Installing Red Hat Virtualization as a standalone Manager with local databases

Installing the Red Hat Virtualization Manager and its databases on the same server
Installing Red Hat Virtualization as a standalone Manager with local databases

Installing the Red Hat Virtualization Manager and its databases on the same server

Red Hat Virtualization Documentation Team
Red Hat Customer Content Services
rhev-docs@redhat.com
Abstract

This document describes how to install a standalone Manager environment – where the Red Hat Virtualization Manager is installed on either a physical server or a virtual machine hosted in another environment – with the Manager database and the Data Warehouse service and database installed on the same machine as the Manager. If this is not the configuration you want to use, see the other Installation Options in the Product Guide.
Table of Contents

PREFACE ... 4
RED HAT VIRTUALIZATION KEY COMPONENTS .. 4
STANDALONE MANAGER ARCHITECTURE ... 4

CHAPTER 1. INSTALLATION OVERVIEW .. 6

CHAPTER 2. REQUIREMENTS .. 7
2.1. RED HAT VIRTUALIZATION MANAGER REQUIREMENTS 7
 2.1.1. Hardware Requirements ... 7
 2.1.2. Browser Requirements ... 7
 2.1.3. Client Requirements ... 8
 2.1.4. Operating System Requirements ... 8
2.2. HOST REQUIREMENTS .. 9
 2.2.1. CPU Requirements .. 9
 2.2.1.1. Checking if a Processor Supports the Required Flags 10
 2.2.2. Memory Requirements ... 10
 2.2.3. Storage Requirements .. 10
 2.2.4. PCI Device Requirements ... 11
 2.2.5. Device Assignment Requirements ... 11
 2.2.6. vGPU Requirements .. 12
2.3. NETWORKING REQUIREMENTS .. 12
 2.3.1. General requirements ... 12
 2.3.2. Firewall Requirements for DNS, NTP, and IPMI Fencing 12
 2.3.3. Red Hat Virtualization Manager Firewall Requirements 13
 2.3.4. Host Firewall Requirements .. 17
 2.3.5. Database Server Firewall Requirements .. 21

CHAPTER 3. INSTALLING THE RED HAT VIRTUALIZATION MANAGER 23
3.1. PREPARING THE RED HAT VIRTUALIZATION MANAGER MACHINE 23
3.2. ENABLING THE RED HAT VIRTUALIZATION MANAGER REPOSITORIES 23
3.3. INSTALLING AND CONFIGURING THE RED HAT VIRTUALIZATION MANAGER 24
3.4. CONNECTING TO THE ADMINISTRATION PORTAL 30

CHAPTER 4. INSTALLING HOSTS FOR RED HAT VIRTUALIZATION 32
4.1. RED HAT VIRTUALIZATION HOSTS .. 32
 4.1.1. Installing Red Hat Virtualization Hosts .. 32
 4.1.2. Enabling the Red Hat Virtualization Host Repository 34
 4.1.3. Advanced Installation .. 35
 4.1.3.1. Custom Partitioning .. 35
 4.1.3.2. Installing a DUD driver on a host without installer support 36
 4.1.3.3. Automating Red Hat Virtualization Host deployment 39
 4.1.3.3.1. Preparing the installation environment .. 40
 4.1.3.3.2. Configuring the PXE server and the boot loader 40
 4.1.3.3.3. Creating and running a Kickstart file ... 41
 4.2. RED HAT ENTERPRISE LINUX HOSTS .. 44
 4.2.1. Installing Red Hat Enterprise Linux hosts ... 44
 4.2.2. Enabling the Red Hat Enterprise Linux host Repositories 44
 4.2.3. Installing Cockpit on Red Hat Enterprise Linux hosts 46
4.3. RECOMMENDED PRACTICES FOR CONFIGURING HOST NETWORKS 46
4.4. ADDING STANDARD HOSTS TO THE RED HAT VIRTUALIZATION MANAGER 47

CHAPTER 5. PREPARING STORAGE FOR RED HAT VIRTUALIZATION 49
5.1. PREPARING NFS STORAGE 49
5.2. PREPARING ISCSI STORAGE 51
5.3. PREPARING FCP STORAGE 51
5.4. PREPARING POSIX-COMPLIANT FILE SYSTEM STORAGE 52
5.5. PREPARING LOCAL STORAGE 53
5.6. PREPARING RED HAT GLUSTER STORAGE 53
5.7. CUSTOMIZING MULTIPATH CONFIGURATIONS FOR SAN VENDORS 54
5.8. RECOMMENDED SETTINGS FOR MULTIPATH.CONF .. 55

CHAPTER 6. ADDING STORAGE FOR RED HAT VIRTUALIZATION .. 57
6.1. ADDING NFS STORAGE 57
6.2. ADDING ISCSI STORAGE 58
6.3. ADDING FCP STORAGE 60
6.4. ADDING POSIX-COMPLIANT FILE SYSTEM STORAGE ... 61
6.5. ADDING A LOCAL STORAGE DOMAIN 62
6.6. ADDING RED HAT GLUSTER STORAGE 62

APPENDIX A. CONFIGURING A LOCAL REPOSITORY FOR OFFLINE RED HAT VIRTUALIZATION MANAGER INSTALLATION .. 64
Enabling the Red Hat Virtualization Manager Repositories 64
Configuring the Offline Repository .. 65

APPENDIX B. PREPARING A LOCAL MANUALLY CONFIGURED POSTGRESQL DATABASE 68
Enabling the Red Hat Virtualization Manager Repositories 68
Initializing the PostgreSQL Database .. 69

APPENDIX C. CONFIGURING A HOST FOR PCI PASSTHROUGH .. 71

APPENDIX D. REMOVING THE STANDALONE RED HAT VIRTUALIZATION MANAGER 73

APPENDIX E. PREVENTING KERNEL MODULES FROM LOADING AUTOMATICALLY 74
E.1. REMOVING A MODULE TEMPORARILY 75

APPENDIX F. PREVENTING KERNEL MODULES FROM LOADING AUTOMATICALLY 77
F.1. REMOVING A MODULE TEMPORARILY 78

APPENDIX G. SECURING RED HAT VIRTUALIZATION .. 80
G.1. DISA STIG FOR RED HAT VIRTUALIZATION 4.4 .. 80
G.2. APPLYING THE DISA STIG PROFILE IN RED HAT VIRTUALIZATION HOST 81

APPENDIX H. LEGAL NOTICE .. 83
PREFACE

Standalone Manager installation is manual and customizable. You must install a Red Hat Enterprise Linux machine, then run the configuration script (engine-setup) and provide information about how you want to configure the Red Hat Virtualization Manager. Add hosts and storage after the Manager is running. At least two hosts are required for virtual machine high availability.

In a local database environment, the Manager database and Data Warehouse database can be created automatically by the Manager configuration script. Alternatively, you can create these databases manually on the Manager machine before running engine-setup.

See the Planning and Prerequisites Guide for information on environment options and recommended configuration.

RED HAT VIRTUALIZATION KEY COMPONENTS

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Virtualization Manager</td>
<td>A service that provides a graphical user interface and a REST API to manage the resources in the environment. The Manager is installed on a physical or virtual machine running Red Hat Enterprise Linux.</td>
</tr>
<tr>
<td>Hosts</td>
<td>Red Hat Enterprise Linux hosts (RHEL hosts) and Red Hat Virtualization Hosts (image-based hypervisors) are the two supported types of host. Hosts use Kernel-based Virtual Machine (KVM) technology and provide resources used to run virtual machines.</td>
</tr>
<tr>
<td>Shared Storage</td>
<td>A storage service is used to store the data associated with virtual machines.</td>
</tr>
<tr>
<td>Data Warehouse</td>
<td>A service that collects configuration information and statistical data from the Manager.</td>
</tr>
</tbody>
</table>

STANDALONE MANAGER ARCHITECTURE

The Red Hat Virtualization Manager runs on a physical server, or a virtual machine hosted in a separate virtualization environment. A standalone Manager is easier to deploy and manage, but requires an additional physical server. The Manager is only highly available when managed externally with a product such as Red Hat’s High Availability Add-On.

