
Reference Architectures 2017

Clustering, Fault-Tolerance, and Messaging
Patterns with Red Hat JBoss AMQ 7

Last Updated: 2018-08-10

Reference Architectures 2017 Clustering, Fault-Tolerance, and

Messaging Patterns with Red Hat JBoss AMQ 7

Jeremy Ary
refarch-feedback@redhat.com

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This reference architecture demonstrates basic messaging patterns with single-broker, clustered,
and fault-tolerant Red Hat JBoss AMQ 7 topologies, as well as direct, closest, balanced and
multicast Interconnect routing configurations.

. .

. .

. .

. .

. .

. .

Table of Contents

COMMENTS AND FEEDBACK

CHAPTER 1. EXECUTIVE SUMMARY

CHAPTER 2. RED HAT JBOSS AMQ 7
2.1. OVERVIEW
2.2. BROKER
2.3. CLIENTS
2.4. INTERCONNECT

CHAPTER 3. REFERENCE ARCHITECTURE ENVIRONMENT
3.1. OVERVIEW
3.2. SINGLE-BROKER INSTANCE
3.3. SYMMETRIC BROKER CLUSTER
3.4. FAULT-TOLERANT BROKER CLUSTER
3.5. MULTI-ROUTER INTERCONNECT NETWORK

CHAPTER 4. CREATING THE ENVIRONMENT
4.1. OVERVIEW
4.2. DEPLOYMENT ON OPENSHIFT CONTAINER PLATFORM

4.2.1. Prerequisites
4.2.2. Create Project
4.2.3. Base Image Template Deployment
4.2.4. Image Build
4.2.5. Topology Template Deployments

4.3. DEPLOYMENT ON RED HAT ENTERPRISE LINUX
4.3.1. Prerequisites
4.3.2. Single Broker Configuration
4.3.3. Symmetric Cluster Configuration

4.3.3.1. Single-Server Cluster
4.3.3.2. Multi-Server Cluster

4.3.4. Replication Cluster Configuration
4.3.4.1. Single-Server Cluster

4.3.4.1.1. Multi-Server Cluster
4.3.5. Interconnect Network Configuration

4.3.5.1. Installation
4.3.5.2. Configuration
4.3.5.3. Execution
4.3.5.4. Log Monitoring

CHAPTER 5. DESIGN AND DEVELOPMENT
5.1. OVERVIEW
5.2. PREREQUISITES
5.3. COMMON BROKER CONFIGURATIONS

5.3.1. Directory and Persistence Configuration
5.3.2. Connectors and Acceptors
5.3.3. Security Configuration
5.3.4. Queue and Topic Configuration
5.3.5. Dead Letter and Expiry Queue Configuration

5.4. SINGLE-BROKER INSTANCE
5.4.1. Broker Configuration
5.4.2. Exercising the Instance

5.5. SYMMETRIC CLUSTER TOPOLOGY

4

5

6
6
6
6
6

7
7
7
7
8
9

10
10
10
10
10
11
11
11
11
11
12
13
13
14
15
15
17
17
17
18
19
19

20
20
20
20
20
21
21
22
22
23
23
23
23

Table of Contents

1

. .

. .

. .

. .

. .

. .

5.5.1. Broker Configuration
5.5.2. Exercising the Cluster

5.6. REPLICATION CLUSTER TOPOLOGY
5.6.1. Broker Configuration

5.6.1.1. Master Nodes
5.6.1.2. Slave Nodes

5.6.2. Exercising the Cluster
5.7. INTERCONNECT NETWORK TOPOLOGY

5.7.1. Router Configuration
5.7.2. Exercising the Network

5.8. AMQ CONSOLE
5.8.1. Broker Monitoring
5.8.2. Interconnect Network Monitoring

CHAPTER 6. CONCLUSION

APPENDIX A. AUTHORSHIP HISTORY

APPENDIX B. CONTRIBUTORS

APPENDIX C. MAVEN CONFIGURATION

APPENDIX D. EXAMPLE BROKER CONFIGURATION

APPENDIX E. REVISION HISTORY

24
25
25
25
25
26
26
27
27
28
29
29
30

32

33

34

35

37

39

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

2

Table of Contents

3

COMMENTS AND FEEDBACK
In the spirit of open source, we invite anyone to provide feedback and comments on any reference
architecture. Although we review our papers internally, sometimes issues or typographical errors are
encountered. Feedback allows us to not only improve the quality of the papers we produce, but allows
the reader to provide their thoughts on potential improvements and topic expansion to the papers.
Feedback on the papers can be provided by emailing refarch-feedback@redhat.com. Please refer to
the title within the email.

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

4

mailto:refarch-feedback@redhat.com

CHAPTER 1. EXECUTIVE SUMMARY
This reference architecture demonstrates basic messaging patterns with single-broker, clustered, and
fault-tolerant Red Hat JBoss AMQ 7 topologies, as well as direct, closest, balanced and multicast
Interconnect routing configurations.

The reference architecture paper documents the steps undertaken to utilize some of the prominent
capabilities provided by AMQ 7, while the accompanying code, configurations, and S2I image for
OpenShift Container Platform allows the reader to fully understand each step and replicate
them at will.

WARNING

The AMQ/OpenShift configuration described and/or provided herein uses
community software and thus is not an officially supported Red Hat configuration
at the time of writing.

CHAPTER 1. EXECUTIVE SUMMARY

5

CHAPTER 2. RED HAT JBOSS AMQ 7

2.1. OVERVIEW

Based on the upstream Apache ActiveMQ and Apache Qpid community projects, Red Hat JBoss
AMQ 7 is a lightweight, standards-based open source messaging platform designed to enable real-time
communication between different applications, services, devices, and Internet of Things (IoT) devices.
It also serves as the messaging foundation for Red Hat JBoss Fuse, Red Hat’s lightweight, flexible
integration platform, and is designed to provide the real-time, distributed messaging capabilities
needed to support an agile integration approach for modern application development.

AMQ 7 introduces technology enhancements across three core components: the broker, clients, and
Interconnect router.

2.2. BROKER

The AMQ 7 broker, based on Apache ActiveMQ Artemis, manages addresses, queues, and routing
semantics. The new broker has an asynchronous internal architecture which can increase performance
and scalability, while enabling it to handle more concurrent connections and achieve greater message
throughput. AMQ Broker is a full-featured, message-oriented middleware broker. It offers specialized
queueing behaviors, message persistence, and manageability. Core messaging is provided with support
for different messaging patterns such as publish-subscribe, point-to-point, and store-and-forward.
AMQ 7 supports multiple protocols and client languages, allowing integration of many, if not all,
application assets.

2.3. CLIENTS

Red Hat JBoss AMQ 7 expands its support of popular messaging APIs and protocols by adding new
client libraries, including Java Message Service (JMS) 2.0, JavaScript, C++, .Net, and Python. With
existing support for the popular open protocols MQTT and AMQP, AMQ 7 now offers broad
interoperability across the IT landscape that can open up data in embedded devices to inspection,
analysis, and control.

2.4. INTERCONNECT

The new Interconnect router in AMQ 7 enables users to create an internet-scale network of
uniformly-addressed messaging paths spanning data centers, cloud services, and geographic zones.
The Interconnect component serves as the backbone for distributed messaging, providing
redundant network pathing for fault handling, traffic optimization, and more secure and reliable
connectivity.

