM package you want to sign.

    Note

    You must enter the password to unlock the secret key for the signature.

5.2. More on macros

This section covers selected built-in RPM Macros. For an exhaustive list of such macros, see RPM Documentation.

5.2.1. Defining your own macros

The following section describes how to create a custom macro.

Procedure

  • Include the following line in the RPM SPEC file:

    %global <name>[(opts)] <body>

All whitespace surrounding <body> is removed. Name may be composed of alphanumeric characters, and the character _ and must be at least 3 characters in length. Inclusion of the (opts) field is optional:

  • Simple macros do not contain the (opts) field. In this case, only recursive macro expansion is performed.
  • Parametrized macros contain the (opts) field. The opts string between parentheses is passed to getopt(3) for argc/argv processing at the beginning of a macro invocation.
Note

Older RPM SPEC files use the %define <name> <body> macro pattern instead. The differences between %define and %global macros are as follows:

  • %define has local scope. It applies to a specific part of a SPEC file. The body of a %define macro is expanded when used.
  • %global has global scope. It applies to an entire SPEC file. The body of a %global macro is expanded at definition time.
Important

Macros are evaluated even if they are commented out or the name of the macro is given into the %changelog section of the SPEC file. To comment out a macro, use %%. For example: %%global.

Additional resources

5.2.2. Using the %setup macro

This section describes how to build packages with source code tarballs using different variants of the %setup macro. Note that the macro variants can be combined. The rpmbuild output illustrates standard behavior of the %setup macro. At the beginning of each phase, the macro outputs Executing(%…​), as shown in the below example.

Example 5.1. Example %setup macro output

Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.DhddsG

The shell output is set with set -x enabled. To see the content of /var/tmp/rpm-tmp.DhddsG, use the --debug option because rpmbuild deletes temporary files after a successful build. This displays the setup of environment variables followed by for example:

cd '/builddir/build/BUILD'
rm -rf 'cello-1.0'
/usr/bin/gzip -dc '/builddir/build/SOURCES/cello-1.0.tar.gz' | /usr/bin/tar -xof -
STATUS=$?
if [ $STATUS -ne 0 ]; then
  exit $STATUS
fi
cd 'cello-1.0'
/usr/bin/chmod -Rf a+rX,u+w,g-w,o-w .

The %setup macro:

  • Ensures that we are working in the correct directory.
  • Removes residues of previous builds.
  • Unpacks the source tarball.
  • Sets up some default privileges.

5.2.2.1. Using the %setup -q macro

The -q option limits the verbosity of the %setup macro. Only tar -xof is executed instead of tar -xvvof. Use this option as the first option.

5.2.2.2. Using the %setup -n macro

The -n option is used to specify the name of the directory from expanded tarball.

This is used in cases when the directory from expanded tarball has a different name from what is expected (%{name}-%{version}), which can lead to an error of the %setup macro.

For example, if the package name is cello, but the source code is archived in hello-1.0.tgz and contains the hello/ directory, the SPEC file content needs to be as follows:

Name: cello
Source0: https://example.com/%{name}/release/hello-%{version}.tar.gz
…
%prep
%setup -n hello

5.2.2.3. Using the %setup -c macro

The -c option is used if the source code tarball does not contain any subdirectories and after unpacking, files from an archive fills the current directory.

The -c option then creates the directory and steps into the archive expansion as shown below:

/usr/bin/mkdir -p cello-1.0
cd 'cello-1.0'

The directory is not changed after archive expansion.

5.2.2.4. Using the %setup -D and %setup -T macros

The -D option disables deleting of source code directory, and is particularly useful if the %setup macro is used several times. With the -D option, the following lines are not used:

rm -rf 'cello-1.0'

The -T option disables expansion of the source code tarball by removing the following line from the script:

/usr/bin/gzip -dc '/builddir/build/SOURCES/cello-1.0.tar.gz' | /usr/bin/tar -xvvof -

5.2.2.5. Using the %setup -a and %setup -b macros

The -a and -b options expand specific sources:

  • The -b option stands for before. This option expands specific sources before entering the working directory.
  • The -a option stands for after. This option expands those sources after entering. Their arguments are source numbers from the SPEC file preamble.

In the following example, the cello-1.0.tar.gz archive contains an empty examples directory. The examples are shipped in a separate examples.tar.gz tarball and they expand into the directory of the same name. In this case, use -a 1 if you want to expand Source1 after entering the working directory:

Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz
Source1: examples.tar.gz
…
%prep
%setup -a 1

In the following example, examples are provided in a separate cello-1.0-examples.tar.gz tarball, which expands into cello-1.0/examples. In this case, use -b 1 to expand Source1 before entering the working directory:

Source0: https://example.com/%{name}/release/%{name}-%{version}.tar.gz
Source1: %{name}-%{version}-examples.tar.gz
…
%prep
%setup -b 1

5.2.3. Common RPM macros in the %files section

The following table lists advanced RPM Macros that are needed in the %files section of a SPEC file.

Table 5.1. Advanced RPM Macros in the %files section

MacroDefinition

%license

The %license macro identifies the file listed as a LICENSE file and it will be installed and labeled as such by RPM. Example: %license LICENSE.

%doc

The %doc macro identifies a file listed as documentation and it will be installed and labeled as such by RPM. The %doc macro is used for documentation about the packaged software and also for code examples and various accompanying items. If code examples are included, care must be taken to remove executable mode from the file. Example: %doc README

%dir

The %dir macro ensures that the path is a directory owned by this RPM. This is important so that the RPM file manifest accurately knows what directories to clean up on uninstall. Example: %dir %{_libdir}/%{name}

%config(noreplace)

The %config(noreplace) macro ensures that the following file is a configuration file and therefore should not be overwritten (or replaced) on a package install or update if the file has been modified from the original installation checksum. If there is a change, the file will be created with .rpmnew appended to the end of the filename upon upgrade or install so that the pre-existing or modified file on the target system is not modified. Example: %config(noreplace) %{_sysconfdir}/%{name}/%{name}.conf

5.2.4. Displaying the built-in macros

Red Hat Enterprise Linux provides multiple built-in RPM macros.

Procedure

  1. To display all built-in RPM macros, run:

    rpm --showrc
    Note

    The output is quite sizeable. To narrow the result, use the command above with the grep command.

  2. To find information about the RPMs macros for your system’s version of RPM, run:

    rpm -ql rpm
    Note

    RPM macros are the files titled macros in the output directory structure.

