OpenShift Container Platform 4.8
Service Mesh

Service Mesh installation, usage, and release notes

Red Hat OpenShift Documentation Team

		Copyright © 2023 Red Hat, Inc.
	

		The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
	

		Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
	

		Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
	

		Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
	

		Java® is a registered trademark of Oracle and/or its affiliates.
	

		XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
	

		MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
	

		Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
	

		The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
	

		All other trademarks are the property of their respective owners.
	

Abstract

				This document provides information on how to use Service Mesh in OpenShift Container Platform.
			

Chapter 1. Service Mesh 2.x

About OpenShift Service Mesh

Note

					Because Red Hat OpenShift Service Mesh releases on a different cadence from OpenShift Container Platform and because the Red Hat OpenShift Service Mesh Operator supports deploying multiple versions of the ServiceMeshControlPlane, the Service Mesh documentation does not maintain separate documentation sets for minor versions of the product. The current documentation set applies to all currently supported versions of Service Mesh unless version-specific limitations are called out in a particular topic or for a particular feature.
				

					For additional information about the Red Hat OpenShift Service Mesh life cycle and supported platforms, refer to the Platform Life Cycle Policy.
				

Introduction to Red Hat OpenShift Service Mesh

					Red Hat OpenShift Service Mesh addresses a variety of problems in a microservice architecture by creating a centralized point of control in an application. It adds a transparent layer on existing distributed applications without requiring any changes to the application code.
				

					Microservice architectures split the work of enterprise applications into modular services, which can make scaling and maintenance easier. However, as an enterprise application built on a microservice architecture grows in size and complexity, it becomes difficult to understand and manage. Service Mesh can address those architecture problems by capturing or intercepting traffic between services and can modify, redirect, or create new requests to other services.
				

					Service Mesh, which is based on the open source Istio project, provides an easy way to create a network of deployed services that provides discovery, load balancing, service-to-service authentication, failure recovery, metrics, and monitoring. A service mesh also provides more complex operational functionality, including A/B testing, canary releases, access control, and end-to-end authentication.
				

Core features

					Red Hat OpenShift Service Mesh provides a number of key capabilities uniformly across a network of services:
				
	
							Traffic Management - Control the flow of traffic and API calls between services, make calls more reliable, and make the network more robust in the face of adverse conditions.
						
	
							Service Identity and Security - Provide services in the mesh with a verifiable identity and provide the ability to protect service traffic as it flows over networks of varying degrees of trustworthiness.
						
	
							Policy Enforcement - Apply organizational policy to the interaction between services, ensure access policies are enforced and resources are fairly distributed among consumers. Policy changes are made by configuring the mesh, not by changing application code.
						
	
							Telemetry - Gain understanding of the dependencies between services and the nature and flow of traffic between them, providing the ability to quickly identify issues.
						

Service Mesh Release Notes

Making open source more inclusive

					Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
				

New features and enhancements

					This release adds improvements related to the following components and concepts.
				
New features Red Hat OpenShift Service Mesh version 2.2.3

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.2.3

	Component	Version
	
											Istio
										

										 	
											1.12.9
										

										
	
											Envoy Proxy
										

										 	
											1.20.8
										

										
	
											Jaeger
										

										 	
											1.36
										

										
	
											Kiali
										

										 	
											1.48.3
										

										

New features Red Hat OpenShift Service Mesh version 2.2.2

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.2.2

	Component	Version
	
											Istio
										

										 	
											1.12.7
										

										
	
											Envoy Proxy
										

										 	
											1.20.6
										

										
	
											Jaeger
										

										 	
											1.36
										

										
	
											Kiali
										

										 	
											1.48.2-1
										

										

Copy route labels

							With this enhancement, in addition to copying annotations, you can copy specific labels for an OpenShift route. Red Hat OpenShift Service Mesh copies all labels and annotations present in the Istio Gateway resource (with the exception of annotations starting with kubectl.kubernetes.io) into the managed OpenShift Route resource.
						

New features Red Hat OpenShift Service Mesh version 2.2.1

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.2.1

	Component	Version
	
											Istio
										

										 	
											1.12.7
										

										
	
											Envoy Proxy
										

										 	
											1.20.6
										

										
	
											Jaeger
										

										 	
											1.34.1
										

										
	
											Kiali
										

										 	
											1.48.2-1
										

										

New features Red Hat OpenShift Service Mesh 2.2

						This release of Red Hat OpenShift Service Mesh adds new features and enhancements, and is supported on OpenShift Container Platform 4.9 or later.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.2

	Component	Version
	
											Istio
										

										 	
											1.12.7
										

										
	
											Envoy Proxy
										

										 	
											1.20.4
										

										
	
											Jaeger
										

										 	
											1.34.1
										

										
	
											Kiali
										

										 	
											1.48.0.16
										

										

WasmPlugin API

							This release adds support for the WasmPlugin API and deprecates the ServiceMeshExtention API.
						

ROSA support

							This release introduces service mesh support for Red Hat OpenShift on AWS (ROSA), including multi-cluster federation.
						

istio-node DaemonSet renamed

							This release, the istio-node DaemonSet is renamed to istio-cni-node to match the name in upstream Istio.
						

Envoy sidecar networking changes

							Istio 1.10 updated Envoy to send traffic to the application container using eth0 rather than lo by default.
						

Service Mesh Control Plane 1.1

							This release marks the end of support for Service Mesh Control Planes based on Service Mesh 1.1 for all platforms.
						

Istio 1.12 Support

							Service Mesh 2.2 is based on Istio 1.12, which brings in new features and product enhancements. While many Istio 1.12 features are supported, the following unsupported features should be noted:
						
	
									AuthPolicy Dry Run is a tech preview feature.
								
	
									gRPC Proxyless Service Mesh is a tech preview feature.
								
	
									Telemetry API is a tech preview feature.
								
	
									Discovery selectors is not a supported feature.
								
	
									External control plane is not a supported feature.
								
	
									Gateway injection is not a supported feature.
								

Kubernetes Gateway API

							Kubernetes Gateway API is a technology preview feature that is disabled by default.
						

							To enable the feature, set the following environment variables for the Istiod container in ServiceMeshControlPlane:
						
spec:
 runtime:
 components:
 pilot:
 container:
 env:
 PILOT_ENABLE_GATEWAY_API: true
 PILOT_ENABLE_GATEWAY_API_STATUS: true
 # and optionally, for the deployment controller
 PILOT_ENABLE_GATEWAY_API_DEPLOYMENT_CONTROLLER: true

							Restricting route attachment on Gateway API listeners is possible using the SameNamespace or All settings. Istio ignores usage of label selectors in listeners.allowedRoutes.namespaces and reverts to the default behavior (SameNamespace).
						

New features Red Hat OpenShift Service Mesh 2.1.5.1

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.1

	Component	Version
	
											Istio
										

										 	
											1.9.9
										

										
	
											Envoy Proxy
										

										 	
											1.17.5
										

										
	
											Jaeger
										

										 	
											1.36
										

										
	
											Kiali
										

										 	
											1.36.13
										

										

New features Red Hat OpenShift Service Mesh 2.1.5

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.1.5

	Component	Version
	
											Istio
										

										 	
											1.9.9
										

										
	
											Envoy Proxy
										

										 	
											1.17.1
										

										
	
											Jaeger
										

										 	
											1.36
										

										
	
											Kiali
										

										 	
											1.36.12-1
										

										

New features Red Hat OpenShift Service Mesh 2.1.4

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.1.4

	Component	Version
	
											Istio
										

										 	
											1.9.9
										

										
	
											Envoy Proxy
										

										 	
											1.17.1
										

										
	
											Jaeger
										

										 	
											1.30.2
										

										
	
											Kiali
										

										 	
											1.36.12-1
										

										

New features Red Hat OpenShift Service Mesh 2.1.3

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.1.3

	Component	Version
	
											Istio
										

										 	
											1.9.9
										

										
	
											Envoy Proxy
										

										 	
											1.17.1
										

										
	
											Jaeger
										

										 	
											1.30.2
										

										
	
											Kiali
										

										 	
											1.36.10-2
										

										

New features Red Hat OpenShift Service Mesh 2.1.2.1

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.1.2.1

	Component	Version
	
											Istio
										

										 	
											1.9.9
										

										
	
											Envoy Proxy
										

										 	
											1.17.1
										

										
	
											Jaeger
										

										 	
											1.30.2
										

										
	
											Kiali
										

										 	
											1.36.9
										

										

New features Red Hat OpenShift Service Mesh 2.1.2

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

						With this release, the Red Hat OpenShift distributed tracing platform Operator is now installed to the openshift-distributed-tracing namespace by default. Previously the default installation had been in the openshift-operator namespace.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.1.2

	Component	Version
	
											Istio
										

										 	
											1.9.9
										

										
	
											Envoy Proxy
										

										 	
											1.17.1
										

										
	
											Jaeger
										

										 	
											1.30.1
										

										
	
											Kiali
										

										 	
											1.36.8
										

										

New features Red Hat OpenShift Service Mesh 2.1.1

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

						This release also adds the ability to disable the automatic creation of network policies.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.1.1

	Component	Version
	
											Istio
										

										 	
											1.9.9
										

										
	
											Envoy Proxy
										

										 	
											1.17.1
										

										
	
											Jaeger
										

										 	
											1.24.1
										

										
	
											Kiali
										

										 	
											1.36.7
										

										

Disabling network policies

							Red Hat OpenShift Service Mesh automatically creates and manages a number of NetworkPolicies resources in the Service Mesh control plane and application namespaces. This is to ensure that applications and the control plane can communicate with each other.
						

							If you want to disable the automatic creation and management of NetworkPolicies resources, for example to enforce company security policies, you can do so. You can edit the ServiceMeshControlPlane to set the spec.security.manageNetworkPolicy setting to false
						
Note

								When you disable spec.security.manageNetworkPolicy Red Hat OpenShift Service Mesh will not create any NetworkPolicy objects. The system administrator is responsible for managing the network and fixing any issues this might cause.
							

Procedure
	
									In the OpenShift Container Platform web console, click Operators → Installed Operators.
								
	
									Select the project where you installed the Service Mesh control plane, for example istio-system, from the Project menu.
								
	
									Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane column, click the name of your ServiceMeshControlPlane, for example basic-install.
								
	
									On the Create ServiceMeshControlPlane Details page, click YAML to modify your configuration.
								
	
									Set the ServiceMeshControlPlane field spec.security.manageNetworkPolicy to false, as shown in this example.
								
apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 security:
 trust:
 manageNetworkPolicy: false

	
									Click Save.
								

New features and enhancements Red Hat OpenShift Service Mesh 2.1

						This release of Red Hat OpenShift Service Mesh adds support for Istio 1.9.8, Envoy Proxy 1.17.1, Jaeger 1.24.1, and Kiali 1.36.5 on OpenShift Container Platform 4.6 EUS, 4.7, 4.8, 4.9, along with new features and enhancements.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.1

	Component	Version
	
											Istio
										

										 	
											1.9.6
										

										
	
											Envoy Proxy
										

										 	
											1.17.1
										

										
	
											Jaeger
										

										 	
											1.24.1
										

										
	
											Kiali
										

										 	
											1.36.5
										

										

Service Mesh Federation

							New Custom Resource Definitions (CRDs) have been added to support federating service meshes. Service meshes may be federated both within the same cluster or across different OpenShift clusters. These new resources include:
						
	
									ServiceMeshPeer - Defines a federation with a separate service mesh, including gateway configuration, root trust certificate configuration, and status fields. In a pair of federated meshes, each mesh will define its own separate ServiceMeshPeer resource.
								
	
									ExportedServiceMeshSet - Defines which services for a given ServiceMeshPeer are available for the peer mesh to import.
								
	
									ImportedServiceSet - Defines which services for a given ServiceMeshPeer are imported from the peer mesh. These services must also be made available by the peer’s ExportedServiceMeshSet resource.
								

							Service Mesh Federation is not supported between clusters on Red Hat OpenShift Service on AWS (ROSA), Azure Red Hat OpenShift (ARO), or OpenShift Dedicated (OSD).
						

OVN-Kubernetes Container Network Interface (CNI) generally available

							The OVN-Kubernetes Container Network Interface (CNI) was previously introduced as a Technology Preview feature in Red Hat OpenShift Service Mesh 2.0.1 and is now generally available in Red Hat OpenShift Service Mesh 2.1 and 2.0.x for use on OpenShift Container Platform 4.7.32, OpenShift Container Platform 4.8.12, and OpenShift Container Platform 4.9.
						

Service Mesh WebAssembly (WASM) Extensions

							The ServiceMeshExtensions Custom Resource Definition (CRD), first introduced in 2.0 as Technology Preview, is now generally available. You can use CRD to build your own plugins, but Red Hat does not provide support for the plugins you create.
						

							Mixer has been completely removed in Service Mesh 2.1. Upgrading from a Service Mesh 2.0.x release to 2.1 will be blocked if Mixer is enabled. Mixer plugins will need to be ported to WebAssembly Extensions.
						

3scale WebAssembly Adapter (WASM)

							With Mixer now officially removed, OpenShift Service Mesh 2.1 does not support the 3scale mixer adapter. Before upgrading to Service Mesh 2.1, remove the Mixer-based 3scale adapter and any additional Mixer plugins. Then, manually install and configure the new 3scale WebAssembly adapter with Service Mesh 2.1+ using a ServiceMeshExtension resource.
						

							3scale 2.11 introduces an updated Service Mesh integration based on WebAssembly.
						

Istio 1.9 Support

							Service Mesh 2.1 is based on Istio 1.9, which brings in a large number of new features and product enhancements. While the majority of Istio 1.9 features are supported, the following exceptions should be noted:
						
	
									Virtual Machine integration is not yet supported
								
	
									Kubernetes Gateway API is not yet supported
								
	
									Remote fetch and load of WebAssembly HTTP filters are not yet supported
								
	
									Custom CA Integration using the Kubernetes CSR API is not yet supported
								
	
									Request Classification for monitoring traffic is a tech preview feature
								
	
									Integration with external authorization systems via Authorization policy’s CUSTOM action is a tech preview feature
								

Improved Service Mesh operator performance

							The amount of time Red Hat OpenShift Service Mesh uses to prune old resources at the end of every ServiceMeshControlPlane reconciliation has been reduced. This results in faster ServiceMeshControlPlane deployments, and allows changes applied to existing SMCPs to take effect more quickly.
						

Kiali updates

							Kiali 1.36 includes the following features and enhancements:
						
	
									Service Mesh troubleshooting functionality
								
	
											Control plane and gateway monitoring
										
	
											Proxy sync statuses
										
	
											Envoy configuration views
										
	
											Unified view showing Envoy proxy and application logs interleaved
										

	
									Namespace and cluster boxing to support federated service mesh views
								
	
									New validations, wizards, and distributed tracing enhancements
								

New features Red Hat OpenShift Service Mesh 2.0.11.1

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.0.11.1

	Component	Version
	
											Istio
										

										 	
											1.6.14
										

										
	
											Envoy Proxy
										

										 	
											1.14.5
										

										
	
											Jaeger
										

										 	
											1.36
										

										
	
											Kiali
										

										 	
											1.24.17
										

										

New features Red Hat OpenShift Service Mesh 2.0.11

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.0.11

	Component	Version
	
											Istio
										

										 	
											1.6.14
										

										
	
											Envoy Proxy
										

										 	
											1.14.5
										

										
	
											Jaeger
										

										 	
											1.36
										

										
	
											Kiali
										

										 	
											1.24.16-1
										

										

New features Red Hat OpenShift Service Mesh 2.0.10

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.0.10

	Component	Version
	
											Istio
										

										 	
											1.6.14
										

										
	
											Envoy Proxy
										

										 	
											1.14.5
										

										
	
											Jaeger
										

										 	
											1.28.0
										

										
	
											Kiali
										

										 	
											1.24.16-1
										

										

New features Red Hat OpenShift Service Mesh 2.0.9

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					
Component versions included in Red Hat OpenShift Service Mesh version 2.0.9

	Component	Version
	
											Istio
										

										 	
											1.6.14
										

										
	
											Envoy Proxy
										

										 	
											1.14.5
										

										
	
											Jaeger
										

										 	
											1.24.1
										

										
	
											Kiali
										

										 	
											1.24.11
										

										

New features Red Hat OpenShift Service Mesh 2.0.8

						This release of Red Hat OpenShift Service Mesh addresses bug fixes.
					

New features Red Hat OpenShift Service Mesh 2.0.7.1

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs).
					
Change in how Red Hat OpenShift Service Mesh handles URI fragments

							Red Hat OpenShift Service Mesh contains a remotely exploitable vulnerability, CVE-2021-39156, where an HTTP request with a fragment (a section in the end of a URI that begins with a # character) in the URI path could bypass the Istio URI path-based authorization policies. For instance, an Istio authorization policy denies requests sent to the URI path /user/profile. In the vulnerable versions, a request with URI path /user/profile#section1 bypasses the deny policy and routes to the backend (with the normalized URI path /user/profile%23section1), possibly leading to a security incident.
						

							You are impacted by this vulnerability if you use authorization policies with DENY actions and operation.paths, or ALLOW actions and operation.notPaths.
						

							With the mitigation, the fragment part of the request’s URI is removed before the authorization and routing. This prevents a request with a fragment in its URI from bypassing authorization policies which are based on the URI without the fragment part.
						

							To opt-out from the new behavior in the mitigation, the fragment section in the URI will be kept. You can configure your ServiceMeshControlPlane to keep URI fragments.
						
Warning

								Disabling the new behavior will normalize your paths as described above and is considered unsafe. Ensure that you have accommodated for this in any security policies before opting to keep URI fragments.
							

Example ServiceMeshControlPlane modification

								

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 techPreview:
 meshConfig:
 defaultConfig:
 proxyMetadata: HTTP_STRIP_FRAGMENT_FROM_PATH_UNSAFE_IF_DISABLED: "false"

							

Required update for authorization policies

							Istio generates hostnames for both the hostname itself and all matching ports. For instance, a virtual service or Gateway for a host of "httpbin.foo" generates a config matching "httpbin.foo and httpbin.foo:*". However, exact match authorization policies only match the exact string given for the hosts or notHosts fields.
						

							Your cluster is impacted if you have AuthorizationPolicy resources using exact string comparison for the rule to determine hosts or notHosts.
						

							You must update your authorization policy rules to use prefix match instead of exact match. For example, replacing hosts: ["httpbin.com"] with hosts: ["httpbin.com:*"] in the first AuthorizationPolicy example.
						
First example AuthorizationPolicy using prefix match

								

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: foo
spec:
 action: DENY
 rules:
 - from:
 - source:
 namespaces: ["dev"]
 to:
 - operation:
 hosts: [“httpbin.com”,"httpbin.com:*"]

							
Second example AuthorizationPolicy using prefix match

								

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: default
spec:
 action: DENY
 rules:
 - to:
 - operation:
 hosts: ["httpbin.example.com:*"]

							

New features Red Hat OpenShift Service Mesh 2.0.7

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

Red Hat OpenShift Service Mesh on Red Hat OpenShift Dedicated and Microsoft Azure Red Hat OpenShift

						Red Hat OpenShift Service Mesh is now supported through Red Hat OpenShift Dedicated and Microsoft Azure Red Hat OpenShift.
					

New features Red Hat OpenShift Service Mesh 2.0.6

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 2.0.5

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 2.0.4

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					
Important

							There are manual steps that must be completed to address CVE-2021-29492 and CVE-2021-31920.
						

Manual updates required by CVE-2021-29492 and CVE-2021-31920

							Istio contains a remotely exploitable vulnerability where an HTTP request path with multiple slashes or escaped slash characters (%2F or %5C) could potentially bypass an Istio authorization policy when path-based authorization rules are used.
						

							For example, assume an Istio cluster administrator defines an authorization DENY policy to reject the request at path /admin. A request sent to the URL path //admin will NOT be rejected by the authorization policy.
						

							According to RFC 3986, the path //admin with multiple slashes should technically be treated as a different path from the /admin. However, some backend services choose to normalize the URL paths by merging multiple slashes into a single slash. This can result in a bypass of the authorization policy (//admin does not match /admin), and a user can access the resource at path /admin in the backend; this would represent a security incident.
						

							Your cluster is impacted by this vulnerability if you have authorization policies using ALLOW action + notPaths field or DENY action + paths field patterns. These patterns are vulnerable to unexpected policy bypasses.
						

							Your cluster is NOT impacted by this vulnerability if:
						
	
									You don’t have authorization policies.
								
	
									Your authorization policies don’t define paths or notPaths fields.
								
	
									Your authorization policies use ALLOW action + paths field or DENY action + notPaths field patterns. These patterns could only cause unexpected rejection instead of policy bypasses. The upgrade is optional for these cases.
								

Note

								The Red Hat OpenShift Service Mesh configuration location for path normalization is different from the Istio configuration.
							

Updating the path normalization configuration

							Istio authorization policies can be based on the URL paths in the HTTP request. Path normalization, also known as URI normalization, modifies and standardizes the incoming requests' paths so that the normalized paths can be processed in a standard way. Syntactically different paths may be equivalent after path normalization.
						

							Istio supports the following normalization schemes on the request paths before evaluating against the authorization policies and routing the requests:
						
Table 1.1. Normalization schemes
	Option	Description	Example	Notes
	
											NONE
										

										 	
											No normalization is done. Anything received by Envoy will be forwarded exactly as-is to any backend service.
										

										 	
											../%2Fa../b is evaluated by the authorization policies and sent to your service.
										

										 	
											This setting is vulnerable to CVE-2021-31920.
										

										
	
											BASE
										

										 	
											This is currently the option used in the default installation of Istio. This applies the normalize_path option on Envoy proxies, which follows RFC 3986 with extra normalization to convert backslashes to forward slashes.
										

										 	
											/a/../b is normalized to /b. \da is normalized to /da.
										

										 	
											This setting is vulnerable to CVE-2021-31920.
										

										
	
											MERGE_SLASHES
										

										 	
											Slashes are merged after the BASE normalization.
										

										 	
											/a//b is normalized to /a/b.
										

										 	
											Update to this setting to mitigate CVE-2021-31920.
										

										
	
											DECODE_AND_MERGE_SLASHES
										

										 	
											The strictest setting when you allow all traffic by default. This setting is recommended, with the caveat that you must thoroughly test your authorization policies routes. Percent-encoded slash and backslash characters (%2F, %2f, %5C and %5c) are decoded to / or \, before the MERGE_SLASHES normalization.
										

										 	
											/a%2fb is normalized to /a/b.
										

										 	
											Update to this setting to mitigate CVE-2021-31920. This setting is more secure, but also has the potential to break applications. Test your applications before deploying to production.
										

										

							The normalization algorithms are conducted in the following order:
						
	
									Percent-decode %2F, %2f, %5C and %5c.
								
	
									The RFC 3986 and other normalization implemented by the normalize_path option in Envoy.
								
	
									Merge slashes.
								

Warning

								While these normalization options represent recommendations from HTTP standards and common industry practices, applications may interpret a URL in any way it chooses to. When using denial policies, ensure that you understand how your application behaves.
							

Path normalization configuration examples

							Ensuring Envoy normalizes request paths to match your backend services' expectations is critical to the security of your system. The following examples can be used as a reference for you to configure your system. The normalized URL paths, or the original URL paths if NONE is selected, will be:
						
	
									Used to check against the authorization policies.
								
	
									Forwarded to the backend application.
								

Table 1.2. Configuration examples
	If your application…​	Choose…​
	
											Relies on the proxy to do normalization
										

										 	
											BASE, MERGE_SLASHES or DECODE_AND_MERGE_SLASHES
										

										
	
											Normalizes request paths based on RFC 3986 and does not merge slashes.
										

										 	
											BASE
										

										
	
											Normalizes request paths based on RFC 3986 and merges slashes, but does not decode percent-encoded slashes.
										

										 	
											MERGE_SLASHES
										

										
	
											Normalizes request paths based on RFC 3986, decodes percent-encoded slashes, and merges slashes.
										

										 	
											DECODE_AND_MERGE_SLASHES
										

										
	
											Processes request paths in a way that is incompatible with RFC 3986.
										

										 	
											NONE
										

										

Configuring your SMCP for path normalization

							To configure path normalization for Red Hat OpenShift Service Mesh, specify the following in your ServiceMeshControlPlane. Use the configuration examples to help determine the settings for your system.
						
SMCP v2 pathNormalization

								

spec:
 techPreview:
 global:
 pathNormalization: <option>

							

Configuring for case normalization

							In some environments, it may be useful to have paths in authorization policies compared in a case insensitive manner. For example, treating https://myurl/get and https://myurl/GeT as equivalent. In those cases, you can use the EnvoyFilter shown below. This filter will change both the path used for comparison and the path presented to the application. In this example, istio-system is the name of the Service Mesh control plane project.
						

							Save the EnvoyFilter to a file and run the following command:
						
$ oc create -f <myEnvoyFilterFile>
apiVersion: networking.istio.io/v1alpha3
kind: EnvoyFilter
metadata:
 name: ingress-case-insensitive
 namespace: istio-system
spec:
 configPatches:
 - applyTo: HTTP_FILTER
 match:
 context: GATEWAY
 listener:
 filterChain:
 filter:
 name: "envoy.filters.network.http_connection_manager"
 subFilter:
 name: "envoy.filters.http.router"
 patch:
 operation: INSERT_BEFORE
 value:
 name: envoy.lua
 typed_config:
 "@type": "type.googleapis.com/envoy.extensions.filters.http.lua.v3.Lua"
 inlineCode: |
 function envoy_on_request(request_handle)
 local path = request_handle:headers():get(":path")
 request_handle:headers():replace(":path", string.lower(path))
 end

New features Red Hat OpenShift Service Mesh 2.0.3

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

						In addition, this release has the following new features:
					
	
								Added an option to the must-gather data collection tool that gathers information from a specified Service Mesh control plane namespace. For more information, see OSSM-351.
							
	
								Improved performance for Service Mesh control planes with hundreds of namespaces
							

New features Red Hat OpenShift Service Mesh 2.0.2

						This release of Red Hat OpenShift Service Mesh adds support for IBM Z and IBM Power Systems. It also addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 2.0.1

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 2.0

						This release of Red Hat OpenShift Service Mesh adds support for Istio 1.6.5, Jaeger 1.20.0, Kiali 1.24.2, and the 3scale Istio Adapter 2.0 and OpenShift Container Platform 4.6.
					

						In addition, this release has the following new features:
					
	
								Simplifies installation, upgrades, and management of the Service Mesh control plane.
							
	
								Reduces the Service Mesh control plane’s resource usage and startup time.
							
	
								Improves performance by reducing inter-control plane communication over networking.
							
	
										Adds support for Envoy’s Secret Discovery Service (SDS). SDS is a more secure and efficient mechanism for delivering secrets to Envoy side car proxies.
									

	
								Removes the need to use Kubernetes Secrets, which have well known security risks.
							
	
								Improves performance during certificate rotation, as proxies no longer require a restart to recognize new certificates.
							
	
										Adds support for Istio’s Telemetry v2 architecture, which is built using WebAssembly extensions. This new architecture brings significant performance improvements.
									
	
										Updates the ServiceMeshControlPlane resource to v2 with a streamlined configuration to make it easier to manage the Service Mesh Control Plane.
									
	
										Introduces WebAssembly extensions as a Technology Preview feature.
									

Technology Preview

					Some features in this release are currently in Technology Preview. These experimental features are not intended for production use.
				
Important

						Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. For more information about the support scope of Red Hat Technology Preview features, see the Technology Preview Support Scope.
					

Istio compatibility and support matrix

						In the table, features are marked with the following statuses:
					
	
								TP: Technology Preview
							
	
								GA: General Availability
							

						Note the following scope of support on the Red Hat Customer Portal for these features:
					
Table 1.3. Istio compatibility and support matrix
	Feature	Istio Version	Support Status	Description
	
										holdApplicationUntilProxyStarts
									

									 	
										1.7
									

									 	
										TP
									

									 	
										Blocks application container startup until proxy is running
									

									
	
										DNS capture
									

									 	
										1.8
									

									 	
										GA
									

									 	
										Enabled by default
									

									

Deprecated and removed features

					Some features available in previous releases have been deprecated or removed.
				

					Deprecated functionality is still included in OpenShift Container Platform and continues to be supported; however, it will be removed in a future release of this product and is not recommended for new deployments.
				

					Removed functionality no longer exists in the product.
				
Deprecated features Red Hat OpenShift Service Mesh 2.2

						The ServiceMeshExtension API is deprecated as of release 2.2 and will be removed in a future release. While ServiceMeshExtension API is still supported in release 2.2, customers should start moving to the new WasmPlugin API.
					

Removed features Red Hat OpenShift Service Mesh 2.2

						This release marks the end of support for Service Mesh control planes based on Service Mesh 1.1 for all platforms.
					

Removed features Red Hat OpenShift Service Mesh 2.1

						In Service Mesh 2.1, the Mixer component is removed. Bug fixes and support is provided through the end of the Service Mesh 2.0 life cycle.
					

						Upgrading from a Service Mesh 2.0.x release to 2.1 will not proceed if Mixer plugins are enabled. Mixer plugins must be ported to WebAssembly Extensions.
					

Deprecated features Red Hat OpenShift Service Mesh 2.0

						The Mixer component was deprecated in release 2.0 and will be removed in release 2.1. While using Mixer for implementing extensions was still supported in release 2.0, extensions should have been migrated to the new WebAssembly mechanism.
					

						The following resource types are no longer supported in Red Hat OpenShift Service Mesh 2.0:
					
	
								Policy (authentication.istio.io/v1alpha1) is no longer supported. Depending on the specific configuration in your Policy resource, you may have to configure multiple resources to achieve the same effect.
							
	
										Use RequestAuthentication (security.istio.io/v1beta1)
									
	
										Use PeerAuthentication (security.istio.io/v1beta1)
									

	
								ServiceMeshPolicy (maistra.io/v1) is no longer supported.
							
	
										Use RequestAuthentication or PeerAuthentication, as mentioned above, but place in the Service Mesh control plane namespace.
									

	
								RbacConfig (rbac.istio.io/v1alpha1) is no longer supported.
							
	
										Replaced by AuthorizationPolicy (security.istio.io/v1beta1), which encompasses behavior of RbacConfig, ServiceRole, and ServiceRoleBinding.
									

	
								ServiceMeshRbacConfig (maistra.io/v1) is no longer supported.
							
	
										Use AuthorizationPolicy as above, but place in Service Mesh control plane namespace.
									

	
								ServiceRole (rbac.istio.io/v1alpha1) is no longer supported.
							
	
								ServiceRoleBinding (rbac.istio.io/v1alpha1) is no longer supported.
							
	
								In Kiali, the login and LDAP strategies are deprecated. A future version will introduce authentication using OpenID providers.
							

Known issues

					These limitations exist in Red Hat OpenShift Service Mesh:
				
	
							Red Hat OpenShift Service Mesh does not yet support IPv6, as it is not yet fully supported by the upstream Istio project. As a result, Red Hat OpenShift Service Mesh does not support dual-stack clusters.
						
	
							Graph layout - The layout for the Kiali graph can render differently, depending on your application architecture and the data to display (number of graph nodes and their interactions). Because it is difficult if not impossible to create a single layout that renders nicely for every situation, Kiali offers a choice of several different layouts. To choose a different layout, you can choose a different Layout Schema from the Graph Settings menu.
						
	
							The first time you access related services such as distributed tracing platform and Grafana, from the Kiali console, you must accept the certificate and re-authenticate using your OpenShift Container Platform login credentials. This happens due to an issue with how the framework displays embedded pages in the console.
						
	
							The Bookinfo sample application cannot be installed on IBM Z and IBM Power.
						
	
							WebAssembly extensions are not supported on IBM Z and IBM Power.
						
	
							LuaJIT is not supported on IBM Power.
						

Service Mesh known issues

						These are the known issues in Red Hat OpenShift Service Mesh:
					
	
								Istio-14743 Due to limitations in the version of Istio that this release of Red Hat OpenShift Service Mesh is based on, there may be applications that are currently incompatible with Service Mesh. See the linked community issue for details.
							

	
								OSSM-1655 Kiali dashboard shows error after enabling mTLS in SMCP.
							

								After enabling the spec.security.controlPlane.mtls setting in the SMCP, the Kiali console displays the following error message No subsets defined.
							

	
								OSSM-1505 This issue only occurs when using the ServiceMeshExtension resource on OpenShift Container Platform 4.11. When you use ServiceMeshExtension on OpenShift Container Platform 4.11 the resource never becomes ready. If you inspect the issue using oc describe ServiceMeshExtension you will see the following error: stderr: Error creating mount namespace before pivot: function not implemented.
							

								Workaround: ServiceMeshExtension was deprecated in Service Mesh 2.2. Migrate from ServiceMeshExtension to the WasmPlugin resource. For more information, see Migrating from ServiceMeshExtension to WasmPlugin resources.
							

	
								OSSM-1396 If a gateway resource contains the spec.externalIPs setting, instead of being recreated when the ServiceMeshControlPlane is updated, the gateway is removed and never recreated.
							
	
								OSSM-1168 When service mesh resources are created as a single YAML file, the Envoy proxy sidecar is not reliably injected into pods. When the SMCP, SMMR, and Deployment resources are created individually, the deployment works as expected.
							
	
								OSSM-1052 When configuring a Service ExternalIP for the ingressgateway in the Service Mesh control plane, the service is not created. The schema for the SMCP is missing the parameter for the service.
							

								Workaround: Disable the gateway creation in the SMCP spec and manage the gateway deployment entirely manually (including Service, Role and RoleBinding).
							

	
								OSSM-882 This applies for Service Mesh 2.1 and earlier. Namespace is in the accessible_namespace list but does not appear in Kiali UI. By default, Kiali will not show any namespaces that start with "kube" because these namespaces are typically internal-use only and not part of a mesh.
							

								For example, if you create a namespace called 'akube-a' and add it to the Service Mesh member roll, then the Kiali UI does not display the namespace. For defined exclusion patterns, the software excludes namespaces that start with or contain the pattern.
							

								Workaround: Change the Kiali Custom Resource setting so it prefixes the setting with a carat (^). For example:
							
api:
 namespaces:
 exclude:
 - "^istio-operator"
 - "^kube-.*"
 - "^openshift.*"
 - "^ibm.*"
 - "^kiali-operator"

	
								MAISTRA-2692 With Mixer removed, custom metrics that have been defined in Service Mesh 2.0.x cannot be used in 2.1. Custom metrics can be configured using EnvoyFilter. Red Hat is unable to support EnvoyFilter configuration except where explicitly documented. This is due to tight coupling with the underlying Envoy APIs, meaning that backward compatibility cannot be maintained.
							
	
								MAISTRA-2648 ServiceMeshExtensions are currently not compatible with meshes deployed on IBM Z Systems.
							
	
								MAISTRA-1959 Migration to 2.0 Prometheus scraping (spec.addons.prometheus.scrape set to true) does not work when mTLS is enabled. Additionally, Kiali displays extraneous graph data when mTLS is disabled.
							

								This problem can be addressed by excluding port 15020 from proxy configuration, for example,
							
spec:
 proxy:
 networking:
 trafficControl:
 inbound:
 excludedPorts:
 - 15020

	
								MAISTRA-1314 Red Hat OpenShift Service Mesh does not yet support IPv6.
							
	
								MAISTRA-453 If you create a new project and deploy pods immediately, sidecar injection does not occur. The operator fails to add the maistra.io/member-of before the pods are created, therefore the pods must be deleted and recreated for sidecar injection to occur.
							
	
								MAISTRA-158 Applying multiple gateways referencing the same hostname will cause all gateways to stop functioning.
							

Kiali known issues

Note

							New issues for Kiali should be created in the OpenShift Service Mesh project with the Component set to Kiali.
						

						These are the known issues in Kiali:
					
	
								KIALI-2206 When you are accessing the Kiali console for the first time, and there is no cached browser data for Kiali, the “View in Grafana” link on the Metrics tab of the Kiali Service Details page redirects to the wrong location. The only way you would encounter this issue is if you are accessing Kiali for the first time.
							
	
								KIALI-507 Kiali does not support Internet Explorer 11. This is because the underlying frameworks do not support Internet Explorer. To access the Kiali console, use one of the two most recent versions of the Chrome, Edge, Firefox or Safari browser.
							

Red Hat OpenShift distributed tracing known issues

						These limitations exist in Red Hat OpenShift distributed tracing:
					
	
								Apache Spark is not supported.
							
	
								The streaming deployment via AMQ/Kafka is unsupported on IBM Z and IBM Power Systems.
							

						These are the known issues for Red Hat OpenShift distributed tracing:
					
	
								TRACING-2057 The Kafka API has been updated to v1beta2 to support the Strimzi Kafka Operator 0.23.0. However, this API version is not supported by AMQ Streams 1.6.3. If you have the following environment, your Jaeger services will not be upgraded, and you cannot create new Jaeger services or modify existing Jaeger services:
							
	
										Jaeger Operator channel: 1.17.x stable or 1.20.x stable
									
	
										AMQ Streams Operator channel: amq-streams-1.6.x
									

										To resolve this issue, switch the subscription channel for your AMQ Streams Operator to either amq-streams-1.7.x or stable.
									

Fixed issues

					The following issues been resolved in the current release:
				
Service Mesh fixed issues

	
								OSSM-2053 Using Red Hat OpenShift Service Mesh Operator 2.2 or 2.3, during SMCP reconciliation, the SMMR controller removed the member namespaces from SMMR.status.configuredMembers. This caused the services in the member namespaces to become unavailable for a few moments.
							

								Using Red Hat OpenShift Service Mesh Operator 2.2 or 2.3, the SMMR controller no longer removes the namespaces from SMMR.status.configuredMembers. Instead, the controller adds the namespaces to SMMR.status.pendingMembers to indicate that they are not up-to-date. During reconciliation, as each namespace synchronizes with the SMCP, the namespace is automatically removed from SMMR.status.pendingMembers.
							

	
								OSSM-1668 A new field spec.security.jwksResolverCA was added to the Version 2.1 SMCP but was missing in the 2.2.0 and 2.2.1 releases. When upgrading from an Operator version where this field was present to an Operator version that was missing this field, the .spec.security.jwksResolverCA field was not available in the SMCP.
							
	
								OSSM-1325 istiod pod crashes and displays the following error message: fatal error: concurrent map iteration and map write.
							
	
								OSSM-1211 Configuring Federated service meshes for failover does not work as expected.
							

								The Istiod pilot log displays the following error: envoy connection [C289] TLS error: 337047686:SSL routines:tls_process_server_certificate:certificate verify failed
							

	
								OSSM-1099 The Kiali console displayed the message Sorry, there was a problem. Try a refresh or navigate to a different page.
							
	
								OSSM-1074 Pod annotations defined in SMCP are not injected in the pods.
							
	
								OSSM-999 Kiali retention did not work as expected. Calendar times were greyed out in the dashboard graph.
							
	
								OSSM-797 Kiali Operator pod generates CreateContainerConfigError while installing or updating the operator.
							
	
								OSSM-722 Namespace starting with kube is hidden from Kiali.
							
	
								OSSM-569 There is no CPU memory limit for the Prometheus istio-proxy container. The Prometheus istio-proxy sidecar now uses the resource limits defined in spec.proxy.runtime.container.
							
	
								OSSM-449 VirtualService and Service causes an error "Only unique values for domains are permitted. Duplicate entry of domain."
							
	
								OSSM-419 Namespaces with similar names will all show in Kiali namespace list, even though namespaces may not be defined in Service Mesh Member Role.
							
	
								OSSM-296 When adding health configuration to the Kiali custom resource (CR) is it not being replicated to the Kiali configmap.
							
	
								OSSM-291 In the Kiali console, on the Applications, Services, and Workloads pages, the "Remove Label from Filters" function is not working.
							
	
								OSSM-289 In the Kiali console, on the Service Details pages for the 'istio-ingressgateway' and 'jaeger-query' services there are no Traces being displayed. The traces exist in Jaeger.
							
	
								OSSM-287 In the Kiali console there are no traces being displayed on the Graph Service.
							
	
								OSSM-285 When trying to access the Kiali console, receive the following error message "Error trying to get OAuth Metadata".
							

								Workaround: Restart the Kiali pod.
							

	
								MAISTRA-2735 The resources that the Service Mesh Operator deletes when reconciling the SMCP changed in Red Hat OpenShift Service Mesh version 2.1. Previously, the Operator deleted a resource with the following labels:
							
	
										maistra.io/owner
									
	
										app.kubernetes.io/version
									

								Now, the Operator ignores resources that does not also include the app.kubernetes.io/managed-by=maistra-istio-operator label. If you create your own resources, you should not add the app.kubernetes.io/managed-by=maistra-istio-operator label to them.
							

	
								MAISTRA-2687 Red Hat OpenShift Service Mesh 2.1 federation gateway does not send the full certificate chain when using external certificates. The Service Mesh federation egress gateway only sends the client certificate. Because the federation ingress gateway only knows about the root certificate, it cannot verify the client certificate unless you add the root certificate to the federation import ConfigMap.
							
	
								MAISTRA-2635 Replace deprecated Kubernetes API. To remain compatible with OpenShift Container Platform 4.8, the apiextensions.k8s.io/v1beta1 API was deprecated as of Red Hat OpenShift Service Mesh 2.0.8.
							
	
								MAISTRA-2631 The WASM feature is not working because podman is failing due to nsenter binary not being present. Red Hat OpenShift Service Mesh generates the following error message: Error: error configuring CNI network plugin exec: "nsenter": executable file not found in $PATH. The container image now contains nsenter and WASM works as expected.
							
	
								MAISTRA-2534 When istiod attempted to fetch the JWKS for an issuer specified in a JWT rule, the issuer service responded with a 502. This prevented the proxy container from becoming ready and caused deployments to hang. The fix for the community bug has been included in the Service Mesh 2.0.7 release.
							
	
								MAISTRA-2411 When the Operator creates a new ingress gateway using spec.gateways.additionaIngress in the ServiceMeshControlPlane, Operator is not creating a NetworkPolicy for the additional ingress gateway like it does for the default istio-ingressgateway. This is causing a 503 response from the route of the new gateway.
							

								Workaround: Manually create the NetworkPolicy in the <istio-system> namespace.
							

	
								MAISTRA-2401 CVE-2021-3586 servicemesh-operator: NetworkPolicy resources incorrectly specified ports for ingress resources. The NetworkPolicy resources installed for Red Hat OpenShift Service Mesh did not properly specify which ports could be accessed. This allowed access to all ports on these resources from any pod. Network policies applied to the following resources are affected:
							
	
										Galley
									
	
										Grafana
									
	
										Istiod
									
	
										Jaeger
									
	
										Kiali
									
	
										Prometheus
									
	
										Sidecar injector
									

	
								MAISTRA-2378 When the cluster is configured to use OpenShift SDN with ovs-multitenant and the mesh contains a large number of namespaces (200+), the OpenShift Container Platform networking plugin is unable to configure the namespaces quickly. Service Mesh times out causing namespaces to be continuously dropped from the service mesh and then reenlisted.
							
	
								MAISTRA-2370 Handle tombstones in listerInformer. The updated cache codebase was not handling tombstones when translating the events from the namespace caches to the aggregated cache, leading to a panic in the go routine.
							
	
								MAISTRA-2117 Add optional ConfigMap mount to operator. The CSV now contains an optional ConfigMap volume mount, which mounts the smcp-templates ConfigMap if it exists. If the smcp-templates ConfigMap does not exist, the mounted directory is empty. When you create the ConfigMap, the directory is populated with the entries from the ConfigMap and can be referenced in SMCP.spec.profiles. No restart of the Service Mesh operator is required.
							

								Customers using the 2.0 operator with a modified CSV to mount the smcp-templates ConfigMap can upgrade to Red Hat OpenShift Service Mesh 2.1. After upgrading, you can continue using an existing ConfigMap, and the profiles it contains, without editing the CSV. Customers that previously used ConfigMap with a different name will either have to rename the ConfigMap or update the CSV after upgrading.
							

	
								MAISTRA-2010 AuthorizationPolicy does not support request.regex.headers field. The validatingwebhook rejects any AuthorizationPolicy with the field, and even if you disable that, Pilot tries to validate it using the same code, and it does not work.
							
	
								MAISTRA-1979 Migration to 2.0 The conversion webhook drops the following important fields when converting SMCP.status from v2 to v1:
							
	
										conditions
									
	
										components
									
	
										observedGeneration
									
	
										annotations
									

										Upgrading the operator to 2.0 might break client tools that read the SMCP status using the maistra.io/v1 version of the resource.
									

										This also causes the READY and STATUS columns to be empty when you run oc get servicemeshcontrolplanes.v1.maistra.io.
									

	
								MAISTRA-1947 Technology Preview Updates to ServiceMeshExtensions are not applied.
							

								Workaround: Remove and recreate the ServiceMeshExtensions.
							

	
								MAISTRA-1983 Migration to 2.0 Upgrading to 2.0.0 with an existing invalid ServiceMeshControlPlane cannot easily be repaired. The invalid items in the ServiceMeshControlPlane resource caused an unrecoverable error. The fix makes the errors recoverable. You can delete the invalid resource and replace it with a new one or edit the resource to fix the errors. For more information about editing your resource, see [Configuring the Red Hat OpenShift Service Mesh installation].
							
	
								MAISTRA-1502 As a result of CVEs fixes in version 1.0.10, the Istio dashboards are not available from the Home Dashboard menu in Grafana. To access the Istio dashboards, click the Dashboard menu in the navigation panel and select the Manage tab.
							
	
								MAISTRA-1399 Red Hat OpenShift Service Mesh no longer prevents you from installing unsupported CNI protocols. The supported network configurations has not changed.
							
	
								MAISTRA-1089 Migration to 2.0 Gateways created in a non-control plane namespace are automatically deleted. After removing the gateway definition from the SMCP spec, you need to manually delete these resources.
							
	
								MAISTRA-858 The following Envoy log messages describing deprecated options and configurations associated with Istio 1.1.x are expected:
							
	
										[2019-06-03 07:03:28.943][19][warning][misc] [external/envoy/source/common/protobuf/utility.cc:129] Using deprecated option 'envoy.api.v2.listener.Filter.config'. This configuration will be removed from Envoy soon.
									
	
										[2019-08-12 22:12:59.001][13][warning][misc] [external/envoy/source/common/protobuf/utility.cc:174] Using deprecated option 'envoy.api.v2.Listener.use_original_dst' from file lds.proto. This configuration will be removed from Envoy soon.
									

	
								MAISTRA-806 Evicted Istio Operator Pod causes mesh and CNI not to deploy.
							

								Workaround: If the istio-operator pod is evicted while deploying the control pane, delete the evicted istio-operator pod.
							

	
								MAISTRA-681 When the Service Mesh control plane has many namespaces, it can lead to performance issues.
							
	
								MAISTRA-193 Unexpected console info messages are visible when health checking is enabled for citadel.
							
	
								Bugzilla 1821432 The toggle controls in OpenShift Container Platform Custom Resource details page does not update the CR correctly. UI Toggle controls in the Service Mesh Control Plane (SMCP) Overview page in the OpenShift Container Platform web console sometimes updates the wrong field in the resource. To update a SMCP, edit the YAML content directly or update the resource from the command line instead of clicking the toggle controls.
							

Red Hat OpenShift distributed tracing fixed issues

	
								TRACING-2337 Jaeger is logging a repetitive warning message in the Jaeger logs similar to the following:
							
{"level":"warn","ts":1642438880.918793,"caller":"channelz/logging.go:62","msg":"[core]grpc: Server.Serve failed to create ServerTransport: connection error: desc = \"transport: http2Server.HandleStreams received bogus greeting from client: \\\"\\\\x16\\\\x03\\\\x01\\\\x02\\\\x00\\\\x01\\\\x00\\\\x01\\\\xfc\\\\x03\\\\x03vw\\\\x1a\\\\xc9T\\\\xe7\\\\xdaCj\\\\xb7\\\\x8dK\\\\xa6\\\"\"","system":"grpc","grpc_log":true}

								This issue was resolved by exposing only the HTTP(S) port of the query service, and not the gRPC port.
							

	
								TRACING-2009 The Jaeger Operator has been updated to include support for the Strimzi Kafka Operator 0.23.0.
							
	
								TRACING-1907 The Jaeger agent sidecar injection was failing due to missing config maps in the application namespace. The config maps were getting automatically deleted due to an incorrect OwnerReference field setting and as a result, the application pods were not moving past the "ContainerCreating" stage. The incorrect settings have been removed.
							
	
								TRACING-1725 Follow-up to TRACING-1631. Additional fix to ensure that Elasticsearch certificates are properly reconciled when there are multiple Jaeger production instances, using same name but within different namespaces. See also BZ-1918920.
							
	
								TRACING-1631 Multiple Jaeger production instances, using same name but within different namespaces, causing Elasticsearch certificate issue. When multiple service meshes were installed, all of the Jaeger Elasticsearch instances had the same Elasticsearch secret instead of individual secrets, which prevented the OpenShift Elasticsearch Operator from communicating with all of the Elasticsearch clusters.
							
	
								TRACING-1300 Failed connection between Agent and Collector when using Istio sidecar. An update of the Jaeger Operator enabled TLS communication by default between a Jaeger sidecar agent and the Jaeger Collector.
							
	
								TRACING-1208 Authentication "500 Internal Error" when accessing Jaeger UI. When trying to authenticate to the UI using OAuth, I get a 500 error because oauth-proxy sidecar doesn’t trust the custom CA bundle defined at installation time with the additionalTrustBundle.
							
	
								TRACING-1166 It is not currently possible to use the Jaeger streaming strategy within a disconnected environment. When a Kafka cluster is being provisioned, it results in a error: Failed to pull image registry.redhat.io/amq7/amq-streams-kafka-24-rhel7@sha256:f9ceca004f1b7dccb3b82d9a8027961f9fe4104e0ed69752c0bdd8078b4a1076.
							
	
								TRACING-809 Jaeger Ingester is incompatible with Kafka 2.3. When there are two or more instances of the Jaeger Ingester and enough traffic it will continuously generate rebalancing messages in the logs. This is due to a regression in Kafka 2.3 that was fixed in Kafka 2.3.1. For more information, see Jaegertracing-1819.
							
	
								BZ-1918920/LOG-1619 The Elasticsearch pods does not get restarted automatically after an update.
							

								Workaround: Restart the pods manually.
							

Understanding Service Mesh

				Red Hat OpenShift Service Mesh provides a platform for behavioral insight and operational control over your networked microservices in a service mesh. With Red Hat OpenShift Service Mesh, you can connect, secure, and monitor microservices in your OpenShift Container Platform environment.
			
Understanding service mesh

					A service mesh is the network of microservices that make up applications in a distributed microservice architecture and the interactions between those microservices. When a Service Mesh grows in size and complexity, it can become harder to understand and manage.
				

					Based on the open source Istio project, Red Hat OpenShift Service Mesh adds a transparent layer on existing distributed applications without requiring any changes to the service code. You add Red Hat OpenShift Service Mesh support to services by deploying a special sidecar proxy to relevant services in the mesh that intercepts all network communication between microservices. You configure and manage the Service Mesh using the Service Mesh control plane features.
				

					Red Hat OpenShift Service Mesh gives you an easy way to create a network of deployed services that provide:
				
	
							Discovery
						
	
							Load balancing
						
	
							Service-to-service authentication
						
	
							Failure recovery
						
	
							Metrics
						
	
							Monitoring
						

					Red Hat OpenShift Service Mesh also provides more complex operational functions including:
				
	
							A/B testing
						
	
							Canary releases
						
	
							Access control
						
	
							End-to-end authentication
						

Service Mesh architecture

					Service mesh technology operates at the network communication level. That is, service mesh components capture or intercept traffic to and from microservices, either modifying requests, redirecting them, or creating new requests to other services.
				
[image: Service Mesh architecture image]

					At a high level, Red Hat OpenShift Service Mesh consists of a data plane and a control plane
				

					The data plane is a set of intelligent proxies, running alongside application containers in a pod, that intercept and control all inbound and outbound network communication between microservices in the service mesh. The data plane is implemented in such a way that it intercepts all inbound (ingress) and outbound (egress) network traffic. The Istio data plane is composed of Envoy containers running along side application containers in a pod. The Envoy container acts as a proxy, controlling all network communication into and out of the pod.
				
	
							Envoy proxies are the only Istio components that interact with data plane traffic. All incoming (ingress) and outgoing (egress) network traffic between services flows through the proxies. The Envoy proxy also collects all metrics related to services traffic within the mesh. Envoy proxies are deployed as sidecars, running in the same pod as services. Envoy proxies are also used to implement mesh gateways.
						
	
									Sidecar proxies manage inbound and outbound communication for their workload instance.
								
	
									Gateways are proxies operating as load balancers receiving incoming or outgoing HTTP/TCP connections. Gateway configurations are applied to standalone Envoy proxies that are running at the edge of the mesh, rather than sidecar Envoy proxies running alongside your service workloads. You use a Gateway to manage inbound and outbound traffic for your mesh, letting you specify which traffic you want to enter or leave the mesh.
								
	
											Ingress-gateway - Also known as an ingress controller, the Ingress Gateway is a dedicated Envoy proxy that receives and controls traffic entering the service mesh. An Ingress Gateway allows features such as monitoring and route rules to be applied to traffic entering the cluster.
										
	
											Egress-gateway - Also known as an egress controller, the Egress Gateway is a dedicated Envoy proxy that manages traffic leaving the service mesh. An Egress Gateway allows features such as monitoring and route rules to be applied to traffic exiting the mesh.
										

					The control plane manages and configures the proxies that make up the data plane. It is the authoritative source for configuration, manages access control and usage policies, and collects metrics from the proxies in the service mesh.
				
	
							The Istio control plane is composed of Istiod which consolidates several previous control plane components (Citadel, Galley, Pilot) into a single binary. Istiod provides service discovery, configuration, and certificate management. It converts high-level routing rules to Envoy configurations and propagates them to the sidecars at runtime.
						
	
									Istiod can act as a Certificate Authority (CA), generating certificates supporting secure mTLS communication in the data plane. You can also use an external CA for this purpose.
								
	
									Istiod is responsible for injecting sidecar proxy containers into workloads deployed to an OpenShift cluster.
								

					Red Hat OpenShift Service Mesh uses the istio-operator to manage the installation of the control plane. An Operator is a piece of software that enables you to implement and automate common activities in your OpenShift cluster. It acts as a controller, allowing you to set or change the desired state of objects in your cluster, in this case, a Red Hat OpenShift Service Mesh installation.
				

					Red Hat OpenShift Service Mesh also bundles the following Istio add-ons as part of the product:
				
	
							Kiali - Kiali is the management console for Red Hat OpenShift Service Mesh. It provides dashboards, observability, and robust configuration and validation capabilities. It shows the structure of your service mesh by inferring traffic topology and displays the health of your mesh. Kiali provides detailed metrics, powerful validation, access to Grafana, and strong integration with the distributed tracing platform.
						
	
							Prometheus - Red Hat OpenShift Service Mesh uses Prometheus to store telemetry information from services. Kiali depends on Prometheus to obtain metrics, health status, and mesh topology.
						
	
							Jaeger - Red Hat OpenShift Service Mesh supports the distributed tracing platform. Jaeger is an open source traceability server that centralizes and displays traces associated with a single request between multiple services. Using the distributed tracing platform you can monitor and troubleshoot your microservices-based distributed systems.
						
	
							Elasticsearch - Elasticsearch is an open source, distributed, JSON-based search and analytics engine. The distributed tracing platform uses Elasticsearch for persistent storage.
						
	
							Grafana - Grafana provides mesh administrators with advanced query and metrics analysis and dashboards for Istio data. Optionally, Grafana can be used to analyze service mesh metrics.
						

					The following Istio integrations are supported with Red Hat OpenShift Service Mesh:
				
	
							3scale - Istio provides an optional integration with Red Hat 3scale API Management solutions. For versions prior to 2.1, this integration was achieved via the 3scale Istio adapter. For version 2.1 and later, the 3scale integration is achieved via a WebAssembly module.
						

					For information about how to install the 3scale adapter, refer to the 3scale Istio adapter documentation
				

Understanding Kiali

					Kiali provides visibility into your service mesh by showing you the microservices in your service mesh, and how they are connected.
				
Kiali overview

						Kiali provides observability into the Service Mesh running on OpenShift Container Platform. Kiali helps you define, validate, and observe your Istio service mesh. It helps you to understand the structure of your service mesh by inferring the topology, and also provides information about the health of your service mesh.
					

						Kiali provides an interactive graph view of your namespace in real time that provides visibility into features like circuit breakers, request rates, latency, and even graphs of traffic flows. Kiali offers insights about components at different levels, from Applications to Services and Workloads, and can display the interactions with contextual information and charts on the selected graph node or edge. Kiali also provides the ability to validate your Istio configurations, such as gateways, destination rules, virtual services, mesh policies, and more. Kiali provides detailed metrics, and a basic Grafana integration is available for advanced queries. Distributed tracing is provided by integrating Jaeger into the Kiali console.
					

						Kiali is installed by default as part of the Red Hat OpenShift Service Mesh.
					

Kiali architecture

						Kiali is based on the open source Kiali project. Kiali is composed of two components: the Kiali application and the Kiali console.
					
	
								Kiali application (back end) – This component runs in the container application platform and communicates with the service mesh components, retrieves and processes data, and exposes this data to the console. The Kiali application does not need storage. When deploying the application to a cluster, configurations are set in ConfigMaps and secrets.
							
	
								Kiali console (front end) – The Kiali console is a web application. The Kiali application serves the Kiali console, which then queries the back end for data to present it to the user.
							

						In addition, Kiali depends on external services and components provided by the container application platform and Istio.
					
	
								Red Hat Service Mesh (Istio) - Istio is a Kiali requirement. Istio is the component that provides and controls the service mesh. Although Kiali and Istio can be installed separately, Kiali depends on Istio and will not work if it is not present. Kiali needs to retrieve Istio data and configurations, which are exposed through Prometheus and the cluster API.
							
	
								Prometheus - A dedicated Prometheus instance is included as part of the Red Hat OpenShift Service Mesh installation. When Istio telemetry is enabled, metrics data are stored in Prometheus. Kiali uses this Prometheus data to determine the mesh topology, display metrics, calculate health, show possible problems, and so on. Kiali communicates directly with Prometheus and assumes the data schema used by Istio Telemetry. Prometheus is an Istio dependency and a hard dependency for Kiali, and many of Kiali’s features will not work without Prometheus.
							
	
								Cluster API - Kiali uses the API of the OpenShift Container Platform (cluster API) to fetch and resolve service mesh configurations. Kiali queries the cluster API to retrieve, for example, definitions for namespaces, services, deployments, pods, and other entities. Kiali also makes queries to resolve relationships between the different cluster entities. The cluster API is also queried to retrieve Istio configurations like virtual services, destination rules, route rules, gateways, quotas, and so on.
							
	
								Jaeger - Jaeger is optional, but is installed by default as part of the Red Hat OpenShift Service Mesh installation. When you install the distributed tracing platform as part of the default Red Hat OpenShift Service Mesh installation, the Kiali console includes a tab to display distributed tracing data. Note that tracing data will not be available if you disable Istio’s distributed tracing feature. Also note that user must have access to the namespace where the Service Mesh control plane is installed to view tracing data.
							
	
								Grafana - Grafana is optional, but is installed by default as part of the Red Hat OpenShift Service Mesh installation. When available, the metrics pages of Kiali display links to direct the user to the same metric in Grafana. Note that user must have access to the namespace where the Service Mesh control plane is installed to view links to the Grafana dashboard and view Grafana data.
							

Kiali features

						The Kiali console is integrated with Red Hat Service Mesh and provides the following capabilities:
					
	
								Health – Quickly identify issues with applications, services, or workloads.
							
	
								Topology – Visualize how your applications, services, or workloads communicate via the Kiali graph.
							
	
								Metrics – Predefined metrics dashboards let you chart service mesh and application performance for Go, Node.js. Quarkus, Spring Boot, Thorntail and Vert.x. You can also create your own custom dashboards.
							
	
								Tracing – Integration with Jaeger lets you follow the path of a request through various microservices that make up an application.
							
	
								Validations – Perform advanced validations on the most common Istio objects (Destination Rules, Service Entries, Virtual Services, and so on).
							
	
								Configuration – Optional ability to create, update and delete Istio routing configuration using wizards or directly in the YAML editor in the Kiali Console.
							

Understanding distributed tracing

					Every time a user takes an action in an application, a request is executed by the architecture that may require dozens of different services to participate to produce a response. The path of this request is a distributed transaction. The distributed tracing platform lets you perform distributed tracing, which follows the path of a request through various microservices that make up an application.
				

					Distributed tracing is a technique that is used to tie the information about different units of work together—usually executed in different processes or hosts—to understand a whole chain of events in a distributed transaction. Distributed tracing lets developers visualize call flows in large service oriented architectures. It can be invaluable in understanding serialization, parallelism, and sources of latency.
				

					The distributed tracing platform records the execution of individual requests across the whole stack of microservices, and presents them as traces. A trace is a data/execution path through the system. An end-to-end trace comprises one or more spans.
				

					A span represents a logical unit of work that has an operation name, the start time of the operation, and the duration. Spans may be nested and ordered to model causal relationships.
				
Distributed tracing overview

						As a service owner, you can use distributed tracing to instrument your services to gather insights into your service architecture. You can use distributed tracing for monitoring, network profiling, and troubleshooting the interaction between components in modern, cloud-native, microservices-based applications.
					

						With distributed tracing you can perform the following functions:
					
	
								Monitor distributed transactions
							
	
								Optimize performance and latency
							
	
								Perform root cause analysis
							

						Red Hat OpenShift distributed tracing consists of two main components:
					
	
								Red Hat OpenShift distributed tracing platform - This component is based on the open source Jaeger project.
							
	
								Red Hat OpenShift distributed tracing data collection - This component is based on the open source OpenTelemetry project.
							

						Both of these components are based on the vendor-neutral OpenTracing APIs and instrumentation.
					

Red Hat OpenShift distributed tracing architecture

						Red Hat OpenShift distributed tracing is made up of several components that work together to collect, store, and display tracing data.
					
	
								Red Hat OpenShift distributed tracing platform - This component is based on the open source Jaeger project.
							
	
										Client (Jaeger client, Tracer, Reporter, instrumented application, client libraries)- The distributed tracing platform clients are language-specific implementations of the OpenTracing API. They can be used to instrument applications for distributed tracing either manually or with a variety of existing open source frameworks, such as Camel (Fuse), Spring Boot (RHOAR), MicroProfile (RHOAR/Thorntail), Wildfly (EAP), and many more, that are already integrated with OpenTracing.
									
	
										Agent (Jaeger agent, Server Queue, Processor Workers) - The distributed tracing platform agent is a network daemon that listens for spans sent over User Datagram Protocol (UDP), which it batches and sends to the Collector. The agent is meant to be placed on the same host as the instrumented application. This is typically accomplished by having a sidecar in container environments such as Kubernetes.
									
	
										Jaeger Collector (Collector, Queue, Workers) - Similar to the Jaeger agent, the Jaeger Collector receives spans and places them in an internal queue for processing. This allows the Jaeger Collector to return immediately to the client/agent instead of waiting for the span to make its way to the storage.
									
	
										Storage (Data Store) - Collectors require a persistent storage backend. Red Hat OpenShift distributed tracing platform has a pluggable mechanism for span storage. Note that for this release, the only supported storage is Elasticsearch.
									
	
										Query (Query Service) - Query is a service that retrieves traces from storage.
									
	
										Ingester (Ingester Service) - Red Hat OpenShift distributed tracing can use Apache Kafka as a buffer between the Collector and the actual Elasticsearch backing storage. Ingester is a service that reads data from Kafka and writes to the Elasticsearch storage backend.
									
	
										Jaeger Console – With the Red Hat OpenShift distributed tracing platform user interface, you can visualize your distributed tracing data. On the Search page, you can find traces and explore details of the spans that make up an individual trace.
									

	
								Red Hat OpenShift distributed tracing data collection - This component is based on the open source OpenTelemetry project.
							
	
										OpenTelemetry Collector - The OpenTelemetry Collector is a vendor-agnostic way to receive, process, and export telemetry data. The OpenTelemetry Collector supports open-source observability data formats, for example, Jaeger and Prometheus, sending to one or more open-source or commercial back-ends. The Collector is the default location instrumentation libraries export their telemetry data.
									

Red Hat OpenShift distributed tracing features

						Red Hat OpenShift distributed tracing provides the following capabilities:
					
	
								Integration with Kiali – When properly configured, you can view distributed tracing data from the Kiali console.
							
	
								High scalability – The distributed tracing back end is designed to have no single points of failure and to scale with the business needs.
							
	
								Distributed Context Propagation – Enables you to connect data from different components together to create a complete end-to-end trace.
							
	
								Backwards compatibility with Zipkin – Red Hat OpenShift distributed tracing has APIs that enable it to be used as a drop-in replacement for Zipkin, but Red Hat is not supporting Zipkin compatibility in this release.
							

Next steps

	
							Prepare to install Red Hat OpenShift Service Mesh in your OpenShift Container Platform environment.
						

Service mesh deployment models

				Red Hat OpenShift Service Mesh supports several different deployment models that can be combined in different ways to best suit your business requirements.
			
Single mesh deployment model

					The simplest Istio deployment model is a single mesh.
				

					Service names within a mesh must be unique because Kubernetes only allows one service to be named myservice in the mynamespace namespace. However, workload instances can share a common identity since service account names can be shared across workloads in the same namespace
				

Single tenancy deployment model

					In Istio, a tenant is a group of users that share common access and privileges for a set of deployed workloads. You can use tenants to provide a level of isolation between different teams. You can segregate access to different tenants using NetworkPolicies, AuthorizationPolicies, and exportTo annotations on istio.io or service resources.
				

					Single tenant, cluster-wide Service Mesh control plane configurations are deprecated as of Red Hat OpenShift Service Mesh version 1.0. Red Hat OpenShift Service Mesh defaults to a multitenant model.
				

Multitenant deployment model

					Red Hat OpenShift Service Mesh installs a ServiceMeshControlPlane that is configured for multitenancy by default. Red Hat OpenShift Service Mesh uses a multitenant Operator to manage the Service Mesh control plane lifecycle. Within a mesh, namespaces are used for tenancy.
				

					Red Hat OpenShift Service Mesh uses ServiceMeshControlPlane resources to manage mesh installations, whose scope is limited by default to namespace that contains the resource. You use ServiceMeshMemberRoll and ServiceMeshMember resources to include additional namespaces into the mesh. A namespace can only be included in a single mesh, and multiple meshes can be installed in a single OpenShift cluster.
				

					Typical service mesh deployments use a single Service Mesh control plane to configure communication between services in the mesh. Red Hat OpenShift Service Mesh supports “soft multitenancy”, where there is one control plane and one mesh per tenant, and there can be multiple independent control planes within the cluster. Multitenant deployments specify the projects that can access the Service Mesh and isolate the Service Mesh from other control plane instances.
				

					The cluster administrator gets control and visibility across all the Istio control planes, while the tenant administrator only gets control over their specific Service Mesh, Kiali, and Jaeger instances.
				

					You can grant a team permission to deploy its workloads only to a given namespace or set of namespaces. If granted the mesh-user role by the service mesh administrator, users can create a ServiceMeshMember resource to add namespaces to the ServiceMeshMemberRoll.
				

Multimesh or federated deployment model

					Federation is a deployment model that lets you share services and workloads between separate meshes managed in distinct administrative domains.
				

					The Istio multi-cluster model requires a high level of trust between meshes and remote access to all Kubernetes API servers on which the individual meshes reside. Red Hat OpenShift Service Mesh federation takes an opinionated approach to a multi-cluster implementation of Service Mesh that assumes minimal trust between meshes.
				

					A federated mesh is a group of meshes behaving as a single mesh. The services in each mesh can be unique services, for example a mesh adding services by importing them from another mesh, can provide additional workloads for the same services across the meshes, providing high availability, or a combination of both. All meshes that are joined into a federated mesh remain managed individually, and you must explicitly configure which services are exported to and imported from other meshes in the federation. Support functions such as certificate generation, metrics and trace collection remain local in their respective meshes.
				

Service Mesh and Istio differences

				Red Hat OpenShift Service Mesh differs from an installation of Istio to provide additional features or to handle differences when deploying on OpenShift Container Platform.
			
Differences between Istio and Red Hat OpenShift Service Mesh

					The following features are different in Service Mesh and Istio.
				
Command line tool

						The command line tool for Red Hat OpenShift Service Mesh is oc. Red Hat OpenShift Service Mesh does not support istioctl.
					

Installation and upgrades

						Red Hat OpenShift Service Mesh does not support Istio installation profiles.
					

						Red Hat OpenShift Service Mesh does not support canary upgrades of the service mesh.
					

Automatic injection

						The upstream Istio community installation automatically injects the sidecar into pods within the projects you have labeled.
					

						Red Hat OpenShift Service Mesh does not automatically inject the sidecar to any pods, but requires you to opt in to injection using an annotation without labeling projects. This method requires fewer privileges and does not conflict with other OpenShift capabilities such as builder pods. To enable automatic injection you specify the sidecar.istio.io/inject annotation as described in the Automatic sidecar injection section.
					
Table 1.4. Sidecar injection label and annotation settings
	 	Upstream Istio	Red Hat OpenShift Service Mesh
	
										Namespace Label
									

									 	
										supports "enabled" and "disabled"
									

									 	
										supports "disabled"
									

									
	
										Pod Label
									

									 	
										supports "true" and "false"
									

									 	
										not supported
									

									
	
										Pod Annotation
									

									 	
										supports "false" only
									

									 	
										supports "true" and "false"
									

									

Istio Role Based Access Control features

						Istio Role Based Access Control (RBAC) provides a mechanism you can use to control access to a service. You can identify subjects by user name or by specifying a set of properties and apply access controls accordingly.
					

						The upstream Istio community installation includes options to perform exact header matches, match wildcards in headers, or check for a header containing a specific prefix or suffix.
					

						Red Hat OpenShift Service Mesh extends the ability to match request headers by using a regular expression. Specify a property key of request.regex.headers with a regular expression.
					
Upstream Istio community matching request headers example

							

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin-usernamepolicy
spec:
 action: ALLOW
 rules:
 - when:
 - key: 'request.regex.headers[username]'
 values:
 - "allowed.*"
 selector:
 matchLabels:
 app: httpbin

						

OpenSSL

						Red Hat OpenShift Service Mesh replaces BoringSSL with OpenSSL. OpenSSL is a software library that contains an open source implementation of the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols. The Red Hat OpenShift Service Mesh Proxy binary dynamically links the OpenSSL libraries (libssl and libcrypto) from the underlying Red Hat Enterprise Linux operating system.
					

External workloads

						Red Hat OpenShift Service Mesh does not support external workloads, such as virtual machines running outside OpenShift on bare metal servers.
					

Virtual Machine Support

						You can deploy virtual machines to OpenShift using OpenShift Virtualization. Then, you can apply a mesh policy, such as mTLS or AuthorizationPolicy, to these virtual machines, just like any other pod that is part of a mesh.
					

Component modifications

	
								A maistra-version label has been added to all resources.
							
	
								All Ingress resources have been converted to OpenShift Route resources.
							
	
								Grafana, distributed tracing (Jaeger), and Kiali are enabled by default and exposed through OpenShift routes.
							
	
								Godebug has been removed from all templates
							
	
								The istio-multi ServiceAccount and ClusterRoleBinding have been removed, as well as the istio-reader ClusterRole.
							

Envoy filters

						Red Hat OpenShift Service Mesh does not support EnvoyFilter configuration except where explicitly documented. Due to tight coupling with the underlying Envoy APIs, backward compatibility cannot be maintained. EnvoyFilter patches are very sensitive to the format of the Envoy configuration that is generated by Istio. If the configuration generated by Istio changes, it has the potential to break the application of the EnvoyFilter.
					

Envoy services

						Red Hat OpenShift Service Mesh does not support QUIC-based services.
					

Istio Container Network Interface (CNI) plugin

						Red Hat OpenShift Service Mesh includes CNI plugin, which provides you with an alternate way to configure application pod networking. The CNI plugin replaces the init-container network configuration eliminating the need to grant service accounts and projects access to security context constraints (SCCs) with elevated privileges.
					

Global mTLS settings

						Red Hat OpenShift Service Mesh creates a PeerAuthentication resource that enables or disables Mutual TLS authentication (mTLS) within the mesh.
					

Gateways

						Red Hat OpenShift Service Mesh installs ingress and egress gateways by default. You can disable gateway installation in the ServiceMeshControlPlane (SMCP) resource by using the following settings:
					
	
								spec.gateways.enabled=false to disable both ingress and egress gateways.
							
	
								spec.gateways.ingress.enabled=false to disable ingress gateways.
							
	
								spec.gateways.egress.enabled=false to disable egress gateways.
							

Note

							The Operator annotates the default gateways to indicate that they are generated by and managed by the Red Hat OpenShift Service Mesh Operator.
						

Multicluster configurations

						Red Hat OpenShift Service Mesh does not provide support for multicluster configurations.
					

Custom Certificate Signing Requests (CSR)

						You cannot configure Red Hat OpenShift Service Mesh to process CSRs through the Kubernetes certificate authority (CA).
					

Routes for Istio Gateways

						OpenShift routes for Istio Gateways are automatically managed in Red Hat OpenShift Service Mesh. Every time an Istio Gateway is created, updated or deleted inside the service mesh, an OpenShift route is created, updated or deleted.
					

						A Red Hat OpenShift Service Mesh control plane component called Istio OpenShift Routing (IOR) synchronizes the gateway route. For more information, see Automatic route creation.
					
Catch-all domains

							Catch-all domains ("*") are not supported. If one is found in the Gateway definition, Red Hat OpenShift Service Mesh will create the route, but will rely on OpenShift to create a default hostname. This means that the newly created route will not be a catch all ("*") route, instead it will have a hostname in the form <route-name>[-<project>].<suffix>. See the OpenShift Container Platform documentation for more information about how default hostnames work and how a cluster-admin can customize it. If you use Red Hat OpenShift Dedicated, refer to the Red Hat OpenShift Dedicated the dedicated-admin role.
						

Subdomains

							Subdomains (e.g.: "*.domain.com") are supported. However this ability doesn’t come enabled by default in OpenShift Container Platform. This means that Red Hat OpenShift Service Mesh will create the route with the subdomain, but it will only be in effect if OpenShift Container Platform is configured to enable it.
						

Transport layer security

							Transport Layer Security (TLS) is supported. This means that, if the Gateway contains a tls section, the OpenShift Route will be configured to support TLS.
						
Additional resources
	
									Automatic route creation
								

Multitenant installations

					Whereas upstream Istio takes a single tenant approach, Red Hat OpenShift Service Mesh supports multiple independent control planes within the cluster. Red Hat OpenShift Service Mesh uses a multitenant operator to manage the control plane lifecycle.
				

					Red Hat OpenShift Service Mesh installs a multitenant control plane by default. You specify the projects that can access the Service Mesh, and isolate the Service Mesh from other control plane instances.
				
Multitenancy versus cluster-wide installations

						The main difference between a multitenant installation and a cluster-wide installation is the scope of privileges used by istod. The components no longer use cluster-scoped Role Based Access Control (RBAC) resource ClusterRoleBinding.
					

						Every project in the ServiceMeshMemberRoll members list will have a RoleBinding for each service account associated with the control plane deployment and each control plane deployment will only watch those member projects. Each member project has a maistra.io/member-of label added to it, where the member-of value is the project containing the control plane installation.
					

						Red Hat OpenShift Service Mesh configures each member project to ensure network access between itself, the control plane, and other member projects. The exact configuration differs depending on how OpenShift Container Platform software-defined networking (SDN) is configured. See About OpenShift SDN for additional details.
					

						If the OpenShift Container Platform cluster is configured to use the SDN plugin:
					
	
								NetworkPolicy: Red Hat OpenShift Service Mesh creates a NetworkPolicy resource in each member project allowing ingress to all pods from the other members and the control plane. If you remove a member from Service Mesh, this NetworkPolicy resource is deleted from the project.
							
Note

									This also restricts ingress to only member projects. If you require ingress from non-member projects, you need to create a NetworkPolicy to allow that traffic through.
								

	
								Multitenant: Red Hat OpenShift Service Mesh joins the NetNamespace for each member project to the NetNamespace of the control plane project (the equivalent of running oc adm pod-network join-projects --to control-plane-project member-project). If you remove a member from the Service Mesh, its NetNamespace is isolated from the control plane (the equivalent of running oc adm pod-network isolate-projects member-project).
							
	
								Subnet: No additional configuration is performed.
							

Cluster scoped resources

						Upstream Istio has two cluster scoped resources that it relies on. The MeshPolicy and the ClusterRbacConfig. These are not compatible with a multitenant cluster and have been replaced as described below.
					
	
								ServiceMeshPolicy replaces MeshPolicy for configuration of control-plane-wide authentication policies. This must be created in the same project as the control plane.
							
	
								ServicemeshRbacConfig replaces ClusterRbacConfig for configuration of control-plane-wide role based access control. This must be created in the same project as the control plane.
							

Kiali and service mesh

					Installing Kiali via the Service Mesh on OpenShift Container Platform differs from community Kiali installations in multiple ways. These modifications are sometimes necessary to resolve issues, provide additional features, or to handle differences when deploying on OpenShift Container Platform.
				
	
							Kiali has been enabled by default.
						
	
							Ingress has been enabled by default.
						
	
							Updates have been made to the Kiali ConfigMap.
						
	
							Updates have been made to the ClusterRole settings for Kiali.
						
	
							Do not edit the ConfigMap, because your changes might be overwritten by the Service Mesh or Kiali Operators. Files that the Kiali Operator manages have a kiali.io/ label or annotation. Updating the Operator files should be restricted to those users with cluster-admin privileges. If you use Red Hat OpenShift Dedicated, updating the Operator files should be restricted to those users with dedicated-admin privileges.
						

Distributed tracing and service mesh

					Installing the distributed tracing platform with the Service Mesh on OpenShift Container Platform differs from community Jaeger installations in multiple ways. These modifications are sometimes necessary to resolve issues, provide additional features, or to handle differences when deploying on OpenShift Container Platform.
				
	
							Distributed tracing has been enabled by default for Service Mesh.
						
	
							Ingress has been enabled by default for Service Mesh.
						
	
							The name for the Zipkin port name has changed to jaeger-collector-zipkin (from http)
						
	
							Jaeger uses Elasticsearch for storage by default when you select either the production or streaming deployment option.
						
	
							The community version of Istio provides a generic "tracing" route. Red Hat OpenShift Service Mesh uses a "jaeger" route that is installed by the Red Hat OpenShift distributed tracing platform Operator and is already protected by OAuth.
						
	
							Red Hat OpenShift Service Mesh uses a sidecar for the Envoy proxy, and Jaeger also uses a sidecar, for the Jaeger agent. These two sidecars are configured separately and should not be confused with each other. The proxy sidecar creates spans related to the pod’s ingress and egress traffic. The agent sidecar receives the spans emitted by the application and sends them to the Jaeger Collector.
						

Preparing to install Service Mesh

				Before you can install Red Hat OpenShift Service Mesh, you must subscribe to OpenShift Container Platform and install OpenShift Container Platform in a supported configuration.
			
Prerequisites

	
							Maintain an active OpenShift Container Platform subscription on your Red Hat account. If you do not have a subscription, contact your sales representative for more information.
						
	
							Review the OpenShift Container Platform 4.8 overview.
						
	
							Install OpenShift Container Platform 4.8. If you are installing Red Hat OpenShift Service Mesh on a restricted network, follow the instructions for your chosen OpenShift Container Platform infrastructure.
						
	
									Install OpenShift Container Platform 4.8 on AWS
								
	
									Install OpenShift Container Platform 4.8 on user-provisioned AWS
								
	
									Install OpenShift Container Platform 4.8 on bare metal
								
	
									Install OpenShift Container Platform 4.8 on vSphere
								
	
									Install OpenShift Container Platform 4.8 on IBM Z and LinuxONE
								
	
									Install OpenShift Container Platform 4.8 on IBM Power Systems
								

	
							Install the version of the OpenShift Container Platform command line utility (the oc client tool) that matches your OpenShift Container Platform version and add it to your path.
						
	
									If you are using OpenShift Container Platform 4.8, see About the OpenShift CLI.
								

					For additional information about Red Hat OpenShift Service Mesh lifecycle and supported platforms, refer to the Support Policy.
				

Supported configurations

					The following configurations are supported for the current release of Red Hat OpenShift Service Mesh.
				
Supported platforms

						The Red Hat OpenShift Service Mesh Operator supports multiple versions of the ServiceMeshControlPlane resource. Version 2.2 Service Mesh control planes are supported on the following platform versions:
					
	
								Red Hat OpenShift Container Platform version 4.9 or later.
							
	
								Red Hat OpenShift Dedicated version 4.
							
	
								Azure Red Hat OpenShift (ARO) version 4.
							
	
								Red Hat OpenShift Service on AWS (ROSA).
							

Unsupported configurations

						Explicitly unsupported cases include:
					
	
								OpenShift Online is not supported for Red Hat OpenShift Service Mesh.
							
	
								Red Hat OpenShift Service Mesh does not support the management of microservices outside the cluster where Service Mesh is running.
							

Supported network configurations

						Red Hat OpenShift Service Mesh supports the following network configurations.
					
	
								OpenShift-SDN
							
	
								OVN-Kubernetes is supported on OpenShift Container Platform 4.7.32+, OpenShift Container Platform 4.8.12+, and OpenShift Container Platform 4.9+.
							
	
								Third-Party Container Network Interface (CNI) plugins that have been certified on OpenShift Container Platform and passed Service Mesh conformance testing. See Certified OpenShift CNI Plug-ins for more information.
							

Supported configurations for Service Mesh

	
								This release of Red Hat OpenShift Service Mesh is only available on OpenShift Container Platform x86_64, IBM Z, and IBM Power Systems.
							
	
										IBM Z is only supported on OpenShift Container Platform 4.6 and later.
									
	
										IBM Power Systems is only supported on OpenShift Container Platform 4.6 and later.
									

	
								Configurations where all Service Mesh components are contained within a single OpenShift Container Platform cluster.
							
	
								Configurations that do not integrate external services such as virtual machines.
							
	
								Red Hat OpenShift Service Mesh does not support EnvoyFilter configuration except where explicitly documented.
							

Supported configurations for Kiali

	
								The Kiali console is only supported on the two most recent releases of the Chrome, Edge, Firefox, or Safari browsers.
							

Supported configurations for Distributed Tracing

	
								Jaeger agent as a sidecar is the only supported configuration for Jaeger. Jaeger as a daemonset is not supported for multitenant installations or OpenShift Dedicated.
							

Supported WebAssembly module

	
								3scale WebAssembly is the only provided WebAssembly module. You can create custom WebAssembly modules.
							

Next steps

	
							Install Red Hat OpenShift Service Mesh in your OpenShift Container Platform environment.
						

Installing the Operators

				To install Red Hat OpenShift Service Mesh, first install the required Operators on OpenShift Container Platform and then create a ServiceMeshControlPlane resource to deploy the control plane.
			
Note

					This basic installation is configured based on the default OpenShift settings and is not designed for production use. Use this default installation to verify your installation, and then configure your service mesh for your specific environment.
				

Prerequisites
	
						Read the Preparing to install Red Hat OpenShift Service Mesh process.
					
	
						An account with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
					

				The following steps show how to install a basic instance of Red Hat OpenShift Service Mesh on OpenShift Container Platform.
			
Operator overview

					Red Hat OpenShift Service Mesh requires the following four Operators:
				
	
							OpenShift Elasticsearch - (Optional) Provides database storage for tracing and logging with the distributed tracing platform. It is based on the open source Elasticsearch project.
						
	
							Red Hat OpenShift distributed tracing platform - Provides distributed tracing to monitor and troubleshoot transactions in complex distributed systems. It is based on the open source Jaeger project.
						
	
							Kiali - Provides observability for your service mesh. Allows you to view configurations, monitor traffic, and analyze traces in a single console. It is based on the open source Kiali project.
						
	
							Red Hat OpenShift Service Mesh - Allows you to connect, secure, control, and observe the microservices that comprise your applications. The Service Mesh Operator defines and monitors the ServiceMeshControlPlane resources that manage the deployment, updating, and deletion of the Service Mesh components. It is based on the open source Istio project.
						

Warning

						Do not install Community versions of the Operators. Community Operators are not supported.
					

Installing the Operators

					To install Red Hat OpenShift Service Mesh, install following Operators in this order. Repeat the procedure for each Operator.
				
	
							OpenShift Elasticsearch
						
	
							Red Hat OpenShift distributed tracing platform
						
	
							Kiali
						
	
							Red Hat OpenShift Service Mesh
						

Note

						If you have already installed the OpenShift Elasticsearch Operator as part of OpenShift Logging, you do not need to install the OpenShift Elasticsearch Operator again. The Red Hat OpenShift distributed tracing platform Operator will create the Elasticsearch instance using the installed OpenShift Elasticsearch Operator.
					

Procedure
	
							Log in to the OpenShift Container Platform web console as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						
	
							In the OpenShift Container Platform web console, click Operators → OperatorHub.
						
	
							Type the name of the Operator into the filter box and select the Red Hat version of the Operator. Community versions of the Operators are not supported.
						
	
							Click Install.
						
	
							On the Install Operator page for each Operator, accept the default settings.
						
	
							Click Install. Wait until the Operator has installed before repeating the steps for the next Operator in the list.
						
	
									The OpenShift Elasticsearch Operator is installed in the openshift-operators-redhat namespace and is available for all namespaces in the cluster.
								
	
									The Red Hat OpenShift distributed tracing platform is installed in the openshift-distributed-tracing namespace and is available for all namespaces in the cluster.
								
	
									The Kiali and Red Hat OpenShift Service Mesh Operators are installed in the openshift-operators namespace and are available for all namespaces in the cluster.
								

	
							After all you have installed all four Operators, click Operators → Installed Operators to verify that your Operators installed.
						

Next steps

					The Red Hat OpenShift Service Mesh Operator does not create the various Service Mesh custom resource definitions (CRDs) until you deploy a Service Mesh control plane. You use the ServiceMeshControlPlane resource to install and configure the Service Mesh components. For more information, see Creating the ServiceMeshControlPlane.
				

Creating the ServiceMeshControlPlane

				You can deploy a basic installation of the ServiceMeshControlPlane(SMCP) by using either the OpenShift Container Platform web console or from the command line using the oc client tool.
			
Note

					This basic installation is configured based on the default OpenShift settings and is not designed for production use. Use this default installation to verify your installation, and then configure your ServiceMeshControlPlane for your environment.
				

Note

					Red Hat OpenShift Service on AWS (ROSA) places additional restrictions on where you can create resources and as a result the default deployment does not work. See Installing Service Mesh on Red Hat OpenShift Service on AWS for additional requirements before deploying your SMCP in a ROSA environment.
				

Note

					The Service Mesh documentation uses istio-system as the example project, but you can deploy the service mesh to any project.
				

Deploying the Service Mesh control plane from the web console

					You can deploy a basic ServiceMeshControlPlane by using the web console. In this example, istio-system is the name of the Service Mesh control plane project.
				
Prerequisites
	
							The Red Hat OpenShift Service Mesh Operator must be installed.
						
	
							An account with the cluster-admin role.
						

Procedure
	
							Log in to the OpenShift Container Platform web console as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						
	
							Create a project named istio-system.
						
	
									Navigate to Home → Projects.
								
	
									Click Create Project.
								
	
									In the Name field, enter istio-system. The ServiceMeshControlPlane resource must be installed in a project that is separate from your microservices and Operators.
								

									These steps use istio-system as an example, but you can deploy your Service Mesh control plane in any project as long as it is separate from the project that contains your services.
								

	
									Click Create.
								

	
							Navigate to Operators → Installed Operators.
						
	
							Click the Red Hat OpenShift Service Mesh Operator, then click Istio Service Mesh Control Plane.
						
	
							On the Istio Service Mesh Control Plane tab, click Create ServiceMeshControlPlane.
						
	
							On the Create ServiceMeshControlPlane page, accept the default Service Mesh control plane version to take advantage of the features available in the most current version of the product. The version of the control plane determines the features available regardless of the version of the Operator.
						

							You can configure ServiceMeshControlPlane settings later. For more information, see Configuring Red Hat OpenShift Service Mesh.
						
	
									Click Create. The Operator creates pods, services, and Service Mesh control plane components based on your configuration parameters.
								

	
							To verify the control plane installed correctly, click the Istio Service Mesh Control Plane tab.
						
	
									Click the name of the new control plane.
								
	
									Click the Resources tab to see the Red Hat OpenShift Service Mesh control plane resources the Operator created and configured.
								

Deploying the Service Mesh control plane using the CLI

					You can deploy a basic ServiceMeshControlPlane from the command line.
				
Prerequisites
	
							The Red Hat OpenShift Service Mesh Operator must be installed.
						
	
							Access to the OpenShift CLI (oc).
						

Procedure
	
							Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						
$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

	
							Create a project named istio-system.
						
$ oc new-project istio-system

	
							Create a ServiceMeshControlPlane file named istio-installation.yaml using the following example. The version of the Service Mesh control plane determines the features available regardless of the version of the Operator.
						
Example version 2.2 istio-installation.yaml

								

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
 namespace: istio-system
spec:
 version: v2.2
 tracing:
 type: Jaeger
 sampling: 10000
 addons:
 jaeger:
 name: jaeger
 install:
 storage:
 type: Memory
 kiali:
 enabled: true
 name: kiali
 grafana:
 enabled: true

							

	
							Run the following command to deploy the Service Mesh control plane, where <istio_installation.yaml> includes the full path to your file.
						
$ oc create -n istio-system -f <istio_installation.yaml>

	
							To watch the progress of the pod deployment, run the following command:
						
$ oc get pods -n istio-system -w

							You should see output similar to the following:
						
NAME READY STATUS RESTARTS AGE
grafana-b4d59bd7-mrgbr 2/2 Running 0 65m
istio-egressgateway-678dc97b4c-wrjkp 1/1 Running 0 108s
istio-ingressgateway-b45c9d54d-4qg6n 1/1 Running 0 108s
istiod-basic-55d78bbbcd-j5556 1/1 Running 0 108s
jaeger-67c75bd6dc-jv6k6 2/2 Running 0 65m
kiali-6476c7656c-x5msp 1/1 Running 0 43m
prometheus-58954b8d6b-m5std 2/2 Running 0 66m
wasm-cacher-basic-8c986c75-vj2cd 1/1 Running 0 65m

Validating your SMCP installation with the CLI

					You can validate the creation of the ServiceMeshControlPlane from the command line.
				
Procedure
	
							Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						
$ oc login https://<HOSTNAME>:6443

	
							Run the following command to verify the Service Mesh control plane installation, where istio-system is the namespace where you installed the Service Mesh control plane.
						
$ oc get smcp -n istio-system

							The installation has finished successfully when the STATUS column is ComponentsReady.
						
NAME READY STATUS PROFILES VERSION AGE
basic 10/10 ComponentsReady ["default"] 2.1.1 66m

Validating your SMCP installation with Kiali

					You can use the Kiali console to validate your Service Mesh installation. The Kiali console offers several ways to validate your Service Mesh components are deployed and configured properly.
				
Procedure
	
							Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						
	
							Navigate to Networking → Routes.
						
	
							On the Routes page, select the Service Mesh control plane project, for example istio-system, from the Namespace menu.
						

							The Location column displays the linked address for each route.
						

	
							If necessary, use the filter to find the route for the Kiali console. Click the route Location to launch the console.
						
	
							Click Log In With OpenShift.
						

							When you first log in to the Kiali Console, you see the Overview page which displays all the namespaces in your service mesh that you have permission to view. When there are multiple namespaces shown on the Overview page, Kiali shows namespaces with health or validation problems first.
						
Figure 1.1. Kiali Overview page
[image: Kiali Overview page showing istio-system]

							The tile for each namespace displays the number of labels, the Istio Config health, the number of and Applications health, and Traffic for the namespace. If you are validating the console installation and namespaces have not yet been added to the mesh, there might not be any data to display other than istio-system.
						

	
							Kiali has four dashboards specifically for the namespace where the Service Mesh control plane is installed. To view these dashboards, click the Options menu
							[image: kebab]
							 on the tile for the control plane namespace, for example, istio-system, and select one of the following options:
						
	
									Istio Mesh Dashboard
								
	
									Istio Control Plane Dashboard
								
	
									Istio Performance Dashboard
								
	
									Istio Wasm Exetension Dashboard
								
Figure 1.2. Grafana Istio Control Plane Dashboard
[image: Istio Control Plane Dashboard showing data for bookinfo sample project]

									Kiali also installs two additional Grafana dashboards, available from the Grafana Home page:
								

	
									Istio Workload Dashboard
								
	
									Istio Service Dashboard
								

	
							To view the Service Mesh control plane nodes, click the Graph page, select the Namespace where you installed the ServiceMeshControlPlane from the menu, for example istio-system.
						
	
									If necessary, click Display idle nodes.
								
	
									To learn more about the Graph page, click the Graph tour link.
								
	
									To view the mesh topology, select one or more additional namespaces from the Service Mesh Member Roll from the Namespace menu.
								

	
							To view the list of applications in the istio-system namespace, click the Applications page. Kiali displays the health of the applications.
						
	
									Hover your mouse over the information icon to view any additional information noted in the Details column.
								

	
							To view the list of workloads in the istio-system namespace, click the Workloads page. Kiali displays the health of the workloads.
						
	
									Hover your mouse over the information icon to view any additional information noted in the Details column.
								

	
							To view the list of services in the istio-system namespace, click the Services page. Kiali displays the health of the services and of the configurations.
						
	
									Hover your mouse over the information icon to view any additional information noted in the Details column.
								

	
							To view a list of the Istio Configuration objects in the istio-system namespace, click the Istio Config page. Kiali displays the health of the configuration.
						
	
									If there are configuration errors, click the row and Kiali opens the configuration file with the error highlighted.
								

Installing on Red Hat OpenShift Service on AWS (ROSA)

					Starting with version 2.2, Red Hat OpenShift Service Mesh supports installation on Red Hat OpenShift Service on AWS (ROSA). This section documents the additional requirements when installing Service Mesh on this platform.
				
Installation location

						You must create a new namespace, for example istio-system, when installing Red Hat OpenShift Service Mesh and creating the ServiceMeshControlPlane.
					

Required Service Mesh control plane configuration

						The default configuration in the ServiceMeshControlPlane file does not work on a ROSA cluster. You must modify the default SMCP and set spec.security.identity.type=ThirdParty when installing on Red Hat OpenShift Service on AWS.
					
Example ServiceMeshControlPlane resource for ROSA

							

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
 namespace: istio-system
spec:
 version: v2.2
 security:
 identity:
 type: ThirdParty #required setting for ROSA
 tracing:
 type: Jaeger
 sampling: 10000
 policy:
 type: Istiod
 addons:
 grafana:
 enabled: true
 jaeger:
 install:
 storage:
 type: Memory
 kiali:
 enabled: true
 prometheus:
 enabled: true
 telemetry:
 type: Istiod

						

Restrictions on Kiali configuration

						Red Hat OpenShift Service on AWS places additional restrictions on where you can create resources and does not let you create the Kiali resource in a Red Hat managed namespace.
					

						This means that the following common settings for spec.deployment.accessible_namespaces are not allowed in a ROSA cluster:
					
	
								['**'] (all namespaces)
							
	
								default
							
	
								codeready-*
							
	
								openshift-*
							
	
								redhat-*
							

						The validation error message provides a complete list of all the restricted namespaces.
					
Example Kiali resource for ROSA

							

apiVersion: kiali.io/v1alpha1
kind: Kiali
metadata:
 name: kiali
 namespace: istio-system
spec:
 auth:
 strategy: openshift
 deployment:
 accessible_namespaces: #restricted setting for ROSA
 - istio-system
 image_pull_policy: ''
 ingress_enabled: true
 namespace: istio-system

						

Additional resources

					Red Hat OpenShift Service Mesh supports multiple independent control planes within the cluster. You can create reusable configurations with ServiceMeshControlPlane profiles. For more information, see Creating control plane profiles.
				

Next steps

					Create a ServiceMeshMemberRoll resource to specify the namespaces associated with the Service Mesh. For more information, see Adding services to a service mesh.
				

Adding services to a service mesh

				After installing the Operators and ServiceMeshControlPlane resource, add applications, workloads, or services to your mesh by creating a ServiceMeshMemberRoll resource and specifying the namespaces where your content is located. If you already have an application, workload, or service to add to a ServiceMeshMemberRoll resource, use the following steps. Or, to install a sample application called Bookinfo and add it to a ServiceMeshMemberRoll resource, skip to the tutorial for installing the Bookinfo example application to see how an application works in Red Hat OpenShift Service Mesh.
			

				The items listed in the ServiceMeshMemberRoll resource are the applications and workflows that are managed by the ServiceMeshControlPlane resource. The control plane, which includes the Service Mesh Operators, Istiod, and ServiceMeshControlPlane, and the data plane, which includes applications and Envoy proxy, must be in separate namespaces.
			
Note

					After you add the namespace to the ServiceMeshMemberRoll, access to services or pods in that namespace will not be accessible to callers outside the service mesh.
				

Creating the Red Hat OpenShift Service Mesh member roll

					The ServiceMeshMemberRoll lists the projects that belong to the Service Mesh control plane. Only projects listed in the ServiceMeshMemberRoll are affected by the control plane. A project does not belong to a service mesh until you add it to the member roll for a particular control plane deployment.
				

					You must create a ServiceMeshMemberRoll resource named default in the same project as the ServiceMeshControlPlane, for example istio-system.
				
Creating the member roll from the web console

						You can add one or more projects to the Service Mesh member roll from the web console. In this example, istio-system is the name of the Service Mesh control plane project.
					
Prerequisites
	
								An installed, verified Red Hat OpenShift Service Mesh Operator.
							
	
								List of existing projects to add to the service mesh.
							

Procedure
	
								Log in to the OpenShift Container Platform web console.
							
	
								If you do not already have services for your mesh, or you are starting from scratch, create a project for your applications. It must be different from the project where you installed the Service Mesh control plane.
							
	
										Navigate to Home → Projects.
									
	
										Enter a name in the Name field.
									
	
										Click Create.
									

	
								Navigate to Operators → Installed Operators.
							
	
								Click the Project menu and choose the project where your ServiceMeshControlPlane resource is deployed from the list, for example istio-system.
							
	
								Click the Red Hat OpenShift Service Mesh Operator.
							
	
								Click the Istio Service Mesh Member Roll tab.
							
	
								Click Create ServiceMeshMemberRoll
							
	
								Click Members, then enter the name of your project in the Value field. You can add any number of projects, but a project can only belong to one ServiceMeshMemberRoll resource.
							
	
								Click Create.
							

Creating the member roll from the CLI

						You can add a project to the ServiceMeshMemberRoll from the command line.
					
Prerequisites
	
								An installed, verified Red Hat OpenShift Service Mesh Operator.
							
	
								List of projects to add to the service mesh.
							
	
								Access to the OpenShift CLI (oc).
							

Procedure
	
								Log in to the OpenShift Container Platform CLI.
							
$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

	
								If you do not already have services for your mesh, or you are starting from scratch, create a project for your applications. It must be different from the project where you installed the Service Mesh control plane.
							
$ oc new-project <your-project>

	
								To add your projects as members, modify the following example YAML. You can add any number of projects, but a project can only belong to one ServiceMeshMemberRoll resource. In this example, istio-system is the name of the Service Mesh control plane project.
							
Example servicemeshmemberroll-default.yaml

									

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system
spec:
 members:
 # a list of projects joined into the service mesh
 - your-project-name
 - another-project-name

								

	
								Run the following command to upload and create the ServiceMeshMemberRoll resource in the istio-system namespace.
							
$ oc create -n istio-system -f servicemeshmemberroll-default.yaml

	
								Run the following command to verify the ServiceMeshMemberRoll was created successfully.
							
$ oc get smmr -n istio-system default

								The installation has finished successfully when the STATUS column is Configured.
							

Adding or removing projects from the service mesh

					You can add or remove projects from an existing Service Mesh ServiceMeshMemberRoll resource using the web console.
				
	
							You can add any number of projects, but a project can only belong to one ServiceMeshMemberRoll resource.
						
	
							The ServiceMeshMemberRoll resource is deleted when its corresponding ServiceMeshControlPlane resource is deleted.
						

Adding or removing projects from the member roll using the web console

Prerequisites
	
								An installed, verified Red Hat OpenShift Service Mesh Operator.
							
	
								An existing ServiceMeshMemberRoll resource.
							
	
								Name of the project with the ServiceMeshMemberRoll resource.
							
	
								Names of the projects you want to add or remove from the mesh.
							

Procedure
	
								Log in to the OpenShift Container Platform web console.
							
	
								Navigate to Operators → Installed Operators.
							
	
								Click the Project menu and choose the project where your ServiceMeshControlPlane resource is deployed from the list, for example istio-system.
							
	
								Click the Red Hat OpenShift Service Mesh Operator.
							
	
								Click the Istio Service Mesh Member Roll tab.
							
	
								Click the default link.
							
	
								Click the YAML tab.
							
	
								Modify the YAML to add or remove projects as members. You can add any number of projects, but a project can only belong to one ServiceMeshMemberRoll resource.
							
	
								Click Save.
							
	
								Click Reload.
							

Adding or removing projects from the member roll using the CLI

						You can modify an existing Service Mesh member roll using the command line.
					
Prerequisites
	
								An installed, verified Red Hat OpenShift Service Mesh Operator.
							
	
								An existing ServiceMeshMemberRoll resource.
							
	
								Name of the project with the ServiceMeshMemberRoll resource.
							
	
								Names of the projects you want to add or remove from the mesh.
							
	
								Access to the OpenShift CLI (oc).
							

Procedure
	
								Log in to the OpenShift Container Platform CLI.
							
	
								Edit the ServiceMeshMemberRoll resource.
							
$ oc edit smmr -n <controlplane-namespace>

	
								Modify the YAML to add or remove projects as members. You can add any number of projects, but a project can only belong to one ServiceMeshMemberRoll resource.
							
Example servicemeshmemberroll-default.yaml

									

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system #control plane project
spec:
 members:
 # a list of projects joined into the service mesh
 - your-project-name
 - another-project-name

								

Bookinfo example application

					The Bookinfo example application allows you to test your Red Hat OpenShift Service Mesh 2.2.3 installation on OpenShift Container Platform.
				

					The Bookinfo application displays information about a book, similar to a single catalog entry of an online book store. The application displays a page that describes the book, book details (ISBN, number of pages, and other information), and book reviews.
				

					The Bookinfo application consists of these microservices:
				
	
							The productpage microservice calls the details and reviews microservices to populate the page.
						
	
							The details microservice contains book information.
						
	
							The reviews microservice contains book reviews. It also calls the ratings microservice.
						
	
							The ratings microservice contains book ranking information that accompanies a book review.
						

					There are three versions of the reviews microservice:
				
	
							Version v1 does not call the ratings Service.
						
	
							Version v2 calls the ratings Service and displays each rating as one to five black stars.
						
	
							Version v3 calls the ratings Service and displays each rating as one to five red stars.
						

Installing the Bookinfo application

						This tutorial walks you through how to create a sample application by creating a project, deploying the Bookinfo application to that project, and viewing the running application in Service Mesh.
					
Prerequisites:
	
								OpenShift Container Platform 4.1 or higher installed.
							
	
								Red Hat OpenShift Service Mesh 2.2.3 installed.
							
	
								Access to the OpenShift CLI (oc).
							
	
								An account with the cluster-admin role.
							

Note

							The Bookinfo sample application cannot be installed on IBM Z and IBM Power Systems.
						

Note

							The commands in this section assume the Service Mesh control plane project is istio-system. If you installed the control plane in another namespace, edit each command before you run it.
						

Procedure
	
								Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
							
	
								Click Home → Projects.
							
	
								Click Create Project.
							
	
								Enter bookinfo as the Project Name, enter a Display Name, and enter a Description, then click Create.
							
	
										Alternatively, you can run this command from the CLI to create the bookinfo project.
									
$ oc new-project bookinfo

	
								Click Operators → Installed Operators.
							
	
								Click the Project menu and use the Service Mesh control plane namespace. In this example, use istio-system.
							
	
								Click the Red Hat OpenShift Service Mesh Operator.
							
	
								Click the Istio Service Mesh Member Roll tab.
							
	
										If you have already created a Istio Service Mesh Member Roll, click the name, then click the YAML tab to open the YAML editor.
									
	
										If you have not created a ServiceMeshMemberRoll, click Create ServiceMeshMemberRoll.
									

	
								Click Members, then enter the name of your project in the Value field.
							
	
								Click Create to save the updated Service Mesh Member Roll.
							
	
										Or, save the following example to a YAML file.
									
Bookinfo ServiceMeshMemberRoll example servicemeshmemberroll-default.yaml

											

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
spec:
 members:
 - bookinfo

										

	
										Run the following command to upload that file and create the ServiceMeshMemberRoll resource in the istio-system namespace. In this example, istio-system is the name of the Service Mesh control plane project.
									
$ oc create -n istio-system -f servicemeshmemberroll-default.yaml

	
								Run the following command to verify the ServiceMeshMemberRoll was created successfully.
							
$ oc get smmr -n istio-system -o wide

								The installation has finished successfully when the STATUS column is Configured.
							
NAME READY STATUS AGE MEMBERS
default 1/1 Configured 70s ["bookinfo"]

	
								From the CLI, deploy the Bookinfo application in the `bookinfo` project by applying the bookinfo.yaml file:
							
$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.2/samples/bookinfo/platform/kube/bookinfo.yaml

								You should see output similar to the following:
							
service/details created
serviceaccount/bookinfo-details created
deployment.apps/details-v1 created
service/ratings created
serviceaccount/bookinfo-ratings created
deployment.apps/ratings-v1 created
service/reviews created
serviceaccount/bookinfo-reviews created
deployment.apps/reviews-v1 created
deployment.apps/reviews-v2 created
deployment.apps/reviews-v3 created
service/productpage created
serviceaccount/bookinfo-productpage created
deployment.apps/productpage-v1 created

	
								Create the ingress gateway by applying the bookinfo-gateway.yaml file:
							
$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.2/samples/bookinfo/networking/bookinfo-gateway.yaml

								You should see output similar to the following:
							
gateway.networking.istio.io/bookinfo-gateway created
virtualservice.networking.istio.io/bookinfo created

	
								Set the value for the GATEWAY_URL parameter:
							
$ export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')

Adding default destination rules

						Before you can use the Bookinfo application, you must first add default destination rules. There are two preconfigured YAML files, depending on whether or not you enabled mutual transport layer security (TLS) authentication.
					
Procedure
	
								To add destination rules, run one of the following commands:
							
	
										If you did not enable mutual TLS:
									
$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.2/samples/bookinfo/networking/destination-rule-all.yaml

	
										If you enabled mutual TLS:
									
$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.2/samples/bookinfo/networking/destination-rule-all-mtls.yaml

										You should see output similar to the following:
									
destinationrule.networking.istio.io/productpage created
destinationrule.networking.istio.io/reviews created
destinationrule.networking.istio.io/ratings created
destinationrule.networking.istio.io/details created

Verifying the Bookinfo installation

						To confirm that the sample Bookinfo application was successfully deployed, perform the following steps.
					
Prerequisites
	
								Red Hat OpenShift Service Mesh installed.
							
	
								Complete the steps for installing the Bookinfo sample app.
							

Procedure from CLI
	
								Log in to the OpenShift Container Platform CLI.
							
	
								Verify that all pods are ready with this command:
							
$ oc get pods -n bookinfo

								All pods should have a status of Running. You should see output similar to the following:
							
NAME READY STATUS RESTARTS AGE
details-v1-55b869668-jh7hb 2/2 Running 0 12m
productpage-v1-6fc77ff794-nsl8r 2/2 Running 0 12m
ratings-v1-7d7d8d8b56-55scn 2/2 Running 0 12m
reviews-v1-868597db96-bdxgq 2/2 Running 0 12m
reviews-v2-5b64f47978-cvssp 2/2 Running 0 12m
reviews-v3-6dfd49b55b-vcwpf 2/2 Running 0 12m

	
								Run the following command to retrieve the URL for the product page:
							
echo "http://$GATEWAY_URL/productpage"

	
								Copy and paste the output in a web browser to verify the Bookinfo product page is deployed.
							

Procedure from Kiali web console
	
								Obtain the address for the Kiali web console.
							
	
										Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
									
	
										Navigate to Networking → Routes.
									
	
										On the Routes page, select the Service Mesh control plane project, for example istio-system, from the Namespace menu.
									

										The Location column displays the linked address for each route.
									

	
										Click the link in the Location column for Kiali.
									
	
										Click Log In With OpenShift. The Kiali Overview screen presents tiles for each project namespace.
									

	
								In Kiali, click Graph.
							
	
								Select bookinfo from the Namespace list, and App graph from the Graph Type list.
							
	
								Click Display idle nodes from the Display menu.
							

								This displays nodes that are defined but have not received or sent requests. It can confirm that an application is properly defined, but that no request traffic has been reported.
							
[image: Kiali displaying bookinfo application]

	
										Use the Duration menu to increase the time period to help ensure older traffic is captured.
									
	
										Use the Refresh Rate menu to refresh traffic more or less often, or not at all.
									

	
								Click Services, Workloads or Istio Config to see list views of bookinfo components, and confirm that they are healthy.
							

Removing the Bookinfo application

						Follow these steps to remove the Bookinfo application.
					
Prerequisites
	
								OpenShift Container Platform 4.1 or higher installed.
							
	
								Red Hat OpenShift Service Mesh 2.2.3 installed.
							
	
								Access to the OpenShift CLI (oc).
							

Delete the Bookinfo project

Procedure
	
									Log in to the OpenShift Container Platform web console.
								
	
									Click to Home → Projects.
								
	
									Click the bookinfo menu
									[image: kebab]
									 , and then click Delete Project.
								
	
									Type bookinfo in the confirmation dialog box, and then click Delete.
								
	
											Alternatively, you can run this command using the CLI to create the bookinfo project.
										
$ oc delete project bookinfo

Remove the Bookinfo project from the Service Mesh member roll

Procedure
	
									Log in to the OpenShift Container Platform web console.
								
	
									Click Operators → Installed Operators.
								
	
									Click the Project menu and choose istio-system from the list.
								
	
									Click the Istio Service Mesh Member Roll link under Provided APIS for the Red Hat OpenShift Service Mesh Operator.
								
	
									Click the ServiceMeshMemberRoll menu
									[image: kebab]
									 and select Edit Service Mesh Member Roll.
								
	
									Edit the default Service Mesh Member Roll YAML and remove bookinfo from the members list.
								
	
											Alternatively, you can run this command using the CLI to remove the bookinfo project from the ServiceMeshMemberRoll. In this example, istio-system is the name of the Service Mesh control plane project.
										
$ oc -n istio-system patch --type='json' smmr default -p '[{"op": "remove", "path": "/spec/members", "value":["'"bookinfo"'"]}]'

	
									Click Save to update Service Mesh Member Roll.
								

Next steps

	
							To continue the installation process, you must enable sidecar injection.
						

Enabling sidecar injection

				After adding the namespaces that contain your services to your mesh, the next step is to enable automatic sidecar injection in the Deployment resource for your application. You must enable automatic sidecar injection for each deployment.
			

				If you have installed the Bookinfo sample application, the application was deployed and the sidecars were injected as part of the installation procedure. If you are using your own project and service, deploy your applications on OpenShift Container Platform. For more information, see the OpenShift Container Platform documentation, Understanding Deployment and DeploymentConfig objects.
			
Prerequisites

	
							Services deployed to the mesh, for example the Bookinfo sample application.
						
	
							A Deployment resource file.
						

Enabling automatic sidecar injection

					When deploying an application, you must opt-in to injection by configuring the annotation sidecar.istio.io/inject in spec.template.metadata.annotations to true in the deployment object. Opting in ensures that the sidecar injection does not interfere with other OpenShift Container Platform features such as builder pods used by numerous frameworks within the OpenShift Container Platform ecosystem.
				
Prerequisites
	
							Identify the namespaces that are part of your service mesh and the deployments that need automatic sidecar injection.
						

Procedure
	
							To find your deployments use the oc get command.
						
$ oc get deployment -n <namespace>

							For example, to view the deployment file for the 'ratings-v1' microservice in the bookinfo namespace, use the following command to see the resource in YAML format.
						
oc get deployment -n bookinfo ratings-v1 -o yaml

	
							Open the application’s deployment configuration YAML file in an editor.
						
	
							Add spec.template.metadata.annotations.sidecar.istio/inject to your Deployment YAML and set sidecar.istio.io/inject to true as shown in the following example.
						
Example snippet from bookinfo deployment-ratings-v1.yaml

								

apiVersion: apps/v1
kind: Deployment
metadata:
 name: ratings-v1
 namespace: bookinfo
 labels:
 app: ratings
 version: v1
spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: 'true'

							

	
							Save the Deployment configuration file.
						
	
							Add the file back to the project that contains your app.
						
$ oc apply -n <namespace> -f deployment.yaml

							In this example, bookinfo is the name of the project that contains the ratings-v1 app and deployment-ratings-v1.yaml is the file you edited.
						
$ oc apply -n bookinfo -f deployment-ratings-v1.yaml

	
							To verify that the resource uploaded successfully, run the following command.
						
$ oc get deployment -n <namespace> <deploymentName> -o yaml

							For example,
						
$ oc get deployment -n bookinfo ratings-v1 -o yaml

Validating sidecar injection

					The Kiali console offers several ways to validate whether or not your applications, services, and workloads have a sidecar proxy.
				
Figure 1.3. Missing sidecar badge

					The Graph page displays a node badge indicating a Missing Sidecar on the following graphs:
				
	
							App graph
						
	
							Versioned app graph
						
	
							Workload graph
						

Figure 1.4. Missing sidecar icon
[image: Missing Sidecar icon]

					The Applications page displays a Missing Sidecar icon in the Details column for any applications in a namespace that do not have a sidecar.
				

					The Workloads page displays a Missing Sidecar icon in the Details column for any applications in a namespace that do not have a sidecar.
				

					The Services page displays a Missing Sidecar icon in the Details column for any applications in a namespace that do not have a sidecar. When there are multiple versions of a service, you use the Service Details page to view Missing Sidecar icons.
				

					The Workload Details page has a special unified Logs tab that lets you view and correlate application and proxy logs. You can view the Envoy logs as another way to validate sidecar injection for your application workloads.
				

					The Workload Details page also has an Envoy tab for any workload that is an Envoy proxy or has been injected with an Envoy proxy. This tab displays a built-in Envoy dashboard that includes subtabs for Clusters, Listeners, Routes, Bootstrap, Config, and Metrics.
				

					For information about enabling Envoy access logs, see the Troubleshooting section.
				

					For information about viewing Envoy logs, see Viewing logs in the Kiali console
				

Setting proxy environment variables through annotations

					Configuration for the Envoy sidecar proxies is managed by the ServiceMeshControlPlane.
				

					You can set environment variables for the sidecar proxy for applications by adding pod annotations to the deployment in the injection-template.yaml file. The environment variables are injected to the sidecar.
				
Example injection-template.yaml

						

apiVersion: apps/v1
kind: Deployment
metadata:
 name: resource
spec:
 replicas: 7
 selector:
 matchLabels:
 app: resource
 template:
 metadata:
 annotations:
 sidecar.maistra.io/proxyEnv: "{ \"maistra_test_env\": \"env_value\", \"maistra_test_env_2\": \"env_value_2\" }"

					
Warning

						You should never include maistra.io/ labels and annotations when creating your own custom resources. These labels and annotations indicate that the resources are generated and managed by the Operator. If you are copying content from an Operator-generated resource when creating your own resources, do not include labels or annotations that start with maistra.io/. Resources that include these labels or annotations will be overwritten or deleted by the Operator during the next reconciliation.
					

Updating sidecar proxies

					In order to update the configuration for sidecar proxies the application administrator must restart the application pods.
				

					If your deployment uses automatic sidecar injection, you can update the pod template in the deployment by adding or modifying an annotation. Run the following command to redeploy the pods:
				
$ oc patch deployment/<deployment> -p '{"spec":{"template":{"metadata":{"annotations":{"kubectl.kubernetes.io/restartedAt": "'`date -Iseconds`'"}}}}}'

					If your deployment does not use automatic sidecar injection, you must manually update the sidecars by modifying the sidecar container image specified in the deployment or pod, and then restart the pods.
				

Next steps

					Configure Red Hat OpenShift Service Mesh features for your environment.
				
	
							Security
						
	
							Traffic management
						
	
							Metrics, logs, and traces
						

Upgrading Service Mesh

				To access the most current features of Red Hat OpenShift Service Mesh, upgrade to the current version, 2.2.3.
			
Understanding versioning

					Red Hat uses semantic versioning for product releases. Semantic Versioning is a 3-component number in the format of X.Y.Z, where:
				
	
							X stands for a Major version. Major releases usually denote some sort of breaking change: architectural changes, API changes, schema changes, and similar major updates.
						
	
							Y stands for a Minor version. Minor releases contain new features and functionality while maintaining backwards compatibility.
						
	
							Z stands for a Patch version (also known as a z-stream release). Patch releases are used to addresses Common Vulnerabilities and Exposures (CVEs) and release bug fixes. New features and functionality are generally not released as part of a Patch release.
						

How versioning affects Service Mesh upgrades

						Depending on the version of the update you are making, the upgrade process is different.
					
	
								Patch updates - Patch upgrades are managed by the Operator Lifecycle Manager (OLM); they happen automatically when you update your Operators.
							
	
								Minor upgrades - Minor upgrades require both updating to the most recent Red Hat OpenShift Service Mesh Operator version and manually modifying the spec.version value in your ServiceMeshControlPlane resources.
							
	
								Major upgrades - Major upgrades require both updating to the most recent Red Hat OpenShift Service Mesh Operator version and manually modifying the spec.version value in your ServiceMeshControlPlane resources. Because major upgrades can contain changes that are not backwards compatible, additional manual changes might be required.
							

Understanding Service Mesh versions

						In order to understand what version of Red Hat OpenShift Service Mesh you have deployed on your system, you need to understand how each of the component versions is managed.
					
	
								Operator version - The most current Operator version is 2.2.3. The Operator version number only indicates the version of the currently installed Operator. Because the Red Hat OpenShift Service Mesh Operator supports multiple versions of the Service Mesh control plane, the version of the Operator does not determine the version of your deployed ServiceMeshControlPlane resources.
							
Important

									Upgrading to the latest Operator version automatically applies patch updates, but does not automatically upgrade your Service Mesh control plane to the latest minor version.
								

	
								ServiceMeshControlPlane version - The ServiceMeshControlPlane version determines what version of Red Hat OpenShift Service Mesh you are using. The value of the spec.version field in the ServiceMeshControlPlane resource controls the architecture and configuration settings that are used to install and deploy Red Hat OpenShift Service Mesh. When you create the Service Mesh control plane you can set the version in one of two ways:
							
	
										To configure in the Form View, select the version from the Control Plane Version menu.
									
	
										To configure in the YAML View, set the value for spec.version in the YAML file.
									

						Operator Lifecycle Manager (OLM) does not manage Service Mesh control plane upgrades, so the version number for your Operator and ServiceMeshControlPlane (SMCP) may not match, unless you have manually upgraded your SMCP.
					

Upgrade considerations

					The maistra.io/ label or annotation should not be used on a user-created custom resource, because it indicates that the resource was generated by and should be managed by the Red Hat OpenShift Service Mesh Operator.
				
Warning

						During the upgrade, the Operator makes changes, including deleting or replacing files, to resources that include the following labels or annotations that indicate that the resource is managed by the Operator.
					

					Before upgrading check for user-created custom resources that include the following labels or annotations:
				
	
							maistra.io/ AND the app.kubernetes.io/managed-by label set to maistra-istio-operator (Red Hat OpenShift Service Mesh)
						
	
							kiali.io/ (Kiali)
						
	
							jaegertracing.io/ (Red Hat OpenShift distributed tracing platform)
						
	
							logging.openshift.io/ (Red Hat Elasticsearch)
						

					Before upgrading, check your user-created custom resources for labels or annotations that indicate they are Operator managed. Remove the label or annotation from custom resources that you do not want to be managed by the Operator.
				

					When upgrading to version 2.0, the Operator only deletes resources with these labels in the same namespace as the SMCP.
				

					When upgrading to version 2.1, the Operator deletes resources with these labels in all namespaces.
				
Known issues that may affect upgrade

						Known issues that may affect your upgrade include:
					
	
								Red Hat OpenShift Service Mesh does not support the use of EnvoyFilter configuration except where explicitly documented. This is due to tight coupling with the underlying Envoy APIs, meaning that backward compatibility cannot be maintained. If you are using Envoy Filters, and the configuration generated by Istio has changed due to the lastest version of Envoy introduced by upgrading your ServiceMeshControlPlane, that has the potential to break any EnvoyFilter you may have implemented.
							
	
								OSSM-1505 ServiceMeshExtension does not work with OpenShift Container Platform version 4.11. Because ServiceMeshExtension has been deprecated in Red Hat OpenShift Service Mesh 2.2, this known issue will not be fixed and you must migrate your extensions to WasmPluging
							
	
								OSSM-1396 If a gateway resource contains the spec.externalIPs setting, rather than being recreated when the ServiceMeshControlPlane is updated, the gateway is removed and never recreated.
							

	
								OSSM-1052 When configuring a Service ExternalIP for the ingressgateway in the Service Mesh control plane, the service is not created. The schema for the SMCP is missing the parameter for the service.
							

								Workaround: Disable the gateway creation in the SMCP spec and manage the gateway deployment entirely manually (including Service, Role and RoleBinding).
							

Upgrading the Operators

					In order to keep your Service Mesh patched with the latest security fixes, bug fixes, and software updates, you must keep your Operators updated. You initiate patch updates by upgrading your Operators.
				
Important

						The version of the Operator does not determine the version of your service mesh. The version of your deployed Service Mesh control plane determines your version of Service Mesh.
					

					Because the Red Hat OpenShift Service Mesh Operator supports multiple versions of the Service Mesh control plane, updating the Red Hat OpenShift Service Mesh Operator does not update the spec.version value of your deployed ServiceMeshControlPlane. Also note that the spec.version value is a two digit number, for example 2.2, and that patch updates, for example 2.2.1, are not reflected in the SMCP version value.
				

					Operator Lifecycle Manager (OLM) controls the installation, upgrade, and role-based access control (RBAC) of Operators in a cluster. The OLM runs by default in OpenShift Container Platform. OLM queries for available Operators as well as upgrades for installed Operators.
				

					Whether or not you have to take action to upgrade your Operators depends on the settings you selected when installing them. When you installed each of your Operators, you selected an Update Channel and an Approval Strategy. The combination of these two settings determine when and how your Operators are updated.
				
Table 1.5. Interaction of Update Channel and Approval Strategy
	 	Versioned channel	"Stable" or "Preview" Channel
	
									Automatic
								

								 	
									Automatically updates the Operator for minor and patch releases for that version only. Will not automatically update to the next major version (that is, from version 2.0 to 3.0). Manual change to Operator subscription required to update to the next major version.
								

								 	
									Automatically updates Operator for all major, minor, and patch releases.
								

								
	
									Manual
								

								 	
									Manual updates required for minor and patch releases for the specified version. Manual change to Operator subscription required to update to the next major version.
								

								 	
									Manual updates required for all major, minor, and patch releases.
								

								

					When you update your Red Hat OpenShift Service Mesh Operator the Operator Lifecycle Manager (OLM) removes the old Operator pod and starts a new pod. Once the new Operator pod starts, the reconciliation process checks the ServiceMeshControlPlane (SMCP), and if there are updated container images available for any of the Service Mesh control plane components, it replaces those Service Mesh control plane pods with ones that use the new container images.
				

					When you upgrade the Kiali and Red Hat OpenShift distributed tracing platform Operators, the OLM reconciliation process scans the cluster and upgrades the managed instances to the version of the new Operator. For example, if you update the Red Hat OpenShift distributed tracing platform Operator from version 1.30.2 to version 1.34.1, the Operator scans for running instances of distributed tracing platform and upgrades them to 1.34.1 as well.
				

					To stay on a particular patch version of Red Hat OpenShift Service Mesh, you would need to disable automatic updates and remain on that specific version of the Operator.
				

					For more information about upgrading Operators, refer to the Operator Lifecycle Manager documentation.
				

Upgrading the control plane

					You must manually update the control plane for minor and major releases. The community Istio project recommends canary upgrades, Red Hat OpenShift Service Mesh only supports in-place upgrades. Red Hat OpenShift Service Mesh requires that you upgrade from each minor release to the next minor release in sequence. For example, you must upgrade from version 2.0 to version 2.1, and then upgrade to version 2.2. You cannot update from Red Hat OpenShift Service Mesh 2.0 to 2.2 directly.
				

					When you upgrade the service mesh control plane, all Operator managed resources, for example gateways, are also upgraded.
				

					Although you can deploy multiple versions of the control plane in the same cluster, Red Hat OpenShift Service Mesh does not support canary upgrades of the service mesh. That is, you can have different SCMP resources with different values for spec.version, but they cannot be managing the same mesh.
				
Upgrade changes from version 2.1 to version 2.2

						Upgrading the Service Mesh control plane from version 2.1 to 2.2 introduces the following behavioral changes:
					
	
								The istio-node DaemonSet is renamed to istio-cni-node to match the name in upstream Istio.
							
	
								Istio 1.10 updated Envoy to send traffic to the application container using eth0 rather than lo by default.
							
	
								This release adds support for the WasmPlugin API and deprecates the ServiceMeshExtention API.
							

						For more information about migrating your extensions, refer to Migrating from ServiceMeshExtension to WasmPlugin resources.
					

Upgrade changes from version 2.0 to version 2.1

						Upgrading the Service Mesh control plane from version 2.0 to 2.1 introduces the following architectural and behavioral changes.
					
Architecture changes

							Mixer has been completely removed in Red Hat OpenShift Service Mesh 2.1. Upgrading from a Red Hat OpenShift Service Mesh 2.0.x release to 2.1 will be blocked if Mixer is enabled.
						

						If you see the following message when upgrading from v2.0 to v2.1, update the existing Mixer type to Istiod type in the existing Control Plane spec before you update the .spec.version field:
					
An error occurred
admission webhook smcp.validation.maistra.io denied the request: [support for policy.type "Mixer" and policy.Mixer options have been removed in v2.1, please use another alternative, support for telemetry.type "Mixer" and telemetry.Mixer options have been removed in v2.1, please use another alternative]”

						For example:
					
apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 policy:
 type: Istiod
 telemetry:
 type: Istiod
 version: v2.2
Behavioral changes
	
								AuthorizationPolicy updates:
							
	
										With the PROXY protocol, if you’re using ipBlocks and notIpBlocks to specify remote IP addresses, update the configuration to use remoteIpBlocks and notRemoteIpBlocks instead.
									
	
										Added support for nested JSON Web Token (JWT) claims.
									

	
								EnvoyFilter breaking changes>
							
	
										Must use typed_config
									
	
										xDS v2 is no longer supported
									
	
										Deprecated filter names
									

	
								Older versions of proxies may report 503 status codes when receiving 1xx or 204 status codes from newer proxies.
							

Upgrading the Service Mesh control plane

						To upgrade Red Hat OpenShift Service Mesh, you must update the version field of the Red Hat OpenShift Service Mesh ServiceMeshControlPlane v2 resource. Then, once it is configured and applied, restart the application pods to update each sidecar proxy and its configuration.
					
Prerequisites
	
								You are running OpenShift Container Platform 4.9 or later.
							
	
								You have the latest Red Hat OpenShift Service Mesh Operator.
							

Procedure
	
								Switch to the project that contains your ServiceMeshControlPlane resource. In this example, istio-system is the name of the Service Mesh control plane project.
							
$ oc project istio-system

	
								Check your v2 ServiceMeshControlPlane resource configuration to verify it is valid.
							
	
										Run the following command to view your ServiceMeshControlPlane resource as a v2 resource.
									
$ oc get smcp -o yaml
Tip

										Back up your Service Mesh control plane configuration.
									

	
								Update the .spec.version field and apply the configuration.
							

								For example:
							
apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.2

								Alternatively, instead of using the command line, you can use the web console to edit the Service Mesh control plane. In the OpenShift Container Platform web console, click Project and select the project name you just entered.
							
	
										Click Operators → Installed Operators.
									
	
										Find your ServiceMeshControlPlane instance.
									
	
										Select YAML view and update text of the YAML file, as shown in the previous example.
									
	
										Click Save.
									

Migrating Red Hat OpenShift Service Mesh from version 1.1 to version 2.0

						Upgrading from version 1.1 to 2.0 requires manual steps that migrate your workloads and application to a new instance of Red Hat OpenShift Service Mesh running the new version.
					
Prerequisites
	
								You must upgrade to OpenShift Container Platform 4.7. before you upgrade to Red Hat OpenShift Service Mesh 2.0.
							
	
								You must have Red Hat OpenShift Service Mesh version 2.0 operator. If you selected the automatic upgrade path, the operator automatically downloads the latest information. However, there are steps you must take to use the features in Red Hat OpenShift Service Mesh version 2.0.
							

Upgrading Red Hat OpenShift Service Mesh

							To upgrade Red Hat OpenShift Service Mesh, you must create an instance of Red Hat OpenShift Service Mesh ServiceMeshControlPlane v2 resource in a new namespace. Then, once it’s configured, move your microservice applications and workloads from your old mesh to the new service mesh.
						
Procedure
	
									Check your v1 ServiceMeshControlPlane resource configuration to make sure it is valid.
								
	
											Run the following command to view your ServiceMeshControlPlane resource as a v2 resource.
										
$ oc get smcp -o yaml

	
											Check the spec.techPreview.errored.message field in the output for information about any invalid fields.
										
	
											If there are invalid fields in your v1 resource, the resource is not reconciled and cannot be edited as a v2 resource. All updates to v2 fields will be overridden by the original v1 settings. To fix the invalid fields, you can replace, patch, or edit the v1 version of the resource. You can also delete the resource without fixing it. After the resource has been fixed, it can be reconciled, and you can to modify or view the v2 version of the resource.
										
	
											To fix the resource by editing a file, use oc get to retrieve the resource, edit the text file locally, and replace the resource with the file you edited.
										
$ oc get smcp.v1.maistra.io <smcp_name> > smcp-resource.yaml
#Edit the smcp-resource.yaml file.
$ oc replace -f smcp-resource.yaml

	
											To fix the resource using patching, use oc patch.
										
$ oc patch smcp.v1.maistra.io <smcp_name> --type json --patch '[{"op": "replace","path":"/spec/path/to/bad/setting","value":"corrected-value"}]'

	
											To fix the resource by editing with command line tools, use oc edit.
										
$ oc edit smcp.v1.maistra.io <smcp_name>

	
									Back up your Service Mesh control plane configuration. Switch to the project that contains your ServiceMeshControlPlane resource. In this example, istio-system is the name of the Service Mesh control plane project.
								
$ oc project istio-system

	
									Enter the following command to retrieve the current configuration. Your <smcp_name> is specified in the metadata of your ServiceMeshControlPlane resource, for example basic-install or full-install.
								
$ oc get servicemeshcontrolplanes.v1.maistra.io <smcp_name> -o yaml > <smcp_name>.v1.yaml

	
									Convert your ServiceMeshControlPlane to a v2 control plane version that contains information about your configuration as a starting point.
								
$ oc get smcp <smcp_name> -o yaml > <smcp_name>.v2.yaml

	
									Create a project. In the OpenShift Container Platform console Project menu, click New Project and enter a name for your project, istio-system-upgrade, for example. Or, you can run this command from the CLI.
								
$ oc new-project istio-system-upgrade

	
									Update the metadata.namespace field in your v2 ServiceMeshControlPlane with your new project name. In this example, use istio-system-upgrade.
								
	
									Update the version field from 1.1 to 2.0 or remove it in your v2 ServiceMeshControlPlane.
								
	
									Create a ServiceMeshControlPlane in the new namespace. On the command line, run the following command to deploy the control plane with the v2 version of the ServiceMeshControlPlane that you retrieved. In this example, replace `<smcp_name.v2> `with the path to your file.
								
$ oc create -n istio-system-upgrade -f <smcp_name>.v2.yaml

									Alternatively, you can use the console to create the Service Mesh control plane. In the OpenShift Container Platform web console, click Project. Then, select the project name you just entered.
								
	
											Click Operators → Installed Operators.
										
	
											Click Create ServiceMeshControlPlane.
										
	
											Select YAML view and paste text of the YAML file you retrieved into the field. Check that the apiVersion field is set to maistra.io/v2 and modify the metadata.namespace field to use the new namespace, for example istio-system-upgrade.
										
	
											Click Create.
										

Configuring the 2.0 ServiceMeshControlPlane

							The ServiceMeshControlPlane resource has been changed for Red Hat OpenShift Service Mesh version 2.0. After you created a v2 version of the ServiceMeshControlPlane resource, modify it to take advantage of the new features and to fit your deployment. Consider the following changes to the specification and behavior of Red Hat OpenShift Service Mesh 2.0 as you’re modifying your ServiceMeshControlPlane resource. You can also refer to the Red Hat OpenShift Service Mesh 2.0 product documentation for new information to features you use. The v2 resource must be used for Red Hat OpenShift Service Mesh 2.0 installations.
						
Architecture changes

								The architectural units used by previous versions have been replaced by Istiod. In 2.0 the Service Mesh control plane components Mixer, Pilot, Citadel, Galley, and the sidecar injector functionality have been combined into a single component, Istiod.
							

								Although Mixer is no longer supported as a control plane component, Mixer policy and telemetry plugins are now supported through WASM extensions in Istiod. Mixer can be enabled for policy and telemetry if you need to integrate legacy Mixer plugins.
							

								Secret Discovery Service (SDS) is used to distribute certificates and keys to sidecars directly from Istiod. In Red Hat OpenShift Service Mesh version 1.1, secrets were generated by Citadel, which were used by the proxies to retrieve their client certificates and keys.
							

Annotation changes

								The following annotations are no longer supported in v2.0. If you are using one of these annotations, you must update your workload before moving it to a v2.0 Service Mesh control plane.
							
	
										sidecar.maistra.io/proxyCPULimit has been replaced with sidecar.istio.io/proxyCPULimit. If you were using sidecar.maistra.io annotations on your workloads, you must modify those workloads to use sidecar.istio.io equivalents instead.
									
	
										sidecar.maistra.io/proxyMemoryLimit has been replaced with sidecar.istio.io/proxyMemoryLimit
									
	
										sidecar.istio.io/discoveryAddress is no longer supported. Also, the default discovery address has moved from pilot.<control_plane_namespace>.svc:15010 (or port 15011, if mtls is enabled) to istiod-<smcp_name>.<control_plane_namespace>.svc:15012.
									
	
										The health status port is no longer configurable and is hard-coded to 15021. * If you were defining a custom status port, for example, status.sidecar.istio.io/port, you must remove the override before moving the workload to a v2.0 Service Mesh control plane. Readiness checks can still be disabled by setting the status port to 0.
									