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

6

CHAPTER 3. REFERENCE ARCHITECTURE ENVIRONMENT

3.1. OVERVIEW

This reference architecture demonstrates a multi-service OpenShift Container Platform project
housing various Red Hat JBoss AMQ 7 topologies. The provided environment builds on OpenShift, so
the included test suite also assumes an OpenShift environment, but installation and configuration
steps for any Red Hat Enterprise Linux server and/or cluster are also provided in order to establish a
similar environment.

WARNING

The AMQ/OpenShift configuration described and/or provided herein uses
community software and thus is not an officially supported Red Hat configuration
at the time of writing.

This reference architecture showcases 4 topology examples:

3.2. SINGLE-BROKER INSTANCE

This example features multiple JMS clients interacting with a single broker to demonstrate execution
of basic send and receive messaging patterns.

Figure 3.1. Single Broker

3.3. SYMMETRIC BROKER CLUSTER

This example features a cluster of 3 broker instances, all grouped together to allow for internal load
balancing.

CHAPTER 3. REFERENCE ARCHITECTURE ENVIRONMENT

7

Figure 3.2. 3-Node Symmetric Cluster

3.4. FAULT-TOLERANT BROKER CLUSTER

This example features 3 master and 3 slave broker instances, all clustered within the same group,
allowing automatic master/slave pairing and failover.

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

8

Figure 3.3. 3-Pair Master/Slave Cluster

3.5. MULTI-ROUTER INTERCONNECT NETWORK

This example features 7 nodes, simulating various geographic distributions in order to showcase the
differences in various routing algorithm choices.

Figure 3.4. Interconnect Network

CHAPTER 3. REFERENCE ARCHITECTURE ENVIRONMENT

9

CHAPTER 4. CREATING THE ENVIRONMENT

4.1. OVERVIEW

This reference architecture provides an accompanying OpenShift S2I image and template set for the
deployment of pre-configured services, that can be used as a target for the included test suite in its
current form. The code may be found in a publicly-available repository.

$ git clone git@github.com:RHsyseng/amq7.git

While a pre-configured OpenShift Container Platform project is provided for convenience, the reader
may also elect to utilize a single Red Hat Enterprise Linux server to recreate the single-broker,
symmetric cluster, and replication topologies individually. A cluster of RHEL servers may also serve to
replicate the Interconnect topology in lieu of OpenShift. If the reader’s choice is to forego OpenShift
Container Platform, you may skip ahead to Deployment on Red Hat Enterprise Linux at this time.

4.2. DEPLOYMENT ON OPENSHIFT CONTAINER PLATFORM

WARNING

The AMQ/OpenShift configuration described and/or provided herein uses
community software and thus is not an officially supported Red Hat configuration
at the time of writing.

4.2.1. Prerequisites

A pre-existing OpenShift Container Platform installation, with a configured user called ocuser,
capable of project ownership, is assumed in the following steps. More information on installation and
configuration of the Red Hat Enterprise Linux Operating System, OpenShift Container Platform, and
more can be found in Section 3: Creating the Environment of a previous Reference Architecture,
Building JBoss EAP 7 Microservices on OpenShift Container Platform .

The URL cluster-ingress.example.com is used throughout the provided templates to allow
external access to the brokers and management consoles. Add the URL to your /etc/hosts file so
that it resolves to the proper OpenShift Container Platform node for desired routing.

10.1.2.300 cluster-ingress.example.com #link to OpenShift-routable node
address

4.2.2. Create Project

Utilize remote or direct terminal access to log in to the OpenShift environment as the user who will
create and have ownership of the new project:

$ oc login -u ocuser

Create the new project which will house the various builds, deployments and services:

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

10

https://github.com/RHsyseng/AMQ7/tree/master/S2I-Base-Image/broker_configs
https://access.redhat.com/documentation/en-us/reference_architectures/2017/html/building_jboss_eap_7_microservices_on_openshift_container_platform/creating_the_enviornment

$ oc new-project amq --display-name="AMQ 7 Reference Architecture Example"
--description="Showcase of various AMQ 7 features and topologies"

4.2.3. Base Image Template Deployment

Within the new project, execute the provided YAML template to configure and instantiate the base
image stream and build config:

$ oc process -f
https://raw.githubusercontent.com/RHsyseng/amq7/master/S2I-Base-
Image/yaml_templates/amq_image_template.yaml | oc create -f -

4.2.4. Image Build

Kick off a build of the S2I base image stream and monitor for completion:

$ oc start-build amq7-image --follow

4.2.5. Topology Template Deployments

Once the initial build is complete, deploy the single-broker template:

$ oc process -f
https://raw.githubusercontent.com/RHsyseng/amq7/master/S2I-Base-
Image/yaml_templates/amq_single_template.yaml | oc create -f -

The remainder of the topology templates have been separated for convenience of cherry-picking, but
in order to execute the full test suite, all three must be applied:

$ oc process -f
https://raw.githubusercontent.com/RHsyseng/amq7/master/S2I-Base-
Image/yaml_templates/amq_symmetric_template.yaml | oc create -f -
$ oc process -f
https://raw.githubusercontent.com/RHsyseng/amq7/master/S2I-Base-
Image/yaml_templates/amq_replicated_template.yaml | oc create -f -
$ oc process -f
https://raw.githubusercontent.com/RHsyseng/amq7/master/S2I-Base-
Image/yaml_templates/amq_interconnect_template.yaml | oc create -f -

NOTE

While any of the last three templates (symmetric, replication, and interconnect) can be
skipped or deployed at-will, the single-broker service must be deployed for any of these
to properly function, as the single-broker service provides ingress into the cluster for
the various ports utilized by the remaining templates.

4.3. DEPLOYMENT ON RED HAT ENTERPRISE LINUX

4.3.1. Prerequisites

CHAPTER 4. CREATING THE ENVIRONMENT

11

To install AMQ 7 to a Linux platform, you must first download the installation archive from the Red Hat
Customer Portal.

4.3.2. Single Broker Configuration

The broker utilizes a few ports for inbound connectivity, including TCP ports 61616, 5672, 61613, and
1883 for the various message protocols and TCP port 8161 for access to the HTTP AMQ Console. If the
server is running a firewall, these ports must be allowed connectivity prior to beginning installation
and configuration. More information on inspecting and configuring the firewall for Red Hat Enterprise
Linux can be found here.

1) Create a new user named amq-broker and provide a password.

$ sudo useradd amq-broker
$ sudo passwd amq-broker

2) Create the directory /opt/redhat/amq-broker and make the new amq-broker user and group
the owners.

$ sudo mkdir -p /opt/redhat/amq-broker
$ sudo chown -R amq-broker:amq-broker /opt/redhat/amq-broker

3) Change the owner of the archive to the new user.

$ sudo chown amq-broker:amq-broker amq-broker-7.x.x.zip

4) Move the installation archive to the directory you just created.

$ sudo mv amq-broker-7.x.x.zip /opt/redhat/amq-broker

5) As the new user amq-broker, extract the contents with a single unzip command.

$ su - amq-broker
$ cd /opt/redhat/amq-broker
$ unzip amq-broker-7.x.x.zip

6) A directory named something similar to amq-broker-7.x.x will be created, further referred to
herein as the INSTALL_DIR. Next, create a directory location for the broker instance and assign the
user you created during installation as its owner.