5.2.5. RPM distribution macros

Different distributions provide different sets of recommended RPM macros based on the language implementation of the software being packaged or the specific guidelines of the distribution.

The sets of recommended RPM macros are often provided as RPM packages, ready to be installed with the yum package manager.

Once installed, the macro files can be found in the /usr/lib/rpm/macros.d/ directory.

Procedure

  • To display the raw RPM macro definitions, run:

    rpm --showrc

The above output displays the raw RPM macro definitions.

  • To determine what a macro does and how it can be helpful when packaging RPMs, run the rpm --eval command with the name of the macro used as its argument:

    rpm --eval %{_MACRO}

Additional resources

  • rpm man page

5.2.6. Creating custom macros

You can override the distribution macros in the ~/.rpmmacros file with your custom macros. Any changes that you make affect every build on your machine.

Warning

Defining any new macros in the ~/.rpmmacros file is not recommended. Such macros would not be present on other machines, where users may want to try to rebuild your package.

Procedure

  • To override a macro, run:

    %_topdir /opt/some/working/directory/rpmbuild

You can create the directory from the example above, including all subdirectories through the rpmdev-setuptree utility. The value of this macro is by default ~/rpmbuild.

%_smp_mflags -l3

The macro above is often used to pass to Makefile, for example make %{?_smp_mflags}, and to set a number of concurrent processes during the build phase. By default, it is set to -jX, where X is a number of cores. If you alter the number of cores, you can speed up or slow down a build of packages.

5.3. Epoch, Scriptlets and Triggers

This section covers Epoch, Scriptlets, and Triggers, which represent advanced directives for RMP SPEC files.

All these directives influence not only the SPEC file, but also the end machine on which the resulting RPM is installed.

5.3.1. The Epoch directive

The Epoch directive enables to define weighted dependencies based on version numbers.

If this directive is not listed in the RPM SPEC file, the Epoch directive is not set at all. This is contrary to common belief that not setting Epoch results in an Epoch of 0. However, the yum utility treats an unset Epoch as the same as an Epoch of 0 for the purposes of depsolving.

However, listing Epoch in a SPEC file is usually omitted because in majority of cases introducing an Epoch value skews the expected RPM behavior when comparing versions of packages.

Example 5.2. Using Epoch

If you install the foobar package with Epoch: 1 and Version: 1.0, and someone else packages foobar with Version: 2.0 but without the Epoch directive, the new version will never be considered an update. The reason being that the Epoch version is preferred over the traditional Name-Version-Release marker that signifies versioning for RPM Packages.

Using of Epoch is thus quite rare. However, Epoch is typically used to resolve an upgrade ordering issue. The issue can appear as a side effect of upstream change in software version number schemes or versions incorporating alphabetical characters that cannot always be compared reliably based on encoding.

5.3.2. Scriptlets directives

Scriptlets are a series of RPM directives that are executed before or after packages are installed or deleted.

Use Scriptlets only for tasks that cannot be done at build time or in an start up script.

A set of common Scriptlet directives exists. They are similar to the SPEC file section headers, such as %build or %install. They are defined by multi-line segments of code, which are often written as a standard POSIX shell script. However, they can also be written in other programming languages that RPM for the target machine’s distribution accepts. RPM Documentation includes an exhaustive list of available languages.

The following table includes Scriptlet directives listed in their execution order. Note that a package containing the scripts is installed between the %pre and %post directive, and it is uninstalled between the %preun and %postun directive.

Table 5.2. Scriptlet directives

DirectiveDefinition

%pretrans

Scriptlet that is executed just before installing or removing any package.

%pre

Scriptlet that is executed just before installing the package on the target system.

%post

Scriptlet that is executed just after the package was installed on the target system.

%preun

Scriptlet that is executed just before uninstalling the package from the target system.

%postun

Scriptlet that is executed just after the package was uninstalled from the target system.

%posttrans

Scriptlet that is executed at the end of the transaction.

5.3.3. Turning off a scriptlet execution

The following procedure describes how to turn off the execution of any scriptlet using the rpm command together with the --no_scriptlet_name_ option.

Procedure

  • For example, to turn off the execution of the %pretrans scriptlets, run:

    # rpm --nopretrans

    You can also use the -- noscripts option, which is equivalent to all of the following:

    • --nopre
    • --nopost
    • --nopreun
    • --nopostun
    • --nopretrans
    • --noposttrans

Additional resources

  • rpm(8) man page.

5.3.4. Scriptlets macros

The Scriptlets directives also work with RPM macros.

The following example shows the use of systemd scriptlet macro, which ensures that systemd is notified about a new unit file.

$ rpm --showrc | grep systemd
-14: __transaction_systemd_inhibit      %{__plugindir}/systemd_inhibit.so
-14: _journalcatalogdir /usr/lib/systemd/catalog
-14: _presetdir /usr/lib/systemd/system-preset
-14: _unitdir   /usr/lib/systemd/system
-14: _userunitdir       /usr/lib/systemd/user
/usr/lib/systemd/systemd-binfmt %{?*} >/dev/null 2>&1 || :
/usr/lib/systemd/systemd-sysctl %{?*} >/dev/null 2>&1 || :
-14: systemd_post
-14: systemd_postun
-14: systemd_postun_with_restart
-14: systemd_preun
-14: systemd_requires
Requires(post): systemd
Requires(preun): systemd
Requires(postun): systemd
-14: systemd_user_post  %systemd_post --user --global %{?*}
-14: systemd_user_postun        %{nil}
-14: systemd_user_postun_with_restart   %{nil}
-14: systemd_user_preun
systemd-sysusers %{?*} >/dev/null 2>&1 || :
echo %{?*} | systemd-sysusers - >/dev/null 2>&1 || :
systemd-tmpfiles --create %{?*} >/dev/null 2>&1 || :

$ rpm --eval %{systemd_post}

if [ $1 -eq 1 ] ; then
        # Initial installation
        systemctl preset  >/dev/null 2>&1 || :
fi

$ rpm --eval %{systemd_postun}

systemctl daemon-reload >/dev/null 2>&1 || :

$ rpm --eval %{systemd_preun}

if [ $1 -eq 0 ] ; then
        # Package removal, not upgrade
        systemctl --no-reload disable  > /dev/null 2>&1 || :
        systemctl stop  > /dev/null 2>&1 || :
fi

5.3.5. The Triggers directives

Triggers are RPM directives which provide a method for interaction during package installation and uninstallation.

