
Workload Availability for Red Hat
OpenShift 24.1

Remediation, fencing, and maintenance

Workload Availability remediation, fencing, and maintenance

Last Updated: 2024-02-20

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing,
and maintenance

Workload Availability remediation, fencing, and maintenance

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Information about workload availability operators and their usage

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

PROVIDING FEEDBACK ON WORKLOAD AVAILABILITY FOR RED HAT OPENSHIFT DOCUMENTATION

CHAPTER 1. ABOUT NODE REMEDIATION, FENCING, AND MAINTENANCE
1.1. SELF NODE REMEDIATION
1.2. FENCE AGENTS REMEDIATION
1.3. MACHINE DELETION REMEDIATION
1.4. MACHINE HEALTH CHECK
1.5. NODE HEALTH CHECK
1.6. NODE MAINTENANCE

CHAPTER 2. USING SELF NODE REMEDIATION
2.1. ABOUT THE SELF NODE REMEDIATION OPERATOR

2.1.1. About watchdog devices
2.1.1.1. Understanding Self Node Remediation Operator behavior with watchdog devices

2.2. CONTROL PLANE FENCING
2.3. INSTALLING THE SELF NODE REMEDIATION OPERATOR BY USING THE WEB CONSOLE
2.4. INSTALLING THE SELF NODE REMEDIATION OPERATOR BY USING THE CLI
2.5. CONFIGURING THE SELF NODE REMEDIATION OPERATOR

2.5.1. Understanding the Self Node Remediation Operator configuration
2.5.2. Understanding the Self Node Remediation Template configuration
2.5.3. Troubleshooting the Self Node Remediation Operator

2.5.3.1. General troubleshooting
2.5.3.2. Checking the daemon set
2.5.3.3. Unsuccessful remediation
2.5.3.4. Daemon set and other Self Node Remediation Operator resources exist even after uninstalling the
Operator

2.5.4. Gathering data about the Self Node Remediation Operator
2.5.5. Additional resources

CHAPTER 3. USING FENCE AGENTS REMEDIATION
3.1. ABOUT THE FENCE AGENTS REMEDIATION OPERATOR
3.2. INSTALLING THE FENCE AGENTS REMEDIATION OPERATOR BY USING THE WEB CONSOLE
3.3. INSTALLING THE FENCE AGENTS REMEDIATION OPERATOR BY USING THE CLI
3.4. CONFIGURING THE FENCE AGENTS REMEDIATION OPERATOR
3.5. TROUBLESHOOTING THE FENCE AGENTS REMEDIATION OPERATOR

3.5.1. General troubleshooting
3.5.2. Unsuccessful remediation
3.5.3. Fence Agents Remediation Operator resources exist after uninstalling the Operator

3.6. GATHERING DATA ABOUT THE FENCE AGENTS REMEDIATION OPERATOR
3.7. ADDITIONAL RESOURCES

CHAPTER 4. USING MACHINE DELETION REMEDIATION
4.1. ABOUT THE MACHINE DELETION REMEDIATION OPERATOR
4.2. INSTALLING THE MACHINE DELETION REMEDIATION OPERATOR BY USING THE WEB CONSOLE
4.3. INSTALLING THE MACHINE DELETION REMEDIATION OPERATOR BY USING THE CLI
4.4. CONFIGURING THE MACHINE DELETION REMEDIATION OPERATOR
4.5. TROUBLESHOOTING THE MACHINE DELETION REMEDIATION OPERATOR

4.5.1. General troubleshooting
4.5.2. Unsuccessful remediation
4.5.3. Machine Deletion Remediation Operator resources exist even after uninstalling the Operator

4.6. GATHERING DATA ABOUT THE MACHINE DELETION REMEDIATION OPERATOR

4

5

6
6
6
6
6
7
7

8
8
8
9
9

10
10
13
13
15
16
16
16
16

17
17
17

18
18
18
19
21
22
22
22
23
23
23

24
24
24
25
26
27
27
27
27
28

Table of Contents

1

. .

. .

. .

4.7. ADDITIONAL RESOURCES

CHAPTER 5. REMEDIATING NODES WITH MACHINE HEALTH CHECKS
5.1. ABOUT MACHINE HEALTH CHECKS

5.1.1. Limitations when deploying machine health checks
5.2. CONFIGURING MACHINE HEALTH CHECKS TO USE THE SELF NODE REMEDIATION OPERATOR

CHAPTER 6. REMEDIATING NODES WITH NODE HEALTH CHECKS
6.1. ABOUT THE NODE HEALTH CHECK OPERATOR

6.1.1. Understanding the Node Health Check Operator workflow
6.1.2. About how node health checks prevent conflicts with machine health checks

6.2. CONTROL PLANE FENCING
6.3. INSTALLING THE NODE HEALTH CHECK OPERATOR BY USING THE WEB CONSOLE
6.4. INSTALLING THE NODE HEALTH CHECK OPERATOR BY USING THE CLI
6.5. CREATING A NODE HEALTH CHECK
6.6. GATHERING DATA ABOUT THE NODE HEALTH CHECK OPERATOR
6.7. ADDITIONAL RESOURCES

CHAPTER 7. PLACING NODES IN MAINTENANCE MODE WITH NODE MAINTENANCE OPERATOR
7.1. ABOUT THE NODE MAINTENANCE OPERATOR
7.2. INSTALLING THE NODE MAINTENANCE OPERATOR

7.2.1. Installing the Node Maintenance Operator by using the web console
7.2.2. Installing the Node Maintenance Operator by using the CLI

7.3. SETTING A NODE TO MAINTENANCE MODE
7.3.1. Setting a node to maintenance mode by using the web console
7.3.2. Setting a node to maintenance mode by using the CLI
7.3.3. Checking status of current NodeMaintenance CR tasks

7.4. RESUMING A NODE FROM MAINTENANCE MODE
7.4.1. Resuming a node from maintenance mode by using the web console
7.4.2. Resuming a node from maintenance mode by using the CLI

7.5. WORKING WITH BARE-METAL NODES
7.5.1. Maintaining bare-metal nodes
7.5.2. Setting a bare-metal node to maintenance mode
7.5.3. Resuming a bare-metal node from maintenance mode

7.6. GATHERING DATA ABOUT THE NODE MAINTENANCE OPERATOR
7.7. ADDITIONAL RESOURCES

28

29
29
29
30

32
32
34
34
35
36
36
38
39
39

40
40
40
40
41

43
43
43
44
45
45
46
46
47
47
48
48
48

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

2

Table of Contents

3

PREFACE

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

4

PROVIDING FEEDBACK ON WORKLOAD AVAILABILITY FOR
RED HAT OPENSHIFT DOCUMENTATION

We appreciate your feedback on our documentation. Let us know how we can improve it. To do so:

1. Go to the JIRA website.

2. Enter a descriptive title in the Summary field.

3. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

4. Enter your username in the Reporter field.

5. Enter the affected versions in the Affects Version/s field.

6. Click Create at the bottom of the dialog.

PROVIDING FEEDBACK ON WORKLOAD AVAILABILITY FOR RED HAT OPENSHIFT DOCUMENTATION

5

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?issuetype=1&pid=12325623&priority=10300&components=12351912

CHAPTER 1. ABOUT NODE REMEDIATION, FENCING, AND
MAINTENANCE

Hardware is imperfect and software contains bugs. When node-level failures, such as the kernel hangs
or network interface controllers (NICs) fail, the work required from the cluster does not decrease, and
workloads from affected nodes need to be restarted somewhere. However, some workloads, such as
ReadWriteOnce (RWO) volumes and StatefulSets, might require at-most-one semantics.

Failures affecting these workloads risk data loss, corruption, or both. It is important to ensure that the
node reaches a safe state, known as fencing before initiating recovery of the workload, known as
remediation and ideally, recovery of the node also.

It is not always practical to depend on administrator intervention to confirm the true status of the nodes
and workloads. To facilitate such intervention, Red Hat OpenShift provides multiple components for the
automation of failure detection, fencing and remediation.

1.1. SELF NODE REMEDIATION

The Self Node Remediation Operator is a Red Hat OpenShift add-on Operator that implements an
external system of fencing and remediation that reboots unhealthy nodes and deletes resources, such
as Pods and VolumeAttachments. The reboot ensures that the workloads are fenced, and the resource
deletion accelerates the rescheduling of affected workloads. Unlike other external systems, Self Node
Remediation does not require any management interface, like, for example, Intelligent Platform
Management Interface (IPMI) or an API for node provisioning.

Self Node Remediation can be used by failure detection systems, like Machine Health Check or Node
Health Check.

1.2. FENCE AGENTS REMEDIATION

The Fence Agents Remediation (FAR) Operator is a Red Hat OpenShift add-on operator that
automatically remediates unhealthy nodes, similar to the Self Node Remediation Operator. Using a
management interface or traditional API, FAR runs a fence-agent to remediate a node from an
unhealthy state by power-cycling the node.

FAR is designed to run an existing set of upstream fencing agents for environments with a traditional API
end-point, for example, IPMI, for power cycling cluster nodes.

1.3. MACHINE DELETION REMEDIATION

The Machine Deletion Remediation (MDR) Operator is a Red Hat OpenShift add-on Operator that uses
the Machine API to reprovision unhealthy nodes. MDR works with NodeHealthCheck (NHC) to create a
Custom Resource (CR) for MDR with information about the unhealthy node.

MDR follows the annotation on the node to the associated machine object and confirms that it has an
owning controller. MDR proceeds to delete the machine, and then the owning controller recreates a
replacement machine.

1.4. MACHINE HEALTH CHECK

Machine Health Check utilizes a Red Hat OpenShift built-in failure detection, fencing and remediation
system, which monitors the status of machines and the conditions of nodes. Machine Health Checks can
be configured to trigger external fencing and remediation systems, like Self Node Remediation.

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

6

1.5. NODE HEALTH CHECK

The Node Health Check Operator is a Red Hat OpenShift add-on Operator that implements a failure
detection system that monitors node conditions. It does not have a built-in fencing or remediation
system and so must be configured with an external system that provides these features. By default, it is
configured to utilize the Self Node Remediation system.

1.6. NODE MAINTENANCE

Administrators face situations where they need to interrupt the cluster, for example, replace a drive,
RAM, or a NIC.

In advance of this maintenance, affected nodes should be cordoned and drained. When a node is
cordoned, new workloads cannot be scheduled on that node. When a node is drained, to avoid or
minimize downtime, workloads on the affected node are transferred to other nodes.

While this maintenance can be achieved using command line tools, the Node Maintenance Operator
offers a declarative approach to achieve this by using a custom resource. When such a resource exists
for a node, the Operator cordons and drains the node until the resource is deleted.