	
										Kubernetes Secret resources are no longer used to distribute client certificates for sidecars. Certificates are now distributed through Istiod’s SDS service. If you were relying on mounted secrets, they are longer available for workloads in v2.0 Service Mesh control planes.
									

Behavioral changes

								Some features in Red Hat OpenShift Service Mesh 2.0 work differently than they did in previous versions.
							
	
										The readiness port on gateways has moved from 15020 to 15021.
									
	
										The target host visibility includes VirtualService, as well as ServiceEntry resources. It includes any restrictions applied through Sidecar resources.
									
	
										Automatic mutual TLS is enabled by default. Proxy to proxy communication is automatically configured to use mTLS, regardless of global PeerAuthentication policies in place.
									
	
										Secure connections are always used when proxies communicate with the Service Mesh control plane regardless of spec.security.controlPlane.mtls setting. The spec.security.controlPlane.mtls setting is only used when configuring connections for Mixer telemetry or policy.
									

Migration details for unsupported resources

Policy (authentication.istio.io/v1alpha1)

									Policy resources must be migrated to new resource types for use with v2.0 Service Mesh control planes, PeerAuthentication and RequestAuthentication. Depending on the specific configuration in your Policy resource, you may have to configure multiple resources to achieve the same effect.
								
Mutual TLS

									Mutual TLS enforcement is accomplished using the security.istio.io/v1beta1 PeerAuthentication resource. The legacy spec.peers.mtls.mode field maps directly to the new resource’s spec.mtls.mode field. Selection criteria has changed from specifying a service name in spec.targets[x].name to a label selector in spec.selector.matchLabels. In PeerAuthentication, the labels must match the selector on the services named in the targets list. Any port-specific settings will need to be mapped into spec.portLevelMtls.
								
Authentication

									Additional authentication methods specified in spec.origins, must be mapped into a security.istio.io/v1beta1 RequestAuthentication resource. spec.selector.matchLabels must be configured similarly to the same field on PeerAuthentication. Configuration specific to JWT principals from spec.origins.jwt items map to similar fields in spec.rules items.
								
	
										spec.origins[x].jwt.triggerRules specified in the Policy must be mapped into one or more security.istio.io/v1beta1 AuthorizationPolicy resources. Any spec.selector.labels must be configured similarly to the same field on RequestAuthentication.
									
	
										spec.origins[x].jwt.triggerRules.excludedPaths must be mapped into an AuthorizationPolicy whose spec.action is set to ALLOW, with spec.rules[x].to.operation.path entries matching the excluded paths.
									
	
										spec.origins[x].jwt.triggerRules.includedPaths must be mapped into a separate AuthorizationPolicy whose spec.action is set to ALLOW, with spec.rules[x].to.operation.path entries matching the included paths, and spec.rules.[x].from.source.requestPrincipals entries that align with the specified spec.origins[x].jwt.issuer in the Policy resource.
									

ServiceMeshPolicy (maistra.io/v1)

									ServiceMeshPolicy was configured automatically for the Service Mesh control plane through the spec.istio.global.mtls.enabled in the v1 resource or spec.security.dataPlane.mtls in the v2 resource setting. For v2 control planes, a functionally equivalent PeerAuthentication resource is created during installation. This feature is deprecated in Red Hat OpenShift Service Mesh version 2.0
								
RbacConfig, ServiceRole, ServiceRoleBinding (rbac.istio.io/v1alpha1)

									These resources were replaced by the security.istio.io/v1beta1 AuthorizationPolicy resource.
								

								Mimicking RbacConfig behavior requires writing a default AuthorizationPolicy whose settings depend on the spec.mode specified in the RbacConfig.
							
	
										When spec.mode is set to OFF, no resource is required as the default policy is ALLOW, unless an AuthorizationPolicy applies to the request.
									
	
										When spec.mode is set to ON, set spec: {}. You must create AuthorizationPolicy policies for all services in the mesh.
									
	
										spec.mode is set to ON_WITH_INCLUSION, must create an AuthorizationPolicy with spec: {} in each included namespace. Inclusion of individual services is not supported by AuthorizationPolicy. However, as soon as any AuthorizationPolicy is created that applies to the workloads for the service, all other requests not explicitly allowed will be denied.
									
	
										When spec.mode is set to ON_WITH_EXCLUSION, it is not supported by AuthorizationPolicy. A global DENY policy can be created, but an AuthorizationPolicy must be created for every workload in the mesh because there is no allow-all policy that can be applied to either a namespace or a workload.
									

								AuthorizationPolicy includes configuration for both the selector to which the configuration applies, which is similar to the function ServiceRoleBinding provides and the rules which should be applied, which is similar to the function ServiceRole provides.
							
ServiceMeshRbacConfig (maistra.io/v1)

									This resource is replaced by using a security.istio.io/v1beta1 AuthorizationPolicy resource with an empty spec.selector in the Service Mesh control plane’s namespace. This policy will be the default authorization policy applied to all workloads in the mesh. For specific migration details, see RbacConfig above.
								

Mixer plugins

								Mixer components are disabled by default in version 2.0. If you rely on Mixer plugins for your workload, you must configure your version 2.0 ServiceMeshControlPlane to include the Mixer components.
							

								To enable the Mixer policy components, add the following snippet to your ServiceMeshControlPlane.
							
spec:
 policy:
 type: Mixer

								To enable the Mixer telemetry components, add the following snippet to your ServiceMeshControlPlane.
							
spec:
 telemetry:
 type: Mixer

								Legacy mixer plugins can also be migrated to WASM and integrated using the new ServiceMeshExtension (maistra.io/v1alpha1) custom resource.
							

								Built-in WASM filters included in the upstream Istio distribution are not available in Red Hat OpenShift Service Mesh 2.0.
							

Mutual TLS changes

								When using mTLS with workload specific PeerAuthentication policies, a corresponding DestinationRule is required to allow traffic if the workload policy differs from the namespace/global policy.
							

								Auto mTLS is enabled by default, but can be disabled by setting spec.security.dataPlane.automtls to false in the ServiceMeshControlPlane resource. When disabling auto mTLS, DestinationRules may be required for proper communication between services. For example, setting PeerAuthentication to STRICT for one namespace may prevent services in other namespaces from accessing them, unless a DestinationRule configures TLS mode for the services in the namespace.
							

								For information about mTLS, see Enabling mutual Transport Layer Security (mTLS)
							
Other mTLS Examples

									To disable mTLS For productpage service in the bookinfo sample application, your Policy resource was configured the following way for Red Hat OpenShift Service Mesh v1.1.
								
Example Policy resource

										

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: productpage-mTLS-disable
 namespace: <namespace>
spec:
 targets:
 - name: productpage

									

									To disable mTLS For productpage service in the bookinfo sample application, use the following example to configure your PeerAuthentication resource for Red Hat OpenShift Service Mesh v2.0.
								
Example PeerAuthentication resource

										

apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: productpage-mTLS-disable
 namespace: <namespace>
spec:
 mtls:
 mode: DISABLE
 selector:
 matchLabels:
 # this should match the selector for the "productpage" service
 app: productpage

									

									To enable mTLS With JWT authentication for the productpage service in the bookinfo sample application, your Policy resource was configured the following way for Red Hat OpenShift Service Mesh v1.1.
								
Example Policy resource

										

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: productpage-mTLS-with-JWT
 namespace: <namespace>
spec:
 targets:
 - name: productpage
 ports:
 - number: 9000
 peers:
 - mtls:
 origins:
 - jwt:
 issuer: "https://securetoken.google.com"
 audiences:
 - "productpage"
 jwksUri: "https://www.googleapis.com/oauth2/v1/certs"
 jwtHeaders:
 - "x-goog-iap-jwt-assertion"
 triggerRules:
 - excludedPaths:
 - exact: /health_check
 principalBinding: USE_ORIGIN

									

									To enable mTLS With JWT authentication for the productpage service in the bookinfo sample application, use the following example to configure your PeerAuthentication resource for Red Hat OpenShift Service Mesh v2.0.
								
Example PeerAuthentication resource

										

#require mtls for productpage:9000
apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: productpage-mTLS-with-JWT
 namespace: <namespace>
spec:
 selector:
 matchLabels:
 # this should match the selector for the "productpage" service
 app: productpage
 portLevelMtls:
 9000:
 mode: STRICT

#JWT authentication for productpage
apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: productpage-mTLS-with-JWT
 namespace: <namespace>
spec:
 selector:
 matchLabels:
 # this should match the selector for the "productpage" service
 app: productpage
 jwtRules:
 - issuer: "https://securetoken.google.com"
 audiences:
 - "productpage"
 jwksUri: "https://www.googleapis.com/oauth2/v1/certs"
 fromHeaders:
 - name: "x-goog-iap-jwt-assertion"

#Require JWT token to access product page service from
#any client to all paths except /health_check
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: productpage-mTLS-with-JWT
 namespace: <namespace>
spec:
 action: ALLOW
 selector:
 matchLabels:
 # this should match the selector for the "productpage" service
 app: productpage
 rules:
 - to: # require JWT token to access all other paths
 - operation:
 notPaths:
 - /health_check
 from:
 - source:
 # if using principalBinding: USE_PEER in the Policy,
 # then use principals, e.g.
 # principals:
 # - “*”
 requestPrincipals:
 - “*”
 - to: # no JWT token required to access health_check
 - operation:
 paths:
 - /health_check

									

Configuration recipes

							You can configure the following items with these configuration recipes.
						
Mutual TLS in a data plane

								Mutual TLS for data plane communication is configured through spec.security.dataPlane.mtls in the ServiceMeshControlPlane resource, which is false by default.
							

Custom signing key

								Istiod manages client certificates and private keys used by service proxies. By default, Istiod uses a self-signed certificate for signing, but you can configure a custom certificate and private key. For more information about how to configure signing keys, see Adding an external certificate authority key and certificate
							

Tracing

								Tracing is configured in spec.tracing. Currently, the only type of tracer that is supported is Jaeger. Sampling is a scaled integer representing 0.01% increments, for example, 1 is 0.01% and 10000 is 100%. The tracing implementation and sampling rate can be specified:
							
spec:
 tracing:
 sampling: 100 # 1%
 type: Jaeger

								Jaeger is configured in the addons section of the ServiceMeshControlPlane resource.
							
spec:
 addons:
 jaeger:
 name: jaeger
 install:
 storage:
 type: Memory # or Elasticsearch for production mode
 memory:
 maxTraces: 100000
 elasticsearch: # the following values only apply if storage:type:=Elasticsearch
 storage: # specific storageclass configuration for the Jaeger Elasticsearch (optional)
 size: "100G"
 storageClassName: "storageclass"
 nodeCount: 3
 redundancyPolicy: SingleRedundancy
 runtime:
 components:
 tracing.jaeger: {} # general Jaeger specific runtime configuration (optional)
 tracing.jaeger.elasticsearch: #runtime configuration for Jaeger Elasticsearch deployment (optional)
 container:
 resources:
 requests:
 memory: "1Gi"
 cpu: "500m"
 limits:
 memory: "1Gi"

								The Jaeger installation can be customized with the install field. Container configuration, such as resource limits is configured in spec.runtime.components.jaeger related fields. If a Jaeger resource matching the value of spec.addons.jaeger.name exists, the Service Mesh control plane will be configured to use the existing installation. Use an existing Jaeger resource to fully customize your Jaeger installation.
							

Visualization

								Kiali and Grafana are configured under the addons section of the ServiceMeshControlPlane resource.
							
spec:
 addons:
 grafana:
 enabled: true
 install: {} # customize install
 kiali:
 enabled: true
 name: kiali
 install: {} # customize install

								The Grafana and Kiali installations can be customized through their respective install fields. Container customization, such as resource limits, is configured in spec.runtime.components.kiali and spec.runtime.components.grafana. If an existing Kiali resource matching the value of name exists, the Service Mesh control plane configures the Kiali resource for use with the control plane. Some fields in the Kiali resource are overridden, such as the accessible_namespaces list, as well as the endpoints for Grafana, Prometheus, and tracing. Use an existing resource to fully customize your Kiali installation.
							

Resource utilization and scheduling

								Resources are configured under spec.runtime.<component>. The following component names are supported.
							
	Component	Description	Versions supported
	
												security
											

											 	
												Citadel container
											

											 	
												v1.0/1.1
											

											
	
												galley
											

											 	
												Galley container
											

											 	
												v1.0/1.1
											

											
	
												pilot
											

											 	
												Pilot/Istiod container
											

											 	
												v1.0/1.1/2.0
											

											
	
												mixer
											

											 	
												istio-telemetry and istio-policy containers
											

											 	
												v1.0/1.1
											

											
	
												mixer.policy
											

											 	
												istio-policy container
											

											 	
												v2.0
											

											
	
												mixer.telemetry
											

											 	
												istio-telemetry container
											

											 	
												v2.0
											

											
	
												global.ouathproxy
											

											 	
												oauth-proxy container used with various addons
											

											 	
												v1.0/1.1/2.0
											

											
	
												sidecarInjectorWebhook
											

											 	
												sidecar injector webhook container
											

											 	
												v1.0/1.1
											

											
	
												tracing.jaeger
											

											 	
												general Jaeger container - not all settings may be applied. Complete customization of Jaeger installation is supported by specifying an existing Jaeger resource in the Service Mesh control plane configuration.
											

											 	
												v1.0/1.1/2.0
											

											
	
												tracing.jaeger.agent
											

											 	
												settings specific to Jaeger agent
											

											 	
												v1.0/1.1/2.0
											

											
	
												tracing.jaeger.allInOne
											

											 	
												settings specific to Jaeger allInOne
											

											 	
												v1.0/1.1/2.0
											

											
	
												tracing.jaeger.collector
											

											 	
												settings specific to Jaeger collector
											

											 	
												v1.0/1.1/2.0
											

											
	
												tracing.jaeger.elasticsearch
											

											 	
												settings specific to Jaeger elasticsearch deployment
											

											 	
												v1.0/1.1/2.0
											

											
	
												tracing.jaeger.query
											

											 	
												settings specific to Jaeger query
											

											 	
												v1.0/1.1/2.0
											

											
	
												prometheus
											

											 	
												prometheus container
											

											 	
												v1.0/1.1/2.0
											

											
	
												kiali
											

											 	
												Kiali container - complete customization of Kiali installation is supported by specifying an existing Kiali resource in the Service Mesh control plane configuration.
											

											 	
												v1.0/1.1/2.0
											

											
	
												grafana
											

											 	
												Grafana container
											

											 	
												v1.0/1.1/2.0
											

											
	
												3scale
											

											 	
												3scale container
											

											 	
												v1.0/1.1/2.0
											

											
	
												wasmExtensions.cacher
											

											 	
												WASM extensions cacher container
											

											 	
												v2.0 - tech preview
											

											

								Some components support resource limiting and scheduling. For more information, see Performance and scalability.
							

Next steps for migrating your applications and workloads

							Move the application workload to the new mesh and remove the old instances to complete your upgrade.
						

Upgrading the data plane

					Your data plane will still function after you have upgraded the control plane. But in order to apply updates to the Envoy proxy and any changes to the proxy configuration, you must restart your application pods and workloads.
				
Updating your applications and workloads

						To complete the migration, restart all of the application pods in the mesh to upgrade the Envoy sidecar proxies and their configuration.
					

						To perform a rolling update of a deployment use the following command:
					
$ oc rollout restart <deployment>

						You must perform a rolling update for all applications that make up the mesh.
					

Managing users and profiles

Creating the Red Hat OpenShift Service Mesh members

					ServiceMeshMember resources provide a way for Red Hat OpenShift Service Mesh administrators to delegate permissions to add projects to a service mesh, even when the respective users don’t have direct access to the service mesh project or member roll. While project administrators are automatically given permission to create the ServiceMeshMember resource in their project, they cannot point it to any ServiceMeshControlPlane until the service mesh administrator explicitly grants access to the service mesh. Administrators can grant users permissions to access the mesh by granting them the mesh-user user role. In this example, istio-system is the name of the Service Mesh control plane project.
				
$ oc policy add-role-to-user -n istio-system --role-namespace istio-system mesh-user <user_name>

					Administrators can modify the mesh-user role binding in the Service Mesh control plane project to specify the users and groups that are granted access. The ServiceMeshMember adds the project to the ServiceMeshMemberRoll within the Service Mesh control plane project that it references.
				
apiVersion: maistra.io/v1
kind: ServiceMeshMember
metadata:
 name: default
spec:
 controlPlaneRef:
 namespace: istio-system
 name: basic

					The mesh-users role binding is created automatically after the administrator creates the ServiceMeshControlPlane resource. An administrator can use the following command to add a role to a user.
				
$ oc policy add-role-to-user

					The administrator can also create the mesh-user role binding before the administrator creates the ServiceMeshControlPlane resource. For example, the administrator can create it in the same oc apply operation as the ServiceMeshControlPlane resource.
				

					This example adds a role binding for alice:
				
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 namespace: istio-system
 name: mesh-users
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: mesh-user
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: User
 name: alice

Creating Service Mesh control plane profiles

					You can create reusable configurations with ServiceMeshControlPlane profiles. Individual users can extend the profiles they create with their own configurations. Profiles can also inherit configuration information from other profiles. For example, you can create an accounting control plane for the accounting team and a marketing control plane for the marketing team. If you create a development template and a production template, members of the marketing team and the accounting team can extend the development and production profiles with team-specific customization.
				

					When you configure Service Mesh control plane profiles, which follow the same syntax as the ServiceMeshControlPlane, users inherit settings in a hierarchical fashion. The Operator is delivered with a default profile with default settings for Red Hat OpenShift Service Mesh.
				
Creating the ConfigMap

						To add custom profiles, you must create a ConfigMap named smcp-templates in the openshift-operators project. The Operator container automatically mounts the ConfigMap.
					
Prerequisites
	
								An installed, verified Service Mesh Operator.
							
	
								An account with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
							
	
								Location of the Operator deployment.
							
	
								Access to the OpenShift CLI (oc).
							

Procedure
	
								Log in to the OpenShift Container Platform CLI as a cluster-admin. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
							
	
								From the CLI, run this command to create the ConfigMap named smcp-templates in the openshift-operators project and replace <profiles-directory> with the location of the ServiceMeshControlPlane files on your local disk:
							
$ oc create configmap --from-file=<profiles-directory> smcp-templates -n openshift-operators

	
								You can use the profiles parameter in the ServiceMeshControlPlane to specify one or more templates.
							
 apiVersion: maistra.io/v2
 kind: ServiceMeshControlPlane
 metadata:
 name: basic
 spec:
 profiles:
 - default

Setting the correct network policy

						Service Mesh creates network policies in the Service Mesh control plane and member namespaces to allow traffic between them. Before you deploy, consider the following conditions to ensure the services in your service mesh that were previously exposed through an OpenShift Container Platform route.
					
	
								Traffic into the service mesh must always go through the ingress-gateway for Istio to work properly.
							
	
								Deploy services external to the service mesh in separate namespaces that are not in any service mesh.
							
	
								Non-mesh services that need to be deployed within a service mesh enlisted namespace should label their deployments maistra.io/expose-route: "true", which ensures OpenShift Container Platform routes to these services still work.
							

Security

				If your service mesh application is constructed with a complex array of microservices, you can use Red Hat OpenShift Service Mesh to customize the security of the communication between those services. The infrastructure of OpenShift Container Platform along with the traffic management features of Service Mesh help you manage the complexity of your applications and secure microservices.
			
Before you begin

					If you have a project, add your project to the ServiceMeshMemberRoll resource.
				

				If you don’t have a project, install the Bookinfo sample application and add it to the ServiceMeshMemberRoll resource. The sample application helps illustrate security concepts.
			
About mutual Transport Layer Security (mTLS)

					Mutual Transport Layer Security (mTLS) is a protocol that enables two parties to authenticate each other. It is the default mode of authentication in some protocols (IKE, SSH) and optional in others (TLS). You can use mTLS without changes to the application or service code. The TLS is handled entirely by the service mesh infrastructure and between the two sidecar proxies.
				

					By default, mTLS in Red Hat OpenShift Service Mesh is enabled and set to permissive mode, where the sidecars in Service Mesh accept both plain-text traffic and connections that are encrypted using mTLS. If a service in your mesh is communicating with a service outside the mesh, strict mTLS could break communication between those services. Use permissive mode while you migrate your workloads to Service Mesh. Then, you can enable strict mTLS across your mesh, namespace, or application.
				

					Enabling mTLS across your mesh at the Service Mesh control plane level secures all the traffic in your service mesh without rewriting your applications and workloads. You can secure namespaces in your mesh at the data plane level in the ServiceMeshControlPlane resource. To customize traffic encryption connections, configure namespaces at the application level with PeerAuthentication and DestinationRule resources.
				
Enabling strict mTLS across the service mesh

						If your workloads do not communicate with outside services, you can quickly enable mTLS across your mesh without communication interruptions. You can enable it by setting spec.security.dataPlane.mtls to true in the ServiceMeshControlPlane resource. The Operator creates the required resources.
					
apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 version: v2.2
 security:
 dataPlane:
 mtls: true

						You can also enable mTLS by using the OpenShift Container Platform web console.
					
Procedure
	
								Log in to the web console.
							
	
								Click the Project menu and select the project where you installed the Service Mesh control plane, for example istio-system.
							
	
								Click Operators → Installed Operators.
							
	
								Click Service Mesh Control Plane under Provided APIs.
							
	
								Click the name of your ServiceMeshControlPlane resource, for example, basic.
							
	
								On the Details page, click the toggle in the Security section for Data Plane Security.
							

Configuring sidecars for incoming connections for specific services

							You can also configure mTLS for individual services by creating a policy.
						
Procedure
	
									Create a YAML file using the following example.
								
PeerAuthentication Policy example policy.yaml

										

apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: default
 namespace: <namespace>
spec:
 mtls:
 mode: STRICT

									
	
											Replace <namespace> with the namespace where the service is located.
										

	
									Run the following command to create the resource in the namespace where the service is located. It must match the namespace field in the Policy resource you just created.
								
$ oc create -n <namespace> -f <policy.yaml>

Note

								If you are not using automatic mTLS and you are setting PeerAuthentication to STRICT, you must create a DestinationRule resource for your service.
							

Configuring sidecars for outgoing connections

							Create a destination rule to configure Service Mesh to use mTLS when sending requests to other services in the mesh.
						
Procedure
	
									Create a YAML file using the following example.
								
DestinationRule example destination-rule.yaml

										

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: default
 namespace: <namespace>
spec:
 host: "*.<namespace>.svc.cluster.local"
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL

									
	
											Replace <namespace> with the namespace where the service is located.
										

	
									Run the following command to create the resource in the namespace where the service is located. It must match the namespace field in the DestinationRule resource you just created.
								
$ oc create -n <namespace> -f <destination-rule.yaml>

Setting the minimum and maximum protocol versions

							If your environment has specific requirements for encrypted traffic in your service mesh, you can control the cryptographic functions that are allowed by setting the spec.security.controlPlane.tls.minProtocolVersion or spec.security.controlPlane.tls.maxProtocolVersion in your ServiceMeshControlPlane resource. Those values, configured in your Service Mesh control plane resource, define the minimum and maximum TLS version used by mesh components when communicating securely over TLS.
						

							The default is TLS_AUTO and does not specify a version of TLS.
						
Table 1.6. Valid values
	Value	Description
	
											TLS_AUTO
										

										 	
											default
										

										
	
											TLSv1_0
										

										 	
											TLS version 1.0
										

										
	
											TLSv1_1
										

										 	
											TLS version 1.1
										

										
	
											TLSv1_2
										

										 	
											TLS version 1.2
										

										
	
											TLSv1_3
										

										 	
											TLS version 1.3
										

										

Procedure
	
									Log in to the web console.
								
	
									Click the Project menu and select the project where you installed the Service Mesh control plane, for example istio-system.
								
	
									Click Operators → Installed Operators.
								
	
									Click Service Mesh Control Plane under Provided APIs.
								
	
									Click the name of your ServiceMeshControlPlane resource, for example, basic.
								
	
									Click the YAML tab.
								
	
									Insert the following code snippet in the YAML editor. Replace the value in the minProtocolVersion with the TLS version value. In this example, the minimum TLS version is set to TLSv1_2.
								
ServiceMeshControlPlane snippet

										

kind: ServiceMeshControlPlane
spec:
 security:
 controlPlane:
 tls:
 minProtocolVersion: TLSv1_2

									

	
									Click Save.
								
	
									Click Refresh to verify that the changes updated correctly.
								

Validating encryption with Kiali

						The Kiali console offers several ways to validate whether or not your applications, services, and workloads have mTLS encryption enabled.
					
Figure 1.5. Masthead icon mesh-wide mTLS enabled
[image: mTLS enabled]

						At the right side of the masthead, Kiali shows a lock icon when the mesh has strictly enabled mTLS for the whole service mesh. It means that all communications in the mesh use mTLS.
					
Figure 1.6. Masthead icon mesh-wide mTLS partially enabled
[image: mTLS partially enabled]

						Kiali displays a hollow lock icon when either the mesh is configured in PERMISSIVE mode or there is a error in the mesh-wide mTLS configuration.
					
Figure 1.7. Security badge
[image: Security badge]

						The Graph page has the option to display a Security badge on the graph edges to indicate that mTLS is enabled. To enable security badges on the graph, from the Display menu, under Show Badges, select the Security checkbox. When an edge shows a lock icon, it means at least one request with mTLS enabled is present. In case there are both mTLS and non-mTLS requests, the side-panel will show the percentage of requests that use mTLS.
					

						The Applications Detail Overview page displays a Security icon on the graph edges where at least one request with mTLS enabled is present.
					

						The Workloads Detail Overview page displays a Security icon on the graph edges where at least one request with mTLS enabled is present.
					

						The Services Detail Overview page displays a Security icon on the graph edges where at least one request with mTLS enabled is present. Also note that Kiali displays a lock icon in the Network section next to ports that are configured for mTLS.
					

Configuring Role Based Access Control (RBAC)

					Role-based access control (RBAC) objects determine whether a user or service is allowed to perform a given action within a project. You can define mesh-, namespace-, and workload-wide access control for your workloads in the mesh.
				

					To configure RBAC, create an AuthorizationPolicy resource in the namespace for which you are configuring access. If you are configuring mesh-wide access, use the project where you installed the Service Mesh control plane, for example istio-system.
				

					For example, with RBAC, you can create policies that:
				
	
							Configure intra-project communication.
						
	
							Allow or deny full access to all workloads in the default namespace.
						
	
							Allow or deny ingress gateway access.
						
	
							Require a token for access.
						

					An authorization policy includes a selector, an action, and a list of rules:
				
	
							The selector field specifies the target of the policy.
						
	
							The action field specifies whether to allow or deny the request.
						
	
							The rules field specifies when to trigger the action.
						
	
									The from field specifies constraints on the request origin.
								
	
									The to field specifies constraints on request target and parameters.
								
	
									The when field specifies additional conditions that to apply the rule.
								

Procedure
	
							Create your AuthorizationPolicy resource. The following example shows a resource that updates the ingress-policy AuthorizationPolicy to deny an IP address from accessing the ingress gateway.
						
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: ingress-policy
 namespace: istio-system
spec:
 selector:
 matchLabels:
 app: istio-ingressgateway
 action: DENY
 rules:
 - from:
 - source:
 ipBlocks: ["1.2.3.4"]

	
							Run the following command after you write your resource to create your resource in your namespace. The namespace must match your metadata.namespace field in your AuthorizationPolicy resource.
						
$ oc create -n istio-system -f <filename>

Next steps

						Consider the following examples for other common configurations.
					
Configure intra-project communication

						You can use AuthorizationPolicy to configure your Service Mesh control plane to allow or deny the traffic communicating with your mesh or services in your mesh.
					
Restrict access to services outside a namespace

							You can deny requests from any source that is not in the bookinfo namespace with the following AuthorizationPolicy resource example.
						
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin-deny
 namespace: bookinfo
spec:
 selector:
 matchLabels:
 app: httpbin
 version: v1
 action: DENY
 rules:
 - from:
 - source:
 notNamespaces: ["bookinfo"]

Creating allow-all and default deny-all authorization policies

							The following example shows an allow-all authorization policy that allows full access to all workloads in the bookinfo namespace.
						
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: allow-all
 namespace: bookinfo
spec:
 action: ALLOW
 rules:
 - {}

							The following example shows a policy that denies any access to all workloads in the bookinfo namespace.
						
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: deny-all
 namespace: bookinfo
spec:
 {}

Allow or deny access to the ingress gateway

						You can set an authorization policy to add allow or deny lists based on IP addresses.
					
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: ingress-policy
 namespace: istio-system
spec:
 selector:
 matchLabels:
 app: istio-ingressgateway
 action: ALLOW
 rules:
 - from:
 - source:
 ipBlocks: ["1.2.3.4", "5.6.7.0/24"]

Restrict access with JSON Web Token

						You can restrict what can access your mesh with a JSON Web Token (JWT). After authentication, a user or service can access routes, services that are associated with that token.
					

						Create a RequestAuthentication resource, which defines the authentication methods that are supported by a workload. The following example accepts a JWT issued by http://localhost:8080/auth/realms/master.
					
apiVersion: "security.istio.io/v1beta1"
kind: "RequestAuthentication"
metadata:
 name: "jwt-example"
 namespace: bookinfo
spec:
 selector:
 matchLabels:
 app: httpbin
 jwtRules:
 - issuer: "http://localhost:8080/auth/realms/master"
 jwksUri: "http://keycloak.default.svc:8080/auth/realms/master/protocol/openid-connect/certs"

						Then, create an AuthorizationPolicy resource in the same namespace to work with RequestAuthentication resource you created. The following example requires a JWT to be present in the Authorization header when sending a request to httpbin workloads.
					
apiVersion: "security.istio.io/v1beta1"
kind: "AuthorizationPolicy"
metadata:
 name: "frontend-ingress"
 namespace: bookinfo
spec:
 selector:
 matchLabels:
 app: httpbin
 action: DENY
 rules:
 - from:
 - source:
 notRequestPrincipals: ["*"]

Configuring cipher suites and ECDH curves

					Cipher suites and Elliptic-curve Diffie–Hellman (ECDH curves) can help you secure your service mesh. You can define a comma separated list of cipher suites using spec.security.controlplane.tls.cipherSuites and ECDH curves using spec.security.controlplane.tls.ecdhCurves in your ServiceMeshControlPlane resource. If either of these attributes are empty, then the default values are used.
				

					The cipherSuites setting is effective if your service mesh uses TLS 1.2 or earlier. It has no effect when negotiating with TLS 1.3.
				

					Set your cipher suites in the comma separated list in order of priority. For example, ecdhCurves: CurveP256, CurveP384 sets CurveP256 as a higher priority than CurveP384.
				
Note

						You must include either TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 or TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 when you configure the cipher suite. HTTP/2 support requires at least one of these cipher suites.
					

					The supported cipher suites are:
				
	
							TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
						
	
							TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
						
	
							TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
						
	
							TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
						
	
							TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
						
	
							TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
						
	
							TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
						
	
							TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
						
	
							TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
						
	
							TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
						
	
							TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
						
	
							TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
						
	
							TLS_RSA_WITH_AES_128_GCM_SHA256
						
	
							TLS_RSA_WITH_AES_256_GCM_SHA384
						
	
							TLS_RSA_WITH_AES_128_CBC_SHA256
						
	
							TLS_RSA_WITH_AES_128_CBC_SHA
						
	
							TLS_RSA_WITH_AES_256_CBC_SHA
						
	
							TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
						
	
							TLS_RSA_WITH_3DES_EDE_CBC_SHA
						

					The supported ECDH Curves are:
				
	
							CurveP256
						
	
							CurveP384
						
	
							CurveP521
						
	
							X25519
						

Adding an external certificate authority key and certificate

					By default, Red Hat OpenShift Service Mesh generates a self-signed root certificate and key and uses them to sign the workload certificates. You can also use the user-defined certificate and key to sign workload certificates with user-defined root certificate. This task demonstrates an example to plug certificates and key into Service Mesh.
				
Prerequisites
	
							Install Red Hat OpenShift Service Mesh with mutual TLS enabled to configure certificates.
						
	
							This example uses the certificates from the Maistra repository. For production, use your own certificates from your certificate authority.
						
	
							Deploy the Bookinfo sample application to verify the results with these instructions.
						
	
							OpenSSL is required to verify certificates.
						

Adding an existing certificate and key

						To use an existing signing (CA) certificate and key, you must create a chain of trust file that includes the CA certificate, key, and root certificate. You must use the following exact file names for each of the corresponding certificates. The CA certificate is named ca-cert.pem, the key is ca-key.pem, and the root certificate, which signs ca-cert.pem, is named root-cert.pem. If your workload uses intermediate certificates, you must specify them in a cert-chain.pem file.
					
	
								Save the example certificates from the Maistra repository locally and replace <path> with the path to your certificates.
							
	
								Create a secret named cacert that includes the input files ca-cert.pem, ca-key.pem, root-cert.pem and cert-chain.pem.
							
$ oc create secret generic cacerts -n istio-system --from-file=<path>/ca-cert.pem \
 --from-file=<path>/ca-key.pem --from-file=<path>/root-cert.pem \
 --from-file=<path>/cert-chain.pem

	
								In the ServiceMeshControlPlane resource set spec.security.dataPlane.mtls true to true and configure the certificateAuthority field as shown in the following example. The default rootCADir is /etc/cacerts. You do not need to set the privateKey if the key and certs are mounted in the default location. Service Mesh reads the certificates and key from the secret-mount files.
							
apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 security:
 dataPlane:
 mtls: true
 certificateAuthority:
 type: Istiod
 istiod:
 type: PrivateKey
 privateKey:
 rootCADir: /etc/cacerts

	
								After creating/changing/deleting the cacert secret, the Service Mesh control plane istiod and gateway pods must be restarted so the changes go into effect. Use the following command to restart the pods:
							
$ oc -n istio-system delete pods -l 'app in (istiod,istio-ingressgateway, istio-egressgateway)'

								The Operator will automatically recreate the pods after they have been deleted.
							

	
								Restart the bookinfo application pods so that the sidecar proxies pick up the secret changes. Use the following command to restart the pods:
							
$ oc -n bookinfo delete pods --all

								You should see output similar to the following:
							
pod "details-v1-6cd699df8c-j54nh" deleted
pod "productpage-v1-5ddcb4b84f-mtmf2" deleted
pod "ratings-v1-bdbcc68bc-kmng4" deleted
pod "reviews-v1-754ddd7b6f-lqhsv" deleted
pod "reviews-v2-675679877f-q67r2" deleted
pod "reviews-v3-79d7549c7-c2gjs" deleted

	
								Verify that the pods were created and are ready with the following command:
							
$ oc get pods -n bookinfo

Verifying your certificates

						Use the Bookinfo sample application to verify that the workload certificates are signed by the certificates that were plugged into the CA. This requires you have openssl installed on your machine
					
	
								To extract certificates from bookinfo workloads use the following command:
							
$ sleep 60
$ oc -n bookinfo exec "$(oc -n bookinfo get pod -l app=productpage -o jsonpath={.items..metadata.name})" -c istio-proxy -- openssl s_client -showcerts -connect details:9080 > bookinfo-proxy-cert.txt
$ sed -n '/-----BEGIN CERTIFICATE-----/{:start /-----END CERTIFICATE-----/!{N;b start};/.*/p}' bookinfo-proxy-cert.txt > certs.pem
$ awk 'BEGIN {counter=0;} /BEGIN CERT/{counter++} { print > "proxy-cert-" counter ".pem"}' < certs.pem

								After running the command, you should have three files in your working directory: proxy-cert-1.pem, proxy-cert-2.pem and proxy-cert-3.pem.
							

	
								Verify that the root certificate is the same as the one specified by the administrator. Replace <path> with the path to your certificates.
							
$ openssl x509 -in <path>/root-cert.pem -text -noout > /tmp/root-cert.crt.txt

								Run the following syntax at the terminal window.
							
$ openssl x509 -in ./proxy-cert-3.pem -text -noout > /tmp/pod-root-cert.crt.txt

								Compare the certificates by running the following syntax at the terminal window.
							
$ diff -s /tmp/root-cert.crt.txt /tmp/pod-root-cert.crt.txt

								You should see the following result: Files /tmp/root-cert.crt.txt and /tmp/pod-root-cert.crt.txt are identical
							

	
								Verify that the CA certificate is the same as the one specified by the administrator. Replace <path> with the path to your certificates.
							
$ openssl x509 -in <path>/ca-cert.pem -text -noout > /tmp/ca-cert.crt.txt

								Run the following syntax at the terminal window.
							
$ openssl x509 -in ./proxy-cert-2.pem -text -noout > /tmp/pod-cert-chain-ca.crt.txt

								Compare the certificates by running the following syntax at the terminal window.
							
$ diff -s /tmp/ca-cert.crt.txt /tmp/pod-cert-chain-ca.crt.txt

								You should see the following result: Files /tmp/ca-cert.crt.txt and /tmp/pod-cert-chain-ca.crt.txt are identical.
							

	
								Verify the certificate chain from the root certificate to the workload certificate. Replace <path> with the path to your certificates.
							
$ openssl verify -CAfile <(cat <path>/ca-cert.pem <path>/root-cert.pem) ./proxy-cert-1.pem

								You should see the following result: ./proxy-cert-1.pem: OK
							

Removing the certificates

						To remove the certificates you added, follow these steps.
					
	
								Remove the secret cacerts. In this example, istio-system is the name of the Service Mesh control plane project.
							
$ oc delete secret cacerts -n istio-system

	
								Redeploy Service Mesh with a self-signed root certificate in the ServiceMeshControlPlane resource.
							
apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 security:
 dataPlane:
 mtls: true

Managing traffic in your service mesh

				Red Hat OpenShift Service Mesh lets you control the flow of traffic and API calls between services. Some services in your service mesh may need to communicate within the mesh and others may need to be hidden. You can manage the traffic to hide specific backend services, expose services, create testing or versioning deployments, or add a security layer on a set of services.
			
Using gateways

					You can use a gateway to manage inbound and outbound traffic for your mesh to specify which traffic you want to enter or leave the mesh. Gateway configurations are applied to standalone Envoy proxies that are running at the edge of the mesh, rather than sidecar Envoy proxies running alongside your service workloads.
				

					Unlike other mechanisms for controlling traffic entering your systems, such as the Kubernetes Ingress APIs, Red Hat OpenShift Service Mesh gateways allow you to use the full power and flexibility of traffic routing. The Red Hat OpenShift Service Mesh gateway resource can layer 4-6 load balancing properties, such as ports, to expose and configure Red Hat OpenShift Service Mesh TLS settings. Instead of adding application-layer traffic routing (L7) to the same API resource, you can bind a regular Red Hat OpenShift Service Mesh virtual service to the gateway and manage gateway traffic like any other data plane traffic in a service mesh.
				

					Gateways are primarily used to manage ingress traffic, but you can also configure egress gateways. An egress gateway lets you configure a dedicated exit node for the traffic leaving the mesh. This enables you to limit which services have access to external networks, which adds security control to your service mesh. You can also use a gateway to configure a purely internal proxy.
				
Gateway example

						A gateway resource describes a load balancer operating at the edge of the mesh receiving incoming or outgoing HTTP/TCP connections. The specification describes a set of ports that should be exposed, the type of protocol to use, SNI configuration for the load balancer, and so on.
					

					The following example shows a sample gateway configuration for external HTTPS ingress traffic:
				
apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: ext-host-gwy
spec:
 selector:
 istio: ingressgateway # use istio default controller
 servers:
 - port:
 number: 443
 name: https
 protocol: HTTPS
 hosts:
 - ext-host.example.com
 tls:
 mode: SIMPLE
 serverCertificate: /tmp/tls.crt
 privateKey: /tmp/tls.key

					This gateway configuration lets HTTPS traffic from ext-host.example.com into the mesh on port 443, but doesn’t specify any routing for the traffic.
				

					To specify routing and for the gateway to work as intended, you must also bind the gateway to a virtual service. You do this using the virtual service’s gateways field, as shown in the following example:
				
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: virtual-svc
spec:
 hosts:
 - ext-host.example.com
 gateways:
 - ext-host-gwy

					You can then configure the virtual service with routing rules for the external traffic.
				
Managing ingress traffic

						In Red Hat OpenShift Service Mesh, the Ingress Gateway enables features such as monitoring, security, and route rules to apply to traffic that enters the cluster. Use a Service Mesh gateway to expose a service outside of the service mesh.
					
Determining the ingress IP and ports

							Ingress configuration differs depending on if your environment supports an external load balancer. An external load balancer is set in the ingress IP and ports for the cluster. To determine if your cluster’s IP and ports are configured for external load balancers, run the following command. In this example, istio-system is the name of the Service Mesh control plane project.
						
$ oc get svc istio-ingressgateway -n istio-system

							That command returns the NAME, TYPE, CLUSTER-IP, EXTERNAL-IP, PORT(S), and AGE of each item in your namespace.
						

							If the EXTERNAL-IP value is set, your environment has an external load balancer that you can use for the ingress gateway.
						

							If the EXTERNAL-IP value is <none>, or perpetually <pending>, your environment does not provide an external load balancer for the ingress gateway. You can access the gateway using the service’s node port.
						
Determining ingress ports with a load balancer

								Follow these instructions if your environment has an external load balancer.
							
Procedure
	
										Run the following command to set the ingress IP and ports. This command sets a variable in your terminal.
									
$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')

	
										Run the following command to set the ingress port.
									
$ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].port}')

	
										Run the following command to set the secure ingress port.
									
$ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="https")].port}')

	
										Run the following command to set the TCP ingress port.
									
$ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="tcp")].port}')

Note

									In some environments, the load balancer may be exposed using a hostname instead of an IP address. For that case, the ingress gateway’s EXTERNAL-IP value is not an IP address. Instead, it’s a hostname, and the previous command fails to set the INGRESS_HOST environment variable.
								

									In that case, use the following command to correct the INGRESS_HOST value:
								

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')

Determining ingress ports without a load balancer

								If your environment does not have an external load balancer, determine the ingress ports and use a node port instead.
							
Procedure
	
										Set the ingress ports.
									
$ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')

	
										Run the following command to set the secure ingress port.
									
$ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="https")].nodePort}')

	
										Run the following command to set the TCP ingress port.
									
$ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="tcp")].nodePort}')

Configuring an ingress gateway

						An ingress gateway is a load balancer operating at the edge of the mesh that receives incoming HTTP/TCP connections. It configures exposed ports and protocols but does not include any traffic routing configuration. Traffic routing for ingress traffic is instead configured with routing rules, the same way as for internal service requests.
					

						The following steps show how to create a gateway and configure a VirtualService to expose a service in the Bookinfo sample application to outside traffic for paths /productpage and /login.
					
Procedure
	
								Create a gateway to accept traffic.
							
	
										Create a YAML file, and copy the following YAML into it.
									
Gateway example gateway.yaml

											

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: bookinfo-gateway
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"

										

	
										Apply the YAML file.
									
$ oc apply -f gateway.yaml

	
								Create a VirtualService object to rewrite the host header.
							
	
										Create a YAML file, and copy the following YAML into it.
									
Virtual service example

											

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: bookinfo
spec:
 hosts:
 - "*"
 gateways:
 - bookinfo-gateway
 http:
 - match:
 - uri:
 exact: /productpage
 - uri:
 prefix: /static
 - uri:
 exact: /login
 - uri:
 exact: /logout
 - uri:
 prefix: /api/v1/products
 route:
 - destination:
 host: productpage
 port:
 number: 9080

										

	
										Apply the YAML file.
									
$ oc apply -f vs.yaml

	
								Test that the gateway and VirtualService have been set correctly.
							
	
										Set the Gateway URL.
									
export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')

	
										Set the port number. In this example, istio-system is the name of the Service Mesh control plane project.
									
export TARGET_PORT=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.port.targetPort}')

	
										Test a page that has been explicitly exposed.
									
curl -s -I "$GATEWAY_URL/productpage"

										The expected result is 200.
									

Understanding automatic routes

					OpenShift routes for gateways are automatically managed in Service Mesh. Every time an Istio Gateway is created, updated or deleted inside the service mesh, an OpenShift route is created, updated or deleted.
				
Routes with subdomains

						Red Hat OpenShift Service Mesh creates the route with the subdomain, but OpenShift Container Platform must be configured to enable it. Subdomains, for example *.domain.com, are supported, but not by default. Configure an OpenShift Container Platform wildcard policy before configuring a wildcard host gateway.
					

						For more information, see Using wildcard routes.
					

Creating subdomain routes

						The following example creates a gateway in the Bookinfo sample application, which creates subdomain routes.
					
apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: gateway1
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - www.bookinfo.com
 - bookinfo.example.com

						The Gateway resource creates the following OpenShift routes. You can check that the routes are created by using the following command. In this example, istio-system is the name of the Service Mesh control plane project.
					
$ oc -n istio-system get routes
Expected output

							

NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
gateway1-lvlfn bookinfo.example.com istio-ingressgateway <all> None
gateway1-scqhv www.bookinfo.com istio-ingressgateway <all> None

						

						If you delete the gateway, Red Hat OpenShift Service Mesh deletes the routes. However, routes you have manually created are never modified by Red Hat OpenShift Service Mesh.
					

Route labels and annotations

						Sometimes specific labels or annotations are needed in an OpenShift route. For example, some advanced features in OpenShift routes are managed using special annotations. See "Route-specific annotations" in the following "Additional resources" section.
					

						For this and other use cases, Red Hat OpenShift Service Mesh will copy all labels and annotations present in the Istio gateway resource (with the exception of annotations starting with kubectl.kubernetes.io) into the managed OpenShift route resource.
					

						If you need specific labels or annotations in the OpenShift routes created by Service Mesh, create them in the Istio gateway resource and they will be copied into the OpenShift route resources managed by the Service Mesh.
					

Disabling automatic route creation

						By default, the ServiceMeshControlPlane resource automatically synchronizes the Istio gateway resources with OpenShift routes. Disabling the automatic route creation allows you more flexibility to control routes if you have a special case or prefer to control routes manually.
					
Disabling automatic route creation for specific cases

							If you want to disable the automatic management of OpenShift routes for a specific Istio gateway, you must add the annotation maistra.io/manageRoute: false to the gateway metadata definition. Red Hat OpenShift Service Mesh will ignore Istio gateways with this annotation, while keeping the automatic management of the other Istio gateways.
						

Disabling automatic route creation for all cases

							You can disable the automatic management of OpenShift routes for all gateways in your mesh.
						

							Disable integration between Istio gateways and OpenShift routes by setting the ServiceMeshControlPlane field gateways.openshiftRoute.enabled to false. For example, see the following resource snippet.
						
apiVersion: maistra.io/v1alpha1
kind:
metadata:
 namespace: istio-system
spec:
 gateways:
 openshiftRoute:
 enabled: false

Understanding service entries

					A service entry adds an entry to the service registry that Red Hat OpenShift Service Mesh maintains internally. After you add the service entry, the Envoy proxies send traffic to the service as if it is a service in your mesh. Service entries allow you to do the following:
				
	
							Manage traffic for services that run outside of the service mesh.
						
	
							Redirect and forward traffic for external destinations (such as, APIs consumed from the web) or traffic to services in legacy infrastructure.
						
	
							Define retry, timeout, and fault injection policies for external destinations.
						
	
							Run a mesh service in a Virtual Machine (VM) by adding VMs to your mesh.
						

Note

						Add services from a different cluster to the mesh to configure a multicluster Red Hat OpenShift Service Mesh mesh on Kubernetes.
					

Service entry examples

						The following example is a mesh-external service entry that adds the ext-resource external dependency to the Red Hat OpenShift Service Mesh service registry:
					
apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: svc-entry
spec:
 hosts:
 - ext-svc.example.com
 ports:
 - number: 443
 name: https
 protocol: HTTPS
 location: MESH_EXTERNAL
 resolution: DNS

					Specify the external resource using the hosts field. You can qualify it fully or use a wildcard prefixed domain name.
				

					You can configure virtual services and destination rules to control traffic to a service entry in the same way you configure traffic for any other service in the mesh. For example, the following destination rule configures the traffic route to use mutual TLS to secure the connection to the ext-svc.example.com external service that is configured using the service entry:
				
apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: ext-res-dr
spec:
 host: ext-svc.example.com
 trafficPolicy:
 tls:
 mode: MUTUAL
 clientCertificate: /etc/certs/myclientcert.pem
 privateKey: /etc/certs/client_private_key.pem
 caCertificates: /etc/certs/rootcacerts.pem

Using VirtualServices

					You can route requests dynamically to multiple versions of a microservice through Red Hat OpenShift Service Mesh with a virtual service. With virtual services, you can:
				
	
							Address multiple application services through a single virtual service. If your mesh uses Kubernetes, for example, you can configure a virtual service to handle all services in a specific namespace. A virtual service enables you to turn a monolithic application into a service consisting of distinct microservices with a seamless consumer experience.
						
	
							Configure traffic rules in combination with gateways to control ingress and egress traffic.
						

Configuring VirtualServices

						Requests are routed to services within a service mesh with virtual services. Each virtual service consists of a set of routing rules that are evaluated in order. Red Hat OpenShift Service Mesh matches each given request to the virtual service to a specific real destination within the mesh.
					

						Without virtual services, Red Hat OpenShift Service Mesh distributes traffic using round-robin load balancing between all service instances. With a virtual service, you can specify traffic behavior for one or more hostnames. Routing rules in the virtual service tell Red Hat OpenShift Service Mesh how to send the traffic for the virtual service to appropriate destinations. Route destinations can be versions of the same service or entirely different services.
					
Procedure
	
								Create a YAML file using the following example to route requests to different versions of the Bookinfo sample application service depending on which user connects to the application.
							
Example VirtualService.yaml

									

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 end-user:
 exact: jason
 route:
 - destination:
 host: reviews
 subset: v2
 - route:
 - destination:
 host: reviews
 subset: v3

								

	
								Run the following command to apply VirtualService.yaml, where VirtualService.yaml is the path to the file.
							
$ oc apply -f <VirtualService.yaml>

VirtualService configuration reference

	Parameter	Description
	
spec:
 hosts:

									 	
										The hosts field lists the virtual service’s destination address to which the routing rules apply. This is the address(es) that are used to send requests to the service. The virtual service hostname can be an IP address, a DNS name, or a short name that resolves to a fully qualified domain name.
									

									
	
spec:
 http:
 - match:

									 	
										The http section contains the virtual service’s routing rules which describe match conditions and actions for routing HTTP/1.1, HTTP2, and gRPC traffic sent to the destination as specified in the hosts field. A routing rule consists of the destination where you want the traffic to go and any specified match conditions. The first routing rule in the example has a condition that begins with the match field. In this example, this routing applies to all requests from the user jason. Add the headers, end-user, and exact fields to select the appropriate requests.
									

									
	
spec:
 http:
 - match:
 - destination:

									 	
										The destination field in the route section specifies the actual destination for traffic that matches this condition. Unlike the virtual service’s host, the destination’s host must be a real destination that exists in the Red Hat OpenShift Service Mesh service registry. This can be a mesh service with proxies or a non-mesh service added using a service entry. In this example, the hostname is a Kubernetes service name:
									

									

Understanding destination rules

					Destination rules are applied after virtual service routing rules are evaluated, so they apply to the traffic’s real destination. Virtual services route traffic to a destination. Destination rules configure what happens to traffic at that destination.
				

					By default, Red Hat OpenShift Service Mesh uses a round-robin load balancing policy, where each service instance in the pool gets a request in turn. Red Hat OpenShift Service Mesh also supports the following models, which you can specify in destination rules for requests to a particular service or service subset.
				
	
							Random: Requests are forwarded at random to instances in the pool.
						
	
							Weighted: Requests are forwarded to instances in the pool according to a specific percentage.
						
	
							Least requests: Requests are forwarded to instances with the least number of requests.
						

Destination rule example

						The following example destination rule configures three different subsets for the my-svc destination service, with different load balancing policies:
					
apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: my-destination-rule
spec:
 host: my-svc
 trafficPolicy:
 loadBalancer:
 simple: RANDOM
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2
 trafficPolicy:
 loadBalancer:
 simple: ROUND_ROBIN
 - name: v3
 labels:
 version: v3

Understanding network policies

					Red Hat OpenShift Service Mesh automatically creates and manages a number of NetworkPolicies resources in the Service Mesh control plane and application namespaces. This is to ensure that applications and the control plane can communicate with each other.
				

					For example, if you have configured your OpenShift Container Platform cluster to use the SDN plugin, Red Hat OpenShift Service Mesh creates a NetworkPolicy resource in each member project. This enables ingress to all pods in the mesh from the other mesh members and the control plane. This also restricts ingress to only member projects. If you require ingress from non-member projects, you need to create a NetworkPolicy to allow that traffic through. If you remove a namespace from Service Mesh, this NetworkPolicy resource is deleted from the project.
				
Disabling automatic NetworkPolicy creation

						If you want to disable the automatic creation and management of NetworkPolicy resources, for example to enforce company security policies, or to allow direct access to pods in the mesh, you can do so. You can edit the ServiceMeshControlPlane and set spec.security.manageNetworkPolicy to false.
					
Note

							When you disable spec.security.manageNetworkPolicy Red Hat OpenShift Service Mesh will not create any NetworkPolicy objects. The system administrator is responsible for managing the network and fixing any issues this might cause.
						

Prerequisites
	
								Red Hat OpenShift Service Mesh Operator version 2.1.1 or higher installed.
							
	
								ServiceMeshControlPlane resource updated to version 2.1 or higher.
							

Procedure
	
								In the OpenShift Container Platform web console, click Operators → Installed Operators.
							
	
								Select the project where you installed the Service Mesh control plane, for example istio-system, from the Project menu.
							
	
								Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane column, click the name of your ServiceMeshControlPlane, for example basic-install.
							
	
								On the Create ServiceMeshControlPlane Details page, click YAML to modify your configuration.
							
	
								Set the ServiceMeshControlPlane field spec.security.manageNetworkPolicy to false, as shown in this example.
							
apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
 security:
 manageNetworkPolicy: false

	
								Click Save.
							

Configuring sidecars for traffic management

					By default, Red Hat OpenShift Service Mesh configures every Envoy proxy to accept traffic on all the ports of its associated workload, and to reach every workload in the mesh when forwarding traffic. You can use a sidecar configuration to do the following:
				
	
							Fine-tune the set of ports and protocols that an Envoy proxy accepts.
						
	
							Limit the set of services that the Envoy proxy can reach.
						

Note

						To optimize performance of your service mesh, consider limiting Envoy proxy configurations.
					

					In the Bookinfo sample application, configure a Sidecar so all services can reach other services running in the same namespace and control plane. This Sidecar configuration is required for using Red Hat OpenShift Service Mesh policy and telemetry features.
				
Procedure
	
							Create a YAML file using the following example to specify that you want a sidecar configuration to apply to all workloads in a particular namespace. Otherwise, choose specific workloads using a workloadSelector.
						
Example sidecar.yaml

								

apiVersion: networking.istio.io/v1alpha3
kind: Sidecar
metadata:
 name: default
 namespace: bookinfo
spec:
 egress:
 - hosts:
 - "./*"
 - "istio-system/*"

							

	
							Run the following command to apply sidecar.yaml, where sidecar.yaml is the path to the file.
						
$ oc apply -f sidecar.yaml

	
							Run the following command to verify that the sidecar was created successfully.
						
$ oc get sidecar

Routing Tutorial

					This guide references the Bookinfo sample application to provide examples of routing in an example application. Install the Bookinfo application to learn how these routing examples work.
				
Bookinfo routing tutorial

						The Service Mesh Bookinfo sample application consists of four separate microservices, each with multiple versions. After installing the Bookinfo sample application, three different versions of the reviews microservice run concurrently.
					

						When you access the Bookinfo app /product page in a browser and refresh several times, sometimes the book review output contains star ratings and other times it does not. Without an explicit default service version to route to, Service Mesh routes requests to all available versions one after the other.
					

						This tutorial helps you apply rules that route all traffic to v1 (version 1) of the microservices. Later, you can apply a rule to route traffic based on the value of an HTTP request header.
					
Prerequisites:
	
								Deploy the Bookinfo sample application to work with the following examples.
							

Applying a virtual service

						In the following procedure, the virtual service routes all traffic to v1 of each micro-service by applying virtual services that set the default version for the micro-services.
					
Procedure
	
								Apply the virtual services.
							
$ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.2/samples/bookinfo/networking/virtual-service-all-v1.yaml

	
								To verify that you applied the virtual services, display the defined routes with the following command:
							
$ oc get virtualservices -o yaml

								That command returns a resource of kind: VirtualService in YAML format.
							

						You have configured Service Mesh to route to the v1 version of the Bookinfo microservices including the reviews service version 1.
					

Testing the new route configuration

						Test the new configuration by refreshing the /productpage of the Bookinfo application.
					
Procedure
	
								Set the value for the GATEWAY_URL parameter. You can use this variable to find the URL for your Bookinfo product page later. In this example, istio-system is the name of the control plane project.
							
export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')

	
								Run the following command to retrieve the URL for the product page.
							
echo "http://$GATEWAY_URL/productpage"

	
								Open the Bookinfo site in your browser.
							

						The reviews part of the page displays with no rating stars, no matter how many times you refresh. This is because you configured Service Mesh to route all traffic for the reviews service to the version reviews:v1 and this version of the service does not access the star ratings service.
					

						Your service mesh now routes traffic to one version of a service.
					

Route based on user identity

						Change the route configuration so that all traffic from a specific user is routed to a specific service version. In this case, all traffic from a user named jason will be routed to the service reviews:v2.
					

						Service Mesh does not have any special, built-in understanding of user identity. This example is enabled by the fact that the productpage service adds a custom end-user header to all outbound HTTP requests to the reviews service.
					
Procedure
	
								Run the following command to enable user-based routing in the Bookinfo sample application.
							
$ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.2/samples/bookinfo/networking/virtual-service-reviews-test-v2.yaml

	
								Run the following command to confirm the rule is created. This command returns all resources of kind: VirtualService in YAML format.
							
$ oc get virtualservice reviews -o yaml

	
								On the /productpage of the Bookinfo app, log in as user jason with no password.
							
	
								Refresh the browser. The star ratings appear next to each review.
							
	
								Log in as another user (pick any name you want). Refresh the browser. Now the stars are gone. Traffic is now routed to reviews:v1 for all users except Jason.
							

						You have successfully configured the Bookinfo sample application to route traffic based on user identity.
					

Metrics, logs, and traces

				Once you have added your application to the mesh, you can observe the data flow through your application. If you do not have your own application installed, you can see how observability works in Red Hat OpenShift Service Mesh by installing the Bookinfo sample application.
			
Discovering console addresses

					Red Hat OpenShift Service Mesh provides the following consoles to view your service mesh data:
				
	
							Kiali console - Kiali is the management console for Red Hat OpenShift Service Mesh.
						
	
							Jaeger console - Jaeger is the management console for Red Hat OpenShift distributed tracing.
						
	
							Grafana console - Grafana provides mesh administrators with advanced query and metrics analysis and dashboards for Istio data. Optionally, Grafana can be used to analyze service mesh metrics.
						
	
							Prometheus console - Red Hat OpenShift Service Mesh uses Prometheus to store telemetry information from services.
						

					When you install the Service Mesh control plane, it automatically generates routes for each of the installed components. Once you have the route address, you can access the Kiali, Jaeger, Prometheus, or Grafana console to view and manage your service mesh data.
				
Prerequisite
	
							The component must be enabled and installed. For example, if you did not install distributed tracing, you will not be able to access the Jaeger console.
						

Procedure from OpenShift console
	
							Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						
	
							Navigate to Networking → Routes.
						
	
							On the Routes page, select the Service Mesh control plane project, for example istio-system, from the Namespace menu.
						

							The Location column displays the linked address for each route.
						

	
							If necessary, use the filter to find the component console whose route you want to access. Click the route Location to launch the console.
						
	
							Click Log In With OpenShift.
						

Procedure from the CLI
	
							Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						
$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

	
							Switch to the Service Mesh control plane project. In this example, istio-system is the Service Mesh control plane project. Run the following command:
						
$ oc project istio-system

	
							To get the routes for the various Red Hat OpenShift Service Mesh consoles, run the folowing command:
						
$ oc get routes

							This command returns the URLs for the Kiali, Jaeger, Prometheus, and Grafana web consoles, and any other routes in your service mesh. You should see output similar to the following:
						
NAME HOST/PORT SERVICES PORT TERMINATION
bookinfo-gateway bookinfo-gateway-yourcompany.com istio-ingressgateway http2
grafana grafana-yourcompany.com grafana <all> reencrypt/Redirect
istio-ingressgateway istio-ingress-yourcompany.com istio-ingressgateway 8080
jaeger jaeger-yourcompany.com jaeger-query <all> reencrypt
kiali kiali-yourcompany.com kiali 20001 reencrypt/Redirect
prometheus prometheus-yourcompany.com prometheus <all> reencrypt/Redirect

	
							Copy the URL for the console you want to access from the HOST/PORT column into a browser to open the console.
						
	
							Click Log In With OpenShift.
						

Accessing the Kiali console

					You can view your application’s topology, health, and metrics in the Kiali console. If your service is experiencing problems, the Kiali console lets you view the data flow through your service. You can view insights about the mesh components at different levels, including abstract applications, services, and workloads. Kiali also provides an interactive graph view of your namespace in real time.
				

					To access the Kiali console you must have Red Hat OpenShift Service Mesh installed, Kiali installed and configured.
				

					The installation process creates a route to access the Kiali console.
				

					If you know the URL for the Kiali console, you can access it directly. If you do not know the URL, use the following directions.
				
Procedure for administrators
	
							Log in to the OpenShift Container Platform web console with an administrator role.
						
	
							Click Home → Projects.
						
	
							On the Projects page, if necessary, use the filter to find the name of your project.
						
	
							Click the name of your project, for example, bookinfo.
						
	
							On the Project details page, in the Launcher section, click the Kiali link.
						
	
							Log in to the Kiali console with the same user name and password that you use to access the OpenShift Container Platform console.
						

							When you first log in to the Kiali Console, you see the Overview page which displays all the namespaces in your service mesh that you have permission to view.
						

							If you are validating the console installation and namespaces have not yet been added to the mesh, there might not be any data to display other than istio-system.
						

Procedure for developers
	
							Log in to the OpenShift Container Platform web console with a developer role.
						
	
							Click Project.
						
	
							On the Project Details page, if necessary, use the filter to find the name of your project.
						
	
							Click the name of your project, for example, bookinfo.
						
	
							On the Project page, in the Launcher section, click the Kiali link.
						
	
							Click Log In With OpenShift.
						

Viewing service mesh data in the Kiali console

					The Kiali Graph offers a powerful visualization of your mesh traffic. The topology combines real-time request traffic with your Istio configuration information to present immediate insight into the behavior of your service mesh, letting you quickly pinpoint issues. Multiple Graph Types let you visualize traffic as a high-level service topology, a low-level workload topology, or as an application-level topology.
				

					There are several graphs to choose from:
				
	
							The App graph shows an aggregate workload for all applications that are labeled the same.
						
	
							The Service graph shows a node for each service in your mesh but excludes all applications and workloads from the graph. It provides a high level view and aggregates all traffic for defined services.
						
	
							The Versioned App graph shows a node for each version of an application. All versions of an application are grouped together.
						
	
							The Workload graph shows a node for each workload in your service mesh. This graph does not require you to use the application and version labels. If your application does not use version labels, use this the graph.
						

					Graph nodes are decorated with a variety of information, pointing out various route routing options like virtual services and service entries, as well as special configuration like fault-injection and circuit breakers. It can identify mTLS issues, latency issues, error traffic and more. The Graph is highly configurable, can show traffic animation, and has powerful Find and Hide abilities.
				

					Click the Legend button to view information about the shapes, colors, arrows, and badges displayed in the graph.
				

					To view a summary of metrics, select any node or edge in the graph to display its metric details in the summary details panel.
				
Changing graph layouts in Kiali

						The layout for the Kiali graph can render differently depending on your application architecture and the data to display. For example, the number of graph nodes and their interactions can determine how the Kiali graph is rendered. Because it is not possible to create a single layout that renders nicely for every situation, Kiali offers a choice of several different layouts.
					
Prerequisites
	
								If you do not have your own application installed, install the Bookinfo sample application. Then generate traffic for the Bookinfo application by entering the following command several times.
							
$ curl "http://$GATEWAY_URL/productpage"

								This command simulates a user visiting the productpage microservice of the application.
							

Procedure
	
								Launch the Kiali console.
							
	
								Click Log In With OpenShift.
							
	
								In Kiali console, click Graph to view a namespace graph.
							
	
								From the Namespace menu, select your application namespace, for example, bookinfo.
							
	
								To choose a different graph layout, do either or both of the following:
							
	
										Select different graph data groupings from the menu at the top of the graph.
									
	
												App graph
											
	
												Service graph
											
	
												Versioned App graph (default)
											
	
												Workload graph
											

	
										Select a different graph layout from the Legend at the bottom of the graph.
									
	
												Layout default dagre
											
	
												Layout 1 cose-bilkent
											
	
												Layout 2 cola
											

Viewing logs in the Kiali console

						You can view logs for your workloads in the Kiali console. The Workload Detail page includes a Logs tab which displays a unified logs view that displays both application and proxy logs. You can select how often you want the log display in Kiali to be refreshed.
					

						To change the logging level on the logs displayed in Kiali, you change the logging configuration for the workload or the proxy.
					
Prerequisites
	
								Service Mesh installed and configured.
							
	
								Kiali installed and configured.
							
	
								The address for the Kiali console.
							
	
								Application or Bookinfo sample application added to the mesh.
							

Procedure
	
								Launch the Kiali console.
							
	
								Click Log In With OpenShift.
							

								The Kiali Overview page displays namespaces that have been added to the mesh that you have permissions to view.
							

	
								Click Workloads.
							
	
								On the Workloads page, select the project from the Namespace menu.
							
	
								If necessary, use the filter to find the workload whose logs you want to view. Click the workload Name. For example, click ratings-v1.
							
	
								On the Workload Details page, click the Logs tab to view the logs for the workload.
							

Tip

						If you do not see any log entries, you may need to adjust either the Time Range or the Refresh interval.
					

Viewing metrics in the Kiali console

						You can view inbound and outbound metrics for your applications, workloads, and services in the Kiali console. The Detail pages include the following tabs:
					
	
								inbound Application metrics
							
	
								outbound Application metrics
							
	
								inbound Workload metrics
							
	
								outbound Workload metrics
							
	
								inbound Service metrics
							

						These tabs display predefined metrics dashboards, tailored to the relevant application, workload or service level. The application and workload detail views show request and response metrics such as volume, duration, size, or TCP traffic. The service detail view shows request and response metrics for inbound traffic only.
					

						Kiali lets you customize the charts by choosing the charted dimensions. Kiali can also present metrics reported by either source or destination proxy metrics. And for troubleshooting, Kiali can overlay trace spans on the metrics.
					
Prerequisites
	
								Service Mesh installed and configured.
							
	
								Kiali installed and configured.
							
	
								The address for the Kiali console.
							
	
								(Optional) Distributed tracing installed and configured.
							

Procedure
	
								Launch the Kiali console.
							
	
								Click Log In With OpenShift.
							

								The Kiali Overview page displays namespaces that have been added to the mesh that you have permissions to view.
							

	
								Click either Applications, Workloads, or Services.
							
	
								On the Applications, Workloads, or Services page, select the project from the Namespace menu.
							
	
								If necessary, use the filter to find the application, workload, or service whose logs you want to view. Click the Name.
							
	
								On the Application Detail, Workload Details, or Service Details page, click either the Inbound Metrics or Outbound Metrics tab to view the metrics.
							

Distributed tracing

					Distributed tracing is the process of tracking the performance of individual services in an application by tracing the path of the service calls in the application. Each time a user takes action in an application, a request is executed that might require many services to interact to produce a response. The path of this request is called a distributed transaction.
				

					Red Hat OpenShift Service Mesh uses Red Hat OpenShift distributed tracing to allow developers to view call flows in a microservice application.
				
Connecting an existing distributed tracing instance

						If you already have an existing Red Hat OpenShift distributed tracing platform instance in OpenShift Container Platform, you can configure your ServiceMeshControlPlane resource to use that instance for distributed tracing.
					
Prerequisites
	
								Red Hat OpenShift distributed tracing instance installed and configured.
							

Procedure
	
								In the OpenShift Container Platform web console, click Operators → Installed Operators.
							
	
								Click the Project menu and select the project where you installed the Service Mesh control plane, for example istio-system.
							
	
								Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane column, click the name of your ServiceMeshControlPlane resource, for example basic.
							
	
								Add the name of your distributed tracing platform instance to the ServiceMeshControlPlane.
							
	
										Click the YAML tab.
									
	
										Add the name of your distributed tracing platform instance to spec.addons.jaeger.name in your ServiceMeshControlPlane resource. In the following example, distr-tracing-production is the name of the distributed tracing platform instance.
									
Example distributed tracing configuration

											

spec:
 addons:
 jaeger:
 name: distr-tracing-production

										

	
										Click Save.
									

	
								Click Reload to verify the ServiceMeshControlPlane resource was configured correctly.
							

Adjusting the sampling rate

						A trace is an execution path between services in the service mesh. A trace is comprised of one or more spans. A span is a logical unit of work that has a name, start time, and duration. The sampling rate determines how often a trace is persisted.
					

						The Envoy proxy sampling rate is set to sample 100% of traces in your service mesh by default. A high sampling rate consumes cluster resources and performance but is useful when debugging issues. Before you deploy Red Hat OpenShift Service Mesh in production, set the value to a smaller proportion of traces. For example, set spec.tracing.sampling to 100 to sample 1% of traces.
					

						Configure the Envoy proxy sampling rate as a scaled integer representing 0.01% increments.
					

						In a basic installation, spec.tracing.sampling is set to 10000, which samples 100% of traces. For example:
					
	
								Setting the value to 10 samples 0.1% of traces.
							
	
								Setting the value to 500 samples 5% of traces.
							

Note

							The Envoy proxy sampling rate applies for applications that are available to a Service Mesh, and use the Envoy proxy. This sampling rate determines how much data the Envoy proxy collects and tracks.
						

							The Jaeger remote sampling rate applies to applications that are external to the Service Mesh, and do not use the Envoy proxy, such as a database. This sampling rate determines how much data the distributed tracing system collects and stores. For more information, see Distributed tracing configuration options.
						

Procedure
	
								In the OpenShift Container Platform web console, click Operators → Installed Operators.
							
	
								Click the Project menu and select the project where you installed the control plane, for example istio-system.
							
	
								Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane column, click the name of your ServiceMeshControlPlane resource, for example basic.
							
	
								To adjust the sampling rate, set a different value for spec.tracing.sampling.
							
	
										Click the YAML tab.
									
	
										Set the value for spec.tracing.sampling in your ServiceMeshControlPlane resource. In the following example, set it to 100.
									
Jaeger sampling example

											

spec:
 tracing:
 sampling: 100

										

	
										Click Save.
									

	
								Click Reload to verify the ServiceMeshControlPlane resource was configured correctly.
							

Accessing the Jaeger console

					To access the Jaeger console you must have Red Hat OpenShift Service Mesh installed, Red Hat OpenShift distributed tracing platform installed and configured.
				

					The installation process creates a route to access the Jaeger console.
				

					If you know the URL for the Jaeger console, you can access it directly. If you do not know the URL, use the following directions.
				
Procedure from OpenShift console
	
							Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						
	
							Navigate to Networking → Routes.
						
	
							On the Routes page, select the Service Mesh control plane project, for example istio-system, from the Namespace menu.
						

							The Location column displays the linked address for each route.
						

	
							If necessary, use the filter to find the jaeger route. Click the route Location to launch the console.
						
	
							Click Log In With OpenShift.
						

Procedure from Kiali console
	
							Launch the Kiali console.
						
	
							Click Distributed Tracing in the left navigation pane.
						
	
							Click Log In With OpenShift.
						

Procedure from the CLI
	
							Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						
$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

	
							To query for details of the route using the command line, enter the following command. In this example, istio-system is the Service Mesh control plane namespace.
						
$ export JAEGER_URL=$(oc get route -n istio-system jaeger -o jsonpath='{.spec.host}')

	
							Launch a browser and navigate to https://<JAEGER_URL>, where <JAEGER_URL> is the route that you discovered in the previous step.
						
	
							Log in using the same user name and password that you use to access the OpenShift Container Platform console.
						
	
							If you have added services to the service mesh and have generated traces, you can use the filters and Find Traces button to search your trace data.
						

							If you are validating the console installation, there is no trace data to display.
						

					For more information about configuring Jaeger, see the distributed tracing documentation.
				

Accessing the Grafana console

					Grafana is an analytics tool you can use to view, query, and analyze your service mesh metrics. In this example, istio-system is the Service Mesh control plane namespace. To access Grafana, do the following:
				
Procedure
	
							Log in to the OpenShift Container Platform web console.
						
	
							Click the Project menu and select the project where you installed the Service Mesh control plane, for example istio-system.
						
	
							Click Routes.
						
	
							Click the link in the Location column for the Grafana row.
						
	
							Log in to the Grafana console with your OpenShift Container Platform credentials.
						

Accessing the Prometheus console

					Prometheus is a monitoring and alerting tool that you can use to collect multi-dimensional data about your microservices. In this example, istio-system is the Service Mesh control plane namespace.
				
Procedure
	
							Log in to the OpenShift Container Platform web console.
						
	
							Click the Project menu and select the project where you installed the Service Mesh control plane, for example istio-system.
						
	
							Click Routes.
						
	
							Click the link in the Location column for the Prometheus row.
						
	
							Log in to the Prometheus console with your OpenShift Container Platform credentials.
						

Performance and scalability

				The default ServiceMeshControlPlane settings are not intended for production use; they are designed to install successfully on a default OpenShift Container Platform installation, which is a resource-limited environment. After you have verified a successful SMCP installation, you should modify the settings defined within the SMCP to suit your environment.
			
Setting limits on compute resources

					By default, spec.proxy has the settings cpu: 10m and memory: 128M. If you are using Pilot, spec.runtime.components.pilot has the same default values.
				

					The settings in the following example are based on 1,000 services and 1,000 requests per second. You can change the values for cpu and memory in the ServiceMeshControlPlane.
				
Procedure
	
							In the OpenShift Container Platform web console, click Operators → Installed Operators.
						
	
							Click the Project menu and select the project where you installed the Service Mesh control plane, for example istio-system.
						
	
							Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane column, click the name of your ServiceMeshControlPlane, for example basic.
						
	
							Add the name of your standalone Jaeger instance to the ServiceMeshControlPlane.
						
	
									Click the YAML tab.
								
	
									Set the values for spec.proxy.runtime.container.resources.requests.cpu and spec.proxy.runtime.container.resources.requests.memory in your ServiceMeshControlPlane resource.
								
Example version 2.2 ServiceMeshControlPlane

										

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
 namespace: istio-system
spec:
 version: v2.2
 proxy:
 runtime:
 container:
 resources:
 requests:
 cpu: 600m
 memory: 50Mi
 limits: {}

 runtime:
 components:
 pilot:
 container:
 resources:
 requests:
 cpu: 1000m
 memory: 1.6Gi
 limits: {}

									

	
									Click Save.
								

	
							Click Reload to verify the ServiceMeshControlPlane resource was configured correctly.
						

Load test results

					The upstream Istio community load tests mesh consists of 1000 services and 2000 sidecars with 70,000 mesh-wide requests per second. Running the tests using Istio 1.12.3, generated the following results:
				
	
							The Envoy proxy uses 0.35 vCPU and 40 MB memory per 1000 requests per second going through the proxy.
						
	
							Istiod uses 1 vCPU and 1.5 GB of memory.
						
	
							The Envoy proxy adds 2.65 ms to the 90th percentile latency.
						
	
							The legacy istio-telemetry service (disabled by default in Service Mesh 2.0) uses 0.6 vCPU per 1000 mesh-wide requests per second for deployments that use Mixer. The data plane components, the Envoy proxies, handle data flowing through the system. The Service Mesh control plane component, Istiod, configures the data plane. The data plane and control plane have distinct performance concerns.
						

Service Mesh Control plane performance

						Istiod configures sidecar proxies based on user authored configuration files and the current state of the system. In a Kubernetes environment, Custom Resource Definitions (CRDs) and deployments constitute the configuration and state of the system. The Istio configuration objects like gateways and virtual services, provide the user-authored configuration. To produce the configuration for the proxies, Istiod processes the combined configuration and system state from the Kubernetes environment and the user-authored configuration.
					

						The Service Mesh control plane supports thousands of services, spread across thousands of pods with a similar number of user authored virtual services and other configuration objects. Istiod’s CPU and memory requirements scale with the number of configurations and possible system states. The CPU consumption scales with the following factors:
					
	
								The rate of deployment changes.
							
	
								The rate of configuration changes.
							
	
								The number of proxies connecting to Istiod.
							

						However this part is inherently horizontally scalable.
					

Data plane performance

						Data plane performance depends on many factors, for example:
					
	
								Number of client connections
							
	
								Target request rate
							
	
								Request size and response size
							
	
								Number of proxy worker threads
							
	
								Protocol
							
	
								CPU cores
							
	
								Number and types of proxy filters, specifically telemetry v2 related filters.
							

						The latency, throughput, and the proxies' CPU and memory consumption are measured as a function of these factors.
					
CPU and memory consumption

							Since the sidecar proxy performs additional work on the data path, it consumes CPU and memory. As of Istio 1.12.3, a proxy consumes about 0.5 vCPU per 1000 requests per second.
						

							The memory consumption of the proxy depends on the total configuration state the proxy holds. A large number of listeners, clusters, and routes can increase memory usage.
						

							Since the proxy normally doesn’t buffer the data passing through, request rate doesn’t affect the memory consumption.
						

Additional latency

							Since Istio injects a sidecar proxy on the data path, latency is an important consideration. Istio adds an authentication filter, a telemetry filter, and a metadata exchange filter to the proxy. Every additional filter adds to the path length inside the proxy and affects latency.
						

							The Envoy proxy collects raw telemetry data after a response is sent to the client. The time spent collecting raw telemetry for a request does not contribute to the total time taken to complete that request. However, since the worker is busy handling the request, the worker won’t start handling the next request immediately. This process adds to the queue wait time of the next request and affects average and tail latencies. The actual tail latency depends on the traffic pattern.
						

							Inside the mesh, a request traverses the client-side proxy and then the server-side proxy. In the default configuration of Istio 1.12.3 (that is, Istio with telemetry v2), the two proxies add about 1.7 ms and 2.7 ms to the 90th and 99th percentile latency, respectively, over the baseline data plane latency.
						

Configuring Service Mesh for production

				When you are ready to move from a basic installation to production, you must configure your control plane, tracing, and security certificates to meet production requirements.
			
Prerequisites
	
						Install and configure Red Hat OpenShift Service Mesh.
					
	
						Test your configuration in a staging environment.
					

Configuring your ServiceMeshControlPlane resource for production

					If you have installed a basic ServiceMeshControlPlane resource to test Service Mesh, you must configure it to production specification before you use Red Hat OpenShift Service Mesh in production.
				

					You cannot change the metadata.name field of an existing ServiceMeshControlPlane resource. For production deployments, you must customize the default template.
				
Procedure
	
							Configure the distributed tracing platform for production.
						
	
									Edit the ServiceMeshControlPlane resource to use the production deployment strategy, by setting spec.addons.jaeger.install.storage.type to Elasticsearch and specify additional configuration options under install. You can create and configure your Jaeger instance and set spec.addons.jaeger.name to the name of the Jaeger instance.
								
Default Jaeger parameters including Elasticsearch

										

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.2
 tracing:
 sampling: 100
 type: Jaeger
 addons:
 jaeger:
 name: MyJaeger
 install:
 storage:
 type: Elasticsearch
 ingress:
 enabled: true
 runtime:
 components:
 tracing.jaeger.elasticsearch: # only supports resources and image name
 container:
 resources: {}

									

	
									Configure the sampling rate for production. For more information, see the Performance and scalability section.
								

	
							Ensure your security certificates are production ready by installing security certificates from an external certificate authority. For more information, see the Security section.
						
	
							Verify the results. Enter the following command to verify that the ServiceMeshControlPlane resource updated properly. In this example, basic is the name of the ServiceMeshControlPlane resource.
						
$ oc get smcp basic -o yaml

Additional resources

	
							For more information about tuning Service Mesh for performance, see Performance and scalability.
						

Connecting service meshes

				Federation is a deployment model that lets you share services and workloads between separate meshes managed in distinct administrative domains.
			
Federation overview

					Federation is a set of features that let you connect services between separate meshes, allowing the use of Service Mesh features such as authentication, authorization, and traffic management across multiple, distinct administrative domains.
				

					Implementing a federated mesh lets you run, manage, and observe a single service mesh running across multiple OpenShift clusters. Red Hat OpenShift Service Mesh federation takes an opinionated approach to a multi-cluster implementation of Service Mesh that assumes minimal trust between meshes.
				

					Service Mesh federation assumes that each mesh is managed individually and retains its own administrator. The default behavior is that no communication is permitted and no information is shared between meshes. The sharing of information between meshes is on an explicit opt-in basis. Nothing is shared in a federated mesh unless it has been configured for sharing. Support functions such as certificate generation, metrics and trace collection remain local in their respective meshes.
				

					You configure the ServiceMeshControlPlane on each service mesh to create ingress and egress gateways specifically for the federation, and to specify the trust domain for the mesh.
				

					Federation also involves the creation of additional federation files. The following resources are used to configure the federation between two or more meshes.
				
	
							A ServiceMeshPeer resource declares the federation between a pair of service meshes.
						
	
							An ExportedServiceSet resource declares that one or more services from the mesh are available for use by a peer mesh.
						
	
							An ImportedServiceSet resource declares which services exported by a peer mesh will be imported into the mesh.
						

Federation features

					Features of the Red Hat OpenShift Service Mesh federated approach to joining meshes include the following:
				
	
							Supports common root certificates for each mesh.
						
	
							Supports different root certificates for each mesh.
						
	
							Mesh administrators must manually configure certificate chains, service discovery endpoints, trust domains, etc for meshes outside of the Federated mesh.
						
	
							Only export/import the services that you want to share between meshes.
						
	
									Defaults to not sharing information about deployed workloads with other meshes in the federation. A service can be exported to make it visible to other meshes and allow requests from workloads outside of its own mesh.
								
	
									A service that has been exported can be imported to another mesh, enabling workloads on that mesh to send requests to the imported service.
								

	
							Encrypts communication between meshes at all times.
						
	
							Supports configuring load balancing across workloads deployed locally and workloads that are deployed in another mesh in the federation.
						

					When a mesh is joined to another mesh it can do the following:
				
	
							Provide trust details about itself to the federated mesh.
						
	
							Discover trust details about the federated mesh.
						
	
							Provide information to the federated mesh about its own exported services.
						
	
							Discover information about services exported by the federated mesh.
						

Federation security

					Red Hat OpenShift Service Mesh federation takes an opinionated approach to a multi-cluster implementation of Service Mesh that assumes minimal trust between meshes. Data security is built in as part of the federation features.
				
	
							Each mesh is considered to be a unique tenant, with a unique administration.
						
	
							You create a unique trust domain for each mesh in the federation.
						
	
							Traffic between the federated meshes is automatically encrypted using mutual Transport Layer Security (mTLS).
						
	
							The Kiali graph only displays your mesh and services that you have imported. You cannot see the other mesh or services that have not been imported into your mesh.
						

Federation limitations

					The Red Hat OpenShift Service Mesh federated approach to joining meshes has the following limitations:
				
	
							Federation of meshes is not supported on OpenShift Dedicated.
						
	
							Federation of meshes is not supported on Microsoft Azure Red Hat OpenShift (ARO).
						

Federation prerequisites

					The Red Hat OpenShift Service Mesh federated approach to joining meshes has the following prerequisites:
				
	
							Two or more OpenShift Container Platform 4.6 or above clusters.
						
	
							Federation was introduced in Red Hat OpenShift Service Mesh 2.1. You must have the Red Hat OpenShift Service Mesh 2.1 Operator installed on each mesh that you want to federate.
						
	
							You must have a version 2.1 ServiceMeshControlPlane deployed on each mesh that you want to federate.
						
	
							You must configure the load balancers supporting the services associated with the federation gateways to support raw TLS traffic. Federation traffic consists of HTTPS for discovery and raw encrypted TCP for service traffic.
						
	
							Services that you want to expose to another mesh should be deployed before you can export and import them. However, this is not a strict requirement. You can specify service names that do not yet exist for export/import. When you deploy the services named in the ExportedServiceSet and ImportedServiceSet they will be automatically made available for export/import.
						

Planning your mesh federation

					Before you start configuring your mesh federation, you should take some time to plan your implementation.
				
	
							How many meshes do you plan to join in a federation? You probably want to start with a limited number of meshes, perhaps two or three.
						
	
							What naming convention do you plan to use for each mesh? Having a pre-defined naming convention will help with configuration and troubleshooting. The examples in this documentation use different colors for each mesh. You should decide on a naming convention that will help you determine who owns and manages each mesh, as well as the following federation resources:
						
	
									Cluster names
								
	
									Cluster network names
								
	
									Mesh names and namespaces
								
	
									Federation ingress gateways
								
	
									Federation egress gateways
								
	
									Security trust domains
								
Note

										Each mesh in the federation must have its own unique trust domain.
									

	
							Which services from each mesh do you plan to export to the federated mesh? Each service can be exported individually, or you can specify labels or use wildcards.
						
	
									Do you want to use aliases for the service namespaces?
								
	
									Do you want to use aliases for the exported services?
								

	
							Which exported services does each mesh plan to import? Each mesh only imports the services that it needs.
						
	
									Do you want to use aliases for the imported services?
								

Mesh federation across clusters

					To connect one instance of the OpenShift Service Mesh with one running in a different cluster, the procedure is not much different as when connecting two meshes deployed in the same cluster. However, the ingress gateway of one mesh must be reachable from the other mesh. One way of ensuring this is to configure the gateway service as a LoadBalancer service if the cluster supports this type of service.
				

					The service must be exposed through a load balancer that operates at Layer4 of the OSI model.
				
Exposing the federation ingress on clusters running on bare metal

						If the cluster runs on bare metal and fully supports LoadBalancer services, the IP address found in the .status.loadBalancer.ingress.ip field of the ingress gateway Service object should be specified as one of the entries in the .spec.remote.addresses field of the ServiceMeshPeer object.
					

						If the cluster does not support LoadBalancer services, using a NodePort service could be an option if the nodes are accessible from the cluster running the other mesh. In the ServiceMeshPeer object, specify the IP addresses of the nodes in the .spec.remote.addresses field and the service’s node ports in the .spec.remote.discoveryPort and .spec.remote.servicePort fields.
					

Exposing the federation ingress on clusters running on IBM Power and IBM Z

						If the cluster runs on IBM Power or IBM Z infrastructure and fully supports LoadBalancer services, the IP address found in the .status.loadBalancer.ingress.ip field of the ingress gateway Service object should be specified as one of the entries in the .spec.remote.addresses field of the ServiceMeshPeer object.
					

						If the cluster does not support LoadBalancer services, using a NodePort service could be an option if the nodes are accessible from the cluster running the other mesh. In the ServiceMeshPeer object, specify the IP addresses of the nodes in the .spec.remote.addresses field and the service’s node ports in the .spec.remote.discoveryPort and .spec.remote.servicePort fields.
					

Exposing the federation ingress on Amazon Web Services (AWS)

						By default, LoadBalancer services in clusters running on AWS do not support L4 load balancing. In order for Red Hat OpenShift Service Mesh federation to operate correctly, the following annotation must be added to the ingress gateway service:
					

						service.beta.kubernetes.io/aws-load-balancer-type: nlb
					

						The Fully Qualified Domain Name found in the .status.loadBalancer.ingress.hostname field of the ingress gateway Service object should be specified as one of the entries in the .spec.remote.addresses field of the ServiceMeshPeer object.
					

Exposing the federation ingress on Azure

						On Microsoft Azure, merely setting the service type to LoadBalancer suffices for mesh federation to operate correctly.
					

						The IP address found in the .status.loadBalancer.ingress.ip field of the ingress gateway Service object should be specified as one of the entries in the .spec.remote.addresses field of the ServiceMeshPeer object.
					

Exposing the federation ingress on Google Cloud Platform (GCP)

						On Google Cloud Platform, merely setting the service type to LoadBalancer suffices for mesh federation to operate correctly.
					

						The IP address found in the .status.loadBalancer.ingress.ip field of the ingress gateway Service object should be specified as one of the entries in the .spec.remote.addresses field of the ServiceMeshPeer object.
					

Federation implementation checklist

					Federating services meshes involves the following activities:
				
	
							❏ Configure networking between the clusters that you are going to federate.
						
	
									❏ Configure the load balancers supporting the services associated with the federation gateways to support raw TLS traffic.
								

	
							❏ Installing the Red Hat OpenShift Service Mesh version 2.1 or later Operator in each of your clusters.
						
	
							❏ Deploying a version 2.1 or later ServiceMeshControlPlane to each of your clusters.
						
	
							❏ Configuring the SMCP for federation for each mesh that you want to federate:
						
	
									❏ Create a federation egress gateway for each mesh you are going to federate with.
								
	
									❏ Create a federation ingress gateway for each mesh you are going to federate with.
								
	
									❏ Configure a unique trust domain.
								

	
							❏ Federate two or more meshes by creating a ServiceMeshPeer resource for each mesh pair.
						
	
							❏ Export services by creating an ExportedServiceSet resource to make services available from one mesh to a peer mesh.
						
	
							❏ Import services by creating an ImportedServiceSet resource to import services shared by a mesh peer.
						

Configuring a Service Mesh control plane for federation

					Before a mesh can be federated, you must configure the ServiceMeshControlPlane for mesh federation. Because all meshes that are members of the federation are equal, and each mesh is managed independently, you must configure the SMCP for each mesh that will participate in the federation.
				

					In the following example, the administrator for the red-mesh is configuring the SMCP for federation with both the green-mesh and the blue-mesh.
				
Sample SMCP for red-mesh

						

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: red-mesh
 namespace: red-mesh-system
spec:
 version: v2.2
 runtime:
 defaults:
 container:
 imagePullPolicy: Always
 gateways:
 additionalEgress:
 egress-green-mesh:
 enabled: true
 requestedNetworkView:
 - green-network
 routerMode: sni-dnat
 service:
 metadata:
 labels:
 federation.maistra.io/egress-for: egress-green-mesh
 ports:
 - port: 15443
 name: tls
 - port: 8188
 name: http-discovery #note HTTP here
 egress-blue-mesh:
 enabled: true
 requestedNetworkView:
 - blue-network
 routerMode: sni-dnat
 service:
 metadata:
 labels:
 federation.maistra.io/egress-for: egress-blue-mesh
 ports:
 - port: 15443
 name: tls
 - port: 8188
 name: http-discovery #note HTTP here
 additionalIngress:
 ingress-green-mesh:
 enabled: true
 routerMode: sni-dnat
 service:
 type: LoadBalancer
 metadata:
 labels:
 federation.maistra.io/ingress-for: ingress-green-mesh
 ports:
 - port: 15443
 name: tls
 - port: 8188
 name: https-discovery #note HTTPS here
 ingress-blue-mesh:
 enabled: true
 routerMode: sni-dnat
 service:
 type: LoadBalancer
 metadata:
 labels:
 federation.maistra.io/ingress-for: ingress-blue-mesh
 ports:
 - port: 15443
 name: tls
 - port: 8188
 name: https-discovery #note HTTPS here
 security:
 trust:
 domain: red-mesh.local

					
Table 1.7. ServiceMeshControlPlane federation configuration parameters
	Parameter	Description	Values	Default value
	
spec:
 cluster:
 name:

								 	
									Name of the cluster. You are not required to specify a cluster name, but it is helpful for troubleshooting.
								

								 	
									String
								

								 	
									N/A
								

								
	
spec:
 cluster:
 network:

								 	
									Name of the cluster network. You are not required to specify a name for the network, but it is helpful for configuration and troubleshooting.
								

								 	
									String
								

								 	
									N/A
								

								

Understanding federation gateways

						You use a gateway to manage inbound and outbound traffic for your mesh, letting you specify which traffic you want to enter or leave the mesh.
					

						You use ingress and egress gateways to manage traffic entering and leaving the service mesh (North-South traffic). When you create a federated mesh, you create additional ingress/egress gateways, to facilitate service discovery between federated meshes, communication between federated meshes, and to manage traffic flow between service meshes (East-West traffic).
					

						To avoid naming conflicts between meshes, you must create separate egress and ingress gateways for each mesh. For example, red-mesh would have separate egress gateways for traffic going to green-mesh and blue-mesh.
					
Table 1.8. Federation gateway parameters
	Parameter	Description	Values	Default value
	
spec:
 gateways:
 additionalEgress:
 <egressName>:

									 	
										Define an additional egress gateway for each mesh peer in the federation.
									

									 	 	
	
spec:
 gateways:
 additionalEgress:
 <egressName>:
 enabled:

									 	
										This parameter enables or disables the federation egress.
									

									 	
										true/false
									

									 	
										true
									

									
	
spec:
 gateways:
 additionalEgress:
 <egressName>:
 requestedNetworkView:

									 	
										Networks associated with exported services.
									

									 	
										Set to the value of spec.cluster.network in the SMCP for the mesh, otherwise use <ServiceMeshPeer-name>-network. For example, if the ServiceMeshPeer resource for that mesh is named west, then the network would be named west-network.
									

									 	
	
spec:
 gateways:
 additionalEgress:
 <egressName>:
 routerMode:

									 	
										The router mode to be used by the gateway.
									

									 	
										sni-dnat
									

									 	
	
spec:
 gateways:
 additionalEgress:
 <egressName>:
 service:
 metadata:
 labels:
 federation.maistra.io/egress-for:

									 	
										Specify a unique label for the gateway to prevent federated traffic from flowing through the cluster’s default system gateways.
									

									 	 	
	
spec:
 gateways:
 additionalEgress:
 <egressName>:
 service:
 ports:

									 	
										Used to specify the port: and name: used for TLS and service discovery. Federation traffic consists of raw encrypted TCP for service traffic.
									

									 	
										Port 15443 is required for sending TLS service requests to other meshes in the federation. Port 8188 is required for sending service discovery requests to other meshes in the federation.
									

									 	
	
spec:
 gateways:
 additionalIngress:

									 	
										Define an additional ingress gateway gateway for each mesh peer in the federation.
									

									 	 	
	
spec:
 gateways:
 additionalIgress:
 <ingressName>:
 enabled:

									 	
										This parameter enables or disables the federation ingress.
									

									 	
										true/false
									

									 	
										true
									

									
	
spec:
 gateways:
 additionalIngress:
 <ingressName>:
 routerMode:

									 	
										The router mode to be used by the gateway.
									

									 	
										sni-dnat
									

									 	
	
spec:
 gateways:
 additionalIngress:
 <ingressName>:
 service:
 type:

									 	
										The ingress gateway service must be exposed through a load balancer that operates at Layer 4 of the OSI model and is publicly available.
									

									 	
										LoadBalancer
									

									 	
	
spec:
 gateways:
 additionalIngress:
 <ingressName>:
 service:
 type:

									 	
										If the cluster does not support LoadBalancer services, the ingress gateway service can be exposed through a NodePort service.
									

									 	
										NodePort
									

									 	
	
spec:
 gateways:
 additionalIngress:
 <ingressName>:
 service:
 metadata:
 labels:
 federation.maistra.io/ingress-for:

									 	
										Specify a unique label for the gateway to prevent federated traffic from flowing through the cluster’s default system gateways.
									

									 	 	
	
spec:
 gateways:
 additionalIngress:
 <ingressName>:
 service:
 ports:

									 	
										Used to specify the port: and name: used for TLS and service discovery. Federation traffic consists of raw encrypted TCP for service traffic. Federation traffic consists of HTTPS for discovery.
									

									 	
										Port 15443 is required for receiving TLS service requests to other meshes in the federation. Port 8188 is required for receiving service discovery requests to other meshes in the federation.
									

									 	
	
spec:
 gateways:
 additionalIngress:
 <ingressName>:
 service:
 ports:
 nodePort:

									 	
										Used to specify the nodePort: if the cluster does not support LoadBalancer services.
									

									 	
										If specified, is required in addition to port: and name: for both TLS and service discovery. nodePort: must be in the range 30000-32767.
									

									 	

						In the following example, the administrator is configuring the SMCP for federation with the green-mesh using a NodePort service.
					
Sample SMCP for NodePort

							

 gateways:
 additionalIngress:
 ingress-green-mesh:
 enabled: true
 routerMode: sni-dnat
 service:
 type: NodePort
 metadata:
 labels:
 federation.maistra.io/ingress-for: ingress-green-mesh
 ports:
 - port: 15443
 nodePort: 30510
 name: tls
 - port: 8188
 nodePort: 32359
 name: https-discovery

						

Understanding federation trust domain parameters

						Each mesh in the federation must have its own unique trust domain. This value is used when configuring mesh federation in the ServiceMeshPeer resource.
					
kind: ServiceMeshControlPlane
metadata:
 name: red-mesh
 namespace: red-mesh-system
spec:
 security:
 trust:
 domain: red-mesh.local
Table 1.9. Federation security parameters
	Parameter	Description	Values	Default value
	
spec:
 security:
 trust:
 domain:

									 	
										Used to specify a unique name for the trust domain for the mesh. Domains must be unique for every mesh in the federation.
									

									 	
										<mesh-name>.local
									

									 	
										N/A
									

									

Procedure from the Console

							Follow this procedure to edit the ServiceMeshControlPlane with the OpenShift Container Platform web console. This example uses the red-mesh as an example.
						
	
								Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
							
	
								Navigate to Operators → Installed Operators.
							
	
								Click the Project menu and select the project where you installed the Service Mesh control plane. For example, red-mesh-system.
							
	
								Click the Red Hat OpenShift Service Mesh Operator.
							
	
								On the Istio Service Mesh Control Plane tab, click the name of your ServiceMeshControlPlane, for example red-mesh.
							
	
								On the Create ServiceMeshControlPlane Details page, click YAML to modify your configuration.
							
	
								Modify your ServiceMeshControlPlane to add federation ingress and egress gateways and to specify the trust domain.
							
	
								Click Save.
							

Procedure from the CLI

							Follow this procedure to create or edit the ServiceMeshControlPlane with the command line. This example uses the red-mesh as an example.
						
	
								Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. Enter the following command. Then, enter your username and password when prompted.
							
$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

	
								Change to the project where you installed the Service Mesh control plane, for example red-mesh-system.
							
$ oc project red-mesh-system

	
								Edit the ServiceMeshControlPlane file to add federation ingress and egress gateways and to specify the trust domain.
							
	
								Run the following command to edit the Service Mesh control plane where red-mesh-system is the system namespace and red-mesh is the name of the ServiceMeshControlPlane object:
							
$ oc edit -n red-mesh-system smcp red-mesh

	
								Enter the following command, where red-mesh-system is the system namespace, to see the status of the Service Mesh control plane installation.
							
$ oc get smcp -n red-mesh-system

								The installation has finished successfully when the READY column indicates that all components are ready.
							
NAME READY STATUS PROFILES VERSION AGE
red-mesh 10/10 ComponentsReady ["default"] 2.1.0 4m25s

Joining a federated mesh

					You declare the federation between two meshes by creating a ServiceMeshPeer resource. The ServiceMeshPeer resource defines the federation between two meshes, and you use it to configure discovery for the peer mesh, access to the peer mesh, and certificates used to validate the other mesh’s clients.
				
[image: Service Mesh federated mesh peers illustration]

					Meshes are federated on a one-to-one basis, so each pair of peers requires a pair of ServiceMeshPeer resources specifying the federation connection to the other service mesh. For example, federating two meshes named red and green would require two ServiceMeshPeer files.
				
	
							On red-mesh-system, create a ServiceMeshPeer for the green mesh.
						
	
							On green-mesh-system, create a ServiceMeshPeer for the red mesh.
						

					Federating three meshes named red, blue, and green would require six ServiceMeshPeer files.
				
	
							On red-mesh-system, create a ServiceMeshPeer for the green mesh.
						
	
							On red-mesh-system, create a ServiceMeshPeer for the blue mesh.
						
	
							On green-mesh-system, create a ServiceMeshPeer for the red mesh.
						
	
							On green-mesh-system, create a ServiceMeshPeer for the blue mesh.
						
	
							On blue-mesh-system, create a ServiceMeshPeer for the red mesh.
						
	
							On blue-mesh-system, create a ServiceMeshPeer for the green mesh.
						

					Configuration in the ServiceMeshPeer resource includes the following:
				
	
							The address of the other mesh’s ingress gateway, which is used for discovery and service requests.
						
	
							The names of the local ingress and egress gateways that is used for interactions with the specified peer mesh.
						
	
							The client ID used by the other mesh when sending requests to this mesh.
						
	
							The trust domain used by the other mesh.
						
	
							The name of a ConfigMap containing a root certificate that is used to validate client certificates in the trust domain used by the other mesh.
						

					In the following example, the administrator for the red-mesh is configuring federation with the green-mesh.
				
Example ServiceMeshPeer resource for red-mesh

						

kind: ServiceMeshPeer
apiVersion: federation.maistra.io/v1
metadata:
 name: green-mesh
 namespace: red-mesh-system
spec:
 remote:
 addresses:
 - ingress-red-mesh.green-mesh-system.apps.domain.com
 gateways:
 ingress:
 name: ingress-green-mesh
 egress:
 name: egress-green-mesh
 security:
 trustDomain: green-mesh.local
 clientID: green-mesh.local/ns/green-mesh-system/sa/egress-red-mesh-service-account
 certificateChain:
 kind: ConfigMap
 name: green-mesh-ca-root-cert

					
Table 1.10. ServiceMeshPeer configuration parameters
	Parameter	Description	Values
	
metadata:
 name:

								 	
									Name of the peer mesh that this resource is configuring federation with.
								

								 	
									String
								

								
	
metadata:
 namespace:

								 	
									System namespace for this mesh, that is, where the Service Mesh control plane is installed.
								

								 	
									String
								

								
	
spec:
 remote:
 addresses:

								 	
									List of public addresses of the peer meshes' ingress gateways that are servicing requests from this mesh.
								

								 	
	
spec:
 remote:
 discoveryPort:

								 	
									The port on which the addresses are handling discovery requests.
								

								 	
									Defaults to 8188
								

								
	
spec:
 remote:
 servicePort:

								 	
									The port on which the addresses are handling service requests.
								

								 	
									Defaults to 15443
								

								
	
spec:
 gateways:
 ingress:
 name:

								 	
									Name of the ingress on this mesh that is servicing requests received from the peer mesh. For example, ingress-green-mesh.
								

								 	
	
spec:
 gateways:
 egress:
 name:

								 	
									Name of the egress on this mesh that is servicing requests sent to the peer mesh. For example, egress-green-mesh.
								

								 	
	
spec:
 security:
 trustDomain:

								 	
									The trust domain used by the peer mesh.
								

								 	
									<peerMeshName>.local
								

								
	
spec:
 security:
 clientID:

								 	
									The client ID used by the peer mesh when calling into this mesh.
								

								 	
									<peerMeshTrustDomain>/ns/<peerMeshSystem>/sa/<peerMeshEgressGatewayName>-service-account
								

								
	
spec:
 security:
 certificateChain:
 kind: ConfigMap
 name:

								 	
									The kind (for example, ConfigMap) and name of a resource containing the root certificate used to validate the client and server certificate(s) presented to this mesh by the peer mesh. The key of the config map entry containing the certificate should be root-cert.pem.
								

								 	
									kind: ConfigMap name: <peerMesh>-ca-root-cert
								

								

Creating a ServiceMeshPeer resource

Prerequisites
	
								Two or more OpenShift Container Platform 4.6 or above clusters.
							
	
								The clusters must already be networked.
							
	
								The load balancers supporting the services associated with the federation gateways must be configured to support raw TLS traffic.
							
	
								Each cluster must have a version 2.1 ServiceMeshControlPlane configured to support federation deployed.
							
	
								An account with the cluster-admin role.
							

Procedure from the CLI

							Follow this procedure to create a ServiceMeshPeer resource from the command line. This example shows the red-mesh creating a peer resource for the green-mesh.
						
	
								Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. Enter the following command. Then, enter your username and password when prompted.
							
$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

	
								Change to the project where you installed the control plane, for example, red-mesh-system.
							
$ oc project red-mesh-system

	
								Create a ServiceMeshPeer file based the following example for the two meshes that you want to federate.
							
Example ServiceMeshPeer resource for red-mesh to green-mesh

									

kind: ServiceMeshPeer
apiVersion: federation.maistra.io/v1
metadata:
 name: green-mesh
 namespace: red-mesh-system
spec:
 remote:
 addresses:
 - ingress-red-mesh.green-mesh-system.apps.domain.com
 gateways:
 ingress:
 name: ingress-green-mesh
 egress:
 name: egress-green-mesh
 security:
 trustDomain: green-mesh.local
 clientID: green-mesh.local/ns/green-mesh-system/sa/egress-red-mesh-service-account
 certificateChain:
 kind: ConfigMap
 name: green-mesh-ca-root-cert

								

	
								Run the following command to deploy the resource, where red-mesh-system is the system namespace and servicemeshpeer.yaml includes a full path to the file you edited:
							
$ oc create -n red-mesh-system -f servicemeshpeer.yaml

	
								To confirm that connection between the red mesh and green mesh is established, inspect the status of the green-mesh ServiceMeshPeer in the red-mesh-system namespace:
							
$ oc -n red-mesh-system get servicemeshpeer green-mesh -o yaml
Example ServiceMeshPeer connection between red-mesh and green-mesh

									

status:
 discoveryStatus:
 active:
 - pod: istiod-red-mesh-b65457658-9wq5j
 remotes:
 - connected: true
 lastConnected: "2021-10-05T13:02:25Z"
 lastFullSync: "2021-10-05T13:02:25Z"
 source: 10.128.2.149
 watch:
 connected: true
 lastConnected: "2021-10-05T13:02:55Z"
 lastDisconnectStatus: 503 Service Unavailable
 lastFullSync: "2021-10-05T13:05:43Z"

								

								The status.discoveryStatus.active.remotes field shows that istiod in the peer mesh (in this example, the green mesh) is connected to istiod in the current mesh (in this example, the red mesh).
							

								The status.discoveryStatus.active.watch field shows that istiod in the current mesh is connected to istiod in the peer mesh.
							

								If you check the servicemeshpeer named red-mesh in green-mesh-system, you’ll find information about the same two connections from the perspective of the green mesh.
							

								When the connection between two meshes is not established, the ServiceMeshPeer status indicates this in the status.discoveryStatus.inactive field.
							

								For more information on why a connection attempt failed, inspect the Istiod log, the access log of the egress gateway handling egress traffic for the peer, and the ingress gateway handling ingress traffic for the current mesh in the peer mesh.
							

								For example, if the red mesh can’t connect to the green mesh, check the following logs:
							
	
										istiod-red-mesh in red-mesh-system
									
	
										egress-green-mesh in red-mesh-system
									
	
										ingress-red-mesh in green-mesh-system
									

Exporting a service from a federated mesh

					Exporting services allows a mesh to share one or more of its services with another member of the federated mesh.
				
[image: Service Mesh federation exporting service illustration]

					You use an ExportedServiceSet resource to declare the services from one mesh that you are making available to another peer in the federated mesh. You must explicitly declare each service to be shared with a peer.
				
	
							You can select services by namespace or name.
						
	
							You can use wildcards to select services; for example, to export all the services in a namespace.
						
	
							You can export services using an alias. For example, you can export the foo/bar service as custom-ns/bar.
						
	
							You can only export services that are visible to the mesh’s system namespace. For example, a service in another namespace with a networking.istio.io/exportTo label set to ‘.’ would not be a candidate for export.
						
	
							For exported services, their target services will only see traffic from the ingress gateway, not the original requestor (that is, they won’t see the client ID of either the other mesh’s egress gateway or the workload originating the request)
						

					The following example is for services that red-mesh is exporting to green-mesh.
				
Example ExportedServiceSet resource

						

kind: ExportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: green-mesh
 namespace: red-mesh-system
spec:
 exportRules:
 # export ratings.mesh-x-bookinfo as ratings.bookinfo
 - type: NameSelector
 nameSelector:
 namespace: red-mesh-bookinfo
 name: red-ratings
 alias:
 namespace: bookinfo
 name: ratings
 # export any service in red-mesh-bookinfo namespace with label export-service=true
 - type: LabelSelector
 labelSelector:
 namespace: red-mesh-bookinfo
 selector:
 matchLabels:
 export-service: "true"
 aliases: # export all matching services as if they were in the bookinfo namespace
 - namespace: "*"
 name: "*"
 alias:
 namespace: bookinfo

					
Table 1.11. ExportedServiceSet parameters
	Parameter	Description	Values
	
metadata:
 name:

								 	
									Name of the ServiceMeshPeer you are exposing this service to.
								

								 	
									Must match the name value for the mesh in the ServiceMeshPeer resource.
								

								
	
metadata:
 namespace:

								 	
									Name of the project/namespace containing this resource (should be the system namespace for the mesh) .
								

								 	
	
spec:
 exportRules:
 - type:

								 	
									Type of rule that will govern the export for this service. The first matching rule found for the service will be used for the export.
								

								 	
									NameSelector, LabelSelector
								

								
	
spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 namespace:
 name:

								 	
									To create a NameSelector rule, specify the namespace of the service and the name of the service as defined in the Service resource.
								

								 	
	
spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 alias:
 namespace:
 name:

								 	
									To create a NameSelector rule that uses an alias for the service, after specifying the namespace and name for the service, then specify the alias for the namespace and the alias to be used for name of the service.
								

								 	
	
spec:
 exportRules:
 - type: LabelSelector
 labelSelector:
 namespace: <exportingMesh>
 selector:
 matchLabels:
 <labelKey>: <labelValue>

								 	
									To create a LabelSelector rule, specify the namespace of the service and specify the label defined in the Service resource. In the example above, the label is export-service.
								

								 	
	
spec:
 exportRules:
 - type: LabelSelector
 labelSelector:
 namespace: <exportingMesh>
 selector:
 matchLabels:
 <labelKey>: <labelValue>
 aliases:
 - namespace:
 name:
 alias:
 namespace:
 name:

								 	
									To create a LabelSelector rule that uses aliases for the services, after specifying the selector, specify the aliases to be used for name or namespace of the service. In the example above, the namespace alias is bookinfo for all matching services.
								

								 	

Export services with the name "ratings" from all namespaces in the red-mesh to blue-mesh.

						

kind: ExportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: blue-mesh
 namespace: red-mesh-system
spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 namespace: "*"
 name: ratings

					
Export all services from the west-data-center namespace to green-mesh

						

kind: ExportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: green-mesh
 namespace: red-mesh-system
spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 namespace: west-data-center
 name: "*"

					
Creating an ExportedServiceSet

						You create an ExportedServiceSet resource to explicitly declare the services that you want to be available to a mesh peer.
					

						Services are exported as <export-name>.<export-namespace>.svc.<ServiceMeshPeer.name>-exports.local and will automatically route to the target service. This is the name by which the exported service is known in the exporting mesh. When the ingress gateway receives a request destined for this name, it will be routed to the actual service being exported. For example, if a service named ratings.red-mesh-bookinfo is exported to green-mesh as ratings.bookinfo, the service will be exported under the name ratings.bookinfo.svc.green-mesh-exports.local, and traffic received by the ingress gateway for that hostname will be routed to the ratings.red-mesh-bookinfo service.
					
Prerequisites
	
								The cluster and ServiceMeshControlPlane have been configured for mesh federation.
							
	
								An account with the cluster-admin role.
							

Note

							You can configure services for export even if they don’t exist yet. When a service that matches the value specified in the ExportedServiceSet is deployed, it will be automatically exported.
						

Procedure from the CLI

							Follow this procedure to create an ExportedServiceSet from the command line.
						
	
								Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. Enter the following command. Then, enter your username and password when prompted.
							
$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

	
								Change to the project where you installed the Service Mesh control plane; for example, red-mesh-system.
							
$ oc project red-mesh-system

	
								Create an ExportedServiceSet file based on the following example where red-mesh is exporting services to green-mesh.
							
Example ExportedServiceSet resource from red-mesh to green-mesh

									

apiVersion: federation.maistra.io/v1
kind: ExportedServiceSet
metadata:
 name: green-mesh
 namespace: red-mesh-system
spec:
 exportRules:
 - type: NameSelector
 nameSelector:
 namespace: red-mesh-bookinfo
 name: ratings
 alias:
 namespace: bookinfo
 name: red-ratings
 - type: NameSelector
 nameSelector:
 namespace: red-mesh-bookinfo
 name: reviews

								

	
								Run the following command to upload and create the ExportedServiceSet resource in the red-mesh-system namespace.
							
$ oc create -n <ControlPlaneNamespace> -f <ExportedServiceSet.yaml>

								For example:
							
$ oc create -n red-mesh-system -f export-to-green-mesh.yaml

	
								Create additional ExportedServiceSets as needed for each mesh peer in your federated mesh.
							
	
								To validate the services you’ve exported from red-mesh to share with green-mesh, run the following command:
							
$ oc get exportedserviceset <PeerMeshExportedTo> -o yaml

								For example:
							
$ oc get exportedserviceset green-mesh -o yaml

	
								Run the following command to validate the services the red-mesh exports to share with green-mesh:
							
$ oc get exportedserviceset <PeerMeshExportedTo> -o yaml

								For example:
							
$ oc -n red-mesh-system get exportedserviceset green-mesh -o yaml
Example validating the services exported from the red mesh that are shared with the green mesh.

									

 status:
 exportedServices:
 - exportedName: red-ratings.bookinfo.svc.green-mesh-exports.local
 localService:
 hostname: ratings.red-mesh-bookinfo.svc.cluster.local
 name: ratings
 namespace: red-mesh-bookinfo
 - exportedName: reviews.red-mesh-bookinfo.svc.green-mesh-exports.local
 localService:
 hostname: reviews.red-mesh-bookinfo.svc.cluster.local
 name: reviews
 namespace: red-mesh-bookinfo

								

								The status.exportedServices array lists the services that are currently exported (these services matched the export rules in the ExportedServiceSet object). Each entry in the array indicates the name of the exported service and details about the local service that is exported.
							

								If a service that you expected to be exported is missing, confirm the Service object exists, its name or labels match the exportRules defined in the ExportedServiceSet object, and that the Service object’s namespace is configured as a member of the service mesh using the ServiceMeshMemberRoll or ServiceMeshMember object.
							

Importing a service into a federated mesh

					Importing services lets you explicitly specify which services exported from another mesh should be accessible within your service mesh.
				
[image: Service Mesh federation importing service illustration]

					You use an ImportedServiceSet resource to select services for import. Only services exported by a mesh peer and explicitly imported are available to the mesh. Services that you do not explicitly import are not made available within the mesh.
				
	
							You can select services by namespace or name.
						
	
							You can use wildcards to select services, for example, to import all the services that were exported to the namespace.
						
	
							You can select services for export using a label selector, which may be global to the mesh, or scoped to a specific member namespace.
						
	
							You can import services using an alias. For example, you can import the custom-ns/bar service as other-mesh/bar.
						
	
							You can specify a custom domain suffix, which will be appended to the name.namespace of an imported service for its fully qualified domain name; for example, bar.other-mesh.imported.local.
						

					The following example is for the green-mesh importing a service that was exported by red-mesh.
				
Example ImportedServiceSet

						

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh #name of mesh that exported the service
 namespace: green-mesh-system #mesh namespace that service is being imported into
spec:
 importRules: # first matching rule is used
 # import ratings.bookinfo as ratings.bookinfo
 - type: NameSelector
 importAsLocal: false
 nameSelector:
 namespace: bookinfo
 name: ratings
 alias:
 # service will be imported as ratings.bookinfo.svc.red-mesh-imports.local
 namespace: bookinfo
 name: ratings

					
Table 1.12. ImportedServiceSet parameters
	Parameter	Description	Values
	
metadata:
 name:

								 	
									Name of the ServiceMeshPeer that exported the service to the federated mesh.
								

								 	
	
metadata:
 namespace:

								 	
									Name of the namespace containing the ServiceMeshPeer resource (the mesh system namespace).
								

								 	
	
spec:
 importRules:
 - type:

								 	
									Type of rule that will govern the import for the service. The first matching rule found for the service will be used for the import.
								

								 	
									NameSelector
								

								
	
spec:
 importRules:
 - type: NameSelector
 nameSelector:
 namespace:
 name:

								 	
									To create a NameSelector rule, specify the namespace and the name of the exported service.
								

								 	
	
spec:
 importRules:
 - type: NameSelector
 importAsLocal:

								 	
									Set to true to aggregate remote endpoint with local services. When true, services will be imported as <name>.<namespace>.svc.cluster.local
								

								 	
									true/false
								

								
	
spec:
 importRules:
 - type: NameSelector
 nameSelector:
 namespace:
 name:
 alias:
 namespace:
 name:

								 	
									To create a NameSelector rule that uses an alias for the service, after specifying the namespace and name for the service, then specify the alias for the namespace and the alias to be used for name of the service.
								

								 	

Import the "bookinfo/ratings" service from the red-mesh into blue-mesh

						

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh
 namespace: blue-mesh-system
spec:
 importRules:
 - type: NameSelector
 importAsLocal: false
 nameSelector:
 namespace: bookinfo
 name: ratings

					
Import all services from the red-mesh’s west-data-center namespace into the green-mesh. These services will be accessible as <name>.west-data-center.svc.red-mesh-imports.local

						

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh
 namespace: green-mesh-system
spec:
 importRules:
 - type: NameSelector
 importAsLocal: false
 nameSelector:
 namespace: west-data-center
 name: "*"

					
Creating an ImportedServiceSet

						You create an ImportedServiceSet resource to explicitly declare the services that you want to import into your mesh.
					

						Services are imported with the name <exported-name>.<exported-namespace>.svc.<ServiceMeshPeer.name>.remote which is a "hidden" service, visible only within the egress gateway namespace and is associated with the exported service’s hostname. The service will be available locally as <export-name>.<export-namespace>.<domainSuffix>, where domainSuffix is svc.<ServiceMeshPeer.name>-imports.local by default, unless importAsLocal is set to true, in which case domainSuffix is svc.cluster.local. If importAsLocal is set to false, the domain suffix in the import rule will be applied. You can treat the local import just like any other service in the mesh. It automatically routes through the egress gateway, where it is redirected to the exported service’s remote name.
					
Prerequisites
	
								The cluster and ServiceMeshControlPlane have been configured for mesh federation.
							
	
								An account with the cluster-admin role.
							

Note

							You can configure services for import even if they haven’t been exported yet. When a service that matches the value specified in the ImportedServiceSet is deployed and exported, it will be automatically imported.
						

Procedure from the CLI

							Follow this procedure to create an ImportedServiceSet from the command line.
						
	
								Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. Enter the following command. Then, enter your username and password when prompted.
							
$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

	
								Change to the project where you installed the Service Mesh control plane; for example, green-mesh-system.
							
$ oc project green-mesh-system

	
								Create an ImportedServiceSet file based on the following example where green-mesh is importing services previously exported by red-mesh.
							
Example ImportedServiceSet resource from red-mesh to green-mesh

									

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh
 namespace: green-mesh-system
spec:
 importRules:
 - type: NameSelector
 importAsLocal: false
 nameSelector:
 namespace: bookinfo
 name: red-ratings
 alias:
 namespace: bookinfo
 name: ratings

								

	
								Run the following command to upload and create the ImportedServiceSet resource in the green-mesh-system namespace.
							
$ oc create -n <ControlPlaneNamespace> -f <ImportedServiceSet.yaml>

								For example:
							
$ oc create -n green-mesh-system -f import-from-red-mesh.yaml

	
								Create additional ImportedServiceSet resources as needed for each mesh peer in your federated mesh.
							
	
								To validate the services you’ve imported into green-mesh, run the following command:
							
$ oc get importedserviceset <PeerMeshImportedInto> -o yaml

								For example:
							
$ oc get importedserviceset green-mesh -o yaml

	
								Run the following command to validate the services imported into a mesh.
							
$ oc get importedserviceset <PeerMeshImportedInto> -o yaml
Example validating that the services exported from the red mesh have been imported into the green mesh using the status section of the importedserviceset/red-mesh' object in the 'green-mesh-system namespace:

									

$ oc -n green-mesh-system get importedserviceset/red-mesh -o yaml

								
status:
 importedServices:
 - exportedName: red-ratings.bookinfo.svc.green-mesh-exports.local
 localService:
 hostname: ratings.bookinfo.svc.red-mesh-imports.local
 name: ratings
 namespace: bookinfo
 - exportedName: reviews.red-mesh-bookinfo.svc.green-mesh-exports.local
 localService:
 hostname: ""
 name: ""
 namespace: ""

								In the preceding example only the ratings service is imported, as indicated by the populated fields under localService. The reviews service is available for import, but isn’t currently imported because it does not match any importRules in the ImportedServiceSet object.
							

Configuring a federated mesh for failover

					Failover is the ability to switch automatically and seamlessly to a reliable backup system, for example another server. In the case of a federated mesh, you can configure a service in one mesh to failover to a service in another mesh.
				

					You configure Federation for failover by setting the importAsLocal and locality settings in an ImportedServiceSet resource and then configuring a DestinationRule that configures failover for the service to the locality specified in the ImportedServiceSet.
				
Prerequisites
	
							Two or more OpenShift Container Platform 4.6 or above clusters already networked and federated.
						
	
							ExportedServiceSet resources already created for each mesh peer in the federated mesh.
						
	
							ImportedServiceSet resources already created for each mesh peer in the federated mesh.
						
	
							An account with the cluster-admin role.
						

Configuring an ImportedServiceSet for failover

						Locality-weighted load balancing allows administrators to control the distribution of traffic to endpoints based on the localities of where the traffic originates and where it will terminate. These localities are specified using arbitrary labels that designate a hierarchy of localities in {region}/{zone}/{sub-zone} form.
					

						In the examples in this section, the green-mesh is located in the us-east region, and the red-mesh is located in the us-west region.
					
Example ImportedServiceSet resource from red-mesh to green-mesh

							

kind: ImportedServiceSet
apiVersion: federation.maistra.io/v1
metadata:
 name: red-mesh #name of mesh that exported the service
 namespace: green-mesh-system #mesh namespace that service is being imported into
spec:
 importRules: # first matching rule is used
 # import ratings.bookinfo as ratings.bookinfo
 - type: NameSelector
 importAsLocal: true
 nameSelector:
 namespace: bookinfo
 name: ratings
 alias:
 # service will be imported as ratings.bookinfo.svc.red-mesh-imports.local
 namespace: bookinfo
 name: ratings
 #Locality within which imported services should be associated.
 locality:
 region: us-west

						
Table 1.13. ImportedServiceLocality fields table
	Name	Description	Type
	
										region:
									

									 	
										Region within which imported services are located.
									

									 	
										string
									

									
	
										subzone:
									

									 	
										Subzone within which imported services are located. I Subzone is specified, Zone must also be specified.
									

									 	
										string
									

									
	
										zone:
									

									 	
										Zone within which imported services are located. If Zone is specified, Region must also be specified.
									

									 	
										string
									

									

Procedure
	
								Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role, enter the following command:
							
$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

	
								Change to the project where you installed the Service Mesh control plane, enter the following command:
							
$ oc project <smcp-system>

								For example, green-mesh-system.
							
$ oc project green-mesh-system

	
								Edit the ImportedServiceSet file, where <ImportedServiceSet.yaml> includes a full path to the file you want to edit, enter the following command:
							
$ oc edit -n <smcp-system> -f <ImportedServiceSet.yaml>

								For example, if you want to modify the file that imports from the red-mesh-system to the green-mesh-system as shown in the previous ImportedServiceSet example.
							
$ oc edit -n green-mesh-system -f import-from-red-mesh.yaml

	
								Modify the file:
							
	
										Set spec.importRules.importAsLocal to true.
									
	
										Set spec.locality to a region, zone, or subzone.
									
	
										Save your changes.
									

Configuring a DestinationRule for failover

						Create a DestinationRule resource that configures the following:
					
	
								Outlier detection for the service. This is required in order for failover to function properly. In particular, it configures the sidecar proxies to know when endpoints for a service are unhealthy, eventually triggering a failover to the next locality.
							
	
								Failover policy between regions. This ensures that failover beyond a region boundary will behave predictably.
							

Procedure
	
								Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. Enter the following command. Then, enter your username and password when prompted.
							
$ oc login --username=<NAMEOFUSER> <API token> https://<HOSTNAME>:6443

	
								Change to the project where you installed the Service Mesh control plane.
							
$ oc project <smcp-system>

								For example, green-mesh-system.
							
$ oc project green-mesh-system

	
								Create a DestinationRule file based on the following example where if green-mesh is unavailable, the traffic should be routed from the green-mesh in the us-east region to the red-mesh in us-west.
							
Example DestinationRule

									

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
 name: default-failover
 namespace: bookinfo
spec:
 host: "ratings.bookinfo.svc.cluster.local"
 trafficPolicy:
 loadBalancer:
 localityLbSetting:
 enabled: true
 failover:
 - from: us-east
 to: us-west
 outlierDetection:
 consecutive5xxErrors: 3
 interval: 10s
 baseEjectionTime: 1m

								

	
								Deploy the DestinationRule, where <DestinationRule> includes the full path to your file, enter the following command:
							
$ oc create -n <application namespace> -f <DestinationRule.yaml>

								For example:
							
$ oc create -n bookinfo -f green-mesh-us-west-DestinationRule.yaml

Removing a service from the federated mesh

					If you need to remove a service from the federated mesh, for example if it has become obsolete or has been replaced by a different service, you can do so.
				
To remove a service from a single mesh

						Remove the entry for the service from the ImportedServiceSet resource for the mesh peer that no longer should access the service.
					

To remove a service from the entire federated mesh

						Remove the entry for the service from the ExportedServiceSet resource for the mesh that owns the service.
					

Removing a mesh from the federated mesh

					If you need to remove a mesh from the federation, you can do so.
				
	
							Edit the removed mesh’s ServiceMeshControlPlane resource to remove all federation ingress gateways for peer meshes.
						
	
							For each mesh peer that the removed mesh has been federated with:
						
	
									Remove the ServiceMeshPeer resource that links the two meshes.
								
	
									Edit the peer mesh’s ServiceMeshControlPlane resource to remove the egress gateway that serves the removed mesh.
								

Extensions

				You can use WebAssembly extensions to add new features directly into the Red Hat OpenShift Service Mesh proxies. This lets you move even more common functionality out of your applications, and implement them in a single language that compiles to WebAssembly bytecode.
			
Note

					WebAssembly extensions are not supported on IBM Z and IBM Power Systems.
				

WebAssembly modules overview

					WebAssembly modules can be run on many platforms, including proxies, and have broad language support, fast execution, and a sandboxed-by-default security model.
				

					Red Hat OpenShift Service Mesh extensions are Envoy HTTP Filters, giving them a wide range of capabilities:
				
	
							Manipulating the body and headers of requests and responses.
						
	
							Out-of-band HTTP requests to services not in the request path, such as authentication or policy checking.
						
	
							Side-channel data storage and queues for filters to communicate with each other.
						

Note

						When creating new WebAssembly extensions, use the WasmPlugin API. The ServiceMeshExtension API is deprecated as of Red Hat OpenShift Service Mesh version 2.2 and will be removed in a future release.
					

					There are two parts to writing a Red Hat OpenShift Service Mesh extension:
				
	
							You must write your extension using an SDK that exposes the proxy-wasm API and compile it to a WebAssembly module.
						
	
							You must then package the module into a container.
						

Supported languages

						You can use any language that compiles to WebAssembly bytecode to write a Red Hat OpenShift Service Mesh extension, but the following languages have existing SDKs that expose the proxy-wasm API so that it can be consumed directly.
					
Table 1.14. Supported languages
	Language	Maintainer	Repository
	
									AssemblyScript
								

								 	
									solo.io
								

								 	
									solo-io/proxy-runtime
								

								
	
									C++
								

								 	
									proxy-wasm team (Istio Community)
								

								 	
									proxy-wasm/proxy-wasm-cpp-sdk
								

								
	
									Go
								

								 	
									tetrate.io
								

								 	
									tetratelabs/proxy-wasm-go-sdk
								

								
	
									Rust
								

								 	
									proxy-wasm team (Istio Community)
								

								 	
									proxy-wasm/proxy-wasm-rust-sdk
								

								

WasmPlugin container format

					Istio supports Open Container Initiative (OCI) images in its Wasm Plugin mechanism. You can distribute your Wasm Plugins as a container image, and you can use the spec.url field to refer to a container registry location. For example, quay.io/my-username/my-plugin:latest.
				

					Because each execution environment (runtime) for a WASM module can have runtime-specific configuration parameters, a WASM image can be composed of two layers:
				
	
							plugin.wasm (Required) - Content layer. This layer consists of a .wasm binary containing the bytecode of your WebAssembly module, to be loaded by the runtime. You must name this file plugin.wasm.
						
	
							runtime-config.json (Optional) - Configuration layer. This layer consists of a JSON-formatted string that describes metadata about the module for the target runtime. The config layer might also contain additional data, depending on the target runtime. For example, the config for a WASM Envoy Filter contains root_ids available on the filter.
						

WasmPlugin API reference

					The WasmPlugins API provides a mechanism to extend the functionality provided by the Istio proxy through WebAssembly filters.
				

					You can deploy multiple WasmPlugins. The phase and priority settings determine the order of execution (as part of Envoy’s filter chain), allowing the configuration of complex interactions between user-supplied WasmPlugins and Istio’s internal filters.
				

					In the following example, an authentication filter implements an OpenID flow and populates the Authorization header with a JSON Web Token (JWT). Istio authentication consumes this token and deployes it to the ingress gateway. The WasmPlugin file lives in the proxy sidecar filesystem. Note the field url.
				
apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: openid-connect
 namespace: istio-ingress
spec:
 selector:
 matchLabels:
 istio: ingressgateway
 url: file:///opt/filters/openid.wasm
 sha256: 1ef0c9a92b0420cf25f7fe5d481b231464bc88f486ca3b9c83ed5cc21d2f6210
 phase: AUTHN
 pluginConfig:
 openid_server: authn
 openid_realm: ingress

					Below is the same example, but this time an Open Container Initiative (OCI) image is used instead of a file in the filesystem. Note the fields url, imagePullPolicy, and imagePullSecret.
				
apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: openid-connect
 namespace: istio-system
spec:
 selector:
 matchLabels:
 istio: ingressgateway
 url: oci://private-registry:5000/openid-connect/openid:latest
 imagePullPolicy: IfNotPresent
 imagePullSecret: private-registry-pull-secret
 phase: AUTHN
 pluginConfig:
 openid_server: authn
 openid_realm: ingress
Table 1.15. WasmPlugin Field Reference
	Field	Type	Description	Required
	
									spec.selector
								

								 	
									WorkloadSelector
								

								 	
									Criteria used to select the specific set of pods/VMs on which this plugin configuration should be applied. If omitted, this configuration will be applied to all workload instances in the same namespace. If the WasmPlugin field is present in the config root namespace, it will be applied to all applicable workloads in any namespace.
								

								 	
									No
								

								
	
									spec.url
								

								 	
									string
								

								 	
									URL of a Wasm module or OCI container. If no scheme is present, defaults to oci://, referencing an OCI image. Other valid schemes are file:// for referencing .wasm module files present locally within the proxy container, and http[s]:// for .wasm module files hosted remotely.
								

								 	
									No
								

								
	
									spec.sha256
								

								 	
									string
								

								 	
									SHA256 checksum that will be used to verify the Wasm module or OCI container. If the url field already references a SHA256 (using the @sha256: notation), it must match the value of this field. If an OCI image is referenced by tag and this field is set, its checksum will be verified against the contents of this field after pulling.
								

								 	
									No
								

								
	
									spec.imagePullPolicy
								

								 	
									PullPolicy
								

								 	
									The pull behavior to be applied when fetching an OCI image. Only relevant when images are referenced by tag instead of SHA. Defaults to the value IfNotPresent, except when an OCI image is referenced in the url field and the latest tag is used, in which case the value Always is the default, mirroring K8s behavior. Setting is ignored if the url field is referencing a Wasm module directly using file:// or http[s]://.
								

								 	
									No
								

								
	
									spec.imagePullSecret
								

								 	
									string
								

								 	
									Credentials to use for OCI image pulling. The name of a secret in the same namespace as the WasmPlugin object that contains a pull secret for authenticating against the registry when pulling the image.
								

								 	
									No
								

								
	
									spec.phase
								

								 	
									PluginPhase
								

								 	
									Determines where in the filter chain this WasmPlugin object is injected.
								

								 	
									No
								

								
	
									spec.priority
								

								 	
									int64
								

								 	
									Determines the ordering of WasmPlugins objects that have the same phase value. When multiple WasmPlugins objects are applied to the same workload in the same phase, they will be applied by priority and in descending order. If the priority field is not set, or two WasmPlugins objects with the same value, the ordering will be determined from the name and namespace of the WasmPlugins objects. Defaults to the value 0.
								

								 	
									No
								

								
	
									spec.pluginName
								

								 	
									string
								

								 	
									The plugin name used in the Envoy configuration. Some Wasm modules might require this value to select the Wasm plugin to execute.
								

								 	
									No
								

								
	
									spec.pluginConfig
								

								 	
									Struct
								

								 	
									The configuration that will be passed on to the plugin.
								

								 	
									No
								

								
	
									spec.pluginConfig.verificationKey
								

								 	
									string
								

								 	
									The public key used to verify signatures of signed OCI images or Wasm modules. Must be supplied in PEM format.
								

								 	
									No
								

								

					The WorkloadSelector object specifies the criteria used to determine if a filter can be applied to a proxy. The matching criteria includes the metadata associated with a proxy, workload instance information such as labels attached to the pod/VM, or any other information that the proxy provides to Istio during the initial handshake. If multiple conditions are specified, all conditions need to match in order for the workload instance to be selected. Currently, only label based selection mechanism is supported.
				
Table 1.16. WorkloadSelector
	Field	Type	Description	Required
	
									matchLabels
								

								 	
									map<string, string>
								

								 	
									One or more labels that indicate a specific set of pods/VMs on which a policy should be applied. The scope of label search is restricted to the configuration namespace in which the resource is present.
								

								 	
									Yes
								

								

					The PullPolicy object specifies the pull behavior to be applied when fetching an OCI image.
				
Table 1.17. PullPolicy
	Value	Description
	
									<empty>
								

								 	
									Defaults to the value IfNotPresent, except for OCI images with tag latest, for which the default will be the value Always.
								

								
	
									IfNotPresent
								

								 	
									If an existing version of the image has been pulled before, that will be used. If no version of the image is present locally, we will pull the latest version.
								

								
	
									Always
								

								 	
									Always pull the latest version of an image when applying this plugin.
								

								

					Struct represents a structured data value, consisting of fields which map to dynamically typed values. In some languages, Struct might be supported by a native representation. For example, in scripting languages like JavaScript a struct is represented as an object.
				