Warning

Triggers may be executed at an unexpected time, for example on update of the containing package. Triggers are difficult to debug, therefore they need to be implemented in a robust way so that they do not break anything when executed unexpectedly. For these reasons, Red Hat recommends to minimize the use of Triggers.

The order of execution on a single package upgrade and the details for each existing Triggers are listed below:

all-%pretrans
…​
any-%triggerprein (%triggerprein from other packages set off by new install)
new-%triggerprein
new-%pre      for new version of package being installed
…​           (all new files are installed)
new-%post     for new version of package being installed

any-%triggerin (%triggerin from other packages set off by new install)
new-%triggerin
old-%triggerun
any-%triggerun (%triggerun from other packages set off by old uninstall)

old-%preun    for old version of package being removed
…​           (all old files are removed)
old-%postun   for old version of package being removed

old-%triggerpostun
any-%triggerpostun (%triggerpostun from other packages set off by old un
            install)
…​
all-%posttrans

The above items are found in the /usr/share/doc/rpm-4.*/triggers file.

5.3.6. Using non-shell scripts in a SPEC file

The -p scriptlet option in a SPEC file enables the user to invoke a specific interpreter instead of the default shell scripts interpreter (-p /bin/sh).

The following procedure describes how to create a script, which prints out a message after installation of the pello.py program:

Procedure

  1. Open the pello.spec file.
  2. Find the following line:

    install -m 0644 %{name}.py* %{buildroot}/usr/lib/%{name}/
  3. Under the above line, insert:

    %post -p /usr/bin/python3
    print("This is {} code".format("python"))
  4. Build your package as described in Building RPMs.
  5. Install your package:

    # yum install /home/<username>/rpmbuild/RPMS/noarch/pello-0.1.2-1.el8.noarch.rpm
  6. Check the output message after the installation:

    Installing       : pello-0.1.2-1.el8.noarch                              1/1
    Running scriptlet: pello-0.1.2-1.el8.noarch                              1/1
    This is python code
Note

To use a Python 3 script, include the following line under install -m in a SPEC file:

%post -p /usr/bin/python3

To use a Lua script, include the following line under install -m in a SPEC file:

%post -p <lua>

This way, you can specify any interpreter in a SPEC file.

5.4. RPM conditionals

RPM Conditionals enable conditional inclusion of various sections of the SPEC file.

Conditional inclusions usually deal with:

  • Architecture-specific sections
  • Operating system-specific sections
  • Compatibility issues between various versions of operating systems
  • Existence and definition of macros

5.4.1. RPM conditionals syntax

RPM conditionals use the following syntax:

If expression is true, then do some action:

%if expression
…​
%endif

If expression is true, then do some action, in other case, do another action:

%if expression
…​
%else
…​
%endif

5.4.2. The %if conditionals

The following examples shows the usage of %if RPM conditionals.

Example 5.3. Using the %if conditional to handle compatibility between Red Hat Enterprise Linux 8 and other operating systems

%if 0%{?rhel} == 8
sed -i '/AS_FUNCTION_DESCRIBE/ s/^/#/' configure.in
sed -i '/AS_FUNCTION_DESCRIBE/ s/^/#/' acinclude.m4
%endif

This conditional handles compatibility between RHEL 8 and other operating systems in terms of support of the AS_FUNCTION_DESCRIBE macro. If the package is built for RHEL, the %rhel macro is defined, and it is expanded to RHEL version. If its value is 8, meaning the package is build for RHEL 8, then the references to AS_FUNCTION_DESCRIBE, which is not supported by RHEL 8, are deleted from autoconfig scripts.

Example 5.4. Using the %if conditional to handle definition of macros

%define ruby_archive %{name}-%{ruby_version}
%if 0%{?milestone:1}%{?revision:1} != 0
%define ruby_archive %{ruby_archive}-%{?milestone}%{?!milestone:%{?revision:r%{revision}}}
%endif

This conditional handles definition of macros. If the %milestone or the %revision macros are set, the %ruby_archive macro, which defines the name of the upstream tarball, is redefined.

5.4.3. Specialized variants of %if conditionals

The %ifarch conditional, %ifnarch conditional and %ifos conditional are specialized variants of the %if conditionals. These variants are commonly used, hence they have their own macros.

The %ifarch conditional

The %ifarch conditional is used to begin a block of the SPEC file that is architecture-specific. It is followed by one or more architecture specifiers, each separated by commas or whitespace.

Example 5.5. An example use of the %ifarch conditional

%ifarch i386 sparc
…​
%endif

All the contents of the SPEC file between %ifarch and %endif are processed only on the 32-bit AMD and Intel architectures or Sun SPARC-based systems.

The %ifnarch conditional

The %ifnarch conditional has a reverse logic than %ifarch conditional.

Example 5.6. An example use of the %ifnarch conditional

%ifnarch alpha
…​
%endif

All the contents of the SPEC file between %ifnarch and %endif are processed only if not done on a Digital Alpha/AXP-based system.

The %ifos conditional

The %ifos conditional is used to control processing based on the operating system of the build. It can be followed by one or more operating system names.

Example 5.7. An example use of the %ifos conditional

%ifos linux
…​
%endif

All the contents of the SPEC file between %ifos and %endif are processed only if the build was done on a Linux system.

5.5. Packaging Python 3 RPMs

Most Python projects use Setuptools for packaging, and define package information in the setup.py file. For more information about Setuptools packaging, see the Setuptools documentation.

You can also package your Python project into an RPM package, which provides the following advantages compared to Setuptools packaging:

  • Specification of dependencies of a package on other RPMs (even non-Python)
  • Cryptographic signing

    With cryptographic signing, content of RPM packages can be verified, integrated, and tested with the rest of the operating system.

5.5.1. SPEC file description for a Python package

A SPEC file contains instructions that the rpmbuild utility uses to build an RPM. The instructions are included in a series of sections. A SPEC file has two main parts in which the sections are defined:

  • Preamble (contains a series of metadata items that are used in the Body)
  • Body (contains the main part of the instructions)

An RPM SPEC file for Python projects has some specifics compared to non-Python RPM SPEC files. Most notably, a name of any RPM package of a Python library must always include the prefix determining the version, for example, python3 for Python 3.6, python38 for Python 3.8, python39 for Python 3.9, or python3.11 for Python 3.11.