$ sudo mkdir /var/opt/amq-broker
$ sudo chown -R amq-broker:amq-broker /var/opt/amq-broker

7) Navigate to the new directory and use the artemis create command to create a broker. Note in
the example below, the user that was created during installation is the one to run the create command.

$ su - amq-broker
$ cd /var/opt/amq-broker
$ /opt/redhat/amq-broker/bin/artemis create /var/opt/amq-broker/mybroker -
-user amq-broker --password password --allow-anonymous

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

12

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html/using_amq_broker/installation#download_archive
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-using_firewalls

NOTE

Use the artemis help create command to view a list/descriptions of available
parameters for instance configuration.

8) If desired, view contents of the BROKER_INSTANCE_DIR/etc/broker.xml configuration file. A
simple, single-broker localhost configuration has been already been configured by the artemis tool.

9) Next, use the artemis script in the BROKER_INSTANCE_DIR/bin directory to start the broker.

$ su - amq-broker
$ /var/opt/amq-broker/mybroker/bin/artemis run

NOTE

Use the artemis help run command to view a list/descriptions of available
parameters for runtime configuration.

4.3.3. Symmetric Cluster Configuration

Typical production environments utilize multiple servers for clustering, however, for demonstration
purposes, the following cluster is set up to reside on a single server utilizing unique, individual ports for
inbound connections and a separate, shared UDP port for group connectivity.

4.3.3.1. Single-Server Cluster

To prepare multiple brokers on a single server, complete the follow steps.

1) As with the single-broker example, complete steps 1-6 to establish a user and prepare the AMQ
artemis environment.

2) Next, create directories for each broker instance of the cluster:

$ mkdir /var/opt/amq-broker/run && cd "$_"
$ mkdir artemis_1 artemis_2 artemis_3

3) Similar to before, the artemis create command will be used to populate each directory with a
broker instance.

$ /opt/redhat/amq-broker/bin/artemis create artemis_1 \
 --user amq-broker --password password --allow-anonymous --clustered \
 --cluster-user amqUser --cluster-password password --host localhost \
 --name artemis-1 --port-offset 10*
$ /opt/redhat/amq-broker/bin/artemis create artemis_2 \
 --user amq-broker --password password --allow-anonymous --clustered \
 --cluster-user amqUser --cluster-password password --host localhost \
 --name artemis-2 --port-offset 20*
$ /opt/redhat/amq-broker/bin/artemis create artemis_3 \
 --user amq-broker --password password --allow-anonymous --clustered \
 --cluster-user amqUser --cluster-password password --host localhost \
 --name artemis-3 --port-offset 30*

4) Once each broker directory has been populated, start each broker as a service.

CHAPTER 4. CREATING THE ENVIRONMENT

13

$ artemis_1/bin/artemis-service start
Starting artemis-service
artemis-service is now running (109195)

$ artemis_2/bin/artemis-service start
Starting artemis-service
artemis-service is now running (109307)

$ artemis_3/bin/artemis-service start
Starting artemis-service
artemis-service is now running (109432)

5) Examination of the logs reveals information relevant to the connectivity established between each of
the servers.

$ cat artemis_3/log/artemis.log
...
AMQ221001: [truncated for brevity]...[artemis_3, nodeID=83c078d5-ad4f-
11e7-a3e2-000c2906f4ae]
AMQ221027: Bridge ClusterConnectionBridge@7a5f143
[name=$.artemis.internal.sf.my-cluster.77770624-ad4f-11e7-8acd-
000c2906f4ae
 [truncated for brevity]?port=61626&host=localhost],
discoveryGroupConfiguration=null]] is connected
AMQ221027: Bridge ClusterConnectionBridge@7241b488
[name=$.artemis.internal.sf.my-cluster.7d6ebb4d-ad4f-11e7-a379-
000c2906f4ae
 [truncated for brevity]?port=61636&host=localhost],
discoveryGroupConfiguration=null]] is connected
...

4.3.3.2. Multi-Server Cluster

To prepare multiple servers, each with its own broker, several ports must be utilized for intra-node and
inbound communications. This includes 9876 for multicast UDP group connectivity, TCP via 61616,
5672, 61613, and 1883 for the various message protocols, and TCP via 8161 for access to the HTTP
AMQ Console. If the servers are running a firewall, these ports must be allowed connectivity prior to
beginning installation and configuration. More information on inspecting and configuring the firewall
for Red Hat Enterprise Linux can be found here.

NOTE

Ensure the network is properly configured for multicast and that multicast addresses
have been verified during the configuration stage of the environment, otherwise HA
functionality might not work as intended. If using Red Hat Enterprise Linux, also ensure
that the http protocol has been enabled for viewing of AMQ Console, as RHEL does not
allow HTTP traffic by default.

Each of the following steps should be performed on every server within the cluster.

1) Once port access has been configured, complete steps 1-6 to establish a user and prepare the AMQ
artemis environment.

2) Next, create a directory for the broker instance:

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

14

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/sec-using_firewalls

$ mkdir /var/opt/amq-broker/run && cd "$_"
$ mkdir artemis_1

3) Similar to before, the artemis create command will be used to populate the directory with a
broker instance.

$ /opt/redhat/amq-broker/bin/artemis create artemis_1 \
 --user amq-broker --password password --allow-anonymous --clustered \
 --cluster-user amqUser --cluster-password password --host 10.10.X.X \
 --name artemis-broker

4) Once the broker directory has been populated, start the broker as a service.

$ artemis_1/bin/artemis-service start
Starting artemis-service
artemis-service is now running (109195)

5) As with the single-server configuration above, cluster connectivity can be monitored by examining
the logs of one of the servers.

$ tail -f artemis_1/log/artemis.log

4.3.4. Replication Cluster Configuration

Typical production environments utilize multiple servers for clustering, however, for demonstration
purposes, the following cluster is set up to reside on a single server utilizing unique, individual ports for
inbound connections and a separate, shared UDP or TCP (via JGroups) port for group connectivity.

4.3.4.1. Single-Server Cluster

To prepare multiple brokers on a single server, complete the follow steps.

1) As with the single-broker example, complete steps 1-6 to establish a user and prepare the AMQ
artemis environment.

2) Next, create directories for each broker instance of the cluster:

$ mkdir /var/opt/amq-broker/run && cd "$_"
$ mkdir artemis_1 artemis_2 artemis_3 artemis_4 artemis_5 artemis_6

3) Similar to before, the artemis create command will be used to populate each directory with a
broker instance.