Table 1.18. Struct
	Field	Type	Description
	
									fields
								

								 	
									map<string, Value>
								

								 	
									Map of dynamically typed values.
								

								

					PluginPhase specifies the phase in the filter chain where the plugin will be injected.
				
Table 1.19. PluginPhase
	Field	Description
	
									<empty>
								

								 	
									Control plane decides where to insert the plugin. This will generally be at the end of the filter chain, right before the Router. Do not specify PluginPhase if the plugin is independent of others.
								

								
	
									AUTHN
								

								 	
									Insert plugin before Istio authentication filters.
								

								
	
									AUTHZ
								

								 	
									Insert plugin before Istio authorization filters and after Istio authentication filters.
								

								
	
									STATS
								

								 	
									Insert plugin before Istio stats filters and after Istio authorization filters.
								

								

Deploying WasmPlugin resources

						You can enable Red Hat OpenShift Service Mesh extensions using the WasmPlugin resource. In this example, istio-system is the name of the Service Mesh control plane project. The following example creates an openid-connect filter that performs an OpenID Connect flow to authenticate the user.
					
Procedure
	
								Create the following example resource:
							
Example plugin.yaml

									

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: openid-connect
 namespace: istio-system
spec:
 selector:
 matchLabels:
 istio: ingressgateway
 url: oci://private-registry:5000/openid-connect/openid:latest
 imagePullPolicy: IfNotPresent
 imagePullSecret: private-registry-pull-secret
 phase: AUTHN
 pluginConfig:
 openid_server: authn
 openid_realm: ingress

								

	
								Apply your plugin.yaml file with the following command:
							
$ oc apply -f plugin.yaml

ServiceMeshExtension container format

					You must have a .wasm file containing the bytecode of your WebAssembly module, and a manifest.yaml file in the root of the container filesystem to make your container image a valid extension image.
				
Note

						When creating new WebAssembly extensions, use WasmPlugin. ServiceMeshExtension is deprecated as of Red Hat OpenShift Service Mesh version 2.2 and will be removed in a future release.
					

manifest.yaml

						

schemaVersion: 1

name: <your-extension>
description: <description>
version: 1.0.0
phase: PreAuthZ
priority: 100
module: extension.wasm

					
Table 1.20. Field Reference for manifest.yml
	Field	Description	Required
	
									schemaVersion
								

								 	
									Used for versioning of the manifest schema. Currently the only possible value is 1.
								

								 	
									This is a required field.
								

								
	
									name
								

								 	
									The name of your extension.
								

								 	
									This field is just metadata and currently unused.
								

								
	
									description
								

								 	
									The description of your extension.
								

								 	
									This field is just metadata and currently unused.
								

								
	
									version
								

								 	
									The version of your extension.
								

								 	
									This field is just metadata and currently unused.
								

								
	
									phase
								

								 	
									The default execution phase of your extension.
								

								 	
									This is a required field.
								

								
	
									priority
								

								 	
									The default priority of your extension.
								

								 	
									This is a required field.
								

								
	
									module
								

								 	
									The relative path from the container filesystem’s root to your WebAssembly module.
								

								 	
									This is a required field.
								

								

ServiceMeshExtension reference

					The ServiceMeshExtension API provides a mechanism to extend the functionality provided by the Istio proxy through WebAssembly filters. There are two parts to writing a WebAssembly extension:
				
	
							Write your extension using an SDK that exposes the proxy-wasm API and compile it to a WebAssembly module.
						
	
							Package it into a container.
						

Note

						When creating new WebAssembly extensions, use WasmPlugin. ServiceMeshExtension is deprecated as of Red Hat OpenShift Service Mesh version 2.2 and will be removed in a future release.
					

Table 1.21. ServiceMeshExtension Field Reference
	Field	Description
	
									metadata.namespace
								

								 	
									The metadata.namespace field of a ServiceMeshExtension source has a special semantic: if it equals the Control Plane Namespace, the extension will be applied to all workloads in the Service Mesh that match its workloadSelector value. When deployed to any other Mesh Namespace, it will only be applied to workloads in that same Namespace.
								

								
	
									spec.workloadSelector
								

								 	
									The spec.workloadSelector field has the same semantic as the spec.selector field of the Istio Gateway resource. It will match a workload based on its Pod labels. If no workloadSelector value is specified, the extension will be applied to all workloads in the namespace.
								

								
	
									spec.config
								

								 	
									This is a structured field that will be handed over to the extension, with the semantics dependent on the extension you are deploying.
								

								
	
									spec.image
								

								 	
									A container image URI pointing to the image that holds the extension.
								

								
	
									spec.phase
								

								 	
									The phase determines where in the filter chain the extension is injected, in relation to existing Istio functionality like Authentication, Authorization and metrics generation. Valid values are: PreAuthN, PostAuthN, PreAuthZ, PostAuthZ, PreStats, PostStats. This field defaults to the value set in the manifest.yaml file of the extension, but can be overwritten by the user.
								

								
	
									spec.priority
								

								 	
									If multiple extensions with the same spec.phase value are applied to the same workload instance, the spec.priority value determines the ordering of execution. Extensions with higher priority will be executed first. This allows for inter-dependent extensions. This field defaults to the value set in the manifest.yaml file of the extension, but can be overwritten by the user.
								

								

Deploying ServiceMeshExtension resources

						You can enable Red Hat OpenShift Service Mesh extensions using the ServiceMeshExtension resource. In this example, istio-system is the name of the Service Mesh control plane project.
					
Note

							When creating new WebAssembly extensions, use WasmPlugin. ServiceMeshExtension is deprecated as of Red Hat OpenShift Service Mesh version 2.2 and will be removed in a future release.
						

						For a complete example that was built using the Rust SDK, take a look at the header-append-filter. It is a simple filter that appends one or more headers to the HTTP responses, with their names and values taken out from the config field of the extension. See a sample configuration in the snippet below.
					
Procedure
	
								Create the following example resource:
							
Example ServiceMeshExtension resource extension.yaml

									

apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: header-append
 namespace: istio-system
spec:
 workloadSelector:
 labels:
 app: httpbin
 config:
 first-header: some-value
 another-header: another-value
 image: quay.io/maistra-dev/header-append-filter:2.1
 phase: PostAuthZ
 priority: 100

								

	
								Apply your extension.yaml file with the following command:
							
$ oc apply -f <extension>.yaml

Migrating from ServiceMeshExtension to WasmPlugin resources

					The ServiceMeshExtension API is deprecated as of Red Hat OpenShift Service Mesh version 2.2 and will be removed in a future release. If you are using the ServiceMeshExtention API, you must migrate to the WasmPlugin API to continue using your WebAssembly extensions.
				

					The APIs are very similar. The migration consists of two steps:
				
	
							Renaming your plugin file and updating the module packaging.
						
	
							Creating a WasmPlugin resource that references the updated container image.
						

API changes

						The new WasmPlugin API is similar to the ServiceMeshExtension, but with a few differences, especially in the field names:
					
Table 1.22. Field changes between ServiceMeshExtensions and WasmPlugin
	ServiceMeshExtension	WasmPlugin
	
										spec.config
									

									 	
										spec.pluginConfig
									

									
	
										spec.workloadSelector
									

									 	
										spec.selector
									

									
	
										spec.image
									

									 	
										spec.url
									

									
	
										spec.phase valid values: PreAuthN, PostAuthN, PreAuthZ, PostAuthZ, PreStats, PostStats
									

									 	
										spec.phase valid values: <empty>, AUTHN, AUTHZ, STATS
									

									

						The following is an example of how a ServiceMeshExtension resource could be converted into a WasmPlugin resource.
					
ServiceMeshExtension resource

							

apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: header-append
 namespace: istio-system
spec:
 workloadSelector:
 labels:
 app: httpbin
 config:
 first-header: some-value
 another-header: another-value
 image: quay.io/maistra-dev/header-append-filter:2.2
 phase: PostAuthZ
 priority: 100

						
New WasmPlugin resource equivalent to the ServiceMeshExtension above

							

apiVersion: extensions.istio.io/v1alpha1
kind: WasmPlugin
metadata:
 name: header-append
 namespace: istio-system
spec:
 selector:
 matchLabels:
 app: httpbin
 url: oci://quay.io/maistra-dev/header-append-filter:2.2
 phase: STATS
 pluginConfig:
 first-header: some-value
 another-header: another-value

						

Container image format changes

						The new WasmPlugin container image format is similar to the ServiceMeshExtensions, with the following differences:
					
	
								The ServiceMeshExtension container format required a metadata file named manifest.yaml in the root directory of the container filesystem. The WasmPlugin container format does not require a manifest.yaml file.
							
	
								The .wasm file (the actual plugin) that previously could have any filename now must be named plugin.wasm and must be located in the root directory of the container filesystem.
							

Migrating to WasmPlugin resources

						To upgrade your WebAssembly extensions from the ServiceMeshExtension API to the WasmPlugin API, you rename your plugin file.
					
Prerequisites
	
								ServiceMeshControlPlane is upgraded to version 2.2 or later.
							

Caution

						Because both plug-ins will be called for every request, you might want to remove your existing ServiceMeshExtension resource before creating the new WasmPlugin resource. You might get undesired results having two plug-ins active at the same time.
					

Procedure
	
								Update your container image. If the plugin is already in /plugin.wasm inside the container, skip to the next step. If not:
							
	
										Ensure the plugin file is named plugin.wasm. You must name the extension file plugin.wasm.
									
	
										Ensure the plugin file is located in the root (/) directory. You must store extension files in the root of the container filesystem..
									
	
										Rebuild your container image and push it to a container registry.
									

	
								Remove the ServiceMeshExtension resource and create a WasmPlugin resource that refers to the new container image you built.
							

Using the 3scale WebAssembly module

Note

					The threescale-wasm-auth module runs on integrations of 3scale API Management 2.11 or later with Red Hat OpenShift Service Mesh 2.1.0 or later.
				

				The threescale-wasm-auth module is a WebAssembly module that uses a set of interfaces, known as an application binary interfaces (ABI). This is defined by the Proxy-WASM specification to drive any piece of software that implements the ABI so it can authorize HTTP requests against 3scale.
			

				As an ABI specification, Proxy-WASM defines the interaction between a piece of software named host and another named module, program, or extension. The host exposes a set of services used by the module to perform a task, and in this case, to process proxy requests.
			

				The host environment is composed of a WebAssembly virtual machine interacting with a piece of software, in this case, an HTTP proxy.
			

				The module itself runs in isolation to the outside world except for the instructions it runs on the virtual machine and the ABI specified by Proxy-WASM. This is a safe way to provide extension points to software: the extension can only interact in well-defined ways with the virtual machine and the host. The interaction provides a computing model and a connection to the outside world the proxy is meant to have.
			
Compatibility

					The threescale-wasm-auth module is designed to be fully compatible with all implementations of the Proxy-WASM ABI specification. At this point, however, it has only been thoroughly tested to work with the Envoy reverse proxy.
				

Usage as a stand-alone module

					Because of its self-contained design, it is possible to configure this module to work with Proxy-WASM proxies independently of Service Mesh, as well as 3scale Istio adapter deployments.
				

Prerequisites

	
							The module works with all supported 3scale releases, except when configuring a service to use OpenID connect (OIDC), which requires 3scale 2.11 or later.
						

Configuring the threescale-wasm-auth module

					Cluster administrators on OpenShift Container Platform can configure the threescale-wasm-auth module to authorize HTTP requests to 3scale API Management through an application binary interface (ABI). The ABI defines the interaction between host and the module, exposing the hosts services, and allows you to use the module to process proxy requests.
				
The Service Mesh extension

						Service Mesh provides a custom resource definition to specify and apply Proxy-WASM extensions to sidecar proxies, known as ServiceMeshExtension. Service Mesh applies this custom resource to the set of workloads that require HTTP API management with 3scale.
					
Note

							Configuring the WebAssembly extension is currently a manual process. Support for fetching the configuration for services from the 3scale system will be available in a future release.
						

Prerequisites
	
								Identify a Kubernetes workload and namespace on your Service Mesh deployment that you will apply this module.
							
	
								You must have a 3scale tenant account. See SaaS or 3scale 2.11 On-Premises with a matching service and relevant applications and metrics defined.
							
	
								If you apply the module to the productpage microservice in the bookinfo namespace, see the Bookinfo sample application.
							
	
										The following example is the YAML format for the custom resource for threescale-wasm-auth module. This example refers to the upstream Maistra version of Service Mesh, ServiceMeshExtension API. You must declare the namespace where the threescale-wasm-auth module is deployed, alongside a WorkloadSelector to identify the set of applications the module will apply to:
									
apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: threescale-wasm-auth
 namespace: bookinfo [image: 1]
spec:
 workloadSelector: [image: 2]
 labels:
 app: productpage
 config: <yaml_configuration>
 image: registry.redhat.io/openshift-service-mesh/3scale-auth-wasm-rhel8:0.0.1
 phase: PostAuthZ
 priority: 100
	[image: 1]
	
												The namespace.
											

	[image: 2]
	
												The WorkloadSelector.
											

	
								The spec.config field depends on the module configuration and it is not populated in the previous example. Instead, the example uses the <yaml_configuration> placeholder value. You can use the format of this custom resource example.
							
	
										The spec.config field varies depending on the application. All other fields persist across multiple instances of this custom resource. As examples:
									
	
												image: Only changes when newer versions of the module are deployed.
											
	
												phase: Remains the same, since this module needs to be invoked after the proxy has done any local authorization, such as validating OpenID Connect (OIDC) tokens.
											

	
								After you have the module configuration in spec.config and the rest of the custom resource, apply it with the oc apply command:
							
$ oc apply -f threescale-wasm-auth-bookinfo.yaml

Additional resources
	
								Deploying ServiceMeshExtension resources
							
	
								Custom Resources
							

Applying 3scale external ServiceEntry objects

					To have the threescale-wasm-auth module authorize requests against 3scale, the module must have access to 3scale services. You can do this within Red Hat OpenShift Service Mesh by applying an external ServiceEntry object and a corresponding DestinationRule object for TLS configuration to use the HTTPS protocol.
				

					The custom resources (CRs) set up the service entries and destination rules for secure access from within Service Mesh to 3scale Hosted (SaaS) for the backend and system components of the Service Management API and the Account Management API. The Service Management API receives queries for the authorization status of each request. The Account Management API provides API management configuration settings for your services.
				
Procedure
	
							Apply the following external ServiceEntry CR and related DestinationRule CR for 3scale Hosted backend to your cluster:
						
	
									Add the ServiceEntry CR to a file called service-entry-threescale-saas-backend.yml:
								
ServiceEntry CR

										

apiVersion: networking.istio.io/v1beta1
kind: ServiceEntry
metadata:
 name: service-entry-threescale-saas-backend
spec:
 hosts:
 - su1.3scale.net
 ports:
 - number: 443
 name: https
 protocol: HTTPS
 location: MESH_EXTERNAL
 resolution: DNS

									

	
									Add the DestinationRule CR to a file called destination-rule-threescale-saas-backend.yml:
								
DestinationRule CR

										

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
 name: destination-rule-threescale-saas-backend
spec:
 host: su1.3scale.net
 trafficPolicy:
 tls:
 mode: SIMPLE
 sni: su1.3scale.net

									

	
									Apply and save the external ServiceEntry CR for the 3scale Hosted backend to your cluster, by running the following command:
								
$ oc apply -f service-entry-threescale-saas-backend.yml

	
									Apply and save the external DestinationRule CR for the 3scale Hosted backend to your cluster, by running the following command:
								
$ oc apply -f destination-rule-threescale-saas-backend.yml

	
							Apply the following external ServiceEntry CR and related DestinationRule CR for 3scale Hosted system to your cluster:
						
	
									Add the ServiceEntry CR to a file called service-entry-threescale-saas-system.yml:
								
ServiceEntry CR

										

apiVersion: networking.istio.io/v1beta1
kind: ServiceEntry
metadata:
 name: service-entry-threescale-saas-system
spec:
 hosts:
 - multitenant.3scale.net
 ports:
 - number: 443
 name: https
 protocol: HTTPS
 location: MESH_EXTERNAL
 resolution: DNS

									

	
									Add the DestinationRule CR to a file called destination-rule-threescale-saas-system.yml:
								
DestinationRule CR

										

apiVersion: networking.istio.io/v1beta1
kind: DestinationRule
metadata:
 name: destination-rule-threescale-saas-system
spec:
 host: multitenant.3scale.net
 trafficPolicy:
 tls:
 mode: SIMPLE
 sni: multitenant.3scale.net

									

	
									Apply and save the external ServiceEntry CR for the 3scale Hosted system to your cluster, by running the following command:
								
$ oc apply -f service-entry-threescale-saas-system.yml

	
									Apply and save the external DestinationRule CR for the 3scale Hosted system to your cluster, by running the following command:
								
$ oc apply -f <destination-rule-threescale-saas-system.yml>

					Alternatively, you can deploy an in-mesh 3scale service. To deploy an in-mesh 3scale service, change the location of the services in the CR by deploying 3scale and linking to the deployment.
				
Additional resources
	
							Service entry and destination rule documentation
						

The 3scale WebAssembly module configuration

					The ServiceMeshExtension custom resource spec provides the configuration that the Proxy-WASM module reads from.
				

					The spec is embedded in the host and read by the Proxy-WASM module. Typically, the configurations are in the JSON file format for the modules to parse, however the ServiceMeshExtension resource can interpret the spec value as YAML and convert it to JSON for consumption by the module.
				

					If you use the Proxy-WASM module in stand-alone mode, you must write the configuration using the JSON format. Using the JSON format means using escaping and quoting where needed within the host configuration files, for example Envoy. When you use the WebAssembly module with the ServiceMeshExtension resource, the configuration is in the YAML format. In this case, an invalid configuration forces the module to show diagnostics based on its JSON representation to a sidecar’s logging stream.
				
Important

						The EnvoyFilter custom resource is not a supported API, although it can be used in some 3scale Istio adapter or Service Mesh releases. Using the EnvoyFilter custom resource is not recommended. Use the ServiceMeshExtension API instead of the EnvoyFilter custom resource. If you must use the EnvoyFilter custom resource, you must specify the spec in JSON format.
					

Configuring the 3scale WebAssembly module

						The architecture of the 3scale WebAssembly module configuration depends on the 3scale account and authorization service, and the list of services to handle.
					
Prerequisites

							The prerequisites are a set of minimum mandatory fields in all cases:
						
	
								For the 3scale account and authorization service: the backend-listener URL.
							
	
								For the list of services to handle: the service IDs and at least one credential look up method and where to find it.
							
	
								You will find examples for dealing with userkey, appid with appkey, and OpenID Connect (OIDC) patterns.
							
	
								The WebAssembly module uses the settings you specified in the static configuration. For example, if you add a mapping rule configuration to the module, it will always apply, even when the 3scale Admin Portal has no such mapping rule. The rest of the ServiceMeshExtension resource exists around the spec.config YAML entry.
							

The 3scale WebAssembly module api object

						The api top-level string from the 3scale WebAssembly module defines which version of the configuration the module will use.
					
Note

							A non-existent or unsupported version of the api object renders the 3scale WebAssembly module inoperable.
						

The api top-level string example

							

apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: threescale-wasm-auth
 namespace: bookinfo
spec:
 config:
 api: v1
...

						

						The api entry defines the rest of the values for the configuration. The only accepted value is v1. New settings that break compatibility with the current configuration or need more logic that modules using v1 cannot handle, will require different values.
					

The 3scale WebAssembly module system object

						The system top-level object specifies how to access the 3scale Account Management API for a specific account. The upstream field is the most important part of the object. The system object is optional, but recommended unless you are providing a fully static configuration for the 3scale WebAssembly module, which is an option if you do not want to provide connectivity to the system component of 3scale.
					

						When you provide static configuration objects in addition to the system object, the static ones always take precedence.
					
apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: threescale-wasm-auth
spec:
 ...
 config:
 system:
 name: saas_porta
 upstream: <object>
 token: myaccount_token
 ttl: 300
 ...
Table 1.23. system object fields
	Name	Description	Required
	
										name
									

									 	
										An identifier for the 3scale service, currently not referenced elsewhere.
									

									 	
										Optional
									

									
	
										upstream
									

									 	
										The details about a network host to be contacted. upstream refers to the 3scale Account Management API host known as system.
									

									 	
										Yes
									

									
	
										token
									

									 	
										A 3scale personal access token with read permissions.
									

									 	
										Yes
									

									
	
										ttl
									

									 	
										The minimum amount of seconds to consider a configuration retrieved from this host as valid before trying to fetch new changes. The default is 600 seconds (10 minutes). Note: there is no maximum amount, but the module will generally fetch any configuration within a reasonable amount of time after this TTL elapses.
									

									 	
										Optional
									

									

The 3scale WebAssembly module upstream object

						The upstream object describes an external host to which the proxy can perform calls.
					
apiVersion: maistra.io/v1
upstream:
 name: outbound|443||multitenant.3scale.net
 url: "https://myaccount-admin.3scale.net/"
 timeout: 5000
...
Table 1.24. upstream object fields
	Name	Description	Required
	
										name
									

									 	
										name is not a free-form identifier. It is the identifier for the external host as defined by the proxy configuration. In the case of stand-alone Envoy configurations, it maps to the name of a Cluster, also known as upstream in other proxies. Note: the value of this field, because the Service Mesh and 3scale Istio adapter control plane configure the name according to a format using a vertical bar (|) as the separator of multiple fields. For the purposes of this integration, always use the format: outbound|<port>||<hostname>.
									

									 	
										Yes
									

									
	
										url
									

									 	
										The complete URL to access the described service. Unless implied by the scheme, you must include the TCP port.
									

									 	
										Yes
									

									
	
										Timeout
									

									 	
										Timeout in milliseconds so that connections to this service that take more than the amount of time to respond will be considered errors. Default is 1000 seconds.
									

									 	
										Optional
									

									

The 3scale WebAssembly module backend object

						The backend top-level object specifies how to access the 3scale Service Management API for authorizing and reporting HTTP requests. This service is provided by the Backend component of 3scale.
					
apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: threescale-wasm-auth
spec:
 config:
 ...
 backend:
 name: backend
 upstream: <object>
 ...
Table 1.25. backend object fields
	Name	Description	Required
	
										name
									

									 	
										An identifier for the 3scale backend, currently not referenced elsewhere.
									

									 	
										Optional
									

									
	
										upstream
									

									 	
										The details about a network host to be contacted. This must refer to the 3scale Account Management API host, known, system.
									

									 	
										Yes. The most important and required field.
									

									

The 3scale WebAssembly module services object

						The services top-level object specifies which service identifiers are handled by this particular instance of the module.
					

						Since accounts have multiple services, you must specify which ones are handled. The rest of the configuration revolves around how to configure services.
					

						The services field is required. It is an array that must contain at least one service to be useful.
					
apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: threescale-wasm-auth
spec:
 config:
 ...
 services:
 - id: "2555417834789"
 token: service_token
 authorities:
 - "*.app"
 - 0.0.0.0
 - "0.0.0.0:8443"
 credentials: <object>
 mapping_rules: <object>
 ...

						Each element in the services array represents a 3scale service.
					
Table 1.26. services object fields
	Name	Description	Required
	
										ID
									

									 	
										An identifier for this 3scale service, currently not referenced elsewhere.
									

									 	
										Yes
									

									
	
										token
									

									 	
										This token can be found in the proxy configuration for your service in System or you can retrieve the it from System with following curl command:
									

									
										curl https://<system_host>/admin/api/services/<service_id>/proxy/configs/production/latest.json?access_token=<access_token>" | jq '.proxy_config.content.backend_authentication_value
									

									 	
										Yes
									

									
	
										authorities
									

									 	
										An array of strings, each one representing the Authority of a URL to match. These strings accept glob patterns supporting the asterisk (*), plus sign (+), and question mark (?) matchers.
									

									 	
										Yes
									

									
	
										credentials
									

									 	
										An object defining which kind of credentials to look for and where.
									

									 	
										Yes
									

									
	
										mapping_rules
									

									 	
										An array of objects representing mapping rules and 3scale methods to hit.
									

									 	
										Yes
									

									

The 3scale WebAssembly module credentials object

						The credentials object is a component of the service object. credentials specifies which kind of credentials to be looked up and the steps to perform this action.
					

						All fields are optional, but you must specify at least one, user_key or app_id. The order in which you specify each credential is irrelevant because it is pre-established by the module. Only specify one instance of each credential.
					
apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: threescale-wasm-auth
spec:
 config:
 ...
 services:
 - credentials:
 user_key: <array_of_lookup_queries>
 app_id: <array_of_lookup_queries>
 app_key: <array_of_lookup_queries>
 ...
Table 1.27. credentials object fields
	Name	Description	Required
	
										user_key
									

									 	
										This is an array of lookup queries that defines a 3scale user key. A user key is commonly known as an API key.
									

									 	
										Optional
									

									
	
										app_id
									

									 	
										This is an array of lookup queries that define a 3scale application identifier. Application identifiers are provided by 3scale or by using an identity provider like Red Hat Single Sign-On (RH-SS0), or OpenID Connect (OIDC). The resolution of the lookup queries specified here, whenever it is successful and resolves to two values, it sets up the app_id and the app_key.
									

									 	
										Optional
									

									
	
										app_key
									

									 	
										This is an array of lookup queries that define a 3scale application key. Application keys without a resolved app_id are useless, so only specify this field when app_id has been specified.
									

									 	
										Optional
									

									

The 3scale WebAssembly module lookup queries

						The lookup query object is part of any of the fields in the credentials object. It specifies how a given credential field should be found and processed. When evaluated, a successful resolution means that one or more values were found. A failed resolution means that no values were found.
					

						Arrays of lookup queries describe a short-circuit or relationship: a successful resolution of one of the queries stops the evaluation of any remaining queries and assigns the value or values to the specified credential-type. Each query in the array is independent of each other.
					

						A lookup query is made up of a single field, a source object, which can be one of a number of source types. See the following example:
					
apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: threescale-wasm-auth
spec:
 config:
 ...
 services:
 - credentials:
 user_key:
 - <source_type>: <object>
 - <source_type>: <object>
 ...
 app_id:
 - <source_type>: <object>
 ...
 app_key:
 - <source_type>: <object>
 ...
 ...

The 3scale WebAssembly module source object

						A source object exists as part of an array of sources within any of the credentials object fields. The object field name, referred to as a source-type is any one of the following:
					
	
								header: The lookup query receives HTTP request headers as input.
							
	
								query_string: The lookup query receives the URL query string parameters as input.
							
	
								filter: The lookup query receives filter metadata as input.
							

						All source-type objects have at least the following two fields:
					
Table 1.28. source-type object fields
	Name	Description	Required
	
										keys
									

									 	
										An array of strings, each one a key, referring to entries found in the input data.
									

									 	
										Yes
									

									
	
										ops
									

									 	
										An array of operations that perform a key entry match. The array is a pipeline where operations receive inputs and generate outputs on the next operation. An operation failing to provide an output resolves the lookup query as failed. The pipeline order of the operations determines the evaluation order.
									

									 	
										Optional
									

									

						The filter field name has a required path entry to show the path in the metadata you use to look up data.
					

						When a key matches the input data, the rest of the keys are not evaluated and the source resolution algorithm jumps to executing the operations (ops) specified, if any. If no ops are specified, the result value of the matching key, if any, is returned.
					

						Operations provide a way to specify certain conditions and transformations for inputs you have after the first phase looks up a key. Use operations when you need to transform, decode, and assert properties, however they do not provide a mature language to deal with all needs and lack Turing-completeness.
					

						A stack stored the outputs of operations. When evaluated, the lookup query finishes by assigning the value or values at the bottom of the stack, depending on how many values the credential consumes.
					

The 3scale WebAssembly module operations object

						Each element in the ops array belonging to a specific source type is an operation object that either applies transformations to values or performs tests. The field name to use for such an object is the name of the operation itself, and any values are the parameters to the operation, which could be structure objects, for example, maps with fields and values, lists, or strings.
					

						Most operations attend to one or more inputs, and produce one or more outputs. When they consume inputs or produce outputs, they work with a stack of values: each value consumed by the operations is popped from the stack of values and initially populated with any source matches. The values outputted by them are pushed to the stack. Other operations do not consume or produce outputs other than asserting certain properties, but they inspect a stack of values.
					
Note

							When resolution finishes, the values picked up by the next step, such as assigning the values to be an app_id, app_key, or user_key, are taken from the bottom values of the stack.
						

						There are a few different operations categories:
					
	
								decode: These transform an input value by decoding it to get a different format.
							
	
								string: These take a string value as input and perform transformations and checks on it.
							
	
								stack: These take a set of values in the input and perform multiple stack transformations and selection of specific positions in the stack.
							
	
								check: These assert properties about sets of operations in a side-effect free way.
							
	
								control: These perform operations that allow for modifying the evaluation flow.
							
	
								format: These parse the format-specific structure of input values and look up values in it.
							

						All operations are specified by the name identifiers as strings.
					
Additional resources
	
								Available operations
							

The 3scale WebAssembly module mapping_rules object

						The mapping_rules object is part of the service object. It specifies a set of REST path patterns and related 3scale metrics and count increments to use when the patterns match.
					

						You need the value if no dynamic configuration is provided in the system top-level object. If the object is provided in addition to the system top-level entry, then the mapping_rules object is evaluated first.
					

						mapping_rules is an array object. Each element of that array is a mapping_rule object. The evaluated matching mapping rules on an incoming request provide the set of 3scale methods for authorization and reporting to the APIManager. When multiple matching rules refer to the same methods, there is a summation of deltas when calling into 3scale. For example, if two rules increase the Hits method twice with deltas of 1 and 3, a single method entry for Hits reporting to 3scale has a delta of 4.
					

The 3scale WebAssembly module mapping_rule object

						The mapping_rule object is part of an array in the mapping_rules object.
					

						The mapping_rule object fields specify the following information:
					
	
								The HTTP request method to match.
							
	
								A pattern to match the path against.
							
	
								The 3scale methods to report along with the amount to report. The order in which you specify the fields determines the evaluation order.
							

Table 1.29. mapping_rule object fields
	Name	Description	Required
	
										method
									

									 	
										Specifies a string representing an HTTP request method, also known as verb. Values accepted match the any one of the accepted HTTP method names, case-insensitive. A special value of any matches any method.
									

									 	
										Yes
									

									
	
										pattern
									

									 	
										The pattern to match the HTTP request’s URI path component. This pattern follows the same syntax as documented by 3scale. It allows wildcards (use of the asterisk (*) character) using any sequence of characters between braces such as {this}.
									

									 	
										Yes
									

									
	
										usages
									

									 	
										A list of usage objects. When the rule matches, all methods with their deltas are added to the list of methods sent to 3scale for authorization and reporting.
									

									
										Embed the usages object with the following required fields:
									

									 	
												name: The method system name to report.
											
	
												delta: For how much to increase that method by.
											

									 	
										Yes
									

									
	
										last
									

									 	
										Whether the successful matching of this rule should stop the evaluation of more mapping rules.
									

									 	
										Optional Boolean. The default is false
									

									

						The following example is independent of existing hierarchies between methods in 3scale. That is, anything run on the 3scale side will not affect this. For example, the Hits metric might be a parent of them all, so it stores 4 hits due to the sum of all reported methods in the authorized request and calls the 3scale Authrep API endpoint.
					

						The example below uses a GET request to a path, /products/1/sold, that matches all the rules.
					
mapping_rules GET request example

							

apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: threescale-wasm-auth
spec:
 config:
 ...
 mapping_rules:
 - method: GET
 pattern: /
 usages:
 - name: hits
 delta: 1
 - method: GET
 pattern: /products/
 usages:
 - name: products
 delta: 1
 - method: ANY
 pattern: /products/{id}/sold
 usages:
 - name: sales
 delta: 1
 - name: products
 delta: 1
 ...

						

						All usages get added to the request the module performs to 3scale with usage data as follows:
					
	
								Hits: 1
							
	
								products: 2
							
	
								sales: 1
							

The 3scale WebAssembly module examples for credentials use cases

					You will spend most of your time applying configuration steps to obtain credentials in the requests to your services.
				

					The following are credentials examples, which you can modify to adapt to specific use cases.
				

					You can combine them all, although when you specify multiple source objects with their own lookup queries, they are evaluated in order until one of them successfully resolves.
				
API key (user_key) in query string parameters

						The following example looks up a user_key in a query string parameter or header of the same name:
					
credentials:
 user_key:
 - query_string:
 keys:
 - user_key
 - header:
 keys:
 - user_key

Application ID and key

						The following example looks up app_key and app_id credentials in a query or headers.
					
credentials:
 app_id:
 - header:
 keys:
 - app_id
 - query_string:
 keys:
 - app_id
 app_key:
 - header:
 keys:
 - app_key
 - query_string:
 keys:
 - app_key

Authorization header

						A request includes an app_id and app_key in an authorization header. If there is at least one or two values outputted at the end, then you can assign the app_key.
					

						The resolution here assigns the app_key if there is one or two outputted at the end.
					

						The authorization header specifies a value with the type of authorization and its value is encoded as Base64. This means you can split the value by a space character, take the second output and then split it again using a colon (:) as the separator. For example, if you use this format app_id:app_key, the header looks like the following example for credential:
					
aladdin:opensesame: Authorization: Basic YWxhZGRpbjpvcGVuc2VzYW1l

						You must use lower case header field names as shown in the following example:
					
credentials:
 app_id:
 - header:
 keys:
 - authorization
 ops:
 - split:
 separator: " "
 max: 2
 - length:
 min: 2
 - drop:
 head: 1
 - base64_urlsafe
 - split:
 max: 2
 app_key:
 - header:
 keys:
 - app_key

						The previous example use case looks at the headers for an authorization:
					
	
								It takes its string value and split it by a space, checking that it generates at least two values of a credential-type and the credential itself, then dropping the credential-type.
							
	
								It then decodes the second value containing the data it needs, and splits it by using a colon (:) character to have an operations stack including first the app_id, then the app_key, if it exists.
							
	
										If app_key does not exist in the authorization header then its specific sources are checked, for example, the header with the key app_key in this case.
									

	
								To add extra conditions to credentials, allow Basic authorizations, where app_id is either aladdin or admin, or any app_id being at least 8 characters in length.
							
	
								app_key must contain a value and have a minimum of 64 characters as shown in the following example:
							
credentials:
 app_id:
 - header:
 keys:
 - authorization
 ops:
 - split:
 separator: " "
 max: 2
 - length:
 min: 2
 - reverse
 - glob:
 - Basic
 - drop:
 tail: 1
 - base64_urlsafe
 - split:
 max: 2
 - test:
 if:
 length:
 min: 2
 then:
 - strlen:
 max: 63
 - or:
 - strlen:
 min: 1
 - drop:
 tail: 1
 - assert:
 - and:
 - reverse
 - or:
 - strlen:
 min: 8
 - glob:
 - aladdin
 - admin

	
								After picking up the authorization header value, you get a Basic credential-type by reversing the stack so that the type is placed on top.
							
	
								Run a glob match on it. When it validates, and the credential is decoded and split, you get the app_id at the bottom of the stack, and potentially the app_key at the top.
							
	
								Run a test: if there are two values in the stack, meaning an app_key was acquired.
							
	
										Ensure the string length is between 1 and 63, including app_id and app_key. If the key’s length is zero, drop it and continue as if no key exists. If there was only an app_id and no app_key, the missing else branch indicates a successful test and evaluation continues.
									

						The last operation, assert, indicates that no side-effects make it into the stack. You can then modify the stack:
					
	
								Reverse the stack to have the app_id at the top.
							
	
										Whether or not an app_key is present, reversing the stack ensures app_id is at the top.
									

	
								Use and to preserve the contents of the stack across tests.
							

								Then use one of the following possibilities:
							
	
										Make sure app_id has a string length of at least 8.
									
	
										Make sure app_id matches either aladdin or admin.
									

OpenID Connect (OIDC) use case

						For Service Mesh and the 3scale Istio adapter, you must deploy a RequestAuthentication as shown in the following example, filling in your own workload data and jwtRules:
					
apiVersion: security.istio.io/v1beta1
 kind: RequestAuthentication
 metadata:
 name: jwt-example
 namespace: bookinfo
 spec:
 selector:
 matchLabels:
 app: productpage
 jwtRules:
 - issuer: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak
 jwksUri: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak/protocol/openid-connect/certs

						When you apply the RequestAuthentication, it configures Envoy with a native plugin to validate JWT tokens. The proxy validates everything before running the module so any requests that fail do not make it to the 3scale WebAssembly module.
					

						When a JWT token is validated, the proxy stores its contents in an internal metadata object, with an entry whose key depends on the specific configuration of the plugin. This use case gives you the ability to look up structure objects with a single entry containing an unknown key name.
					

						The 3scale app_id for OIDC matches the OAuth client_id. This is found in the azp or aud fields of JWT tokens.
					

						To get app_id field from Envoy’s native JWT authentication filter, see the following example:
					
credentials:
 app_id:
 - filter:
 path:
 - envoy.filters.http.jwt_authn
 - "0"
 keys:
 - azp
 - aud
 ops:
 - take:
 head: 1

						The example instructs the module to use the filter source type to look up filter metadata for an object from the Envoy-specific JWT authentication native plugin. This plugin includes the JWT token as part of a structure object with a single entry and a pre-configured name. Use 0 to specify that you will only access the single entry.
					

						The resulting value is a structure for which you will resolve two fields:
					
	
								azp: The value where app_id is found.
							
	
								aud: The value where this information can also be found.
							

						The operation ensures only one value is held for assignment.
					

Picking up the JWT token from a header

						Some setups might have validation processes for JWT tokens where the validated token would reach this module via a header in JSON format.
					

						To get the app_id, see the following example:
					
credentials:
 app_id:
 - header:
 keys:
 - x-jwt-payload
 ops:
 - base64_urlsafe
 - json:
 - keys:
 - azp
 - aud
 - take:
 head: 1

3scale WebAssembly module minimal working configuration

					The following is an example of a 3scale WebAssembly module minimal working configuration. You can copy and paste this and edit it to work with your own configuration.
				
apiVersion: maistra.io/v1
kind: ServiceMeshExtension
metadata:
 name: threescale-auth
spec:
 image: registry.redhat.io/openshift-service-mesh/3scale-auth-wasm-rhel8:0.0.1
 phase: PostAuthZ
 priority: 100
 workloadSelector:
 labels:
 app: productpage
 config:
 api: v1
 system:
 name: system-name
 upstream:
 name: outbound|443||multitenant.3scale.net
 url: https://istiodevel-admin.3scale.net/
 timeout: 5000
 token: atoken
 backend:
 name: backend-name
 upstream:
 name: outbound|443||su1.3scale.net
 url: https://su1.3scale.net/
 timeout: 5000
 extensions:
 - no_body
 services:
 - id: '2555417834780'
 token: service_token
 authorities:
 - "*"
 credentials:
 app_id:
 - header:
 keys:
 - app_id
 - query_string:
 keys:
 - app_id
 - application_id
 app_key:
 - header:
 keys:
 - app_key
 - query_string:
 keys:
 - app_key
 - application_key
 user_key:
 - query_string:
 keys:
 - user_key
 - header:
 keys:
 - user_key
 mapping_rules:
 - method: GET
 pattern: "/"
 usages:
 - name: Hits
 delta: 1
 - method: GET
 pattern: "/o{*}c"
 usages:
 - name: oidc
 delta: 1
 - name: Hits
 delta: 1
 - method: any
 pattern: "/{anything}?bigsale={*}"
 usages:
 - name: sale
 delta: 5

Using the 3scale Istio adapter

				The 3scale Istio Adapter is an optional adapter that allows you to label a service running within the Red Hat OpenShift Service Mesh and integrate that service with the 3scale API Management solution. It is not required for Red Hat OpenShift Service Mesh.
			
Important

					You can only use the 3scale Istio adapter with Red Hat OpenShift Service Mesh versions 2.0 and below. The Mixer component was deprecated in release 2.0 and removed in release 2.1. For Red Hat OpenShift Service Mesh versions 2.1.0 and later you should use the 3scale WebAssembly module.
				

					If you want to enable 3scale backend cache with the 3scale Istio adapter, you must also enable Mixer policy and Mixer telemetry. See Deploying the Red Hat OpenShift Service Mesh control plane.
				

Integrate the 3scale adapter with Red Hat OpenShift Service Mesh

					You can use these examples to configure requests to your services using the 3scale Istio Adapter.
				
Prerequisites:
	
							Red Hat OpenShift Service Mesh version 2.x
						
	
							A working 3scale account (SaaS or 3scale 2.9 On-Premises)
						
	
							Enabling backend cache requires 3scale 2.9 or greater
						
	
							Red Hat OpenShift Service Mesh prerequisites
						
	
							Ensure Mixer policy enforcement is enabled. Update Mixer policy enforcement section provides instructions to check the current Mixer policy enforcement status and enable policy enforcement.
						
	
							Mixer policy and telemetry must be enabled if you are using a mixer plugin.
						
	
									You will need to properly configure the Service Mesh Control Plane (SMCP) when upgrading.
								

Note

						To configure the 3scale Istio Adapter, refer to Red Hat OpenShift Service Mesh custom resources for instructions on adding adapter parameters to the custom resource file.
					

Note

						Pay particular attention to the kind: handler resource. You must update this with your 3scale account credentials. You can optionally add a service_id to a handler, but this is kept for backwards compatibility only, since it would render the handler only useful for one service in your 3scale account. If you add service_id to a handler, enabling 3scale for other services requires you to create more handlers with different service_ids.
					

					Use a single handler per 3scale account by following the steps below:
				
Procedure
	
							Create a handler for your 3scale account and specify your account credentials. Omit any service identifier.
						
 apiVersion: "config.istio.io/v1alpha2"
 kind: handler
 metadata:
 name: threescale
 spec:
 adapter: threescale
 params:
 system_url: "https://<organization>-admin.3scale.net/"
 access_token: "<ACCESS_TOKEN>"
 connection:
 address: "threescale-istio-adapter:3333"

							Optionally, you can provide a backend_url field within the params section to override the URL provided by the 3scale configuration. This may be useful if the adapter runs on the same cluster as the 3scale on-premise instance, and you wish to leverage the internal cluster DNS.
						

	
							Edit or patch the Deployment resource of any services belonging to your 3scale account as follows:
						
	
									Add the "service-mesh.3scale.net/service-id" label with a value corresponding to a valid service_id.
								
	
									Add the "service-mesh.3scale.net/credentials" label with its value being the name of the handler resource from step 1.
								

	
							Do step 2 to link it to your 3scale account credentials and to its service identifier, whenever you intend to add more services.
						
	
							Modify the rule configuration with your 3scale configuration to dispatch the rule to the threescale handler.
						
Rule configuration example

								

 apiVersion: "config.istio.io/v1alpha2"
 kind: rule
 metadata:
 name: threescale
 spec:
 match: destination.labels["service-mesh.3scale.net"] == "true"
 actions:
 - handler: threescale.handler
 instances:
 - threescale-authorization.instance

							

Generating 3scale custom resources

						The adapter includes a tool that allows you to generate the handler, instance, and rule custom resources.
					
Table 1.30. Usage
	Option	Description	Required	Default value
	
										-h, --help
									

									 	
										Produces help output for available options
									

									 	
										No
									

									 	
	
										--name
									

									 	
										Unique name for this URL, token pair
									

									 	
										Yes
									

									 	
	
										-n, --namespace
									

									 	
										Namespace to generate templates
									

									 	
										No
									

									 	
										istio-system
									

									
	
										-t, --token
									

									 	
										3scale access token
									

									 	
										Yes
									

									 	
	
										-u, --url
									

									 	
										3scale Admin Portal URL
									

									 	
										Yes
									

									 	
	
										--backend-url
									

									 	
										3scale backend URL. If set, it overrides the value that is read from system configuration
									

									 	
										No
									

									 	
	
										-s, --service
									

									 	
										3scale API/Service ID
									

									 	
										No
									

									 	
	
										--auth
									

									 	
										3scale authentication pattern to specify (1=API Key, 2=App Id/App Key, 3=OIDC)
									

									 	
										No
									

									 	
										Hybrid
									

									
	
										-o, --output
									

									 	
										File to save produced manifests to
									

									 	
										No
									

									 	
										Standard output
									

									
	
										--version
									

									 	
										Outputs the CLI version and exits immediately
									

									 	
										No
									

									 	

Generate templates from URL examples

Note
	
										Run the following commands via oc exec from the 3scale adapter container image in Generating manifests from a deployed adapter.
									
	
										Use the 3scale-config-gen command to help avoid YAML syntax and indentation errors.
									
	
										You can omit the --service if you use the annotations.
									
	
										This command must be invoked from within the container image via oc exec.
									

Procedure
	
									Use the 3scale-config-gen command to autogenerate templates files allowing the token, URL pair to be shared by multiple services as a single handler:
								
$ 3scale-config-gen --name=admin-credentials --url="https://<organization>-admin.3scale.net:443" --token="[redacted]"

	
									The following example generates the templates with the service ID embedded in the handler:
								
$ 3scale-config-gen --url="https://<organization>-admin.3scale.net" --name="my-unique-id" --service="123456789" --token="[redacted]"

Additional resources
	
									Tokens.
								

Generating manifests from a deployed adapter

Note
	
									NAME is an identifier you use to identify with the service you are managing with 3scale.
								
	
									The CREDENTIALS_NAME reference is an identifier that corresponds to the match section in the rule configuration. This is automatically set to the NAME identifier if you are using the CLI tool.
								
	
									Its value does not need to be anything specific: the label value should just match the contents of the rule. See Routing service traffic through the adapter for more information.
								

	
								Run this command to generate manifests from a deployed adapter in the istio-system namespace:
							
$ export NS="istio-system" URL="https://replaceme-admin.3scale.net:443" NAME="name" TOKEN="token"
oc exec -n ${NS} $(oc get po -n ${NS} -o jsonpath='{.items[?(@.metadata.labels.app=="3scale-istio-adapter")].metadata.name}') \
-it -- ./3scale-config-gen \
--url ${URL} --name ${NAME} --token ${TOKEN} -n ${NS}

	
								This will produce sample output to the terminal. Edit these samples if required and create the objects using the oc create command.
							
	
								When the request reaches the adapter, the adapter needs to know how the service maps to an API on 3scale. You can provide this information in two ways:
							
	
										Label the workload (recommended)
									
	
										Hard code the handler as service_id
									

	
								Update the workload with the required annotations:
							
Note

									You only need to update the service ID provided in this example if it is not already embedded in the handler. The setting in the handler takes precedence.
								

$ export CREDENTIALS_NAME="replace-me"
export SERVICE_ID="replace-me"
export DEPLOYMENT="replace-me"
patch="$(oc get deployment "${DEPLOYMENT}"
patch="$(oc get deployment "${DEPLOYMENT}" --template='{"spec":{"template":{"metadata":{"labels":{ {{ range $k,$v := .spec.template.metadata.labels }}"{{ $k }}":"{{ $v }}",{{ end }}"service-mesh.3scale.net/service-id":"'"${SERVICE_ID}"'","service-mesh.3scale.net/credentials":"'"${CREDENTIALS_NAME}"'"}}}}}')"
oc patch deployment "${DEPLOYMENT}" --patch ''"${patch}"''

Routing service traffic through the adapter

						Follow these steps to drive traffic for your service through the 3scale adapter.
					
Prerequisites
	
								Credentials and service ID from your 3scale administrator.
							

Procedure
	
								Match the rule destination.labels["service-mesh.3scale.net/credentials"] == "threescale" that you previously created in the configuration, in the kind: rule resource.
							
	
								Add the above label to PodTemplateSpec on the Deployment of the target workload to integrate a service. the value, threescale, refers to the name of the generated handler. This handler stores the access token required to call 3scale.
							
	
								Add the destination.labels["service-mesh.3scale.net/service-id"] == "replace-me" label to the workload to pass the service ID to the adapter via the instance at request time.
							

Configure the integration settings in 3scale

					Follow this procedure to configure the 3scale integration settings.
				
Note

						For 3scale SaaS customers, Red Hat OpenShift Service Mesh is enabled as part of the Early Access program.
					

Procedure
	
							Navigate to [your_API_name] → Integration
						
	
							Click Settings.
						
	
							Select the Istio option under Deployment.
						
	
									The API Key (user_key) option under Authentication is selected by default.
								

	
							Click Update Product to save your selection.
						
	
							Click Configuration.
						
	
							Click Update Configuration.
						

Caching behavior

					Responses from 3scale System APIs are cached by default within the adapter. Entries will be purged from the cache when they become older than the cacheTTLSeconds value. Also by default, automatic refreshing of cached entries will be attempted seconds before they expire, based on the cacheRefreshSeconds value. You can disable automatic refreshing by setting this value higher than the cacheTTLSeconds value.
				

					Caching can be disabled entirely by setting cacheEntriesMax to a non-positive value.
				

					By using the refreshing process, cached values whose hosts become unreachable will be retried before eventually being purged when past their expiry.
				

Authenticating requests

					This release supports the following authentication methods:
				
	
							Standard API Keys: single randomized strings or hashes acting as an identifier and a secret token.
						
	
							Application identifier and key pairs: immutable identifier and mutable secret key strings.
						
	
							OpenID authentication method: client ID string parsed from the JSON Web Token.
						

Applying authentication patterns

						Modify the instance custom resource, as illustrated in the following authentication method examples, to configure authentication behavior. You can accept the authentication credentials from:
					
	
								Request headers
							
	
								Request parameters
							
	
								Both request headers and query parameters
							

Note

							When specifying values from headers, they must be lower case. For example, if you want to send a header as User-Key, this must be referenced in the configuration as request.headers["user-key"].
						

API key authentication method

							Service Mesh looks for the API key in query parameters and request headers as specified in the user option in the subject custom resource parameter. It checks the values in the order given in the custom resource file. You can restrict the search for the API key to either query parameters or request headers by omitting the unwanted option.
						

							In this example, Service Mesh looks for the API key in the user_key query parameter. If the API key is not in the query parameter, Service Mesh then checks the user-key header.
						
API key authentication method example

								

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
 namespace: istio-system
spec:
 template: authorization
 params:
 subject:
 user: request.query_params["user_key"] | request.headers["user-key"] | ""
 action:
 path: request.url_path
 method: request.method | "get"

							

							If you want the adapter to examine a different query parameter or request header, change the name as appropriate. For example, to check for the API key in a query parameter named “key”, change request.query_params["user_key"] to request.query_params["key"].
						

Application ID and application key pair authentication method

							Service Mesh looks for the application ID and application key in query parameters and request headers, as specified in the properties option in the subject custom resource parameter. The application key is optional. It checks the values in the order given in the custom resource file. You can restrict the search for the credentials to either query parameters or request headers by not including the unwanted option.
						

							In this example, Service Mesh looks for the application ID and application key in the query parameters first, moving on to the request headers if needed.
						
Application ID and application key pair authentication method example

								

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
 namespace: istio-system
spec:
 template: authorization
 params:
 subject:
 app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 action:
 path: request.url_path
 method: request.method | "get"

							

							If you want the adapter to examine a different query parameter or request header, change the name as appropriate. For example, to check for the application ID in a query parameter named identification, change request.query_params["app_id"] to request.query_params["identification"].
						

OpenID authentication method

							To use the OpenID Connect (OIDC) authentication method, use the properties value on the subject field to set client_id, and optionally app_key.
						

							You can manipulate this object using the methods described previously. In the example configuration shown below, the client identifier (application ID) is parsed from the JSON Web Token (JWT) under the label azp. You can modify this as needed.
						
OpenID authentication method example

								

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
spec:
 template: threescale-authorization
 params:
 subject:
 properties:
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 client_id: request.auth.claims["azp"] | ""
 action:
 path: request.url_path
 method: request.method | "get"
 service: destination.labels["service-mesh.3scale.net/service-id"] | ""

							

							For this integration to work correctly, OIDC must still be done in 3scale for the client to be created in the identity provider (IdP). You should create a Request authorization for the service you want to protect in the same namespace as that service. The JWT is passed in the Authorization header of the request.
						

							In the sample RequestAuthentication defined below, replace issuer, jwksUri, and selector as appropriate.
						
OpenID Policy example

								

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: jwt-example
 namespace: bookinfo
spec:
 selector:
 matchLabels:
 app: productpage
 jwtRules:
 - issuer: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak
 jwksUri: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak/protocol/openid-connect/certs

							

Hybrid authentication method

							You can choose to not enforce a particular authentication method and accept any valid credentials for either method. If both an API key and an application ID/application key pair are provided, Service Mesh uses the API key.
						

							In this example, Service Mesh checks for an API key in the query parameters, then the request headers. If there is no API key, it then checks for an application ID and key in the query parameters, then the request headers.
						
Hybrid authentication method example

								

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
spec:
 template: authorization
 params:
 subject:
 user: request.query_params["user_key"] | request.headers["user-key"] |
 properties:
 app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 client_id: request.auth.claims["azp"] | ""
 action:
 path: request.url_path
 method: request.method | "get"
 service: destination.labels["service-mesh.3scale.net/service-id"] | ""

							

3scale Adapter metrics

					The adapter, by default reports various Prometheus metrics that are exposed on port 8080 at the /metrics endpoint. These metrics provide insight into how the interactions between the adapter and 3scale are performing. The service is labeled to be automatically discovered and scraped by Prometheus.
				
Note

						There are incompatible changes in the 3scale Istio Adapter metrics since the previous releases in Service Mesh 1.x.
					

					In Prometheus, metrics have been renamed with one addition for the backend cache, so that the following metrics exist as of Service Mesh 2.0:
				
Table 1.31. Prometheus metrics
	Metric	Type	Description
	
									threescale_latency
								

								 	
									Histogram
								

								 	
									Request latency between adapter and 3scale.
								

								
	
									threescale_http_total
								

								 	
									Counter
								

								 	
									HTTP Status response codes for requests to 3scale backend.
								

								
	
									threescale_system_cache_hits
								

								 	
									Counter
								

								 	
									Total number of requests to the 3scale system fetched from the configuration cache.
								

								
	
									threescale_backend_cache_hits
								

								 	
									Counter
								

								 	
									Total number of requests to 3scale backend fetched from the backend cache.
								

								

3scale backend cache

					The 3scale backend cache provides an authorization and reporting cache for clients of the 3scale Service Management API. This cache is embedded in the adapter to enable lower latencies in responses in certain situations assuming the administrator is willing to accept the trade-offs.
				
Note

						3scale backend cache is disabled by default. 3scale backend cache functionality trades inaccuracy in rate limiting and potential loss of hits since the last flush was performed for low latency and higher consumption of resources in the processor and memory.
					

Advantages of enabling backend cache

						The following are advantages to enabling the backend cache:
					
	
								Enable the backend cache when you find latencies are high while accessing services managed by the 3scale Istio Adapter.
							
	
								Enabling the backend cache will stop the adapter from continually checking with the 3scale API manager for request authorizations, which will lower the latency.
							
	
										This creates an in-memory cache of 3scale authorizations for the 3scale Istio Adapter to store and reuse before attempting to contact the 3scale API manager for authorizations. Authorizations will then take much less time to be granted or denied.
									

	
								Backend caching is useful in cases when you are hosting the 3scale API manager in another geographical location from the service mesh running the 3scale Istio Adapter.
							
	
										This is generally the case with the 3scale Hosted (SaaS) platform, but also if a user hosts their 3scale API manager in another cluster located in a different geographical location, in a different availability zone, or in any case where the network overhead to reach the 3scale API manager is noticeable.
									

Trade-offs for having lower latencies

						The following are trade-offs for having lower latencies:
					
	
								Each 3scale adapter’s authorization state updates every time a flush happens.
							
	
										This means two or more instances of the adapter will introduce more inaccuracy between flushing periods.
									
	
										There is a greater chance of too many requests being granted that exceed limits and introduce erratic behavior, which leads to some requests going through and some not, depending on which adapter processes each request.
									

	
								An adapter cache that cannot flush its data and update its authorization information risks shut down or crashing without reporting its information to the API manager.
							
	
								A fail open or fail closed policy will be applied when an adapter cache cannot determine whether a request must be granted or denied, possibly due to network connectivity issues in contacting the API manager.
							
	
								When cache misses occur, typically right after booting the adapter or after a long period of no connectivity, latencies will grow in order to query the API manager.
							
	
								An adapter cache must do much more work on computing authorizations than it would without an enabled cache, which will tax processor resources.
							
	
								Memory requirements will grow proportionally to the combination of the amount of limits, applications, and services managed by the cache.
							

Backend cache configuration settings

						The following points explain the backend cache configuration settings:
					
	
								Find the settings to configure the backend cache in the 3scale configuration options.
							
	
								The last 3 settings control enabling of backend cache:
							
	
										PARAM_USE_CACHE_BACKEND - set to true to enable backend cache.
									
	
										PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS - sets time in seconds between consecutive attempts to flush cache data to the API manager.
									
	
										PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED - set whether or not to allow/open or deny/close requests to the services when there is not enough cached data and the 3scale API manager cannot be reached.
									

3scale Istio Adapter APIcast emulation

					The 3scale Istio Adapter performs as APIcast would when the following conditions occur:
				
	
							When a request cannot match any mapping rule defined, the returned HTTP code is 404 Not Found. This was previously 403 Forbidden.
						
	
							When a request is denied because it goes over limits, the returned HTTP code is 429 Too Many Requests. This was previously 403 Forbidden.
						
	
							When generating default templates via the CLI, it will use underscores rather than dashes for the headers, for example: user_key rather than user-key.
						

3scale Istio adapter verification

					You might want to check whether the 3scale Istio adapter is working as expected. If your adapter is not working, use the following steps to help troubleshoot the problem.
				
Procedure
	
							Ensure the 3scale-adapter pod is running in the Service Mesh control plane namespace:
						
$ oc get pods -n <istio-system>

	
							Check that the 3scale-adapter pod has printed out information about itself booting up, such as its version:
						
$ oc logs <istio-system>

	
							When performing requests to the services protected by the 3scale adapter integration, always try requests that lack the right credentials and ensure they fail. Check the 3scale adapter logs to gather additional information.
						

Additional resources
	
							Inspecting pod and container logs.
						

3scale Istio adapter troubleshooting checklist

					As the administrator installing the 3scale Istio adapter, there are a number of scenarios that might be causing your integration to not function properly. Use the following list to troubleshoot your installation:
				
	
							Incorrect YAML indentation.
						
	
							Missing YAML sections.
						
	
							Forgot to apply the changes in the YAML to the cluster.
						
	
							Forgot to label the service workloads with the service-mesh.3scale.net/credentials key.
						
	
							Forgot to label the service workloads with service-mesh.3scale.net/service-id when using handlers that do not contain a service_id so they are reusable per account.
						
	
							The Rule custom resource points to the wrong handler or instance custom resources, or the references lack the corresponding namespace suffix.
						
	
							The Rule custom resource match section cannot possibly match the service you are configuring, or it points to a destination workload that is not currently running or does not exist.
						
	
							Wrong access token or URL for the 3scale Admin Portal in the handler.
						
	
							The Instance custom resource’s params/subject/properties section fails to list the right parameters for app_id, app_key, or client_id, either because they specify the wrong location such as the query parameters, headers, and authorization claims, or the parameter names do not match the requests used for testing.
						
	
							Failing to use the configuration generator without realizing that it actually lives in the adapter container image and needs oc exec to invoke it.
						

Troubleshooting your service mesh

				This section describes how to identify and resolve common problems in Red Hat OpenShift Service Mesh. Use the following sections to help troubleshoot and debug problems when deploying Red Hat OpenShift Service Mesh on OpenShift Container Platform.
			
Understanding Service Mesh versions

					In order to understand what version of Red Hat OpenShift Service Mesh you have deployed on your system, you need to understand how each of the component versions is managed.
				
	
							Operator version - The most current Operator version is 2.2.3. The Operator version number only indicates the version of the currently installed Operator. Because the Red Hat OpenShift Service Mesh Operator supports multiple versions of the Service Mesh control plane, the version of the Operator does not determine the version of your deployed ServiceMeshControlPlane resources.
						
Important

								Upgrading to the latest Operator version automatically applies patch updates, but does not automatically upgrade your Service Mesh control plane to the latest minor version.
							

	
							ServiceMeshControlPlane version - The ServiceMeshControlPlane version determines what version of Red Hat OpenShift Service Mesh you are using. The value of the spec.version field in the ServiceMeshControlPlane resource controls the architecture and configuration settings that are used to install and deploy Red Hat OpenShift Service Mesh. When you create the Service Mesh control plane you can set the version in one of two ways:
						
	
									To configure in the Form View, select the version from the Control Plane Version menu.
								
	
									To configure in the YAML View, set the value for spec.version in the YAML file.
								

					Operator Lifecycle Manager (OLM) does not manage Service Mesh control plane upgrades, so the version number for your Operator and ServiceMeshControlPlane (SMCP) may not match, unless you have manually upgraded your SMCP.
				

Troubleshooting Operator installation

					In addition to the information in this section, be sure to review the following topics:
				
	
							What are Operators?
						
	
							Operator Lifecycle Management concepts.
						
	
							OpenShift Operator troubleshooting section.
						
	
							OpenShift installation troubleshooting section.
						

Validating Operator installation

						When you install the Red Hat OpenShift Service Mesh Operators, OpenShift automatically creates the following objects as part of a successful Operator installation:
					
	
								config maps
							
	
								custom resource definitions
							
	
								deployments
							
	
								pods
							
	
								replica sets
							
	
								roles
							
	
								role bindings
							
	
								secrets
							
	
								service accounts
							
	
								services
							

From the OpenShift Container Platform console

							You can verify that the Operator pods are available and running by using the OpenShift Container Platform console.
						
	
								Navigate to Workloads → Pods.
							
	
								Select the openshift-operators namespace.
							
	
								Verify that the following pods exist and have a status of running:
							
	
										istio-operator
									
	
										jaeger-operator
									
	
										kiali-operator
									

	
								Select the openshift-operators-redhat namespace.
							
	
								Verify that the elasticsearch-operator pod exists and has a status of running.
							

From the command line
	
								Verify the Operator pods are available and running in the openshift-operators namespace with the following command:
							
$ oc get pods -n openshift-operators
Example output

									

NAME READY STATUS RESTARTS AGE
istio-operator-bb49787db-zgr87 1/1 Running 0 15s
jaeger-operator-7d5c4f57d8-9xphf 1/1 Running 0 2m42s
kiali-operator-f9c8d84f4-7xh2v 1/1 Running 0 64s

								

	
								Verify the Elasticsearch operator with the following command:
							
$ oc get pods -n openshift-operators-redhat
Example output

									

NAME READY STATUS RESTARTS AGE
elasticsearch-operator-d4f59b968-796vq 1/1 Running 0 15s

								

Troubleshooting service mesh Operators

						If you experience Operator issues:
					
	
								Verify your Operator subscription status.
							
	
								Verify that you did not install a community version of the Operator, instead of the supported Red Hat version.
							
	
								Verify that you have the cluster-admin role to install Red Hat OpenShift Service Mesh.
							
	
								Check for any errors in the Operator pod logs if the issue is related to installation of Operators.
							

Note

							You can install Operators only through the OpenShift console, the OperatorHub is not accessible from the command line.
						

Viewing Operator pod logs

							You can view Operator logs by using the oc logs command. Red Hat may request logs to help resolve support cases.
						
Procedure
	
									To view Operator pod logs, enter the command:
								
$ oc logs -n openshift-operators <podName>

									For example,
								
$ oc logs -n openshift-operators istio-operator-bb49787db-zgr87

Troubleshooting the control plane

					The Service Mesh control plane is composed of Istiod, which consolidates several previous control plane components (Citadel, Galley, Pilot) into a single binary. Deploying the ServiceMeshControlPlane also creates the other components that make up Red Hat OpenShift Service Mesh as described in the architecture topic.
				
Validating the Service Mesh control plane installation

						When you create the Service Mesh control plane, the Service Mesh Operator uses the parameters that you have specified in the ServiceMeshControlPlane resource file to do the following:
					
	
								Creates the Istio components and deploys the following pods:
							
	
										istiod
									
	
										istio-ingressgateway
									
	
										istio-egressgateway
									
	
										grafana
									
	
										prometheus
									
	
										wasm-cacher
									

	
								Calls the Kiali Operator to create Kaili deployment based on configuration in either the SMCP or the Kiali custom resource.
							
Note

									You view the Kiali components under the Kiali Operator, not the Service Mesh Operator.
								

	
								Calls the Red Hat OpenShift distributed tracing platform Operator to create distributed tracing platform components based on configuration in either the SMCP or the Jaeger custom resource.
							
Note

									You view the Jaeger components under the Red Hat OpenShift distributed tracing platform Operator and the Elasticsearch components under the Red Hat Elasticsearch Operator, not the Service Mesh Operator.
								

From the OpenShift Container Platform console

									You can verify the Service Mesh control plane installation in the OpenShift Container Platform web console.
								
	
										Navigate to Operators → Installed Operators.
									
	
										Select the <istio-system> namespace.
									
	
										Select the Red Hat OpenShift Service Mesh Operator.
									
	
												Click the Istio Service Mesh Control Plane tab.
											
	
												Click the name of your control plane, for example basic.
											
	
												To view the resources created by the deployment, click the Resources tab. You can use the filter to narrow your view, for example, to check that all the Pods have a status of running.
											
	
												If the SMCP status indicates any problems, check the status: output in the YAML file for more information.
											
	
												Navigate back to Operators → Installed Operators.
											

	
										Select the OpenShift Elasticsearch Operator.
									
	
												Click the Elasticsearch tab.
											
	
												Click the name of the deployment, for example elasticsearch.
											
	
												To view the resources created by the deployment, click the Resources tab. .
											
	
												If the Status column any problems, check the status: output on the YAML tab for more information.
											
	
												Navigate back to Operators → Installed Operators.
											

	
										Select the Red Hat OpenShift distributed tracing platform Operator.
									
	
												Click the Jaeger tab.
											
	
												Click the name of your deployment, for example jaeger.
											
	
												To view the resources created by the deployment, click the Resources tab.
											
	
												If the Status column indicates any problems, check the status: output on the YAML tab for more information.
											
	
												Navigate to Operators → Installed Operators.
											

	
										Select the Kiali Operator.
									
	
												Click the Istio Service Mesh Control Plane tab.
											
	
												Click the name of your deployment, for example kiali.
											
	
												To view the resources created by the deployment, click the Resources tab.
											
	
												If the Status column any problems, check the status: output on the YAML tab for more information.
											

From the command line
	
								Run the following command to see if the Service Mesh control plane pods are available and running, where istio-system is the namespace where you installed the SMCP.
							
$ oc get pods -n istio-system
Example output

									

NAME READY STATUS RESTARTS AGE
grafana-6776785cfc-6fz7t 2/2 Running 0 102s
istio-egressgateway-5f49dd99-l9ppq 1/1 Running 0 103s
istio-ingressgateway-6dc885c48-jjd8r 1/1 Running 0 103s
istiod-basic-6c9cc55998-wg4zq 1/1 Running 0 2m14s
jaeger-6865d5d8bf-zrfss 2/2 Running 0 100s
kiali-579799fbb7-8mwc8 1/1 Running 0 46s
prometheus-5c579dfb-6qhjk 2/2 Running 0 115s
wasm-cacher-basic-5b99bfcddb-m775l 1/1 Running 0 86s

								

	
								Check the status of the Service Mesh control plane deployment by using the following command. Replace istio-system with the namespace where you deployed the SMCP.
							
$ oc get smcp -n <istio-system>

								The installation has finished successfully when the STATUS column is ComponentsReady.
							
Example output

									

NAME READY STATUS PROFILES VERSION AGE
basic 10/10 ComponentsReady ["default"] 2.1.3 4m2s

								

								If you have modified and redeployed your Service Mesh control plane, the status should read UpdateSuccessful.
							
Example output

									

NAME READY STATUS TEMPLATE VERSION AGE
basic-install 10/10 UpdateSuccessful default v1.1 3d16h

								

	
								If the SMCP status indicates anything other than ComponentsReady check the status: output in the SCMP resource for more information.
							
$ oc describe smcp <smcp-name> -n <controlplane-namespace>
Example output

									

$ oc describe smcp basic -n istio-system

								

	
								Check the status of the Jaeger deployment with the following command, where istio-system is the namespace where you deployed the SMCP.
							
$ oc get jaeger -n <istio-system>
Example output

									

NAME STATUS VERSION STRATEGY STORAGE AGE
jaeger Running 1.30.0 allinone memory 15m

								

	
								Check the status of the Kiali deployment with the following command, where istio-system is the namespace where you deployed the SMCP.
							
$ oc get kiali -n <istio-system>
Example output

									

NAME AGE
kiali 15m

								

Accessing the Kiali console

							You can view your application’s topology, health, and metrics in the Kiali console. If your service is experiencing problems, the Kiali console lets you view the data flow through your service. You can view insights about the mesh components at different levels, including abstract applications, services, and workloads. Kiali also provides an interactive graph view of your namespace in real time.
						

							To access the Kiali console you must have Red Hat OpenShift Service Mesh installed, Kiali installed and configured.
						

							The installation process creates a route to access the Kiali console.
						

							If you know the URL for the Kiali console, you can access it directly. If you do not know the URL, use the following directions.
						
Procedure for administrators
	
									Log in to the OpenShift Container Platform web console with an administrator role.
								
	
									Click Home → Projects.
								
	
									On the Projects page, if necessary, use the filter to find the name of your project.
								
	
									Click the name of your project, for example, bookinfo.
								
	
									On the Project details page, in the Launcher section, click the Kiali link.
								
	
									Log in to the Kiali console with the same user name and password that you use to access the OpenShift Container Platform console.
								

									When you first log in to the Kiali Console, you see the Overview page which displays all the namespaces in your service mesh that you have permission to view.
								

									If you are validating the console installation and namespaces have not yet been added to the mesh, there might not be any data to display other than istio-system.
								

Procedure for developers
	
									Log in to the OpenShift Container Platform web console with a developer role.
								
	
									Click Project.
								
	
									On the Project Details page, if necessary, use the filter to find the name of your project.
								
	
									Click the name of your project, for example, bookinfo.
								
	
									On the Project page, in the Launcher section, click the Kiali link.
								
	
									Click Log In With OpenShift.
								

Accessing the Jaeger console

							To access the Jaeger console you must have Red Hat OpenShift Service Mesh installed, Red Hat OpenShift distributed tracing platform installed and configured.
						

							The installation process creates a route to access the Jaeger console.
						

							If you know the URL for the Jaeger console, you can access it directly. If you do not know the URL, use the following directions.
						
Procedure from OpenShift console
	
									Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
								
	
									Navigate to Networking → Routes.
								
	
									On the Routes page, select the Service Mesh control plane project, for example istio-system, from the Namespace menu.
								

									The Location column displays the linked address for each route.
								

	
									If necessary, use the filter to find the jaeger route. Click the route Location to launch the console.
								
	
									Click Log In With OpenShift.
								

Procedure from Kiali console
	
									Launch the Kiali console.
								
	
									Click Distributed Tracing in the left navigation pane.
								
	
									Click Log In With OpenShift.
								

Procedure from the CLI
	
									Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
								
$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

	
									To query for details of the route using the command line, enter the following command. In this example, istio-system is the Service Mesh control plane namespace.
								
$ export JAEGER_URL=$(oc get route -n istio-system jaeger -o jsonpath='{.spec.host}')

	
									Launch a browser and navigate to https://<JAEGER_URL>, where <JAEGER_URL> is the route that you discovered in the previous step.
								
	
									Log in using the same user name and password that you use to access the OpenShift Container Platform console.
								
	
									If you have added services to the service mesh and have generated traces, you can use the filters and Find Traces button to search your trace data.
								

									If you are validating the console installation, there is no trace data to display.
								

Troubleshooting the Service Mesh control plane

						If you are experiencing issues while deploying the Service Mesh control plane,
					
	
								Ensure that the ServiceMeshControlPlane resource is installed in a project that is separate from your services and Operators. This documentation uses the istio-system project as an example, but you can deploy your control plane in any project as long as it is separate from the project that contains your Operators and services.
							
	
								Ensure that the ServiceMeshControlPlane and Jaeger custom resources are deployed in the same project. For example, use the istio-system project for both.
							

Troubleshooting the data plane

					The data plane is a set of intelligent proxies that intercept and control all inbound and outbound network communications between services in the service mesh.
				

					Red Hat OpenShift Service Mesh relies on a proxy sidecar within the application’s pod to provide service mesh capabilities to the application.
				
Troubleshooting sidecar injection

						Red Hat OpenShift Service Mesh does not automatically inject proxy sidecars to pods. You must opt in to sidecar injection.
					
Troubleshooting Istio sidecar injection

							Check to see if automatic injection is enabled in the Deployment for your application. If automatic injection for the Envoy proxy is enabled, there should be a sidecar.istio.io/inject:"true" annotation in the Deployment resource under spec.template.metadata.annotations.
						

Troubleshooting Jaeger agent sidecar injection

							Check to see if automatic injection is enabled in the Deployment for your application. If automatic injection for the Jaeger agent is enabled, there should be a sidecar.jaegertracing.io/inject:"true" annotation in the Deployment resource.
						

							For more information about sidecar injection, see Enabling automatic injection
						

Troubleshooting Envoy proxy

				The Envoy proxy intercepts all inbound and outbound traffic for all services in the service mesh. Envoy also collects and reports telemetry on the service mesh. Envoy is deployed as a sidecar to the relevant service in the same pod.
			
Enabling Envoy access logs

					Envoy access logs are useful in diagnosing traffic failures and flows, and help with end-to-end traffic flow analysis.
				

					To enable access logging for all istio-proxy containers, edit the ServiceMeshControlPlane (SMCP) object to add a file name for the logging output.
				
Procedure
	
							Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. Enter the following command. Then, enter your username and password when prompted.
						
$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

	
							Change to the project where you installed the Service Mesh control plane, for example istio-system.
						
$ oc project istio-system

	
							Edit the ServiceMeshControlPlane file.
						
$ oc edit smcp <smcp_name>

	
							As show in the following example, use name to specify the file name for the proxy log. If you do not specify a value for name, no log entries will be written.
						
spec:
 proxy:
 accessLogging:
 file:
 name: /dev/stdout #file name

					For more information about troubleshooting pod issues, see Investigating pod issues
				

Getting support

					If you experience difficulty with a procedure described in this documentation, or with OpenShift Container Platform in general, visit the Red Hat Customer Portal. From the Customer Portal, you can:
				
	
							Search or browse through the Red Hat Knowledgebase of articles and solutions relating to Red Hat products.
						
	
							Submit a support case to Red Hat Support.
						
	
							Access other product documentation.
						

					To identify issues with your cluster, you can use Insights in OpenShift Cluster Manager. Insights provides details about issues and, if available, information on how to solve a problem.
				

					If you have a suggestion for improving this documentation or have found an error, submit a Jira issue for the most relevant documentation component. Please provide specific details, such as the section name and OpenShift Container Platform version.
				
About the Red Hat Knowledgebase

						The Red Hat Knowledgebase provides rich content aimed at helping you make the most of Red Hat’s products and technologies. The Red Hat Knowledgebase consists of articles, product documentation, and videos outlining best practices on installing, configuring, and using Red Hat products. In addition, you can search for solutions to known issues, each providing concise root cause descriptions and remedial steps.
					

Searching the Red Hat Knowledgebase

						In the event of an OpenShift Container Platform issue, you can perform an initial search to determine if a solution already exists within the Red Hat Knowledgebase.
					
Prerequisites
	
								You have a Red Hat Customer Portal account.
							

Procedure
	
								Log in to the Red Hat Customer Portal.
							
	
								In the main Red Hat Customer Portal search field, input keywords and strings relating to the problem, including:
							
	
										OpenShift Container Platform components (such as etcd)
									
	
										Related procedure (such as installation)
									
	
										Warnings, error messages, and other outputs related to explicit failures
									

	
								Click Search.
							
	
								Select the OpenShift Container Platform product filter.
							
	
								Select the Knowledgebase content type filter.
							

About the must-gather tool

						The oc adm must-gather CLI command collects the information from your cluster that is most likely needed for debugging issues, including:
					
	
								Resource definitions
							
	
								Service logs
							

						By default, the oc adm must-gather command uses the default plugin image and writes into ./must-gather.local.
					

						Alternatively, you can collect specific information by running the command with the appropriate arguments as described in the following sections:
					
	
								To collect data related to one or more specific features, use the --image argument with an image, as listed in a following section.
							

								For example:
							
$ oc adm must-gather --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v4.9.0

	
								To collect the audit logs, use the -- /usr/bin/gather_audit_logs argument, as described in a following section.
							

								For example:
							
$ oc adm must-gather -- /usr/bin/gather_audit_logs
Note

									Audit logs are not collected as part of the default set of information to reduce the size of the files.
								

						When you run oc adm must-gather, a new pod with a random name is created in a new project on the cluster. The data is collected on that pod and saved in a new directory that starts with must-gather.local. This directory is created in the current working directory.
					

						For example:
					
NAMESPACE NAME READY STATUS RESTARTS AGE
...
openshift-must-gather-5drcj must-gather-bklx4 2/2 Running 0 72s
openshift-must-gather-5drcj must-gather-s8sdh 2/2 Running 0 72s
...

About collecting service mesh data

						You can use the oc adm must-gather CLI command to collect information about your cluster, including features and objects associated with Red Hat OpenShift Service Mesh.
					
Prerequisites
	
								Access to the cluster as a user with the cluster-admin role.
							
	
								The OpenShift Container Platform CLI (oc) installed.
							

Precedure
	
								To collect Red Hat OpenShift Service Mesh data with must-gather, you must specify the Red Hat OpenShift Service Mesh image.
							
$ oc adm must-gather --image=registry.redhat.io/openshift-service-mesh/istio-must-gather-rhel8

	
								To collect Red Hat OpenShift Service Mesh data for a specific Service Mesh control plane namespace with must-gather, you must specify the Red Hat OpenShift Service Mesh image and namespace. In this example, replace <namespace> with your Service Mesh control plane namespace, such as istio-system.
							
$ oc adm must-gather --image=registry.redhat.io/openshift-service-mesh/istio-must-gather-rhel8 gather <namespace>

						For prompt support, supply diagnostic information for both OpenShift Container Platform and Red Hat OpenShift Service Mesh.
					

Submitting a support case

Prerequisites
	
								You have installed the OpenShift CLI (oc).
							
	
								You have a Red Hat Customer Portal account.
							
	
								You have access to OpenShift Cluster Manager.
							

Procedure
	
								Log in to the Red Hat Customer Portal and select SUPPORT CASES → Open a case.
							
	
								Select the appropriate category for your issue (such as Defect / Bug), product (OpenShift Container Platform), and product version (4.8, if this is not already autofilled).
							
	
								Review the list of suggested Red Hat Knowledgebase solutions for a potential match against the problem that is being reported. If the suggested articles do not address the issue, click Continue.
							
	
								Enter a concise but descriptive problem summary and further details about the symptoms being experienced, as well as your expectations.
							
	
								Review the updated list of suggested Red Hat Knowledgebase solutions for a potential match against the problem that is being reported. The list is refined as you provide more information during the case creation process. If the suggested articles do not address the issue, click Continue.
							
	
								Ensure that the account information presented is as expected, and if not, amend accordingly.
							
	
								Check that the autofilled OpenShift Container Platform Cluster ID is correct. If it is not, manually obtain your cluster ID.
							
	
										To manually obtain your cluster ID using the OpenShift Container Platform web console:
									
	
												Navigate to Home → Dashboards → Overview.
											
	
												Find the value in the Cluster ID field of the Details section.
											

	
										Alternatively, it is possible to open a new support case through the OpenShift Container Platform web console and have your cluster ID autofilled.
									
	
												From the toolbar, navigate to (?) Help → Open Support Case.
											
	
												The Cluster ID value is autofilled.
											

	
										To obtain your cluster ID using the OpenShift CLI (oc), run the following command:
									
$ oc get clusterversion -o jsonpath='{.items[].spec.clusterID}{"\n"}'

	
								Complete the following questions where prompted and then click Continue:
							
	
										Where are you experiencing the behavior? What environment?
									
	
										When does the behavior occur? Frequency? Repeatedly? At certain times?
									
	
										What information can you provide around time-frames and the business impact?
									

	
								Upload relevant diagnostic data files and click Continue. It is recommended to include data gathered using the oc adm must-gather command as a starting point, plus any issue specific data that is not collected by that command.
							
	
								Input relevant case management details and click Continue.
							
	
								Preview the case details and click Submit.
							

Service Mesh control plane configuration reference

				You can customize your Red Hat OpenShift Service Mesh by modifying the default ServiceMeshControlPlane (SMCP) resource or by creating a completely custom SMCP resource. This reference section documents the configuration options available for the SMCP resource.
			
Service Mesh Control plane parameters

					The following table lists the top-level parameters for the ServiceMeshControlPlane resource.
				
Table 1.32. ServiceMeshControlPlane resource parameters
	Name	Description	Type
	
									apiVersion
								

								 	
									APIVersion defines the versioned schema of this representation of an object. Servers convert recognized schemas to the latest internal value, and may reject unrecognized values. The value for the ServiceMeshControlPlane version 2.0 is maistra.io/v2.
								

								 	
									The value for ServiceMeshControlPlane version 2.0 is maistra.io/v2.
								

								
	
									kind
								

								 	
									Kind is a string value that represents the REST resource this object represents.
								

								 	
									ServiceMeshControlPlane is the only valid value for a ServiceMeshControlPlane.
								

								
	
									metadata
								

								 	
									Metadata about this ServiceMeshControlPlane instance. You can provide a name for your Service Mesh control plane installation to keep track of your work, for example, basic.
								

								 	
									string
								

								
	
									spec
								

								 	
									The specification of the desired state of this ServiceMeshControlPlane. This includes the configuration options for all components that comprise the Service Mesh control plane.
								

								 	
									For more information, see Table 2.
								

								
	
									status
								

								 	
									The current status of this ServiceMeshControlPlane and the components that comprise the Service Mesh control plane.
								

								 	
									For more information, see Table 3.
								

								

					The following table lists the specifications for the ServiceMeshControlPlane resource. Changing these parameters configures Red Hat OpenShift Service Mesh components.
				
Table 1.33. ServiceMeshControlPlane resource spec
	Name	Description	Configurable parameters
	
									addons
								

								 	
									The addons parameter configures additional features beyond core Service Mesh control plane components, such as visualization, or metric storage.
								

								 	
									3scale, grafana, jaeger, kiali, and prometheus.
								

								
	
									cluster
								

								 	
									The cluster parameter sets the general configuration of the cluster (cluster name, network name, multi-cluster, mesh expansion, etc.)
								

								 	
									meshExpansion, multiCluster, name, and network
								

								
	
									gateways
								

								 	
									You use the gateways parameter to configure ingress and egress gateways for the mesh.
								

								 	
									enabled, additionalEgress, additionalIngress, egress, ingress, and openshiftRoute
								

								
	
									general
								

								 	
									The general parameter represents general Service Mesh control plane configuration that does not fit anywhere else.
								

								 	
									logging and validationMessages
								

								
	
									policy
								

								 	
									You use the policy parameter to configure policy checking for the Service Mesh control plane. Policy checking can be enabled by setting spec.policy.enabled to true.
								

								 	
									mixer remote, or type. type can be set to Istiod, Mixer or None.
								

								
	
									profiles
								

								 	
									You select the ServiceMeshControlPlane profile to use for default values using the profiles parameter.
								

								 	
									default
								

								
	
									proxy
								

								 	
									You use the proxy parameter to configure the default behavior for sidecars.
								

								 	
									accessLogging, adminPort, concurrency, and envoyMetricsService
								

								
	
									runtime
								

								 	
									You use the runtime parameter to configure the Service Mesh control plane components.
								

								 	
									components, and defaults
								

								
	
									security
								

								 	
									The security parameter allows you to configure aspects of security for the Service Mesh control plane.
								

								 	
									certificateAuthority, controlPlane, identity, dataPlane and trust
								

								
	
									techPreview
								

								 	
									The techPreview parameter enables early access to features that are in technology preview.
								

								 	
									N/A
								

								
	
									telemetry
								

								 	
									If spec.mixer.telemetry.enabled is set to true, telemetry is enabled.
								

								 	
									mixer, remote, and type. type can be set to Istiod, Mixer or None.
								

								
	
									tracing
								

								 	
									You use the tracing parameter to enables distributed tracing for the mesh.
								

								 	
									sampling, type. type can be set to Jaeger or None.
								

								
	
									version
								

								 	
									You use the version parameter to specify what Maistra version of the Service Mesh control plane to install. When creating a ServiceMeshControlPlane with an empty version, the admission webhook sets the version to the current version. New ServiceMeshControlPlanes with an empty version are set to v2.0. Existing ServiceMeshControlPlanes with an empty version keep their setting.
								

								 	
									string
								

								

					ControlPlaneStatus represents the current state of your service mesh.
				
Table 1.34. ServiceMeshControlPlane resource ControlPlaneStatus
	Name	Description	Type
	
									annotations
								

								 	
									The annotations parameter stores additional, usually redundant status information, such as the number of components deployed by the ServiceMeshControlPlane. These statuses are used by the command line tool, oc, which does not yet allow counting objects in JSONPath expressions.
								

								 	
									Not configurable
								

								
	
									conditions
								

								 	
									Represents the latest available observations of the object’s current state. Reconciled indicates whether the operator has finished reconciling the actual state of deployed components with the configuration in the ServiceMeshControlPlane resource. Installed indicates whether the Service Mesh control plane has been installed. Ready indicates whether all Service Mesh control plane components are ready.
								

								 	
									string
								

								
	
									components
								

								 	
									Shows the status of each deployed Service Mesh control plane component.
								

								 	
									string
								

								
	
									appliedSpec
								

								 	
									The resulting specification of the configuration options after all profiles have been applied.
								

								 	
									ControlPlaneSpec
								

								
	
									appliedValues
								

								 	
									The resulting values.yaml used to generate the charts.
								

								 	
									ControlPlaneSpec
								

								
	
									chartVersion
								

								 	
									The version of the charts that were last processed for this resource.
								

								 	
									string
								

								
	
									observedGeneration
								

								 	
									The generation observed by the controller during the most recent reconciliation. The information in the status pertains to this particular generation of the object. The status.conditions are not up-to-date if the status.observedGeneration field doesn’t match metadata.generation.
								

								 	
									integer
								

								
	
									operatorVersion
								

								 	
									The version of the operator that last processed this resource.
								

								 	
									string
								

								
	
									readiness
								

								 	
									The readiness status of components & owned resources.
								

								 	
									string
								

								

					This example ServiceMeshControlPlane definition contains all of the supported parameters.
				
Example ServiceMeshControlPlane resource

						

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.2
 proxy:
 runtime:
 container:
 resources:
 requests:
 cpu: 100m
 memory: 128Mi
 limits:
 cpu: 500m
 memory: 128Mi
 tracing:
 type: Jaeger
 gateways:
 ingress: # istio-ingressgateway
 service:
 type: ClusterIP
 ports:
 - name: status-port
 port: 15020
 - name: http2
 port: 80
 targetPort: 8080
 - name: https
 port: 443
 targetPort: 8443
 meshExpansionPorts: []
 egress: # istio-egressgateway
 service:
 type: ClusterIP
 ports:
 - name: status-port
 port: 15020
 - name: http2
 port: 80
 targetPort: 8080
 - name: https
 port: 443
 targetPort: 8443
 additionalIngress:
 some-other-ingress-gateway: {}
 additionalEgress:
 some-other-egress-gateway: {}

 policy:
 type: Mixer
 mixer: # only applies if policy.type: Mixer
 enableChecks: true
 failOpen: false

 telemetry:
 type: Istiod # or Mixer
 mixer: # only applies if telemetry.type: Mixer, for v1 telemetry
 sessionAffinity: false
 batching:
 maxEntries: 100
 maxTime: 1s
 adapters:
 kubernetesenv: true
 stdio:
 enabled: true
 outputAsJSON: true
 addons:
 grafana:
 enabled: true
 install:
 config:
 env: {}
 envSecrets: {}
 persistence:
 enabled: true
 storageClassName: ""
 accessMode: ReadWriteOnce
 capacity:
 requests:
 storage: 5Gi
 service:
 ingress:
 contextPath: /grafana
 tls:
 termination: reencrypt
 kiali:
 name: kiali
 enabled: true
 install: # install kiali CR if not present
 dashboard:
 viewOnly: false
 enableGrafana: true
 enableTracing: true
 enablePrometheus: true
 service:
 ingress:
 contextPath: /kiali
 jaeger:
 name: jaeger
 install:
 storage:
 type: Elasticsearch # or Memory
 memory:
 maxTraces: 100000
 elasticsearch:
 nodeCount: 3
 storage: {}
 redundancyPolicy: SingleRedundancy
 indexCleaner: {}
 ingress: {} # jaeger ingress configuration
 runtime:
 components:
 pilot:
 deployment:
 replicas: 2
 pod:
 affinity: {}
 container:
 resources:
 requests:
 cpu: 100m
 memory: 128Mi
 limits:
 cpu: 500m
 memory: 128Mi
 grafana:
 deployment: {}
 pod: {}
 kiali:
 deployment: {}
 pod: {}

					

spec parameters

general parameters

						Here is an example that illustrates the spec.general parameters for the ServiceMeshControlPlane object and a description of the available parameters with appropriate values.
					
Example general parameters

							

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 general:
 logging:
 componentLevels: {}
 # misc: error
 logAsJSON: false
 validationMessages: true

						
Table 1.35. Istio general parameters
	Parameter	Description	Values	Default value
	
logging:

									 	
										Use to configure logging for the Service Mesh control plane components.
									

									 	 	
										N/A
									

									
	
logging:
 componentLevels:

									 	
										Use to specify the component logging level.
									

									 	
										Possible values: trace, debug, info, warning, error, fatal, panic.
									

									 	
										N/A
									

									
	
logging:
 logLevels:

									 	
										Possible values: trace, debug, info, warning, error, fatal, panic.
									

									 	 	
										N/A
									

									
	
logging:
 logAsJSON:

									 	
										Use to enable or disable JSON logging.
									

									 	
										true/false
									

									 	
										N/A
									

									
	
validationMessages:

									 	
										Use to enable or disable validation messages to the status fields of istio.io resources. This can be useful for detecting configuration errors in resources.
									

									 	
										true/false
									

									 	
										N/A
									

									

profiles parameters

						You can create reusable configurations with ServiceMeshControlPlane object profiles. If you do not configure the profile setting, Red Hat OpenShift Service Mesh uses the default profile.
					

						Here is an example that illustrates the spec.profiles parameter for the ServiceMeshControlPlane object:
					
Example profiles parameters

							

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 profiles:
 - YourProfileName

						

						For information about creating profiles, see the Creating control plane profiles.
					

						For more detailed examples of security configuration, see Mutual Transport Layer Security (mTLS).
					

techPreview parameters

						The spec.techPreview parameter enables early access to features that are in Technology Preview.
					
Important

							Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. For more information about the support scope of Red Hat Technology Preview features, see the Technology Preview Support Scope.
						

tracing parameters

						The following example illustrates the spec.tracing parameters for the ServiceMeshControlPlane object, and a description of the available parameters with appropriate values.
					
Example tracing parameters

							

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.2
 tracing:
 sampling: 100
 type: Jaeger

						
Table 1.36. Istio tracing parameters
	Parameter	Description	Values	Default value
	
tracing:
 sampling:

									 	
										The sampling rate determines how often the Envoy proxy generates a trace. You use the sampling rate to control what percentage of requests get reported to your tracing system.
									

									 	
										Integer values between 0 and 10000 representing increments of 0.01% (0 to 100%). For example, setting the value to 10 samples 0.1% of requests, setting the value to 100 will sample 1% of requests setting the value to 500 samples 5% of requests, and a setting of 10000 samples 100% of requests.
									

									 	
										10000 (100% of traces)
									

									
	
tracing:
 type:

									 	
										Currently the only tracing type that is supported is Jaeger. Jaeger is enabled by default. To disable tracing, set the type parameter to None.
									

									 	
										None, Jaeger
									

									 	
										Jaeger
									

									

version parameter

						The Red Hat OpenShift Service Mesh Operator supports installation of different versions of the ServiceMeshControlPlane. You use the version parameter to specify what version of the Service Mesh control plane to install. If you do not specify a version parameter when creating your SMCP, the Operator sets the value to the latest version: (2.2). Existing ServiceMeshControlPlane objects keep their version setting during upgrades of the Operator.
					

3scale configuration

						The following table explains the parameters for the 3scale Istio Adapter in the ServiceMeshControlPlane resource.
					
Example 3scale parameters

							

spec:
 addons:
 3Scale:
 enabled: false
 PARAM_THREESCALE_LISTEN_ADDR: 3333
 PARAM_THREESCALE_LOG_LEVEL: info
 PARAM_THREESCALE_LOG_JSON: true
 PARAM_THREESCALE_LOG_GRPC: false
 PARAM_THREESCALE_REPORT_METRICS: true
 PARAM_THREESCALE_METRICS_PORT: 8080
 PARAM_THREESCALE_CACHE_TTL_SECONDS: 300
 PARAM_THREESCALE_CACHE_REFRESH_SECONDS: 180
 PARAM_THREESCALE_CACHE_ENTRIES_MAX: 1000
 PARAM_THREESCALE_CACHE_REFRESH_RETRIES: 1
 PARAM_THREESCALE_ALLOW_INSECURE_CONN: false
 PARAM_THREESCALE_CLIENT_TIMEOUT_SECONDS: 10
 PARAM_THREESCALE_GRPC_CONN_MAX_SECONDS: 60
 PARAM_USE_CACHED_BACKEND: false
 PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS: 15
 PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED: true

						
Table 1.37. 3scale parameters
	Parameter	Description	Values	Default value
	
										enabled
									

									 	
										Whether to use the 3scale adapter
									

									 	
										true/false
									

									 	
										false
									

									
	
										PARAM_THREESCALE_LISTEN_ADDR
									

									 	
										Sets the listen address for the gRPC server
									

									 	
										Valid port number
									

									 	
										3333
									

									
	
										PARAM_THREESCALE_LOG_LEVEL
									

									 	
										Sets the minimum log output level.
									

									 	
										debug, info, warn, error, or none
									

									 	
										info
									

									
	
										PARAM_THREESCALE_LOG_JSON
									

									 	
										Controls whether the log is formatted as JSON
									

									 	
										true/false
									

									 	
										true
									

									
	
										PARAM_THREESCALE_LOG_GRPC
									

									 	
										Controls whether the log contains gRPC info
									

									 	
										true/false
									

									 	
										true
									

									
	
										PARAM_THREESCALE_REPORT_METRICS
									

									 	
										Controls whether 3scale system and backend metrics are collected and reported to Prometheus
									

									 	
										true/false
									

									 	
										true
									

									
	
										PARAM_THREESCALE_METRICS_PORT
									

									 	
										Sets the port that the 3scale /metrics endpoint can be scrapped from
									

									 	
										Valid port number
									

									 	
										8080
									

									
	
										PARAM_THREESCALE_CACHE_TTL_SECONDS
									

									 	
										Time period, in seconds, to wait before purging expired items from the cache
									

									 	
										Time period in seconds
									

									 	
										300
									

									
	
										PARAM_THREESCALE_CACHE_REFRESH_SECONDS
									

									 	
										Time period before expiry when cache elements are attempted to be refreshed
									

									 	
										Time period in seconds
									

									 	
										180
									

									
	
										PARAM_THREESCALE_CACHE_ENTRIES_MAX
									

									 	
										Max number of items that can be stored in the cache at any time. Set to 0 to disable caching
									

									 	
										Valid number
									

									 	
										1000
									

									
	
										PARAM_THREESCALE_CACHE_REFRESH_RETRIES
									

									 	
										The number of times unreachable hosts are retried during a cache update loop
									

									 	
										Valid number
									

									 	
										1
									

									
	
										PARAM_THREESCALE_ALLOW_INSECURE_CONN
									

									 	
										Allow to skip certificate verification when calling 3scale APIs. Enabling this is not recommended.
									

									 	
										true/false
									

									 	
										false
									

									
	
										PARAM_THREESCALE_CLIENT_TIMEOUT_SECONDS
									

									 	
										Sets the number of seconds to wait before terminating requests to 3scale System and Backend
									

									 	
										Time period in seconds
									

									 	
										10
									

									
	
										PARAM_THREESCALE_GRPC_CONN_MAX_SECONDS
									

									 	
										Sets the maximum amount of seconds (+/-10% jitter) a connection may exist before it is closed
									

									 	
										Time period in seconds
									

									 	
										60
									

									
	
										PARAM_USE_CACHE_BACKEND
									

									 	
										If true, attempt to create an in-memory apisonator cache for authorization requests
									

									 	
										true/false
									

									 	
										false
									

									
	
										PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS
									

									 	
										If the backend cache is enabled, this sets the interval in seconds for flushing the cache against 3scale
									

									 	
										Time period in seconds
									

									 	
										15
									

									
	
										PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED
									

									 	
										Whenever the backend cache cannot retrieve authorization data, whether to deny (closed) or allow (open) requests
									

									 	
										true/false
									

									 	
										true
									

									

status parameter

					The status parameter describes the current state of your service mesh. This information is generated by the Operator and is read-only.
				
Table 1.38. Istio status parameters
	Name	Description	Type
	
									observedGeneration
								

								 	
									The generation observed by the controller during the most recent reconciliation. The information in the status pertains to this particular generation of the object. The status.conditions are not up-to-date if the status.observedGeneration field doesn’t match metadata.generation.
								

								 	
									integer
								

								
	
									annotations
								

								 	
									The annotations parameter stores additional, usually redundant status information, such as the number of components deployed by the ServiceMeshControlPlane object. These statuses are used by the command line tool, oc, which does not yet allow counting objects in JSONPath expressions.
								

								 	
									Not configurable
								

								
	
									readiness
								

								 	
									The readiness status of components and owned resources.
								

								 	
									string
								

								
	
									operatorVersion
								

								 	
									The version of the Operator that last processed this resource.
								

								 	
									string
								

								
	
									components
								

								 	
									Shows the status of each deployed Service Mesh control plane component.
								

								 	
									string
								

								
	
									appliedSpec
								

								 	
									The resulting specification of the configuration options after all profiles have been applied.
								

								 	
									ControlPlaneSpec
								

								
	
									conditions
								

								 	
									Represents the latest available observations of the object’s current state. Reconciled indicates that the Operator has finished reconciling the actual state of deployed components with the configuration in the ServiceMeshControlPlane resource. Installed indicates that the Service Mesh control plane has been installed. Ready indicates that all Service Mesh control plane components are ready.
								

								 	
									string
								

								
	
									chartVersion
								

								 	
									The version of the charts that were last processed for this resource.
								

								 	
									string
								

								
	
									appliedValues
								

								 	
									The resulting values.yaml file that was used to generate the charts.
								

								 	
									ControlPlaneSpec
								

								

Additional resources

	
							For more information about how to configure the features in the ServiceMeshControlPlane resource, see the following links:
						
	
									Security
								
	
									Traffic management
								
	
									Metrics and traces
								

Kiali configuration reference

				When the Service Mesh Operator creates the ServiceMeshControlPlane it also processes the Kiali resource. The Kiali Operator then uses this object when creating Kiali instances.
			
Specifying Kiali configuration in the SMCP

					You can configure Kiali under the addons section of the ServiceMeshControlPlane resource. Kiali is enabled by default. To disable Kiali, set spec.addons.kiali.enabled to false.
				

					You can specify your Kiali configuration in either of two ways:
				
	
							Specify the Kiali configuration in the ServiceMeshControlPlane resource under spec.addons.kiali.install. This approach has some limitations, because the complete list of Kiali configurations is not available in the SMCP.
						
	
							Configure and deploy a Kiali instance and specify the name of the Kiali resource as the value for spec.addons.kiali.name in the ServiceMeshControlPlane resource. You must create the CR in the same namespace as the Service Mesh control plane, for example, istio-system. If a Kiali resource matching the value of name exists, the control plane will configure that Kiali resource for use with the control plane. This approach lets you fully customize your Kiali configuration in the Kiali resource. Note that with this approach, various fields in the Kiali resource are overwritten by the Service Mesh Operator, specifically, the accessible_namespaces list, as well as the endpoints for Grafana, Prometheus, and tracing.
						

Example SMCP parameters for Kiali

						

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 addons:
 kiali:
 name: kiali
 enabled: true
 install:
 dashboard:
 viewOnly: false
 enableGrafana: true
 enableTracing: true
 enablePrometheus: true
 service:
 ingress:
 contextPath: /kiali

					
Table 1.39. ServiceMeshControlPlane Kiali parameters
	Parameter	Description	Values	Default value
	
spec:
 addons:
 kiali:
 name:

								 	
									Name of Kiali custom resource. If a Kiali CR matching the value of name exists, the Service Mesh Operator will use that CR for the installation. If no Kiali CR exists, the Operator will create one using this name and the configuration options specified in the SMCP.
								

								 	
									string
								

								 	
									kiali
								

								
	
kiali:
 enabled:

								 	
									This parameter enables or disables Kiali. Kiali is enabled by default.
								

								 	
									true/false
								

								 	
									true
								

								
	
kiali:
 install:

								 	
									Install a Kiali resource if the named Kiali resource is not present. The install section is ignored if addons.kiali.enabled is set to false.
								

								 	 	
	
kiali:
 install:
 dashboard:

								 	
									Configuration parameters for the dashboards shipped with Kiali.
								

								 	 	
	
kiali:
 install:
 dashboard:
 viewOnly:

								 	
									This parameter enables or disables view-only mode for the Kiali console. When view-only mode is enabled, users cannot use the Kiali console to make changes to the Service Mesh.
								

								 	
									true/false
								

								 	
									false
								

								
	
kiali:
 install:
 dashboard:
 enableGrafana:

								 	
									Grafana endpoint configured based on spec.addons.grafana configuration.
								

								 	
									true/false
								

								 	
									true
								

								
	
kiali:
 install:
 dashboard:
 enablePrometheus:

								 	
									Prometheus endpoint configured based on spec.addons.prometheus configuration.
								

								 	
									true/false
								

								 	
									true
								

								
	
kiali:
 install:
 dashboard:
 enableTracing:

								 	
									Tracing endpoint configured based on Jaeger custom resource configuration.
								

								 	
									true/false
								

								 	
									true
								

								
	
kiali:
 install:
 service:

								 	
									Configuration parameters for the Kubernetes service associated with the Kiali installation.
								

								 	 	
	
kiali:
 install:
 service:
 metadata:

								 	
									Use to specify additional metadata to apply to resources.
								

								 	
									N/A
								

								 	
									N/A
								

								
	
kiali:
 install:
 service:
 metadata:
 annotations:

								 	
									Use to specify additional annotations to apply to the component’s service.
								

								 	
									string
								

								 	
									N/A
								

								
	
kiali:
 install:
 service:
 metadata:
 labels:

								 	
									Use to specify additional labels to apply to the component’s service.
								

								 	
									string
								

								 	
									N/A
								

								
	
kiali:
 install:
 service:
 ingress:

								 	
									Use to specify details for accessing the component’s service through an OpenShift Route.
								

								 	
									N/A
								

								 	
									N/A
								

								
	
kiali:
 install:
 service:
 ingress:
 metadata:
 annotations:

								 	
									Use to specify additional annotations to apply to the component’s service ingress.
								

								 	
									string
								

								 	
									N/A
								

								
	
kiali:
 install:
 service:
 ingress:
 metadata:
 labels:

								 	
									Use to specify additional labels to apply to the component’s service ingress.
								

								 	
									string
								

								 	
									N/A
								

								
	
kiali:
 install:
 service:
 ingress:
 enabled:

								 	
									Use to customize an OpenShift Route for the service associated with a component.
								

								 	
									true/false
								

								 	
									true
								

								
	
kiali:
 install:
 service:
 ingress:
 contextPath:

								 	
									Use to specify the context path to the service.
								

								 	
									string
								

								 	
									N/A
								

								
	
install:
 service:
 ingress:
 hosts:

								 	
									Use to specify a single hostname per OpenShift route. An empty hostname implies a default hostname for the Route.
								

								 	
									string
								

								 	
									N/A
								

								
	
install:
 service:
 ingress:
 tls:

								 	
									Use to configure the TLS for the OpenShift route.
								

								 	 	
									N/A
								

								
	
kiali:
 install:
 service:
 nodePort:

								 	
									Use to specify the nodePort for the component’s service Values.<component>.service.nodePort.port
								

								 	
									integer
								

								 	
									N/A
								

								

Specifying Kiali configuration in a Kiali custom resource

					You can fully customize your Kiali deployment by configuring Kiali in the Kiali custom resource (CR) rather than in the ServiceMeshControlPlane (SMCP) resource. This configuration is sometimes called an "external Kiali" since the configuration is specified outside of the SMCP.
				
Note

						You must deploy the ServiceMeshControlPlane and Kiali custom resources in the same namespace. For example, istio-system.
					

					You can configure and deploy a Kiali instance and then specify the name of the Kiali resource as the value for spec.addons.kiali.name in the SMCP resource. If a Kiali CR matching the value of name exists, the Service Mesh control plane will use the existing installation. This approach lets you fully customize your Kiali configuration.
				

Jaeger configuration reference

				When the Service Mesh Operator deploys the ServiceMeshControlPlane resource, it can also create the resources for distributed tracing. Service Mesh uses Jaeger for distributed tracing.
			
Enabling and disabling tracing

					You enable distributed tracing by specifying a tracing type and a sampling rate in the ServiceMeshControlPlane resource.
				
Default all-in-one Jaeger parameters

						

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.2
 tracing:
 sampling: 100
 type: Jaeger

					

					Currently, the only tracing type that is supported is Jaeger.
				

					Jaeger is enabled by default. To disable tracing, set type to None.
				

					The sampling rate determines how often the Envoy proxy generates a trace. You can use the sampling rate option to control what percentage of requests get reported to your tracing system. You can configure this setting based upon your traffic in the mesh and the amount of tracing data you want to collect. You configure sampling as a scaled integer representing 0.01% increments. For example, setting the value to 10 samples 0.1% of traces, setting the value to 500 samples 5% of traces, and a setting of 10000 samples 100% of traces.
				
Note

						The SMCP sampling configuration option controls the Envoy sampling rate. You configure the Jaeger trace sampling rate in the Jaeger custom resource.
					

Specifying Jaeger configuration in the SMCP

					You configure Jaeger under the addons section of the ServiceMeshControlPlane resource. However, there are some limitations to what you can configure in the SMCP.
				

					When the SMCP passes configuration information to the Red Hat OpenShift distributed tracing platform Operator, it triggers one of three deployment strategies: allInOne, production, or streaming.
				

Deploying the distributed tracing platform

					The distributed tracing platform has predefined deployment strategies. You specify a deployment strategy in the Jaeger custom resource (CR) file. When you create an instance of the distributed tracing platform, the Red Hat OpenShift distributed tracing platform Operator uses this configuration file to create the objects necessary for the deployment.
				

					The Red Hat OpenShift distributed tracing platform Operator currently supports the following deployment strategies:
				
	
							allInOne (default) - This strategy is intended for development, testing, and demo purposes and it is not for production use. The main back-end components, Agent, Collector, and Query service, are all packaged into a single executable, which is configured (by default) to use in-memory storage. You can configure this deployment strategy in the SMCP.
						
Note

								In-memory storage is not persistent, which means that if the Jaeger instance shuts down, restarts, or is replaced, your trace data will be lost. And in-memory storage cannot be scaled, since each pod has its own memory. For persistent storage, you must use the production or streaming strategies, which use Elasticsearch as the default storage.
							

	
							production - The production strategy is intended for production environments, where long term storage of trace data is important, and a more scalable and highly available architecture is required. Each back-end component is therefore deployed separately. The Agent can be injected as a sidecar on the instrumented application. The Query and Collector services are configured with a supported storage type, which is currently Elasticsearch. Multiple instances of each of these components can be provisioned as required for performance and resilience purposes. You can configure this deployment strategy in the SMCP, but in order to be fully customized, you must specify your configuration in the Jaeger CR and link that to the SMCP.
						
	
							streaming - The streaming strategy is designed to augment the production strategy by providing a streaming capability that sits between the Collector and the Elasticsearch back-end storage. This provides the benefit of reducing the pressure on the back-end storage, under high load situations, and enables other trace post-processing capabilities to tap into the real-time span data directly from the streaming platform (AMQ Streams/ Kafka). You cannot configure this deployment strategy in the SMCP; you must configure a Jaeger CR and link that to the SMCP.
						

Note

						The streaming strategy requires an additional Red Hat subscription for AMQ Streams.
					

Default distributed tracing platform deployment

						If you do not specify Jaeger configuration options, the ServiceMeshControlPlane resource will use the allInOne Jaeger deployment strategy by default. When using the default allInOne deployment strategy, set spec.addons.jaeger.install.storage.type to Memory. You can accept the defaults or specify additional configuration options under install.
					
Control plane default Jaeger parameters (Memory)

							

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.2
 tracing:
 sampling: 10000
 type: Jaeger
 addons:
 jaeger:
 name: jaeger
 install:
 storage:
 type: Memory

						

Production distributed tracing platform deployment (minimal)

						To use the default settings for the production deployment strategy, set spec.addons.jaeger.install.storage.type to Elasticsearch and specify additional configuration options under install. Note that the SMCP only supports configuring Elasticsearch resources and image name.
					
Control plane default Jaeger parameters (Elasticsearch)

							

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.2
 tracing:
 sampling: 10000
 type: Jaeger
 addons:
 jaeger:
 name: jaeger #name of Jaeger CR
 install:
 storage:
 type: Elasticsearch
 ingress:
 enabled: true
 runtime:
 components:
 tracing.jaeger.elasticsearch: # only supports resources and image name
 container:
 resources: {}

						

Production distributed tracing platform deployment (fully customized)

						The SMCP supports only minimal Elasticsearch parameters. To fully customize your production environment and access all of the Elasticsearch configuration parameters, use the Jaeger custom resource (CR) to configure Jaeger.
					

						Create and configure your Jaeger instance and set spec.addons.jaeger.name to the name of the Jaeger instance, in this example: MyJaegerInstance.
					
Control plane with linked Jaeger production CR

							

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.2
 tracing:
 sampling: 1000
 type: Jaeger
 addons:
 jaeger:
 name: MyJaegerInstance #name of Jaeger CR
 install:
 storage:
 type: Elasticsearch
 ingress:
 enabled: true

						

Streaming Jaeger deployment

						To use the streaming deployment strategy, you create and configure your Jaeger instance first, then set spec.addons.jaeger.name to the name of the Jaeger instance, in this example: MyJaegerInstance.
					
Control plane with linked Jaeger streaming CR

							

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
 name: basic
spec:
 version: v2.2
 tracing:
 sampling: 1000
 type: Jaeger
 addons:
 jaeger:
 name: MyJaegerInstance #name of Jaeger CR

						

Specifying Jaeger configuration in a Jaeger custom resource

					You can fully customize your Jaeger deployment by configuring Jaeger in the Jaeger custom resource (CR) rather than in the ServiceMeshControlPlane (SMCP) resource. This configuration is sometimes referred to as an "external Jaeger" since the configuration is specified outside of the SMCP.
				
Note

						You must deploy the SMCP and Jaeger CR in the same namespace. For example, istio-system.
					

					You can configure and deploy a standalone Jaeger instance and then specify the name of the Jaeger resource as the value for spec.addons.jaeger.name in the SMCP resource. If a Jaeger CR matching the value of name exists, the Service Mesh control plane will use the existing installation. This approach lets you fully customize your Jaeger configuration.
				
Deployment best practices

	
								Red Hat OpenShift distributed tracing instance names must be unique. If you want to have multiple Red Hat OpenShift distributed tracing platform instances and are using sidecar injected agents, then the Red Hat OpenShift distributed tracing platform instances should have unique names, and the injection annotation should explicitly specify the Red Hat OpenShift distributed tracing platform instance name the tracing data should be reported to.
							
	
								If you have a multitenant implementation and tenants are separated by namespaces, deploy a Red Hat OpenShift distributed tracing platform instance to each tenant namespace.
							
	
										Agent as a daemonset is not supported for multitenant installations or Red Hat OpenShift Dedicated. Agent as a sidecar is the only supported configuration for these use cases.
									

	
								If you are installing distributed tracing as part of Red Hat OpenShift Service Mesh, the distributed tracing resources must be installed in the same namespace as the ServiceMeshControlPlane resource.
							

						For information about configuring persistent storage, see Understanding persistent storage and the appropriate configuration topic for your chosen storage option.
					

Configuring distributed tracing security for service mesh

						The distributed tracing platform uses OAuth for default authentication. However Red Hat OpenShift Service Mesh uses a secret called htpasswd to facilitate communication between dependent services such as Grafana, Kiali, and the distributed tracing platform. When you configure your distributed tracing platform in the ServiceMeshControlPlane the Service Mesh automatically configures security settings to use htpasswd.
					

						If you are specifying your distributed tracing platform configuration in a Jaeger custom resource, you must manually configure the htpasswd settings and ensure the htpasswd secret is mounted into your Jaeger instance so that Kiali can communicate with it.
					
Configuring distributed tracing security for service mesh from the OpenShift console

							You can modify the Jaeger resource to configure distributed tracing platform security for use with Service Mesh in the OpenShift console.
						
Prerequisites
	
									You have access to the cluster as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
								
	
									The Red Hat OpenShift Service Mesh Operator must be installed.
								
	
									The ServiceMeshControlPlane deployed to the cluster.
								
	
									You have access to the OpenShift Container Platform web console.
								

Procedure
	
									Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
								
	
									Navigate to Operators → Installed Operators.
								
	
									Click the Project menu and select the project where your ServiceMeshControlPlane resource is deployed from the list, for example istio-system.
								
	
									Click the Red Hat OpenShift distributed tracing platform Operator.
								
	
									On the Operator Details page, click the Jaeger tab.
								
	
									Click the name of your Jaeger instance.
								
	
									On the Jaeger details page, click the YAML tab to modify your configuration.
								
	
									Edit the Jaeger custom resource file to add the htpasswd configuration as shown in the following example.
								
	
											spec.ingress.openshift.htpasswdFile
										
	
											spec.volumes
										
	
											spec.volumeMounts
										
Example Jaeger resource showing htpasswd configuration

												

apiVersion: jaegertracing.io/v1
kind: Jaeger
spec:
 ingress:
 enabled: true
 openshift:
 htpasswdFile: /etc/proxy/htpasswd/auth
 sar: '{"namespace": "istio-system", "resource": "pods", "verb": "get"}'
 options: {}
 resources: {}
 security: oauth-proxy
 volumes:
 - name: secret-htpasswd
 secret:
 secretName: htpasswd
 - configMap:
 defaultMode: 420
 items:
 - key: ca-bundle.crt
 path: tls-ca-bundle.pem
 name: trusted-ca-bundle
 optional: true
 name: trusted-ca-bundle
 volumeMounts:
 - mountPath: /etc/proxy/htpasswd
 name: secret-htpasswd
 - mountPath: /etc/pki/ca-trust/extracted/pem/
 name: trusted-ca-bundle
 readOnly: true

											

	
									Click Save.
								

Configuring distributed tracing security for service mesh from the command line

							You can modify the Jaeger resource to configure distributed tracing platform security for use with Service Mesh from the command line using the oc utility.
						
Prerequisites
	
									You have access to the cluster as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
								
	
									The Red Hat OpenShift Service Mesh Operator must be installed.
								
	
									The ServiceMeshControlPlane deployed to the cluster.
								
	
									You have access to the OpenShift CLI (oc) that matches your OpenShift Container Platform version.
								

Procedure
	
									Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
								
$ oc login https://<HOSTNAME>:6443

	
									Change to the project where you installed the control plane, for example istio-system, by entering the following command:
								
$ oc project istio-system

	
									Run the following command to edit the Jaeger custom resource file, where jaeger.yaml is the name of your Jaeger custom resource.
								
$ oc edit -n tracing-system -f jaeger.yaml

	
									Edit the Jaeger custom resource file to add the htpasswd configuration as shown in the following example.
								
	
											spec.ingress.openshift.htpasswdFile
										
	
											spec.volumes
										
	
											spec.volumeMounts
										
Example Jaeger resource showing htpasswd configuration

												

apiVersion: jaegertracing.io/v1
kind: Jaeger
spec:
 ingress:
 enabled: true
 openshift:
 htpasswdFile: /etc/proxy/htpasswd/auth
 sar: '{"namespace": "istio-system", "resource": "pods", "verb": "get"}'
 options: {}
 resources: {}
 security: oauth-proxy
 volumes:
 - name: secret-htpasswd
 secret:
 secretName: htpasswd
 - configMap:
 defaultMode: 420
 items:
 - key: ca-bundle.crt
 path: tls-ca-bundle.pem
 name: trusted-ca-bundle
 optional: true
 name: trusted-ca-bundle
 volumeMounts:
 - mountPath: /etc/proxy/htpasswd
 name: secret-htpasswd
 - mountPath: /etc/pki/ca-trust/extracted/pem/
 name: trusted-ca-bundle
 readOnly: true

											

	
									Run the following command to apply your changes, where <jaeger.yaml> is the name of your Jaeger custom resource.
								
$ oc apply -n tracing-system -f <jaeger.yaml>

	
									Run the following command to watch the progress of the pod deployment:
								
$ oc get pods -n tracing-system -w

Distributed tracing default configuration options

						The Jaeger custom resource (CR) defines the architecture and settings to be used when creating the distributed tracing platform resources. You can modify these parameters to customize your distributed tracing platform implementation to your business needs.
					
Jaeger generic YAML example

							

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: name
spec:
 strategy: <deployment_strategy>
 allInOne:
 options: {}
 resources: {}
 agent:
 options: {}
 resources: {}
 collector:
 options: {}
 resources: {}
 sampling:
 options: {}
 storage:
 type:
 options: {}
 query:
 options: {}
 resources: {}
 ingester:
 options: {}
 resources: {}
 options: {}

						
Table 1.40. Jaeger parameters
	Parameter	Description	Values	Default value
	
										apiVersion:
									

									 	 	
										API version to use when creating the object.
									

									 	
										jaegertracing.io/v1
									

									
	
										jaegertracing.io/v1
									

									 	
										kind:
									

									 	
										Defines the kind of Kubernetes object to create.
									

									 	
										jaeger
									

									
	 	
										metadata:
									

									 	
										Data that helps uniquely identify the object, including a name string, UID, and optional namespace.
									

									 	
	
										OpenShift Container Platform automatically generates the UID and completes the namespace with the name of the project where the object is created.
									

									 	
										name:
									

									 	
										Name for the object.
									

									 	
										The name of your distributed tracing platform instance.
									

									
	
										jaeger-all-in-one-inmemory
									

									 	
										spec:
									

									 	
										Specification for the object to be created.
									

									 	
										Contains all of the configuration parameters for your distributed tracing platform instance. When a common definition for all Jaeger components is required, it is defined under the spec node. When the definition relates to an individual component, it is placed under the spec/<component> node.
									

									
	
										N/A
									

									 	
										strategy:
									

									 	
										Jaeger deployment strategy
									

									 	
										allInOne, production, or streaming
									

									
	
										allInOne
									

									 	
										allInOne:
									

									 	
										Because the allInOne image deploys the Agent, Collector, Query, Ingester, and Jaeger UI in a single pod, configuration for this deployment must nest component configuration under the allInOne parameter.
									

									 	
	 	
										agent:
									

									 	
										Configuration options that define the Agent.
									

									 	
	 	
										collector:
									

									 	
										Configuration options that define the Jaeger Collector.
									

									 	
	 	
										sampling:
									

									 	
										Configuration options that define the sampling strategies for tracing.
									

									 	
	 	
										storage:
									

									 	
										Configuration options that define the storage. All storage-related options must be placed under storage, rather than under the allInOne or other component options.
									

									 	
	 	
										query:
									

									 	
										Configuration options that define the Query service.
									

									 	
	 	
										ingester:
									

									 	
										Configuration options that define the Ingester service.
									

									 	

						The following example YAML is the minimum required to create a Red Hat OpenShift distributed tracing platform deployment using the default settings.
					
Example minimum required dist-tracing-all-in-one.yaml

							

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-all-in-one-inmemory

						

Jaeger Collector configuration options

						The Jaeger Collector is the component responsible for receiving the spans that were captured by the tracer and writing them to persistent Elasticsearch storage when using the production strategy, or to AMQ Streams when using the streaming strategy.
					

						The Collectors are stateless and thus many instances of Jaeger Collector can be run in parallel. Collectors require almost no configuration, except for the location of the Elasticsearch cluster.
					
Table 1.41. Parameters used by the Operator to define the Jaeger Collector
	Parameter	Description	Values
	
collector:
 replicas:

									 	
										Specifies the number of Collector replicas to create.
									

									 	
										Integer, for example, 5
									

									

Table 1.42. Configuration parameters passed to the Collector
	Parameter	Description	Values
	
spec:
 collector:
 options: {}

									 	
										Configuration options that define the Jaeger Collector.
									

									 	
	
options:
 collector:
 num-workers:

									 	
										The number of workers pulling from the queue.
									

									 	
										Integer, for example, 50
									

									
	
options:
 collector:
 queue-size:

									 	
										The size of the Collector queue.
									

									 	
										Integer, for example, 2000
									

									
	
options:
 kafka:
 producer:
 topic: jaeger-spans

									 	
										The topic parameter identifies the Kafka configuration used by the Collector to produce the messages, and the Ingester to consume the messages.
									

									 	
										Label for the producer.
									

									
	
options:
 kafka:
 producer:
 brokers: my-cluster-kafka-brokers.kafka:9092

									 	
										Identifies the Kafka configuration used by the Collector to produce the messages. If brokers are not specified, and you have AMQ Streams 1.4.0+ installed, the Red Hat OpenShift distributed tracing platform Operator will self-provision Kafka.
									

									 	
	
options:
 log-level:

									 	
										Logging level for the Collector.
									

									 	
										Possible values: debug, info, warn, error, fatal, panic.
									

									

Distributed tracing sampling configuration options

						The Red Hat OpenShift distributed tracing platform Operator can be used to define sampling strategies that will be supplied to tracers that have been configured to use a remote sampler.
					

						While all traces are generated, only a few are sampled. Sampling a trace marks the trace for further processing and storage.
					
Note

							This is not relevant if a trace was started by the Envoy proxy, as the sampling decision is made there. The Jaeger sampling decision is only relevant when the trace is started by an application using the client.
						

						When a service receives a request that contains no trace context, the client starts a new trace, assigns it a random trace ID, and makes a sampling decision based on the currently installed sampling strategy. The sampling decision propagates to all subsequent requests in the trace so that other services are not making the sampling decision again.
					

						distributed tracing platform libraries support the following samplers:
					
	
								Probabilistic - The sampler makes a random sampling decision with the probability of sampling equal to the value of the sampling.param property. For example, using sampling.param=0.1 samples approximately 1 in 10 traces.
							
	
								Rate Limiting - The sampler uses a leaky bucket rate limiter to ensure that traces are sampled with a certain constant rate. For example, using sampling.param=2.0 samples requests with the rate of 2 traces per second.
							

Table 1.43. Jaeger sampling options
	Parameter	Description	Values	Default value
	
spec:
 sampling:
 options: {}
 default_strategy:
 service_strategy:

									 	
										Configuration options that define the sampling strategies for tracing.
									

									 	 	
										If you do not provide configuration, the Collectors will return the default probabilistic sampling policy with 0.001 (0.1%) probability for all services.
									

									
	
default_strategy:
 type:
service_strategy:
 type:

									 	
										Sampling strategy to use. See descriptions above.
									

									 	
										Valid values are probabilistic, and ratelimiting.
									

									 	
										probabilistic
									

									
	
default_strategy:
 param:
service_strategy:
 param:

									 	
										Parameters for the selected sampling strategy.
									

									 	
										Decimal and integer values (0, .1, 1, 10)
									

									 	
										1
									

									

						This example defines a default sampling strategy that is probabilistic, with a 50% chance of the trace instances being sampled.
					
Probabilistic sampling example

							

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: with-sampling
spec:
 sampling:
 options:
 default_strategy:
 type: probabilistic
 param: 0.5
 service_strategies:
 - service: alpha
 type: probabilistic
 param: 0.8
 operation_strategies:
 - operation: op1
 type: probabilistic
 param: 0.2
 - operation: op2
 type: probabilistic
 param: 0.4
 - service: beta
 type: ratelimiting
 param: 5

						

						If there are no user-supplied configurations, the distributed tracing platform uses the following settings:
					
Default sampling

							

spec:
 sampling:
 options:
 default_strategy:
 type: probabilistic
 param: 1

						

Distributed tracing storage configuration options

						You configure storage for the Collector, Ingester, and Query services under spec.storage. Multiple instances of each of these components can be provisioned as required for performance and resilience purposes.
					
Table 1.44. General storage parameters used by the Red Hat OpenShift distributed tracing platform Operator to define distributed tracing storage
	Parameter	Description	Values	Default value
	
spec:
 storage:
 type:

									 	
										Type of storage to use for the deployment.
									

									 	
										memory or elasticsearch. Memory storage is only appropriate for development, testing, demonstrations, and proof of concept environments as the data does not persist if the pod is shut down. For production environments distributed tracing platform supports Elasticsearch for persistent storage.
									

									 	
										memory
									

									
	
storage:
 secretname:

									 	
										Name of the secret, for example tracing-secret.
									

									 	 	
										N/A
									

									
	
storage:
 options: {}

									 	
										Configuration options that define the storage.
									

									 	 	

Table 1.45. Elasticsearch index cleaner parameters
	Parameter	Description	Values	Default value
	
storage:
 esIndexCleaner:
 enabled:

									 	
										When using Elasticsearch storage, by default a job is created to clean old traces from the index. This parameter enables or disables the index cleaner job.
									

									 	
										true/ false
									

									 	
										true
									

									
	
storage:
 esIndexCleaner:
 numberOfDays:

									 	
										Number of days to wait before deleting an index.
									

									 	
										Integer value
									

									 	
										7
									

									
	
storage:
 esIndexCleaner:
 schedule:

									 	
										Defines the schedule for how often to clean the Elasticsearch index.
									

									 	
										Cron expression
									

									 	
										"55 23 * * *"
									

									

Auto-provisioning an Elasticsearch instance

							When you deploy a Jaeger custom resource, the Red Hat OpenShift distributed tracing platform Operator uses the OpenShift Elasticsearch Operator to create an Elasticsearch cluster based on the configuration provided in the storage section of the custom resource file. The Red Hat OpenShift distributed tracing platform Operator will provision Elasticsearch if the following configurations are set:
						
	
									spec.storage:type is set to elasticsearch
								
	
									spec.storage.elasticsearch.doNotProvision set to false
								
	
									spec.storage.options.es.server-urls is not defined, that is, there is no connection to an Elasticsearch instance that was not provisioned by the Red Hat Elasticsearch Operator.
								

							When provisioning Elasticsearch, the Red Hat OpenShift distributed tracing platform Operator sets the Elasticsearch custom resource name to the value of spec.storage.elasticsearch.name from the Jaeger custom resource. If you do not specify a value for spec.storage.elasticsearch.name, the Operator uses elasticsearch.
						
Restrictions
	
									You can have only one distributed tracing platform with self-provisioned Elasticsearch instance per namespace. The Elasticsearch cluster is meant to be dedicated for a single distributed tracing platform instance.
								
	
									There can be only one Elasticsearch per namespace.
								

Note

								If you already have installed Elasticsearch as part of OpenShift Logging, the Red Hat OpenShift distributed tracing platform Operator can use the installed OpenShift Elasticsearch Operator to provision storage.
							

							The following configuration parameters are for a self-provisioned Elasticsearch instance, that is an instance created by the Red Hat OpenShift distributed tracing platform Operator using the OpenShift Elasticsearch Operator. You specify configuration options for self-provisioned Elasticsearch under spec:storage:elasticsearch in your configuration file.
						
Table 1.46. Elasticsearch resource configuration parameters
	Parameter	Description	Values	Default value
	
elasticsearch:
 properties:
 doNotProvision:

										 	
											Use to specify whether or not an Elasticsearch instance should be provisioned by the Red Hat OpenShift distributed tracing platform Operator.
										

										 	
											true/false
										

										 	
											true
										

										
	
elasticsearch:
 properties:
 name:

										 	
											Name of the Elasticsearch instance. The Red Hat OpenShift distributed tracing platform Operator uses the Elasticsearch instance specified in this parameter to connect to Elasticsearch.
										

										 	
											string
										

										 	
											elasticsearch
										

										
	
elasticsearch:
 nodeCount:

										 	
											Number of Elasticsearch nodes. For high availability use at least 3 nodes. Do not use 2 nodes as “split brain” problem can happen.
										

										 	
											Integer value. For example, Proof of concept = 1, Minimum deployment =3
										

										 	
											3
										

										
	
elasticsearch:
 resources:
 requests:
 cpu:

										 	
											Number of central processing units for requests, based on your environment’s configuration.
										

										 	
											Specified in cores or millicores, for example, 200m, 0.5, 1. For example, Proof of concept = 500m, Minimum deployment =1
										

										 	
											1
										

										
	
elasticsearch:
 resources:
 requests:
 memory:

										 	
											Available memory for requests, based on your environment’s configuration.
										

										 	
											Specified in bytes, for example, 200Ki, 50Mi, 5Gi. For example, Proof of concept = 1Gi, Minimum deployment = 16Gi*
										

										 	
											16Gi
										

										
	
elasticsearch:
 resources:
 limits:
 cpu:

										 	
											Limit on number of central processing units, based on your environment’s configuration.
										

										 	
											Specified in cores or millicores, for example, 200m, 0.5, 1. For example, Proof of concept = 500m, Minimum deployment =1
										

										 	
	
elasticsearch:
 resources:
 limits:
 memory:

										 	
											Available memory limit based on your environment’s configuration.
										

										 	
											Specified in bytes, for example, 200Ki, 50Mi, 5Gi. For example, Proof of concept = 1Gi, Minimum deployment = 16Gi*
										

										 	
	
elasticsearch:
 redundancyPolicy:

										 	
											Data replication policy defines how Elasticsearch shards are replicated across data nodes in the cluster. If not specified, the Red Hat OpenShift distributed tracing platform Operator automatically determines the most appropriate replication based on number of nodes.
										

										 	
											ZeroRedundancy(no replica shards), SingleRedundancy(one replica shard), MultipleRedundancy(each index is spread over half of the Data nodes), FullRedundancy (each index is fully replicated on every Data node in the cluster).
										

										 	
	
elasticsearch:
 useCertManagement:

										 	
											Use to specify whether or not distributed tracing platform should use the certificate management feature of the Red Hat Elasticsearch Operator. This feature was added to logging subsystem for Red Hat OpenShift 5.2 in OpenShift Container Platform 4.7 and is the preferred setting for new Jaeger deployments.
										

										 	
											true/false
										

										 	
											true
										

										
	

										 	
											*Each Elasticsearch node can operate with a lower memory setting though this is NOT recommended for production deployments. For production use, you should have no less than 16Gi allocated to each pod by default, but preferably allocate as much as you can, up to 64Gi per pod.
										

										

Production storage example

								

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 elasticsearch:
 nodeCount: 3
 resources:
 requests:
 cpu: 1
 memory: 16Gi
 limits:
 memory: 16Gi

							
Storage example with persistent storage:

								

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 elasticsearch:
 nodeCount: 1
 storage: [image: 1]
 storageClassName: gp2
 size: 5Gi
 resources:
 requests:
 cpu: 200m
 memory: 4Gi
 limits:
 memory: 4Gi
 redundancyPolicy: ZeroRedundancy

							
	[image: 1]
	
									Persistent storage configuration. In this case AWS gp2 with 5Gi size. When no value is specified, distributed tracing platform uses emptyDir. The OpenShift Elasticsearch Operator provisions PersistentVolumeClaim and PersistentVolume which are not removed with distributed tracing platform instance. You can mount the same volumes if you create a distributed tracing platform instance with the same name and namespace.
								

Connecting to an existing Elasticsearch instance

							You can use an existing Elasticsearch cluster for storage with distributed tracing. An existing Elasticsearch cluster, also known as an external Elasticsearch instance, is an instance that was not installed by the Red Hat OpenShift distributed tracing platform Operator or by the Red Hat Elasticsearch Operator.
						

							When you deploy a Jaeger custom resource, the Red Hat OpenShift distributed tracing platform Operator will not provision Elasticsearch if the following configurations are set:
						
	
									spec.storage.elasticsearch.doNotProvision set to true
								
	
									spec.storage.options.es.server-urls has a value
								
	
									spec.storage.elasticsearch.name has a value, or if the Elasticsearch instance name is elasticsearch.
								

							The Red Hat OpenShift distributed tracing platform Operator uses the Elasticsearch instance specified in spec.storage.elasticsearch.name to connect to Elasticsearch.
						
Restrictions
	
									You cannot share or reuse a OpenShift Container Platform logging Elasticsearch instance with distributed tracing platform. The Elasticsearch cluster is meant to be dedicated for a single distributed tracing platform instance.
								

Note

								Red Hat does not provide support for your external Elasticsearch instance. You can review the tested integrations matrix on the Customer Portal.
							

							The following configuration parameters are for an already existing Elasticsearch instance, also known as an external Elasticsearch instance. In this case, you specify configuration options for Elasticsearch under spec:storage:options:es in your custom resource file.
						
Table 1.47. General ES configuration parameters
	Parameter	Description	Values	Default value
	
es:
 server-urls:

										 	
											URL of the Elasticsearch instance.
										

										 	
											The fully-qualified domain name of the Elasticsearch server.
										

										 	
											http://elasticsearch.<namespace>.svc:9200
										

										
	
es:
 max-doc-count:

										 	
											The maximum document count to return from an Elasticsearch query. This will also apply to aggregations. If you set both es.max-doc-count and es.max-num-spans, Elasticsearch will use the smaller value of the two.
										

										 	 	
											10000
										

										
	
es:
 max-num-spans:

										 	
											[Deprecated - Will be removed in a future release, use es.max-doc-count instead.] The maximum number of spans to fetch at a time, per query, in Elasticsearch. If you set both es.max-num-spans and es.max-doc-count, Elasticsearch will use the smaller value of the two.
										

										 	 	
											10000
										

										
	
es:
 max-span-age:

										 	
											The maximum lookback for spans in Elasticsearch.
										

										 	 	
											72h0m0s
										

										
	
es:
 sniffer:

										 	
											The sniffer configuration for Elasticsearch. The client uses the sniffing process to find all nodes automatically. Disabled by default.
										

										 	
											true/ false
										

										 	
											false
										

										
	
es:
 sniffer-tls-enabled:

										 	
											Option to enable TLS when sniffing an Elasticsearch Cluster. The client uses the sniffing process to find all nodes automatically. Disabled by default
										

										 	
											true/ false
										

										 	
											false
										

										
	
es:
 timeout:

										 	
											Timeout used for queries. When set to zero there is no timeout.
										

										 	 	
											0s
										

										
	
es:
 username:

										 	
											The username required by Elasticsearch. The basic authentication also loads CA if it is specified. See also es.password.
										