Other specifics are shown in the following SPEC file example for the python3-detox package. For description of such specifics, see the notes below the example.

%global modname detox                                                1

Name:           python3-detox                                        2
Version:        0.12
Release:        4%{?dist}
Summary:        Distributing activities of the tox tool
License:        MIT
URL:            https://pypi.io/project/detox
Source0:        https://pypi.io/packages/source/d/%{modname}/%{modname}-%{version}.tar.gz

BuildArch:      noarch

BuildRequires:  python36-devel                                       3
BuildRequires:  python3-setuptools
BuildRequires:  python36-rpm-macros
BuildRequires:  python3-six
BuildRequires:  python3-tox
BuildRequires:  python3-py
BuildRequires:  python3-eventlet

%?python_enable_dependency_generator                                 4

%description

Detox is the distributed version of the tox python testing tool. It makes efficient use of multiple CPUs by running all possible activities in parallel.
Detox has the same options and configuration that tox has, so after installation you can run it in the same way and with the same options that you use for tox.

    $ detox

%prep
%autosetup -n %{modname}-%{version}

%build
%py3_build                                                           5

%install
%py3_install

%check
%{__python3} setup.py test                                           6

%files -n python3-%{modname}
%doc CHANGELOG
%license LICENSE
%{_bindir}/detox
%{python3_sitelib}/%{modname}/
%{python3_sitelib}/%{modname}-%{version}*

%changelog
...
1
The modname macro contains the name of the Python project. In this example it is detox.
2
When packaging a Python project into RPM, the python3 prefix always needs to be added to the original name of the project. The original name here is detox and the name of the RPM is python3-detox.
3
BuildRequires specifies what packages are required to build and test this package. In BuildRequires, always include items providing tools necessary for building Python packages: python36-devel and python3-setuptools. The python36-rpm-macros package is required so that files with /usr/bin/python3 interpreter directives are automatically changed to /usr/bin/python3.6.
4
Every Python package requires some other packages to work correctly. Such packages need to be specified in the SPEC file as well. To specify the dependencies, you can use the %python_enable_dependency_generator macro to automatically use dependencies defined in the setup.py file. If a package has dependencies that are not specified using Setuptools, specify them within additional Requires directives.
5
The %py3_build and %py3_install macros run the setup.py build and setup.py install commands, respectively, with additional arguments to specify installation locations, the interpreter to use, and other details.
6
The check section provides a macro that runs the correct version of Python. The %{__python3} macro contains a path for the Python 3 interpreter, for example /usr/bin/python3. We recommend to always use the macro rather than a literal path.

5.5.2. Common macros for Python 3 RPMs

In a SPEC file, always use the macros that are described in the following Macros for Python 3 RPMs table rather than hardcoding their values.

In macro names, always use python3 or python2 instead of unversioned python. Configure the particular Python 3 version in the BuildRequires section of the SPEC file to python36-rpm-macros, python38-rpm-macros, python39-rpm-macros, or python3.11-rpm-macros.

Table 5.3. Macros for Python 3 RPMs

MacroNormal DefinitionDescription

%{__python3}

/usr/bin/python3

Python 3 interpreter

%{python3_version}

3.6

The full version of the Python 3 interpreter.

%{python3_sitelib}

/usr/lib/python3.6/site-packages

Where pure-Python modules are installed.

%{python3_sitearch}

/usr/lib64/python3.6/site-packages

Where modules containing architecture-specific extensions are installed.

%py3_build

 

Runs the setup.py build command with arguments suitable for a system package.

%py3_install

 

Runs the setup.py install command with arguments suitable for a system package.

5.5.3. Automatic provides for Python RPMs

When packaging a Python project, make sure that the following directories are included in the resulting RPM if these directories are present:

  • .dist-info
  • .egg-info
  • .egg-link

From these directories, the RPM build process automatically generates virtual pythonX.Ydist provides, for example, python3.6dist(detox). These virtual provides are used by packages that are specified by the %python_enable_dependency_generator macro.

5.6. Handling interpreter directives in Python scripts

In Red Hat Enterprise Linux 8, executable Python scripts are expected to use interpreter directives (also known as hashbangs or shebangs) that explicitly specify at a minimum the major Python version. For example:

#!/usr/bin/python3
#!/usr/bin/python3.6
#!/usr/bin/python3.8
#!/usr/bin/python3.9
#!/usr/bin/python3.11
#!/usr/bin/python2

The /usr/lib/rpm/redhat/brp-mangle-shebangs buildroot policy (BRP) script is run automatically when building any RPM package, and attempts to correct interpreter directives in all executable files.

The BRP script generates errors when encountering a Python script with an ambiguous interpreter directive, such as:

#!/usr/bin/python

or

#!/usr/bin/env python

5.6.1. Modifying interpreter directives in Python scripts

Modify interpreter directives in the Python scripts that cause the build errors at RPM build time.

Prerequisites

  • Some of the interpreter directives in your Python scripts cause a build error.

Procedure

To modify interpreter directives, complete one of the following tasks:

  • Apply the pathfix.py script from the platform-python-devel package:

    # pathfix.py -pn -i %{__python3} PATH …​

    Note that multiple PATHs can be specified. If a PATH is a directory, pathfix.py recursively scans for any Python scripts matching the pattern ^[a-zA-Z0-9_]+\.py$, not only those with an ambiguous interpreter directive. Add this command to the %prep section or at the end of the %install section.

  • Modify the packaged Python scripts so that they conform to the expected format. For this purpose, pathfix.py can be used outside the RPM build process, too. When running pathfix.py outside an RPM build, replace %{__python3} from the example above with a path for the interpreter directive, such as /usr/bin/python3.

If the packaged Python scripts require a version other than Python 3.6, adjust the preceding commands to include the required version.

5.6.2. Changing /usr/bin/python3 interpreter directives in your custom packages

By default, interpreter directives in the form of /usr/bin/python3 are replaced with interpreter directives pointing to Python from the platform-python package, which is used for system tools with Red Hat Enterprise Linux. You can change the /usr/bin/python3 interpreter directives in your custom packages to point to a specific version of Python that you have installed from the AppStream repository.

