Reference Architectures 2017
Deploying CloudForms at Scale

Peter McGowan
<pemcg@redhat.com>

		Copyright © 2017 Red Hat, Inc.
	

		The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
	

		Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
	

		Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
	

		Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
	

		Java® is a registered trademark of Oracle and/or its affiliates.
	

		XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
	

		MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
	

		Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
	

		The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
	

		All other trademarks are the property of their respective owners.
	

Abstract

				The purpose of this document is to provide guidelines and considerations for deploying Red Hat CloudForms 4.x to manage large-scale clouds or virtual infrastructures
			

Comments and Feedback

			In the spirit of open source, we invite anyone to provide feedback and comments on any reference architecture. Although we review our papers internally, sometimes issues or typographical errors are encountered. Feedback allows us to not only improve the quality of the papers we produce, but allows the reader to provide their thoughts on potential improvements and topic expansion to the papers. Feedback on the papers can be provided by emailing refarch-feedback@redhat.com. Please refer to the title within the email.
		

Chapter 1. Introduction

			This document discusses the challenges of deploying CloudForms at scale to manage large virtual infrastructures or clouds. The term "at scale" in this case infers several thousand managed virtual machines, instances, templates, clusters, hosts, datastores, containers or pods.
		

			Unfortunately there is no magic formula to describe the various maximum sizes, the number of CloudForms appliances and workers that will be required, nor the number of regions or placement of zones. The diverse nature of the many types of provider and their various workload characteristics makes generalization difficult, and at best misleading.
		

			Experience shows that the most effective way to deploy CloudForms in large environments is to start with a minimal set of features enabled, and go through an iterative process of monitoring, tuning and expanding. Understanding the architecture of the product and the various components is an essential part of this process. Although by default a CloudForms Management Engine (CFME) appliance is tuned for relatively small environments, the product is scalable to manage many thousands of virtual machines, instances or containers. Achieving this level of scale however generally requires some customization of the core components for the specific environment being managed. This might include increasing the virtual machine resources such as vCPUs and memory, or tuning the CFME workers; their numbers, placement, or memory thresholds for example.
		

			This guide seeks to explain the architecture of CloudForms, and expose the inner workings of the core components. Several 'rules of thumb' such as guidelines for CFME appliance to VM ratios are offered, along with the rationale behind the numbers, and when they can be adjusted. The principal source of monitoring and tuning data is the evm.log file, and many examples of log lines for various workers and strings to search for have been included, along with sample scripts to extract real-time timings for activities such as EMS refresh.
		

			The document is divided into three sections, as follows:
		

			Part I - Architecture and Design
		
	
					Architecture discusses the principal architectural components that influence scaling: appliances, server roles, workers and messages.
				
	
					Regions and Zones discusses the considerations and options for region and zone design.
				
	
					Database Sizing and Optimization presents some guidelines for sizing and optimizing the PostgreSQL database for larger-scale operations.
				

			Part II - Component Scaling
		
	
					Inventory Refresh discusses the mechanism of extracting and saving the inventory of objects - VMs, hosts or containers for example - from an external management system.
				
	
					Capacity and Utilization explains how the three types of C&U worker interact to extract and process performance metrics from an external management system.
				
	
					Automate describes the challenges of scaling Ruby-based automate workflows, and how to optimize automation methods for larger environments.
				
	
					Provisioning focuses on virtual machine and instance provisioning, and the problems that sometimes need to be addressed when complex automation workflows interact with external enterprise tools.
				
	
					Event Handling describes the three workers that combine to process events from external management systems, and how to scale them.
				
	
					SmartState Analysis takes a look at some of the tuning options available to scale SmartState Analysis in larger environments.
				
	
					Web User Interface discusses how to scale WebUI appliances behind load balancers.
				
	
					Monitoring describes some of the in-built monitoring capabilities, and how to setup alerts to warn of problems such as workers being killed.
				

			Part III - Design Scenario
		
	
					Region Design Scenario takes the reader through a realistic design scenario for a large single region comprising several provider types.
				

Acknowledgements

				The author would particularly like to thank Tom Hennessy and Bill Helgeson of Red Hat for their patience, knowledge and advice when preparing this document.
			

Chapter 2. Architecture

			In order to understand how to deploy CloudForms at scale, it is important to understand the architectural components that affect the design and deployment decisions. These principal components are described in this chapter.
		
Appliances

				To simplify installation, the Red Hat CloudForms product is distributed as a self-contained virtual machine template, which when cloned becomes a CloudForms Management Engine (CFME) appliance. Each release of the Red Hat CloudForms product since v2.0 has had a corresponding CloudForms Management Engine release, although the version numbers are not the same (for historical reasons). The following table summarizes the relative CFME and CloudForms product versions.
			
Table 2.1. Summary of the relative CFME and CloudForms product versions
	CloudForms Management Engine version	CloudForms (Product) version
	
								5.1
							

							 	
								2.0
							

							
	
								5.2
							

							 	
								3.0
							

							
	
								5.3
							

							 	
								3.1
							

							
	
								5.4
							

							 	
								3.2
							

							
	
								5.5
							

							 	
								4.0
							

							
	
								5.6
							

							 	
								4.1
							

							
	
								5.7
							

							 	
								4.2
							

							
	
								5.8
							

							 	
								4.5
							

							

				A CFME 5.8 (CloudForms 4.5) appliance runs Red Hat Enterprise Linux 7.3, with PostgreSQL 9.5, Rails 5.0.2, the CloudForms evmserverd service, and all associated Ruby gems installed. A new addition with CFME 5.8 is the Embedded Ansible 3.1 automation manager, also packaged with the appliance.
			

				The self-contained nature of appliances makes them ideal for horizontally scaling a CloudForms deployment to handle the increased load that larger clouds or virtual infrastructures present.
			

				Appliances are downloadable as images or templates in formats suitable for VMware, Red Hat Virtualization, OpenStack, Amazon EC2, Microsoft’s System Center Virtual Machine Manager or Azure cloud, and Google Compute Engine. The most recent versions can also be installed as an OpenShift 3.x container image (although this platform is a technology preview).
			

Database

				A CloudForms region stores all of its data in a PostgreSQL database. This is known as the Virtual Management Database or VMDB, although the terms "database" and "VMDB" are often used interchangeably. The database can be internal and integral with an appliance running several other roles (typical for smaller CloudForms deployments), but for larger CloudForms deployments it is typically a dedicated database server or cluster configured for high availability and disaster recovery.
			

Application

				CloudForms is a Ruby on Rails application. The main miq_server.rb Rails application is supported by a number of worker processes that perform the various interactions with managed systems, or collect and analyse data.
			

Providers

				CloudForms manages each cloud, container or virtual environment using modular subcomponents called providers. Each provider contains the classes and modules required to connect to and manage its specific target platform, and this provider specialization enables common functionality to be abstracted by provider type or class. CloudForms acts as a "manager of managers", and in keeping with this concept, providers communicate with their respective underlying cloud or infrastructure platform manager (such as vCenter server or RHV-M) using the native APIs published for the platform manager. A provider’s platform manager is referred to as an External Management System or EMS.
			
Note

					Although the terms provider and external management system (EMS) are often used interchangeably, there is an important distinction. The provider is the CloudForms component, whereas the EMS is the managed entity that the provider connects to, such as the VMware vCenter
				

				Providers are broadly divided into categories, and in CloudForms 4.5 these are Cloud, Infrastructure, Container, Configuration Management, Automation, Network, Middleware and Storage.[1]
			
Provider Namespaces

					Many provider components are named according to a name-spacing schema that follows the style of:
				
ManageIQ::Providers::<ProviderName>::<ProviderCategory>

					Some examples of this are as follows:
				
	
							ManageIQ::Providers::EmbeddedAnsible::AutomationManager
						
	
							ManageIQ::Providers::OpenshiftEnterprise::ContainerManager
						
	
							ManageIQ::Providers::Openstack::CloudManager
						
	
							ManageIQ::Providers::Openstack::InfraManager
						
	
							ManageIQ::Providers::Azure::NetworkManager
						
	
							ManageIQ::Providers::StorageManager::CinderManager
						
	
							ManageIQ::Providers::Vmware::InfraManager
						

Server Roles

				A CloudForms Management Engine 5.8 appliance can be configured to run up to 19 different server roles. These are enabled or disabled in the server Configuration section of the WebUI (see Figure 2.1, “Server Roles”).
			
Figure 2.1. Server Roles
[image: Screenshot]

				​

			

				Server roles are implemented by worker processes (see the section called “Workers”), many of which receive work instructions from messages (see the section called “Messages”).
			
Automation Engine

					The Automation Engine role enables a CFME appliance to process queued automation tasks.[2]. There should be at least one CFME appliance with this role set in each zone. The role does not have a dedicated worker, automate tasks are processed by either a MiqGenericWorker or a MiqPriorityWorker, depending on message priority.
				
Note

						The Automation Engine also handles the processing of events through the automate event switchboard
					

Capacity and Utilization

					Capacity and utilization (C&U) metrics processing is a relatively resource-intensive operation, and there are three roles associated with its operation.
				
	
							The Capacity & Utilization Coordinator role acts as a scheduler for the collection of C&U data in a zone, and queues work for the Capacity and Utilization Data Collector. If more than one CFME appliance in a zone has this role enabled, only one will be active at a time. This role does not have a dedicated worker, the C&U Coordinator tasks are processed by either a MiqGenericWorker or a MiqPriorityWorker, depending on message priority.
						
	
							The Capacity & Utilization Data Collector performs the actual collection of C&U data. This role has a dedicated worker, and there is no limit to the number of concurrent workers in a zone. Enabling this role starts the provider-specific data collector workers for any providers in the appliance’s zone. For example a CFME appliance in a zone configured with a Red Hat Virtualization provider would contain one or more ManageIQ::Providers::Redhat::InfraManager::MetricsCollectorWorker processes if the C&U Data Collector server role was enabled.
						
	
							The Capacity & Utilization Data Processor processes all of the data collected, allowing CloudForms to create charts, display utilization statistics, etc.. This role has a dedicated worker called the MiqEmsMetricsProcessorWorker, and there is no limit to the number of concurrent workers in a zone.
						

Note

						The Capacity & Utilization roles are described in more detail in Chapter 6, Capacity & Utilization
					

Database Operations

					The Database Operations role enables a CFME appliance to run certain database maintenance tasks such as purging old metrics. This role does not have a dedicated worker, the database operations tasks are processed by a MiqGenericWorker.
				

Embedded Ansible

					The Embedded Ansible role enables the use of the built-in Ansible automation manager, which allows Ansible playbooks to be run from service catalogs, or from control actions and alerts. If more than one CFME appliance in a region has this role enabled, only one will be active at a time. This role has a dedicated worker called the EmbeddedAnsibleWorker, but enabling the role also starts the following event catcher and refresh workers:
				
	
							ManageIQ::Providers::EmbeddedAnsible::AutomationManager::EventCatcher
						
	
							ManageIQ::Providers::EmbeddedAnsible::AutomationManager::RefreshWorker
						

Note

						Enabling the Embedded Ansible role adds approximately 2GBytes to the memory requirements of a CFME appliance
					

Event Monitor

					The Event Monitor role is responsible for detecting and processing provider events such as a VM starting or stopping, a cloud instance being created, or a hypervisor rebooting. Enabling the role starts at least 2 workers; one or more provider-specific, and one common event handler.
				

					The provider-specific event catcher maintains a connection to a provider’s event source (such as the Google Cloud Pub/Sub API for Google Compute Engine) and detects or 'catches' events and passes them to the common event handler. An event catcher worker is started for each provider in the appliance’s zone; a zone containing a VMware provider would contain a ManageIQ::Providers::Vmware::InfraManager::EventCatcher worker, for example.
				

					Some cloud providers automatically add several types of manager, and these might each have an event catcher worker. To illustrate this, enabling the event monitor role on an appliance in an OpenStack Cloud provider zone would start the following event catcher workers:
				
	
							ManageIQ::Providers::Openstack::CloudManager::EventCatcher
						
	
							ManageIQ::Providers::Openstack::NetworkManager::EventCatcher
						
	
							ManageIQ::Providers::StorageManager::CinderManager::EventCatcher
						

					The event handler worker, called MiqEventHandler, is responsible for feeding the events from all event catchers in the zone into the automation engine’s event switchboard for processing.
				

					There should be at least one CFME appliance with the event monitor role set in any zone containing a provider, however if more than one CFME appliance in a zone has this role, only one will be active at a time.
				
Note

						The event catcher and event handler workers are described in more detail in Chapter 9, Event Handling
					

Git Repositories Owner

					A CFME appliance with the Git Repositories Owner role enabled is responsible for synchronising git repository data from a git source such as Github or Gitlab, and making it available to other appliances in the region that have the automation engine role set. The git repository data is copied to /var/www/miq/vmdb/data/git_repos/<git_profile_name>/<git_repo_name> on the CFME appliance. This role does not have a dedicated worker.
				

Notifier

					The Notifier role should be enabled if CloudForms is required to forward SNMP traps to a monitoring system, or to send e-mails. These might be initiated by an automate method or from a control policy, for example.
				

					If more than one CFME appliance in a region has this role enabled, only one will be active at a time. This role does not have a dedicated worker, notifications are processed by either a MiqGenericWorker or a MiqPriorityWorker, depending on message priority.
				

Provider Inventory

					The Provider Inventory role is responsible for refreshing provider inventory data for all provider objects such as virtual machines, hosts, clusters, tenants, or orchestration templates. It is also responsible for capturing datastore file lists. If more than one CFME appliance in a zone has this role enabled, only one will be active at a time.
				

					Setting this role starts the provider-specific refresh workers for any providers in the appliance’s zone; a zone containing a RHV provider would contain a ManageIQ::Providers::Redhat::InfraManager::RefreshWorker worker, for example.
				

					VMware providers add an additional MiqEmsRefreshCoreWorker, while cloud providers that use several types of manager add a worker per manager. For example enabling the Provider Inventory role on an appliance in an Azure provider zone would start the following Refresh workers:
				
	
							ManageIQ::Providers::Azure::CloudManager::RefreshWorker
						
	
							ManageIQ::Providers::Azure::NetworkManager::RefreshWorker
						

Note

						Provider Inventory refresh workers are described in more detail in Chapter 5, Inventory Refresh
					

Provider Operations

					A CFME appliance with the Provider Operations role performs certain managed object operations such as stop, start, suspend, shutdown guest, clone, reconfigure, etc., to provider objects such as VMs. These operations might be initiated from the WebUI, from Automate, or from a REST call. It also handles some storage-specific operations such as creating cloud volume snapshots. The role does not have a dedicated worker, provider operations tasks are processed by either a MiqGenericWorker or a MiqPriorityWorker, depending on message priority. There is no limit to the number of concurrent workers handling this role in a zone.
				
Note

						The Provider Operations role is often required in zones that don’t necessarily contain providers.
					

						For example, enabling the Provider Operations role in a WebUI zone can improve performance by reducing the number of individual EMS connections required for user-initiated VM operations, in favour of a single brokered connection. The Provider Operations role is also required in any zone that may run service-initiated VM provisioning operations.
					

RHN Mirror

					A CFME appliance with the RHN Mirror role acts as a repository server for the latest CloudForms Management Engine RPM packages. It also configures other CFME appliances within the same region to point to itself for updates. This provides a low bandwidth method to update environments with multiple appliances. The role does not have a dedicated worker.
				

Reporting

					The Reporting role allows a CFME appliance to generate reports. There should be at least one CFME appliance with this role in any zone in which reports are automatically scheduled or manually requested/queued.[3] (such as from a WebUI zone).
				

					Enabling this server role starts one or more MiqReportingWorker workers.
				

Scheduler

					The Scheduler sends messages to start all scheduled activities such as report generation, database backups, or to retire VMs or services. One server in each region must be assigned this role or scheduled CloudForms events will not occur. Enabling this server role starts the MiqScheduleWorker worker.
				
Note

						Each CFME appliance also has a schedule worker running but this only handles local appliance task scheduling.
					

						The Scheduler role is for region-specific scheduling and is only active on one appliance per region.
					

SmartProxy

					Enabling the SmartProxy role turns on the embedded SmartProxy on the CFME appliance. The embedded SmartProxy can analyse virtual machines that are registered to a host and templates that are associated with a provider. Enabling this role starts three MiqSmartProxyWorker workers.
				

SmartState Analysis

					The SmartState Analysis role controls which CFME appliances can control SmartState Analyses and process the data from the analysis. There should be at least one of these in each zone that contains a provider. This role does not have a dedicated worker, SmartState tasks are processed by either a MiqGenericWorker or a MiqPriorityWorker, depending on message priority.
				
Note

						The SmartProxy and SmartState Analysis roles are described in more detail in Chapter 10, SmartState Analysis
					

User Interface

					This role enables access to a CFME appliance using the Red Hat CloudForms Operations WebUI console. More than one CFME appliance can have this role in a zone (the default behaviour is to have this role enabled on all appliances). Enabling this server role starts one or more MiqUiWorker workers.
				
Note

						The use of multiple WebUI appliances in conjunction with load balancers is described in more detail in Chapter 11, Web User Interface
					

Web Services

					This role enables the RESTful Web service API on a CFME appliance. More than one CFME appliance can have this role in a zone. Enabling this server role starts one or more MiqWebServiceWorker workers.
				
Note

						The Web Services role is required by the Self-Service User Interface (SSUI). Both the User Interface and Web Services roles must be enabled on a CFME appliance to enable logins to the Operations WebUI
					

Websocket

					This role enables a CFME appliance to be used as a websocket proxy for the VNC and SPICE HTML5 remote access consoles. It is also used by the WebUI notification service. Enabling this server role starts one or more MiqWebsocketWorker workers.
				

Server Role Zone Affinity

					Many server roles - or more accurately their worker processes - have an affinity to the zone with which the hosting CFME appliance is associated. For example messages intended for zone "A" will generally not be processed by worker processes in zone "B".
				

					The following server roles have zone affinity:
				
	
							C&U Metrics Coordinator
						
	
							C&U Metrics Collector
						
	
							C&U Metrics Processor
						
	
							Event Monitor
						
	
							Git Repositories Owner
						
	
							Provider Inventory
						
	
							Provider Operations
						
	
							SmartProxy
						
	
							SmartState Analysis
						

Note

						Some server roles such as Automation Engine have optional zone affinity. If an automate message specifies the zone to be run in, the task will only be processed in that zone. If an automate message doesn’t specify the zone, the task can run anywhere.
					

Workers

				As can be seen, many of the server roles start worker processes. The currently running worker processes on a CFME appliance can be viewed using the following commands in a root bash shell on an appliance:
			
vmdb
bin/rake evm:status

				The same information can also be seen in the Workers tab of the Configuration → Diagnostics page (see Figure 2.2, “Worker Processes”).
			
Figure 2.2. Worker Processes
[image: Screenshot]

				​

			
Note

					CFME 5.8 has provided a new command that allows the currently running worker processes on the local server and remote servers can be seen, ordered by server and zone:
				
vmdb
bin/rake evm:status_full

				In addition to the workers started by enabling a server role, each appliance has by default four workers that handle more generic tasks: two MiqGenericWorkers and two MiqPriorityWorkers. The MiqPriorityWorkers handle the processing of the highest priority messages (priority 20) in the generic message queue (see the section called “Messages”).
			

				Generic and Priority workers process tasks for the following server roles:
			
	
						Automate
					
	
						C&U Coordinator
					
	
						Database Operations
					
	
						Notifier
					
	
						Provider Operations
					
	
						SmartState Analysis
					

Worker Validation

					Monitoring the health status of workers becomes important as a CloudForms installation is scaled. A server thread called validate_worker checks that workers are alive (they have recently issued a 'heartbeat' ping.[4]), and are within their time limits and memory thresholds. Some workers such as Refresh and SmartProxy workers have a maximum lifetime of 2 hours to restrict their resource consumption.[5]. If this time limit is exceeded, the validate_worker thread will instruct the worker to exit at the end of its current message processing, and spawn a new replacement.
				

					The following evm.log line shows an example of the normal timeout processing for a RefreshWorker:
				
INFO -- : MIQ(MiqServer#validate_worker) Worker ⏎
[ManageIQ::Providers::Vmware::InfraManager::RefreshWorker] ⏎
with ID: [1000000258651], PID: [17949], ⏎
GUID: [77362eba-c179-11e6-aaa4-00505695be62] uptime has reached ⏎
the interval of 7200 seconds, requesting worker to exit

					The following log line shows an example of an abnormal exit request for a MiqEmsMetricsProcessorWorker that has exceeded its memory threshold (see the section called “Worker Memory Thresholds”:
				
WARN -- : MIQ(MiqServer#validate_worker) Worker [MiqEmsMetricsProcessorWorker] ⏎
with ID: [1000000259290], PID: [15553], ⏎
GUID: [40698326-c18a-11e6-aaa4-00505695be62] process memory usage [598032000] ⏎
exceeded limit [419430400], requesting worker to exit
Tip

					The actions of validate_worker can be examined in evm.log by using the following command:
				
grep 'MiqServer#validate_worker' evm.log

					Use this command to check for workers exceeding their memory allocation.
				

Tuning Workers

					It is often a requirement to tune the number of per-appliance workers and their memory thresholds when CloudForms is deployed to manage larger clouds or virtual infrastructures.
				
Worker Memory Thresholds

						Each worker type is given an out-of-the-box initial memory threshold. The default values have been chosen to perform well with an 'average' workload, but these sometimes need to be increased, depending on the runtime requirements of the specific CloudForms installation.
					

Adjusting Worker Settings

						The count and maximum memory thresholds for most worker types can be tuned from the CloudForms WebUI, in the Workers tab of the Configuration → Settings page for each appliance (see Figure 2.3, “Worker Settings”).
					