The minimum setup for a standalone Manager environment includes:

- One Red Hat Virtualization Manager machine. The Manager is typically deployed on a physical server. However, it can also be deployed on a virtual machine, as long as that virtual machine is hosted in a separate environment. The Manager must run on Red Hat Enterprise Linux 8.

- A minimum of two hosts for virtual machine high availability. You can use Red Hat Enterprise Linux hosts or Red Hat Virtualization Hosts (RHVH). VDSM (the host agent) runs on all hosts to facilitate communication with the Red Hat Virtualization Manager.
• One storage service, which can be hosted locally or on a remote server, depending on the storage type used. The storage service must be accessible to all hosts.

Figure 1. Standalone Manager Red Hat Virtualization Architecture
CHAPTER 1. INSTALLATION OVERVIEW

Installing a standalone Manager environment with local databases involves the following steps:

1. Install and configure the Red Hat Virtualization Manager:
 a. Install a Red Hat Enterprise Linux machine for the Manager.
 b. Register the Manager machine with the Content Delivery Network and enable the Red Hat Virtualization Manager repositories.
 c. Install and Configure the Red Hat Virtualization Manager using engine-setup.
 d. Connect to the Administration Portal to add hosts and storage domains.

2. Install hosts to run virtual machines on:
 a. Use either host type, or both:
 - Red Hat Virtualization Host
 - Red Hat Enterprise Linux
 b. Add the hosts to the Manager.

3. Prepare storage to use for storage domains. You can use one of the following storage types:
 - NFS
 - iSCSI
 - Fibre Channel (FCP)
 - POSIX-compliant file system
 - Local storage
 - Red Hat Gluster Storage

4. Add storage domains to the Manager.

IMPORTANT

Keep the environment up to date. See How do I update my Red Hat Virtualization system? for more information. Since bug fixes for known issues are frequently released, use scheduled tasks to update the hosts and the Manager.
CHAPTER 2. REQUIREMENTS

2.1. RED HAT VIRTUALIZATION MANAGER REQUIREMENTS

2.1.1. Hardware Requirements

The minimum and recommended hardware requirements outlined here are based on a typical small to medium-sized installation. The exact requirements vary between deployments based on sizing and load.

Hardware certification for Red Hat Virtualization is covered by the hardware certification for Red Hat Enterprise Linux. For more information, see Does Red Hat Virtualization also have hardware certification?. To confirm whether specific hardware items are certified for use with Red Hat Enterprise Linux, see https://access.redhat.com/ecosystem/#certifiedHardware.

Table 2.1. Red Hat Virtualization Manager Hardware Requirements

<table>
<thead>
<tr>
<th>Resource</th>
<th>Minimum</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>A dual core x86_64 CPU.</td>
<td>A quad core x86_64 CPU or multiple dual core x86_64 CPUs.</td>
</tr>
<tr>
<td>Memory</td>
<td>4 GB of available system RAM if Data Warehouse is not installed and if memory is not being consumed by existing processes.</td>
<td>16 GB of system RAM.</td>
</tr>
<tr>
<td>Hard Disk</td>
<td>25 GB of locally accessible, writable disk space.</td>
<td>50 GB of locally accessible, writable disk space.</td>
</tr>
<tr>
<td></td>
<td>You can use the RHV Manager History Database Size Calculator to calculate the appropriate disk space for the Manager history database size.</td>
<td></td>
</tr>
<tr>
<td>Network Interface</td>
<td>1 Network Interface Card (NIC) with bandwidth of at least 1 Gbps.</td>
<td>1 Network Interface Card (NIC) with bandwidth of at least 1 Gbps.</td>
</tr>
</tbody>
</table>

2.1.2. Browser Requirements

The following browser versions and operating systems can be used to access the Administration Portal and the VM Portal.

Browser support is divided into tiers:

- Tier 1: Browser and operating system combinations that are fully tested and fully supported. Red Hat Engineering is committed to fixing issues with browsers on this tier.

- Tier 2: Browser and operating system combinations that are partially tested, and are likely to work. Limited support is provided for this tier. Red Hat Engineering will attempt to fix issues with browsers on this tier.
- Tier 3: Browser and operating system combinations that are not tested, but may work. Minimal support is provided for this tier. Red Hat Engineering will attempt to fix only minor issues with browsers on this tier.

Table 2.2. Browser Requirements

<table>
<thead>
<tr>
<th>Support Tier</th>
<th>Operating System Family</th>
<th>Browser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>Red Hat Enterprise Linux</td>
<td>Mozilla Firefox Extended Support Release (ESR) version</td>
</tr>
<tr>
<td></td>
<td>Any</td>
<td>Most recent version of Google Chrome, Mozilla Firefox, or Microsoft Edge</td>
</tr>
<tr>
<td>Tier 2</td>
<td>Any</td>
<td>Earlier versions of Google Chrome or Mozilla Firefox</td>
</tr>
<tr>
<td>Tier 3</td>
<td>Any</td>
<td>Other browsers</td>
</tr>
</tbody>
</table>

2.1.3. Client Requirements

Virtual machine consoles can only be accessed using supported Remote Viewer (`virt-viewer`) clients on Red Hat Enterprise Linux and Windows. To install `virt-viewer`, see Installing Supporting Components on Client Machines in the Virtual Machine Management Guide. Installing `virt-viewer` requires Administrator privileges.

You can access virtual machine consoles using the SPICE, VNC, or RDP (Windows only) protocols. You can install the QXLDOD graphical driver in the guest operating system to improve the functionality of SPICE. SPICE currently supports a maximum resolution of 2560x1600 pixels.

Client Operating System SPICE Support

Supported QXLDOD drivers are available on Red Hat Enterprise Linux 7.2 and later, and Windows 10.

NOTE

SPICE may work with Windows 8 or 8.1 using QXLDOD drivers, but it is neither certified nor tested.

2.1.4. Operating System Requirements

The Red Hat Virtualization Manager must be installed on a base installation of Red Hat Enterprise Linux 8 that has been updated to the latest minor release.

Do not install any additional packages after the base installation, as they may cause dependency issues when attempting to install the packages required by the Manager.

Do not enable additional repositories other than those required for the Manager installation.
2.2. HOST REQUIREMENTS

Hardware certification for Red Hat Virtualization is covered by the hardware certification for Red Hat Enterprise Linux. For more information, see Does Red Hat Virtualization also have hardware certification?. To confirm whether specific hardware items are certified for use with Red Hat Enterprise Linux, see Find a certified solution.

For more information on the requirements and limitations that apply to guests see https://access.redhat.com/articles/rhel-limits and https://access.redhat.com/articles/906543.

2.2.1. CPU Requirements

All CPUs must have support for the Intel® 64 or AMD64 CPU extensions, and the AMD-V™ or Intel VT® hardware virtualization extensions enabled. Support for the No eXecute flag (NX) is also required.

The following CPU models are supported:

- AMD
 - Opteron G4
 - Opteron G5
 - EPYC
- Intel
 - Nehalem
 - Westmere
 - SandyBridge
 - IvyBridge
 - Haswell
 - Broadwell
 - Skylake Client
 - Skylake Server
 - Cascade Lake Server
- IBM
 - POWER8
 - POWER9

For each CPU model with security updates, the CPU Type lists a basic type and a secure type. For example:

- Intel Cascade Lake Server Family
- Secure Intel Cascade Lake Server Family
The Secure CPU type contains the latest updates. For details, see BZ#1731395

2.2.1.1. Checking if a Processor Supports the Required Flags

You must enable virtualization in the BIOS. Power off and reboot the host after this change to ensure that the change is applied.

Procedure

1. At the Red Hat Enterprise Linux or Red Hat Virtualization Host boot screen, press any key and select the **Boot** or **Boot with serial console** entry from the list.

2. Press **Tab** to edit the kernel parameters for the selected option.

3. Ensure there is a space after the last kernel parameter listed, and append the parameter **rescue**.

4. Press **Enter** to boot into rescue mode.

5. At the prompt, determine that your processor has the required extensions and that they are enabled by running this command:

   ```bash
   # grep -E 'svm|vmx' /proc/cpuinfo | grep nx
   ```

 If any output is shown, the processor is hardware virtualization capable. If no output is shown, your processor may still support hardware virtualization; in some circumstances manufacturers disable the virtualization extensions in the BIOS. If you believe this to be the case, consult the system’s BIOS and the motherboard manual provided by the manufacturer.