Procedure

  • To build your package for a specific version of Python, add the python*-rpm-macros subpackage of the respective python package to the BuildRequires section of the SPEC file. For example, for Python 3.6, include the following line:

    BuildRequires:  python36-rpm-macros

    As a result, the /usr/bin/python3 interpreter directives in your custom package are automatically converted to /usr/bin/python3.6.

Note

To prevent the BRP script from checking and modifying interpreter directives, use the following RPM directive:

%undefine __brp_mangle_shebangs

5.7. RubyGems packages

This section explains what RubyGems packages are, and how to re-package them into RPM.

5.7.1. What RubyGems are

Ruby is a dynamic, interpreted, reflective, object-oriented, general-purpose programming language.

Programs written in Ruby are typically packaged using the RubyGems project, which provides a specific Ruby packaging format.

Packages created by RubyGems are called gems, and they can be re-packaged into RPM as well.

Note

This documentation refers to terms related to the RubyGems concept with the gem prefix, for example .gemspec is used for the gem specification, and terms related to RPM are unqualified.

5.7.2. How RubyGems relate to RPM

RubyGems represent Ruby’s own packaging format. However, RubyGems contain metadata similar to those needed by RPM, which enables the conversion from RubyGems to RPM.

According to Ruby Packaging Guidelines, it is possible to re-package RubyGems packages into RPM in this way:

  • Such RPMs fit with the rest of the distribution.
  • End users are able to satisfy dependencies of a gem by installing the appropriate RPM-packaged gem.

RubyGems use similar terminology as RPM, such as SPEC files, package names, dependencies and other items.

To fit into the rest of RHEL RPM distribution, packages created by RubyGems must follow the conventions listed below:

  • Names of gems must follow this pattern:

    rubygem-%{gem_name}
  • To implement a shebang line, the following string must be used:

    #!/usr/bin/ruby

5.7.3. Creating RPM packages from RubyGems packages

To create a source RPM for a RubyGems package, the following files are needed:

  • A gem file
  • An RPM SPEC file

The following sections describe how to create RPM packages from packages created by RubyGems.

5.7.3.1. RubyGems SPEC file conventions

A RubyGems SPEC file must meet the following conventions:

  • Contain a definition of %{gem_name}, which is the name from the gem’s specification.
  • The source of the package must be the full URL to the released gem archive; the version of the package must be the gem’s version.
  • Contain the BuildRequires: a directive defined as follows to be able to pull in the macros needed to build.

    BuildRequires:rubygems-devel
  • Not contain any RubyGems Requires or Provides, because those are autogenerated.
  • Not contain the BuildRequires: directive defined as follows, unless you want to explicitly specify Ruby version compatibility:

    Requires: ruby(release)

    The automatically generated dependency on RubyGems (Requires: ruby(rubygems)) is sufficient.

5.7.3.2. RubyGems macros

The following table lists macros useful for packages created by RubyGems. These macros are provided by the rubygems-devel packages.

Table 5.4. RubyGems' macros

Macro nameExtended pathUsage

%{gem_dir}

/usr/share/gems

Top directory for the gem structure.

%{gem_instdir}

%{gem_dir}/gems/%{gem_name}-%{version}

Directory with the actual content of the gem.

%{gem_libdir}

%{gem_instdir}/lib

The library directory of the gem.

%{gem_cache}

%{gem_dir}/cache/%{gem_name}-%{version}.gem

The cached gem.

%{gem_spec}

%{gem_dir}/specifications/%{gem_name}-%{version}.gemspec

The gem specification file.

%{gem_docdir}

%{gem_dir}/doc/%{gem_name}-%{version}

The RDoc documentation of the gem.

%{gem_extdir_mri}

%{_libdir}/gems/ruby/%{gem_name}-%{version}

The directory for gem extension.

5.7.3.3. RubyGems SPEC file example

Example SPEC file for building gems together with an explanation of its particular sections follows.

An example RubyGems SPEC file

%prep
%setup -q -n  %{gem_name}-%{version}

# Modify the gemspec if necessary
# Also apply patches to code if necessary
%patch0 -p1

%build
# Create the gem as gem install only works on a gem file
gem build ../%{gem_name}-%{version}.gemspec

# %%gem_install compiles any C extensions and installs the gem into ./%%gem_dir
# by default, so that we can move it into the buildroot in %%install
%gem_install

%install
mkdir -p %{buildroot}%{gem_dir}
cp -a ./%{gem_dir}/* %{buildroot}%{gem_dir}/

# If there were programs installed:
mkdir -p %{buildroot}%{_bindir}
cp -a ./%{_bindir}/* %{buildroot}%{_bindir}

# If there are C extensions, copy them to the extdir.
mkdir -p %{buildroot}%{gem_extdir_mri}
cp -a .%{gem_extdir_mri}/{gem.build_complete,*.so} %{buildroot}%{gem_extdir_mri}/

The following table explains the specifics of particular items in a RubyGems SPEC file:

Table 5.5. RubyGems' SPEC directives specifics

SPEC directiveRubyGems specifics

%prep

RPM can directly unpack gem archives, so you can run the gem unpack comamnd to extract the source from the gem. The %setup -n %{gem_name}-%{version} macro provides the directory into which the gem has been unpacked. At the same directory level, the %{gem_name}-%{version}.gemspec file is automatically created, which can be used to rebuild the gem later, to modify the .gemspec, or to apply patches to the code.

%build

This directive includes commands or series of commands for building the software into machine code. The %gem_install macro operates only on gem archives, and the gem is recreated with the next gem build. The gem file that is created is then used by %gem_install to build and install the code into the temporary directory, which is ./%{gem_dir} by default. The %gem_install macro both builds and installs the code in one step. Before being installed, the built sources are placed into a temporary directory that is created automatically.

The %gem_install macro accepts two additional options: -n <gem_file>, which allows to override gem used for installation, and -d <install_dir>, which might override the gem installation destination; using this option is not recommended.

The %gem_install macro must not be used to install into the %{buildroot}.

%install

The installation is performed into the %{buildroot} hierarchy. You can create the directories that you need and then copy what was installed in the temporary directories into the %{buildroot} hierarchy. If this gem creates shared objects, they are moved into the architecture-specific %{gem_extdir_mri} path.

Additional resources

5.7.3.4. Converting RubyGems packages to RPM SPEC files with gem2rpm

The gem2rpm utility converts RubyGems packages to RPM SPEC files.