Figure 2.3. Worker Settings
[image: Screenshot]

						​

					

						For other workers not listed in this page, the memory threshold settings can be tuned (with caution) in the Configuration → Advanced settings by directly editing the YAML, for example:
					
:workers:
 :worker_base:
 ...
 :ui_worker:
 :connection_pool_size: 8
 :memory_threshold: 1.gigabytes
 :nice_delta: 1
 :count: 1

Worker Task Allocation

					Tasks are dispatched to the various workers in one of three ways:
				
	
							From a scheduled timer. Some tasks are completely synchronous and predictable, and these are dispatched from a timer. The Schedule worker executes in this way.
						
	
							From an asynchronous event. Some tasks are asynchronous but require immediate handling to maintain overall system responsiveness, or to ensure that data is not lost. The following workers poll or listen for such events:
						
	
									Event Catcher workers
								
	
									WebUI workers
								
	
									Web Services (REST API) workers
								
	
									Web Socket workers
								

	
							From a message. Asynchronous tasks that are not time-critical are dispatched to workers using a message queue. The following list shows "queue workers" that receive work from queued messages:
						
	
									Generic workers
								
	
									Priority workers
								
	
									Metrics Collector workers
								
	
									Metrics Processor workers
								
	
									Refresh workers
								
	
									Event Handler workers
								
	
									SmartProxy workers
								
	
									Reporting workers
								

					Many of the queued messages are created by workers dispatching work to other workers. For example, the Schedule worker will queue a message for the SmartProxy workers to initiate a SmartState Analysis. An Event Catcher worker will queue a message for an Event Handler worker to process the event. This will in turn queue a message for a Priority worker to process the event through the automate event switchboard.
				
Tip

					Queue workers process messages in a serial fashion. A worker processes one and only one message at a time.
				

Messages

				The queue workers receive work instructions from messages, delivered via a VMDB table called miq_queue, and modelled by the Rails class MiqQueue. Each queue worker queries the miq_queue table to look for work for any of its roles. If a message is claimed by a worker, the message state is changed from "ready" to "dequeue" and the worker starts processing the message. When the message processing has completed the message state is updated to indicate "ok", "error" or "timeout". Messages that have completed processing are purged on a regular basis.
			
Message Prefetch

					To improve the performance of the messaging system, each CFME appliance prefetches a batch of messages into its local memcache. When a worker looks for work by searching for a "ready" state message, it calls an MiqQueue method get_message_via_drb that transparently searches the prefetched message copies in the memcache. If a suitable message is found, the message’s state in the VMDB miq_queue table is changed to "dequeue", and the message is processed by the worker.
				

Message Fields

					A message contains a number of fields. The useful ones to be aware of for troubleshooting purposes are described below.
				
Ident

						Each message has an Ident field that specifies the worker type that the message is intended for. Messages with an Ident field of 'generic' can be processed by either MiqGenericWorkers or MiqPriorityWorkers, depending on message priority.
					

Role

						The message also has a Role field that specifies the server role that the message is intended for. Some workers - the Generic and Priority workers for example - process the messages for several server roles such as Automation Engine or Provider Operations. Workers are aware of the active server roles on their CFME appliance, and only dequeue messages for the enabled server roles.
					

Priority

						Messages each have a Priority field such that lower priority messages for the same worker role are processed before higher priority messages (1 = highest, 200 = lowest). For example, priority 90 messages are processed before priority 100 messages regardless of the order in which they were created. The default message priority is 100, but tasks that are considered of greater importance are queued using messages with lower priority numbers. These message priorities are generally hard-coded and not customizable.
					

Zone

						Each message has a Zone field that specifies the zone that the receiving worker should be a member of in order to dequeue the message. Some messages are created with the zone field empty, which means that the message can be dequeued and processed by the Ident worker type in any zone.
					

Server

						Messages have a Server field, which is only used if the message is intended to be processed by a particular CFME appliance. If used, the field specifies the GUID of the target CFME appliance.
					

Timeout

						Each message has a Timeout field. If the dispatching worker has not completed the message task in the time specified by the timeout, the worker will be terminated and a new worker spawned in its place.
					

State

						The messages have a State field that describes the current processing status of the message (see below).
					

Tracing Messages in evm.log

					Message processing is so critical to the overall performance of a CloudForms installation, that understanding how to follow messages in evm.log is an important skill to master when scaling CloudForms. There are generally four stages of message processing that can be followed in the log file. For this example a message will be traced that instructs the Automation Engine (role "automate" in queue "generic") to run the method AutomationTask.execute on automation task ID 7829.
				
Stage 1 - Adding a message to the queue.

						A worker (or other Rails process) adds a message to the queue by calling MiqQueue.put, passing all associated arguments that the receiving worker needs to process the task. For this example the message should be processed in zone 'RHV', and has a timeout of 600 seconds (automation tasks typically have a 10 minute time period in which to run). The message priority is 100, indicating that a Generic worker rather than Priority worker should process the message (both workers monitor the "generic" queue). The line from evm.log is as follows:
					
... INFO -- : Q-task_id([automation_request_6298]) MIQ(MiqQueue.put) ⏎
Message id: [32425368], ⏎
id: [], ⏎
Zone: [RHV], ⏎
Role: [automate], ⏎
Server: [], ⏎
Ident: [generic], ⏎
Target id: [], ⏎
Instance id: [7829], ⏎
Task id: [automation_task_7829], ⏎
Command: [AutomationTask.execute], ⏎
Timeout: [600], ⏎
Priority: [100], ⏎
State: [ready], ⏎
Deliver On: [], ⏎
Data: [], ⏎
Args: []

Stage 2 - Retrieving a message from the queue.

						A Generic worker calls get_message_via_drb to dequeue the next available message. This method searches the prefetched message queue in the memcache for the next available message with a state of "ready". The new message with ID 32425368 is found, so its state is changed to "dequeue" in the VMDB miq_queue table, and the message is dispatched to the worker. The line from evm.log is as follows:
					
... INFO -- : MIQ(MiqGenericWorker::Runner#get_message_via_drb) ⏎
Message id: [32425368], ⏎
MiqWorker id: [260305], ⏎
Zone: [RHV], ⏎
Role: [automate], ⏎
Server: [], ⏎
Ident: [generic], ⏎
Target id: [], ⏎
Instance id: [7829], ⏎
Task id: [automation_task_7829], ⏎
Command: [AutomationTask.execute], ⏎
Timeout: [600], ⏎
Priority: [100], ⏎
State: [dequeue], ⏎
Deliver On: [], ⏎
Data: [], ⏎
Args: [], ⏎
Dequeued in: [6.698342458] seconds
Tip

						The "Dequeued in" value is particularly useful to monitor when scaling CloudForms as this shows the length of time that the message was in the queue before being processed. Although most messages are dequeued within a small number of seconds, a large value does not necessarily indicate a problem. Some messages are queued with a 'Deliver On' time which may be many minutes or hours in the future. The message will not be dequeued until the 'Deliver On' time has expired.
					

						An example of this can be seen in the message to schedule a C&U hourly rollup, as follows:
					
... State: [dequeue], Deliver On: [2017-04-27 09:00:00 UTC], ⏎
Data: [], Args: ["2017-04-27T08:00:00Z", "hourly"], ⏎
Dequeued in: [2430.509191336] seconds

Stage 3 - Delivering the message to the worker.

						The MiqQueue class’s deliver method writes to evm.log to indicate that the message is being delivered to a worker, and starts the timeout clock for its processing. The line from evm.log is as follows:
					
... INFO -- : Q-task_id([automation_task_7829]) ⏎
MIQ(MiqQueue#deliver) Message id: [32425368], Delivering...

Stage 4 - Message delivered and work is complete.

						Once the worker has finished processing the task associated with the message, the MiqQueue class’s delivered method writes to evm.log to indicate that message processing is complete. The line from evm.log is as follows:
					
... INFO -- : Q-task_id([automation_task_7829]) ⏎
MIQ(MiqQueue#delivered) ⏎
Message id: [32425368], ⏎
State: [ok], ⏎
Delivered in [23.469068759] seconds
Tip

						The "Delivered in" value is particularly useful to monitor when scaling CloudForms as this shows the time that the worker spent processing the task associated with the message.
					

Monitoring Message Queue Status

					The overall performance of any multi-appliance CloudForms installation is largely dependant on the timely processing of messages. Fortunately the internal log_system_status method writes the queue states to evm.log every 5 minutes, and this information can be used to assess message throughput.
				

					To find the numbers of messages currently being processed (in state "dequeue") in each zone, use the following bash command:
				
grep 'count for state=\["dequeue"\]' evm.log
... Q-task_id([log_status]) MIQ(MiqServer.log_system_status) ⏎
[EVM Server (2768)] MiqQueue count for state=["dequeue"] ⏎
by zone and role: {"RHV"=>{nil=>1, "automate"=>1, ⏎
"ems_metrics_coordinator"=>1, "ems_metrics_collector"=>2, ⏎
"ems_metrics_processor"=>2, "smartproxy"=>1, "smartstate"=>2}, ⏎
nil=>{"database_owner"=>1}}
Tip

					Messages that appear to be in state 'dequeue' for longer than their timeout period were probably 'in-flight' when the worker process running them died or was terminated.
				

					To find the numbers of messages in state "error" in each zone, use the following bash command:
				
grep 'count for state=\["error"\]' evm.log
... Q-task_id([log_status]) MIQ(MiqServer.log_system_status) ⏎
[EVM Server (2768)] MiqQueue count for state=["error"] ⏎
by zone and role: {"RHV"=>{nil=>36}, "default"=>{nil=>16}, ⏎
"UI Zone"=>{nil=>35}}

					To find the numbers of messages in state "ready" that are waiting to be dequeued in each zone, use the following bash command:
				
grep 'count for state=\["ready"\]' evm.log
... Q-task_id([log_status]) MIQ(MiqServer.log_system_status) ⏎
[EVM Server (2768)] \ MiqQueue count for state=["ready"] ⏎
by zone and role: {"UI Zone"=>{"smartstate"=>15, "smartproxy"=>2, ⏎
nil=>4}, "default"=>{"automate"=>2, nil=>21, "smartstate"=>1, ⏎
"smartproxy"=>1}, "RHV"=>{"automate"=>6, "ems_inventory"=>1, ⏎
nil=>19, "smartstate"=>2, "ems_metrics_processor"=>1259, ⏎
"ems_metrics_collector"=>641}}
Tip

					The count for "ready" state elements in the MiqQueue table should not be greater than twice the number of managed objects (e.g. hosts, VMs, storages) in the region. A higher number than this is a good indication that the worker count should be increased, or further CFME appliances deployed to handle the additional workload.
				

Summary of Roles, Workers and Messages

				The following table summarises the server roles, the workers performing the role tasks, the 'Role' field within the messages handled by those workers, and the maximum number of concurrent instances of the role per region or zone.
			
	Role	Worker	Message 'Role'	Maximum Concurrent Workers
	
								Automation Engine
							

							 	
								Generic or Priority
							

							 	
								automate
							

							 	
								unlimited/ region
							

							
	
								C&U Coordinator
							

							 	
								Generic or Priority
							

							 	
								ems_metrics_coordinator
							

							 	
								one/zone
							

							
	
								C&U Data Collector
							

							 	
								provider-specific MetricsCollectorWorker
							

							 	
								ems_metrics_collector
							

							 	
								unlimited/ zone
							

							
	
								C&U Data Processor
							

							 	
								MiqEmsMetricsProcessorWorker
							

							 	
								ems_metrics_processor
							

							 	
								unlimited/ zone
							

							
	
								Database Operations
							

							 	
								Generic or Priority
							

							 	
								database_owner
							

							 	
								unlimited/ region
							

							
	
								Embedded Ansible
							

							 	
								EmbeddedAnsibleWorker
							

							 	
								N/A
							

							 	
								one/ region
							

							
	
								Event Monitor
							

							 	
								MiqEventHandler & provider-specific EventCatchers
							

							 	
								event
							

							 	
								one/zone & one/ provider/ zone
							

							
	
								Git Repositories Owner
							

							 	
								N/A
							

							 	
								N/A
							

							 	
								one/zone
							

							
	
								Notifier
							

							 	
								Generic or Priority
							

							 	
								notifier
							

							 	
								one/ region
							

							
	
								Provider Inventory
							

							 	
								provider-specific RefreshWorker
							

							 	
								ems_inventory
							

							 	
								one/ provider/ zone
							

							
	
								Provider Operations
							

							 	
								Generic or Priority
							

							 	
								ems_operations
							

							 	
								unlimited/ zone
							

							
	
								RHN Mirror
							

							 	
								N/A
							

							 	
								N/A
							

							 	
								unlimited/ region
							

							
	
								Reporting
							

							 	
								MiqReportingWorker
							

							 	
								reporting
							

							 	
								unlimited/ region
							

							
	
								Scheduler
							

							 	
								MiqScheduleWorker
							

							 	
								N/A
							

							 	
								one/ region
							

							
	
								SmartProxy
							

							 	
								MiqSmartProxyWorker
							

							 	
								smartproxy
							

							 	
								unlimited/ zone
							

							
	
								SmartState Analysis
							

							 	
								Generic or Priority
							

							 	
								smartstate
							

							 	
								unlimited/ zone
							

							
	
								User Interface
							

							 	
								MiqUiWorker
							

							 	
								N/A
							

							 	
								unlimited/ region
							

							
	
								Web Services
							

							 	
								MiqWebServiceWorker
							

							 	
								N/A
							

							 	
								unlimited/ region
							

							
	
								Web Socket
							

							 	
								MiqWebsocketWorker
							

							 	
								N/A
							

							 	
								unlimited/ region
							

							

[1]
					The full list of supported providers and their capabilities is included in the CloudForms Support Matrix document. The most recent Support Matrix document is here: https://access.redhat.com/documentation/en-us/red_hat_cloudforms/4.2/html/support_matrix/
				

[2]
						Not all automation tasks are queued. The automate methods that populate dynamic dialog elements, for example, are run immediately on the CFME appliance running the WebUI session, regardless of whether it has the Automation Engine role enabled
					

[3]
						See also https://bugzilla.redhat.com/show_bug.cgi?id=1422943
					

[4]
						Worker processes issue a heartbeat ping every 10 seconds
					

[5]
						The time limit for Refresh workers sometimes needs to be increased in very large environments where a full refresh can take longer than 2 hours
					

Chapter 3. Region and Zones

			When planning a large CloudForms implementation, consideration must be given to the number and size of regions required, and the layout of zones within those regions.[6]. Figure 3.1, “Regions and Zones” shows an example of multiple regions working together in a Red Hat CloudForms environment.
		
Figure 3.1. Regions and Zones
[image: Screenshot]

			​

		

			In this example there are two geographical "subordinate" regions containing providers (US West and US East), and one master region. Each of the subordinate regions has its own VMDB database, managed in its own dedicated VMDB zone. The two subordinate region VMDBs are replicated to the master region VMDB.
		

			Each region has a dedicated WebUI zone containing two CFME appliances (load-balanced), that users local to the region connect to for interactive management. The two subordinate regions each have one or more provider-specific zones, containing the CFME appliances that manage the workload for their respective providers.
		

			This section describes some of the considerations when designing regions and zones, and presents some guidelines and suggestions for implementation.
		
Regions

				A region is a self-contained collection of CloudForms Management Engine (CFME) appliances. Each region has a database - the VMDB - and one or more appliances running the evmserverd service with an associated set of configured worker processes. Regions are often used for organisational or geographical separation of resources, and the choice of region count, location and size is often based on both operational and technical factors.
			
Region Size

					All CFME appliances in a region access the same PostgreSQL database, and so the I/O and CPU performance of the database server is a significant factor in determining the maximum size to which a region can grow (in terms of numbers of managed objects) whilst maintaining acceptable performance.
				
Database Load Factors

						The VMDB database load is determined by many factors including:
					
	
								The total number of managed objects (for example VMs, instances, images, templates, hosts, clusters, datastores, networks, tenants, routers, orchestration stacks, projects, services, pods, containers, etc.) in the region.
							
	
								The number of running or "active" objects generating events (typically VMs, instances, hosts, nodes, pods, containers, etc.)
							
	
								The number and type of providers added to the region (for example providers such as VMware or RHV have more out-of-the-box events that can be detected and processed).
							
	
								The overall "busyness" of the external management systems (such as vCenters), which determines the rate at which events are received and processed, and thus the rate at which inventory refreshes are requested and loaded.[7] (see Chapter 5, Inventory Refresh)
							
	
								The frequency of "event storms" (see Chapter 9, Event Handling) from the external management systems
							
	
								Whether or not Capacity and Utilization (C&U) metric collection is enabled for the region
							
	
										Whether this is for all clusters and datastores or a subset of each
									
	
										The frequency of collection
									
	
										Whether realtime alerts have been enabled for any metrics
									

	
								Whether or not SmartState Analysis is enabled for the region
							
	
										The frequency of collection
									
	
										The amount of data collected in the SmartState Analysis profile
									

	
								The complexity of reports and widgets, and frequency of generation
							
	
								The frequency of VM lifecycle operations
							
	
										Provisioning
									
	
										Retirement
									

	
								The frequency of running automate requests and tasks, including service requests
							
	
								The number of control or compliance policies in use
							
	
								The number of concurrent users accessing the "classic" WebUI, especially displaying large numbers of objects such as VMs
							
	
								The frequency and load profile of connections to the RESTful API (including the Self-Service UI)
							
	
								The number of CFME appliances (more accurately, worker processes) in the region
							

Sizing Estimation

						It is very difficult to define a representative load for simulation purposes, due to the many permutations of workload factors. Some analysis has been made of existing large CloudForms installations however, and it has been observed that for an "average" mix of the workload factors listed above, an optimally tuned and maintained PostgreSQL server should be able to handle the load from managing up to 5000 VMware objects (VMs, hosts, clusters and datastores, for example). Larger regions than this are possible if the overall database workload is lighter - typically the case for the cloud and container providers - but as with any large database system, performance should be carefully monitored.
					

						Table 3.1, “Guidelines for Maximum Region Size” provides suggested guidelines for the maximum number of active or "running" objects (for example VMs, instances, clusters, hosts, datastores, pods or containers) in a region containing one or more providers. Regions with several provider types (for example both VMware and Amazon EC2) will have a practical maximum somewhere between the limits suggested for each provider.
					
Table 3.1. Guidelines for Maximum Region Size
	Provider	Guideline Number of Active/Running Objects in Region
	
										VMware
									

									 	
										5000 (VMs, hosts, datastores)
									

									
	
										RHV
									

									 	
										5000 (VMs, hosts, storage domains)
									

									
	
										OpenStack
									

									 	
										7500 (instances, nodes, network objects, storage managers)
									

									
	
										OpenShift
									

									 	
										10000 (nodes, pods, containers)
									

									
	
										Microsoft SCVMM
									

									 	
										10000 (VMs)
									

									
	
										Microsoft Azure
									

									 	
										10000 (instances)
									

									
	
										Amazon EC2
									

									 	
										10000 (instances)
									

									
	
										Google Compute Engine
									

									 	
										10000 (instances)
									

									

						It should be noted that these numbers are approximate and are only suitable for planning and design purposes. The absolute practical maximum size for a region will depend on acceptable performance criteria, database server capability, and the factors listed in the section called “Database Load Factors”.
					

						When planning regions it is often useful to under-size a region rather than over-size. It is usually easier to add capacity to a smaller region that is performing well, than it is to split an under-performing large single region into multiple regions.
					
Note

							A 'global' region is generally capable of handling considerably more objects as it has no active providers of its own, and has a lower database load. Many CloudForms installations have global regions that manage in excess of 50,000 objects.
						

Number of CFME Appliances in a Region

					When sizing a region, some thought needs to be given to the number of CloudForms worker processes that are likely to be needed to handle the expected workload, and hence the number of CFME appliances. The workload will depend on the capabilities of the providers that will be configured, and the CloudForms features that are likely to be used.
				

					Two of the most resource-intensive tasks are those performed by the C&U Data collector and Data Processor workers, particularly where there is a limited time window for the collection of realtime data as there is with VMware or OpenStack providers (see Chapter 6, Capacity & Utilization). It has been established through testing that one C&U Data Collector worker can retrieve and store the metrics from approximately 150 VMware VMs or OpenStack instances in the rolling 60 minute time window that realtime metrics are retained for. As an out-of-the-box CFME appliance is configured with 2 C&U Data Collector workers, it should be able to handle the collection of realtime metrics for 300 VMs. If the number of workers is increased to 4, the appliance could handle the collection of realtime metrics for 600 VMs, although the increased CPU and memory load may adversely affect other processing taking place on the appliance.
				

					Using the 1:300 ratio of CFME appliances to VMs is a convenient starting point for scaling the number of CFME appliances required for a region containing VMware, RHV or OpenStack providers. For other provider types this ratio is often increased to 1:400.
				

					Table 3.2, “Objects per CFME Appliance Guidelines” provides suggested guideline ratios for each of the provider types. It should be noted that these numbers are approximate and are only suitable for planning and design purposes. The final numbers of CFME appliances required for a region or zone can only be determined from analysis of the specific region workload, and the performance of existing CFME appliances.
				
Table 3.2. Objects per CFME Appliance Guidelines
	Provider	Guideline Number of Objects/CFME Appliance
	
									VMware
								

								 	
									300 (VMs)
								

								
	
									RHV
								

								 	
									300 (VMs)
								

								
	
									OpenStack
								

								 	
									300 (instances)
								

								
	
									Microsoft SCVMM
								

								 	
									400 (VMs)
								

								
	
									Microsoft Azure
								

								 	
									400 (instances)
								

								
	
									Amazon EC2
								

								 	
									400 (instances)
								

								
	
									Google Compute Engine
								

								 	
									400 (instances)
								

								
	
									OpenShift
								

								 	
									1500 (pods &/or containers)
								

								

Region Design

					There are a number of considerations for region design and layout, but the most important are the anticipated number of managed objects (discussed above), and the location of the infrastructure components being managed, or the public cloud endpoints.
				
Centrally Located Infrastructure

						With a single, centrally located small or medium sized virtual infrastructure or cloud, the selection of region design is simpler. A single region is usually the most suitable option, with high availability and fault tolerance built into the design.
					