2.2.2. Memory Requirements

The minimum required RAM is 2 GB. The maximum supported RAM per VM in Red Hat Virtualization Host is 4 TB.

However, the amount of RAM required varies depending on guest operating system requirements, guest application requirements, and guest memory activity and usage. KVM can also overcommit physical RAM for virtualized guests, allowing you to provision guests with RAM requirements greater than what is physically present, on the assumption that the guests are not all working concurrently at peak load. KVM does this by only allocating RAM for guests as required and shifting underutilized guests into swap.

2.2.3. Storage Requirements

Hosts require storage to store configuration, logs, kernel dumps, and for use as swap space. Storage can be local or network-based. Red Hat Virtualization Host (RHVH) can boot with one, some, or all of its default allocations in network storage. Booting from network storage can result in a freeze if there is a network disconnect. Adding a drop-in multipath configuration file can help address losses in network connectivity. If RHVH boots from SAN storage and loses connectivity, the files become read-only until network connectivity restores. Using network storage might result in a performance downgrade.

The minimum storage requirements of RHVH are documented in this section. The storage requirements for Red Hat Enterprise Linux hosts vary based on the amount of disk space used by their existing configuration but are expected to be greater than those of RHVH.

The minimum storage requirements for host installation are listed below. However, use the default allocations, which use more storage space.
• / (root) - 6 GB
• /home - 1 GB
• /tmp - 1 GB
• /boot - 1 GB
• /var - 15 GB
• /var/crash - 10 GB
• /var/log - 8 GB
• /var/log/audit - 2 GB
• swap - 1 GB (for the recommended swap size, see https://access.redhat.com/solutions/15244)
• Anaconda reserves 20% of the thin pool size within the volume group for future metadata expansion. This is to prevent an out-of-the-box configuration from running out of space under normal usage conditions. Overprovisioning of thin pools during installation is also not supported.

Minimum Total - 64 GiB

If you are also installing the RHV-M Appliance for self-hosted engine installation, /var/tmp must be at least 8 GB.

If you plan to use memory overcommitment, add enough swap space to provide virtual memory for all of virtual machines. See Memory Optimization.

2.2.4. PCI Device Requirements

Hosts must have at least one network interface with a minimum bandwidth of 1 Gbps. Each host should have two network interfaces, with one dedicated to supporting network-intensive activities, such as virtual machine migration. The performance of such operations is limited by the bandwidth available.

For information about how to use PCI Express and conventional PCI devices with Intel Q35-based virtual machines, see Using PCI Express and Conventional PCI Devices with the Q35 Virtual Machine.

2.2.5. Device Assignment Requirements

If you plan to implement device assignment and PCI passthrough so that a virtual machine can use a specific PCIe device from a host, ensure the following requirements are met:

- CPU must support IOMMU (for example, VT-d or AMD-Vi). IBM POWER8 supports IOMMU by default.
- Firmware must support IOMMU.
- CPU root ports used must support ACS or ACS-equivalent capability.
- PCIe devices must support ACS or ACS-equivalent capability.
- All PCIe switches and bridges between the PCIe device and the root port should support ACS. For example, if a switch does not support ACS, all devices behind that switch share the same IOMMU group, and can only be assigned to the same virtual machine.
For GPU support, Red Hat Enterprise Linux 8 supports PCI device assignment of PCIe-based NVIDIA K-Series Quadro (model 2000 series or higher), GRID, and Tesla as non-VGA graphics devices. Currently up to two GPUs may be attached to a virtual machine in addition to one of the standard, emulated VGA interfaces. The emulated VGA is used for pre-boot and installation and the NVIDIA GPU takes over when the NVIDIA graphics drivers are loaded. Note that the NVIDIA Quadro 2000 is not supported, nor is the Quadro K420 card.

Check vendor specification and datasheets to confirm that your hardware meets these requirements. The `lspci -v` command can be used to print information for PCI devices already installed on a system.

2.2.6. vGPU Requirements

A host must meet the following requirements in order for virtual machines on that host to use a vGPU:

- vGPU-compatible GPU
- GPU-enabled host kernel
- Installed GPU with correct drivers
- Predefined `mdev_type` set to correspond with one of the mdev types supported by the device
- vGPU-capable drivers installed on each host in the cluster
- vGPU-supported virtual machine operating system with vGPU drivers installed

2.3. NETWORKING REQUIREMENTS

2.3.1. General requirements

Red Hat Virtualization requires IPv6 to remain enabled on the physical or virtual machine running the Manager. Do not disable IPv6 on the Manager machine, even if your systems do not use it.

2.3.2. Firewall Requirements for DNS, NTP, and IPMI Fencing

The firewall requirements for all of the following topics are special cases that require individual consideration.

DNS and NTP

Red Hat Virtualization does not create a DNS or NTP server, so the firewall does not need to have open ports for incoming traffic.

By default, Red Hat Enterprise Linux allows outbound traffic to DNS and NTP on any destination address. If you disable outgoing traffic, define exceptions for requests that are sent to DNS and NTP servers.
IMPORTANT

- The Red Hat Virtualization Manager and all hosts (Red Hat Virtualization Host and Red Hat Enterprise Linux host) must have a fully qualified domain name and full, perfectly-aligned forward and reverse name resolution.

- Running a DNS service as a virtual machine in the Red Hat Virtualization environment is not supported. All DNS services the Red Hat Virtualization environment uses must be hosted outside of the environment.

- Use DNS instead of the `/etc/hosts` file for name resolution. Using a hosts file typically requires more work and has a greater chance for errors.

IPMI and Other Fencing Mechanisms (optional)

For IPMI (Intelligent Platform Management Interface) and other fencing mechanisms, the firewall does not need to have open ports for incoming traffic.

By default, Red Hat Enterprise Linux allows outbound IPMI traffic to ports on any destination address. If you disable outgoing traffic, make exceptions for requests being sent to your IPMI or fencing servers.

Each Red Hat Virtualization Host and Red Hat Enterprise Linux host in the cluster must be able to connect to the fencing devices of all other hosts in the cluster. If the cluster hosts are experiencing an error (network error, storage error...) and cannot function as hosts, they must be able to connect to other hosts in the data center.

The specific port number depends on the type of the fence agent you are using and how it is configured.

The firewall requirement tables in the following sections do not represent this option.

2.3.3. Red Hat Virtualization Manager Firewall Requirements

The Red Hat Virtualization Manager requires that a number of ports be opened to allow network traffic through the system’s firewall.

The `engine-setup` script can configure the firewall automatically.

The firewall configuration documented here assumes a default configuration.

NOTE

A diagram of these firewall requirements is available at https://access.redhat.com/articles/3932211. You can use the IDs in the table to look up connections in the diagram.