$ /opt/redhat/amq-broker/bin/artemis create artemis_1 \
 --user amq-broker --password password --allow-anonymous --clustered \
 --cluster-user amqUser --cluster-password password --host localhost \
 --name artemis-1 --port-offset 10 --replicated

$ /opt/redhat/amq-broker/bin/artemis create artemis_2 \
 --user amq-broker --password password --allow-anonymous --clustered \
 --cluster-user amqUser --cluster-password password --host localhost \
 --name artemis-2 --port-offset 20 --replicated

CHAPTER 4. CREATING THE ENVIRONMENT

15

$ /opt/redhat/amq-broker/bin/artemis create artemis_3 \
 --user amq-broker --password password --allow-anonymous --clustered \
 --cluster-user amqUser --cluster-password password --host localhost \
 --name artemis-3 --port-offset 30 --replicated

$ /opt/redhat/amq-broker/bin/artemis create artemis_4 \
 --user amq-broker --password password --allow-anonymous --clustered \
 --cluster-user amqUser --cluster-password password --host localhost \
 --name artemis-4 --port-offset 10 --replicated --slave

$ /opt/redhat/amq-broker/bin/artemis create artemis_5 \
 --user amq-broker --password password --allow-anonymous --clustered \
 --cluster-user amqUser --cluster-password password --host localhost \
 --name artemis-5 --port-offset 20 --replicated --slave

$ /opt/redhat/amq-broker/bin/artemis create artemis_6 \
 --user amq-broker --password password --allow-anonymous --clustered \
 --cluster-user amqUser --cluster-password password --host localhost \
 --name artemis-6 --port-offset 30 --replicated --slave

4) Once broker directories have been populated, start each broker as a service.

$ artemis_1/bin/artemis-service start
Starting artemis-service
artemis-service is now running (109195)

[repeat for artemis_2-6]

5) Examination of the logs reveals information relevant to group connectivity and replica information
sent from master nodes to slave nodes.

$ cat artemis_3/log/artemis.log
...
AMQ221001: [truncated for brevity]...[artemis_2, nodeID=83c078d5-ad4f-
11e7-a3e2-000c2906f4ae]
AMQ221027: Bridge ClusterConnectionBridge@7a5f143
[name=$.artemis.internal.sf.my-cluster.77770624-ad4f-11e7-8acd-
000c2906f4ae
 [truncated for brevity]?port=61626&host=localhost],
discoveryGroupConfiguration=null]] is connected
AMQ221027: Bridge ClusterConnectionBridge@7241b488
[name=$.artemis.internal.sf.my-cluster.7d6ebb4d-ad4f-11e7-a379-
000c2906f4ae
 [truncated for brevity]?port=61646&host=localhost],
discoveryGroupConfiguration=null]] is connected
...
AMQ221025: Replication: sending
AIOSequentialFile:/var/opt/run/artemis_2/./data/journal/activemq-data-
2.amq (size=10,485,760) to replica.
AMQ221025: Replication: sending NIOSequentialFile
/var/opt/run/artemis_2/./data/bindings/activemq-bindings-4.bindings
(size=1,048,576) to replica.
AMQ221025: Replication: sending NIOSequentialFile
/var/opt/run/artemis_2/./data/bindings/activemq-bindings-2.bindings
(size=1,048,576) to replica.

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

16

4.3.4.1.1. Multi-Server Cluster

As with the multi-server symmetric cluster, once port access has been configured for all intended
cluster members, the broker can be added to each server:

For master nodes, use the following artemis create command format, where N indicates the node
number:

$ /opt/redhat/amq-broker/bin/artemis create artemis_N \
 --user amq-broker --password password --allow-anonymous --clustered \
 --cluster-user amqUser --cluster-password password --host localhost \
 --name artemis-N --replicated*

For slave nodes, use the following artemis create command format, where N indicates the node
number:

$ /opt/redhat/amq-broker/bin/artemis create artemis_N \
 --user amq-broker --password password --allow-anonymous --clustered \
 --cluster-user amqUser --cluster-password password --host localhost \
 --name artemis-N --replicated --slave*

4.3.5. Interconnect Network Configuration

Given the nature of the Interconnect executable and the need to demonstrate various network
proximity routing mechanisms, a multi-server configuration is recommended. However, the routers
only utilize AMQP ports 5672, 5673, and 5674 for all communication needs, therefore multicast is not
required and firewall rules are significantly simplified. Every server will need to expose the
aforementioned three ports.

4.3.5.1. Installation

In order to install the Interconnect router on Red Hat Enterprise Linux, complete the following steps
for each server intended to join the topology:

1) Ensure your subscription has been activated and your system is registered. For more information
about using the customer portal to activate your Red Hat subscription and register your system for
packages, refer to the documentation on using your subscription.

2) Subscribe to the required repositories:

$ sudo subscription-manager repos --enable=amq-interconnect-1-for-rhel-7-
server-rpms --enable=a-mq-clients-1-for-rhel-7-server-rpms

3) Use the yum command to install the qpid-dispatch-router and qpid-dispatch-tools
packages and libaio dependency for ASYNCIO journaling:

$ sudo yum install libaio qpid-dispatch-router qpid-dispatch-tools

4) Use the which command to verify that the qdrouterd executable is present.

$ which qdrouterd
/usr/sbin/qdrouterd

CHAPTER 4. CREATING THE ENVIRONMENT

17

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html/using_amq_interconnect/using_your_subscription

The qdrouterd executable should be located at /usr/sbin/qdrouterd.

4.3.5.2. Configuration

The configuration file for the router is located at etc/qpid-dispatch/qdrouterd.conf. The
following is a complete example configuration as used in the included OpenShift Container Platform
example:

router { 1
 mode: interior
 id: US
}

listener { 2
 role: normal
 host: 0.0.0.0
 port: amqp
 authenticatePeer: no
 saslMechanisms: ANONYMOUS
}

listener { 3
 role: normal
 host: 0.0.0.0
 port: 5673
 http: yes
 authenticatePeer: no
 saslMechanisms: ANONYMOUS
}

listener { 4
 role: inter-router
 host: 0.0.0.0
 port: 5674
 authenticatePeer: no
 saslMechanisms: ANONYMOUS
}

connector { 5
 role: inter-router
 host: interconnect-eu.amq.svc.cluster.local
 port: 5674
 saslMechanisms: ANONYMOUS
}

address { 6
 prefix: multicast
 distribution: multicast
}

log { 7
 module: DEFAULT
 enable: debug+
 timestamp: yes
}

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

18

1

2

3

4

5

6

7

Basic router configuration. By default, a router operates in standalone mode, whereas this
example indicates that the router is part of a network, or interior mode.

Listener for inbound AMQP client connections.

Listener for inbound AMQ Console connections allowing HTTP.

Listener for other router entity connections.

Connector request specifying another router entity that the router should attempt to connect
with.

Address configuration indicating that any address beginning with the prefix multicast (such as
a queue named should utilize the multicast routing pattern in delivery. Other options include
closest and balanced.

Log module configuration: specifies that all Interconnect modules should log any debug or higher
messages and include timestamp. Note that individual module configuration is possible.

Further information on Interconnect router configuration can be found in the Using AMQ Interconnect
for Red Hat JBoss AMQ 7 Guide.

4.3.5.3. Execution

Once the router network has been configured as desired, start each with the following command:

$ systemctl start qdrouterd.service

4.3.5.4. Log Monitoring

Router status and log output can be viewed with the following command:

$ qdstat --log

CHAPTER 4. CREATING THE ENVIRONMENT

19

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html/using_amq_interconnect/router_configuration

CHAPTER 5. DESIGN AND DEVELOPMENT

5.1. OVERVIEW

The source code for the Red Hat JBoss AMQ 7 example project is made available in a public github
repository. This chapter briefly covers each topology, accompanying tests, and functionality. Note that
in the example client tests, JMS is used exclusively for connectivity, however, AMQ 7 also offers
clients for C++, JavaScript, Python, and .NET. More information on these clients can be found in
their respective guides located on the AMQ 7 Documentation page.