Note

							Large virtual infrastructures can often be split between several regions using multiple sets of provider credentials that have a restricted span-of-control within the entire enterprise.
						

Distributed Infrastructure

						With a distributed or large infrastructure the most obvious choice of region design might seem to be to allocate a region to each distributed location, however there are a number of advantages to both single and multi-region implementations for distributed infrastructures.
					
Wide Area Network Factors - Intra-Region

							Network latency between CFME appliances and the database within a region plays a big factor in overall CloudForms "system" responsiveness. There is a utility, db_ping, supplied on each CFME appliance that can check the latency between an existing appliance and its own regional database. It is run as follows:
						
vmdb
tools/db_ping.rb
0.358361 ms
1.058845 ms
0.996966 ms
1.029908 ms
1.048192 ms

Average: 0.898454 ms
Note

								On CFME versions prior to 5.8, this tool should be prefixed by bin/rails runner, for example:
							
bin/rails runner tools/db_ping.rb

							The architecture of CloudForms assumes LAN-speed latency (≈ 1 ms) between CFME appliances and their regional database for optimal performance. As latency increases, so overall system responsiveness decreases.
						

							Typical symptoms of a high latency connection are as follows:
						
	
									WebUI operations appear to be slow, especially viewing screens that display a large number of objects such as VMs
								
	
									Database-intensive actions such as complex report or widget generation take longer to run
								
	
									CFME appliance restarts are slower since the startup seeding acquires an exclusive lock.
								
	
									Worker tasks such as EMS refresh or C&U metrics collection that load data into the VMDB run more slowly
								
	
											Longer EMS refreshes may have a detrimental effect on other operations such as VM provisioning.[8]
										
	
											Metrics collection might not keep up with the EMS’s realtime statistics retention period.[9]
										

							When considering deploying a CloudForms region spanning a WAN, it is important to establish acceptable performance criteria for the installation. Although in general a higher latency will result in slower but error-free performance, it has been observed that a latency of 5ms can cause the VMDB update transaction from an EMS refresh to timeout in very large regions. A latency as high as 42 ms can cause failures in database seeding operations.[10]
						

Wide Area Network Factors - Inter-Region

							Network latency between subordinate and master regions is less critical as database replication occurs asynchronously. Latencies of 100 ms have been tested and shown to present no performance problems.
						

							A second utility, db_ping_remote, is designed to check inter-region latency. It requires external PostgreSQL server details and credentials, and is run as follows:
						
tools/db_ping_remote.rb 10.3.0.22 5432 root vmdb_production
Enter the password for database user root on host 10.3.0.22
Password:
10.874407 ms
10.984994 ms
11.040376 ms
11.119602 ms
11.031609 ms

Average: 11.010198 ms

Single Region

							Where WAN latency is deemed acceptable, the advantages of deploying a single region to manage all objects in a distributed infrastructure are as follows:
						
	
									Simplified appliance upgrade procedures (no multiple regions or global region upgrade coordination issues)
								
	
									Simplified disaster recovery when there is only one database to manage
								
	
									Simpler architectural design, and therefore more straightforward operational procedures and documentation
								
	
									Easier to manage the deployment of customisations such as automate code, policies, or reports (there is a single point of import)
								

Multi-Region

							The advantages of deploying multiple regions to manage the objects in a distributed infrastructure are as follows:
						
	
									Operational resiliency; no single point of failure to cause outage to the entire CloudForms managed environment
								
	
									Continuous database maintenance runs faster in a smaller database
								
	
									Database reorganisations (backup & restore) run faster and don’t take offline an entire CloudForms installation
								
	
									More intuitive alignment between CloudForms WebUI view, and physical and virtual infrastructure
								
	
									Reduced dependence on wide-area networking to maintain CloudForms performance
								
	
									Region isolation (for performance)
								
	
											Infrastructure issues such as event storms that might adversely affect the local region database will not impact any other region
										
	
											Customisations can be tested in a development or test region before deploying to a production environment
										

Connecting Regions

					As illustrated in Figure 3.1, “Regions and Zones” regions can be linked in such a way that several subordinate regions replicate their object data to a single global region. The global region has no providers of its own, and is typically used for enterprise-wide reporting as it has visibility of all objects. A new feature introduced with CloudForms 4.2 allows some management operations to be performed directly from the global region, utilising a RESTful API connection to the correct child region to perform the action. These operations include the following:
				
	
							Virtual machine provisioning
						
	
							Service provisioning
						
	
							Virtual machine power operations
						
	
							Virtual machine retirement
						
	
							Virtual machine reconfiguration
						

Region Numbering

					Regions have associated with them a region number that is allocated when the VMDB appliance is first initialised. When several regions are linked in a global/subregion hierarchy, all of the region numbers must be unique. Region numbers can be up to three digits long, and the region number is encoded into the leading digits of every object ID in the region. For example the following 3 message IDs are from different regions:
				
	
							Message id: [1000000933021] (region 1)
						
	
							Message id: [9900023878436] (region 99)
						
	
							Message id: [398451] (region 0)
						

					Global regions are often allocated a higher region number (99 is frequently used) to distinguish them from subordinate regions whose numbers often start with 0 and increase as regions are added. There is no technical restriction on region number allocation in a connected multi-region CloudForms deployment, other than uniqueness.
				

Region Summary and Recommendations

					The following guidelines can be used when designing a region topology:
				
	
							Beware of over-sizing regions. Several slightly smaller interconnected regions will generally perform better than a single very large region
						
	
							Network latency from CFME appliances to the VMDB within the region should be close to LAN speed
						
	
							Database performance is critical to the overall performance of the region
						
	
							All CFME appliances in a region should be NTP synchronized to the same time source
						
	
							Identify all external management system (EMS) host or hypervisor instances where steady-state or peak utilization > 50%, and avoid these hosts for placement of CFME appliances, especially the VMDB appliance.
						

Zones

				Zones are a way of logically subdividing the resources and worker processing within a region. They perform a number of useful functions, particularly for larger CloudForms installations.
			
Zone Advantages

					The following sections describe some of the advantages of implementing zones within a CloudForms region.
				
Provider Isolation

						Zones are a convenient way of isolating providers. Each provider has a number of workers associated with it that run on any appliance running the Provider Inventory and Event Monitor roles. These include:
					
	
								One Refresh worker
							
	
								Two or more Metrics Collector workers
							
	
								One Event Catcher
							
	
								For VMware:
							
	
										One Core Refresh worker
									
	
										One Vim Broker
									

						Some types of cloud provider add several sub-provider types, each having their own Event Catchers and/or Refresh workers, and some also having Metrics Collector workers. For example adding a single OpenStack Cloud provider will add the following workers to each appliance with the Provider Inventory and Event Monitor roles:
					
	
								ManageIQ::Providers::Openstack::CloudManager::EventCatcher
							
	
								ManageIQ::Providers::Openstack::CloudManager::MetricsCollectorWorker (x 2)
							
	
								ManageIQ::Providers::Openstack::CloudManager::RefreshWorker
							
	
								ManageIQ::Providers::Openstack::NetworkManager::EventCatcher
							
	
								ManageIQ::Providers::Openstack::NetworkManager::MetricsCollectorWorker (x 2)
							
	
								ManageIQ::Providers::Openstack::NetworkManager::RefreshWorker
							
	
								ManageIQ::Providers::StorageManager::CinderManager::EventCatcher
							
	
								ManageIQ::Providers::StorageManager::CinderManager::RefreshWorker
							
	
								ManageIQ::Providers::StorageManager::SwiftManager::RefreshWorker
							

						In addition to these provider-specific workers, the two roles add a further two worker types that handle the events and process the metrics for all providers in the zone:
					
	
								One Event Handler
							
	
								Two or more Metrics Processor workers
							

						Each worker has a minimum startup cost of approximately 250-300MB, and the memory demands of each may vary depending on the number of managed objects for each provider. Having one provider per zone reduces the memory footprint of the workers running on the CFME appliances in the zone, and allows for dedicated per-provider Event Handler and Metrics Processor workers. The prevents an event surge from one provider from adversely affecting the handling of events from another provider, for example.
					

Appliance Maintenance

						Shutting down or restarting a CFME appliance in a zone because of upgrade or update is less disruptive if only a single provider is affected.
					

Provider-Specific Appliance Tuning

						Zones allow for more predictable and provider-instance-specific sizing of CFME appliances and appliance settings based on the requirement of individual providers. For example small VMware providers can have significantly different resourcing requirements to very large VMware providers, especially for C&U collection and processing.
					

VMDB Isolation

						If the VMDB is running on a CFME appliance (as opposed to a dedicated PostgreSQL appliance), putting the VMDB appliance in its own zone is a convenient way to isolate the appliance from non database-related activities.
					

Logical Association of Resources

						A zone is a natural and intuitive way of associating a provider with a corresponding set of physical or logical resources, either in the same or remote location. For example there might be a requirement to open firewall ports to enable access to a particular provider’s EMS on a restricted or remote network. Isolating the specific CFME appliances to their own zone simplifies this task.
					
Note

							Not all worker processes are zone-aware. Some workers process messages originating from or relevant to the entire region
						

Improved and Simplified Diagnostics Gathering

						Specifying a log depot per zone in Configuration → Settings allows log collection to be initiated for all appliances in the zone, in a single action. When requested, each appliance in the zone is notified to generate and deposit the specified logs into the zone-specific depot.
					

Zone Summary and Recommendations

					The following guidelines can be used when designing a zone topology:
				
	
							Use a separate zone per provider instance (rather than provider type)
						
	
							Never span a zone across physical boundaries or locations
						
	
							Use a minimum of two appliances per zone for resiliency of zone-aware workers and processes
						
	
							Isolate the VMDB appliance in its own zone (unless it is a standalone PostgreSQL server)
						
	
							At least one CFME appliance in each zone should have the 'Automate Engine' role enabled, to process zone-specific events
						
	
							At least once CFME appliance in each zone should have the 'Provider Operations' role enabled to ensure that the service provision request tasks are processed correctly
						
	
							Isolating the CFME appliances that general users interact with (running the User Interface and Web Services workers) into their own zone can allow for additional security measure to be taken to protect these servers
						
	
									At least one CFME appliance in a WebUI zone should have the 'Reporting' role enabled to ensure that reports interactively scheduled by users are correctly processed (see the section called “Reporting” for more details)
								

[6]
				Regions and zones are described in the CloudForms "Deployment Planning Guide" https://access.redhat.com/documentation/en-us/red_hat_cloudforms/4.2/html/deployment_planning_guide/
			

[7]
									With VMware providers relatively minor changes such as VM and Host property updates are detected by the Vim Broker and also cause EMS refreshes to be scheduled
								

[8]
												discussed in Chapter 8, VM and Instance Provisioning
											

[9]
												discussed in Chapter 6, Capacity & Utilization
											

[10]
								See https://bugzilla.redhat.com/show_bug.cgi?id=1422671
							

Chapter 4. Database Sizing and Optimization

			As discussed in Chapter 2, Architecture CloudForms 4.5 uses a PostgreSQL 9.5 database as its VMDB back-end, and the performance of this database is critical to the overall smooth-running of the CloudForms installation. This section discusses techniques to ensure that the database is installed and configured correctly, and optimally tuned.
		
Sizing the Database Appliance

				The database server or appliance should be sized according to the anticipated scale of the CloudForms deployment. A minimum of 8 GBytes memory is recommended for most installations, but the required number of vCPUs varies with the number of worker processes accessing the database. An initial estimate can be made based on the anticipated idle load of the CFME appliances in the region.
			

				Some earlier investigation into the database load generated by idle CFME appliances is published in Appendix A, Database Appliance CPU Count. To determine the number of CFME appliances required for a region, the total anticipated number of managed objects (VMs, hosts, clusters, datastores etc.) should first be established. Using the appliance to VM ratios suggested in Table 3.2, “Objects per CFME Appliance Guidelines”, the CFME appliance count can be estimated. For example a Red Hat Virtualization virtual infrastructure containing 3000 managed objects would need 10 CFME appliances in default configuration to handle a typical workload.
			

				It can be seen from the table in Appendix A, Database Appliance CPU Count that a region containing 10 idle CFME appliances would need a database server with 4 vCPUs to maintain CPU utilisation at under 25%. Adding the provider(s) and enabling the various server roles on the appliances will increase the database load, and so CPU, memory and I/O utilisation must be monitored. A CPU utilisation of 75-80% should be considered a maximum for the database server, and an indication that any of the following should be increased:
			
	
						Real memory
					
	
						vCPUs
					
	
						The value of shared_buffers (see below)
					

Sizing the Database Partition Before Installation

				The disk used for the database partition should be presented to the database appliance from the fastest available block storage. Sparsely allocated, thin provisioned or file-backed storage such as NFS are not recommended for optimum performance.
			

				A rough estimate of database size in GBytes can be made by approximating the number of managed VMs, hosts and storage devices in the region over a one and two year period.[11]
			

				The following guidelines can be used:
			

				After 1 year:
			

				Database size (GBytes) =
			

				(VM Count * 0.035) + (Host count * 0.0002) + (Storage Count * 0.001)
			

				After 2 years:
			

				Database size (GBytes) =
			

				(VM Count * 0.055) + (Host count * 0.0002) + (Storage Count * 0.0015)
			

				As an example, given an installation that is projected to manage 1500 VMs, with 20 hypervisors and 25 storage domains, the estimated database size would be:
			

				(1500 * 0.035) + (20 * 0.0002) + (25 * 0.001) = 52.57 GBytes after 1 year
			

				(1500 * 0.055) + (20 * 0.0002) + (25 * 0.0015) = 82.58 GBytes after 2 years
			

Installation

				The first CFME appliance in a region can be configured as a database appliance with or without Rails. The database is created using appliance_console by selecting the following option:
			
 5) Configure Database

				After creating a new encryption key and selecting to create an internal database, the following question is asked:
			
Should this appliance run as a standalone database server?

NOTE:
* The CFME application will not be running.
* This is required when using highly available database deployments.
* CAUTION: This is not reversible.

				Selecting 'Y' to this option configures the appliance without Rails or the evmserverd application, and allows the server to be configured optimally as a pure PostgreSQL server. This configuration also allows for PostgreSQL high availability to be configured at any time in the future using the following appliance_console option:
			
6) Configure Database Replication
Note

					Although configuring a CFME appliance as a dedicated database instance will result in optimum database performance, the absence of Rails and the evmserverd service and workers means that the server will not appear in the CloudForms WebUI as a CFME appliance in the region.
				

					If it is known that PostgreSQL high availability will never be required (and at the expense of some loss of memory and CPU utilisation), the answer 'N' can be given to the question Should this appliance run as a standalone database server?. In this case the VMDB appliance will be configured to run Rails and the evmserverd service as normal, and will appear as a CloudForms appliance in the region.
				

					It is recommended that this type of VMDB appliance be isolated in its own dedicated zone, and that any unnecessary server roles are disabled.
				

Configuring PostgreSQL

					The PostgreSQL configuration file on a CFME appliance is /var/opt/rh/rh-postgresql95/lib/pgsql/data/postgresql.conf. Some of the values in this file have been defined based on the assumption of a small CloudForms installation. For larger installations - particularly when using a dedicated database instance - these values should be changed.
				
Shared Buffers

						The most important tuning parameter to set is the value for shared_buffers. The default value from the configuration file is as follows:
					
shared_buffers = 128MB # MIQ Value SHARED CONFIGURATION
#shared_buffers = 1GB # MIQ Value DEDICATED CONFIGURATION

						For a dedicated PostgreSQL server this should be set to 25% of the real memory on the database appliance, but not more than a maximum of 4GB. This allows many more of the dense index pages and actively accessed tables to reside in memory, significantly reducing physical I/O and improving overall performance.
					

Max Connections

						Each worker process on a CFME appliance in a region opens a connection to the database. There are typically between 20 and 30 worker sessions per appliance in default configuration, and so a region with 20 CFME appliances will open approximately 500 connections. The default value for max_connections in the configuration file is as follows:
					
max_connections = 1000 # MIQ Value;
#max_connections = 100

						Although this default value allows for 1000 connections, under certain extreme load conditions CFME appliance workers can be killed but their sessions not terminated. In this situation the number of connections can rise above the expected value.
					
Tip

						The number of open connections to the database can be seen using the following psql command:
					
SELECT datname,application_name,client_addr FROM pg_stat_activity;

						The number of outbound database connections from a CFME appliance can be seen using the following bash command:
					
netstat -tp | grep postgres

						It may be necessary to increase the value for max_connections if the default number is being exceeded.
					

Log Directory

						By default the block device used for the database partition is used for the PGDATA directories and files, and also the postgresql.log log file (this is the text log file, not the database write-ahead log). Moving the log file to a separate partition allows the PGDATA block device to be used exclusively for database I/O, which can improve performance. The default value for log_directory in the configuration file is as follows:
					
#log_directory = 'pg_log' # directory where log files are written,
 # can be absolute or relative to PGDATA

						This value creates the log file as /var/opt/rh/rh-postgresql95/lib/pgsql/data/pg_log/postgresql.log. To use the default CFME log directory for the log file, change this line to be:
					
log_directory = '/var/www/miq/vmdb/log'

Huge Pages

						For VMDB appliances configured as dedicated database instances, some performance gain can be achieved by creating sufficient kernel huge pages for PostgreSQL and the configured shared_buffers region. The following bash commands allocate 600 huge pages (1.2 GBytes):
					
sysctl -w vm.nr_hugepages=600
echo "vm.nr_hugepages=600" >> /etc/sysctl.d/rh-postgresql95.conf

						The default setting for PostgreSQL 9.5 is to use huge pages if they are available, and so no further PostgreSQL configuration is necessary.
					

Maintaining Performance

				Several of the database tables benefit greatly from regular vacuuming and frequent re-indexing, and database maintenance scripts can be added to cron to perform these functions.[12]
			

				On a CFME 5.8 appliance these scripts can be installed using the following appliance_console option:
			
 7) Configure Database Maintenance

				The scripts perform hourly reindexing of the following tables:
			
	
						metrics_00 to metrics_23 (one per hour)
					
	
						miq_queue
					
	
						miq_workers
					

				The scripts perform weekly or monthly vacuuming of the following tables:
			
	
						vms
					
	
						binary_blob_parts
					
	
						binary_blobs
					
	
						customization_specs
					
	
						firewall_rules
					
	
						hosts
					
	
						storages
					
	
						miq_schedules
					
	
						event_logs
					
	
						policy_events
					
	
						snapshots
					
	
						jobs
					
	
						networks
					
	
						miq_queue
					
	
						miq_request_tasks
					
	
						miq_workers
					
	
						miq_servers
					
	
						miq_searches
					
	
						miq_scsi_luns
					
	
						miq_scsi_targets
					
	
						storage_files
					
	
						taggings
					
	
						vim_performance_states
					

Resizing the Database Directory After Installation

				It is sometimes the case that a managed virtual infrastructure or cloud grows at a faster rate than anticipated. As a result the CloudForms database mount point may need expanding from its initial size to allow the database to grow further.
			

				The database mount point /var/opt/rh/rh-postgresql95/lib/pgsql is a logical volume formatted as XFS. A new disk can be presented to the database appliance and added to LVM to allow the filesystem to grow.
			
Note

					Some virtual or cloud infrastructures don’t support the 'hot' adding of a new disk to a virtual machine that is powered on. It may be necessary to stop the evmserverd service on all CFME appliances in the region, and shut down the VMDB appliance before adding the new disk.
				

				The following steps illustrate the procedure to add an additional 10 GBytes of storage (a new disk /dev/vdd) to the database mount point:
			
label the new disk
parted /dev/vdd mklabel msdos

partition the disk
parted /dev/vdd mkpart primary 2048s 100%

create an LVM physical volume
pvcreate /dev/vdd1
 Physical volume "/dev/vdd1" successfully created.

add the new physical volume to the vg_pg volume group
vgextend vg_pg /dev/vdd1
 Volume group "vg_pg" successfully extended

determine the number of free extents in the volume group
vgdisplay vg_pg
 --- Volume group ---
 VG Name vg_pg
 System ID
 ...
 VG Size 19.99 GiB
 PE Size 4.00 MiB
 Total PE 5118
 Alloc PE / Size 2559 / 10.00 GiB
 Free PE / Size 2559 / 10.00 GiB
 VG UUID IjKZmo-retr-qJ9f-WCdg-gzrc-jbl3-i52mUn

extend the logical volume by the number of free extents
lvextend -l +2559 /dev/vg_pg/lv_pg
 Size of logical volume vg_pg/lv_pg changed from 10.00 GiB ⏎
 (2559 extents) to 19.99 GiB (5118 extents).
 Logical volume vg_pg/lv_pg successfully resized.

grow the filesystem to fill the logical volume
xfs_growfs /var/opt/rh/rh-postgresql95/lib/pgsql
meta-data=/dev/mapper/vg_pg-lv_pg isize=256 ...
 = sectsz=512 ...
 = crc=0 ...
data = bsize=4096 ...
 = sunit=0 ...
naming =version 2 bsize=4096 ...
log =internal bsize=4096 ...
 = sectsz=512 ...
realtime =none extsz=4096 ...
data blocks changed from 2620416 to 5240832

[11]
					These sizing estimates have been generated from real-world VMDB usage statistics gathered from earlier versions of ManageIQ/CloudForms, managing virtual infrastructures such as VMware. To date insufficient data has been gathered for comparable sizing estimates of CloudForms installations that primarily manage OpenShift Container Platforms
				

[12]
					See https://access.redhat.com/solutions/1419333 (Continuous Maintenance for CloudForms Management Engine VMDB to maintain Responsiveness)
				

Chapter 5. Inventory Refresh

			One of the biggest factors that affects the perceived performance of a large CloudForms installation is the time taken to update the provider inventory in the VMDB. This is known as an EMS refresh. There are two types of EMS refresh: a full refresh, where all objects are returned from the provider; and a targeted refresh, where only the details of requested components such as specific VMs or hosts are fetched and processed. In CloudForms Management Engine 5.8 only the VMware and Red Hat Virtualization providers are capable of supporting targeted refreshes; all other providers perform a full refresh.
		