CHAPTER 1. ABOUT NODE REMEDIATION, FENCING, AND MAINTENANCE

7

1

2

CHAPTER 2. USING SELF NODE REMEDIATION
You can use the Self Node Remediation Operator to automatically reboot unhealthy nodes. This
remediation strategy minimizes downtime for stateful applications and ReadWriteOnce (RWO) volumes,
and restores compute capacity if transient failures occur.

2.1. ABOUT THE SELF NODE REMEDIATION OPERATOR

The Self Node Remediation Operator runs on the cluster nodes and reboots nodes that are identified as
unhealthy. The Operator uses the MachineHealthCheck or NodeHealthCheck controller to detect the
health of a node in the cluster. When a node is identified as unhealthy, the MachineHealthCheck or the
NodeHealthCheck resource creates the SelfNodeRemediation custom resource (CR), which triggers
the Self Node Remediation Operator.

The SelfNodeRemediation CR resembles the following YAML file:

Specifies the remediation strategy for the nodes.

Displays the last error that occurred during remediation. When remediation succeeds or if no errors
occur, the field is left empty.

The Self Node Remediation Operator minimizes downtime for stateful applications and restores
compute capacity if transient failures occur. You can use this Operator regardless of the management
interface, such as IPMI or an API to provision a node, and regardless of the cluster installation type, such
as installer-provisioned infrastructure or user-provisioned infrastructure.

2.1.1. About watchdog devices

Watchdog devices can be any of the following:

Independently powered hardware devices

Hardware devices that share power with the hosts they control

Virtual devices implemented in software, or softdog

Hardware watchdog and softdog devices have electronic or software timers, respectively. These
watchdog devices are used to ensure that the machine enters a safe state when an error condition is
detected. The cluster is required to repeatedly reset the watchdog timer to prove that it is in a healthy
state. This timer might elapse due to fault conditions, such as deadlocks, CPU starvation, and loss of
network or disk access. If the timer expires, the watchdog device assumes that a fault has occurred and
the device triggers a forced reset of the node.

Hardware watchdog devices are more reliable than softdog devices.

apiVersion: self-node-remediation.medik8s.io/v1alpha1
kind: SelfNodeRemediation
metadata:
 name: selfnoderemediation-sample
 namespace: openshift-workload-availability
spec:
 remediationStrategy: <remediation_strategy> 1
status:
 lastError: <last_error_message> 2

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

8

2.1.1.1. Understanding Self Node Remediation Operator behavior with watchdog devices

The Self Node Remediation Operator determines the remediation strategy based on the watchdog
devices that are present.

If a hardware watchdog device is configured and available, the Operator uses it for remediation. If a
hardware watchdog device is not configured, the Operator enables and uses a softdog device for
remediation.

If neither watchdog devices are supported, either by the system or by the configuration, the Operator
remediates nodes by using software reboot.

Additional resources

Configuring a watchdog device for the virtual machine

2.2. CONTROL PLANE FENCING

In earlier releases, you could enable Self Node Remediation and Node Health Check on worker nodes. In
the event of node failure, you can now also follow remediation strategies on control plane nodes.

Self Node Remediation occurs in two primary scenarios.

API Server Connectivity

In this scenario, the control plane node to be remediated is not isolated. It can be directly
connected to the API Server, or it can be indirectly connected to the API Server through
worker nodes or control-plane nodes, that are directly connected to the API Server.

When there is API Server Connectivity, the control plane node is remediated only if the
Node Health Check Operator has created a SelfNodeRemediation custom resource (CR)
for the node.

No API Server Connectivity

In this scenario, the control plane node to be remediated is isolated from the API Server.
The node cannot connect directly or indirectly to the API Server.

When there is no API Server Connectivity, the control plane node will be remediated as
outlined with these steps:

Check the status of the control plane node with the majority of the peer worker nodes.
If the majority of the peer worker nodes cannot be reached, the node will be analyzed
further.

Self-diagnose the status of the control plane node

If self diagnostics passed, no action will be taken.

If self diagnostics failed, the node will be fenced and remediated.

The self diagnostics currently supported are checking the kubelet service
status, and checking endpoint availability using opt in configuration.

If the node did not manage to communicate to most of its worker peers, check the
connectivity of the control plane node with other control plane nodes. If the node can
communicate with any other control plane peer, no action will be taken. Otherwise, the

CHAPTER 2. USING SELF NODE REMEDIATION

9

https://docs.openshift.com/container-platform/4.15/virt/monitoring/virt-monitoring-vm-health.html#virt-defining-watchdog-device-vm

node will be fenced and remediated.

2.3. INSTALLING THE SELF NODE REMEDIATION OPERATOR BY
USING THE WEB CONSOLE

You can use the Red Hat OpenShift web console to install the Self Node Remediation Operator.

NOTE

The Node Health Check Operator also installs the Self Node Remediation Operator as a
default remediation provider.

Prerequisites

Log in as a user with cluster-admin privileges.

Procedure

1. In the Red Hat OpenShift web console, navigate to Operators → OperatorHub.

2. Select the Self Node Remediation Operator from the list of available Operators, and then click
Install.

3. Keep the default selection of Installation mode and namespace to ensure that the Operator is
installed to the openshift-workload-availability namespace.

4. Click Install.

Verification

To confirm that the installation is successful:

1. Navigate to the Operators → Installed Operators page.

2. Check that the Operator is installed in the openshift-workload-availability namespace and its
status is Succeeded.

If the Operator is not installed successfully:

1. Navigate to the Operators → Installed Operators page and inspect the Status column for any
errors or failures.

2. Navigate to the Workloads → Pods page and check the logs of the self-node-remediation-
controller-manager pod and self-node-remediation-ds pods in the openshift-workload-
availability project for any reported issues.

2.4. INSTALLING THE SELF NODE REMEDIATION OPERATOR BY
USING THE CLI

You can use the OpenShift CLI (oc) to install the Self Node Remediation Operator.

You can install the Self Node Remediation Operator in your own namespace or in the openshift-
workload-availability namespace.

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

10

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a Namespace custom resource (CR) for the Self Node Remediation Operator:

a. Define the Namespace CR and save the YAML file, for example, workload-availability-
namespace.yaml:

b. To create the Namespace CR, run the following command:

2. Create an OperatorGroup CR:

a. Define the OperatorGroup CR and save the YAML file, for example, workload-availability-
operator-group.yaml:

b. To create the OperatorGroup CR, run the following command:

3. Create a Subscription CR:

a. Define the Subscription CR and save the YAML file, for example, self-node-remediation-
subscription.yaml:

Specify the Namespace where you want to install the Self Node Remediation

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-workload-availability

$ oc create -f workload-availability-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: workload-availability-operator-group
 namespace: openshift-workload-availability

$ oc create -f workload-availability-operator-group.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: self-node-remediation-operator
 namespace: openshift-workload-availability 1
spec:
 channel: stable
 installPlanApproval: Manual 2
 name: self-node-remediation-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 package: self-node-remediation

CHAPTER 2. USING SELF NODE REMEDIATION

11

1

2

Specify the Namespace where you want to install the Self Node Remediation
Operator. To install the Self Node Remediation Operator in the openshift-workload-
availability namespace, specify openshift-workload-availability in the Subscription
CR.

Set the approval strategy to Manual in case your specified version is superseded by a
later version in the catalog. This plan prevents an automatic upgrade to a later version
and requires manual approval before the starting CSV can complete the installation.

b. To create the Subscription CR, run the following command:

Verification

1. Verify that the installation succeeded by inspecting the CSV resource:

Example output

2. Verify that the Self Node Remediation Operator is up and running:

Example output

3. Verify that the Self Node Remediation Operator created the SelfNodeRemediationConfig CR:

Example output

4. Verify that each self node remediation pod is scheduled and running on each worker node and
control plane node:

Example output

$ oc create -f self-node-remediation-subscription.yaml

$ oc get csv -n openshift-workload-availability

NAME DISPLAY VERSION REPLACES PHASE
self-node-remediation.v0.8.0 Self Node Remediation Operator v.0.8.0 self-node-
remediation.v0.7.1 Succeeded

$ oc get deployment -n openshift-workload-availability

NAME READY UP-TO-DATE AVAILABLE AGE
self-node-remediation-controller-manager 1/1 1 1 28h

$ oc get selfnoderemediationconfig -n openshift-workload-availability

NAME AGE
self-node-remediation-config 28h

$ oc get daemonset -n openshift-workload-availability

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

12

1

2.5. CONFIGURING THE SELF NODE REMEDIATION OPERATOR

The Self Node Remediation Operator creates the SelfNodeRemediationConfig CR and the
SelfNodeRemediationTemplate Custom Resource Definition (CRD).

NOTE

To avoid unexpected reboots of a specific node, the Node Maintenance Operator places
the node in maintenance mode and automatically adds a node selector that prevents the
SNR daemonset from running on the specific node.

2.5.1. Understanding the Self Node Remediation Operator configuration

The Self Node Remediation Operator creates the SelfNodeRemediationConfig CR with the name self-
node-remediation-config. The CR is created in the namespace of the Self Node Remediation
Operator.

A change in the SelfNodeRemediationConfig CR re-creates the Self Node Remediation daemon set.

The SelfNodeRemediationConfig CR resembles the following YAML file:

Specify the time duration that the Operator waits before recovering affected workloads running
on an unhealthy node. Starting replacement pods while they are still running on the failed node can
lead to data corruption and a violation of run-once semantics. The time duration must be equal to

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
SELECTOR AGE
self-node-remediation-ds 6 6 6 6 6 <none> 28h

apiVersion: self-node-remediation.medik8s.io/v1alpha1
kind: SelfNodeRemediationConfig
metadata:
 name: self-node-remediation-config
 namespace: openshift-workload-availability
spec:
 safeTimeToAssumeNodeRebootedSeconds: 180 1
 watchdogFilePath: /dev/watchdog 2
 isSoftwareRebootEnabled: true 3
 apiServerTimeout: 15s 4
 apiCheckInterval: 5s 5
 maxApiErrorThreshold: 3 6
 peerApiServerTimeout: 5s 7
 peerDialTimeout: 5s 8
 peerRequestTimeout: 5s 9
 peerUpdateInterval: 15m 10
 hostPort: 30001 11
 customDsTolerations: 12
 - effect: NoSchedule
 key: node-role.kubernetes.io.infra
 operator: Equal
 value: "value1"
 tolerationSeconds: 3600

CHAPTER 2. USING SELF NODE REMEDIATION

13

2

3

4

5

6

7

8

9

10

11

12

or greater than the minimum value calculated by the Operator using the values in the
ApiServerTimeout, ApiCheckInterval, maxApiErrorThreshold, peerDialTimeout, and
peerRequestTimeout fields. In the logs, you can reference the calculated
minTimeToAssumeNodeRebooted is: [value] value to see the minimum value calculated by the
Operator. Specifying a value that is lower than the minimum value calculated prevents the
Operator from functioning.