The following sections describe how to:

  • Install the gem2rpm utility
  • Display all gem2rpm options
  • Use gem2rpm to covert RubyGems packages to RPM SPEC files
  • Edit gem2rpm templates
5.7.3.4.1. Installing gem2rpm

The following procedure describes how to install the gem2rpm utility.

Procedure

$ gem install gem2rpm
5.7.3.4.2. Displaying all options of gem2rpm

The following procedure describes how to display all options of the gem2rpm utility.

Procedure

  • To see all options of gem2rpm, run:

    $ gem2rpm --help
5.7.3.4.3. Using gem2rpm to covert RubyGems packages to RPM SPEC files

The following procedure describes how to use the gem2rpm utility to covert RubyGems packages to RPM SPEC files.

Procedure

  • Download a gem in its latest version, and generate the RPM SPEC file for this gem:

    $ gem2rpm --fetch <gem_name> > <gem_name>.spec

The described procedure creates an RPM SPEC file based on the information provided in the gem’s metadata. However, the gem misses some important information that is usually provided in RPMs, such as the license and the changelog. The generated SPEC file thus needs to be edited.

5.7.3.4.4. gem2rpm templates

The gem2rpm template is a standard Embedded Ruby (ERB) file, which includes variables listed in the following table.

Table 5.6. Variables in the gem2rpm template

VariableExplanation

package

The Gem::Package variable for the gem.

spec

The Gem::Specification variable for the gem (the same as format.spec).

config

The Gem2Rpm::Configuration variable that can redefine default macros or rules used in spec template helpers.

runtime_dependencies

The Gem2Rpm::RpmDependencyList variable providing a list of package runtime dependencies.

development_dependencies

The Gem2Rpm::RpmDependencyList variable providing a list of package development dependencies.

tests

The Gem2Rpm::TestSuite variable providing a list of test frameworks allowing their execution.

files

The Gem2Rpm::RpmFileList variable providing an unfiltered list of files in a package.

main_files

The Gem2Rpm::RpmFileList variable providing a list of files suitable for the main package.

doc_files

The Gem2Rpm::RpmFileList variable providing a list of files suitable for the -doc subpackage.

format

The Gem::Format variable for the gem. Note that this variable is now deprecated.

5.7.3.4.5. Listing available gem2rpm templates

Use the following procedure describes to list all available gem2rpm templates.

Procedure

  • To see all available templates, run:

    $ gem2rpm --templates
5.7.3.4.6. Editing gem2rpm templates

You can edit the template from which the RPM SPEC file is generated instead of editing the generated SPEC file.

Use the following procedure to edit the gem2rpm templates.

Procedure

  1. Save the default template:

    $ gem2rpm -T > rubygem-<gem_name>.spec.template
  2. Edit the template as needed.
  3. Generate the SPEC file by using the edited template:

    $ gem2rpm -t rubygem-<gem_name>.spec.template <gem_name>-<latest_version.gem > <gem_name>-GEM.spec

You can now build an RPM package by using the edited template as described in Building RPMs.

5.8. How to handle RPM packages with Perls scripts

Since RHEL 8, the Perl programming language is not included in the default buildroot. Therefore, the RPM packages that include Perl scripts must explicitly indicate the dependency on Perl using the BuildRequires: directive in RPM SPEC file.

5.8.2. Using a specific Perl module

If a specific Perl module is required at build time, use the following procedure:

Procedure

  • Apply the following syntax in your RPM SPEC file:

    BuildRequires: perl(MODULE)
    Note

    Apply this syntax to Perl core modules as well, because they can move in and out of the perl package over time.

5.8.3. Limiting a package to a specific Perl version

To limit your package to a specific Perl version, follow this procedure:

Procedure

  • Use the perl(:VERSION) dependency with the desired version constraint in your RPM SPEC file:

    For example, to limit a package to Perl version 5.22 and later, use:

    BuildRequires: perl(:VERSION) >= 5.22
Warning

Do not use a comparison against the version of the perl package because it includes an epoch number.

5.8.4. Ensuring that a package uses the correct Perl interpreter

Red Hat provides multiple Perl interpreters, which are not fully compatible. Therefore, any package that delivers a Perl module must use at run time the same Perl interpreter that was used at build time.

To ensure this, follow the procedure below:

Procedure

  • Include versioned MODULE_COMPAT Requires in RPM SPEC file for any package that delivers a Perl module:

    Requires:  perl(:MODULE_COMPAT_%(eval `perl -V:version`; echo $version))

Chapter 6. New features in RHEL 8

This section documents the most notable changes in RPM packaging between Red Hat Enterprise Linux 7 and 8.

6.1. Support for Weak dependencies

Weak dependencies are variants of the Requires directive. These variants are matched against virtual Provides: and package names using Epoch-Version-Release range comparisons.

Weak dependencies have two strengths (weak and hint) and two directions (forward and backward), as summarized in the following table.

Note

The forward direction is analogous to Requires:. The backward has no analog in the previous dependency system.

Table 6.1. Possible combinations of Weak dependencies' strengths and directions

Strength/DirectionForwardBackward

Weak

Recommends:

Supplements:

Hint

Suggests:

Enhances:

The main advantages of the Weak dependencies policy are:

  • It allows smaller minimal installations while keeping the default installation feature rich.
  • Packages can specify preferences for specific providers while maintaining the flexibility of virtual provides.

6.1.1. Introduction to Weak dependencies

By default, Weak dependencies are treated similarly to regular Requires:. Matching packages are included in the YUM transaction. If adding the package leads to an error, YUM by default ignores the dependency. Hence, users can exclude packages that would be added by Weak dependencies or remove them later.

Conditions of use

You can use Weak dependencies only if the package still functions without the dependency.

Note

It is acceptable to create packages with very limited functionality without adding any of its weak requirements.

Use cases

Use Weak dependencies especially where it is possible to minimize the installation for reasonable use cases, such as building virtual machines or containers that have a single purpose and do not require the full feature set of the package.

Typical use cases for Weak dependencies are:

  • Documentation

    • Documentation viewers if missing them is handled gracefully
  • Examples
  • Plug-ins or add-ons

    • Support for file formats
    • Support for protocols

6.1.2. The Hints strength

Hints are by default ignored by YUM. They can be used by GUI tools to offer add-on packages that are not installed by default but can be useful in combination with the installed packages.

Do not use Hints for the requirements of the main use cases of a package. Include such requirements in the strong or Weak dependencies instead.