Note

				A new type of refresh architecture called graph refresh is currently in development, and has been implemented for the Amazon S3 and Ansible providers in CFME 5.8. Graph refresh improves EMS refresh performance by up to 6 times.
			

				The timings mentioned in this chapter are based on the pre-graph refresh architecture that existed in CFME 5.7
			

Refresh Overview

				Whenever CloudForms is notified of a change related to a managed object, a message is queued either for a refresh of that object (where targeted is supported), or a full EMS refresh. There is never more than one EMS refresh operation in progress for each provider at any one time, with at most one further refresh queued.
			

				If a new refresh is called for, the miq_queue table is first examined to see if a refresh message already exists in the "ready" state for the intended EMS. If no such message already exists, a new one is created. If a message already exists and it is for a full refresh, the new request is ignored, but if the new refresh is targeted and an existing targeted message is found, the new request is merged into the existing message payload, and the message is re-queued. The addition of further targets to a "ready" queued message can happen several times until the message is dequeued.
			

				This action can be observed in evm.log. In the following example an EMS refresh was initially queued for a VM with ID 1167. The following log line shows the initial MiqQueue.put operation:
			
... INFO -- : MIQ(MiqQueue.put) Message id: [32170091], id: [], ⏎
Zone: [VMware], Role: [ems_inventory], Server: [], Ident: [ems_2], ⏎
Target id: [], Instance id: [], Task id: [], ⏎
Command: [EmsRefresh.refresh], Timeout: [7200], Priority: [100], ⏎
State: [ready], Deliver On: [], Data: [], ⏎
Args: [[["ManageIQ::Providers::Vmware::InfraManager::Vm", 1167]]]

				Before this message has been dequeued and processed however, a further EMS refresh request is made for another VM, this time with ID 1241. The following log line shows the MiqQueue.put_or_update operation, where the queued message 32170091 is updated with the addition of a second VM in the "Args" field:
			
... INFO -- : MIQ(MiqQueue.put_or_update) Message id: [32170091], ⏎
id: [], Zone: [VMware], Role: [ems_inventory], Server: [], ⏎
Ident: [ems_2], Target id: [], Instance id: [], Task id: [], ⏎
Command: [EmsRefresh.refresh], Timeout: [7200], Priority: [100], ⏎
State: [ready], Deliver On: [], Data: [], ⏎
Args: [[["ManageIQ::Providers::Vmware::InfraManager::Vm", 1167], ⏎
["ManageIQ::Providers::Vmware::InfraManager::Vm", 1241]]], Requeued

Challenges of Scale

				As might be expected, the more managed objects in a virtual infrastructure or cloud, the longer a full refresh takes to complete. The refresh time has a knock-on effect for the process or workflow that initiated the refresh. In some cases this is inconvenient but not critical, such as a delay in seeing a VM’s power status change for its WebUI tile icon when it powers on. In other cases - such as provisioning a new VM - a very long EMS refresh may cause the triggering workflow to timeout and exit with an error condition.
			

Monitoring Refresh Performance

				An EMS refresh operation has two significant phases that each contribute to the overall performance:
			
	
						Extracting and parsing the data from the EMS
					
	
								Network latency to the EMS
							
	
								Time waiting for the EMS to process the request and return data
							
	
								CPU cycles parsing the returned data
							

	
						Updating the inventory in the VMDB
					
	
								Network latency to the database
							
	
								Database appliance CPU, memory and I/O resources
							

				Fortunately the line printed to evm.log at the completion of the operation contains detailed timings of each stage of the operation, and these can be used to determine bottlenecks.[13]. A typical log line is as follows:
			
... INFO -- : MIQ(ManageIQ::Providers::Vmware::InfraManager::Refresher#refresh) ⏎
EMS: [CLOUD], id: [1000000000001] Refreshing targets for EMS...Complete - ⏎
Timings {:server_dequeue=>0.006215572357177734, ⏎
:get_ems_data=>1.1113097667694092, ⏎
:get_vc_data=>46.28569030761719, ⏎
:filter_vc_data=>0.025593042373657227, ⏎
:get_vc_data_host_scsi=>11.575390100479126, ⏎
:collect_inventory_for_targets=>59.012681007385254, ⏎
:parse_vc_data=>0.15207147598266602, ⏎
:parse_targeted_inventory=>0.15630817413330078, ⏎
:db_save_inventory=>65.91589498519897, ⏎
:save_inventory=>65.9160327911377, ⏎
:ems_refresh=>125.0889003276825}

				The actual realtime values displayed vary with provider type. All providers report one or more of the following timings:
			
	
						:ems_refresh (total time to perform the refresh)
					
	
						:collect_inventory_for_targets (for VMware and RHV providers this is the time to extract data from the EMS)
					
	
						:parse_targeted_inventory (for VMware and RHV providers this is the time to parse the inventory. For all other providers this is the time taken to extract and parse data from the EMS)
					
	
						:save_inventory (time saving the inventory into the VMDB)
					

				VMware providers additionally report one or more of the following sub-timings:
			
	
						:collect_inventory_for_targets
					
	
								:get_ems_data (time retrieving EMS information)
							
	
								:get_vc_data (time retrieving vCenter inventory such as VMs, dvportgroups, hosts, clusters etc.)
							
	
								:filter_vc_data (time filtering vCenter inventory)
							
	
								:get_vc_data_ems_customization_spec (time retrieving customization spec inventory)
							
	
								:get_vc_data_host_scsi (time retrieving storage device inventory)
							

	
						:parse_targeted_inventory
					
	
								:parse_vc_data (time parsing vCenter inventory)
							

	
						:save_inventory
					
	
								:db_save_inventory (time saving the inventory to the VMDB)
							

				RHV providers additionally report one or more of the following sub-timings:
			
	
						:collect_inventory_for_targets
					
	
								:fetch_host_data (retrieval time when targeted refresh is to a host)
							
	
								:fetch_vm_data (retrieval time when targeted refresh is to a VM)
							
	
								:fetch_all (retrieval time for any other refresh)
							

	
						:parse_targeted_inventory
					
	
								:parse_inventory
							

				'Legacy' providers additionally report the following timing:
			
	
						:parse_legacy_inventory
					

				Performing the required calculation.[14] on the log line shown above reveals the following performance values:
			
Refresh timings:
 get_ems_data: 0.032891 seconds
 get_vc_data: 3.063675 seconds
 filter_vc_data: 0.000959 seconds
 get_vc_data_host_scsi: 1.047531 seconds
 collect_inventory_for_targets: 4.146032 seconds
 parse_vc_data: 0.010229 seconds
 parse_targeted_inventory: 0.010285 seconds
 db_save_inventory: 2.471521 seconds
 save_inventory: 2.471530 seconds
 ems_refresh: 6.628097 seconds

				This shows that the two significant time components to this operation were extracting and parsing the inventory from vCenter (4.146 seconds), and loading the data into the database (2.472 seconds).
			

Identifying Refresh Problems

				Refresh problems are best identified by establishing baseline timings when the managed EMS is least busy. To determine the relative EMS collection and database load times, the ':collect_inventory_for_targets' and ':db_save_inventory' timing counters from evm.log can be plotted. For this example the cfme-log-parsing/ems_refresh_timings.rb script is used, as follows:
			
ruby ~/git/cfme-log-parsing/ems_refresh_timings.rb ⏎
 -i evm.log -o ems_refresh_timings.out

grep -A 13 "Vm: 1$" ems_refresh_timings.out | ⏎
grep collect_inventory_for_targets | ⏎
awk '{print $2}' > collect_inventory_for_targets.txt

grep -A 13 "Vm: 1$" ems_refresh_timings.out | ⏎
grep db_save_inventory | ⏎
awk '{print $2}' > db_save_inventory.txt

				The contents of the two text files can then be plotted, as shown in Figure 5.1, “Single VM EMS Refresh Component Timings, 24 Hour Period”.
			
Figure 5.1. Single VM EMS Refresh Component Timings, 24 Hour Period
[image: Screenshot]

				​

			

				A significant increase or wide variation in data extraction times from this baseline can indicate that the EMS is experiencing high load and not responding quickly to API requests.
			

				Some variation in database load times throughout a 24 hour period is expected, but sustained periods of long load times can indicate that the database is overloaded.
			

Tuning Refresh

				There is little CloudForms tuning that can be done to improve the data extraction time of a refresh. If the extraction times vary significantly throughout the day then some investigation into the performance of the EMS itself may be warranted.
			

				If database load times are high, then CPU, memory and I/O load on the database appliance should be investigated and if necessary tuned. The top_output.log and vmstat_output.log files in /var/www/miq/vmdb/log on the database appliance can be used to correlate the times of high CPU and memory demand against the long database load times.
			
Configuration

					The :ems_refresh section of the Configuration → Advanced settings is listed as follows:
				
:ems_refresh:
 :capture_vm_created_on_date: false
 :ec2:
 :get_private_images: true
 :get_shared_images: true
 :get_public_images: false
 :public_images_filters:
 - :name: image-type
 :values:
 - machine
 :ignore_terminated_instances: true
 :ansible_tower_configuration:
 :refresh_interval: 15.minutes
 :foreman_configuration:
 :refresh_interval: 15.minutes
 :foreman_provisioning:
 :refresh_interval: 1.hour
 :full_refresh_threshold: 100
 :hawkular:
 :refresh_interval: 15.minutes
 :kubernetes:
 :refresh_interval: 15.minutes
 :openshift:
 :refresh_interval: 15.minutes
 :openshift_enterprise:
 :refresh_interval: 15.minutes
 :raise_vm_snapshot_complete_if_created_within: 15.minutes
 :refresh_interval: 24.hours
 :scvmm:
 :refresh_interval: 15.minutes
 :vmware_cloud:
 :get_public_images: false
Refresh Interval

						The :refresh_interval defines a base frequency that a full refresh will be performed for a provider. The default value is 24 hours, although as can be seen this is overridden for several providers.
					

						Refresh workers also however have a Configuration → Advanced setting called :restart_interval which by default is set as 2.hours (see the section called “Worker Validation”). Unless a provider connection broker is being used, each time a new refresh worker starts it queues a messages for itself to perform an initial full refresh. The following line from evm.log illustrates this behaviour:
					
... INFO -- : MIQ(ManageIQ::Providers::Redhat::InfraManager:: ⏎
RefreshWorker::Runner#do_before_work_loop) EMS [rhvm] as [admin] ⏎
Queueing initial refresh for EMS
Note

							Currently only the VMware provider uses a connection broker, called the VIM Broker
						

						The net result is that even though a provider may have a :refresh_interval setting of 24 hours, in practice a full refresh is often performed at the frequency of the worker’s :restart_interval value.
					

Refresh Threshold

						Although targeted refreshes are generally considerably faster than full refreshes, there is a break-even point after which a full refresh becomes more efficient to perform than many tens or hundreds of merged targeted requests. This point unfortunately varies between different CloudForms installations, and is dependant on the provider EMS type and API responsiveness, VMDB database I/O and CPU performance, and the number of managed objects within each provider.
					

						There is a Configuration → Advanced setting called :full_refresh_threshold. This specifies the maximum number of concurrent targeted refreshes that should be attempted before being replaced by a single full request, by any provider in the region.
					

						The default :full_refresh_threshold value is 100 and is global (provider-independent), however the value can be modified or overridden by provider type if required. For example to override the setting for all RHV providers in the region, the following lines could be added to the :ems_refresh section:
					
 :rhevm:
 :full_refresh_threshold: 200

						If the :full_refresh_threshold value is triggered, there will be a corresponding "Escalating" line written to evm.log, for example:
					
... MIQ(ManageIQ::Providers::Vmware::InfraManager::Refresher# ⏎
preprocess_targets) Escalating to full refresh for EMS: [vCenter6], ⏎
id: [1000000000002].

						Such escalations can happen if too many events are received in a short period of time (section Chapter 9, Event Handling discusses blacklisting events).
					
Calculating a Suitable Refresh Threshold

							Finding the correct value for the refresh threshold for each CloudForms installation is important. The duration of the refresh process should be as short as possible for several reasons, including the following:
						
	
									New VM instances are not recognised until an EMS refresh completes. This can have an adverse impact on other related activities such as VM provisioning.
								
	
									A new EMS refresh operation cannot start until any prior refreshes have completed. If an existing (long) refresh has just missed the creation of a new object but is still in progress, a further refresh may be needed to capture the new object.
								

							The optimum value for the refresh threshold can only be found by examining the actual refresh times encountered for each provider. Having multiple providers of the same type in the same region can complicate this process, and if the optimal thresholds for each provider are found to be very different it may be worth splitting providers between regions.
						

							For example a CloudForms installation managing a single VMware provider with approximately 800 VMs was examined to find the optimum refresh threshold. The evm.log file for the CFME appliance with the Provider Inventory role was examined over a period of several days.
						

							It was discovered that that the average time for a targeted EMS refresh for a single VM was approximately 9 seconds, and that this increased by roughly 3 seconds for each additional VM added to the targeted refresh list.
						

							Over the same time period the average time for a full EMS refresh was approximately 225 seconds. A more suitable full_refresh_threshold for this particular installation would therefore be:
						
(225 - 6) / 3 = 73

[13]
					Unfortunately the timings are often incorrect until https://bugzilla.redhat.com/show_bug.cgi?id=1424716 is fixed. The correct times can ususally be calculated by subtracting the previous counter values from the current
				

[14]
					Example scripts to perform the calculations are available from https://github.com/RHsyseng/cfme-log-parsing
				

Chapter 6. Capacity & Utilization

			The processing of Capacity & Utililization (C&U) data is both resource intensive, and with some providers also time critical as real-time counters are only stored for a short period of time. These two factors must be carefully considered and monitored when deploying CloudForms to manage large virtual infrastructures or clouds.
		
Note

				C&U processing is often referred to as metrics processing
			

Component Parts

				As discussed in Chapter 2, Architecture, there are three CFME appliance roles connected with C&U processing:
			
	
						Capacity & Utilization Coordinator
					
	
						Capacity & Utilization Data Collector
					
	
						Capacity & Utilization Data Processor
					

C&U Coordination

					Every 3 minutes a message is queued for the C&U Coordinator to begin processing.[15]. The Coordinator schedules the data collections for all of the managed objects in the VMDB, and queues messages for the C&U Data Collector to retrieve metrics for any objects for which a collection is due. The default time interval between collections (the capture threshold) is 10 minutes, but for VMs, Clusters and Hosts this is expanded to 50 minutes, and for storage, 60 minutes.
				

					The capture thresholds are defined in the :performance section of the Configuration → Advanced settings, as follows:
				
:performance:
 :capture_threshold:
 :default: 10.minutes
 :ems_cluster: 50.minutes
 :host: 50.minutes
 :storage: 60.minutes
 :vm: 50.minutes
 :capture_threshold_with_alerts:
 :default: 1.minutes
 :host: 20.minutes
 :vm: 20.minutes

					If a control alert is defined for an object type, the shorter capture thresholds defined under :capture_threshold_with_alerts are used to ensure a faster response.
				

					The message created by the C&U Coordinator specifies a counter type to retrieve ("realtime" or "hourly"), and an optional time range to collect data for.
				

Data Collection

					The data collection phase of C&U processing is split into two parts: capture, and initial processing and storage, both performed by the C&U Data Collector.
				
Capture

						Upon dequeue of a new message the Data Collector makes a connection to the provider’s metrics source API to retrieve the data for the object and time range specified in the message.
					

						The following table shows the metrics sources for the supported providers.
					
Table 6.1. Metrics Sources
	Provider	Metrics source
	
										VMware
									

									 	
										vCenter Server statistics
									

									
	
										Red Hat Virtualization
									

									 	
										Data Warehouse database (default: ovirt_engine_history)
									

									
	
										OpenStack CloudManager (OSP 6-9)
									

									 	
										Ceilometer
									

									
	
										OpenStack CloudManager (OSP 10+)
									

									 	
										Gnocchi
									

									
	
										OpenStack InfraManager (Director)
									

									 	
										Ceilometer
									

									
	
										Amazon
									

									 	
										Amazon CloudWatch
									

									
	
										Azure
									

									 	
										Azure Monitor
									

									
	
										Google
									

									 	
										Google Cloud Monitoring API (superseded by Stackdriver)
									

									
	
										OpenShift
									

									 	
										Hawkular
									

									

						A successful capture is written to evm.log, as follows.[16]:
					
... MIQ(ManageIQ::Providers::Vmware::InfraManager::Vm#perf_capture) ⏎
[realtime] Capture for ⏎
ManageIQ::Providers::Vmware::InfraManager::Vm name: [VP23911], ⏎
id: [1000000000789]...Complete - Timings: ⏎
{:capture_state=>0.08141517639160156, ⏎
:vim_connect=>0.06982016563415527, ⏎
:capture_intervals=>0.014894962310791016, ⏎
:capture_counters=>0.20465683937072754, ⏎
:build_query_params=>0.0009250640869140625, ⏎
:num_vim_queries=>1, ⏎
:vim_execute_time=>0.2935605049133301, ⏎
:perf_processing=>0.10299563407897949, ⏎
:num_vim_trips=>1, ⏎
:total_time=>0.7732744216918945}

Initial Processing & Storage

						The realtime data retrieved from the metrics source is stored in the VMDB in the metrics table, and in one of 24 sub-tables called metrics_00 to metrics_23 (based on the timestamp, each table corresponds to an hour). Dividing the records between sub-tables simplifies some of the data processing tasks. Once the data is stored, the Data Collector queues messages to the Data Processor to perform the hourly, daily and parental rollups.
					

						The successful completion of this initial processing stage can be seen in evm.log, as follows:
					
... MIQ(ManageIQ::Providers::Vmware::InfraManager::Vm#perf_process) ⏎
[realtime] Processing for ⏎
ManageIQ::Providers::Vmware::InfraManager::Vm name: [VR11357], ⏎
id: [1000000000043], ⏎
for range [2017-01-25T05:59:00Z - 2017-01-25T06:50:20Z]... ⏎
Complete - Timings: ⏎
{:process_counter_values=>0.019364118576049805, ⏎
:db_find_prev_perfs=>0.015059232711791992, ⏎
:process_perfs=>0.2053236961364746, ⏎
:process_perfs_db=>1.8572983741760254, ⏎
:total_time=>2.1722793579101562}

Data Processing

					The C&U Data Processors periodically perform the task of 'rolling up' the realtime data. Rollups are performed hourly and daily, and counters for more granular objects such as virtual machines are aggregated into the counters for their parent objects. For example for a virtual infrastructure such as VMware or Red Hat Virtualization, the parent rollup process would include the following objects:
				

					VM {hourly,daily} → Host {realtime,hourly,daily} → Cluster {hourly,daily} → Provider {hourly,daily} → Region {hourly,daily} → Enterprise
				

					Rollup data is stored in the metrics_rollups table and in one of 12 sub-tables called metric_rollups_01 to metric_rollups_12 (each table corresponds to a month).
				

					Additional analysis is performed on the hourly rollup data to identify bottlenecks, calculate chargeback metrics, and determine normal operating range and right-size recommendations. The completion of a successful rollup is written to evm.log, as follows:
				
... INFO -- : MIQ(ManageIQ::Providers::Vmware::InfraManager::Vm# ⏎
perf_rollup) [hourly] Rollup for ManageIQ::Providers::Vmware:: ⏎
InfraManager::Vm name: [ranj001], id: [1000000000752] for time: ⏎
[2016-12-13T02:00:00Z]...Complete - Timings: ⏎
{:server_dequeue=>0.0035326480865478516, ⏎
:db_find_prev_perf=>3.514737129211426, ⏎
:rollup_perfs=>27.559985399246216, ⏎
:db_update_perf=>7.901974678039551, ⏎
:process_perfs_tag=>1.1872785091400146, ⏎
:process_bottleneck=>2.1828694343566895, ⏎
:total_time=>54.16198229789734}

Data Retention

				Capacity and Utilization data is not retained indefinitely in the VMDB. By default hourly and daily rollup data is kept for 6 months after which it is purged, and realtime data samples are purged after 4 hours. These retention periods for C&U data are defined in the :performance section of the Configuration → Advanced settings, as follows:
			
:performance:
 ...
 :history:
 ...
 :keep_daily_performances: 6.months
 :keep_hourly_performances: 6.months
 :keep_realtime_performances: 4.hours

Challenges of Scale

				The challenges of scale for capacity & utilization are related to the time constraints involved when collecting and processing the data for several thousand objects in fixed time periods, for example:
			
	
						Retrieving realtime counters before they are deleted from the EMS
					
	
						Rolling up the realtime counters before the records are purged from the VMDB
					
	
						Inter-worker message timeout
					

				When capacity & utilization is not collecting and processing the data consistently, other CloudForms capabilities that depend on the metrics - such as chargeback or rightsizing - become unreliable.
			

				The challenges are addressed by adding concurrency - scaling out both the data collection and processing workers - and by keeping each step in the process as short as possible to maximise throughput.
			