<table>
<thead>
<tr>
<th>ID</th>
<th>Port(s)</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Purpose</th>
<th>Encrypted by default</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Port(s)</td>
<td>Protocol</td>
<td>Source</td>
<td>Destination</td>
<td>Purpose</td>
<td>Encrypted by default</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>M1</td>
<td>-</td>
<td>ICMP</td>
<td>Red Hat Virtualization Hosts, Red Hat Enterprise Linux hosts</td>
<td>Red Hat Virtualization Manager</td>
<td>Optional. May help in diagnosis.</td>
<td>No</td>
</tr>
<tr>
<td>M2</td>
<td>22</td>
<td>TCP</td>
<td>System(s) used for maintenance of the Manager including backend configuration, and software upgrades.</td>
<td>Red Hat Virtualization Manager</td>
<td>Secure Shell (SSH) access. Optional.</td>
<td>Yes</td>
</tr>
<tr>
<td>M3</td>
<td>2222</td>
<td>TCP</td>
<td>Clients accessing virtual machine serial consoles.</td>
<td>Red Hat Virtualization Manager</td>
<td>Secure Shell (SSH) access to enable connection to virtual machine serial consoles.</td>
<td>Yes</td>
</tr>
<tr>
<td>M4</td>
<td>80, 443</td>
<td>TCP</td>
<td>Administration Portal clients, VM Portal clients, Red Hat Virtualization Hosts, Red Hat Enterprise Linux hosts, REST API clients</td>
<td>Red Hat Virtualization Manager</td>
<td>Provides HTTP (port 80, not encrypted) and HTTPS (port 443, encrypted) access to the Manager. HTTP redirects connections to HTTPS.</td>
<td>Yes</td>
</tr>
<tr>
<td>ID</td>
<td>Port(s)</td>
<td>Protocol</td>
<td>Source 1</td>
<td>Destination 1</td>
<td>Purpose</td>
<td>Encrypted by default</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>M5</td>
<td>6100</td>
<td>TCP</td>
<td>Administration Portal clients/VM Portal clients</td>
<td>Red Hat Virtualization Manager</td>
<td>Provides websocket proxy access for a web-based console client, noVNC, when the websocket proxy is running on the Manager.</td>
<td>No</td>
</tr>
<tr>
<td>M6</td>
<td>7410</td>
<td>UDP</td>
<td>Red Hat Virtualization Hosts/Red Hat Enterprise Linux hosts</td>
<td>Red Hat Virtualization Manager</td>
<td>If Kdump is enabled on the hosts, open this port for the fence_kdump listener on the Manager. See fence_kdump Advanced Configuration. fence_kdump doesn’t provide a way to encrypt the connection. However, you can manually configure this port to block access from hosts that are not eligible.</td>
<td>No</td>
</tr>
<tr>
<td>M7</td>
<td>54323</td>
<td>TCP</td>
<td>Administration Portal clients</td>
<td>Red Hat Virtualization Manager (ovirt-imageio service)</td>
<td>Required for communication with the ovirt-imageio service.</td>
<td>Yes</td>
</tr>
<tr>
<td>ID</td>
<td>Port(s)</td>
<td>Protocol</td>
<td>Source</td>
<td>Destination</td>
<td>Purpose</td>
<td>Encrypted by default</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>M8</td>
<td>6442</td>
<td>TCP</td>
<td>Red Hat Virtualization Hosts</td>
<td>Open Virtual Network (OVN) southbound database</td>
<td>Connect to Open Virtual Network (OVN) database</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Red Hat Enterprise Linux hosts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M9</td>
<td>9696</td>
<td>TCP</td>
<td>Clients of external network provider for OVN</td>
<td>External network provider for OVN</td>
<td>OpenStack Networking API</td>
<td>Yes, with configuration generated by engine-setup.</td>
</tr>
<tr>
<td>M10</td>
<td>35357</td>
<td>TCP</td>
<td>Clients of external network provider for OVN</td>
<td>External network provider for OVN</td>
<td>OpenStack Identity API</td>
<td>Yes, with configuration generated by engine-setup.</td>
</tr>
<tr>
<td>M11</td>
<td>53</td>
<td>TCP, UDP</td>
<td>Red Hat Virtualization Manager</td>
<td>DNS Server</td>
<td>DNS lookup requests from ports above 1023 to port 53, and responses. Open by default.</td>
<td>No</td>
</tr>
<tr>
<td>M12</td>
<td>123</td>
<td>UDP</td>
<td>Red Hat Virtualization Manager</td>
<td>NTP Server</td>
<td>NTP requests from ports above 1023 to port 123, and responses. Open by default.</td>
<td>No</td>
</tr>
</tbody>
</table>

NOTE

- A port for the OVN northbound database (6641) is not listed because, in the default configuration, the only client for the OVN northbound database (6641) is `ovirt-provider-ovn`. Because they both run on the same host, their communication is not visible to the network.

- By default, Red Hat Enterprise Linux allows outbound traffic to DNS and NTP on any destination address. If you disable outgoing traffic, make exceptions for the Manager to send requests to DNS and NTP servers. Other nodes may also require DNS and NTP. In that case, consult the requirements for those nodes and configure the firewall accordingly.
2.3.4. Host Firewall Requirements

Red Hat Enterprise Linux hosts and Red Hat Virtualization Hosts (RHVH) require a number of ports to be opened to allow network traffic through the system’s firewall. The firewall rules are automatically configured by default when adding a new host to the Manager, overwriting any pre-existing firewall configuration.

To disable automatic firewall configuration when adding a new host, clear the **Automatically configure host firewall** check box under **Advanced Parameters**.

To customize the host firewall rules, see [RHV: How to customize the Host’s firewall rules?](#).

NOTE

A diagram of these firewall requirements is available at [Red Hat Virtualization: Firewall Requirements Diagram](#). You can use the IDs in the table to look up connections in the diagram.

<table>
<thead>
<tr>
<th>ID</th>
<th>Port(s)</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Purpose</th>
<th>Encrypted by default</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>22</td>
<td>TCP</td>
<td>Red Hat Virtualization Manager</td>
<td>Red Hat Virtualization Hosts</td>
<td>Secure Shell (SSH) access.</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat Enterprise Linux hosts</td>
<td>Optional.</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>2223</td>
<td>TCP</td>
<td>Red Hat Virtualization Manager</td>
<td>Red Hat Virtualization Hosts</td>
<td>Secure Shell (SSH) access to enable connection to virtual machine serial consoles.</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Red Hat Enterprise Linux hosts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Port(s)</td>
<td>Protocol</td>
<td>Source</td>
<td>Destination</td>
<td>Purpose</td>
<td>Encrypted by default</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>H3</td>
<td>161</td>
<td>UDP</td>
<td>Red Hat Virtualization Hosts</td>
<td>Red Hat Virtualization Manager</td>
<td>Simple network management protocol (SNMP). Only required if you want Simple Network Management Protocol traps sent from the host to one or more external SNMP managers. Optional.</td>
<td>No</td>
</tr>
<tr>
<td>H4</td>
<td>III</td>
<td>TCP</td>
<td>NFS storage server</td>
<td>Red Hat Virtualization Hosts</td>
<td>NFS connections. Optional.</td>
<td>No</td>
</tr>
<tr>
<td>H5</td>
<td>5900 - 6923</td>
<td>TCP</td>
<td>Administration Portal clients VM Portal clients</td>
<td>Red Hat Virtualization Hosts</td>
<td>Remote guest console access via VNC and SPICE. These ports must be open to facilitate client access to virtual machines.</td>
<td>Yes (optional)</td>
</tr>
<tr>
<td>ID</td>
<td>Port(s)</td>
<td>Protocol</td>
<td>Source</td>
<td>Destination</td>
<td>Purpose</td>
<td>Encrypted by default</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>H6</td>
<td>5989</td>
<td>TCP, UDP</td>
<td>Common Information Model Object Manager (CIMOM)</td>
<td>Red Hat Virtualization Hosts, Red Hat Enterprise Linux hosts</td>
<td>Used by Common Information Model Object Managers (CIMOM) to monitor virtual machines running on the host. Only required if you want to use a CIMOM to monitor the virtual machines in your virtualization environment. Optional.</td>
<td>No</td>
</tr>
<tr>
<td>H7</td>
<td>9090</td>
<td>TCP</td>
<td>Red Hat Virtualization Manager Client machines</td>
<td>Red Hat Virtualization Hosts, Red Hat Enterprise Linux hosts</td>
<td>Required to access the Cockpit web interface, if installed.</td>
<td>Yes</td>
</tr>
<tr>
<td>H8</td>
<td>16514</td>
<td>TCP</td>
<td>Red Hat Virtualization Hosts, Red Hat Enterprise Linux hosts</td>
<td>Red Hat Virtualization Hosts, Red Hat Enterprise Linux hosts</td>
<td>Virtual machine migration using <code>libvirt</code>.</td>
<td>Yes</td>
</tr>
<tr>
<td>ID</td>
<td>Port(s)</td>
<td>Protocol</td>
<td>Source</td>
<td>Destination</td>
<td>Purpose</td>
<td>Encrypted by default</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>H9</td>
<td>49152 - 49215</td>
<td>TCP</td>
<td>Red Hat Virtualization Hosts</td>
<td>Red Hat Virtualization Hosts</td>
<td>Virtual machine migration and fencing using VDSM. These ports must be</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Red Hat Enterprise Linux hosts</td>
<td>Red Hat Enterprise Linux hosts</td>
<td>open to facilitate both automated and manual migration of virtual machines.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H10</td>
<td>54321</td>
<td>TCP</td>
<td>Red Hat Virtualization Manager</td>
<td>Red Hat Virtualization Hosts</td>
<td>VDSM communications with the Manager and other virtualization hosts.</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Red Hat Virtualization Hosts</td>
<td>Red Hat Enterprise Linux hosts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Red Hat Virtualization Hosts</td>
<td>Red Hat Enterprise Linux hosts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H11</td>
<td>54322</td>
<td>TCP</td>
<td>Red Hat Virtualization Manager</td>
<td>Red Hat Virtualization Hosts</td>
<td>Required for communication with the ovirt-imageio service.</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ovirt-imageio service</td>
<td>Red Hat Enterprise Linux hosts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H12</td>
<td>6081</td>
<td>UDP</td>
<td>Red Hat Virtualization Hosts</td>
<td>Red Hat Virtualization Hosts</td>
<td>Required, when Open Virtual Network (OVN) is used as a network provider,</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Red Hat Enterprise Linux hosts</td>
<td>Red Hat Enterprise Linux hosts</td>
<td>to allow OVN to create tunnels between hosts.</td>
<td></td>
</tr>
</tbody>
</table>
NOTE