Specify the file path of the watchdog device in the nodes. If you enter an incorrect path to the
watchdog device, the Self Node Remediation Operator automatically detects the softdog device
path.

If a watchdog device is unavailable, the SelfNodeRemediationConfig CR uses a software reboot.

Specify if you want to enable software reboot of the unhealthy nodes. By default, the value of
isSoftwareRebootEnabled is set to true. To disable the software reboot, set the parameter value
to false.

Specify the timeout duration to check connectivity with each API server. When this duration
elapses, the Operator starts remediation. The timeout duration must be greater than or equal to 10
milliseconds.

Specify the frequency to check connectivity with each API server. The timeout duration must be
greater than or equal to 1 second.

Specify a threshold value. After reaching this threshold, the node starts contacting its peers. The
threshold value must be greater than or equal to 1 second.

Specify the duration of the timeout for the peer to connect the API server. The timeout duration
must be greater than or equal to 10 milliseconds.

Specify the duration of the timeout for establishing connection with the peer. The timeout duration
must be greater than or equal to 10 milliseconds.

Specify the duration of the timeout to get a response from the peer. The timeout duration must be
greater than or equal to 10 milliseconds.

Specify the frequency to update peer information such as IP address. The timeout duration must
be greater than or equal to 10 seconds.

Specify an optional value to change the port that Self Node Remediation agents use for internal
communication. The value must be greater than 0. The default value is port 30001.

Specify custom toleration Self Node Remediation agents that are running on the DaemonSets to
support remediation for different types of nodes. You can configure the following fields:

effect: The effect indicates the taint effect to match. If this field is empty, all taint effects
are matched. When specified, allowed values are NoSchedule, PreferNoSchedule and
NoExecute.

key: The key is the taint key that the toleration applies to. If this field is empty, all taint keys
are matched. If the key is empty, the operator field must be Exists. This combination
means to match all values and all keys.

operator: The operator represents a key’s relationship to the value. Valid operators are
Exists and Equal. The default is Equal. Exists is equivalent to a wildcard for a value, so
that a pod can tolerate all taints of a particular category.

value: The taint value the toleration matches to. If the operator is Exists, the value should

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

14

value: The taint value the toleration matches to. If the operator is Exists, the value should
be empty, otherwise it is just a regular string.

tolerationSeconds: The period of time the toleration (which must be of effect NoExecute,
otherwise this field is ignored) tolerates the taint. By default, it is not set, which means
tolerate the taint forever (that is, do not evict). Zero and negative values will be treated as
0 (that is evict immediately) by the system.

Custom toleration allows you to add a toleration to the Self Node Remediation agent pod.
For more information, see Using tolerations to control OpenShift Logging pod placement .

NOTE

You can edit the self-node-remediation-config CR that is created by the Self Node
Remediation Operator. However, when you try to create a new CR for the Self Node
Remediation Operator, the following message is displayed in the logs:

2.5.2. Understanding the Self Node Remediation Template configuration

The Self Node Remediation Operator also creates the SelfNodeRemediationTemplate Custom
Resource Definition (CRD). This CRD defines the remediation strategy for the nodes. The following
remediation strategies are available:

Automatic

This remediation strategy simplifies the remediation process by letting the Self Node Remediation
Operator decide on the most suitable remediation strategy for the cluster. This strategy checks if the
OutOfServiceTaint strategy is available on the cluster. If the OutOfServiceTaint strategy is
available, the Operator selects the OutOfServiceTaint strategy. If the OutOfServiceTaint strategy is
not available, the Operator selects the ResourceDeletion strategy. Automatic is the default
remediation strategy.

ResourceDeletion

This remediation strategy removes the pods on the node, rather than the removal of the node
object. This strategy recovers workloads faster.

OutOfServiceTaint

This remediation strategy implicitly causes the removal of the pods and associated volume
attachments on the node, rather than the removal of the node object. It achieves this by placing the
OutOfServiceTaint strategy, a feature supported since Kubernetes version 1.25, on the node. This
strategy recovers workloads faster.

The Self Node Remediation Operator creates the SelfNodeRemediationTemplate CR for the strategy
self-node-remediation-resource-deletion-template, which the ResourceDeletion remediation
strategy uses.

The SelfNodeRemediationTemplate CR resembles the following YAML file:

controllers.SelfNodeRemediationConfig
ignoring selfnoderemediationconfig CRs that are not named 'self-node-remediation-
config'
or not in the namespace of the operator:
'openshift-workload-availability' {"selfnoderemediationconfig":
"openshift-workload-availability/selfnoderemediationconfig-copy"}

CHAPTER 2. USING SELF NODE REMEDIATION

15

https://docs.openshift.com/container-platform/4.15/logging/config/cluster-logging-tolerations.html

1

2

Specifies the type of remediation template based on the remediation strategy. Replace
<remediation_object> with either resource or node; for example, self-node-remediation-
resource-deletion-template.

Specifies the remediation strategy. The default remediation strategy is Automatic.

2.5.3. Troubleshooting the Self Node Remediation Operator

2.5.3.1. General troubleshooting

Issue

You want to troubleshoot issues with the Self Node Remediation Operator.

Resolution

Check the Operator logs.

2.5.3.2. Checking the daemon set

Issue

The Self Node Remediation Operator is installed but the daemon set is not available.

Resolution

Check the Operator logs for errors or warnings.

2.5.3.3. Unsuccessful remediation

Issue

An unhealthy node was not remediated.

Resolution

Verify that the SelfNodeRemediation CR was created by running the following command:

If the MachineHealthCheck controller did not create the SelfNodeRemediation CR when the node
turned unhealthy, check the logs of the MachineHealthCheck controller. Additionally, ensure that
the MachineHealthCheck CR includes the required specification to use the remediation template.

If the SelfNodeRemediation CR was created, ensure that its name matches the unhealthy node or
the machine object.

apiVersion: self-node-remediation.medik8s.io/v1alpha1
kind: SelfNodeRemediationTemplate
metadata:
 creationTimestamp: "2022-03-02T08:02:40Z"
 name: self-node-remediation-<remediation_object>-deletion-template 1
 namespace: openshift-workload-availability
spec:
 template:
 spec:
 remediationStrategy: <remediation_strategy> 2

$ oc get snr -A

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

16

2.5.3.4. Daemon set and other Self Node Remediation Operator resources exist even after
uninstalling the Operator

Issue

The Self Node Remediation Operator resources, such as the daemon set, configuration CR, and the
remediation template CR, exist even after after uninstalling the Operator.

Resolution

To remove the Self Node Remediation Operator resources, delete the resources by running the
following commands for each resource type:

2.5.4. Gathering data about the Self Node Remediation Operator

To collect debugging information about the Self Node Remediation Operator, use the must-gather tool.
For information about the must-gather image for the Self Node Remediation Operator, see Gathering
data about specific features.

2.5.5. Additional resources

Using Operator Lifecycle Manager on restricted networks .

Deleting Operators from a cluster

$ oc delete ds <self-node-remediation-ds> -n <namespace>

$ oc delete snrc <self-node-remediation-config> -n <namespace>

$ oc delete snrt <self-node-remediation-template> -n <namespace>

CHAPTER 2. USING SELF NODE REMEDIATION

17

https://docs.openshift.com/container-platform/4.15/support/gathering-cluster-data.html#gathering-data-specific-features_gathering-cluster-data
https://docs.openshift.com/container-platform/4.15/operators/admin/olm-restricted-networks.html#olm-restricted-networks
https://docs.openshift.com/container-platform/4.15/operators/admin/olm-deleting-operators-from-cluster.html#olm-deleting-operators-from-a-cluster

1

CHAPTER 3. USING FENCE AGENTS REMEDIATION
You can use the Fence Agents Remediation Operator to automatically remediate unhealthy nodes,
similar to the Self Node Remediation Operator. Using a management interface or traditional API, this
Operator runs a fence-agent to remediate a node from an unhealthy state by power-cycling the node.

3.1. ABOUT THE FENCE AGENTS REMEDIATION OPERATOR

The Fence Agents Remediation (FAR) Operator uses external tools to fence unhealthy nodes. These
tools are a set of fence agents, where each fence agent can be used for different environments to fence
a node, and using a traditional Application Programming Interface (API) call that reboots a node. By
doing so, FAR can minimize downtime for stateful applications, restores compute capacity if transient
failures occur, and increases the availability of workloads.

FAR not only fences a node when it becomes unhealthy, it also tries to remediate the node from being
unhealthy to healthy. It adds a taint to evict stateless pods, fences the node with a fence agent, and
after a reboot, it completes the remediation with resource deletion to remove any remaining workloads
(mostly stateful workloads). Adding the taint and deleting the workloads accelerates the workload
rescheduling.

The Operator watches for new or deleted custom resources (CRs) called FenceAgentsRemediation
which trigger a fence agent to remediate a node, based on the CR’s name. FAR uses the
NodeHealthCheck controller to detect the health of a node in the cluster. When a node is identified as
unhealthy, the NodeHealthCheck resource creates the FenceAgentsRemediation CR, based on the
FenceAgentsRemediationTemplate CR, which then triggers the Fence Agents Remediation Operator.

FAR uses a fence agent to fence a Kubernetes node. Generally, fencing is the process of taking
unresponsive/unhealthy computers into a safe state, and isolating the computer. Fence agent is a
software code that uses a management interface to perform fencing, mostly power-based fencing
which enables power-cycling, reset, or turning off the computer. An example fence agent is
fence_ipmilan which is used for Intelligent Platform Management Interface (IPMI) environments.

The node-name should match the name of the unhealthy cluster node.

The Operator includes a set of fence agents, that are also available in the Red Hat High Availability Add-
On, which use a management interface, such as IPMI or an API, to provision/reboot a node for bare
metal servers, virtual machines, and cloud platforms.

3.2. INSTALLING THE FENCE AGENTS REMEDIATION OPERATOR BY
USING THE WEB CONSOLE

You can use the Red Hat OpenShift web console to install the Fence Agents Remediation Operator.

Prerequisites

Log in as a user with cluster-admin privileges.

apiVersion: fence-agents-remediation.medik8s.io/v1alpha1
kind: FenceAgentsRemediation
metadata:
 name: node-name 1
 namespace: openshift-workload-availability
spec:

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

18

Procedure

1. In the Red Hat OpenShift web console, navigate to Operators → OperatorHub.

2. Select the Fence Agents Remediation Operator, or FAR, from the list of available Operators,
and then click Install.

3. Keep the default selection of Installation mode and namespace to ensure that the Operator is
installed to the openshift-workload-availability namespace.