Monitoring Capacity & Utilization Performance

				As with EMS refresh, C&U data collection has two significant phases that each contribute to the overall performance:
			
	
						Extracting and parsing the metrics from the EMS
					
	
								Network latency to the EMS
							
	
								Time waiting for the EMS to process the capture and return data
							
	
								CPU cycles performing initial processing
							

	
						Storing the data into the VMDB
					
	
								Network latency to the database
							
	
								Database appliance CPU, memory and I/O resources
							

				The line printed to evm.log at the completion of each stage of the operation contains detailed timings, and these can be used to determine bottlenecks. The typical log lines for VMware C&U capture and initial processing can be parsed using a script such as perf_process_timings.rb.[17], for example:
			
Capture timings:
 build_query_params: 0.000940 seconds
 vim_connect: 1.396388 seconds
 capture_state: 0.038595 seconds
 capture_intervals: 0.715417 seconds
 capture_counters: 1.585664 seconds
 vim_execute_time: 2.039972 seconds
 perf_processing: 0.044047 seconds
 num_vim_queries: 1.000000
 num_vim_trips: 1.000000
Process timings:
 process_counter_values: 0.043278 seconds
 db_find_prev_perfs: 0.010970 seconds
 process_perfs: 0.540629 seconds
 process_perfs_db: 3.387275 seconds

				C&U data processing is purely a CPU and database-intensive activity. The rollup timings can be extracted from evm.log in a similar manner
			
Rollup timings:
 db_find_prev_perf: 0.014738
 rollup_perfs: 0.193929
 db_update_perf: 0.059067
 process_perfs_tag: 0.000054
 process_bottleneck: 0.005456
 total_time: 0.372196

Identifying Capacity and Utilization Problems

				The detailed information written to evm.log can be used to identify problems with capacity and utilization
			
Coordinator

					With a very large number of managed objects the C&U Coordinator becomes unable to create and queue all of the required perf_capture_realtime messages within its own message timeout period of 600 seconds. An indeterminate number of managed objects will have no collections scheduled for that time interval. An extraction of lines from evm.log that illustrates the problem is as follows:
				
... INFO -- : MIQ(MiqGenericWorker::Runner#get_message_via_drb) ⏎
Message id: [10000221979280], MiqWorker id: [10000001075231], ⏎
Zone: [OCP], Role: [ems_metrics_coordinator], Server: [], ⏎
Ident: [generic], Target id: [], Instance id: [], Task id: [], ⏎
Command: [Metric::Capture.perf_capture_timer], Timeout: [600], ⏎
Priority: [20], State: [dequeue], Deliver On: [], Data: [], ⏎
Args: [], Dequeued in: [2.425676767] seconds

... INFO -- : MIQ(Metric::Capture.perf_capture_timer) Queueing ⏎
performance capture...

... INFO -- : MIQ(MiqQueue.put) Message id: [10000221979391], ⏎
id: [], Zone: [OCP], Role: [ems_metrics_collector], Server: [], ⏎
Ident: [openshift_enterprise], Target id: [], ⏎
Instance id: [10000000000113], Task id: [], ⏎
Command: [ManageIQ::Providers::Kubernetes::ContainerManager:: ⏎
ContainerNode.perf_capture_realtime], Timeout: [600], ⏎
Priority: [100], State: [ready], Deliver On: [], Data: [], ⏎
Args: [2017-03-23 20:59:00 UTC, 2017-03-24 18:33:23 UTC]

...

... INFO -- : MIQ(MiqQueue.put) Message id: [10000221990773], ⏎
id: [], Zone: [OCP], Role: [ems_metrics_collector], Server: [], ⏎
Ident: [openshift_enterprise], Target id: [], ⏎
Instance id: [10000000032703], Task id: [], ⏎
Command: [ManageIQ::Providers::Kubernetes::ContainerManager:: ⏎
ContainerGroup.perf_capture_realtime], Timeout: [600], ⏎
Priority: [100], State: [ready], Deliver On: [], Data: [], ⏎
Args: [2017-03-24 18:10:20 UTC, 2017-03-24 18:43:15 UTC]

... ERROR -- : MIQ(MiqQueue#deliver) Message id: [10000221979280], ⏎
timed out after 600.002976954 seconds. Timeout threshold [600]

					Such problems can be detected by looking for message timeouts in the log using a command such as the following:
				
egrep "Message id: \[\d+\], timed out after" evm.log

					Any lines matched by this search can be traced back using the PID field in the log line to determine the operation that was in process when the message timeout occurred.
				

Data Collection

					Some providers keep realtime performance data for a limited time period, and if not retrieved in that time period, it is lost. For example VMware ESXi servers sample performance counter instances for themselves and the virtual machines running on them every 20 seconds, and maintain 180 realtime instance data points for a rolling 60 minute period. Similarly the OpenStack Gnocchi 'low' and 'high' archive policies on OSP 10+ only retain the finest granularity collection points for one hour (although this is configurable). There is therefore a 60 minute window during which performance information for each VMware or OpenStack element must be collected. If the performance data samples are not collected before that rolling 60 minutes is up, the data is lost.
				

					The C&U Coordinator schedules a new VM, host or cluster realtime performance collection 50 minutes after the last data sample was collected for that object. This allows up to 10 minutes for the message to be dequeued and processed, before the realtime metrics are captured. In a large VMware or OpenStack environment the messages for the C&U Data Collectors can take longer than 10 minutes to be dequeued, meaning that some realtime data samples are lost. As the environment grows (more VMs) the problem slowly becomes worse.
				

					There are several types of log line written to evm.log that can indicate C&U data collection problems.
				
Messages Still Queued from Last C&U Coordinator Run

						Before the C&U Coordinator starts queueing new messages it calls an internal method perf_capture_health_check that prints the number of capture messages still queued from previous C&U Coordinator schedules. If the C&U Data Collectors are keeping pace with the rate of message additions, there should be approximately 0 messages remaining in the queue when the C&U Coordinator runs. If the C&U Data Collectors are not dequeuing and processing messages quickly enough there will be a backlog.
					

						Searching for the string "perf_capture_health_check" on the CFME appliance with the active C&U Coordinator role will show the state of the queue before the C&U Coordinator adds further messages, and any backlog will be visible.
					
... INFO -- : MIQ(Metric::Capture.perf_capture_health_check) ⏎
520 "realtime" captures on the queue for zone [VMware Zone] - ⏎
oldest: [2016-12-13T07:14:44Z], recent: [2016-12-13T08:02:32Z]
... INFO -- : MIQ(Metric::Capture.perf_capture_health_check) ⏎
77 "hourly" captures on the queue for zone [VMware Zone] - ⏎
oldest: [2016-12-13T08:02:15Z], recent: [2016-12-13T08:02:17Z]
... INFO -- : MIQ(Metric::Capture.perf_capture_health_check) ⏎
0 "historical" captures on the queue for zone [VMware Zone]

Long Dequeue Times

						Searching for the string "MetricsCollectorWorker::Runner#get_message_via_drb" will show the log lines printed when the C&U Data Collector messages are dequeued. A "Dequeued in" value higher than 600 seconds is likely to result in lost realtime data for VMware or OpenStack providers.
					
... INFO -- : MIQ(ManageIQ::Providers::Vmware::InfraManager:: ⏎
MetricsCollectorWorker::Runner#get_message_via_drb) ⏎
Message id: [1000032258093], MiqWorker id: [1000000120960], ⏎
Zone: [VMware], Role: [ems_metrics_collector], Server: [], ⏎
Ident: [vmware], Target id: [], Instance id: [1000000000060], ⏎
Task id: [], Command: [ManageIQ::Providers::Vmware::InfraManager:: ⏎
Vm.perf_capture_realtime], Timeout: [600], Priority: [100], ⏎
State: [dequeue], Deliver On: [], Data: [], Args: [], ⏎
Dequeued in: [789.95923544] seconds

Missing Data Samples - Data Collection

						Searching for the string "expected to get data" can reveal whether requested data sample points were not available for retrieval from the EMS, as follows:
					
... WARN -- : MIQ(ManageIQ::Providers::Vmware::InfraManager::HostEsx ⏎
#perf_capture) [realtime] For ManageIQ::Providers::Vmware:: ⏎
InfraManager::HostEsx name: [esx04], id: [1000000000023], ⏎
expected to get data as of [2016-12-13T01:20:00Z], ⏎
but got data as of [2016-12-13T02:00:20Z].

Missing Data Samples - Data Loading

						Searching for the string "performance rows…​Complete" reveals the number of performance rows that were successfully processed and loaded into the VMDB, as follows:
					
... INFO -- : MIQ(ManageIQ::Providers::Vmware::InfraManager::Vm# ⏎
perf_process) [realtime] Processing 138 performance rows...Complete ⏎
- Added 138 / Updated 0

						For VMware this should be less than 180 per collection interval (180 points is the maximum retained for an hour). The presence of a number of lines with a value of 180 usually indicates that some realtime data samples have been lost.
					

Unresponsive Provider

						In some cases the CloudForms processes are working as expected, but the provider EMS is overloaded and not responding to API requests. To determine the relative EMS connection and query times for a VMware provider, the ':vim_connect' and ':vim_execute_time' timing counters from evm.log can be plotted. For this example the perf_process_timings.rb script can be used, as follows:
					
ruby ~/git/cfme-log-parsing/perf_process_timings.rb ⏎
-i evm.log -o perf_process_timings.out

egrep -A 22 "Worker PID:\s+10563" perf_process_timings.out | ⏎
grep vim_connect | awk '{print $2}' > vim_connect_times.txt

egrep -A 22 "Worker PID:\s+10563" perf_process_timings.out | ⏎
grep vim_execute_time | awk '{print $2}' > vim_execute_times.txt

						The contents of the two text files can then be plotted, as shown in Figure 6.1, “VMware Provider C&U Connect and Execute Timings, Single Worker, 24 Hour Period”.
					
Figure 6.1. VMware Provider C&U Connect and Execute Timings, Single Worker, 24 Hour Period
[image: Screenshot]

						​

					

						In this example the stacked lines show a consistent connect time, and an execute time that is slightly fluctuating but still within acceptable bounds for reliable data collection.
					

Data Processing

					The rollup and associated bottleneck and performance processing of the C&U data is less time sensitive, although must still be completed in the 4 hour realtime performance data retention period.
				

					With a very large number of managed objects and insufficient worker processes, the time taken to process the realtime data can exceed the 4 hour period, meaning that that data is lost. The time taken to process the hourly rollups can exceed an hour, and the rollup process never keeps up with the rate of messages.
				

					The count of messages queued for processing by the Data Processor can be extracted from evm.log, as follows:
				
grep 'count for state=\["ready"\]' evm.log | ⏎
egrep -o "\"ems_metrics_processor\"=>[[:digit:]]+"

"ems_metrics_processor"=>16612
"ems_metrics_processor"=>16494
"ems_metrics_processor"=>12073
"ems_metrics_processor"=>12448
"ems_metrics_processor"=>13015
...

					The "Dequeued in" and "Delivered in" times for messages processed by the MiqEmsMetricsProcessorWorkers can be used as guidelines for overall throughput, for example:
				
... INFO -- : MIQ(MiqEmsMetricsProcessorWorker::Runner# ⏎
get_message_via_drb) Message id: [1000032171247], MiqWorker id: ⏎
[1000000253077], Zone: [VMware], Role: [ems_metrics_processor], ⏎
Server: [], Ident: [ems_metrics_processor], Target id: [], ⏎
Instance id: [1000000001228], Task id: [], ⏎
Command: [ManageIQ::Providers::Vmware::InfraManager::Vm.perf_rollup], ⏎
Timeout: [1800], Priority: [100], State: [dequeue], ⏎
Deliver On: [2016-12-13 03:00:00 UTC], Data: [], ⏎
Args: ["2016-12-13T02:00:00Z", "hourly"], ⏎
Dequeued in: [243.967960013] seconds

... INFO -- : MIQ(MiqQueue#delivered) Message id: [1000032171247], ⏎
State: [ok], ⏎
Delivered in [0.202901147] seconds

					When C&U is operating correctly, for each time-profile instance there should be one daily record and at least 24 hourly records for each powered-on VM. There should also be at most 5 of the metrics_## tables that contain more than zero records.
				

					The following SQL query can be used to confirm that the records are being processed correctly:
				
select resource_id, date_trunc('day',timestamp) as collect_date, ⏎
resource_type, capture_interval_name, count(*)
from metric_rollups
where resource_type like '%Vm%'
group by resource_id, collect_date, resource_type, capture_interval_name
order by resource_id, collect_date, resource_type, capture_interval_name, count
;
 ..._id | collect_date | resource_type | capture_int... | count
--------+---------------------+---------------+----------------+-------
...
 4 | 2017-03-17 00:00:00 | VmOrTemplate | daily | 1
 4 | 2017-03-17 00:00:00 | VmOrTemplate | hourly | 24
 4 | 2017-03-18 00:00:00 | VmOrTemplate | daily | 1
 4 | 2017-03-18 00:00:00 | VmOrTemplate | hourly | 24
 4 | 2017-03-19 00:00:00 | VmOrTemplate | daily | 1
 4 | 2017-03-19 00:00:00 | VmOrTemplate | hourly | 24
 4 | 2017-03-20 00:00:00 | VmOrTemplate | daily | 1
 4 | 2017-03-20 00:00:00 | VmOrTemplate | hourly | 24
...

Recovering From Capacity and Utilization Problems

				If C&U realtime data is not collected it is generally lost. Some historical information is retrievable using C&U gap collection (see Figure 6.2, “C&U Gap Collection”), but this is of a lower granularity than the realtime metrics that are usually collected. Gap collection is fully supported with VMware providers, but also works in a more limited capacity with some other providers such as OpenShift.
			
Figure 6.2. C&U Gap Collection
[image: Screenshot]

				​

			

Tuning Capacity and Utilization

				Tuning capacity and utilization generally involves ensuring that the VMDB is running optimally, and adding workers and CFME appliances to scale out the processing capability.
			
Scheduling

					Messages for the ems_metrics_coordinator (C&U coordinator) server role are processed by a Generic or Priority worker. These workers also process automation messages, which are often long-running. For larger CloudForms installations it can be beneficial to separate the C&U Coordinator and Automation Engine server roles onto different CFME appliances.
				

Data Collection

					The metrics_00 to metrics_23 VMDB tables have a high rate of insertions and deletions, and benefit from regular reindexing. The database maintenance scripts that can be installed from appliance_console run a /usr/bin/hourly_reindex_metrics_tables script that reindexes one of the tables every hour.
				

					If realtime data samples are regularly being lost, there are two remedial measures that can be taken.
				
Increasing the Number of Data Collectors

						The default number of C&U Data Collector workers per appliance is 2. This can be increased to a maximum of 9, although consideration should be given to the additional CPU and memory requirements that an increased number of workers will place on an appliance. It may be more appropriate to add further appliances and scale horizontally.
					

						For larger CloudForms installations it can be beneficial to separate the C&U Data Collector and Automation Engine server roles onto different CFME appliances, as both are resource intensive. Very large CloudForms installations (managing several thousand objects) may benefit from dedicated CFME appliances in the provider zones exclusively running the C&U data collector role.
					

Reducing the Collection Interval

						The collection interval can be reduced from 50 minutes to a smaller value (for example 20-30 minutes) allowing more time for collection scheduling and for queuing wait time. The delay or "capture threshold" is defined in the :performance section of the Configuration → Advanced settings, as follows:
					
:performance:
 :capture_threshold:
 :ems_cluster: 50.minutes
 :host: 50.minutes
 :storage: 60.minutes
 :vm: 50.minutes

						Reducing the collection interval places a higher overall load on both the EMS and CloudForms appliances, so this option should be considered with caution.
					

Data Processing

					If C&U data processing is taking too long to process the rollups for all objects, the number of C&U Data Processor workers can be increased from the default of 2 up to a maximum of 4 per appliance. As before, consideration should be given to the additional CPU and memory requirements that an increased number of workers will place on an appliance. Adding further CFME appliances to the zone may be more appropriate.
				

					For larger CloudForms installations it can be beneficial to separate the C&U Data Processor and Automation Engine server roles onto different CFME appliances, as both are resource intensive. CloudForms installations managing several thousand objects may benefit from dedicated CFME appliances in the provider zones exclusively running the C&U Data Processor role.
				

[15]
						The default value is 3 minutes, but this can be changed in 'Advanced' settings
					

[16]
							As with the EMS collection timings, the C&U timings are sometimes incorrect until https://bugzilla.redhat.com/show_bug.cgi?id=1424716 is fixed. When incorrect the correct times can be calculated by subtracting the previous counter values from the current
						

[17]
					From https://github.com/RHsyseng/cfme-log-parsing
				

Chapter 7. Automate

			Automate is an important component of CloudForms that performs many tasks, such as:
		
	
					Event processing
				
	
					Service provisioning and retirement
				
	
					VM and instance provisioning and retirement
				

Automation Engine

				Automate requests and tasks are processed by an automation engine running in either a Generic or Priority worker. Priority workers dequeue high priority (priority 20) messages, which include the following types of automate task:
			
	
						Automate instances started from a custom button in the WebUI
					
	
						Processing events though the automate event switchboard
					

				Generic workers dequeue all priorities of messages for the server roles that they manage. These include the less time-sensitive automation jobs such as service requests and provisioning workflows, which are typically queued at a priority of 100.
			

				An automate message’s "Args" list is passed to the automation engine which instantiates the requested automate entry point instance (usually under /System/Process in the automate datastore). The Generic worker does not process any further messages until the automate instance, its children, and any associated methods have completed, or a state machine method exits with $evm.root['ae_result'] = 'retry'.
			

				This process can be observed in evm.log by following the message (Message id: [1038885]) that initiated a virtual machine provisioning operation to a Red Hat Virtualization provider. The message is dequeued and passed to the automation engine, as follows:
			
... INFO -- : MIQ(MiqGenericWorker::Runner#get_message_via_drb) ⏎
Message id: [1038885], MiqWorker id: [3758], Zone: [default], ⏎
Role: [automate], Server: [], Ident: [generic], Target id: [], ⏎
Instance id: [], Task id: [miq_provision_147], ⏎
Command: [MiqAeEngine.deliver], Timeout: [600], Priority: [100], ⏎
State: [dequeue], Deliver On: [], Data: [], ⏎
Args: [{:object_type=>"ManageIQ::Providers::Redhat::InfraManager:: ⏎
Provision", :object_id=>147, :attrs=>{"request"=>"vm_provision"}, ⏎
:instance_name=>"AUTOMATION", :user_id=>1, :miq_group_id=>2, ⏎
:tenant_id=>1}], Dequeued in: [3.50249721] seconds

... INFO -- : Q-task_id([miq_provision_147]) MIQ(MiqAeEngine.deliver) ⏎
Delivering {"request"=>"vm_provision"} for object ⏎
[ManageIQ::Providers::Redhat::InfraManager::Provision.147] ⏎
with state [] to Automate

				The automation engine processes the first 9 states in the state machine, but does not complete the processing of the message until the CheckProvisioned method exits with ae_result="retry". The automation engine is seen re-queueing a new message for delivery in 60 seconds, and the current message is flagged as "Delivered" after 50.708623233 seconds of processing time, as follows:
			
... INFO -- : Q-task_id([miq_provision_147]) MIQ(MiqAeEngine.deliver) ⏎
Requeuing :object_type=>"ManageIQ::Providers::Redhat::InfraManager:: ⏎
Provision", :object_id=>147, :attrs=>{"request"=>"vm_provision"}, ⏎
:instance_name=>"AUTOMATION", :user_id=>1, :miq_group_id=>2, ⏎
:tenant_id=>1, :state=>"CheckProvisioned", :ae_fsm_started=>nil, ⏎
:ae_state_started=>"2017-03-22 13:05:34 UTC", :ae_state_retries=>1, ⏎
:ae_state_previous=>"---\n\"/Bit63/Infrastructure/VM/ ⏎
Provisioning/StateMachines/VMProvision_vm/template\":\n ae_state: ⏎
CheckProvisioned\n ae_state_retries: 1\n ae_state_started: ⏎
2017-03-22 13:05:34 UTC\n"} for object ⏎
[ManageIQ::Providers::Redhat::InfraManager::Provision.147] with state ⏎
[CheckProvisioned] to Automate for delivery in [60] seconds

... INFO -- : Q-task_id([miq_provision_147]) ⏎
MIQ(ManageIQ::Providers::Redhat::InfraManager::Provision# ⏎
after_ae_delivery) ae_result="retry"

... INFO -- : Q-task_id([miq_provision_147]) MIQ(MiqQueue#delivered) ⏎
Message id: [1038885], State: [ok], Delivered in [50.708623233] seconds

				The retry allows the Generic worker to dequeue and process the next message.
			

Challenges of Scale

				There are several challenges of scale for automate.
			
Zone-Related Considerations

					There are some zone-related implications that should be considered when running automation tasks in a large multi-zone CloudForms deployment.
				
Automation Engine Enablement

						All zones should have at least one CFME appliance with the Automation Engine role set, to process zone-related events. Even zones that have no providers associated with them will generate events such as evm_worker_stop, or evm_worker_memory_exceeded. If no appliance in a zone has the Automation Engine role enabled, the messages for these events will accumulate in the miq_queue table and never be removed.
					

Services

						Most automate messages specify the zone that the automate action should be performed in, however an exception to this is found in the messages that initiate service template provision requests and tasks. These messages don’t specify a zone and can therefore run on any appliance in the region that has the Automation Engine role enabled. This can lead to unexpected behaviour.
					

						For example if employing services to provision virtual machines using the /ManageIQ/Service/Provisioning/StateMachines/ServiceProvision_Template class, the messages are zone independent as described. The message to execute the first child service template provision task however is queued for a worker with the ems_operations role, but in the same zone as the CFME appliance creating the message. If there are no CFME appliances in the zone with the Provider Operations role enabled, the task will not be dequeued and processed, and the service provision will appear to hang.
					

						Similarly services that have a catalog item type of "Generic" can run in any zone that has the Automation Engine role enabled. This might not be the intended action if the workflow is intended to run in a specific zone, such as in an environment where network access rules or firewall restrictions might be appliance-specific.
					

RESTful API

						When an automation request is submitted via the API, the automate task is queued by default on the same appliance that the web service is running on. This will be dequeued to run by any appliance with the Automation Engine role set in the same zone. If the WebUI/web service appliances have been placed in their own zone, this may not necessarily be the desired behaviour.
					

Identifying Automate Problems

				There are several problems that can be seen when running automation workflows in large-scale CloudForms deployments.
			