By default, Red Hat Enterprise Linux allows outbound traffic to DNS and NTP on any destination address. If you disable outgoing traffic, make exceptions for the Red Hat Virtualization Hosts.

Red Hat Enterprise Linux hosts to send requests to DNS and NTP servers. Other nodes may also require DNS and NTP. In that case, consult the requirements for those nodes and configure the firewall accordingly.

2.3.5. Database Server Firewall Requirements

Red Hat Virtualization supports the use of a remote database server for the Manager database (engine) and the Data Warehouse database (ovirt-engine-history). If you plan to use a remote database server, it must allow connections from the Manager and the Data Warehouse service (which can be separate from the Manager).

Similarly, if you plan to access a local or remote Data Warehouse database from an external system, the database must allow connections from that system.

IMPORTANT

Accessing the Manager database from external systems is not supported.

NOTE

A diagram of these firewall requirements is available at https://access.redhat.com/articles/3932211. You can use the IDs in the table to look up connections in the diagram.

Table 2.5. Database Server Firewall Requirements

<table>
<thead>
<tr>
<th>ID</th>
<th>Port(s)</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Purpose</th>
<th>Encrypted by default</th>
</tr>
</thead>
<tbody>
<tr>
<td>H13</td>
<td>53</td>
<td>TCP, UDP</td>
<td>Red Hat Virtualization Hosts</td>
<td>DNS Server</td>
<td>DNS lookup requests from ports above 1023 to port 53, and responses. This port is required and open by default.</td>
<td>No</td>
</tr>
</tbody>
</table>

NOTE

Table 2.5. Database Server Firewall Requirements
<table>
<thead>
<tr>
<th>ID</th>
<th>Port(s)</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Purpose</th>
<th>Encrypted by default</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>5432</td>
<td>TCP, UDP</td>
<td>Red Hat Virtualization Manager</td>
<td>Manager (engine) database server</td>
<td>Default port for PostgreSQL database connections.</td>
<td>No, but can be enabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data Warehouse service</td>
<td>Data Warehouse (ovirt-engine-history) database server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>5432</td>
<td>TCP, UDP</td>
<td>External systems</td>
<td>Data Warehouse (ovirt-engine-history) database server</td>
<td>Default port for PostgreSQL database connections.</td>
<td>Disabled by default. No, but can be enabled.</td>
</tr>
</tbody>
</table>
CHAPTER 3. INSTALLING THE RED HAT VIRTUALIZATION MANAGER

Installing the Red Hat Virtualization Manager involves the following steps:

1. Preparing the Red Hat Virtualization Manager Machine
2. Enabling the Red Hat Virtualization Manager Repositories
3. Installing and Configuring the Red Hat Virtualization Manager
4. Connecting to the Administration Portal

3.1. PREPARING THE RED HAT VIRTUALIZATION MANAGER MACHINE

The Red Hat Virtualization Manager must run on Red Hat Enterprise Linux 8. For detailed installation instructions, see Performing a standard RHEL installation.

This machine must meet the minimum Manager hardware requirements.

To install the Red Hat Virtualization Manager on a system that does not have access to the Content Delivery Network, see Configuring an Offline Repository for Red Hat Virtualization Manager Installation before configuring the Manager.

By default, the Red Hat Virtualization Manager’s configuration script, engine-setup, creates and configures the Manager database and Data Warehouse database automatically on the Manager machine. To set up either database, or both, manually, see Preparing a Local Manually-Configured PostgreSQL Database before configuring the Manager.

3.2. ENABLING THE RED HAT VIRTUALIZATION MANAGER REPOSITORIES

You need to log in and register the Manager machine with Red Hat Subscription Manager, attach the Red Hat Virtualization Manager subscription, and enable the Manager repositories.

Procedure

1. Register your system with the Content Delivery Network, entering your Customer Portal user name and password when prompted:

```
# subscription-manager register
```

NOTE

If you are using an IPv6 network, use an IPv6 transition mechanism to access the Content Delivery Network and subscription manager.

2. Find the Red Hat Virtualization Manager subscription pool and record the pool ID:

```
# subscription-manager list --available
```

3. Use the pool ID to attach the subscription to the system:
4. Configure the repositories:

 # subscription-manager repos
 --disable="*"
 --enable=rhel-8-for-x86_64-baseos-rpms
 --enable=rhel-8-for-x86_64-appstream-rpms
 --enable=rhv-4.4-manager-for-rhel-8-x86_64-rpms
 --enable=fast-datapath-for-rhel-8-x86_64-rpms
 --enable=jb-eap-7.4-for-rhel-8-x86_64-rpms
 --enable=openstack-16.2-cinderlib-for-rhel-8-x86_64-rpms
 --enable=rhceph-4-tools-for-rhel-8-x86_64-rpms

5. Enable the **pki-deps** module.

 # dnf module -y enable pki-deps

6. Enable version 12 of the **postgresql** module.

 # dnf module -y enable postgresql:12

7. Synchronize installed packages to update them to the latest available versions.

 # dnf distro-sync --nobest

Additional resources

For information on modules and module streams, see the following sections in *Installing, managing, and removing user-space components*:

- Module streams
- Selecting a stream before installation of packages
- Resetting module streams
- Switching to a later stream

3.3. INSTALLING AND CONFIGURING THE RED HAT VIRTUALIZATION MANAGER
Install the package and dependencies for the Red Hat Virtualization Manager, and configure it using the `engine-setup` command. The script asks you a series of questions and, after you provide the required values for all questions, applies that configuration and starts the `ovirt-engine` service.

IMPORTANT

The `engine-setup` command guides you through several distinct configuration stages, each comprising several steps that require user input. Suggested configuration defaults are provided in square brackets; if the suggested value is acceptable for a given step, press `Enter` to accept that value.

You can run `engine-setup --accept-defaults` to automatically accept all questions that have default answers. This option should be used with caution and only if you are familiar with `engine-setup`.

Procedure

1. Ensure all packages are up to date:

   ```bash
   # dnf upgrade --nobest
   ```

 NOTE

 Reboot the machine if any kernel-related packages were updated.

2. Install the `rhvm` package and dependencies.

   ```bash
   # dnf install rhvm
   ```

3. Run the `engine-setup` command to begin configuring the Red Hat Virtualization Manager:

   ```bash
   # engine-setup
   ```

4. Optional: Type `Yes` and press `Enter` to set up Cinderlib integration on this machine:

   ```bash
   Set up Cinderlib integration
   (Currently in tech preview)
   (Yes, No) [No]:
   ```

 IMPORTANT

 Cinderlib is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs), might not be functionally complete, and Red Hat does not recommend to use them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

 For more information on Red Hat Technology Preview features support scope, see [Red Hat Technology Preview Features Support Scope](#).

5. Press `Enter` to configure the Manager on this machine:
Configure Engine on this host (Yes, No) [Yes]:

6. Optional: Install Open Virtual Network (OVN). Selecting Yes installs an OVN server on the Manager machine and adds it to Red Hat Virtualization as an external network provider. This action also configures the Default cluster to use OVN as its default network provider.