										 	 	
	
es:
 password:

										 	
											The password required by Elasticsearch. See also, es.username.
										

										 	 	
	
es:
 version:

										 	
											The major Elasticsearch version. If not specified, the value will be auto-detected from Elasticsearch.
										

										 	 	
											0
										

										

Table 1.48. ES data replication parameters
	Parameter	Description	Values	Default value
	
es:
 num-replicas:

										 	
											The number of replicas per index in Elasticsearch.
										

										 	 	
											1
										

										
	
es:
 num-shards:

										 	
											The number of shards per index in Elasticsearch.
										

										 	 	
											5
										

										

Table 1.49. ES index configuration parameters
	Parameter	Description	Values	Default value
	
es:
 create-index-templates:

										 	
											Automatically create index templates at application startup when set to true. When templates are installed manually, set to false.
										

										 	
											true/ false
										

										 	
											true
										

										
	
es:
 index-prefix:

										 	
											Optional prefix for distributed tracing platform indices. For example, setting this to "production" creates indices named "production-tracing-*".
										

										 	 	

Table 1.50. ES bulk processor configuration parameters
	Parameter	Description	Values	Default value
	
es:
 bulk:
 actions:

										 	
											The number of requests that can be added to the queue before the bulk processor decides to commit updates to disk.
										

										 	 	
											1000
										

										
	
es:
 bulk:
 flush-interval:

										 	
											A time.Duration after which bulk requests are committed, regardless of other thresholds. To disable the bulk processor flush interval, set this to zero.
										

										 	 	
											200ms
										

										
	
es:
 bulk:
 size:

										 	
											The number of bytes that the bulk requests can take up before the bulk processor decides to commit updates to disk.
										

										 	 	
											5000000
										

										
	
es:
 bulk:
 workers:

										 	
											The number of workers that are able to receive and commit bulk requests to Elasticsearch.
										

										 	 	
											1
										

										

Table 1.51. ES TLS configuration parameters
	Parameter	Description	Values	Default value
	
es:
 tls:
 ca:

										 	
											Path to a TLS Certification Authority (CA) file used to verify the remote servers.
										

										 	 	
											Will use the system truststore by default.
										

										
	
es:
 tls:
 cert:

										 	
											Path to a TLS Certificate file, used to identify this process to the remote servers.
										

										 	 	
	
es:
 tls:
 enabled:

										 	
											Enable transport layer security (TLS) when talking to the remote servers. Disabled by default.
										

										 	
											true/ false
										

										 	
											false
										

										
	
es:
 tls:
 key:

										 	
											Path to a TLS Private Key file, used to identify this process to the remote servers.
										

										 	 	
	
es:
 tls:
 server-name:

										 	
											Override the expected TLS server name in the certificate of the remote servers.
										

										 	 	
	
es:
 token-file:

										 	
											Path to a file containing the bearer token. This flag also loads the Certification Authority (CA) file if it is specified.
										

										 	 	

Table 1.52. ES archive configuration parameters
	Parameter	Description	Values	Default value
	
es-archive:
 bulk:
 actions:

										 	
											The number of requests that can be added to the queue before the bulk processor decides to commit updates to disk.
										

										 	 	
											0
										

										
	
es-archive:
 bulk:
 flush-interval:

										 	
											A time.Duration after which bulk requests are committed, regardless of other thresholds. To disable the bulk processor flush interval, set this to zero.
										

										 	 	
											0s
										

										
	
es-archive:
 bulk:
 size:

										 	
											The number of bytes that the bulk requests can take up before the bulk processor decides to commit updates to disk.
										

										 	 	
											0
										

										
	
es-archive:
 bulk:
 workers:

										 	
											The number of workers that are able to receive and commit bulk requests to Elasticsearch.
										

										 	 	
											0
										

										
	
es-archive:
 create-index-templates:

										 	
											Automatically create index templates at application startup when set to true. When templates are installed manually, set to false.
										

										 	
											true/ false
										

										 	
											false
										

										
	
es-archive:
 enabled:

										 	
											Enable extra storage.
										

										 	
											true/ false
										

										 	
											false
										

										
	
es-archive:
 index-prefix:

										 	
											Optional prefix for distributed tracing platform indices. For example, setting this to "production" creates indices named "production-tracing-*".
										

										 	 	
	
es-archive:
 max-doc-count:

										 	
											The maximum document count to return from an Elasticsearch query. This will also apply to aggregations.
										

										 	 	
											0
										

										
	
es-archive:
 max-num-spans:

										 	
											[Deprecated - Will be removed in a future release, use es-archive.max-doc-count instead.] The maximum number of spans to fetch at a time, per query, in Elasticsearch.
										

										 	 	
											0
										

										
	
es-archive:
 max-span-age:

										 	
											The maximum lookback for spans in Elasticsearch.
										

										 	 	
											0s
										

										
	
es-archive:
 num-replicas:

										 	
											The number of replicas per index in Elasticsearch.
										

										 	 	
											0
										

										
	
es-archive:
 num-shards:

										 	
											The number of shards per index in Elasticsearch.
										

										 	 	
											0
										

										
	
es-archive:
 password:

										 	
											The password required by Elasticsearch. See also, es.username.
										

										 	 	
	
es-archive:
 server-urls:

										 	
											The comma-separated list of Elasticsearch servers. Must be specified as fully qualified URLs, for example, http://localhost:9200.
										

										 	 	
	
es-archive:
 sniffer:

										 	
											The sniffer configuration for Elasticsearch. The client uses the sniffing process to find all nodes automatically. Disabled by default.
										

										 	
											true/ false
										

										 	
											false
										

										
	
es-archive:
 sniffer-tls-enabled:

										 	
											Option to enable TLS when sniffing an Elasticsearch Cluster. The client uses the sniffing process to find all nodes automatically. Disabled by default.
										

										 	
											true/ false
										

										 	
											false
										

										
	
es-archive:
 timeout:

										 	
											Timeout used for queries. When set to zero there is no timeout.
										

										 	 	
											0s
										

										
	
es-archive:
 tls:
 ca:

										 	
											Path to a TLS Certification Authority (CA) file used to verify the remote servers.
										

										 	 	
											Will use the system truststore by default.
										

										
	
es-archive:
 tls:
 cert:

										 	
											Path to a TLS Certificate file, used to identify this process to the remote servers.
										

										 	 	
	
es-archive:
 tls:
 enabled:

										 	
											Enable transport layer security (TLS) when talking to the remote servers. Disabled by default.
										

										 	
											true/ false
										

										 	
											false
										

										
	
es-archive:
 tls:
 key:

										 	
											Path to a TLS Private Key file, used to identify this process to the remote servers.
										

										 	 	
	
es-archive:
 tls:
 server-name:

										 	
											Override the expected TLS server name in the certificate of the remote servers.
										

										 	 	
	
es-archive:
 token-file:

										 	
											Path to a file containing the bearer token. This flag also loads the Certification Authority (CA) file if it is specified.
										

										 	 	
	
es-archive:
 username:

										 	
											The username required by Elasticsearch. The basic authentication also loads CA if it is specified. See also es-archive.password.
										

										 	 	
	
es-archive:
 version:

										 	
											The major Elasticsearch version. If not specified, the value will be auto-detected from Elasticsearch.
										

										 	 	
											0
										

										

Storage example with volume mounts

								

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 options:
 es:
 server-urls: https://quickstart-es-http.default.svc:9200
 index-prefix: my-prefix
 tls:
 ca: /es/certificates/ca.crt
 secretName: tracing-secret
 volumeMounts:
 - name: certificates
 mountPath: /es/certificates/
 readOnly: true
 volumes:
 - name: certificates
 secret:
 secretName: quickstart-es-http-certs-public

							

							The following example shows a Jaeger CR using an external Elasticsearch cluster with TLS CA certificate mounted from a volume and user/password stored in a secret.
						
External Elasticsearch example:

								

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 options:
 es:
 server-urls: https://quickstart-es-http.default.svc:9200 [image: 1]
 index-prefix: my-prefix
 tls: [image: 2]
 ca: /es/certificates/ca.crt
 secretName: tracing-secret [image: 3]
 volumeMounts: [image: 4]
 - name: certificates
 mountPath: /es/certificates/
 readOnly: true
 volumes:
 - name: certificates
 secret:
 secretName: quickstart-es-http-certs-public

							
	[image: 1]
	
									URL to Elasticsearch service running in default namespace.
								

	[image: 2]
	
									TLS configuration. In this case only CA certificate, but it can also contain es.tls.key and es.tls.cert when using mutual TLS.
								

	[image: 3]
	
									Secret which defines environment variables ES_PASSWORD and ES_USERNAME. Created by kubectl create secret generic tracing-secret --from-literal=ES_PASSWORD=changeme --from-literal=ES_USERNAME=elastic
								

	[image: 4]
	
									Volume mounts and volumes which are mounted into all storage components.
								

Managing certificates with Elasticsearch

						You can create and manage certificates using the Red Hat Elasticsearch Operator. Managing certificates using the Red Hat Elasticsearch Operator also lets you use a single Elasticsearch cluster with multiple Jaeger Collectors.
					
Important

							Managing certificates with Elasticsearch is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production.
						

							These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. For more information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/support/offerings/techpreview/.
						

						Starting with version 2.4, the Red Hat OpenShift distributed tracing platform Operator delegates certificate creation to the Red Hat Elasticsearch Operator by using the following annotations in the Elasticsearch custom resource:
					
	
								logging.openshift.io/elasticsearch-cert-management: "true"
							
	
								logging.openshift.io/elasticsearch-cert.jaeger-<shared-es-node-name>: "user.jaeger"
							
	
								logging.openshift.io/elasticsearch-cert.curator-<shared-es-node-name>: "system.logging.curator"
							

						Where the <shared-es-node-name> is the name of the Elasticsearch node. For example, if you create an Elasticsearch node named custom-es, your custom resource might look like the following example.
					
Example Elasticsearch CR showing annotations

							

apiVersion: logging.openshift.io/v1
kind: Elasticsearch
metadata:
 annotations:
 logging.openshift.io/elasticsearch-cert-management: "true"
 logging.openshift.io/elasticsearch-cert.jaeger-custom-es: "user.jaeger"
 logging.openshift.io/elasticsearch-cert.curator-custom-es: "system.logging.curator"
 name: custom-es
spec:
 managementState: Managed
 nodeSpec:
 resources:
 limits:
 memory: 16Gi
 requests:
 cpu: 1
 memory: 16Gi
 nodes:
 - nodeCount: 3
 proxyResources: {}
 resources: {}
 roles:
 - master
 - client
 - data
 storage: {}
 redundancyPolicy: ZeroRedundancy

						
Prerequisites
	
								OpenShift Container Platform 4.7
							
	
								logging subsystem for Red Hat OpenShift 5.2
							
	
								The Elasticsearch node and the Jaeger instances must be deployed in the same namespace. For example, tracing-system.
							

						You enable certificate management by setting spec.storage.elasticsearch.useCertManagement to true in the Jaeger custom resource.
					
Example showing useCertManagement

							

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 elasticsearch:
 name: custom-es
 doNotProvision: true
 useCertManagement: true

						

						The Red Hat OpenShift distributed tracing platform Operator sets the Elasticsearch custom resource name to the value of spec.storage.elasticsearch.name from the Jaeger custom resource when provisioning Elasticsearch.
					

						The certificates are provisioned by the Red Hat Elasticsearch Operator and the Red Hat OpenShift distributed tracing platform Operator injects the certificates.
					

						For more information about configuring Elasticsearch with OpenShift Container Platform, see Configuring the log store or Configuring and deploying distributed tracing.
					

Query configuration options

						Query is a service that retrieves traces from storage and hosts the user interface to display them.
					
Table 1.53. Parameters used by the Red Hat OpenShift distributed tracing platform Operator to define Query
	Parameter	Description	Values	Default value
	
spec:
 query:
 replicas:

									 	
										Specifies the number of Query replicas to create.
									

									 	
										Integer, for example, 2
									

									 	

Table 1.54. Configuration parameters passed to Query
	Parameter	Description	Values	Default value
	
spec:
 query:
 options: {}

									 	
										Configuration options that define the Query service.
									

									 	 	
	
options:
 log-level:

									 	
										Logging level for Query.
									

									 	
										Possible values: debug, info, warn, error, fatal, panic.
									

									 	
	
options:
 query:
 base-path:

									 	
										The base path for all jaeger-query HTTP routes can be set to a non-root value, for example, /jaeger would cause all UI URLs to start with /jaeger. This can be useful when running jaeger-query behind a reverse proxy.
									

									 	
										/<path>
									

									 	

Sample Query configuration

							

apiVersion: jaegertracing.io/v1
kind: "Jaeger"
metadata:
 name: "my-jaeger"
spec:
 strategy: allInOne
 allInOne:
 options:
 log-level: debug
 query:
 base-path: /jaeger

						

Ingester configuration options

						Ingester is a service that reads from a Kafka topic and writes to the Elasticsearch storage backend. If you are using the allInOne or production deployment strategies, you do not need to configure the Ingester service.
					
Table 1.55. Jaeger parameters passed to the Ingester
	Parameter	Description	Values
	
spec:
 ingester:
 options: {}

									 	
										Configuration options that define the Ingester service.
									

									 	
	
options:
 deadlockInterval:

									 	
										Specifies the interval, in seconds or minutes, that the Ingester must wait for a message before terminating. The deadlock interval is disabled by default (set to 0), to avoid terminating the Ingester when no messages arrive during system initialization.
									

									 	
										Minutes and seconds, for example, 1m0s. Default value is 0.
									

									
	
options:
 kafka:
 consumer:
 topic:

									 	
										The topic parameter identifies the Kafka configuration used by the collector to produce the messages, and the Ingester to consume the messages.
									

									 	
										Label for the consumer. For example, jaeger-spans.
									

									
	
options:
 kafka:
 consumer:
 brokers:

									 	
										Identifies the Kafka configuration used by the Ingester to consume the messages.
									

									 	
										Label for the broker, for example, my-cluster-kafka-brokers.kafka:9092.
									

									
	
options:
 log-level:

									 	
										Logging level for the Ingester.
									

									 	
										Possible values: debug, info, warn, error, fatal, dpanic, panic.
									

									

Streaming Collector and Ingester example

							

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-streaming
spec:
 strategy: streaming
 collector:
 options:
 kafka:
 producer:
 topic: jaeger-spans
 brokers: my-cluster-kafka-brokers.kafka:9092
 ingester:
 options:
 kafka:
 consumer:
 topic: jaeger-spans
 brokers: my-cluster-kafka-brokers.kafka:9092
 ingester:
 deadlockInterval: 5
 storage:
 type: elasticsearch
 options:
 es:
 server-urls: http://elasticsearch:9200

						

Uninstalling Service Mesh

				To uninstall Red Hat OpenShift Service Mesh from an existing OpenShift Container Platform instance and remove its resources, you must delete the control plane, delete the Operators, and run commands to manually remove some resources.
			
Removing the Red Hat OpenShift Service Mesh control plane

					To uninstall Service Mesh from an existing OpenShift Container Platform instance, first you delete the Service Mesh control plane and the Operators. Then, you run commands to remove residual resources.
				
Removing the Service Mesh control plane using the web console

						You can remove the Red Hat OpenShift Service Mesh control plane by using the web console.
					
Procedure
	
								Log in to the OpenShift Container Platform web console.
							
	
								Click the Project menu and select the project where you installed the Service Mesh control plane, for example istio-system.
							
	
								Navigate to Operators → Installed Operators.
							
	
								Click Service Mesh Control Plane under Provided APIs.
							
	
								Click the ServiceMeshControlPlane menu
								[image: kebab]
								 .
							
	
								Click Delete Service Mesh Control Plane.
							
	
								Click Delete on the confirmation dialog window to remove the ServiceMeshControlPlane.
							

Removing the Service Mesh control plane using the CLI

						You can remove the Red Hat OpenShift Service Mesh control plane by using the CLI. In this example, istio-system is the name of the control plane project.
					
Procedure
	
								Log in to the OpenShift Container Platform CLI.
							
	
								Run the following command to delete the ServiceMeshMemberRoll resource.
							
$ oc delete smmr -n istio-system default

	
								Run this command to retrieve the name of the installed ServiceMeshControlPlane:
							
$ oc get smcp -n istio-system

	
								Replace <name_of_custom_resource> with the output from the previous command, and run this command to remove the custom resource:
							
$ oc delete smcp -n istio-system <name_of_custom_resource>

Removing the installed Operators

					You must remove the Operators to successfully remove Red Hat OpenShift Service Mesh. After you remove the Red Hat OpenShift Service Mesh Operator, you must remove the Kiali Operator, the Red Hat OpenShift distributed tracing platform Operator, and the OpenShift Elasticsearch Operator.
				
Removing the Operators

						Follow this procedure to remove the Operators that make up Red Hat OpenShift Service Mesh. Repeat the steps for each of the following Operators.
					
	
								Red Hat OpenShift Service Mesh
							
	
								Kiali
							
	
								Red Hat OpenShift distributed tracing platform
							
	
								OpenShift Elasticsearch
							

Procedure
	
								Log in to the OpenShift Container Platform web console.
							
	
								From the Operators → Installed Operators page, scroll or type a keyword into the Filter by name to find each Operator. Then, click the Operator name.
							
	
								On the Operator Details page, select Uninstall Operator from the Actions menu. Follow the prompts to uninstall each Operator.
							

Clean up Operator resources

					You can manually remove resources left behind after removing the Red Hat OpenShift Service Mesh Operator using the OpenShift Container Platform web console.
				
Prerequisites
	
							An account with cluster administration access. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						
	
							Access to the OpenShift CLI (oc).
						

Procedure
	
							Log in to the OpenShift Container Platform CLI as a cluster administrator.
						
	
							Run the following commands to clean up resources after uninstalling the Operators. If you intend to keep using distributed tracing platform as a stand-alone service without service mesh, do not delete the Jaeger resources.
						
Note

								The OpenShift Elasticsearch Operator is installed in openshift-operators-redhat by default. The other Operators are installed in the openshift-operators namespace by default. If you installed the Operators in another namespace, replace openshift-operators with the name of the project where the Red Hat OpenShift Service Mesh Operator was installed.
							

$ oc delete validatingwebhookconfiguration/openshift-operators.servicemesh-resources.maistra.io
$ oc delete mutatingwebhookconfiguration/openshift-operators.servicemesh-resources.maistra.io
$ oc delete svc maistra-admission-controller -n openshift-operators
$ oc -n openshift-operators delete ds -lmaistra-version
$ oc delete clusterrole/istio-admin clusterrole/istio-cni clusterrolebinding/istio-cni
$ oc delete clusterrole istio-view istio-edit
$ oc delete clusterrole jaegers.jaegertracing.io-v1-admin jaegers.jaegertracing.io-v1-crdview jaegers.jaegertracing.io-v1-edit jaegers.jaegertracing.io-v1-view
$ oc get crds -o name | grep '.*\.istio\.io' | xargs -r -n 1 oc delete
$ oc get crds -o name | grep '.*\.maistra\.io' | xargs -r -n 1 oc delete
$ oc get crds -o name | grep '.*\.kiali\.io' | xargs -r -n 1 oc delete
$ oc delete crds jaegers.jaegertracing.io
$ oc delete cm -n openshift-operators maistra-operator-cabundle
$ oc delete cm -n openshift-operators istio-cni-config
$ oc delete sa -n openshift-operators istio-cni

Chapter 2. Service Mesh 1.x

Service Mesh Release Notes

Warning

					You are viewing documentation for a Red Hat OpenShift Service Mesh release that is no longer supported.
				

					Service Mesh version 1.0 and 1.1 control planes are no longer supported. For information about upgrading your service mesh control plane, see Upgrading Service Mesh.
				

					For information about the support status of a particular Red Hat OpenShift Service Mesh release, see the Product lifecycle page.
				

Making open source more inclusive

					Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
				

Introduction to Red Hat OpenShift Service Mesh

					Red Hat OpenShift Service Mesh addresses a variety of problems in a microservice architecture by creating a centralized point of control in an application. It adds a transparent layer on existing distributed applications without requiring any changes to the application code.
				

					Microservice architectures split the work of enterprise applications into modular services, which can make scaling and maintenance easier. However, as an enterprise application built on a microservice architecture grows in size and complexity, it becomes difficult to understand and manage. Service Mesh can address those architecture problems by capturing or intercepting traffic between services and can modify, redirect, or create new requests to other services.
				

					Service Mesh, which is based on the open source Istio project, provides an easy way to create a network of deployed services that provides discovery, load balancing, service-to-service authentication, failure recovery, metrics, and monitoring. A service mesh also provides more complex operational functionality, including A/B testing, canary releases, access control, and end-to-end authentication.
				

Getting support

					If you experience difficulty with a procedure described in this documentation, or with OpenShift Container Platform in general, visit the Red Hat Customer Portal. From the Customer Portal, you can:
				
	
							Search or browse through the Red Hat Knowledgebase of articles and solutions relating to Red Hat products.
						
	
							Submit a support case to Red Hat Support.
						
	
							Access other product documentation.
						

					To identify issues with your cluster, you can use Insights in OpenShift Cluster Manager. Insights provides details about issues and, if available, information on how to solve a problem.
				

					If you have a suggestion for improving this documentation or have found an error, submit a Jira issue for the most relevant documentation component. Please provide specific details, such as the section name and OpenShift Container Platform version.
				

					When opening a support case, it is helpful to provide debugging information about your cluster to Red Hat Support.
				

					The must-gather tool enables you to collect diagnostic information about your OpenShift Container Platform cluster, including virtual machines and other data related to Red Hat OpenShift Service Mesh.
				

					For prompt support, supply diagnostic information for both OpenShift Container Platform and Red Hat OpenShift Service Mesh.
				
About the must-gather tool

						The oc adm must-gather CLI command collects the information from your cluster that is most likely needed for debugging issues, including:
					
	
								Resource definitions
							
	
								Service logs
							

						By default, the oc adm must-gather command uses the default plugin image and writes into ./must-gather.local.
					

						Alternatively, you can collect specific information by running the command with the appropriate arguments as described in the following sections:
					
	
								To collect data related to one or more specific features, use the --image argument with an image, as listed in a following section.
							

								For example:
							
$ oc adm must-gather --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v4.9.0

	
								To collect the audit logs, use the -- /usr/bin/gather_audit_logs argument, as described in a following section.
							

								For example:
							
$ oc adm must-gather -- /usr/bin/gather_audit_logs
Note

									Audit logs are not collected as part of the default set of information to reduce the size of the files.
								

						When you run oc adm must-gather, a new pod with a random name is created in a new project on the cluster. The data is collected on that pod and saved in a new directory that starts with must-gather.local. This directory is created in the current working directory.
					

						For example:
					
NAMESPACE NAME READY STATUS RESTARTS AGE
...
openshift-must-gather-5drcj must-gather-bklx4 2/2 Running 0 72s
openshift-must-gather-5drcj must-gather-s8sdh 2/2 Running 0 72s
...

Prerequisites

	
								Access to the cluster as a user with the cluster-admin role.
							
	
								The OpenShift Container Platform CLI (oc) installed.
							

About collecting service mesh data

						You can use the oc adm must-gather CLI command to collect information about your cluster, including features and objects associated with Red Hat OpenShift Service Mesh.
					
Prerequisites
	
								Access to the cluster as a user with the cluster-admin role.
							
	
								The OpenShift Container Platform CLI (oc) installed.
							

Precedure
	
								To collect Red Hat OpenShift Service Mesh data with must-gather, you must specify the Red Hat OpenShift Service Mesh image.
							
$ oc adm must-gather --image=registry.redhat.io/openshift-service-mesh/istio-must-gather-rhel8

	
								To collect Red Hat OpenShift Service Mesh data for a specific Service Mesh control plane namespace with must-gather, you must specify the Red Hat OpenShift Service Mesh image and namespace. In this example, replace <namespace> with your Service Mesh control plane namespace, such as istio-system.
							
$ oc adm must-gather --image=registry.redhat.io/openshift-service-mesh/istio-must-gather-rhel8 gather <namespace>

Red Hat OpenShift Service Mesh supported configurations

					The following are the only supported configurations for the Red Hat OpenShift Service Mesh:
				
	
							OpenShift Container Platform version 4.6 or later.
						

Note

						OpenShift Online and Red Hat OpenShift Dedicated are not supported for Red Hat OpenShift Service Mesh.
					

	
							The deployment must be contained within a single OpenShift Container Platform cluster that is not federated.
						
	
							This release of Red Hat OpenShift Service Mesh is only available on OpenShift Container Platform x86_64.
						
	
							This release only supports configurations where all Service Mesh components are contained in the OpenShift Container Platform cluster in which it operates. It does not support management of microservices that reside outside of the cluster, or in a multi-cluster scenario.
						
	
							This release only supports configurations that do not integrate external services such as virtual machines.
						

					For additional information about Red Hat OpenShift Service Mesh lifecycle and supported configurations, refer to the Support Policy.
				
Supported configurations for Kiali on Red Hat OpenShift Service Mesh

	
								The Kiali observability console is only supported on the two most recent releases of the Chrome, Edge, Firefox, or Safari browsers.
							

Supported Mixer adapters

	
								This release only supports the following Mixer adapter:
							
	
										3scale Istio Adapter
									

New Features

					Red Hat OpenShift Service Mesh provides a number of key capabilities uniformly across a network of services:
				
	
							Traffic Management - Control the flow of traffic and API calls between services, make calls more reliable, and make the network more robust in the face of adverse conditions.
						
	
							Service Identity and Security - Provide services in the mesh with a verifiable identity and provide the ability to protect service traffic as it flows over networks of varying degrees of trustworthiness.
						
	
							Policy Enforcement - Apply organizational policy to the interaction between services, ensure access policies are enforced and resources are fairly distributed among consumers. Policy changes are made by configuring the mesh, not by changing application code.
						
	
							Telemetry - Gain understanding of the dependencies between services and the nature and flow of traffic between them, providing the ability to quickly identify issues.
						

New features Red Hat OpenShift Service Mesh 1.1.18.2

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs).
					
Component versions included in Red Hat OpenShift Service Mesh version 1.1.18.2

	Component	Version
	
											Istio
										

										 	
											1.4.10
										

										
	
											Jaeger
										

										 	
											1.30.2
										

										
	
											Kiali
										

										 	
											1.12.21.1
										

										
	
											3scale Istio Adapter
										

										 	
											1.0.0
										

										

New features Red Hat OpenShift Service Mesh 1.1.18.1

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs).
					
Component versions included in Red Hat OpenShift Service Mesh version 1.1.18.1

	Component	Version
	
											Istio
										

										 	
											1.4.10
										

										
	
											Jaeger
										

										 	
											1.30.2
										

										
	
											Kiali
										

										 	
											1.12.20.1
										

										
	
											3scale Istio Adapter
										

										 	
											1.0.0
										

										

New features Red Hat OpenShift Service Mesh 1.1.18

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs).
					
Component versions included in Red Hat OpenShift Service Mesh version 1.1.18

	Component	Version
	
											Istio
										

										 	
											1.4.10
										

										
	
											Jaeger
										

										 	
											1.24.0
										

										
	
											Kiali
										

										 	
											1.12.18
										

										
	
											3scale Istio Adapter
										

										 	
											1.0.0
										

										

New features Red Hat OpenShift Service Mesh 1.1.17.1

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs).
					
Change in how Red Hat OpenShift Service Mesh handles URI fragments

							Red Hat OpenShift Service Mesh contains a remotely exploitable vulnerability, CVE-2021-39156, where an HTTP request with a fragment (a section in the end of a URI that begins with a # character) in the URI path could bypass the Istio URI path-based authorization policies. For instance, an Istio authorization policy denies requests sent to the URI path /user/profile. In the vulnerable versions, a request with URI path /user/profile#section1 bypasses the deny policy and routes to the backend (with the normalized URI path /user/profile%23section1), possibly leading to a security incident.
						

							You are impacted by this vulnerability if you use authorization policies with DENY actions and operation.paths, or ALLOW actions and operation.notPaths.
						

							With the mitigation, the fragment part of the request’s URI is removed before the authorization and routing. This prevents a request with a fragment in its URI from bypassing authorization policies which are based on the URI without the fragment part.
						

Required update for authorization policies

							Istio generates hostnames for both the hostname itself and all matching ports. For instance, a virtual service or Gateway for a host of "httpbin.foo" generates a config matching "httpbin.foo and httpbin.foo:*". However, exact match authorization policies only match the exact string given for the hosts or notHosts fields.
						

							Your cluster is impacted if you have AuthorizationPolicy resources using exact string comparison for the rule to determine hosts or notHosts.
						

							You must update your authorization policy rules to use prefix match instead of exact match. For example, replacing hosts: ["httpbin.com"] with hosts: ["httpbin.com:*"] in the first AuthorizationPolicy example.
						
First example AuthorizationPolicy using prefix match

								

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: foo
spec:
 action: DENY
 rules:
 - from:
 - source:
 namespaces: ["dev"]
 to:
 - operation:
 hosts: [“httpbin.com”,"httpbin.com:*"]

							
Second example AuthorizationPolicy using prefix match

								

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: httpbin
 namespace: default
spec:
 action: DENY
 rules:
 - to:
 - operation:
 hosts: ["httpbin.example.com:*"]

							

New features Red Hat OpenShift Service Mesh 1.1.17

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 1.1.16

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 1.1.15

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 1.1.14

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					
Important

							There are manual steps that must be completed to address CVE-2021-29492 and CVE-2021-31920.
						

Manual updates required by CVE-2021-29492 and CVE-2021-31920

							Istio contains a remotely exploitable vulnerability where an HTTP request path with multiple slashes or escaped slash characters (%2F` or %5C`) could potentially bypass an Istio authorization policy when path-based authorization rules are used.
						

							For example, assume an Istio cluster administrator defines an authorization DENY policy to reject the request at path /admin. A request sent to the URL path //admin will NOT be rejected by the authorization policy.
						

							According to RFC 3986, the path //admin with multiple slashes should technically be treated as a different path from the /admin. However, some backend services choose to normalize the URL paths by merging multiple slashes into a single slash. This can result in a bypass of the authorization policy (//admin does not match /admin), and a user can access the resource at path /admin in the backend; this would represent a security incident.
						

							Your cluster is impacted by this vulnerability if you have authorization policies using ALLOW action + notPaths field or DENY action + paths field patterns. These patterns are vulnerable to unexpected policy bypasses.
						

							Your cluster is NOT impacted by this vulnerability if:
						
	
									You don’t have authorization policies.
								
	
									Your authorization policies don’t define paths or notPaths fields.
								
	
									Your authorization policies use ALLOW action + paths field or DENY action + notPaths field patterns. These patterns could only cause unexpected rejection instead of policy bypasses. The upgrade is optional for these cases.
								

Note

								The Red Hat OpenShift Service Mesh configuration location for path normalization is different from the Istio configuration.
							

Updating the path normalization configuration

							Istio authorization policies can be based on the URL paths in the HTTP request. Path normalization, also known as URI normalization, modifies and standardizes the incoming requests' paths so that the normalized paths can be processed in a standard way. Syntactically different paths may be equivalent after path normalization.
						

							Istio supports the following normalization schemes on the request paths before evaluating against the authorization policies and routing the requests:
						
Table 2.1. Normalization schemes
	Option	Description	Example	Notes
	
											NONE
										

										 	
											No normalization is done. Anything received by Envoy will be forwarded exactly as-is to any backend service.
										

										 	
											../%2Fa../b is evaluated by the authorization policies and sent to your service.
										

										 	
											This setting is vulnerable to CVE-2021-31920.
										

										
	
											BASE
										

										 	
											This is currently the option used in the default installation of Istio. This applies the normalize_path option on Envoy proxies, which follows RFC 3986 with extra normalization to convert backslashes to forward slashes.
										

										 	
											/a/../b is normalized to /b. \da is normalized to /da.
										

										 	
											This setting is vulnerable to CVE-2021-31920.
										

										
	
											MERGE_SLASHES
										

										 	
											Slashes are merged after the BASE normalization.
										

										 	
											/a//b is normalized to /a/b.
										

										 	
											Update to this setting to mitigate CVE-2021-31920.
										

										
	
											DECODE_AND_MERGE_SLASHES
										

										 	
											The strictest setting when you allow all traffic by default. This setting is recommended, with the caveat that you must thoroughly test your authorization policies routes. Percent-encoded slash and backslash characters (%2F, %2f, %5C and %5c) are decoded to / or \, before the MERGE_SLASHES normalization.
										

										 	
											/a%2fb is normalized to /a/b.
										

										 	
											Update to this setting to mitigate CVE-2021-31920. This setting is more secure, but also has the potential to break applications. Test your applications before deploying to production.
										

										

							The normalization algorithms are conducted in the following order:
						
	
									Percent-decode %2F, %2f, %5C and %5c.
								
	
									The RFC 3986 and other normalization implemented by the normalize_path option in Envoy.
								
	
									Merge slashes.
								

Warning

								While these normalization options represent recommendations from HTTP standards and common industry practices, applications may interpret a URL in any way it chooses to. When using denial policies, ensure that you understand how your application behaves.
							

Path normalization configuration examples

							Ensuring Envoy normalizes request paths to match your backend services' expectations is critical to the security of your system. The following examples can be used as a reference for you to configure your system. The normalized URL paths, or the original URL paths if NONE is selected, will be:
						
	
									Used to check against the authorization policies.
								
	
									Forwarded to the backend application.
								

Table 2.2. Configuration examples
	If your application…​	Choose…​
	
											Relies on the proxy to do normalization
										

										 	
											BASE, MERGE_SLASHES or DECODE_AND_MERGE_SLASHES
										

										
	
											Normalizes request paths based on RFC 3986 and does not merge slashes.
										

										 	
											BASE
										

										
	
											Normalizes request paths based on RFC 3986 and merges slashes, but does not decode percent-encoded slashes.
										

										 	
											MERGE_SLASHES
										

										
	
											Normalizes request paths based on RFC 3986, decodes percent-encoded slashes, and merges slashes.
										

										 	
											DECODE_AND_MERGE_SLASHES
										

										
	
											Processes request paths in a way that is incompatible with RFC 3986.
										

										 	
											NONE
										

										

Configuring your SMCP for path normalization

							To configure path normalization for Red Hat OpenShift Service Mesh, specify the following in your ServiceMeshControlPlane. Use the configuration examples to help determine the settings for your system.
						
SMCP v1 pathNormalization

								

spec:
 global:
 pathNormalization: <option>

							

New features Red Hat OpenShift Service Mesh 1.1.13

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 1.1.12

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 1.1.11

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 1.1.10

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 1.1.9

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 1.1.8

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 1.1.7

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 1.1.6

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 1.1.5

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

						This release also added support for configuring cipher suites.
					

New features Red Hat OpenShift Service Mesh 1.1.4

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					
Note

							There are manual steps that must be completed to address CVE-2020-8663.
						

Manual updates required by CVE-2020-8663

							The fix for CVE-2020-8663: envoy: Resource exhaustion when accepting too many connections added a configurable limit on downstream connections. The configuration option for this limit must be configured to mitigate this vulnerability.
						
Important

								These manual steps are required to mitigate this CVE whether you are using the 1.1 version or the 1.0 version of Red Hat OpenShift Service Mesh.
							

							This new configuration option is called overload.global_downstream_max_connections, and it is configurable as a proxy runtime setting. Perform the following steps to configure limits at the Ingress Gateway.
						
Procedure
	
									Create a file named bootstrap-override.json with the following text to force the proxy to override the bootstrap template and load runtime configuration from disk:
								
 {
 "runtime": {
 "symlink_root": "/var/lib/istio/envoy/runtime"
 }
 }

	
									Create a secret from the bootstrap-override.json file, replacing <SMCPnamespace> with the namespace where you created the service mesh control plane (SMCP):
								
$ oc create secret generic -n <SMCPnamespace> gateway-bootstrap --from-file=bootstrap-override.json

	
									Update the SMCP configuration to activate the override.
								
Updated SMCP configuration example #1

										

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 gateways:
 istio-ingressgateway:
 env:
 ISTIO_BOOTSTRAP_OVERRIDE: /var/lib/istio/envoy/custom-bootstrap/bootstrap-override.json
 secretVolumes:
 - mountPath: /var/lib/istio/envoy/custom-bootstrap
 name: custom-bootstrap
 secretName: gateway-bootstrap

									

	
									To set the new configuration option, create a secret that has the desired value for the overload.global_downstream_max_connections setting. The following example uses a value of 10000:
								
$ oc create secret generic -n <SMCPnamespace> gateway-settings --from-literal=overload.global_downstream_max_connections=10000

	
									Update the SMCP again to mount the secret in the location where Envoy is looking for runtime configuration:
								

Updated SMCP configuration example #2

								

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 template: default
#Change the version to "v1.0" if you are on the 1.0 stream.
 version: v1.1
 istio:
 gateways:
 istio-ingressgateway:
 env:
 ISTIO_BOOTSTRAP_OVERRIDE: /var/lib/istio/envoy/custom-bootstrap/bootstrap-override.json
 secretVolumes:
 - mountPath: /var/lib/istio/envoy/custom-bootstrap
 name: custom-bootstrap
 secretName: gateway-bootstrap
 # below is the new secret mount
 - mountPath: /var/lib/istio/envoy/runtime
 name: gateway-settings
 secretName: gateway-settings

							

Upgrading from Elasticsearch 5 to Elasticsearch 6

							When updating from Elasticsearch 5 to Elasticsearch 6, you must delete your Jaeger instance, then recreate the Jaeger instance because of an issue with certificates. Re-creating the Jaeger instance triggers creating a new set of certificates. If you are using persistent storage the same volumes can be mounted for the new Jaeger instance as long as the Jaeger name and namespace for the new Jaeger instance are the same as the deleted Jaeger instance.
						
Procedure if Jaeger is installed as part of Red Hat Service Mesh
	
									Determine the name of your Jaeger custom resource file:
								
$ oc get jaeger -n istio-system

									You should see something like the following:
								
NAME AGE
jaeger 3d21h

	
									Copy the generated custom resource file into a temporary directory:
								
$ oc get jaeger jaeger -oyaml -n istio-system > /tmp/jaeger-cr.yaml

	
									Delete the Jaeger instance:
								
$ oc delete jaeger jaeger -n istio-system

	
									Recreate the Jaeger instance from your copy of the custom resource file:
								
$ oc create -f /tmp/jaeger-cr.yaml -n istio-system

	
									Delete the copy of the generated custom resource file:
								
$ rm /tmp/jaeger-cr.yaml

Procedure if Jaeger not installed as part of Red Hat Service Mesh

								Before you begin, create a copy of your Jaeger custom resource file.
							
	
									Delete the Jaeger instance by deleting the custom resource file:
								
$ oc delete -f <jaeger-cr-file>

									For example:
								
$ oc delete -f jaeger-prod-elasticsearch.yaml

	
									Recreate your Jaeger instance from the backup copy of your custom resource file:
								
$ oc create -f <jaeger-cr-file>

	
									Validate that your Pods have restarted:
								
$ oc get pods -n jaeger-system -w

New features Red Hat OpenShift Service Mesh 1.1.3

						This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.
					

New features Red Hat OpenShift Service Mesh 1.1.2

						This release of Red Hat OpenShift Service Mesh addresses a security vulnerability.
					

New features Red Hat OpenShift Service Mesh 1.1.1

						This release of Red Hat OpenShift Service Mesh adds support for a disconnected installation.
					

New features Red Hat OpenShift Service Mesh 1.1.0

						This release of Red Hat OpenShift Service Mesh adds support for Istio 1.4.6 and Jaeger 1.17.1.
					
Manual updates from 1.0 to 1.1

							If you are updating from Red Hat OpenShift Service Mesh 1.0 to 1.1, you must update the ServiceMeshControlPlane resource to update the control plane components to the new version.
						
	
									In the web console, click the Red Hat OpenShift Service Mesh Operator.
								
	
									Click the Project menu and choose the project where your ServiceMeshControlPlane is deployed from the list, for example istio-system.
								
	
									Click the name of your control plane, for example basic-install.
								
	
									Click YAML and add a version field to the spec: of your ServiceMeshControlPlane resource. For example, to update to Red Hat OpenShift Service Mesh 1.1.0, add version: v1.1.
								

spec:
 version: v1.1
 ...

							The version field specifies the version of Service Mesh to install and defaults to the latest available version.
						
Note

								Note that support for Red Hat OpenShift Service Mesh v1.0 ended in October, 2020. You must upgrade to either v1.1 or v2.0.
							

Deprecated features

					Some features available in previous releases have been deprecated or removed.
				

					Deprecated functionality is still included in OpenShift Container Platform and continues to be supported; however, it will be removed in a future release of this product and is not recommended for new deployments.
				
Deprecated features Red Hat OpenShift Service Mesh 1.1.5

						The following custom resources were deprecated in release 1.1.5 and were removed in release 1.1.12
					
	
								Policy - The Policy resource is deprecated and will be replaced by the PeerAuthentication resource in a future release.
							
	
								MeshPolicy - The MeshPolicy resource is deprecated and will be replaced by the PeerAuthentication resource in a future release.
							
	
								v1alpha1 RBAC API -The v1alpha1 RBAC policy is deprecated by the v1beta1 AuthorizationPolicy. RBAC (Role Based Access Control) defines ServiceRole and ServiceRoleBinding objects.
							
	
										ServiceRole
									
	
										ServiceRoleBinding
									

	
								RbacConfig - RbacConfig implements the Custom Resource Definition for controlling Istio RBAC behavior.
							
	
										ClusterRbacConfig(versions prior to Red Hat OpenShift Service Mesh 1.0)
									
	
										ServiceMeshRbacConfig (Red Hat OpenShift Service Mesh version 1.0 and later)
									

	
								In Kiali, the login and LDAP strategies are deprecated. A future version will introduce authentication using OpenID providers.
							

						The following components are also deprecated in this release and will be replaced by the Istiod component in a future release.
					
	
								Mixer - access control and usage policies
							
	
								Pilot - service discovery and proxy configuration
							
	
								Citadel - certificate generation
							
	
								Galley - configuration validation and distribution
							

Known issues

					These limitations exist in Red Hat OpenShift Service Mesh:
				
	
							Red Hat OpenShift Service Mesh does not support IPv6, as it is not supported by the upstream Istio project, nor fully supported by OpenShift Container Platform.
						
	
							Graph layout - The layout for the Kiali graph can render differently, depending on your application architecture and the data to display (number of graph nodes and their interactions). Because it is difficult if not impossible to create a single layout that renders nicely for every situation, Kiali offers a choice of several different layouts. To choose a different layout, you can choose a different Layout Schema from the Graph Settings menu.
						
	
							The first time you access related services such as Jaeger and Grafana, from the Kiali console, you must accept the certificate and re-authenticate using your OpenShift Container Platform login credentials. This happens due to an issue with how the framework displays embedded pages in the console.
						

Service Mesh known issues

						These are the known issues in Red Hat OpenShift Service Mesh:
					
	
								Jaeger/Kiali Operator upgrade blocked with operator pending When upgrading the Jaeger or Kiali Operators with Service Mesh 1.0.x installed, the operator status shows as Pending.
							

								Workaround: See the linked Knowledge Base article for more information.
							

	
								Istio-14743 Due to limitations in the version of Istio that this release of Red Hat OpenShift Service Mesh is based on, there are several applications that are currently incompatible with Service Mesh. See the linked community issue for details.
							
	
								MAISTRA-858 The following Envoy log messages describing deprecated options and configurations associated with Istio 1.1.x are expected:
							
	
										[2019-06-03 07:03:28.943][19][warning][misc] [external/envoy/source/common/protobuf/utility.cc:129] Using deprecated option 'envoy.api.v2.listener.Filter.config'. This configuration will be removed from Envoy soon.
									
	
										[2019-08-12 22:12:59.001][13][warning][misc] [external/envoy/source/common/protobuf/utility.cc:174] Using deprecated option 'envoy.api.v2.Listener.use_original_dst' from file lds.proto. This configuration will be removed from Envoy soon.
									

	
								MAISTRA-806 Evicted Istio Operator Pod causes mesh and CNI not to deploy.
							

								Workaround: If the istio-operator pod is evicted while deploying the control pane, delete the evicted istio-operator pod.
							

	
								MAISTRA-681 When the control plane has many namespaces, it can lead to performance issues.
							
	
								MAISTRA-465 The Maistra Operator fails to create a service for operator metrics.
							
	
								MAISTRA-453 If you create a new project and deploy pods immediately, sidecar injection does not occur. The operator fails to add the maistra.io/member-of before the pods are created, therefore the pods must be deleted and recreated for sidecar injection to occur.
							
	
								MAISTRA-158 Applying multiple gateways referencing the same hostname will cause all gateways to stop functioning.
							

Kiali known issues

Note

							New issues for Kiali should be created in the OpenShift Service Mesh project with the Component set to Kiali.
						

						These are the known issues in Kiali:
					
	
								KIALI-2206 When you are accessing the Kiali console for the first time, and there is no cached browser data for Kiali, the “View in Grafana” link on the Metrics tab of the Kiali Service Details page redirects to the wrong location. The only way you would encounter this issue is if you are accessing Kiali for the first time.
							
	
								KIALI-507 Kiali does not support Internet Explorer 11. This is because the underlying frameworks do not support Internet Explorer. To access the Kiali console, use one of the two most recent versions of the Chrome, Edge, Firefox or Safari browser.
							

Red Hat OpenShift distributed tracing known issues

						These limitations exist in Red Hat OpenShift distributed tracing:
					
	
								Apache Spark is not supported.
							
	
								The streaming deployment via AMQ/Kafka is unsupported on IBM Z and IBM Power Systems.
							

						These are the known issues for Red Hat OpenShift distributed tracing:
					
	
								TRACING-2057 The Kafka API has been updated to v1beta2 to support the Strimzi Kafka Operator 0.23.0. However, this API version is not supported by AMQ Streams 1.6.3. If you have the following environment, your Jaeger services will not be upgraded, and you cannot create new Jaeger services or modify existing Jaeger services:
							
	
										Jaeger Operator channel: 1.17.x stable or 1.20.x stable
									
	
										AMQ Streams Operator channel: amq-streams-1.6.x
									

										To resolve this issue, switch the subscription channel for your AMQ Streams Operator to either amq-streams-1.7.x or stable.
									

Fixed issues

					The following issues been resolved in the current release:
				
Service Mesh fixed issues

	
								MAISTRA-2371 Handle tombstones in listerInformer. The updated cache codebase was not handling tombstones when translating the events from the namespace caches to the aggregated cache, leading to a panic in the go routine.
							
	
								OSSM-542 Galley is not using the new certificate after rotation.
							
	
								OSSM-99 Workloads generated from direct pod without labels may crash Kiali.
							
	
								OSSM-93 IstioConfigList can’t filter by two or more names.
							
	
								OSSM-92 Cancelling unsaved changes on the VS/DR YAML edit page does not cancel the changes.
							
	
								OSSM-90 Traces not available on the service details page.
							

	
								MAISTRA-1649 Headless services conflict when in different namespaces. When deploying headless services within different namespaces the endpoint configuration is merged and results in invalid Envoy configurations being pushed to the sidecars.
							
	
								MAISTRA-1541 Panic in kubernetesenv when the controller is not set on owner reference. If a pod has an ownerReference which does not specify the controller, this will cause a panic within the kubernetesenv cache.go code.
							
	
								MAISTRA-1352 Cert-manager Custom Resource Definitions (CRD) from the control plane installation have been removed for this release and future releases. If you have already installed Red Hat OpenShift Service Mesh, the CRDs must be removed manually if cert-manager is not being used.
							
	
								MAISTRA-1001 Closing HTTP/2 connections could lead to segmentation faults in istio-proxy.
							
	
								MAISTRA-932 Added the requires metadata to add dependency relationship between Jaeger Operator and OpenShift Elasticsearch Operator. Ensures that when the Jaeger Operator is installed, it automatically deploys the OpenShift Elasticsearch Operator if it is not available.
							
	
								MAISTRA-862 Galley dropped watches and stopped providing configuration to other components after many namespace deletions and re-creations.
							
	
								MAISTRA-833 Pilot stopped delivering configuration after many namespace deletions and re-creations.
							
	
								MAISTRA-684 The default Jaeger version in the istio-operator is 1.12.0, which does not match Jaeger version 1.13.1 that shipped in Red Hat OpenShift Service Mesh 0.12.TechPreview.
							
	
								MAISTRA-622 In Maistra 0.12.0/TP12, permissive mode does not work. The user has the option to use Plain text mode or Mutual TLS mode, but not permissive.
							
	
								MAISTRA-572 Jaeger cannot be used with Kiali. In this release Jaeger is configured to use the OAuth proxy, but is also only configured to work through a browser and does not allow service access. Kiali cannot properly communicate with the Jaeger endpoint and it considers Jaeger to be disabled. See also TRACING-591.
							
	
								MAISTRA-357 In OpenShift 4 Beta on AWS, it is not possible, by default, to access a TCP or HTTPS service through the ingress gateway on a port other than port 80. The AWS load balancer has a health check that verifies if port 80 on the service endpoint is active. Without a service running on port 80, the load balancer health check fails.
							
	
								MAISTRA-348 OpenShift 4 Beta on AWS does not support ingress gateway traffic on ports other than 80 or 443. If you configure your ingress gateway to handle TCP traffic with a port number other than 80 or 443, you have to use the service hostname provided by the AWS load balancer rather than the OpenShift router as a workaround.
							
	
								MAISTRA-193 Unexpected console info messages are visible when health checking is enabled for citadel.
							
	
								Bug 1821432 Toggle controls in OpenShift Container Platform Control Resource details page do not update the CR correctly. UI Toggle controls in the Service Mesh Control Plane (SMCP) Overview page in the OpenShift Container Platform web console sometimes update the wrong field in the resource. To update a ServiceMeshControlPlane resource, edit the YAML content directly or update the resource from the command line instead of clicking the toggle controls.
							

Kiali fixed issues

	
								KIALI-3239 If a Kiali Operator pod has failed with a status of “Evicted” it blocks the Kiali operator from deploying. The workaround is to delete the Evicted pod and redeploy the Kiali operator.
							
	
								KIALI-3118 After changes to the ServiceMeshMemberRoll, for example adding or removing projects, the Kiali pod restarts and then displays errors on the Graph page while the Kiali pod is restarting.
							
	
								KIALI-3096 Runtime metrics fail in Service Mesh. There is an OAuth filter between the Service Mesh and Prometheus, requiring a bearer token to be passed to Prometheus before access is granted. Kiali has been updated to use this token when communicating to the Prometheus server, but the application metrics are currently failing with 403 errors.
							
	
								KIALI-3070 This bug only affects custom dashboards, not the default dashboards. When you select labels in metrics settings and refresh the page, your selections are retained in the menu but your selections are not displayed on the charts.
							
	
								KIALI-2686 When the control plane has many namespaces, it can lead to performance issues.
							

Red Hat OpenShift distributed tracing fixed issues

	
								TRACING-2337 Jaeger is logging a repetitive warning message in the Jaeger logs similar to the following:
							
{"level":"warn","ts":1642438880.918793,"caller":"channelz/logging.go:62","msg":"[core]grpc: Server.Serve failed to create ServerTransport: connection error: desc = \"transport: http2Server.HandleStreams received bogus greeting from client: \\\"\\\\x16\\\\x03\\\\x01\\\\x02\\\\x00\\\\x01\\\\x00\\\\x01\\\\xfc\\\\x03\\\\x03vw\\\\x1a\\\\xc9T\\\\xe7\\\\xdaCj\\\\xb7\\\\x8dK\\\\xa6\\\"\"","system":"grpc","grpc_log":true}

								This issue was resolved by exposing only the HTTP(S) port of the query service, and not the gRPC port.
							

	
								TRACING-2009 The Jaeger Operator has been updated to include support for the Strimzi Kafka Operator 0.23.0.
							
	
								TRACING-1907 The Jaeger agent sidecar injection was failing due to missing config maps in the application namespace. The config maps were getting automatically deleted due to an incorrect OwnerReference field setting and as a result, the application pods were not moving past the "ContainerCreating" stage. The incorrect settings have been removed.
							
	
								TRACING-1725 Follow-up to TRACING-1631. Additional fix to ensure that Elasticsearch certificates are properly reconciled when there are multiple Jaeger production instances, using same name but within different namespaces. See also BZ-1918920.
							
	
								TRACING-1631 Multiple Jaeger production instances, using same name but within different namespaces, causing Elasticsearch certificate issue. When multiple service meshes were installed, all of the Jaeger Elasticsearch instances had the same Elasticsearch secret instead of individual secrets, which prevented the OpenShift Elasticsearch Operator from communicating with all of the Elasticsearch clusters.
							
	
								TRACING-1300 Failed connection between Agent and Collector when using Istio sidecar. An update of the Jaeger Operator enabled TLS communication by default between a Jaeger sidecar agent and the Jaeger Collector.
							
	
								TRACING-1208 Authentication "500 Internal Error" when accessing Jaeger UI. When trying to authenticate to the UI using OAuth, I get a 500 error because oauth-proxy sidecar doesn’t trust the custom CA bundle defined at installation time with the additionalTrustBundle.
							
	
								TRACING-1166 It is not currently possible to use the Jaeger streaming strategy within a disconnected environment. When a Kafka cluster is being provisioned, it results in a error: Failed to pull image registry.redhat.io/amq7/amq-streams-kafka-24-rhel7@sha256:f9ceca004f1b7dccb3b82d9a8027961f9fe4104e0ed69752c0bdd8078b4a1076.
							
	
								TRACING-809 Jaeger Ingester is incompatible with Kafka 2.3. When there are two or more instances of the Jaeger Ingester and enough traffic it will continuously generate rebalancing messages in the logs. This is due to a regression in Kafka 2.3 that was fixed in Kafka 2.3.1. For more information, see Jaegertracing-1819.
							
	
								BZ-1918920/LOG-1619 The Elasticsearch pods does not get restarted automatically after an update.
							

								Workaround: Restart the pods manually.
							

Understanding Service Mesh

Warning

					You are viewing documentation for a Red Hat OpenShift Service Mesh release that is no longer supported.
				

					Service Mesh version 1.0 and 1.1 control planes are no longer supported. For information about upgrading your service mesh control plane, see Upgrading Service Mesh.
				

					For information about the support status of a particular Red Hat OpenShift Service Mesh release, see the Product lifecycle page.
				

				Red Hat OpenShift Service Mesh provides a platform for behavioral insight and operational control over your networked microservices in a service mesh. With Red Hat OpenShift Service Mesh, you can connect, secure, and monitor microservices in your OpenShift Container Platform environment.
			
Understanding service mesh

					A service mesh is the network of microservices that make up applications in a distributed microservice architecture and the interactions between those microservices. When a Service Mesh grows in size and complexity, it can become harder to understand and manage.
				

					Based on the open source Istio project, Red Hat OpenShift Service Mesh adds a transparent layer on existing distributed applications without requiring any changes to the service code. You add Red Hat OpenShift Service Mesh support to services by deploying a special sidecar proxy to relevant services in the mesh that intercepts all network communication between microservices. You configure and manage the Service Mesh using the Service Mesh control plane features.
				

					Red Hat OpenShift Service Mesh gives you an easy way to create a network of deployed services that provide:
				
	
							Discovery
						
	
							Load balancing
						
	
							Service-to-service authentication
						
	
							Failure recovery
						
	
							Metrics
						
	
							Monitoring
						

					Red Hat OpenShift Service Mesh also provides more complex operational functions including:
				
	
							A/B testing
						
	
							Canary releases
						
	
							Access control
						
	
							End-to-end authentication
						

Red Hat OpenShift Service Mesh Architecture

					Red Hat OpenShift Service Mesh is logically split into a data plane and a control plane:
				

					The data plane is a set of intelligent proxies deployed as sidecars. These proxies intercept and control all inbound and outbound network communication between microservices in the service mesh. Sidecar proxies also communicate with Mixer, the general-purpose policy and telemetry hub.
				
	
							Envoy proxy intercepts all inbound and outbound traffic for all services in the service mesh. Envoy is deployed as a sidecar to the relevant service in the same pod.
						

					The control plane manages and configures proxies to route traffic, and configures Mixers to enforce policies and collect telemetry.
				
	
							Mixer enforces access control and usage policies (such as authorization, rate limits, quotas, authentication, and request tracing) and collects telemetry data from the Envoy proxy and other services.
						
	
							Pilot configures the proxies at runtime. Pilot provides service discovery for the Envoy sidecars, traffic management capabilities for intelligent routing (for example, A/B tests or canary deployments), and resiliency (timeouts, retries, and circuit breakers).
						
	
							Citadel issues and rotates certificates. Citadel provides strong service-to-service and end-user authentication with built-in identity and credential management. You can use Citadel to upgrade unencrypted traffic in the service mesh. Operators can enforce policies based on service identity rather than on network controls using Citadel.
						
	
							Galley ingests the service mesh configuration, then validates, processes, and distributes the configuration. Galley protects the other service mesh components from obtaining user configuration details from OpenShift Container Platform.
						

					Red Hat OpenShift Service Mesh also uses the istio-operator to manage the installation of the control plane. An Operator is a piece of software that enables you to implement and automate common activities in your OpenShift Container Platform cluster. It acts as a controller, allowing you to set or change the desired state of objects in your cluster.
				

Understanding Kiali

					Kiali provides visibility into your service mesh by showing you the microservices in your service mesh, and how they are connected.
				
Kiali overview

						Kiali provides observability into the Service Mesh running on OpenShift Container Platform. Kiali helps you define, validate, and observe your Istio service mesh. It helps you to understand the structure of your service mesh by inferring the topology, and also provides information about the health of your service mesh.
					

						Kiali provides an interactive graph view of your namespace in real time that provides visibility into features like circuit breakers, request rates, latency, and even graphs of traffic flows. Kiali offers insights about components at different levels, from Applications to Services and Workloads, and can display the interactions with contextual information and charts on the selected graph node or edge. Kiali also provides the ability to validate your Istio configurations, such as gateways, destination rules, virtual services, mesh policies, and more. Kiali provides detailed metrics, and a basic Grafana integration is available for advanced queries. Distributed tracing is provided by integrating Jaeger into the Kiali console.
					

						Kiali is installed by default as part of the Red Hat OpenShift Service Mesh.
					

Kiali architecture

						Kiali is based on the open source Kiali project. Kiali is composed of two components: the Kiali application and the Kiali console.
					
	
								Kiali application (back end) – This component runs in the container application platform and communicates with the service mesh components, retrieves and processes data, and exposes this data to the console. The Kiali application does not need storage. When deploying the application to a cluster, configurations are set in ConfigMaps and secrets.
							
	
								Kiali console (front end) – The Kiali console is a web application. The Kiali application serves the Kiali console, which then queries the back end for data to present it to the user.
							

						In addition, Kiali depends on external services and components provided by the container application platform and Istio.
					
	
								Red Hat Service Mesh (Istio) - Istio is a Kiali requirement. Istio is the component that provides and controls the service mesh. Although Kiali and Istio can be installed separately, Kiali depends on Istio and will not work if it is not present. Kiali needs to retrieve Istio data and configurations, which are exposed through Prometheus and the cluster API.
							
	
								Prometheus - A dedicated Prometheus instance is included as part of the Red Hat OpenShift Service Mesh installation. When Istio telemetry is enabled, metrics data are stored in Prometheus. Kiali uses this Prometheus data to determine the mesh topology, display metrics, calculate health, show possible problems, and so on. Kiali communicates directly with Prometheus and assumes the data schema used by Istio Telemetry. Prometheus is an Istio dependency and a hard dependency for Kiali, and many of Kiali’s features will not work without Prometheus.
							
	
								Cluster API - Kiali uses the API of the OpenShift Container Platform (cluster API) to fetch and resolve service mesh configurations. Kiali queries the cluster API to retrieve, for example, definitions for namespaces, services, deployments, pods, and other entities. Kiali also makes queries to resolve relationships between the different cluster entities. The cluster API is also queried to retrieve Istio configurations like virtual services, destination rules, route rules, gateways, quotas, and so on.
							
	
								Jaeger - Jaeger is optional, but is installed by default as part of the Red Hat OpenShift Service Mesh installation. When you install the distributed tracing platform as part of the default Red Hat OpenShift Service Mesh installation, the Kiali console includes a tab to display distributed tracing data. Note that tracing data will not be available if you disable Istio’s distributed tracing feature. Also note that user must have access to the namespace where the Service Mesh control plane is installed to view tracing data.
							
	
								Grafana - Grafana is optional, but is installed by default as part of the Red Hat OpenShift Service Mesh installation. When available, the metrics pages of Kiali display links to direct the user to the same metric in Grafana. Note that user must have access to the namespace where the Service Mesh control plane is installed to view links to the Grafana dashboard and view Grafana data.
							

Kiali features

						The Kiali console is integrated with Red Hat Service Mesh and provides the following capabilities:
					
	
								Health – Quickly identify issues with applications, services, or workloads.
							
	
								Topology – Visualize how your applications, services, or workloads communicate via the Kiali graph.
							
	
								Metrics – Predefined metrics dashboards let you chart service mesh and application performance for Go, Node.js. Quarkus, Spring Boot, Thorntail and Vert.x. You can also create your own custom dashboards.
							
	
								Tracing – Integration with Jaeger lets you follow the path of a request through various microservices that make up an application.
							
	
								Validations – Perform advanced validations on the most common Istio objects (Destination Rules, Service Entries, Virtual Services, and so on).
							
	
								Configuration – Optional ability to create, update and delete Istio routing configuration using wizards or directly in the YAML editor in the Kiali Console.
							

Understanding Jaeger

					Every time a user takes an action in an application, a request is executed by the architecture that may require dozens of different services to participate to produce a response. The path of this request is a distributed transaction. Jaeger lets you perform distributed tracing, which follows the path of a request through various microservices that make up an application.
				

					Distributed tracing is a technique that is used to tie the information about different units of work together—usually executed in different processes or hosts—to understand a whole chain of events in a distributed transaction. Distributed tracing lets developers visualize call flows in large service oriented architectures. It can be invaluable in understanding serialization, parallelism, and sources of latency.
				

					Jaeger records the execution of individual requests across the whole stack of microservices, and presents them as traces. A trace is a data/execution path through the system. An end-to-end trace is comprised of one or more spans.
				

					A span represents a logical unit of work in Jaeger that has an operation name, the start time of the operation, and the duration. Spans may be nested and ordered to model causal relationships.
				
Distributed tracing overview

						As a service owner, you can use distributed tracing to instrument your services to gather insights into your service architecture. You can use distributed tracing for monitoring, network profiling, and troubleshooting the interaction between components in modern, cloud-native, microservices-based applications.
					

						With distributed tracing you can perform the following functions:
					
	
								Monitor distributed transactions
							
	
								Optimize performance and latency
							
	
								Perform root cause analysis
							

						Red Hat OpenShift distributed tracing consists of two main components:
					
	
								Red Hat OpenShift distributed tracing platform - This component is based on the open source Jaeger project.
							
	
								Red Hat OpenShift distributed tracing data collection - This component is based on the open source OpenTelemetry project.
							

						Both of these components are based on the vendor-neutral OpenTracing APIs and instrumentation.
					

Distributed tracing architecture

						The distributed tracing platform is based on the open source Jaeger project. The distributed tracing platform is made up of several components that work together to collect, store, and display tracing data.
					
	
								Jaeger Client (Tracer, Reporter, instrumented application, client libraries)- Jaeger clients are language specific implementations of the OpenTracing API. They can be used to instrument applications for distributed tracing either manually or with a variety of existing open source frameworks, such as Camel (Fuse), Spring Boot (RHOAR), MicroProfile (RHOAR/Thorntail), Wildfly (EAP), and many more, that are already integrated with OpenTracing.
							
	
								Jaeger Agent (Server Queue, Processor Workers) - The Jaeger agent is a network daemon that listens for spans sent over User Datagram Protocol (UDP), which it batches and sends to the collector. The agent is meant to be placed on the same host as the instrumented application. This is typically accomplished by having a sidecar in container environments like Kubernetes.
							
	
								Jaeger Collector (Queue, Workers) - Similar to the Agent, the Collector is able to receive spans and place them in an internal queue for processing. This allows the collector to return immediately to the client/agent instead of waiting for the span to make its way to the storage.
							
	
								Storage (Data Store) - Collectors require a persistent storage backend. Jaeger has a pluggable mechanism for span storage. Note that for this release, the only supported storage is Elasticsearch.
							
	
								Query (Query Service) - Query is a service that retrieves traces from storage.
							
	
								Ingester (Ingester Service) - Jaeger can use Apache Kafka as a buffer between the collector and the actual backing storage (Elasticsearch). Ingester is a service that reads data from Kafka and writes to another storage backend (Elasticsearch).
							
	
								Jaeger Console – Jaeger provides a user interface that lets you visualize your distributed tracing data. On the Search page, you can find traces and explore details of the spans that make up an individual trace.
							

Red Hat OpenShift distributed tracing features

						Red Hat OpenShift distributed tracing provides the following capabilities:
					
	
								Integration with Kiali – When properly configured, you can view distributed tracing data from the Kiali console.
							
	
								High scalability – The distributed tracing back end is designed to have no single points of failure and to scale with the business needs.
							
	
								Distributed Context Propagation – Enables you to connect data from different components together to create a complete end-to-end trace.
							
	
								Backwards compatibility with Zipkin – Red Hat OpenShift distributed tracing has APIs that enable it to be used as a drop-in replacement for Zipkin, but Red Hat is not supporting Zipkin compatibility in this release.
							

Next steps

	
							Prepare to install Red Hat OpenShift Service Mesh in your OpenShift Container Platform environment.
						

Service Mesh and Istio differences

Warning

					You are viewing documentation for a Red Hat OpenShift Service Mesh release that is no longer supported.
				

					Service Mesh version 1.0 and 1.1 control planes are no longer supported. For information about upgrading your service mesh control plane, see Upgrading Service Mesh.
				

					For information about the support status of a particular Red Hat OpenShift Service Mesh release, see the Product lifecycle page.
				

				An installation of Red Hat OpenShift Service Mesh differs from upstream Istio community installations in multiple ways. The modifications to Red Hat OpenShift Service Mesh are sometimes necessary to resolve issues, provide additional features, or to handle differences when deploying on OpenShift Container Platform.
			

				The current release of Red Hat OpenShift Service Mesh differs from the current upstream Istio community release in the following ways:
			
Multitenant installations

					Whereas upstream Istio takes a single tenant approach, Red Hat OpenShift Service Mesh supports multiple independent control planes within the cluster. Red Hat OpenShift Service Mesh uses a multitenant operator to manage the control plane lifecycle.
				

					Red Hat OpenShift Service Mesh installs a multitenant control plane by default. You specify the projects that can access the Service Mesh, and isolate the Service Mesh from other control plane instances.
				
Multitenancy versus cluster-wide installations

						The main difference between a multitenant installation and a cluster-wide installation is the scope of privileges used by istod. The components no longer use cluster-scoped Role Based Access Control (RBAC) resource ClusterRoleBinding.
					

						Every project in the ServiceMeshMemberRoll members list will have a RoleBinding for each service account associated with the control plane deployment and each control plane deployment will only watch those member projects. Each member project has a maistra.io/member-of label added to it, where the member-of value is the project containing the control plane installation.
					

						Red Hat OpenShift Service Mesh configures each member project to ensure network access between itself, the control plane, and other member projects. The exact configuration differs depending on how OpenShift Container Platform software-defined networking (SDN) is configured. See About OpenShift SDN for additional details.
					

						If the OpenShift Container Platform cluster is configured to use the SDN plugin:
					
	
								NetworkPolicy: Red Hat OpenShift Service Mesh creates a NetworkPolicy resource in each member project allowing ingress to all pods from the other members and the control plane. If you remove a member from Service Mesh, this NetworkPolicy resource is deleted from the project.
							
Note

									This also restricts ingress to only member projects. If you require ingress from non-member projects, you need to create a NetworkPolicy to allow that traffic through.
								

	
								Multitenant: Red Hat OpenShift Service Mesh joins the NetNamespace for each member project to the NetNamespace of the control plane project (the equivalent of running oc adm pod-network join-projects --to control-plane-project member-project). If you remove a member from the Service Mesh, its NetNamespace is isolated from the control plane (the equivalent of running oc adm pod-network isolate-projects member-project).
							
	
								Subnet: No additional configuration is performed.
							

Cluster scoped resources

						Upstream Istio has two cluster scoped resources that it relies on. The MeshPolicy and the ClusterRbacConfig. These are not compatible with a multitenant cluster and have been replaced as described below.
					
	
								ServiceMeshPolicy replaces MeshPolicy for configuration of control-plane-wide authentication policies. This must be created in the same project as the control plane.
							
	
								ServicemeshRbacConfig replaces ClusterRbacConfig for configuration of control-plane-wide role based access control. This must be created in the same project as the control plane.
							

Differences between Istio and Red Hat OpenShift Service Mesh

					An installation of Red Hat OpenShift Service Mesh differs from an installation of Istio in multiple ways. The modifications to Red Hat OpenShift Service Mesh are sometimes necessary to resolve issues, provide additional features, or to handle differences when deploying on OpenShift Container Platform.
				
Command line tool

						The command line tool for Red Hat OpenShift Service Mesh is oc. Red Hat OpenShift Service Mesh does not support istioctl.
					

Automatic injection

						The upstream Istio community installation automatically injects the sidecar into pods within the projects you have labeled.
					

						Red Hat OpenShift Service Mesh does not automatically inject the sidecar to any pods, but requires you to opt in to injection using an annotation without labeling projects. This method requires fewer privileges and does not conflict with other OpenShift capabilities such as builder pods. To enable automatic injection you specify the sidecar.istio.io/inject annotation as described in the Automatic sidecar injection section.
					

Istio Role Based Access Control features

						Istio Role Based Access Control (RBAC) provides a mechanism you can use to control access to a service. You can identify subjects by user name or by specifying a set of properties and apply access controls accordingly.
					

						The upstream Istio community installation includes options to perform exact header matches, match wildcards in headers, or check for a header containing a specific prefix or suffix.
					

						Red Hat OpenShift Service Mesh extends the ability to match request headers by using a regular expression. Specify a property key of request.regex.headers with a regular expression.
					
Upstream Istio community matching request headers example

							

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: httpbin-client-binding
 namespace: httpbin
spec:
 subjects:
 - user: "cluster.local/ns/istio-system/sa/istio-ingressgateway-service-account"
 properties:
 request.headers[<header>]: "value"

						
Red Hat OpenShift Service Mesh matching request headers by using regular expressions

							

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: httpbin-client-binding
 namespace: httpbin
spec:
 subjects:
 - user: "cluster.local/ns/istio-system/sa/istio-ingressgateway-service-account"
 properties:
 request.regex.headers[<header>]: "<regular expression>"

						

OpenSSL

						Red Hat OpenShift Service Mesh replaces BoringSSL with OpenSSL. OpenSSL is a software library that contains an open source implementation of the Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols. The Red Hat OpenShift Service Mesh Proxy binary dynamically links the OpenSSL libraries (libssl and libcrypto) from the underlying Red Hat Enterprise Linux operating system.
					

Component modifications

	
								A maistra-version label has been added to all resources.
							
	
								All Ingress resources have been converted to OpenShift Route resources.
							
	
								Grafana, Tracing (Jaeger), and Kiali are enabled by default and exposed through OpenShift routes.
							
	
								Godebug has been removed from all templates
							
	
								The istio-multi ServiceAccount and ClusterRoleBinding have been removed, as well as the istio-reader ClusterRole.
							

Envoy, Secret Discovery Service, and certificates

	
								Red Hat OpenShift Service Mesh does not support QUIC-based services.
							
	
								Deployment of TLS certificates using the Secret Discovery Service (SDS) functionality of Istio is not currently supported in Red Hat OpenShift Service Mesh. The Istio implementation depends on a nodeagent container that uses hostPath mounts.
							

Istio Container Network Interface (CNI) plugin

						Red Hat OpenShift Service Mesh includes CNI plugin, which provides you with an alternate way to configure application pod networking. The CNI plugin replaces the init-container network configuration eliminating the need to grant service accounts and projects access to Security Context Constraints (SCCs) with elevated privileges.
					

Routes for Istio Gateways

						OpenShift routes for Istio Gateways are automatically managed in Red Hat OpenShift Service Mesh. Every time an Istio Gateway is created, updated or deleted inside the service mesh, an OpenShift route is created, updated or deleted.
					

						A Red Hat OpenShift Service Mesh control plane component called Istio OpenShift Routing (IOR) synchronizes the gateway route. For more information, see Automatic route creation.
					
Catch-all domains

							Catch-all domains ("*") are not supported. If one is found in the Gateway definition, Red Hat OpenShift Service Mesh will create the route, but will rely on OpenShift to create a default hostname. This means that the newly created route will not be a catch all ("*") route, instead it will have a hostname in the form <route-name>[-<project>].<suffix>. See the OpenShift documentation for more information about how default hostnames work and how a cluster administrator can customize it.
						

Subdomains

							Subdomains (e.g.: "*.domain.com") are supported. However this ability doesn’t come enabled by default in OpenShift Container Platform. This means that Red Hat OpenShift Service Mesh will create the route with the subdomain, but it will only be in effect if OpenShift Container Platform is configured to enable it.
						

Transport layer security

							Transport Layer Security (TLS) is supported. This means that, if the Gateway contains a tls section, the OpenShift Route will be configured to support TLS.
						
Additional resources
	
									Automatic route creation
								

Kiali and service mesh

					Installing Kiali via the Service Mesh on OpenShift Container Platform differs from community Kiali installations in multiple ways. These modifications are sometimes necessary to resolve issues, provide additional features, or to handle differences when deploying on OpenShift Container Platform.
				
	
							Kiali has been enabled by default.
						
	
							Ingress has been enabled by default.
						
	
							Updates have been made to the Kiali ConfigMap.
						
	
							Updates have been made to the ClusterRole settings for Kiali.
						
	
							Do not edit the ConfigMap, because your changes might be overwritten by the Service Mesh or Kiali Operators. Files that the Kiali Operator manages have a kiali.io/ label or annotation. Updating the Operator files should be restricted to those users with cluster-admin privileges. If you use Red Hat OpenShift Dedicated, updating the Operator files should be restricted to those users with dedicated-admin privileges.
						

Distributed tracing and service mesh

					Installing the distributed tracing platform with the Service Mesh on OpenShift Container Platform differs from community Jaeger installations in multiple ways. These modifications are sometimes necessary to resolve issues, provide additional features, or to handle differences when deploying on OpenShift Container Platform.
				
	
							Distributed tracing has been enabled by default for Service Mesh.
						
	
							Ingress has been enabled by default for Service Mesh.
						
	
							The name for the Zipkin port name has changed to jaeger-collector-zipkin (from http)
						
	
							Jaeger uses Elasticsearch for storage by default when you select either the production or streaming deployment option.
						
	
							The community version of Istio provides a generic "tracing" route. Red Hat OpenShift Service Mesh uses a "jaeger" route that is installed by the Red Hat OpenShift distributed tracing platform Operator and is already protected by OAuth.
						
	
							Red Hat OpenShift Service Mesh uses a sidecar for the Envoy proxy, and Jaeger also uses a sidecar, for the Jaeger agent. These two sidecars are configured separately and should not be confused with each other. The proxy sidecar creates spans related to the pod’s ingress and egress traffic. The agent sidecar receives the spans emitted by the application and sends them to the Jaeger Collector.
						

Preparing to install Service Mesh

Warning

					You are viewing documentation for a Red Hat OpenShift Service Mesh release that is no longer supported.
				

					Service Mesh version 1.0 and 1.1 control planes are no longer supported. For information about upgrading your service mesh control plane, see Upgrading Service Mesh.
				

					For information about the support status of a particular Red Hat OpenShift Service Mesh release, see the Product lifecycle page.
				

				Before you can install Red Hat OpenShift Service Mesh, review the installation activities, ensure that you meet the prerequisites:
			
Prerequisites

	
							Possess an active OpenShift Container Platform subscription on your Red Hat account. If you do not have a subscription, contact your sales representative for more information.
						
	
							Review the OpenShift Container Platform 4.8 overview.
						
	
							Install OpenShift Container Platform 4.8.
						
	
									Install OpenShift Container Platform 4.8 on AWS
								
	
									Install OpenShift Container Platform 4.8 on user-provisioned AWS
								
	
									Install OpenShift Container Platform 4.8 on bare metal
								
	
									Install OpenShift Container Platform 4.8 on vSphere
								
Note

										If you are installing Red Hat OpenShift Service Mesh on a restricted network, follow the instructions for your chosen OpenShift Container Platform infrastructure.
									

	
							Install the version of the OpenShift Container Platform command line utility (the oc client tool) that matches your OpenShift Container Platform version and add it to your path.
						
	
									If you are using OpenShift Container Platform 4.8, see About the OpenShift CLI.
								

Red Hat OpenShift Service Mesh supported configurations

					The following are the only supported configurations for the Red Hat OpenShift Service Mesh:
				
	
							OpenShift Container Platform version 4.6 or later.
						

Note

						OpenShift Online and Red Hat OpenShift Dedicated are not supported for Red Hat OpenShift Service Mesh.
					

	
							The deployment must be contained within a single OpenShift Container Platform cluster that is not federated.
						
	
							This release of Red Hat OpenShift Service Mesh is only available on OpenShift Container Platform x86_64.
						
	
							This release only supports configurations where all Service Mesh components are contained in the OpenShift Container Platform cluster in which it operates. It does not support management of microservices that reside outside of the cluster, or in a multi-cluster scenario.
						
	
							This release only supports configurations that do not integrate external services such as virtual machines.
						

					For additional information about Red Hat OpenShift Service Mesh lifecycle and supported configurations, refer to the Support Policy.
				
Supported configurations for Kiali on Red Hat OpenShift Service Mesh

	
								The Kiali observability console is only supported on the two most recent releases of the Chrome, Edge, Firefox, or Safari browsers.
							

Supported Mixer adapters

	
								This release only supports the following Mixer adapter:
							
	
										3scale Istio Adapter
									

Operator overview

					Red Hat OpenShift Service Mesh requires the following four Operators:
				
	
							OpenShift Elasticsearch - (Optional) Provides database storage for tracing and logging with the distributed tracing platform. It is based on the open source Elasticsearch project.
						
	
							Red Hat OpenShift distributed tracing platform - Provides distributed tracing to monitor and troubleshoot transactions in complex distributed systems. It is based on the open source Jaeger project.
						
	
							Kiali - Provides observability for your service mesh. Allows you to view configurations, monitor traffic, and analyze traces in a single console. It is based on the open source Kiali project.
						
	
							Red Hat OpenShift Service Mesh - Allows you to connect, secure, control, and observe the microservices that comprise your applications. The Service Mesh Operator defines and monitors the ServiceMeshControlPlane resources that manage the deployment, updating, and deletion of the Service Mesh components. It is based on the open source Istio project.
						

Warning

						See Configuring the log store for details on configuring the default Jaeger parameters for Elasticsearch in a production environment.
					

Next steps

	
							Install Red Hat OpenShift Service Mesh in your OpenShift Container Platform environment.
						

Installing Service Mesh

Warning

					You are viewing documentation for a Red Hat OpenShift Service Mesh release that is no longer supported.
				

					Service Mesh version 1.0 and 1.1 control planes are no longer supported. For information about upgrading your service mesh control plane, see Upgrading Service Mesh.
				

					For information about the support status of a particular Red Hat OpenShift Service Mesh release, see the Product lifecycle page.
				

				Installing the Service Mesh involves installing the OpenShift Elasticsearch, Jaeger, Kiali and Service Mesh Operators, creating and managing a ServiceMeshControlPlane resource to deploy the control plane, and creating a ServiceMeshMemberRoll resource to specify the namespaces associated with the Service Mesh.
			
Note

					Mixer’s policy enforcement is disabled by default. You must enable it to run policy tasks. See Update Mixer policy enforcement for instructions on enabling Mixer policy enforcement.
				

Note

					Multi-tenant control plane installations are the default configuration.
				

Note

					The Service Mesh documentation uses istio-system as the example project, but you can deploy the service mesh to any project.
				

Prerequisites

	
							Follow the Preparing to install Red Hat OpenShift Service Mesh process.
						
	
							An account with the cluster-admin role.
						

					The Service Mesh installation process uses the OperatorHub to install the ServiceMeshControlPlane custom resource definition within the openshift-operators project. The Red Hat OpenShift Service Mesh defines and monitors the ServiceMeshControlPlane related to the deployment, update, and deletion of the control plane.
				

					Starting with Red Hat OpenShift Service Mesh 1.1.18.2, you must install the OpenShift Elasticsearch Operator, the Jaeger Operator, and the Kiali Operator before the Red Hat OpenShift Service Mesh Operator can install the control plane.
				

Installing the OpenShift Elasticsearch Operator

					The default Red Hat OpenShift distributed tracing platform deployment uses in-memory storage because it is designed to be installed quickly for those evaluating Red Hat OpenShift distributed tracing, giving demonstrations, or using Red Hat OpenShift distributed tracing platform in a test environment. If you plan to use Red Hat OpenShift distributed tracing platform in production, you must install and configure a persistent storage option, in this case, Elasticsearch.
				
Prerequisites
	
							You have access to the OpenShift Container Platform web console.
						
	
							You have access to the cluster as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						

Warning

						Do not install Community versions of the Operators. Community Operators are not supported.
					

Note

						If you have already installed the OpenShift Elasticsearch Operator as part of OpenShift Logging, you do not need to install the OpenShift Elasticsearch Operator again. The Red Hat OpenShift distributed tracing platform Operator creates the Elasticsearch instance using the installed OpenShift Elasticsearch Operator.
					

Procedure
	
							Log in to the OpenShift Container Platform web console as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						
	
							Navigate to Operators → OperatorHub.
						
	
							Type Elasticsearch into the filter box to locate the OpenShift Elasticsearch Operator.
						
	
							Click the OpenShift Elasticsearch Operator provided by Red Hat to display information about the Operator.
						
	
							Click Install.
						
	
							On the Install Operator page, select the stable Update Channel. This automatically updates your Operator as new versions are released.
						
	
							Accept the default All namespaces on the cluster (default). This installs the Operator in the default openshift-operators-redhat project and makes the Operator available to all projects in the cluster.
						
Note

								The Elasticsearch installation requires the openshift-operators-redhat namespace for the OpenShift Elasticsearch Operator. The other Red Hat OpenShift distributed tracing Operators are installed in the openshift-operators namespace.
							

	
									Accept the default Automatic approval strategy. By accepting the default, when a new version of this Operator is available, Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without human intervention. If you select Manual updates, when a newer version of an Operator is available, OLM creates an update request. As a cluster administrator, you must then manually approve that update request to have the Operator updated to the new version.
								
Note

										The Manual approval strategy requires a user with appropriate credentials to approve the Operator install and subscription process.
									

	
							Click Install.
						
	
							On the Installed Operators page, select the openshift-operators-redhat project. Wait until you see that the OpenShift Elasticsearch Operator shows a status of "InstallSucceeded" before continuing.
						

Installing the Red Hat OpenShift distributed tracing platform Operator

					To install Red Hat OpenShift distributed tracing platform, you use the OperatorHub to install the Red Hat OpenShift distributed tracing platform Operator.
				

					By default, the Operator is installed in the openshift-operators project.
				
Prerequisites
	
							You have access to the OpenShift Container Platform web console.
						
	
							You have access to the cluster as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						
	
							If you require persistent storage, you must also install the OpenShift Elasticsearch Operator before installing the Red Hat OpenShift distributed tracing platform Operator.
						

Warning

						Do not install Community versions of the Operators. Community Operators are not supported.
					

Procedure
	
							Log in to the OpenShift Container Platform web console as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						
	
							Navigate to Operators → OperatorHub.
						
	
							Type distributing tracing platform into the filter to locate the Red Hat OpenShift distributed tracing platform Operator.
						
	
							Click the Red Hat OpenShift distributed tracing platform Operator provided by Red Hat to display information about the Operator.
						
	
							Click Install.
						
	
							On the Install Operator page, select the stable Update Channel. This automatically updates your Operator as new versions are released.
						
	
							Accept the default All namespaces on the cluster (default). This installs the Operator in the default openshift-operators project and makes the Operator available to all projects in the cluster.
						
	
									Accept the default Automatic approval strategy. By accepting the default, when a new version of this Operator is available, Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without human intervention. If you select Manual updates, when a newer version of an Operator is available, OLM creates an update request. As a cluster administrator, you must then manually approve that update request to have the Operator updated to the new version.
								
Note

										The Manual approval strategy requires a user with appropriate credentials to approve the Operator install and subscription process.
									

	
							Click Install.
						
	
							Navigate to Operators → Installed Operators.
						
	
							On the Installed Operators page, select the openshift-operators project. Wait until you see that the Red Hat OpenShift distributed tracing platform Operator shows a status of "Succeeded" before continuing.
						

Installing the Kiali Operator

					You must install the Kiali Operator for the Red Hat OpenShift Service Mesh Operator to install the Service Mesh control plane.
				
Warning

						Do not install Community versions of the Operators. Community Operators are not supported.
					

Prerequisites
	
							Access to the OpenShift Container Platform web console.
						

Procedure
	
							Log in to the OpenShift Container Platform web console.
						
	
							Navigate to Operators → OperatorHub.
						
	
							Type Kiali into the filter box to find the Kiali Operator.
						
	
							Click the Kiali Operator provided by Red Hat to display information about the Operator.
						
	
							Click Install.
						
	
							On the Operator Installation page, select the stable Update Channel.
						
	
							Select All namespaces on the cluster (default). This installs the Operator in the default openshift-operators project and makes the Operator available to all projects in the cluster.
						
	
							Select the Automatic Approval Strategy.
						
Note

								The Manual approval strategy requires a user with appropriate credentials to approve the Operator install and subscription process.
							

	
							Click Install.
						
	
							The Installed Operators page displays the Kiali Operator’s installation progress.
						

Installing the Operators

					To install Red Hat OpenShift Service Mesh, install following Operators in this order. Repeat the procedure for each Operator.
				
	
							OpenShift Elasticsearch
						
	
							Red Hat OpenShift distributed tracing platform
						
	
							Kiali
						
	
							Red Hat OpenShift Service Mesh
						

Note

						If you have already installed the OpenShift Elasticsearch Operator as part of OpenShift Logging, you do not need to install the OpenShift Elasticsearch Operator again. The Red Hat OpenShift distributed tracing platform Operator will create the Elasticsearch instance using the installed OpenShift Elasticsearch Operator.
					

Procedure
	
							Log in to the OpenShift Container Platform web console as a user with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
						
	
							In the OpenShift Container Platform web console, click Operators → OperatorHub.
						
	
							Type the name of the Operator into the filter box and select the Red Hat version of the Operator. Community versions of the Operators are not supported.
						
	
							Click Install.
						
	
							On the Install Operator page for each Operator, accept the default settings.
						
	
							Click Install. Wait until the Operator has installed before repeating the steps for the next Operator in the list.
						
	
									The OpenShift Elasticsearch Operator is installed in the openshift-operators-redhat namespace and is available for all namespaces in the cluster.
								
	
									The Red Hat OpenShift distributed tracing platform is installed in the openshift-distributed-tracing namespace and is available for all namespaces in the cluster.
								
	
									The Kiali and Red Hat OpenShift Service Mesh Operators are installed in the openshift-operators namespace and are available for all namespaces in the cluster.
								

	
							After all you have installed all four Operators, click Operators → Installed Operators to verify that your Operators installed.
						

Deploying the Red Hat OpenShift Service Mesh control plane

					The ServiceMeshControlPlane resource defines the configuration to be used during installation. You can deploy the default configuration provided by Red Hat or customize the ServiceMeshControlPlane file to fit your business needs.
				

					You can deploy the Service Mesh control plane by using the OpenShift Container Platform web console or from the command line using the oc client tool.
				
Deploying the control plane from the web console

						Follow this procedure to deploy the Red Hat OpenShift Service Mesh control plane by using the web console. In this example, istio-system is the name of the control plane project.
					
Prerequisites
	
								The Red Hat OpenShift Service Mesh Operator must be installed.
							
	
								Review the instructions for how to customize the Red Hat OpenShift Service Mesh installation.
							
	
								An account with the cluster-admin role.
							

Procedure
	
								Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
							
	
								Create a project named istio-system.
							
	
										Navigate to Home → Projects.
									
	
										Click Create Project.
									
	
										Enter istio-system in the Name field.
									
	
										Click Create.
									

	
								Navigate to Operators → Installed Operators.
							
	
								If necessary, select istio-system from the Project menu. You may have to wait a few moments for the Operators to be copied to the new project.
							
	
								Click the Red Hat OpenShift Service Mesh Operator. Under Provided APIs, the Operator provides links to create two resource types:
							
	
										A ServiceMeshControlPlane resource
									
	
										A ServiceMeshMemberRoll resource
									

	
								Under Istio Service Mesh Control Plane click Create ServiceMeshControlPlane.
							
	
								On the Create Service Mesh Control Plane page, modify the YAML for the default ServiceMeshControlPlane template as needed.
							
Note

									For additional information about customizing the control plane, see customizing the Red Hat OpenShift Service Mesh installation. For production, you must change the default Jaeger template.
								

	
								Click Create to create the control plane. The Operator creates pods, services, and Service Mesh control plane components based on your configuration parameters.
							
	
								Click the Istio Service Mesh Control Plane tab.
							
	
								Click the name of the new control plane.
							
	
								Click the Resources tab to see the Red Hat OpenShift Service Mesh control plane resources the Operator created and configured.
							

Deploying the control plane from the CLI

						Follow this procedure to deploy the Red Hat OpenShift Service Mesh control plane the command line.
					
Prerequisites
	
								The Red Hat OpenShift Service Mesh Operator must be installed.
							
	
								Review the instructions for how to customize the Red Hat OpenShift Service Mesh installation.
							
	
								An account with the cluster-admin role.
							
	
								Access to the OpenShift CLI (oc).
							

Procedure
	
								Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role.
							
$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

	
								Create a project named istio-system.
							
$ oc new-project istio-system

	
								Create a ServiceMeshControlPlane file named istio-installation.yaml using the example found in "Customize the Red Hat OpenShift Service Mesh installation". You can customize the values as needed to match your use case. For production deployments you must change the default Jaeger template.
							
	
								Run the following command to deploy the control plane:
							
$ oc create -n istio-system -f istio-installation.yaml

	
								Execute the following command to see the status of the control plane installation.
							
$ oc get smcp -n istio-system

								The installation has finished successfully when the STATUS column is ComponentsReady.
							
NAME READY STATUS PROFILES VERSION AGE
basic-install 11/11 ComponentsReady ["default"] v1.1.18 4m25s

	
								Run the following command to watch the progress of the Pods during the installation process:
							
$ oc get pods -n istio-system -w

								You should see output similar to the following:
							
Example output

									

NAME READY STATUS RESTARTS AGE
grafana-7bf5764d9d-2b2f6 2/2 Running 0 28h
istio-citadel-576b9c5bbd-z84z4 1/1 Running 0 28h
istio-egressgateway-5476bc4656-r4zdv 1/1 Running 0 28h
istio-galley-7d57b47bb7-lqdxv 1/1 Running 0 28h
istio-ingressgateway-dbb8f7f46-ct6n5 1/1 Running 0 28h
istio-pilot-546bf69578-ccg5x 2/2 Running 0 28h
istio-policy-77fd498655-7pvjw 2/2 Running 0 28h
istio-sidecar-injector-df45bd899-ctxdt 1/1 Running 0 28h
istio-telemetry-66f697d6d5-cj28l 2/2 Running 0 28h
jaeger-896945cbc-7lqrr 2/2 Running 0 11h
kiali-78d9c5b87c-snjzh 1/1 Running 0 22h
prometheus-6dff867c97-gr2n5 2/2 Running 0 28h

								

						For a multitenant installation, Red Hat OpenShift Service Mesh supports multiple independent control planes within the cluster. You can create reusable configurations with ServiceMeshControlPlane templates. For more information, see Creating control plane templates.
					

Creating the Red Hat OpenShift Service Mesh member roll

					The ServiceMeshMemberRoll lists the projects that belong to the Service Mesh control plane. Only projects listed in the ServiceMeshMemberRoll are affected by the control plane. A project does not belong to a service mesh until you add it to the member roll for a particular control plane deployment.
				

					You must create a ServiceMeshMemberRoll resource named default in the same project as the ServiceMeshControlPlane, for example istio-system.
				
Creating the member roll from the web console

						You can add one or more projects to the Service Mesh member roll from the web console. In this example, istio-system is the name of the Service Mesh control plane project.
					
Prerequisites
	
								An installed, verified Red Hat OpenShift Service Mesh Operator.
							
	
								List of existing projects to add to the service mesh.
							

Procedure
	
								Log in to the OpenShift Container Platform web console.
							
	
								If you do not already have services for your mesh, or you are starting from scratch, create a project for your applications. It must be different from the project where you installed the Service Mesh control plane.
							
	
										Navigate to Home → Projects.
									
	
										Enter a name in the Name field.
									
	
										Click Create.
									

	
								Navigate to Operators → Installed Operators.
							
	
								Click the Project menu and choose the project where your ServiceMeshControlPlane resource is deployed from the list, for example istio-system.
							
	
								Click the Red Hat OpenShift Service Mesh Operator.
							
	
								Click the Istio Service Mesh Member Roll tab.
							
	
								Click Create ServiceMeshMemberRoll
							
	
								Click Members, then enter the name of your project in the Value field. You can add any number of projects, but a project can only belong to one ServiceMeshMemberRoll resource.
							
	
								Click Create.
							

Creating the member roll from the CLI

						You can add a project to the ServiceMeshMemberRoll from the command line.
					
Prerequisites
	
								An installed, verified Red Hat OpenShift Service Mesh Operator.
							
	
								List of projects to add to the service mesh.
							
	
								Access to the OpenShift CLI (oc).
							

Procedure
	
								Log in to the OpenShift Container Platform CLI.
							
$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

	
								If you do not already have services for your mesh, or you are starting from scratch, create a project for your applications. It must be different from the project where you installed the Service Mesh control plane.
							
$ oc new-project <your-project>

	
								To add your projects as members, modify the following example YAML. You can add any number of projects, but a project can only belong to one ServiceMeshMemberRoll resource. In this example, istio-system is the name of the Service Mesh control plane project.
							
Example servicemeshmemberroll-default.yaml

									

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system
spec:
 members:
 # a list of projects joined into the service mesh
 - your-project-name
 - another-project-name

								

	
								Run the following command to upload and create the ServiceMeshMemberRoll resource in the istio-system namespace.
							
$ oc create -n istio-system -f servicemeshmemberroll-default.yaml

	
								Run the following command to verify the ServiceMeshMemberRoll was created successfully.
							
$ oc get smmr -n istio-system default

								The installation has finished successfully when the STATUS column is Configured.
							

Adding or removing projects from the service mesh

					You can add or remove projects from an existing Service Mesh ServiceMeshMemberRoll resource using the web console.
				
	
							You can add any number of projects, but a project can only belong to one ServiceMeshMemberRoll resource.
						
	
							The ServiceMeshMemberRoll resource is deleted when its corresponding ServiceMeshControlPlane resource is deleted.
						

Adding or removing projects from the member roll using the web console

Prerequisites
	
								An installed, verified Red Hat OpenShift Service Mesh Operator.
							
	
								An existing ServiceMeshMemberRoll resource.
							
	
								Name of the project with the ServiceMeshMemberRoll resource.
							
	
								Names of the projects you want to add or remove from the mesh.
							

Procedure
	
								Log in to the OpenShift Container Platform web console.
							
	
								Navigate to Operators → Installed Operators.
							
	
								Click the Project menu and choose the project where your ServiceMeshControlPlane resource is deployed from the list, for example istio-system.
							
	
								Click the Red Hat OpenShift Service Mesh Operator.
							
	
								Click the Istio Service Mesh Member Roll tab.
							
	
								Click the default link.
							
	
								Click the YAML tab.
							
	
								Modify the YAML to add or remove projects as members. You can add any number of projects, but a project can only belong to one ServiceMeshMemberRoll resource.
							
	
								Click Save.
							
	
								Click Reload.
							

Adding or removing projects from the member roll using the CLI

						You can modify an existing Service Mesh member roll using the command line.
					
Prerequisites
	
								An installed, verified Red Hat OpenShift Service Mesh Operator.
							
	
								An existing ServiceMeshMemberRoll resource.
							
	
								Name of the project with the ServiceMeshMemberRoll resource.
							
	
								Names of the projects you want to add or remove from the mesh.
							
	
								Access to the OpenShift CLI (oc).
							

Procedure
	
								Log in to the OpenShift Container Platform CLI.
							
	
								Edit the ServiceMeshMemberRoll resource.
							
$ oc edit smmr -n <controlplane-namespace>

	
								Modify the YAML to add or remove projects as members. You can add any number of projects, but a project can only belong to one ServiceMeshMemberRoll resource.
							
Example servicemeshmemberroll-default.yaml

									

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system #control plane project
spec:
 members:
 # a list of projects joined into the service mesh
 - your-project-name
 - another-project-name

								

Manual updates

					If you choose to update manually, the Operator Lifecycle Manager (OLM) controls the installation, upgrade, and role-based access control (RBAC) of Operators in a cluster. OLM runs by default in OpenShift Container Platform. OLM uses CatalogSources, which use the Operator Registry API, to query for available Operators as well as upgrades for installed Operators.
				
	
							For more information about how OpenShift Container Platform handled upgrades, refer to the Operator Lifecycle Manager documentation.
						

Updating sidecar proxies

						In order to update the configuration for sidecar proxies the application administrator must restart the application pods.
					

						If your deployment uses automatic sidecar injection, you can update the pod template in the deployment by adding or modifying an annotation. Run the following command to redeploy the pods:
					
$ oc patch deployment/<deployment> -p '{"spec":{"template":{"metadata":{"annotations":{"kubectl.kubernetes.io/restartedAt": "'`date -Iseconds`'"}}}}}'

						If your deployment does not use automatic sidecar injection, you must manually update the sidecars by modifying the sidecar container image specified in the deployment or pod, and then restart the pods.
					

Next steps

	
							Prepare to deploy applications on Red Hat OpenShift Service Mesh.
						

Customizing security in a Service Mesh

Warning

					You are viewing documentation for a Red Hat OpenShift Service Mesh release that is no longer supported.
				

					Service Mesh version 1.0 and 1.1 control planes are no longer supported. For information about upgrading your service mesh control plane, see Upgrading Service Mesh.
				

					For information about the support status of a particular Red Hat OpenShift Service Mesh release, see the Product lifecycle page.
				

				If your service mesh application is constructed with a complex array of microservices, you can use Red Hat OpenShift Service Mesh to customize the security of the communication between those services. The infrastructure of OpenShift Container Platform along with the traffic management features of Service Mesh can help you manage the complexity of your applications and provide service and identity security for microservices.
			
Enabling mutual Transport Layer Security (mTLS)

					Mutual Transport Layer Security (mTLS) is a protocol where two parties authenticate each other. It is the default mode of authentication in some protocols (IKE, SSH) and optional in others (TLS).
				

					mTLS can be used without changes to the application or service code. The TLS is handled entirely by the service mesh infrastructure and between the two sidecar proxies.
				

					By default, Red Hat OpenShift Service Mesh is set to permissive mode, where the sidecars in Service Mesh accept both plain-text traffic and connections that are encrypted using mTLS. If a service in your mesh is communicating with a service outside the mesh, strict mTLS could break communication between those services. Use permissive mode while you migrate your workloads to Service Mesh.
				
Enabling strict mTLS across the mesh

						If your workloads do not communicate with services outside your mesh and communication will not be interrupted by only accepting encrypted connections, you can enable mTLS across your mesh quickly. Set spec.istio.global.mtls.enabled to true in your ServiceMeshControlPlane resource. The operator creates the required resources.
					
apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 global:
 mtls:
 enabled: true
Configuring sidecars for incoming connections for specific services

							You can also configure mTLS for individual services or namespaces by creating a policy.
						
apiVersion: "authentication.istio.io/v1alpha1"
kind: "Policy"
metadata:
 name: default
 namespace: <NAMESPACE>
spec:
 peers:
 - mtls: {}

Configuring sidecars for outgoing connections

						Create a destination rule to configure Service Mesh to use mTLS when sending requests to other services in the mesh.
					
apiVersion: "networking.istio.io/v1alpha3"
kind: "DestinationRule"
metadata:
 name: "default"
 namespace: <CONTROL_PLANE_NAMESPACE>>
spec:
 host: "*.local"
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL

Setting the minimum and maximum protocol versions

						If your environment has specific requirements for encrypted traffic in your service mesh, you can control the cryptographic functions that are allowed by setting the spec.security.controlPlane.tls.minProtocolVersion or spec.security.controlPlane.tls.maxProtocolVersion in your ServiceMeshControlPlane resource. Those values, configured in your control plane resource, define the minimum and maximum TLS version used by mesh components when communicating securely over TLS.
					
apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 global:
 tls:
 minProtocolVersion: TLSv1_2
 maxProtocolVersion: TLSv1_3

						The default is TLS_AUTO and does not specify a version of TLS.
					
Table 2.3. Valid values
	Value	Description
	
										TLS_AUTO
									

									 	
										default
									

									
	
										TLSv1_0
									

									 	
										TLS version 1.0
									

									
	
										TLSv1_1
									

									 	
										TLS version 1.1
									

									
	
										TLSv1_2
									

									 	
										TLS version 1.2
									

									
	
										TLSv1_3
									

									 	
										TLS version 1.3
									

									

Configuring cipher suites and ECDH curves

					Cipher suites and Elliptic-curve Diffie–Hellman (ECDH curves) can help you secure your service mesh. You can define a comma separated list of cipher suites using spec.istio.global.tls.cipherSuites and ECDH curves using spec.istio.global.tls.ecdhCurves in your ServiceMeshControlPlane resource. If either of these attributes are empty, then the default values are used.
				

					The cipherSuites setting is effective if your service mesh uses TLS 1.2 or earlier. It has no effect when negotiating with TLS 1.3.
				

					Set your cipher suites in the comma separated list in order of priority. For example, ecdhCurves: CurveP256, CurveP384 sets CurveP256 as a higher priority than CurveP384.
				
Note

						You must include either TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 or TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 when you configure the cipher suite. HTTP/2 support requires at least one of these cipher suites.
					

					The supported cipher suites are:
				
	
							TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
						
	
							TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
						
	
							TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
						
	
							TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
						
	
							TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
						
	
							TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
						
	
							TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
						
	
							TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
						
	
							TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
						
	
							TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
						
	
							TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
						
	
							TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
						
	
							TLS_RSA_WITH_AES_128_GCM_SHA256
						
	
							TLS_RSA_WITH_AES_256_GCM_SHA384
						
	
							TLS_RSA_WITH_AES_128_CBC_SHA256
						
	
							TLS_RSA_WITH_AES_128_CBC_SHA
						
	
							TLS_RSA_WITH_AES_256_CBC_SHA
						
	
							TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
						
	
							TLS_RSA_WITH_3DES_EDE_CBC_SHA
						

					The supported ECDH Curves are:
				
	
							CurveP256
						
	
							CurveP384
						
	
							CurveP521
						
	
							X25519
						

Adding an external certificate authority key and certificate

					By default, Red Hat OpenShift Service Mesh generates self-signed root certificate and key, and uses them to sign the workload certificates. You can also use the user-defined certificate and key to sign workload certificates, with user-defined root certificate. This task demonstrates an example to plug certificates and key into Service Mesh.
				
Prerequisites
	
							You must have installed Red Hat OpenShift Service Mesh with mutual TLS enabled to configure certificates.
						
	
							This example uses the certificates from the Maistra repository. For production, use your own certificates from your certificate authority.
						
	
							You must deploy the Bookinfo sample application to verify the results with these instructions.
						

Adding an existing certificate and key

						To use an existing signing (CA) certificate and key, you must create a chain of trust file that includes the CA certificate, key, and root certificate. You must use the following exact file names for each of the corresponding certificates. The CA certificate is called ca-cert.pem, the key is ca-key.pem, and the root certificate, which signs ca-cert.pem, is called root-cert.pem. If your workload uses intermediate certificates, you must specify them in a cert-chain.pem file.
					

						Add the certificates to Service Mesh by following these steps. Save the example certificates from the Maistra repo locally and replace <path> with the path to your certificates.
					
	
								Create a secret cacert that includes the input files ca-cert.pem, ca-key.pem, root-cert.pem and cert-chain.pem.
							
$ oc create secret generic cacerts -n istio-system --from-file=<path>/ca-cert.pem \
 --from-file=<path>/ca-key.pem --from-file=<path>/root-cert.pem \
 --from-file=<path>/cert-chain.pem

	
								In the ServiceMeshControlPlane resource set global.mtls.enabled to true and security.selfSigned set to false. Service Mesh reads the certificates and key from the secret-mount files.
							
apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 global:
 mtls:
 enabled: true
 security:
 selfSigned: false

	
								To make sure the workloads add the new certificates promptly, delete the secrets generated by Service Mesh, named istio.*. In this example, istio.default. Service Mesh issues new certificates for the workloads.
							
$ oc delete secret istio.default

Verifying your certificates

						Use the Bookinfo sample application to verify your certificates are mounted correctly. First, retrieve the mounted certificates. Then, verify the certificates mounted on the pod.
					
	
								Store the pod name in the variable RATINGSPOD.
							
$ RATINGSPOD=`oc get pods -l app=ratings -o jsonpath='{.items[0].metadata.name}'`

	
								Run the following commands to retrieve the certificates mounted on the proxy.
							
$ oc exec -it $RATINGSPOD -c istio-proxy -- /bin/cat /etc/certs/root-cert.pem > /tmp/pod-root-cert.pem

								The file /tmp/pod-root-cert.pem contains the root certificate propagated to the pod.
							
$ oc exec -it $RATINGSPOD -c istio-proxy -- /bin/cat /etc/certs/cert-chain.pem > /tmp/pod-cert-chain.pem

								The file /tmp/pod-cert-chain.pem contains the workload certificate and the CA certificate propagated to the pod.
							

	
								Verify the root certificate is the same as the one specified by the Operator. Replace <path> with the path to your certificates.
							
$ openssl x509 -in <path>/root-cert.pem -text -noout > /tmp/root-cert.crt.txt
$ openssl x509 -in /tmp/pod-root-cert.pem -text -noout > /tmp/pod-root-cert.crt.txt
$ diff /tmp/root-cert.crt.txt /tmp/pod-root-cert.crt.txt

								Expect the output to be empty.
							

	
								Verify the CA certificate is the same as the one specified by Operator. Replace <path> with the path to your certificates.
							
$ sed '0,/^-----END CERTIFICATE-----/d' /tmp/pod-cert-chain.pem > /tmp/pod-cert-chain-ca.pem
$ openssl x509 -in <path>/ca-cert.pem -text -noout > /tmp/ca-cert.crt.txt
$ openssl x509 -in /tmp/pod-cert-chain-ca.pem -text -noout > /tmp/pod-cert-chain-ca.crt.txt
$ diff /tmp/ca-cert.crt.txt /tmp/pod-cert-chain-ca.crt.txt

								Expect the output to be empty.
							

	
								Verify the certificate chain from the root certificate to the workload certificate. Replace <path> with the path to your certificates.
							
$ head -n 21 /tmp/pod-cert-chain.pem > /tmp/pod-cert-chain-workload.pem
$ openssl verify -CAfile <(cat <path>/ca-cert.pem <path>/root-cert.pem) /tmp/pod-cert-chain-workload.pem
Example output

									

/tmp/pod-cert-chain-workload.pem: OK

								

Removing the certificates

						To remove the certificates you added, follow these steps.
					
	
								Remove the secret cacerts.
							
$ oc delete secret cacerts -n istio-system

	
								Redeploy Service Mesh with a self-signed root certificate in the ServiceMeshControlPlane resource.
							
apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 global:
 mtls:
 enabled: true
 security:
 selfSigned: true

Traffic management

Warning

					You are viewing documentation for a Red Hat OpenShift Service Mesh release that is no longer supported.
				

					Service Mesh version 1.0 and 1.1 control planes are no longer supported. For information about upgrading your service mesh control plane, see Upgrading Service Mesh.
				

					For information about the support status of a particular Red Hat OpenShift Service Mesh release, see the Product lifecycle page.
				

				You can control the flow of traffic and API calls between services in Red Hat OpenShift Service Mesh. For example, some services in your service mesh may need to communicate within the mesh and others may need to be hidden. Manage the traffic to hide specific backend services, expose services, create testing or versioning deployments, or add a security layer on a set of services.
			
Using gateways

					You can use a gateway to manage inbound and outbound traffic for your mesh to specify which traffic you want to enter or leave the mesh. Gateway configurations are applied to standalone Envoy proxies that are running at the edge of the mesh, rather than sidecar Envoy proxies running alongside your service workloads.
				

					Unlike other mechanisms for controlling traffic entering your systems, such as the Kubernetes Ingress APIs, Red Hat OpenShift Service Mesh gateways allow you to use the full power and flexibility of traffic routing. The Red Hat OpenShift Service Mesh gateway resource can layer 4-6 load balancing properties, such as ports, to expose and configure Red Hat OpenShift Service Mesh TLS settings. Instead of adding application-layer traffic routing (L7) to the same API resource, you can bind a regular Red Hat OpenShift Service Mesh virtual service to the gateway and manage gateway traffic like any other data plane traffic in a service mesh.
				

					Gateways are primarily used to manage ingress traffic, but you can also configure egress gateways. An egress gateway lets you configure a dedicated exit node for the traffic leaving the mesh. This enables you to limit which services have access to external networks, which adds security control to your service mesh. You can also use a gateway to configure a purely internal proxy.
				
Gateway example

						A gateway resource describes a load balancer operating at the edge of the mesh receiving incoming or outgoing HTTP/TCP connections. The specification describes a set of ports that should be exposed, the type of protocol to use, SNI configuration for the load balancer, and so on.
					

					The following example shows a sample gateway configuration for external HTTPS ingress traffic:
				
apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: ext-host-gwy
spec:
 selector:
 istio: ingressgateway # use istio default controller
 servers:
 - port:
 number: 443
 name: https
 protocol: HTTPS
 hosts:
 - ext-host.example.com
 tls:
 mode: SIMPLE
 serverCertificate: /tmp/tls.crt
 privateKey: /tmp/tls.key

					This gateway configuration lets HTTPS traffic from ext-host.example.com into the mesh on port 443, but doesn’t specify any routing for the traffic.
				

					To specify routing and for the gateway to work as intended, you must also bind the gateway to a virtual service. You do this using the virtual service’s gateways field, as shown in the following example:
				
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: virtual-svc
spec:
 hosts:
 - ext-host.example.com
 gateways:
 - ext-host-gwy

					You can then configure the virtual service with routing rules for the external traffic.
				

Configuring an ingress gateway

					An ingress gateway is a load balancer operating at the edge of the mesh that receives incoming HTTP/TCP connections. It configures exposed ports and protocols but does not include any traffic routing configuration. Traffic routing for ingress traffic is instead configured with routing rules, the same way as for internal service requests.
				

					The following steps show how to create a gateway and configure a VirtualService to expose a service in the Bookinfo sample application to outside traffic for paths /productpage and /login.
				
Procedure
	
							Create a gateway to accept traffic.
						
	
									Create a YAML file, and copy the following YAML into it.
								
Gateway example gateway.yaml

										

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: bookinfo-gateway
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"

									

	
									Apply the YAML file.
								
$ oc apply -f gateway.yaml

	
							Create a VirtualService object to rewrite the host header.
						
	
									Create a YAML file, and copy the following YAML into it.
								
Virtual service example

										

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: bookinfo
spec:
 hosts:
 - "*"
 gateways:
 - bookinfo-gateway
 http:
 - match:
 - uri:
 exact: /productpage
 - uri:
 prefix: /static
 - uri:
 exact: /login
 - uri:
 exact: /logout
 - uri:
 prefix: /api/v1/products
 route:
 - destination:
 host: productpage
 port:
 number: 9080

									

	
									Apply the YAML file.
								
$ oc apply -f vs.yaml

	
							Test that the gateway and VirtualService have been set correctly.
						
	
									Set the Gateway URL.
								
export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')

	
									Set the port number. In this example, istio-system is the name of the Service Mesh control plane project.
								
export TARGET_PORT=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.port.targetPort}')

	
									Test a page that has been explicitly exposed.
								
curl -s -I "$GATEWAY_URL/productpage"

									The expected result is 200.
								

Managing ingress traffic

					In Red Hat OpenShift Service Mesh, the Ingress Gateway enables features such as monitoring, security, and route rules to apply to traffic that enters the cluster. Use a Service Mesh gateway to expose a service outside of the service mesh.
				
Determining the ingress IP and ports

						Ingress configuration differs depending on if your environment supports an external load balancer. An external load balancer is set in the ingress IP and ports for the cluster. To determine if your cluster’s IP and ports are configured for external load balancers, run the following command. In this example, istio-system is the name of the Service Mesh control plane project.
					
$ oc get svc istio-ingressgateway -n istio-system

						That command returns the NAME, TYPE, CLUSTER-IP, EXTERNAL-IP, PORT(S), and AGE of each item in your namespace.
					

						If the EXTERNAL-IP value is set, your environment has an external load balancer that you can use for the ingress gateway.
					

						If the EXTERNAL-IP value is <none>, or perpetually <pending>, your environment does not provide an external load balancer for the ingress gateway. You can access the gateway using the service’s node port.
					
Determining ingress ports with a load balancer

							Follow these instructions if your environment has an external load balancer.
						
Procedure
	
									Run the following command to set the ingress IP and ports. This command sets a variable in your terminal.
								
$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')

	
									Run the following command to set the ingress port.
								
$ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].port}')

	
									Run the following command to set the secure ingress port.
								
$ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="https")].port}')

	
									Run the following command to set the TCP ingress port.
								
$ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="tcp")].port}')

Note

								In some environments, the load balancer may be exposed using a hostname instead of an IP address. For that case, the ingress gateway’s EXTERNAL-IP value is not an IP address. Instead, it’s a hostname, and the previous command fails to set the INGRESS_HOST environment variable.
							

								In that case, use the following command to correct the INGRESS_HOST value:
							

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')

Determining ingress ports without a load balancer

							If your environment does not have an external load balancer, determine the ingress ports and use a node port instead.
						
Procedure
	
									Set the ingress ports.
								
$ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}')

	
									Run the following command to set the secure ingress port.
								
$ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="https")].nodePort}')

	
									Run the following command to set the TCP ingress port.
								
$ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="tcp")].nodePort}')

Automatic route creation

					OpenShift routes for Istio Gateways are automatically managed in Red Hat OpenShift Service Mesh. Every time an Istio Gateway is created, updated or deleted inside the service mesh, an OpenShift route is created, updated or deleted.
				
Enabling Automatic Route Creation

						A Red Hat OpenShift Service Mesh control plane component called Istio OpenShift Routing (IOR) synchronizes the gateway route. Enable IOR as part of the control plane deployment.
					

						If the Gateway contains a TLS section, the OpenShift Route will be configured to support TLS.
					
	
								In the ServiceMeshControlPlane resource, add the ior_enabled parameter and set it to true. For example, see the following resource snippet:
							

spec:
 istio:
 gateways:
 istio-egressgateway:
 autoscaleEnabled: false
 autoscaleMin: 1
 autoscaleMax: 5
 istio-ingressgateway:
 autoscaleEnabled: false
 autoscaleMin: 1
 autoscaleMax: 5
 ior_enabled: true

Subdomains

						Red Hat OpenShift Service Mesh creates the route with the subdomain, but OpenShift Container Platform must be configured to enable it. Subdomains, for example *.domain.com, are supported but not by default. Configure an OpenShift Container Platform wildcard policy before configuring a wildcard host Gateway. For more information, see the "Links" section.
					

						If the following gateway is created:
					
apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: gateway1
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - www.bookinfo.com
 - bookinfo.example.com

						Then, the following OpenShift Routes are created automatically. You can check that the routes are created with the following command.
					
$ oc -n <control_plane_namespace> get routes
Expected output

							

NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
gateway1-lvlfn bookinfo.example.com istio-ingressgateway <all> None
gateway1-scqhv www.bookinfo.com istio-ingressgateway <all> None

						

						If the gateway is deleted, Red Hat OpenShift Service Mesh deletes the routes. However, routes created manually are never modified by Red Hat OpenShift Service Mesh.
					

Understanding service entries

					A service entry adds an entry to the service registry that Red Hat OpenShift Service Mesh maintains internally. After you add the service entry, the Envoy proxies send traffic to the service as if it is a service in your mesh. Service entries allow you to do the following:
				
	
							Manage traffic for services that run outside of the service mesh.
						
	
							Redirect and forward traffic for external destinations (such as, APIs consumed from the web) or traffic to services in legacy infrastructure.
						
	
							Define retry, timeout, and fault injection policies for external destinations.
						
	
							Run a mesh service in a Virtual Machine (VM) by adding VMs to your mesh.
						

Note

						Add services from a different cluster to the mesh to configure a multicluster Red Hat OpenShift Service Mesh mesh on Kubernetes.
					

Service entry examples

						The following example is a mesh-external service entry that adds the ext-resource external dependency to the Red Hat OpenShift Service Mesh service registry:
					
apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: svc-entry
spec:
 hosts:
 - ext-svc.example.com
 ports:
 - number: 443
 name: https
 protocol: HTTPS
 location: MESH_EXTERNAL
 resolution: DNS

					Specify the external resource using the hosts field. You can qualify it fully or use a wildcard prefixed domain name.
				

					You can configure virtual services and destination rules to control traffic to a service entry in the same way you configure traffic for any other service in the mesh. For example, the following destination rule configures the traffic route to use mutual TLS to secure the connection to the ext-svc.example.com external service that is configured using the service entry:
				
apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: ext-res-dr
spec:
 host: ext-svc.example.com
 trafficPolicy:
 tls:
 mode: MUTUAL
 clientCertificate: /etc/certs/myclientcert.pem
 privateKey: /etc/certs/client_private_key.pem
 caCertificates: /etc/certs/rootcacerts.pem

Using VirtualServices

					You can route requests dynamically to multiple versions of a microservice through Red Hat OpenShift Service Mesh with a virtual service. With virtual services, you can:
				
	
							Address multiple application services through a single virtual service. If your mesh uses Kubernetes, for example, you can configure a virtual service to handle all services in a specific namespace. A virtual service enables you to turn a monolithic application into a service consisting of distinct microservices with a seamless consumer experience.
						
	
							Configure traffic rules in combination with gateways to control ingress and egress traffic.
						

Configuring VirtualServices

						Requests are routed to services within a service mesh with virtual services. Each virtual service consists of a set of routing rules that are evaluated in order. Red Hat OpenShift Service Mesh matches each given request to the virtual service to a specific real destination within the mesh.
					

						Without virtual services, Red Hat OpenShift Service Mesh distributes traffic using round-robin load balancing between all service instances. With a virtual service, you can specify traffic behavior for one or more hostnames. Routing rules in the virtual service tell Red Hat OpenShift Service Mesh how to send the traffic for the virtual service to appropriate destinations. Route destinations can be versions of the same service or entirely different services.
					
Procedure
	
								Create a YAML file using the following example to route requests to different versions of the Bookinfo sample application service depending on which user connects to the application.
							
Example VirtualService.yaml

									

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews
spec:
 hosts:
 - reviews
 http:
 - match:
 - headers:
 end-user:
 exact: jason
 route:
 - destination:
 host: reviews
 subset: v2
 - route:
 - destination:
 host: reviews
 subset: v3

								

	
								Run the following command to apply VirtualService.yaml, where VirtualService.yaml is the path to the file.
							
$ oc apply -f <VirtualService.yaml>

VirtualService configuration reference

	Parameter	Description
	
spec:
 hosts:

									 	
										The hosts field lists the virtual service’s destination address to which the routing rules apply. This is the address(es) that are used to send requests to the service. The virtual service hostname can be an IP address, a DNS name, or a short name that resolves to a fully qualified domain name.
									

									
	
spec:
 http:
 - match:

									 	
										The http section contains the virtual service’s routing rules which describe match conditions and actions for routing HTTP/1.1, HTTP2, and gRPC traffic sent to the destination as specified in the hosts field. A routing rule consists of the destination where you want the traffic to go and any specified match conditions. The first routing rule in the example has a condition that begins with the match field. In this example, this routing applies to all requests from the user jason. Add the headers, end-user, and exact fields to select the appropriate requests.
									

									
	
spec:
 http:
 - match:
 - destination:

									 	
										The destination field in the route section specifies the actual destination for traffic that matches this condition. Unlike the virtual service’s host, the destination’s host must be a real destination that exists in the Red Hat OpenShift Service Mesh service registry. This can be a mesh service with proxies or a non-mesh service added using a service entry. In this example, the hostname is a Kubernetes service name:
									

									

Understanding destination rules

					Destination rules are applied after virtual service routing rules are evaluated, so they apply to the traffic’s real destination. Virtual services route traffic to a destination. Destination rules configure what happens to traffic at that destination.
				

					By default, Red Hat OpenShift Service Mesh uses a round-robin load balancing policy, where each service instance in the pool gets a request in turn. Red Hat OpenShift Service Mesh also supports the following models, which you can specify in destination rules for requests to a particular service or service subset.
				
	
							Random: Requests are forwarded at random to instances in the pool.
						
	
							Weighted: Requests are forwarded to instances in the pool according to a specific percentage.
						
	
							Least requests: Requests are forwarded to instances with the least number of requests.
						

Destination rule example

						The following example destination rule configures three different subsets for the my-svc destination service, with different load balancing policies:
					
apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: my-destination-rule
spec:
 host: my-svc
 trafficPolicy:
 loadBalancer:
 simple: RANDOM
 subsets:
 - name: v1
 labels:
 version: v1
 - name: v2
 labels:
 version: v2
 trafficPolicy:
 loadBalancer:
 simple: ROUND_ROBIN
 - name: v3
 labels:
 version: v3

					This guide references the Bookinfo sample application to provide examples of routing in an example application. Install the Bookinfo application to learn how these routing examples work.
				

Bookinfo routing tutorial

					The Service Mesh Bookinfo sample application consists of four separate microservices, each with multiple versions. After installing the Bookinfo sample application, three different versions of the reviews microservice run concurrently.
				

					When you access the Bookinfo app /product page in a browser and refresh several times, sometimes the book review output contains star ratings and other times it does not. Without an explicit default service version to route to, Service Mesh routes requests to all available versions one after the other.
				

					This tutorial helps you apply rules that route all traffic to v1 (version 1) of the microservices. Later, you can apply a rule to route traffic based on the value of an HTTP request header.
				
Prerequisites:
	
							Deploy the Bookinfo sample application to work with the following examples.
						

Applying a virtual service

						In the following procedure, the virtual service routes all traffic to v1 of each micro-service by applying virtual services that set the default version for the micro-services.
					
Procedure
	
								Apply the virtual services.
							
$ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.2/samples/bookinfo/networking/virtual-service-all-v1.yaml

	
								To verify that you applied the virtual services, display the defined routes with the following command:
							
$ oc get virtualservices -o yaml

								That command returns a resource of kind: VirtualService in YAML format.
							

						You have configured Service Mesh to route to the v1 version of the Bookinfo microservices including the reviews service version 1.
					

Testing the new route configuration

						Test the new configuration by refreshing the /productpage of the Bookinfo application.
					
Procedure
	
								Set the value for the GATEWAY_URL parameter. You can use this variable to find the URL for your Bookinfo product page later. In this example, istio-system is the name of the control plane project.
							
export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')

	
								Run the following command to retrieve the URL for the product page.
							
echo "http://$GATEWAY_URL/productpage"

	
								Open the Bookinfo site in your browser.
							

						The reviews part of the page displays with no rating stars, no matter how many times you refresh. This is because you configured Service Mesh to route all traffic for the reviews service to the version reviews:v1 and this version of the service does not access the star ratings service.
					

						Your service mesh now routes traffic to one version of a service.
					

Route based on user identity

						Change the route configuration so that all traffic from a specific user is routed to a specific service version. In this case, all traffic from a user named jason will be routed to the service reviews:v2.
					

						Service Mesh does not have any special, built-in understanding of user identity. This example is enabled by the fact that the productpage service adds a custom end-user header to all outbound HTTP requests to the reviews service.
					
Procedure
	
								Run the following command to enable user-based routing in the Bookinfo sample application.
							
$ oc apply -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.2/samples/bookinfo/networking/virtual-service-reviews-test-v2.yaml

	
								Run the following command to confirm the rule is created. This command returns all resources of kind: VirtualService in YAML format.
							
$ oc get virtualservice reviews -o yaml

	
								On the /productpage of the Bookinfo app, log in as user jason with no password.
							
	
								Refresh the browser. The star ratings appear next to each review.
							
	
								Log in as another user (pick any name you want). Refresh the browser. Now the stars are gone. Traffic is now routed to reviews:v1 for all users except Jason.
							

						You have successfully configured the Bookinfo sample application to route traffic based on user identity.
					

Additional resources

					For more information about configuring an OpenShift Container Platform wildcard policy, see Using wildcard routes.
				

Deploying applications on Service Mesh

Warning

					You are viewing documentation for a Red Hat OpenShift Service Mesh release that is no longer supported.
				

					Service Mesh version 1.0 and 1.1 control planes are no longer supported. For information about upgrading your service mesh control plane, see Upgrading Service Mesh.
				

					For information about the support status of a particular Red Hat OpenShift Service Mesh release, see the Product lifecycle page.
				

				When you deploy an application into the Service Mesh, there are several differences between the behavior of applications in the upstream community version of Istio and the behavior of applications within a Red Hat OpenShift Service Mesh installation.
			
Prerequisites

	
							Review Comparing Red Hat OpenShift Service Mesh and upstream Istio community installations
						
	
							Review Installing Red Hat OpenShift Service Mesh
						

Creating control plane templates

					You can create reusable configurations with ServiceMeshControlPlane templates. Individual users can extend the templates they create with their own configurations. Templates can also inherit configuration information from other templates. For example, you can create an accounting control plane for the accounting team and a marketing control plane for the marketing team. If you create a development template and a production template, members of the marketing team and the accounting team can extend the development and production templates with team specific customization.
				

					When you configure control plane templates, which follow the same syntax as the ServiceMeshControlPlane, users inherit settings in a hierarchical fashion. The Operator is delivered with a default template with default settings for Red Hat OpenShift Service Mesh. To add custom templates you must create a ConfigMap named smcp-templates in the openshift-operators project and mount the ConfigMap in the Operator container at /usr/local/share/istio-operator/templates.
				
Creating the ConfigMap

						Follow this procedure to create the ConfigMap.
					
Prerequisites
	
								An installed, verified Service Mesh Operator.
							
	
								An account with the cluster-admin role.
							
	
								Location of the Operator deployment.
							
	
								Access to the OpenShift CLI (oc).
							

Procedure
	
								Log in to the OpenShift Container Platform CLI as a cluster administrator.
							
	
								From the CLI, run this command to create the ConfigMap named smcp-templates in the openshift-operators project and replace <templates-directory> with the location of the ServiceMeshControlPlane files on your local disk:
							
$ oc create configmap --from-file=<templates-directory> smcp-templates -n openshift-operators

	
								Locate the Operator ClusterServiceVersion name.
							
$ oc get clusterserviceversion -n openshift-operators | grep 'Service Mesh'
Example output

									

maistra.v1.0.0 Red Hat OpenShift Service Mesh 1.0.0 Succeeded

								

	
								Edit the Operator cluster service version to instruct the Operator to use the smcp-templates ConfigMap.
							
$ oc edit clusterserviceversion -n openshift-operators maistra.v1.0.0

	
								Add a volume mount and volume to the Operator deployment.
							
deployments:
 - name: istio-operator
 spec:
 template:
 spec:
 containers:
 volumeMounts:
 - name: discovery-cache
 mountPath: /home/istio-operator/.kube/cache/discovery
 - name: smcp-templates
 mountPath: /usr/local/share/istio-operator/templates/
 volumes:
 - name: discovery-cache
 emptyDir:
 medium: Memory
 - name: smcp-templates
 configMap:
 name: smcp-templates
...

	
								Save your changes and exit the editor.
							
	
								You can now use the template parameter in the ServiceMeshControlPlane to specify a template.
							
apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
metadata:
 name: minimal-install
spec:
 template: default

Enabling automatic sidecar injection

					When deploying an application, you must opt-in to injection by configuring the annotation sidecar.istio.io/inject in spec.template.metadata.annotations to true in the deployment object. Opting in ensures that the sidecar injection does not interfere with other OpenShift Container Platform features such as builder pods used by numerous frameworks within the OpenShift Container Platform ecosystem.
				
Prerequisites
	
							Identify the namespaces that are part of your service mesh and the deployments that need automatic sidecar injection.
						

Procedure
	
							To find your deployments use the oc get command.
						
$ oc get deployment -n <namespace>

							For example, to view the deployment file for the 'ratings-v1' microservice in the bookinfo namespace, use the following command to see the resource in YAML format.
						
oc get deployment -n bookinfo ratings-v1 -o yaml

	
							Open the application’s deployment configuration YAML file in an editor.
						
	
							Add spec.template.metadata.annotations.sidecar.istio/inject to your Deployment YAML and set sidecar.istio.io/inject to true as shown in the following example.
						
Example snippet from bookinfo deployment-ratings-v1.yaml

								

apiVersion: apps/v1
kind: Deployment
metadata:
 name: ratings-v1
 namespace: bookinfo
 labels:
 app: ratings
 version: v1
spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: 'true'

							

	
							Save the Deployment configuration file.
						
	
							Add the file back to the project that contains your app.
						
$ oc apply -n <namespace> -f deployment.yaml

							In this example, bookinfo is the name of the project that contains the ratings-v1 app and deployment-ratings-v1.yaml is the file you edited.
						
$ oc apply -n bookinfo -f deployment-ratings-v1.yaml

	
							To verify that the resource uploaded successfully, run the following command.
						
$ oc get deployment -n <namespace> <deploymentName> -o yaml

							For example,
						
$ oc get deployment -n bookinfo ratings-v1 -o yaml

Setting proxy environment variables through annotations

					Configuration for the Envoy sidecar proxies is managed by the ServiceMeshControlPlane.
				

					You can set environment variables for the sidecar proxy for applications by adding pod annotations to the deployment in the injection-template.yaml file. The environment variables are injected to the sidecar.
				
Example injection-template.yaml

						

apiVersion: apps/v1
kind: Deployment
metadata:
 name: resource
spec:
 replicas: 7
 selector:
 matchLabels:
 app: resource
 template:
 metadata:
 annotations:
 sidecar.maistra.io/proxyEnv: "{ \"maistra_test_env\": \"env_value\", \"maistra_test_env_2\": \"env_value_2\" }"

					
Warning

						You should never include maistra.io/ labels and annotations when creating your own custom resources. These labels and annotations indicate that the resources are generated and managed by the Operator. If you are copying content from an Operator-generated resource when creating your own resources, do not include labels or annotations that start with maistra.io/. Resources that include these labels or annotations will be overwritten or deleted by the Operator during the next reconciliation.
					

Updating Mixer policy enforcement

					In previous versions of Red Hat OpenShift Service Mesh, Mixer’s policy enforcement was enabled by default. Mixer policy enforcement is now disabled by default. You must enable it before running policy tasks.
				
Prerequisites
	
							Access to the OpenShift CLI (oc).
						

Note

						The examples use <istio-system> as the control plane namespace. Replace this value with the namespace where you deployed the Service Mesh Control Plane (SMCP).
					

Procedure
	
							Log in to the OpenShift Container Platform CLI.
						
	
							Run this command to check the current Mixer policy enforcement status:
						
$ oc get cm -n <istio-system> istio -o jsonpath='{.data.mesh}' | grep disablePolicyChecks

	
							If disablePolicyChecks: true, edit the Service Mesh ConfigMap:
						
$ oc edit cm -n <istio-system> istio

	
							Locate disablePolicyChecks: true within the ConfigMap and change the value to false.
						
	
							Save the configuration and exit the editor.
						
	
							Re-check the Mixer policy enforcement status to ensure it is set to false.
						

Setting the correct network policy

						Service Mesh creates network policies in the Service Mesh control plane and member namespaces to allow traffic between them. Before you deploy, consider the following conditions to ensure the services in your service mesh that were previously exposed through an OpenShift Container Platform route.
					
	
								Traffic into the service mesh must always go through the ingress-gateway for Istio to work properly.
							
	
								Deploy services external to the service mesh in separate namespaces that are not in any service mesh.
							
	
								Non-mesh services that need to be deployed within a service mesh enlisted namespace should label their deployments maistra.io/expose-route: "true", which ensures OpenShift Container Platform routes to these services still work.
							

Bookinfo example application

					The Bookinfo example application allows you to test your Red Hat OpenShift Service Mesh 2.2.3 installation on OpenShift Container Platform.
				

					The Bookinfo application displays information about a book, similar to a single catalog entry of an online book store. The application displays a page that describes the book, book details (ISBN, number of pages, and other information), and book reviews.
				

					The Bookinfo application consists of these microservices:
				
	
							The productpage microservice calls the details and reviews microservices to populate the page.
						
	
							The details microservice contains book information.
						
	
							The reviews microservice contains book reviews. It also calls the ratings microservice.
						
	
							The ratings microservice contains book ranking information that accompanies a book review.
						

					There are three versions of the reviews microservice:
				
	
							Version v1 does not call the ratings Service.
						
	
							Version v2 calls the ratings Service and displays each rating as one to five black stars.
						
	
							Version v3 calls the ratings Service and displays each rating as one to five red stars.
						

Installing the Bookinfo application

						This tutorial walks you through how to create a sample application by creating a project, deploying the Bookinfo application to that project, and viewing the running application in Service Mesh.
					
Prerequisites:
	
								OpenShift Container Platform 4.1 or higher installed.
							
	
								Red Hat OpenShift Service Mesh 2.2.3 installed.
							
	
								Access to the OpenShift CLI (oc).
							
	
								An account with the cluster-admin role.
							

Note

							The Bookinfo sample application cannot be installed on IBM Z and IBM Power Systems.
						

Note

							The commands in this section assume the Service Mesh control plane project is istio-system. If you installed the control plane in another namespace, edit each command before you run it.
						

Procedure
	
								Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
							
	
								Click Home → Projects.
							
	
								Click Create Project.
							
	
								Enter bookinfo as the Project Name, enter a Display Name, and enter a Description, then click Create.
							
	
										Alternatively, you can run this command from the CLI to create the bookinfo project.
									
$ oc new-project bookinfo

	
								Click Operators → Installed Operators.
							
	
								Click the Project menu and use the Service Mesh control plane namespace. In this example, use istio-system.
							
	
								Click the Red Hat OpenShift Service Mesh Operator.
							
	
								Click the Istio Service Mesh Member Roll tab.
							
	
										If you have already created a Istio Service Mesh Member Roll, click the name, then click the YAML tab to open the YAML editor.
									
	
										If you have not created a ServiceMeshMemberRoll, click Create ServiceMeshMemberRoll.
									

	
								Click Members, then enter the name of your project in the Value field.
							
	
								Click Create to save the updated Service Mesh Member Roll.
							
	
										Or, save the following example to a YAML file.
									