4. Click Install.

Verification

To confirm that the installation is successful:

1. Navigate to the Operators → Installed Operators page.

2. Check that the Operator is installed in the openshift-workload-availability namespace and its
status is Succeeded.

If the Operator is not installed successfully:

1. Navigate to the Operators → Installed Operators page and inspect the Status column for any
errors or failures.

2. Navigate to the Workloads → Pods page and check the log of the fence-agents-remediation-
controller-manager pod for any reported issues.

3.3. INSTALLING THE FENCE AGENTS REMEDIATION OPERATOR BY
USING THE CLI

You can use the OpenShift CLI (oc) to install the Fence Agents Remediation Operator.

You can install the Fence Agents Remediation Operator in your own namespace or in the openshift-
workload-availability namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a Namespace custom resource (CR) for the Fence Agents Remediation Operator:

a. Define the Namespace CR and save the YAML file, for example, workload-availability-
namespace.yaml:

b. To create the Namespace CR, run the following command:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-workload-availability

CHAPTER 3. USING FENCE AGENTS REMEDIATION

19

1

2. Create an OperatorGroup CR:

a. Define the OperatorGroup CR and save the YAML file, for example, workload-availability-
operator-group.yaml:

b. To create the OperatorGroup CR, run the following command:

3. Create a Subscription CR:

a. Define the Subscription CR and save the YAML file, for example, fence-agents-
remediation-subscription.yaml:

Specify the Namespace where you want to install the Fence Agents Remediation
Operator, for example, the openshift-workload-availability outlined earlier in this
procedure. You can install the Subscription CR for the Fence Agents Remediation
Operator in the openshift-workload-availability namespace where there is already a
matching OperatorGroup CR.

b. To create the Subscription CR, run the following command:

Verification

1. Verify that the installation succeeded by inspecting the CSV resource:

Example output

$ oc create -f workload-availability-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: workload-availability-operator-group
 namespace: openshift-workload-availability

$ oc create -f workload-availability-operator-group.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: fence-agents-remediation-subscription
 namespace: openshift-workload-availability 1
spec:
 channel: stable
 name: fence-agents-remediation
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 package: fence-agents-remediation

$ oc create -f fence-agents-remediation-subscription.yaml

$ oc get csv -n openshift-workload-availability

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

20

2. Verify that the Fence Agents Remediation Operator is up and running:

Example output

3.4. CONFIGURING THE FENCE AGENTS REMEDIATION OPERATOR

You can use the Fence Agents Remediation Operator to create the
FenceAgentsRemediationTemplate Custom Resource (CR), which is used by the Node Health Check
Operator (NHC). This CR defines the fence agent to be used in the cluster with all the required
parameters for remediating the nodes. There may be many FenceAgentsRemediationTemplate CRs,
at most one for each fence agent, and when NHC is being used it can choose the
FenceAgentsRemediationTemplate as the remediationTemplate to be used for power-cycling the
node.

NOTE

In the current release, there might be many FenceAgentsRemediationTemplate CRs,
but at most one for each fence agent. This is a known limitation that will be addressed in a
future release.

The FenceAgentsRemediationTemplate CR resembles the following YAML file:

NAME DISPLAY VERSION REPLACES PHASE
fence-agents-remediation.v0.3.0 Fence Agents Remediation Operator 0.3.0 fence-
agents-remediation.v0.2.1 Succeeded

$ oc get deployment -n openshift-workload-availability

NAME READY UP-TO-DATE AVAILABLE AGE
fence-agents-remediation-controller-manager 2/2 2 2 110m

apiVersion: fence-agents-remediation.medik8s.io/v1alpha1
kind: FenceAgentsRemediationTemplate
metadata:
 name: fence-agents-remediation-template-fence-ipmilan
 namespace: openshift-workload-availability
spec:
 template:
 spec:
 agent: fence_ipmilan 1
 nodeparameters: 2
 --ipport:
 master-0-0: '6230'
 master-0-1: '6231'
 master-0-2: '6232'
 worker-0-0: '6233'
 worker-0-1: '6234'
 worker-0-2: '6235'
 sharedparameters: 3
 '--action': reboot
 '--ip': 192.168.123.1
 '--lanplus': ''

CHAPTER 3. USING FENCE AGENTS REMEDIATION

21

1

2

3

4

5

6

Displays the name of the fence agent to be executed, for example, fence_ipmilan.

Displays the node-specific parameters for executing the fence agent, for example, ipport.

Displays the cluster-wide parameters for executing the fence agent, for example, username.

Displays the number of times to retry the fence agent command in case of failure. The default
number of attempts is 5.

Displays the interval between retries in seconds. The default is 5 seconds.

Displays the timeout for the fence agent command in seconds. The default is 60 seconds.

3.5. TROUBLESHOOTING THE FENCE AGENTS REMEDIATION
OPERATOR

3.5.1. General troubleshooting

Issue

You want to troubleshoot issues with the Fence Agents Remediation Operator.

Resolution

Check the Operator logs.

3.5.2. Unsuccessful remediation

Issue

An unhealthy node was not remediated.

Resolution

Verify that the FenceAgentsRemediation CR was created by running the following command:

If the NodeHealthCheck controller did not create the FenceAgentsRemediation CR when the
node turned unhealthy, check the logs of the NodeHealthCheck controller. Additionally, ensure that
the NodeHealthCheck CR includes the required specification to use the remediation template.

If the FenceAgentsRemediation CR was created, ensure that its name matches the unhealthy node
object.

3.5.3. Fence Agents Remediation Operator resources exist after uninstalling the

 '--password': password
 '--username': admin
 retryCount: '5' 4
 retryInterval: '5' 5
 timeout: '60' 6

$ oc logs <fence-agents-remediation-controller-manager-name> -c manager -n <namespace-
name>

$ oc get far -A

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

22

3.5.3. Fence Agents Remediation Operator resources exist after uninstalling the
Operator

Issue

The Fence Agents Remediation Operator resources, such as the remediation CR and the
remediation template CR, exist after uninstalling the Operator.

Resolution

To remove the Fence Agents Remediation Operator resources, you can delete the resources by
selecting the "Delete all operand instances for this operator" checkbox before uninstalling. This
checkbox feature is only available in Red Hat OpenShift since version 4.13. For all versions of Red
Hat OpenShift, you can delete the resources by running the following relevant command for each
resource type:

The remediation CR far must be created and deleted by the same entity, for example, NHC. If the
remediation CR far is still present, it is deleted, together with the FAR operator.

The remediation template CR fartemplate only exists if you use FAR with NHC. When the FAR
operator is deleted using the web console, the remediation template CR fartemplate is also deleted.

3.6. GATHERING DATA ABOUT THE FENCE AGENTS REMEDIATION
OPERATOR

To collect debugging information about the Fence Agents Remediation Operator, use the must-gather
tool. For information about the must-gather image for the Fence Agents Remediation Operator, see
Gathering data about specific features .

3.7. ADDITIONAL RESOURCES

Using Operator Lifecycle Manager on restricted networks .

Deleting Operators from a cluster

$ oc delete far <fence-agents-remediation> -n <namespace>

$ oc delete fartemplate <fence-agents-remediation-template> -n <namespace>

CHAPTER 3. USING FENCE AGENTS REMEDIATION

23

https://docs.openshift.com/container-platform/4.15/support/gathering-cluster-data.html#gathering-data-specific-features_gathering-cluster-data
https://docs.openshift.com/container-platform/4.15/operators/admin/olm-restricted-networks.html#olm-restricted-networks
https://docs.openshift.com/container-platform/4.15/operators/admin/olm-deleting-operators-from-cluster.html#olm-deleting-operators-from-a-cluster

CHAPTER 4. USING MACHINE DELETION REMEDIATION
You can use the Machine Deletion Remediation Operator to reprovision unhealthy nodes using the
Machine API. You can use the Machine Deletion Remediation Operator in conjunction with the Node
Health Check Operator.

4.1. ABOUT THE MACHINE DELETION REMEDIATION OPERATOR

The Machine Deletion Remediation (MDR) operator works with the NodeHealthCheck controller, to
reprovision unhealthy nodes using the Machine API. MDR follows the annotation on the node to the
associated machine object, confirms that it has an owning controller (for example,
MachineSetController), and deletes it. Once the machine CR is deleted, the owning controller creates
a replacement.

The prerequisites for MDR include:

a Machine API-based cluster that is able to programmatically destroy and create cluster nodes,

nodes that are associated with machines, and

declaratively managed machines.

You can then modify the NodeHealthCheck CR to use MDR as its remediator. An example MDR
template object and NodeHealthCheck configuration are provided in the documentation.

The MDR process works as follows:

the Node Health Check Operator detects an unhealthy node and creates a MDR CR.

the MDR Operator watches for the MDR CR associated with the unhealthy node and deletes it,
if the machine has an owning controller.

when the node is healthy again, the MDR CR is deleted by the NodeHealthCheck controller.

4.2. INSTALLING THE MACHINE DELETION REMEDIATION OPERATOR
BY USING THE WEB CONSOLE

You can use the Red Hat OpenShift web console to install the Machine Deletion Remediation Operator.

Prerequisites

Log in as a user with cluster-admin privileges.

Procedure

1. In the Red Hat OpenShift web console, navigate to Operators → OperatorHub.

2. Select the Machine Deletion Remediation Operator, or MDR, from the list of available
Operators, and then click Install.

3. Keep the default selection of Installation mode and namespace to ensure that the Operator is
installed to the openshift-workload-availability namespace.

4. Click Install.

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

24

Verification

To confirm that the installation is successful:

1. Navigate to the Operators → Installed Operators page.

2. Check that the Operator is installed in the openshift-workload-availability namespace and its
status is Succeeded.

If the Operator is not installed successfully:

1. Navigate to the Operators → Installed Operators page and inspect the Status column for any
errors or failures.

2. Navigate to the Workloads → Pods page and check the log of the pod in the openshift-
workload-availability project for any reported issues.

4.3. INSTALLING THE MACHINE DELETION REMEDIATION OPERATOR
BY USING THE CLI

You can use the OpenShift CLI (oc) to install the Machine Deletion Remediation Operator.