5.2. PREREQUISITES

The following topology and routing explanations assume that the provided OpenShift Container
Platform example environment has been utilized. If Red Hat Enterprise Linux instances have been used
instead, the tests will require modification of server addresses and ports prior to usage.

WARNING

The AMQ/OpenShift configuration described and/or provided herein uses
community software and thus is not an officially supported Red Hat configuration
at the time of writing.

The included tests which showcase various features of each topology assume that Maven 3.X and
Java JDK 1.8+ are installed and configured. An example Maven settings.xml configuration file,
allowing resolution of Red Hat’s GA and Early Access repositories, is provided as an appendix.

The tests mentioned are part of the code available in the public github repository , under the Test-
Suite directory. All mvn commands which follow are assumed to be ran from that directory.

5.3. COMMON BROKER CONFIGURATIONS

Various components within the broker.xml configuration file will be commonly seen across the
different OpenShift Container Platform example scenarios. These sections are as follows:

5.3.1. Directory and Persistence Configuration

<persistence-enabled>true</persistence-enabled> 1

<paging-directory>./data/paging</paging-directory> 2
<bindings-directory>./data/bindings</bindings-directory>
<large-messages-directory>./data/large-messages</large-messages-directory>

<journal-type>ASYNCIO</journal-type> 3
<journal-directory>./data/journal</journal-directory>
<journal-min-files>2</journal-min-files>
<journal-pool-files>-1</journal-pool-files>
<journal-buffer-timeout>59999</journal-buffer-timeout>

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

20

https://github.com/RHsyseng/AMQ7
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html/using_amq_interconnect/router_configuration
https://github.com/RHsyseng/AMQ7

1

2

3

1

2

1

2

Enables the default highly performant option of writing messages to journals on the file system.

Configures multiple directories for journaling of paging, binding, and large messages.

Journaling configuration specifying the ASYNCIO type and various parameters.

5.3.2. Connectors and Acceptors

Configures server-to-server connectivity protocol via group discovery.

Configures a default endpoint for the broker listening for ActiveMQ Artemis, OpenWire, STOMP,
AMQP, MQTT, and HornetQ protocol connections.

5.3.3. Security Configuration

Indicates that a special, internal address should be enabled thus enabling AMQP clients to send
Broker management commands to the server. A topic is also specified.

Specifies that authenticated clients may receive broker system notifications by subscribing to
the specified topic.

<connectors>

 <connector name="artemis">tcp://0.0.0.0:${ARTEMIS_PORT}</connector> 1
</connectors>
<acceptors>

 <acceptor name="artemis">tcp://0.0.0.0:${ARTEMIS_PORT}</acceptor> 2
</acceptors>

<management-address>activemq.management</management-address> 1

<management-notification-address> 2
 jms.topic.notificationsTopic
</management-notification-address>

<security-settings>

 <security-setting match="#"> 3
 <permission type="createNonDurableQueue" roles="admin"/>
 <permission type="deleteNonDurableQueue" roles="admin"/>
 <permission type="createDurableQueue" roles="admin"/>
 <permission type="deleteDurableQueue" roles="admin"/>
 <permission type="createAddress" roles="admin"/>
 <permission type="deleteAddress" roles="admin"/>
 <permission type="consume" roles="admin"/>
 <permission type="browse" roles="admin"/>
 <permission type="send" roles="admin"/>
 <permission type="manage" roles="admin"/>
 </security-setting>

 <security-setting match="jms.queue.activemq.management"> 4
 <permission type="consume" roles="admin"/>
 <permission type="send" roles="admin"/>
 <permission type="manage" roles="admin"/>
 </security-setting>
</security-settings>

CHAPTER 5. DESIGN AND DEVELOPMENT

21

3

4

1

2

Security settings for the wildcard matcher allowing the admin role for all functionalities.

Security settings used to authenticate clients wishing to utilize the management-address and
notification-address mechanisms.

5.3.4. Queue and Topic Configuration

Configures an example multicast (publish-subscribe) topic on the broker.

Configures an example queue (point-to-point) on the broker.

5.3.5. Dead Letter and Expiry Queue Configuration

<addresses>

 <address name="test_topic"> 1
 <multicast/>
 </address>

 <address name="test_queue"> 2
 <anycast>
 <queue name="jms.queue.test_queue"/>
 </anycast>
 </address>
</addresses>

<address-settings>

 <address-setting match="activemq.management#"> 1
 <dead-letter-address>DLQ</dead-letter-address>
 <expiry-address>ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <max-size-bytes>-1</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-
day-limit>
 <address-full-policy>PAGE</address-full-policy>
 <auto-create-queues>true</auto-create-queues>
 <auto-create-addresses>true</auto-create-addresses>
 <auto-create-jms-queues>true</auto-create-jms-queues>
 <auto-create-jms-topics>true</auto-create-jms-topics>
 </address-setting>

 <address-setting match="#"> 2
 <dead-letter-address>DLQ</dead-letter-address>
 <expiry-address>ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <max-size-bytes>-1</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-
day-limit>
 <address-full-policy>PAGE</address-full-policy>
 <auto-create-queues>true</auto-create-queues>
 <auto-create-addresses>true</auto-create-addresses>
 <auto-create-jms-queues>true</auto-create-jms-queues>
 <auto-create-jms-topics>true</auto-create-jms-topics>
 </address-setting>
</address-settings>

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

22

1

2

Configures dead letter and expiry queues for the management addresses.

Configured dead letter and expiry queues with a wildcard matcher to serve all other queues and
topics.

The full broker.xml configuration file used for the single broker example in the included OpenShift
Container Platform environment can be found in the appendices for further review of overall file
structure.

5.4. SINGLE-BROKER INSTANCE

The single-broker instance is configured for client connectivity via its artemis connector. The
OpenShift service is configured with an ingress port of 30201 which forwards all requests to the
container port 61616.

5.4.1. Broker Configuration

Given that no further highly-available or fault-tolerant options are required for the single broker, the
common configuration elements detailed above make up the entirety of its configuration.

5.4.2. Exercising the Instance

The following tests demonstrate two basic messaging patterns encountered when working with AMQP
via JMS: queues and topics. The first test demonstrates point-to-point messaging by establishing one
client as a queue producer and another client as a queue consumer, then asserting that all messages
sent to the queue only reach the intended recipient. The second test demonstrates the publish-
subscribe pattern by similarly establishing a single topic publisher, but with multiple recipient
subscribers who each receive a copy of all dispatched messages.

To run the tests, use the following command:

$ mvn -Dtest=SingleBrokerTest test
...

 T E S T S

Running com.redhat.refarch.amq7.single.SingleBrokerTest
...SingleBrokerTest:24 - instantiating clients...
...SingleBrokerTest:33 - sending 25 messages to queue...
...SingleBrokerTest:36 - verifying single queue consumer received all
msgs...
...SingleBrokerTest:40 - terminating clients...
...SingleBrokerTest:49 - instantiating clients...
...SingleBrokerTest:60 - sending 25 messages to topic...
...SingleBrokerTest:63 - verifying both topic consumers received all
msgs...
...SingleBrokerTest:68 - terminating clients...
Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 7.669 sec

5.5. SYMMETRIC CLUSTER TOPOLOGY

The highly-available symmetric cluster offers round-robin message distribution to all brokers sharing a
common queue. Each broker is configured for client connectivity via its artemis connector. Each

CHAPTER 5. DESIGN AND DEVELOPMENT

23

1

2

3

4

5

6

OpenShift service representing a broker is configured with an ingress port of 3040X which forwards all
requests to the corresponding container port 6161X.