Package Preference

YUM uses Weak dependencies and Hints to decide which package to use if there is a choice between multiple equally valid packages. Packages that are pointed at by dependencies from installed or to be installed packages are preferred.

Note, the normal rules of dependency resolution are not influenced by this feature. For example, Weak dependencies cannot enforce an older version of a package to be chosen.

If there are multiple providers for a dependency, the requiring package can add a Suggests: to provide a hint to the dependency resolver about which option is preferred.

Enhances: is only used when the main package and other providers agree that adding the hint to the required package is for some reason the cleaner solution.

Example 6.1. Using Hints to prefer one package over another

Package A: Requires: mysql

Package mariadb: Provides: mysql

Package community-mysql: Provides: mysql

If you want to prefer the mariadb package over the community-mysql package → use:

Suggests: mariadb to Package A.

6.1.3. Forward and Backward dependencies

Forward dependencies are, similarly to Requires, evaluated for packages that are being installed. The best of the matching packages are also installed.

In general, prefer Forward dependencies. Add the dependency to the package when getting the other package added to the system.

For Backward dependencies, the packages containing the dependency are installed if a matching package is installed as well.

Backward dependencies are mainly designed for third party vendors who can attach their plug-ins, add-ons, or extensions to distribution or other third party packages.

6.2. Support for Boolean dependencies

Starting with version 4.13, RPM is able to process boolean expressions in the following dependencies:

  • Requires
  • Recommends
  • Suggests
  • Supplements
  • Enhances
  • Conflicts

The following sections describe boolean dependencies syntax, provides a list of boolean operators, and explains boolean dependencies nesting as well as boolean dependencies semantics.

6.2.1. Boolean dependencies syntax

Boolean expressions are always enclosed with parenthesis.

They are build out of normal dependencies:

  • Name only or name
  • Comparison
  • Version description

6.2.2. Boolean operators

RPM 4.13 introduced the following boolean operators:

Table 6.2. Boolean operators introduced with RPM 4.13

Boolean operatorDescriptionExample use

and

Requires all operands to be fulfilled for the term to be true.

Conflicts: (pkgA and pkgB)

or

Requires one of the operands to be fulfilled for the term to be true.

Requires: (pkgA >= 3.2 or pkgB)

if

Requires the first operand to be fulfilled if the second is. (reverse implication)

Recommends: (myPkg-langCZ if langsupportCZ)

if else

Same as the if operator, plus requires the third operand to be fulfilled if the second is not.

Requires: myPkg-backend-mariaDB if mariaDB else sqlite

RPM 4.14 introduced the following additional boolean operators:

Table 6.3. Boolean operators introduced with RPM 4.14

Boolean operatorDescriptionExample use

with

Requires all operands to be fulfilled by the same package for the term to be true.

Requires: (pkgA-foo with pkgA-bar)

without

Requires a single package that satisfies the first operand but not the second. (set subtraction)

Requires: (pkgA-foo without pkgA-bar)

unless

Requires the first operand to be fulfilled if the second is not. (reverse negative implication)

Conflicts: (myPkg-driverA unless driverB)

unless else

Same as the unless operator, plus requires the third operand to be fulfilled if the second is.

Conflicts: (myPkg-backend-SDL1 unless myPkg-backend-SDL2 else SDL2)

Important

The if operator cannot be used in the same context with the or operator, and the unless operator cannot be used in the same context with and.

6.2.3. Nesting

Operands themselves can be used as boolean expressions, as shown in the below examples.

Note that in such case, operands also need to be surrounded by parenthesis. You can chain the and and or operators together repeating the same operator with only one set of surrounding parenthesis.

Example 6.2. Example use of operands applied as boolean expressions

Requires: (pkgA or pkgB or pkgC)
Requires: (pkgA or (pkgB and pkgC))
Supplements: (foo and (lang-support-cz or lang-support-all))
Requires: (pkgA with capB) or (pkgB without capA)
Supplements: ((driverA and driverA-tools) unless driverB)
Recommends: myPkg-langCZ and (font1-langCZ or font2-langCZ) if langsupportCZ

6.2.4. Semantics

Using Boolean dependencies does not change the semantic of regular dependencies.

If Boolean dependencies are used, checking for one match all names are checked and the boolean value of there being a match is then aggregated over the Boolean operators.

Important

For all dependencies with the exception of Conflicts:, the result has to be True to not prevent an install. For Conflicts:, the result has to be False to not prevent an install.

Warning

Provides are not dependencies and cannot contain boolean expressions.

6.2.5. Understanding the output of the if operator

The if operator is also returning a boolean value, which is usually close to what the intuitive understanding is. However, the below examples show that in some cases intuitive understanding of if can be misleading.

Example 6.3. Misleading outputs of the if operator

This statement is true if pkgB is not installed. However, if this statement is used where the default result is false, things become complicated:

Requires: (pkgA if pkgB)

This statement is a conflict unless pkgB is installed and pkgA is not:

Conflicts: (pkgA if pkgB)

So you might rather want to use:

Conflicts: (pkgA and pkgB)

The same is true if the if operator is nested in or terms:

Requires: ((pkgA if pkgB) or pkgC or pkg)

This also makes the whole term true, because the if term is true if pkgB is not installed. If pkgA only helps if pkgB is installed, use and instead:

Requires: ((pkgA and pkgB) or pkgC or pkg)

6.3. Support for File triggers

File triggers are a kind of RPM scriptlets,

which are defined in a SPEC file of a package.

Similar to Triggers, they are declared in one package but executed when another package that contains the matching files is installed or removed.

A common use of File triggers is to update registries or caches. In such use case, the package containing or managing the registry or cache should contain also one or more File triggers. Including File triggers saves time compared to the situation when the package controls updating itself.

6.3.1. File triggers syntax

File triggers have the following syntax:

%file_trigger_tag [FILE_TRIGGER_OPTIONS] — PATHPREFIX…​
body_of_script

Where:

file_trigger_tag defines a type of file trigger. Allowed types are:

  • filetriggerin
  • filetriggerun
  • filetriggerpostun
  • transfiletriggerin
  • transfiletriggerun
  • transfiletriggerpostun

FILE_TRIGGER_OPTIONS have the same purpose as RPM scriptlets options, except for the -P option.

The priority of a trigger is defined by a number. The bigger number, the sooner the file trigger script is executed. Triggers with priority greater than 100000 are executed before standard scriptlets, and the other triggers are executed after standard scriptlets. The default priority is set to 1000000.