Requests Not Starting

					By default each CFME appliance has 2 Priority and 2 Generic workers. If both of the Generic workers are busy processing long-running automate tasks or high priority messages (such as from an event storm), no further priority 100 automate messages will be dequeued and processed until either of the workers completes their current task. This is often observed in larger deployments when service or automation requests appear to remain in a "Pending" state for a long time.
				

Long Running Tasks Timing Out

					The default message timeout for automate messages is 600 seconds, which means that the combined execution times of all automate methods that share a common $evm.root object must be less than 10 minutes. If this time limit is exceeded the automate method will be deemed "non responsive" and terminated, and the Generic worker running the automation will exit and be re-spawned. This timer is only reset if a state machine method exits with $evm.root['ae_result'] = 'retry'.
				

					The timeout mechanism can be observed in evm.log, as follows:
				
... ERROR -- : <AutomationEngine> Terminating non responsive method ⏎
with pid 29188

... ERROR -- : <AutomationEngine> <AEMethod test> The following error ⏎
occurred during method evaluation:

... ERROR -- : <AutomationEngine> <AEMethod test> SignalException: ⏎
SIGTERM

... ERROR -- : MIQ(MiqQueue#deliver) Message id: [1054092], timed ⏎
out after 600.03190583 seconds. Timeout threshold [600]

... INFO -- : MIQ(MiqQueue#delivered) Message id: [1054092], ⏎
State: [timeout], Delivered in [600.047235602] seconds

... ERROR -- : MIQ(MiqGenericWorker::Runner) ID [3758] PID [3149] ⏎
GUID [d8bbe584-0e0f-11e7-a1a8-001a4aa0151a] ⏎
Exiting worker due to timeout error Worker exiting.

State Machine Retries Exceeded

					If the number of retries attempted by a state machine state reaches the limit defined in the class schema, an error will be logged to evm.log, as follows:
				
... ERROR -- : Q-task_id([automation_task_13921]) State=<pre4> running ⏎
raised exception: <number of retries <6> exceeded maximum of <5>>

Tuning Automate

				Automate can be tuned for scale in several ways. The first is to add concurrency to the workers processing automate requests and tasks, so that more operations can be run at the same time.
			

				Individual Ruby-based automate workflows can be made more reliable by adopting efficient automate coding techniques where possible to reduce the overall execution time.
			
Increasing Concurrency

					The number of Priority workers per CFME appliance can be increased up to a maximum of 4, and Generic workers up to a maximum of 9. This will increase the concurrency at which automate messages can be processed, however worker count should only be increased after consideration of the additional CPU and memory requirements that an increased number of workers will place on an appliance.
				

					For larger CloudForms installations it can be beneficial to separate any of the Capacity and Utilization, and the Automation Engine server roles onto different CFME appliances, as both are resource intensive. In very large CloudForms installations it can be beneficial to have dedicated appliances per zone with the Automation Engine role enabled, each with the maximum numbers of Generic and Priority workers.
				

Reducing Execution Time

					There are two useful techniques that can be used to help keep the overall execution time of custom Ruby-based automation workflows within the 10 minute timeout period. The first is to use state machines as much as possible to model workflows, and to include CheckCompleted states after any asynchronous and potentially long-running operation. The CheckCompleted state methods check for completion of the prior state, and issue an ae_result="retry" if the operation is incomplete.
				

					The second is to use $evm.execute('create_automation_request',…​) rather than $evm.instantiate to execute long-running instances. Using $evm.instantiate to start another instance from a currently running method will execute the called instance synchronously. The calling method will wait until the instantiated instance completes before continuing. If the instantiated method integrates with an external system for example, this delay might be significant, and contributes towards the total message processing time.
				

					The use of these two techniques can be illustrated with the following example. In this case a call is made using $evm.instantiate to run an instance update_cmdb that updates the IP address for a virtual machine in an external CMDB, but the external API call to the CMDB sometimes takes several minutes to complete. The existing in-line call is as follows:
				
$evm.instantiate("/Integration/Methods/update_cmdb?name=dbsrv01& ⏎
 ip=10.1.2.3")

					To run the update_cmdb instance asynchronously, the call can be rewritten to run as a new automation request, for example:
				
options = {}
options[:namespace] = 'Integration'
options[:class_name] = 'Methods'
options[:instance_name] = 'update_cmdb'
options[:user_id] = $evm.root['user'].id
options[:attrs] = {
 'name' => 'dbsrv01',
 'ip' => '10.1.2.3'
 }
auto_approve = true

update_cmdb_request = $evm.execute('create_automation_request', ⏎
 options, 'admin', auto_approve)

					If the calling method does not need to wait for the completion of update_cmdb then processing can continue, and minimal delay has been incurred. If update_cmdb should complete before the main processing can continue, the request ID can be saved, and a 'CheckCompleted' state added to the state machine, as follows:
				
update_cmdb_request = $evm.execute('create_automation_request', ⏎
 options, 'admin', auto_approve)
$evm.set_state_var(:request_id, update_cmdb_request.id)
$evm.root['ae_result'] = 'ok'
exit MIQ_OK

					The following state in the state machine would be check_cmdb_request, containing code similar to the following:
				
update_cmdb_request =
 $evm.vmdb(:miq_request, $evm.get_state_var(:request_id))
case update_cmdb_request.state
when "pending", "active"
 $evm.log(:info, "Request still active, waiting for 30 seconds...")
 $evm.root['ae_retry_interval'] = '30.seconds'
 $evm.root['ae_result'] = 'retry'
when "finished"
 $evm.log(:info, "Request complete!")
 $evm.root['ae_result'] = 'ok'
else
 $evm.log(:warn, "Unexpected request status")
 $evm.root['ae_result'] = 'error'
end
exit MIQ_OK

					Sometimes the called method needs to pass data back to the caller, and this can be returned via the request object’s options hash. The called method update_cmdb can retrieve its own request object and use the set_option method to encode a key/value pair (where the value is a JSON-encoded hash) as follows:
				
request = $evm.root['automation_task'].automation_request
request.set_option(:return, JSON.generate({:status => 'success',
 :cmdb_return => 'update successful'}))

					The options hash can be read from the request object by the caller using the get_option method, as follows:
				
update_cmdb_request =
 $evm.vmdb(:miq_request, $evm.get_state_var(:request_id))
returned_data = update_cmdb_request.get_option(:return)

					Executing long-running tasks asynchronously in this way using a state machine retry loop to check for completion, is an efficient way of reducing overall processing time, and increasing concurrency and throughput of automate operations.
				

Overcoming Default Zone Behaviour

					The default behaviour of services and API requests with regard to zones may not necessarily be suitable for all cases.
				
Services

						If services are to be used to provision virtual machines, at least one CFME appliance with the Provider Operations role should be enabled in each zone.
					

						As mentioned in the section called “Zone-Related Considerations”, services that have a catalog item type of "Generic" might run in any zone that has a CFME appliance with the Automation Engine server role enabled. If this is not desired behaviour, a workaround is for the service catalog item provisioning entry point to run a simple method that re-launches the service provisioning state machine from a $evm.execute('create_automation_request',…​) call. This allows the target zone to be specified as the :miq_zone option, for example:
					
attrs = {}
attrs['dialog_stack_name'] = $evm.root['dialog_stack_name']
attrs['dialog_password'] = $evm.root['dialog_password']
options = {}
options[:namespace] = 'Service/Provisioning/StateMachines'
options[:class_name] = 'ServiceProvision_Template'
options[:instance_name] = 'create_stack'
options[:user_id] = $evm.vmdb(:user).find_by_userid('admin').id
options[:miq_zone] = 'Generic'
options[:attrs] = attrs
auto_approve = true
$evm.execute('create_automation_request', options, 'admin', ⏎
 auto_approve)

RESTful API

						Automation requests submitted via RESTful API can be run in a specific zone if required. The zone name can be specified using the :miq_zone parameter to the automation request, as follows:
					
 :requester => {
 :auto_approve => true
 },
 :parameters => {
 :miq_zone => 'Zone Name'
 }

Chapter 8. VM and Instance Provisioning

			Although the provisioning workflows for virtual machines and instances are run by the automation engine, there are several provisioning-specific factors that should be considered when deploying CloudForms at scale.
		
State Machines

				The VM provisioning process is one of the most complex automate workflows supplied out-of-the-box with CloudForms. The workflow consists of two nested state machines, the VM provision state machine in the automate datastore, and a provider-specific internal state machine.
			
VM Provision State Machine

					The default automate datastore state machine has the fields shown in Figure 8.1, “VM Provision State Machine”:
				
Figure 8.1. VM Provision State Machine
[image: Screenshot]

					​

				

					As can be seen, many of the fields are empty "placeholder" states such as AcquireIPAddress that can be used to extend the functionality of the state machine and integrate the workflow with the wider enterprise.
				

Internal State Machine

					The internal state machine is a nested state machine that is launched asynchronously at the Provision state of the VM provision state machine. The subsequent CheckProvisioned state of the VM provision state machine performs a check-and-retry loop until the internal state machine completes.
				

					Internal provision state machines are provider-specific, and are not exposed to automate (they are not designed to be user-customizable). They perform the granular steps of creating the virtual machine; communicating with the EMS using its native API, and customizing the VM using the parameters defined in the provisioning options hash. A typical set of internal state machine steps to provision a VMware virtual machine are as follows:
				
	
							Determine placement
						
	
							Start VMware clone from template
						
	
							Poll for clone completion
						
	
									When complete issue an EMS refresh on the host
								

	
							Poll the VMDB for the new object to appear
						
	
							Customize the VM
						
	
									Reconfigure hardware if necessary
								

	
							Autostart the VM
						
	
							Run post-create tasks
						
	
									Set description
								
	
									Set ownership
								
	
									Set retirement
								
	
									Set genealogy
								
	
									Set miq_custom_attributes
								
	
									Set ems_custom_attributes
								
	
									Connect to service
								

	
							Mark as completed
						
	
							Finish
						

					The final state of the internal state machine marks the provision task object as having a state of provisioned. The outer VM provision state machine CheckProvisioned state polls for this status, and continues to its own PostProvision state when detected.
				

Challenges of Scale

				The VM or instance provisioning workflow contains several operations that are external to CloudForms, but contribute to overall provisioning time.
			
	
						Interactions with the external management system
					
	
								EMS API calls from the internal state machine - cloning the template or adding a disk for example
							
	
								EMS refresh to retrieve details of the new VM
							

	
						Interactions with and time consumed by external provisioning components such as PXE/Kickstart servers
					
	
						Interactions with other enterprise systems such as Active Directory, IPAM or a CMDB
					
	
						Post-provisioning time consumed by initialization scripts such as cloud-init or sysprep (particularly where this includes a software update of the new virtual machine)
					

				With larger enterprises the number of interactions - and inherent workflow delays - often increases, and CloudForms sometimes needs tuning to cater for this.
			
State Machine Timeouts

					As mentioned in Chapter 7, Automate, the message to initiate a VM provisioning workflow has a timeout value of 600 seconds. The VM provision state machine therefore has a maximum time of 10 minutes to execute down to the first retry stage, which is CheckProvisioned.
				
External Integration

						In larger CloudForms deployments it is common to add enterprise integration to the VM provisioning workflow. Custom instances are often added to the placeholder fields such as AcquireIPAddress to retrieve an IP address from a corporate IP Address Management (IPAM) solution, for example. If the methods run by these stages take minutes to run under high load, the state machine may timeout before the CheckProvisioned state is reached.
					

						To reduce this possibility the VM provision state machine can be expanded to include check-and-retry states after the custom methods, such as the CheckIPAddressAcquired state in Figure 8.2, “Modified VM Provision State Machine”.
					
Figure 8.2. Modified VM Provision State Machine
[image: Screenshot]

						​

					

Placement

						The /Infrastructure/VM/Provisioning/Placement namespace in the RedHat automate domain includes 3 additional placement methods:
					
	
								redhat_best_placement_with_scope
							
	
								vmware_best_fit_with_scope
							
	
								vmware_best_fit_with_tags
							

						These methods perform additional processing to search for an optimum cluster, host and datastore on which to to place the new VM, based on tags or criteria such as most free space, or lowest current CPU utilization. With a large virtual infrastructure containing many hosts and datastores, the real-time checking of these placement permutations can take a long time, and occasionally cause the state machine to timeout.
					

						The placement methods are designed to be user-editable so that alternative criteria can be selected. If the placement methods are taking too long they may need to be edited to simplify the placement criteria.
					

CheckProvisioned

						The CheckProvisioned state of the VM provision state machine executes a check-and-retry loop until the provisioning task object shows a state of 'provisioned' or 'error'. At this point the newly provisioned VM is powered on, and is represented by an object in the CloudForms VMDB. The maximum retries for the CheckProvisioned state is set at 100, and the default retry interval (set in the check_provisioned method) is as follows:
					
$evm.root['ae_retry_interval'] = '1.minute'

						When managing very large cloud environments or virtual infrastructures under high load, it can sometimes take longer than 100 minutes for the provisioning steps, related event handling, and EMS refresh to complete. Delays can be caused by many factors, including the following:
					
	
								Many other automation messages are queued at the same priority ahead of the provider message for the VM create event
							
	
								The message queue is filled with event messages from a provider in the region that is experiencing an event storm
							
	
								A prior full refresh is still active
							
	
								The provider does not support targeted refresh
							

						The effect of such delays can be minimized by increasing the number of retries in the VM provision state machine for the CheckProvisioned state, or by editing the check_provisioned method to increase the retry interval.
					

Tuning Provisioning

				As can be seen, many of the provisioning related problems of scale are related to external factors. Although some fine tuning of timeouts and method optimization can be performed, reliability cannot necessarily be improved by scaling out CloudForms (for example adding CFME appliances, or increasing worker counts).
			
Incubation Region

					It can sometimes be beneficial in large virtual environments to create a separate provisioning or incubation CloudForms region that manages a small sub-set of the overall infrastructure. This can be used to provision new virtual machines, which can then be migrated to the production data centers or clusters once they are patched and ready for use.
				

Chapter 9. Event Handling

			The timely processing of external and internal events is important to the overall smooth running of a CloudForms installation. This section discusses the event handling process and how it can be tuned for scale.
		
Event Processing Workflow

				The event processing workflow involves 3 different workers, as follows:
			
	
						A provider-specific event catcher polls the EMS event source for new events using an API call such as https://rhevm/api/events?from=54316 (see the section called “Event Catcher Polling Frequency” for the frequency of this polling). For each new event caught a message is queued for the event handler
					
	
						The generic MiqEventHandler worker dequeues the message, and creates an EmsEvent EventStream object. Any EMS-specific references such as :vm⇒{:id⇒"4e7b66b7-080d-4593-b670-3d6259e47a0f"} are translated into the equivalent CloudForms object ID such as "VmOrTemplate::vm"⇒1000000000023, and a new high priority message is queued for automate
					
	
						A Priority worker dequeues the message and processes it through the automate event switchboard using the EventStream object created by the MiqEventHandler. Processing the event may involve several event handler automate instances that perform actions such as:
					
	
								Process any control policies associated with the event
							
	
								Process any alarms associated with the event
							
	
								Initiate any further operations that are required after the event, such as triggering an EMS refresh
							

				The event workflow is illustrated in Figure 9.1, “Event Processing Workflow”
			
Figure 9.1. Event Processing Workflow
[image: Screenshot]

				​

			
Event Catcher Polling Frequency

					The polling frequency of each of the provider-specific event catchers is defined in the :event_catcher section of the Configuration→Advanced settings. The default settings for CloudForms Management Engine 5.8 are as follows:
				
 :event_catcher:
 :poll: 1.seconds
 :event_catcher_ansible_tower:
 :poll: 20.seconds
 :event_catcher_embedded_ansible:
 :poll: 20.seconds
 :event_catcher_redhat:
 :poll: 15.seconds
 :event_catcher_openstack:
 :poll: 15.seconds
 :event_catcher_openstack_infra:
 :poll: 15.seconds
 :event_catcher_openstack_network:
 :poll: 15.seconds
 :event_catcher_hawkular:
 :poll: 10.seconds
 :event_catcher_hawkular_datawarehouse:
 :poll: 1.minute
 :event_catcher_google:
 :poll: 15.seconds
 :event_catcher_kubernetes:
 :poll: 1.seconds
 :event_catcher_lenovo:
 :poll: 4.minutes
 :event_catcher_openshift:
 :poll: 1.seconds
 :event_catcher_cinder:
 :poll: 10.seconds
 :event_catcher_swift:
 :poll: 10.seconds
 :event_catcher_amazon:
 :poll: 15.seconds
 :event_catcher_azure:
 :poll: 15.seconds
 :event_catcher_vmware:
 :poll: 1.seconds
 :event_catcher_vmware_cloud:
 :poll: 15.seconds

Generic Events

				Some external management systems implement generic event types that are issued under a variety of conditions. They are often used by third-party software vendors as a means to add their own specific events to those of the native EMS. Generic events often have a sub-type associated with them to indicate a more specific event source.
			
EventEx

					VMware vCenter management systems use an event type called EventEx as a catch-all event. Several VMware components issue EventEx events with a subtype to record state changes, problems, and recovery from problems. They appear as [EventEx]-[subtype], for example:
				
	
							[EventEx]-[com.vmware.vc.VmDiskConsolidatedEvent]
						
	
							[EventEx]-[com.vmware.vim.eam.task.scanForUnknownAgentVmsCompleted]
						
	
							[EventEx]-[com.vmware.vim.eam.task.scanForUnknownAgentVmsInitiated]
						
	
							[EventEx]-[esx.problem.scsi.device.io.latency.high]
						
	
							[EventEx]-[esx.problem.vmfs.heartbeat.recovered]
						
	
							[EventEx]-[esx.problem.vmfs.heartbeat.timedout]
						
	
							[EventEx]-[vprob.storage.connectivity.lost]
						
	
							[EventEx]-[vprob.vmfs.heartbeat.recovered]
						
	
							[EventEx]-[vprob.vmfs.heartbeat.timedout]
						

Event storms

				Event storms are very large bursts of events emitted by a provider’s EMS. They can be caused by several types of warning or failure condition, including storage or adapter problems, or host capacity, swap space usage or other host thresholds being crossed. When a component is failing intermittently the storm is often made worse by events indicating the transition between problem and non-problem state, for example:
			
[----] I, [2017-01-25T03:23:04.998138 #374:66b14c] ... caught event ⏎
[EventEx]-[esx.clear.scsi.device.io.latency.improved] chainId [427657]
[----] I, [2017-01-25T03:23:04.998233 #374:66b14c] ... caught event ⏎
[EventEx]-[esx.problem.scsi.device.io.latency.high] chainId [427658]
[----] I, [2017-01-25T03:23:04.998289 #374:66b14c] ... caught event ⏎
[EventEx]-[esx.clear.scsi.device.io.latency.improved] chainId [427659]
[----] I, [2017-01-25T03:23:04.998340 #374:66b14c] ... caught event ⏎
[EventEx]-[esx.clear.scsi.device.io.latency.improved] chainId [427660]
[----] I, [2017-01-25T03:23:04.998389 #374:66b14c] ... caught event ⏎
[EventEx]-[esx.problem.scsi.device.io.latency.high] chainId [427661]
[----] I, [2017-01-25T03:23:04.998435 #374:66b14c] ... caught event ⏎
[EventEx]-[esx.problem.scsi.device.io.latency.high] chainId [427662]
[----] I, [2017-01-25T03:23:04.998482 #374:66b14c] ... caught event ⏎
[EventEx]-[esx.clear.scsi.device.io.latency.improved] chainId [427663]
[----] I, [2017-01-25T03:23:04.998542 #374:66b14c] ... caught event ⏎
[EventEx]-[esx.clear.scsi.device.io.latency.improved] chainId [427664]
Note

					The log snippet above is from a production CloudForms installation. Note that many events are received within the same millisecond - typical of an event storm
				

				Event storms are highly detrimental to the overall performance of a CloudForms region for many reasons, including the following:
			
	
						All MiqEventHandler workers in a zone can be overwhelmed processing messages from one provider, to the detriment of other providers in that zone
					
	
						The many hundreds of thousands (up to tens of millions) of unprocessed high-priority messages in the miq_queue table consume all Generic and Priority workers in the zone
					
	
						The number of messages in the miq_queue table affects the performance of get_message_via_drb for all queue workers in the entire region
					

				In some cases the problems are temporary and clear themselves after the event message emission stops and the CFME appliances can process the messages already queued for processing. In other cases the sheer volume of event messages can result in appliances which still appear to be running, but where the CFME services - including the WebUI - are unresponsive.
			
Handling and Recovering from Event Storms

					Until the cause of the event storm is identified and corrected, the quickest way to restore any operation for the CloudForms environment is to to prevent the continued growth of the miq_queue table. The simplest techniques are to blacklist the event(s) causing the storm (see the section called “Blacklisting Events”), or to disable the event monitor role on all CFME appliance in the provider’s zone.
				
Note

						Disabling the event monitor will disable both the event catcher and event processor workers, so queued messages in the miq_queue table will not be processed. If there are multiple providers in the zone, event catching and handling for these providers may also become inactive.
					

					In critical situations with many hundreds of thousands to millions of queued messages, it may be necessary to selectively delete message instances from the miq_queue table. Since the overwhelming number of messages expected to be in this table will be of type 'event', the following SQL statement can be used to remove all such instances from the miq_queue table:
				
delete from miq_queue where role = 'event' and class_name = 'EmsEvent';

					Before running this query the following points should be noted:
				
	
							The only response from this query is a count of the number of messages removed 
						
	
							The query only deletes messages where the role is 'event' and should not touch any other messages that have been queued
						
	
							Even though one single specific event may be responsible for 99+% of the instances, any non-problem event messages will also be deleted.
						

Tuning Event Handling

				There are several measures that can be taken to tune event handling for scale, including filtering the events that are to be processed or ignored.
			