5.5.1. Broker Configuration

Broadcast Group configuration; A broker uses a broadcast group to push information about its
cluster-related connection to other potential cluster members on the network.

A broadcast-group can use TCP, UDP or JGroups, but the choice must match its discovery-
group counterpart.

Connection information: matches a connector element as defined in the shared configuration
section above.

Discovery Group configuration: while the broadcast group defines how cluster-related
information is transmitted, a discovery group defines how connector information is received.

Uses a discovery-group to make the initial connection to each broker in the cluster.

Cluster connections allow brokers to load balance their messages. If message load balancing is
OFF or ON_DEMAND, messages are not moved to queues that do not have consumers to consume
them. However, if a matching consumer on a queue closes after the messages have been sent to
the queue, the messages will stay in the queue without being consumed.

<broadcast-groups>

 <broadcast-group name="test-broadcast-group"> 1

 <group-address>${udp-address:231.7.7.7}</group-address> 2
 <group-port>9876</group-port>
 <broadcast-period>100</broadcast-period>

 <connector-ref>artemis</connector-ref> 3
 </broadcast-group>
</broadcast-groups>

<discovery-groups>

 <discovery-group name="test-discovery-group"> 4
 <group-address>${udp-address:231.7.7.7}</group-address>
 <group-port>9876</group-port>
 <refresh-timeout>10000</refresh-timeout>
 </discovery-group>
</discovery-groups>

<cluster-connections>

 <cluster-connection name="test-cluster"> 5
 <connector-ref>artemis</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>

 <message-load-balancing>ON_DEMAND</message-load-balancing> 6
 <max-hops>1</max-hops>
 <discovery-group-ref discovery-group-name="test-discovery-
group"/>
 </cluster-connection>
</cluster-connections>

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

24

Further information about configuring AMQ 7 clusters can be found in the Using Red Hat JBoss AMQ 7
Broker Guide.

5.5.2. Exercising the Cluster

The first included test demonstrates both point-to-point and publish-subscribe patterns utilizing JMS
clients connecting to different cluster members. The second test demonstrates and asserts the round-
robin distribution pattern of messages across all cluster members, from a client connected to a single
broker.

$ mvn -Dtest=SymmetricClusterTest test
...

 T E S T S

Running com.redhat.refarch.amq7.cluster.SymmetricClusterTest
- instantiate clients, s2 & s3 sub to queue, s1 writes to queue...
- sending 20 messages via s1 producer to queue...
- verifying both queue subscribers received half of the messages...
- verifying there are no more than half of the messages on one of the
receivers...
- terminating clients...
- instantiate clients, all sub to topic, s1 subs to queue, s2 writes to
both...
- sending 25 messages via s2 producer to queue & topic...
- verifying all 3 topic subscribers & single queue consumer received all
msgs...
- terminating clients...
Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 18.386 sec

5.6. REPLICATION CLUSTER TOPOLOGY

The highly-available and fault-tolerant Replication topology offers the same features as seen with the
Symmetric cluster, but with an added master-slave node pairing that serves to handle instances when
a master broker node is shut down, stopped, or fails completely. This failover protection mechanism
allows slave brokers to automatically match to master nodes within their broadcast group and receive
replication of the master’s journals as operations are performed. Should the cluster detect the loss of
communication with a master node, a quorum vote is executed, potentially leading to the promotion of
the paired slave node into the master broker position.

5.6.1. Broker Configuration

The only section differing from that already seen in the symmetric cluster example is a <ha-policy>
configuration specifying master/slave positions and other possible failover parameters.

5.6.1.1. Master Nodes

<ha-policy>
 <replication>
 <master/>
 </replication>
</ha-policy>

CHAPTER 5. DESIGN AND DEVELOPMENT

25

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html/using_amq_broker/clustering

5.6.1.2. Slave Nodes

Further configuration options, such as possible failback scenarios where a master node returns to a
cluster group and shared master/slave persistence, are detailed within the Using Red Hat JBoss AMQ
7 Broker Guide.

5.6.2. Exercising the Cluster

The included test for the Replication topology demonstrates the behavior visible to a JMS client in a
scenario where the master broker fails after receiving messages from a clustered connection. The
cluster consists of 3 master/slave pairs, with the master nodes connecting via a symmetric group. The
test sends twenty messages to each master node, then acknowledges half of the messages received on
each. The remaining ten messages from each node are received, but not acknowledged, an important
differentiation when working within a cluster/fault-tolerant environment.

At this junction, the AMQP management queue is used by the client to send a forceFailover
command to one master node in the cluster. The test then asserts that the ten remaining messages
that had not been acknowledged via the now-failed master node still cannot be acknowledged since the
node is offline, while the remaining ten messages on the 2 surviving master nodes are able to be
acknowledged without issue. Lastly, the client that was connected to the failed master node
demonstrates that seamless failover has occurred by re-consuming the ten non-acknowledged
messages from the newly promoted replacement node without need for reestablishing a connection.

$ mvn -Dtest=ReplicatedFailoverTest test
...

 T E S T S

Running com.redhat.refarch.amq7.cluster.ha.ReplicatedFailoverTest
- creating clients...
- send 20 messages via producer to all 3 master brokers...
- receiving all, but only acknowledging half of messages on all 3 master
brokers...
- shutting down master broker m2 via Mgmt API forceFailover()...
17-10-09 23:22:56:270 WARN Thread-0 (ActiveMQ-client-global-threads-
110771485)
 core.client:198 - AMQ212037: Connection failure has been detected:
 AMQ119015: The connection was disconnected because of server shutdown
- verifying rec'd-only messages fail to ack if on a failover broker...
- attempting to ack 10 messages from broker m1 post-shutdown...
- attempting to ack 10 messages from broker m2 post-shutdown...
- messages from m2 post-failover correctly failed to ack
- attempting to ack 10 messages from broker m3 post-shutdown...
- re-consuming the non-ack'd m2 messages with slave broker now promoted...
- terminating clients...
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 13.887 sec

<ha-policy>
 <replication>
 <slave/>
 </replication>
</ha-policy>

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

26

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html/using_amq_broker/high_availability

NOTE

Given the nature of the broker containers on OpenShift Container Platform, once the
replication test has been ran, the pod will indicate a crashed state, thus requiring a
redeployment of the amq-replicated deployment to reset the replication cluster back
to its original 3-pair master/slave state for further test runs.

5.7. INTERCONNECT NETWORK TOPOLOGY

As a refresher, refer back to the following diagram showing the example Interconnect network and the
role that each router plays.

Figure 5.1. Interconnect Router Network

As seen, three routers represent connection points to three major regions, US, EU, and AU. Each of
these three routes are connected to one another directly. The US and EU routers each have two
dependent connections representing an area within the larger defined region, while AU serves as a
single entry point into the network for its whole region.

5.7.1. Router Configuration

Since each major region router and its dependent routers, if any, can accept client requests, a listener
on the amqp port is defined at the top of each configuration. Since the network also needs to handle
routing of any messages that need to reach non-direct portions of the network, the major region
routers also feature an inter-router listener that allows router-to-router connectivity and defines
any connector configurations needed to establish the bridges between regions. Note that inter-
router connections do not need to be defined in both directions.