Bookinfo ServiceMeshMemberRoll example servicemeshmemberroll-default.yaml

											

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
spec:
 members:
 - bookinfo

										

	
										Run the following command to upload that file and create the ServiceMeshMemberRoll resource in the istio-system namespace. In this example, istio-system is the name of the Service Mesh control plane project.
									
$ oc create -n istio-system -f servicemeshmemberroll-default.yaml

	
								Run the following command to verify the ServiceMeshMemberRoll was created successfully.
							
$ oc get smmr -n istio-system -o wide

								The installation has finished successfully when the STATUS column is Configured.
							
NAME READY STATUS AGE MEMBERS
default 1/1 Configured 70s ["bookinfo"]

	
								From the CLI, deploy the Bookinfo application in the `bookinfo` project by applying the bookinfo.yaml file:
							
$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.2/samples/bookinfo/platform/kube/bookinfo.yaml

								You should see output similar to the following:
							
service/details created
serviceaccount/bookinfo-details created
deployment.apps/details-v1 created
service/ratings created
serviceaccount/bookinfo-ratings created
deployment.apps/ratings-v1 created
service/reviews created
serviceaccount/bookinfo-reviews created
deployment.apps/reviews-v1 created
deployment.apps/reviews-v2 created
deployment.apps/reviews-v3 created
service/productpage created
serviceaccount/bookinfo-productpage created
deployment.apps/productpage-v1 created

	
								Create the ingress gateway by applying the bookinfo-gateway.yaml file:
							
$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.2/samples/bookinfo/networking/bookinfo-gateway.yaml

								You should see output similar to the following:
							
gateway.networking.istio.io/bookinfo-gateway created
virtualservice.networking.istio.io/bookinfo created

	
								Set the value for the GATEWAY_URL parameter:
							
$ export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o jsonpath='{.spec.host}')

Adding default destination rules

						Before you can use the Bookinfo application, you must first add default destination rules. There are two preconfigured YAML files, depending on whether or not you enabled mutual transport layer security (TLS) authentication.
					
Procedure
	
								To add destination rules, run one of the following commands:
							
	
										If you did not enable mutual TLS:
									
$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.2/samples/bookinfo/networking/destination-rule-all.yaml

	
										If you enabled mutual TLS:
									
$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-2.2/samples/bookinfo/networking/destination-rule-all-mtls.yaml

										You should see output similar to the following:
									
destinationrule.networking.istio.io/productpage created
destinationrule.networking.istio.io/reviews created
destinationrule.networking.istio.io/ratings created
destinationrule.networking.istio.io/details created

Verifying the Bookinfo installation

						To confirm that the sample Bookinfo application was successfully deployed, perform the following steps.
					
Prerequisites
	
								Red Hat OpenShift Service Mesh installed.
							
	
								Complete the steps for installing the Bookinfo sample app.
							

Procedure from CLI
	
								Log in to the OpenShift Container Platform CLI.
							
	
								Verify that all pods are ready with this command:
							
$ oc get pods -n bookinfo

								All pods should have a status of Running. You should see output similar to the following:
							
NAME READY STATUS RESTARTS AGE
details-v1-55b869668-jh7hb 2/2 Running 0 12m
productpage-v1-6fc77ff794-nsl8r 2/2 Running 0 12m
ratings-v1-7d7d8d8b56-55scn 2/2 Running 0 12m
reviews-v1-868597db96-bdxgq 2/2 Running 0 12m
reviews-v2-5b64f47978-cvssp 2/2 Running 0 12m
reviews-v3-6dfd49b55b-vcwpf 2/2 Running 0 12m

	
								Run the following command to retrieve the URL for the product page:
							
echo "http://$GATEWAY_URL/productpage"

	
								Copy and paste the output in a web browser to verify the Bookinfo product page is deployed.
							

Procedure from Kiali web console
	
								Obtain the address for the Kiali web console.
							
	
										Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin role.
									
	
										Navigate to Networking → Routes.
									
	
										On the Routes page, select the Service Mesh control plane project, for example istio-system, from the Namespace menu.
									

										The Location column displays the linked address for each route.
									

	
										Click the link in the Location column for Kiali.
									
	
										Click Log In With OpenShift. The Kiali Overview screen presents tiles for each project namespace.
									

	
								In Kiali, click Graph.
							
	
								Select bookinfo from the Namespace list, and App graph from the Graph Type list.
							
	
								Click Display idle nodes from the Display menu.
							

								This displays nodes that are defined but have not received or sent requests. It can confirm that an application is properly defined, but that no request traffic has been reported.
							
[image: Kiali displaying bookinfo application]

	
										Use the Duration menu to increase the time period to help ensure older traffic is captured.
									
	
										Use the Refresh Rate menu to refresh traffic more or less often, or not at all.
									

	
								Click Services, Workloads or Istio Config to see list views of bookinfo components, and confirm that they are healthy.
							

Removing the Bookinfo application

						Follow these steps to remove the Bookinfo application.
					
Prerequisites
	
								OpenShift Container Platform 4.1 or higher installed.
							
	
								Red Hat OpenShift Service Mesh 2.2.3 installed.
							
	
								Access to the OpenShift CLI (oc).
							

Delete the Bookinfo project

Procedure
	
									Log in to the OpenShift Container Platform web console.
								
	
									Click to Home → Projects.
								
	
									Click the bookinfo menu
									[image: kebab]
									 , and then click Delete Project.
								
	
									Type bookinfo in the confirmation dialog box, and then click Delete.
								
	
											Alternatively, you can run this command using the CLI to create the bookinfo project.
										
$ oc delete project bookinfo

Remove the Bookinfo project from the Service Mesh member roll

Procedure
	
									Log in to the OpenShift Container Platform web console.
								
	
									Click Operators → Installed Operators.
								
	
									Click the Project menu and choose istio-system from the list.
								
	
									Click the Istio Service Mesh Member Roll link under Provided APIS for the Red Hat OpenShift Service Mesh Operator.
								
	
									Click the ServiceMeshMemberRoll menu
									[image: kebab]
									 and select Edit Service Mesh Member Roll.
								
	
									Edit the default Service Mesh Member Roll YAML and remove bookinfo from the members list.
								
	
											Alternatively, you can run this command using the CLI to remove the bookinfo project from the ServiceMeshMemberRoll. In this example, istio-system is the name of the Service Mesh control plane project.
										
$ oc -n istio-system patch --type='json' smmr default -p '[{"op": "remove", "path": "/spec/members", "value":["'"bookinfo"'"]}]'

	
									Click Save to update Service Mesh Member Roll.
								

Generating example traces and analyzing trace data

					Jaeger is an open source distributed tracing system. With Jaeger, you can perform a trace that follows the path of a request through various microservices which make up an application. Jaeger is installed by default as part of the Service Mesh.
				

					This tutorial uses Service Mesh and the Bookinfo sample application to demonstrate how you can use Jaeger to perform distributed tracing.
				
Prerequisites:
	
							OpenShift Container Platform 4.1 or higher installed.
						
	
							Red Hat OpenShift Service Mesh 2.2.3 installed.
						
	
							Jaeger enabled during the installation.
						
	
							Bookinfo example application installed.
						

Procedure
	
							After installing the Bookinfo sample application, send traffic to the mesh. Enter the following command several times.
						
$ curl "http://$GATEWAY_URL/productpage"

							This command simulates a user visiting the productpage microservice of the application.
						

	
							In the OpenShift Container Platform console, navigate to Networking → Routes and search for the Jaeger route, which is the URL listed under Location.
						
	
									Alternatively, use the CLI to query for details of the route. In this example, istio-system is the Service Mesh control plane namespace:
								
$ export JAEGER_URL=$(oc get route -n istio-system jaeger -o jsonpath='{.spec.host}')
	
											Enter the following command to reveal the URL for the Jaeger console. Paste the result in a browser and navigate to that URL.
										
echo $JAEGER_URL

	
							Log in using the same user name and password as you use to access the OpenShift Container Platform console.
						
	
							In the left pane of the Jaeger dashboard, from the Service menu, select productpage.bookinfo and click Find Traces at the bottom of the pane. A list of traces is displayed.
						
	
							Click one of the traces in the list to open a detailed view of that trace. If you click the first one in the list, which is the most recent trace, you see the details that correspond to the latest refresh of the /productpage.
						

Data visualization and observability

Warning

					You are viewing documentation for a Red Hat OpenShift Service Mesh release that is no longer supported.
				

					Service Mesh version 1.0 and 1.1 control planes are no longer supported. For information about upgrading your service mesh control plane, see Upgrading Service Mesh.
				

					For information about the support status of a particular Red Hat OpenShift Service Mesh release, see the Product lifecycle page.
				

				You can view your application’s topology, health and metrics in the Kiali console. If your service is having issues, the Kiali console offers ways to visualize the data flow through your service. You can view insights about the mesh components at different levels, including abstract applications, services, and workloads. It also provides an interactive graph view of your namespace in real time.
			
Before you begin

					You can observe the data flow through your application if you have an application installed. If you don’t have your own application installed, you can see how observability works in Red Hat OpenShift Service Mesh by installing the Bookinfo sample application.
				
Viewing service mesh data

					The Kiali operator works with the telemetry data gathered in Red Hat OpenShift Service Mesh to provide graphs and real-time network diagrams of the applications, services, and workloads in your namespace.
				

					To access the Kiali console you must have Red Hat OpenShift Service Mesh installed and projects configured for the service mesh.
				
Procedure
	
							Use the perspective switcher to switch to the Administrator perspective.
						
	
							Click Home → Projects.
						
	
							Click the name of your project. For example, click bookinfo.
						
	
							In the Launcher section, click Kiali.
						
	
							Log in to the Kiali console with the same user name and password that you use to access the OpenShift Container Platform console.
						

					When you first log in to the Kiali Console, you see the Overview page which displays all the namespaces in your service mesh that you have permission to view.
				

					If you are validating the console installation, there might not be any data to display.
				

Viewing service mesh data in the Kiali console

					The Kiali Graph offers a powerful visualization of your mesh traffic. The topology combines real-time request traffic with your Istio configuration information to present immediate insight into the behavior of your service mesh, letting you quickly pinpoint issues. Multiple Graph Types let you visualize traffic as a high-level service topology, a low-level workload topology, or as an application-level topology.
				

					There are several graphs to choose from:
				
	
							The App graph shows an aggregate workload for all applications that are labeled the same.
						
	
							The Service graph shows a node for each service in your mesh but excludes all applications and workloads from the graph. It provides a high level view and aggregates all traffic for defined services.
						
	
							The Versioned App graph shows a node for each version of an application. All versions of an application are grouped together.
						
	
							The Workload graph shows a node for each workload in your service mesh. This graph does not require you to use the application and version labels. If your application does not use version labels, use this the graph.
						

					Graph nodes are decorated with a variety of information, pointing out various route routing options like virtual services and service entries, as well as special configuration like fault-injection and circuit breakers. It can identify mTLS issues, latency issues, error traffic and more. The Graph is highly configurable, can show traffic animation, and has powerful Find and Hide abilities.
				

					Click the Legend button to view information about the shapes, colors, arrows, and badges displayed in the graph.
				

					To view a summary of metrics, select any node or edge in the graph to display its metric details in the summary details panel.
				
Changing graph layouts in Kiali

						The layout for the Kiali graph can render differently depending on your application architecture and the data to display. For example, the number of graph nodes and their interactions can determine how the Kiali graph is rendered. Because it is not possible to create a single layout that renders nicely for every situation, Kiali offers a choice of several different layouts.
					
Prerequisites
	
								If you do not have your own application installed, install the Bookinfo sample application. Then generate traffic for the Bookinfo application by entering the following command several times.
							
$ curl "http://$GATEWAY_URL/productpage"

								This command simulates a user visiting the productpage microservice of the application.
							

Procedure
	
								Launch the Kiali console.
							
	
								Click Log In With OpenShift.
							
	
								In Kiali console, click Graph to view a namespace graph.
							
	
								From the Namespace menu, select your application namespace, for example, bookinfo.
							
	
								To choose a different graph layout, do either or both of the following:
							
	
										Select different graph data groupings from the menu at the top of the graph.
									
	
												App graph
											
	
												Service graph
											
	
												Versioned App graph (default)
											
	
												Workload graph
											

	
										Select a different graph layout from the Legend at the bottom of the graph.
									
	
												Layout default dagre
											
	
												Layout 1 cose-bilkent
											
	
												Layout 2 cola
											

Custom resources

Warning

					You are viewing documentation for a Red Hat OpenShift Service Mesh release that is no longer supported.
				

					Service Mesh version 1.0 and 1.1 control planes are no longer supported. For information about upgrading your service mesh control plane, see Upgrading Service Mesh.
				

					For information about the support status of a particular Red Hat OpenShift Service Mesh release, see the Product lifecycle page.
				

				You can customize your Red Hat OpenShift Service Mesh by modifying the default Service Mesh custom resource or by creating a new custom resource.
			
Prerequisites

	
							An account with the cluster-admin role.
						
	
							Completed the Preparing to install Red Hat OpenShift Service Mesh process.
						
	
							Have installed the operators.
						

Red Hat OpenShift Service Mesh custom resources

Note

						The istio-system project is used as an example throughout the Service Mesh documentation, but you can use other projects as necessary.
					

					A custom resource allows you to extend the API in an Red Hat OpenShift Service Mesh project or cluster. When you deploy Service Mesh it creates a default ServiceMeshControlPlane that you can modify to change the project parameters.
				

					The Service Mesh operator extends the API by adding the ServiceMeshControlPlane resource type, which enables you to create ServiceMeshControlPlane objects within projects. By creating a ServiceMeshControlPlane object, you instruct the Operator to install a Service Mesh control plane into the project, configured with the parameters you set in the ServiceMeshControlPlane object.
				

					This example ServiceMeshControlPlane definition contains all of the supported parameters and deploys Red Hat OpenShift Service Mesh 1.1.18.2 images based on Red Hat Enterprise Linux (RHEL).
				
Important

						The 3scale Istio Adapter is deployed and configured in the custom resource file. It also requires a working 3scale account (SaaS or On-Premises).
					

Example istio-installation.yaml

						

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
metadata:
 name: basic-install
spec:

 istio:
 global:
 proxy:
 resources:
 requests:
 cpu: 100m
 memory: 128Mi
 limits:
 cpu: 500m
 memory: 128Mi

 gateways:
 istio-egressgateway:
 autoscaleEnabled: false
 istio-ingressgateway:
 autoscaleEnabled: false
 ior_enabled: false

 mixer:
 policy:
 autoscaleEnabled: false

 telemetry:
 autoscaleEnabled: false
 resources:
 requests:
 cpu: 100m
 memory: 1G
 limits:
 cpu: 500m
 memory: 4G

 pilot:
 autoscaleEnabled: false
 traceSampling: 100

 kiali:
 enabled: true

 grafana:
 enabled: true

 tracing:
 enabled: true
 jaeger:
 template: all-in-one

					

ServiceMeshControlPlane parameters

					The following examples illustrate use of the ServiceMeshControlPlane parameters and the tables provide additional information about supported parameters.
				
Important

						The resources you configure for Red Hat OpenShift Service Mesh with these parameters, including CPUs, memory, and the number of pods, are based on the configuration of your OpenShift Container Platform cluster. Configure these parameters based on the available resources in your current cluster configuration.
					

Istio global example

						Here is an example that illustrates the Istio global parameters for the ServiceMeshControlPlane and a description of the available parameters with appropriate values.
					
Note

							In order for the 3scale Istio Adapter to work, disablePolicyChecks must be false.
						

Example global parameters

							

 istio:
 global:
 tag: 1.1.0
 hub: registry.redhat.io/openshift-service-mesh/
 proxy:
 resources:
 requests:
 cpu: 10m
 memory: 128Mi
 limits:
 mtls:
 enabled: false
 disablePolicyChecks: true
 policyCheckFailOpen: false
 imagePullSecrets:
 - MyPullSecret

						
Table 2.4. Global parameters
	Parameter	Description	Values	Default value
	
										disablePolicyChecks
									

									 	
										This parameter enables/disables policy checks.
									

									 	
										true/false
									

									 	
										true
									

									
	
										policyCheckFailOpen
									

									 	
										This parameter indicates whether traffic is allowed to pass through to the Envoy sidecar when the Mixer policy service cannot be reached.
									

									 	
										true/false
									

									 	
										false
									

									
	
										tag
									

									 	
										The tag that the Operator uses to pull the Istio images.
									

									 	
										A valid container image tag.
									

									 	
										1.1.0
									

									
	
										hub
									

									 	
										The hub that the Operator uses to pull Istio images.
									

									 	
										A valid image repository.
									

									 	
										maistra/ or registry.redhat.io/openshift-service-mesh/
									

									
	
										mtls
									

									 	
										This parameter controls whether to enable/disable Mutual Transport Layer Security (mTLS) between services by default.
									

									 	
										true/false
									

									 	
										false
									

									
	
										imagePullSecrets
									

									 	
										If access to the registry providing the Istio images is secure, list an imagePullSecret here.
									

									 	
										redhat-registry-pullsecret OR quay-pullsecret
									

									 	
										None
									

									

						These parameters are specific to the proxy subset of global parameters.
					
Table 2.5. Proxy parameters
	Type	Parameter	Description	Values	Default value
	
										requests
									

									 	
										cpu
									

									 	
										The amount of CPU resources requested for Envoy proxy.
									

									 	
										CPU resources, specified in cores or millicores (for example, 200m, 0.5, 1) based on your environment’s configuration.
									

									 	
										10m
									

									
	 	
										memory
									

									 	
										The amount of memory requested for Envoy proxy
									

									 	
										Available memory in bytes(for example, 200Ki, 50Mi, 5Gi) based on your environment’s configuration.
									

									 	
										128Mi
									

									
	
										limits
									

									 	
										cpu
									

									 	
										The maximum amount of CPU resources requested for Envoy proxy.
									

									 	
										CPU resources, specified in cores or millicores (for example, 200m, 0.5, 1) based on your environment’s configuration.
									

									 	
										2000m
									

									
	 	
										memory
									

									 	
										The maximum amount of memory Envoy proxy is permitted to use.
									

									 	
										Available memory in bytes (for example, 200Ki, 50Mi, 5Gi) based on your environment’s configuration.
									

									 	
										1024Mi
									

									

Istio gateway configuration

						Here is an example that illustrates the Istio gateway parameters for the ServiceMeshControlPlane and a description of the available parameters with appropriate values.
					
Example gateway parameters

							

 gateways:
 egress:
 enabled: true
 runtime:
 deployment:
 autoScaling:
 enabled: true
 maxReplicas: 5
 minReplicas: 1
 enabled: true
 ingress:
 enabled: true
 runtime:
 deployment:
 autoScaling:
 enabled: true
 maxReplicas: 5
 minReplicas: 1

						
Table 2.6. Istio Gateway parameters
	Parameter	Description	Values	Default value
	
										gateways.egress.runtime.deployment.autoScaling.enabled
									

									 	
										This parameter enables/disables autoscaling.
									

									 	
										true/false
									

									 	
										true
									

									
	
										gateways.egress.runtime.deployment.autoScaling.minReplicas
									

									 	
										The minimum number of pods to deploy for the egress gateway based on the autoscaleEnabled setting.
									

									 	
										A valid number of allocatable pods based on your environment’s configuration.
									

									 	
										1
									

									
	
										gateways.egress.runtime.deployment.autoScaling.maxReplicas
									

									 	
										The maximum number of pods to deploy for the egress gateway based on the autoscaleEnabled setting.
									

									 	
										A valid number of allocatable pods based on your environment’s configuration.
									

									 	
										5
									

									
	
										gateways.ingress.runtime.deployment.autoScaling.enabled
									

									 	
										This parameter enables/disables autoscaling.
									

									 	
										true/false
									

									 	
										true
									

									
	
										gateways.ingress.runtime.deployment.autoScaling.minReplicas
									

									 	
										The minimum number of pods to deploy for the ingress gateway based on the autoscaleEnabled setting.
									

									 	
										A valid number of allocatable pods based on your environment’s configuration.
									

									 	
										1
									

									
	
										gateways.ingress.runtime.deployment.autoScaling.maxReplicas
									

									 	
										The maximum number of pods to deploy for the ingress gateway based on the autoscaleEnabled setting.
									

									 	
										A valid number of allocatable pods based on your environment’s configuration.
									

									 	
										5
									

									

						Cluster administrators can refer to Using wildcard routes for instructions on how to enable subdomains.
					

Istio Mixer configuration

						Here is an example that illustrates the Mixer parameters for the ServiceMeshControlPlane and a description of the available parameters with appropriate values.
					
Example mixer parameters

							

mixer:
 enabled: true
 policy:
 autoscaleEnabled: false
 telemetry:
 autoscaleEnabled: false
 resources:
 requests:
 cpu: 10m
 memory: 128Mi
 limits:

						
Table 2.7. Istio Mixer policy parameters
	Parameter	Description	Values	Default value
	
										enabled
									

									 	
										This parameter enables/disables Mixer.
									

									 	
										true/false
									

									 	
										true
									

									
	
										autoscaleEnabled
									

									 	
										This parameter enables/disables autoscaling. Disable this for small environments.
									

									 	
										true/false
									

									 	
										true
									

									
	
										autoscaleMin
									

									 	
										The minimum number of pods to deploy based on the autoscaleEnabled setting.
									

									 	
										A valid number of allocatable pods based on your environment’s configuration.
									

									 	
										1
									

									
	
										autoscaleMax
									

									 	
										The maximum number of pods to deploy based on the autoscaleEnabled setting.
									

									 	
										A valid number of allocatable pods based on your environment’s configuration.
									

									 	
										5
									

									

Table 2.8. Istio Mixer telemetry parameters
	Type	Parameter	Description	Values	Default
	
										requests
									

									 	
										cpu
									

									 	
										The percentage of CPU resources requested for Mixer telemetry.
									

									 	
										CPU resources in millicores based on your environment’s configuration.
									

									 	
										10m
									

									
	 	
										memory
									

									 	
										The amount of memory requested for Mixer telemetry.
									

									 	
										Available memory in bytes (for example, 200Ki, 50Mi, 5Gi) based on your environment’s configuration.
									

									 	
										128Mi
									

									
	
										limits
									

									 	
										cpu
									

									 	
										The maximum percentage of CPU resources Mixer telemetry is permitted to use.
									

									 	
										CPU resources in millicores based on your environment’s configuration.
									

									 	
										4800m
									

									
	 	
										memory
									

									 	
										The maximum amount of memory Mixer telemetry is permitted to use.
									

									 	
										Available memory in bytes (for example, 200Ki, 50Mi, 5Gi) based on your environment’s configuration.
									

									 	
										4G
									

									

Istio Pilot configuration

						You can configure Pilot to schedule or set limits on resource allocation. The following example illustrates the Pilot parameters for the ServiceMeshControlPlane and a description of the available parameters with appropriate values.
					
Example pilot parameters

							

spec:
 runtime:
 components:
 pilot:
 deployment:
 autoScaling:
 enabled: true
 minReplicas: 1
 maxReplicas: 5
 targetCPUUtilizationPercentage: 85
 pod:
 tolerations:
 - key: node.kubernetes.io/unreachable
 operator: Exists
 effect: NoExecute
 tolerationSeconds: 60
 affinity:
 podAntiAffinity:
 requiredDuringScheduling:
 - key: istio
 topologyKey: kubernetes.io/hostname
 operator: In
 values:
 - pilot
 container:
 resources:
 limits:
 cpu: 100m
 memory: 128M

						
Table 2.9. Istio Pilot parameters
	Parameter	Description	Values	Default value
	
										cpu
									

									 	
										The percentage of CPU resources requested for Pilot.
									

									 	
										CPU resources in millicores based on your environment’s configuration.
									

									 	
										10m
									

									
	
										memory
									

									 	
										The amount of memory requested for Pilot.
									

									 	
										Available memory in bytes (for example, 200Ki, 50Mi, 5Gi) based on your environment’s configuration.
									

									 	
										128Mi
									

									
	
										autoscaleEnabled
									

									 	
										This parameter enables/disables autoscaling. Disable this for small environments.
									

									 	
										true/false
									

									 	
										true
									

									
	
										traceSampling
									

									 	
										This value controls how often random sampling occurs. Note: Increase for development or testing.
									

									 	
										A valid percentage.
									

									 	
										1.0
									

									

Configuring Kiali

					When the Service Mesh Operator creates the ServiceMeshControlPlane it also processes the Kiali resource. The Kiali Operator then uses this object when creating Kiali instances.
				

					The default Kiali parameters specified in the ServiceMeshControlPlane are as follows:
				
Example Kiali parameters

						

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 kiali:
 enabled: true
 dashboard:
 viewOnlyMode: false
 ingress:
 enabled: true

					
Table 2.10. Kiali parameters
	Parameter	Description	Values	Default value
	
enabled

								 	
									This parameter enables/disables Kiali. Kiali is enabled by default.
								

								 	
									true/false
								

								 	
									true
								

								
	
dashboard
 viewOnlyMode

								 	
									This parameter enables/disables view-only mode for the Kiali console. When view-only mode is enabled, users cannot use the console to make changes to the Service Mesh.
								

								 	
									true/false
								

								 	
									false
								

								
	
ingress
 enabled

								 	
									This parameter enables/disables ingress for Kiali.
								

								 	
									true/false
								

								 	
									true
								

								

Configuring Kiali for Grafana

						When you install Kiali and Grafana as part of Red Hat OpenShift Service Mesh the Operator configures the following by default:
					
	
								Grafana is enabled as an external service for Kiali
							
	
								Grafana authorization for the Kiali console
							
	
								Grafana URL for the Kiali console
							

						Kiali can automatically detect the Grafana URL. However if you have a custom Grafana installation that is not easily auto-detectable by Kiali, you must update the URL value in the ServiceMeshControlPlane resource.
					
Additional Grafana parameters

							

spec:
 kiali:
 enabled: true
 dashboard:
 viewOnlyMode: false
 grafanaURL: "https://grafana-istio-system.127.0.0.1.nip.io"
 ingress:
 enabled: true

						

Configuring Kiali for Jaeger

						When you install Kiali and Jaeger as part of Red Hat OpenShift Service Mesh the Operator configures the following by default:
					
	
								Jaeger is enabled as an external service for Kiali
							
	
								Jaeger authorization for the Kiali console
							
	
								Jaeger URL for the Kiali console
							

						Kiali can automatically detect the Jaeger URL. However if you have a custom Jaeger installation that is not easily auto-detectable by Kiali, you must update the URL value in the ServiceMeshControlPlane resource.
					
Additional Jaeger parameters

							

spec:
 kiali:
 enabled: true
 dashboard:
 viewOnlyMode: false
 jaegerURL: "http://jaeger-query-istio-system.127.0.0.1.nip.io"
 ingress:
 enabled: true

						

Configuring Jaeger

					When the Service Mesh Operator creates the ServiceMeshControlPlane resource it can also create the resources for distributed tracing. Service Mesh uses Jaeger for distributed tracing.
				

					You can specify your Jaeger configuration in either of two ways:
				
	
							Configure Jaeger in the ServiceMeshControlPlane resource. There are some limitations with this approach.
						
	
							Configure Jaeger in a custom Jaeger resource and then reference that Jaeger instance in the ServiceMeshControlPlane resource. If a Jaeger resource matching the value of name exists, the control plane will use the existing installation. This approach lets you fully customize your Jaeger configuration.
						

					The default Jaeger parameters specified in the ServiceMeshControlPlane are as follows:
				
Default all-in-one Jaeger parameters

						

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 version: v1.1
 istio:
 tracing:
 enabled: true
 jaeger:
 template: all-in-one

					
Table 2.11. Jaeger parameters
	Parameter	Description	Values	Default value
	
tracing:
 enabled:

								 	
									This parameter enables/disables installing and deploying tracing by the Service Mesh Operator. Installing Jaeger is enabled by default. To use an existing Jaeger deployment, set this value to false.
								

								 	
									true/false
								

								 	
									true
								

								
	
jaeger:
 template:

								 	
									This parameter specifies which Jaeger deployment strategy to use.
								

								 	 	
											all-in-one- For development, testing, demonstrations, and proof of concept.
										
	
											production-elasticsearch - For production use.
										

								 	
									all-in-one
								

								

Note

						The default template in the ServiceMeshControlPlane resource is the all-in-one deployment strategy which uses in-memory storage. For production, the only supported storage option is Elasticsearch, therefore you must configure the ServiceMeshControlPlane to request the production-elasticsearch template when you deploy Service Mesh within a production environment.
					

Configuring Elasticsearch

						The default Jaeger deployment strategy uses the all-in-one template so that the installation can be completed using minimal resources. However, because the all-in-one template uses in-memory storage, it is only recommended for development, demo, or testing purposes and should NOT be used for production environments.
					

						If you are deploying Service Mesh and Jaeger in a production environment you must change the template to the production-elasticsearch template, which uses Elasticsearch for Jaeger’s storage needs.
					

						Elasticsearch is a memory intensive application. The initial set of nodes specified in the default OpenShift Container Platform installation may not be large enough to support the Elasticsearch cluster. You should modify the default Elasticsearch configuration to match your use case and the resources you have requested for your OpenShift Container Platform installation. You can adjust both the CPU and memory limits for each component by modifying the resources block with valid CPU and memory values. Additional nodes must be added to the cluster if you want to run with the recommended amount (or more) of memory. Ensure that you do not exceed the resources requested for your OpenShift Container Platform installation.
					
Default "production" Jaeger parameters with Elasticsearch

							

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 tracing:
 enabled: true
 ingress:
 enabled: true
 jaeger:
 template: production-elasticsearch
 elasticsearch:
 nodeCount: 3
 redundancyPolicy:
 resources:
 requests:
 cpu: "1"
 memory: "16Gi"
 limits:
 cpu: "1"
 memory: "16Gi"

						
Table 2.12. Elasticsearch parameters
	Parameter	Description	Values	Default Value	Examples
	
tracing:
 enabled:

									 	
										This parameter enables/disables tracing in Service Mesh. Jaeger is installed by default.
									

									 	
										true/false
									

									 	
										true
									

									 	
	
ingress:
 enabled:

									 	
										This parameter enables/disables ingress for Jaeger.
									

									 	
										true/false
									

									 	
										true
									

									 	
	
jaeger:
 template:

									 	
										This parameter specifies which Jaeger deployment strategy to use.
									

									 	
										all-in-one/production-elasticsearch
									

									 	
										all-in-one
									

									 	
	
elasticsearch:
 nodeCount:

									 	
										Number of Elasticsearch nodes to create.
									

									 	
										Integer value.
									

									 	
										1
									

									 	
										Proof of concept = 1, Minimum deployment =3
									

									
	
requests:
 cpu:

									 	
										Number of central processing units for requests, based on your environment’s configuration.
									

									 	
										Specified in cores or millicores (for example, 200m, 0.5, 1).
									

									 	
										1Gi
									

									 	
										Proof of concept = 500m, Minimum deployment =1
									

									
	
requests:
 memory:

									 	
										Available memory for requests, based on your environment’s configuration.
									

									 	
										Specified in bytes (for example, 200Ki, 50Mi, 5Gi).
									

									 	
										500m
									

									 	
										Proof of concept = 1Gi, Minimum deployment = 16Gi*
									

									
	
limits:
 cpu:

									 	
										Limit on number of central processing units, based on your environment’s configuration.
									

									 	
										Specified in cores or millicores (for example, 200m, 0.5, 1).
									

									 	 	
										Proof of concept = 500m, Minimum deployment =1
									

									
	
limits:
 memory:

									 	
										Available memory limit based on your environment’s configuration.
									

									 	
										Specified in bytes (for example, 200Ki, 50Mi, 5Gi).
									

									 	 	
										Proof of concept = 1Gi, Minimum deployment = 16Gi*
									

									
	

									 	
										* Each Elasticsearch node can operate with a lower memory setting though this is not recommended for production deployments. For production use, you should have no less than 16Gi allocated to each pod by default, but preferably allocate as much as you can, up to 64Gi per pod.
									

									

Procedure
	
								Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
							
	
								Navigate to Operators → Installed Operators.
							
	
								Click the Red Hat OpenShift Service Mesh Operator.
							
	
								Click the Istio Service Mesh Control Plane tab.
							
	
								Click the name of your control plane file, for example, basic-install.
							
	
								Click the YAML tab.
							
	
								Edit the Jaeger parameters, replacing the default all-in-one template with parameters for the production-elasticsearch template, modified for your use case. Ensure that the indentation is correct.
							
	
								Click Save.
							
	
								Click Reload. OpenShift Container Platform redeploys Jaeger and creates the Elasticsearch resources based on the specified parameters.
							

Connecting to an existing Jaeger instance

						In order for the SMCP to connect to an existing Jaeger instance, the following must be true:
					
	
								The Jaeger instance is deployed in the same namespace as the control plane, for example, into the istio-system namespace.
							
	
								To enable secure communication between services, you should enable the oauth-proxy, which secures communication to your Jaeger instance, and make sure the secret is mounted into your Jaeger instance so Kiali can communicate with it.
							
	
								To use a custom or already existing Jaeger instance, set spec.istio.tracing.enabled to "false" to disable the deployment of a Jaeger instance.
							
	
								Supply the correct jaeger-collector endpoint to Mixer by setting spec.istio.global.tracer.zipkin.address to the hostname and port of your jaeger-collector service. The hostname of the service is usually <jaeger-instance-name>-collector.<namespace>.svc.cluster.local.
							
	
								Supply the correct jaeger-query endpoint to Kiali for gathering traces by setting spec.istio.kiali.jaegerInClusterURL to the hostname of your jaeger-query service - the port is normally not required, as it uses 443 by default. The hostname of the service is usually <jaeger-instance-name>-query.<namespace>.svc.cluster.local.
							
	
								Supply the dashboard URL of your Jaeger instance to Kiali to enable accessing Jaeger through the Kiali console. You can retrieve the URL from the OpenShift route that is created by the Jaeger Operator. If your Jaeger resource is called external-jaeger and resides in the istio-system project, you can retrieve the route using the following command:
							
$ oc get route -n istio-system external-jaeger
Example output

									

NAME HOST/PORT PATH SERVICES [...]
external-jaeger external-jaeger-istio-system.apps.test external-jaeger-query [...]

								

								The value under HOST/PORT is the externally accessible URL of the Jaeger dashboard.
							

Example Jaeger resource

							

apiVersion: jaegertracing.io/v1
kind: "Jaeger"
metadata:
 name: "external-jaeger"
 # Deploy to the Control Plane Namespace
 namespace: istio-system
spec:
 # Set Up Authentication
 ingress:
 enabled: true
 security: oauth-proxy
 openshift:
 # This limits user access to the Jaeger instance to users who have access
 # to the control plane namespace. Make sure to set the correct namespace here
 sar: '{"namespace": "istio-system", "resource": "pods", "verb": "get"}'
 htpasswdFile: /etc/proxy/htpasswd/auth

 volumeMounts:
 - name: secret-htpasswd
 mountPath: /etc/proxy/htpasswd
 volumes:
 - name: secret-htpasswd
 secret:
 secretName: htpasswd

						

						The following ServiceMeshControlPlane example assumes that you have deployed Jaeger using the Jaeger Operator and the example Jaeger resource.
					
Example ServiceMeshControlPlane with external Jaeger

							

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
metadata:
 name: external-jaeger
 namespace: istio-system
spec:
 version: v1.1
 istio:
 tracing:
 # Disable Jaeger deployment by service mesh operator
 enabled: false
 global:
 tracer:
 zipkin:
 # Set Endpoint for Trace Collection
 address: external-jaeger-collector.istio-system.svc.cluster.local:9411
 kiali:
 # Set Jaeger dashboard URL
 dashboard:
 jaegerURL: https://external-jaeger-istio-system.apps.test
 # Set Endpoint for Trace Querying
 jaegerInClusterURL: external-jaeger-query.istio-system.svc.cluster.local

						

Configuring Elasticsearch

						The default Jaeger deployment strategy uses the all-in-one template so that the installation can be completed using minimal resources. However, because the all-in-one template uses in-memory storage, it is only recommended for development, demo, or testing purposes and should NOT be used for production environments.
					

						If you are deploying Service Mesh and Jaeger in a production environment you must change the template to the production-elasticsearch template, which uses Elasticsearch for Jaeger’s storage needs.
					

						Elasticsearch is a memory intensive application. The initial set of nodes specified in the default OpenShift Container Platform installation may not be large enough to support the Elasticsearch cluster. You should modify the default Elasticsearch configuration to match your use case and the resources you have requested for your OpenShift Container Platform installation. You can adjust both the CPU and memory limits for each component by modifying the resources block with valid CPU and memory values. Additional nodes must be added to the cluster if you want to run with the recommended amount (or more) of memory. Ensure that you do not exceed the resources requested for your OpenShift Container Platform installation.
					
Default "production" Jaeger parameters with Elasticsearch

							

apiVersion: maistra.io/v1
kind: ServiceMeshControlPlane
spec:
 istio:
 tracing:
 enabled: true
 ingress:
 enabled: true
 jaeger:
 template: production-elasticsearch
 elasticsearch:
 nodeCount: 3
 redundancyPolicy:
 resources:
 requests:
 cpu: "1"
 memory: "16Gi"
 limits:
 cpu: "1"
 memory: "16Gi"

						
Table 2.13. Elasticsearch parameters
	Parameter	Description	Values	Default Value	Examples
	
tracing:
 enabled:

									 	
										This parameter enables/disables tracing in Service Mesh. Jaeger is installed by default.
									

									 	
										true/false
									

									 	
										true
									

									 	
	
ingress:
 enabled:

									 	
										This parameter enables/disables ingress for Jaeger.
									

									 	
										true/false
									

									 	
										true
									

									 	
	
jaeger:
 template:

									 	
										This parameter specifies which Jaeger deployment strategy to use.
									

									 	
										all-in-one/production-elasticsearch
									

									 	
										all-in-one
									

									 	
	
elasticsearch:
 nodeCount:

									 	
										Number of Elasticsearch nodes to create.
									

									 	
										Integer value.
									

									 	
										1
									

									 	
										Proof of concept = 1, Minimum deployment =3
									

									
	
requests:
 cpu:

									 	
										Number of central processing units for requests, based on your environment’s configuration.
									

									 	
										Specified in cores or millicores (for example, 200m, 0.5, 1).
									

									 	
										1Gi
									

									 	
										Proof of concept = 500m, Minimum deployment =1
									

									
	
requests:
 memory:

									 	
										Available memory for requests, based on your environment’s configuration.
									

									 	
										Specified in bytes (for example, 200Ki, 50Mi, 5Gi).
									

									 	
										500m
									

									 	
										Proof of concept = 1Gi, Minimum deployment = 16Gi*
									

									
	
limits:
 cpu:

									 	
										Limit on number of central processing units, based on your environment’s configuration.
									

									 	
										Specified in cores or millicores (for example, 200m, 0.5, 1).
									

									 	 	
										Proof of concept = 500m, Minimum deployment =1
									

									
	
limits:
 memory:

									 	
										Available memory limit based on your environment’s configuration.
									

									 	
										Specified in bytes (for example, 200Ki, 50Mi, 5Gi).
									

									 	 	
										Proof of concept = 1Gi, Minimum deployment = 16Gi*
									

									
	

									 	
										* Each Elasticsearch node can operate with a lower memory setting though this is not recommended for production deployments. For production use, you should have no less than 16Gi allocated to each pod by default, but preferably allocate as much as you can, up to 64Gi per pod.
									

									

Procedure
	
								Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
							
	
								Navigate to Operators → Installed Operators.
							
	
								Click the Red Hat OpenShift Service Mesh Operator.
							
	
								Click the Istio Service Mesh Control Plane tab.
							
	
								Click the name of your control plane file, for example, basic-install.
							
	
								Click the YAML tab.
							
	
								Edit the Jaeger parameters, replacing the default all-in-one template with parameters for the production-elasticsearch template, modified for your use case. Ensure that the indentation is correct.
							
	
								Click Save.
							
	
								Click Reload. OpenShift Container Platform redeploys Jaeger and creates the Elasticsearch resources based on the specified parameters.
							

Configuring the Elasticsearch index cleaner job

						When the Service Mesh Operator creates the ServiceMeshControlPlane it also creates the custom resource (CR) for Jaeger. The Red Hat OpenShift distributed tracing platform Operator then uses this CR when creating Jaeger instances.
					

						When using Elasticsearch storage, by default a job is created to clean old traces from it. To configure the options for this job, you edit the Jaeger custom resource (CR), to customize it for your use case. The relevant options are listed below.
					
 apiVersion: jaegertracing.io/v1
 kind: Jaeger
 spec:
 strategy: production
 storage:
 type: elasticsearch
 esIndexCleaner:
 enabled: false
 numberOfDays: 7
 schedule: "55 23 * * *"
Table 2.14. Elasticsearch index cleaner parameters
	Parameter	Values	Description
	
										enabled:
									

									 	
										true/ false
									

									 	
										Enable or disable the index cleaner job.
									

									
	
										numberOfDays:
									

									 	
										integer value
									

									 	
										Number of days to wait before deleting an index.
									

									
	
										schedule:
									

									 	
										"55 23 * * *"
									

									 	
										Cron expression for the job to run
									

									

						For more information about configuring Elasticsearch with OpenShift Container Platform, see Configuring the log store.
					

3scale configuration

					The following table explains the parameters for the 3scale Istio Adapter in the ServiceMeshControlPlane resource.
				
Example 3scale parameters

						

spec:
 addons:
 3Scale:
 enabled: false
 PARAM_THREESCALE_LISTEN_ADDR: 3333
 PARAM_THREESCALE_LOG_LEVEL: info
 PARAM_THREESCALE_LOG_JSON: true
 PARAM_THREESCALE_LOG_GRPC: false
 PARAM_THREESCALE_REPORT_METRICS: true
 PARAM_THREESCALE_METRICS_PORT: 8080
 PARAM_THREESCALE_CACHE_TTL_SECONDS: 300
 PARAM_THREESCALE_CACHE_REFRESH_SECONDS: 180
 PARAM_THREESCALE_CACHE_ENTRIES_MAX: 1000
 PARAM_THREESCALE_CACHE_REFRESH_RETRIES: 1
 PARAM_THREESCALE_ALLOW_INSECURE_CONN: false
 PARAM_THREESCALE_CLIENT_TIMEOUT_SECONDS: 10
 PARAM_THREESCALE_GRPC_CONN_MAX_SECONDS: 60
 PARAM_USE_CACHED_BACKEND: false
 PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS: 15
 PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED: true

					
Table 2.15. 3scale parameters
	Parameter	Description	Values	Default value
	
									enabled
								

								 	
									Whether to use the 3scale adapter
								

								 	
									true/false
								

								 	
									false
								

								
	
									PARAM_THREESCALE_LISTEN_ADDR
								

								 	
									Sets the listen address for the gRPC server
								

								 	
									Valid port number
								

								 	
									3333
								

								
	
									PARAM_THREESCALE_LOG_LEVEL
								

								 	
									Sets the minimum log output level.
								

								 	
									debug, info, warn, error, or none
								

								 	
									info
								

								
	
									PARAM_THREESCALE_LOG_JSON
								

								 	
									Controls whether the log is formatted as JSON
								

								 	
									true/false
								

								 	
									true
								

								
	
									PARAM_THREESCALE_LOG_GRPC
								

								 	
									Controls whether the log contains gRPC info
								

								 	
									true/false
								

								 	
									true
								

								
	
									PARAM_THREESCALE_REPORT_METRICS
								

								 	
									Controls whether 3scale system and backend metrics are collected and reported to Prometheus
								

								 	
									true/false
								

								 	
									true
								

								
	
									PARAM_THREESCALE_METRICS_PORT
								

								 	
									Sets the port that the 3scale /metrics endpoint can be scrapped from
								

								 	
									Valid port number
								

								 	
									8080
								

								
	
									PARAM_THREESCALE_CACHE_TTL_SECONDS
								

								 	
									Time period, in seconds, to wait before purging expired items from the cache
								

								 	
									Time period in seconds
								

								 	
									300
								

								
	
									PARAM_THREESCALE_CACHE_REFRESH_SECONDS
								

								 	
									Time period before expiry when cache elements are attempted to be refreshed
								

								 	
									Time period in seconds
								

								 	
									180
								

								
	
									PARAM_THREESCALE_CACHE_ENTRIES_MAX
								

								 	
									Max number of items that can be stored in the cache at any time. Set to 0 to disable caching
								

								 	
									Valid number
								

								 	
									1000
								

								
	
									PARAM_THREESCALE_CACHE_REFRESH_RETRIES
								

								 	
									The number of times unreachable hosts are retried during a cache update loop
								

								 	
									Valid number
								

								 	
									1
								

								
	
									PARAM_THREESCALE_ALLOW_INSECURE_CONN
								

								 	
									Allow to skip certificate verification when calling 3scale APIs. Enabling this is not recommended.
								

								 	
									true/false
								

								 	
									false
								

								
	
									PARAM_THREESCALE_CLIENT_TIMEOUT_SECONDS
								

								 	
									Sets the number of seconds to wait before terminating requests to 3scale System and Backend
								

								 	
									Time period in seconds
								

								 	
									10
								

								
	
									PARAM_THREESCALE_GRPC_CONN_MAX_SECONDS
								

								 	
									Sets the maximum amount of seconds (+/-10% jitter) a connection may exist before it is closed
								

								 	
									Time period in seconds
								

								 	
									60
								

								
	
									PARAM_USE_CACHE_BACKEND
								

								 	
									If true, attempt to create an in-memory apisonator cache for authorization requests
								

								 	
									true/false
								

								 	
									false
								

								
	
									PARAM_BACKEND_CACHE_FLUSH_INTERVAL_SECONDS
								

								 	
									If the backend cache is enabled, this sets the interval in seconds for flushing the cache against 3scale
								

								 	
									Time period in seconds
								

								 	
									15
								

								
	
									PARAM_BACKEND_CACHE_POLICY_FAIL_CLOSED
								

								 	
									Whenever the backend cache cannot retrieve authorization data, whether to deny (closed) or allow (open) requests
								

								 	
									true/false
								

								 	
									true
								

								

Using the 3scale Istio adapter

Warning

					You are viewing documentation for a Red Hat OpenShift Service Mesh release that is no longer supported.
				

					Service Mesh version 1.0 and 1.1 control planes are no longer supported. For information about upgrading your service mesh control plane, see Upgrading Service Mesh.
				

					For information about the support status of a particular Red Hat OpenShift Service Mesh release, see the Product lifecycle page.
				

				The 3scale Istio Adapter is an optional adapter that allows you to label a service running within the Red Hat OpenShift Service Mesh and integrate that service with the 3scale API Management solution. It is not required for Red Hat OpenShift Service Mesh.
			
Integrate the 3scale adapter with Red Hat OpenShift Service Mesh

					You can use these examples to configure requests to your services using the 3scale Istio Adapter.
				
Prerequisites:
	
							Red Hat OpenShift Service Mesh version 1.x
						
	
							A working 3scale account (SaaS or 3scale 2.5 On-Premises)
						
	
							Enabling backend cache requires 3scale 2.9 or greater
						
	
							Red Hat OpenShift Service Mesh prerequisites
						

Note

						To configure the 3scale Istio Adapter, refer to Red Hat OpenShift Service Mesh custom resources for instructions on adding adapter parameters to the custom resource file.
					

Note

						Pay particular attention to the kind: handler resource. You must update this with your 3scale account credentials. You can optionally add a service_id to a handler, but this is kept for backwards compatibility only, since it would render the handler only useful for one service in your 3scale account. If you add service_id to a handler, enabling 3scale for other services requires you to create more handlers with different service_ids.
					

					Use a single handler per 3scale account by following the steps below:
				
Procedure
	
							Create a handler for your 3scale account and specify your account credentials. Omit any service identifier.
						
 apiVersion: "config.istio.io/v1alpha2"
 kind: handler
 metadata:
 name: threescale
 spec:
 adapter: threescale
 params:
 system_url: "https://<organization>-admin.3scale.net/"
 access_token: "<ACCESS_TOKEN>"
 connection:
 address: "threescale-istio-adapter:3333"

							Optionally, you can provide a backend_url field within the params section to override the URL provided by the 3scale configuration. This may be useful if the adapter runs on the same cluster as the 3scale on-premise instance, and you wish to leverage the internal cluster DNS.
						

	
							Edit or patch the Deployment resource of any services belonging to your 3scale account as follows:
						
	
									Add the "service-mesh.3scale.net/service-id" label with a value corresponding to a valid service_id.
								
	
									Add the "service-mesh.3scale.net/credentials" label with its value being the name of the handler resource from step 1.
								

	
							Do step 2 to link it to your 3scale account credentials and to its service identifier, whenever you intend to add more services.
						
	
							Modify the rule configuration with your 3scale configuration to dispatch the rule to the threescale handler.
						
Rule configuration example

								

 apiVersion: "config.istio.io/v1alpha2"
 kind: rule
 metadata:
 name: threescale
 spec:
 match: destination.labels["service-mesh.3scale.net"] == "true"
 actions:
 - handler: threescale.handler
 instances:
 - threescale-authorization.instance

							

Generating 3scale custom resources

						The adapter includes a tool that allows you to generate the handler, instance, and rule custom resources.
					
Table 2.16. Usage
	Option	Description	Required	Default value
	
										-h, --help
									

									 	
										Produces help output for available options
									

									 	
										No
									

									 	
	
										--name
									

									 	
										Unique name for this URL, token pair
									

									 	
										Yes
									

									 	
	
										-n, --namespace
									

									 	
										Namespace to generate templates
									

									 	
										No
									

									 	
										istio-system
									

									
	
										-t, --token
									

									 	
										3scale access token
									

									 	
										Yes
									

									 	
	
										-u, --url
									

									 	
										3scale Admin Portal URL
									

									 	
										Yes
									

									 	
	
										--backend-url
									

									 	
										3scale backend URL. If set, it overrides the value that is read from system configuration
									

									 	
										No
									

									 	
	
										-s, --service
									

									 	
										3scale API/Service ID
									

									 	
										No
									

									 	
	
										--auth
									

									 	
										3scale authentication pattern to specify (1=API Key, 2=App Id/App Key, 3=OIDC)
									

									 	
										No
									

									 	
										Hybrid
									

									
	
										-o, --output
									

									 	
										File to save produced manifests to
									

									 	
										No
									

									 	
										Standard output
									

									
	
										--version
									

									 	
										Outputs the CLI version and exits immediately
									

									 	
										No
									

									 	

Generate templates from URL examples

Note
	
										Run the following commands via oc exec from the 3scale adapter container image in Generating manifests from a deployed adapter.
									
	
										Use the 3scale-config-gen command to help avoid YAML syntax and indentation errors.
									
	
										You can omit the --service if you use the annotations.
									
	
										This command must be invoked from within the container image via oc exec.
									

Procedure
	
									Use the 3scale-config-gen command to autogenerate templates files allowing the token, URL pair to be shared by multiple services as a single handler:
								
$ 3scale-config-gen --name=admin-credentials --url="https://<organization>-admin.3scale.net:443" --token="[redacted]"

	
									The following example generates the templates with the service ID embedded in the handler:
								
$ 3scale-config-gen --url="https://<organization>-admin.3scale.net" --name="my-unique-id" --service="123456789" --token="[redacted]"

Additional resources
	
									Tokens.
								

Generating manifests from a deployed adapter

Note
	
									NAME is an identifier you use to identify with the service you are managing with 3scale.
								
	
									The CREDENTIALS_NAME reference is an identifier that corresponds to the match section in the rule configuration. This is automatically set to the NAME identifier if you are using the CLI tool.
								
	
									Its value does not need to be anything specific: the label value should just match the contents of the rule. See Routing service traffic through the adapter for more information.
								

	
								Run this command to generate manifests from a deployed adapter in the istio-system namespace:
							
$ export NS="istio-system" URL="https://replaceme-admin.3scale.net:443" NAME="name" TOKEN="token"
oc exec -n ${NS} $(oc get po -n ${NS} -o jsonpath='{.items[?(@.metadata.labels.app=="3scale-istio-adapter")].metadata.name}') \
-it -- ./3scale-config-gen \
--url ${URL} --name ${NAME} --token ${TOKEN} -n ${NS}

	
								This will produce sample output to the terminal. Edit these samples if required and create the objects using the oc create command.
							
	
								When the request reaches the adapter, the adapter needs to know how the service maps to an API on 3scale. You can provide this information in two ways:
							
	
										Label the workload (recommended)
									
	
										Hard code the handler as service_id
									

	
								Update the workload with the required annotations:
							
Note

									You only need to update the service ID provided in this example if it is not already embedded in the handler. The setting in the handler takes precedence.
								

$ export CREDENTIALS_NAME="replace-me"
export SERVICE_ID="replace-me"
export DEPLOYMENT="replace-me"
patch="$(oc get deployment "${DEPLOYMENT}"
patch="$(oc get deployment "${DEPLOYMENT}" --template='{"spec":{"template":{"metadata":{"labels":{ {{ range $k,$v := .spec.template.metadata.labels }}"{{ $k }}":"{{ $v }}",{{ end }}"service-mesh.3scale.net/service-id":"'"${SERVICE_ID}"'","service-mesh.3scale.net/credentials":"'"${CREDENTIALS_NAME}"'"}}}}}')"
oc patch deployment "${DEPLOYMENT}" --patch ''"${patch}"''

Routing service traffic through the adapter

						Follow these steps to drive traffic for your service through the 3scale adapter.
					
Prerequisites
	
								Credentials and service ID from your 3scale administrator.
							

Procedure
	
								Match the rule destination.labels["service-mesh.3scale.net/credentials"] == "threescale" that you previously created in the configuration, in the kind: rule resource.
							
	
								Add the above label to PodTemplateSpec on the Deployment of the target workload to integrate a service. the value, threescale, refers to the name of the generated handler. This handler stores the access token required to call 3scale.
							
	
								Add the destination.labels["service-mesh.3scale.net/service-id"] == "replace-me" label to the workload to pass the service ID to the adapter via the instance at request time.
							

Configure the integration settings in 3scale

					Follow this procedure to configure the 3scale integration settings.
				
Note

						For 3scale SaaS customers, Red Hat OpenShift Service Mesh is enabled as part of the Early Access program.
					

Procedure
	
							Navigate to [your_API_name] → Integration
						
	
							Click Settings.
						
	
							Select the Istio option under Deployment.
						
	
									The API Key (user_key) option under Authentication is selected by default.
								

	
							Click Update Product to save your selection.
						
	
							Click Configuration.
						
	
							Click Update Configuration.
						

Caching behavior

					Responses from 3scale System APIs are cached by default within the adapter. Entries will be purged from the cache when they become older than the cacheTTLSeconds value. Also by default, automatic refreshing of cached entries will be attempted seconds before they expire, based on the cacheRefreshSeconds value. You can disable automatic refreshing by setting this value higher than the cacheTTLSeconds value.
				

					Caching can be disabled entirely by setting cacheEntriesMax to a non-positive value.
				

					By using the refreshing process, cached values whose hosts become unreachable will be retried before eventually being purged when past their expiry.
				

Authenticating requests

					This release supports the following authentication methods:
				
	
							Standard API Keys: single randomized strings or hashes acting as an identifier and a secret token.
						
	
							Application identifier and key pairs: immutable identifier and mutable secret key strings.
						
	
							OpenID authentication method: client ID string parsed from the JSON Web Token.
						

Applying authentication patterns

						Modify the instance custom resource, as illustrated in the following authentication method examples, to configure authentication behavior. You can accept the authentication credentials from:
					
	
								Request headers
							
	
								Request parameters
							
	
								Both request headers and query parameters
							

Note

							When specifying values from headers, they must be lower case. For example, if you want to send a header as User-Key, this must be referenced in the configuration as request.headers["user-key"].
						

API key authentication method

							Service Mesh looks for the API key in query parameters and request headers as specified in the user option in the subject custom resource parameter. It checks the values in the order given in the custom resource file. You can restrict the search for the API key to either query parameters or request headers by omitting the unwanted option.
						

							In this example, Service Mesh looks for the API key in the user_key query parameter. If the API key is not in the query parameter, Service Mesh then checks the user-key header.
						
API key authentication method example

								

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
 namespace: istio-system
spec:
 template: authorization
 params:
 subject:
 user: request.query_params["user_key"] | request.headers["user-key"] | ""
 action:
 path: request.url_path
 method: request.method | "get"

							

							If you want the adapter to examine a different query parameter or request header, change the name as appropriate. For example, to check for the API key in a query parameter named “key”, change request.query_params["user_key"] to request.query_params["key"].
						

Application ID and application key pair authentication method

							Service Mesh looks for the application ID and application key in query parameters and request headers, as specified in the properties option in the subject custom resource parameter. The application key is optional. It checks the values in the order given in the custom resource file. You can restrict the search for the credentials to either query parameters or request headers by not including the unwanted option.
						

							In this example, Service Mesh looks for the application ID and application key in the query parameters first, moving on to the request headers if needed.
						
Application ID and application key pair authentication method example

								

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
 namespace: istio-system
spec:
 template: authorization
 params:
 subject:
 app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 action:
 path: request.url_path
 method: request.method | "get"

							

							If you want the adapter to examine a different query parameter or request header, change the name as appropriate. For example, to check for the application ID in a query parameter named identification, change request.query_params["app_id"] to request.query_params["identification"].
						

OpenID authentication method

							To use the OpenID Connect (OIDC) authentication method, use the properties value on the subject field to set client_id, and optionally app_key.
						

							You can manipulate this object using the methods described previously. In the example configuration shown below, the client identifier (application ID) is parsed from the JSON Web Token (JWT) under the label azp. You can modify this as needed.
						
OpenID authentication method example

								

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
spec:
 template: threescale-authorization
 params:
 subject:
 properties:
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 client_id: request.auth.claims["azp"] | ""
 action:
 path: request.url_path
 method: request.method | "get"
 service: destination.labels["service-mesh.3scale.net/service-id"] | ""

							

							For this integration to work correctly, OIDC must still be done in 3scale for the client to be created in the identity provider (IdP). You should create a Request authorization for the service you want to protect in the same namespace as that service. The JWT is passed in the Authorization header of the request.
						

							In the sample RequestAuthentication defined below, replace issuer, jwksUri, and selector as appropriate.
						
OpenID Policy example

								

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: jwt-example
 namespace: bookinfo
spec:
 selector:
 matchLabels:
 app: productpage
 jwtRules:
 - issuer: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak
 jwksUri: >-
 http://keycloak-keycloak.34.242.107.254.nip.io/auth/realms/3scale-keycloak/protocol/openid-connect/certs

							

Hybrid authentication method

							You can choose to not enforce a particular authentication method and accept any valid credentials for either method. If both an API key and an application ID/application key pair are provided, Service Mesh uses the API key.
						

							In this example, Service Mesh checks for an API key in the query parameters, then the request headers. If there is no API key, it then checks for an application ID and key in the query parameters, then the request headers.
						
Hybrid authentication method example

								

apiVersion: "config.istio.io/v1alpha2"
kind: instance
metadata:
 name: threescale-authorization
spec:
 template: authorization
 params:
 subject:
 user: request.query_params["user_key"] | request.headers["user-key"] |
 properties:
 app_id: request.query_params["app_id"] | request.headers["app-id"] | ""
 app_key: request.query_params["app_key"] | request.headers["app-key"] | ""
 client_id: request.auth.claims["azp"] | ""
 action:
 path: request.url_path
 method: request.method | "get"
 service: destination.labels["service-mesh.3scale.net/service-id"] | ""

							

3scale Adapter metrics

					The adapter, by default reports various Prometheus metrics that are exposed on port 8080 at the /metrics endpoint. These metrics provide insight into how the interactions between the adapter and 3scale are performing. The service is labeled to be automatically discovered and scraped by Prometheus.
				

3scale Istio adapter verification

					You might want to check whether the 3scale Istio adapter is working as expected. If your adapter is not working, use the following steps to help troubleshoot the problem.
				
Procedure
	
							Ensure the 3scale-adapter pod is running in the Service Mesh control plane namespace:
						
$ oc get pods -n <istio-system>

	
							Check that the 3scale-adapter pod has printed out information about itself booting up, such as its version:
						
$ oc logs <istio-system>

	
							When performing requests to the services protected by the 3scale adapter integration, always try requests that lack the right credentials and ensure they fail. Check the 3scale adapter logs to gather additional information.
						

Additional resources
	
							Inspecting pod and container logs.
						

3scale Istio adapter troubleshooting checklist

					As the administrator installing the 3scale Istio adapter, there are a number of scenarios that might be causing your integration to not function properly. Use the following list to troubleshoot your installation:
				
	
							Incorrect YAML indentation.
						
	
							Missing YAML sections.
						
	
							Forgot to apply the changes in the YAML to the cluster.
						
	
							Forgot to label the service workloads with the service-mesh.3scale.net/credentials key.
						
	
							Forgot to label the service workloads with service-mesh.3scale.net/service-id when using handlers that do not contain a service_id so they are reusable per account.
						
	
							The Rule custom resource points to the wrong handler or instance custom resources, or the references lack the corresponding namespace suffix.
						
	
							The Rule custom resource match section cannot possibly match the service you are configuring, or it points to a destination workload that is not currently running or does not exist.
						
	
							Wrong access token or URL for the 3scale Admin Portal in the handler.
						
	
							The Instance custom resource’s params/subject/properties section fails to list the right parameters for app_id, app_key, or client_id, either because they specify the wrong location such as the query parameters, headers, and authorization claims, or the parameter names do not match the requests used for testing.
						
	
							Failing to use the configuration generator without realizing that it actually lives in the adapter container image and needs oc exec to invoke it.
						

Removing Service Mesh

Warning

					You are viewing documentation for a Red Hat OpenShift Service Mesh release that is no longer supported.
				

					Service Mesh version 1.0 and 1.1 control planes are no longer supported. For information about upgrading your service mesh control plane, see Upgrading Service Mesh.
				

					For information about the support status of a particular Red Hat OpenShift Service Mesh release, see the Product lifecycle page.
				

				To remove Red Hat OpenShift Service Mesh from an existing OpenShift Container Platform instance, remove the control plane before removing the operators.
			
Removing the Red Hat OpenShift Service Mesh control plane

					To uninstall Service Mesh from an existing OpenShift Container Platform instance, first you delete the Service Mesh control plane and the Operators. Then, you run commands to remove residual resources.
				
Removing the Service Mesh control plane using the web console

						You can remove the Red Hat OpenShift Service Mesh control plane by using the web console.
					
Procedure
	
								Log in to the OpenShift Container Platform web console.
							
	
								Click the Project menu and select the project where you installed the Service Mesh control plane, for example istio-system.
							
	
								Navigate to Operators → Installed Operators.
							
	
								Click Service Mesh Control Plane under Provided APIs.
							
	
								Click the ServiceMeshControlPlane menu
								[image: kebab]
								 .
							
	
								Click Delete Service Mesh Control Plane.
							
	
								Click Delete on the confirmation dialog window to remove the ServiceMeshControlPlane.
							

Removing the Service Mesh control plane using the CLI

						You can remove the Red Hat OpenShift Service Mesh control plane by using the CLI. In this example, istio-system is the name of the control plane project.
					
Procedure
	
								Log in to the OpenShift Container Platform CLI.
							
	
								Run the following command to delete the ServiceMeshMemberRoll resource.
							
$ oc delete smmr -n istio-system default

	
								Run this command to retrieve the name of the installed ServiceMeshControlPlane:
							
$ oc get smcp -n istio-system

	
								Replace <name_of_custom_resource> with the output from the previous command, and run this command to remove the custom resource:
							
$ oc delete smcp -n istio-system <name_of_custom_resource>

Removing the installed Operators

					You must remove the Operators to successfully remove Red Hat OpenShift Service Mesh. After you remove the Red Hat OpenShift Service Mesh Operator, you must remove the Kiali Operator, the Red Hat OpenShift distributed tracing platform Operator, and the OpenShift Elasticsearch Operator.
				
Removing the Operators

						Follow this procedure to remove the Operators that make up Red Hat OpenShift Service Mesh. Repeat the steps for each of the following Operators.
					
	
								Red Hat OpenShift Service Mesh
							
	
								Kiali
							
	
								Red Hat OpenShift distributed tracing platform
							
	
								OpenShift Elasticsearch
							

Procedure
	
								Log in to the OpenShift Container Platform web console.
							
	
								From the Operators → Installed Operators page, scroll or type a keyword into the Filter by name to find each Operator. Then, click the Operator name.
							
	
								On the Operator Details page, select Uninstall Operator from the Actions menu. Follow the prompts to uninstall each Operator.
							

Clean up Operator resources

						Follow this procedure to manually remove resources left behind after removing the Red Hat OpenShift Service Mesh Operator using the OpenShift Container Platform web console.
					
Prerequisites
	
								An account with cluster administration access.
							
	
								Access to the OpenShift CLI (oc).
							

Procedure
	
								Log in to the OpenShift Container Platform CLI as a cluster administrator.
							
	
								Run the following commands to clean up resources after uninstalling the Operators. If you intend to keep using Jaeger as a stand alone service without service mesh, do not delete the Jaeger resources.
							
Note

									The Operators are installed in the openshift-operators namespace by default. If you installed the Operators in another namespace, replace openshift-operators with the name of the project where the Red Hat OpenShift Service Mesh Operator was installed.
								

$ oc delete validatingwebhookconfiguration/openshift-operators.servicemesh-resources.maistra.io
$ oc delete mutatingwebhookconfiguration/openshift-operators.servicemesh-resources.maistra.io
$ oc delete -n openshift-operators daemonset/istio-node
$ oc delete clusterrole/istio-admin clusterrole/istio-cni clusterrolebinding/istio-cni
$ oc delete clusterrole istio-view istio-edit
$ oc delete clusterrole jaegers.jaegertracing.io-v1-admin jaegers.jaegertracing.io-v1-crdview jaegers.jaegertracing.io-v1-edit jaegers.jaegertracing.io-v1-view
$ oc get crds -o name | grep '.*\.istio\.io' | xargs -r -n 1 oc delete
$ oc get crds -o name | grep '.*\.maistra\.io' | xargs -r -n 1 oc delete
$ oc get crds -o name | grep '.*\.kiali\.io' | xargs -r -n 1 oc delete
$ oc delete crds jaegers.jaegertracing.io
$ oc delete svc admission-controller -n <operator-project>
$ oc delete project <istio-system-project>

OEBPS/Common_Content/images/18.png

OEBPS/Common_Content/icons/redhat-books-icons-a2efd68d1f13be356c9c4e5c29a64e69.eot

OEBPS/Common_Content/images/dot2.png

OEBPS/Common_Content/images/documentation.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.woff2

OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.woff2

OEBPS/Common_Content/images/26.png

OEBPS/Common_Content/fonts/overpass_light-web.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.eot

OEBPS/Common_Content/fonts/overpass_regular-web.eot

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.woff

OEBPS/Common_Content/images/rhlogo.png
& RedHat

OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.eot

OEBPS/Common_Content/images/34.png

OEBPS/Common_Content/images/dot.png

OEBPS/Common_Content/images/30.png

OEBPS/Common_Content/images/22.png

OEBPS/Common_Content/images/5.png

OEBPS/Common_Content/images/note.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.woff2

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.woff2

OEBPS/Common_Content/images/11.png

OEBPS/Common_Content/images/37.png

OEBPS/images/ossm-kiali-masthead-mtls-partial.png
Mesh-wide TLS is partially enabled 8 A @ anonymous v

OEBPS/Common_Content/images/9.png

OEBPS/Common_Content/fonts/overpass_regular-web.woff

OEBPS/Common_Content/images/green.png

OEBPS/Common_Content/fonts/overpass_light-web.ttf

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.woff2

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.woff2

OEBPS/Common_Content/images/17.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.eot

OEBPS/Common_Content/images/yellow.png

OEBPS/Common_Content/images/27.png

OEBPS/Common_Content/scripts/highlight.js/README.ru.md
Highlight.js

Highlight.js — это подсветчик синтаксиса, написанный на JavaScript. Он работает
и в браузере, и на сервере. Он работает с практически любой HTML разметкой, не
зависит от каких-либо фреймворков и умеет автоматически определять язык.

Начало работы

Минимум, что нужно сделать для использования highlight.js на веб-странице — это
подключить библиотеку, CSS-стили и вызывать [`initHighlightingOnLoad`][1]:

```html
<link rel="stylesheet" href="/path/to/styles/default.css">
<script src="/path/to/highlight.pack.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
```

Библиотека найдёт и раскрасит код внутри тегов `<pre><code>`, попытавшись
автоматически определить язык. Когда автоопределение не срабатывает, можно явно
указать язык в атрибуте class:

```html
<pre><code class="html">...</code></pre>
```

Список поддерживаемых классов языков доступен в [справочнике по классам][8].
Класс также можно предваоить префиксами `language-` или `lang-`.

Чтобы отключить подсветку для какого-то блока, используйте класс `nohighlight`:

```html
<pre><code class="nohighlight">...</code></pre>
```

Инициализация вручную

Чтобы иметь чуть больше контроля за инициализацией подсветки, вы можете
использовать функции [`highlightBlock`][2] и [`configure`][3]. Таким образом
можно управлять тем, *что* подсвечивать и *когда*.

Вот пример инициализация, эквивалентной вызову [`initHighlightingOnLoad`][1], но
с использованием jQuery:

```javascript
$(document).ready(function() {
  $('pre code').each(function(i, block) {
    hljs.highlightBlock(block);
  });
});
```

Вы можете использовать любые теги разметки вместо `<pre><code>`. Если
используете контейнер, не сохраняющий переводы строк, вам нужно сказать
highlight.js использовать для них тег `
`:

```javascript
hljs.configure({useBR: true});

$('div.code').each(function(i, block) {
  hljs.highlightBlock(block);
});
```

Другие опции можно найти в документации функции [`configure`][3].

Установка библиотеки

Highlight.js можно использовать в браузере прямо с CDN хостинга или скачать
индивидуальную сборку, а также установив модуль на сервере. На
[страница загрузки][4] подробно описаны все варианты.

Обратите внимание, что библиотека не предназначена для использования в виде
исходного кода на GitHub, а требует отдельной сборки. Если вам не подходит ни
один из готовых вариантов, читайте [документацию по сборке][5].

Лицензия

Highlight.js распространяется под лицензией BSD. Подробнее читайте файл
[LICENSE][10].

Ссылки

Официальный сайт билиотеки расположен по адресу <https://highlightjs.org/>.

Более подробная документация по API и другим темам расположена на
<http://highlightjs.readthedocs.org/>.

Авторы и контрибьютора перечислена в файле [AUTHORS.ru.txt][9] file.

[1]: http://highlightjs.readthedocs.org/en/latest/api.html#inithighlightingonload
[2]: http://highlightjs.readthedocs.org/en/latest/api.html#highlightblock-block
[3]: http://highlightjs.readthedocs.org/en/latest/api.html#configure-options
[4]: https://highlightjs.org/download/
[5]: http://highlightjs.readthedocs.org/en/latest/building-testing.html
[8]: http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html
[9]: https://github.com/isagalaev/highlight.js/blob/master/AUTHORS.ru.txt
[10]: https://github.com/isagalaev/highlight.js/blob/master/LICENSE

OEBPS/Common_Content/images/stock-go-back.png

OEBPS/images/ossm-federated-mesh.png
<« --p Federated service mesh peers

Red service mesh Blue service mesh Green service mesh
i e e “ e
App — App App | App
Gateway <4----p Gateway Gateway <4----p Gateway — App

Control plane Control plane Control plane

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Bold.eot

OEBPS/Common_Content/scripts/jquery-1.7.1.min.js
/*! jQuery v1.7.1 jquery.com | jquery.org/license */
(function(a,b){function cy(a){return f.isWindow(a)?a:a.nodeType===9?a.defaultView||a.parentWindow:!1}function cv(a){if(!ck[a]){var b=c.body,d=f("<"+a+">").appendTo(b),e=d.css("display");d.remove();if(e==="none"||e===""){cl||(cl=c.createElement("iframe"),cl.frameBorder=cl.width=cl.height=0),b.appendChild(cl);if(!cm||!cl.createElement)cm=(cl.contentWindow||cl.contentDocument).document,cm.write((c.compatMode==="CSS1Compat"?"<!doctype html>":"")+"<html><body>"),cm.close();d=cm.createElement(a),cm.body.appendChild(d),e=f.css(d,"display"),b.removeChild(cl)}ck[a]=e}return ck[a]}function cu(a,b){var c={};f.each(cq.concat.apply([],cq.slice(0,b)),function(){c[this]=a});return c}function ct(){cr=b}function cs(){setTimeout(ct,0);return cr=f.now()}function cj(){try{return new a.ActiveXObject("Microsoft.XMLHTTP")}catch(b){}}function ci(){try{return new a.XMLHttpRequest}catch(b){}}function cc(a,c){a.dataFilter&&(c=a.dataFilter(c,a.dataType));var d=a.dataTypes,e={},g,h,i=d.length,j,k=d[0],l,m,n,o,p;for(g=1;g<i;g++){if(g===1)for(h in a.converters)typeof h=="string"&&(e[h.toLowerCase()]=a.converters[h]);l=k,k=d[g];if(k==="*")k=l;else if(l!=="*"&&l!==k){m=l+" "+k,n=e[m]||e["* "+k];if(!n){p=b;for(o in e){j=o.split(" ");if(j[0]===l||j[0]==="*"){p=e[j[1]+" "+k];if(p){o=e[o],o===!0?n=p:p===!0&&(n=o);break}}}}!n&&!p&&f.error("No conversion from "+m.replace(" "," to ")),n!==!0&&(c=n?n(c):p(o(c)))}}return c}function cb(a,c,d){var e=a.contents,f=a.dataTypes,g=a.responseFields,h,i,j,k;for(i in g)i in d&&(c[g[i]]=d[i]);while(f[0]==="*")f.shift(),h===b&&(h=a.mimeType||c.getResponseHeader("content-type"));if(h)for(i in e)if(e[i]&&e[i].test(h)){f.unshift(i);break}if(f[0]in d)j=f[0];else{for(i in d){if(!f[0]||a.converters[i+" "+f[0]]){j=i;break}k||(k=i)}j=j||k}if(j){j!==f[0]&&f.unshift(j);return d[j]}}function ca(a,b,c,d){if(f.isArray(b))f.each(b,function(b,e){c||bE.test(a)?d(a,e):ca(a+"["+(typeof e=="object"||f.isArray(e)?b:"")+"]",e,c,d)});else if(!c&&b!=null&&typeof b=="object")for(var e in b)ca(a+"["+e+"]",b[e],c,d);else d(a,b)}function b_(a,c){var d,e,g=f.ajaxSettings.flatOptions||{};for(d in c)c[d]!==b&&((g[d]?a:e||(e={}))[d]=c[d]);e&&f.extend(!0,a,e)}function b$(a,c,d,e,f,g){f=f||c.dataTypes[0],g=g||{},g[f]=!0;var h=a[f],i=0,j=h?h.length:0,k=a===bT,l;for(;i<j&&(k||!l);i++)l=h[i](c,d,e),typeof l=="string"&&(!k||g[l]?l=b:(c.dataTypes.unshift(l),l=b$(a,c,d,e,l,g)));(k||!l)&&!g["*"]&&(l=b$(a,c,d,e,"*",g));return l}function bZ(a){return function(b,c){typeof b!="string"&&(c=b,b="*");if(f.isFunction(c)){var d=b.toLowerCase().split(bP),e=0,g=d.length,h,i,j;for(;e<g;e++)h=d[e],j=/^\+/.test(h),j&&(h=h.substr(1)||"*"),i=a[h]=a[h]||[],i[j?"unshift":"push"](c)}}}function bC(a,b,c){var d=b==="width"?a.offsetWidth:a.offsetHeight,e=b==="width"?bx:by,g=0,h=e.length;if(d>0){if(c!=="border")for(;g<h;g++)c||(d-=parseFloat(f.css(a,"padding"+e[g]))||0),c==="margin"?d+=parseFloat(f.css(a,c+e[g]))||0:d-=parseFloat(f.css(a,"border"+e[g]+"Width"))||0;return d+"px"}d=bz(a,b,b);if(d<0||d==null)d=a.style[b]||0;d=parseFloat(d)||0;if(c)for(;g<h;g++)d+=parseFloat(f.css(a,"padding"+e[g]))||0,c!=="padding"&&(d+=parseFloat(f.css(a,"border"+e[g]+"Width"))||0),c==="margin"&&(d+=parseFloat(f.css(a,c+e[g]))||0);return d+"px"}function bp(a,b){b.src?f.ajax({url:b.src,async:!1,dataType:"script"}):f.globalEval((b.text||b.textContent||b.innerHTML||"").replace(bf,"/*$0*/")),b.parentNode&&b.parentNode.removeChild(b)}function bo(a){var b=c.createElement("div");bh.appendChild(b),b.innerHTML=a.outerHTML;return b.firstChild}function bn(a){var b=(a.nodeName||"").toLowerCase();b==="input"?bm(a):b!=="script"&&typeof a.getElementsByTagName!="undefined"&&f.grep(a.getElementsByTagName("input"),bm)}function bm(a){if(a.type==="checkbox"||a.type==="radio")a.defaultChecked=a.checked}function bl(a){return typeof a.getElementsByTagName!="undefined"?a.getElementsByTagName("*"):typeof a.querySelectorAll!="undefined"?a.querySelectorAll("*"):[]}function bk(a,b){var c;if(b.nodeType===1){b.clearAttributes&&b.clearAttributes(),b.mergeAttributes&&b.mergeAttributes(a),c=b.nodeName.toLowerCase();if(c==="object")b.outerHTML=a.outerHTML;else if(c!=="input"||a.type!=="checkbox"&&a.type!=="radio"){if(c==="option")b.selected=a.defaultSelected;else if(c==="input"||c==="textarea")b.defaultValue=a.defaultValue}else a.checked&&(b.defaultChecked=b.checked=a.checked),b.value!==a.value&&(b.value=a.value);b.removeAttribute(f.expando)}}function bj(a,b){if(b.nodeType===1&&!!f.hasData(a)){var c,d,e,g=f._data(a),h=f._data(b,g),i=g.events;if(i){delete h.handle,h.events={};for(c in i)for(d=0,e=i[c].length;d<e;d++)f.event.add(b,c+(i[c][d].namespace?".":"")+i[c][d].namespace,i[c][d],i[c][d].data)}h.data&&(h.data=f.extend({},h.data))}}function bi(a,b){return f.nodeName(a,"table")?a.getElementsByTagName("tbody")[0]||a.appendChild(a.ownerDocument.createElement("tbody")):a}function U(a){var b=V.split("|"),c=a.createDocumentFragment();if(c.createElement)while(b.length)c.createElement(b.pop());return c}function T(a,b,c){b=b||0;if(f.isFunction(b))return f.grep(a,function(a,d){var e=!!b.call(a,d,a);return e===c});if(b.nodeType)return f.grep(a,function(a,d){return a===b===c});if(typeof b=="string"){var d=f.grep(a,function(a){return a.nodeType===1});if(O.test(b))return f.filter(b,d,!c);b=f.filter(b,d)}return f.grep(a,function(a,d){return f.inArray(a,b)>=0===c})}function S(a){return!a||!a.parentNode||a.parentNode.nodeType===11}function K(){return!0}function J(){return!1}function n(a,b,c){var d=b+"defer",e=b+"queue",g=b+"mark",h=f._data(a,d);h&&(c==="queue"||!f._data(a,e))&&(c==="mark"||!f._data(a,g))&&setTimeout(function(){!f._data(a,e)&&!f._data(a,g)&&(f.removeData(a,d,!0),h.fire())},0)}function m(a){for(var b in a){if(b==="data"&&f.isEmptyObject(a[b]))continue;if(b!=="toJSON")return!1}return!0}function l(a,c,d){if(d===b&&a.nodeType===1){var e="data-"+c.replace(k,"-$1").toLowerCase();d=a.getAttribute(e);if(typeof d=="string"){try{d=d==="true"?!0:d==="false"?!1:d==="null"?null:f.isNumeric(d)?parseFloat(d):j.test(d)?f.parseJSON(d):d}catch(g){}f.data(a,c,d)}else d=b}return d}function h(a){var b=g[a]={},c,d;a=a.split(/\s+/);for(c=0,d=a.length;c<d;c++)b[a[c]]=!0;return b}var c=a.document,d=a.navigator,e=a.location,f=function(){function J(){if(!e.isReady){try{c.documentElement.doScroll("left")}catch(a){setTimeout(J,1);return}e.ready()}}var e=function(a,b){return new e.fn.init(a,b,h)},f=a.jQuery,g=a.$,h,i=/^(?:[^#<]*(<[\w\W]+>)[^>]*$|#([\w\-]*)$)/,j=/\S/,k=/^\s+/,l=/\s+$/,m=/^<(\w+)\s*\/?>(?:<\/\1>)?$/,n=/^[\],:{}\s]*$/,o=/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/g,p=/"[^"\\\n\r]*"|true|false|null|-?\d+(?:\.\d*)?(?:[eE][+\-]?\d+)?/g,q=/(?:^|:|,)(?:\s*\[)+/g,r=/(webkit)[\/]([\w.]+)/,s=/(opera)(?:.*version)?[\/]([\w.]+)/,t=/(msie) ([\w.]+)/,u=/(mozilla)(?:.*? rv:([\w.]+))?/,v=/-([a-z]|[0-9])/ig,w=/^-ms-/,x=function(a,b){return(b+"").toUpperCase()},y=d.userAgent,z,A,B,C=Object.prototype.toString,D=Object.prototype.hasOwnProperty,E=Array.prototype.push,F=Array.prototype.slice,G=String.prototype.trim,H=Array.prototype.indexOf,I={};e.fn=e.prototype={constructor:e,init:function(a,d,f){var g,h,j,k;if(!a)return this;if(a.nodeType){this.context=this[0]=a,this.length=1;return this}if(a==="body"&&!d&&c.body){this.context=c,this[0]=c.body,this.selector=a,this.length=1;return this}if(typeof a=="string"){a.charAt(0)!=="<"||a.charAt(a.length-1)!==">"||a.length<3?g=i.exec(a):g=[null,a,null];if(g&&(g[1]||!d)){if(g[1]){d=d instanceof e?d[0]:d,k=d?d.ownerDocument||d:c,j=m.exec(a),j?e.isPlainObject(d)?(a=[c.createElement(j[1])],e.fn.attr.call(a,d,!0)):a=[k.createElement(j[1])]:(j=e.buildFragment([g[1]],[k]),a=(j.cacheable?e.clone(j.fragment):j.fragment).childNodes);return e.merge(this,a)}h=c.getElementById(g[2]);if(h&&h.parentNode){if(h.id!==g[2])return f.find(a);this.length=1,this[0]=h}this.context=c,this.selector=a;return this}return!d||d.jquery?(d||f).find(a):this.constructor(d).find(a)}if(e.isFunction(a))return f.ready(a);a.selector!==b&&(this.selector=a.selector,this.context=a.context);return e.makeArray(a,this)},selector:"",jquery:"1.7.1",length:0,size:function(){return this.length},toArray:function(){return F.call(this,0)},get:function(a){return a==null?this.toArray():a<0?this[this.length+a]:this[a]},pushStack:function(a,b,c){var d=this.constructor();e.isArray(a)?E.apply(d,a):e.merge(d,a),d.prevObject=this,d.context=this.context,b==="find"?d.selector=this.selector+(this.selector?" ":"")+c:b&&(d.selector=this.selector+"."+b+"("+c+")");return d},each:function(a,b){return e.each(this,a,b)},ready:function(a){e.bindReady(),A.add(a);return this},eq:function(a){a=+a;return a===-1?this.slice(a):this.slice(a,a+1)},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},slice:function(){return this.pushStack(F.apply(this,arguments),"slice",F.call(arguments).join(","))},map:function(a){return this.pushStack(e.map(this,function(b,c){return a.call(b,c,b)}))},end:function(){return this.prevObject||this.constructor(null)},push:E,sort:[].sort,splice:[].splice},e.fn.init.prototype=e.fn,e.extend=e.fn.extend=function(){var a,c,d,f,g,h,i=arguments[0]||{},j=1,k=arguments.length,l=!1;typeof i=="boolean"&&(l=i,i=arguments[1]||{},j=2),typeof i!="object"&&!e.isFunction(i)&&(i={}),k===j&&(i=this,--j);for(;j<k;j++)if((a=arguments[j])!=null)for(c in a){d=i[c],f=a[c];if(i===f)continue;l&&f&&(e.isPlainObject(f)||(g=e.isArray(f)))?(g?(g=!1,h=d&&e.isArray(d)?d:[]):h=d&&e.isPlainObject(d)?d:{},i[c]=e.extend(l,h,f)):f!==b&&(i[c]=f)}return i},e.extend({noConflict:function(b){a.$===e&&(a.$=g),b&&a.jQuery===e&&(a.jQuery=f);return e},isReady:!1,readyWait:1,holdReady:function(a){a?e.readyWait++:e.ready(!0)},ready:function(a){if(a===!0&&!--e.readyWait||a!==!0&&!e.isReady){if(!c.body)return setTimeout(e.ready,1);e.isReady=!0;if(a!==!0&&--e.readyWait>0)return;A.fireWith(c,[e]),e.fn.trigger&&e(c).trigger("ready").off("ready")}},bindReady:function(){if(!A){A=e.Callbacks("once memory");if(c.readyState==="complete")return setTimeout(e.ready,1);if(c.addEventListener)c.addEventListener("DOMContentLoaded",B,!1),a.addEventListener("load",e.ready,!1);else if(c.attachEvent){c.attachEvent("onreadystatechange",B),a.attachEvent("onload",e.ready);var b=!1;try{b=a.frameElement==null}catch(d){}c.documentElement.doScroll&&b&&J()}}},isFunction:function(a){return e.type(a)==="function"},isArray:Array.isArray||function(a){return e.type(a)==="array"},isWindow:function(a){return a&&typeof a=="object"&&"setInterval"in a},isNumeric:function(a){return!isNaN(parseFloat(a))&&isFinite(a)},type:function(a){return a==null?String(a):I[C.call(a)]||"object"},isPlainObject:function(a){if(!a||e.type(a)!=="object"||a.nodeType||e.isWindow(a))return!1;try{if(a.constructor&&!D.call(a,"constructor")&&!D.call(a.constructor.prototype,"isPrototypeOf"))return!1}catch(c){return!1}var d;for(d in a);return d===b||D.call(a,d)},isEmptyObject:function(a){for(var b in a)return!1;return!0},error:function(a){throw new Error(a)},parseJSON:function(b){if(typeof b!="string"||!b)return null;b=e.trim(b);if(a.JSON&&a.JSON.parse)return a.JSON.parse(b);if(n.test(b.replace(o,"@").replace(p,"]").replace(q,"")))return(new Function("return "+b))();e.error("Invalid JSON: "+b)},parseXML:function(c){var d,f;try{a.DOMParser?(f=new DOMParser,d=f.parseFromString(c,"text/xml")):(d=new ActiveXObject("Microsoft.XMLDOM"),d.async="false",d.loadXML(c))}catch(g){d=b}(!d||!d.documentElement||d.getElementsByTagName("parsererror").length)&&e.error("Invalid XML: "+c);return d},noop:function(){},globalEval:function(b){b&&j.test(b)&&(a.execScript||function(b){a.eval.call(a,b)})(b)},camelCase:function(a){return a.replace(w,"ms-").replace(v,x)},nodeName:function(a,b){return a.nodeName&&a.nodeName.toUpperCase()===b.toUpperCase()},each:function(a,c,d){var f,g=0,h=a.length,i=h===b||e.isFunction(a);if(d){if(i){for(f in a)if(c.apply(a[f],d)===!1)break}else for(;g<h;)if(c.apply(a[g++],d)===!1)break}else if(i){for(f in a)if(c.call(a[f],f,a[f])===!1)break}else for(;g<h;)if(c.call(a[g],g,a[g++])===!1)break;return a},trim:G?function(a){return a==null?"":G.call(a)}:function(a){return a==null?"":(a+"").replace(k,"").replace(l,"")},makeArray:function(a,b){var c=b||[];if(a!=null){var d=e.type(a);a.length==null||d==="string"||d==="function"||d==="regexp"||e.isWindow(a)?E.call(c,a):e.merge(c,a)}return c},inArray:function(a,b,c){var d;if(b){if(H)return H.call(b,a,c);d=b.length,c=c?c<0?Math.max(0,d+c):c:0;for(;c<d;c++)if(c in b&&b[c]===a)return c}return-1},merge:function(a,c){var d=a.length,e=0;if(typeof c.length=="number")for(var f=c.length;e<f;e++)a[d++]=c[e];else while(c[e]!==b)a[d++]=c[e++];a.length=d;return a},grep:function(a,b,c){var d=[],e;c=!!c;for(var f=0,g=a.length;f<g;f++)e=!!b(a[f],f),c!==e&&d.push(a[f]);return d},map:function(a,c,d){var f,g,h=[],i=0,j=a.length,k=a instanceof e||j!==b&&typeof j=="number"&&(j>0&&a[0]&&a[j-1]||j===0||e.isArray(a));if(k)for(;i<j;i++)f=c(a[i],i,d),f!=null&&(h[h.length]=f);else for(g in a)f=c(a[g],g,d),f!=null&&(h[h.length]=f);return h.concat.apply([],h)},guid:1,proxy:function(a,c){if(typeof c=="string"){var d=a[c];c=a,a=d}if(!e.isFunction(a))return b;var f=F.call(arguments,2),g=function(){return a.apply(c,f.concat(F.call(arguments)))};g.guid=a.guid=a.guid||g.guid||e.guid++;return g},access:function(a,c,d,f,g,h){var i=a.length;if(typeof c=="object"){for(var j in c)e.access(a,j,c[j],f,g,d);return a}if(d!==b){f=!h&&f&&e.isFunction(d);for(var k=0;k<i;k++)g(a[k],c,f?d.call(a[k],k,g(a[k],c)):d,h);return a}return i?g(a[0],c):b},now:function(){return(new Date).getTime()},uaMatch:function(a){a=a.toLowerCase();var b=r.exec(a)||s.exec(a)||t.exec(a)||a.indexOf("compatible")<0&&u.exec(a)||[];return{browser:b[1]||"",version:b[2]||"0"}},sub:function(){function a(b,c){return new a.fn.init(b,c)}e.extend(!0,a,this),a.superclass=this,a.fn=a.prototype=this(),a.fn.constructor=a,a.sub=this.sub,a.fn.init=function(d,f){f&&f instanceof e&&!(f instanceof a)&&(f=a(f));return e.fn.init.call(this,d,f,b)},a.fn.init.prototype=a.fn;var b=a(c);return a},browser:{}}),e.each("Boolean Number String Function Array Date RegExp Object".split(" "),function(a,b){I["[object "+b+"]"]=b.toLowerCase()}),z=e.uaMatch(y),z.browser&&(e.browser[z.browser]=!0,e.browser.version=z.version),e.browser.webkit&&(e.browser.safari=!0),j.test(" ")&&(k=/^[\s\xA0]+/,l=/[\s\xA0]+$/),h=e(c),c.addEventListener?B=function(){c.removeEventListener("DOMContentLoaded",B,!1),e.ready()}:c.attachEvent&&(B=function(){c.readyState==="complete"&&(c.detachEvent("onreadystatechange",B),e.ready())});return e}(),g={};f.Callbacks=function(a){a=a?g[a]||h(a):{};var c=[],d=[],e,i,j,k,l,m=function(b){var d,e,g,h,i;for(d=0,e=b.length;d<e;d++)g=b[d],h=f.type(g),h==="array"?m(g):h==="function"&&(!a.unique||!o.has(g))&&c.push(g)},n=function(b,f){f=f||[],e=!a.memory||[b,f],i=!0,l=j||0,j=0,k=c.length;for(;c&&l<k;l++)if(c[l].apply(b,f)===!1&&a.stopOnFalse){e=!0;break}i=!1,c&&(a.once?e===!0?o.disable():c=[]:d&&d.length&&(e=d.shift(),o.fireWith(e[0],e[1])))},o={add:function(){if(c){var a=c.length;m(arguments),i?k=c.length:e&&e!==!0&&(j=a,n(e[0],e[1]))}return this},remove:function(){if(c){var b=arguments,d=0,e=b.length;for(;d<e;d++)for(var f=0;f<c.length;f++)if(b[d]===c[f]){i&&f<=k&&(k--,f<=l&&l--),c.splice(f--,1);if(a.unique)break}}return this},has:function(a){if(c){var b=0,d=c.length;for(;b<d;b++)if(a===c[b])return!0}return!1},empty:function(){c=[];return this},disable:function(){c=d=e=b;return this},disabled:function(){return!c},lock:function(){d=b,(!e||e===!0)&&o.disable();return this},locked:function(){return!d},fireWith:function(b,c){d&&(i?a.once||d.push([b,c]):(!a.once||!e)&&n(b,c));return this},fire:function(){o.fireWith(this,arguments);return this},fired:function(){return!!e}};return o};var i=[].slice;f.extend({Deferred:function(a){var b=f.Callbacks("once memory"),c=f.Callbacks("once memory"),d=f.Callbacks("memory"),e="pending",g={resolve:b,reject:c,notify:d},h={done:b.add,fail:c.add,progress:d.add,state:function(){return e},isResolved:b.fired,isRejected:c.fired,then:function(a,b,c){i.done(a).fail(b).progress(c);return this},always:function(){i.done.apply(i,arguments).fail.apply(i,arguments);return this},pipe:function(a,b,c){return f.Deferred(function(d){f.each({done:[a,"resolve"],fail:[b,"reject"],progress:[c,"notify"]},function(a,b){var c=b[0],e=b[1],g;f.isFunction(c)?i[a](function(){g=c.apply(this,arguments),g&&f.isFunction(g.promise)?g.promise().then(d.resolve,d.reject,d.notify):d[e+"With"](this===i?d:this,[g])}):i[a](d[e])})}).promise()},promise:function(a){if(a==null)a=h;else for(var b in h)a[b]=h[b];return a}},i=h.promise({}),j;for(j in g)i[j]=g[j].fire,i[j+"With"]=g[j].fireWith;i.done(function(){e="resolved"},c.disable,d.lock).fail(function(){e="rejected"},b.disable,d.lock),a&&a.call(i,i);return i},when:function(a){function m(a){return function(b){e[a]=arguments.length>1?i.call(arguments,0):b,j.notifyWith(k,e)}}function l(a){return function(c){b[a]=arguments.length>1?i.call(arguments,0):c,--g||j.resolveWith(j,b)}}var b=i.call(arguments,0),c=0,d=b.length,e=Array(d),g=d,h=d,j=d<=1&&a&&f.isFunction(a.promise)?a:f.Deferred(),k=j.promise();if(d>1){for(;c<d;c++)b[c]&&b[c].promise&&f.isFunction(b[c].promise)?b[c].promise().then(l(c),j.reject,m(c)):--g;g||j.resolveWith(j,b)}else j!==a&&j.resolveWith(j,d?[a]:[]);return k}}),f.support=function(){var b,d,e,g,h,i,j,k,l,m,n,o,p,q=c.createElement("div"),r=c.documentElement;q.setAttribute("className","t"),q.innerHTML=" <link/><table></table>a<input type='checkbox'/>",d=q.getElementsByTagName("*"),e=q.getElementsByTagName("a")[0];if(!d||!d.length||!e)return{};g=c.createElement("select"),h=g.appendChild(c.createElement("option")),i=q.getElementsByTagName("input")[0],b={leadingWhitespace:q.firstChild.nodeType===3,tbody:!q.getElementsByTagName("tbody").length,htmlSerialize:!!q.getElementsByTagName("link").length,style:/top/.test(e.getAttribute("style")),hrefNormalized:e.getAttribute("href")==="/a",opacity:/^0.55/.test(e.style.opacity),cssFloat:!!e.style.cssFloat,checkOn:i.value==="on",optSelected:h.selected,getSetAttribute:q.className!=="t",enctype:!!c.createElement("form").enctype,html5Clone:c.createElement("nav").cloneNode(!0).outerHTML!=="<:nav></:nav>",submitBubbles:!0,changeBubbles:!0,focusinBubbles:!1,deleteExpando:!0,noCloneEvent:!0,inlineBlockNeedsLayout:!1,shrinkWrapBlocks:!1,reliableMarginRight:!0},i.checked=!0,b.noCloneChecked=i.cloneNode(!0).checked,g.disabled=!0,b.optDisabled=!h.disabled;try{delete q.test}catch(s){b.deleteExpando=!1}!q.addEventListener&&q.attachEvent&&q.fireEvent&&(q.attachEvent("onclick",function(){b.noCloneEvent=!1}),q.cloneNode(!0).fireEvent("onclick")),i=c.createElement("input"),i.value="t",i.setAttribute("type","radio"),b.radioValue=i.value==="t",i.setAttribute("checked","checked"),q.appendChild(i),k=c.createDocumentFragment(),k.appendChild(q.lastChild),b.checkClone=k.cloneNode(!0).cloneNode(!0).lastChild.checked,b.appendChecked=i.checked,k.removeChild(i),k.appendChild(q),q.innerHTML="",a.getComputedStyle&&(j=c.createElement("div"),j.style.width="0",j.style.marginRight="0",q.style.width="2px",q.appendChild(j),b.reliableMarginRight=(parseInt((a.getComputedStyle(j,null)||{marginRight:0}).marginRight,10)||0)===0);if(q.attachEvent)for(o in{submit:1,change:1,focusin:1})n="on"+o,p=n in q,p||(q.setAttribute(n,"return;"),p=typeof q[n]=="function"),b[o+"Bubbles"]=p;k.removeChild(q),k=g=h=j=q=i=null,f(function(){var a,d,e,g,h,i,j,k,m,n,o,r=c.getElementsByTagName("body")[0];!r||(j=1,k="position:absolute;top:0;left:0;width:1px;height:1px;margin:0;",m="visibility:hidden;border:0;",n="style='"+k+"border:5px solid #000;padding:0;'",o="<div "+n+"><div></div></div>"+"<table "+n+" cellpadding='0' cellspacing='0'>"+"<tr><td></td></tr></table>",a=c.createElement("div"),a.style.cssText=m+"width:0;height:0;position:static;top:0;margin-top:"+j+"px",r.insertBefore(a,r.firstChild),q=c.createElement("div"),a.appendChild(q),q.innerHTML="<table><tr><td style='padding:0;border:0;display:none'></td><td>t</td></tr></table>",l=q.getElementsByTagName("td"),p=l[0].offsetHeight===0,l[0].style.display="",l[1].style.display="none",b.reliableHiddenOffsets=p&&l[0].offsetHeight===0,q.innerHTML="",q.style.width=q.style.paddingLeft="1px",f.boxModel=b.boxModel=q.offsetWidth===2,typeof q.style.zoom!="undefined"&&(q.style.display="inline",q.style.zoom=1,b.inlineBlockNeedsLayout=q.offsetWidth===2,q.style.display="",q.innerHTML="<div style='width:4px;'></div>",b.shrinkWrapBlocks=q.offsetWidth!==2),q.style.cssText=k+m,q.innerHTML=o,d=q.firstChild,e=d.firstChild,h=d.nextSibling.firstChild.firstChild,i={doesNotAddBorder:e.offsetTop!==5,doesAddBorderForTableAndCells:h.offsetTop===5},e.style.position="fixed",e.style.top="20px",i.fixedPosition=e.offsetTop===20||e.offsetTop===15,e.style.position=e.style.top="",d.style.overflow="hidden",d.style.position="relative",i.subtractsBorderForOverflowNotVisible=e.offsetTop===-5,i.doesNotIncludeMarginInBodyOffset=r.offsetTop!==j,r.removeChild(a),q=a=null,f.extend(b,i))});return b}();var j=/^(?:\{.*\}|\[.*\])$/,k=/([A-Z])/g;f.extend({cache:{},uuid:0,expando:"jQuery"+(f.fn.jquery+Math.random()).replace(/\D/g,""),noData:{embed:!0,object:"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000",applet:!0},hasData:function(a){a=a.nodeType?f.cache[a[f.expando]]:a[f.expando];return!!a&&!m(a)},data:function(a,c,d,e){if(!!f.acceptData(a)){var g,h,i,j=f.expando,k=typeof c=="string",l=a.nodeType,m=l?f.cache:a,n=l?a[j]:a[j]&&j,o=c==="events";if((!n||!m[n]||!o&&!e&&!m[n].data)&&k&&d===b)return;n||(l?a[j]=n=++f.uuid:n=j),m[n]||(m[n]={},l||(m[n].toJSON=f.noop));if(typeof c=="object"||typeof c=="function")e?m[n]=f.extend(m[n],c):m[n].data=f.extend(m[n].data,c);g=h=m[n],e||(h.data||(h.data={}),h=h.data),d!==b&&(h[f.camelCase(c)]=d);if(o&&!h[c])return g.events;k?(i=h[c],i==null&&(i=h[f.camelCase(c)])):i=h;return i}},removeData:function(a,b,c){if(!!f.acceptData(a)){var d,e,g,h=f.expando,i=a.nodeType,j=i?f.cache:a,k=i?a[h]:h;if(!j[k])return;if(b){d=c?j[k]:j[k].data;if(d){f.isArray(b)||(b in d?b=[b]:(b=f.camelCase(b),b in d?b=[b]:b=b.split(" ")));for(e=0,g=b.length;e<g;e++)delete d[b[e]];if(!(c?m:f.isEmptyObject)(d))return}}if(!c){delete j[k].data;if(!m(j[k]))return}f.support.deleteExpando||!j.setInterval?delete j[k]:j[k]=null,i&&(f.support.deleteExpando?delete a[h]:a.removeAttribute?a.removeAttribute(h):a[h]=null)}},_data:function(a,b,c){return f.data(a,b,c,!0)},acceptData:function(a){if(a.nodeName){var b=f.noData[a.nodeName.toLowerCase()];if(b)return b!==!0&&a.getAttribute("classid")===b}return!0}}),f.fn.extend({data:function(a,c){var d,e,g,h=null;if(typeof a=="undefined"){if(this.length){h=f.data(this[0]);if(this[0].nodeType===1&&!f._data(this[0],"parsedAttrs")){e=this[0].attributes;for(var i=0,j=e.length;i<j;i++)g=e[i].name,g.indexOf("data-")===0&&(g=f.camelCase(g.substring(5)),l(this[0],g,h[g]));f._data(this[0],"parsedAttrs",!0)}}return h}if(typeof a=="object")return this.each(function(){f.data(this,a)});d=a.split("."),d[1]=d[1]?"."+d[1]:"";if(c===b){h=this.triggerHandler("getData"+d[1]+"!",[d[0]]),h===b&&this.length&&(h=f.data(this[0],a),h=l(this[0],a,h));return h===b&&d[1]?this.data(d[0]):h}return this.each(function(){var b=f(this),e=[d[0],c];b.triggerHandler("setData"+d[1]+"!",e),f.data(this,a,c),b.triggerHandler("changeData"+d[1]+"!",e)})},removeData:function(a){return this.each(function(){f.removeData(this,a)})}}),f.extend({_mark:function(a,b){a&&(b=(b||"fx")+"mark",f._data(a,b,(f._data(a,b)||0)+1))},_unmark:function(a,b,c){a!==!0&&(c=b,b=a,a=!1);if(b){c=c||"fx";var d=c+"mark",e=a?0:(f._data(b,d)||1)-1;e?f._data(b,d,e):(f.removeData(b,d,!0),n(b,c,"mark"))}},queue:function(a,b,c){var d;if(a){b=(b||"fx")+"queue",d=f._data(a,b),c&&(!d||f.isArray(c)?d=f._data(a,b,f.makeArray(c)):d.push(c));return d||[]}},dequeue:function(a,b){b=b||"fx";var c=f.queue(a,b),d=c.shift(),e={};d==="inprogress"&&(d=c.shift()),d&&(b==="fx"&&c.unshift("inprogress"),f._data(a,b+".run",e),d.call(a,function(){f.dequeue(a,b)},e)),c.length||(f.removeData(a,b+"queue "+b+".run",!0),n(a,b,"queue"))}}),f.fn.extend({queue:function(a,c){typeof a!="string"&&(c=a,a="fx");if(c===b)return f.queue(this[0],a);return this.each(function(){var b=f.queue(this,a,c);a==="fx"&&b[0]!=="inprogress"&&f.dequeue(this,a)})},dequeue:function(a){return this.each(function(){f.dequeue(this,a)})},delay:function(a,b){a=f.fx?f.fx.speeds[a]||a:a,b=b||"fx";return this.queue(b,function(b,c){var d=setTimeout(b,a);c.stop=function(){clearTimeout(d)}})},clearQueue:function(a){return this.queue(a||"fx",[])},promise:function(a,c){function m(){--h||d.resolveWith(e,[e])}typeof a!="string"&&(c=a,a=b),a=a||"fx";var d=f.Deferred(),e=this,g=e.length,h=1,i=a+"defer",j=a+"queue",k=a+"mark",l;while(g--)if(l=f.data(e[g],i,b,!0)||(f.data(e[g],j,b,!0)||f.data(e[g],k,b,!0))&&f.data(e[g],i,f.Callbacks("once memory"),!0))h++,l.add(m);m();return d.promise()}});var o=/[\n\t\r]/g,p=/\s+/,q=/\r/g,r=/^(?:button|input)$/i,s=/^(?:button|input|object|select|textarea)$/i,t=/^a(?:rea)?$/i,u=/^(?:autofocus|autoplay|async|checked|controls|defer|disabled|hidden|loop|multiple|open|readonly|required|scoped|selected)$/i,v=f.support.getSetAttribute,w,x,y;f.fn.extend({attr:function(a,b){return f.access(this,a,b,!0,f.attr)},removeAttr:function(a){return this.each(function(){f.removeAttr(this,a)})},prop:function(a,b){return f.access(this,a,b,!0,f.prop)},removeProp:function(a){a=f.propFix[a]||a;return this.each(function(){try{this[a]=b,delete this[a]}catch(c){}})},addClass:function(a){var b,c,d,e,g,h,i;if(f.isFunction(a))return this.each(function(b){f(this).addClass(a.call(this,b,this.className))});if(a&&typeof a=="string"){b=a.split(p);for(c=0,d=this.length;c<d;c++){e=this[c];if(e.nodeType===1)if(!e.className&&b.length===1)e.className=a;else{g=" "+e.className+" ";for(h=0,i=b.length;h<i;h++)~g.indexOf(" "+b[h]+" ")||(g+=b[h]+" ");e.className=f.trim(g)}}}return this},removeClass:function(a){var c,d,e,g,h,i,j;if(f.isFunction(a))return this.each(function(b){f(this).removeClass(a.call(this,b,this.className))});if(a&&typeof a=="string"||a===b){c=(a||"").split(p);for(d=0,e=this.length;d<e;d++){g=this[d];if(g.nodeType===1&&g.className)if(a){h=(" "+g.className+" ").replace(o," ");for(i=0,j=c.length;i<j;i++)h=h.replace(" "+c[i]+" "," ");g.className=f.trim(h)}else g.className=""}}return this},toggleClass:function(a,b){var c=typeof a,d=typeof b=="boolean";if(f.isFunction(a))return this.each(function(c){f(this).toggleClass(a.call(this,c,this.className,b),b)});return this.each(function(){if(c==="string"){var e,g=0,h=f(this),i=b,j=a.split(p);while(e=j[g++])i=d?i:!h.hasClass(e),h[i?"addClass":"removeClass"](e)}else if(c==="undefined"||c==="boolean")this.className&&f._data(this,"__className__",this.className),this.className=this.className||a===!1?"":f._data(this,"__className__")||""})},hasClass:function(a){var b=" "+a+" ",c=0,d=this.length;for(;c<d;c++)if(this[c].nodeType===1&&(" "+this[c].className+" ").replace(o," ").indexOf(b)>-1)return!0;return!1},val:function(a){var c,d,e,g=this[0];{if(!!arguments.length){e=f.isFunction(a);return this.each(function(d){var g=f(this),h;if(this.nodeType===1){e?h=a.call(this,d,g.val()):h=a,h==null?h="":typeof h=="number"?h+="":f.isArray(h)&&(h=f.map(h,function(a){return a==null?"":a+""})),c=f.valHooks[this.nodeName.toLowerCase()]||f.valHooks[this.type];if(!c||!("set"in c)||c.set(this,h,"value")===b)this.value=h}})}if(g){c=f.valHooks[g.nodeName.toLowerCase()]||f.valHooks[g.type];if(c&&"get"in c&&(d=c.get(g,"value"))!==b)return d;d=g.value;return typeof d=="string"?d.replace(q,""):d==null?"":d}}}}),f.extend({valHooks:{option:{get:function(a){var b=a.attributes.value;return!b||b.specified?a.value:a.text}},select:{get:function(a){var b,c,d,e,g=a.selectedIndex,h=[],i=a.options,j=a.type==="select-one";if(g<0)return null;c=j?g:0,d=j?g+1:i.length;for(;c<d;c++){e=i[c];if(e.selected&&(f.support.optDisabled?!e.disabled:e.getAttribute("disabled")===null)&&(!e.parentNode.disabled||!f.nodeName(e.parentNode,"optgroup"))){b=f(e).val();if(j)return b;h.push(b)}}if(j&&!h.length&&i.length)return f(i[g]).val();return h},set:function(a,b){var c=f.makeArray(b);f(a).find("option").each(function(){this.selected=f.inArray(f(this).val(),c)>=0}),c.length||(a.selectedIndex=-1);return c}}},attrFn:{val:!0,css:!0,html:!0,text:!0,data:!0,width:!0,height:!0,offset:!0},attr:function(a,c,d,e){var g,h,i,j=a.nodeType;if(!!a&&j!==3&&j!==8&&j!==2){if(e&&c in f.attrFn)return f(a)[c](d);if(typeof a.getAttribute=="undefined")return f.prop(a,c,d);i=j!==1||!f.isXMLDoc(a),i&&(c=c.toLowerCase(),h=f.attrHooks[c]||(u.test(c)?x:w));if(d!==b){if(d===null){f.removeAttr(a,c);return}if(h&&"set"in h&&i&&(g=h.set(a,d,c))!==b)return g;a.setAttribute(c,""+d);return d}if(h&&"get"in h&&i&&(g=h.get(a,c))!==null)return g;g=a.getAttribute(c);return g===null?b:g}},removeAttr:function(a,b){var c,d,e,g,h=0;if(b&&a.nodeType===1){d=b.toLowerCase().split(p),g=d.length;for(;h<g;h++)e=d[h],e&&(c=f.propFix[e]||e,f.attr(a,e,""),a.removeAttribute(v?e:c),u.test(e)&&c in a&&(a[c]=!1))}},attrHooks:{type:{set:function(a,b){if(r.test(a.nodeName)&&a.parentNode)f.error("type property can't be changed");else if(!f.support.radioValue&&b==="radio"&&f.nodeName(a,"input")){var c=a.value;a.setAttribute("type",b),c&&(a.value=c);return b}}},value:{get:function(a,b){if(w&&f.nodeName(a,"button"))return w.get(a,b);return b in a?a.value:null},set:function(a,b,c){if(w&&f.nodeName(a,"button"))return w.set(a,b,c);a.value=b}}},propFix:{tabindex:"tabIndex",readonly:"readOnly","for":"htmlFor","class":"className",maxlength:"maxLength",cellspacing:"cellSpacing",cellpadding:"cellPadding",rowspan:"rowSpan",colspan:"colSpan",usemap:"useMap",frameborder:"frameBorder",contenteditable:"contentEditable"},prop:function(a,c,d){var e,g,h,i=a.nodeType;if(!!a&&i!==3&&i!==8&&i!==2){h=i!==1||!f.isXMLDoc(a),h&&(c=f.propFix[c]||c,g=f.propHooks[c]);return d!==b?g&&"set"in g&&(e=g.set(a,d,c))!==b?e:a[c]=d:g&&"get"in g&&(e=g.get(a,c))!==null?e:a[c]}},propHooks:{tabIndex:{get:function(a){var c=a.getAttributeNode("tabindex");return c&&c.specified?parseInt(c.value,10):s.test(a.nodeName)||t.test(a.nodeName)&&a.href?0:b}}}}),f.attrHooks.tabindex=f.propHooks.tabIndex,x={get:function(a,c){var d,e=f.prop(a,c);return e===!0||typeof e!="boolean"&&(d=a.getAttributeNode(c))&&d.nodeValue!==!1?c.toLowerCase():b},set:function(a,b,c){var d;b===!1?f.removeAttr(a,c):(d=f.propFix[c]||c,d in a&&(a[d]=!0),a.setAttribute(c,c.toLowerCase()));return c}},v||(y={name:!0,id:!0},w=f.valHooks.button={get:function(a,c){var d;d=a.getAttributeNode(c);return d&&(y[c]?d.nodeValue!=="":d.specified)?d.nodeValue:b},set:function(a,b,d){var e=a.getAttributeNode(d);e||(e=c.createAttribute(d),a.setAttributeNode(e));return e.nodeValue=b+""}},f.attrHooks.tabindex.set=w.set,f.each(["width","height"],function(a,b){f.attrHooks[b]=f.extend(f.attrHooks[b],{set:function(a,c){if(c===""){a.setAttribute(b,"auto");return c}}})}),f.attrHooks.contenteditable={get:w.get,set:function(a,b,c){b===""&&(b="false"),w.set(a,b,c)}}),f.support.hrefNormalized||f.each(["href","src","width","height"],function(a,c){f.attrHooks[c]=f.extend(f.attrHooks[c],{get:function(a){var d=a.getAttribute(c,2);return d===null?b:d}})}),f.support.style||(f.attrHooks.style={get:function(a){return a.style.cssText.toLowerCase()||b},set:function(a,b){return a.style.cssText=""+b}}),f.support.optSelected||(f.propHooks.selected=f.extend(f.propHooks.selected,{get:function(a){var b=a.parentNode;b&&(b.selectedIndex,b.parentNode&&b.parentNode.selectedIndex);return null}})),f.support.enctype||(f.propFix.enctype="encoding"),f.support.checkOn||f.each(["radio","checkbox"],function(){f.valHooks[this]={get:function(a){return a.getAttribute("value")===null?"on":a.value}}}),f.each(["radio","checkbox"],function(){f.valHooks[this]=f.extend(f.valHooks[this],{set:function(a,b){if(f.isArray(b))return a.checked=f.inArray(f(a).val(),b)>=0}})});var z=/^(?:textarea|input|select)$/i,A=/^([^\.]*)?(?:\.(.+))?$/,B=/\bhover(\.\S+)?\b/,C=/^key/,D=/^(?:mouse|contextmenu)|click/,E=/^(?:focusinfocus|focusoutblur)$/,F=/^(\w*)(?:#([\w\-]+))?(?:\.([\w\-]+))?$/,G=function(a){var b=F.exec(a);b&&(b[1]=(b[1]||"").toLowerCase(),b[3]=b[3]&&new RegExp("(?:^|\\s)"+b[3]+"(?:\\s|$)"));return b},H=function(a,b){var c=a.attributes||{};return(!b[1]||a.nodeName.toLowerCase()===b[1])&&(!b[2]||(c.id||{}).value===b[2])&&(!b[3]||b[3].test((c["class"]||{}).value))},I=function(a){return f.event.special.hover?a:a.replace(B,"mouseenter$1 mouseleave$1")};
f.event={add:function(a,c,d,e,g){var h,i,j,k,l,m,n,o,p,q,r,s;if(!(a.nodeType===3||a.nodeType===8||!c||!d||!(h=f._data(a)))){d.handler&&(p=d,d=p.handler),d.guid||(d.guid=f.guid++),j=h.events,j||(h.events=j={}),i=h.handle,i||(h.handle=i=function(a){return typeof f!="undefined"&&(!a||f.event.triggered!==a.type)?f.event.dispatch.apply(i.elem,arguments):b},i.elem=a),c=f.trim(I(c)).split(" ");for(k=0;k<c.length;k++){l=A.exec(c[k])||[],m=l[1],n=(l[2]||"").split(".").sort(),s=f.event.special[m]||{},m=(g?s.delegateType:s.bindType)||m,s=f.event.special[m]||{},o=f.extend({type:m,origType:l[1],data:e,handler:d,guid:d.guid,selector:g,quick:G(g),namespace:n.join(".")},p),r=j[m];if(!r){r=j[m]=[],r.delegateCount=0;if(!s.setup||s.setup.call(a,e,n,i)===!1)a.addEventListener?a.addEventListener(m,i,!1):a.attachEvent&&a.attachEvent("on"+m,i)}s.add&&(s.add.call(a,o),o.handler.guid||(o.handler.guid=d.guid)),g?r.splice(r.delegateCount++,0,o):r.push(o),f.event.global[m]=!0}a=null}},global:{},remove:function(a,b,c,d,e){var g=f.hasData(a)&&f._data(a),h,i,j,k,l,m,n,o,p,q,r,s;if(!!g&&!!(o=g.events)){b=f.trim(I(b||"")).split(" ");for(h=0;h<b.length;h++){i=A.exec(b[h])||[],j=k=i[1],l=i[2];if(!j){for(j in o)f.event.remove(a,j+b[h],c,d,!0);continue}p=f.event.special[j]||{},j=(d?p.delegateType:p.bindType)||j,r=o[j]||[],m=r.length,l=l?new RegExp("(^|\\.)"+l.split(".").sort().join("\\.(?:.*\\.)?")+"(\\.|$)"):null;for(n=0;n<r.length;n++)s=r[n],(e||k===s.origType)&&(!c||c.guid===s.guid)&&(!l||l.test(s.namespace))&&(!d||d===s.selector||d==="**"&&s.selector)&&(r.splice(n--,1),s.selector&&r.delegateCount--,p.remove&&p.remove.call(a,s));r.length===0&&m!==r.length&&((!p.teardown||p.teardown.call(a,l)===!1)&&f.removeEvent(a,j,g.handle),delete o[j])}f.isEmptyObject(o)&&(q=g.handle,q&&(q.elem=null),f.removeData(a,["events","handle"],!0))}},customEvent:{getData:!0,setData:!0,changeData:!0},trigger:function(c,d,e,g){if(!e||e.nodeType!==3&&e.nodeType!==8){var h=c.type||c,i=[],j,k,l,m,n,o,p,q,r,s;if(E.test(h+f.event.triggered))return;h.indexOf("!")>=0&&(h=h.slice(0,-1),k=!0),h.indexOf(".")>=0&&(i=h.split("."),h=i.shift(),i.sort());if((!e||f.event.customEvent[h])&&!f.event.global[h])return;c=typeof c=="object"?c[f.expando]?c:new f.Event(h,c):new f.Event(h),c.type=h,c.isTrigger=!0,c.exclusive=k,c.namespace=i.join("."),c.namespace_re=c.namespace?new RegExp("(^|\\.)"+i.join("\\.(?:.*\\.)?")+"(\\.|$)"):null,o=h.indexOf(":")<0?"on"+h:"";if(!e){j=f.cache;for(l in j)j[l].events&&j[l].events[h]&&f.event.trigger(c,d,j[l].handle.elem,!0);return}c.result=b,c.target||(c.target=e),d=d!=null?f.makeArray(d):[],d.unshift(c),p=f.event.special[h]||{};if(p.trigger&&p.trigger.apply(e,d)===!1)return;r=[[e,p.bindType||h]];if(!g&&!p.noBubble&&!f.isWindow(e)){s=p.delegateType||h,m=E.test(s+h)?e:e.parentNode,n=null;for(;m;m=m.parentNode)r.push([m,s]),n=m;n&&n===e.ownerDocument&&r.push([n.defaultView||n.parentWindow||a,s])}for(l=0;l<r.length&&!c.isPropagationStopped();l++)m=r[l][0],c.type=r[l][1],q=(f._data(m,"events")||{})[c.type]&&f._data(m,"handle"),q&&q.apply(m,d),q=o&&m[o],q&&f.acceptData(m)&&q.apply(m,d)===!1&&c.preventDefault();c.type=h,!g&&!c.isDefaultPrevented()&&(!p._default||p._default.apply(e.ownerDocument,d)===!1)&&(h!=="click"||!f.nodeName(e,"a"))&&f.acceptData(e)&&o&&e[h]&&(h!=="focus"&&h!=="blur"||c.target.offsetWidth!==0)&&!f.isWindow(e)&&(n=e[o],n&&(e[o]=null),f.event.triggered=h,e[h](),f.event.triggered=b,n&&(e[o]=n));return c.result}},dispatch:function(c){c=f.event.fix(c||a.event);var d=(f._data(this,"events")||{})[c.type]||[],e=d.delegateCount,g=[].slice.call(arguments,0),h=!c.exclusive&&!c.namespace,i=[],j,k,l,m,n,o,p,q,r,s,t;g[0]=c,c.delegateTarget=this;if(e&&!c.target.disabled&&(!c.button||c.type!=="click")){m=f(this),m.context=this.ownerDocument||this;for(l=c.target;l!=this;l=l.parentNode||this){o={},q=[],m[0]=l;for(j=0;j<e;j++)r=d[j],s=r.selector,o[s]===b&&(o[s]=r.quick?H(l,r.quick):m.is(s)),o[s]&&q.push(r);q.length&&i.push({elem:l,matches:q})}}d.length>e&&i.push({elem:this,matches:d.slice(e)});for(j=0;j<i.length&&!c.isPropagationStopped();j++){p=i[j],c.currentTarget=p.elem;for(k=0;k<p.matches.length&&!c.isImmediatePropagationStopped();k++){r=p.matches[k];if(h||!c.namespace&&!r.namespace||c.namespace_re&&c.namespace_re.test(r.namespace))c.data=r.data,c.handleObj=r,n=((f.event.special[r.origType]||{}).handle||r.handler).apply(p.elem,g),n!==b&&(c.result=n,n===!1&&(c.preventDefault(),c.stopPropagation()))}}return c.result},props:"attrChange attrName relatedNode srcElement altKey bubbles cancelable ctrlKey currentTarget eventPhase metaKey relatedTarget shiftKey target timeStamp view which".split(" "),fixHooks:{},keyHooks:{props:"char charCode key keyCode".split(" "),filter:function(a,b){a.which==null&&(a.which=b.charCode!=null?b.charCode:b.keyCode);return a}},mouseHooks:{props:"button buttons clientX clientY fromElement offsetX offsetY pageX pageY screenX screenY toElement".split(" "),filter:function(a,d){var e,f,g,h=d.button,i=d.fromElement;a.pageX==null&&d.clientX!=null&&(e=a.target.ownerDocument||c,f=e.documentElement,g=e.body,a.pageX=d.clientX+(f&&f.scrollLeft||g&&g.scrollLeft||0)-(f&&f.clientLeft||g&&g.clientLeft||0),a.pageY=d.clientY+(f&&f.scrollTop||g&&g.scrollTop||0)-(f&&f.clientTop||g&&g.clientTop||0)),!a.relatedTarget&&i&&(a.relatedTarget=i===a.target?d.toElement:i),!a.which&&h!==b&&(a.which=h&1?1:h&2?3:h&4?2:0);return a}},fix:function(a){if(a[f.expando])return a;var d,e,g=a,h=f.event.fixHooks[a.type]||{},i=h.props?this.props.concat(h.props):this.props;a=f.Event(g);for(d=i.length;d;)e=i[--d],a[e]=g[e];a.target||(a.target=g.srcElement||c),a.target.nodeType===3&&(a.target=a.target.parentNode),a.metaKey===b&&(a.metaKey=a.ctrlKey);return h.filter?h.filter(a,g):a},special:{ready:{setup:f.bindReady},load:{noBubble:!0},focus:{delegateType:"focusin"},blur:{delegateType:"focusout"},beforeunload:{setup:function(a,b,c){f.isWindow(this)&&(this.onbeforeunload=c)},teardown:function(a,b){this.onbeforeunload===b&&(this.onbeforeunload=null)}}},simulate:function(a,b,c,d){var e=f.extend(new f.Event,c,{type:a,isSimulated:!0,originalEvent:{}});d?f.event.trigger(e,null,b):f.event.dispatch.call(b,e),e.isDefaultPrevented()&&c.preventDefault()}},f.event.handle=f.event.dispatch,f.removeEvent=c.removeEventListener?function(a,b,c){a.removeEventListener&&a.removeEventListener(b,c,!1)}:function(a,b,c){a.detachEvent&&a.detachEvent("on"+b,c)},f.Event=function(a,b){if(!(this instanceof f.Event))return new f.Event(a,b);a&&a.type?(this.originalEvent=a,this.type=a.type,this.isDefaultPrevented=a.defaultPrevented||a.returnValue===!1||a.getPreventDefault&&a.getPreventDefault()?K:J):this.type=a,b&&f.extend(this,b),this.timeStamp=a&&a.timeStamp||f.now(),this[f.expando]=!0},f.Event.prototype={preventDefault:function(){this.isDefaultPrevented=K;var a=this.originalEvent;!a||(a.preventDefault?a.preventDefault():a.returnValue=!1)},stopPropagation:function(){this.isPropagationStopped=K;var a=this.originalEvent;!a||(a.stopPropagation&&a.stopPropagation(),a.cancelBubble=!0)},stopImmediatePropagation:function(){this.isImmediatePropagationStopped=K,this.stopPropagation()},isDefaultPrevented:J,isPropagationStopped:J,isImmediatePropagationStopped:J},f.each({mouseenter:"mouseover",mouseleave:"mouseout"},function(a,b){f.event.special[a]={delegateType:b,bindType:b,handle:function(a){var c=this,d=a.relatedTarget,e=a.handleObj,g=e.selector,h;if(!d||d!==c&&!f.contains(c,d))a.type=e.origType,h=e.handler.apply(this,arguments),a.type=b;return h}}}),f.support.submitBubbles||(f.event.special.submit={setup:function(){if(f.nodeName(this,"form"))return!1;f.event.add(this,"click._submit keypress._submit",function(a){var c=a.target,d=f.nodeName(c,"input")||f.nodeName(c,"button")?c.form:b;d&&!d._submit_attached&&(f.event.add(d,"submit._submit",function(a){this.parentNode&&!a.isTrigger&&f.event.simulate("submit",this.parentNode,a,!0)}),d._submit_attached=!0)})},teardown:function(){if(f.nodeName(this,"form"))return!1;f.event.remove(this,"._submit")}}),f.support.changeBubbles||(f.event.special.change={setup:function(){if(z.test(this.nodeName)){if(this.type==="checkbox"||this.type==="radio")f.event.add(this,"propertychange._change",function(a){a.originalEvent.propertyName==="checked"&&(this._just_changed=!0)}),f.event.add(this,"click._change",function(a){this._just_changed&&!a.isTrigger&&(this._just_changed=!1,f.event.simulate("change",this,a,!0))});return!1}f.event.add(this,"beforeactivate._change",function(a){var b=a.target;z.test(b.nodeName)&&!b._change_attached&&(f.event.add(b,"change._change",function(a){this.parentNode&&!a.isSimulated&&!a.isTrigger&&f.event.simulate("change",this.parentNode,a,!0)}),b._change_attached=!0)})},handle:function(a){var b=a.target;if(this!==b||a.isSimulated||a.isTrigger||b.type!=="radio"&&b.type!=="checkbox")return a.handleObj.handler.apply(this,arguments)},teardown:function(){f.event.remove(this,"._change");return z.test(this.nodeName)}}),f.support.focusinBubbles||f.each({focus:"focusin",blur:"focusout"},function(a,b){var d=0,e=function(a){f.event.simulate(b,a.target,f.event.fix(a),!0)};f.event.special[b]={setup:function(){d++===0&&c.addEventListener(a,e,!0)},teardown:function(){--d===0&&c.removeEventListener(a,e,!0)}}}),f.fn.extend({on:function(a,c,d,e,g){var h,i;if(typeof a=="object"){typeof c!="string"&&(d=c,c=b);for(i in a)this.on(i,c,d,a[i],g);return this}d==null&&e==null?(e=c,d=c=b):e==null&&(typeof c=="string"?(e=d,d=b):(e=d,d=c,c=b));if(e===!1)e=J;else if(!e)return this;g===1&&(h=e,e=function(a){f().off(a);return h.apply(this,arguments)},e.guid=h.guid||(h.guid=f.guid++));return this.each(function(){f.event.add(this,a,e,d,c)})},one:function(a,b,c,d){return this.on.call(this,a,b,c,d,1)},off:function(a,c,d){if(a&&a.preventDefault&&a.handleObj){var e=a.handleObj;f(a.delegateTarget).off(e.namespace?e.type+"."+e.namespace:e.type,e.selector,e.handler);return this}if(typeof a=="object"){for(var g in a)this.off(g,c,a[g]);return this}if(c===!1||typeof c=="function")d=c,c=b;d===!1&&(d=J);return this.each(function(){f.event.remove(this,a,d,c)})},bind:function(a,b,c){return this.on(a,null,b,c)},unbind:function(a,b){return this.off(a,null,b)},live:function(a,b,c){f(this.context).on(a,this.selector,b,c);return this},die:function(a,b){f(this.context).off(a,this.selector||"**",b);return this},delegate:function(a,b,c,d){return this.on(b,a,c,d)},undelegate:function(a,b,c){return arguments.length==1?this.off(a,"**"):this.off(b,a,c)},trigger:function(a,b){return this.each(function(){f.event.trigger(a,b,this)})},triggerHandler:function(a,b){if(this[0])return f.event.trigger(a,b,this[0],!0)},toggle:function(a){var b=arguments,c=a.guid||f.guid++,d=0,e=function(c){var e=(f._data(this,"lastToggle"+a.guid)||0)%d;f._data(this,"lastToggle"+a.guid,e+1),c.preventDefault();return b[e].apply(this,arguments)||!1};e.guid=c;while(d<b.length)b[d++].guid=c;return this.click(e)},hover:function(a,b){return this.mouseenter(a).mouseleave(b||a)}}),f.each("blur focus focusin focusout load resize scroll unload click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup error contextmenu".split(" "),function(a,b){f.fn[b]=function(a,c){c==null&&(c=a,a=null);return arguments.length>0?this.on(b,null,a,c):this.trigger(b)},f.attrFn&&(f.attrFn[b]=!0),C.test(b)&&(f.event.fixHooks[b]=f.event.keyHooks),D.test(b)&&(f.event.fixHooks[b]=f.event.mouseHooks)}),function(){function x(a,b,c,e,f,g){for(var h=0,i=e.length;h<i;h++){var j=e[h];if(j){var k=!1;j=j[a];while(j){if(j[d]===c){k=e[j.sizset];break}if(j.nodeType===1){g||(j[d]=c,j.sizset=h);if(typeof b!="string"){if(j===b){k=!0;break}}else if(m.filter(b,[j]).length>0){k=j;break}}j=j[a]}e[h]=k}}}function w(a,b,c,e,f,g){for(var h=0,i=e.length;h<i;h++){var j=e[h];if(j){var k=!1;j=j[a];while(j){if(j[d]===c){k=e[j.sizset];break}j.nodeType===1&&!g&&(j[d]=c,j.sizset=h);if(j.nodeName.toLowerCase()===b){k=j;break}j=j[a]}e[h]=k}}}var a=/((?:\((?:\([^()]+\)|[^()]+)+\)|\[(?:\[[^\[\]]*\]|['"][^'"]*['"]|[^\[\]'"]+)+\]|\\.|[^ >+~,(\[\\]+)+|[>+~])(\s*,\s*)?((?:.|\r|\n)*)/g,d="sizcache"+(Math.random()+"").replace(".",""),e=0,g=Object.prototype.toString,h=!1,i=!0,j=/\\/g,k=/\r\n/g,l=/\W/;[0,0].sort(function(){i=!1;return 0});var m=function(b,d,e,f){e=e||[],d=d||c;var h=d;if(d.nodeType!==1&&d.nodeType!==9)return[];if(!b||typeof b!="string")return e;var i,j,k,l,n,q,r,t,u=!0,v=m.isXML(d),w=[],x=b;do{a.exec(""),i=a.exec(x);if(i){x=i[3],w.push(i[1]);if(i[2]){l=i[3];break}}}while(i);if(w.length>1&&p.exec(b))if(w.length===2&&o.relative[w[0]])j=y(w[0]+w[1],d,f);else{j=o.relative[w[0]]?[d]:m(w.shift(),d);while(w.length)b=w.shift(),o.relative[b]&&(b+=w.shift()),j=y(b,j,f)}else{!f&&w.length>1&&d.nodeType===9&&!v&&o.match.ID.test(w[0])&&!o.match.ID.test(w[w.length-1])&&(n=m.find(w.shift(),d,v),d=n.expr?m.filter(n.expr,n.set)[0]:n.set[0]);if(d){n=f?{expr:w.pop(),set:s(f)}:m.find(w.pop(),w.length===1&&(w[0]==="~"||w[0]==="+")&&d.parentNode?d.parentNode:d,v),j=n.expr?m.filter(n.expr,n.set):n.set,w.length>0?k=s(j):u=!1;while(w.length)q=w.pop(),r=q,o.relative[q]?r=w.pop():q="",r==null&&(r=d),o.relative[q](k,r,v)}else k=w=[]}k||(k=j),k||m.error(q||b);if(g.call(k)==="[object Array]")if(!u)e.push.apply(e,k);else if(d&&d.nodeType===1)for(t=0;k[t]!=null;t++)k[t]&&(k[t]===!0||k[t].nodeType===1&&m.contains(d,k[t]))&&e.push(j[t]);else for(t=0;k[t]!=null;t++)k[t]&&k[t].nodeType===1&&e.push(j[t]);else s(k,e);l&&(m(l,h,e,f),m.uniqueSort(e));return e};m.uniqueSort=function(a){if(u){h=i,a.sort(u);if(h)for(var b=1;b<a.length;b++)a[b]===a[b-1]&&a.splice(b--,1)}return a},m.matches=function(a,b){return m(a,null,null,b)},m.matchesSelector=function(a,b){return m(b,null,null,[a]).length>0},m.find=function(a,b,c){var d,e,f,g,h,i;if(!a)return[];for(e=0,f=o.order.length;e<f;e++){h=o.order[e];if(g=o.leftMatch[h].exec(a)){i=g[1],g.splice(1,1);if(i.substr(i.length-1)!=="\\"){g[1]=(g[1]||"").replace(j,""),d=o.find[h](g,b,c);if(d!=null){a=a.replace(o.match[h],"");break}}}}d||(d=typeof b.getElementsByTagName!="undefined"?b.getElementsByTagName("*"):[]);return{set:d,expr:a}},m.filter=function(a,c,d,e){var f,g,h,i,j,k,l,n,p,q=a,r=[],s=c,t=c&&c[0]&&m.isXML(c[0]);while(a&&c.length){for(h in o.filter)if((f=o.leftMatch[h].exec(a))!=null&&f[2]){k=o.filter[h],l=f[1],g=!1,f.splice(1,1);if(l.substr(l.length-1)==="\\")continue;s===r&&(r=[]);if(o.preFilter[h]){f=o.preFilter[h](f,s,d,r,e,t);if(!f)g=i=!0;else if(f===!0)continue}if(f)for(n=0;(j=s[n])!=null;n++)j&&(i=k(j,f,n,s),p=e^i,d&&i!=null?p?g=!0:s[n]=!1:p&&(r.push(j),g=!0));if(i!==b){d||(s=r),a=a.replace(o.match[h],"");if(!g)return[];break}}if(a===q)if(g==null)m.error(a);else break;q=a}return s},m.error=function(a){throw new Error("Syntax error, unrecognized expression: "+a)};var n=m.getText=function(a){var b,c,d=a.nodeType,e="";if(d){if(d===1||d===9){if(typeof a.textContent=="string")return a.textContent;if(typeof a.innerText=="string")return a.innerText.replace(k,"");for(a=a.firstChild;a;a=a.nextSibling)e+=n(a)}else if(d===3||d===4)return a.nodeValue}else for(b=0;c=a[b];b++)c.nodeType!==8&&(e+=n(c));return e},o=m.selectors={order:["ID","NAME","TAG"],match:{ID:/#((?:[\w\u00c0-\uFFFF\-]|\\.)+)/,CLASS:/\.((?:[\w\u00c0-\uFFFF\-]|\\.)+)/,NAME:/\[name=['"]*((?:[\w\u00c0-\uFFFF\-]|\\.)+)['"]*\]/,ATTR:/\[\s*((?:[\w\u00c0-\uFFFF\-]|\\.)+)\s*(?:(\S?=)\s*(?:(['"])(.*?)\3|(#?(?:[\w\u00c0-\uFFFF\-]|\\.)*)|)|)\s*\]/,TAG:/^((?:[\w\u00c0-\uFFFF*\-]|\\.)+)/,CHILD:/:(only|nth|last|first)-child(?:\(\s*(even|odd|(?:[+\-]?\d+|(?:[+\-]?\d*)?n\s*(?:[+\-]\s*\d+)?))\s*\))?/,POS:/:(nth|eq|gt|lt|first|last|even|odd)(?:\((\d*)\))?(?=[^\-]|$)/,PSEUDO:/:((?:[\w\u00c0-\uFFFF\-]|\\.)+)(?:\((['"]?)((?:\([^\)]+\)|[^\(\)]*)+)\2\))?/},leftMatch:{},attrMap:{"class":"className","for":"htmlFor"},attrHandle:{href:function(a){return a.getAttribute("href")},type:function(a){return a.getAttribute("type")}},relative:{"+":function(a,b){var c=typeof b=="string",d=c&&!l.test(b),e=c&&!d;d&&(b=b.toLowerCase());for(var f=0,g=a.length,h;f<g;f++)if(h=a[f]){while((h=h.previousSibling)&&h.nodeType!==1);a[f]=e||h&&h.nodeName.toLowerCase()===b?h||!1:h===b}e&&m.filter(b,a,!0)},">":function(a,b){var c,d=typeof b=="string",e=0,f=a.length;if(d&&!l.test(b)){b=b.toLowerCase();for(;e<f;e++){c=a[e];if(c){var g=c.parentNode;a[e]=g.nodeName.toLowerCase()===b?g:!1}}}else{for(;e<f;e++)c=a[e],c&&(a[e]=d?c.parentNode:c.parentNode===b);d&&m.filter(b,a,!0)}},"":function(a,b,c){var d,f=e++,g=x;typeof b=="string"&&!l.test(b)&&(b=b.toLowerCase(),d=b,g=w),g("parentNode",b,f,a,d,c)},"~":function(a,b,c){var d,f=e++,g=x;typeof b=="string"&&!l.test(b)&&(b=b.toLowerCase(),d=b,g=w),g("previousSibling",b,f,a,d,c)}},find:{ID:function(a,b,c){if(typeof b.getElementById!="undefined"&&!c){var d=b.getElementById(a[1]);return d&&d.parentNode?[d]:[]}},NAME:function(a,b){if(typeof b.getElementsByName!="undefined"){var c=[],d=b.getElementsByName(a[1]);for(var e=0,f=d.length;e<f;e++)d[e].getAttribute("name")===a[1]&&c.push(d[e]);return c.length===0?null:c}},TAG:function(a,b){if(typeof b.getElementsByTagName!="undefined")return b.getElementsByTagName(a[1])}},preFilter:{CLASS:function(a,b,c,d,e,f){a=" "+a[1].replace(j,"")+" ";if(f)return a;for(var g=0,h;(h=b[g])!=null;g++)h&&(e^(h.className&&(" "+h.className+" ").replace(/[\t\n\r]/g," ").indexOf(a)>=0)?c||d.push(h):c&&(b[g]=!1));return!1},ID:function(a){return a[1].replace(j,"")},TAG:function(a,b){return a[1].replace(j,"").toLowerCase()},CHILD:function(a){if(a[1]==="nth"){a[2]||m.error(a[0]),a[2]=a[2].replace(/^\+|\s*/g,"");var b=/(-?)(\d*)(?:n([+\-]?\d*))?/.exec(a[2]==="even"&&"2n"||a[2]==="odd"&&"2n+1"||!/\D/.test(a[2])&&"0n+"+a[2]||a[2]);a[2]=b[1]+(b[2]||1)-0,a[3]=b[3]-0}else a[2]&&m.error(a[0]);a[0]=e++;return a},ATTR:function(a,b,c,d,e,f){var g=a[1]=a[1].replace(j,"");!f&&o.attrMap[g]&&(a[1]=o.attrMap[g]),a[4]=(a[4]||a[5]||"").replace(j,""),a[2]==="~="&&(a[4]=" "+a[4]+" ");return a},PSEUDO:function(b,c,d,e,f){if(b[1]==="not")if((a.exec(b[3])||"").length>1||/^\w/.test(b[3]))b[3]=m(b[3],null,null,c);else{var g=m.filter(b[3],c,d,!0^f);d||e.push.apply(e,g);return!1}else if(o.match.POS.test(b[0])||o.match.CHILD.test(b[0]))return!0;return b},POS:function(a){a.unshift(!0);return a}},filters:{enabled:function(a){return a.disabled===!1&&a.type!=="hidden"},disabled:function(a){return a.disabled===!0},checked:function(a){return a.checked===!0},selected:function(a){a.parentNode&&a.parentNode.selectedIndex;return a.selected===!0},parent:function(a){return!!a.firstChild},empty:function(a){return!a.firstChild},has:function(a,b,c){return!!m(c[3],a).length},header:function(a){return/h\d/i.test(a.nodeName)},text:function(a){var b=a.getAttribute("type"),c=a.type;return a.nodeName.toLowerCase()==="input"&&"text"===c&&(b===c||b===null)},radio:function(a){return a.nodeName.toLowerCase()==="input"&&"radio"===a.type},checkbox:function(a){return a.nodeName.toLowerCase()==="input"&&"checkbox"===a.type},file:function(a){return a.nodeName.toLowerCase()==="input"&&"file"===a.type},password:function(a){return a.nodeName.toLowerCase()==="input"&&"password"===a.type},submit:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"submit"===a.type},image:function(a){return a.nodeName.toLowerCase()==="input"&&"image"===a.type},reset:function(a){var b=a.nodeName.toLowerCase();return(b==="input"||b==="button")&&"reset"===a.type},button:function(a){var b=a.nodeName.toLowerCase();return b==="input"&&"button"===a.type||b==="button"},input:function(a){return/input|select|textarea|button/i.test(a.nodeName)},focus:function(a){return a===a.ownerDocument.activeElement}},setFilters:{first:function(a,b){return b===0},last:function(a,b,c,d){return b===d.length-1},even:function(a,b){return b%2===0},odd:function(a,b){return b%2===1},lt:function(a,b,c){return b<c[3]-0},gt:function(a,b,c){return b>c[3]-0},nth:function(a,b,c){return c[3]-0===b},eq:function(a,b,c){return c[3]-0===b}},filter:{PSEUDO:function(a,b,c,d){var e=b[1],f=o.filters[e];if(f)return f(a,c,b,d);if(e==="contains")return(a.textContent||a.innerText||n([a])||"").indexOf(b[3])>=0;if(e==="not"){var g=b[3];for(var h=0,i=g.length;h<i;h++)if(g[h]===a)return!1;return!0}m.error(e)},CHILD:function(a,b){var c,e,f,g,h,i,j,k=b[1],l=a;switch(k){case"only":case"first":while(l=l.previousSibling)if(l.nodeType===1)return!1;if(k==="first")return!0;l=a;case"last":while(l=l.nextSibling)if(l.nodeType===1)return!1;return!0;case"nth":c=b[2],e=b[3];if(c===1&&e===0)return!0;f=b[0],g=a.parentNode;if(g&&(g[d]!==f||!a.nodeIndex)){i=0;for(l=g.firstChild;l;l=l.nextSibling)l.nodeType===1&&(l.nodeIndex=++i);g[d]=f}j=a.nodeIndex-e;return c===0?j===0:j%c===0&&j/c>=0}},ID:function(a,b){return a.nodeType===1&&a.getAttribute("id")===b},TAG:function(a,b){return b==="*"&&a.nodeType===1||!!a.nodeName&&a.nodeName.toLowerCase()===b},CLASS:function(a,b){return(" "+(a.className||a.getAttribute("class"))+" ").indexOf(b)>-1},ATTR:function(a,b){var c=b[1],d=m.attr?m.attr(a,c):o.attrHandle[c]?o.attrHandle[c](a):a[c]!=null?a[c]:a.getAttribute(c),e=d+"",f=b[2],g=b[4];return d==null?f==="!=":!f&&m.attr?d!=null:f==="="?e===g:f==="*="?e.indexOf(g)>=0:f==="~="?(" "+e+" ").indexOf(g)>=0:g?f==="!="?e!==g:f==="^="?e.indexOf(g)===0:f==="$="?e.substr(e.length-g.length)===g:f==="|="?e===g||e.substr(0,g.length+1)===g+"-":!1:e&&d!==!1},POS:function(a,b,c,d){var e=b[2],f=o.setFilters[e];if(f)return f(a,c,b,d)}}},p=o.match.POS,q=function(a,b){return"\\"+(b-0+1)};for(var r in o.match)o.match[r]=new RegExp(o.match[r].source+/(?![^\[]*\])(?![^\(]*\))/.source),o.leftMatch[r]=new RegExp(/(^(?:.|\r|\n)*?)/.source+o.match[r].source.replace(/\\(\d+)/g,q));var s=function(a,b){a=Array.prototype.slice.call(a,0);if(b){b.push.apply(b,a);return b}return a};try{Array.prototype.slice.call(c.documentElement.childNodes,0)[0].nodeType}catch(t){s=function(a,b){var c=0,d=b||[];if(g.call(a)==="[object Array]")Array.prototype.push.apply(d,a);else if(typeof a.length=="number")for(var e=a.length;c<e;c++)d.push(a[c]);else for(;a[c];c++)d.push(a[c]);return d}}var u,v;c.documentElement.compareDocumentPosition?u=function(a,b){if(a===b){h=!0;return 0}if(!a.compareDocumentPosition||!b.compareDocumentPosition)return a.compareDocumentPosition?-1:1;return a.compareDocumentPosition(b)&4?-1:1}:(u=function(a,b){if(a===b){h=!0;return 0}if(a.sourceIndex&&b.sourceIndex)return a.sourceIndex-b.sourceIndex;var c,d,e=[],f=[],g=a.parentNode,i=b.parentNode,j=g;if(g===i)return v(a,b);if(!g)return-1;if(!i)return 1;while(j)e.unshift(j),j=j.parentNode;j=i;while(j)f.unshift(j),j=j.parentNode;c=e.length,d=f.length;for(var k=0;k<c&&k<d;k++)if(e[k]!==f[k])return v(e[k],f[k]);return k===c?v(a,f[k],-1):v(e[k],b,1)},v=function(a,b,c){if(a===b)return c;var d=a.nextSibling;while(d){if(d===b)return-1;d=d.nextSibling}return 1}),function(){var a=c.createElement("div"),d="script"+(new Date).getTime(),e=c.documentElement;a.innerHTML="",e.insertBefore(a,e.firstChild),c.getElementById(d)&&(o.find.ID=function(a,c,d){if(typeof c.getElementById!="undefined"&&!d){var e=c.getElementById(a[1]);return e?e.id===a[1]||typeof e.getAttributeNode!="undefined"&&e.getAttributeNode("id").nodeValue===a[1]?[e]:b:[]}},o.filter.ID=function(a,b){var c=typeof a.getAttributeNode!="undefined"&&a.getAttributeNode("id");return a.nodeType===1&&c&&c.nodeValue===b}),e.removeChild(a),e=a=null}(),function(){var a=c.createElement("div");a.appendChild(c.createComment("")),a.getElementsByTagName("*").length>0&&(o.find.TAG=function(a,b){var c=b.getElementsByTagName(a[1]);if(a[1]==="*"){var d=[];for(var e=0;c[e];e++)c[e].nodeType===1&&d.push(c[e]);c=d}return c}),a.innerHTML="",a.firstChild&&typeof a.firstChild.getAttribute!="undefined"&&a.firstChild.getAttribute("href")!=="#"&&(o.attrHandle.href=function(a){return a.getAttribute("href",2)}),a=null}(),c.querySelectorAll&&function(){var a=m,b=c.createElement("div"),d="__sizzle__";b.innerHTML="<p class='TEST'></p>";if(!b.querySelectorAll||b.querySelectorAll(".TEST").length!==0){m=function(b,e,f,g){e=e||c;if(!g&&!m.isXML(e)){var h=/^(\w+$)|^\.([\w\-]+$)|^#([\w\-]+$)/.exec(b);if(h&&(e.nodeType===1||e.nodeType===9)){if(h[1])return s(e.getElementsByTagName(b),f);if(h[2]&&o.find.CLASS&&e.getElementsByClassName)return s(e.getElementsByClassName(h[2]),f)}if(e.nodeType===9){if(b==="body"&&e.body)return s([e.body],f);if(h&&h[3]){var i=e.getElementById(h[3]);if(!i||!i.parentNode)return s([],f);if(i.id===h[3])return s([i],f)}try{return s(e.querySelectorAll(b),f)}catch(j){}}else if(e.nodeType===1&&e.nodeName.toLowerCase()!=="object"){var k=e,l=e.getAttribute("id"),n=l||d,p=e.parentNode,q=/^\s*[+~]/.test(b);l?n=n.replace(/'/g,"\\$&"):e.setAttribute("id",n),q&&p&&(e=e.parentNode);try{if(!q||p)return s(e.querySelectorAll("[id='"+n+"'] "+b),f)}catch(r){}finally{l||k.removeAttribute("id")}}}return a(b,e,f,g)};for(var e in a)m[e]=a[e];b=null}}(),function(){var a=c.documentElement,b=a.matchesSelector||a.mozMatchesSelector||a.webkitMatchesSelector||a.msMatchesSelector;if(b){var d=!b.call(c.createElement("div"),"div"),e=!1;try{b.call(c.documentElement,"[test!='']:sizzle")}catch(f){e=!0}m.matchesSelector=function(a,c){c=c.replace(/\=\s*([^'"\]]*)\s*\]/g,"='$1']");if(!m.isXML(a))try{if(e||!o.match.PSEUDO.test(c)&&!/!=/.test(c)){var f=b.call(a,c);if(f||!d||a.document&&a.document.nodeType!==11)return f}}catch(g){}return m(c,null,null,[a]).length>0}}}(),function(){var a=c.createElement("div");a.innerHTML="<div class='test e'></div><div class='test'></div>";if(!!a.getElementsByClassName&&a.getElementsByClassName("e").length!==0){a.lastChild.className="e";if(a.getElementsByClassName("e").length===1)return;o.order.splice(1,0,"CLASS"),o.find.CLASS=function(a,b,c){if(typeof b.getElementsByClassName!="undefined"&&!c)return b.getElementsByClassName(a[1])},a=null}}(),c.documentElement.contains?m.contains=function(a,b){return a!==b&&(a.contains?a.contains(b):!0)}:c.documentElement.compareDocumentPosition?m.contains=function(a,b){return!!(a.compareDocumentPosition(b)&16)}:m.contains=function(){return!1},m.isXML=function(a){var b=(a?a.ownerDocument||a:0).documentElement;return b?b.nodeName!=="HTML":!1};var y=function(a,b,c){var d,e=[],f="",g=b.nodeType?[b]:b;while(d=o.match.PSEUDO.exec(a))f+=d[0],a=a.replace(o.match.PSEUDO,"");a=o.relative[a]?a+"*":a;for(var h=0,i=g.length;h<i;h++)m(a,g[h],e,c);return m.filter(f,e)};m.attr=f.attr,m.selectors.attrMap={},f.find=m,f.expr=m.selectors,f.expr[":"]=f.expr.filters,f.unique=m.uniqueSort,f.text=m.getText,f.isXMLDoc=m.isXML,f.contains=m.contains}();var L=/Until$/,M=/^(?:parents|prevUntil|prevAll)/,N=/,/,O=/^.[^:#\[\.,]*$/,P=Array.prototype.slice,Q=f.expr.match.POS,R={children:!0,contents:!0,next:!0,prev:!0};f.fn.extend({find:function(a){var b=this,c,d;if(typeof a!="string")return f(a).filter(function(){for(c=0,d=b.length;c<d;c++)if(f.contains(b[c],this))return!0});var e=this.pushStack("","find",a),g,h,i;for(c=0,d=this.length;c<d;c++){g=e.length,f.find(a,this[c],e);if(c>0)for(h=g;h<e.length;h++)for(i=0;i<g;i++)if(e[i]===e[h]){e.splice(h--,1);break}}return e},has:function(a){var b=f(a);return this.filter(function(){for(var a=0,c=b.length;a<c;a++)if(f.contains(this,b[a]))return!0})},not:function(a){return this.pushStack(T(this,a,!1),"not",a)},filter:function(a){return this.pushStack(T(this,a,!0),"filter",a)},is:function(a){return!!a&&(typeof a=="string"?Q.test(a)?f(a,this.context).index(this[0])>=0:f.filter(a,this).length>0:this.filter(a).length>0)},closest:function(a,b){var c=[],d,e,g=this[0];if(f.isArray(a)){var h=1;while(g&&g.ownerDocument&&g!==b){for(d=0;d<a.length;d++)f(g).is(a[d])&&c.push({selector:a[d],elem:g,level:h});g=g.parentNode,h++}return c}var i=Q.test(a)||typeof a!="string"?f(a,b||this.context):0;for(d=0,e=this.length;d<e;d++){g=this[d];while(g){if(i?i.index(g)>-1:f.find.matchesSelector(g,a)){c.push(g);break}g=g.parentNode;if(!g||!g.ownerDocument||g===b||g.nodeType===11)break}}c=c.length>1?f.unique(c):c;return this.pushStack(c,"closest",a)},index:function(a){if(!a)return this[0]&&this[0].parentNode?this.prevAll().length:-1;if(typeof a=="string")return f.inArray(this[0],f(a));return f.inArray(a.jquery?a[0]:a,this)},add:function(a,b){var c=typeof a=="string"?f(a,b):f.makeArray(a&&a.nodeType?[a]:a),d=f.merge(this.get(),c);return this.pushStack(S(c[0])||S(d[0])?d:f.unique(d))},andSelf:function(){return this.add(this.prevObject)}}),f.each({parent:function(a){var b=a.parentNode;return b&&b.nodeType!==11?b:null},parents:function(a){return f.dir(a,"parentNode")},parentsUntil:function(a,b,c){return f.dir(a,"parentNode",c)},next:function(a){return f.nth(a,2,"nextSibling")},prev:function(a){return f.nth(a,2,"previousSibling")},nextAll:function(a){return f.dir(a,"nextSibling")},prevAll:function(a){return f.dir(a,"previousSibling")},nextUntil:function(a,b,c){return f.dir(a,"nextSibling",c)},prevUntil:function(a,b,c){return f.dir(a,"previousSibling",c)},siblings:function(a){return f.sibling(a.parentNode.firstChild,a)},children:function(a){return f.sibling(a.firstChild)},contents:function(a){return f.nodeName(a,"iframe")?a.contentDocument||a.contentWindow.document:f.makeArray(a.childNodes)}},function(a,b){f.fn[a]=function(c,d){var e=f.map(this,b,c);L.test(a)||(d=c),d&&typeof d=="string"&&(e=f.filter(d,e)),e=this.length>1&&!R[a]?f.unique(e):e,(this.length>1||N.test(d))&&M.test(a)&&(e=e.reverse());return this.pushStack(e,a,P.call(arguments).join(","))}}),f.extend({filter:function(a,b,c){c&&(a=":not("+a+")");return b.length===1?f.find.matchesSelector(b[0],a)?[b[0]]:[]:f.find.matches(a,b)},dir:function(a,c,d){var e=[],g=a[c];while(g&&g.nodeType!==9&&(d===b||g.nodeType!==1||!f(g).is(d)))g.nodeType===1&&e.push(g),g=g[c];return e},nth:function(a,b,c,d){b=b||1;var e=0;for(;a;a=a[c])if(a.nodeType===1&&++e===b)break;return a},sibling:function(a,b){var c=[];for(;a;a=a.nextSibling)a.nodeType===1&&a!==b&&c.push(a);return c}});var V="abbr|article|aside|audio|canvas|datalist|details|figcaption|figure|footer|header|hgroup|mark|meter|nav|output|progress|section|summary|time|video",W=/ jQuery\d+="(?:\d+|null)"/g,X=/^\s+/,Y=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/ig,Z=/<([\w:]+)/,$=/<tbody/i,_=/<|&#?\w+;/,ba=/<(?:script|style)/i,bb=/<(?:script|object|embed|option|style)/i,bc=new RegExp("<(?:"+V+")","i"),bd=/checked\s*(?:[^=]|=\s*.checked.)/i,be=/\/(java|ecma)script/i,bf=/^\s*<!(?:\[CDATA\[|\-\-)/,bg={option:[1,"<select multiple='multiple'>","</select>"],legend:[1,"<fieldset>","</fieldset>"],thead:[1,"<table>","</table>"],tr:[2,"<table><tbody>","</tbody></table>"],td:[3,"<table><tbody><tr>","</tr></tbody></table>"],col:[2,"<table><tbody></tbody><colgroup>","</colgroup></table>"],area:[1,"<map>","</map>"],_default:[0,"",""]},bh=U(c);bg.optgroup=bg.option,bg.tbody=bg.tfoot=bg.colgroup=bg.caption=bg.thead,bg.th=bg.td,f.support.htmlSerialize||(bg._default=[1,"div<div>","</div>"]),f.fn.extend({text:function(a){if(f.isFunction(a))return this.each(function(b){var c=f(this);c.text(a.call(this,b,c.text()))});if(typeof a!="object"&&a!==b)return this.empty().append((this[0]&&this[0].ownerDocument||c).createTextNode(a));return f.text(this)},wrapAll:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapAll(a.call(this,b))});if(this[0]){var b=f(a,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&b.insertBefore(this[0]),b.map(function(){var a=this;while(a.firstChild&&a.firstChild.nodeType===1)a=a.firstChild;return a}).append(this)}return this},wrapInner:function(a){if(f.isFunction(a))return this.each(function(b){f(this).wrapInner(a.call(this,b))});return this.each(function(){var b=f(this),c=b.contents();c.length?c.wrapAll(a):b.append(a)})},wrap:function(a){var b=f.isFunction(a);return this.each(function(c){f(this).wrapAll(b?a.call(this,c):a)})},unwrap:function(){return this.parent().each(function(){f.nodeName(this,"body")||f(this).replaceWith(this.childNodes)}).end()},append:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.appendChild(a)})},prepend:function(){return this.domManip(arguments,!0,function(a){this.nodeType===1&&this.insertBefore(a,this.firstChild)})},before:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this)});if(arguments.length){var a=f.clean(arguments);a.push.apply(a,this.toArray());return this.pushStack(a,"before",arguments)}},after:function(){if(this[0]&&this[0].parentNode)return this.domManip(arguments,!1,function(a){this.parentNode.insertBefore(a,this.nextSibling)});if(arguments.length){var a=this.pushStack(this,"after",arguments);a.push.apply(a,f.clean(arguments));return a}},remove:function(a,b){for(var c=0,d;(d=this[c])!=null;c++)if(!a||f.filter(a,[d]).length)!b&&d.nodeType===1&&(f.cleanData(d.getElementsByTagName("*")),f.cleanData([d])),d.parentNode&&d.parentNode.removeChild(d);return this},empty:function()
{for(var a=0,b;(b=this[a])!=null;a++){b.nodeType===1&&f.cleanData(b.getElementsByTagName("*"));while(b.firstChild)b.removeChild(b.firstChild)}return this},clone:function(a,b){a=a==null?!1:a,b=b==null?a:b;return this.map(function(){return f.clone(this,a,b)})},html:function(a){if(a===b)return this[0]&&this[0].nodeType===1?this[0].innerHTML.replace(W,""):null;if(typeof a=="string"&&!ba.test(a)&&(f.support.leadingWhitespace||!X.test(a))&&!bg[(Z.exec(a)||["",""])[1].toLowerCase()]){a=a.replace(Y,"<$1></$2>");try{for(var c=0,d=this.length;c<d;c++)this[c].nodeType===1&&(f.cleanData(this[c].getElementsByTagName("*")),this[c].innerHTML=a)}catch(e){this.empty().append(a)}}else f.isFunction(a)?this.each(function(b){var c=f(this);c.html(a.call(this,b,c.html()))}):this.empty().append(a);return this},replaceWith:function(a){if(this[0]&&this[0].parentNode){if(f.isFunction(a))return this.each(function(b){var c=f(this),d=c.html();c.replaceWith(a.call(this,b,d))});typeof a!="string"&&(a=f(a).detach());return this.each(function(){var b=this.nextSibling,c=this.parentNode;f(this).remove(),b?f(b).before(a):f(c).append(a)})}return this.length?this.pushStack(f(f.isFunction(a)?a():a),"replaceWith",a):this},detach:function(a){return this.remove(a,!0)},domManip:function(a,c,d){var e,g,h,i,j=a[0],k=[];if(!f.support.checkClone&&arguments.length===3&&typeof j=="string"&&bd.test(j))return this.each(function(){f(this).domManip(a,c,d,!0)});if(f.isFunction(j))return this.each(function(e){var g=f(this);a[0]=j.call(this,e,c?g.html():b),g.domManip(a,c,d)});if(this[0]){i=j&&j.parentNode,f.support.parentNode&&i&&i.nodeType===11&&i.childNodes.length===this.length?e={fragment:i}:e=f.buildFragment(a,this,k),h=e.fragment,h.childNodes.length===1?g=h=h.firstChild:g=h.firstChild;if(g){c=c&&f.nodeName(g,"tr");for(var l=0,m=this.length,n=m-1;l<m;l++)d.call(c?bi(this[l],g):this[l],e.cacheable||m>1&&l<n?f.clone(h,!0,!0):h)}k.length&&f.each(k,bp)}return this}}),f.buildFragment=function(a,b,d){var e,g,h,i,j=a[0];b&&b[0]&&(i=b[0].ownerDocument||b[0]),i.createDocumentFragment||(i=c),a.length===1&&typeof j=="string"&&j.length<512&&i===c&&j.charAt(0)==="<"&&!bb.test(j)&&(f.support.checkClone||!bd.test(j))&&(f.support.html5Clone||!bc.test(j))&&(g=!0,h=f.fragments[j],h&&h!==1&&(e=h)),e||(e=i.createDocumentFragment(),f.clean(a,i,e,d)),g&&(f.fragments[j]=h?e:1);return{fragment:e,cacheable:g}},f.fragments={},f.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(a,b){f.fn[a]=function(c){var d=[],e=f(c),g=this.length===1&&this[0].parentNode;if(g&&g.nodeType===11&&g.childNodes.length===1&&e.length===1){e[b](this[0]);return this}for(var h=0,i=e.length;h<i;h++){var j=(h>0?this.clone(!0):this).get();f(e[h])[b](j),d=d.concat(j)}return this.pushStack(d,a,e.selector)}}),f.extend({clone:function(a,b,c){var d,e,g,h=f.support.html5Clone||!bc.test("<"+a.nodeName)?a.cloneNode(!0):bo(a);if((!f.support.noCloneEvent||!f.support.noCloneChecked)&&(a.nodeType===1||a.nodeType===11)&&!f.isXMLDoc(a)){bk(a,h),d=bl(a),e=bl(h);for(g=0;d[g];++g)e[g]&&bk(d[g],e[g])}if(b){bj(a,h);if(c){d=bl(a),e=bl(h);for(g=0;d[g];++g)bj(d[g],e[g])}}d=e=null;return h},clean:function(a,b,d,e){var g;b=b||c,typeof b.createElement=="undefined"&&(b=b.ownerDocument||b[0]&&b[0].ownerDocument||c);var h=[],i;for(var j=0,k;(k=a[j])!=null;j++){typeof k=="number"&&(k+="");if(!k)continue;if(typeof k=="string")if(!_.test(k))k=b.createTextNode(k);else{k=k.replace(Y,"<$1></$2>");var l=(Z.exec(k)||["",""])[1].toLowerCase(),m=bg[l]||bg._default,n=m[0],o=b.createElement("div");b===c?bh.appendChild(o):U(b).appendChild(o),o.innerHTML=m[1]+k+m[2];while(n--)o=o.lastChild;if(!f.support.tbody){var p=$.test(k),q=l==="table"&&!p?o.firstChild&&o.firstChild.childNodes:m[1]==="<table>"&&!p?o.childNodes:[];for(i=q.length-1;i>=0;--i)f.nodeName(q[i],"tbody")&&!q[i].childNodes.length&&q[i].parentNode.removeChild(q[i])}!f.support.leadingWhitespace&&X.test(k)&&o.insertBefore(b.createTextNode(X.exec(k)[0]),o.firstChild),k=o.childNodes}var r;if(!f.support.appendChecked)if(k[0]&&typeof (r=k.length)=="number")for(i=0;i<r;i++)bn(k[i]);else bn(k);k.nodeType?h.push(k):h=f.merge(h,k)}if(d){g=function(a){return!a.type||be.test(a.type)};for(j=0;h[j];j++)if(e&&f.nodeName(h[j],"script")&&(!h[j].type||h[j].type.toLowerCase()==="text/javascript"))e.push(h[j].parentNode?h[j].parentNode.removeChild(h[j]):h[j]);else{if(h[j].nodeType===1){var s=f.grep(h[j].getElementsByTagName("script"),g);h.splice.apply(h,[j+1,0].concat(s))}d.appendChild(h[j])}}return h},cleanData:function(a){var b,c,d=f.cache,e=f.event.special,g=f.support.deleteExpando;for(var h=0,i;(i=a[h])!=null;h++){if(i.nodeName&&f.noData[i.nodeName.toLowerCase()])continue;c=i[f.expando];if(c){b=d[c];if(b&&b.events){for(var j in b.events)e[j]?f.event.remove(i,j):f.removeEvent(i,j,b.handle);b.handle&&(b.handle.elem=null)}g?delete i[f.expando]:i.removeAttribute&&i.removeAttribute(f.expando),delete d[c]}}}});var bq=/alpha\([^)]*\)/i,br=/opacity=([^)]*)/,bs=/([A-Z]|^ms)/g,bt=/^-?\d+(?:px)?$/i,bu=/^-?\d/,bv=/^([\-+])=([\-+.\de]+)/,bw={position:"absolute",visibility:"hidden",display:"block"},bx=["Left","Right"],by=["Top","Bottom"],bz,bA,bB;f.fn.css=function(a,c){if(arguments.length===2&&c===b)return this;return f.access(this,a,c,!0,function(a,c,d){return d!==b?f.style(a,c,d):f.css(a,c)})},f.extend({cssHooks:{opacity:{get:function(a,b){if(b){var c=bz(a,"opacity","opacity");return c===""?"1":c}return a.style.opacity}}},cssNumber:{fillOpacity:!0,fontWeight:!0,lineHeight:!0,opacity:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{"float":f.support.cssFloat?"cssFloat":"styleFloat"},style:function(a,c,d,e){if(!!a&&a.nodeType!==3&&a.nodeType!==8&&!!a.style){var g,h,i=f.camelCase(c),j=a.style,k=f.cssHooks[i];c=f.cssProps[i]||i;if(d===b){if(k&&"get"in k&&(g=k.get(a,!1,e))!==b)return g;return j[c]}h=typeof d,h==="string"&&(g=bv.exec(d))&&(d=+(g[1]+1)*+g[2]+parseFloat(f.css(a,c)),h="number");if(d==null||h==="number"&&isNaN(d))return;h==="number"&&!f.cssNumber[i]&&(d+="px");if(!k||!("set"in k)||(d=k.set(a,d))!==b)try{j[c]=d}catch(l){}}},css:function(a,c,d){var e,g;c=f.camelCase(c),g=f.cssHooks[c],c=f.cssProps[c]||c,c==="cssFloat"&&(c="float");if(g&&"get"in g&&(e=g.get(a,!0,d))!==b)return e;if(bz)return bz(a,c)},swap:function(a,b,c){var d={};for(var e in b)d[e]=a.style[e],a.style[e]=b[e];c.call(a);for(e in b)a.style[e]=d[e]}}),f.curCSS=f.css,f.each(["height","width"],function(a,b){f.cssHooks[b]={get:function(a,c,d){var e;if(c){if(a.offsetWidth!==0)return bC(a,b,d);f.swap(a,bw,function(){e=bC(a,b,d)});return e}},set:function(a,b){if(!bt.test(b))return b;b=parseFloat(b);if(b>=0)return b+"px"}}}),f.support.opacity||(f.cssHooks.opacity={get:function(a,b){return br.test((b&&a.currentStyle?a.currentStyle.filter:a.style.filter)||"")?parseFloat(RegExp.$1)/100+"":b?"1":""},set:function(a,b){var c=a.style,d=a.currentStyle,e=f.isNumeric(b)?"alpha(opacity="+b*100+")":"",g=d&&d.filter||c.filter||"";c.zoom=1;if(b>=1&&f.trim(g.replace(bq,""))===""){c.removeAttribute("filter");if(d&&!d.filter)return}c.filter=bq.test(g)?g.replace(bq,e):g+" "+e}}),f(function(){f.support.reliableMarginRight||(f.cssHooks.marginRight={get:function(a,b){var c;f.swap(a,{display:"inline-block"},function(){b?c=bz(a,"margin-right","marginRight"):c=a.style.marginRight});return c}})}),c.defaultView&&c.defaultView.getComputedStyle&&(bA=function(a,b){var c,d,e;b=b.replace(bs,"-$1").toLowerCase(),(d=a.ownerDocument.defaultView)&&(e=d.getComputedStyle(a,null))&&(c=e.getPropertyValue(b),c===""&&!f.contains(a.ownerDocument.documentElement,a)&&(c=f.style(a,b)));return c}),c.documentElement.currentStyle&&(bB=function(a,b){var c,d,e,f=a.currentStyle&&a.currentStyle[b],g=a.style;f===null&&g&&(e=g[b])&&(f=e),!bt.test(f)&&bu.test(f)&&(c=g.left,d=a.runtimeStyle&&a.runtimeStyle.left,d&&(a.runtimeStyle.left=a.currentStyle.left),g.left=b==="fontSize"?"1em":f||0,f=g.pixelLeft+"px",g.left=c,d&&(a.runtimeStyle.left=d));return f===""?"auto":f}),bz=bA||bB,f.expr&&f.expr.filters&&(f.expr.filters.hidden=function(a){var b=a.offsetWidth,c=a.offsetHeight;return b===0&&c===0||!f.support.reliableHiddenOffsets&&(a.style&&a.style.display||f.css(a,"display"))==="none"},f.expr.filters.visible=function(a){return!f.expr.filters.hidden(a)});var bD=/%20/g,bE=/\[\]$/,bF=/\r?\n/g,bG=/#.*$/,bH=/^(.*?):[\t]*([^\r\n]*)\r?$/mg,bI=/^(?:color|date|datetime|datetime-local|email|hidden|month|number|password|range|search|tel|text|time|url|week)$/i,bJ=/^(?:about|app|app\-storage|.+\-extension|file|res|widget):$/,bK=/^(?:GET|HEAD)$/,bL=/^\/\//,bM=/\?/,bN=/<script\b[^<]*(?:(?!<\/script>)<[^<]*)*<\/script>/gi,bO=/^(?:select|textarea)/i,bP=/\s+/,bQ=/([?&])_=[^&]*/,bR=/^([\w\+\.\-]+:)(?:\/\/([^\/?#:]*)(?::(\d+))?)?/,bS=f.fn.load,bT={},bU={},bV,bW,bX=["*/"]+["*"];try{bV=e.href}catch(bY){bV=c.createElement("a"),bV.href="",bV=bV.href}bW=bR.exec(bV.toLowerCase())||[],f.fn.extend({load:function(a,c,d){if(typeof a!="string"&&bS)return bS.apply(this,arguments);if(!this.length)return this;var e=a.indexOf(" ");if(e>=0){var g=a.slice(e,a.length);a=a.slice(0,e)}var h="GET";c&&(f.isFunction(c)?(d=c,c=b):typeof c=="object"&&(c=f.param(c,f.ajaxSettings.traditional),h="POST"));var i=this;f.ajax({url:a,type:h,dataType:"html",data:c,complete:function(a,b,c){c=a.responseText,a.isResolved()&&(a.done(function(a){c=a}),i.html(g?f("<div>").append(c.replace(bN,"")).find(g):c)),d&&i.each(d,[c,b,a])}});return this},serialize:function(){return f.param(this.serializeArray())},serializeArray:function(){return this.map(function(){return this.elements?f.makeArray(this.elements):this}).filter(function(){return this.name&&!this.disabled&&(this.checked||bO.test(this.nodeName)||bI.test(this.type))}).map(function(a,b){var c=f(this).val();return c==null?null:f.isArray(c)?f.map(c,function(a,c){return{name:b.name,value:a.replace(bF,"\r\n")}}):{name:b.name,value:c.replace(bF,"\r\n")}}).get()}}),f.each("ajaxStart ajaxStop ajaxComplete ajaxError ajaxSuccess ajaxSend".split(" "),function(a,b){f.fn[b]=function(a){return this.on(b,a)}}),f.each(["get","post"],function(a,c){f[c]=function(a,d,e,g){f.isFunction(d)&&(g=g||e,e=d,d=b);return f.ajax({type:c,url:a,data:d,success:e,dataType:g})}}),f.extend({getScript:function(a,c){return f.get(a,b,c,"script")},getJSON:function(a,b,c){return f.get(a,b,c,"json")},ajaxSetup:function(a,b){b?b_(a,f.ajaxSettings):(b=a,a=f.ajaxSettings),b_(a,b);return a},ajaxSettings:{url:bV,isLocal:bJ.test(bW[1]),global:!0,type:"GET",contentType:"application/x-www-form-urlencoded",processData:!0,async:!0,accepts:{xml:"application/xml, text/xml",html:"text/html",text:"text/plain",json:"application/json, text/javascript","*":bX},contents:{xml:/xml/,html:/html/,json:/json/},responseFields:{xml:"responseXML",text:"responseText"},converters:{"* text":a.String,"text html":!0,"text json":f.parseJSON,"text xml":f.parseXML},flatOptions:{context:!0,url:!0}},ajaxPrefilter:bZ(bT),ajaxTransport:bZ(bU),ajax:function(a,c){function w(a,c,l,m){if(s!==2){s=2,q&&clearTimeout(q),p=b,n=m||"",v.readyState=a>0?4:0;var o,r,u,w=c,x=l?cb(d,v,l):b,y,z;if(a>=200&&a<300||a===304){if(d.ifModified){if(y=v.getResponseHeader("Last-Modified"))f.lastModified[k]=y;if(z=v.getResponseHeader("Etag"))f.etag[k]=z}if(a===304)w="notmodified",o=!0;else try{r=cc(d,x),w="success",o=!0}catch(A){w="parsererror",u=A}}else{u=w;if(!w||a)w="error",a<0&&(a=0)}v.status=a,v.statusText=""+(c||w),o?h.resolveWith(e,[r,w,v]):h.rejectWith(e,[v,w,u]),v.statusCode(j),j=b,t&&g.trigger("ajax"+(o?"Success":"Error"),[v,d,o?r:u]),i.fireWith(e,[v,w]),t&&(g.trigger("ajaxComplete",[v,d]),--f.active||f.event.trigger("ajaxStop"))}}typeof a=="object"&&(c=a,a=b),c=c||{};var d=f.ajaxSetup({},c),e=d.context||d,g=e!==d&&(e.nodeType||e instanceof f)?f(e):f.event,h=f.Deferred(),i=f.Callbacks("once memory"),j=d.statusCode||{},k,l={},m={},n,o,p,q,r,s=0,t,u,v={readyState:0,setRequestHeader:function(a,b){if(!s){var c=a.toLowerCase();a=m[c]=m[c]||a,l[a]=b}return this},getAllResponseHeaders:function(){return s===2?n:null},getResponseHeader:function(a){var c;if(s===2){if(!o){o={};while(c=bH.exec(n))o[c[1].toLowerCase()]=c[2]}c=o[a.toLowerCase()]}return c===b?null:c},overrideMimeType:function(a){s||(d.mimeType=a);return this},abort:function(a){a=a||"abort",p&&p.abort(a),w(0,a);return this}};h.promise(v),v.success=v.done,v.error=v.fail,v.complete=i.add,v.statusCode=function(a){if(a){var b;if(s<2)for(b in a)j[b]=[j[b],a[b]];else b=a[v.status],v.then(b,b)}return this},d.url=((a||d.url)+"").replace(bG,"").replace(bL,bW[1]+"//"),d.dataTypes=f.trim(d.dataType||"*").toLowerCase().split(bP),d.crossDomain==null&&(r=bR.exec(d.url.toLowerCase()),d.crossDomain=!(!r||r[1]==bW[1]&&r[2]==bW[2]&&(r[3]||(r[1]==="http:"?80:443))==(bW[3]||(bW[1]==="http:"?80:443)))),d.data&&d.processData&&typeof d.data!="string"&&(d.data=f.param(d.data,d.traditional)),b$(bT,d,c,v);if(s===2)return!1;t=d.global,d.type=d.type.toUpperCase(),d.hasContent=!bK.test(d.type),t&&f.active++===0&&f.event.trigger("ajaxStart");if(!d.hasContent){d.data&&(d.url+=(bM.test(d.url)?"&":"?")+d.data,delete d.data),k=d.url;if(d.cache===!1){var x=f.now(),y=d.url.replace(bQ,"$1_="+x);d.url=y+(y===d.url?(bM.test(d.url)?"&":"?")+"_="+x:"")}}(d.data&&d.hasContent&&d.contentType!==!1||c.contentType)&&v.setRequestHeader("Content-Type",d.contentType),d.ifModified&&(k=k||d.url,f.lastModified[k]&&v.setRequestHeader("If-Modified-Since",f.lastModified[k]),f.etag[k]&&v.setRequestHeader("If-None-Match",f.etag[k])),v.setRequestHeader("Accept",d.dataTypes[0]&&d.accepts[d.dataTypes[0]]?d.accepts[d.dataTypes[0]]+(d.dataTypes[0]!=="*"?", "+bX+"; q=0.01":""):d.accepts["*"]);for(u in d.headers)v.setRequestHeader(u,d.headers[u]);if(d.beforeSend&&(d.beforeSend.call(e,v,d)===!1||s===2)){v.abort();return!1}for(u in{success:1,error:1,complete:1})v[u](d[u]);p=b$(bU,d,c,v);if(!p)w(-1,"No Transport");else{v.readyState=1,t&&g.trigger("ajaxSend",[v,d]),d.async&&d.timeout>0&&(q=setTimeout(function(){v.abort("timeout")},d.timeout));try{s=1,p.send(l,w)}catch(z){if(s<2)w(-1,z);else throw z}}return v},param:function(a,c){var d=[],e=function(a,b){b=f.isFunction(b)?b():b,d[d.length]=encodeURIComponent(a)+"="+encodeURIComponent(b)};c===b&&(c=f.ajaxSettings.traditional);if(f.isArray(a)||a.jquery&&!f.isPlainObject(a))f.each(a,function(){e(this.name,this.value)});else for(var g in a)ca(g,a[g],c,e);return d.join("&").replace(bD,"+")}}),f.extend({active:0,lastModified:{},etag:{}});var cd=f.now(),ce=/(\=)\?(&|$)|\?\?/i;f.ajaxSetup({jsonp:"callback",jsonpCallback:function(){return f.expando+"_"+cd++}}),f.ajaxPrefilter("json jsonp",function(b,c,d){var e=b.contentType==="application/x-www-form-urlencoded"&&typeof b.data=="string";if(b.dataTypes[0]==="jsonp"||b.jsonp!==!1&&(ce.test(b.url)||e&&ce.test(b.data))){var g,h=b.jsonpCallback=f.isFunction(b.jsonpCallback)?b.jsonpCallback():b.jsonpCallback,i=a[h],j=b.url,k=b.data,l="$1"+h+"$2";b.jsonp!==!1&&(j=j.replace(ce,l),b.url===j&&(e&&(k=k.replace(ce,l)),b.data===k&&(j+=(/\?/.test(j)?"&":"?")+b.jsonp+"="+h))),b.url=j,b.data=k,a[h]=function(a){g=[a]},d.always(function(){a[h]=i,g&&f.isFunction(i)&&a[h](g[0])}),b.converters["script json"]=function(){g||f.error(h+" was not called");return g[0]},b.dataTypes[0]="json";return"script"}}),f.ajaxSetup({accepts:{script:"text/javascript, application/javascript, application/ecmascript, application/x-ecmascript"},contents:{script:/javascript|ecmascript/},converters:{"text script":function(a){f.globalEval(a);return a}}}),f.ajaxPrefilter("script",function(a){a.cache===b&&(a.cache=!1),a.crossDomain&&(a.type="GET",a.global=!1)}),f.ajaxTransport("script",function(a){if(a.crossDomain){var d,e=c.head||c.getElementsByTagName("head")[0]||c.documentElement;return{send:function(f,g){d=c.createElement("script"),d.async="async",a.scriptCharset&&(d.charset=a.scriptCharset),d.src=a.url,d.onload=d.onreadystatechange=function(a,c){if(c||!d.readyState||/loaded|complete/.test(d.readyState))d.onload=d.onreadystatechange=null,e&&d.parentNode&&e.removeChild(d),d=b,c||g(200,"success")},e.insertBefore(d,e.firstChild)},abort:function(){d&&d.onload(0,1)}}}});var cf=a.ActiveXObject?function(){for(var a in ch)ch[a](0,1)}:!1,cg=0,ch;f.ajaxSettings.xhr=a.ActiveXObject?function(){return!this.isLocal&&ci()||cj()}:ci,function(a){f.extend(f.support,{ajax:!!a,cors:!!a&&"withCredentials"in a})}(f.ajaxSettings.xhr()),f.support.ajax&&f.ajaxTransport(function(c){if(!c.crossDomain||f.support.cors){var d;return{send:function(e,g){var h=c.xhr(),i,j;c.username?h.open(c.type,c.url,c.async,c.username,c.password):h.open(c.type,c.url,c.async);if(c.xhrFields)for(j in c.xhrFields)h[j]=c.xhrFields[j];c.mimeType&&h.overrideMimeType&&h.overrideMimeType(c.mimeType),!c.crossDomain&&!e["X-Requested-With"]&&(e["X-Requested-With"]="XMLHttpRequest");try{for(j in e)h.setRequestHeader(j,e[j])}catch(k){}h.send(c.hasContent&&c.data||null),d=function(a,e){var j,k,l,m,n;try{if(d&&(e||h.readyState===4)){d=b,i&&(h.onreadystatechange=f.noop,cf&&delete ch[i]);if(e)h.readyState!==4&&h.abort();else{j=h.status,l=h.getAllResponseHeaders(),m={},n=h.responseXML,n&&n.documentElement&&(m.xml=n),m.text=h.responseText;try{k=h.statusText}catch(o){k=""}!j&&c.isLocal&&!c.crossDomain?j=m.text?200:404:j===1223&&(j=204)}}}catch(p){e||g(-1,p)}m&&g(j,k,m,l)},!c.async||h.readyState===4?d():(i=++cg,cf&&(ch||(ch={},f(a).unload(cf)),ch[i]=d),h.onreadystatechange=d)},abort:function(){d&&d(0,1)}}}});var ck={},cl,cm,cn=/^(?:toggle|show|hide)$/,co=/^([+\-]=)?([\d+.\-]+)([a-z%]*)$/i,cp,cq=[["height","marginTop","marginBottom","paddingTop","paddingBottom"],["width","marginLeft","marginRight","paddingLeft","paddingRight"],["opacity"]],cr;f.fn.extend({show:function(a,b,c){var d,e;if(a||a===0)return this.animate(cu("show",3),a,b,c);for(var g=0,h=this.length;g<h;g++)d=this[g],d.style&&(e=d.style.display,!f._data(d,"olddisplay")&&e==="none"&&(e=d.style.display=""),e===""&&f.css(d,"display")==="none"&&f._data(d,"olddisplay",cv(d.nodeName)));for(g=0;g<h;g++){d=this[g];if(d.style){e=d.style.display;if(e===""||e==="none")d.style.display=f._data(d,"olddisplay")||""}}return this},hide:function(a,b,c){if(a||a===0)return this.animate(cu("hide",3),a,b,c);var d,e,g=0,h=this.length;for(;g<h;g++)d=this[g],d.style&&(e=f.css(d,"display"),e!=="none"&&!f._data(d,"olddisplay")&&f._data(d,"olddisplay",e));for(g=0;g<h;g++)this[g].style&&(this[g].style.display="none");return this},_toggle:f.fn.toggle,toggle:function(a,b,c){var d=typeof a=="boolean";f.isFunction(a)&&f.isFunction(b)?this._toggle.apply(this,arguments):a==null||d?this.each(function(){var b=d?a:f(this).is(":hidden");f(this)[b?"show":"hide"]()}):this.animate(cu("toggle",3),a,b,c);return this},fadeTo:function(a,b,c,d){return this.filter(":hidden").css("opacity",0).show().end().animate({opacity:b},a,c,d)},animate:function(a,b,c,d){function g(){e.queue===!1&&f._mark(this);var b=f.extend({},e),c=this.nodeType===1,d=c&&f(this).is(":hidden"),g,h,i,j,k,l,m,n,o;b.animatedProperties={};for(i in a){g=f.camelCase(i),i!==g&&(a[g]=a[i],delete a[i]),h=a[g],f.isArray(h)?(b.animatedProperties[g]=h[1],h=a[g]=h[0]):b.animatedProperties[g]=b.specialEasing&&b.specialEasing[g]||b.easing||"swing";if(h==="hide"&&d||h==="show"&&!d)return b.complete.call(this);c&&(g==="height"||g==="width")&&(b.overflow=[this.style.overflow,this.style.overflowX,this.style.overflowY],f.css(this,"display")==="inline"&&f.css(this,"float")==="none"&&(!f.support.inlineBlockNeedsLayout||cv(this.nodeName)==="inline"?this.style.display="inline-block":this.style.zoom=1))}b.overflow!=null&&(this.style.overflow="hidden");for(i in a)j=new f.fx(this,b,i),h=a[i],cn.test(h)?(o=f._data(this,"toggle"+i)||(h==="toggle"?d?"show":"hide":0),o?(f._data(this,"toggle"+i,o==="show"?"hide":"show"),j[o]()):j[h]()):(k=co.exec(h),l=j.cur(),k?(m=parseFloat(k[2]),n=k[3]||(f.cssNumber[i]?"":"px"),n!=="px"&&(f.style(this,i,(m||1)+n),l=(m||1)/j.cur()*l,f.style(this,i,l+n)),k[1]&&(m=(k[1]==="-="?-1:1)*m+l),j.custom(l,m,n)):j.custom(l,h,""));return!0}var e=f.speed(b,c,d);if(f.isEmptyObject(a))return this.each(e.complete,[!1]);a=f.extend({},a);return e.queue===!1?this.each(g):this.queue(e.queue,g)},stop:function(a,c,d){typeof a!="string"&&(d=c,c=a,a=b),c&&a!==!1&&this.queue(a||"fx",[]);return this.each(function(){function h(a,b,c){var e=b[c];f.removeData(a,c,!0),e.stop(d)}var b,c=!1,e=f.timers,g=f._data(this);d||f._unmark(!0,this);if(a==null)for(b in g)g[b]&&g[b].stop&&b.indexOf(".run")===b.length-4&&h(this,g,b);else g[b=a+".run"]&&g[b].stop&&h(this,g,b);for(b=e.length;b--;)e[b].elem===this&&(a==null||e[b].queue===a)&&(d?e[b](!0):e[b].saveState(),c=!0,e.splice(b,1));(!d||!c)&&f.dequeue(this,a)})}}),f.each({slideDown:cu("show",1),slideUp:cu("hide",1),slideToggle:cu("toggle",1),fadeIn:{opacity:"show"},fadeOut:{opacity:"hide"},fadeToggle:{opacity:"toggle"}},function(a,b){f.fn[a]=function(a,c,d){return this.animate(b,a,c,d)}}),f.extend({speed:function(a,b,c){var d=a&&typeof a=="object"?f.extend({},a):{complete:c||!c&&b||f.isFunction(a)&&a,duration:a,easing:c&&b||b&&!f.isFunction(b)&&b};d.duration=f.fx.off?0:typeof d.duration=="number"?d.duration:d.duration in f.fx.speeds?f.fx.speeds[d.duration]:f.fx.speeds._default;if(d.queue==null||d.queue===!0)d.queue="fx";d.old=d.complete,d.complete=function(a){f.isFunction(d.old)&&d.old.call(this),d.queue?f.dequeue(this,d.queue):a!==!1&&f._unmark(this)};return d},easing:{linear:function(a,b,c,d){return c+d*a},swing:function(a,b,c,d){return(-Math.cos(a*Math.PI)/2+.5)*d+c}},timers:[],fx:function(a,b,c){this.options=b,this.elem=a,this.prop=c,b.orig=b.orig||{}}}),f.fx.prototype={update:function(){this.options.step&&this.options.step.call(this.elem,this.now,this),(f.fx.step[this.prop]||f.fx.step._default)(this)},cur:function(){if(this.elem[this.prop]!=null&&(!this.elem.style||this.elem.style[this.prop]==null))return this.elem[this.prop];var a,b=f.css(this.elem,this.prop);return isNaN(a=parseFloat(b))?!b||b==="auto"?0:b:a},custom:function(a,c,d){function h(a){return e.step(a)}var e=this,g=f.fx;this.startTime=cr||cs(),this.end=c,this.now=this.start=a,this.pos=this.state=0,this.unit=d||this.unit||(f.cssNumber[this.prop]?"":"px"),h.queue=this.options.queue,h.elem=this.elem,h.saveState=function(){e.options.hide&&f._data(e.elem,"fxshow"+e.prop)===b&&f._data(e.elem,"fxshow"+e.prop,e.start)},h()&&f.timers.push(h)&&!cp&&(cp=setInterval(g.tick,g.interval))},show:function(){var a=f._data(this.elem,"fxshow"+this.prop);this.options.orig[this.prop]=a||f.style(this.elem,this.prop),this.options.show=!0,a!==b?this.custom(this.cur(),a):this.custom(this.prop==="width"||this.prop==="height"?1:0,this.cur()),f(this.elem).show()},hide:function(){this.options.orig[this.prop]=f._data(this.elem,"fxshow"+this.prop)||f.style(this.elem,this.prop),this.options.hide=!0,this.custom(this.cur(),0)},step:function(a){var b,c,d,e=cr||cs(),g=!0,h=this.elem,i=this.options;if(a||e>=i.duration+this.startTime){this.now=this.end,this.pos=this.state=1,this.update(),i.animatedProperties[this.prop]=!0;for(b in i.animatedProperties)i.animatedProperties[b]!==!0&&(g=!1);if(g){i.overflow!=null&&!f.support.shrinkWrapBlocks&&f.each(["","X","Y"],function(a,b){h.style["overflow"+b]=i.overflow[a]}),i.hide&&f(h).hide();if(i.hide||i.show)for(b in i.animatedProperties)f.style(h,b,i.orig[b]),f.removeData(h,"fxshow"+b,!0),f.removeData(h,"toggle"+b,!0);d=i.complete,d&&(i.complete=!1,d.call(h))}return!1}i.duration==Infinity?this.now=e:(c=e-this.startTime,this.state=c/i.duration,this.pos=f.easing[i.animatedProperties[this.prop]](this.state,c,0,1,i.duration),this.now=this.start+(this.end-this.start)*this.pos),this.update();return!0}},f.extend(f.fx,{tick:function(){var a,b=f.timers,c=0;for(;c<b.length;c++)a=b[c],!a()&&b[c]===a&&b.splice(c--,1);b.length||f.fx.stop()},interval:13,stop:function(){clearInterval(cp),cp=null},speeds:{slow:600,fast:200,_default:400},step:{opacity:function(a){f.style(a.elem,"opacity",a.now)},_default:function(a){a.elem.style&&a.elem.style[a.prop]!=null?a.elem.style[a.prop]=a.now+a.unit:a.elem[a.prop]=a.now}}}),f.each(["width","height"],function(a,b){f.fx.step[b]=function(a){f.style(a.elem,b,Math.max(0,a.now)+a.unit)}}),f.expr&&f.expr.filters&&(f.expr.filters.animated=function(a){return f.grep(f.timers,function(b){return a===b.elem}).length});var cw=/^t(?:able|d|h)$/i,cx=/^(?:body|html)$/i;"getBoundingClientRect"in c.documentElement?f.fn.offset=function(a){var b=this[0],c;if(a)return this.each(function(b){f.offset.setOffset(this,a,b)});if(!b||!b.ownerDocument)return null;if(b===b.ownerDocument.body)return f.offset.bodyOffset(b);try{c=b.getBoundingClientRect()}catch(d){}var e=b.ownerDocument,g=e.documentElement;if(!c||!f.contains(g,b))return c?{top:c.top,left:c.left}:{top:0,left:0};var h=e.body,i=cy(e),j=g.clientTop||h.clientTop||0,k=g.clientLeft||h.clientLeft||0,l=i.pageYOffset||f.support.boxModel&&g.scrollTop||h.scrollTop,m=i.pageXOffset||f.support.boxModel&&g.scrollLeft||h.scrollLeft,n=c.top+l-j,o=c.left+m-k;return{top:n,left:o}}:f.fn.offset=function(a){var b=this[0];if(a)return this.each(function(b){f.offset.setOffset(this,a,b)});if(!b||!b.ownerDocument)return null;if(b===b.ownerDocument.body)return f.offset.bodyOffset(b);var c,d=b.offsetParent,e=b,g=b.ownerDocument,h=g.documentElement,i=g.body,j=g.defaultView,k=j?j.getComputedStyle(b,null):b.currentStyle,l=b.offsetTop,m=b.offsetLeft;while((b=b.parentNode)&&b!==i&&b!==h){if(f.support.fixedPosition&&k.position==="fixed")break;c=j?j.getComputedStyle(b,null):b.currentStyle,l-=b.scrollTop,m-=b.scrollLeft,b===d&&(l+=b.offsetTop,m+=b.offsetLeft,f.support.doesNotAddBorder&&(!f.support.doesAddBorderForTableAndCells||!cw.test(b.nodeName))&&(l+=parseFloat(c.borderTopWidth)||0,m+=parseFloat(c.borderLeftWidth)||0),e=d,d=b.offsetParent),f.support.subtractsBorderForOverflowNotVisible&&c.overflow!=="visible"&&(l+=parseFloat(c.borderTopWidth)||0,m+=parseFloat(c.borderLeftWidth)||0),k=c}if(k.position==="relative"||k.position==="static")l+=i.offsetTop,m+=i.offsetLeft;f.support.fixedPosition&&k.position==="fixed"&&(l+=Math.max(h.scrollTop,i.scrollTop),m+=Math.max(h.scrollLeft,i.scrollLeft));return{top:l,left:m}},f.offset={bodyOffset:function(a){var b=a.offsetTop,c=a.offsetLeft;f.support.doesNotIncludeMarginInBodyOffset&&(b+=parseFloat(f.css(a,"marginTop"))||0,c+=parseFloat(f.css(a,"marginLeft"))||0);return{top:b,left:c}},setOffset:function(a,b,c){var d=f.css(a,"position");d==="static"&&(a.style.position="relative");var e=f(a),g=e.offset(),h=f.css(a,"top"),i=f.css(a,"left"),j=(d==="absolute"||d==="fixed")&&f.inArray("auto",[h,i])>-1,k={},l={},m,n;j?(l=e.position(),m=l.top,n=l.left):(m=parseFloat(h)||0,n=parseFloat(i)||0),f.isFunction(b)&&(b=b.call(a,c,g)),b.top!=null&&(k.top=b.top-g.top+m),b.left!=null&&(k.left=b.left-g.left+n),"using"in b?b.using.call(a,k):e.css(k)}},f.fn.extend({position:function(){if(!this[0])return null;var a=this[0],b=this.offsetParent(),c=this.offset(),d=cx.test(b[0].nodeName)?{top:0,left:0}:b.offset();c.top-=parseFloat(f.css(a,"marginTop"))||0,c.left-=parseFloat(f.css(a,"marginLeft"))||0,d.top+=parseFloat(f.css(b[0],"borderTopWidth"))||0,d.left+=parseFloat(f.css(b[0],"borderLeftWidth"))||0;return{top:c.top-d.top,left:c.left-d.left}},offsetParent:function(){return this.map(function(){var a=this.offsetParent||c.body;while(a&&!cx.test(a.nodeName)&&f.css(a,"position")==="static")a=a.offsetParent;return a})}}),f.each(["Left","Top"],function(a,c){var d="scroll"+c;f.fn[d]=function(c){var e,g;if(c===b){e=this[0];if(!e)return null;g=cy(e);return g?"pageXOffset"in g?g[a?"pageYOffset":"pageXOffset"]:f.support.boxModel&&g.document.documentElement[d]||g.document.body[d]:e[d]}return this.each(function(){g=cy(this),g?g.scrollTo(a?f(g).scrollLeft():c,a?c:f(g).scrollTop()):this[d]=c})}}),f.each(["Height","Width"],function(a,c){var d=c.toLowerCase();f.fn["inner"+c]=function(){var a=this[0];return a?a.style?parseFloat(f.css(a,d,"padding")):this[d]():null},f.fn["outer"+c]=function(a){var b=this[0];return b?b.style?parseFloat(f.css(b,d,a?"margin":"border")):this[d]():null},f.fn[d]=function(a){var e=this[0];if(!e)return a==null?null:this;if(f.isFunction(a))return this.each(function(b){var c=f(this);c[d](a.call(this,b,c[d]()))});if(f.isWindow(e)){var g=e.document.documentElement["client"+c],h=e.document.body;return e.document.compatMode==="CSS1Compat"&&g||h&&h["client"+c]||g}if(e.nodeType===9)return Math.max(e.documentElement["client"+c],e.body["scroll"+c],e.documentElement["scroll"+c],e.body["offset"+c],e.documentElement["offset"+c]);if(a===b){var i=f.css(e,d),j=parseFloat(i);return f.isNumeric(j)?j:i}return this.css(d,typeof a=="string"?a:a+"px")}}),a.jQuery=a.$=f,typeof define=="function"&&define.amd&&define.amd.jQuery&&define("jquery",[],function(){return f})})(window);