 IMPORTANT

 Also see the "Next steps" in Adding Open Virtual Network (OVN) as an External Network Provider in the Administration Guide.

Configuring ovirt-provider-ovn also sets the Default cluster’s default network provider to ovirt-provider-ovn.
Non-Default clusters may be configured with an OVN after installation.
Configure ovirt-provider-ovn (Yes, No) [Yes]:

For more information on using OVN networks in Red Hat Virtualization, see Adding Open Virtual Network (OVN) as an External Network Provider in the Administration Guide.

7. Optional: Allow engine-setup to configure a WebSocket Proxy server for allowing users to connect to virtual machines through the noVNC console:

 IMPORTANT

 The WebSocket Proxy and noVNC are Technology Preview features only. Technology Preview features are not supported with Red Hat production service-level agreements (SLAs) and might not be functionally complete, and Red Hat does not recommend using them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. For more information see Red Hat Technology Preview Features Support Scope.

Configure WebSocket Proxy on this machine? (Yes, No) [Yes]:

8. Choose whether to configure Data Warehouse on this machine.

 Please note: Data Warehouse is required for the engine. If you choose to not configure it on this host, you have to configure it on a remote host, and then configure the engine on this host so that it can access the database of the remote Data Warehouse host.

Configure Data Warehouse on this host (Yes, No) [Yes]:

 IMPORTANT

 Red Hat only supports installing the Data Warehouse database, the Data Warehouse service, and Grafana all on the same machine as each other.

9. Press Enter to configure Grafana on the Manager:

 Configure Grafana on this host (Yes, No) [Yes]:

10. Optional: Allow access to a virtual machine’s serial console from the command line.
Configure VM Console Proxy on this host (Yes, No) [Yes]:

Additional configuration is required on the client machine to use this feature. See Opening a Serial Console to a Virtual Machine in the Virtual Machine Management Guide.

11. Press Enter to accept the automatically detected host name, or enter an alternative host name and press Enter. Note that the automatically detected host name may be incorrect if you are using virtual hosts.

Host fully qualified DNS name of this server [autodetected host name]:

12. The engine-setup command checks your firewall configuration and offers to open the ports used by the Manager for external communication, such as ports 80 and 443. If you do not allow engine-setup to modify your firewall configuration, you must manually open the ports used by the Manager. firewalld is configured as the firewall manager.

Setup can automatically configure the firewall on this system.
Note: automatic configuration of the firewall may overwrite current settings.
Do you want Setup to configure the firewall? (Yes, No) [Yes]:

If you choose to automatically configure the firewall, and no firewall managers are active, you are prompted to select your chosen firewall manager from a list of supported options. Type the name of the firewall manager and press Enter. This applies even in cases where only one option is listed.

13. Specify whether to configure the Data Warehouse database on this machine, or on another machine:

Where is the DWH database located? (Local, Remote) [Local]:

- If you select Local, the engine-setup script can configure your database automatically (including adding a user and a database), or it can connect to a preconfigured local database:

 Setup can configure the local postgresql server automatically for the DWH to run. This may conflict with existing applications.
 Would you like Setup to automatically configure postgresql and create DWH database, or prefer to perform that manually? (Automatic, Manual) [Automatic]:

 - If you select Automatic by pressing Enter, no further action is required here.
 - If you select Manual, input the following values for the manually configured local database:

 DWH database secured connection (Yes, No) [No]:
 DWH database name [ovirt_engine_history]:
 DWH database user [ovirt_engine_history]:
 DWH database password:

 NOTE

 engine-setup requests these values after the Manager database is configured in the next step.
If you select Remote (for example, if you are installing the Data Warehouse service on the Manager machine, but have configured a remote Data Warehouse database), input the following values for the remote database server:

DWH database host [localhost]:
DWH database port [5432]:
DWH database secured connection (Yes, No) [No]:
DWH database name [ovirt_engine_history]:
DWH database user [ovirt_engine_history]:
DWH database password:

NOTE

engine-setup requests these values after the Manager database is configured in the next step.

If you select Remote, you are prompted to enter the username and password for the Grafana database user:

Grafana database user [ovirt_engine_history_grafana]:
Grafana database password:

14. Specify whether to configure the Manager database on this machine, or on another machine:

Where is the Engine database located? (Local, Remote) [Local]:

If you select Local, the engine-setup command can configure your database automatically (including adding a user and a database), or it can connect to a preconfigured local database:

Setup can configure the local postgresql server automatically for the engine to run. This may conflict with existing applications.
Would you like Setup to automatically configure postgresql and create Engine database, or prefer to perform that manually? (Automatic, Manual) [Automatic]:

- If you select Automatic by pressing Enter, no further action is required here.
- If you select Manual, input the following values for the manually configured local database:

 Engine database secured connection (Yes, No) [No]:
 Engine database name [engine]:
 Engine database user [engine]:
 Engine database password:

15. Set a password for the automatically created administrative user of the Red Hat Virtualization Manager:

Engine admin password:
Confirm engine admin password:

16. Select Gluster, Virt, or Both:
Application mode (Both, Virt, Gluster) [Both]:

- **Both** - offers the greatest flexibility. In most cases, select Both.
- **Virt** - allows you to run virtual machines in the environment.
- **Gluster** - only allows you to manage GlusterFS from the Administration Portal.

17. If you installed the OVN provider, you can choose to use the default credentials, or specify an alternative.

Use default credentials (admin@internal) for ovirt-provider-ovn (Yes, No) [Yes]:

\[\text{oVirt OVN provider user}[\text{admin@internal}]:\]

\[\text{oVirt OVN provider password}:\]

18. Set the default value for the **wipe_after_delete** flag, which wipes the blocks of a virtual disk when the disk is deleted.

Default SAN wipe after delete (Yes, No) [No]:

19. The Manager uses certificates to communicate securely with its hosts. This certificate can also optionally be used to secure HTTPS communications with the Manager. Provide the organization name for the certificate:

Organization name for certificate [autodetected domain-based name]:

20. Optionally allow **engine-setup** to make the landing page of the Manager the default page presented by the Apache web server:

Setup can configure the default page of the web server to present the application home page. This may conflict with existing applications.

Do you wish to set the application as the default web page of the server? (Yes, No) [Yes]:

21. By default, external SSL (HTTPS) communication with the Manager is secured with the self-signed certificate created earlier in the configuration to securely communicate with hosts. Alternatively, choose another certificate for external HTTPS connections; this does not affect how the Manager communicates with hosts:

Setup can configure apache to use SSL using a certificate issued from the internal CA.

Do you wish Setup to configure that, or prefer to perform that manually? (Automatic, Manual) [Automatic]:

22. You can specify a unique password for the Grafana admin user, or use same one as the Manager admin password:

Use Engine admin password as initial Grafana admin password (Yes, No) [Yes]:

23. Choose how long Data Warehouse will retain collected data:

Please choose Data Warehouse sampling scale:

(1) Basic
(2) Full
(1, 2)[1]:

(1, 2)[1]:
Full uses the default values for the data storage settings listed in the Data Warehouse Guide (recommended when Data Warehouse is installed on a remote server).

Basic reduces the values of DWH_TABLES_KEEP_HOURLY to 720 and DWH_TABLES_KEEP_DAILY to 0, easing the load on the Manager machine. Use Basic when the Manager and Data Warehouse are installed on the same machine.

24. Review the installation settings, and press Enter to accept the values and proceed with the installation:

Please confirm installation settings (OK, Cancel) [OK]:

When your environment has been configured, engine-setup displays details about how to access your environment.

Next steps

If you chose to manually configure the firewall, engine-setup provides a custom list of ports that need to be opened, based on the options selected during setup. engine-setup also saves your answers to a file that can be used to reconfigure the Manager using the same values, and outputs the location of the log file for the Red Hat Virtualization Manager configuration process.

- If you intend to link your Red Hat Virtualization environment with a directory server, configure the date and time to synchronize with the system clock used by the directory server to avoid unexpected account expiry issues. See Synchronizing the System Clock with a Remote Server in the Red Hat Enterprise Linux System Administrator’s Guide for more information.

- Install the certificate authority according to the instructions provided by your browser. You can get the certificate authority’s certificate by navigating to http://<manager-fqdn>/ovirt-engine/services/pki-resource?resource=ca-certificate&format=X509-PEM-CA, replacing <manager-fqdn> with the FQDN that you provided during the installation.