You can install the Machine Deletion Remediation Operator in your own namespace or in the openshift-
workload-availability namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a Namespace custom resource (CR) for the Machine Deletion Remediation Operator:

a. Define the Namespace CR and save the YAML file, for example, workload-availability-
namespace.yaml:

b. To create the Namespace CR, run the following command:

2. Create an OperatorGroup CR:

a. Define the OperatorGroup CR and save the YAML file, for example, workload-availability-
operator-group.yaml:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-workload-availability

$ oc create -f workload-availability-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

CHAPTER 4. USING MACHINE DELETION REMEDIATION

25

1

b. To create the OperatorGroup CR, run the following command:

3. Create a Subscription CR:

a. Define the Subscription CR and save the YAML file, for example, machine-deletion-
remediation-subscription.yaml:

Specify the Namespace where you want to install the Machine Deletion Remediation
Operator. When installing the Machine Deletion Remediation Operator in the
openshift-workload-availability Subscription CR, the Namespace and
OperatorGroup CRs will already exist.

b. To create the Subscription CR, run the following command:

Verification

1. Verify that the installation succeeded by inspecting the CSV resource:

Example output

4.4. CONFIGURING THE MACHINE DELETION REMEDIATION
OPERATOR

You can use the Machine Deletion Remediation Operator, with the Node Health Check Operator, to
create the MachineDeletionRemediationTemplate Custom Resource (CR). This CR defines the
remediation strategy for the nodes.

 name: workload-availability-operator-group
 namespace: openshift-workload-availability

$ oc create -f workload-availability-operator-group.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: machine-deletion-remediation-operator
 namespace: openshift-workload-availability 1
spec:
 channel: stable
 name: machine-deletion-remediation-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 package: machine-deletion-remediation

$ oc create -f machine-deletion-remediation-subscription.yaml

$ oc get csv -n openshift-workload-availability

NAME DISPLAY VERSION REPLACES PHASE
machine-deletion-remediation.v0.3.0 Machine Deletion Remediation Operator 0.3.0
machine-deletion-remediation.v0.2.1 Succeeded

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

26

The MachineDeletionRemediationTemplate CR resembles the following YAML file:

4.5. TROUBLESHOOTING THE MACHINE DELETION REMEDIATION
OPERATOR

4.5.1. General troubleshooting

Issue

You want to troubleshoot issues with the Machine Deletion Remediation Operator.

Resolution

Check the Operator logs.

4.5.2. Unsuccessful remediation

Issue

An unhealthy node was not remediated.

Resolution

Verify that the MachineDeletionRemediation CR was created by running the following command:

If the NodeHealthCheck controller did not create the MachineDeletionRemediation CR when the
node turned unhealthy, check the logs of the NodeHealthCheck controller. Additionally, ensure that
the NodeHealthCheck CR includes the required specification to use the remediation template.

If the MachineDeletionRemediation CR was created, ensure that its name matches the unhealthy
node object.

4.5.3. Machine Deletion Remediation Operator resources exist even after
uninstalling the Operator

Issue

The Machine Deletion Remediation Operator resources, such as the remediation CR and the
remediation template CR, exist even after uninstalling the Operator.

Resolution

apiVersion: machine-deletion-remediation.medik8s.io/v1alpha1
kind: MachineDeletionRemediationTemplate
metadata:
 name: machinedeletionremediationtemplate-sample
 namespace: openshift-workload-availability
spec:
 template:
 spec: {}

$ oc logs <machine-deletion-remediation-controller-manager-name> -c manager -n <namespace-
name>

$ oc get mdr -A

CHAPTER 4. USING MACHINE DELETION REMEDIATION

27

To remove the Machine Deletion Remediation Operator resources, you can delete the resources by
selecting the Delete all operand instances for this operator checkbox before uninstalling. This
checkbox feature is only available in Red Hat OpenShift since version 4.13. For all versions of Red
Hat OpenShift, you can delete the resources by running the following relevant command for each
resource type:

The remediation CR mdr must be created and deleted by the same entity, for example, NHC. If the
remediation CR mdr is still present, it is deleted, together with the MDR operator.

The remediation template CR mdrt only exists if you use MDR with NHC. When the MDR operator is
deleted using the web console, the remediation template CR mdrt is also deleted.

4.6. GATHERING DATA ABOUT THE MACHINE DELETION
REMEDIATION OPERATOR

To collect debugging information about the Machine Deletion Remediation Operator, use the must-
gather tool. For information about the must-gather image for the Machine Deletion Remediation
Operator, see Gathering data about specific features .

4.7. ADDITIONAL RESOURCES

Using Operator Lifecycle Manager on restricted networks .

Deleting Operators from a cluster

$ oc delete mdr <machine-deletion-remediation> -n <namespace>

$ oc delete mdrt <machine-deletion-remediation-template> -n <namespace>

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

28

https://docs.openshift.com/container-platform/4.15/support/gathering-cluster-data.html#gathering-data-specific-features_gathering-cluster-data
https://docs.openshift.com/container-platform/4.15/operators/admin/olm-restricted-networks.html#olm-restricted-networks
https://docs.openshift.com/container-platform/4.15/operators/admin/olm-deleting-operators-from-cluster.html#olm-deleting-operators-from-a-cluster

CHAPTER 5. REMEDIATING NODES WITH MACHINE HEALTH
CHECKS

Machine health checks automatically repair unhealthy machines in a particular machine pool.

5.1. ABOUT MACHINE HEALTH CHECKS

NOTE

You can only apply a machine health check to control plane machines on clusters that use
control plane machine sets.

To monitor machine health, create a resource to define the configuration for a controller. Set a condition
to check, such as staying in the NotReady status for five minutes or displaying a permanent condition in
the node-problem-detector, and a label for the set of machines to monitor.

The controller that observes a MachineHealthCheck resource checks for the defined condition. If a
machine fails the health check, the machine is automatically deleted and one is created to take its place.
When a machine is deleted, you see a machine deleted event.

To limit disruptive impact of the machine deletion, the controller drains and deletes only one node at a
time. If there are more unhealthy machines than the maxUnhealthy threshold allows for in the targeted
pool of machines, remediation stops and therefore enables manual intervention.

NOTE

Consider the timeouts carefully, accounting for workloads and requirements.

Long timeouts can result in long periods of downtime for the workload on the
unhealthy machine.

Too short timeouts can result in a remediation loop. For example, the timeout for
checking the NotReady status must be long enough to allow the machine to
complete the startup process.

To stop the check, remove the resource.

5.1.1. Limitations when deploying machine health checks

There are limitations to consider before deploying a machine health check:

Only machines owned by a machine set are remediated by a machine health check.

If the node for a machine is removed from the cluster, a machine health check considers the
machine to be unhealthy and remediates it immediately.

If the corresponding node for a machine does not join the cluster after the
nodeStartupTimeout, the machine is remediated.

A machine is remediated immediately if the Machine resource phase is Failed.

5.2. CONFIGURING MACHINE HEALTH CHECKS TO USE THE SELF

CHAPTER 5. REMEDIATING NODES WITH MACHINE HEALTH CHECKS

29

1

5.2. CONFIGURING MACHINE HEALTH CHECKS TO USE THE SELF
NODE REMEDIATION OPERATOR

Use the following procedure to configure the worker or control-plane machine health checks to use the
Self Node Remediation Operator as a remediation provider.

NOTE

To use the Self Node Remediation Operator as a remediation provider for machine
health checks, a machine must have an associated node in the cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a SelfNodeRemediationTemplate CR:

a. Define the SelfNodeRemediationTemplate CR:

Specifies the remediation strategy. The default remediation strategy is Automatic.

b. To create the SelfNodeRemediationTemplate CR, run the following command:

2. Create or update the MachineHealthCheck CR to point to the
SelfNodeRemediationTemplate CR:

a. Define or update the MachineHealthCheck CR:

apiVersion: self-node-remediation.medik8s.io/v1alpha1
kind: SelfNodeRemediationTemplate
metadata:
 namespace: openshift-machine-api
 name: selfnoderemediationtemplate-sample
spec:
 template:
 spec:
 remediationStrategy: Automatic 1

$ oc create -f <snrt-name>.yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineHealthCheck
metadata:
 name: machine-health-check
 namespace: openshift-machine-api
spec:
 selector:
 matchLabels: 1
 machine.openshift.io/cluster-api-machine-role: "worker"
 machine.openshift.io/cluster-api-machine-type: "worker"

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

30

1

2

Selects whether the machine health check is for worker or control-plane nodes. The
label can also be user-defined.

Specifies the details for the remediation template.

b. To create a MachineHealthCheck CR, run the following command:

c. To update a MachineHealthCheck CR, run the following command:

 unhealthyConditions:
 - type: "Ready"
 timeout: "300s"
 status: "False"
 - type: "Ready"
 timeout: "300s"
 status: "Unknown"
 maxUnhealthy: "40%"
 nodeStartupTimeout: "10m"
 remediationTemplate: 2
 kind: SelfNodeRemediationTemplate
 apiVersion: self-node-remediation.medik8s.io/v1alpha1
 name: selfnoderemediationtemplate-sample

$ oc create -f <mhc-name>.yaml

$ oc apply -f <mhc-name>.yaml

CHAPTER 5. REMEDIATING NODES WITH MACHINE HEALTH CHECKS

31

CHAPTER 6. REMEDIATING NODES WITH NODE HEALTH
CHECKS

You can use the Node Health Check Operator to identify unhealthy nodes. The Operator uses the Self
Node Remediation Operator to remediate the unhealthy nodes.

For more information on the Self Node Remediation Operator, see the Using Self Node Remediation
chapter.

6.1. ABOUT THE NODE HEALTH CHECK OPERATOR

The Node Health Check Operator detects the health of the nodes in a cluster. The NodeHealthCheck
controller creates the NodeHealthCheck custom resource (CR), which defines a set of criteria and
thresholds to determine the health of a node.

The Node Health Check Operator also installs the Self Node Remediation Operator as a default
remediation provider.

When the Node Health Check Operator detects an unhealthy node, it creates a remediation CR that
triggers the remediation provider. For example, the controller creates the SelfNodeRemediation CR,
which triggers the Self Node Remediation Operator to remediate the unhealthy node.

The NodeHealthCheck CR resembles the following YAML file, with self-node-remediation as the
remediation provider:

apiVersion: remediation.medik8s.io/v1alpha1
kind: NodeHealthCheck
metadata:
 name: nodehealthcheck-sample
spec:
 minHealthy: 51% 1
 pauseRequests: 2
 - <pause-test-cluster>
 remediationTemplate: 3
 apiVersion: self-node-remediation.medik8s.io/v1alpha1
 name: self-node-remediation-resource-deletion-template
 namespace: openshift-workload-availability
 kind: SelfNodeRemediationTemplate
 escalatingRemediations: 4
 - remediationTemplate:
 apiVersion: self-node-remediation.medik8s.io/v1alpha1
 name: self-node-remediation-resource-deletion-template
 namespace: openshift-workload-availability
 kind: SelfNodeRemediationTemplate
 order: 1
 timeout: 300s
 selector: 5
 matchExpressions:
 - key: node-role.kubernetes.io/worker
 operator: Exists
 unhealthyConditions: 6
 - type: Ready
 status: "False"
 duration: 300s 7

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

32

https://access.redhat.com/documentation/en-us/workload_availability_for_red_hat_openshift/24.1/html-single/remediation_fencing_and_maintenance/index#self-node-remediation-operator-remediate-nodes

1

2

3

4

5

6

7 8

Specifies the amount of healthy nodes(in percentage or number) required for a remediation
provider to concurrently remediate nodes in the targeted pool. If the number of healthy nodes
equals to or exceeds the limit set by minHealthy, remediation occurs. The default value is 51%.