Blacklisting Events

					Some provider events occur relatively frequently, but are either uninteresting to CloudForms, or processing them would consume excessive resources (such as those typically associated with event storms). Events such as these can be skipped or blacklisted. The event catchers write a list of blacklisted events to evm.log when they start, for example:
				
... MIQ(ManageIQ::Providers::Redhat::InfraManager::EventCatcher:: ⏎
Runner#after_initialize) EMS [rhevm.bit63.net] as [cfme@internal] ⏎
Event Catcher skipping the following events:
... INFO -- : - UNASSIGNED
... INFO -- : - USER_REMOVE_VG
... INFO -- : - USER_REMOVE_VG_FAILED
... INFO -- : - USER_VDC_LOGIN
... INFO -- : - USER_VDC_LOGIN_FAILED
... INFO -- : - USER_VDC_LOGOUT

					These events are defined in the blacklisted_events table in the VMDB. The default rows in the table are as follows:
				
vmdb_production=# select event_name,provider_model ⏎
from blacklisted_events;
 event_name | provider_model
--+------------------------------
 storageAccounts_listKeys_BeginRequest | ...Azure::CloudManager
 storageAccounts_listKeys_EndRequest | ...Azure::CloudManager
 identity.authenticate | ...Openstack::CloudManager
 scheduler.run_instance.start | ...Openstack::CloudManager
 scheduler.run_instance.scheduled | ...Openstack::CloudManager
 scheduler.run_instance.end | ...Openstack::CloudManager
 ConfigurationSnapshotDeliveryCompleted | ...Amazon::CloudManager
 ConfigurationSnapshotDeliveryStarted | ...Amazon::CloudManager
 ConfigurationSnapshotDeliveryFailed | ...Amazon::CloudManager
 UNASSIGNED | ...Redhat::InfraManager
 USER_REMOVE_VG | ...Redhat::InfraManager
 USER_REMOVE_VG_FAILED | ...Redhat::InfraManager
 USER_VDC_LOGIN | ...Redhat::InfraManager
 USER_VDC_LOGOUT | ...Redhat::InfraManager
 USER_VDC_LOGIN_FAILED | ...Redhat::InfraManager
 AlarmActionTriggeredEvent | ...Vmware::InfraManager
 AlarmCreatedEvent | ...Vmware::InfraManager
 AlarmEmailCompletedEvent | ...Vmware::InfraManager
 AlarmEmailFailedEvent | ...Vmware::InfraManager
 AlarmReconfiguredEvent | ...Vmware::InfraManager
 AlarmRemovedEvent | ...Vmware::InfraManager
 AlarmScriptCompleteEvent | ...Vmware::InfraManager
 AlarmScriptFailedEvent | ...Vmware::InfraManager
 AlarmSnmpCompletedEvent | ...Vmware::InfraManager
 AlarmSnmpFailedEvent | ...Vmware::InfraManager
 AlarmStatusChangedEvent | ...Vmware::InfraManager
 AlreadyAuthenticatedSessionEvent | ...Vmware::InfraManager
 EventEx | ...Vmware::InfraManager
 UserLoginSessionEvent | ...Vmware::InfraManager
 UserLogoutSessionEvent | ...Vmware::InfraManager
 identity.authenticate | ...Openstack::InfraManager
 scheduler.run_instance.start | ...Openstack::NetworkManager
 scheduler.run_instance.scheduled | ...Openstack::NetworkManager
 scheduler.run_instance.end | ...Openstack::NetworkManager
 ConfigurationSnapshotDeliveryCompleted | ...Amazon::NetworkManager
 ConfigurationSnapshotDeliveryStarted | ...Amazon::NetworkManager
 ConfigurationSnapshotDeliveryFailed | ...Amazon::NetworkManager
(37 rows)

					If processing of any of the events in the blacklisted_events table is required, the enabled field can be set to false and the provider-specific event catcher restarted.
				

					An EMS can also report some minor object property changes as events, even though these are not modelled in the CloudForms VMDB. For VMware providers such event types can be added to the "Vim Broker Exclude List" so that they can be discarded without processing. The exclude list is found under :broker_notify_properties in the Configuration → Advanced settings, as follows:
				
:broker_notify_properties:
 :exclude:
 :HostSystem:
 - config.consoleReservation
 - config.dateTimeInfo
 - config.network
 - config.service
 - summary
 - summary.overallStatus
 - summary.runtime.bootTime
 - summary.runtime.healthSystemRuntime.systemHealthInfo. ⏎
 numericSensorInfo
 :VirtualMachine:
 - config.locationId
 - config.memoryAllocation.overheadLimit
 - config.npivWorldWideNameType
 - guest.disk
 - guest.guestFamily
 - guest.guestFullName
 - guest.guestId
 - guest.ipStack
 - guest.net
 - guest.screen
 - guest.screen.height
 - guest.screen.width
 - guest.toolsRunningStatus
 - guest.toolsStatus
 - resourceConfig
 - summary
 - summary.guest.guestFullName
 - summary.guest.guestId
 - summary.guest.toolsRunningStatus
 - summary.overallStatus
 - summary.runtime.bootTime
 - summary.runtime.memoryOverhead
 - summary.runtime.numMksConnections
 - summary.storage
 - summary.storage.committed
 - summary.storage.unshared

Flood Monitoring

					CloudForms recently introduced the concept of flood monitoring for the provider-specific event catchers. This stops provider events from being queued when too many duplicates are received in a short time. By default an event is considered as flooding if it is received 30 times in one minute.
				

					Flood monitoring is a generic concept for event processing, but requires the appropriate supporting methods to be added to each provider. As of CloudForms Management Engine 5.8 only the VMware provider supports this functionality.
				

Event Catcher Configuration

					The :event_catcher section is one of the largest of the Configuration → Advanced settings, and it defines the configuration of each type of event catcher. For example the following extract shows the settings for the ManageIQ::Providers::Openstack::InfraManager::EventCatcher worker:
				
 :event_catcher:
...
 :event_catcher_openstack:
 :poll: 15.seconds
 :topics:
 :nova: notifications.*
 :cinder: notifications.*
 :glance: notifications.*
 :heat: notifications.*
 :duration: 10.seconds
 :capacity: 50
 :amqp_port: 5672
 :amqp_heartbeat: 30
 :amqp_recovery_attempts: 4
 :ceilometer:
 :event_types_regex: "\\A(?!firewall|floatingip|gateway| ⏎
 net|port|router|subnet|security_group|vpn)"
...

					The configuration settings rarely need to be changed from their defaults.
				

Scaling Out

				The event processing workflow can be quite resource-intensive. CloudForms installations managing several thousand objects may benefit from dedicated CFME appliances exclusively running the provider-specific EventCatcher workers and MiqEventHandler worker in any zone containing providers.
			

Chapter 10. SmartState Analysis

			SmartState Analysis allows CloudForms to perform a deep introspection of virtual machines, containers and hosts to discover their contents. The technology is agentless, and does not require virtual machines to be powered on.
		
Note

				SmartState Analysis is alternatively known as "fleecing"
			

			SmartState Analysis uses two server roles. The first - SmartState Analysis - is performed by a Generic or Priority worker, depending on message priority. The second server role - SmartProxy - enables the embedded or coresident.[18] MiqSmartProxyWorker processes. These workers perform the following sequence of steps to scan each virtual machine:
		
	
					Create a snapshot of the VM
				
	
					Analyze the snapshot:
				
	
							Mount the VM’s disks
						
	
							Analyze the content
						
	
							Unmount the VM’s disks
						

	
					Remove the snapshot
				
	
					Upload the metadata to temporary storage in the VMDB
				

			The SmartState Analysis role calls a component named the JobProxyDispatcher to determine the most suitable SmartProxy server to run the VM scan. Once the scan has completed the SmartState Analysis worker saves the scan metadata to the VM’s model, and creates drift history data by comparing the most recent scan with previous results.
		
Provider-Specific Considerations

				There are several provider-specific considerations to be aware of when configuring SmartState Analysis.
			
VMware

					The MiqSmartProxyWorker processes scan VMware virtual machines using the VixDiskLib API functionality provided by the VMware Virtual Disk Development Kit (VDDK). Any CFME appliance in the provider’s zone that is running the SmartProxy role must therefore have the VDDK installed.[19].
				
Authentication

						The VDDK requires an authenticated connection to be made to the ESXi host running the VM. For the authentication to succeed the credentials for each ESXi hypervisor must be defined against the host properties in the CloudForms WebUI. The credentials should use either root, or a VMware account with the following role permissions:
					
	
								Datastore
							
	
										Browse Datastore
									
	
										Low level file operations
									

	
								Global
							
	
										Diagnostics
									
	
										Licenses
									

	
								Host
							
	
										Configuration
									
	
												Advanced Settings
											

	
								Virtual Machine
							
	
										Provisioning
									
	
												Allow read-only disk access
											

	
										Snapshot Management
									
	
												Create snapshot
											
	
												Remove snapshot
											

Authentication via vCenter

							If it is not possible to add credentials for the ESXi hosts, virtual machine scanning can still be performed using an authentication token provided by the vCenter.
						

							The CloudForms Configuration → Advanced settings contain a section entitled :coresident_miqproxy that has a value :scan_via_host. By default this is set to true, but changing the value to false and restarting the MiqSmartProxyWorker processes enables vCenter authentication for VM scans.
						
Note

								The name :scan_via_host is slightly misleading. Setting this value to false only enables VDDK authentication via the vCenter. The actual scan is still performed by the SmartProxy server connecting directly to the ESXi host using port 902.
							

:coresident_miqproxy:
...
 :scan_via_host: false

Red Hat Virtualization

					For SmartState Analysis of Red Hat Virtualization (RHV) virtual machines to complete successfully, the CFME appliances running the SmartProxy server roles must be in the same RHV datacenter as the VM being scanned. The storage domains much also be accessible to the SmartProxy appliances. Fibre channel or iSCSI storage domains should be presented to each SmartProxy appliance as shareable direct LUNs. NFS datastores must be mountable by each SmartProxy appliance, which may mean adding secondary network interfaces to the CFME appliances, connected to the storage network.
				

					The management engine relationship must also be set for each CFME appliance. This enables the VM SmartState Analysis job to determine the datacenter where the CFME appliance is running and thus to identify which storage it has access to.
				

OpenStack

					CloudForms is capable of performing a SmartState Analysis of both Overcloud images, and Undercloud Nova compute nodes.
				
Overcloud

						CloudForms is able to perform a SmartState Analysis of Glance-backed OpenStack images. In order to scan a running instance, an image snapshot is taken and copied to the CFME appliance to be scanned (SmartState Analysis requires byte-level offset/length access to images which cannot be performed remotely using the current OpenStack APIs).
					

						To ensure that this storage area is large enough to receive large image snapshots, any CFME appliance in an OpenStack zone with the SmartProxy role enabled should have its temporary storage area extended using the following appliance_console option:
					
 10) Extend Temporary Storage

						This option will format an unpartitioned disk attached to the CFME appliance and mount it as /var/www/miq_tmp
					

OpenStack Platform Director (Undercloud)

						CloudForms is able to perform a SmartState Analysis of OpenStack Platform Director Nova compute nodes. To allow the smart proxy to connect to the Nova hosts, the RSA key pair private key for the hosts should be added to the provider details. The heat-admin user is typically used for host connection.
					

OpenShift

					SmartState scanning of OpenShift containers is performed by an image_inspector pod that is pulled from the Red Hat registry as required. The image inspector dynamically downloads and uses the latest OpenScap definition/rules file from Red Hat before scanning.[20]
				

					With CloudForms 4.5 the registry and repository are configurable in Configuration → Advanced settings, as follows:
				
:ems_kubernetes:
...
 :image_inspector_registry: registry.access.redhat.com
 :image_inspector_repository: openshift3/image-inspector

Monitoring SmartState Analysis

				The total time for each VM scan can be determined from the time duration between the "request_vm_scan" and corresponding "vm_scan_complete" events being processed through automate, as follows:
			
... INFO -- : MIQ(MiqAeEngine.deliver) Delivering ⏎
{:event_type=>"request_vm_scan", "VmOrTemplate::vm"=>39, :vm_id=>39, ⏎
:host=>nil, "MiqEvent::miq_event"=>20690, :miq_event_id=>20690, ⏎
"EventStream::event_stream"=>20690, :event_stream_id=>20690} ⏎
for object [ManageIQ::Providers::Redhat::InfraManager::Vm.39] ⏎
with state [] to Automate

...

... INFO -- : MIQ(MiqAeEngine.deliver) Delivering ⏎
{:event_type=>"vm_scan_complete", "VmOrTemplate::vm"=>39, :vm_id=>39,
:host=>nil, "MiqEvent::miq_event"=>20692, :miq_event_id=>20692, ⏎
"EventStream::event_stream"=>20692, :event_stream_id=>20692} ⏎
for object [ManageIQ::Providers::Redhat::InfraManager::Vm.39] ⏎
with state [] to Automate

				This time includes the scan pre-processing by the Generic worker, the handoff by the JobProxyDispatcher to the appropriate SmartProxy appliance, and the subsequent scan an data process and upload times.
			

				More granular timings are logged to evm.log and these can be examined if required to determine the source of bottlenecks. For example the time taken for the MiqSmartProxyWorker process to extract each part of the profile is logged, and can be extracted using the following bash command:
			
grep 'information ran for' evm.log
... Scanning [vmconfig] information ran for [0.156029053] seconds.
... Scanning [accounts] information ran for [0.139248768] seconds.
... Scanning [software] information ran for [4.357743037] seconds.
... Scanning [services] information ran for [3.767868137] seconds.
... Scanning [system] information ran for [0.305050798] seconds.
... Scanning [profiles] information ran for [0.003027426] seconds.

Challenges of Scale

				SmartState Analysis is a relatively time-consuming operation per virtual machine. Many of the problems associated with scaling SmartState Analysis are related to performing many hundreds or thousands of analyses in a limited time window.
			

				Periodic scans of a complete VM inventory should be scheduled with a frequency that allows each scan to complete before the next is scheduled. For small installations this is sometimes daily, but larger scale installations often schedule these on a weekly or monthly basis. Control policies can be used to perform initial scans when VMs are first provisioned, so that SmartState data is available for new VMs before a scheduled analysis has been run.
			
Virtual Machines Running Stateful Applications

					A virtual machine SmartState Analysis is always performed on a temporary snapshot of the VM. The snaphot is taken using the native means exposed by the EMS, however most snapshotting technology does not take into account the requirements of any application running in the virtual machine. Taking a virtual machine snapshot can have unintended and unexpected consequences for some applications that maintain state data such as Microsoft Exchange Server.[21].
				

					Virtual machines running such applications must not be snapshotted, and should therefore be excluded from SmartState Analysis.
				
Note

						A SmartState Analysis of the CloudForms VMDB appliance should never be performed
					

					A control policy can be created to prevent SmartState Analysis from running on any VM tagged with "exclusions/do_not_analyze", as shown in Figure 10.1, “Control Policy to Block SmartState Analysis”.
				
Figure 10.1. Control Policy to Block SmartState Analysis
[image: Screenshot]

					​

				

					Virtual machines running stateful workloads can be tagged accordingly to prevent the snapshot from being taken.
				

Identifying SmartState Analysis Problems

					Problems with SmartState Analysis are logged to evm.log, and can be identified using the following bash command:
				
grep 'VmScan#process_abort' evm.log

					Many of the most common errors are caused as a result of scaling parts of the infrastructure - hosts or CFME appliances - and forgetting to update the provider-specific considerations for SmartState Analysis.
				
No active SmartProxies found

						If the JobProxyDispatcher cannot find a suitable SmartProxy to scan a virtual machine, the error "No active SmartProxies found to analyze this VM" is logged. In VMware environments this is often caused by failing to install the VDDK on a new CFME appliance that has been configured with the SmartProxy server role.
					
... MIQ(VmScan#process_abort) job aborting, No eligible proxies for VM ⏎
:[[NFS_PROD] odrsrv001/odrsrv001.vmx] - [No active SmartProxies found ⏎
to analyze this VM], aborting job [8064001a-e2ea-11e6-9140-005056b19b0f].

Provide credentials

						If a new VMware ESXi hosts’s credentials have been omitted from the CloudForms WebUI (or a host’s credentials changed), the error "Provide credentials for this VM’s Host to perform SmartState Analysis" will be logged if a scan is attempted of a virtual machine running on that host.
					
... MIQ(VmScan#process_abort) job aborting, No eligible proxies for VM ⏎
:[[FCP_MID] osdweb01/osdweb01.vmx] - [Provide credentials for this VM's ⏎
Host to perform SmartState Analysis], aborting job ⏎
[d2e08e70-c26b-11e6-aaa4-00505695be62].

Unable to mount filesystem

						If a CFME appliance running the SmartProxy server role does not have access to the storage network of a RHV provider, an attempted scan of a virtual machine on an NFS storage domain will timeout.
					
... MIQ(VmScan#process_abort) job aborting, Unable to mount filesystem. ⏎
Reason:[mount.nfs: Connection timed out

Tuning SmartState Analysis

				SmartState Analysis settings are stored in the :coresident_miqproxy section of the Configuration→Advanced settings, as follows:
			
:coresident_miqproxy:
 :concurrent_per_ems: 1
 :concurrent_per_host: 1
 :scan_via_host: true
 :use_vim_broker: true
 :use_vim_broker_ems: true

				The default value of :concurrent_per_host is 1, which limits the number of concurrent VM scans that can be carried out to any particular host. This can be increased - with caution - to allow several scans to run concurrently.
			
Increasing the Number of SmartProxy Workers

					The default number of "VM Analysis Collector" (MiqSmartProxyWorker) workers per appliance is 3. This can be increased to a maximum of 5, although consideration should be given to the additional CPU and memory requirements that an increased number of workers will place on an appliance. It may be more appropriate to add further appliances and scale horizontally.
				

					CloudForms installations managing several thousand objects may benefit from dedicated CFME appliances in the provider zones exclusively running the SmartState Analysis and SmartProxy roles.
				

SmartProxy Affinity

					Hosts and datastores can be can be 'pinned' to specific embedded SmartProxy servers using the SmartProxy Affinity setting in the Configuration → Settings → Zones area of the WebUI, as shown in Figure 10.2, “SmartProxy Affinity”:
				
Figure 10.2. SmartProxy Affinity
[image: Screenshot]

					​

				

					This can help ensure that only the most optimally placed or suitably configured CFME appliances are used for SmartState Analysis scans.
				

[18]
				Earlier versions of CloudForms and ManageIQ supported external Smart Proxies running on Windows servers or VMware ESX hosts. These are no longer required and so have been removed from the product
			

[19]
						The procedure to install the VDDK is described in the following Red Hat Knowledge Base article: https://access.redhat.com/articles/2078103
					

[20]
						Enabling proxy access for the openshift3/image-inspector is described in the following Red Hat Knowledge Base article: https://access.redhat.com/solutions/2915411
					

[21]
						Further information can be found in the following Microsoft Technet article: https://technet.microsoft.com/en-us/library/jj126252%28v=exchg.141%29.aspx?f=255&MSPPError=-2147217396#BKMK_ExchangeStor
					

Chapter 11. Web User Interface

			Scaling a CloudForms installation usually implies that many users will be accessing the WebUI components. It is therefore prudent to scale the WebUI capability along with the CFME infrastructure components and workers to ensure that responsiveness and connection reliability are maintained.
		

			The "Operations" or "Classic" WebUI (as opposed to the Self-Service UI) uses an Apache web server as a reverse proxy front-end to a Puma application server. Each instance of a MiqUiWorker worker is a Puma process.
		
Scaling workers

				Most but not all of the UI transactions are written to be asynchronous, but a very few of them are either still synchronous or perform other processing. This can sometimes cause the MiqUiWorker process to appear unresponsive to other user sessions. An example of this can be seen when executing a long-running automate task from simulation in one browser window. Other browser sessions connected to the same MiqUiWorker process may appear hung until the simulation has completed.
			

				A solution to this is to increase the number of WebUI workers. The default number of UI workers per CFME appliance is 1, but this can be increased to a maximum of 9, although consideration should be given to additional CPU and memory requirements that an increased number of workers will place on an appliance (the maximum memory threshold for a UI worker is 1GByte).
			
Tip

				WebUI transactions initiated by each MiqUiWorker process are written into the production.log file. This is often a useful source of information when troubleshooting WebUI problems.
			

Scaling Appliances

				To allow for a degree of fault-tolerance in a large CloudForms installation, it is common to deploy several dedicated WebUI CFME appliances in their own zone for general user session use. Each of the CFME appliances should be configured with a minimal set of server roles, for example:
			
	
						Automation Engine (to process zone events)
					
	
						Provider Operations (if VM provisioning services are used)
					
	
						Reporting (if logged-on users will be running their own reports)
					
	
						User Interface
					
	
						Web Services
					
	
						Websocket
					

Load Balancers

					Multiple CFME appliances in a WebUI zone are often placed behind a load balancer. The load balancer should be configured with sticky sessions enabled, which will force it to send requests to the same UI worker during a session.
				

					The load balancer should also be configured to test for connectivity using the CloudForms ping response page at https://cfme_appliance/ping. The expected reply from the appliance is the text string “pong”. Using this URL is preferable to the standard login URL as it does not establish a connection to the database.
				

					By default the CloudForms UI workers store session data in the local appliance’s memcache. When operating behind a load balancer the UI workers should be configured to store session data in the database. This prevents a user from having to re-login if the load balancer redirects them to an alternative server if their original UI worker is unresponsive.
				

					The location of the session store is defined in the Configuration → Advanced settings. The default value for session_store is as follows:
				
:server:
...
 :session_store: cache

					This should be changed to:
				
 :session_store: sql

Chapter 12. Monitoring

			Monitoring of the various components described in this document is essential for maintaining optimum performance of a large CloudForms installation.
		

			As mentioned in Chapter 1, Introduction the key to deploying CloudForms at scale is to monitor and tune at each stage of the scaling process. Once confidence has been established that the installation is working optimally at restricted scale, the scope of deployment can be enlarged and the CFME appliances tuned as required to handle the additional workload.
		

			The VMDB and CFME worker appliances within a region have different monitoring requirements, as described below.
		