Log in to the Administration Portal, where you can add hosts and storage to the environment:

3.4. CONNECTING TO THE ADMINISTRATION PORTAL

Access the Administration Portal using a web browser.

1. In a web browser, navigate to https://manager-fqdn/ovirt-engine, replacing manager-fqdn with the FQDN that you provided during installation.

NOTE

You can access the Administration Portal using alternate host names or IP addresses. To do so, you need to add a configuration file under /etc/ovirt-engine/engine.conf.d/. For example:

```
# vi /etc/ovirt-engine/engine.conf.d/99-custom-sso-setup.conf
SSO_ALTERNATE_ENGINE_FQDNS="alias1.example.com alias2.example.com"
```

The list of alternate host names needs to be separated by spaces. You can also add the IP address of the Manager to the list, but using IP addresses instead of DNS-resolvable host names is not recommended.
2. Click **Administration Portal**. An SSO login page displays. SSO login enables you to log in to the Administration and VM Portal at the same time.

3. Enter your **User Name** and **Password**. If you are logging in for the first time, use the user name **admin** along with the password that you specified during installation.

4. Select the **Domain** to authenticate against. If you are logging in using the internal **admin** user name, select the **internal** domain.

5. Click **Log In**.

6. You can view the Administration Portal in multiple languages. The default selection is chosen based on the locale settings of your web browser. If you want to view the Administration Portal in a language other than the default, select your preferred language from the drop-down list on the welcome page.

To log out of the Red Hat Virtualization Administration Portal, click your user name in the header bar and click **Sign Out**. You are logged out of all portals and the Manager welcome screen displays.
CHAPTER 4. INSTALLING HOSTS FOR RED HAT VIRTUALIZATION

Red Hat Virtualization supports two types of hosts: Red Hat Virtualization Hosts (RHVH) and Red Hat Enterprise Linux hosts. Depending on your environment, you may want to use one type only, or both. At least two hosts are required for features such as migration and high availability.

See Recommended practices for configuring host networks for networking information.

IMPORTANT

SELinux is in enforcing mode upon installation. To verify, run `getenforce`. SELinux must be in enforcing mode on all hosts and Managers for your Red Hat Virtualization environment to be supported.

Table 4.1. Host Types

<table>
<thead>
<tr>
<th>Host Type</th>
<th>Other Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Virtualization Host</td>
<td>RHVH, thin host</td>
<td>This is a minimal operating system based on Red Hat Enterprise Linux. It is distributed as an ISO file from the Customer Portal and contains only the packages required for the machine to act as a host.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux host</td>
<td>RHEL host, thick host</td>
<td>Red Hat Enterprise Linux systems with the appropriate subscriptions attached can be used as hosts.</td>
</tr>
</tbody>
</table>

Host Compatibility

When you create a new data center, you can set the compatibility version. Select the compatibility version that suits all the hosts in the data center. Once set, version regression is not allowed. For a fresh Red Hat Virtualization installation, the latest compatibility version is set in the default data center and default cluster; to use an earlier compatibility version, you must create additional data centers and clusters. For more information about compatibility versions see Red Hat Virtualization Manager Compatibility in Red Hat Virtualization Life Cycle.

4.1. RED HAT VIRTUALIZATION HOSTS

4.1.1. Installing Red Hat Virtualization Hosts

Red Hat Virtualization Host (RHVH) is a minimal operating system based on Red Hat Enterprise Linux that is designed to provide a simple method for setting up a physical machine to act as a hypervisor in a Red Hat Virtualization environment. The minimal operating system contains only the packages required for the machine to act as a hypervisor, and features a Cockpit web interface for monitoring the host and performing administrative tasks. See http://cockpit-project.org/running.html for the minimum browser requirements.
RHVH supports NIST 800-53 partitioning requirements to improve security. RHVH uses a NIST 800-53 partition layout by default.

The host must meet the minimum host requirements.

WARNING

When installing or reinstalling the host’s operating system, Red Hat strongly recommends that you first detach any existing non-OS storage that is attached to the host to avoid accidental initialization of these disks, and with that, potential data loss.

Procedure

2. Click Download Latest to access the product download page.
3. Choose the appropriate Hypervisor Image for RHV from the list and click Download Now.
4. Start the machine on which you are installing RHVH, booting from the prepared installation media.
5. From the boot menu, select Install RHVH 4.4 SP1 and press Enter.

 NOTE

 You can also press the Tab key to edit the kernel parameters. Kernel parameters must be separated by a space, and you can boot the system using the specified kernel parameters by pressing the Enter key. Press the Esc key to clear any changes to the kernel parameters and return to the boot menu.
6. Select a language, and click Continue.
7. Select a keyboard layout from the Keyboard Layout screen and click Done.
8. Select the device on which to install RHVH from the Installation Destination screen. Optionally, enable encryption. Click Done.

 IMPORTANT

 Use the Automatically configure partitioning option.
9. Select a time zone from the Time & Date screen and click Done.
10. Select a network from the Network & Host Name screen and click Configure... to configure the connection details.
NOTE

To use the connection every time the system boots, select the **Connect automatically with priority** check box. For more information, see Configuring network and host name options in the *Red Hat Enterprise Linux 8 Installation Guide.*

Enter a host name in the **Host Name** field, and click **Done**.

11. Optionally configure **Language Support**, **Security Policy**, and **Kdump**. See Customizing your RHEL installation using the GUI in Performing a standard RHEL installation for Red Hat Enterprise Linux 8 for more information on each of the sections in the Installation Summary screen.

12. Click **Begin Installation**.

13. Set a root password and, optionally, create an additional user while RHVH installs.

WARNING

Do not create untrusted users on RHVH, as this can lead to exploitation of local security vulnerabilities.

14. Click **Reboot** to complete the installation.

NOTE

When RHVH restarts, `nodectl check` performs a health check on the host and displays the result when you log in on the command line. The message `node status: OK` or `node status: DEGRADED` indicates the health status. Run `nodectl check` to get more information.

NOTE

If necessary, you can prevent kernel modules from loading automatically.

4.1.2. Enabling the Red Hat Virtualization Host Repository

Register the system to receive updates. Red Hat Virtualization Host only requires one repository. This section provides instructions for registering RHVH with the **Content Delivery Network**, or with **Red Hat Satellite 6**.

Registering RHVH with the Content Delivery Network

1. Enable the **Red Hat Virtualization Host 8** repository to allow later updates to the Red Hat Virtualization Host:

   ```
   # subscription-manager repos --enable=rhv-4-for-rhel-8-x86_64-rpms
   ```
Registering RHVH with Red Hat Satellite 6

1. Log in to the Cockpit web interface at https://HostFQDNorIP:9090.

2. Click Terminal.

3. Register RHVH with Red Hat Satellite 6:

   ```
   # rpm -Uvh http://satellite.example.com/pub/katello-ca-consumer-latest.noarch.rpm
   # subscription-manager register --org="org_id"
   # subscription-manager list --available
   # subscription-manager attach --pool=pool_id
   # subscription-manager repos \
   --disable="*" \
   --enable=rhv-4-for-rhel-8-x86_64-rpms
   ```

 NOTE

 You can also configure virtual machine subscriptions in Red Hat Satellite using virt-who. See Using virt-who to manage host-based subscriptions.

4.1.3. Advanced Installation

4.1.3.1. Custom Partitioning

Custom partitioning on Red Hat Virtualization Host (RHVH) is not recommended. Use the Automatically configure partitioning option in the Installation Destination window.

If your installation requires custom partitioning, select the I will configure partitioning option during the installation, and note that the following restrictions apply:

- Ensure the default LVM Thin Provisioning option is selected in the Manual Partitioning window.
- The following directories are required and must be on thin provisioned logical volumes:
 - root (/)
 - /home
 - /tmp
 - /var
 - /var/crash
 - /var/log
 - /var/log/audit
IMPORTANT

Do not create a separate partition for `/usr`. Doing so will cause the installation to fail.

`/usr` must be on a logical volume that is able to change versions along with RHVH, and therefore should be left on root (`/`).

For information about the required storage sizes for each partition, see Storage Requirements.