Those routers dependent on major region connections to reach other portions of the network solely
connect to their respective region’s router, meaning that no inter-router listener is required, but a
single inter-router connector is set up to establish the necessary network connection.

Every router on the network is configured to handle three different types of routing patterns:

closest: An anycast method in which even if there are more receivers for the same address,
every message is sent along the shortest path to reach the destination. This means that only
one receiver will get the message. Each message is delivered to the closest receivers in terms

CHAPTER 5. DESIGN AND DEVELOPMENT

27

of topology cost. If there are multiple receivers with the same lowest cost, deliveries will be
spread evenly among those receivers.

multicast: Having multiple consumers on the same address at the same time, messages are
routed such that each consumer receives one copy of the message.

balanced: An anycast method which allows multiple receivers to use the same address. In this
case, messages (or links) are routed to exactly one of the receivers and the network attempts
to balance the traffic load across the set of receivers using the same address. This routing
delivers messages to receivers based on how quickly they settle the deliveries. Faster
receivers get more messages.

Each of the separate router configurations can be viewed in full at the publicly-available repository for
further examination.

5.7.2. Exercising the Network

The included tests represent several scenarios playing on different routing patterns and network
pathings:

testSendDirect: A client connects to the CA router and publishes ten messages intended for
a receiving client connected to the DE router.

testSendMulticast: A client connects to the AU router and publishes ten messages
intended for multiple subscribed clients connected to the CA, ME, UK, and DE routers
respectively.

testSendBalancedSameHops: A client connects to the AU router and publishes twenty
messages to be balanced between the CA and ME recipients equally, given their equal route
pathing.

testSendBalancedDifferentHops: A client connects to the AU router and publishes
twenty messages to be balanced between the CA, ME, UK, and DE recipients, resulting in UK and
DE consumers each receiving seven messages, while the CA and ME consumers each receive
only three due to the extra links present in their route pathing.

testSendClosest: Publisher clients are connected to the CA and DE routers, while consumer
clients are simultaneously connected to their sister routers, ME and UK. A message is
dispatched from each publisher with the closest prefix, resulting in ME always consuming
from the CA publications and UK always consuming those from DE.

$ mvn -Dtest=InterconnectTest test
...

 T E S T S

Running com.redhat.refarch.amq7.interconnect.InterconnectTest
- routing path: CA -> US -> EU -> DE
- creating CA and DE router connections...
- sending 10 messages via CA...
- receiving 10 messages from DE router...
- terminating clients...
- routing path: AU -> EU -> UK,DE,US -> CA,ME
- creating router connections...
- sending 10 messages via CA...

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

28

https://github.com/RHsyseng/AMQ7/tree/master/S2I-Base-Image/broker_configs

- receiving 10 messages from all 4 multicast recipient clients...
- terminating clients...
- creating router connections...
- sending 20 messages via AU...
- receiving equal number of balanced messages from CA and ME clients...
- verifying there are no more than half of msgs on one of the receivers...
- terminating clients...
- creating router connections...
- sending 20 messages via AU...
- due to routing weight, rcv fewer msgs from CA/ME than from UK/DE
clients...
- asserting yield is 3 messages to CA/ME each, and 7 messages to UK/DE
each...
- terminating clients...
- creating router connections...
- sending closest message from CA and asserting ME receives...
- sending closest message from DE and asserting UK receives...
- terminating clients...
Tests run: 5, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 23.623 sec

5.8. AMQ CONSOLE

Each AMQ 7 broker instance can be configured to expose a web console based on hawtio that enables
management and monitoring of AMQ Broker and Interconnect instances via web browser. By adding
the configuration below to the BROKER_INSTANCE_DIR/etc/bootstrap.xml configuration file, the
necessary port configuration and war deployments will be performed on broker initialization.

Example Web Binding Configuration:

5.8.1. Broker Monitoring

In the OpenShift Container Platform environment that’s been established, the single-broker node
exposes the AMQ Console via the URL cluster-ingress.example.com:30351/hawtio/. Credentials
admin/admin can be used to log in. The web console offers various JMX operations, thread
monitoring, and router, cluster, address, and acceptor statistics and properties lists for the hosting
router.

<web bind="http://0.0.0.0:${JOLOKIA_PORT}" path="web">
 <app url="redhat-branding" war="redhat-branding.war"/>
 <app url="jolokia" war="jolokia.war"/>
 <app url="hawtio" war="hawtio-no-slf4j.war"/>
 <app url="artemis-plugin" war="artemis-plugin.war"/>
 <app url="dispatch-hawtio-console" war="dispatch-hawtio-console.war"/>
</web>

CHAPTER 5. DESIGN AND DEVELOPMENT

29

http://cluster-ingress.example.com:30351/hawtio/

Figure 5.2. AMQ Console

Other routers hosting AMQ Console can also be reached from within the web console via the Connect
link, shown below:

Figure 5.3. Broker Connect

5.8.2. Interconnect Network Monitoring

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

30

Given that an interconnect installation does not include the necessary components to host AMQ
Console, a broker that exists on the same server, or different server altogether, can be used to connect
to an http-enabled port listener of any single Interconnect router in order to view and manage the
entire network topology.

Figure 5.4. Dispatch Router Connect

Once connected to the Interconnect network, various statistics on addresses, connections, and other
components throughout the network may be viewed from the single connected AMQ Console.
Additionally, a live network topology diagram may be viewed, which displays all realtime network
members and clients.

Figure 5.5. Interconnect Live Topology

CHAPTER 5. DESIGN AND DEVELOPMENT

31

CHAPTER 6. CONCLUSION
This document has demonstrated the deployment and configuration of various Red Hat JBoss AMQ
7 topologies supporting basic messaging via JMS, clustering, fault-tolerance, and brokerless routing.
Furthermore, the paper documents interactivity with each environment via JMS, supporting AMQP 1.0,
and provides a means of branching out into other languages via various supported clients and
protocols to further integrate new and existing products with the newly-built, message-oriented
middleware solution.

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

32

APPENDIX A. AUTHORSHIP HISTORY

Revision Release Date Author(s)

1.0 Oct 2017 Jeremy Ary

APPENDIX A. AUTHORSHIP HISTORY

33

APPENDIX B. CONTRIBUTORS
We would like to thank the following individuals for their time and patience as we collaborated on this
process. This document would not have been possible without their many contributions.