OEBPS/Common_Content/fonts/overpass_bold-web.eot

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.eot

OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.woff

OEBPS/Common_Content/scripts/highlight.js/CHANGES.md
Version 8.4

We've got the new [demo page][]! The obvious new feature is the new look, but
apart from that it's got smarter: by presenting languages in groups it avoids
running 10000 highlighting attempts after first load which was slowing it down
and giving bad overall impression. It is now also being generated from test
code snippets so the authors of new languages don't have to update both tests
and the demo page with the same thing.

Other notable changes:

- The `template_comment` class is gone in favor of the more general `comment`.
- Number parsing unified and improved across languages.
- C++, Java and C# now use unified grammar to highlight titles in
 function/method definitions.
- The browser build is now usable as an AMD module, there's no separate build
 target for that anymore.
- OCaml has got a [comprehensive overhaul][ocaml] by [Mickaël Delahaye][].
- Clojure's data structures and literals are now highlighted outside of lists
 and we can now highlight Clojure's REPL sessions.

New languages:

- *AspectJ* by [Hakan Özler][]
- *STEP Part 21* by [Adam Joseph Cook][]
- *SML* derived by [Edwin Dalorzo][] from OCaml definition
- *Mercury* by [mucaho][]
- *Smali* by [Dennis Titze][]
- *Verilog* by [Jon Evans][]
- *Stata* by [Brian Quistorff][]

[Hakan Özler]: https://github.com/ozlerhakan
[Adam Joseph Cook]: https://github.com/adamjcook
[demo page]: https://highlightjs.org/static/demo/
[Ivan Sagalaev]: https://github.com/isagalaev
[Edwin Dalorzo]: https://github.com/edalorzo
[mucaho]: https://github.com/mucaho
[Dennis Titze]: https://github.com/titze
[Jon Evans]: https://github.com/craftyjon
[Brian Quistorff]: https://github.com/bquistorff
[ocaml]: https://github.com/isagalaev/highlight.js/pull/608#issue-46190207
[Mickaël Delahaye]: https://github.com/polazarus

Version 8.3

We streamlined our tool chain, it is now based entirely on node.js instead of
being a mix of node.js, Python and Java. The build script options and arguments
remained the same, and we've noted all the changes in the [documentation][b].
Apart from reducing complexity, the new build script is also faster from not
having to start Java machine repeatedly. The credits for the work go to [Jeremy
Hull][].

Some notable fixes:

- PHP and JavaScript mixed in HTML now live happily with each other.
- JavaScript regexes now understand ES6 flags "u" and "y".
- `throw` keyword is no longer detected as a method name in Java.
- Fixed parsing of numbers and symbols in Clojure thanks to [input from Ivan
 Kleshnin][ik].

New languages in this release:

- *Less* by [Max Mikhailov][]
- *Stylus* by [Bryant Williams][]
- *Tcl* by [Radek Liska][]
- *Puppet* by [Jose Molina Colmenero][]
- *Processing* by [Erik Paluka][]
- *Twig* templates by [Luke Holder][]
- *PowerShell* by [David Mohundro][], based on [the work of Nicholas
 Blumhardt][ps]
- *XL* by [Christophe de Dinechin][]
- *LiveScript* by [Taneli Vatanen][] and [Jen Evers-Corvina][]
- *ERB* (Ruby in HTML) by [Lucas Mazza][]
- *Roboconf* by [Vincent Zurczak][]

[b]: http://highlightjs.readthedocs.org/en/latest/building-testing.html
[Jeremy Hull]: https://github.com/sourrust
[ik]: https://twitter.com/IvanKleshnin/status/514041599484231680
[Max Mikhailov]: https://github.com/seven-phases-max
[Bryant Williams]: https://github.com/scien
[Radek Liska]: https://github.com/Nindaleth
[Jose Molina Colmenero]: https://github.com/Moliholy
[Erik Paluka]: https://github.com/paluka
[Luke Holder]: https://github.com/lukeholder
[David Mohundro]: https://github.com/drmohundro
[ps]: https://github.com/OctopusDeploy/Library/blob/master/app/shared/presentation/highlighting/powershell.js
[Christophe de Dinechin]: https://github.com/c3d
[Taneli Vatanen]: https://github.com/Daiz-
[Jen Evers-Corvina]: https://github.com/sevvie
[Lucas Mazza]: https://github.com/lucasmazza
[Vincent Zurczak]: https://github.com/vincent-zurczak

Version 8.2

We've finally got [real tests][test] and [continuous testing on Travis][ci]
thanks to [Jeremy Hull][] and [Chris Eidhof][]. The tests designed to cover
everything: language detection, correct parsing of individual language features
and various special cases. This is a very important change that gives us
confidence in extending language definitions and refactoring library core.

We're going to redesign the old [demo/test suite][demo] into an interactive
demo web app. If you're confident front-end developer or designer and want to
help us with it, drop a comment into [the issue][#542] on GitHub.

[test]: https://github.com/isagalaev/highlight.js/tree/master/test
[demo]: https://highlightjs.org/static/test.html
[#542]: https://github.com/isagalaev/highlight.js/issues/542
[ci]: https://travis-ci.org/isagalaev/highlight.js
[Jeremy Hull]: https://github.com/sourrust
[Chris Eidhof]: https://github.com/chriseidhof

As usually there's a handful of new languages in this release:

- *Groovy* by [Guillaume Laforge][]
- *Dart* by [Maxim Dikun][]
- *Dust* by [Michael Allen][]
- *Scheme* by [JP Verkamp][]
- *G-Code* by [Adam Joseph Cook][]
- *Q* from Kx Systems by [Sergey Vidyuk][]

[Guillaume Laforge]: https://github.com/glaforge
[Maxim Dikun]: https://github.com/dikmax
[Michael Allen]: https://github.com/bfui
[JP Verkamp]: https://github.com/jpverkamp
[Adam Joseph Cook]: https://github.com/adamjcook
[Sergey Vidyuk]: https://github.com/sv

Other improvements:

- [Erik Osheim][] heavily reworked Scala definitions making it richer.
- [Lucas Mazza][] fixed Ruby hashes highlighting
- Lisp variants (Lisp, Clojure and Scheme) are unified in regard to naming
 the first symbol in parentheses: it's "keyword" in general case and also
 "built_in" for built-in functions in Clojure and Scheme.

[Erik Osheim]: https://github.com/non
[Lucas Mazza]: https://github.com/lucasmazza

Version 8.1

New languages:

- *Gherkin* by [Sam Pikesley][]
- *Elixir* by [Josh Adams][]
- *NSIS* by [Jan T. Sott][]
- *VIM script* by [Jun Yang][]
- *Protocol Buffers* by [Dan Tao][]
- *Nix* by [Domen Kožar][]
- *x86asm* by [innocenat][]
- *Cap’n Proto* and *Thrift* by [Oleg Efimov][]
- *Monkey* by [Arthur Bikmullin][]
- *TypeScript* by [Panu Horsmalahti][]
- *Nimrod* by [Flaviu Tamas][]
- *Gradle* by [Damian Mee][]
- *Haxe* by [Christopher Kaster][]
- *Swift* by [Chris Eidhof][] and [Nate Cook][]

New styles:

- *Kimbie*, light and dark variants by [Jan T. Sott][]
- *Color brewer* by [Fabrício Tavares de Oliveira][]
- *Codepen.io embed* by [Justin Perry][]
- *Hybrid* by [Nic West][]

[Sam Pikesley]: https://github.com/pikesley
[Sindre Sorhus]: https://github.com/sindresorhus
[Josh Adams]: https://github.com/knewter
[Jan T. Sott]: https://github.com/idleberg
[Jun Yang]: https://github.com/harttle
[Dan Tao]: https://github.com/dtao
[Domen Kožar]: https://github.com/iElectric
[innocenat]: https://github.com/innocenat
[Oleg Efimov]: https://github.com/Sannis
[Arthur Bikmullin]: https://github.com/devolonter
[Panu Horsmalahti]: https://github.com/panuhorsmalahti
[Flaviu Tamas]: https://github.com/flaviut
[Damian Mee]: https://github.com/chester1000
[Christopher Kaster]: http://christopher.kaster.ws
[Fabrício Tavares de Oliveira]: https://github.com/fabriciotav
[Justin Perry]: https://github.com/ourmaninamsterdam
[Nic West]: https://github.com/nicwest
[Chris Eidhof]: https://github.com/chriseidhof
[Nate Cook]: https://github.com/natecook1000

Other improvements:

- The README is heavily reworked and brought up to date by [Jeremy Hull][].
- Added [`listLanguages()`][ll] method in the API.
- Improved C/C++/C# detection.
- Added a bunch of new language aliases, documented the existing ones. Thanks to
 [Sindre Sorhus][] for background research.
- Added phrasal English words to boost relevance in comments.
- Many improvements to SQL definition made by [Heiko August][],
 [Nikolay Lisienko][] and [Travis Odom][].
- The shorter `lang-` prefix for language names in HTML classes supported
 alongside `language-`. Thanks to [Jeff Escalante][].
- Ruby's got support for interactive console sessions. Thanks to
 [Pascal Hurni][].
- Added built-in functions for R language. Thanks to [Artem A. Klevtsov][].
- Rust's got definition for lifetime parameters and improved string syntax.
 Thanks to [Roman Shmatov][].
- Various improvements to Objective-C definition by [Matt Diephouse][].
- Fixed highlighting of generics in Java.

[ll]: http://highlightjs.readthedocs.org/en/latest/api.html#listlanguages
[Sindre Sorhus]: https://github.com/sindresorhus
[Heiko August]: https://github.com/auge8472
[Nikolay Lisienko]: https://github.com/neor-ru
[Travis Odom]: https://github.com/Burstaholic
[Jeff Escalante]: https://github.com/jenius
[Pascal Hurni]: https://github.com/phurni
[Jiyin Yiyong]: https://github.com/jiyinyiyong
[Artem A. Klevtsov]: https://github.com/unikum
[Roman Shmatov]: https://github.com/shmatov
[Jeremy Hull]: https://github.com/sourrust
[Matt Diephouse]: https://github.com/mdiep

Version 8.0

This new major release is quite a big overhaul bringing both new features and
some backwards incompatible changes. However, chances are that the majority of
users won't be affected by the latter: the basic scenario described in the
README is left intact.

Here's what did change in an incompatible way:

- We're now prefixing all classes located in [CSS classes reference][cr] with
 `hljs-`, by default, because some class names would collide with other
 people's stylesheets. If you were using an older version, you might still want
 the previous behavior, but still want to upgrade. To suppress this new
 behavior, you would initialize like so:

  ```html
  <script type="text/javascript">
    hljs.configure({classPrefix: ''});
    hljs.initHighlightingOnLoad();
  </script>
  ```

- `tabReplace` and `useBR` that were used in different places are also unified
 into the global options object and are to be set using `configure(options)`.
 This function is documented in our [API docs][]. Also note that these
 parameters are gone from `highlightBlock` and `fixMarkup` which are now also
 rely on `configure`.

- We removed public-facing (though undocumented) object `hljs.LANGUAGES` which
 was used to register languages with the library in favor of two new methods:
 `registerLanguage` and `getLanguage`. Both are documented in our [API docs][].

- Result returned from `highlight` and `highlightAuto` no longer contains two
 separate attributes contributing to relevance score, `relevance` and
 `keyword_count`. They are now unified in `relevance`.

Another technically compatible change that nonetheless might need attention:

- The structure of the NPM package was refactored, so if you had installed it
 locally, you'll have to update your paths. The usual `require('highlight.js')`
 works as before. This is contributed by [Dmitry Smolin][].

New features:

- Languages now can be recognized by multiple names like "js" for JavaScript or
 "html" for, well, HTML (which earlier insisted on calling it "xml"). These
 aliases can be specified in the class attribute of the code container in your
 HTML as well as in various API calls. For now there are only a few very common
 aliases but we'll expand it in the future. All of them are listed in the
 [class reference][cr].

- Language detection can now be restricted to a subset of languages relevant in
 a given context — a web page or even a single highlighting call. This is
 especially useful for node.js build that includes all the known languages.
 Another example is a StackOverflow-style site where users specify languages
 as tags rather than in the markdown-formatted code snippets. This is
 documented in the [API reference][] (see methods `highlightAuto` and
 `configure`).

- Language definition syntax streamlined with [variants][] and
 [beginKeywords][].

New languages and styles:

- *Oxygene* by [Carlo Kok][]
- *Mathematica* by [Daniel Kvasnička][]
- *Autohotkey* by [Seongwon Lee][]
- *Atelier* family of styles in 10 variants by [Bram de Haan][]
- *Paraíso* styles by [Jan T. Sott][]

Miscellaneous improvements:

- Highlighting `=>` prompts in Clojure.
- [Jeremy Hull][] fixed a lot of styles for consistency.
- Finally, highlighting PHP and HTML [mixed in peculiar ways][php-html].
- Objective C and C# now properly highlight titles in method definition.
- Big overhaul of relevance counting for a number of languages. Please do report
 bugs about mis-detection of non-trivial code snippets!

[API reference]: http://highlightjs.readthedocs.org/en/latest/api.html

[cr]: http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html
[api docs]: http://highlightjs.readthedocs.org/en/latest/api.html
[variants]: https://groups.google.com/d/topic/highlightjs/VoGC9-1p5vk/discussion
[beginKeywords]: https://github.com/isagalaev/highlight.js/commit/6c7fdea002eb3949577a85b3f7930137c7c3038d
[php-html]: https://twitter.com/highlightjs/status/408890903017689088

[Carlo Kok]: https://github.com/carlokok
[Bram de Haan]: https://github.com/atelierbram
[Daniel Kvasnička]: https://github.com/dkvasnicka
[Dmitry Smolin]: https://github.com/dimsmol
[Jeremy Hull]: https://github.com/sourrust
[Seongwon Lee]: https://github.com/dlimpid
[Jan T. Sott]: https://github.com/idleberg

Version 7.5

A catch-up release dealing with some of the accumulated contributions. This one
is probably will be the last before the 8.0 which will be slightly backwards
incompatible regarding some advanced use-cases.

One outstanding change in this version is the addition of 6 languages to the
[hosted script][d]: Markdown, ObjectiveC, CoffeeScript, Apache, Nginx and
Makefile. It now weighs about 6K more but we're going to keep it under 30K.

New languages:

- OCaml by [Mehdi Dogguy][mehdid] and [Nicolas Braud-Santoni][nbraud]
- [LiveCode Server][lcs] by [Ralf Bitter][revig]
- Scilab by [Sylvestre Ledru][sylvestre]
- basic support for Makefile by [Ivan Sagalaev][isagalaev]

Improvements:

- Ruby's got support for characters like `?A`, `?1`, `?\012` etc. and `%r{..}`
 regexps.
- Clojure now allows a function call in the beginning of s-expressions
 `(($filter "myCount") (arr 1 2 3 4 5))`.
- Haskell's got new keywords and now recognizes more things like pragmas,
 preprocessors, modules, containers, FFIs etc. Thanks to [Zena Treep][treep]
 for the implementation and to [Jeremy Hull][sourrust] for guiding it.
- Miscellaneous fixes in PHP, Brainfuck, SCSS, Asciidoc, CMake, Python and F#.

[mehdid]: https://github.com/mehdid
[nbraud]: https://github.com/nbraud
[revig]: https://github.com/revig
[lcs]: http://livecode.com/developers/guides/server/
[sylvestre]: https://github.com/sylvestre
[isagalaev]: https://github.com/isagalaev
[treep]: https://github.com/treep
[sourrust]: https://github.com/sourrust
[d]: http://highlightjs.org/download/

New core developers

The latest long period of almost complete inactivity in the project coincided
with growing interest to it led to a decision that now seems completely obvious:
we need more core developers.

So without further ado let me welcome to the core team two long-time
contributors: [Jeremy Hull][] and [Oleg
Efimov][].

Hope now we'll be able to work through stuff faster!

P.S. The historical commit is [here][1] for the record.

[Jeremy Hull]: https://github.com/sourrust
[Oleg Efimov]: https://github.com/sannis
[1]: https://github.com/isagalaev/highlight.js/commit/f3056941bda56d2b72276b97bc0dd5f230f2473f

Version 7.4

This long overdue version is a snapshot of the current source tree with all the
changes that happened during the past year. Sorry for taking so long!

Along with the changes in code highlight.js has finally got its new home at
<http://highlightjs.org/>, moving from its cradle on Software Maniacs which it
outgrew a long time ago. Be sure to report any bugs about the site to
<mailto:info@highlightjs.org>.

On to what's new…

New languages:

- Handlebars templates by [Robin Ward][]
- Oracle Rules Language by [Jason Jacobson][]
- F# by [Joans Follesø][]
- AsciiDoc and Haml by [Dan Allen][]
- Lasso by [Eric Knibbe][]
- SCSS by [Kurt Emch][]
- VB.NET by [Poren Chiang][]
- Mizar by [Kelley van Evert][]

[Robin Ward]: https://github.com/eviltrout
[Jason Jacobson]: https://github.com/jayce7
[Joans Follesø]: https://github.com/follesoe
[Dan Allen]: https://github.com/mojavelinux
[Eric Knibbe]: https://github.com/EricFromCanada
[Kurt Emch]: https://github.com/kemch
[Poren Chiang]: https://github.com/rschiang
[Kelley van Evert]: https://github.com/kelleyvanevert

New style themes:

- Monokai Sublime by [noformnocontent][]
- Railscasts by [Damien White][]
- Obsidian by [Alexander Marenin][]
- Docco by [Simon Madine][]
- Mono Blue by [Ivan Sagalaev][] (uses a single color hue for everything)
- Foundation by [Dan Allen][]

[noformnocontent]: http://nn.mit-license.org/
[Damien White]: https://github.com/visoft
[Alexander Marenin]: https://github.com/ioncreature
[Simon Madine]: https://github.com/thingsinjars
[Ivan Sagalaev]: https://github.com/isagalaev

Other notable changes:

- Corrected many corner cases in CSS.
- Dropped Python 2 version of the build tool.
- Implemented building for the AMD format.
- Updated Rust keywords (thanks to [Dmitry Medvinsky][]).
- Literal regexes can now be used in language definitions.
- CoffeeScript highlighting is now significantly more robust and rich due to
 input from [Cédric Néhémie][].

[Dmitry Medvinsky]: https://github.com/dmedvinsky
[Cédric Néhémie]: https://github.com/abe33

Version 7.3

- Since this version highlight.js no longer works in IE version 8 and older.
 It's made it possible to reduce the library size and dramatically improve code
 readability and made it easier to maintain. Time to go forward!

- New languages: AppleScript (by [Nathan Grigg][ng] and [Dr. Drang][dd]) and
 Brainfuck (by [Evgeny Stepanischev][bolk]).

- Improvements to existing languages:

 - interpreter prompt in Python (`>>>` and `...`)
 - @-properties and classes in CoffeeScript
 - E4X in JavaScript (by [Oleg Efimov][oe])
 - new keywords in Perl (by [Kirk Kimmel][kk])
 - big Ruby syntax update (by [Vasily Polovnyov][vast])
 - small fixes in Bash

- Also Oleg Efimov did a great job of moving all the docs for language and style
 developers and contributors from the old wiki under the source code in the
 "docs" directory. Now these docs are nicely presented at
 <http://highlightjs.readthedocs.org/>.

[ng]: https://github.com/nathan11g
[dd]: https://github.com/drdrang
[bolk]: https://github.com/bolknote
[oe]: https://github.com/Sannis
[kk]: https://github.com/kimmel
[vast]: https://github.com/vast

Version 7.2

A regular bug-fix release without any significant new features. Enjoy!

Version 7.1

A Summer crop:

- [Marc Fornos][mf] made the definition for Clojure along with the matching
 style Rainbow (which, of course, works for other languages too).
- CoffeeScript support continues to improve getting support for regular
 expressions.
- Yoshihide Jimbo ported to highlight.js [five Tomorrow styles][tm] from the
 [project by Chris Kempson][tm0].
- Thanks to [Casey Duncun][cd] the library can now be built in the popular
 [AMD format][amd].
- And last but not least, we've got a fair number of correctness and consistency
 fixes, including a pretty significant refactoring of Ruby.

[mf]: https://github.com/mfornos
[tm]: http://jmblog.github.com/color-themes-for-highlightjs/
[tm0]: https://github.com/ChrisKempson/Tomorrow-Theme
[cd]: https://github.com/caseman
[amd]: http://requirejs.org/docs/whyamd.html

Version 7.0

The reason for the new major version update is a global change of keyword syntax
which resulted in the library getting smaller once again. For example, the
hosted build is 2K less than at the previous version while supporting two new
languages.

Notable changes:

- The library now works not only in a browser but also with [node.js][]. It is
 installable with `npm install highlight.js`. [API][] docs are available on our
 wiki.

- The new unique feature (apparently) among syntax highlighters is highlighting
 HTTP headers and an arbitrary language in the request body. The most useful
 languages here are *XML* and *JSON* both of which highlight.js does support.
 Here's [the detailed post][p] about the feature.

- Two new style themes: a dark "south" *[Pojoaque][]* by Jason Tate and an
 emulation of*XCode* IDE by [Angel Olloqui][ao].

- Three new languages: *D* by [Aleksandar Ružičić][ar], *R* by [Joe Cheng][jc]
 and *GLSL* by [Sergey Tikhomirov][st].

- *Nginx* syntax has become a million times smaller and more universal thanks to
 remaking it in a more generic manner that doesn't require listing all the
 directives in the known universe.

- Function titles are now highlighted in *PHP*.

- *Haskell* and *VHDL* were significantly reworked to be more rich and correct
 by their respective maintainers [Jeremy Hull][sr] and [Igor Kalnitsky][ik].

And last but not least, many bugs have been fixed around correctness and
language detection.

Overall highlight.js currently supports 51 languages and 20 style themes.

[node.js]: http://nodejs.org/
[api]: http://softwaremaniacs.org/wiki/doku.php/highlight.js:api
[p]: http://softwaremaniacs.org/blog/2012/05/10/http-and-json-in-highlight-js/en/
[pojoaque]: http://web-cms-designs.com/ftopict-10-pojoaque-style-for-highlight-js-code-highlighter.html
[ao]: https://github.com/angelolloqui
[ar]: https://github.com/raleksandar
[jc]: https://github.com/jcheng5
[st]: https://github.com/tikhomirov
[sr]: https://github.com/sourrust
[ik]: https://github.com/ikalnitsky

Version 6.2

A lot of things happened in highlight.js since the last version! We've got nine
new contributors, the discussion group came alive, and the main branch on GitHub
now counts more than 350 followers. Here are most significant results coming
from all this activity:

- 5 (five!) new languages: Rust, ActionScript, CoffeeScript, MatLab and
 experimental support for markdown. Thanks go to [Andrey Vlasovskikh][av],
 [Alexander Myadzel][am], [Dmytrii Nagirniak][dn], [Oleg Efimov][oe], [Denis
 Bardadym][db] and [John Crepezzi][jc].

- 2 new style themes: Monokai by [Luigi Maselli][lm] and stylistic imitation of
 another well-known highlighter Google Code Prettify by [Aahan Krish][ak].

- A vast number of [correctness fixes and code refactorings][log], mostly made
 by [Oleg Efimov][oe] and [Evgeny Stepanischev][es].

[av]: https://github.com/vlasovskikh
[am]: https://github.com/myadzel
[dn]: https://github.com/dnagir
[oe]: https://github.com/Sannis
[db]: https://github.com/btd
[jc]: https://github.com/seejohnrun
[lm]: http://grigio.org/
[ak]: https://github.com/geekpanth3r
[es]: https://github.com/bolknote
[log]: https://github.com/isagalaev/highlight.js/commits/

Version 6.1 — Solarized

[Jeremy Hull][jh] has implemented my dream feature — a port of [Solarized][]
style theme famous for being based on the intricate color theory to achieve
correct contrast and color perception. It is now available for highlight.js in
both variants — light and dark.

This version also adds a new original style Arta. Its author pumbur maintains a
[heavily modified fork of highlight.js][pb] on GitHub.

[jh]: https://github.com/sourrust
[solarized]: http://ethanschoonover.com/solarized
[pb]: https://github.com/pumbur/highlight.js

Version 6.0

New major version of the highlighter has been built on a significantly
refactored syntax. Due to this it's even smaller than the previous one while
supporting more languages!

New languages are:

- Haskell by [Jeremy Hull][sourrust]
- Erlang in two varieties — module and REPL — made collectively by [Nikolay
 Zakharov][desh], [Dmitry Kovega][arhibot] and [Sergey Ignatov][ignatov]
- Objective C by [Valerii Hiora][vhbit]
- Vala by [Antono Vasiljev][antono]
- Go by [Stephan Kountso][steplg]

[sourrust]: https://github.com/sourrust
[desh]: http://desh.su/
[arhibot]: https://github.com/arhibot
[ignatov]: https://github.com/ignatov
[vhbit]: https://github.com/vhbit
[antono]: https://github.com/antono
[steplg]: https://github.com/steplg

Also this version is marginally faster and fixes a number of small long-standing
bugs.

Developer overview of the new language syntax is available in a [blog post about
recent beta release][beta].

[beta]: http://softwaremaniacs.org/blog/2011/04/25/highlight-js-60-beta/en/

P.S. New version is not yet available on a Yandex CDN, so for now you have to
download [your own copy][d].

[d]: /soft/highlight/en/download/

Version 5.14

Fixed bugs in HTML/XML detection and relevance introduced in previous
refactoring.

Also test.html now shows the second best result of language detection by
relevance.

Version 5.13

Past weekend began with a couple of simple additions for existing languages but
ended up in a big code refactoring bringing along nice improvements for language
developers.

For users

- Description of C++ has got new keywords from the upcoming [C++ 0x][] standard.
- Description of HTML has got new tags from [HTML 5][].
- CSS-styles have been unified to use consistent padding and also have lost
 pop-outs with names of detected languages.
- [Igor Kalnitsky][ik] has sent two new language descriptions: CMake & VHDL.

This makes total number of languages supported by highlight.js to reach 35.

Bug fixes:

- Custom classes on `<pre>` tags are not being overridden anymore
- More correct highlighting of code blocks inside non-`<pre>` containers:
 highlighter now doesn't insist on replacing them with its own container and
 just replaces the contents.
- Small fixes in browser compatibility and heuristics.

[c++ 0x]: http://ru.wikipedia.org/wiki/C%2B%2B0x
[html 5]: http://en.wikipedia.org/wiki/HTML5
[ik]: http://kalnitsky.org.ua/

For developers

The most significant change is the ability to include language submodes right
under `contains` instead of defining explicit named submodes in the main array:

 contains: [
 'string',
 'number',
 {begin: '\\n', end: hljs.IMMEDIATE_RE}
]

This is useful for auxiliary modes needed only in one place to define parsing.
Note that such modes often don't have `className` and hence won't generate a
separate `` in the resulting markup. This is similar in effect to
`noMarkup: true`. All existing languages have been refactored accordingly.

Test file test.html has at last become a real test. Now it not only puts the
detected language name under the code snippet but also tests if it matches the
expected one. Test summary is displayed right above all language snippets.

CDN

Fine people at [Yandex][] agreed to host highlight.js on their big fast servers.
[Link up][l]!

[yandex]: http://yandex.com/
[l]: http://softwaremaniacs.org/soft/highlight/en/download/

Version 5.10 — "Paris".

Though I'm on a vacation in Paris, I decided to release a new version with a
couple of small fixes:

- Tomas Vitvar discovered that TAB replacement doesn't always work when used
 with custom markup in code
- SQL parsing is even more rigid now and doesn't step over SmallTalk in tests

Version 5.9

A long-awaited version is finally released.

New languages:

- Andrew Fedorov made a definition for Lua
- a long-time highlight.js contributor [Peter Leonov][pl] made a definition for
 Nginx config
- [Vladimir Moskva][vm] made a definition for TeX

[pl]: http://kung-fu-tzu.ru/
[vm]: http://fulc.ru/

Fixes for existing languages:

- [Loren Segal][ls] reworked the Ruby definition and added highlighting for
 [YARD][] inline documentation
- the definition of SQL has become more solid and now it shouldn't be overly
 greedy when it comes to language detection

[ls]: http://gnuu.org/
[yard]: http://yardoc.org/

The highlighter has become more usable as a library allowing to do highlighting
from initialization code of JS frameworks and in ajax methods (see.
readme.eng.txt).

Also this version drops support for the [WordPress][wp] plugin. Everyone is
welcome to [pick up its maintenance][p] if needed.

[wp]: http://wordpress.org/
[p]: http://bazaar.launchpad.net/~isagalaev/+junk/highlight/annotate/342/src/wp_highlight.js.php

Version 5.8

- Jan Berkel has contributed a definition for Scala. +1 to hotness!
- All CSS-styles are rewritten to work only inside `<pre>` tags to avoid
 conflicts with host site styles.

Version 5.7.

Fixed escaping of quotes in VBScript strings.

Version 5.5

This version brings a small change: now .ini-files allow digits, underscores and
square brackets in key names.

Version 5.4

Fixed small but upsetting bug in the packer which caused incorrect highlighting
of explicitly specified languages. Thanks to Andrew Fedorov for precise
diagnostics!

Version 5.3

The version to fulfil old promises.

The most significant change is that highlight.js now preserves custom user
markup in code along with its own highlighting markup. This means that now it's
possible to use, say, links in code. Thanks to [Vladimir Dolzhenko][vd] for the
[initial proposal][1] and for making a proof-of-concept patch.

Also in this version:

- [Vasily Polovnyov][vp] has sent a GitHub-like style and has implemented
 support for CSS @-rules and Ruby symbols.
- Yura Zaripov has sent two styles: Brown Paper and School Book.
- Oleg Volchkov has sent a definition for [Parser 3][p3].

[1]: http://softwaremaniacs.org/forum/highlightjs/6612/
[p3]: http://www.parser.ru/
[vp]: http://vasily.polovnyov.ru/
[vd]: http://dolzhenko.blogspot.com/

Version 5.2

- at last it's possible to replace indentation TABs with something sensible
 (e.g. 2 or 4 spaces)
- new keywords and built-ins for 1C by Sergey Baranov
- a couple of small fixes to Apache highlighting

Version 5.1

This is one of those nice version consisting entirely of new and shiny
contributions!

- [Vladimir Ermakov][vooon] created highlighting for AVR Assembler
- [Ruslan Keba][rukeba] created highlighting for Apache config file. Also his
 original visual style for it is now available for all highlight.js languages
 under the name "Magula".
- [Shuen-Huei Guan][drake] (aka Drake) sent new keywords for RenderMan
 languages. Also thanks go to [Konstantin Evdokimenko][ke] for his advice on
 the matter.

[vooon]: http://vehq.ru/about/
[rukeba]: http://rukeba.com/
[drake]: http://drakeguan.org/
[ke]: http://k-evdokimenko.moikrug.ru/

Version 5.0

The main change in the new major version of highlight.js is a mechanism for
packing several languages along with the library itself into a single compressed
file. Now sites using several languages will load considerably faster because
the library won't dynamically include additional files while loading.

Also this version fixes a long-standing bug with Javascript highlighting that
couldn't distinguish between regular expressions and division operations.

And as usually there were a couple of minor correctness fixes.

Great thanks to all contributors! Keep using highlight.js.

Version 4.3

This version comes with two contributions from [Jason Diamond][jd]:

- language definition for C# (yes! it was a long-missed thing!)
- Visual Studio-like highlighting style

Plus there are a couple of minor bug fixes for parsing HTML and XML attributes.

[jd]: http://jason.diamond.name/weblog/

Version 4.2

The biggest news is highlighting for Lisp, courtesy of Vasily Polovnyov. It's
somewhat experimental meaning that for highlighting "keywords" it doesn't use
any pre-defined set of a Lisp dialect. Instead it tries to highlight first word
in parentheses wherever it makes sense. I'd like to ask people programming in
Lisp to confirm if it's a good idea and send feedback to [the forum][f].

Other changes:

- Smalltalk was excluded from DEFAULT_LANGUAGES to save traffic
- [Vladimir Epifanov][voldmar] has implemented javascript style switcher for
 test.html
- comments now allowed inside Ruby function definition
- [MEL][] language from [Shuen-Huei Guan][drake]
- whitespace now allowed between `<pre>` and `<code>`
- better auto-detection of C++ and PHP
- HTML allows embedded VBScript (`<% .. %>`)

[f]: http://softwaremaniacs.org/forum/highlightjs/
[voldmar]: http://voldmar.ya.ru/
[mel]: http://en.wikipedia.org/wiki/Maya_Embedded_Language
[drake]: http://drakeguan.org/

Version 4.1

Languages:

- Bash from Vah
- DOS bat-files from Alexander Makarov (Sam)
- Diff files from Vasily Polovnyov
- Ini files from myself though initial idea was from Sam

Styles:

- Zenburn from Vladimir Epifanov, this is an imitation of a
 [well-known theme for Vim][zenburn].
- Ascetic from myself, as a realization of ideals of non-flashy highlighting:
 just one color in only three gradations :-)

In other news. [One small bug][bug] was fixed, built-in keywords were added for
Python and C++ which improved auto-detection for the latter (it was shame that
[my wife's blog][alenacpp] had issues with it from time to time). And lastly
thanks go to Sam for getting rid of my stylistic comments in code that were
getting in the way of [JSMin][].

[zenburn]: http://en.wikipedia.org/wiki/Zenburn
[alenacpp]: http://alenacpp.blogspot.com/
[bug]: http://softwaremaniacs.org/forum/viewtopic.php?id=1823
[jsmin]: http://code.google.com/p/jsmin-php/

Version 4.0

New major version is a result of vast refactoring and of many contributions.

Visible new features:

- Highlighting of embedded languages. Currently is implemented highlighting of
 Javascript and CSS inside HTML.
- Bundled 5 ready-made style themes!

Invisible new features:

- Highlight.js no longer pollutes global namespace. Only one object and one
 function for backward compatibility.
- Performance is further increased by about 15%.

Changing of a major version number caused by a new format of language definition
files. If you use some third-party language files they should be updated.

Version 3.5

A very nice version in my opinion fixing a number of small bugs and slightly
increased speed in a couple of corner cases. Thanks to everybody who reports
bugs in he [forum][f] and by email!

There is also a new language — XML. A custom XML formerly was detected as HTML
and didn't highlight custom tags. In this version I tried to make custom XML to
be detected and highlighted by its own rules. Which by the way include such
things as CDATA sections and processing instructions (`<? ... ?>`).

[f]: http://softwaremaniacs.org/forum/viewforum.php?id=6

Version 3.3

[Vladimir Gubarkov][xonix] has provided an interesting and useful addition.
File export.html contains a little program that shows and allows to copy and
paste an HTML code generated by the highlighter for any code snippet. This can
be useful in situations when one can't use the script itself on a site.

[xonix]: http://xonixx.blogspot.com/

Version 3.2 consists completely of contributions:

- Vladimir Gubarkov has described SmallTalk
- Yuri Ivanov has described 1C
- Peter Leonov has packaged the highlighter as a Firefox extension
- Vladimir Ermakov has compiled a mod for phpBB

Many thanks to you all!

Version 3.1

Three new languages are available: Django templates, SQL and Axapta. The latter
two are sent by [Dmitri Roudakov][1]. However I've almost entirely rewrote an
SQL definition but I'd never started it be it from the ground up :-)

The engine itself has got a long awaited feature of grouping keywords
("keyword", "built-in function", "literal"). No more hacks!

[1]: http://roudakov.ru/

Version 3.0

It is major mainly because now highlight.js has grown large and has become
modular. Now when you pass it a list of languages to highlight it will
dynamically load into a browser only those languages.

Also:

- Konstantin Evdokimenko of [RibKit][] project has created a highlighting for
 RenderMan Shading Language and RenderMan Interface Bytestream. Yay for more
 languages!
- Heuristics for C++ and HTML got better.
- I've implemented (at last) a correct handling of backslash escapes in C-like
 languages.

There is also a small backwards incompatible change in the new version. The
function initHighlighting that was used to initialize highlighting instead of
initHighlightingOnLoad a long time ago no longer works. If you by chance still
use it — replace it with the new one.

[RibKit]: http://ribkit.sourceforge.net/

Version 2.9

Highlight.js is a parser, not just a couple of regular expressions. That said
I'm glad to announce that in the new version 2.9 has support for:

- in-string substitutions for Ruby -- `#{...}`
- strings from from numeric symbol codes (like #XX) for Delphi

Version 2.8

A maintenance release with more tuned heuristics. Fully backwards compatible.

Version 2.7

- Nikita Ledyaev presents highlighting for VBScript, yay!
- A couple of bugs with escaping in strings were fixed thanks to Mickle
- Ongoing tuning of heuristics

Fixed bugs were rather unpleasant so I encourage everyone to upgrade!

Version 2.4

- Peter Leonov provides another improved highlighting for Perl
- Javascript gets a new kind of keywords — "literals". These are the words
 "true", "false" and "null"

Also highlight.js homepage now lists sites that use the library. Feel free to
add your site by [dropping me a message][mail] until I find the time to build a
submit form.

[mail]: mailto:Maniac@SoftwareManiacs.Org

Version 2.3

This version fixes IE breakage in previous version. My apologies to all who have
already downloaded that one!

Version 2.2

- added highlighting for Javascript
- at last fixed parsing of Delphi's escaped apostrophes in strings
- in Ruby fixed highlighting of keywords 'def' and 'class', same for 'sub' in
 Perl

Version 2.0

- Ruby support by [Anton Kovalyov][ak]
- speed increased by orders of magnitude due to new way of parsing
- this same way allows now correct highlighting of keywords in some tricky
 places (like keyword "End" at the end of Delphi classes)

[ak]: http://anton.kovalyov.net/

Version 1.0

Version 1.0 of javascript syntax highlighter is released!

It's the first version available with English description. Feel free to post
your comments and question to [highlight.js forum][forum]. And don't be afraid
if you find there some fancy Cyrillic letters -- it's for Russian users too :-)

[forum]: http://softwaremaniacs.org/forum/viewforum.php?id=6

OEBPS/Common_Content/images/33.png

OEBPS/Common_Content/images/4.png

OEBPS/Common_Content/fonts/overpass_bold-web.woff

OEBPS/images/ossm-grafana-control-plane-dashboard.png
o3

88 istio / Istio Control Plane Dashboard ¥ <3

~ Resource Usage

Q Memory cPu Disk
954 M 0008 108
T sme
0008 058
oo 477 MiB No data
oo 0004
08
238 M
) 0002
e — 5
a 1510 151 1s12 1513 1e14 o
— Virtual Memory — ResidentMemory — Alloc — Heap in-use 15110 51 1512 1513 1514 08
& — Stackin-use — Discovery (process) 15110 1511 1512
> Pilot Push Information (5 pancls)
~ Envoy Information
y Envoy Details XDS Active Connections
100ps 100
osops 90
0ops 80
-050ps 70
100ps 60
1510 1511 1512 1513 1514 1510 1511 1512 1513 1514
— XDS Connections — XDS Connection Failures — Envoy Restarts — XDS Actve Connections
~ Webhooks
Configuration Validation
10 10
0s 0s

o ®

® |9 Olstsmintes v | Q| & 5sv
Goroutines
sis
sio
si0s
s100
5095
5090
5085
1513 1514 1510 151 1512 1513 1514
P XDS Requests Size
1085
osB/s
o8ss
058
08
1510 151 1512 1513 1514

— XDS Response Bytes Max
— XDS Request Bytes Average

— XDS Response Bytes Average — XDS Request Bytes Max

Sidecar Injection

OEBPS/Common_Content/images/23.png

OEBPS/Common_Content/images/40.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.woff2

OEBPS/Common_Content/images/12.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.eot

OEBPS/Common_Content/images/38.png

OEBPS/Common_Content/images/bkgrnd_greydots.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.woff

OEBPS/Common_Content/images/8.png

OEBPS/Common_Content/icons/redhat-books-icons-a2efd68d1f13be356c9c4e5c29a64e69.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.eot

OEBPS/Common_Content/images/h1-bg.png

OEBPS/images/kebab.png

OEBPS/Common_Content/scripts/highlight.js/README.md
Highlight.js

[![Build Status](https://travis-ci.org/isagalaev/highlight.js.svg?branch=master)](https://travis-ci.org/isagalaev/highlight.js)

Highlight.js is a syntax highlighter written in JavaScript. It works in the
browser as well as on the server. It works with pretty much any markup,
doesn't depend on any framework and has automatic language detection.

Getting Started

The bare minimum for using highlight.js on a web page is linking to the library
along with one of the styles and calling [`initHighlightingOnLoad`][1]:

```html
<link rel="stylesheet" href="/path/to/styles/default.css">
<script src="/path/to/highlight.pack.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
```

This will find and highlight code inside of `<pre><code>` tags trying to detect
the language automatically. If automatic detection doesn't work for you, you can
specify the language in the class attribute:

```html
<pre><code class="html">...</code></pre>
```

The list of supported language classes is available in the [class reference][8].
Classes can also be prefixed with either `language-` or `lang-`.

To disable highlighting altogether use the `nohighlight` class:

```html
<pre><code class="nohighlight">...</code></pre>
```

Custom Initialization

When you need a bit more control over the initialization of
highlight.js, you can use the [`highlightBlock`][2] and [`configure`][3]
functions. This allows you to control *what* to highlight and *when*.

Here's an equivalent way to calling [`initHighlightingOnLoad`][1] using jQuery:

```javascript
$(document).ready(function() {
  $('pre code').each(function(i, block) {
    hljs.highlightBlock(block);
  });
});
```

You can use any tags instead of `<pre><code>` to mark up your code. If you don't
use a container that preserve line breaks you will need to configure
highlight.js to use the `
` tag:

```javascript
hljs.configure({useBR: true});

$('div.code').each(function(i, block) {
  hljs.highlightBlock(block);
});
```

For other options refer to the documentation for [`configure`][3].

Getting the Library

You can get highlight.js as a hosted or custom-build browser script or as a
server module. Head over to the [download page][4] for all the options.

Note, that the library is not supposed to work straight from the source on
GitHub, it requires building. If none of the pre-packaged options work for you
refer to the [building documentation][5].

License

Highlight.js is released under the BSD License. See [LICENSE][10] file for
details.

Links

The official site for the library is at <https://highlightjs.org/>.

Further in-depth documentation for the API and other topics is at
<http://highlightjs.readthedocs.org/>.

Authors and contributors are listed in the [AUTHORS.en.txt][9] file.

[1]: http://highlightjs.readthedocs.org/en/latest/api.html#inithighlightingonload
[2]: http://highlightjs.readthedocs.org/en/latest/api.html#highlightblock-block
[3]: http://highlightjs.readthedocs.org/en/latest/api.html#configure-options
[4]: https://highlightjs.org/download/
[5]: http://highlightjs.readthedocs.org/en/latest/building-testing.html
[8]: http://highlightjs.readthedocs.org/en/latest/css-classes-reference.html
[9]: https://github.com/isagalaev/highlight.js/blob/master/AUTHORS.en.txt
[10]: https://github.com/isagalaev/highlight.js/blob/master/LICENSE

OEBPS/content.opf
 4.8_idm140172679557056 Service Mesh 2023-02-28 This document provides information on how to use Service Mesh in OpenShift Container Platform. en

OEBPS/Common_Content/images/shine.png

OEBPS/Common_Content/images/shade.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BoldItalic.woff2

OEBPS/images/ossm-icon-missing-sidecar.png
) Missing Sidecar ()

OEBPS/Common_Content/images/36.png

OEBPS/Common_Content/images/stock-home.png

OEBPS/Common_Content/images/image_right.png

OEBPS/Common_Content/images/stock-go-up.png

OEBPS/Common_Content/images/red.png

OEBPS/Common_Content/images/32.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.woff

OEBPS/Common_Content/icons/redhat-books-icons-a2efd68d1f13be356c9c4e5c29a64e69.ttf

OEBPS/Common_Content/scripts/highlight.js/styles/pojoaque.jpg

OEBPS/Common_Content/images/28.png

OEBPS/Common_Content/images/3.png

OEBPS/Common_Content/scripts/highlight.js/styles/brown_papersq.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-BoldItalic.woff2

OEBPS/images/ossm-kiali-graph-bookinfo.png
© kiali

Overview

Namespace: bookinfo + App graph ~ D Last5m v Everylss ~
Graph Display ~ Finc v Hide v O ® Graph tour
Ap
¥ Mar 17,02:47:56 PM ... 02:52:56 PM M o productpage
£ @health
»
@ roducosge
i
Traic Traces
Istio Config HTTP (requests per second):
Total wSuccess %Eror
Distril Tracing &
o7 10000 000

details

ouw o015 10000 000

istio-ingressgateway productpage
(istio-system)

o 25 50 75 00

Loading charts.
reviews ratings

©No GRPC traffic logged.

OEBPS/Common_Content/images/image_left.png
& RedHat

OEBPS/Common_Content/fonts/overpass_regular-web.ttf

OEBPS/Common_Content/images/16.png

OEBPS/Common_Content/scripts/highlight.js/styles/school_book.png

OEBPS/Common_Content/images/13.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.woff2

OEBPS/Common_Content/images/39.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-MediumItalic.eot

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.woff2

OEBPS/images/ossm-architecture.png
Service A Service B Service C

AppA AppB

Dataplane | 1 1 1

Ingress gateway —> <+ Egress traffic
I Proxy <+“—> Proxy <+“—> Proxy

!]]

Control plane

istiod (proxy configuration)