Prevents any new remediation from starting, while allowing any ongoing remediations to persist.
The default value is empty. However, you can enter an array of strings that identify the cause of
pausing the remediation. For example, pause-test-cluster.

NOTE

During the upgrade process, nodes in the cluster might become temporarily
unavailable and get identified as unhealthy. In the case of worker nodes, when the
Operator detects that the cluster is upgrading, it stops remediating new unhealthy
nodes to prevent such nodes from rebooting.

Specifies a remediation template from the remediation provider. For example, from the Self Node
Remediation Operator. remediationTemplate is mutually exclusive with escalatingRemediations.

Specifies a list of RemediationTemplates with order and timeout fields. To obtain a healthy node,
use this field to sequence and configure multiple remediations. This strategy increases the
likelihood of obtaining a healthy node, instead of depending on a single remediation that might not
be successful. The order field determines the order in which the remediations are invoked (lower
order = earlier invocation). The timeout field determines when the next remediation is invoked.
escalatingRemediations is mutually exclusive with remediationTemplate.

Specifies a selector that matches labels or expressions that you want to check. Avoid selecting
both control-plane and worker nodes in one CR.

Specifies a list of the conditions that determine whether a node is considered unhealthy.

Specifies the timeout duration for a node condition. If a condition is met for the duration of the
timeout, the node will be remediated. Long timeouts can result in long periods of downtime for a
workload on an unhealthy node.

The NodeHealthCheck CR resembles the following YAML file, with metal3 as the remediation provider:

 - type: Ready
 status: Unknown
 duration: 300s 8

apiVersion: remediation.medik8s.io/v1alpha1
kind: NodeHealthCheck
metadata:
 name: nhc-worker-metal3
spec:
 minHealthy: 30%
 remediationTemplate:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3RemediationTemplate
 name: metal3-remediation
 namespace: openshift-machine-api
 selector:
 matchExpressions:
 - key: node-role.kubernetes.io/worker

CHAPTER 6. REMEDIATING NODES WITH NODE HEALTH CHECKS

33

NOTE

The matchExpressions are examples only; you must map your machine groups based on
your specific needs.

The Metal3RemediationTemplate resembles the following YAML file, with metal3 as the remediation
provider:

NOTE

In addition to creating a NodeHealthCheck CR, you must also create the
Metal3RemediationTemplate.

6.1.1. Understanding the Node Health Check Operator workflow

When a node is identified as unhealthy, the Node Health Check Operator checks how many other nodes
are unhealthy. If the number of healthy nodes exceeds the amount that is specified in the minHealthy
field of the NodeHealthCheck CR, the controller creates a remediation CR from the details that are
provided in the external remediation template by the remediation provider. After remediation, the
kubelet updates the node’s health status.

When the node turns healthy, the controller deletes the external remediation template.

6.1.2. About how node health checks prevent conflicts with machine health checks

When both, node health checks and machine health checks are deployed, the node health check avoids
conflict with the machine health check.

NOTE

 operator: Exists
 unhealthyConditions:
 - duration: 300s
 status: 'False'
 type: Ready
 - duration: 300s
 status: 'Unknown'
 type: Ready

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3RemediationTemplate
metadata:
 name: metal3-remediation
 namespace: openshift-machine-api
spec:
 template:
 spec:
 strategy:
 retryLimit: 1
 timeout: 5m0s
 type: Reboot

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

34

NOTE

Red Hat OpenShift deploys machine-api-termination-handler as the default
MachineHealthCheck resource.

The following list summarizes the system behavior when node health checks and machine health checks
are deployed:

If only the default machine health check exists, the node health check continues to identify
unhealthy nodes. However, the node health check ignores unhealthy nodes in a Terminating
state. The default machine health check handles the unhealthy nodes with a Terminating state.

Example log message

If the default machine health check is modified (for example, the unhealthyConditions is
Ready), or if additional machine health checks are created, the node health check is disabled.

Example log message

INFO controllers.NodeHealthCheck disabling NHC in order to avoid conflict with custom
MHCs configured in the cluster {"NodeHealthCheck": "/nhc-worker-default"}

When, again, only the default machine health check exists, the node health check is re-enabled.

Example log message

INFO controllers.NodeHealthCheck re-enabling NHC, no conflicting MHC configured in the
cluster {"NodeHealthCheck": "/nhc-worker-default"}

6.2. CONTROL PLANE FENCING

In earlier releases, you could enable Self Node Remediation and Node Health Check on worker nodes. In
the event of node failure, you can now also follow remediation strategies on control plane nodes.

Do not use the same NodeHealthCheck CR for worker nodes and control plane nodes. Grouping worker
nodes and control plane nodes together can result in incorrect evaluation of the minimum healthy node
count, and cause unexpected or missing remediations. This is because of the way the Node Health
Check Operator handles control plane nodes. You should group the control plane nodes in their own
group and the worker nodes in their own group. If required, you can also create multiple groups of
worker nodes.

Considerations for remediation strategies:

Avoid Node Health Check configurations that involve multiple configurations overlapping the
same nodes because they can result in unexpected behavior. This suggestion applies to both
worker and control plane nodes.

The Node Health Check Operator implements a hardcoded limitation of remediating a
maximum of one control plane node at a time. Multiple control plane nodes should not be
remediated at the same time.

INFO MHCChecker ignoring unhealthy Node, it is terminating and will be handled by MHC
{"NodeName": "node-1.example.com"}

CHAPTER 6. REMEDIATING NODES WITH NODE HEALTH CHECKS

35

6.3. INSTALLING THE NODE HEALTH CHECK OPERATOR BY USING
THE WEB CONSOLE

You can use the Red Hat OpenShift web console to install the Node Health Check Operator.

Prerequisites

Log in as a user with cluster-admin privileges.

Procedure

1. In the Red Hat OpenShift web console, navigate to Operators → OperatorHub.

2. Select the Node Health Check Operator, then click Install.

3. Keep the default selection of Installation mode and namespace to ensure that the Operator
will be installed to the openshift-workload-availability namespace.

4. Ensure that the Console plug-in is set to Enable.

5. Click Install.

Verification

To confirm that the installation is successful:

1. Navigate to the Operators → Installed Operators page.

2. Check that the Operator is installed in the openshift-workload-availability namespace and
that its status is Succeeded.

If the Operator is not installed successfully:

1. Navigate to the Operators → Installed Operators page and inspect the Status column for any
errors or failures.

2. Navigate to the Workloads → Pods page and check the logs in any pods in the openshift-
workload-availability project that are reporting issues.

6.4. INSTALLING THE NODE HEALTH CHECK OPERATOR BY USING
THE CLI

You can use the OpenShift CLI (oc) to install the Node Health Check Operator.

You can install the Node Health Check Operator in your own namespace or in the openshift-workload-
availability namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

36

1

2

1. Create a Namespace custom resource (CR) for the Node Health Check Operator:

a. Define the Namespace CR and save the YAML file, for example, node-health-check-
namespace.yaml:

b. To create the Namespace CR, run the following command:

2. Create an OperatorGroup CR:

a. Define the OperatorGroup CR and save the YAML file, for example, workload-availability-
operator-group.yaml:

b. To create the OperatorGroup CR, run the following command:

3. Create a Subscription CR:

a. Define the Subscription CR and save the YAML file, for example, node-health-check-
subscription.yaml:

Specify the Namespace where you want to install the Node Health Check Operator.
To install the Node Health Check Operator in the openshift-workload-availability
namespace, specify openshift-workload-availability in the Subscription CR.

Specify the channel name for your subscription. To upgrade to the latest version of
the Node Health Check Operator, you must manually change the channel name for
your subscription from candidate to stable.

Set the approval strategy to Manual in case your specified version is superseded by a

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-workload-availability

$ oc create -f node-health-check-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: workload-availability-operator-group
 namespace: openshift-workload-availability

$ oc create -f workload-availability-operator-group.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: node-health-check-operator
 namespace: openshift-workload-availability 1
spec:
 channel: stable 2
 installPlanApproval: Manual 3
 name: node-healthcheck-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 package: node-healthcheck-operator

CHAPTER 6. REMEDIATING NODES WITH NODE HEALTH CHECKS

37

3 Set the approval strategy to Manual in case your specified version is superseded by a
later version in the catalog. This plan prevents an automatic upgrade to a later version
and requires manual approval before the starting CSV can complete the installation.

b. To create the Subscription CR, run the following command:

Verification

1. Verify that the installation succeeded by inspecting the CSV resource:

Example output

2. Verify that the Node Health Check Operator is up and running:

Example output

6.5. CREATING A NODE HEALTH CHECK

Using the web console, you can create a node health check to identify unhealthy nodes and specify the
remediation type and strategy to fix them.

Procedure

1. From the Administrator perspective of the Red Hat OpenShift web console, click Compute →
NodeHealthChecks → CreateNodeHealthCheck.

2. Specify whether to configure the node health check using the Form view or the YAML view.

3. Enter a Name for the node health check. The name must consist of lower case, alphanumeric
characters, '-' or '.', and must start and end with an alphanumeric character.

4. Specify the Remediator type, and Self node remediation or Other. The Self node remediation
option is part of the Self Node Remediation Operator that is installed with the Node Health
Check Operator. Selecting Other requires an API version, Kind, Name, and Namespace to be
entered, which then points to the remediation template resource of a remediator.

5. Make a Nodes selection by specifying the labels of the nodes you want to remediate. The
selection matches labels that you want to check. If more than one label is specified, the nodes
must contain each label. The default value is empty, which selects both worker and control-

$ oc create -f node-health-check-subscription.yaml

$ oc get csv -n openshift-workload-availability

NAME DISPLAY VERSION REPLACES PHASE
node-healthcheck-operator.v0.7.0 Node Health Check Operator 0.7.0 node-healthcheck-
operator.v0.6.1 Succeeded

$ oc get deployment -n openshift-workload-availability

NAME READY UP-TO-DATE AVAILABLE AGE
node-healthcheck-controller-manager 2/2 2 2 10d

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

38

plane nodes.

NOTE

When creating a node health check with the Self Node Remediation Operator,
you must select either node-role.kubernetes.io/worker or node-
role.kubernetes.io/control-plane as the value.