Contributor Title Contribution

Justin Bertram Senior Software Engineer Technical Content Review

Dejan Bosanac Senior Software Engineer Technical Content Review

Babak Mozaffari Manager, Software Engineering &
Consulting Engineer

Technical Content Review

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

34

APPENDIX C. MAVEN CONFIGURATION

<?xml version="1.0" encoding="UTF-8"?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">

 <profiles>

 <!-- Configure the JBoss GA Maven repository -->
 <profile>
 <id>jboss-ga-repository</id>
 <repositories>
 <repository>
 <id>jboss-ga-repository</id>
 <url>http://maven.repository.redhat.com/techpreview/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>jboss-ga-plugin-repository</id>
 <url>http://maven.repository.redhat.com/techpreview/all</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 <!-- Configure the JBoss Early Access Maven repository -->
 <profile>
 <id>jboss-earlyaccess-repository</id>
 <repositories>
 <repository>
 <id>jboss-earlyaccess-repository</id>
 <url>http://maven.repository.redhat.com/earlyaccess/all/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>

APPENDIX C. MAVEN CONFIGURATION

35

 <id>jboss-earlyaccess-plugin-repository</id>
 <url>http://maven.repository.redhat.com/earlyaccess/all/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>

 <activeProfiles>
 <activeProfile>jboss-ga-repository</activeProfile>
 <activeProfile>jboss-earlyaccess-repository</activeProfile>
 </activeProfiles>

</settings>

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

36

APPENDIX D. EXAMPLE BROKER CONFIGURATION

<?xml version='1.0'?>

<configuration xmlns="urn:activemq"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:activemq /schema/artemis-
configuration.xsd">

 <core xmlns="urn:activemq:core">

 <name>$CONTAINER_ID</name>
 <persistence-enabled>true</persistence-enabled>

 <!-- =========== DIRECTORY CONFIG =========== -->

 <paging-directory>./data/paging</paging-directory>
 <bindings-directory>./data/bindings</bindings-directory>
 <large-messages-directory>./data/large-messages</large-messages-
directory>

 <!-- =========== JOURNAL CONFIG =========== -->

 <journal-type>ASYNCIO</journal-type>
 <!--<journal-type>NIO</journal-type>-->
 <journal-directory>./data/journal</journal-directory>
 <journal-min-files>2</journal-min-files>
 <journal-pool-files>-1</journal-pool-files>
 <journal-buffer-timeout>59999</journal-buffer-timeout>

 <!-- =========== CONNECTION CONFIG =========== -->

 <connectors>
 <!-- default connector: ActiveMQ Artemis, OpenWire (buffered
below), STOMP, AMQP, MQTT, & HornetQ -->
 <connector name="artemis">tcp://0.0.0.0:61616</connector>
 <connector name="amqp">tcp://0.0.0.0:5672?
protocols=AMQP</connector>
 </connectors>
 <acceptors>
 <acceptor name="artemis">tcp://0.0.0.0:61616</acceptor>
 <acceptor name="amqp">tcp://0.0.0.0:5672?
protocols=AMQP</acceptor>
 </acceptors>

 <!-- =========== SECURITY CONFIG =========== -->

 <management-address>activemq.management</management-address>
 <management-notification-
address>jms.topic.notificationsTopic</management-notification-address>

 <security-settings>
 <security-setting match="#">
 <permission type="createNonDurableQueue" roles="admin"/>
 <permission type="deleteNonDurableQueue" roles="admin"/>
 <permission type="createDurableQueue" roles="admin"/>

APPENDIX D. EXAMPLE BROKER CONFIGURATION

37

 <permission type="deleteDurableQueue" roles="admin"/>
 <permission type="consume" roles="admin"/>
 <permission type="send" roles="admin"/>
 <permission type="manage" roles="admin"/>
 </security-setting>
 <security-setting match="jms.queue.activemq.management">
 <permission type="consume" roles="admin"/>
 <permission type="send" roles="admin"/>
 <permission type="manage" roles="admin"/>
 </security-setting>
 </security-settings>

 <!-- =========== QUEUE/TOPIC CONFIG =========== -->

 <address-settings>
 <!-- default dead letter -->
 <address-setting match="#">
 <dead-letter-address>jms.queue.DLQ</dead-letter-address>
 <expiry-address>jms.queue.ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <max-size-bytes>10485760</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-
history-day-limit>
 <address-full-policy>BLOCK</address-full-policy>
 </address-setting>
 </address-settings>

 <addresses>
 <address name="test_topic">
 <multicast/>
 </address>
 <address name="test_queue">
 <anycast>
 <queue name="jms.queue.test_queue"/>
 </anycast>
 </address>
 </addresses>
 </core>
</configuration>

Reference Architectures 2017 Clustering, Fault-Tolerance, and Messaging Patterns with Red Hat JBoss AMQ 7

38

APPENDIX E. REVISION HISTORY
Revision 1.0-0 October 2017 JA

APPENDIX E. REVISION HISTORY

39

	Table of Contents
	COMMENTS AND FEEDBACK
	CHAPTER 1. EXECUTIVE SUMMARY
	CHAPTER 2. RED HAT JBOSS AMQ 7
	2.1. OVERVIEW
	2.2. BROKER
	2.3. CLIENTS
	2.4. INTERCONNECT

	CHAPTER 3. REFERENCE ARCHITECTURE ENVIRONMENT
	3.1. OVERVIEW
	3.2. SINGLE-BROKER INSTANCE
	3.3. SYMMETRIC BROKER CLUSTER
	3.4. FAULT-TOLERANT BROKER CLUSTER
	3.5. MULTI-ROUTER INTERCONNECT NETWORK

	CHAPTER 4. CREATING THE ENVIRONMENT
	4.1. OVERVIEW
	4.2. DEPLOYMENT ON OPENSHIFT CONTAINER PLATFORM
	4.2.1. Prerequisites
	4.2.2. Create Project
	4.2.3. Base Image Template Deployment
	4.2.4. Image Build
	4.2.5. Topology Template Deployments

	4.3. DEPLOYMENT ON RED HAT ENTERPRISE LINUX
	4.3.1. Prerequisites
	4.3.2. Single Broker Configuration
	4.3.3. Symmetric Cluster Configuration
	4.3.3.1. Single-Server Cluster
	4.3.3.2. Multi-Server Cluster

	4.3.4. Replication Cluster Configuration
	4.3.4.1. Single-Server Cluster

	4.3.5. Interconnect Network Configuration
	4.3.5.1. Installation
	4.3.5.2. Configuration
	4.3.5.3. Execution
	4.3.5.4. Log Monitoring

	CHAPTER 5. DESIGN AND DEVELOPMENT
	5.1. OVERVIEW
	5.2. PREREQUISITES
	5.3. COMMON BROKER CONFIGURATIONS
	5.3.1. Directory and Persistence Configuration
	5.3.2. Connectors and Acceptors
	5.3.3. Security Configuration
	5.3.4. Queue and Topic Configuration
	5.3.5. Dead Letter and Expiry Queue Configuration

	5.4. SINGLE-BROKER INSTANCE
	5.4.1. Broker Configuration
	5.4.2. Exercising the Instance

	5.5. SYMMETRIC CLUSTER TOPOLOGY
	5.5.1. Broker Configuration
	5.5.2. Exercising the Cluster

	5.6. REPLICATION CLUSTER TOPOLOGY
	5.6.1. Broker Configuration
	5.6.1.1. Master Nodes
	5.6.1.2. Slave Nodes

	5.6.2. Exercising the Cluster

	5.7. INTERCONNECT NETWORK TOPOLOGY
	5.7.1. Router Configuration
	5.7.2. Exercising the Network

	5.8. AMQ CONSOLE
	5.8.1. Broker Monitoring
	5.8.2. Interconnect Network Monitoring

	CHAPTER 6. CONCLUSION
	APPENDIX A. AUTHORSHIP HISTORY
	APPENDIX B. CONTRIBUTORS
	APPENDIX C. MAVEN CONFIGURATION
	APPENDIX D. EXAMPLE BROKER CONFIGURATION
	APPENDIX E. REVISION HISTORY