OEBPS/Common_Content/fonts/overpass_bold-web.ttf

OEBPS/images/ossm-federation-export-service.png
i Exported service set

Red service mesh Blue service mesh Green service mesh

OEBPS/Common_Content/images/bullet_arrowblue.png

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.woff

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.eot

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.eot

OEBPS/Common_Content/images/24.png

OEBPS/Common_Content/scripts/highlight.js/highlight.pack.js
/*! highlight.js v9.2.0 | BSD3 License | git.io/hljslicense */
!function(e){var n="object"==typeof window&&window||"object"==typeof self&&self;"undefined"!=typeof exports?e(exports):n&&(n.hljs=e({}),"function"==typeof define&&define.amd&&define([],function(){return n.hljs}))}(function(e){function n(e){return e.replace(/&/gm,"&").replace(/</gm,"<").replace(/>/gm,">")}function t(e){return e.nodeName.toLowerCase()}function r(e,n){var t=e&&e.exec(n);return t&&0==t.index}function a(e){return/^(no-?highlight|plain|text)$/i.test(e)}function i(e){var n,t,r,i=e.className+" ";if(i+=e.parentNode?e.parentNode.className:"",t=/\blang(?:uage)?-([\w-]+)\b/i.exec(i))return w(t[1])?t[1]:"no-highlight";for(i=i.split(/\s+/),n=0,r=i.length;r>n;n++)if(w(i[n])||a(i[n]))return i[n]}function o(e,n){var t,r={};for(t in e)r[t]=e[t];if(n)for(t in n)r[t]=n[t];return r}function u(e){var n=[];return function r(e,a){for(var i=e.firstChild;i;i=i.nextSibling)3==i.nodeType?a+=i.nodeValue.length:1==i.nodeType&&(n.push({event:"start",offset:a,node:i}),a=r(i,a),t(i).match(/br|hr|img|input/)||n.push({event:"stop",offset:a,node:i}));return a}(e,0),n}function c(e,r,a){function i(){return e.length&&r.length?e[0].offset!=r[0].offset?e[0].offset<r[0].offset?e:r:"start"==r[0].event?e:r:e.length?e:r}function o(e){function r(e){return" "+e.nodeName+'="'+n(e.value)+'"'}f+="<"+t(e)+Array.prototype.map.call(e.attributes,r).join("")+">"}function u(e){f+="</"+t(e)+">"}function c(e){("start"==e.event?o:u)(e.node)}for(var s=0,f="",l=[];e.length||r.length;){var g=i();if(f+=n(a.substr(s,g[0].offset-s)),s=g[0].offset,g==e){l.reverse().forEach(u);do c(g.splice(0,1)[0]),g=i();while(g==e&&g.length&&g[0].offset==s);l.reverse().forEach(o)}else"start"==g[0].event?l.push(g[0].node):l.pop(),c(g.splice(0,1)[0])}return f+n(a.substr(s))}function s(e){function n(e){return e&&e.source||e}function t(t,r){return new RegExp(n(t),"m"+(e.cI?"i":"")+(r?"g":""))}function r(a,i){if(!a.compiled){if(a.compiled=!0,a.k=a.k||a.bK,a.k){var u={},c=function(n,t){e.cI&&(t=t.toLowerCase()),t.split(" ").forEach(function(e){var t=e.split("|");u[t[0]]=[n,t[1]?Number(t[1]):1]})};"string"==typeof a.k?c("keyword",a.k):Object.keys(a.k).forEach(function(e){c(e,a.k[e])}),a.k=u}a.lR=t(a.l||/\b\w+\b/,!0),i&&(a.bK&&(a.b="\\b("+a.bK.split(" ").join("|")+")\\b"),a.b||(a.b=/\B|\b/),a.bR=t(a.b),a.e||a.eW||(a.e=/\B|\b/),a.e&&(a.eR=t(a.e)),a.tE=n(a.e)||"",a.eW&&i.tE&&(a.tE+=(a.e?"|":"")+i.tE)),a.i&&(a.iR=t(a.i)),void 0===a.r&&(a.r=1),a.c||(a.c=[]);var s=[];a.c.forEach(function(e){e.v?e.v.forEach(function(n){s.push(o(e,n))}):s.push("self"==e?a:e)}),a.c=s,a.c.forEach(function(e){r(e,a)}),a.starts&&r(a.starts,i);var f=a.c.map(function(e){return e.bK?"\\.?("+e.b+")\\.?":e.b}).concat([a.tE,a.i]).map(n).filter(Boolean);a.t=f.length?t(f.join("|"),!0):{exec:function(){return null}}}}r(e)}function f(e,t,a,i){function o(e,n){for(var t=0;t<n.c.length;t++)if(r(n.c[t].bR,e))return n.c[t]}function u(e,n){if(r(e.eR,n)){for(;e.endsParent&&e.parent;)e=e.parent;return e}return e.eW?u(e.parent,n):void 0}function c(e,n){return!a&&r(n.iR,e)}function g(e,n){var t=N.cI?n[0].toLowerCase():n[0];return e.k.hasOwnProperty(t)&&e.k[t]}function p(e,n,t,r){var a=r?"":E.classPrefix,i='<span class="'+a,o=t?"":"";return i+=e+'">',i+n+o}function h(){if(!k.k)return n(M);var e="",t=0;k.lR.lastIndex=0;for(var r=k.lR.exec(M);r;){e+=n(M.substr(t,r.index-t));var a=g(k,r);a?(B+=a[1],e+=p(a[0],n(r[0]))):e+=n(r[0]),t=k.lR.lastIndex,r=k.lR.exec(M)}return e+n(M.substr(t))}function d(){var e="string"==typeof k.sL;if(e&&!R[k.sL])return n(M);var t=e?f(k.sL,M,!0,y[k.sL]):l(M,k.sL.length?k.sL:void 0);return k.r>0&&(B+=t.r),e&&(y[k.sL]=t.top),p(t.language,t.value,!1,!0)}function b(){L+=void 0!==k.sL?d():h(),M=""}function v(e,n){L+=e.cN?p(e.cN,"",!0):"",k=Object.create(e,{parent:{value:k}})}function m(e,n){if(M+=e,void 0===n)return b(),0;var t=o(n,k);if(t)return t.skip?M+=n:(t.eB&&(M+=n),b(),t.rB||t.eB||(M=n)),v(t,n),t.rB?0:n.length;var r=u(k,n);if(r){var a=k;a.skip?M+=n:(a.rE||a.eE||(M+=n),b(),a.eE&&(M=n));do k.cN&&(L+=""),k.skip||(B+=k.r),k=k.parent;while(k!=r.parent);return r.starts&&v(r.starts,""),a.rE?0:n.length}if(c(n,k))throw new Error('Illegal lexeme "'+n+'" for mode "'+(k.cN||"<unnamed>")+'"');return M+=n,n.length||1}var N=w(e);if(!N)throw new Error('Unknown language: "'+e+'"');s(N);var x,k=i||N,y={},L="";for(x=k;x!=N;x=x.parent)x.cN&&(L=p(x.cN,"",!0)+L);var M="",B=0;try{for(var C,j,I=0;;){if(k.t.lastIndex=I,C=k.t.exec(t),!C)break;j=m(t.substr(I,C.index-I),C[0]),I=C.index+j}for(m(t.substr(I)),x=k;x.parent;x=x.parent)x.cN&&(L+="");return{r:B,value:L,language:e,top:k}}catch(O){if(-1!=O.message.indexOf("Illegal"))return{r:0,value:n(t)};throw O}}function l(e,t){t=t||E.languages||Object.keys(R);var r={r:0,value:n(e)},a=r;return t.forEach(function(n){if(w(n)){var t=f(n,e,!1);t.language=n,t.r>a.r&&(a=t),t.r>r.r&&(a=r,r=t)}}),a.language&&(r.second_best=a),r}function g(e){return E.tabReplace&&(e=e.replace(/^((<[^>]+>|\t)+)/gm,function(e,n){return n.replace(/\t/g,E.tabReplace)})),E.useBR&&(e=e.replace(/\n/g,"
")),e}function p(e,n,t){var r=n?x[n]:t,a=[e.trim()];return e.match(/\bhljs\b/)||a.push("hljs"),-1===e.indexOf(r)&&a.push(r),a.join(" ").trim()}function h(e){var n=i(e);if(!a(n)){var t;E.useBR?(t=document.createElementNS("http://www.w3.org/1999/xhtml","div"),t.innerHTML=e.innerHTML.replace(/\n/g,"").replace(/<br[\/]*>/g,"\n")):t=e;var r=t.textContent,o=n?f(n,r,!0):l(r),s=u(t);if(s.length){var h=document.createElementNS("http://www.w3.org/1999/xhtml","div");h.innerHTML=o.value,o.value=c(s,u(h),r)}o.value=g(o.value),e.innerHTML=o.value,e.className=p(e.className,n,o.language),e.result={language:o.language,re:o.r},o.second_best&&(e.second_best={language:o.second_best.language,re:o.second_best.r})}}function d(e){E=o(E,e)}function b(){if(!b.called){b.called=!0;var e=document.querySelectorAll("pre code");Array.prototype.forEach.call(e,h)}}function v(){addEventListener("DOMContentLoaded",b,!1),addEventListener("load",b,!1)}function m(n,t){var r=R[n]=t(e);r.aliases&&r.aliases.forEach(function(e){x[e]=n})}function N(){return Object.keys(R)}function w(e){return e=(e||"").toLowerCase(),R[e]||R[x[e]]}var E={classPrefix:"hljs-",tabReplace:null,useBR:!1,languages:void 0},R={},x={};return e.highlight=f,e.highlightAuto=l,e.fixMarkup=g,e.highlightBlock=h,e.configure=d,e.initHighlighting=b,e.initHighlightingOnLoad=v,e.registerLanguage=m,e.listLanguages=N,e.getLanguage=w,e.inherit=o,e.IR="[a-zA-Z]\\w*",e.UIR="[a-zA-Z_]\\w*",e.NR="\\b\\d+(\\.\\d+)?",e.CNR="(-?)(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",e.BNR="\\b(0b[01]+)",e.RSR="!|!=|!==|%|%=|&|&&|&=|*|*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",e.BE={b:"\\\\[\\s\\S]",r:0},e.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[e.BE]},e.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[e.BE]},e.PWM={b:/\b(a|an|the|are|I|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|like)\b/},e.C=function(n,t,r){var a=e.inherit({cN:"comment",b:n,e:t,c:[]},r||{});return a.c.push(e.PWM),a.c.push({cN:"doctag",b:"(?:TODO|FIXME|NOTE|BUG|XXX):",r:0}),a},e.CLCM=e.C("//","$"),e.CBCM=e.C("/*","*/"),e.HCM=e.C("#","$"),e.NM={cN:"number",b:e.NR,r:0},e.CNM={cN:"number",b:e.CNR,r:0},e.BNM={cN:"number",b:e.BNR,r:0},e.CSSNM={cN:"number",b:e.NR+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",r:0},e.RM={cN:"regexp",b:/\//,e:/\/[gimuy]*/,i:/\n/,c:[e.BE,{b:/\[/,e:/\]/,r:0,c:[e.BE]}]},e.TM={cN:"title",b:e.IR,r:0},e.UTM={cN:"title",b:e.UIR,r:0},e.METHOD_GUARD={b:"\\.\\s*"+e.UIR,r:0},e});hljs.registerLanguage("basic",function(E){return{cI:!0,i:"^.",l:"[a-zA-Z][a-zA-Z0-9_$%!#]*",k:{keyword:"ABS ASC AND ATN AUTO|0 BEEP BLOAD|10 BSAVE|10 CALL CALLS CDBL CHAIN CHDIR CHR$|10 CINT CIRCLE CLEAR CLOSE CLS COLOR COM COMMON CONT COS CSNG CSRLIN CVD CVI CVS DATA DATE$ DEFDBL DEFINT DEFSNG DEFSTR DEF|0 SEG USR DELETE DIM DRAW EDIT END ENVIRON ENVIRON$ EOF EQV ERASE ERDEV ERDEV$ ERL ERR ERROR EXP FIELD FILES FIX FOR|0 FRE GET GOSUB|10 GOTO HEX$ IF|0 THEN ELSE|0 INKEY$ INP INPUT INPUT# INPUT$ INSTR IMP INT IOCTL IOCTL$ KEY ON OFF LIST KILL LEFT$ LEN LET LINE LLIST LOAD LOC LOCATE LOF LOG LPRINT USING LSET MERGE MID$ MKDIR MKD$ MKI$ MKS$ MOD NAME NEW NEXT NOISE NOT OCT$ ON OR PEN PLAY STRIG OPEN OPTION BASE OUT PAINT PALETTE PCOPY PEEK PMAP POINT POKE POS PRINT PRINT] PSET PRESET PUT RANDOMIZE READ REM RENUM RESET|0 RESTORE RESUME RETURN|0 RIGHT$ RMDIR RND RSET RUN SAVE SCREEN SGN SHELL SIN SOUND SPACE$ SPC SQR STEP STICK STOP STR$ STRING$ SWAP SYSTEM TAB TAN TIME$ TIMER TROFF TRON TO USR VAL VARPTR VARPTR$ VIEW WAIT WHILE WEND WIDTH WINDOW WRITE XOR"},c:[E.QSM,E.C("REM","$",{r:10}),E.C("'","$",{r:0}),{cN:"symbol",b:"^[0-9]+ ",r:10},{cN:"number",b:"\\b([0-9]+[0-9edED.]*[#!]?)",r:0},{cN:"number",b:"(&[hH][0-9a-fA-F]{1,4})"},{cN:"number",b:"(&[oO][0-7]{1,6})"}]}});hljs.registerLanguage("vbnet",function(e){return{aliases:["vb"],cI:!0,k:{keyword:"addhandler addressof alias and andalso aggregate ansi as assembly auto binary by byref byval call case catch class compare const continue custom declare default delegate dim distinct do each equals else elseif end enum erase error event exit explicit finally for friend from function get global goto group handles if implements imports in inherits interface into is isfalse isnot istrue join key let lib like loop me mid mod module mustinherit mustoverride mybase myclass namespace narrowing new next not notinheritable notoverridable of off on operator option optional or order orelse overloads overridable overrides paramarray partial preserve private property protected public raiseevent readonly redim rem removehandler resume return select set shadows shared skip static step stop structure strict sub synclock take text then throw to try unicode until using when where while widening with withevents writeonly xor",built_in:"boolean byte cbool cbyte cchar cdate cdec cdbl char cint clng cobj csbyte cshort
csng cstr ctype date decimal directcast double gettype getxmlnamespace iif integer long object sbyte short single string trycast typeof uinteger ulong ushort",literal:"true false nothing"},i:"//|{|}|endif|gosub|variant|wend",c:[e.inherit(e.QSM,{c:[{b:'""'}]}),e.C("'","$",{rB:!0,c:[{cN:"doctag",b:"'''|<!--|-->",c:[e.PWM]},{cN:"doctag",b:"</?",e:">",c:[e.PWM]}]}),e.CNM,{cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elseif end region externalsource"}}]}});hljs.registerLanguage("dockerfile",function(e){return{aliases:["docker"],cI:!0,k:"from maintainer cmd expose add copy entrypoint volume user workdir onbuild run env label",c:[e.HCM,{k:"run cmd entrypoint volume add copy workdir onbuild label",b:/^ *(onbuild +)?(run|cmd|entrypoint|volume|add|copy|workdir|label) +/,starts:{e:/[^\\]\n/,sL:"bash"}},{k:"from maintainer expose env user onbuild",b:/^ *(onbuild +)?(from|maintainer|expose|env|user|onbuild) +/,e:/[^\\]\n/,c:[e.ASM,e.QSM,e.NM,e.HCM]}]}});hljs.registerLanguage("php",function(e){var c={b:"\\$+[a-zA-Z_�-ÿ][a-zA-Z0-9_�-ÿ]*"},a={cN:"meta",b:/<\?(php)?|\?>/},i={cN:"string",c:[e.BE,a],v:[{b:'b"',e:'"'},{b:"b'",e:"'"},e.inherit(e.ASM,{i:null}),e.inherit(e.QSM,{i:null})]},t={v:[e.BNM,e.CNM]};return{aliases:["php3","php4","php5","php6"],cI:!0,k:"and include_once list abstract global private echo interface as static endswitch array null if endwhile or const for endforeach self var while isset public protected exit foreach throw elseif include __FILE__ empty require_once do xor return parent clone use __CLASS__ __LINE__ else break print eval new catch __METHOD__ case exception default die require __FUNCTION__ enddeclare final try switch continue endfor endif declare unset true false trait goto instanceof insteadof __DIR__ __NAMESPACE__ yield finally",c:[e.HCM,e.C("//","$",{c:[a]}),e.C("/*","*/",{c:[{cN:"doctag",b:"@[A-Za-z]+"}]}),e.C("__halt_compiler.+?;",!1,{eW:!0,k:"__halt_compiler",l:e.UIR}),{cN:"string",b:/<<<['"]?\w+['"]?$/,e:/^\w+;?$/,c:[e.BE,{cN:"subst",v:[{b:/\$\w+/},{b:/\{\$/,e:/\}/}]}]},a,c,{b:/(::|->)+[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*/},{cN:"function",bK:"function",e:/[;{]/,eE:!0,i:"\\$|\\[|%",c:[e.UTM,{cN:"params",b:"\\(",e:"\\)",c:["self",c,e.CBCM,i,t]}]},{cN:"class",bK:"class interface",e:"{",eE:!0,i:/[:\(\$"]/,c:[{bK:"extends implements"},e.UTM]},{bK:"namespace",e:";",i:/[\.']/,c:[e.UTM]},{bK:"use",e:";",c:[e.UTM]},{b:"=>"},i,t]}});hljs.registerLanguage("haml",function(s){return{cI:!0,c:[{cN:"meta",b:"^!!!((5|1\\.1|Strict|Frameset|Basic|Mobile|RDFa|XML\\b.*))?$",r:10},s.C("^\\s*(!=#|=#|-#|/).*$",!1,{r:0}),{b:"^\\s*(-|=|!=)(?!#)",starts:{e:"\\n",sL:"ruby"}},{cN:"tag",b:"^\\s*%",c:[{cN:"selector-tag",b:"\\w+"},{cN:"selector-id",b:"#[\\w-]+"},{cN:"selector-class",b:"\\.[\\w-]+"},{b:"{\\s*",e:"\\s*}",c:[{b:":\\w+\\s*=>",e:",\\s+",rB:!0,eW:!0,c:[{cN:"attr",b:":\\w+"},s.ASM,s.QSM,{b:"\\w+",r:0}]}]},{b:"\\(\\s*",e:"\\s*\\)",eE:!0,c:[{b:"\\w+\\s*=",e:"\\s+",rB:!0,eW:!0,c:[{cN:"attr",b:"\\w+",r:0},s.ASM,s.QSM,{b:"\\w+",r:0}]}]}]},{b:"^\\s*[=~]\\s*"},{b:"#{",starts:{e:"}",sL:"ruby"}}]}});hljs.registerLanguage("perl",function(e){var t="getpwent getservent quotemeta msgrcv scalar kill dbmclose undef lc ma syswrite tr send umask sysopen shmwrite vec qx utime local oct semctl localtime readpipe do return format read sprintf dbmopen pop getpgrp not getpwnam rewinddir qqfileno qw endprotoent wait sethostent bless s|0 opendir continue each sleep endgrent shutdown dump chomp connect getsockname die socketpair close flock exists index shmgetsub for endpwent redo lstat msgctl setpgrp abs exit select print ref gethostbyaddr unshift fcntl syscall goto getnetbyaddr join gmtime symlink semget splice x|0 getpeername recv log setsockopt cos last reverse gethostbyname getgrnam study formline endhostent times chop length gethostent getnetent pack getprotoent getservbyname rand mkdir pos chmod y|0 substr endnetent printf next open msgsnd readdir use unlink getsockopt getpriority rindex wantarray hex system getservbyport endservent int chr untie rmdir prototype tell listen fork shmread ucfirst setprotoent else sysseek link getgrgid shmctl waitpid unpack getnetbyname reset chdir grep split require caller lcfirst until warn while values shift telldir getpwuid my getprotobynumber delete and sort uc defined srand accept package seekdir getprotobyname semop our rename seek if q|0 chroot sysread setpwent no crypt getc chown sqrt write setnetent setpriority foreach tie sin msgget map stat getlogin unless elsif truncate exec keys glob tied closedirioctl socket readlink eval xor readline binmode setservent eof ord bind alarm pipe atan2 getgrent exp time push setgrent gt lt or ne m|0 break given say state when",r={cN:"subst",b:"[$@]\\{",e:"\\}",k:t},s={b:"->{",e:"}"},n={v:[{b:/\$\d/},{b:/[\$%@](\^\w\b|#\w+(::\w+)*|{\w+}|\w+(::\w*)*)/},{b:/[\$%@][^\s\w{]/,r:0}]},i=[e.BE,r,n],o=[n,e.HCM,e.C("^\\=\\w","\\=cut",{eW:!0}),s,{cN:"string",c:i,v:[{b:"q[qwxr]?\\s*\\(",e:"\\)",r:5},{b:"q[qwxr]?\\s*\\[",e:"\\]",r:5},{b:"q[qwxr]?\\s*\\{",e:"\\}",r:5},{b:"q[qwxr]?\\s*\\|",e:"\\|",r:5},{b:"q[qwxr]?\\s*\\<",e:"\\>",r:5},{b:"qw\\s+q",e:"q",r:5},{b:"'",e:"'",c:[e.BE]},{b:'"',e:'"'},{b:"`",e:"`",c:[e.BE]},{b:"{\\w+}",c:[],r:0},{b:"-?\\w+\\s*\\=\\>",c:[],r:0}]},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{b:"(\\/\\/|"+e.RSR+"|\\b(split|return|print|reverse|grep)\\b)\\s*",k:"split return print reverse grep",r:0,c:[e.HCM,{cN:"regexp",b:"(s|tr|y)/(\\\\.|[^/])*/(\\\\.|[^/])*/[a-z]*",r:10},{cN:"regexp",b:"(m|qr)?/",e:"/[a-z]*",c:[e.BE],r:0}]},{cN:"function",bK:"sub",e:"(\\s*\\(.*?\\))?[;{]",eE:!0,r:5,c:[e.TM]},{b:"-\\w\\b",r:0},{b:"^__DATA__$",e:"^__END__$",sL:"mojolicious",c:[{b:"^@@.*",e:"$",cN:"comment"}]}];return r.c=o,s.c=o,{aliases:["pl"],k:t,c:o}});hljs.registerLanguage("accesslog",function(T){return{c:[{cN:"number",b:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{cN:"number",b:"\\b\\d+\\b",r:0},{cN:"string",b:'"(GET|POST|HEAD|PUT|DELETE|CONNECT|OPTIONS|PATCH|TRACE)',e:'"',k:"GET POST HEAD PUT DELETE CONNECT OPTIONS PATCH TRACE",i:"\\n",r:10},{cN:"string",b:/\[/,e:/\]/,i:"\\n"},{cN:"string",b:'"',e:'"',i:"\\n"}]}});hljs.registerLanguage("d",function(e){var t={keyword:"abstract alias align asm assert auto body break byte case cast catch class const continue debug default delete deprecated do else enum export extern final finally for foreach foreach_reverse|10 goto if immutable import in inout int interface invariant is lazy macro mixin module new nothrow out override package pragma private protected public pure ref return scope shared static struct super switch synchronized template this throw try typedef typeid typeof union unittest version void volatile while with __FILE__ __LINE__ __gshared|10 __thread __traits __DATE__ __EOF__ __TIME__ __TIMESTAMP__ __VENDOR__ __VERSION__",built_in:"bool cdouble cent cfloat char creal dchar delegate double dstring float function idouble ifloat ireal long real short string ubyte ucent uint ulong ushort wchar wstring",literal:"false null true"},r="(0|[1-9][\\d_]*)",a="(0|[1-9][\\d_]*|\\d[\\d_]*|[\\d_]+?\\d)",i="0[bB][01_]+",n="([\\da-fA-F][\\da-fA-F_]*|_[\\da-fA-F][\\da-fA-F_]*)",_="0[xX]"+n,c="([eE][+-]?"+a+")",d="("+a+"(\\.\\d*|"+c+")|\\d+\\."+a+a+"|\\."+r+c+"?)",o="(0[xX]("+n+"\\."+n+"|\\.?"+n+")[pP][+-]?"+a+")",s="("+r+"|"+i+"|"+_+")",l="("+o+"|"+d+")",u="\\\\(['\"\\?\\\\abfnrtv]|u[\\dA-Fa-f]{4}|[0-7]{1,3}|x[\\dA-Fa-f]{2}|U[\\dA-Fa-f]{8})|&[a-zA-Z\\d]{2,};",b={cN:"number",b:"\\b"+s+"(L|u|U|Lu|LU|uL|UL)?",r:0},f={cN:"number",b:"\\b("+l+"([fF]|L|i|[fF]i|Li)?|"+s+"(i|[fF]i|Li))",r:0},g={cN:"string",b:"'("+u+"|.)",e:"'",i:"."},h={b:u,r:0},p={cN:"string",b:'"',c:[h],e:'"[cwd]?'},m={cN:"string",b:'[rq]"',e:'"[cwd]?',r:5},w={cN:"string",b:"`",e:"`[cwd]?"},N={cN:"string",b:'x"[\\da-fA-F\\s\\n\\r]*"[cwd]?',r:10},A={cN:"string",b:'q"\\{',e:'\\}"'},F={cN:"meta",b:"^#!",e:"$",r:5},y={cN:"meta",b:"#(line)",e:"$",r:5},L={cN:"keyword",b:"@[a-zA-Z_][a-zA-Z_\\d]*"},v=e.C("\\/\\+","\\+\\/",{c:["self"],r:10});return{l:e.UIR,k:t,c:[e.CLCM,e.CBCM,v,N,p,m,w,A,f,b,g,F,y,L]}});hljs.registerLanguage("csp",function(r){return{cI:!1,l:"[a-zA-Z][a-zA-Z0-9_-]*",k:{keyword:"base-uri child-src connect-src default-src font-src form-action frame-ancestors frame-src img-src media-src object-src plugin-types report-uri sandbox script-src style-src"},c:[{cN:"string",b:"'",e:"'"},{cN:"attribute",b:"^Content",e:":",eE:!0}]}});hljs.registerLanguage("apache",function(e){var r={cN:"number",b:"[\\$%]\\d+"};return{aliases:["apacheconf"],cI:!0,c:[e.HCM,{cN:"section",b:"</?",e:">"},{cN:"attribute",b:/\w+/,r:0,k:{nomarkup:"order deny allow setenv rewriterule rewriteengine rewritecond documentroot sethandler errordocument loadmodule options header listen serverroot servername"},starts:{e:/$/,r:0,k:{literal:"on off all"},c:[{cN:"meta",b:"\\s\\[",e:"\\]$"},{cN:"variable",b:"[\\$%]\\{",e:"\\}",c:["self",r]},r,e.QSM]}}],i:/\S/}});hljs.registerLanguage("prolog",function(c){var b={b:/[a-z][A-Za-z0-9_]*/,r:0},r={cN:"symbol",v:[{b:/[A-Z][a-zA-Z0-9_]*/},{b:/_[A-Za-z0-9_]*/}],r:0},e={b:/\(/,e:/\)/,r:0},n={b:/\[/,e:/\]/},a={cN:"comment",b:/%/,e:/$/,c:[c.PWM]},t={cN:"string",b:/`/,e:/`/,c:[c.BE]},g={cN:"string",b:/0\'(\\\'|.)/},s={cN:"string",b:/0\'\\s/},o={b:/:-/},N=[b,r,e,o,n,a,c.CBCM,c.QSM,c.ASM,t,g,s,c.CNM];return e.c=N,n.c=N,{c:N.concat([{b:/\.$/}])}});hljs.registerLanguage("lisp",function(b){var e="[a-zA-Z_\\-\\+*\\/\\<\\=\\>\\&\\#][a-zA-Z0-9_\\-\\+*\\/\\<\\=\\>\\&\\#!]*",c="\\|[^]*?\\|",r="(\\-|\\+)?\\d+(\\.\\d+|\\/\\d+)?((d|e|f|l|s|D|E|F|L|S)(\\+|\\-)?\\d+)?",a={cN:"meta",b:"^#!",e:"$"},l={cN:"literal",b:"\\b(t{1}|nil)\\b"},n={cN:"number",v:[{b:r,r:0},{b:"#(b|B)[0-1]+(/[0-1]+)?"},{b:"#(o|O)[0-7]+(/[0-7]+)?"},{b:"#(x|X)[0-9a-fA-F]+(/[0-9a-fA-F]+)?"},{b:"#(c|C)\\("+r+" +"+r,e:"\\)"}]},i=b.inherit(b.QSM,{i:null}),t=b.C(";","$",{r:0}),s={b:"*",e:"*"},u={cN:"symbol",b:"[:&]"+e},d={b:e,r:0},f={b:c},m={b:"\\(",e:"\\)",c:["self",l,i,n,d]},o={c:[n,i,s,u,m,d],v:[{b:"['`]\\(",e:"\\)"},{b:"\\(quote
",e:"\\)",k:{name:"quote"}},{b:"'"+c}]},v={v:[{b:"'"+e},{b:"#'"+e+"(::"+e+")*"}]},N={b:"\\(\\s*",e:"\\)"},A={eW:!0,r:0};return N.c=[{cN:"name",v:[{b:e},{b:c}]},A],A.c=[o,v,N,l,n,i,t,s,u,f,d],{i:/\S/,c:[n,a,l,i,t,o,v,N,d]}});hljs.registerLanguage("swift",function(e){var i={keyword:"__COLUMN__ __FILE__ __FUNCTION__ __LINE__ as as! as? associativity break case catch class continue convenience default defer deinit didSet do dynamic dynamicType else enum extension fallthrough false final for func get guard if import in indirect infix init inout internal is lazy left let mutating nil none nonmutating operator optional override postfix precedence prefix private protocol Protocol public repeat required rethrows return right self Self set static struct subscript super switch throw throws true try try! try? Type typealias unowned var weak where while willSet",literal:"true false nil",built_in:"abs advance alignof alignofValue anyGenerator assert assertionFailure bridgeFromObjectiveC bridgeFromObjectiveCUnconditional bridgeToObjectiveC bridgeToObjectiveCUnconditional c contains count countElements countLeadingZeros debugPrint debugPrintln distance dropFirst dropLast dump encodeBitsAsWords enumerate equal fatalError filter find getBridgedObjectiveCType getVaList indices insertionSort isBridgedToObjectiveC isBridgedVerbatimToObjectiveC isUniquelyReferenced isUniquelyReferencedNonObjC join lazy lexicographicalCompare map max maxElement min minElement numericCast overlaps partition posix precondition preconditionFailure print println quickSort readLine reduce reflect reinterpretCast reverse roundUpToAlignment sizeof sizeofValue sort split startsWith stride strideof strideofValue swap toString transcode underestimateCount unsafeAddressOf unsafeBitCast unsafeDowncast unsafeUnwrap unsafeReflect withExtendedLifetime withObjectAtPlusZero withUnsafePointer withUnsafePointerToObject withUnsafeMutablePointer withUnsafeMutablePointers withUnsafePointer withUnsafePointers withVaList zip"},t={cN:"type",b:"\\b[A-Z][\\w']*",r:0},n=e.C("/*","*/",{c:["self"]}),r={cN:"subst",b:/\\\(/,e:"\\)",k:i,c:[]},a={cN:"number",b:"\\b([\\d_]+(\\.[\\deE_]+)?|0x[a-fA-F0-9_]+(\\.[a-fA-F0-9p_]+)?|0b[01_]+|0o[0-7_]+)\\b",r:0},o=e.inherit(e.QSM,{c:[r,e.BE]});return r.c=[a],{k:i,c:[o,e.CLCM,n,t,a,{cN:"function",bK:"func",e:"{",eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/,i:/\(/}),{b:/</,e:/>/,i:/>/},{cN:"params",b:/\(/,e:/\)/,endsParent:!0,k:i,c:["self",a,o,e.CBCM,{b:":"}],i:/["']/}],i:/\[|%/},{cN:"class",bK:"struct protocol class extension enum",k:i,e:"\\{",eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/})]},{cN:"meta",b:"(@warn_unused_result|@exported|@lazy|@noescape|@NSCopying|@NSManaged|@objc|@convention|@required|@noreturn|@IBAction|@IBDesignable|@IBInspectable|@IBOutlet|@infix|@prefix|@postfix|@autoclosure|@testable|@available|@nonobjc|@NSApplicationMain|@UIApplicationMain)"},{bK:"import",e:/$/,c:[e.CLCM,n]}]}});hljs.registerLanguage("java",function(e){var a=e.UIR+"(<"+e.UIR+"(\\s*,\\s*"+e.UIR+")*>)?",t="false synchronized int abstract float private char boolean static null if const for true while long strictfp finally protected import native final void enum else break transient catch instanceof byte super volatile case assert short package default double public try this switch continue throws protected public private",r="\\b(0[bB]([01]+[01_]+[01]+|[01]+)|0[xX]([a-fA-F0-9]+[a-fA-F0-9_]+[a-fA-F0-9]+|[a-fA-F0-9]+)|(([\\d]+[\\d_]+[\\d]+|[\\d]+)(\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))?|\\.([\\d]+[\\d_]+[\\d]+|[\\d]+))([eE][-+]?\\d+)?)[lLfF]?",c={cN:"number",b:r,r:0};return{aliases:["jsp"],k:t,i:/<\/|#/,c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,e.ASM,e.QSM,{cN:"class",bK:"class interface",e:/[{;=]/,eE:!0,k:"class interface",i:/[:"\[\]]/,c:[{bK:"extends implements"},e.UTM]},{bK:"new throw return else",r:0},{cN:"function",b:"("+a+"\\s+)+"+e.UIR+"\\s*\\(",rB:!0,e:/[{;=]/,eE:!0,k:t,c:[{b:e.UIR+"\\s*\\(",rB:!0,r:0,c:[e.UTM]},{cN:"params",b:/\(/,e:/\)/,k:t,r:0,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]},c,{cN:"meta",b:"@[A-Za-z]+"}]}});hljs.registerLanguage("objectivec",function(e){var t={cN:"built_in",b:"(AV|CA|CF|CG|CI|MK|MP|NS|UI|XC)\\w+"},i={keyword:"int float while char export sizeof typedef const struct for union unsigned long volatile static bool mutable if do return goto void enum else break extern asm case short default double register explicit signed typename this switch continue wchar_t inline readonly assign readwrite self @synchronized id typeof nonatomic super unichar IBOutlet IBAction strong weak copy in out inout bycopy byref oneway __strong __weak __block __autoreleasing @private @protected @public @try @property @end @throw @catch @finally @autoreleasepool @synthesize @dynamic @selector @optional @required",literal:"false true FALSE TRUE nil YES NO NULL",built_in:"BOOL dispatch_once_t dispatch_queue_t dispatch_sync dispatch_async dispatch_once"},n=/[a-zA-Z@][a-zA-Z0-9_]*/,o="@interface @class @protocol @implementation";return{aliases:["mm","objc","obj-c"],k:i,l:n,i:"</",c:[t,e.CLCM,e.CBCM,e.CNM,e.QSM,{cN:"string",v:[{b:'@"',e:'"',i:"\\n",c:[e.BE]},{b:"'",e:"[^\\\\]'",i:"[^\\\\][^']"}]},{cN:"meta",b:"#",e:"$",c:[{cN:"meta-string",v:[{b:'"',e:'"'},{b:"<",e:">"}]}]},{cN:"class",b:"("+o.split(" ").join("|")+")\\b",e:"({|$)",eE:!0,k:o,l:n,c:[e.UTM]},{b:"\\."+e.UIR,r:0}]}});hljs.registerLanguage("json",function(e){var i={literal:"true false null"},n=[e.QSM,e.CNM],r={e:",",eW:!0,eE:!0,c:n,k:i},t={b:"{",e:"}",c:[{cN:"attr",b:/"/,e:/"/,c:[e.BE],i:"\\n"},e.inherit(r,{b:/:/})],i:"\\S"},c={b:"\\[",e:"\\]",c:[e.inherit(r)],i:"\\S"};return n.splice(n.length,0,t,c),{c:n,k:i,i:"\\S"}});hljs.registerLanguage("cmake",function(e){return{aliases:["cmake.in"],cI:!0,k:{keyword:"add_custom_command add_custom_target add_definitions add_dependencies add_executable add_library add_subdirectory add_test aux_source_directory break build_command cmake_minimum_required cmake_policy configure_file create_test_sourcelist define_property else elseif enable_language enable_testing endforeach endfunction endif endmacro endwhile execute_process export find_file find_library find_package find_path find_program fltk_wrap_ui foreach function get_cmake_property get_directory_property get_filename_component get_property get_source_file_property get_target_property get_test_property if include include_directories include_external_msproject include_regular_expression install link_directories load_cache load_command macro mark_as_advanced message option output_required_files project qt_wrap_cpp qt_wrap_ui remove_definitions return separate_arguments set set_directory_properties set_property set_source_files_properties set_target_properties set_tests_properties site_name source_group string target_link_libraries try_compile try_run unset variable_watch while build_name exec_program export_library_dependencies install_files install_programs install_targets link_libraries make_directory remove subdir_depends subdirs use_mangled_mesa utility_source variable_requires write_file qt5_use_modules qt5_use_package qt5_wrap_cpp on off true false and or equal less greater strless strgreater strequal matches"},c:[{cN:"variable",b:"\\${",e:"}"},e.HCM,e.QSM,e.NM]}});hljs.registerLanguage("bash",function(e){var t={cN:"variable",v:[{b:/\$[\w\d#@][\w\d_]*/},{b:/\$\{(.*?)}/}]},s={cN:"string",b:/"/,e:/"/,c:[e.BE,t,{cN:"variable",b:/\$\(/,e:/\)/,c:[e.BE]}]},a={cN:"string",b:/'/,e:/'/};return{aliases:["sh","zsh"],l:/-?[a-z\.]+/,k:{keyword:"if then else elif fi for while in do done case esac function",literal:"true false",built_in:"break cd continue eval exec exit export getopts hash pwd readonly return shift test times trap umask unset alias bind builtin caller command declare echo enable help let local logout mapfile printf read readarray source type typeset ulimit unalias set shopt autoload bg bindkey bye cap chdir clone comparguments compcall compctl compdescribe compfiles compgroups compquote comptags comptry compvalues dirs disable disown echotc echoti emulate fc fg float functions getcap getln history integer jobs kill limit log noglob popd print pushd pushln rehash sched setcap setopt stat suspend ttyctl unfunction unhash unlimit unsetopt vared wait whence where which zcompile zformat zftp zle zmodload zparseopts zprof zpty zregexparse zsocket zstyle ztcp",_:"-ne -eq -lt -gt -f -d -e -s -l -a"},c:[{cN:"meta",b:/^#![^\n]+sh\s*$/,r:10},{cN:"function",b:/\w[\w\d_]*\s*\(\s*\)\s*\{/,rB:!0,c:[e.inherit(e.TM,{b:/\w[\w\d_]*/})],r:0},e.HCM,s,a,t]}});hljs.registerLanguage("cs",function(e){var t="abstract as base bool break byte case catch char checked const continue decimal dynamic default delegate do double else enum event explicit extern false finally fixed float for foreach goto if implicit in int interface internal is lock long null when object operator out override params private protected public readonly ref sbyte sealed short sizeof stackalloc static string struct switch this true try typeof uint ulong unchecked unsafe ushort using virtual volatile void while async protected public private internal ascending descending from get group into join let orderby partial select set value var where yield",r=e.IR+"(<"+e.IR+">)?";return{aliases:["csharp"],k:t,i:/::/,c:[e.C("///","$",{rB:!0,c:[{cN:"doctag",v:[{b:"///",r:0},{b:"<!--|-->"},{b:"</?",e:">"}]}]}),e.CLCM,e.CBCM,{cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef warning error line region endregion pragma checksum"}},{cN:"string",b:'@"',e:'"',c:[{b:'""'}]},e.ASM,e.QSM,e.CNM,{bK:"class interface",e:/[{;=]/,i:/[^\s:]/,c:[e.TM,e.CLCM,e.CBCM]},{bK:"namespace",e:/[{;=]/,i:/[^\s:]/,c:[e.inherit(e.TM,{b:"[a-zA-Z](\\.?\\w)*"}),e.CLCM,e.CBCM]},{bK:"new return throw
await",r:0},{cN:"function",b:"("+r+"\\s+)+"+e.IR+"\\s*\\(",rB:!0,e:/[{;=]/,eE:!0,k:t,c:[{b:e.IR+"\\s*\\(",rB:!0,c:[e.TM],r:0},{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,k:t,r:0,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]}]}});hljs.registerLanguage("livescript",function(e){var t={keyword:"in if for while finally new do return else break catch instanceof throw try this switch continue typeof delete debugger case default function var with then unless until loop of by when and or is isnt not it that otherwise from to til fallthrough super case default function var void const let enum export import native __hasProp __extends __slice __bind __indexOf",literal:"true false null undefined yes no on off it that void",built_in:"npm require console print module global window document"},s="[A-Za-z$_](?:-[0-9A-Za-z$_]|[0-9A-Za-z$_])*",n=e.inherit(e.TM,{b:s}),i={cN:"subst",b:/#\{/,e:/}/,k:t},r={cN:"subst",b:/#[A-Za-z$_]/,e:/(?:\-[0-9A-Za-z$_]|[0-9A-Za-z$_])*/,k:t},c=[e.BNM,{cN:"number",b:"(\\b0[xX][a-fA-F0-9_]+)|(\\b\\d(\\d|_\\d)*(\\.(\\d(\\d|_\\d)*)?)?(_*[eE]([-+]\\d(_\\d|\\d)*)?)?[_a-z]*)",r:0,starts:{e:"(\\s*/)?",r:0}},{cN:"string",v:[{b:/'''/,e:/'''/,c:[e.BE]},{b:/'/,e:/'/,c:[e.BE]},{b:/"""/,e:/"""/,c:[e.BE,i,r]},{b:/"/,e:/"/,c:[e.BE,i,r]},{b:/\\/,e:/(\s|$)/,eE:!0}]},{cN:"regexp",v:[{b:"//",e:"//[gim]*",c:[i,e.HCM]},{b:/\/(?![*])(\\\/|.)*?\/[gim]*(?=\W|$)/}]},{b:"@"+s},{b:"``",e:"``",eB:!0,eE:!0,sL:"javascript"}];i.c=c;var a={cN:"params",b:"\\(",rB:!0,c:[{b:/\(/,e:/\)/,k:t,c:["self"].concat(c)}]};return{aliases:["ls"],k:t,i:/\/*/,c:c.concat([e.C("\\/*","*\\/"),e.HCM,{cN:"function",c:[n,a],rB:!0,v:[{b:"("+s+"\\s*(?:=|:=)\\s*)?(\\(.*\\))?\\s*\\B\\->*?",e:"\\->*?"},{b:"("+s+"\\s*(?:=|:=)\\s*)?!?(\\(.*\\))?\\s*\\B[-~]{1,2}>*?",e:"[-~]{1,2}>*?"},{b:"("+s+"\\s*(?:=|:=)\\s*)?(\\(.*\\))?\\s*\\B!?[-~]{1,2}>*?",e:"!?[-~]{1,2}>*?"}]},{cN:"class",bK:"class",e:"$",i:/[:="\[\]]/,c:[{bK:"extends",eW:!0,i:/[:="\[\]]/,c:[n]},n]},{b:s+":",e:":",rB:!0,rE:!0,r:0}])}});hljs.registerLanguage("makefile",function(e){var a={cN:"variable",b:/\$\(/,e:/\)/,c:[e.BE]};return{aliases:["mk","mak"],c:[e.HCM,{b:/^\w+\s*\W*=/,rB:!0,r:0,starts:{e:/\s*\W*=/,eE:!0,starts:{e:/$/,r:0,c:[a]}}},{cN:"section",b:/^[\w]+:\s*$/},{cN:"meta",b:/^\.PHONY:/,e:/$/,k:{"meta-keyword":".PHONY"},l:/[\.\w]+/},{b:/^\t+/,e:/$/,r:0,c:[e.QSM,a]}]}});hljs.registerLanguage("yaml",function(e){var a={literal:"{ } true false yes no Yes No True False null"},b="^[\\-]*",r="[a-zA-Z_][\\w\\-]*",t={cN:"attr",v:[{b:b+r+":"},{b:b+'"'+r+'":'},{b:b+"'"+r+"':"}]},c={cN:"template-variable",v:[{b:"{{",e:"}}"},{b:"%{",e:"}"}]},l={cN:"string",r:0,v:[{b:/'/,e:/'/},{b:/"/,e:/"/}],c:[e.BE,c]};return{cI:!0,aliases:["yml","YAML","yaml"],c:[t,{cN:"meta",b:"^---s*$",r:10},{cN:"string",b:"[\\|>] *$",rE:!0,c:l.c,e:t.v[0].b},{b:"<%[%=-]?",e:"[%-]?%>",sL:"ruby",eB:!0,eE:!0,r:0},{cN:"type",b:"!!"+e.UIR},{cN:"meta",b:"&"+e.UIR+"$"},{cN:"meta",b:"*"+e.UIR+"$"},{cN:"bullet",b:"^ *-",r:0},l,e.HCM,e.CNM],k:a}});hljs.registerLanguage("dns",function(d){return{aliases:["bind","zone"],k:{keyword:"IN A AAAA AFSDB APL CAA CDNSKEY CDS CERT CNAME DHCID DLV DNAME DNSKEY DS HIP IPSECKEY KEY KX LOC MX NAPTR NS NSEC NSEC3 NSEC3PARAM PTR RRSIG RP SIG SOA SRV SSHFP TA TKEY TLSA TSIG TXT"},c:[d.C(";","$"),{cN:"meta",b:/^\$(TTL|GENERATE|INCLUDE|ORIGIN)\b/},{cN:"number",b:"((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){4}(((:[0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-f]{1,4})?:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]{1,4}){1,4})|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){2}(((:[0-9A-Fa-f]{1,4}){1,5})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:))|(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)(\\.(25[0-5]|2[0-4]\\d|1\\d\\d|[1-9]?\\d)){3}))|:)))\\b"},{cN:"number",b:"((25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9]).){3,3}(25[0-5]|(2[0-4]|1{0,1}[0-9]){0,1}[0-9])\\b"},d.inherit(d.NM,{b:/\b\d+[dhwm]?/})]}});hljs.registerLanguage("sql",function(e){var t=e.C("--","$");return{cI:!0,i:/[<>{}*]/,c:[{bK:"begin end start commit rollback savepoint lock alter create drop rename call delete do handler insert load replace select truncate update set show pragma grant merge describe use explain help declare prepare execute deallocate release unlock purge reset change stop analyze cache flush optimize repair kill install uninstall checksum restore check backup revoke",e:/;/,eW:!0,k:{keyword:"abort abs absolute acc acce accep accept access accessed accessible account acos action activate add addtime admin administer advanced advise aes_decrypt aes_encrypt after agent aggregate ali alia alias allocate allow alter always analyze ancillary and any anydata anydataset anyschema anytype apply archive archived archivelog are as asc ascii asin assembly assertion associate asynchronous at atan atn2 attr attri attrib attribu attribut attribute attributes audit authenticated authentication authid authors auto autoallocate autodblink autoextend automatic availability avg backup badfile basicfile before begin beginning benchmark between bfile bfile_base big bigfile bin binary_double binary_float binlog bit_and bit_count bit_length bit_or bit_xor bitmap blob_base block blocksize body both bound buffer_cache buffer_pool build bulk by byte byteordermark bytes cache caching call calling cancel capacity cascade cascaded case cast catalog category ceil ceiling chain change changed char_base char_length character_length characters characterset charindex charset charsetform charsetid check checksum checksum_agg child choose chr chunk class cleanup clear client clob clob_base clone close cluster_id cluster_probability cluster_set clustering coalesce coercibility col collate collation collect colu colum column column_value columns columns_updated comment commit compact compatibility compiled complete composite_limit compound compress compute concat concat_ws concurrent confirm conn connec connect connect_by_iscycle connect_by_isleaf connect_by_root connect_time connection consider consistent constant constraint constraints constructor container content contents context contributors controlfile conv convert convert_tz corr corr_k corr_s corresponding corruption cos cost count count_big counted covar_pop covar_samp cpu_per_call cpu_per_session crc32 create creation critical cross cube cume_dist curdate current current_date current_time current_timestamp current_user cursor curtime customdatum cycle data database databases datafile datafiles datalength date_add date_cache date_format date_sub dateadd datediff datefromparts datename datepart datetime2fromparts day day_to_second dayname dayofmonth dayofweek dayofyear days db_role_change dbtimezone ddl deallocate declare decode decompose decrement decrypt deduplicate def defa defau defaul default defaults deferred defi defin define degrees delayed delegate delete delete_all delimited demand dense_rank depth dequeue des_decrypt des_encrypt des_key_file desc descr descri describ describe descriptor deterministic diagnostics difference dimension direct_load directory disable disable_all disallow disassociate discardfile disconnect diskgroup distinct distinctrow distribute distributed div do document domain dotnet double downgrade drop dumpfile duplicate duration each edition editionable editions element ellipsis else elsif elt empty enable enable_all enclosed encode encoding encrypt end end-exec endian enforced engine engines enqueue enterprise entityescaping eomonth error errors escaped evalname evaluate event eventdata events except exception exceptions exchange exclude excluding execu execut execute exempt exists exit exp expire explain export export_set extended extent external external_1 external_2 externally extract failed failed_login_attempts failover failure far fast feature_set feature_value fetch field fields file file_name_convert filesystem_like_logging final finish first first_value fixed flash_cache flashback floor flush following follows for forall force form forma format found found_rows freelist freelists freepools fresh from from_base64 from_days ftp full function general generated get get_format get_lock getdate getutcdate global global_name globally go goto grant grants greatest group group_concat group_id grouping grouping_id groups gtid_subtract guarantee guard handler hash hashkeys having hea head headi headin heading heap help hex hierarchy high high_priority hosts hour http id ident_current ident_incr ident_seed identified identity idle_time if ifnull ignore iif ilike ilm immediate import in include including increment index indexes indexing indextype indicator indices inet6_aton inet6_ntoa inet_aton inet_ntoa infile initial initialized initially initrans inmemory inner innodb input insert install instance instantiable instr interface interleaved intersect into invalidate invisible is is_free_lock is_ipv4 is_ipv4_compat is_not is_not_null is_used_lock isdate isnull isolation iterate java join json json_exists keep keep_duplicates key keys kill language large last last_day last_insert_id last_value lax lcase lead leading least leaves left len lenght length less level levels library like like2 like4 likec limit lines link list listagg little ln load load_file lob lobs local localtime localtimestamp locate locator lock locked log log10 log2 logfile logfiles logging logical
logical_reads_per_call logoff logon logs long loop low low_priority lower lpad lrtrim ltrim main make_set makedate maketime managed management manual map mapping mask master master_pos_wait match matched materialized max maxextents maximize maxinstances maxlen maxlogfiles maxloghistory maxlogmembers maxsize maxtrans md5 measures median medium member memcompress memory merge microsecond mid migration min minextents minimum mining minus minute minvalue missing mod mode model modification modify module monitoring month months mount move movement multiset mutex name name_const names nan national native natural nav nchar nclob nested never new newline next nextval no no_write_to_binlog noarchivelog noaudit nobadfile nocheck nocompress nocopy nocycle nodelay nodiscardfile noentityescaping noguarantee nokeep nologfile nomapping nomaxvalue nominimize nominvalue nomonitoring none noneditionable nonschema noorder nopr nopro noprom nopromp noprompt norely noresetlogs noreverse normal norowdependencies noschemacheck noswitch not nothing notice notrim novalidate now nowait nth_value nullif nulls num numb numbe nvarchar nvarchar2 object ocicoll ocidate ocidatetime ociduration ociinterval ociloblocator ocinumber ociref ocirefcursor ocirowid ocistring ocitype oct octet_length of off offline offset oid oidindex old on online only opaque open operations operator optimal optimize option optionally or oracle oracle_date oradata ord ordaudio orddicom orddoc order ordimage ordinality ordvideo organization orlany orlvary out outer outfile outline output over overflow overriding package pad parallel parallel_enable parameters parent parse partial partition partitions pascal passing password password_grace_time password_lock_time password_reuse_max password_reuse_time password_verify_function patch path patindex pctincrease pctthreshold pctused pctversion percent percent_rank percentile_cont percentile_disc performance period period_add period_diff permanent physical pi pipe pipelined pivot pluggable plugin policy position post_transaction pow power pragma prebuilt precedes preceding precision prediction prediction_cost prediction_details prediction_probability prediction_set prepare present preserve prior priority private private_sga privileges procedural procedure procedure_analyze processlist profiles project prompt protection public publishingservername purge quarter query quick quiesce quota quotename radians raise rand range rank raw read reads readsize rebuild record records recover recovery recursive recycle redo reduced ref reference referenced references referencing refresh regexp_like register regr_avgx regr_avgy regr_count regr_intercept regr_r2 regr_slope regr_sxx regr_sxy reject rekey relational relative relaylog release release_lock relies_on relocate rely rem remainder rename repair repeat replace replicate replication required reset resetlogs resize resource respect restore restricted result result_cache resumable resume retention return returning returns reuse reverse revoke right rlike role roles rollback rolling rollup round row row_count rowdependencies rowid rownum rows rtrim rules safe salt sample save savepoint sb1 sb2 sb4 scan schema schemacheck scn scope scroll sdo_georaster sdo_topo_geometry search sec_to_time second section securefile security seed segment select self sequence sequential serializable server servererror session session_user sessions_per_user set sets settings sha sha1 sha2 share shared shared_pool short show shrink shutdown si_averagecolor si_colorhistogram si_featurelist si_positionalcolor si_stillimage si_texture siblings sid sign sin size size_t sizes skip slave sleep smalldatetimefromparts smallfile snapshot some soname sort soundex source space sparse spfile split sql sql_big_result sql_buffer_result sql_cache sql_calc_found_rows sql_small_result sql_variant_property sqlcode sqldata sqlerror sqlname sqlstate sqrt square standalone standby start starting startup statement static statistics stats_binomial_test stats_crosstab stats_ks_test stats_mode stats_mw_test stats_one_way_anova stats_t_test_ stats_t_test_indep stats_t_test_one stats_t_test_paired stats_wsr_test status std stddev stddev_pop stddev_samp stdev stop storage store stored str str_to_date straight_join strcmp strict string struct stuff style subdate subpartition subpartitions substitutable substr substring subtime subtring_index subtype success sum suspend switch switchoffset switchover sync synchronous synonym sys sys_xmlagg sysasm sysaux sysdate sysdatetimeoffset sysdba sysoper system system_user sysutcdatetime table tables tablespace tan tdo template temporary terminated tertiary_weights test than then thread through tier ties time time_format time_zone timediff timefromparts timeout timestamp timestampadd timestampdiff timezone_abbr timezone_minute timezone_region to to_base64 to_date to_days to_seconds todatetimeoffset trace tracking transaction transactional translate translation treat trigger trigger_nestlevel triggers trim truncate try_cast try_convert try_parse type ub1 ub2 ub4 ucase unarchived unbounded uncompress under undo unhex unicode uniform uninstall union unique unix_timestamp unknown unlimited unlock unpivot unrecoverable unsafe unsigned until untrusted unusable unused update updated upgrade upped upper upsert url urowid usable usage use use_stored_outlines user user_data user_resources users using utc_date utc_timestamp uuid uuid_short validate validate_password_strength validation valist value values var var_samp varcharc vari varia variab variabl variable variables variance varp varraw varrawc varray verify version versions view virtual visible void wait wallet warning warnings week weekday weekofyear wellformed when whene whenev wheneve whenever where while whitespace with within without work wrapped xdb xml xmlagg xmlattributes xmlcast xmlcolattval xmlelement xmlexists xmlforest xmlindex xmlnamespaces xmlpi xmlquery xmlroot xmlschema xmlserialize xmltable xmltype xor year year_to_month years yearweek",literal:"true false null",built_in:"array bigint binary bit blob boolean char character date dec decimal float int int8 integer interval number numeric real record serial serial8 smallint text varchar varying void"},c:[{cN:"string",b:"'",e:"'",c:[e.BE,{b:"''"}]},{cN:"string",b:'"',e:'"',c:[e.BE,{b:'""'}]},{cN:"string",b:"`",e:"`",c:[e.BE]},e.CNM,e.CBCM,t]},e.CBCM,t]}});hljs.registerLanguage("python",function(e){var r={cN:"meta",b:/^(>>>|\.\.\.) /},b={cN:"string",c:[e.BE],v:[{b:/(u|b)?r?'''/,e:/'''/,c:[r],r:10},{b:/(u|b)?r?"""/,e:/"""/,c:[r],r:10},{b:/(u|r|ur)'/,e:/'/,r:10},{b:/(u|r|ur)"/,e:/"/,r:10},{b:/(b|br)'/,e:/'/},{b:/(b|br)"/,e:/"/},e.ASM,e.QSM]},a={cN:"number",r:0,v:[{b:e.BNR+"[lLjJ]?"},{b:"\\b(0o[0-7]+)[lLjJ]?"},{b:e.CNR+"[lLjJ]?"}]},l={cN:"params",b:/\(/,e:/\)/,c:["self",r,a,b]};return{aliases:["py","gyp"],k:{keyword:"and elif is global as in if from raise for except finally print import pass return exec else break not with class assert yield try while continue del or def lambda async await nonlocal|10 None True False",built_in:"Ellipsis NotImplemented"},i:/(<\/|->|\?)/,c:[r,a,b,e.HCM,{v:[{cN:"function",bK:"def",r:10},{cN:"class",bK:"class"}],e:/:/,i:/[${=;\n,]/,c:[e.UTM,l,{b:/->/,eW:!0,k:"None"}]},{cN:"meta",b:/^[\t]*@/,e:/$/},{b:/\b(print|exec)\(/}]}});hljs.registerLanguage("mercury",function(e){var i={keyword:"module use_module import_module include_module end_module initialise mutable initialize finalize finalise interface implementation pred mode func type inst solver any_pred any_func is semidet det nondet multi erroneous failure cc_nondet cc_multi typeclass instance where pragma promise external trace atomic or_else require_complete_switch require_det require_semidet require_multi require_nondet require_cc_multi require_cc_nondet require_erroneous require_failure",meta:"inline no_inline type_spec source_file fact_table obsolete memo loop_check minimal_model terminates does_not_terminate check_termination promise_equivalent_clauses foreign_proc foreign_decl foreign_code foreign_type foreign_import_module foreign_export_enum foreign_export foreign_enum may_call_mercury will_not_call_mercury thread_safe not_thread_safe maybe_thread_safe promise_pure promise_semipure tabled_for_io local untrailed trailed attach_to_io_state can_pass_as_mercury_type stable will_not_throw_exception may_modify_trail will_not_modify_trail may_duplicate may_not_duplicate affects_liveness does_not_affect_liveness doesnt_affect_liveness no_sharing unknown_sharing sharing",built_in:"some all not if then else true fail false try catch catch_any semidet_true semidet_false semidet_fail impure_true impure semipure"},r=e.C("%","$"),t={cN:"number",b:"0'.\\|0[box][0-9a-fA-F]*"},_=e.inherit(e.ASM,{r:0}),n=e.inherit(e.QSM,{r:0}),a={cN:"subst",b:"\\\\[abfnrtv]\\|\\\\x[0-9a-fA-F]*\\\\\\|%[-+# *.0-9]*[dioxXucsfeEgGp]",r:0};n.c.push(a);var o={cN:"built_in",v:[{b:"<=>"},{b:"<=",r:0},{b:"=>",r:0},{b:"/\\\\"},{b:"\\\\/"}]},l={cN:"built_in",v:[{b:":-\\|-->"},{b:"=",r:0}]};return{aliases:["m","moo"],k:i,c:[o,l,r,e.CBCM,t,e.NM,_,n,{b:/:-/}]}});hljs.registerLanguage("haskell",function(e){var i={v:[e.C("--","$"),e.C("{-","-}",{c:["self"]})]},a={cN:"meta",b:"{-#",e:"#-}"},l={cN:"meta",b:"^#",e:"$"},c={cN:"type",b:"\\b[A-Z][\\w']*",r:0},n={b:"\\(",e:"\\)",i:'"',c:[a,l,{cN:"type",b:"\\b[A-Z][\\w]*(\\((\\.\\.|,|\\w+)\\))?"},e.inherit(e.TM,{b:"[_a-z][\\w']*"}),i]},s={b:"{",e:"}",c:n.c};return{aliases:["hs"],k:"let in if then else case of where do module import hiding qualified type data newtype deriving class instance as default infix infixl infixr foreign export ccall stdcall cplusplus jvm dotnet safe unsafe family forall mdo proc rec",c:[{bK:"module",e:"where",k:"module where",c:[n,i],i:"\\W\\.|;"},{b:"\\bimport\\b",e:"$",k:"import qualified as hiding",c:[n,i],i:"\\W\\.|;"},{cN:"class",b:"^(\\s*)?(class|instance)\\b",e:"where",k:"class family instance where",c:[c,n,i]},{cN:"class",b:"\\b(data|(new)?type)\\b",e:"$",k:"data family type
newtype deriving",c:[a,c,n,s,i]},{bK:"default",e:"$",c:[c,n,i]},{bK:"infix infixl infixr",e:"$",c:[e.CNM,i]},{b:"\\bforeign\\b",e:"$",k:"foreign import export ccall stdcall cplusplus jvm dotnet safe unsafe",c:[c,e.QSM,i]},{cN:"meta",b:"#!\\/usr\\/bin\\/env runhaskell",e:"$"},a,l,e.QSM,e.CNM,c,e.inherit(e.TM,{b:"^[_a-z][\\w']*"}),i,{b:"->|<-"}]}});hljs.registerLanguage("applescript",function(e){var t=e.inherit(e.QSM,{i:""}),r={cN:"params",b:"\\(",e:"\\)",c:["self",e.CNM,t]},i=e.C("--","$"),o=e.C("\\(*","*\\)",{c:["self",i]}),n=[i,o,e.HCM];return{aliases:["osascript"],k:{keyword:"about above after against and around as at back before beginning behind below beneath beside between but by considering contain contains continue copy div does eighth else end equal equals error every exit fifth first for fourth from front get given global if ignoring in into is it its last local me middle mod my ninth not of on onto or over prop property put ref reference repeat returning script second set seventh since sixth some tell tenth that the|0 then third through thru timeout times to transaction try until where while whose with without",literal:"AppleScript false linefeed return pi quote result space tab true",built_in:"alias application boolean class constant date file integer list number real record string text activate beep count delay launch log offset read round run say summarize write character characters contents day frontmost id item length month name paragraph paragraphs rest reverse running time version weekday word words year"},c:[t,e.CNM,{cN:"built_in",b:"\\b(clipboard info|the clipboard|info for|list (disks|folder)|mount volume|path to|(close|open for) access|(get|set) eof|current date|do shell script|get volume settings|random number|set volume|system attribute|system info|time to GMT|(load|run|store) script|scripting components|ASCII (character|number)|localized string|choose (application|color|file|file name|folder|from list|remote application|URL)|display (alert|dialog))\\b|^\\s*return\\b"},{cN:"literal",b:"\\b(text item delimiters|current application|missing value)\\b"},{cN:"keyword",b:"\\b(apart from|aside from|instead of|out of|greater than|isn't|(doesn't|does not) (equal|come before|come after|contain)|(greater|less) than(or equal)?|(starts?|ends|begins?) with|contained by|comes (before|after)|a (ref|reference)|POSIX file|POSIX path|(date|time) string|quoted form)\\b"},{bK:"on",i:"[${=;\\n]",c:[e.UTM,r]}].concat(n),i:"//|->|=>|\\[\\["}});hljs.registerLanguage("scala",function(e){var t={cN:"meta",b:"@[A-Za-z]+"},a={cN:"subst",v:[{b:"\\$[A-Za-z0-9_]+"},{b:"\\${",e:"}"}]},r={cN:"string",v:[{b:'"',e:'"',i:"\\n",c:[e.BE]},{b:'"""',e:'"""',r:10},{b:'[a-z]+"',e:'"',i:"\\n",c:[e.BE,a]},{cN:"string",b:'[a-z]+"""',e:'"""',c:[a],r:10}]},c={cN:"symbol",b:"'\\w[\\w\\d_]*(?!')"},i={cN:"type",b:"\\b[A-Z][A-Za-z0-9_]*",r:0},s={cN:"title",b:/[^0-9\n\t "'(),.`{}\[\]:;][^\n\t "'(),.`{}\[\]:;]+|[^0-9\n\t "'(),.`{}\[\]:;=]/,r:0},n={cN:"class",bK:"class object trait type",e:/[:={\[\n;]/,eE:!0,c:[{bK:"extends with",r:10},{b:/\[/,e:/\]/,eB:!0,eE:!0,r:0,c:[i]},{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,r:0,c:[i]},s]},l={cN:"function",bK:"def",e:/[:={\[(\n;]/,eE:!0,c:[s]};return{k:{literal:"true false null",keyword:"type yield lazy override def with val var sealed abstract private trait object if forSome for while throw finally protected extends import final return else break new catch super class case package default try this match continue throws implicit"},c:[e.CLCM,e.CBCM,r,c,i,l,n,e.CNM,t]}});hljs.registerLanguage("erlang",function(e){var r="[a-z'][a-zA-Z0-9_']*",c="("+r+":"+r+"|"+r+")",b={keyword:"after and andalso|10 band begin bnot bor bsl bzr bxor case catch cond div end fun if let not of orelse|10 query receive rem try when xor",literal:"false true"},i=e.C("%","$"),n={cN:"number",b:"\\b(\\d+#[a-fA-F0-9]+|\\d+(\\.\\d+)?([eE][-+]?\\d+)?)",r:0},a={b:"fun\\s+"+r+"/\\d+"},d={b:c+"\\(",e:"\\)",rB:!0,r:0,c:[{b:c,r:0},{b:"\\(",e:"\\)",eW:!0,rE:!0,r:0}]},o={b:"{",e:"}",r:0},t={b:"\\b_([A-Z][A-Za-z0-9_]*)?",r:0},f={b:"[A-Z][a-zA-Z0-9_]*",r:0},l={b:"#"+e.UIR,r:0,rB:!0,c:[{b:"#"+e.UIR,r:0},{b:"{",e:"}",r:0}]},s={bK:"fun receive if try case",e:"end",k:b};s.c=[i,a,e.inherit(e.ASM,{cN:""}),s,d,e.QSM,n,o,t,f,l];var u=[i,a,s,d,e.QSM,n,o,t,f,l];d.c[1].c=u,o.c=u,l.c[1].c=u;var h={cN:"params",b:"\\(",e:"\\)",c:u};return{aliases:["erl"],k:b,i:"(</|*=|\\+=|-=|/*|*/|\\(*|*\\))",c:[{cN:"function",b:"^"+r+"\\s*\\(",e:"->",rB:!0,i:"\\(|#|//|/*|\\\\|:|;",c:[h,e.inherit(e.TM,{b:r})],starts:{e:";|\\.",k:b,c:u}},i,{b:"^-",e:"\\.",r:0,eE:!0,rB:!0,l:"-"+e.IR,k:"-module -record -undef -export -ifdef -ifndef -author -copyright -doc -vsn -import -include -include_lib -compile -define -else -endif -file -behaviour -behavior -spec",c:[h]},n,e.QSM,l,t,f,o,{b:/\.$/}]}});hljs.registerLanguage("powershell",function(e){var t={b:"`[\\s\\S]",r:0},r={cN:"variable",v:[{b:/\$[\w\d][\w\d_:]*/}]},o={cN:"literal",b:/\$(null|true|false)\b/},a={cN:"string",b:/"/,e:/"/,c:[t,r,{cN:"variable",b:/\$[A-z]/,e:/[^A-z]/}]},i={cN:"string",b:/'/,e:/'/};return{aliases:["ps"],l:/-?[A-z\.\-]+/,cI:!0,k:{keyword:"if else foreach return function do while until elseif begin for trap data dynamicparam end break throw param continue finally in switch exit filter try process catch",built_in:"Add-Content Add-History Add-Member Add-PSSnapin Clear-Content Clear-Item Clear-Item Property Clear-Variable Compare-Object ConvertFrom-SecureString Convert-Path ConvertTo-Html ConvertTo-SecureString Copy-Item Copy-ItemProperty Export-Alias Export-Clixml Export-Console Export-Csv ForEach-Object Format-Custom Format-List Format-Table Format-Wide Get-Acl Get-Alias Get-AuthenticodeSignature Get-ChildItem Get-Command Get-Content Get-Credential Get-Culture Get-Date Get-EventLog Get-ExecutionPolicy Get-Help Get-History Get-Host Get-Item Get-ItemProperty Get-Location Get-Member Get-PfxCertificate Get-Process Get-PSDrive Get-PSProvider Get-PSSnapin Get-Service Get-TraceSource Get-UICulture Get-Unique Get-Variable Get-WmiObject Group-Object Import-Alias Import-Clixml Import-Csv Invoke-Expression Invoke-History Invoke-Item Join-Path Measure-Command Measure-Object Move-Item Move-ItemProperty New-Alias New-Item New-ItemProperty New-Object New-PSDrive New-Service New-TimeSpan New-Variable Out-Default Out-File Out-Host Out-Null Out-Printer Out-String Pop-Location Push-Location Read-Host Remove-Item Remove-ItemProperty Remove-PSDrive Remove-PSSnapin Remove-Variable Rename-Item Rename-ItemProperty Resolve-Path Restart-Service Resume-Service Select-Object Select-String Set-Acl Set-Alias Set-AuthenticodeSignature Set-Content Set-Date Set-ExecutionPolicy Set-Item Set-ItemProperty Set-Location Set-PSDebug Set-Service Set-TraceSource Set-Variable Sort-Object Split-Path Start-Service Start-Sleep Start-Transcript Stop-Process Stop-Service Stop-Transcript Suspend-Service Tee-Object Test-Path Trace-Command Update-FormatData Update-TypeData Where-Object Write-Debug Write-Error Write-Host Write-Output Write-Progress Write-Verbose Write-Warning",nomarkup:"-ne -eq -lt -gt -ge -le -not -like -notlike -match -notmatch -contains -notcontains -in -notin -replace"},c:[e.HCM,e.NM,a,i,o,r]}});hljs.registerLanguage("dust",function(e){var t="if eq ne lt lte gt gte select default math sep";return{aliases:["dst"],cI:!0,sL:"xml",c:[{cN:"template-tag",b:/\{[#\/]/,e:/\}/,i:/;/,c:[{cN:"name",b:/[a-zA-Z\.-]+/,starts:{eW:!0,r:0,c:[e.QSM]}}]},{cN:"template-variable",b:/\{/,e:/\}/,i:/;/,k:t}]}});hljs.registerLanguage("clojure",function(e){var t={"builtin-name":"def defonce cond apply if-not if-let if not not= = < > <= >= == + / * - rem quot neg? pos? delay? symbol? keyword? true? false? integer? empty? coll? list? set? ifn? fn? associative? sequential? sorted? counted? reversible? number? decimal? class? distinct? isa? float? rational? reduced? ratio? odd? even? char? seq? vector? string? map? nil? contains? zero? instance? not-every? not-any? libspec? -> ->> .. . inc compare do dotimes mapcat take remove take-while drop letfn drop-last take-last drop-while while intern condp case reduced cycle split-at split-with repeat replicate iterate range merge zipmap declare line-seq sort comparator sort-by dorun doall nthnext nthrest partition eval doseq await await-for let agent atom send send-off release-pending-sends add-watch mapv filterv remove-watch agent-error restart-agent set-error-handler error-handler set-error-mode! error-mode shutdown-agents quote var fn loop recur throw try monitor-enter monitor-exit defmacro defn defn- macroexpand macroexpand-1 for dosync and or when when-not when-let comp juxt partial sequence memoize constantly complement identity assert peek pop doto proxy defstruct first rest cons defprotocol cast coll deftype defrecord last butlast sigs reify second ffirst fnext nfirst nnext defmulti defmethod meta with-meta ns in-ns create-ns import refer keys select-keys vals key val rseq name namespace promise into transient persistent! conj! assoc! dissoc! pop! disj! use class type num float double short byte boolean bigint biginteger bigdec print-method print-dup throw-if printf format load compile get-in update-in pr pr-on newline flush read slurp read-line subvec with-open memfn time re-find re-groups rand-int rand mod locking assert-valid-fdecl alias resolve ref deref refset swap! reset! set-validator! compare-and-set! alter-meta! reset-meta! commute get-validator alter ref-set ref-history-count ref-min-history ref-max-history ensure sync io! new next conj set! to-array future future-call into-array aset gen-class reduce map filter find empty hash-map hash-set sorted-map sorted-map-by sorted-set sorted-set-by vec vector seq flatten reverse assoc dissoc list disj get union difference intersection extend extend-type extend-protocol int nth delay count concat chunk chunk-buffer chunk-append chunk-first chunk-rest max min dec unchecked-inc-int unchecked-inc unchecked-dec-inc unchecked-dec unchecked-negate unchecked-add-int unchecked-add
unchecked-subtract-int unchecked-subtract chunk-next chunk-cons chunked-seq? prn vary-meta lazy-seq spread list* str find-keyword keyword symbol gensym force rationalize"},r="a-zA-Z_\\-!.?+*=<>&#'",n="["+r+"]["+r+"0-9/;:]*",a="[-+]?\\d+(\\.\\d+)?",o={b:n,r:0},s={cN:"number",b:a,r:0},i=e.inherit(e.QSM,{i:null}),c=e.C(";","$",{r:0}),d={cN:"literal",b:/\b(true|false|nil)\b/},l={b:"[\\[\\{]",e:"[\\]\\}]"},m={cN:"comment",b:"\\^"+n},p=e.C("\\^\\{","\\}"),u={cN:"symbol",b:"[:]"+n},f={b:"\\(",e:"\\)"},h={eW:!0,r:0},y={k:t,l:n,cN:"name",b:n,starts:h},b=[f,i,m,p,c,u,l,s,d,o];return f.c=[e.C("comment",""),y,h],h.c=b,l.c=b,{aliases:["clj"],i:/\S/,c:[f,i,m,p,c,u,l,s,d]}});hljs.registerLanguage("go",function(e){var t={keyword:"break default func interface select case map struct chan else goto package switch const fallthrough if range type continue for import return var go defer bool byte complex64 complex128 float32 float64 int8 int16 int32 int64 string uint8 uint16 uint32 uint64 int uint uintptr rune",literal:"true false iota nil",built_in:"append cap close complex copy imag len make new panic print println real recover delete"};return{aliases:["golang"],k:t,i:"</",c:[e.CLCM,e.CBCM,e.QSM,{cN:"string",b:"'",e:"[^\\\\]'"},{cN:"string",b:"`",e:"`"},{cN:"number",b:e.CNR+"[dflsi]?",r:0},e.CNM]}});hljs.registerLanguage("tcl",function(e){return{aliases:["tk"],k:"after append apply array auto_execok auto_import auto_load auto_mkindex auto_mkindex_old auto_qualify auto_reset bgerror binary break catch cd chan clock close concat continue dde dict encoding eof error eval exec exit expr fblocked fconfigure fcopy file fileevent filename flush for foreach format gets glob global history http if incr info interp join lappend|10 lassign|10 lindex|10 linsert|10 list llength|10 load lrange|10 lrepeat|10 lreplace|10 lreverse|10 lsearch|10 lset|10 lsort|10 mathfunc mathop memory msgcat namespace open package parray pid pkg::create pkg_mkIndex platform platform::shell proc puts pwd read refchan regexp registry regsub|10 rename return safe scan seek set socket source split string subst switch tcl_endOfWord tcl_findLibrary tcl_startOfNextWord tcl_startOfPreviousWord tcl_wordBreakAfter tcl_wordBreakBefore tcltest tclvars tell time tm trace unknown unload unset update uplevel upvar variable vwait while",c:[e.C(";[\\t]*#","$"),e.C("^[\\t]*#","$"),{bK:"proc",e:"[\\{]",eE:!0,c:[{cN:"title",b:"[\\t\\n\\r]+(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*",e:"[\\t\\n\\r]",eW:!0,eE:!0}]},{eE:!0,v:[{b:"\\$(\\{)?(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*\\(([a-zA-Z0-9_])*\\)",e:"[^a-zA-Z0-9_\\}\\$]"},{b:"\\$(\\{)?(::)?[a-zA-Z_]((::)?[a-zA-Z0-9_])*",e:"(\\))?[^a-zA-Z0-9_\\}\\$]"}]},{cN:"string",c:[e.BE],v:[e.inherit(e.ASM,{i:null}),e.inherit(e.QSM,{i:null})]},{cN:"number",v:[e.BNM,e.CNM]}]}});hljs.registerLanguage("twig",function(e){var t={cN:"params",b:"\\(",e:"\\)"},a="attribute block constant cycle date dump include max min parent random range source template_from_string",r={bK:a,k:{name:a},r:0,c:[t]},c={b:/\|[A-Za-z_]+:?/,k:"abs batch capitalize convert_encoding date date_modify default escape first format join json_encode keys last length lower merge nl2br number_format raw replace reverse round slice sort split striptags title trim upper url_encode",c:[r]},s="autoescape block do embed extends filter flush for if import include macro sandbox set spaceless use verbatim";return s=s+" "+s.split(" ").map(function(e){return"end"+e}).join(" "),{aliases:["craftcms"],cI:!0,sL:"xml",c:[e.C(/\{#/,/#}/),{cN:"template-tag",b:/\{%/,e:/%}/,c:[{cN:"name",b:/\w+/,k:s,starts:{eW:!0,c:[c,r],r:0}}]},{cN:"template-variable",b:/\{\{/,e:/}}/,c:["self",c,r]}]}});hljs.registerLanguage("vhdl",function(e){var r="\\d(_|\\d)*",t="[eE][-+]?"+r,o=r+"(\\."+r+")?("+t+")?",n="\\w+",i=r+"#"+n+"(\\."+n+")?#("+t+")?",a="\\b("+i+"|"+o+")";return{cI:!0,k:{keyword:"abs access after alias all and architecture array assert attribute begin block body buffer bus case component configuration constant context cover disconnect downto default else elsif end entity exit fairness file for force function generate generic group guarded if impure in inertial inout is label library linkage literal loop map mod nand new next nor not null of on open or others out package port postponed procedure process property protected pure range record register reject release rem report restrict restrict_guarantee return rol ror select sequence severity shared signal sla sll sra srl strong subtype then to transport type unaffected units until use variable vmode vprop vunit wait when while with xnor xor",built_in:"boolean bit character severity_level integer time delay_length natural positive string bit_vector file_open_kind file_open_status std_ulogic std_ulogic_vector std_logic std_logic_vector unsigned signed boolean_vector integer_vector real_vector time_vector"},i:"{",c:[e.CBCM,e.C("--","$"),e.QSM,{cN:"number",b:a,r:0},{cN:"literal",b:"'(U|X|0|1|Z|W|L|H|-)'",c:[e.BE]},{cN:"symbol",b:"'[A-Za-z](_?[A-Za-z0-9])*",c:[e.BE]}]}});hljs.registerLanguage("javascript",function(e){return{aliases:["js","jsx"],k:{keyword:"in of if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await static import from as",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Promise"},c:[{cN:"meta",r:10,b:/^\s*['"]use (strict|asm)['"]/},{cN:"meta",b:/^#!/,e:/$/},e.ASM,e.QSM,{cN:"string",b:"`",e:"`",c:[e.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},e.CLCM,e.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:e.CNR}],r:0},{b:"("+e.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[e.CLCM,e.CBCM,e.RM,{b:/</,e:/(\/\w+|\w+\/)>/,sL:"xml",c:[{b:/<\w+\/>/,skip:!0},{b:/<\w+/,e:/(\/\w+|\w+\/)>/,skip:!0,c:["self"]}]}],r:0},{cN:"function",bK:"function",e:/\{/,eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,c:[e.CLCM,e.CBCM]}],i:/\[|%/},{b:/\$[(.]/},e.METHOD_GUARD,{cN:"class",bK:"class",e:/[{;=]/,eE:!0,i:/[:"\[\]]/,c:[{bK:"extends"},e.UTM]},{bK:"constructor",e:/\{/,eE:!0}],i:/#(?!!)/}});hljs.registerLanguage("less",function(e){var r="[\\w-]+",t="("+r+"|@{"+r+"})",a=[],c=[],s=function(e){return{cN:"string",b:"~?"+e+".*?"+e}},b=function(e,r,t){return{cN:e,b:r,r:t}},i={b:"\\(",e:"\\)",c:c,r:0};c.push(e.CLCM,e.CBCM,s("'"),s('"'),e.CSSNM,{b:"(url|data-uri)\\(",starts:{cN:"string",e:"[\\)\\n]",eE:!0}},b("number","#[0-9A-Fa-f]+\\b"),i,b("variable","@@?"+r,10),b("variable","@{"+r+"}"),b("built_in","~?`[^`]*?`"),{cN:"attribute",b:r+"\\s*:",e:":",rB:!0,eE:!0},{cN:"meta",b:"!important"});var n=c.concat({b:"{",e:"}",c:a}),o={bK:"when",eW:!0,c:[{bK:"and not"}].concat(c)},u={cN:"attribute",b:t,e:":",eE:!0,c:[e.CLCM,e.CBCM],i:/\S/,starts:{e:"[;}]",rE:!0,c:c,i:"[<=$]"}},C={cN:"keyword",b:"@(import|media|charset|font-face|(-[a-z]+-)?keyframes|supports|document|namespace|page|viewport|host)\\b",starts:{e:"[;{}]",rE:!0,c:c,r:0}},l={cN:"variable",v:[{b:"@"+r+"\\s*:",r:15},{b:"@"+r}],starts:{e:"[;}]",rE:!0,c:n}},p={v:[{b:"[\\.#:&\\[]",e:"[;{}]"},{b:t+"[^;]*{",e:"{"}],rB:!0,rE:!0,i:"[<='$\"]",c:[e.CLCM,e.CBCM,o,b("keyword","all\\b"),b("variable","@{"+r+"}"),b("selector-tag",t+"%?",0),b("selector-id","#"+t),b("selector-class","\\."+t,0),b("selector-tag","&",0),{cN:"selector-attr",b:"\\[",e:"\\]"},{b:"\\(",e:"\\)",c:n},{b:"!important"}]};return a.push(e.CLCM,e.CBCM,C,l,p,u),{cI:!0,i:"[=>'/<($\"]",c:a}});hljs.registerLanguage("q",function(e){var s={keyword:"do while select delete by update from",literal:"0b 1b",built_in:"neg not null string reciprocal floor ceiling signum mod xbar xlog and or each scan over prior mmu lsq inv md5 ltime gtime count first var dev med cov cor all any rand sums prds mins maxs fills deltas ratios avgs differ prev next rank reverse iasc idesc asc desc msum mcount mavg mdev xrank mmin mmax xprev rotate distinct group where flip type key til get value attr cut set upsert raze union inter except cross sv vs sublist enlist read0 read1 hopen hclose hdel hsym hcount peach system ltrim rtrim trim lower upper ssr view tables views cols xcols keys xkey xcol xasc xdesc fkeys meta lj aj aj0 ij pj asof uj ww wj wj1 fby xgroup ungroup ej save load rsave rload show csv parse eval min max avg wavg wsum sin cos tan sum",type:"`float `double int `timestamp `timespan `datetime `time `boolean `symbol `char `byte `short `long `real `month `date `minute `second `guid"};return{aliases:["k","kdb"],k:s,l:/(`?)[A-Za-z0-9_]+\b/,c:[e.CLCM,e.QSM,e.CNM]}});hljs.registerLanguage("gherkin",function(e){return{aliases:["feature"],k:"Feature Background Ability Business Need Scenario Scenarios Scenario Outline Scenario Template Examples Given And Then But When",c:[{cN:"keyword",b:"*"},{cN:"meta",b:"@[^@\\s]+"},{b:"\\|",e:"\\|\\w*$",c:[{cN:"string",b:"[^|]+"}]},{cN:"variable",b:"<",e:">"},e.HCM,{cN:"string",b:'"""',e:'"""'},e.QSM]}});hljs.registerLanguage("nginx",function(e){var r={cN:"variable",v:[{b:/\$\d+/},{b:/\$\{/,e:/}/},{b:"[\\$\\@]"+e.UIR}]},b={eW:!0,l:"[a-z/_]+",k:{literal:"on off yes no true false none blocked debug info notice warn error crit select break last permanent redirect kqueue rtsig epoll poll /dev/poll"},r:0,i:"=>",c:[e.HCM,{cN:"string",c:[e.BE,r],v:[{b:/"/,e:/"/},{b:/'/,e:/'/}]},{b:"([a-z]+):/",e:"\\s",eW:!0,eE:!0,c:[r]},{cN:"regexp",c:[e.BE,r],v:[{b:"\\s\\^",e:"\\s|{|;",rE:!0},{b:"~*?\\s+",e:"\\s|{
;",rE:!0},{b:"*(\\.[a-z\\-]+)+"},{b:"([a-z\\-]+\\.)+*"}]},{cN:"number",b:"\\b\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}(:\\d{1,5})?\\b"},{cN:"number",b:"\\b\\d+[kKmMgGdshdwy]*\\b",r:0},r]};return{aliases:["nginxconf"],c:[e.HCM,{b:e.UIR+"\\s+{",rB:!0,e:"{",c:[{cN:"section",b:e.UIR}],r:0},{b:e.UIR+"\\s",e:";|{",rB:!0,c:[{cN:"attribute",b:e.UIR,starts:b}],r:0}],i:"[^\\s\\}]"}});hljs.registerLanguage("rust",function(e){var t="([uif](8|16|32|64|size))?",r=e.inherit(e.CBCM);r.c.push("self");var n="Copy Send Sized Sync Drop Fn FnMut FnOnce drop Box ToOwned Clone PartialEq PartialOrd Eq Ord AsRef AsMut Into From Default Iterator Extend IntoIterator DoubleEndedIterator ExactSizeIterator Option Result SliceConcatExt String ToString Vec assert! assert_eq! bitflags! bytes! cfg! col! concat! concat_idents! debug_assert! debug_assert_eq! env! panic! file! format! format_args! include_bin! include_str! line! local_data_key! module_path! option_env! print! println! select! stringify! try! unimplemented! unreachable! vec! write! writeln! macro_rules!";return{aliases:["rs"],k:{keyword:"alignof as be box break const continue crate do else enum extern false fn for if impl in let loop match mod mut offsetof once priv proc pub pure ref return self Self sizeof static struct super trait true type typeof unsafe unsized use virtual while where yield int i8 i16 i32 i64 uint u8 u32 u64 float f32 f64 str char bool",literal:"true false Some None Ok Err",built_in:n},l:e.IR+"!?",i:"</",c:[e.CLCM,r,e.inherit(e.QSM,{b:/b?"/,i:null}),{cN:"string",v:[{b:/r(#*)".*?"\1(?!#)/},{b:/b?'\\?(x\w{2}|u\w{4}|U\w{8}|.)'/}]},{cN:"symbol",b:/'[a-zA-Z_][a-zA-Z0-9_]*/},{cN:"number",v:[{b:"\\b0b([01_]+)"+t},{b:"\\b0o([0-7_]+)"+t},{b:"\\b0x([A-Fa-f0-9_]+)"+t},{b:"\\b(\\d[\\d_]*(\\.[0-9_]+)?([eE][+-]?[0-9_]+)?)"+t}],r:0},{cN:"function",bK:"fn",e:"(\\(|<)",eE:!0,c:[e.UTM]},{cN:"meta",b:"#\\!?\\[",e:"\\]",c:[{cN:"meta-string",b:/"/,e:/"/}]},{cN:"class",bK:"type",e:";",c:[e.inherit(e.UTM,{endsParent:!0})],i:"\\S"},{cN:"class",bK:"trait enum struct",e:"{",c:[e.inherit(e.UTM,{endsParent:!0})],i:"[\\w\\d]"},{b:e.IR+"::",k:{built_in:n}},{b:"->"}]}});hljs.registerLanguage("groovy",function(e){return{k:{literal:"true false null",keyword:"byte short char int long boolean float double void def as in assert trait super this abstract static volatile transient public private protected synchronized final class interface enum if else for while switch case break default continue throw throws try catch finally implements extends new import package return instanceof"},c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,{cN:"string",b:'"""',e:'"""'},{cN:"string",b:"'''",e:"'''"},{cN:"string",b:"\\$/",e:"/\\$",r:10},e.ASM,{cN:"regexp",b:/~?\/[^\/\n]+\//,c:[e.BE]},e.QSM,{cN:"meta",b:"^#!/usr/bin/env",e:"$",i:"\n"},e.BNM,{cN:"class",bK:"class interface trait enum",e:"{",i:":",c:[{bK:"extends implements"},e.UTM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"},{cN:"string",b:/[^\?]{0}[A-Za-z0-9_$]+ *:/},{b:/\?/,e:/\:/},{cN:"symbol",b:"^\\s*[A-Za-z0-9_$]+:",r:0}],i:/#|<\//}});hljs.registerLanguage("aspectj",function(e){var t="false synchronized int abstract float private char boolean static null if const for true while long throw strictfp finally protected import native final return void enum else extends implements break transient new catch instanceof byte super volatile case assert short package default double public try this switch continue throws privileged aspectOf adviceexecution proceed cflowbelow cflow initialization preinitialization staticinitialization withincode target within execution getWithinTypeName handler thisJoinPoint thisJoinPointStaticPart thisEnclosingJoinPointStaticPart declare parents warning error soft precedence thisAspectInstance",i="get set args call";return{k:t,i:/<\/|#/,c:[e.C("/**","*/",{r:0,c:[{b:/\w+@/,r:0},{cN:"doctag",b:"@[A-Za-z]+"}]}),e.CLCM,e.CBCM,e.ASM,e.QSM,{cN:"class",bK:"aspect",e:/[{;=]/,eE:!0,i:/[:;"\[\]]/,c:[{bK:"extends implements pertypewithin perthis pertarget percflowbelow percflow issingleton"},e.UTM,{b:/\([^\)]*/,e:/[)]+/,k:t+" "+i,eE:!1}]},{cN:"class",bK:"class interface",e:/[{;=]/,eE:!0,r:0,k:"class interface",i:/[:"\[\]]/,c:[{bK:"extends implements"},e.UTM]},{bK:"pointcut after before around throwing returning",e:/[)]/,eE:!1,i:/["\[\]]/,c:[{b:e.UIR+"\\s*\\(",rB:!0,c:[e.UTM]}]},{b:/[:]/,rB:!0,e:/[{;]/,r:0,eE:!1,k:t,i:/["\[\]]/,c:[{b:e.UIR+"\\s*\\(",k:t+" "+i},e.QSM]},{bK:"new throw",r:0},{cN:"function",b:/\w+ +\w+(\.)?\w+\s*\([^\)]*\)\s*((throws)[\w\s,]+)?[\{;]/,rB:!0,e:/[{;=]/,k:t,eE:!0,c:[{b:e.UIR+"\\s*\\(",rB:!0,r:0,c:[e.UTM]},{cN:"params",b:/\(/,e:/\)/,r:0,k:t,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"}]}});hljs.registerLanguage("actionscript",function(e){var a="[a-zA-Z_$][a-zA-Z0-9_$]*",t="([*]|[a-zA-Z_$][a-zA-Z0-9_$]*)",c={cN:"rest_arg",b:"[.]{3}",e:a,r:10};return{aliases:["as"],k:{keyword:"as break case catch class const continue default delete do dynamic each else extends final finally for function get if implements import in include instanceof interface internal is namespace native new override package private protected public return set static super switch this throw try typeof use var void while with",literal:"true false null undefined"},c:[e.ASM,e.QSM,e.CLCM,e.CBCM,e.CNM,{cN:"class",bK:"package",e:"{",c:[e.TM]},{cN:"class",bK:"class interface",e:"{",eE:!0,c:[{bK:"extends implements"},e.TM]},{cN:"meta",bK:"import include",e:";",k:{"meta-keyword":"import include"}},{cN:"function",bK:"function",e:"[{;]",eE:!0,i:"\\S",c:[e.TM,{cN:"params",b:"\\(",e:"\\)",c:[e.ASM,e.QSM,e.CLCM,e.CBCM,c]},{b:":\\s*"+t}]},e.METHOD_GUARD],i:/#/}});hljs.registerLanguage("diff",function(e){return{aliases:["patch"],c:[{cN:"meta",r:10,v:[{b:/^@@ +\-\d+,\d+ +\+\d+,\d+ +@@$/},{b:/^*** +\d+,\d+ +****$/},{b:/^\-\-\- +\d+,\d+ +\-\-\-\-$/}]},{cN:"comment",v:[{b:/Index: /,e:/$/},{b:/=====/,e:/=====$/},{b:/^\-\-\-/,e:/$/},{b:/^*{3} /,e:/$/},{b:/^\+\+\+/,e:/$/},{b:/*{5}/,e:/*{5}$/}]},{cN:"addition",b:"^\\+",e:"$"},{cN:"deletion",b:"^\\-",e:"$"},{cN:"addition",b:"^\\!",e:"$"}]}});hljs.registerLanguage("ini",function(e){var b={cN:"string",c:[e.BE],v:[{b:"'''",e:"'''",r:10},{b:'"""',e:'"""',r:10},{b:'"',e:'"'},{b:"'",e:"'"}]};return{aliases:["toml"],cI:!0,i:/\S/,c:[e.C(";","$"),e.HCM,{cN:"section",b:/^\s*\[+/,e:/\]+/},{b:/^[a-z0-9\[\]_-]+\s*=\s*/,e:"$",rB:!0,c:[{cN:"attr",b:/[a-z0-9\[\]_-]+/},{b:/=/,eW:!0,r:0,c:[{cN:"literal",b:/\bon|off|true|false|yes|no\b/},{cN:"variable",v:[{b:/\$[\w\d"][\w\d_]*/},{b:/\$\{(.*?)}/}]},b,{cN:"number",b:/([\+\-]+)?[\d]+_[\d_]+/},e.NM]}]}]}});hljs.registerLanguage("fortran",function(e){var t={cN:"params",b:"\\(",e:"\\)"},n={literal:".False. .True.",keyword:"kind do while private call intrinsic where elsewhere type endtype endmodule endselect endinterface end enddo endif if forall endforall only contains default return stop then public subroutine|10 function program .and. .or. .not. .le. .eq. .ge. .gt. .lt. goto save else use module select case access blank direct exist file fmt form formatted iostat name named nextrec number opened rec recl sequential status unformatted unit continue format pause cycle exit c_null_char c_alert c_backspace c_form_feed flush wait decimal round iomsg synchronous nopass non_overridable pass protected volatile abstract extends import non_intrinsic value deferred generic final enumerator class associate bind enum c_int c_short c_long c_long_long c_signed_char c_size_t c_int8_t c_int16_t c_int32_t c_int64_t c_int_least8_t c_int_least16_t c_int_least32_t c_int_least64_t c_int_fast8_t c_int_fast16_t c_int_fast32_t c_int_fast64_t c_intmax_t C_intptr_t c_float c_double c_long_double c_float_complex c_double_complex c_long_double_complex c_bool c_char c_null_ptr c_null_funptr c_new_line c_carriage_return c_horizontal_tab c_vertical_tab iso_c_binding c_loc c_funloc c_associated c_f_pointer c_ptr c_funptr iso_fortran_env character_storage_size error_unit file_storage_size input_unit iostat_end iostat_eor numeric_storage_size output_unit c_f_procpointer ieee_arithmetic ieee_support_underflow_control ieee_get_underflow_mode ieee_set_underflow_mode newunit contiguous recursive pad position action delim readwrite eor advance nml interface procedure namelist include sequence elemental pure integer real character complex logical dimension allocatable|10 parameter external implicit|10 none double precision assign intent optional pointer target in out common equivalence data",built_in:"alog alog10 amax0 amax1 amin0 amin1 amod cabs ccos cexp clog csin csqrt dabs dacos dasin datan datan2 dcos dcosh ddim dexp dint dlog dlog10 dmax1 dmin1 dmod dnint dsign dsin dsinh dsqrt dtan dtanh float iabs idim idint idnint ifix isign max0 max1 min0 min1 sngl algama cdabs cdcos cdexp cdlog cdsin cdsqrt cqabs cqcos cqexp cqlog cqsin cqsqrt dcmplx dconjg derf derfc dfloat dgamma dimag dlgama iqint qabs qacos qasin qatan qatan2 qcmplx qconjg qcos qcosh qdim qerf qerfc qexp qgamma qimag qlgama qlog qlog10 qmax1 qmin1 qmod qnint qsign qsin qsinh qsqrt qtan qtanh abs acos aimag aint anint asin atan atan2 char cmplx conjg cos cosh exp ichar index int log log10 max min nint sign sin sinh sqrt tan tanh print write dim lge lgt lle llt mod nullify allocate deallocate adjustl adjustr all allocated any associated bit_size btest ceiling count cshift date_and_time digits dot_product eoshift epsilon exponent floor fraction huge iand ibclr ibits ibset ieor ior ishft ishftc lbound len_trim matmul maxexponent maxloc maxval merge minexponent minloc minval modulo mvbits nearest pack present product radix random_number random_seed range repeat reshape rrspacing scale scan selected_int_kind selected_real_kind set_exponent shape size spacing spread sum system_clock tiny transpose trim ubound unpack verify achar iachar transfer dble entry dprod cpu_time command_argument_count get_command get_command_argument get_environment_variable is_iostat_end ieee_arithmetic ieee_support_underflow_control
ieee_get_underflow_mode ieee_set_underflow_mode is_iostat_eor move_alloc new_line selected_char_kind same_type_as extends_type_ofacosh asinh atanh bessel_j0 bessel_j1 bessel_jn bessel_y0 bessel_y1 bessel_yn erf erfc erfc_scaled gamma log_gamma hypot norm2 atomic_define atomic_ref execute_command_line leadz trailz storage_size merge_bits bge bgt ble blt dshiftl dshiftr findloc iall iany iparity image_index lcobound ucobound maskl maskr num_images parity popcnt poppar shifta shiftl shiftr this_image"};return{cI:!0,aliases:["f90","f95"],k:n,i:/\/*/,c:[e.inherit(e.ASM,{cN:"string",r:0}),e.inherit(e.QSM,{cN:"string",r:0}),{cN:"function",bK:"subroutine function program",i:"[${=\\n]",c:[e.UTM,t]},e.C("!","$",{r:0}),{cN:"number",b:"(?=\\b|\\+|\\-|\\.)(?=\\.\\d|\\d)(?:\\d+)?(?:\\.?\\d*)(?:[de][+-]?\\d+)?\\b\\.?",r:0}]}});hljs.registerLanguage("tex",function(c){var e={cN:"tag",b:/\\/,r:0,c:[{cN:"name",v:[{b:/[a-zA-Zа-яА-я]+[*]?/},{b:/[^a-zA-Zа-яА-я0-9]/}],starts:{eW:!0,r:0,c:[{cN:"string",v:[{b:/\[/,e:/\]/},{b:/\{/,e:/\}/}]},{b:/\s*=\s*/,eW:!0,r:0,c:[{cN:"number",b:/-?\d*\.?\d+(pt|pc|mm|cm|in|dd|cc|ex|em)?/}]}]}}]};return{c:[e,{cN:"formula",c:[e],r:0,v:[{b:/\$\$/,e:/\$\$/},{b:/\$/,e:/\$/}]},c.C("%","$",{r:0})]}});hljs.registerLanguage("typescript",function(e){var r={keyword:"in if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const class public private protected get set super static implements enum export import declare type namespace abstract",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document any number boolean string void"};return{aliases:["ts"],k:r,c:[{cN:"meta",b:/^\s*['"]use strict['"]/},e.ASM,e.QSM,{cN:"string",b:"`",e:"`",c:[e.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},e.CLCM,e.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:e.CNR}],r:0},{b:"("+e.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[e.CLCM,e.CBCM,e.RM],r:0},{cN:"function",b:"function",e:/[\{;]/,eE:!0,k:r,c:["self",e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,k:r,c:[e.CLCM,e.CBCM],i:/["'\(]/}],i:/\[|%/,r:0},{bK:"constructor",e:/\{/,eE:!0},{bK:"module",e:/\{/,eE:!0},{bK:"interface",e:/\{/,eE:!0,k:"interface extends"},{b:/\$[(.]/},{b:"\\."+e.IR,r:0}]}});hljs.registerLanguage("scss",function(e){var t="[a-zA-Z-][a-zA-Z0-9_-]*",i={cN:"variable",b:"(\\$"+t+")\\b"},r={cN:"number",b:"#[0-9A-Fa-f]+"};({cN:"attribute",b:"[A-Z_\\.\\-]+",e:":",eE:!0,i:"[^\\s]",starts:{eW:!0,eE:!0,c:[r,e.CSSNM,e.QSM,e.ASM,e.CBCM,{cN:"meta",b:"!important"}]}});return{cI:!0,i:"[=/|']",c:[e.CLCM,e.CBCM,{cN:"selector-id",b:"\\#[A-Za-z0-9_-]+",r:0},{cN:"selector-class",b:"\\.[A-Za-z0-9_-]+",r:0},{cN:"selector-attr",b:"\\[",e:"\\]",i:"$"},{cN:"selector-tag",b:"\\b(a|abbr|acronym|address|area|article|aside|audio|b|base|big|blockquote|body|br|button|canvas|caption|cite|code|col|colgroup|command|datalist|dd|del|details|dfn|div|dl|dt|em|embed|fieldset|figcaption|figure|footer|form|frame|frameset|(h[1-6])|head|header|hgroup|hr|html|i|iframe|img|input|ins|kbd|keygen|label|legend|li|link|map|mark|meta|meter|nav|noframes|noscript|object|ol|optgroup|option|output|p|param|pre|progress|q|rp|rt|ruby|samp|script|section|select|small|span|strike|strong|style|sub|sup|table|tbody|td|textarea|tfoot|th|thead|time|title|tr|tt|ul|var|video)\\b",r:0},{b:":(visited|valid|root|right|required|read-write|read-only|out-range|optional|only-of-type|only-child|nth-of-type|nth-last-of-type|nth-last-child|nth-child|not|link|left|last-of-type|last-child|lang|invalid|indeterminate|in-range|hover|focus|first-of-type|first-line|first-letter|first-child|first|enabled|empty|disabled|default|checked|before|after|active)"},{b:"::(after|before|choices|first-letter|first-line|repeat-index|repeat-item|selection|value)"},i,{cN:"attribute",b:"\\b(z-index|word-wrap|word-spacing|word-break|width|widows|white-space|visibility|vertical-align|unicode-bidi|transition-timing-function|transition-property|transition-duration|transition-delay|transition|transform-style|transform-origin|transform|top|text-underline-position|text-transform|text-shadow|text-rendering|text-overflow|text-indent|text-decoration-style|text-decoration-line|text-decoration-color|text-decoration|text-align-last|text-align|tab-size|table-layout|right|resize|quotes|position|pointer-events|perspective-origin|perspective|page-break-inside|page-break-before|page-break-after|padding-top|padding-right|padding-left|padding-bottom|padding|overflow-y|overflow-x|overflow-wrap|overflow|outline-width|outline-style|outline-offset|outline-color|outline|orphans|order|opacity|object-position|object-fit|normal|none|nav-up|nav-right|nav-left|nav-index|nav-down|min-width|min-height|max-width|max-height|mask|marks|margin-top|margin-right|margin-left|margin-bottom|margin|list-style-type|list-style-position|list-style-image|list-style|line-height|letter-spacing|left|justify-content|initial|inherit|ime-mode|image-orientation|image-resolution|image-rendering|icon|hyphens|height|font-weight|font-variant-ligatures|font-variant|font-style|font-stretch|font-size-adjust|font-size|font-language-override|font-kerning|font-feature-settings|font-family|font|float|flex-wrap|flex-shrink|flex-grow|flex-flow|flex-direction|flex-basis|flex|filter|empty-cells|display|direction|cursor|counter-reset|counter-increment|content|column-width|column-span|column-rule-width|column-rule-style|column-rule-color|column-rule|column-gap|column-fill|column-count|columns|color|clip-path|clip|clear|caption-side|break-inside|break-before|break-after|box-sizing|box-shadow|box-decoration-break|bottom|border-width|border-top-width|border-top-style|border-top-right-radius|border-top-left-radius|border-top-color|border-top|border-style|border-spacing|border-right-width|border-right-style|border-right-color|border-right|border-radius|border-left-width|border-left-style|border-left-color|border-left|border-image-width|border-image-source|border-image-slice|border-image-repeat|border-image-outset|border-image|border-color|border-collapse|border-bottom-width|border-bottom-style|border-bottom-right-radius|border-bottom-left-radius|border-bottom-color|border-bottom|border|background-size|background-repeat|background-position|background-origin|background-image|background-color|background-clip|background-attachment|background-blend-mode|background|backface-visibility|auto|animation-timing-function|animation-play-state|animation-name|animation-iteration-count|animation-fill-mode|animation-duration|animation-direction|animation-delay|animation|align-self|align-items|align-content)\\b",i:"[^\\s]"},{b:"\\b(whitespace|wait|w-resize|visible|vertical-text|vertical-ideographic|uppercase|upper-roman|upper-alpha|underline|transparent|top|thin|thick|text|text-top|text-bottom|tb-rl|table-header-group|table-footer-group|sw-resize|super|strict|static|square|solid|small-caps|separate|se-resize|scroll|s-resize|rtl|row-resize|ridge|right|repeat|repeat-y|repeat-x|relative|progress|pointer|overline|outside|outset|oblique|nowrap|not-allowed|normal|none|nw-resize|no-repeat|no-drop|newspaper|ne-resize|n-resize|move|middle|medium|ltr|lr-tb|lowercase|lower-roman|lower-alpha|loose|list-item|line|line-through|line-edge|lighter|left|keep-all|justify|italic|inter-word|inter-ideograph|inside|inset|inline|inline-block|inherit|inactive|ideograph-space|ideograph-parenthesis|ideograph-numeric|ideograph-alpha|horizontal|hidden|help|hand|groove|fixed|ellipsis|e-resize|double|dotted|distribute|distribute-space|distribute-letter|distribute-all-lines|disc|disabled|default|decimal|dashed|crosshair|collapse|col-resize|circle|char|center|capitalize|break-word|break-all|bottom|both|bolder|bold|block|bidi-override|below|baseline|auto|always|all-scroll|absolute|table|table-cell)\\b"},{b:":",e:";",c:[i,r,e.CSSNM,e.QSM,e.ASM,{cN:"meta",b:"!important"}]},{b:"@",e:"[{;]",k:"mixin include extend for if else each while charset import debug media page content font-face namespace warn",c:[i,e.QSM,e.ASM,r,e.CSSNM,{b:"\\s[A-Za-z0-9_.-]+",r:0}]}]}});hljs.registerLanguage("puppet",function(e){var s={keyword:"and case default else elsif false if in import enherits node or true undef unless main settings $string ",literal:"alias audit before loglevel noop require subscribe tag owner ensure group mode name|0 changes context force incl lens load_path onlyif provider returns root show_diff type_check en_address ip_address realname command environment hour monute month monthday special target weekday creates cwd ogoutput refresh refreshonly tries try_sleep umask backup checksum content ctime force ignore links mtime purge recurse recurselimit replace selinux_ignore_defaults selrange selrole seltype seluser source souirce_permissions sourceselect validate_cmd validate_replacement allowdupe attribute_membership auth_membership forcelocal gid ia_load_module members system host_aliases ip allowed_trunk_vlans description device_url duplex encapsulation etherchannel native_vlan speed principals allow_root auth_class auth_type authenticate_user k_of_n mechanisms rule session_owner shared options device fstype enable hasrestart directory present absent link atboot blockdevice device dump pass remounts poller_tag use message withpath adminfile allow_virtual allowcdrom category configfiles flavor install_options instance package_settings platform responsefile status uninstall_options vendor unless_system_user unless_uid binary control flags hasstatus manifest pattern
restart running start stop allowdupe auths expiry gid groups home iterations key_membership keys managehome membership password password_max_age password_min_age profile_membership profiles project purge_ssh_keys role_membership roles salt shell uid baseurl cost descr enabled enablegroups exclude failovermethod gpgcheck gpgkey http_caching include includepkgs keepalive metadata_expire metalink mirrorlist priority protect proxy proxy_password proxy_username repo_gpgcheck s3_enabled skip_if_unavailable sslcacert sslclientcert sslclientkey sslverify mounted",built_in:"architecture augeasversion blockdevices boardmanufacturer boardproductname boardserialnumber cfkey dhcp_servers domain ec2_ ec2_userdata facterversion filesystems ldom fqdn gid hardwareisa hardwaremodel hostname id|0 interfaces ipaddress ipaddress_ ipaddress6 ipaddress6_ iphostnumber is_virtual kernel kernelmajversion kernelrelease kernelversion kernelrelease kernelversion lsbdistcodename lsbdistdescription lsbdistid lsbdistrelease lsbmajdistrelease lsbminordistrelease lsbrelease macaddress macaddress_ macosx_buildversion macosx_productname macosx_productversion macosx_productverson_major macosx_productversion_minor manufacturer memoryfree memorysize netmask metmask_ network_ operatingsystem operatingsystemmajrelease operatingsystemrelease osfamily partitions path physicalprocessorcount processor processorcount productname ps puppetversion rubysitedir rubyversion selinux selinux_config_mode selinux_config_policy selinux_current_mode selinux_current_mode selinux_enforced selinux_policyversion serialnumber sp_ sshdsakey sshecdsakey sshrsakey swapencrypted swapfree swapsize timezone type uniqueid uptime uptime_days uptime_hours uptime_seconds uuid virtual vlans xendomains zfs_version zonenae zones zpool_version"},r=e.C("#","$"),a="([A-Za-z_]|::)(\\w|::)*",i=e.inherit(e.TM,{b:a}),o={cN:"variable",b:"\\$"+a},t={cN:"string",c:[e.BE,o],v:[{b:/'/,e:/'/},{b:/"/,e:/"/}]};return{aliases:["pp"],c:[r,o,t,{bK:"class",e:"\\{|;",i:/=/,c:[i,r]},{bK:"define",e:/\{/,c:[{cN:"section",b:e.IR,endsParent:!0}]},{b:e.IR+"\\s+\\{",rB:!0,e:/\S/,c:[{cN:"keyword",b:e.IR},{b:/\{/,e:/\}/,k:s,r:0,c:[t,r,{b:"[a-zA-Z_]+\\s*=>",rB:!0,e:"=>",c:[{cN:"attr",b:e.IR}]},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},o]}],r:0}]}});hljs.registerLanguage("cpp",function(t){var e={cN:"keyword",b:"\\b[a-z\\d_]*_t\\b"},r={cN:"string",v:[t.inherit(t.QSM,{b:'((u8?|U)|L)?"'}),{b:'(u8?|U)?R"',e:'"',c:[t.BE]},{b:"'\\\\?.",e:"'",i:"."}]},i={cN:"number",v:[{b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},{b:t.CNR}],r:0},s={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef warning error line pragma ifdef ifndef"},c:[{b:/\\\n/,r:0},{bK:"include",e:"$",k:{"meta-keyword":"include"},c:[t.inherit(r,{cN:"meta-string"}),{cN:"meta-string",b:"<",e:">",i:"\\n"}]},r,t.CLCM,t.CBCM]},a=t.IR+"\\s*\\(",c={keyword:"int float while private char catch export virtual operator sizeof dynamic_cast|10 typedef const_cast|10 const struct for static_cast|10 union namespace unsigned long volatile static protected bool template mutable if public friend do goto auto void enum else break extern using class asm case typeid short reinterpret_cast|10 default double register explicit signed typename try this switch continue inline delete alignof constexpr decltype noexcept static_assert thread_local restrict _Bool complex _Complex _Imaginary atomic_bool atomic_char atomic_schar atomic_uchar atomic_short atomic_ushort atomic_int atomic_uint atomic_long atomic_ulong atomic_llong atomic_ullong",built_in:"std string cin cout cerr clog stdin stdout stderr stringstream istringstream ostringstream auto_ptr deque list queue stack vector map set bitset multiset multimap unordered_set unordered_map unordered_multiset unordered_multimap array shared_ptr abort abs acos asin atan2 atan calloc ceil cosh cos exit exp fabs floor fmod fprintf fputs free frexp fscanf isalnum isalpha iscntrl isdigit isgraph islower isprint ispunct isspace isupper isxdigit tolower toupper labs ldexp log10 log malloc realloc memchr memcmp memcpy memset modf pow printf putchar puts scanf sinh sin snprintf sprintf sqrt sscanf strcat strchr strcmp strcpy strcspn strlen strncat strncmp strncpy strpbrk strrchr strspn strstr tanh tan vfprintf vprintf vsprintf endl initializer_list unique_ptr",literal:"true false nullptr NULL"};return{aliases:["c","cc","h","c++","h++","hpp"],k:c,i:"</",c:[e,t.CLCM,t.CBCM,i,r,s,{b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:c,c:["self",e]},{b:t.IR+"::",k:c},{bK:"new throw return else",r:0},{cN:"function",b:"("+t.IR+"[*&\\s]+)+"+a,rB:!0,e:/[{;=]/,eE:!0,k:c,i:/[^\w\s*&]/,c:[{b:a,rB:!0,c:[t.TM],r:0},{cN:"params",b:/\(/,e:/\)/,k:c,r:0,c:[t.CLCM,t.CBCM,r,i]},t.CLCM,t.CBCM,s]}]}});hljs.registerLanguage("gradle",function(e){return{cI:!0,k:{keyword:"task project allprojects subprojects artifacts buildscript configurations dependencies repositories sourceSets description delete from into include exclude source classpath destinationDir includes options sourceCompatibility targetCompatibility group flatDir doLast doFirst flatten todir fromdir ant def abstract break case catch continue default do else extends final finally for if implements instanceof native new private protected public return static switch synchronized throw throws transient try volatile while strictfp package import false null super this true antlrtask checkstyle codenarc copy boolean byte char class double float int interface long short void compile runTime file fileTree abs any append asList asWritable call collect compareTo count div dump each eachByte eachFile eachLine every find findAll flatten getAt getErr getIn getOut getText grep immutable inject inspect intersect invokeMethods isCase join leftShift minus multiply newInputStream newOutputStream newPrintWriter newReader newWriter next plus pop power previous print println push putAt read readBytes readLines reverse reverseEach round size sort splitEachLine step subMap times toInteger toList tokenize upto waitForOrKill withPrintWriter withReader withStream withWriter withWriterAppend write writeLine"},c:[e.CLCM,e.CBCM,e.ASM,e.QSM,e.NM,e.RM]}});hljs.registerLanguage("elixir",function(e){var r="[a-zA-Z_][a-zA-Z0-9_]*(\\!|\\?)?",n="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|**|[-/+%^&*~`|]|\\[\\]=?",b="and false then defined module in return redo retry end for true self when next until do begin unless nil break not case cond alias while ensure or include use alias fn quote",c={cN:"subst",b:"#\\{",e:"}",l:r,k:b},a={cN:"string",c:[e.BE,c],v:[{b:/'/,e:/'/},{b:/"/,e:/"/}]},i={cN:"function",bK:"def defp defmacro",e:/\B\b/,c:[e.inherit(e.TM,{b:r,endsParent:!0})]},s=e.inherit(i,{cN:"class",bK:"defmodule defrecord",e:/\bdo\b|$|;/}),l=[a,e.HCM,s,i,{cN:"symbol",b:":",c:[a,{b:n}],r:0},{cN:"symbol",b:r+":",r:0},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{cN:"variable",b:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{b:"->"},{b:"("+e.RSR+")\\s*",c:[e.HCM,{cN:"regexp",i:"\\n",c:[e.BE,c],v:[{b:"/",e:"/[a-z]*"},{b:"%r\\[",e:"\\][a-z]*"}]}],r:0}];return c.c=l,{l:r,k:b,c:l}});hljs.registerLanguage("http",function(e){var t="HTTP/[0-9\\.]+";return{aliases:["https"],i:"\\S",c:[{b:"^"+t,e:"$",c:[{cN:"number",b:"\\b\\d{3}\\b"}]},{b:"^[A-Z]+ (.*?) "+t+"$",rB:!0,e:"$",c:[{cN:"string",b:" ",e:" ",eB:!0,eE:!0},{b:t},{cN:"keyword",b:"[A-Z]+"}]},{cN:"attribute",b:"^\\w",e:": ",eE:!0,i:"\\n|\\s|=",starts:{e:"$",r:0}},{b:"\\n\\n",starts:{sL:[],eW:!0}}]}});hljs.registerLanguage("delphi",function(e){var r="exports register file shl array record property for mod while set ally label uses raise not stored class safecall var interface or private static exit index inherited to else stdcall override shr asm far resourcestring finalization packed virtual out and protected library do xorwrite goto near function end div overload object unit begin string on inline repeat until destructor write message program with read initialization except default nil if case cdecl in downto threadvar of try pascal const external constructor type public then implementation finally published procedure",t=[e.CLCM,e.C(/\{/,/\}/,{r:0}),e.C(/\(*/,/*\)/,{r:10})],a={cN:"string",b:/'/,e:/'/,c:[{b:/''/}]},i={cN:"string",b:/(#\d+)+/},c={b:e.IR+"\\s*=\\s*class\\s*\\(",rB:!0,c:[e.TM]},o={cN:"function",bK:"function constructor destructor procedure",e:/[:;]/,k:"function constructor|10 destructor|10 procedure|10",c:[e.TM,{cN:"params",b:/\(/,e:/\)/,k:r,c:[a,i]}].concat(t)};return{aliases:["dpr","dfm","pas","pascal","freepascal","lazarus","lpr","lfm"],cI:!0,k:r,i:/"|\$[G-Zg-z]|\/*|<\/|\|/,c:[a,i,e.NM,c,o].concat(t)}});hljs.registerLanguage("ruby",function(e){var b="[a-zA-Z_]\\w*[!?=]?|[-+~]\\@|<<|>>|=~|===?|<=>|[<>]=?|**|[-/+%^&*~`|]|\\[\\]=?",c="and false then defined module in return redo if BEGIN retry end for true self when next until do begin unless END rescue nil else break undef not super class case require yield alias while ensure elsif or include attr_reader attr_writer attr_accessor",r={cN:"doctag",b:"@[A-Za-z]+"},a={b:"#<",e:">"},s=[e.C("#","$",{c:[r]}),e.C("^\\=begin","^\\=end",{c:[r],r:10}),e.C("^__END__","\\n$")],n={cN:"subst",b:"#\\{",e:"}",k:c},t={cN:"string",c:[e.BE,n],v:[{b:/'/,e:/'/},{b:/"/,e:/"/},{b:/`/,e:/`/},{b:"%[qQwWx]?\\(",e:"\\)"},{b:"%[qQwWx]?\\[",e:"\\]"},{b:"%[qQwWx]?{",e:"}"},{b:"%[qQwWx]?<",e:">"},{b:"%[qQwWx]?/",e:"/"},{b:"%[qQwWx]?%",e:"%"},{b:"%[qQwWx]?-",e:"-"},{b:"%[qQwWx]?\\|",e:"\\|"},{b:/\B\?(\\\d{1,3}|\\x[A-Fa-f0-9]{1,2}|\\u[A-Fa-f0-9]{4}|\\?\S)\b/}]},i={cN:"params",b:"\\(",e:"\\)",endsParent:!0,k:c},d=[t,a,{cN:"class",bK:"class module",e:"$|;",i:/=/,c:[e.inherit(e.TM,{b:"[A-Za-z_]\\w*(::\\w+)*(\\?|\\!)?"}),{b:"<\\s*",c:[{b:"("+e.IR+"::)?"+e.IR}]}].concat(s)},{cN:"function",bK:"def",e:"$
;",c:[e.inherit(e.TM,{b:b}),i].concat(s)},{cN:"symbol",b:e.UIR+"(\\!|\\?)?:",r:0},{cN:"symbol",b:":",c:[t,{b:b}],r:0},{cN:"number",b:"(\\b0[0-7_]+)|(\\b0x[0-9a-fA-F_]+)|(\\b[1-9][0-9_]*(\\.[0-9_]+)?)|[0_]\\b",r:0},{b:"(\\$\\W)|((\\$|\\@\\@?)(\\w+))"},{b:"("+e.RSR+")\\s*",c:[a,{cN:"regexp",c:[e.BE,n],i:/\n/,v:[{b:"/",e:"/[a-z]*"},{b:"%r{",e:"}[a-z]*"},{b:"%r\\(",e:"\\)[a-z]*"},{b:"%r!",e:"![a-z]*"},{b:"%r\\[",e:"\\][a-z]*"}]}].concat(s),r:0}].concat(s);n.c=d,i.c=d;var o="[>?]>",l="[\\w#]+\\(\\w+\\):\\d+:\\d+>",u="(\\w+-)?\\d+\\.\\d+\\.\\d(p\\d+)?[^>]+>",w=[{b:/^\s*=>/,starts:{e:"$",c:d}},{cN:"meta",b:"^("+o+"|"+l+"|"+u+")",starts:{e:"$",c:d}}];return{aliases:["rb","gemspec","podspec","thor","irb"],k:c,i:/\/*/,c:s.concat(w).concat(d)}});hljs.registerLanguage("ceylon",function(e){var a="assembly module package import alias class interface object given value assign void function new of extends satisfies abstracts in out return break continue throw assert dynamic if else switch case for while try catch finally then let this outer super is exists nonempty",t="shared abstract formal default actual variable late native deprecatedfinal sealed annotation suppressWarnings small",s="doc by license see throws tagged",n={cN:"subst",eB:!0,eE:!0,b:/``/,e:/``/,k:a,r:10},r=[{cN:"string",b:'"""',e:'"""',r:10},{cN:"string",b:'"',e:'"',c:[n]},{cN:"string",b:"'",e:"'"},{cN:"number",b:"#[0-9a-fA-F_]+|\\$[01_]+|[0-9_]+(?:\\.[0-9_](?:[eE][+-]?\\d+)?)?[kMGTPmunpf]?",r:0}];return n.c=r,{k:{keyword:a+" "+t,meta:s},i:"\\$[^01]|#[^0-9a-fA-F]",c:[e.CLCM,e.C("/*","*/",{c:["self"]}),{cN:"meta",b:'@[a-z]\\w*(?:\\:"[^"]*")?'}].concat(r)}});hljs.registerLanguage("dts",function(e){var a={cN:"string",v:[e.inherit(e.QSM,{b:'((u8?|U)|L)?"'}),{b:'(u8?|U)?R"',e:'"',c:[e.BE]},{b:"'\\\\?.",e:"'",i:"."}]},c={cN:"number",v:[{b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},{b:e.CNR}],r:0},b={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"if else elif endif define undef ifdef ifndef"},c:[{b:/\\\n/,r:0},{bK:"include",e:"$",k:{"meta-keyword":"include"},c:[e.inherit(a,{cN:"meta-string"}),{cN:"meta-string",b:"<",e:">",i:"\\n"}]},a,e.CLCM,e.CBCM]},i={cN:"variable",b:"\\&[a-z\\d_]*\\b"},r={cN:"meta-keyword",b:"/[a-z][a-z\\d-]*/"},d={cN:"symbol",b:"^\\s*[a-zA-Z_][a-zA-Z\\d_]*:"},n={cN:"params",b:"<",e:">",c:[c,i]},s={cN:"class",b:/[a-zA-Z_][a-zA-Z\d_@]*\s{/,e:/[{;=]/,rB:!0,eE:!0},t={cN:"class",b:"/\\s*{",e:"};",r:10,c:[i,r,d,s,n,e.CLCM,e.CBCM,c,a]};return{k:"",c:[t,i,r,d,s,n,e.CLCM,e.CBCM,c,a,b,{b:e.IR+"::",k:""}]}});hljs.registerLanguage("django",function(e){var t={b:/\|[A-Za-z]+:?/,k:{name:"truncatewords removetags linebreaksbr yesno get_digit timesince random striptags filesizeformat escape linebreaks length_is ljust rjust cut urlize fix_ampersands title floatformat capfirst pprint divisibleby add make_list unordered_list urlencode timeuntil urlizetrunc wordcount stringformat linenumbers slice date dictsort dictsortreversed default_if_none pluralize lower join center default truncatewords_html upper length phone2numeric wordwrap time addslashes slugify first escapejs force_escape iriencode last safe safeseq truncatechars localize unlocalize localtime utc timezone"},c:[e.QSM,e.ASM]};return{aliases:["jinja"],cI:!0,sL:"xml",c:[e.C(/\{%\s*comment\s*%}/,/\{%\s*endcomment\s*%}/),e.C(/\{#/,/#}/),{cN:"template-tag",b:/\{%/,e:/%}/,c:[{cN:"name",b:/\w+/,k:{name:"comment endcomment load templatetag ifchanged endifchanged if endif firstof for endfor ifnotequal endifnotequal widthratio extends include spaceless endspaceless regroup ifequal endifequal ssi now with cycle url filter endfilter debug block endblock else autoescape endautoescape csrf_token empty elif endwith static trans blocktrans endblocktrans get_static_prefix get_media_prefix plural get_current_language language get_available_languages get_current_language_bidi get_language_info get_language_info_list localize endlocalize localtime endlocaltime timezone endtimezone get_current_timezone verbatim"},starts:{eW:!0,k:"in by as",c:[t],r:0}}]},{cN:"template-variable",b:/\{\{/,e:/}}/,c:[t]}]}});hljs.registerLanguage("css",function(e){var c="[a-zA-Z-][a-zA-Z0-9_-]*",t={b:/[A-Z_\.\-]+\s*:/,rB:!0,e:";",eW:!0,c:[{cN:"attribute",b:/\S/,e:":",eE:!0,starts:{eW:!0,eE:!0,c:[{b:/[\w-]+\(/,rB:!0,c:[{cN:"built_in",b:/[\w-]+/},{b:/\(/,e:/\)/,c:[e.ASM,e.QSM]}]},e.CSSNM,e.QSM,e.ASM,e.CBCM,{cN:"number",b:"#[0-9A-Fa-f]+"},{cN:"meta",b:"!important"}]}}]};return{cI:!0,i:/[=\/|'\$]/,c:[e.CBCM,{cN:"selector-id",b:/#[A-Za-z0-9_-]+/},{cN:"selector-class",b:/\.[A-Za-z0-9_-]+/},{cN:"selector-attr",b:/\[/,e:/\]/,i:"$"},{cN:"selector-pseudo",b:/:(:)?[a-zA-Z0-9_\-\+\(\)"'.]+/},{b:"@(font-face|page)",l:"[a-z-]+",k:"font-face page"},{b:"@",e:"[{;]",c:[{cN:"keyword",b:/\S+/},{b:/\s/,eW:!0,eE:!0,r:0,c:[e.ASM,e.QSM,e.CSSNM]}]},{cN:"selector-tag",b:c,r:0},{b:"{",e:"}",i:/\S/,c:[e.CBCM,t]}]}});hljs.registerLanguage("qml",function(r){var e={keyword:"in of on if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Behavior bool color coordinate date double enumeration font geocircle georectangle geoshape int list matrix4x4 parent point quaternion real rect size string url var variant vector2d vector3d vector4dPromise"},t="[a-zA-Z_][a-zA-Z0-9\\._]*",a={cN:"string",b:"(\\b|\"|')",e:"(//|/*|$)",i:"\\n",c:[r.BE]},n={bK:"import",e:"$",starts:{cN:"string",e:"(//|/*|$)",rE:!0},c:[a]},o={cN:"keyword",b:"\\bproperty\\b",starts:{cN:"string",e:"(:|=|;|,|//|/*|$)",rE:!0},r:0},i={cN:"keyword",b:"\\bsignal\\b",starts:{cN:"string",e:"(\\(|:|=|;|,|//|/*|$)",rE:!0},r:10},c={cN:"attribute",b:"\\bid\\s*:",starts:{cN:"emphasis",e:t,rE:!1},r:10},s={b:t+"\\s*:",rB:!0,c:[{cN:"attribute",b:t,includeBegin:!0,e:"\\s*:",eE:!0}],r:0},b={b:t+"\\s*{",rB:!0,c:[{cN:"decorator",k:e,b:t,includeBegin:!0,e:"\\s*{",eE:!0}],r:0};return{aliases:["qt"],cI:!1,k:e,c:[{cN:"pi",b:/^\s*['"]use (strict|asm)['"]/},r.ASM,r.QSM,{cN:"string",b:"`",e:"`",c:[r.BE,{cN:"subst",b:"\\$\\{",e:"\\}"}]},r.CLCM,r.CBCM,{cN:"number",v:[{b:"\\b(0[bB][01]+)"},{b:"\\b(0[oO][0-7]+)"},{b:r.CNR}],r:0},{b:"("+r.RSR+"|\\b(case|return|throw)\\b)\\s*",k:"return throw case",c:[r.CLCM,r.CBCM,r.RM,{b:/</,e:/>\s*[);\]]/,r:0,sL:"xml"}],r:0},n,i,o,{cN:"function",bK:"function",e:/\{/,eE:!0,c:[r.inherit(r.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{cN:"params",b:/\(/,e:/\)/,eB:!0,eE:!0,c:[r.CLCM,r.CBCM]}],i:/\[|%/},{b:"\\."+r.IR,r:0},c,s,b],i:/#/}});hljs.registerLanguage("coffeescript",function(e){var c={keyword:"in if for while finally new do return else break catch instanceof throw try this switch continue typeof delete debugger super then unless until loop of by when and or is isnt not",literal:"true false null undefined yes no on off",built_in:"npm require console print module global window document"},n="[A-Za-z$_][0-9A-Za-z$_]*",r={cN:"subst",b:/#\{/,e:/}/,k:c},s=[e.BNM,e.inherit(e.CNM,{starts:{e:"(\\s*/)?",r:0}}),{cN:"string",v:[{b:/'''/,e:/'''/,c:[e.BE]},{b:/'/,e:/'/,c:[e.BE]},{b:/"""/,e:/"""/,c:[e.BE,r]},{b:/"/,e:/"/,c:[e.BE,r]}]},{cN:"regexp",v:[{b:"///",e:"///",c:[r,e.HCM]},{b:"//[gim]*",r:0},{b:/\/(?![*])(\\\/|.)*?\/[gim]*(?=\W|$)/}]},{b:"@"+n},{b:"`",e:"`",eB:!0,eE:!0,sL:"javascript"}];r.c=s;var i=e.inherit(e.TM,{b:n}),t="(\\(.*\\))?\\s*\\B[-=]>",o={cN:"params",b:"\\([^\\(]",rB:!0,c:[{b:/\(/,e:/\)/,k:c,c:["self"].concat(s)}]};return{aliases:["coffee","cson","iced"],k:c,i:/\/*/,c:s.concat([e.C("###","###"),e.HCM,{cN:"function",b:"^\\s*"+n+"\\s*=\\s*"+t,e:"[-=]>",rB:!0,c:[i,o]},{b:/[:\(,=]\s*/,r:0,c:[{cN:"function",b:t,e:"[-=]>",rB:!0,c:[o]}]},{cN:"class",bK:"class",e:"$",i:/[:="\[\]]/,c:[{bK:"extends",eW:!0,i:/[:="\[\]]/,c:[i]},i]},{b:n+":",e:":",rB:!0,rE:!0,r:0}])}});hljs.registerLanguage("vbscript",function(e){return{aliases:["vbs"],cI:!0,k:{keyword:"call class const dim do loop erase execute executeglobal exit for each next function if then else on error option explicit new private property let get public randomize redim rem select case set stop sub while wend with end to elseif is or xor and not class_initialize class_terminate default preserve in me byval byref step resume goto",built_in:"lcase month vartype instrrev ubound setlocale getobject rgb getref string weekdayname rnd dateadd monthname now day minute isarray cbool round formatcurrency conversions csng timevalue second year space abs clng timeserial fixs len asc isempty maths dateserial atn timer isobject filter weekday datevalue ccur isdate instr datediff formatdatetime replace isnull right sgn array snumeric log cdbl hex chr lbound msgbox ucase getlocale cos cdate cbyte rtrim join hour oct typename trim strcomp int createobject loadpicture tan formatnumber mid scriptenginebuildversion scriptengine split scriptengineminorversion cint sin datepart ltrim sqr scriptenginemajorversion time derived eval date formatpercent exp inputbox left ascw chrw regexp server response request cstr err",literal:"true false null nothing empty"},i:"//",c:[e.inherit(e.QSM,{c:[{b:'""'}]}),e.C(/'/,/$/,{r:0}),e.CNM]}});hljs.registerLanguage("fsharp",function(e){var t={b:"<",e:">",c:[e.inherit(e.TM,{b:/'[a-zA-Z0-9_]+/})]};return{aliases:["fs"],k:"abstract and as assert base begin class default delegate do done downcast downto elif else end exception extern false finally for fun function global if in inherit inline interface internal lazy let match member module mutable namespace new null of
open or override private public rec return sig static struct then to true try type upcast use val void when while with yield",i:/\/*/,c:[{cN:"keyword",b:/\b(yield|return|let|do)!/},{cN:"string",b:'@"',e:'"',c:[{b:'""'}]},{cN:"string",b:'"""',e:'"""'},e.C("\\(*","*\\)"),{cN:"class",bK:"type",e:"\\(|=|$",eE:!0,c:[e.UTM,t]},{cN:"meta",b:"\\[<",e:">\\]",r:10},{cN:"symbol",b:"\\B('[A-Za-z])\\b",c:[e.BE]},e.CLCM,e.inherit(e.QSM,{i:null}),e.CNM]}});hljs.registerLanguage("dart",function(e){var t={cN:"subst",b:"\\$\\{",e:"}",k:"true false null this is new super"},r={cN:"string",v:[{b:"r'''",e:"'''"},{b:'r"""',e:'"""'},{b:"r'",e:"'",i:"\\n"},{b:'r"',e:'"',i:"\\n"},{b:"'''",e:"'''",c:[e.BE,t]},{b:'"""',e:'"""',c:[e.BE,t]},{b:"'",e:"'",i:"\\n",c:[e.BE,t]},{b:'"',e:'"',i:"\\n",c:[e.BE,t]}]};t.c=[e.CNM,r];var n={keyword:"assert async await break case catch class const continue default do else enum extends false final finally for if in is new null rethrow return super switch sync this throw true try var void while with yield abstract as dynamic export external factory get implements import library operator part set static typedef",built_in:"print Comparable DateTime Duration Function Iterable Iterator List Map Match Null Object Pattern RegExp Set Stopwatch String StringBuffer StringSink Symbol Type Uri bool double int num document window querySelector querySelectorAll Element ElementList"};return{k:n,c:[r,e.C("/**","*/",{sL:"markdown"}),e.C("///","$",{sL:"markdown"}),e.CLCM,e.CBCM,{cN:"class",bK:"class interface",e:"{",eE:!0,c:[{bK:"extends implements"},e.UTM]},e.CNM,{cN:"meta",b:"@[A-Za-z]+"},{b:"=>"}]}});hljs.registerLanguage("asciidoc",function(e){return{aliases:["adoc"],c:[e.C("^/{4,}\\n","\\n/{4,}$",{r:10}),e.C("^//","$",{r:0}),{cN:"title",b:"^\\.\\w.*$"},{b:"^[=*]{4,}\\n",e:"\\n^[=*]{4,}$",r:10},{cN:"section",r:10,v:[{b:"^(={1,5}) .+?(\\1)?$"},{b:"^[^\\[\\]\\n]+?\\n[=\\-~\\^\\+]{2,}$"}]},{cN:"meta",b:"^:.+?:",e:"\\s",eE:!0,r:10},{cN:"meta",b:"^\\[.+?\\]$",r:0},{cN:"quote",b:"^_{4,}\\n",e:"\\n_{4,}$",r:10},{cN:"code",b:"^[\\-\\.]{4,}\\n",e:"\\n[\\-\\.]{4,}$",r:10},{b:"^\\+{4,}\\n",e:"\\n\\+{4,}$",c:[{b:"<",e:">",sL:"xml",r:0}],r:10},{cN:"bullet",b:"^(*+|\\-+|\\.+|[^\\n]+?::)\\s+"},{cN:"symbol",b:"^(NOTE|TIP|IMPORTANT|WARNING|CAUTION):\\s+",r:10},{cN:"strong",b:"\\B*(?![*\\s])",e:"(\\n{2}|*)",c:[{b:"*\\w",r:0}]},{cN:"emphasis",b:"\\B'(?!['\\s])",e:"(\\n{2}|')",c:[{b:"\\\\'\\w",r:0}],r:0},{cN:"emphasis",b:"_(?![_\\s])",e:"(\\n{2}|_)",r:0},{cN:"string",v:[{b:"``.+?''"},{b:"`.+?'"}]},{cN:"code",b:"(`.+?`|\\+.+?\\+)",r:0},{cN:"code",b:"^[\\t]",e:"$",r:0},{b:"^'{3,}[\\t]*$",r:10},{b:"(link:)?(http|https|ftp|file|irc|image:?):\\S+\\[.*?\\]",rB:!0,c:[{b:"(link|image:?):",r:0},{cN:"link",b:"\\w",e:"[^\\[]+",r:0},{cN:"string",b:"\\[",e:"\\]",eB:!0,eE:!0,r:0}],r:10}]}});hljs.registerLanguage("dos",function(e){var r=e.C(/@?rem\b/,/$/,{r:10}),t={cN:"symbol",b:"^\\s*[A-Za-z._?][A-Za-z0-9_$#@~.?]*(:|\\s+label)",r:0};return{aliases:["bat","cmd"],cI:!0,i:/\/*/,k:{keyword:"if else goto for in do call exit not exist errorlevel defined equ neq lss leq gtr geq",built_in:"prn nul lpt3 lpt2 lpt1 con com4 com3 com2 com1 aux shift cd dir echo setlocal endlocal set pause copy append assoc at attrib break cacls cd chcp chdir chkdsk chkntfs cls cmd color comp compact convert date dir diskcomp diskcopy doskey erase fs find findstr format ftype graftabl help keyb label md mkdir mode more move path pause print popd pushd promt rd recover rem rename replace restore rmdir shiftsort start subst time title tree type ver verify vol ping net ipconfig taskkill xcopy ren del"},c:[{cN:"variable",b:/%%[^]|%[^]+?%|![^]+?!/},{cN:"function",b:t.b,e:"goto:eof",c:[e.inherit(e.TM,{b:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),r]},{cN:"number",b:"\\b\\d+",r:0},r]}});hljs.registerLanguage("lua",function(e){var t="\\[=*\\[",a="\\]=*\\]",r={b:t,e:a,c:["self"]},n=[e.C("--(?!"+t+")","$"),e.C("--"+t,a,{c:[r],r:10})];return{l:e.UIR,k:{keyword:"and break do else elseif end false for if in local nil not or repeat return then true until while",built_in:"_G _VERSION assert collectgarbage dofile error getfenv getmetatable ipairs load loadfile loadstring module next pairs pcall print rawequal rawget rawset require select setfenv setmetatable tonumber tostring type unpack xpcall coroutine debug io math os package string table"},c:n.concat([{cN:"function",bK:"function",e:"\\)",c:[e.inherit(e.TM,{b:"([_a-zA-Z]\\w*\\.)*([_a-zA-Z]\\w*:)?[_a-zA-Z]\\w*"}),{cN:"params",b:"\\(",eW:!0,c:n}].concat(n)},e.CNM,e.ASM,e.QSM,{cN:"string",b:t,e:a,c:[r],r:5}])}});hljs.registerLanguage("julia",function(e){var r={keyword:"in abstract baremodule begin bitstype break catch ccall const continue do else elseif end export finally for function global if immutable import importall let local macro module quote return try type typealias using while",literal:"true false ARGS CPU_CORES C_NULL DL_LOAD_PATH DevNull ENDIAN_BOM ENV I|0 Inf Inf16 Inf32 InsertionSort JULIA_HOME LOAD_PATH MS_ASYNC MS_INVALIDATE MS_SYNC MergeSort NaN NaN16 NaN32 OS_NAME QuickSort RTLD_DEEPBIND RTLD_FIRST RTLD_GLOBAL RTLD_LAZY RTLD_LOCAL RTLD_NODELETE RTLD_NOLOAD RTLD_NOW RoundDown RoundFromZero RoundNearest RoundToZero RoundUp STDERR STDIN STDOUT VERSION WORD_SIZE catalan cglobal e|0 eu|0 eulergamma golden im nothing pi γ π φ Inf64 NaN64 RoundNearestTiesAway RoundNearestTiesUp ",built_in:"ANY ASCIIString AbstractArray AbstractRNG AbstractSparseArray Any ArgumentError Array Associative Base64Pipe Bidiagonal BigFloat BigInt BitArray BitMatrix BitVector Bool BoundsError Box CFILE Cchar Cdouble Cfloat Char CharString Cint Clong Clonglong ClusterManager Cmd Coff_t Colon Complex Complex128 Complex32 Complex64 Condition Cptrdiff_t Cshort Csize_t Cssize_t Cuchar Cuint Culong Culonglong Cushort Cwchar_t DArray DataType DenseArray Diagonal Dict DimensionMismatch DirectIndexString Display DivideError DomainError EOFError EachLine Enumerate ErrorException Exception Expr Factorization FileMonitor FileOffset Filter Float16 Float32 Float64 FloatRange FloatingPoint Function GetfieldNode GotoNode Hermitian IO IOBuffer IOStream IPv4 IPv6 InexactError Int Int128 Int16 Int32 Int64 Int8 IntSet Integer InterruptException IntrinsicFunction KeyError LabelNode LambdaStaticData LineNumberNode LoadError LocalProcess MIME MathConst MemoryError MersenneTwister Method MethodError MethodTable Module NTuple NewvarNode Nothing Number ObjectIdDict OrdinalRange OverflowError ParseError PollingFileWatcher ProcessExitedException ProcessGroup Ptr QuoteNode Range Range1 Ranges Rational RawFD Real Regex RegexMatch RemoteRef RepString RevString RopeString RoundingMode Set SharedArray Signed SparseMatrixCSC StackOverflowError Stat StatStruct StepRange String SubArray SubString SymTridiagonal Symbol SymbolNode Symmetric SystemError Task TextDisplay Timer TmStruct TopNode Triangular Tridiagonal Type TypeConstructor TypeError TypeName TypeVar UTF16String UTF32String UTF8String UdpSocket Uint Uint128 Uint16 Uint32 Uint64 Uint8 UndefRefError UndefVarError UniformScaling UnionType UnitRange Unsigned Vararg VersionNumber WString WeakKeyDict WeakRef Woodbury Zip AbstractChannel AbstractFloat AbstractString AssertionError Base64DecodePipe Base64EncodePipe BufferStream CapturedException CartesianIndex CartesianRange Channel Cintmax_t CompositeException Cstring Cuintmax_t Cwstring Date DateTime Dims Enum GenSym GlobalRef HTML InitError InvalidStateException Irrational LinSpace LowerTriangular NullException Nullable OutOfMemoryError Pair PartialQuickSort Pipe RandomDevice ReadOnlyMemoryError ReentrantLock Ref RemoteException SegmentationFault SerializationState SimpleVector TCPSocket Text Tuple UDPSocket UInt UInt128 UInt16 UInt32 UInt64 UInt8 UnicodeError Union UpperTriangular Val Void WorkerConfig AbstractMatrix AbstractSparseMatrix AbstractSparseVector AbstractVecOrMat AbstractVector DenseMatrix DenseVecOrMat DenseVector Matrix SharedMatrix SharedVector StridedArray StridedMatrix StridedVecOrMat StridedVector VecOrMat Vector "},t="[A-Za-z_\\u00A1-\\uFFFF][A-Za-z_0-9\\u00A1-\\uFFFF]*",a={l:t,k:r,i:/<\//},n={cN:"type",b:/::/},o={cN:"type",b:/<:/},i={cN:"number",b:/(\b0x[\d_]*(\.[\d_]*)?|0x\.\d[\d_]*)p[-+]?\d+|\b0[box][a-fA-F0-9][a-fA-F0-9_]*|(\b\d[\d_]*(\.[\d_]*)?|\.\d[\d_]*)([eEfF][-+]?\d+)?/,r:0},l={cN:"string",b:/'(.|\\[xXuU][a-zA-Z0-9]+)'/},c={cN:"subst",b:/\$\(/,e:/\)/,k:r},s={cN:"variable",b:"\\$"+t},d={cN:"string",c:[e.BE,c,s],v:[{b:/\w*"""/,e:/"""\w*/,r:10},{b:/\w*"/,e:/"\w*/}]},S={cN:"string",c:[e.BE,c,s],b:"`",e:"`"},u={cN:"meta",b:"@"+t},g={cN:"comment",v:[{b:"#=",e:"=#",r:10},{b:"#",e:"$"}]};return a.c=[i,l,n,o,d,S,u,g,e.HCM],c.c=a.c,a});hljs.registerLanguage("matlab",function(e){var a=[e.CNM,{cN:"string",b:"'",e:"'",c:[e.BE,{b:"''"}]}],s={r:0,c:[{b:/'['\.]*/}]};return{k:{keyword:"break case catch classdef continue else elseif end enumerated events for function global if methods otherwise parfor persistent properties return spmd switch try while",built_in:"sin sind sinh asin asind asinh cos cosd cosh acos acosd acosh tan tand tanh atan atand atan2 atanh sec secd sech asec asecd asech csc cscd csch acsc acscd acsch cot cotd coth acot acotd acoth hypot exp expm1 log log1p log10 log2 pow2 realpow reallog realsqrt sqrt nthroot nextpow2 abs angle complex conj imag real unwrap isreal cplxpair fix floor ceil round mod rem sign airy besselj bessely besselh besseli besselk beta betainc betaln ellipj ellipke erf erfc erfcx erfinv expint gamma gammainc gammaln psi legendre cross dot factor isprime primes gcd lcm rat rats perms nchoosek factorial cart2sph cart2pol pol2cart sph2cart hsv2rgb rgb2hsv zeros ones eye repmat rand randn linspace logspace freqspace meshgrid accumarray size length ndims numel disp isempty isequal isequalwithequalnans cat reshape diag blkdiag tril triu fliplr flipud flipdim rot90 find sub2ind ind2sub bsxfun ndgrid permute ipermute shiftdim circshift squeeze isscalar isvector ans eps realmax realmin pi i inf nan isnan isinf isfinite j why compan
gallery hadamard hankel hilb invhilb magic pascal rosser toeplitz vander wilkinson"},i:'(//|"|#|/*|\\s+/\\w+)',c:[{cN:"function",bK:"function",e:"$",c:[e.UTM,{cN:"params",v:[{b:"\\(",e:"\\)"},{b:"\\[",e:"\\]"}]}]},{b:/[a-zA-Z_][a-zA-Z_0-9]*'['\.]*/,rB:!0,r:0,c:[{b:/[a-zA-Z_][a-zA-Z_0-9]*/,r:0},s.c[0]]},{b:"\\[",e:"\\]",c:a,r:0,starts:s},{b:"\\{",e:/}/,c:a,r:0,starts:s},{b:/\)/,r:0,starts:s},e.C("^\\s*\\%\\{\\s*$","^\\s*\\%\\}\\s*$"),e.C("\\%","$")].concat(a)}});hljs.registerLanguage("markdown",function(e){return{aliases:["md","mkdown","mkd"],c:[{cN:"section",v:[{b:"^#{1,6}",e:"$"},{b:"^.+?\\n[=-]{2,}$"}]},{b:"<",e:">",sL:"xml",r:0},{cN:"bullet",b:"^([*+-]|(\\d+\\.))\\s+"},{cN:"strong",b:"[*_]{2}.+?[*_]{2}"},{cN:"emphasis",v:[{b:"*.+?*"},{b:"_.+?_",r:0}]},{cN:"quote",b:"^>\\s+",e:"$"},{cN:"code",v:[{b:"`.+?`"},{b:"^({4}|)",e:"$",r:0}]},{b:"^[-*]{3,}",e:"$"},{b:"\\[.+?\\][\\(\\[].*?[\\)\\]]",rB:!0,c:[{cN:"string",b:"\\[",e:"\\]",eB:!0,rE:!0,r:0},{cN:"link",b:"\\]\\(",e:"\\)",eB:!0,eE:!0},{cN:"symbol",b:"\\]\\[",e:"\\]",eB:!0,eE:!0}],r:10},{b:"^\\[.+\\]:",rB:!0,c:[{cN:"symbol",b:"\\[",e:"\\]:",eB:!0,eE:!0,starts:{cN:"link",e:"$"}}]}]}});hljs.registerLanguage("vim",function(e){return{l:/[!#@\w]+/,k:{keyword:"N|0 P|0 X|0 a|0 ab abc abo al am an|0 ar arga argd arge argdo argg argl argu as au aug aun b|0 bN ba bad bd be bel bf bl bm bn bo bp br brea breaka breakd breakl bro bufdo buffers bun bw c|0 cN cNf ca cabc caddb cad caddf cal cat cb cc ccl cd ce cex cf cfir cgetb cgete cg changes chd che checkt cl cla clo cm cmapc cme cn cnew cnf cno cnorea cnoreme co col colo com comc comp con conf cope cp cpf cq cr cs cst cu cuna cunme cw delm deb debugg delc delf dif diffg diffo diffp diffpu diffs diffthis dig di dl dell dj dli do doautoa dp dr ds dsp e|0 ea ec echoe echoh echom echon el elsei em en endfo endf endt endw ene ex exe exi exu f|0 files filet fin fina fini fir fix fo foldc foldd folddoc foldo for fu go gr grepa gu gv ha helpf helpg helpt hi hid his ia iabc if ij il im imapc ime ino inorea inoreme int is isp iu iuna iunme j|0 ju k|0 keepa kee keepj lN lNf l|0 lad laddb laddf la lan lat lb lc lch lcl lcs le lefta let lex lf lfir lgetb lgete lg lgr lgrepa lh ll lla lli lmak lm lmapc lne lnew lnf ln loadk lo loc lockv lol lope lp lpf lr ls lt lu lua luad luaf lv lvimgrepa lw m|0 ma mak map mapc marks mat me menut mes mk mks mksp mkv mkvie mod mz mzf nbc nb nbs new nm nmapc nme nn nnoreme noa no noh norea noreme norm nu nun nunme ol o|0 om omapc ome on ono onoreme opt ou ounme ow p|0 profd prof pro promptr pc ped pe perld po popu pp pre prev ps pt ptN ptf ptj ptl ptn ptp ptr pts pu pw py3 python3 py3d py3f py pyd pyf quita qa rec red redi redr redraws reg res ret retu rew ri rightb rub rubyd rubyf rund ru rv sN san sa sal sav sb sbN sba sbf sbl sbm sbn sbp sbr scrip scripte scs se setf setg setl sf sfir sh sim sig sil sl sla sm smap smapc sme sn sni sno snor snoreme sor so spelld spe spelli spellr spellu spellw sp spr sre st sta startg startr star stopi stj sts sun sunm sunme sus sv sw sy synti sync tN tabN tabc tabdo tabe tabf tabfir tabl tabm tabnew tabn tabo tabp tabr tabs tab ta tags tc tcld tclf te tf th tj tl tm tn to tp tr try ts tu u|0 undoj undol una unh unl unlo unm unme uns up ve verb vert vim vimgrepa vi viu vie vm vmapc vme vne vn vnoreme vs vu vunme windo w|0 wN wa wh wi winc winp wn wp wq wqa ws wu wv x|0 xa xmapc xm xme xn xnoreme xu xunme y|0 z|0 ~ Next Print append abbreviate abclear aboveleft all amenu anoremenu args argadd argdelete argedit argglobal arglocal argument ascii autocmd augroup aunmenu buffer bNext ball badd bdelete behave belowright bfirst blast bmodified bnext botright bprevious brewind break breakadd breakdel breaklist browse bunload bwipeout change cNext cNfile cabbrev cabclear caddbuffer caddexpr caddfile call catch cbuffer cclose center cexpr cfile cfirst cgetbuffer cgetexpr cgetfile chdir checkpath checktime clist clast close cmap cmapclear cmenu cnext cnewer cnfile cnoremap cnoreabbrev cnoremenu copy colder colorscheme command comclear compiler continue confirm copen cprevious cpfile cquit crewind cscope cstag cunmap cunabbrev cunmenu cwindow delete delmarks debug debuggreedy delcommand delfunction diffupdate diffget diffoff diffpatch diffput diffsplit digraphs display deletel djump dlist doautocmd doautoall deletep drop dsearch dsplit edit earlier echo echoerr echohl echomsg else elseif emenu endif endfor endfunction endtry endwhile enew execute exit exusage file filetype find finally finish first fixdel fold foldclose folddoopen folddoclosed foldopen function global goto grep grepadd gui gvim hardcopy help helpfind helpgrep helptags highlight hide history insert iabbrev iabclear ijump ilist imap imapclear imenu inoremap inoreabbrev inoremenu intro isearch isplit iunmap iunabbrev iunmenu join jumps keepalt keepmarks keepjumps lNext lNfile list laddexpr laddbuffer laddfile last language later lbuffer lcd lchdir lclose lcscope left leftabove lexpr lfile lfirst lgetbuffer lgetexpr lgetfile lgrep lgrepadd lhelpgrep llast llist lmake lmap lmapclear lnext lnewer lnfile lnoremap loadkeymap loadview lockmarks lockvar lolder lopen lprevious lpfile lrewind ltag lunmap luado luafile lvimgrep lvimgrepadd lwindow move mark make mapclear match menu menutranslate messages mkexrc mksession mkspell mkvimrc mkview mode mzscheme mzfile nbclose nbkey nbsart next nmap nmapclear nmenu nnoremap nnoremenu noautocmd noremap nohlsearch noreabbrev noremenu normal number nunmap nunmenu oldfiles open omap omapclear omenu only onoremap onoremenu options ounmap ounmenu ownsyntax print profdel profile promptfind promptrepl pclose pedit perl perldo pop popup ppop preserve previous psearch ptag ptNext ptfirst ptjump ptlast ptnext ptprevious ptrewind ptselect put pwd py3do py3file python pydo pyfile quit quitall qall read recover redo redir redraw redrawstatus registers resize retab return rewind right rightbelow ruby rubydo rubyfile rundo runtime rviminfo substitute sNext sandbox sargument sall saveas sbuffer sbNext sball sbfirst sblast sbmodified sbnext sbprevious sbrewind scriptnames scriptencoding scscope set setfiletype setglobal setlocal sfind sfirst shell simalt sign silent sleep slast smagic smapclear smenu snext sniff snomagic snoremap snoremenu sort source spelldump spellgood spellinfo spellrepall spellundo spellwrong split sprevious srewind stop stag startgreplace startreplace startinsert stopinsert stjump stselect sunhide sunmap sunmenu suspend sview swapname syntax syntime syncbind tNext tabNext tabclose tabedit tabfind tabfirst tablast tabmove tabnext tabonly tabprevious tabrewind tag tcl tcldo tclfile tearoff tfirst throw tjump tlast tmenu tnext topleft tprevious trewind tselect tunmenu undo undojoin undolist unabbreviate unhide unlet unlockvar unmap unmenu unsilent update vglobal version verbose vertical vimgrep vimgrepadd visual viusage view vmap vmapclear vmenu vnew vnoremap vnoremenu vsplit vunmap vunmenu write wNext wall while winsize wincmd winpos wnext wprevious wqall wsverb wundo wviminfo xit xall xmapclear xmap xmenu xnoremap xnoremenu xunmap xunmenu yank",built_in:"synIDtrans atan2 range matcharg did_filetype asin feedkeys xor argv complete_check add getwinposx getqflist getwinposy screencol clearmatches empty extend getcmdpos mzeval garbagecollect setreg ceil sqrt diff_hlID inputsecret get getfperm getpid filewritable shiftwidth max sinh isdirectory synID system inputrestore winline atan visualmode inputlist tabpagewinnr round getregtype mapcheck hasmapto histdel argidx findfile sha256 exists toupper getcmdline taglist string getmatches bufnr strftime winwidth bufexists strtrans tabpagebuflist setcmdpos remote_read printf setloclist getpos getline bufwinnr float2nr len getcmdtype diff_filler luaeval resolve libcallnr foldclosedend reverse filter has_key bufname str2float strlen setline getcharmod setbufvar index searchpos shellescape undofile foldclosed setqflist buflisted strchars str2nr virtcol floor remove undotree remote_expr winheight gettabwinvar reltime cursor tabpagenr finddir localtime acos getloclist search tanh matchend rename gettabvar strdisplaywidth type abs py3eval setwinvar tolower wildmenumode log10 spellsuggest bufloaded synconcealed nextnonblank server2client complete settabwinvar executable input wincol setmatches getftype hlID inputsave searchpair or screenrow line settabvar histadd deepcopy strpart remote_peek and eval getftime submatch screenchar winsaveview matchadd mkdir screenattr getfontname libcall reltimestr getfsize winnr invert pow getbufline byte2line soundfold repeat fnameescape tagfiles sin strwidth spellbadword trunc maparg log lispindent hostname setpos globpath remote_foreground getchar synIDattr fnamemodify cscope_connection stridx winbufnr indent min complete_add nr2char searchpairpos inputdialog values matchlist items hlexists strridx browsedir expand fmod pathshorten line2byte argc count getwinvar glob foldtextresult getreg foreground cosh matchdelete has char2nr simplify histget searchdecl iconv winrestcmd pumvisible writefile foldlevel haslocaldir keys cos matchstr foldtext histnr tan tempname getcwd byteidx getbufvar islocked escape eventhandler remote_send serverlist winrestview synstack pyeval prevnonblank readfile cindent filereadable changenr exp"},i:/[{:]/,c:[e.NM,e.ASM,{cN:"string",b:/"(\\"|\n\\|[^"\n])*"/},e.C('"',"$"),{cN:"variable",b:/[bwtglsav]:[\w\d_]*/},{cN:"function",bK:"function function!",e:"$",r:0,c:[e.TM,{cN:"params",b:"\\(",e:"\\)"}]},{cN:"symbol",b:/<[\w-]+>/}]}});hljs.registerLanguage("ruleslanguage",function(T){return{k:{keyword:"BILL_PERIOD BILL_START BILL_STOP RS_EFFECTIVE_START RS_EFFECTIVE_STOP RS_JURIS_CODE RS_OPCO_CODE INTDADDATTRIBUTE|5 INTDADDVMSG|5 INTDBLOCKOP|5 INTDBLOCKOPNA|5 INTDCLOSE|5 INTDCOUNT|5 INTDCOUNTSTATUSCODE|5 INTDCREATEMASK|5 INTDCREATEDAYMASK|5 INTDCREATEFACTORMASK|5 INTDCREATEHANDLE|5 INTDCREATEOVERRIDEDAYMASK|5 INTDCREATEOVERRIDEMASK|5 INTDCREATESTATUSCODEMASK|5 INTDCREATETOUPERIOD|5
INTDDELETE|5 INTDDIPTEST|5 INTDEXPORT|5 INTDGETERRORCODE|5 INTDGETERRORMESSAGE|5 INTDISEQUAL|5 INTDJOIN|5 INTDLOAD|5 INTDLOADACTUALCUT|5 INTDLOADDATES|5 INTDLOADHIST|5 INTDLOADLIST|5 INTDLOADLISTDATES|5 INTDLOADLISTENERGY|5 INTDLOADLISTHIST|5 INTDLOADRELATEDCHANNEL|5 INTDLOADSP|5 INTDLOADSTAGING|5 INTDLOADUOM|5 INTDLOADUOMDATES|5 INTDLOADUOMHIST|5 INTDLOADVERSION|5 INTDOPEN|5 INTDREADFIRST|5 INTDREADNEXT|5 INTDRECCOUNT|5 INTDRELEASE|5 INTDREPLACE|5 INTDROLLAVG|5 INTDROLLPEAK|5 INTDSCALAROP|5 INTDSCALE|5 INTDSETATTRIBUTE|5 INTDSETDSTPARTICIPANT|5 INTDSETSTRING|5 INTDSETVALUE|5 INTDSETVALUESTATUS|5 INTDSHIFTSTARTTIME|5 INTDSMOOTH|5 INTDSORT|5 INTDSPIKETEST|5 INTDSUBSET|5 INTDTOU|5 INTDTOURELEASE|5 INTDTOUVALUE|5 INTDUPDATESTATS|5 INTDVALUE|5 STDEV INTDDELETEEX|5 INTDLOADEXACTUAL|5 INTDLOADEXCUT|5 INTDLOADEXDATES|5 INTDLOADEX|5 INTDLOADEXRELATEDCHANNEL|5 INTDSAVEEX|5 MVLOAD|5 MVLOADACCT|5 MVLOADACCTDATES|5 MVLOADACCTHIST|5 MVLOADDATES|5 MVLOADHIST|5 MVLOADLIST|5 MVLOADLISTDATES|5 MVLOADLISTHIST|5 IF FOR NEXT DONE SELECT END CALL ABORT CLEAR CHANNEL FACTOR LIST NUMBER OVERRIDE SET WEEK DISTRIBUTIONNODE ELSE WHEN THEN OTHERWISE IENUM CSV INCLUDE LEAVE RIDER SAVE DELETE NOVALUE SECTION WARN SAVE_UPDATE DETERMINANT LABEL REPORT REVENUE EACH IN FROM TOTAL CHARGE BLOCK AND OR CSV_FILE RATE_CODE AUXILIARY_DEMAND UIDACCOUNT RS BILL_PERIOD_SELECT HOURS_PER_MONTH INTD_ERROR_STOP SEASON_SCHEDULE_NAME ACCOUNTFACTOR ARRAYUPPERBOUND CALLSTOREDPROC GETADOCONNECTION GETCONNECT GETDATASOURCE GETQUALIFIER GETUSERID HASVALUE LISTCOUNT LISTOP LISTUPDATE LISTVALUE PRORATEFACTOR RSPRORATE SETBINPATH SETDBMONITOR WQ_OPEN BILLINGHOURS DATE DATEFROMFLOAT DATETIMEFROMSTRING DATETIMETOSTRING DATETOFLOAT DAY DAYDIFF DAYNAME DBDATETIME HOUR MINUTE MONTH MONTHDIFF MONTHHOURS MONTHNAME ROUNDDATE SAMEWEEKDAYLASTYEAR SECOND WEEKDAY WEEKDIFF YEAR YEARDAY YEARSTR COMPSUM HISTCOUNT HISTMAX HISTMIN HISTMINNZ HISTVALUE MAXNRANGE MAXRANGE MINRANGE COMPIKVA COMPKVA COMPKVARFROMKQKW COMPLF IDATTR FLAG LF2KW LF2KWH MAXKW POWERFACTOR READING2USAGE AVGSEASON MAXSEASON MONTHLYMERGE SEASONVALUE SUMSEASON ACCTREADDATES ACCTTABLELOAD CONFIGADD CONFIGGET CREATEOBJECT CREATEREPORT EMAILCLIENT EXPBLKMDMUSAGE EXPMDMUSAGE EXPORT_USAGE FACTORINEFFECT GETUSERSPECIFIEDSTOP INEFFECT ISHOLIDAY RUNRATE SAVE_PROFILE SETREPORTTITLE USEREXIT WATFORRUNRATE TO TABLE ACOS ASIN ATAN ATAN2 BITAND CEIL COS COSECANT COSH COTANGENT DIVQUOT DIVREM EXP FABS FLOOR FMOD FREPM FREXPN LOG LOG10 MAX MAXN MIN MINNZ MODF POW ROUND ROUND2VALUE ROUNDINT SECANT SIN SINH SQROOT TAN TANH FLOAT2STRING FLOAT2STRINGNC INSTR LEFT LEN LTRIM MID RIGHT RTRIM STRING STRINGNC TOLOWER TOUPPER TRIM NUMDAYS READ_DATE STAGING",built_in:"IDENTIFIER OPTIONS XML_ELEMENT XML_OP XML_ELEMENT_OF DOMDOCCREATE DOMDOCLOADFILE DOMDOCLOADXML DOMDOCSAVEFILE DOMDOCGETROOT DOMDOCADDPI DOMNODEGETNAME DOMNODEGETTYPE DOMNODEGETVALUE DOMNODEGETCHILDCT DOMNODEGETFIRSTCHILD DOMNODEGETSIBLING DOMNODECREATECHILDELEMENT DOMNODESETATTRIBUTE DOMNODEGETCHILDELEMENTCT DOMNODEGETFIRSTCHILDELEMENT DOMNODEGETSIBLINGELEMENT DOMNODEGETATTRIBUTECT DOMNODEGETATTRIBUTEI DOMNODEGETATTRIBUTEBYNAME DOMNODEGETBYNAME"},c:[T.CLCM,T.CBCM,T.ASM,T.QSM,T.CNM,{cN:"literal",v:[{b:"#\\s+[a-zA-Z\\ \\.]*",r:0},{b:"#[a-zA-Z\\ \\.]+"}]}]}});hljs.registerLanguage("xml",function(s){var e="[A-Za-z0-9\\._:-]+",t={eW:!0,i:/</,r:0,c:[{cN:"attr",b:e,r:0},{b:"=",r:0,c:[{cN:"string",v:[{b:/"/,e:/"/},{b:/'/,e:/'/},{b:/[^\s\/>]+/}]}]}]};return{aliases:["html","xhtml","rss","atom","xsl","plist"],cI:!0,c:[{cN:"meta",b:"<!DOCTYPE",e:">",r:10,c:[{b:"\\[",e:"\\]"}]},s.C("<!--","-->",{r:10}),{b:"<\\!\\[CDATA\\[",e:"\\]\\]>",r:10},{b:/<\?(php)?/,e:/\?>/,sL:"php",c:[{b:"/*",e:"*/",skip:!0}]},{cN:"tag",b:"<style(?=\\s|>|$)",e:">",k:{name:"style"},c:[t],starts:{e:"</style>",rE:!0,sL:["css","xml"]}},{cN:"tag",b:"<script(?=\\s|>|$)",e:">",k:{name:"script"},c:[t],starts:{e:"</script>",rE:!0,sL:["actionscript","javascript","handlebars","xml"]}},{cN:"meta",v:[{b:/<\?xml/,e:/\?>/,r:10},{b:/<\?\w+/,e:/\?>/}]},{cN:"tag",b:"</?",e:"/?>",c:[{cN:"name",b:/[^\/><\s]+/,r:0},t]}]}});hljs.registerLanguage("autoit",function(e){var t="ByRef Case Const ContinueCase ContinueLoop Default Dim Do Else ElseIf EndFunc EndIf EndSelect EndSwitch EndWith Enum Exit ExitLoop For Func Global If In Local Next ReDim Return Select Static Step Switch Then To Until Volatile WEnd While With",r="True False And Null Not Or",i="Abs ACos AdlibRegister AdlibUnRegister Asc AscW ASin Assign ATan AutoItSetOption AutoItWinGetTitle AutoItWinSetTitle Beep Binary BinaryLen BinaryMid BinaryToString BitAND BitNOT BitOR BitRotate BitShift BitXOR BlockInput Break Call CDTray Ceiling Chr ChrW ClipGet ClipPut ConsoleRead ConsoleWrite ConsoleWriteError ControlClick ControlCommand ControlDisable ControlEnable ControlFocus ControlGetFocus ControlGetHandle ControlGetPos ControlGetText ControlHide ControlListView ControlMove ControlSend ControlSetText ControlShow ControlTreeView Cos Dec DirCopy DirCreate DirGetSize DirMove DirRemove DllCall DllCallAddress DllCallbackFree DllCallbackGetPtr DllCallbackRegister DllClose DllOpen DllStructCreate DllStructGetData DllStructGetPtr DllStructGetSize DllStructSetData DriveGetDrive DriveGetFileSystem DriveGetLabel DriveGetSerial DriveGetType DriveMapAdd DriveMapDel DriveMapGet DriveSetLabel DriveSpaceFree DriveSpaceTotal DriveStatus EnvGet EnvSet EnvUpdate Eval Execute Exp FileChangeDir FileClose FileCopy FileCreateNTFSLink FileCreateShortcut FileDelete FileExists FileFindFirstFile FileFindNextFile FileFlush FileGetAttrib FileGetEncoding FileGetLongName FileGetPos FileGetShortcut FileGetShortName FileGetSize FileGetTime FileGetVersion FileInstall FileMove FileOpen FileOpenDialog FileRead FileReadLine FileReadToArray FileRecycle FileRecycleEmpty FileSaveDialog FileSelectFolder FileSetAttrib FileSetEnd FileSetPos FileSetTime FileWrite FileWriteLine Floor FtpSetProxy FuncName GUICreate GUICtrlCreateAvi GUICtrlCreateButton GUICtrlCreateCheckbox GUICtrlCreateCombo GUICtrlCreateContextMenu GUICtrlCreateDate GUICtrlCreateDummy GUICtrlCreateEdit GUICtrlCreateGraphic GUICtrlCreateGroup GUICtrlCreateIcon GUICtrlCreateInput GUICtrlCreateLabel GUICtrlCreateList GUICtrlCreateListView GUICtrlCreateListViewItem GUICtrlCreateMenu GUICtrlCreateMenuItem GUICtrlCreateMonthCal GUICtrlCreateObj GUICtrlCreatePic GUICtrlCreateProgress GUICtrlCreateRadio GUICtrlCreateSlider GUICtrlCreateTab GUICtrlCreateTabItem GUICtrlCreateTreeView GUICtrlCreateTreeViewItem GUICtrlCreateUpdown GUICtrlDelete GUICtrlGetHandle GUICtrlGetState GUICtrlRead GUICtrlRecvMsg GUICtrlRegisterListViewSort GUICtrlSendMsg GUICtrlSendToDummy GUICtrlSetBkColor GUICtrlSetColor GUICtrlSetCursor GUICtrlSetData GUICtrlSetDefBkColor GUICtrlSetDefColor GUICtrlSetFont GUICtrlSetGraphic GUICtrlSetImage GUICtrlSetLimit GUICtrlSetOnEvent GUICtrlSetPos GUICtrlSetResizing GUICtrlSetState GUICtrlSetStyle GUICtrlSetTip GUIDelete GUIGetCursorInfo GUIGetMsg GUIGetStyle GUIRegisterMsg GUISetAccelerators GUISetBkColor GUISetCoord GUISetCursor GUISetFont GUISetHelp GUISetIcon GUISetOnEvent GUISetState GUISetStyle GUIStartGroup GUISwitch Hex HotKeySet HttpSetProxy HttpSetUserAgent HWnd InetClose InetGet InetGetInfo InetGetSize InetRead IniDelete IniRead IniReadSection IniReadSectionNames IniRenameSection IniWrite IniWriteSection InputBox Int IsAdmin IsArray IsBinary IsBool IsDeclared IsDllStruct IsFloat IsFunc IsHWnd IsInt IsKeyword IsNumber IsObj IsPtr IsString Log MemGetStats Mod MouseClick MouseClickDrag MouseDown MouseGetCursor MouseGetPos MouseMove MouseUp MouseWheel MsgBox Number ObjCreate ObjCreateInterface ObjEvent ObjGet ObjName OnAutoItExitRegister OnAutoItExitUnRegister Opt Ping PixelChecksum PixelGetColor PixelSearch ProcessClose ProcessExists ProcessGetStats ProcessList ProcessSetPriority ProcessWait ProcessWaitClose ProgressOff ProgressOn ProgressSet Ptr Random RegDelete RegEnumKey RegEnumVal RegRead RegWrite Round Run RunAs RunAsWait RunWait Send SendKeepActive SetError SetExtended ShellExecute ShellExecuteWait Shutdown Sin Sleep SoundPlay SoundSetWaveVolume SplashImageOn SplashOff SplashTextOn Sqrt SRandom StatusbarGetText StderrRead StdinWrite StdioClose StdoutRead String StringAddCR StringCompare StringFormat StringFromASCIIArray StringInStr StringIsAlNum StringIsAlpha StringIsASCII StringIsDigit StringIsFloat StringIsInt StringIsLower StringIsSpace StringIsUpper StringIsXDigit StringLeft StringLen StringLower StringMid StringRegExp StringRegExpReplace StringReplace StringReverse StringRight StringSplit StringStripCR StringStripWS StringToASCIIArray StringToBinary StringTrimLeft StringTrimRight StringUpper Tan TCPAccept TCPCloseSocket TCPConnect TCPListen TCPNameToIP TCPRecv TCPSend TCPShutdown TCPStartup TimerDiff TimerInit ToolTip TrayCreateItem TrayCreateMenu TrayGetMsg TrayItemDelete TrayItemGetHandle TrayItemGetState TrayItemGetText TrayItemSetOnEvent TrayItemSetState TrayItemSetText TraySetClick TraySetIcon TraySetOnEvent TraySetPauseIcon TraySetState TraySetToolTip TrayTip UBound UDPBind UDPCloseSocket UDPOpen UDPRecv UDPSend UDPShutdown UDPStartup VarGetType WinActivate WinActive WinClose WinExists WinFlash WinGetCaretPos WinGetClassList WinGetClientSize WinGetHandle WinGetPos WinGetProcess WinGetState WinGetText WinGetTitle WinKill WinList WinMenuSelectItem WinMinimizeAll WinMinimizeAllUndo WinMove WinSetOnTop WinSetState WinSetTitle WinSetTrans WinWait WinWaitActive WinWaitClose WinWaitNotActive Array1DToHistogram ArrayAdd ArrayBinarySearch ArrayColDelete ArrayColInsert ArrayCombinations ArrayConcatenate ArrayDelete ArrayDisplay ArrayExtract ArrayFindAll ArrayInsert ArrayMax ArrayMaxIndex ArrayMin ArrayMinIndex ArrayPermute ArrayPop ArrayPush ArrayReverse ArraySearch ArrayShuffle ArraySort ArraySwap ArrayToClip ArrayToString ArrayTranspose ArrayTrim ArrayUnique Assert ChooseColor ChooseFont ClipBoard_ChangeChain ClipBoard_Close ClipBoard_CountFormats ClipBoard_Empty ClipBoard_EnumFormats ClipBoard_FormatStr ClipBoard_GetData ClipBoard_GetDataEx
ClipBoard_GetFormatName ClipBoard_GetOpenWindow ClipBoard_GetOwner ClipBoard_GetPriorityFormat ClipBoard_GetSequenceNumber ClipBoard_GetViewer ClipBoard_IsFormatAvailable ClipBoard_Open ClipBoard_RegisterFormat ClipBoard_SetData ClipBoard_SetDataEx ClipBoard_SetViewer ClipPutFile ColorConvertHSLtoRGB ColorConvertRGBtoHSL ColorGetBlue ColorGetCOLORREF ColorGetGreen ColorGetRed ColorGetRGB ColorSetCOLORREF ColorSetRGB Crypt_DecryptData Crypt_DecryptFile Crypt_DeriveKey Crypt_DestroyKey Crypt_EncryptData Crypt_EncryptFile Crypt_GenRandom Crypt_HashData Crypt_HashFile Crypt_Shutdown Crypt_Startup DateAdd DateDayOfWeek DateDaysInMonth DateDiff DateIsLeapYear DateIsValid DateTimeFormat DateTimeSplit DateToDayOfWeek DateToDayOfWeekISO DateToDayValue DateToMonth Date_Time_CompareFileTime Date_Time_DOSDateTimeToArray Date_Time_DOSDateTimeToFileTime Date_Time_DOSDateTimeToStr Date_Time_DOSDateToArray Date_Time_DOSDateToStr Date_Time_DOSTimeToArray Date_Time_DOSTimeToStr Date_Time_EncodeFileTime Date_Time_EncodeSystemTime Date_Time_FileTimeToArray Date_Time_FileTimeToDOSDateTime Date_Time_FileTimeToLocalFileTime Date_Time_FileTimeToStr Date_Time_FileTimeToSystemTime Date_Time_GetFileTime Date_Time_GetLocalTime Date_Time_GetSystemTime Date_Time_GetSystemTimeAdjustment Date_Time_GetSystemTimeAsFileTime Date_Time_GetSystemTimes Date_Time_GetTickCount Date_Time_GetTimeZoneInformation Date_Time_LocalFileTimeToFileTime Date_Time_SetFileTime Date_Time_SetLocalTime Date_Time_SetSystemTime Date_Time_SetSystemTimeAdjustment Date_Time_SetTimeZoneInformation Date_Time_SystemTimeToArray Date_Time_SystemTimeToDateStr Date_Time_SystemTimeToDateTimeStr Date_Time_SystemTimeToFileTime Date_Time_SystemTimeToTimeStr Date_Time_SystemTimeToTzSpecificLocalTime Date_Time_TzSpecificLocalTimeToSystemTime DayValueToDate DebugBugReportEnv DebugCOMError DebugOut DebugReport DebugReportEx DebugReportVar DebugSetup Degree EventLog__Backup EventLog__Clear EventLog__Close EventLog__Count EventLog__DeregisterSource EventLog__Full EventLog__Notify EventLog__Oldest EventLog__Open EventLog__OpenBackup EventLog__Read EventLog__RegisterSource EventLog__Report Excel_BookAttach Excel_BookClose Excel_BookList Excel_BookNew Excel_BookOpen Excel_BookOpenText Excel_BookSave Excel_BookSaveAs Excel_Close Excel_ColumnToLetter Excel_ColumnToNumber Excel_ConvertFormula Excel_Export Excel_FilterGet Excel_FilterSet Excel_Open Excel_PictureAdd Excel_Print Excel_RangeCopyPaste Excel_RangeDelete Excel_RangeFind Excel_RangeInsert Excel_RangeLinkAddRemove Excel_RangeRead Excel_RangeReplace Excel_RangeSort Excel_RangeValidate Excel_RangeWrite Excel_SheetAdd Excel_SheetCopyMove Excel_SheetDelete Excel_SheetList FileCountLines FileCreate FileListToArray FileListToArrayRec FilePrint FileReadToArray FileWriteFromArray FileWriteLog FileWriteToLine FTP_Close FTP_Command FTP_Connect FTP_DecodeInternetStatus FTP_DirCreate FTP_DirDelete FTP_DirGetCurrent FTP_DirPutContents FTP_DirSetCurrent FTP_FileClose FTP_FileDelete FTP_FileGet FTP_FileGetSize FTP_FileOpen FTP_FilePut FTP_FileRead FTP_FileRename FTP_FileTimeLoHiToStr FTP_FindFileClose FTP_FindFileFirst FTP_FindFileNext FTP_GetLastResponseInfo FTP_ListToArray FTP_ListToArray2D FTP_ListToArrayEx FTP_Open FTP_ProgressDownload FTP_ProgressUpload FTP_SetStatusCallback GDIPlus_ArrowCapCreate GDIPlus_ArrowCapDispose GDIPlus_ArrowCapGetFillState GDIPlus_ArrowCapGetHeight GDIPlus_ArrowCapGetMiddleInset GDIPlus_ArrowCapGetWidth GDIPlus_ArrowCapSetFillState GDIPlus_ArrowCapSetHeight GDIPlus_ArrowCapSetMiddleInset GDIPlus_ArrowCapSetWidth GDIPlus_BitmapApplyEffect GDIPlus_BitmapApplyEffectEx GDIPlus_BitmapCloneArea GDIPlus_BitmapConvertFormat GDIPlus_BitmapCreateApplyEffect GDIPlus_BitmapCreateApplyEffectEx GDIPlus_BitmapCreateDIBFromBitmap GDIPlus_BitmapCreateFromFile GDIPlus_BitmapCreateFromGraphics GDIPlus_BitmapCreateFromHBITMAP GDIPlus_BitmapCreateFromHICON GDIPlus_BitmapCreateFromHICON32 GDIPlus_BitmapCreateFromMemory GDIPlus_BitmapCreateFromResource GDIPlus_BitmapCreateFromScan0 GDIPlus_BitmapCreateFromStream GDIPlus_BitmapCreateHBITMAPFromBitmap GDIPlus_BitmapDispose GDIPlus_BitmapGetHistogram GDIPlus_BitmapGetHistogramEx GDIPlus_BitmapGetHistogramSize GDIPlus_BitmapGetPixel GDIPlus_BitmapLockBits GDIPlus_BitmapSetPixel GDIPlus_BitmapUnlockBits GDIPlus_BrushClone GDIPlus_BrushCreateSolid GDIPlus_BrushDispose GDIPlus_BrushGetSolidColor GDIPlus_BrushGetType GDIPlus_BrushSetSolidColor GDIPlus_ColorMatrixCreate GDIPlus_ColorMatrixCreateGrayScale GDIPlus_ColorMatrixCreateNegative GDIPlus_ColorMatrixCreateSaturation GDIPlus_ColorMatrixCreateScale GDIPlus_ColorMatrixCreateTranslate GDIPlus_CustomLineCapClone GDIPlus_CustomLineCapCreate GDIPlus_CustomLineCapDispose GDIPlus_CustomLineCapGetStrokeCaps GDIPlus_CustomLineCapSetStrokeCaps GDIPlus_Decoders GDIPlus_DecodersGetCount GDIPlus_DecodersGetSize GDIPlus_DrawImageFX GDIPlus_DrawImageFXEx GDIPlus_DrawImagePoints GDIPlus_EffectCreate GDIPlus_EffectCreateBlur GDIPlus_EffectCreateBrightnessContrast GDIPlus_EffectCreateColorBalance GDIPlus_EffectCreateColorCurve GDIPlus_EffectCreateColorLUT GDIPlus_EffectCreateColorMatrix GDIPlus_EffectCreateHueSaturationLightness GDIPlus_EffectCreateLevels GDIPlus_EffectCreateRedEyeCorrection GDIPlus_EffectCreateSharpen GDIPlus_EffectCreateTint GDIPlus_EffectDispose GDIPlus_EffectGetParameters GDIPlus_EffectSetParameters GDIPlus_Encoders GDIPlus_EncodersGetCLSID GDIPlus_EncodersGetCount GDIPlus_EncodersGetParamList GDIPlus_EncodersGetParamListSize GDIPlus_EncodersGetSize GDIPlus_FontCreate GDIPlus_FontDispose GDIPlus_FontFamilyCreate GDIPlus_FontFamilyCreateFromCollection GDIPlus_FontFamilyDispose GDIPlus_FontFamilyGetCellAscent GDIPlus_FontFamilyGetCellDescent GDIPlus_FontFamilyGetEmHeight GDIPlus_FontFamilyGetLineSpacing GDIPlus_FontGetHeight GDIPlus_FontPrivateAddFont GDIPlus_FontPrivateAddMemoryFont GDIPlus_FontPrivateCollectionDispose GDIPlus_FontPrivateCreateCollection GDIPlus_GraphicsClear GDIPlus_GraphicsCreateFromHDC GDIPlus_GraphicsCreateFromHWND GDIPlus_GraphicsDispose GDIPlus_GraphicsDrawArc GDIPlus_GraphicsDrawBezier GDIPlus_GraphicsDrawClosedCurve GDIPlus_GraphicsDrawClosedCurve2 GDIPlus_GraphicsDrawCurve GDIPlus_GraphicsDrawCurve2 GDIPlus_GraphicsDrawEllipse GDIPlus_GraphicsDrawImage GDIPlus_GraphicsDrawImagePointsRect GDIPlus_GraphicsDrawImageRect GDIPlus_GraphicsDrawImageRectRect GDIPlus_GraphicsDrawLine GDIPlus_GraphicsDrawPath GDIPlus_GraphicsDrawPie GDIPlus_GraphicsDrawPolygon GDIPlus_GraphicsDrawRect GDIPlus_GraphicsDrawString GDIPlus_GraphicsDrawStringEx GDIPlus_GraphicsFillClosedCurve GDIPlus_GraphicsFillClosedCurve2 GDIPlus_GraphicsFillEllipse GDIPlus_GraphicsFillPath GDIPlus_GraphicsFillPie GDIPlus_GraphicsFillPolygon GDIPlus_GraphicsFillRect GDIPlus_GraphicsFillRegion GDIPlus_GraphicsGetCompositingMode GDIPlus_GraphicsGetCompositingQuality GDIPlus_GraphicsGetDC GDIPlus_GraphicsGetInterpolationMode GDIPlus_GraphicsGetSmoothingMode GDIPlus_GraphicsGetTransform GDIPlus_GraphicsMeasureCharacterRanges GDIPlus_GraphicsMeasureString GDIPlus_GraphicsReleaseDC GDIPlus_GraphicsResetClip GDIPlus_GraphicsResetTransform GDIPlus_GraphicsRestore GDIPlus_GraphicsRotateTransform GDIPlus_GraphicsSave GDIPlus_GraphicsScaleTransform GDIPlus_GraphicsSetClipPath GDIPlus_GraphicsSetClipRect GDIPlus_GraphicsSetClipRegion GDIPlus_GraphicsSetCompositingMode GDIPlus_GraphicsSetCompositingQuality GDIPlus_GraphicsSetInterpolationMode GDIPlus_GraphicsSetPixelOffsetMode GDIPlus_GraphicsSetSmoothingMode GDIPlus_GraphicsSetTextRenderingHint GDIPlus_GraphicsSetTransform GDIPlus_GraphicsTransformPoints GDIPlus_GraphicsTranslateTransform GDIPlus_HatchBrushCreate GDIPlus_HICONCreateFromBitmap GDIPlus_ImageAttributesCreate GDIPlus_ImageAttributesDispose GDIPlus_ImageAttributesSetColorKeys GDIPlus_ImageAttributesSetColorMatrix GDIPlus_ImageDispose GDIPlus_ImageGetDimension GDIPlus_ImageGetFlags GDIPlus_ImageGetGraphicsContext GDIPlus_ImageGetHeight GDIPlus_ImageGetHorizontalResolution GDIPlus_ImageGetPixelFormat GDIPlus_ImageGetRawFormat GDIPlus_ImageGetThumbnail GDIPlus_ImageGetType GDIPlus_ImageGetVerticalResolution GDIPlus_ImageGetWidth GDIPlus_ImageLoadFromFile GDIPlus_ImageLoadFromStream GDIPlus_ImageResize GDIPlus_ImageRotateFlip GDIPlus_ImageSaveToFile GDIPlus_ImageSaveToFileEx GDIPlus_ImageSaveToStream GDIPlus_ImageScale GDIPlus_LineBrushCreate GDIPlus_LineBrushCreateFromRect GDIPlus_LineBrushCreateFromRectWithAngle GDIPlus_LineBrushGetColors GDIPlus_LineBrushGetRect GDIPlus_LineBrushMultiplyTransform GDIPlus_LineBrushResetTransform GDIPlus_LineBrushSetBlend GDIPlus_LineBrushSetColors GDIPlus_LineBrushSetGammaCorrection GDIPlus_LineBrushSetLinearBlend GDIPlus_LineBrushSetPresetBlend GDIPlus_LineBrushSetSigmaBlend GDIPlus_LineBrushSetTransform GDIPlus_MatrixClone GDIPlus_MatrixCreate GDIPlus_MatrixDispose GDIPlus_MatrixGetElements GDIPlus_MatrixInvert GDIPlus_MatrixMultiply GDIPlus_MatrixRotate GDIPlus_MatrixScale GDIPlus_MatrixSetElements GDIPlus_MatrixShear GDIPlus_MatrixTransformPoints GDIPlus_MatrixTranslate GDIPlus_PaletteInitialize GDIPlus_ParamAdd GDIPlus_ParamInit GDIPlus_ParamSize GDIPlus_PathAddArc GDIPlus_PathAddBezier GDIPlus_PathAddClosedCurve GDIPlus_PathAddClosedCurve2 GDIPlus_PathAddCurve GDIPlus_PathAddCurve2 GDIPlus_PathAddCurve3 GDIPlus_PathAddEllipse GDIPlus_PathAddLine GDIPlus_PathAddLine2 GDIPlus_PathAddPath GDIPlus_PathAddPie GDIPlus_PathAddPolygon GDIPlus_PathAddRectangle GDIPlus_PathAddString GDIPlus_PathBrushCreate GDIPlus_PathBrushCreateFromPath GDIPlus_PathBrushGetCenterPoint GDIPlus_PathBrushGetFocusScales GDIPlus_PathBrushGetPointCount GDIPlus_PathBrushGetRect GDIPlus_PathBrushGetWrapMode GDIPlus_PathBrushMultiplyTransform GDIPlus_PathBrushResetTransform GDIPlus_PathBrushSetBlend GDIPlus_PathBrushSetCenterColor GDIPlus_PathBrushSetCenterPoint GDIPlus_PathBrushSetFocusScales GDIPlus_PathBrushSetGammaCorrection GDIPlus_PathBrushSetLinearBlend GDIPlus_PathBrushSetPresetBlend GDIPlus_PathBrushSetSigmaBlend GDIPlus_PathBrushSetSurroundColor
GDIPlus_PathBrushSetSurroundColorsWithCount GDIPlus_PathBrushSetTransform GDIPlus_PathBrushSetWrapMode GDIPlus_PathClone GDIPlus_PathCloseFigure GDIPlus_PathCreate GDIPlus_PathCreate2 GDIPlus_PathDispose GDIPlus_PathFlatten GDIPlus_PathGetData GDIPlus_PathGetFillMode GDIPlus_PathGetLastPoint GDIPlus_PathGetPointCount GDIPlus_PathGetPoints GDIPlus_PathGetWorldBounds GDIPlus_PathIsOutlineVisiblePoint GDIPlus_PathIsVisiblePoint GDIPlus_PathIterCreate GDIPlus_PathIterDispose GDIPlus_PathIterGetSubpathCount GDIPlus_PathIterNextMarkerPath GDIPlus_PathIterNextSubpathPath GDIPlus_PathIterRewind GDIPlus_PathReset GDIPlus_PathReverse GDIPlus_PathSetFillMode GDIPlus_PathSetMarker GDIPlus_PathStartFigure GDIPlus_PathTransform GDIPlus_PathWarp GDIPlus_PathWiden GDIPlus_PathWindingModeOutline GDIPlus_PenCreate GDIPlus_PenCreate2 GDIPlus_PenDispose GDIPlus_PenGetAlignment GDIPlus_PenGetColor GDIPlus_PenGetCustomEndCap GDIPlus_PenGetDashCap GDIPlus_PenGetDashStyle GDIPlus_PenGetEndCap GDIPlus_PenGetMiterLimit GDIPlus_PenGetWidth GDIPlus_PenSetAlignment GDIPlus_PenSetColor GDIPlus_PenSetCustomEndCap GDIPlus_PenSetDashCap GDIPlus_PenSetDashStyle GDIPlus_PenSetEndCap GDIPlus_PenSetLineCap GDIPlus_PenSetLineJoin GDIPlus_PenSetMiterLimit GDIPlus_PenSetStartCap GDIPlus_PenSetWidth GDIPlus_RectFCreate GDIPlus_RegionClone GDIPlus_RegionCombinePath GDIPlus_RegionCombineRect GDIPlus_RegionCombineRegion GDIPlus_RegionCreate GDIPlus_RegionCreateFromPath GDIPlus_RegionCreateFromRect GDIPlus_RegionDispose GDIPlus_RegionGetBounds GDIPlus_RegionGetHRgn GDIPlus_RegionTransform GDIPlus_RegionTranslate GDIPlus_Shutdown GDIPlus_Startup GDIPlus_StringFormatCreate GDIPlus_StringFormatDispose GDIPlus_StringFormatGetMeasurableCharacterRangeCount GDIPlus_StringFormatSetAlign GDIPlus_StringFormatSetLineAlign GDIPlus_StringFormatSetMeasurableCharacterRanges GDIPlus_TextureCreate GDIPlus_TextureCreate2 GDIPlus_TextureCreateIA GetIP GUICtrlAVI_Close GUICtrlAVI_Create GUICtrlAVI_Destroy GUICtrlAVI_IsPlaying GUICtrlAVI_Open GUICtrlAVI_OpenEx GUICtrlAVI_Play GUICtrlAVI_Seek GUICtrlAVI_Show GUICtrlAVI_Stop GUICtrlButton_Click GUICtrlButton_Create GUICtrlButton_Destroy GUICtrlButton_Enable GUICtrlButton_GetCheck GUICtrlButton_GetFocus GUICtrlButton_GetIdealSize GUICtrlButton_GetImage GUICtrlButton_GetImageList GUICtrlButton_GetNote GUICtrlButton_GetNoteLength GUICtrlButton_GetSplitInfo GUICtrlButton_GetState GUICtrlButton_GetText GUICtrlButton_GetTextMargin GUICtrlButton_SetCheck GUICtrlButton_SetDontClick GUICtrlButton_SetFocus GUICtrlButton_SetImage GUICtrlButton_SetImageList GUICtrlButton_SetNote GUICtrlButton_SetShield GUICtrlButton_SetSize GUICtrlButton_SetSplitInfo GUICtrlButton_SetState GUICtrlButton_SetStyle GUICtrlButton_SetText GUICtrlButton_SetTextMargin GUICtrlButton_Show GUICtrlComboBoxEx_AddDir GUICtrlComboBoxEx_AddString GUICtrlComboBoxEx_BeginUpdate GUICtrlComboBoxEx_Create GUICtrlComboBoxEx_CreateSolidBitMap GUICtrlComboBoxEx_DeleteString GUICtrlComboBoxEx_Destroy GUICtrlComboBoxEx_EndUpdate GUICtrlComboBoxEx_FindStringExact GUICtrlComboBoxEx_GetComboBoxInfo GUICtrlComboBoxEx_GetComboControl GUICtrlComboBoxEx_GetCount GUICtrlComboBoxEx_GetCurSel GUICtrlComboBoxEx_GetDroppedControlRect GUICtrlComboBoxEx_GetDroppedControlRectEx GUICtrlComboBoxEx_GetDroppedState GUICtrlComboBoxEx_GetDroppedWidth GUICtrlComboBoxEx_GetEditControl GUICtrlComboBoxEx_GetEditSel GUICtrlComboBoxEx_GetEditText GUICtrlComboBoxEx_GetExtendedStyle GUICtrlComboBoxEx_GetExtendedUI GUICtrlComboBoxEx_GetImageList GUICtrlComboBoxEx_GetItem GUICtrlComboBoxEx_GetItemEx GUICtrlComboBoxEx_GetItemHeight GUICtrlComboBoxEx_GetItemImage GUICtrlComboBoxEx_GetItemIndent GUICtrlComboBoxEx_GetItemOverlayImage GUICtrlComboBoxEx_GetItemParam GUICtrlComboBoxEx_GetItemSelectedImage GUICtrlComboBoxEx_GetItemText GUICtrlComboBoxEx_GetItemTextLen GUICtrlComboBoxEx_GetList GUICtrlComboBoxEx_GetListArray GUICtrlComboBoxEx_GetLocale GUICtrlComboBoxEx_GetLocaleCountry GUICtrlComboBoxEx_GetLocaleLang GUICtrlComboBoxEx_GetLocalePrimLang GUICtrlComboBoxEx_GetLocaleSubLang GUICtrlComboBoxEx_GetMinVisible GUICtrlComboBoxEx_GetTopIndex GUICtrlComboBoxEx_GetUnicode GUICtrlComboBoxEx_InitStorage GUICtrlComboBoxEx_InsertString GUICtrlComboBoxEx_LimitText GUICtrlComboBoxEx_ReplaceEditSel GUICtrlComboBoxEx_ResetContent GUICtrlComboBoxEx_SetCurSel GUICtrlComboBoxEx_SetDroppedWidth GUICtrlComboBoxEx_SetEditSel GUICtrlComboBoxEx_SetEditText GUICtrlComboBoxEx_SetExtendedStyle GUICtrlComboBoxEx_SetExtendedUI GUICtrlComboBoxEx_SetImageList GUICtrlComboBoxEx_SetItem GUICtrlComboBoxEx_SetItemEx GUICtrlComboBoxEx_SetItemHeight GUICtrlComboBoxEx_SetItemImage GUICtrlComboBoxEx_SetItemIndent GUICtrlComboBoxEx_SetItemOverlayImage GUICtrlComboBoxEx_SetItemParam GUICtrlComboBoxEx_SetItemSelectedImage GUICtrlComboBoxEx_SetMinVisible GUICtrlComboBoxEx_SetTopIndex GUICtrlComboBoxEx_SetUnicode GUICtrlComboBoxEx_ShowDropDown GUICtrlComboBox_AddDir GUICtrlComboBox_AddString GUICtrlComboBox_AutoComplete GUICtrlComboBox_BeginUpdate GUICtrlComboBox_Create GUICtrlComboBox_DeleteString GUICtrlComboBox_Destroy GUICtrlComboBox_EndUpdate GUICtrlComboBox_FindString GUICtrlComboBox_FindStringExact GUICtrlComboBox_GetComboBoxInfo GUICtrlComboBox_GetCount GUICtrlComboBox_GetCueBanner GUICtrlComboBox_GetCurSel GUICtrlComboBox_GetDroppedControlRect GUICtrlComboBox_GetDroppedControlRectEx GUICtrlComboBox_GetDroppedState GUICtrlComboBox_GetDroppedWidth GUICtrlComboBox_GetEditSel GUICtrlComboBox_GetEditText GUICtrlComboBox_GetExtendedUI GUICtrlComboBox_GetHorizontalExtent GUICtrlComboBox_GetItemHeight GUICtrlComboBox_GetLBText GUICtrlComboBox_GetLBTextLen GUICtrlComboBox_GetList GUICtrlComboBox_GetListArray GUICtrlComboBox_GetLocale GUICtrlComboBox_GetLocaleCountry GUICtrlComboBox_GetLocaleLang GUICtrlComboBox_GetLocalePrimLang GUICtrlComboBox_GetLocaleSubLang GUICtrlComboBox_GetMinVisible GUICtrlComboBox_GetTopIndex GUICtrlComboBox_InitStorage GUICtrlComboBox_InsertString GUICtrlComboBox_LimitText GUICtrlComboBox_ReplaceEditSel GUICtrlComboBox_ResetContent GUICtrlComboBox_SelectString GUICtrlComboBox_SetCueBanner GUICtrlComboBox_SetCurSel GUICtrlComboBox_SetDroppedWidth GUICtrlComboBox_SetEditSel GUICtrlComboBox_SetEditText GUICtrlComboBox_SetExtendedUI GUICtrlComboBox_SetHorizontalExtent GUICtrlComboBox_SetItemHeight GUICtrlComboBox_SetMinVisible GUICtrlComboBox_SetTopIndex GUICtrlComboBox_ShowDropDown GUICtrlDTP_Create GUICtrlDTP_Destroy GUICtrlDTP_GetMCColor GUICtrlDTP_GetMCFont GUICtrlDTP_GetMonthCal GUICtrlDTP_GetRange GUICtrlDTP_GetRangeEx GUICtrlDTP_GetSystemTime GUICtrlDTP_GetSystemTimeEx GUICtrlDTP_SetFormat GUICtrlDTP_SetMCColor GUICtrlDTP_SetMCFont GUICtrlDTP_SetRange GUICtrlDTP_SetRangeEx GUICtrlDTP_SetSystemTime GUICtrlDTP_SetSystemTimeEx GUICtrlEdit_AppendText GUICtrlEdit_BeginUpdate GUICtrlEdit_CanUndo GUICtrlEdit_CharFromPos GUICtrlEdit_Create GUICtrlEdit_Destroy GUICtrlEdit_EmptyUndoBuffer GUICtrlEdit_EndUpdate GUICtrlEdit_Find GUICtrlEdit_FmtLines GUICtrlEdit_GetCueBanner GUICtrlEdit_GetFirstVisibleLine GUICtrlEdit_GetLimitText GUICtrlEdit_GetLine GUICtrlEdit_GetLineCount GUICtrlEdit_GetMargins GUICtrlEdit_GetModify GUICtrlEdit_GetPasswordChar GUICtrlEdit_GetRECT GUICtrlEdit_GetRECTEx GUICtrlEdit_GetSel GUICtrlEdit_GetText GUICtrlEdit_GetTextLen GUICtrlEdit_HideBalloonTip GUICtrlEdit_InsertText GUICtrlEdit_LineFromChar GUICtrlEdit_LineIndex GUICtrlEdit_LineLength GUICtrlEdit_LineScroll GUICtrlEdit_PosFromChar GUICtrlEdit_ReplaceSel GUICtrlEdit_Scroll GUICtrlEdit_SetCueBanner GUICtrlEdit_SetLimitText GUICtrlEdit_SetMargins GUICtrlEdit_SetModify GUICtrlEdit_SetPasswordChar GUICtrlEdit_SetReadOnly GUICtrlEdit_SetRECT GUICtrlEdit_SetRECTEx GUICtrlEdit_SetRECTNP GUICtrlEdit_SetRectNPEx GUICtrlEdit_SetSel GUICtrlEdit_SetTabStops GUICtrlEdit_SetText GUICtrlEdit_ShowBalloonTip GUICtrlEdit_Undo GUICtrlHeader_AddItem GUICtrlHeader_ClearFilter GUICtrlHeader_ClearFilterAll GUICtrlHeader_Create GUICtrlHeader_CreateDragImage GUICtrlHeader_DeleteItem GUICtrlHeader_Destroy GUICtrlHeader_EditFilter GUICtrlHeader_GetBitmapMargin GUICtrlHeader_GetImageList GUICtrlHeader_GetItem GUICtrlHeader_GetItemAlign GUICtrlHeader_GetItemBitmap GUICtrlHeader_GetItemCount GUICtrlHeader_GetItemDisplay GUICtrlHeader_GetItemFlags GUICtrlHeader_GetItemFormat GUICtrlHeader_GetItemImage GUICtrlHeader_GetItemOrder GUICtrlHeader_GetItemParam GUICtrlHeader_GetItemRect GUICtrlHeader_GetItemRectEx GUICtrlHeader_GetItemText GUICtrlHeader_GetItemWidth GUICtrlHeader_GetOrderArray GUICtrlHeader_GetUnicodeFormat GUICtrlHeader_HitTest GUICtrlHeader_InsertItem GUICtrlHeader_Layout GUICtrlHeader_OrderToIndex GUICtrlHeader_SetBitmapMargin GUICtrlHeader_SetFilterChangeTimeout GUICtrlHeader_SetHotDivider GUICtrlHeader_SetImageList GUICtrlHeader_SetItem GUICtrlHeader_SetItemAlign GUICtrlHeader_SetItemBitmap GUICtrlHeader_SetItemDisplay GUICtrlHeader_SetItemFlags GUICtrlHeader_SetItemFormat GUICtrlHeader_SetItemImage GUICtrlHeader_SetItemOrder GUICtrlHeader_SetItemParam GUICtrlHeader_SetItemText GUICtrlHeader_SetItemWidth GUICtrlHeader_SetOrderArray GUICtrlHeader_SetUnicodeFormat GUICtrlIpAddress_ClearAddress GUICtrlIpAddress_Create GUICtrlIpAddress_Destroy GUICtrlIpAddress_Get GUICtrlIpAddress_GetArray GUICtrlIpAddress_GetEx GUICtrlIpAddress_IsBlank GUICtrlIpAddress_Set GUICtrlIpAddress_SetArray GUICtrlIpAddress_SetEx GUICtrlIpAddress_SetFocus GUICtrlIpAddress_SetFont GUICtrlIpAddress_SetRange GUICtrlIpAddress_ShowHide GUICtrlListBox_AddFile GUICtrlListBox_AddString GUICtrlListBox_BeginUpdate GUICtrlListBox_ClickItem GUICtrlListBox_Create GUICtrlListBox_DeleteString GUICtrlListBox_Destroy GUICtrlListBox_Dir GUICtrlListBox_EndUpdate GUICtrlListBox_FindInText GUICtrlListBox_FindString GUICtrlListBox_GetAnchorIndex GUICtrlListBox_GetCaretIndex GUICtrlListBox_GetCount GUICtrlListBox_GetCurSel GUICtrlListBox_GetHorizontalExtent GUICtrlListBox_GetItemData GUICtrlListBox_GetItemHeight GUICtrlListBox_GetItemRect GUICtrlListBox_GetItemRectEx GUICtrlListBox_GetListBoxInfo
GUICtrlListBox_GetLocale GUICtrlListBox_GetLocaleCountry GUICtrlListBox_GetLocaleLang GUICtrlListBox_GetLocalePrimLang GUICtrlListBox_GetLocaleSubLang GUICtrlListBox_GetSel GUICtrlListBox_GetSelCount GUICtrlListBox_GetSelItems GUICtrlListBox_GetSelItemsText GUICtrlListBox_GetText GUICtrlListBox_GetTextLen GUICtrlListBox_GetTopIndex GUICtrlListBox_InitStorage GUICtrlListBox_InsertString GUICtrlListBox_ItemFromPoint GUICtrlListBox_ReplaceString GUICtrlListBox_ResetContent GUICtrlListBox_SelectString GUICtrlListBox_SelItemRange GUICtrlListBox_SelItemRangeEx GUICtrlListBox_SetAnchorIndex GUICtrlListBox_SetCaretIndex GUICtrlListBox_SetColumnWidth GUICtrlListBox_SetCurSel GUICtrlListBox_SetHorizontalExtent GUICtrlListBox_SetItemData GUICtrlListBox_SetItemHeight GUICtrlListBox_SetLocale GUICtrlListBox_SetSel GUICtrlListBox_SetTabStops GUICtrlListBox_SetTopIndex GUICtrlListBox_Sort GUICtrlListBox_SwapString GUICtrlListBox_UpdateHScroll GUICtrlListView_AddArray GUICtrlListView_AddColumn GUICtrlListView_AddItem GUICtrlListView_AddSubItem GUICtrlListView_ApproximateViewHeight GUICtrlListView_ApproximateViewRect GUICtrlListView_ApproximateViewWidth GUICtrlListView_Arrange GUICtrlListView_BeginUpdate GUICtrlListView_CancelEditLabel GUICtrlListView_ClickItem GUICtrlListView_CopyItems GUICtrlListView_Create GUICtrlListView_CreateDragImage GUICtrlListView_CreateSolidBitMap GUICtrlListView_DeleteAllItems GUICtrlListView_DeleteColumn GUICtrlListView_DeleteItem GUICtrlListView_DeleteItemsSelected GUICtrlListView_Destroy GUICtrlListView_DrawDragImage GUICtrlListView_EditLabel GUICtrlListView_EnableGroupView GUICtrlListView_EndUpdate GUICtrlListView_EnsureVisible GUICtrlListView_FindInText GUICtrlListView_FindItem GUICtrlListView_FindNearest GUICtrlListView_FindParam GUICtrlListView_FindText GUICtrlListView_GetBkColor GUICtrlListView_GetBkImage GUICtrlListView_GetCallbackMask GUICtrlListView_GetColumn GUICtrlListView_GetColumnCount GUICtrlListView_GetColumnOrder GUICtrlListView_GetColumnOrderArray GUICtrlListView_GetColumnWidth GUICtrlListView_GetCounterPage GUICtrlListView_GetEditControl GUICtrlListView_GetExtendedListViewStyle GUICtrlListView_GetFocusedGroup GUICtrlListView_GetGroupCount GUICtrlListView_GetGroupInfo GUICtrlListView_GetGroupInfoByIndex GUICtrlListView_GetGroupRect GUICtrlListView_GetGroupViewEnabled GUICtrlListView_GetHeader GUICtrlListView_GetHotCursor GUICtrlListView_GetHotItem GUICtrlListView_GetHoverTime GUICtrlListView_GetImageList GUICtrlListView_GetISearchString GUICtrlListView_GetItem GUICtrlListView_GetItemChecked GUICtrlListView_GetItemCount GUICtrlListView_GetItemCut GUICtrlListView_GetItemDropHilited GUICtrlListView_GetItemEx GUICtrlListView_GetItemFocused GUICtrlListView_GetItemGroupID GUICtrlListView_GetItemImage GUICtrlListView_GetItemIndent GUICtrlListView_GetItemParam GUICtrlListView_GetItemPosition GUICtrlListView_GetItemPositionX GUICtrlListView_GetItemPositionY GUICtrlListView_GetItemRect GUICtrlListView_GetItemRectEx GUICtrlListView_GetItemSelected GUICtrlListView_GetItemSpacing GUICtrlListView_GetItemSpacingX GUICtrlListView_GetItemSpacingY GUICtrlListView_GetItemState GUICtrlListView_GetItemStateImage GUICtrlListView_GetItemText GUICtrlListView_GetItemTextArray GUICtrlListView_GetItemTextString GUICtrlListView_GetNextItem GUICtrlListView_GetNumberOfWorkAreas GUICtrlListView_GetOrigin GUICtrlListView_GetOriginX GUICtrlListView_GetOriginY GUICtrlListView_GetOutlineColor GUICtrlListView_GetSelectedColumn GUICtrlListView_GetSelectedCount GUICtrlListView_GetSelectedIndices GUICtrlListView_GetSelectionMark GUICtrlListView_GetStringWidth GUICtrlListView_GetSubItemRect GUICtrlListView_GetTextBkColor GUICtrlListView_GetTextColor GUICtrlListView_GetToolTips GUICtrlListView_GetTopIndex GUICtrlListView_GetUnicodeFormat GUICtrlListView_GetView GUICtrlListView_GetViewDetails GUICtrlListView_GetViewLarge GUICtrlListView_GetViewList GUICtrlListView_GetViewRect GUICtrlListView_GetViewSmall GUICtrlListView_GetViewTile GUICtrlListView_HideColumn GUICtrlListView_HitTest GUICtrlListView_InsertColumn GUICtrlListView_InsertGroup GUICtrlListView_InsertItem GUICtrlListView_JustifyColumn GUICtrlListView_MapIDToIndex GUICtrlListView_MapIndexToID GUICtrlListView_RedrawItems GUICtrlListView_RegisterSortCallBack GUICtrlListView_RemoveAllGroups GUICtrlListView_RemoveGroup GUICtrlListView_Scroll GUICtrlListView_SetBkColor GUICtrlListView_SetBkImage GUICtrlListView_SetCallBackMask GUICtrlListView_SetColumn GUICtrlListView_SetColumnOrder GUICtrlListView_SetColumnOrderArray GUICtrlListView_SetColumnWidth GUICtrlListView_SetExtendedListViewStyle GUICtrlListView_SetGroupInfo GUICtrlListView_SetHotItem GUICtrlListView_SetHoverTime GUICtrlListView_SetIconSpacing GUICtrlListView_SetImageList GUICtrlListView_SetItem GUICtrlListView_SetItemChecked GUICtrlListView_SetItemCount GUICtrlListView_SetItemCut GUICtrlListView_SetItemDropHilited GUICtrlListView_SetItemEx GUICtrlListView_SetItemFocused GUICtrlListView_SetItemGroupID GUICtrlListView_SetItemImage GUICtrlListView_SetItemIndent GUICtrlListView_SetItemParam GUICtrlListView_SetItemPosition GUICtrlListView_SetItemPosition32 GUICtrlListView_SetItemSelected GUICtrlListView_SetItemState GUICtrlListView_SetItemStateImage GUICtrlListView_SetItemText GUICtrlListView_SetOutlineColor GUICtrlListView_SetSelectedColumn GUICtrlListView_SetSelectionMark GUICtrlListView_SetTextBkColor GUICtrlListView_SetTextColor GUICtrlListView_SetToolTips GUICtrlListView_SetUnicodeFormat GUICtrlListView_SetView GUICtrlListView_SetWorkAreas GUICtrlListView_SimpleSort GUICtrlListView_SortItems GUICtrlListView_SubItemHitTest GUICtrlListView_UnRegisterSortCallBack GUICtrlMenu_AddMenuItem GUICtrlMenu_AppendMenu GUICtrlMenu_CalculatePopupWindowPosition GUICtrlMenu_CheckMenuItem GUICtrlMenu_CheckRadioItem GUICtrlMenu_CreateMenu GUICtrlMenu_CreatePopup GUICtrlMenu_DeleteMenu GUICtrlMenu_DestroyMenu GUICtrlMenu_DrawMenuBar GUICtrlMenu_EnableMenuItem GUICtrlMenu_FindItem GUICtrlMenu_FindParent GUICtrlMenu_GetItemBmp GUICtrlMenu_GetItemBmpChecked GUICtrlMenu_GetItemBmpUnchecked GUICtrlMenu_GetItemChecked GUICtrlMenu_GetItemCount GUICtrlMenu_GetItemData GUICtrlMenu_GetItemDefault GUICtrlMenu_GetItemDisabled GUICtrlMenu_GetItemEnabled GUICtrlMenu_GetItemGrayed GUICtrlMenu_GetItemHighlighted GUICtrlMenu_GetItemID GUICtrlMenu_GetItemInfo GUICtrlMenu_GetItemRect GUICtrlMenu_GetItemRectEx GUICtrlMenu_GetItemState GUICtrlMenu_GetItemStateEx GUICtrlMenu_GetItemSubMenu GUICtrlMenu_GetItemText GUICtrlMenu_GetItemType GUICtrlMenu_GetMenu GUICtrlMenu_GetMenuBackground GUICtrlMenu_GetMenuBarInfo GUICtrlMenu_GetMenuContextHelpID GUICtrlMenu_GetMenuData GUICtrlMenu_GetMenuDefaultItem GUICtrlMenu_GetMenuHeight GUICtrlMenu_GetMenuInfo GUICtrlMenu_GetMenuStyle GUICtrlMenu_GetSystemMenu GUICtrlMenu_InsertMenuItem GUICtrlMenu_InsertMenuItemEx GUICtrlMenu_IsMenu GUICtrlMenu_LoadMenu GUICtrlMenu_MapAccelerator GUICtrlMenu_MenuItemFromPoint GUICtrlMenu_RemoveMenu GUICtrlMenu_SetItemBitmaps GUICtrlMenu_SetItemBmp GUICtrlMenu_SetItemBmpChecked GUICtrlMenu_SetItemBmpUnchecked GUICtrlMenu_SetItemChecked GUICtrlMenu_SetItemData GUICtrlMenu_SetItemDefault GUICtrlMenu_SetItemDisabled GUICtrlMenu_SetItemEnabled GUICtrlMenu_SetItemGrayed GUICtrlMenu_SetItemHighlighted GUICtrlMenu_SetItemID GUICtrlMenu_SetItemInfo GUICtrlMenu_SetItemState GUICtrlMenu_SetItemSubMenu GUICtrlMenu_SetItemText GUICtrlMenu_SetItemType GUICtrlMenu_SetMenu GUICtrlMenu_SetMenuBackground GUICtrlMenu_SetMenuContextHelpID GUICtrlMenu_SetMenuData GUICtrlMenu_SetMenuDefaultItem GUICtrlMenu_SetMenuHeight GUICtrlMenu_SetMenuInfo GUICtrlMenu_SetMenuStyle GUICtrlMenu_TrackPopupMenu GUICtrlMonthCal_Create GUICtrlMonthCal_Destroy GUICtrlMonthCal_GetCalendarBorder GUICtrlMonthCal_GetCalendarCount GUICtrlMonthCal_GetColor GUICtrlMonthCal_GetColorArray GUICtrlMonthCal_GetCurSel GUICtrlMonthCal_GetCurSelStr GUICtrlMonthCal_GetFirstDOW GUICtrlMonthCal_GetFirstDOWStr GUICtrlMonthCal_GetMaxSelCount GUICtrlMonthCal_GetMaxTodayWidth GUICtrlMonthCal_GetMinReqHeight GUICtrlMonthCal_GetMinReqRect GUICtrlMonthCal_GetMinReqRectArray GUICtrlMonthCal_GetMinReqWidth GUICtrlMonthCal_GetMonthDelta GUICtrlMonthCal_GetMonthRange GUICtrlMonthCal_GetMonthRangeMax GUICtrlMonthCal_GetMonthRangeMaxStr GUICtrlMonthCal_GetMonthRangeMin GUICtrlMonthCal_GetMonthRangeMinStr GUICtrlMonthCal_GetMonthRangeSpan GUICtrlMonthCal_GetRange GUICtrlMonthCal_GetRangeMax GUICtrlMonthCal_GetRangeMaxStr GUICtrlMonthCal_GetRangeMin GUICtrlMonthCal_GetRangeMinStr GUICtrlMonthCal_GetSelRange GUICtrlMonthCal_GetSelRangeMax GUICtrlMonthCal_GetSelRangeMaxStr GUICtrlMonthCal_GetSelRangeMin GUICtrlMonthCal_GetSelRangeMinStr GUICtrlMonthCal_GetToday GUICtrlMonthCal_GetTodayStr GUICtrlMonthCal_GetUnicodeFormat GUICtrlMonthCal_HitTest GUICtrlMonthCal_SetCalendarBorder GUICtrlMonthCal_SetColor GUICtrlMonthCal_SetCurSel GUICtrlMonthCal_SetDayState GUICtrlMonthCal_SetFirstDOW GUICtrlMonthCal_SetMaxSelCount GUICtrlMonthCal_SetMonthDelta GUICtrlMonthCal_SetRange GUICtrlMonthCal_SetSelRange GUICtrlMonthCal_SetToday GUICtrlMonthCal_SetUnicodeFormat GUICtrlRebar_AddBand GUICtrlRebar_AddToolBarBand GUICtrlRebar_BeginDrag GUICtrlRebar_Create GUICtrlRebar_DeleteBand GUICtrlRebar_Destroy GUICtrlRebar_DragMove GUICtrlRebar_EndDrag GUICtrlRebar_GetBandBackColor GUICtrlRebar_GetBandBorders GUICtrlRebar_GetBandBordersEx GUICtrlRebar_GetBandChildHandle GUICtrlRebar_GetBandChildSize GUICtrlRebar_GetBandCount GUICtrlRebar_GetBandForeColor GUICtrlRebar_GetBandHeaderSize GUICtrlRebar_GetBandID GUICtrlRebar_GetBandIdealSize GUICtrlRebar_GetBandLength GUICtrlRebar_GetBandLParam GUICtrlRebar_GetBandMargins GUICtrlRebar_GetBandMarginsEx GUICtrlRebar_GetBandRect GUICtrlRebar_GetBandRectEx GUICtrlRebar_GetBandStyle GUICtrlRebar_GetBandStyleBreak GUICtrlRebar_GetBandStyleChildEdge GUICtrlRebar_GetBandStyleFixedBMP GUICtrlRebar_GetBandStyleFixedSize GUICtrlRebar_GetBandStyleGripperAlways GUICtrlRebar_GetBandStyleHidden GUICtrlRebar_GetBandStyleHideTitle
GUICtrlRebar_GetBandStyleNoGripper GUICtrlRebar_GetBandStyleTopAlign GUICtrlRebar_GetBandStyleUseChevron GUICtrlRebar_GetBandStyleVariableHeight GUICtrlRebar_GetBandText GUICtrlRebar_GetBarHeight GUICtrlRebar_GetBarInfo GUICtrlRebar_GetBKColor GUICtrlRebar_GetColorScheme GUICtrlRebar_GetRowCount GUICtrlRebar_GetRowHeight GUICtrlRebar_GetTextColor GUICtrlRebar_GetToolTips GUICtrlRebar_GetUnicodeFormat GUICtrlRebar_HitTest GUICtrlRebar_IDToIndex GUICtrlRebar_MaximizeBand GUICtrlRebar_MinimizeBand GUICtrlRebar_MoveBand GUICtrlRebar_SetBandBackColor GUICtrlRebar_SetBandForeColor GUICtrlRebar_SetBandHeaderSize GUICtrlRebar_SetBandID GUICtrlRebar_SetBandIdealSize GUICtrlRebar_SetBandLength GUICtrlRebar_SetBandLParam GUICtrlRebar_SetBandStyle GUICtrlRebar_SetBandStyleBreak GUICtrlRebar_SetBandStyleChildEdge GUICtrlRebar_SetBandStyleFixedBMP GUICtrlRebar_SetBandStyleFixedSize GUICtrlRebar_SetBandStyleGripperAlways GUICtrlRebar_SetBandStyleHidden GUICtrlRebar_SetBandStyleHideTitle GUICtrlRebar_SetBandStyleNoGripper GUICtrlRebar_SetBandStyleTopAlign GUICtrlRebar_SetBandStyleUseChevron GUICtrlRebar_SetBandStyleVariableHeight GUICtrlRebar_SetBandText GUICtrlRebar_SetBarInfo GUICtrlRebar_SetBKColor GUICtrlRebar_SetColorScheme GUICtrlRebar_SetTextColor GUICtrlRebar_SetToolTips GUICtrlRebar_SetUnicodeFormat GUICtrlRebar_ShowBand GUICtrlRichEdit_AppendText GUICtrlRichEdit_AutoDetectURL GUICtrlRichEdit_CanPaste GUICtrlRichEdit_CanPasteSpecial GUICtrlRichEdit_CanRedo GUICtrlRichEdit_CanUndo GUICtrlRichEdit_ChangeFontSize GUICtrlRichEdit_Copy GUICtrlRichEdit_Create GUICtrlRichEdit_Cut GUICtrlRichEdit_Deselect GUICtrlRichEdit_Destroy GUICtrlRichEdit_EmptyUndoBuffer GUICtrlRichEdit_FindText GUICtrlRichEdit_FindTextInRange GUICtrlRichEdit_GetBkColor GUICtrlRichEdit_GetCharAttributes GUICtrlRichEdit_GetCharBkColor GUICtrlRichEdit_GetCharColor GUICtrlRichEdit_GetCharPosFromXY GUICtrlRichEdit_GetCharPosOfNextWord GUICtrlRichEdit_GetCharPosOfPreviousWord GUICtrlRichEdit_GetCharWordBreakInfo GUICtrlRichEdit_GetFirstCharPosOnLine GUICtrlRichEdit_GetFont GUICtrlRichEdit_GetLineCount GUICtrlRichEdit_GetLineLength GUICtrlRichEdit_GetLineNumberFromCharPos GUICtrlRichEdit_GetNextRedo GUICtrlRichEdit_GetNextUndo GUICtrlRichEdit_GetNumberOfFirstVisibleLine GUICtrlRichEdit_GetParaAlignment GUICtrlRichEdit_GetParaAttributes GUICtrlRichEdit_GetParaBorder GUICtrlRichEdit_GetParaIndents GUICtrlRichEdit_GetParaNumbering GUICtrlRichEdit_GetParaShading GUICtrlRichEdit_GetParaSpacing GUICtrlRichEdit_GetParaTabStops GUICtrlRichEdit_GetPasswordChar GUICtrlRichEdit_GetRECT GUICtrlRichEdit_GetScrollPos GUICtrlRichEdit_GetSel GUICtrlRichEdit_GetSelAA GUICtrlRichEdit_GetSelText GUICtrlRichEdit_GetSpaceUnit GUICtrlRichEdit_GetText GUICtrlRichEdit_GetTextInLine GUICtrlRichEdit_GetTextInRange GUICtrlRichEdit_GetTextLength GUICtrlRichEdit_GetVersion GUICtrlRichEdit_GetXYFromCharPos GUICtrlRichEdit_GetZoom GUICtrlRichEdit_GotoCharPos GUICtrlRichEdit_HideSelection GUICtrlRichEdit_InsertText GUICtrlRichEdit_IsModified GUICtrlRichEdit_IsTextSelected GUICtrlRichEdit_Paste GUICtrlRichEdit_PasteSpecial GUICtrlRichEdit_PauseRedraw GUICtrlRichEdit_Redo GUICtrlRichEdit_ReplaceText GUICtrlRichEdit_ResumeRedraw GUICtrlRichEdit_ScrollLineOrPage GUICtrlRichEdit_ScrollLines GUICtrlRichEdit_ScrollToCaret GUICtrlRichEdit_SetBkColor GUICtrlRichEdit_SetCharAttributes GUICtrlRichEdit_SetCharBkColor GUICtrlRichEdit_SetCharColor GUICtrlRichEdit_SetEventMask GUICtrlRichEdit_SetFont GUICtrlRichEdit_SetLimitOnText GUICtrlRichEdit_SetModified GUICtrlRichEdit_SetParaAlignment GUICtrlRichEdit_SetParaAttributes GUICtrlRichEdit_SetParaBorder GUICtrlRichEdit_SetParaIndents GUICtrlRichEdit_SetParaNumbering GUICtrlRichEdit_SetParaShading GUICtrlRichEdit_SetParaSpacing GUICtrlRichEdit_SetParaTabStops GUICtrlRichEdit_SetPasswordChar GUICtrlRichEdit_SetReadOnly GUICtrlRichEdit_SetRECT GUICtrlRichEdit_SetScrollPos GUICtrlRichEdit_SetSel GUICtrlRichEdit_SetSpaceUnit GUICtrlRichEdit_SetTabStops GUICtrlRichEdit_SetText GUICtrlRichEdit_SetUndoLimit GUICtrlRichEdit_SetZoom GUICtrlRichEdit_StreamFromFile GUICtrlRichEdit_StreamFromVar GUICtrlRichEdit_StreamToFile GUICtrlRichEdit_StreamToVar GUICtrlRichEdit_Undo GUICtrlSlider_ClearSel GUICtrlSlider_ClearTics GUICtrlSlider_Create GUICtrlSlider_Destroy GUICtrlSlider_GetBuddy GUICtrlSlider_GetChannelRect GUICtrlSlider_GetChannelRectEx GUICtrlSlider_GetLineSize GUICtrlSlider_GetLogicalTics GUICtrlSlider_GetNumTics GUICtrlSlider_GetPageSize GUICtrlSlider_GetPos GUICtrlSlider_GetRange GUICtrlSlider_GetRangeMax GUICtrlSlider_GetRangeMin GUICtrlSlider_GetSel GUICtrlSlider_GetSelEnd GUICtrlSlider_GetSelStart GUICtrlSlider_GetThumbLength GUICtrlSlider_GetThumbRect GUICtrlSlider_GetThumbRectEx GUICtrlSlider_GetTic GUICtrlSlider_GetTicPos GUICtrlSlider_GetToolTips GUICtrlSlider_GetUnicodeFormat GUICtrlSlider_SetBuddy GUICtrlSlider_SetLineSize GUICtrlSlider_SetPageSize GUICtrlSlider_SetPos GUICtrlSlider_SetRange GUICtrlSlider_SetRangeMax GUICtrlSlider_SetRangeMin GUICtrlSlider_SetSel GUICtrlSlider_SetSelEnd GUICtrlSlider_SetSelStart GUICtrlSlider_SetThumbLength GUICtrlSlider_SetTic GUICtrlSlider_SetTicFreq GUICtrlSlider_SetTipSide GUICtrlSlider_SetToolTips GUICtrlSlider_SetUnicodeFormat GUICtrlStatusBar_Create GUICtrlStatusBar_Destroy GUICtrlStatusBar_EmbedControl GUICtrlStatusBar_GetBorders GUICtrlStatusBar_GetBordersHorz GUICtrlStatusBar_GetBordersRect GUICtrlStatusBar_GetBordersVert GUICtrlStatusBar_GetCount GUICtrlStatusBar_GetHeight GUICtrlStatusBar_GetIcon GUICtrlStatusBar_GetParts GUICtrlStatusBar_GetRect GUICtrlStatusBar_GetRectEx GUICtrlStatusBar_GetText GUICtrlStatusBar_GetTextFlags GUICtrlStatusBar_GetTextLength GUICtrlStatusBar_GetTextLengthEx GUICtrlStatusBar_GetTipText GUICtrlStatusBar_GetUnicodeFormat GUICtrlStatusBar_GetWidth GUICtrlStatusBar_IsSimple GUICtrlStatusBar_Resize GUICtrlStatusBar_SetBkColor GUICtrlStatusBar_SetIcon GUICtrlStatusBar_SetMinHeight GUICtrlStatusBar_SetParts GUICtrlStatusBar_SetSimple GUICtrlStatusBar_SetText GUICtrlStatusBar_SetTipText GUICtrlStatusBar_SetUnicodeFormat GUICtrlStatusBar_ShowHide GUICtrlTab_ActivateTab GUICtrlTab_ClickTab GUICtrlTab_Create GUICtrlTab_DeleteAllItems GUICtrlTab_DeleteItem GUICtrlTab_DeselectAll GUICtrlTab_Destroy GUICtrlTab_FindTab GUICtrlTab_GetCurFocus GUICtrlTab_GetCurSel GUICtrlTab_GetDisplayRect GUICtrlTab_GetDisplayRectEx GUICtrlTab_GetExtendedStyle GUICtrlTab_GetImageList GUICtrlTab_GetItem GUICtrlTab_GetItemCount GUICtrlTab_GetItemImage GUICtrlTab_GetItemParam GUICtrlTab_GetItemRect GUICtrlTab_GetItemRectEx GUICtrlTab_GetItemState GUICtrlTab_GetItemText GUICtrlTab_GetRowCount GUICtrlTab_GetToolTips GUICtrlTab_GetUnicodeFormat GUICtrlTab_HighlightItem GUICtrlTab_HitTest GUICtrlTab_InsertItem GUICtrlTab_RemoveImage GUICtrlTab_SetCurFocus GUICtrlTab_SetCurSel GUICtrlTab_SetExtendedStyle GUICtrlTab_SetImageList GUICtrlTab_SetItem GUICtrlTab_SetItemImage GUICtrlTab_SetItemParam GUICtrlTab_SetItemSize GUICtrlTab_SetItemState GUICtrlTab_SetItemText GUICtrlTab_SetMinTabWidth GUICtrlTab_SetPadding GUICtrlTab_SetToolTips GUICtrlTab_SetUnicodeFormat GUICtrlToolbar_AddBitmap GUICtrlToolbar_AddButton GUICtrlToolbar_AddButtonSep GUICtrlToolbar_AddString GUICtrlToolbar_ButtonCount GUICtrlToolbar_CheckButton GUICtrlToolbar_ClickAccel GUICtrlToolbar_ClickButton GUICtrlToolbar_ClickIndex GUICtrlToolbar_CommandToIndex GUICtrlToolbar_Create GUICtrlToolbar_Customize GUICtrlToolbar_DeleteButton GUICtrlToolbar_Destroy GUICtrlToolbar_EnableButton GUICtrlToolbar_FindToolbar GUICtrlToolbar_GetAnchorHighlight GUICtrlToolbar_GetBitmapFlags GUICtrlToolbar_GetButtonBitmap GUICtrlToolbar_GetButtonInfo GUICtrlToolbar_GetButtonInfoEx GUICtrlToolbar_GetButtonParam GUICtrlToolbar_GetButtonRect GUICtrlToolbar_GetButtonRectEx GUICtrlToolbar_GetButtonSize GUICtrlToolbar_GetButtonState GUICtrlToolbar_GetButtonStyle GUICtrlToolbar_GetButtonText GUICtrlToolbar_GetColorScheme GUICtrlToolbar_GetDisabledImageList GUICtrlToolbar_GetExtendedStyle GUICtrlToolbar_GetHotImageList GUICtrlToolbar_GetHotItem GUICtrlToolbar_GetImageList GUICtrlToolbar_GetInsertMark GUICtrlToolbar_GetInsertMarkColor GUICtrlToolbar_GetMaxSize GUICtrlToolbar_GetMetrics GUICtrlToolbar_GetPadding GUICtrlToolbar_GetRows GUICtrlToolbar_GetString GUICtrlToolbar_GetStyle GUICtrlToolbar_GetStyleAltDrag GUICtrlToolbar_GetStyleCustomErase GUICtrlToolbar_GetStyleFlat GUICtrlToolbar_GetStyleList GUICtrlToolbar_GetStyleRegisterDrop GUICtrlToolbar_GetStyleToolTips GUICtrlToolbar_GetStyleTransparent GUICtrlToolbar_GetStyleWrapable GUICtrlToolbar_GetTextRows GUICtrlToolbar_GetToolTips GUICtrlToolbar_GetUnicodeFormat GUICtrlToolbar_HideButton GUICtrlToolbar_HighlightButton GUICtrlToolbar_HitTest GUICtrlToolbar_IndexToCommand GUICtrlToolbar_InsertButton GUICtrlToolbar_InsertMarkHitTest GUICtrlToolbar_IsButtonChecked GUICtrlToolbar_IsButtonEnabled GUICtrlToolbar_IsButtonHidden GUICtrlToolbar_IsButtonHighlighted GUICtrlToolbar_IsButtonIndeterminate GUICtrlToolbar_IsButtonPressed GUICtrlToolbar_LoadBitmap GUICtrlToolbar_LoadImages GUICtrlToolbar_MapAccelerator GUICtrlToolbar_MoveButton GUICtrlToolbar_PressButton GUICtrlToolbar_SetAnchorHighlight GUICtrlToolbar_SetBitmapSize GUICtrlToolbar_SetButtonBitMap GUICtrlToolbar_SetButtonInfo GUICtrlToolbar_SetButtonInfoEx GUICtrlToolbar_SetButtonParam GUICtrlToolbar_SetButtonSize GUICtrlToolbar_SetButtonState GUICtrlToolbar_SetButtonStyle GUICtrlToolbar_SetButtonText GUICtrlToolbar_SetButtonWidth GUICtrlToolbar_SetCmdID GUICtrlToolbar_SetColorScheme GUICtrlToolbar_SetDisabledImageList GUICtrlToolbar_SetDrawTextFlags GUICtrlToolbar_SetExtendedStyle GUICtrlToolbar_SetHotImageList GUICtrlToolbar_SetHotItem GUICtrlToolbar_SetImageList GUICtrlToolbar_SetIndent GUICtrlToolbar_SetIndeterminate GUICtrlToolbar_SetInsertMark GUICtrlToolbar_SetInsertMarkColor GUICtrlToolbar_SetMaxTextRows GUICtrlToolbar_SetMetrics GUICtrlToolbar_SetPadding GUICtrlToolbar_SetParent GUICtrlToolbar_SetRows GUICtrlToolbar_SetStyle GUICtrlToolbar_SetStyleAltDrag
GUICtrlToolbar_SetStyleCustomErase GUICtrlToolbar_SetStyleFlat GUICtrlToolbar_SetStyleList GUICtrlToolbar_SetStyleRegisterDrop GUICtrlToolbar_SetStyleToolTips GUICtrlToolbar_SetStyleTransparent GUICtrlToolbar_SetStyleWrapable GUICtrlToolbar_SetToolTips GUICtrlToolbar_SetUnicodeFormat GUICtrlToolbar_SetWindowTheme GUICtrlTreeView_Add GUICtrlTreeView_AddChild GUICtrlTreeView_AddChildFirst GUICtrlTreeView_AddFirst GUICtrlTreeView_BeginUpdate GUICtrlTreeView_ClickItem GUICtrlTreeView_Create GUICtrlTreeView_CreateDragImage GUICtrlTreeView_CreateSolidBitMap GUICtrlTreeView_Delete GUICtrlTreeView_DeleteAll GUICtrlTreeView_DeleteChildren GUICtrlTreeView_Destroy GUICtrlTreeView_DisplayRect GUICtrlTreeView_DisplayRectEx GUICtrlTreeView_EditText GUICtrlTreeView_EndEdit GUICtrlTreeView_EndUpdate GUICtrlTreeView_EnsureVisible GUICtrlTreeView_Expand GUICtrlTreeView_ExpandedOnce GUICtrlTreeView_FindItem GUICtrlTreeView_FindItemEx GUICtrlTreeView_GetBkColor GUICtrlTreeView_GetBold GUICtrlTreeView_GetChecked GUICtrlTreeView_GetChildCount GUICtrlTreeView_GetChildren GUICtrlTreeView_GetCount GUICtrlTreeView_GetCut GUICtrlTreeView_GetDropTarget GUICtrlTreeView_GetEditControl GUICtrlTreeView_GetExpanded GUICtrlTreeView_GetFirstChild GUICtrlTreeView_GetFirstItem GUICtrlTreeView_GetFirstVisible GUICtrlTreeView_GetFocused GUICtrlTreeView_GetHeight GUICtrlTreeView_GetImageIndex GUICtrlTreeView_GetImageListIconHandle GUICtrlTreeView_GetIndent GUICtrlTreeView_GetInsertMarkColor GUICtrlTreeView_GetISearchString GUICtrlTreeView_GetItemByIndex GUICtrlTreeView_GetItemHandle GUICtrlTreeView_GetItemParam GUICtrlTreeView_GetLastChild GUICtrlTreeView_GetLineColor GUICtrlTreeView_GetNext GUICtrlTreeView_GetNextChild GUICtrlTreeView_GetNextSibling GUICtrlTreeView_GetNextVisible GUICtrlTreeView_GetNormalImageList GUICtrlTreeView_GetParentHandle GUICtrlTreeView_GetParentParam GUICtrlTreeView_GetPrev GUICtrlTreeView_GetPrevChild GUICtrlTreeView_GetPrevSibling GUICtrlTreeView_GetPrevVisible GUICtrlTreeView_GetScrollTime GUICtrlTreeView_GetSelected GUICtrlTreeView_GetSelectedImageIndex GUICtrlTreeView_GetSelection GUICtrlTreeView_GetSiblingCount GUICtrlTreeView_GetState GUICtrlTreeView_GetStateImageIndex GUICtrlTreeView_GetStateImageList GUICtrlTreeView_GetText GUICtrlTreeView_GetTextColor GUICtrlTreeView_GetToolTips GUICtrlTreeView_GetTree GUICtrlTreeView_GetUnicodeFormat GUICtrlTreeView_GetVisible GUICtrlTreeView_GetVisibleCount GUICtrlTreeView_HitTest GUICtrlTreeView_HitTestEx GUICtrlTreeView_HitTestItem GUICtrlTreeView_Index GUICtrlTreeView_InsertItem GUICtrlTreeView_IsFirstItem GUICtrlTreeView_IsParent GUICtrlTreeView_Level GUICtrlTreeView_SelectItem GUICtrlTreeView_SelectItemByIndex GUICtrlTreeView_SetBkColor GUICtrlTreeView_SetBold GUICtrlTreeView_SetChecked GUICtrlTreeView_SetCheckedByIndex GUICtrlTreeView_SetChildren GUICtrlTreeView_SetCut GUICtrlTreeView_SetDropTarget GUICtrlTreeView_SetFocused GUICtrlTreeView_SetHeight GUICtrlTreeView_SetIcon GUICtrlTreeView_SetImageIndex GUICtrlTreeView_SetIndent GUICtrlTreeView_SetInsertMark GUICtrlTreeView_SetInsertMarkColor GUICtrlTreeView_SetItemHeight GUICtrlTreeView_SetItemParam GUICtrlTreeView_SetLineColor GUICtrlTreeView_SetNormalImageList GUICtrlTreeView_SetScrollTime GUICtrlTreeView_SetSelected GUICtrlTreeView_SetSelectedImageIndex GUICtrlTreeView_SetState GUICtrlTreeView_SetStateImageIndex GUICtrlTreeView_SetStateImageList GUICtrlTreeView_SetText GUICtrlTreeView_SetTextColor GUICtrlTreeView_SetToolTips GUICtrlTreeView_SetUnicodeFormat GUICtrlTreeView_Sort GUIImageList_Add GUIImageList_AddBitmap GUIImageList_AddIcon GUIImageList_AddMasked GUIImageList_BeginDrag GUIImageList_Copy GUIImageList_Create GUIImageList_Destroy GUIImageList_DestroyIcon GUIImageList_DragEnter GUIImageList_DragLeave GUIImageList_DragMove GUIImageList_Draw GUIImageList_DrawEx GUIImageList_Duplicate GUIImageList_EndDrag GUIImageList_GetBkColor GUIImageList_GetIcon GUIImageList_GetIconHeight GUIImageList_GetIconSize GUIImageList_GetIconSizeEx GUIImageList_GetIconWidth GUIImageList_GetImageCount GUIImageList_GetImageInfoEx GUIImageList_Remove GUIImageList_ReplaceIcon GUIImageList_SetBkColor GUIImageList_SetIconSize GUIImageList_SetImageCount GUIImageList_Swap GUIScrollBars_EnableScrollBar GUIScrollBars_GetScrollBarInfoEx GUIScrollBars_GetScrollBarRect GUIScrollBars_GetScrollBarRGState GUIScrollBars_GetScrollBarXYLineButton GUIScrollBars_GetScrollBarXYThumbBottom GUIScrollBars_GetScrollBarXYThumbTop GUIScrollBars_GetScrollInfo GUIScrollBars_GetScrollInfoEx GUIScrollBars_GetScrollInfoMax GUIScrollBars_GetScrollInfoMin GUIScrollBars_GetScrollInfoPage GUIScrollBars_GetScrollInfoPos GUIScrollBars_GetScrollInfoTrackPos GUIScrollBars_GetScrollPos GUIScrollBars_GetScrollRange GUIScrollBars_Init GUIScrollBars_ScrollWindow GUIScrollBars_SetScrollInfo GUIScrollBars_SetScrollInfoMax GUIScrollBars_SetScrollInfoMin GUIScrollBars_SetScrollInfoPage GUIScrollBars_SetScrollInfoPos GUIScrollBars_SetScrollRange GUIScrollBars_ShowScrollBar GUIToolTip_Activate GUIToolTip_AddTool GUIToolTip_AdjustRect GUIToolTip_BitsToTTF GUIToolTip_Create GUIToolTip_Deactivate GUIToolTip_DelTool GUIToolTip_Destroy GUIToolTip_EnumTools GUIToolTip_GetBubbleHeight GUIToolTip_GetBubbleSize GUIToolTip_GetBubbleWidth GUIToolTip_GetCurrentTool GUIToolTip_GetDelayTime GUIToolTip_GetMargin GUIToolTip_GetMarginEx GUIToolTip_GetMaxTipWidth GUIToolTip_GetText GUIToolTip_GetTipBkColor GUIToolTip_GetTipTextColor GUIToolTip_GetTitleBitMap GUIToolTip_GetTitleText GUIToolTip_GetToolCount GUIToolTip_GetToolInfo GUIToolTip_HitTest GUIToolTip_NewToolRect GUIToolTip_Pop GUIToolTip_PopUp GUIToolTip_SetDelayTime GUIToolTip_SetMargin GUIToolTip_SetMaxTipWidth GUIToolTip_SetTipBkColor GUIToolTip_SetTipTextColor GUIToolTip_SetTitle GUIToolTip_SetToolInfo GUIToolTip_SetWindowTheme GUIToolTip_ToolExists GUIToolTip_ToolToArray GUIToolTip_TrackActivate GUIToolTip_TrackPosition GUIToolTip_Update GUIToolTip_UpdateTipText HexToString IEAction IEAttach IEBodyReadHTML IEBodyReadText IEBodyWriteHTML IECreate IECreateEmbedded IEDocGetObj IEDocInsertHTML IEDocInsertText IEDocReadHTML IEDocWriteHTML IEErrorNotify IEFormElementCheckBoxSelect IEFormElementGetCollection IEFormElementGetObjByName IEFormElementGetValue IEFormElementOptionSelect IEFormElementRadioSelect IEFormElementSetValue IEFormGetCollection IEFormGetObjByName IEFormImageClick IEFormReset IEFormSubmit IEFrameGetCollection IEFrameGetObjByName IEGetObjById IEGetObjByName IEHeadInsertEventScript IEImgClick IEImgGetCollection IEIsFrameSet IELinkClickByIndex IELinkClickByText IELinkGetCollection IELoadWait IELoadWaitTimeout IENavigate IEPropertyGet IEPropertySet IEQuit IETableGetCollection IETableWriteToArray IETagNameAllGetCollection IETagNameGetCollection IE_Example IE_Introduction IE_VersionInfo INetExplorerCapable INetGetSource INetMail INetSmtpMail IsPressed MathCheckDiv Max MemGlobalAlloc MemGlobalFree MemGlobalLock MemGlobalSize MemGlobalUnlock MemMoveMemory MemVirtualAlloc MemVirtualAllocEx MemVirtualFree MemVirtualFreeEx Min MouseTrap NamedPipes_CallNamedPipe NamedPipes_ConnectNamedPipe NamedPipes_CreateNamedPipe NamedPipes_CreatePipe NamedPipes_DisconnectNamedPipe NamedPipes_GetNamedPipeHandleState NamedPipes_GetNamedPipeInfo NamedPipes_PeekNamedPipe NamedPipes_SetNamedPipeHandleState NamedPipes_TransactNamedPipe NamedPipes_WaitNamedPipe Net_Share_ConnectionEnum Net_Share_FileClose Net_Share_FileEnum Net_Share_FileGetInfo Net_Share_PermStr Net_Share_ResourceStr Net_Share_SessionDel Net_Share_SessionEnum Net_Share_SessionGetInfo Net_Share_ShareAdd Net_Share_ShareCheck Net_Share_ShareDel Net_Share_ShareEnum Net_Share_ShareGetInfo Net_Share_ShareSetInfo Net_Share_StatisticsGetSvr Net_Share_StatisticsGetWrk Now NowCalc NowCalcDate NowDate NowTime PathFull PathGetRelative PathMake PathSplit ProcessGetName ProcessGetPriority Radian ReplaceStringInFile RunDos ScreenCapture_Capture ScreenCapture_CaptureWnd ScreenCapture_SaveImage ScreenCapture_SetBMPFormat ScreenCapture_SetJPGQuality ScreenCapture_SetTIFColorDepth ScreenCapture_SetTIFCompression Security__AdjustTokenPrivileges Security__CreateProcessWithToken Security__DuplicateTokenEx Security__GetAccountSid Security__GetLengthSid Security__GetTokenInformation Security__ImpersonateSelf Security__IsValidSid Security__LookupAccountName Security__LookupAccountSid Security__LookupPrivilegeValue Security__OpenProcessToken Security__OpenThreadToken Security__OpenThreadTokenEx Security__SetPrivilege Security__SetTokenInformation Security__SidToStringSid Security__SidTypeStr Security__StringSidToSid SendMessage SendMessageA SetDate SetTime Singleton SoundClose SoundLength SoundOpen SoundPause SoundPlay SoundPos SoundResume SoundSeek SoundStatus SoundStop SQLite_Changes SQLite_Close SQLite_Display2DResult SQLite_Encode SQLite_ErrCode SQLite_ErrMsg SQLite_Escape SQLite_Exec SQLite_FastEncode SQLite_FastEscape SQLite_FetchData SQLite_FetchNames SQLite_GetTable SQLite_GetTable2d SQLite_LastInsertRowID SQLite_LibVersion SQLite_Open SQLite_Query SQLite_QueryFinalize SQLite_QueryReset SQLite_QuerySingleRow SQLite_SafeMode SQLite_SetTimeout SQLite_Shutdown SQLite_SQLiteExe SQLite_Startup SQLite_TotalChanges StringBetween StringExplode StringInsert StringProper StringRepeat StringTitleCase StringToHex TCPIpToName TempFile TicksToTime Timer_Diff Timer_GetIdleTime Timer_GetTimerID Timer_Init Timer_KillAllTimers Timer_KillTimer Timer_SetTimer TimeToTicks VersionCompare viClose viExecCommand viFindGpib viGpibBusReset viGTL viInteractiveControl viOpen viSetAttribute viSetTimeout WeekNumberISO WinAPI_AbortPath WinAPI_ActivateKeyboardLayout WinAPI_AddClipboardFormatListener WinAPI_AddFontMemResourceEx WinAPI_AddFontResourceEx WinAPI_AddIconOverlay WinAPI_AddIconTransparency WinAPI_AddMRUString WinAPI_AdjustBitmap WinAPI_AdjustTokenPrivileges WinAPI_AdjustWindowRectEx WinAPI_AlphaBlend WinAPI_AngleArc WinAPI_AnimateWindow WinAPI_Arc WinAPI_ArcTo WinAPI_ArrayToStruct WinAPI_AssignProcessToJobObject
WinAPI_AssocGetPerceivedType WinAPI_AssocQueryString WinAPI_AttachConsole WinAPI_AttachThreadInput WinAPI_BackupRead WinAPI_BackupReadAbort WinAPI_BackupSeek WinAPI_BackupWrite WinAPI_BackupWriteAbort WinAPI_Beep WinAPI_BeginBufferedPaint WinAPI_BeginDeferWindowPos WinAPI_BeginPaint WinAPI_BeginPath WinAPI_BeginUpdateResource WinAPI_BitBlt WinAPI_BringWindowToTop WinAPI_BroadcastSystemMessage WinAPI_BrowseForFolderDlg WinAPI_BufferedPaintClear WinAPI_BufferedPaintInit WinAPI_BufferedPaintSetAlpha WinAPI_BufferedPaintUnInit WinAPI_CallNextHookEx WinAPI_CallWindowProc WinAPI_CallWindowProcW WinAPI_CascadeWindows WinAPI_ChangeWindowMessageFilterEx WinAPI_CharToOem WinAPI_ChildWindowFromPointEx WinAPI_ClientToScreen WinAPI_ClipCursor WinAPI_CloseDesktop WinAPI_CloseEnhMetaFile WinAPI_CloseFigure WinAPI_CloseHandle WinAPI_CloseThemeData WinAPI_CloseWindow WinAPI_CloseWindowStation WinAPI_CLSIDFromProgID WinAPI_CoInitialize WinAPI_ColorAdjustLuma WinAPI_ColorHLSToRGB WinAPI_ColorRGBToHLS WinAPI_CombineRgn WinAPI_CombineTransform WinAPI_CommandLineToArgv WinAPI_CommDlgExtendedError WinAPI_CommDlgExtendedErrorEx WinAPI_CompareString WinAPI_CompressBitmapBits WinAPI_CompressBuffer WinAPI_ComputeCrc32 WinAPI_ConfirmCredentials WinAPI_CopyBitmap WinAPI_CopyCursor WinAPI_CopyEnhMetaFile WinAPI_CopyFileEx WinAPI_CopyIcon WinAPI_CopyImage WinAPI_CopyRect WinAPI_CopyStruct WinAPI_CoTaskMemAlloc WinAPI_CoTaskMemFree WinAPI_CoTaskMemRealloc WinAPI_CoUninitialize WinAPI_Create32BitHBITMAP WinAPI_Create32BitHICON WinAPI_CreateANDBitmap WinAPI_CreateBitmap WinAPI_CreateBitmapIndirect WinAPI_CreateBrushIndirect WinAPI_CreateBuffer WinAPI_CreateBufferFromStruct WinAPI_CreateCaret WinAPI_CreateColorAdjustment WinAPI_CreateCompatibleBitmap WinAPI_CreateCompatibleBitmapEx WinAPI_CreateCompatibleDC WinAPI_CreateDesktop WinAPI_CreateDIB WinAPI_CreateDIBColorTable WinAPI_CreateDIBitmap WinAPI_CreateDIBSection WinAPI_CreateDirectory WinAPI_CreateDirectoryEx WinAPI_CreateEllipticRgn WinAPI_CreateEmptyIcon WinAPI_CreateEnhMetaFile WinAPI_CreateEvent WinAPI_CreateFile WinAPI_CreateFileEx WinAPI_CreateFileMapping WinAPI_CreateFont WinAPI_CreateFontEx WinAPI_CreateFontIndirect WinAPI_CreateGUID WinAPI_CreateHardLink WinAPI_CreateIcon WinAPI_CreateIconFromResourceEx WinAPI_CreateIconIndirect WinAPI_CreateJobObject WinAPI_CreateMargins WinAPI_CreateMRUList WinAPI_CreateMutex WinAPI_CreateNullRgn WinAPI_CreateNumberFormatInfo WinAPI_CreateObjectID WinAPI_CreatePen WinAPI_CreatePoint WinAPI_CreatePolygonRgn WinAPI_CreateProcess WinAPI_CreateProcessWithToken WinAPI_CreateRect WinAPI_CreateRectEx WinAPI_CreateRectRgn WinAPI_CreateRectRgnIndirect WinAPI_CreateRoundRectRgn WinAPI_CreateSemaphore WinAPI_CreateSize WinAPI_CreateSolidBitmap WinAPI_CreateSolidBrush WinAPI_CreateStreamOnHGlobal WinAPI_CreateString WinAPI_CreateSymbolicLink WinAPI_CreateTransform WinAPI_CreateWindowEx WinAPI_CreateWindowStation WinAPI_DecompressBuffer WinAPI_DecryptFile WinAPI_DeferWindowPos WinAPI_DefineDosDevice WinAPI_DefRawInputProc WinAPI_DefSubclassProc WinAPI_DefWindowProc WinAPI_DefWindowProcW WinAPI_DeleteDC WinAPI_DeleteEnhMetaFile WinAPI_DeleteFile WinAPI_DeleteObject WinAPI_DeleteObjectID WinAPI_DeleteVolumeMountPoint WinAPI_DeregisterShellHookWindow WinAPI_DestroyCaret WinAPI_DestroyCursor WinAPI_DestroyIcon WinAPI_DestroyWindow WinAPI_DeviceIoControl WinAPI_DisplayStruct WinAPI_DllGetVersion WinAPI_DllInstall WinAPI_DllUninstall WinAPI_DPtoLP WinAPI_DragAcceptFiles WinAPI_DragFinish WinAPI_DragQueryFileEx WinAPI_DragQueryPoint WinAPI_DrawAnimatedRects WinAPI_DrawBitmap WinAPI_DrawEdge WinAPI_DrawFocusRect WinAPI_DrawFrameControl WinAPI_DrawIcon WinAPI_DrawIconEx WinAPI_DrawLine WinAPI_DrawShadowText WinAPI_DrawText WinAPI_DrawThemeBackground WinAPI_DrawThemeEdge WinAPI_DrawThemeIcon WinAPI_DrawThemeParentBackground WinAPI_DrawThemeText WinAPI_DrawThemeTextEx WinAPI_DuplicateEncryptionInfoFile WinAPI_DuplicateHandle WinAPI_DuplicateTokenEx WinAPI_DwmDefWindowProc WinAPI_DwmEnableBlurBehindWindow WinAPI_DwmEnableComposition WinAPI_DwmExtendFrameIntoClientArea WinAPI_DwmGetColorizationColor WinAPI_DwmGetColorizationParameters WinAPI_DwmGetWindowAttribute WinAPI_DwmInvalidateIconicBitmaps WinAPI_DwmIsCompositionEnabled WinAPI_DwmQueryThumbnailSourceSize WinAPI_DwmRegisterThumbnail WinAPI_DwmSetColorizationParameters WinAPI_DwmSetIconicLivePreviewBitmap WinAPI_DwmSetIconicThumbnail WinAPI_DwmSetWindowAttribute WinAPI_DwmUnregisterThumbnail WinAPI_DwmUpdateThumbnailProperties WinAPI_DWordToFloat WinAPI_DWordToInt WinAPI_EjectMedia WinAPI_Ellipse WinAPI_EmptyWorkingSet WinAPI_EnableWindow WinAPI_EncryptFile WinAPI_EncryptionDisable WinAPI_EndBufferedPaint WinAPI_EndDeferWindowPos WinAPI_EndPaint WinAPI_EndPath WinAPI_EndUpdateResource WinAPI_EnumChildProcess WinAPI_EnumChildWindows WinAPI_EnumDesktops WinAPI_EnumDesktopWindows WinAPI_EnumDeviceDrivers WinAPI_EnumDisplayDevices WinAPI_EnumDisplayMonitors WinAPI_EnumDisplaySettings WinAPI_EnumDllProc WinAPI_EnumFiles WinAPI_EnumFileStreams WinAPI_EnumFontFamilies WinAPI_EnumHardLinks WinAPI_EnumMRUList WinAPI_EnumPageFiles WinAPI_EnumProcessHandles WinAPI_EnumProcessModules WinAPI_EnumProcessThreads WinAPI_EnumProcessWindows WinAPI_EnumRawInputDevices WinAPI_EnumResourceLanguages WinAPI_EnumResourceNames WinAPI_EnumResourceTypes WinAPI_EnumSystemGeoID WinAPI_EnumSystemLocales WinAPI_EnumUILanguages WinAPI_EnumWindows WinAPI_EnumWindowsPopup WinAPI_EnumWindowStations WinAPI_EnumWindowsTop WinAPI_EqualMemory WinAPI_EqualRect WinAPI_EqualRgn WinAPI_ExcludeClipRect WinAPI_ExpandEnvironmentStrings WinAPI_ExtCreatePen WinAPI_ExtCreateRegion WinAPI_ExtFloodFill WinAPI_ExtractIcon WinAPI_ExtractIconEx WinAPI_ExtSelectClipRgn WinAPI_FatalAppExit WinAPI_FatalExit WinAPI_FileEncryptionStatus WinAPI_FileExists WinAPI_FileIconInit WinAPI_FileInUse WinAPI_FillMemory WinAPI_FillPath WinAPI_FillRect WinAPI_FillRgn WinAPI_FindClose WinAPI_FindCloseChangeNotification WinAPI_FindExecutable WinAPI_FindFirstChangeNotification WinAPI_FindFirstFile WinAPI_FindFirstFileName WinAPI_FindFirstStream WinAPI_FindNextChangeNotification WinAPI_FindNextFile WinAPI_FindNextFileName WinAPI_FindNextStream WinAPI_FindResource WinAPI_FindResourceEx WinAPI_FindTextDlg WinAPI_FindWindow WinAPI_FlashWindow WinAPI_FlashWindowEx WinAPI_FlattenPath WinAPI_FloatToDWord WinAPI_FloatToInt WinAPI_FlushFileBuffers WinAPI_FlushFRBuffer WinAPI_FlushViewOfFile WinAPI_FormatDriveDlg WinAPI_FormatMessage WinAPI_FrameRect WinAPI_FrameRgn WinAPI_FreeLibrary WinAPI_FreeMemory WinAPI_FreeMRUList WinAPI_FreeResource WinAPI_GdiComment WinAPI_GetActiveWindow WinAPI_GetAllUsersProfileDirectory WinAPI_GetAncestor WinAPI_GetApplicationRestartSettings WinAPI_GetArcDirection WinAPI_GetAsyncKeyState WinAPI_GetBinaryType WinAPI_GetBitmapBits WinAPI_GetBitmapDimension WinAPI_GetBitmapDimensionEx WinAPI_GetBkColor WinAPI_GetBkMode WinAPI_GetBoundsRect WinAPI_GetBrushOrg WinAPI_GetBufferedPaintBits WinAPI_GetBufferedPaintDC WinAPI_GetBufferedPaintTargetDC WinAPI_GetBufferedPaintTargetRect WinAPI_GetBValue WinAPI_GetCaretBlinkTime WinAPI_GetCaretPos WinAPI_GetCDType WinAPI_GetClassInfoEx WinAPI_GetClassLongEx WinAPI_GetClassName WinAPI_GetClientHeight WinAPI_GetClientRect WinAPI_GetClientWidth WinAPI_GetClipboardSequenceNumber WinAPI_GetClipBox WinAPI_GetClipCursor WinAPI_GetClipRgn WinAPI_GetColorAdjustment WinAPI_GetCompressedFileSize WinAPI_GetCompression WinAPI_GetConnectedDlg WinAPI_GetCurrentDirectory WinAPI_GetCurrentHwProfile WinAPI_GetCurrentObject WinAPI_GetCurrentPosition WinAPI_GetCurrentProcess WinAPI_GetCurrentProcessExplicitAppUserModelID WinAPI_GetCurrentProcessID WinAPI_GetCurrentThemeName WinAPI_GetCurrentThread WinAPI_GetCurrentThreadId WinAPI_GetCursor WinAPI_GetCursorInfo WinAPI_GetDateFormat WinAPI_GetDC WinAPI_GetDCEx WinAPI_GetDefaultPrinter WinAPI_GetDefaultUserProfileDirectory WinAPI_GetDesktopWindow WinAPI_GetDeviceCaps WinAPI_GetDeviceDriverBaseName WinAPI_GetDeviceDriverFileName WinAPI_GetDeviceGammaRamp WinAPI_GetDIBColorTable WinAPI_GetDIBits WinAPI_GetDiskFreeSpaceEx WinAPI_GetDlgCtrlID WinAPI_GetDlgItem WinAPI_GetDllDirectory WinAPI_GetDriveBusType WinAPI_GetDriveGeometryEx WinAPI_GetDriveNumber WinAPI_GetDriveType WinAPI_GetDurationFormat WinAPI_GetEffectiveClientRect WinAPI_GetEnhMetaFile WinAPI_GetEnhMetaFileBits WinAPI_GetEnhMetaFileDescription WinAPI_GetEnhMetaFileDimension WinAPI_GetEnhMetaFileHeader WinAPI_GetErrorMessage WinAPI_GetErrorMode WinAPI_GetExitCodeProcess WinAPI_GetExtended WinAPI_GetFileAttributes WinAPI_GetFileID WinAPI_GetFileInformationByHandle WinAPI_GetFileInformationByHandleEx WinAPI_GetFilePointerEx WinAPI_GetFileSizeEx WinAPI_GetFileSizeOnDisk WinAPI_GetFileTitle WinAPI_GetFileType WinAPI_GetFileVersionInfo WinAPI_GetFinalPathNameByHandle WinAPI_GetFinalPathNameByHandleEx WinAPI_GetFocus WinAPI_GetFontMemoryResourceInfo WinAPI_GetFontName WinAPI_GetFontResourceInfo WinAPI_GetForegroundWindow WinAPI_GetFRBuffer WinAPI_GetFullPathName WinAPI_GetGeoInfo WinAPI_GetGlyphOutline WinAPI_GetGraphicsMode WinAPI_GetGuiResources WinAPI_GetGUIThreadInfo WinAPI_GetGValue WinAPI_GetHandleInformation WinAPI_GetHGlobalFromStream WinAPI_GetIconDimension WinAPI_GetIconInfo WinAPI_GetIconInfoEx WinAPI_GetIdleTime WinAPI_GetKeyboardLayout WinAPI_GetKeyboardLayoutList WinAPI_GetKeyboardState WinAPI_GetKeyboardType WinAPI_GetKeyNameText WinAPI_GetKeyState WinAPI_GetLastActivePopup WinAPI_GetLastError WinAPI_GetLastErrorMessage WinAPI_GetLayeredWindowAttributes WinAPI_GetLocaleInfo WinAPI_GetLogicalDrives WinAPI_GetMapMode WinAPI_GetMemorySize WinAPI_GetMessageExtraInfo WinAPI_GetModuleFileNameEx WinAPI_GetModuleHandle WinAPI_GetModuleHandleEx WinAPI_GetModuleInformation WinAPI_GetMonitorInfo WinAPI_GetMousePos WinAPI_GetMousePosX WinAPI_GetMousePosY WinAPI_GetMUILanguage WinAPI_GetNumberFormat WinAPI_GetObject WinAPI_GetObjectID WinAPI_GetObjectInfoByHandle WinAPI_GetObjectNameByHandle WinAPI_GetObjectType WinAPI_GetOpenFileName
WinAPI_GetOutlineTextMetrics WinAPI_GetOverlappedResult WinAPI_GetParent WinAPI_GetParentProcess WinAPI_GetPerformanceInfo WinAPI_GetPEType WinAPI_GetPhysicallyInstalledSystemMemory WinAPI_GetPixel WinAPI_GetPolyFillMode WinAPI_GetPosFromRect WinAPI_GetPriorityClass WinAPI_GetProcAddress WinAPI_GetProcessAffinityMask WinAPI_GetProcessCommandLine WinAPI_GetProcessFileName WinAPI_GetProcessHandleCount WinAPI_GetProcessID WinAPI_GetProcessIoCounters WinAPI_GetProcessMemoryInfo WinAPI_GetProcessName WinAPI_GetProcessShutdownParameters WinAPI_GetProcessTimes WinAPI_GetProcessUser WinAPI_GetProcessWindowStation WinAPI_GetProcessWorkingDirectory WinAPI_GetProfilesDirectory WinAPI_GetPwrCapabilities WinAPI_GetRawInputBuffer WinAPI_GetRawInputBufferLength WinAPI_GetRawInputData WinAPI_GetRawInputDeviceInfo WinAPI_GetRegionData WinAPI_GetRegisteredRawInputDevices WinAPI_GetRegKeyNameByHandle WinAPI_GetRgnBox WinAPI_GetROP2 WinAPI_GetRValue WinAPI_GetSaveFileName WinAPI_GetShellWindow WinAPI_GetStartupInfo WinAPI_GetStdHandle WinAPI_GetStockObject WinAPI_GetStretchBltMode WinAPI_GetString WinAPI_GetSysColor WinAPI_GetSysColorBrush WinAPI_GetSystemDefaultLangID WinAPI_GetSystemDefaultLCID WinAPI_GetSystemDefaultUILanguage WinAPI_GetSystemDEPPolicy WinAPI_GetSystemInfo WinAPI_GetSystemMetrics WinAPI_GetSystemPowerStatus WinAPI_GetSystemTimes WinAPI_GetSystemWow64Directory WinAPI_GetTabbedTextExtent WinAPI_GetTempFileName WinAPI_GetTextAlign WinAPI_GetTextCharacterExtra WinAPI_GetTextColor WinAPI_GetTextExtentPoint32 WinAPI_GetTextFace WinAPI_GetTextMetrics WinAPI_GetThemeAppProperties WinAPI_GetThemeBackgroundContentRect WinAPI_GetThemeBackgroundExtent WinAPI_GetThemeBackgroundRegion WinAPI_GetThemeBitmap WinAPI_GetThemeBool WinAPI_GetThemeColor WinAPI_GetThemeDocumentationProperty WinAPI_GetThemeEnumValue WinAPI_GetThemeFilename WinAPI_GetThemeFont WinAPI_GetThemeInt WinAPI_GetThemeMargins WinAPI_GetThemeMetric WinAPI_GetThemePartSize WinAPI_GetThemePosition WinAPI_GetThemePropertyOrigin WinAPI_GetThemeRect WinAPI_GetThemeString WinAPI_GetThemeSysBool WinAPI_GetThemeSysColor WinAPI_GetThemeSysColorBrush WinAPI_GetThemeSysFont WinAPI_GetThemeSysInt WinAPI_GetThemeSysSize WinAPI_GetThemeSysString WinAPI_GetThemeTextExtent WinAPI_GetThemeTextMetrics WinAPI_GetThemeTransitionDuration WinAPI_GetThreadDesktop WinAPI_GetThreadErrorMode WinAPI_GetThreadLocale WinAPI_GetThreadUILanguage WinAPI_GetTickCount WinAPI_GetTickCount64 WinAPI_GetTimeFormat WinAPI_GetTopWindow WinAPI_GetUDFColorMode WinAPI_GetUpdateRect WinAPI_GetUpdateRgn WinAPI_GetUserDefaultLangID WinAPI_GetUserDefaultLCID WinAPI_GetUserDefaultUILanguage WinAPI_GetUserGeoID WinAPI_GetUserObjectInformation WinAPI_GetVersion WinAPI_GetVersionEx WinAPI_GetVolumeInformation WinAPI_GetVolumeInformationByHandle WinAPI_GetVolumeNameForVolumeMountPoint WinAPI_GetWindow WinAPI_GetWindowDC WinAPI_GetWindowDisplayAffinity WinAPI_GetWindowExt WinAPI_GetWindowFileName WinAPI_GetWindowHeight WinAPI_GetWindowInfo WinAPI_GetWindowLong WinAPI_GetWindowOrg WinAPI_GetWindowPlacement WinAPI_GetWindowRect WinAPI_GetWindowRgn WinAPI_GetWindowRgnBox WinAPI_GetWindowSubclass WinAPI_GetWindowText WinAPI_GetWindowTheme WinAPI_GetWindowThreadProcessId WinAPI_GetWindowWidth WinAPI_GetWorkArea WinAPI_GetWorldTransform WinAPI_GetXYFromPoint WinAPI_GlobalMemoryStatus WinAPI_GradientFill WinAPI_GUIDFromString WinAPI_GUIDFromStringEx WinAPI_HashData WinAPI_HashString WinAPI_HiByte WinAPI_HideCaret WinAPI_HiDWord WinAPI_HiWord WinAPI_InflateRect WinAPI_InitMUILanguage WinAPI_InProcess WinAPI_IntersectClipRect WinAPI_IntersectRect WinAPI_IntToDWord WinAPI_IntToFloat WinAPI_InvalidateRect WinAPI_InvalidateRgn WinAPI_InvertANDBitmap WinAPI_InvertColor WinAPI_InvertRect WinAPI_InvertRgn WinAPI_IOCTL WinAPI_IsAlphaBitmap WinAPI_IsBadCodePtr WinAPI_IsBadReadPtr WinAPI_IsBadStringPtr WinAPI_IsBadWritePtr WinAPI_IsChild WinAPI_IsClassName WinAPI_IsDoorOpen WinAPI_IsElevated WinAPI_IsHungAppWindow WinAPI_IsIconic WinAPI_IsInternetConnected WinAPI_IsLoadKBLayout WinAPI_IsMemory WinAPI_IsNameInExpression WinAPI_IsNetworkAlive WinAPI_IsPathShared WinAPI_IsProcessInJob WinAPI_IsProcessorFeaturePresent WinAPI_IsRectEmpty WinAPI_IsThemeActive WinAPI_IsThemeBackgroundPartiallyTransparent WinAPI_IsThemePartDefined WinAPI_IsValidLocale WinAPI_IsWindow WinAPI_IsWindowEnabled WinAPI_IsWindowUnicode WinAPI_IsWindowVisible WinAPI_IsWow64Process WinAPI_IsWritable WinAPI_IsZoomed WinAPI_Keybd_Event WinAPI_KillTimer WinAPI_LineDDA WinAPI_LineTo WinAPI_LoadBitmap WinAPI_LoadCursor WinAPI_LoadCursorFromFile WinAPI_LoadIcon WinAPI_LoadIconMetric WinAPI_LoadIconWithScaleDown WinAPI_LoadImage WinAPI_LoadIndirectString WinAPI_LoadKeyboardLayout WinAPI_LoadLibrary WinAPI_LoadLibraryEx WinAPI_LoadMedia WinAPI_LoadResource WinAPI_LoadShell32Icon WinAPI_LoadString WinAPI_LoadStringEx WinAPI_LoByte WinAPI_LocalFree WinAPI_LockDevice WinAPI_LockFile WinAPI_LockResource WinAPI_LockWindowUpdate WinAPI_LockWorkStation WinAPI_LoDWord WinAPI_LongMid WinAPI_LookupIconIdFromDirectoryEx WinAPI_LoWord WinAPI_LPtoDP WinAPI_MAKELANGID WinAPI_MAKELCID WinAPI_MakeLong WinAPI_MakeQWord WinAPI_MakeWord WinAPI_MapViewOfFile WinAPI_MapVirtualKey WinAPI_MaskBlt WinAPI_MessageBeep WinAPI_MessageBoxCheck WinAPI_MessageBoxIndirect WinAPI_MirrorIcon WinAPI_ModifyWorldTransform WinAPI_MonitorFromPoint WinAPI_MonitorFromRect WinAPI_MonitorFromWindow WinAPI_Mouse_Event WinAPI_MoveFileEx WinAPI_MoveMemory WinAPI_MoveTo WinAPI_MoveToEx WinAPI_MoveWindow WinAPI_MsgBox WinAPI_MulDiv WinAPI_MultiByteToWideChar WinAPI_MultiByteToWideCharEx WinAPI_NtStatusToDosError WinAPI_OemToChar WinAPI_OffsetClipRgn WinAPI_OffsetPoints WinAPI_OffsetRect WinAPI_OffsetRgn WinAPI_OffsetWindowOrg WinAPI_OpenDesktop WinAPI_OpenFileById WinAPI_OpenFileDlg WinAPI_OpenFileMapping WinAPI_OpenIcon WinAPI_OpenInputDesktop WinAPI_OpenJobObject WinAPI_OpenMutex WinAPI_OpenProcess WinAPI_OpenProcessToken WinAPI_OpenSemaphore WinAPI_OpenThemeData WinAPI_OpenWindowStation WinAPI_PageSetupDlg WinAPI_PaintDesktop WinAPI_PaintRgn WinAPI_ParseURL WinAPI_ParseUserName WinAPI_PatBlt WinAPI_PathAddBackslash WinAPI_PathAddExtension WinAPI_PathAppend WinAPI_PathBuildRoot WinAPI_PathCanonicalize WinAPI_PathCommonPrefix WinAPI_PathCompactPath WinAPI_PathCompactPathEx WinAPI_PathCreateFromUrl WinAPI_PathFindExtension WinAPI_PathFindFileName WinAPI_PathFindNextComponent WinAPI_PathFindOnPath WinAPI_PathGetArgs WinAPI_PathGetCharType WinAPI_PathGetDriveNumber WinAPI_PathIsContentType WinAPI_PathIsDirectory WinAPI_PathIsDirectoryEmpty WinAPI_PathIsExe WinAPI_PathIsFileSpec WinAPI_PathIsLFNFileSpec WinAPI_PathIsRelative WinAPI_PathIsRoot WinAPI_PathIsSameRoot WinAPI_PathIsSystemFolder WinAPI_PathIsUNC WinAPI_PathIsUNCServer WinAPI_PathIsUNCServerShare WinAPI_PathMakeSystemFolder WinAPI_PathMatchSpec WinAPI_PathParseIconLocation WinAPI_PathRelativePathTo WinAPI_PathRemoveArgs WinAPI_PathRemoveBackslash WinAPI_PathRemoveExtension WinAPI_PathRemoveFileSpec WinAPI_PathRenameExtension WinAPI_PathSearchAndQualify WinAPI_PathSkipRoot WinAPI_PathStripPath WinAPI_PathStripToRoot WinAPI_PathToRegion WinAPI_PathUndecorate WinAPI_PathUnExpandEnvStrings WinAPI_PathUnmakeSystemFolder WinAPI_PathUnquoteSpaces WinAPI_PathYetAnotherMakeUniqueName WinAPI_PickIconDlg WinAPI_PlayEnhMetaFile WinAPI_PlaySound WinAPI_PlgBlt WinAPI_PointFromRect WinAPI_PolyBezier WinAPI_PolyBezierTo WinAPI_PolyDraw WinAPI_Polygon WinAPI_PostMessage WinAPI_PrimaryLangId WinAPI_PrintDlg WinAPI_PrintDlgEx WinAPI_PrintWindow WinAPI_ProgIDFromCLSID WinAPI_PtInRect WinAPI_PtInRectEx WinAPI_PtInRegion WinAPI_PtVisible WinAPI_QueryDosDevice WinAPI_QueryInformationJobObject WinAPI_QueryPerformanceCounter WinAPI_QueryPerformanceFrequency WinAPI_RadialGradientFill WinAPI_ReadDirectoryChanges WinAPI_ReadFile WinAPI_ReadProcessMemory WinAPI_Rectangle WinAPI_RectInRegion WinAPI_RectIsEmpty WinAPI_RectVisible WinAPI_RedrawWindow WinAPI_RegCloseKey WinAPI_RegConnectRegistry WinAPI_RegCopyTree WinAPI_RegCopyTreeEx WinAPI_RegCreateKey WinAPI_RegDeleteEmptyKey WinAPI_RegDeleteKey WinAPI_RegDeleteKeyValue WinAPI_RegDeleteTree WinAPI_RegDeleteTreeEx WinAPI_RegDeleteValue WinAPI_RegDisableReflectionKey WinAPI_RegDuplicateHKey WinAPI_RegEnableReflectionKey WinAPI_RegEnumKey WinAPI_RegEnumValue WinAPI_RegFlushKey WinAPI_RegisterApplicationRestart WinAPI_RegisterClass WinAPI_RegisterClassEx WinAPI_RegisterHotKey WinAPI_RegisterPowerSettingNotification WinAPI_RegisterRawInputDevices WinAPI_RegisterShellHookWindow WinAPI_RegisterWindowMessage WinAPI_RegLoadMUIString WinAPI_RegNotifyChangeKeyValue WinAPI_RegOpenKey WinAPI_RegQueryInfoKey WinAPI_RegQueryLastWriteTime WinAPI_RegQueryMultipleValues WinAPI_RegQueryReflectionKey WinAPI_RegQueryValue WinAPI_RegRestoreKey WinAPI_RegSaveKey WinAPI_RegSetValue WinAPI_ReleaseCapture WinAPI_ReleaseDC WinAPI_ReleaseMutex WinAPI_ReleaseSemaphore WinAPI_ReleaseStream WinAPI_RemoveClipboardFormatListener WinAPI_RemoveDirectory WinAPI_RemoveFontMemResourceEx WinAPI_RemoveFontResourceEx WinAPI_RemoveWindowSubclass WinAPI_ReOpenFile WinAPI_ReplaceFile WinAPI_ReplaceTextDlg WinAPI_ResetEvent WinAPI_RestartDlg WinAPI_RestoreDC WinAPI_RGB WinAPI_RotatePoints WinAPI_RoundRect WinAPI_SaveDC WinAPI_SaveFileDlg WinAPI_SaveHBITMAPToFile WinAPI_SaveHICONToFile WinAPI_ScaleWindowExt WinAPI_ScreenToClient WinAPI_SearchPath WinAPI_SelectClipPath WinAPI_SelectClipRgn WinAPI_SelectObject WinAPI_SendMessageTimeout WinAPI_SetActiveWindow WinAPI_SetArcDirection WinAPI_SetBitmapBits WinAPI_SetBitmapDimensionEx WinAPI_SetBkColor WinAPI_SetBkMode WinAPI_SetBoundsRect WinAPI_SetBrushOrg WinAPI_SetCapture WinAPI_SetCaretBlinkTime WinAPI_SetCaretPos WinAPI_SetClassLongEx WinAPI_SetColorAdjustment WinAPI_SetCompression WinAPI_SetCurrentDirectory WinAPI_SetCurrentProcessExplicitAppUserModelID WinAPI_SetCursor WinAPI_SetDCBrushColor WinAPI_SetDCPenColor WinAPI_SetDefaultPrinter WinAPI_SetDeviceGammaRamp WinAPI_SetDIBColorTable WinAPI_SetDIBits WinAPI_SetDIBitsToDevice
WinAPI_SetDllDirectory WinAPI_SetEndOfFile WinAPI_SetEnhMetaFileBits WinAPI_SetErrorMode WinAPI_SetEvent WinAPI_SetFileAttributes WinAPI_SetFileInformationByHandleEx WinAPI_SetFilePointer WinAPI_SetFilePointerEx WinAPI_SetFileShortName WinAPI_SetFileValidData WinAPI_SetFocus WinAPI_SetFont WinAPI_SetForegroundWindow WinAPI_SetFRBuffer WinAPI_SetGraphicsMode WinAPI_SetHandleInformation WinAPI_SetInformationJobObject WinAPI_SetKeyboardLayout WinAPI_SetKeyboardState WinAPI_SetLastError WinAPI_SetLayeredWindowAttributes WinAPI_SetLocaleInfo WinAPI_SetMapMode WinAPI_SetMessageExtraInfo WinAPI_SetParent WinAPI_SetPixel WinAPI_SetPolyFillMode WinAPI_SetPriorityClass WinAPI_SetProcessAffinityMask WinAPI_SetProcessShutdownParameters WinAPI_SetProcessWindowStation WinAPI_SetRectRgn WinAPI_SetROP2 WinAPI_SetSearchPathMode WinAPI_SetStretchBltMode WinAPI_SetSysColors WinAPI_SetSystemCursor WinAPI_SetTextAlign WinAPI_SetTextCharacterExtra WinAPI_SetTextColor WinAPI_SetTextJustification WinAPI_SetThemeAppProperties WinAPI_SetThreadDesktop WinAPI_SetThreadErrorMode WinAPI_SetThreadExecutionState WinAPI_SetThreadLocale WinAPI_SetThreadUILanguage WinAPI_SetTimer WinAPI_SetUDFColorMode WinAPI_SetUserGeoID WinAPI_SetUserObjectInformation WinAPI_SetVolumeMountPoint WinAPI_SetWindowDisplayAffinity WinAPI_SetWindowExt WinAPI_SetWindowLong WinAPI_SetWindowOrg WinAPI_SetWindowPlacement WinAPI_SetWindowPos WinAPI_SetWindowRgn WinAPI_SetWindowsHookEx WinAPI_SetWindowSubclass WinAPI_SetWindowText WinAPI_SetWindowTheme WinAPI_SetWinEventHook WinAPI_SetWorldTransform WinAPI_SfcIsFileProtected WinAPI_SfcIsKeyProtected WinAPI_ShellAboutDlg WinAPI_ShellAddToRecentDocs WinAPI_ShellChangeNotify WinAPI_ShellChangeNotifyDeregister WinAPI_ShellChangeNotifyRegister WinAPI_ShellCreateDirectory WinAPI_ShellEmptyRecycleBin WinAPI_ShellExecute WinAPI_ShellExecuteEx WinAPI_ShellExtractAssociatedIcon WinAPI_ShellExtractIcon WinAPI_ShellFileOperation WinAPI_ShellFlushSFCache WinAPI_ShellGetFileInfo WinAPI_ShellGetIconOverlayIndex WinAPI_ShellGetImageList WinAPI_ShellGetKnownFolderIDList WinAPI_ShellGetKnownFolderPath WinAPI_ShellGetLocalizedName WinAPI_ShellGetPathFromIDList WinAPI_ShellGetSetFolderCustomSettings WinAPI_ShellGetSettings WinAPI_ShellGetSpecialFolderLocation WinAPI_ShellGetSpecialFolderPath WinAPI_ShellGetStockIconInfo WinAPI_ShellILCreateFromPath WinAPI_ShellNotifyIcon WinAPI_ShellNotifyIconGetRect WinAPI_ShellObjectProperties WinAPI_ShellOpenFolderAndSelectItems WinAPI_ShellOpenWithDlg WinAPI_ShellQueryRecycleBin WinAPI_ShellQueryUserNotificationState WinAPI_ShellRemoveLocalizedName WinAPI_ShellRestricted WinAPI_ShellSetKnownFolderPath WinAPI_ShellSetLocalizedName WinAPI_ShellSetSettings WinAPI_ShellStartNetConnectionDlg WinAPI_ShellUpdateImage WinAPI_ShellUserAuthenticationDlg WinAPI_ShellUserAuthenticationDlgEx WinAPI_ShortToWord WinAPI_ShowCaret WinAPI_ShowCursor WinAPI_ShowError WinAPI_ShowLastError WinAPI_ShowMsg WinAPI_ShowOwnedPopups WinAPI_ShowWindow WinAPI_ShutdownBlockReasonCreate WinAPI_ShutdownBlockReasonDestroy WinAPI_ShutdownBlockReasonQuery WinAPI_SizeOfResource WinAPI_StretchBlt WinAPI_StretchDIBits WinAPI_StrFormatByteSize WinAPI_StrFormatByteSizeEx WinAPI_StrFormatKBSize WinAPI_StrFromTimeInterval WinAPI_StringFromGUID WinAPI_StringLenA WinAPI_StringLenW WinAPI_StrLen WinAPI_StrokeAndFillPath WinAPI_StrokePath WinAPI_StructToArray WinAPI_SubLangId WinAPI_SubtractRect WinAPI_SwapDWord WinAPI_SwapQWord WinAPI_SwapWord WinAPI_SwitchColor WinAPI_SwitchDesktop WinAPI_SwitchToThisWindow WinAPI_SystemParametersInfo WinAPI_TabbedTextOut WinAPI_TerminateJobObject WinAPI_TerminateProcess WinAPI_TextOut WinAPI_TileWindows WinAPI_TrackMouseEvent WinAPI_TransparentBlt WinAPI_TwipsPerPixelX WinAPI_TwipsPerPixelY WinAPI_UnhookWindowsHookEx WinAPI_UnhookWinEvent WinAPI_UnionRect WinAPI_UnionStruct WinAPI_UniqueHardwareID WinAPI_UnloadKeyboardLayout WinAPI_UnlockFile WinAPI_UnmapViewOfFile WinAPI_UnregisterApplicationRestart WinAPI_UnregisterClass WinAPI_UnregisterHotKey WinAPI_UnregisterPowerSettingNotification WinAPI_UpdateLayeredWindow WinAPI_UpdateLayeredWindowEx WinAPI_UpdateLayeredWindowIndirect WinAPI_UpdateResource WinAPI_UpdateWindow WinAPI_UrlApplyScheme WinAPI_UrlCanonicalize WinAPI_UrlCombine WinAPI_UrlCompare WinAPI_UrlCreateFromPath WinAPI_UrlFixup WinAPI_UrlGetPart WinAPI_UrlHash WinAPI_UrlIs WinAPI_UserHandleGrantAccess WinAPI_ValidateRect WinAPI_ValidateRgn WinAPI_VerQueryRoot WinAPI_VerQueryValue WinAPI_VerQueryValueEx WinAPI_WaitForInputIdle WinAPI_WaitForMultipleObjects WinAPI_WaitForSingleObject WinAPI_WideCharToMultiByte WinAPI_WidenPath WinAPI_WindowFromDC WinAPI_WindowFromPoint WinAPI_WordToShort WinAPI_Wow64EnableWow64FsRedirection WinAPI_WriteConsole WinAPI_WriteFile WinAPI_WriteProcessMemory WinAPI_ZeroMemory WinNet_AddConnection WinNet_AddConnection2 WinNet_AddConnection3 WinNet_CancelConnection WinNet_CancelConnection2 WinNet_CloseEnum WinNet_ConnectionDialog WinNet_ConnectionDialog1 WinNet_DisconnectDialog WinNet_DisconnectDialog1 WinNet_EnumResource WinNet_GetConnection WinNet_GetConnectionPerformance WinNet_GetLastError WinNet_GetNetworkInformation WinNet_GetProviderName WinNet_GetResourceInformation WinNet_GetResourceParent WinNet_GetUniversalName WinNet_GetUser WinNet_OpenEnum WinNet_RestoreConnection WinNet_UseConnection Word_Create Word_DocAdd Word_DocAttach Word_DocClose Word_DocExport Word_DocFind Word_DocFindReplace Word_DocGet Word_DocLinkAdd Word_DocLinkGet Word_DocOpen Word_DocPictureAdd Word_DocPrint Word_DocRangeSet Word_DocSave Word_DocSaveAs Word_DocTableRead Word_DocTableWrite Word_Quit",I={
v:[e.C(";","$",{r:0}),e.C("#cs","#ce"),e.C("#comments-start","#comments-end")]},n={b:"\\$[A-z0-9_]+"},l={cN:"string",v:[{b:/"/,e:/"/,c:[{b:/""/,r:0}]},{b:/'/,e:/'/,c:[{b:/''/,r:0}]}]},o={v:[e.BNM,e.CNM]},a={cN:"meta",b:"#",e:"$",k:{"meta-keyword":"include include-once NoTrayIcon OnAutoItStartRegister RequireAdmin pragma Au3Stripper_Ignore_Funcs Au3Stripper_Ignore_Variables Au3Stripper_Off Au3Stripper_On Au3Stripper_Parameters AutoIt3Wrapper_Add_Constants AutoIt3Wrapper_Au3Check_Parameters AutoIt3Wrapper_Au3Check_Stop_OnWarning AutoIt3Wrapper_Aut2Exe AutoIt3Wrapper_AutoIt3 AutoIt3Wrapper_AutoIt3Dir AutoIt3Wrapper_Change2CUI AutoIt3Wrapper_Compile_Both AutoIt3Wrapper_Compression AutoIt3Wrapper_EndIf AutoIt3Wrapper_Icon AutoIt3Wrapper_If_Compile AutoIt3Wrapper_If_Run AutoIt3Wrapper_Jump_To_First_Error AutoIt3Wrapper_OutFile AutoIt3Wrapper_OutFile_Type AutoIt3Wrapper_OutFile_X64 AutoIt3Wrapper_PlugIn_Funcs AutoIt3Wrapper_Res_Comment Autoit3Wrapper_Res_Compatibility AutoIt3Wrapper_Res_Description AutoIt3Wrapper_Res_Field AutoIt3Wrapper_Res_File_Add AutoIt3Wrapper_Res_FileVersion AutoIt3Wrapper_Res_FileVersion_AutoIncrement AutoIt3Wrapper_Res_Icon_Add AutoIt3Wrapper_Res_Language AutoIt3Wrapper_Res_LegalCopyright AutoIt3Wrapper_Res_ProductVersion AutoIt3Wrapper_Res_requestedExecutionLevel AutoIt3Wrapper_Res_SaveSource AutoIt3Wrapper_Run_After AutoIt3Wrapper_Run_Au3Check AutoIt3Wrapper_Run_Au3Stripper AutoIt3Wrapper_Run_Before AutoIt3Wrapper_Run_Debug_Mode AutoIt3Wrapper_Run_SciTE_Minimized AutoIt3Wrapper_Run_SciTE_OutputPane_Minimized AutoIt3Wrapper_Run_Tidy AutoIt3Wrapper_ShowProgress AutoIt3Wrapper_Testing AutoIt3Wrapper_Tidy_Stop_OnError AutoIt3Wrapper_UPX_Parameters AutoIt3Wrapper_UseUPX AutoIt3Wrapper_UseX64 AutoIt3Wrapper_Version AutoIt3Wrapper_Versioning AutoIt3Wrapper_Versioning_Parameters Tidy_Off Tidy_On Tidy_Parameters EndRegion Region"},c:[{b:/\\\n/,r:0},{bK:"include",k:{"meta-keyword":"include"},e:"$",c:[l,{cN:"meta-string",v:[{b:"<",e:">"},{b:/"/,e:/"/,c:[{b:/""/,r:0}]},{b:/'/,e:/'/,c:[{b:/''/,r:0}]}]}]},l,I]},_={cN:"symbol",b:"@[A-z0-9_]+"},G={cN:"function",bK:"Func",e:"$",i:"\\$|\\[|%",c:[e.UTM,{cN:"params",b:"\\(",e:"\\)",c:[n,l,o]}]};return{cI:!0,i:/\/*/,k:{keyword:t,built_in:i,literal:r},c:[I,n,l,o,a,_,G]}});hljs.registerLanguage("r",function(e){var r="([a-zA-Z]|\\.[a-zA-Z.])[a-zA-Z0-9._]*";return{c:[e.HCM,{b:r,l:r,k:{keyword:"function if in break next repeat else for return switch while try tryCatch stop warning require library attach detach source setMethod setGeneric setGroupGeneric setClass ...",literal:"NULL NA TRUE FALSE T F Inf NaN NA_integer_|10 NA_real_|10 NA_character_|10 NA_complex_|10"},r:0},{cN:"number",b:"0[xX][0-9a-fA-F]+[Li]?\\b",r:0},{cN:"number",b:"\\d+(?:[eE][+\\-]?\\d*)?L\\b",r:0},{cN:"number",b:"\\d+\\.(?!\\d)(?:i\\b)?",r:0},{cN:"number",b:"\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",r:0},{b:"`",e:"`",r:0},{cN:"string",c:[e.BE],v:[{b:'"',e:'"'},{b:"'",e:"'"}]}]}});