6. Specify the minimum number of healthy nodes, using either a percentage or a number, required
for a NodeHealthCheck to remediate nodes in the targeted pool. If the number of healthy
nodes equals to or exceeds the limit set by Min healthy, remediation occurs. The default value is
51%.

7. Specify a list of Unhealthy conditions that if a node meets determines whether the node is
considered unhealthy, and requires remediation. You can specify the Type, Status and
Duration. You can also create your own custom type.

8. Click Create to create the node health check.

Verification

Navigate to the Compute → NodeHealthCheck page and verify that the corresponding node
health check is listed, and their status displayed. Once created, node health checks can be
paused, modified, and deleted.

6.6. GATHERING DATA ABOUT THE NODE HEALTH CHECK
OPERATOR

To collect debugging information about the Node Health Check Operator, use the must-gather tool.
For information about the must-gather image for the Node Health Check Operator, see Gathering data
about specific features.

6.7. ADDITIONAL RESOURCES

Changing the update channel for an Operator

Using Operator Lifecycle Manager on restricted networks .

CHAPTER 6. REMEDIATING NODES WITH NODE HEALTH CHECKS

39

https://docs.openshift.com/container-platform/4.15/support/gathering-cluster-data.html#gathering-data-specific-features_gathering-cluster-data
https://docs.openshift.com/container-platform/4.15/operators/admin/olm-upgrading-operators.html#olm-changing-update-channel_olm-upgrading-operators
https://docs.openshift.com/container-platform/4.15/operators/admin/olm-restricted-networks.html#olm-restricted-networks

CHAPTER 7. PLACING NODES IN MAINTENANCE MODE WITH
NODE MAINTENANCE OPERATOR

You can use the Node Maintenance Operator to place nodes in maintenance mode by using the oc adm
utility or NodeMaintenance custom resources (CRs).

7.1. ABOUT THE NODE MAINTENANCE OPERATOR

The Node Maintenance Operator watches for new or deleted NodeMaintenance CRs. When a new
NodeMaintenance CR is detected, no new workloads are scheduled and the node is cordoned off from
the rest of the cluster. All pods that can be evicted are evicted from the node. When a
NodeMaintenance CR is deleted, the node that is referenced in the CR is made available for new
workloads.

NOTE

Using a NodeMaintenance CR for node maintenance tasks achieves the same results as
the oc adm cordon and oc adm drain commands using standard Red Hat OpenShift CR
processing.

7.2. INSTALLING THE NODE MAINTENANCE OPERATOR

You can install the Node Maintenance Operator using the web console or the OpenShift CLI (oc).

NOTE

If OpenShift Virtualization version 4.10 or less is installed in your cluster, it includes an
outdated version of the Node Maintenance Operator.

7.2.1. Installing the Node Maintenance Operator by using the web console

You can use the Red Hat OpenShift web console to install the Node Maintenance Operator.

Prerequisites

Log in as a user with cluster-admin privileges.

Procedure

1. In the Red Hat OpenShift web console, navigate to Operators → OperatorHub.

2. Select the Node Maintenance Operator, then click Install.

3. Keep the default selection of Installation mode and namespace to ensure that the Operator
will be installed to the openshift-workload-availability namespace.

4. Click Install.

Verification

To confirm that the installation is successful:

1. Navigate to the Operators → Installed Operators page.

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

40

2. Check that the Operator is installed in the openshift-workload-availability namespace and
that its status is Succeeded.

If the Operator is not installed successfully:

1. Navigate to the Operators → Installed Operators page and inspect the Status column for any
errors or failures.

2. Navigate to the Operators → Installed Operators → Node Maintenance Operator → Details
page, and inspect the Conditions section for errors before pod creation.

3. Navigate to the Workloads → Pods page, search for the Node Maintenance Operator pod in
the installed namespace, and check the logs in the Logs tab.

7.2.2. Installing the Node Maintenance Operator by using the CLI

You can use the OpenShift CLI (oc) to install the Node Maintenance Operator.

You can install the Node Maintenance Operator in your own namespace or in the openshift-workload-
availability namespace.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a Namespace CR for the Node Maintenance Operator:

a. Define the Namespace CR and save the YAML file, for example, workload-availability-
namespace.yaml:

b. To create the Namespace CR, run the following command:

2. Create an OperatorGroup CR:

a. Define the OperatorGroup CR and save the YAML file, for example, workload-availability-
operator-group.yaml:

b. To create the OperatorGroup CR, run the following command:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-workload-availability

$ oc create -f workload-availability-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: workload-availability-operator-group
 namespace: openshift-workload-availability

CHAPTER 7. PLACING NODES IN MAINTENANCE MODE WITH NODE MAINTENANCE OPERATOR

41

1

3. Create a Subscription CR:

a. Define the Subscription CR and save the YAML file, for example, node-maintenance-
subscription.yaml:

Specify the Namespace where you want to install the Node Maintenance Operator.

IMPORTANT

To install the Node Maintenance Operator in the openshift-workload-
availability namespace, specify openshift-workload-availability in the
Subscription CR.

b. To create the Subscription CR, run the following command:

Verification

1. Verify that the installation succeeded by inspecting the CSV resource:

Example output

2. Verify that the Node Maintenance Operator is running:

Example output

$ oc create -f workload-availability-operator-group.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: node-maintenance-operator
 namespace: openshift-workload-availability 1
spec:
 channel: stable
 installPlanApproval: Automatic
 name: node-maintenance-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 package: node-maintenance-operator

$ oc create -f node-maintenance-subscription.yaml

$ oc get csv -n openshift-workload-availability

NAME DISPLAY VERSION REPLACES PHASE
node-maintenance-operator.v5.3.0 Node Maintenance Operator 5.3.0 node-maintenance-
operator.v5.2.1 Succeeded

$ oc get deployment -n openshift-workload-availability

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

42

The Node Maintenance Operator is supported in a restricted network environment. For more
information, see Using Operator Lifecycle Manager on restricted networks .

7.3. SETTING A NODE TO MAINTENANCE MODE

You can place a node into maintenance mode from the web console or from the CLI by using a
NodeMaintenance CR.

7.3.1. Setting a node to maintenance mode by using the web console

To set a node to maintenance mode, you can create a NodeMaintenance custom resource (CR) by
using the web console.

Prerequisites

Log in as a user with cluster-admin privileges.

Install the Node Maintenance Operator from the OperatorHub.

Procedure

1. From the Administrator perspective in the web console, navigate to Operators → Installed
Operators.

2. Select the Node Maintenance Operator from the list of Operators.

3. In the Node Maintenance tab, click Create NodeMaintenance.

4. In the Create NodeMaintenance page, select the Form view or the YAML view to configure
the NodeMaintenance CR.

5. To apply the NodeMaintenance CR that you have configured, click Create.

Verification

In the Node Maintenance tab, inspect the Status column and verify that its status is Succeeded.

7.3.2. Setting a node to maintenance mode by using the CLI

You can put a node into maintenance mode with a NodeMaintenance custom resource (CR). When you
apply a NodeMaintenance CR, all allowed pods are evicted and the node is rendered unschedulable.
Evicted pods are queued to be moved to another node in the cluster.

Prerequisites

Install the Red Hat OpenShift CLI oc.

Log in to the cluster as a user with cluster-admin privileges.

Procedure

NAME READY UP-TO-DATE AVAILABLE AGE
node-maintenance-operator-controller-manager 1/1 1 1 10d

CHAPTER 7. PLACING NODES IN MAINTENANCE MODE WITH NODE MAINTENANCE OPERATOR

43

https://docs.openshift.com/container-platform/4.15/operators/admin/olm-restricted-networks.html#olm-restricted-networks

1

2

3

1. Create the following NodeMaintenance CR, and save the file as nodemaintenance-cr.yaml:

The name of the node maintenance CR.

The name of the node to be put into maintenance mode.

A plain text description of the reason for maintenance.

2. Apply the node maintenance CR by running the following command:

Verification

1. Check the progress of the maintenance task by running the following command:

where <node-name> is the name of your node; for example, node-1.example.com

2. Check the example output:

7.3.3. Checking status of current NodeMaintenance CR tasks

You can check the status of current NodeMaintenance CR tasks.

Prerequisites

Install the Red Hat OpenShift CLI oc.

Log in as a user with cluster-admin privileges.

Procedure

Check the status of current node maintenance tasks, for example the NodeMaintenance CR or
nm object, by running the following command:

apiVersion: nodemaintenance.medik8s.io/v1beta1
kind: NodeMaintenance
metadata:
 name: nodemaintenance-cr 1
spec:
 nodeName: node-1.example.com 2
 reason: "NIC replacement" 3

$ oc apply -f nodemaintenance-cr.yaml

$ oc describe node <node-name>

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal NodeNotSchedulable 61m kubelet Node node-1.example.com
status is now: NodeNotSchedulable

$ oc get nm -o yaml

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

44

1

2

3

4

5

Example output

The percentage completion of draining the node.

The number of pods scheduled for eviction.

The latest eviction error, if any.

The last time the status was updated.

The total number of pods before the node entered maintenance mode.

7.4. RESUMING A NODE FROM MAINTENANCE MODE

You can resume a node from maintenance mode from the web console or from the CLI by using a
NodeMaintenance CR. Resuming a node brings it out of maintenance mode and makes it schedulable
again.

7.4.1. Resuming a node from maintenance mode by using the web console

To resume a node from maintenance mode, you can delete a NodeMaintenance custom resource (CR)
by using the web console.

Prerequisites

Log in as a user with cluster-admin privileges.

Install the Node Maintenance Operator from the OperatorHub.

Procedure

1. From the Administrator perspective in the web console, navigate to Operators → Installed
Operators.

2. Select the Node Maintenance Operator from the list of Operators.

apiVersion: v1
items:
- apiVersion: nodemaintenance.medik8s.io/v1beta1
 kind: NodeMaintenance
 metadata:
...
 spec:
 nodeName: node-1.example.com
 reason: Node maintenance
 status:
 drainProgress: 100 1
 evictionPods: 3 2
 lastError: "Last failure message" 3
 lastUpdate: "2022-06-23T11:43:18Z" 4
 phase: Succeeded
 totalpods: 5 5
...

CHAPTER 7. PLACING NODES IN MAINTENANCE MODE WITH NODE MAINTENANCE OPERATOR

45

3. In the Node Maintenance tab, select the NodeMaintenance CR that you want to delete.

4. Click the Options menu at the end of the node and select Delete NodeMaintenance.

Verification

1. In the Red Hat OpenShift console, click Compute → Nodes.

2. Inspect the Status column of the node for which you deleted the NodeMaintenance CR and
verify that its status is Ready.

7.4.2. Resuming a node from maintenance mode by using the CLI

You can resume a node from maintenance mode that was initiated with a NodeMaintenance CR by
deleting the NodeMaintenance CR.