Database Appliance

				The database appliance can become a performance bottleneck for the CloudForms region if it is not performing optimally. The following items should be regularly monitored:
			
	
						VMDB disk space utilization - monitor and forecast when 80% of filesystem will become filled. Track actual disk consumption versus expected consumption
					
	
						CPU utilization. A steady state utilization approaching 80% may indicate that VMDB appliance scaling or region redesign is required
					
	
						Memory utilization, especially swap usage
					
	
								Increase appliance memory if swapping is occurring
							

	
						I/O throughput - use the sysstat or iotop tools to monitor I/O utilization, throughput, and I/O wait state processing
					
	
						Monitor the miq_queue table
					
	
								Number of entries
							
	
										Check for signs of event storm: messages with role = 'event' and class_name = 'EmsEvent'
									

	
								Number of messages in a "ready" state
							

	
						Check that the maximum number of configured connections is not exceeded
					
	
						Ensure that the database maintenance scripts run regularly
					

CFME 'Worker' Appliances

				Operational limits for non-VMDB or "worker" appliances are usually established on a per-appliance basis, and depend on the enabled server roles and number of worker processes. The following items are typically monitored:
			
General Appliance

	
							CPU utilization
						
	
							Memory utilization, especially swap usage
						
	
									Increase appliance memory if swapping is occurring
								

	
							Check for message timeouts
						

Workers

	
							Review rates and reasons for worker process restarts
						
	
									Increase allocated memory if workers are exceeding memory thresholds
								

	
							Validate that the primary/secondary roles for workers in zones and region are as expected, and force a role failover if necessary
						

Provider Refresh

	
								Review EMS refresh activity, especially full refresh rates
							
	
										How many full refreshes per day?
									
	
										How long does a refresh take by provider instance?
									
	
												Data extraction component
											
	
												Database load component
											

	
										Are refresh times consistent throughout the day?
									
	
												What is causing periodic slowdowns?
											

	
										Are certain property changes triggering too many refreshes?
									

	
								Validate the :full_refresh_threshold value
							

Capacity & Utilization

	
								Are any realtime metrics being lost?
							
	
										Long message dequeue times
									
	
										Missing data samples
									

	
								How long does metric collection take?
							
	
										Data extraction component
									
	
										Database load component
									

	
								Are rollups completing in time?
							
	
										Confirm expected daily and hourly records for each VM
									

	
								Validate the numbers of Data Collector and Data Processor workers
							

Automate

	
								Are any requests staying in a "pending" state for a long time?
							
	
										Validate the number of Generic workers
									

	
								Check for state machine retries or timeouts exceeded
							
	
								Monitor provisioning failures
							
	
										Timeouts?
									
	
										Internal or external factors?
									

Event Handling

	
								Monitor the utilization of CFME appliances with the Event Monitor role enabled
							
	
								Validate the memory allocated to Event Monitor workers
							

SmartState Analysis

	
								Monitor utilization of CFME appliances with the SmartProxy role enabled when scheduled scans are running
							
	
								Review scan failures or aborts
							
	
								Validate the number of SmartProxy workers
							

Reporting

	
								Monitor utilization of appliances with Reporting role enabled when periodic reports are running.
							
	
								Validate the number of Reporting workers
							

Alerts

				Some self-protection policies are available out-of-the-box in the form of control alerts. Figure 12.1, “EVM Self-Monitoring Alerts” shows the alert types that are available. Each is configurable to send an email, an SNMP trap, or run an automate instance.
			
Figure 12.1. EVM Self-Monitoring Alerts
[image: Screenshot]

				​

			
Note

					EVM Worker Started and EVM Worker Stopped events are normal occurrences and should not be considered cause for alarm
				

				An email sent by one of these alerts will have a subject such as:
			

				Alert Triggered: EVM Worker Killed, for (MIQSERVER) cfmesrv06.
			

				The email body will contain text such as the following:
			
Alert 'EVM Worker Killed', triggered

Event: Alert condition met
Entity: (MiqServer) cfmesrv06

				To determine more information - such as the actual worker type that was killed - it may be necessary to search evm.log on the appliance mentioned.
			

Consolidated Logging

				The distributed nature of the worker/message architecture means that it is often impossible to predict which CFME appliance will run a particular action. This can add to the troubleshooting challenge of examining log files, as the correct appliance hosting the relevant log file must first be located.
			

				Although there is no out-of-the-box consolidated logging architecture for CloudForms at the time of writing, it is possible to add CloudForms logs as a source to an ELK/EFK stack. This can bring a number of benefits, and greatly simplifies the task of log searching in a CloudForms deployment comprising many CFME appliances.
			

Chapter 13. Design Scenario

			This chapter discusses a hypothetical region and zone design for a new CloudForms installation, based on the topics discussed in this guide.
		
Environment to be Managed

				CloudForms is to be installed to manage the virtualization and cloud environments used by the Engineering and R&D departments of a large organization. These environments comprise a traditional virtual infrastructure, public and private IaaS clouds, and a container-based PaaS.
			

				The organization also has a centrally-managed VMware 6.0 environment that hosts many enterprise-wide services such as email, file & print, collaboration, and the Microsoft Active Directory infrastructure. This will not be managed by CloudForms, although it is available to host CFME appliances if required.
			
Virtual Infrastructure

					Red Hat Virtualization 4.0 is installed as the Engineering/R&D virtual infrastructure. It currently comprises 2 clusters, 20 hosts, 10 storage domains and approximately 500 virtual machines. The number of VMs is not expected to grow significantly over the next two years.
				

Private IaaS Cloud

					A Red Hat OpenStack Platform 10 private IaaS cloud is installed. This contains approximately 900 images and instances spread between 50 tenant/projects, and also hosts the OpenShift PaaS. An OpenStack Director manages the Undercloud, comprising 42 Nova compute nodes.
				

					The number of Overcloud instances is forecast to grow by approximately 400 per year over the next two years, giving a projected total of around 1900 managed objects.
				

Public Clouds

					A recently acquired subsidiary uses Amazon EC2 for cloud workloads. There are approximately 250 EC2 instances used by two accounts (separate access key IDs), but this number is expected to gradually reduce over the next two years as work is migrated to the OpenStack IaaS. Ansible playbooks are frequently used to configure Amazon EC2 cloud components such as Elastic Load Balancers.
				

PaaS Cloud

					A Red Hat OpenShift Container Platform 3.4 PaaS is installed, hosted in OpenStack, and currently comprising approximately 100 nodes, 750 pods and 1000 containers. This number is expected to rise to 300 nodes, 2000 pods and 3500 containers over the next two years.
				

Network Factors

					All in-house networking components are split between two campus datacenters. There is LAN-speed (<1MSec) latency between all points on this network. For security isolation the Engineering/R&D RHV, OpenStack and OpenShift environments are on separate vLANs, with only limited connectivity to the 'Enterprise' network.
				

					Additional firewall routes into and out of the Enterprise network are possible, but require security change approval.
				

					User workstations are connected to a 'Desktops' network, which has very limited access to servers in the Enterprise or Engineering/R&D networks. User who wish to access the CloudForms environment must connect to WebUI servers accessible from this Desktops network.
				

Enterprise Integration Points

					The Enterprise network hosts common components such as a Configuration Management Database (CMDB) and an IPAM solution, however strict security policies are in place that restrict access to these components from non-Enterprise networks.
				

					Virtual machines provisioned into the Engineering/R&D RHV and OpenStack networks may require registration with one or more of these enterprise tools.
				

Required CloudForms Functionality

					The following capabilities of CloudForms are required:
				
	
							Inventory/Insight of all VMs, instances pods, containers and infrastructure components such as hosts and storage domains
						
	
							Rightsizing recommendations for cloud instances
						
	
							Reporting
						
	
							SmartState Analysis of RHV VMs and OpenShift containers
						
	
							Capacity and Utilization metrics for RHV and Amazon EC2
						
	
							Service catalog-based provisioning of VMs into RHV and instances into OpenStack.
						

					The rightsizing calculation process uses metrics gathered by C&U, so this must also be enabled for cloud providers.
				

Design Process

				The design process usually starts with sizing the region. How many VMs and containers will be managed in total, projected for the next 1-2 years? For this design scenario the projected number of objects to be managed over the next 2 years is shown in Table 13.1, “Provider Object Numbers - 2 Year Projection”
			
Table 13.1. Provider Object Numbers - 2 Year Projection
	Provider	Number of objects
	
								RHV
							

							 	
								600
							

							
	
								OpenStack
							

							 	
								1900
							

							
	
								OpenShift
							

							 	
								5800
							

							
	
								Amazon EC2
							

							 	
								200
							

							
	
								Total
							

							 	
								8500
							

							

				Based on the maximum suggested region sizes shown in Table 3.1, “Guidelines for Maximum Region Size”, it can be estimated that a single region will be required, although this region will be large and require careful database tuning.
			
Network Latency

					Latency from worker appliance to VMDB should be LAN speed, around 1ms or less. This will dictate where the VMDB appliance should be situated, and also the optimum location of the worker CFME appliances. For this design network latency is good, so the VMDB server should be placed in the most centrally accessible location.
				

VMDB Server

					The optimum VMDB server for this design will be a CFME appliance configured as a standalone PostgreSQL server. Although database high availability (HA) has not been specified as an initial requirement, installing a standalone database appliance allows for HA to be configured in future if required.
				

					The database server will be installed in the Enterprise network, hosted by the VMware 6.0 virtual infrastructure. The estimated size of the database after two years, based on the formula presented in Chapter 4, Database Sizing and Optimization is approximately 468 GBytes. To allow for unexpected growth and a margin of uncertainty, a 750 GByte disk will be presented from a datastore backed by fast FC SAN storage, and used as the database volume.
				

					The database server will have 8 GBytes memory, and a PostgreSQL shared_buffers region of 2 GBytes. A 2 GByte hugepage region will be created for PostgreSQL to use.
				

					The planned zone design contains 13 CFME appliances. Referring to the table in Appendix A, Database Appliance CPU Count shows that the database server will need 6 vCPUs to maintain an idle CPU load under 20%.
				

					The database maintenance scripts will be enabled on the VMDB server.
				

Zones

					A zone should be created per provider (unless the EMS only manages a small number of systems; around 100 VMs or so). There should be a minimum of 2 CFME appliances per zone for resilience, and zones should not span networks.
				

					For this design scenario the following zones are proposed.
				

WebUI Zone

					A WebUI zone will be created that contains 2 CFME appliances, each running the following server roles:
				
	
							Automation Engine (to process zone events)
						
	
							Provider Operations (because VM provisioning services are used)
						
	
							Reporting (if logged-on users will be running their own reports)
						
	
							User Interface
						
	
							Web Services
						
	
							Websocket
						

					The CFME appliances in this zone will be hosted by the enterprise VMware 6.0 environment, in a vLAN accessible from user workstations. User access to them will be via a hardware load-balancer and common Fully-Qualified Domain Name.
				

Management Zone

					A Management zone will be created that contains 2 CFME appliances, each running the following server roles:
				
	
							Automation Engine
						
	
							Provider Operations
						
	
							Reporting (for scheduled reports)
						
	
							Database Operations
						
	
							Notifier
						
	
							Scheduler
						
	
							Git Repositories Owner
						
	
							User Interface
						
	
							Web Services
						
	
							Websocket
						

					The CFME appliances in this zone will be hosted by the enterprise VMware 6.0 environment. The zone will not contain any providers, but automate workflows that interact with the CMDB and IPAM solutions will run in this zone.
				

RHV Zone

					The RHV zone will contain approximately 600 managed objects. The table Table 3.2, “Objects per CFME Appliance Guidelines” suggests that 2 appliances should be sufficient, each running the following server roles:
				
	
							Automation Engine
						
	
							3 x C&U roles
						
	
							Provider Inventory
						
	
							Provider Operations
						
	
							Event Monitor
						
	
							SmartProxy
						
	
							SmartState Analysis
						
	
							Git Repositories Owner
						
	
							User Interface
						
	
							Web Services
						
	
							Websocket
						

					The CFME appliances in this zone will be hosted by the RHV environment, and so firewall ports must be opened to allow these appliances to connect to the VMDB server in the Enterprise network. The RHV provider will be in this zone.
				

OpenStack zone

					The OpenStack zone will initially contain approximately 900 instances (for example instances, images, tenants,or networks), increasing to 1700 in two years time. The table Table 3.2, “Objects per CFME Appliance Guidelines” suggests that 3 appliances should be sufficient initially, each running the following server roles:
				
	
							Automation Engine
						
	
							3 x C&U roles
						
	
							Provider Inventory
						
	
							Provider Operations
						
	
							Event Monitor
						
	
							Git Repositories Owner
						
	
							User Interface
						
	
							Web Services
						
	
							Websocket
						

					The CFME appliances in this zone will be hosted by the OpenStack environment, and so firewall ports must be opened and routes created to allow these appliances to connect to the VMDB server in the Enterprise network, and to the OpenStack Director. Both OpenStack Cloud and Infrastructure Manager (Undercloud) providers will be in this zone.
				

					Further appliances will need to be added to this zone as the number of managed objects increases.
				

OpenShift Zone

					The OpenShift zone will contain approximately 800 managed objects. The table Table 3.2, “Objects per CFME Appliance Guidelines” suggests that 2 appliances should be sufficient initially, each running the following server roles:
				
	
							Automation Engine
						
	
							3 x C&U roles
						
	
							Provider Inventory
						
	
							Provider Operations
						
	
							Event Monitor
						
	
							SmartProxy
						
	
							SmartState Analysis
						
	
							Git Repositories Owner
						
	
							User Interface
						
	
							Web Services
						
	
							Websocket
						

					The CFME appliances in this zone will also be hosted by the OpenStack environment, and so firewall ports must be opened and routes created to allow these appliances to connect to the VMDB server in the Enterprise network, and to the OpenShift master. The OpenShift provider will be in this zone.
				

					Further appliances will need to be added to this zone as the number of managed objects increases.
				

Amazon EC2 Zone

					The Amazon zone will contain approximately 250 managed objects. The table Table 3.2, “Objects per CFME Appliance Guidelines” suggests that 1 appliance should be sufficient, however for resilience and load balancing 2 will be installed, each running the following server roles:
				
	
							Automation Engine
						
	
							3 x C&U roles
						
	
							Embedded Ansible
						
	
							Provider Inventory
						
	
							Provider Operations
						
	
							Event Monitor
						
	
							Git Repositories Owner
						
	
							User Interface
						
	
							Web Services
						
	
							Websocket
						

					The CFME appliances in this zone will be hosted on a separate vLAN in the RHV environment, and so firewall ports must be opened to allow these appliances to connect to the VMDB server in the Enterprise network, and to the Amazon EC2 network. The Embedded Ansible role will be enabled on these CFME appliances so that Ansible playbooks can be run from service catalogs. The Amazon EC2 providers for both accounts will be in this zone.
				

					The proposed zone design is shown in Figure 13.1, “Networks and Zones”.
				
Figure 13.1. Networks and Zones
[image: Screenshot]

					​

				

Initial Deployment

				The initial deployment and configuration of CFME appliances will be made without enabling the C&U or SmartState Analysis roles on any server. This allows the baseline VMDB database server load to be established over a period of several days from purely EMS refresh activity, and allow an initial RHV :full_refresh_threshold to be calculated.
			

				Once the initial performance baselines have been established (and any associated tuning performed), the remaining roles can be enabled. Ongoing monitoring at this stage is important, as this will help fine-tune the number and configuration of worker processes, CFME appliance vCPU and memory sizes, and database configuration parameters.
			

Provisioning Workflow

				The VM provisioning workflow (which will run in an automation engine in one of the provider zones) will require the services of the CMDB and IPAM servers that are only accessible from the Enterprise network. The workflow can be customised to use the techniques discussed in Chapter 7, Automate and Chapter 8, VM and Instance Provisioning to launch new child automation requests using $evm.execute(create_automation_request,…​) at each of the AcquireIPAddress and RegisterCMDB states of the VM provision state machine.
			

				The :miq_zone option for create_automation_request will specify the Management zone as the target zone in which to run the request. Newly inserted states CheckIPAddressAcquired and CheckCMDBUpdated will use check-and retry logic to determine completion of the child requests.
			

Chapter 14. Conclusion

			As can be seen from the previous chapters, the architecture of CloudForms is inherently scalable.
		
	
					The role/worker/message model allows server roles to be distributed throughout CFME appliances in a region.
				
	
					The appliance model allows for both horizontal and vertical scaling
				
	
							The number of worker processes can be increased on each CFME appliance (scaling out workers)
						
	
							The appliance vCPU count and memory can be increased (scaling up each appliance)
						
	
							Additional CFME appliances can be added to a region (scaling out appliances)
						

	
					The zone model allows containment of provider-specific workers, appliances and workflow processing
				
	
					The region model allows many regions to be grouped together under a single master region
				

			The unique performance and load characteristics of individual virtual infrastructure, container or cloud platforms, and the many permutations of provider mean that there is no "magic formula" for tuning. Deploying CloudForms at scale involves careful monitoring and tuning of the various components; detecting low memory or high CPU conditions for workers and appliances, or identifying the conditions that trigger message timeouts, for example.
		

			The scaling process is made easier by starting with a minimal set of server roles enabled to support the configured providers; inventory and event handling, for example. Once the CloudForms installation is optimally tuned for average and peak EMS load, performance baselines can be established and used as a reference. Additional features such as capacity & utilization metrics collection, SmartState Analysis, provisioning, and automate workflows can then be enabled as required, with performance being monitored and compared against the baselines, and appliances and workers tuned at each step.
		

			Before this can be done however, an understanding of the components and how they fit together is necessary. The architectural and troubleshooting descriptions in this guide are presented as a means to further this understanding.
		

Appendix A. Database Appliance CPU Count

			The following table shows the anticipated CPU load on the VMDB appliance for a varying number of idle CFME appliances in a region. An average number of 20 worker processes per CFME appliance is assumed, where each worker process creates a single PostgreSQL session. The CPU consumed per idle PostgreSQL session is approximately 0.00435%.
		
Figure A.1. Database Server CPU Count
[image: Screenshot]

			​

		

Appendix B. Contributors

	
							Contributor
						

						 	
							Title
						

						 	
							Contribution
						

						
	
							Peter McGowan
						

						 	
							Principal Software Engineer
						

						 	
							Author
						

						
	
							Tom Hennessy
						

						 	
							Principal Software Engineer
						

						 	
							Content, Review
						

						
	
							Bill Helgeson
						

						 	
							Principal Domain Architect
						

						 	
							Content
						

						
	
							Brett Thurber
						

						 	
							Engineering Manager
						

						 	
							Review
						

						
	
							Christian Jung
						

						 	
							Senior Specialist Solution Architect
						

						 	
							Review
						

						
	
							Chandler Wilkerson
						

						 	
							Senior Software Engineer
						

						 	
							Review
						

						

Appendix C. Revision History

	Revision History
	Revision 1.2-1	Aug 18, 2017	Peter McGowan
	 	
					Updated maximum region size guidelines
				

			
	Revision 1.2-0	July 3, 2017	Peter McGowan
	 	
					Updated Regions and Zones chapter for clarity
				

			
	Revision 1.1-0	May 25, 2017	Peter McGowan
	 	
					Added further information to Capacity and Utilization chapter
				

			

OEBPS/images/zones_and_regions_alt_2.png

OEBPS/images/server_roles.png
Server Roles

Off

Off

Off

Off

Automation Engine

Capacity & Utilization Coordinator
Capacity & Utilization Data Collector
Capacity & Utilization Data Processor
Database Operations

Embedded Ansible

Event Monitor

Git Repositories Owner

Notifier

Provider Inventory

Provider Operations

RHN Mirror

Reporting

Scheduler

SmartProxy

SmartState Analysis

User Interface

Web Services

Websocket

OEBPS/content.opf
 2017_idm139822560517728 Deploying CloudForms at Scale 2017-08-18 Peter McGowan The purpose of this document is to provide guidelines and considerations for deploying Red Hat CloudForms 4.x to manage large-scale clouds or virtual infrastructures en

OEBPS/images/workers_webui_page.png
Server

Generic Workers

Count

Memory threshold

C & U Data Collectors

Count

Memory threshold

Event Monitor

Memory threshold

Connection Broker

Memory threshold

Ul Worker

Count

Reporting Workers

Count

Memory threshold

Web Service Workers

Count

Memory threshold

Authentication

800 MB

200 MB

2GB

2GB

400 MB

1GB

Workers

Custom Logos

Advanced

Priority Workers
Count 2
Memory threshold 800 MB
C & U Data Processors
Count 2
Memory threshold 600 MB
Refresh
Memory threshold 2GB
VM Analysis Collectors
Count 3
Memory threshold 600 MB
Websocket Workers
Count 1

OEBPS/images/workers.png
Summary Workers Collect Logs Utilization Timelines

Name Status
. C&U Metrics Collector for Openstack started
. C&U Metrics Collector for Openstack Network started
. C&U Metrics Collector for Openstackinfra started
. C&U Metrics Processor started
. C&U Metrics Processor started
. Event Handler started
. Event Monitor for Providers: Openstack director started
. Event Monitor for Providers: Openstack director Network Manager started
. Event Monitor for Providers: OpenStack Stage Cinder Manager started
”; Generic Worker started
”; Generic Worker started
g | Priority Worker started
g | Priority Worker started
B5 Refresh Worker for Providers: Openstack director started
‘,J Refresh Worker for Providers: Openstack director Network Manager started

PID

7847

7855

7860

7879

7868

7964

7955

7943

8992

2982

2974

2990

2998

7915

7905

SPID

24744

24745

24746

24748

24747

24757

24756

24755

24931

41579

41578

41580

41581

24752

24751

URI/ Queue Name
openstack
openstack_network
openstack_infra
ems_metrics_processor
ems_metrics_processor
ems

ems_7

ems_8

ems_1

generic

generic

generic

generic

ems_7

ems_8