Every file trigger of each type must contain one or more path prefixes and scripts.

6.3.2. Examples of File triggers syntax

The following example shows the File triggers syntax:

%filetriggerin — /lib, /lib64, /usr/lib, /usr/lib64
/usr/sbin/ldconfig

This file trigger executes /usr/bin/ldconfig directly after the installation of a package that contains a file having a path starting with /usr/lib or /lib. The file trigger is executed just once even if the package includes multiple files with the path starting with /usr/lib or /lib. However, all file names starting with /usr/lib or /lib are passed to standard input of trigger script so that you can filter inside of your script as shown below:

%filetriggerin — /lib, /lib64, /usr/lib, /usr/lib64
grep "foo" && /usr/sbin/ldconfig

This file trigger executes /usr/bin/ldconfig for each package containing files starting with /usr/lib and containing foo at the same time. Note that the prefix-matched files include all types of files including regular files, directories, symlinks and others.

6.3.3. File triggers types

File triggers have two main types:

File triggers are further divided based on the time of execution as follows:

  • Before or after installation or erasure of a package
  • Before or after a transaction

6.3.3.1. Executed once per package File triggers

File triggers executed once per package are:

  • %filetriggerin
  • %filetriggerun
  • %filetriggerpostun
%filetriggerin

This file trigger is executed after installation of a package if this package contains one or more files that match the prefix of this trigger. It is also executed after installation of a package that contains this file trigger and there is one or more files matching the prefix of this file trigger in the rpmdb database.

%filetriggerun

This file trigger is executed before uninstallation of a package if this package contains one or more files that match the prefix of this trigger. It is also executed before uninstallation of a package that contains this file trigger and there is one or more files matching the prefix of this file trigger in rpmdb.

%filetriggerpostun

This file trigger is executed after uninstallation of a package if this package contains one or more files that match the prefix of this trigger.

6.3.3.2. Executed once per transaction File triggers

File triggers executed once per transaction are:

  • %transfiletriggerin
  • %transfiletriggerun
  • %transfiletriggerpostun
%transfiletriggerin

This file trigger is executed once after a transaction for all installed packages that contain one or more files that match the prefix of this trigger. It is also executed after a transaction if there was a package containing this file trigger in that transaction and there is one or more files matching the prefix of this trigger in rpmdb.

%transfiletriggerun

This file trigger is executed once before a transaction for all packages that meet the following conditions:

  • The package will be uninstalled in this transaction
  • The package contains one or more files that match the prefix of this trigger

It is also executed before a transaction if there is a package containing this file trigger in that transaction and there is one or more files matching the prefix of this trigger in rpmdb.

%transfiletriggerpostun

This file trigger is executed once after a transaction for all uninstalled packages that contain one or more file that matches the prefix of this trigger.

Note

The list of triggering files is not available in this trigger type.

Therefore, if you install or uninstall multiple packages that contain libraries, the ldconfig cache is updated at the end of the whole transaction. This significantly improves the performance compared to RHEL 7 where the cache was updated for each package separately. Also the scriptlets which called ldconfig in %post and %postun in SPEC file of every package are no longer needed.

6.3.4. Example use of File triggers in glibc

The following example shows a real-world usage of File triggers within the glibc package.

In RHEL 8, File triggers are implemented in glibc to call the ldconfig command at the end of an installation or uninstallation transaction.

This is ensured by including the following scriptlets in the glibc’s SPEC file:

%transfiletriggerin common -P 2000000 – /lib /usr/lib /lib64 /usr/lib64
/sbin/ldconfig
%end
%transfiletriggerpostun common -P 2000000 – /lib /usr/lib /lib64 /usr/lib64
/sbin/ldconfig
%end

Therefore, if you install or uninstall multiple packages, the ldconfig cache is updated for all installed libraries after the whole transaction is finished. Consequently, it is no longer necessary to include the scriptlets calling ldconfig in RPM SPEC files of individual packages. This improves the performance compared to RHEL 7, where the cache was updated for each package separately.

6.4. Stricter SPEC parser

The SPEC parser has now some changes incorporated. Hence, it can identify new issues that were previously ignored.

6.5. Support for files above 4 GB

On Red Hat Enterprise Linux 8, RPM can use 64-bit variables and tags, which enables operating on files and packages bigger than 4 GB.

6.5.1. 64-bit RPM tags

Several RPM tags exist in both 64-bit versions and previous 32-bit versions. Note that the 64-bit versions have the LONG string in front of their name.

Table 6.4. RPM tags available in both 32-bit and 64-bit versions

32-bit variant tag name62-bit variant tag nameTag description

RPMTAG_SIGSIZE

RPMTAG_LONGSIGSIZE

Header and compressed payload size.

RPMTAG_ARCHIVESIZE

RPMTAG_LONGARCHIVESIZE

Uncompressed payload size.

RPMTAG_FILESIZES

RPMTAG_LONGFILESIZES

Array of file sizes.

RPMTAG_SIZE

RPMTAG_LONGSIZE

Sum of all file sizes.

6.5.2. Using 64-bit tags on command line

The LONG extensions are always enabled on the command line. If you previously used scripts containing the rpm -q --qf command, you can add long to the name of such tags:

rpm -qp --qf="[%{filenames} %{longfilesizes}\n]"

6.6. Other features

Other new features related to RPM packaging in Red Hat Enterprise Linux 8 are:

  • Simplified signature checking output in non-verbose mode
  • Support for the enforced payload verification
  • Support for the enforcing signature checking mode
  • Additions and deprecations in macros

Additional resources

See the following references to various topics related to RPMs, RPM packaging, and RPM building. Some of these are advanced and extend the introductory material included in this documentation.

Red Hat Software Collections Overview - The Red Hat Software Collections offering provides continuously updated development tools in latest stable versions.

Red Hat Software Collections - The Packaging Guide provides an explanation of Software Collections and details how to build and package them. Developers and system administrators with basic understanding of software packaging with RPM can use this Guide to get started with Software Collections.

Mock - Mock provides a community-supported package building solution for various architectures and different Fedora or RHEL versions than has the build host.

RPM Documentation - The official RPM documentation.

Fedora Packaging Guidelines - The official packaging guidelines for Fedora, useful for all RPM-based distributions.

Legal Notice

Copyright © 2024 Red Hat, Inc.
The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are the property of their respective owners.