Prerequisites

Install the Red Hat OpenShift CLI oc.

Log in to the cluster as a user with cluster-admin privileges.

Procedure

When your node maintenance task is complete, delete the active NodeMaintenance CR:

Example output

Verification

1. Check the progress of the maintenance task by running the following command:

where <node-name> is the name of your node; for example, node-1.example.com

2. Check the example output:

7.5. WORKING WITH BARE-METAL NODES

For clusters with bare-metal nodes, you can place a node into maintenance mode, and resume a node

$ oc delete -f nodemaintenance-cr.yaml

nodemaintenance.nodemaintenance.medik8s.io "maintenance-example" deleted

$ oc describe node <node-name>

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal NodeSchedulable 2m kubelet Node node-1.example.com status
is now: NodeSchedulable

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

46

For clusters with bare-metal nodes, you can place a node into maintenance mode, and resume a node
from maintenance mode, by using the web console Actions control.

NOTE

Clusters with bare-metal nodes can also place a node into maintenance mode, and
resume a node from maintenance mode, by using the web console and CLI, as outlined.
These methods, by using the web console Actions control, are applicable to bare-metal
clusters only.

7.5.1. Maintaining bare-metal nodes

When you deploy Red Hat OpenShift on bare-metal infrastructure, you must take additional
considerations into account compared to deploying on cloud infrastructure. Unlike in cloud
environments, where the cluster nodes are considered ephemeral, reprovisioning a bare-metal node
requires significantly more time and effort for maintenance tasks.

When a bare-metal node fails due to a kernel error or a NIC card hardware failure, workloads on the
failed node need to be restarted on another node in the cluster while the problem node is repaired or
replaced. Node maintenance mode allows cluster administrators to gracefully turn-off nodes, move
workloads to other parts of the cluster, and ensure that workloads do not get interrupted. Detailed
progress and node status details are provided during maintenance.

7.5.2. Setting a bare-metal node to maintenance mode

Set a bare-metal node to maintenance mode using the Options menu found on each node in the
Compute → Nodes list, or using the Actions control of the Node Details screen.

Procedure

1. From the Administrator perspective of the web console, click Compute → Nodes.

2. You can set the node to maintenance from this screen, which makes it easier to perform actions
on multiple nodes, or from the Node Details screen, where you can view comprehensive details
of the selected node:

Click the Options menu at the end of the node and select Start Maintenance.

Click the node name to open the Node Details screen and click Actions → Start
Maintenance.

3. Click Start Maintenance in the confirmation window.

The node is no longer schedulable. If it had virtual machines with the LiveMigration eviction strategy,
then it will live migrate them. All other pods and virtual machines on the node are deleted and recreated
on another node.

Verification

Navigate to the Compute → Nodes page and verify that the corresponding node has a status
of Under maintenance.

CHAPTER 7. PLACING NODES IN MAINTENANCE MODE WITH NODE MAINTENANCE OPERATOR

47

7.5.3. Resuming a bare-metal node from maintenance mode

Resume a bare-metal node from maintenance mode using the Options menu found on each node
in the Compute → Nodes list, or using the Actions control of the Node Details screen.

Procedure

1. From the Administrator perspective of the web console, click Compute → Nodes.

2. You can resume the node from this screen, which makes it easier to perform actions on multiple
nodes, or from the Node Details screen, where you can view comprehensive details of the
selected node:

Click the Options menu at the end of the node and select Stop Maintenance.

Click the node name to open the Node Details screen and click Actions → Stop
Maintenance.

3. Click Stop Maintenance in the confirmation window.

The node becomes schedulable. If it had virtual machine instances that were running on the node prior
to maintenance, then they will not automatically migrate back to this node.

Verification

Navigate to the Compute → Nodes page and verify that the corresponding node has a status
of Ready.

7.6. GATHERING DATA ABOUT THE NODE MAINTENANCE OPERATOR

To collect debugging information about the Node Maintenance Operator, use the must-gather tool. For
information about the must-gather image for the Node Maintenance Operator, see Gathering data
about specific features.

7.7. ADDITIONAL RESOURCES

Gathering data about your cluster

Understanding how to evacuate pods on nodes

Understanding how to mark nodes as unschedulable or schedulable

Workload Availability for Red Hat OpenShift 24.1 Remediation, fencing, and maintenance

48

https://docs.openshift.com/container-platform/4.15/support/gathering-cluster-data.html#gathering-data-specific-features_gathering-cluster-data
https://docs.openshift.com/container-platform/4.15/support/gathering-cluster-data.html#gathering-cluster-data
https://docs.openshift.com/container-platform/4.15/nodes/nodes/nodes-nodes-working.html#nodes-nodes-working-evacuating_nodes-nodes-working
https://docs.openshift.com/container-platform/4.15/nodes/nodes/nodes-nodes-working.html#nodes-nodes-working-marking_nodes-nodes-working

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON WORKLOAD AVAILABILITY FOR RED HAT OPENSHIFT DOCUMENTATION
	CHAPTER 1. ABOUT NODE REMEDIATION, FENCING, AND MAINTENANCE
	1.1. SELF NODE REMEDIATION
	1.2. FENCE AGENTS REMEDIATION
	1.3. MACHINE DELETION REMEDIATION
	1.4. MACHINE HEALTH CHECK
	1.5. NODE HEALTH CHECK
	1.6. NODE MAINTENANCE

	CHAPTER 2. USING SELF NODE REMEDIATION
	2.1. ABOUT THE SELF NODE REMEDIATION OPERATOR
	2.1.1. About watchdog devices
	2.1.1.1. Understanding Self Node Remediation Operator behavior with watchdog devices

	2.2. CONTROL PLANE FENCING
	2.3. INSTALLING THE SELF NODE REMEDIATION OPERATOR BY USING THE WEB CONSOLE
	2.4. INSTALLING THE SELF NODE REMEDIATION OPERATOR BY USING THE CLI
	2.5. CONFIGURING THE SELF NODE REMEDIATION OPERATOR
	2.5.1. Understanding the Self Node Remediation Operator configuration
	2.5.2. Understanding the Self Node Remediation Template configuration
	2.5.3. Troubleshooting the Self Node Remediation Operator
	2.5.3.1. General troubleshooting
	2.5.3.2. Checking the daemon set
	2.5.3.3. Unsuccessful remediation
	2.5.3.4. Daemon set and other Self Node Remediation Operator resources exist even after uninstalling the Operator

	2.5.4. Gathering data about the Self Node Remediation Operator
	2.5.5. Additional resources

	CHAPTER 3. USING FENCE AGENTS REMEDIATION
	3.1. ABOUT THE FENCE AGENTS REMEDIATION OPERATOR
	3.2. INSTALLING THE FENCE AGENTS REMEDIATION OPERATOR BY USING THE WEB CONSOLE
	3.3. INSTALLING THE FENCE AGENTS REMEDIATION OPERATOR BY USING THE CLI
	3.4. CONFIGURING THE FENCE AGENTS REMEDIATION OPERATOR
	3.5. TROUBLESHOOTING THE FENCE AGENTS REMEDIATION OPERATOR
	3.5.1. General troubleshooting
	3.5.2. Unsuccessful remediation
	3.5.3. Fence Agents Remediation Operator resources exist after uninstalling the Operator

	3.6. GATHERING DATA ABOUT THE FENCE AGENTS REMEDIATION OPERATOR
	3.7. ADDITIONAL RESOURCES

	CHAPTER 4. USING MACHINE DELETION REMEDIATION
	4.1. ABOUT THE MACHINE DELETION REMEDIATION OPERATOR
	4.2. INSTALLING THE MACHINE DELETION REMEDIATION OPERATOR BY USING THE WEB CONSOLE
	4.3. INSTALLING THE MACHINE DELETION REMEDIATION OPERATOR BY USING THE CLI
	4.4. CONFIGURING THE MACHINE DELETION REMEDIATION OPERATOR
	4.5. TROUBLESHOOTING THE MACHINE DELETION REMEDIATION OPERATOR
	4.5.1. General troubleshooting
	4.5.2. Unsuccessful remediation
	4.5.3. Machine Deletion Remediation Operator resources exist even after uninstalling the Operator

	4.6. GATHERING DATA ABOUT THE MACHINE DELETION REMEDIATION OPERATOR
	4.7. ADDITIONAL RESOURCES

	CHAPTER 5. REMEDIATING NODES WITH MACHINE HEALTH CHECKS
	5.1. ABOUT MACHINE HEALTH CHECKS
	5.1.1. Limitations when deploying machine health checks

	5.2. CONFIGURING MACHINE HEALTH CHECKS TO USE THE SELF NODE REMEDIATION OPERATOR

	CHAPTER 6. REMEDIATING NODES WITH NODE HEALTH CHECKS
	6.1. ABOUT THE NODE HEALTH CHECK OPERATOR
	6.1.1. Understanding the Node Health Check Operator workflow
	6.1.2. About how node health checks prevent conflicts with machine health checks

	6.2. CONTROL PLANE FENCING
	6.3. INSTALLING THE NODE HEALTH CHECK OPERATOR BY USING THE WEB CONSOLE
	6.4. INSTALLING THE NODE HEALTH CHECK OPERATOR BY USING THE CLI
	6.5. CREATING A NODE HEALTH CHECK
	6.6. GATHERING DATA ABOUT THE NODE HEALTH CHECK OPERATOR
	6.7. ADDITIONAL RESOURCES

	CHAPTER 7. PLACING NODES IN MAINTENANCE MODE WITH NODE MAINTENANCE OPERATOR
	7.1. ABOUT THE NODE MAINTENANCE OPERATOR
	7.2. INSTALLING THE NODE MAINTENANCE OPERATOR
	7.2.1. Installing the Node Maintenance Operator by using the web console
	7.2.2. Installing the Node Maintenance Operator by using the CLI

	7.3. SETTING A NODE TO MAINTENANCE MODE
	7.3.1. Setting a node to maintenance mode by using the web console
	7.3.2. Setting a node to maintenance mode by using the CLI
	7.3.3. Checking status of current NodeMaintenance CR tasks

	7.4. RESUMING A NODE FROM MAINTENANCE MODE
	7.4.1. Resuming a node from maintenance mode by using the web console
	7.4.2. Resuming a node from maintenance mode by using the CLI

	7.5. WORKING WITH BARE-METAL NODES
	7.5.1. Maintaining bare-metal nodes
	7.5.2. Setting a bare-metal node to maintenance mode
	7.5.3. Resuming a bare-metal node from maintenance mode

	7.6. GATHERING DATA ABOUT THE NODE MAINTENANCE OPERATOR
	7.7. ADDITIONAL RESOURCES