OEBPS/Common_Content/images/title_logo.png
& RedHat

OEBPS/Common_Content/images/7.png

OEBPS/Common_Content/images/warning.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Medium.woff

OEBPS/Common_Content/images/important.png

OEBPS/Common_Content/images/35.png

OEBPS/Common_Content/images/19.png

OEBPS/images/ossm-kiali-masthead-mtls-enabled.png
Mesh-wide mTLS is enabled 8 @ anonymous v

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.woff

OEBPS/Common_Content/images/10.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.woff

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.woff

OEBPS/Common_Content/images/2.png

OEBPS/Common_Content/scripts/highlight.js/LICENSE
Copyright (c) 2006, Ivan Sagalaev
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of highlight.js nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OEBPS/Common_Content/images/15.png

OEBPS/Common_Content/images/watermark-draft.png

OEBPS/Common_Content/images/20.png

OEBPS/Common_Content/fonts/overpass_light-web.eot

OEBPS/Common_Content/scripts/utils.js
var work = 1;

function pop(entity) {
	if(entity) {
		var my_parent = entity.parentNode;
		var my_class = my_parent.className;
		my_parent.className = my_class.replace(/popper/,"popped");
	}
}
function unpop(entity) {
	if(entity) {
		var my_parent = entity.parentNode;
		var my_class = my_parent.className;
		my_parent.className = my_class.replace(/popped/,"popper");
	}
}

function siblings(entity){
	var r = [];
	for (var n = entity.parentNode.firstChild; n; n = n.nextSibling)
		if (n.nodeType == 1 && n != entity)
			r.push(n);		
	return r;
}

/* This activates an element and deactivates all it's siblings */
function activateElement(id) {
	var entity = document.getElementById(id);
	if(entity.className.indexOf("active") == -1) {
		entity.className = entity.className + " active";
	}
	var sibs = siblings(entity);

	for(var i=0; i < sibs.length; i++) {
		if(sibs[i].className.indexOf("active") != -1) {
			deactivateElement(sibs[i]);
		}
	}
}

function deactivateElement(entity) {
	if(entity.className.indexOf("active") != -1) {
		 entity.className = entity.className.replace(/[]*active/, '');
	}
}

function getCookie(name) {
	var name_c = window.location.hostname + '-' + name;

	if(document.cookie) {
		var cookies = document.cookie.split(/ *; */);
		for(var i=0; i < cookies.length; i++) {
			var current_c = cookies[i].split("=");
			if(current_c[0] == name_c) {
				return(current_c[1]);
				break;
			}
		}
	}
	return('');
}

function setCookie(name, value, expires, path) {
	name = window.location.hostname + '-' + name;

	var curCookie = name + "=" + value +
		((expires) ? ";expires=" + expires.toGMTString() : "") +
		((path) ? ";path=" + path : "");
	document.cookie = curCookie;
}

function setDefLangCookie(entity) {
	setCookie('switchery', entity.options[entity.selectedIndex].value, '', '/');
}

function initSwitchery() {
	var divs = document.getElementsByTagName('div');
	for(i in divs) {
		if(typeof(divs[i].className) != 'undefined' && divs[i].className.indexOf("switchery") != -1) {
			var lang = getCookie('switchery');
			if(lang != '') {
				var entity = document.getElementById(divs[i].id + '-' + lang);
				if(entity) {
					entity.onclick();
					entity.parentNode.lastChild.value = lang;
				} else {
					divs[i].firstChild.firstChild.onclick();
				}
			} else {
				divs[i].firstChild.firstChild.onclick();
			}
		}
	}

}

function showhide(id) {
	if(work) {
		work = 0;
		var entity = document.getElementById(id);
		if(entity) {
			var my_class = entity.className;
			if(my_class.indexOf("hidden") != -1) {
				entity.className = my_class.replace(/hidden/,"visible");
			}
			else if(my_class.indexOf("visible") != -1) {
				entity.className = my_class.replace(/visible/,"hidden");
			}
		}
	}

	return false;
}

function hide(id) {
	if(work) {
		work = 0;
		var entity = document.getElementById(id);
		if(entity) {
			var my_class = entity.className;
			if(my_class.indexOf("visible") != -1) {
				entity.className = my_class.replace(/visible/,"hidden");
			}
		}
	} else {
		work=1;
	}
}

var preventReset = 0;

function dehighlightTarget(entity) {
	if(preventReset == 0 && entity) {
		var id = entity.href;
		if(id.indexOf("#") != -1) {
			id = id.substr(id.indexOf('#')+1);
		}
		var target = document.getElementById(id);
		if(target) {
			deactivateElement(target);
		}
		}
}

function highlightTarget(entity, norefresh) {
	if(entity) {
		var id = entity.href;
		if(id.indexOf("#") != -1) {
			id = id.substr(id.indexOf('#')+1);
		}
		activateElement(id);
		preventReset = 0;
	}
	if(norefresh == 1) {
		preventReset=1;
	}
}

OEBPS/images/ossm-federation-import-service.png
Red service mesh

Blue service mesh

i Imported service set

Green service mesh

OEBPS/images/ossm-kiali-graph-badge-security.png
8 a

© kube:

Namespace: bookinfo +

App graph

Display ~ Finc

v Hide v O

P Restricted / External
Edges

—> Faiue

—> Degraded
—> ety

—H» TcP connection
—> e

a mTLS (badge)

Traffic Animation
—O— Normal Request
—®— Failed Request

“mmms TCPTrRffic

Node Badges

a
@

Circuit Breaker
Fault Injection

Missing Sidecar

Request Timeout

Traffic Shifting/TCP
Traffic Shifting

Traffic Source

Virtual Service/Request
Routing

Q Q

=

.—é—)

istio-ingressgateway
(istio-system)

productpage

http

Mdetails

reviews

ratings

9 Last5m v Everylss ~

¥ ride

® Graph tour

From: @) productpose
o @R desis

& mTLS Enabled

Principals:

Traffic Flags Hosts

HTTP requests per second:

Total FSuccess kError

059 10000 000

HTTP Request Traffic min / max
RPS: 000,167, %Efror 0.00/ 0.00

._/\/\/‘_

HTTP Request Response Time (ms):

pe—————e———— ey

OEBPS/Common_Content/images/29.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-BlackItalic.eot

OEBPS/Common_Content/images/21.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-RegularItalic.eot

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Medium.woff

OEBPS/Common_Content/fonts/redhat/text/RedHatText-Regular.woff2

OEBPS/Common_Content/fonts/portal/nimbus/iconfont.ttf

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Bold.eot

OEBPS/images/ossm-kiali-overview.png
© kiali 8 & © kibeadmin v

Overview Namespace - ne Name v 1% LastiOm v Everylss w
Graph Healthfor Apps v 58
Applicatit
v bookinfo H istio-system H

3 Labels 4Labels

rvices Istio Config [:] Istio Config L]
4 Applications @ 4 8 Applications @8
Traffic, 1om

Istio Con

/\/ No traffic
Distributed Tracing &

OEBPS/Common_Content/images/31.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Regular.eot

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-MediumItalic.eot

OEBPS/Common_Content/images/stock-go-forward.png

OEBPS/Common_Content/images/6.png

OEBPS/Common_Content/images/14.png

OEBPS/Common_Content/images/1.png

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.woff2

OEBPS/Common_Content/images/25.png

OEBPS/Common_Content/fonts/redhat/text/RedHatText-RegularItalic.woff2

OEBPS/Common_Content/fonts/redhat/display/RedHatDisplay-Black.woff