- The `/boot` directory should be defined as a standard partition.
- The `/var` directory must be on a separate volume or disk.
- Only XFS or Ext4 file systems are supported.

Configuring Manual Partitioning in a Kickstart File

The following example demonstrates how to configure manual partitioning in a Kickstart file.

```bash
clearpart --all
part /boot --fstype=xfs --size=1000 --ondisk=sd0
part pv.01 --size=42000 --grow
volgroup HostVG pv.01 --reserved-percent=20
logvol swap --vgname=HostVG --name=swap --fstype=swap --recommended
logvol none --vgname=HostVG --name=HostPool --thinpool --size=40000 --grow
logvol / --vgname=HostVG --name=root --thin --fstype=ext4 --poolname=HostPool --
  fsoptions="defaults,discard" --size=6000 --grow
logvol /var --vgname=HostVG --name=var --thin --fstype=ext4 --poolname=HostPool --
  fsoptions="defaults,discard" --size=15000
logvol /var/crash --vgname=HostVG --name=var_crash --thin --fstype=ext4 --poolname=HostPool --
  fsoptions="defaults,discard" --size=10000
logvol /var/log --vgname=HostVG --name=var_log --thin --fstype=ext4 --poolname=HostPool --
  fsoptions="defaults,discard" --size=8000
logvol /var/log/audit --vgname=HostVG --name=var_audit --thin --fstype=ext4 --poolname=HostPool --
  fsoptions="defaults,discard" --size=2000
logvol /home --vgname=HostVG --name=home --thin --fstype=ext4 --poolname=HostPool --
  fsoptions="defaults,discard" --size=1000
logvol /tmp --vgname=HostVG --name=tmp --thin --fstype=ext4 --poolname=HostPool --
  fsoptions="defaults,discard" --size=1000
```

NOTE

If you use `logvol --thinpool --grow`, you must also include `volgroup --reserved-space` or `volgroup --reserved-percent` to reserve space in the volume group for the thin pool to grow.

4.1.3.2. Installing a DUD driver on a host without installer support

There are times when installing Red Hat Virtualization Host (RHVH) requires a Driver Update Disk (DUD), such as when using a hardware RAID device that is not supported by the default configuration of RHVH. In contrast with Red Hat Enterprise Linux hosts, RHVH does not fully support using a DUD. Subsequently the host fails to boot normally after installation because it does not see RAID. Instead it boots into emergency mode.
Example output:

Warning: /dev/test/rhvh-4.4-20210202.0+1 does not exist
Warning: /dev/test/swap does not exist
Entering emergency mode. Exit the shell to continue.

In such a case you can manually add the drivers before finishing the installation.

Prerequisites

- A machine onto which you are installing RHVH.
- A DUD.
- If you are using a USB drive for the DUD and RHVH, you must have at least two available USB ports.

Procedure

1. Load the DUD on the host machine.

2. Install RHVH. See Installing Red Hat Virtualization Hosts in Installing Red Hat Virtualization as a self-hosted engine using the command line.

 IMPORTANT

 When installation completes, do not reboot the system.

 TIP

 If you want to access the DUD using SSH, do the following:

 - Add the string inst.sshd to the kernel command line:

 `<kernel_command_line> inst.sshd`

 - Enable networking during the installation.

3. Enter the console mode, by pressing Ctrl + Alt + F3. Alternatively you can connect to it using SSH.

4. Mount the DUD:

   ```
   # mkdir /mnt/dud
   # mount -r /dev/<dud_device> /mnt/dud
   ```

5. Copy the RPM file inside the DUD to the target machine’s disk:

   ```
   # cp /mnt/dud/rpms/<path>/<rpm_file>.rpm /mnt/sysroot/root/
   ```

 For example:
6. Change the root directory to /mnt/sysroot:

```bash
# chroot /mnt/sysroot
```

7. Back up the current initrd images. For example:

```bash
# cp -p /boot/initramfs-4.18.0-240.15.1.el8_3.x86_64.img /boot/initramfs-4.18.0-240.15.1.el8_3.x86_64.img.bck1
# cp -p /boot/rhvh-4.4.5.1-0.20210323.0+1/initramfs-4.18.0-240.15.1.el8_3.x86_64.img /boot/rhvh-4.4.5.1-0.20210323.0+1/initramfs-4.18.0-240.15.1.el8_3.x86_64.img.bck1
```

8. Install the RPM file for the driver from the copy you made earlier.

For example:

```bash
# dnf install /root/kmod-3w-9xxx-2.26.02.014-5.el8_3.elrepo.x86_64.rpm
```

NOTE

This package is not visible on the system after you reboot into the installed environment, so if you need it, for example, to rebuild the `initramfs`, you need to install that package once again, after which the package remains.

If you update the host using `dnf`, the driver update persists, so you do not need to repeat this process.

TIP

If you do not have an internet connection, use the `rpm` command instead of `dnf`:

```bash
# rpm -ivh /root/kmod-3w-9xxx-2.26.02.014-5.el8_3.elrepo.x86_64.rpm
```

9. Create a new image, forcefully adding the driver:

```bash
# dracut --force --add-drivers <module_name> --kver <kernel_version>
```

For example:

```bash
# dracut --force --add-drivers 3w-9xxx --kver 4.18.0-240.15.1.el8_3.x86_64
```

10. Check the results. The new image should be larger, and include the driver. For example, compare the sizes of the original, backed-up image file and the new image file.

In this example, the new image file is 88739013 bytes, larger than the original 88717417 bytes:

```bash
# ls -ltr /boot/initramfs-4.18.0-240.15.1.el8_3.x86_64.img*
-rw-------. 1 root root 88739013 Jun  2 17:47 /boot/initramfs-4.18.0-240.15.1.el8_3.x86_64.img
```
The new drivers should be part of the image file. For example, the 3w-9xxx module should be included:

```
# lsinitrd /boot/initramfs-4.18.0-240.15.1.el8_3.x86_64.img | grep 3w-9xxx
```

```
drwxr-xr-x  2 root root 0 Feb 22 15:57 usr/lib/modules/4.18.0-240.15.1.el8_3.x86_64/weak-updates/3w-9xxx
lnwxrwxrwx  1 root root 55 Feb 22 15:57 usr/lib/modules/4.18.0-240.15.1.el8_3.x86_64/weak-updates/3w-9xxx/3w-9xxx.ko-../../../4.18.0-240.el8.x86_64/extra/3w-9xxx/3w-9xxx.ko
```

```
drwxr-xr-x  2 root root 0 Feb 22 15:57 usr/lib/modules/4.18.0-240.el8.x86_64/extra/3w-9xxx
-rw-r--r--  1 root root 80121 Nov 10 2020 usr/lib/modules/4.18.0-240.el8.x86_64/extra/3w-9xxx/3w-9xxx.ko
```

11. Copy the image to the the directory under `/boot` that contains the kernel to be used in the layer being installed, for example:

```
# cp -p /boot/initramfs-4.18.0-240.15.1.el8_3.x86_64.img /boot/rhvh-4.4.5.1-0.20210323.0+1/initramfs-4.18.0-240.15.1.el8_3.x86_64.img
```

12. Exit chroot.

13. Exit the shell.

14. If you used `Ctrl + Alt + F3` to access a virtual terminal, then move back to the installer by pressing `Ctrl + Alt + F_<n>`, usually `F1` or `F5`.

15. At the installer screen, reboot.

Verification

The machine should reboot successfully.

4.1.3.3. Automating Red Hat Virtualization Host deployment

You can install Red Hat Virtualization Host (RHVH) without a physical media device by booting from a PXE server over the network with a Kickstart file that contains the answers to the installation questions.

WARNING

When installing or reinstalling the host’s operating system, Red Hat strongly recommends that you first detach any existing non-OS storage that is attached to the host to avoid accidental initialization of these disks, and with that, potential data loss.

General instructions for installing from a PXE server with a Kickstart file are available in the *Red Hat Enterprise Linux Installation Guide*, as RHVH is installed in much the same way as Red Hat Enterprise Linux. RHVH-specific instructions, with examples for deploying RHVH with Red Hat Satellite, are described below.
The automated RHVH deployment has 3 stages:

- Preparing the Installation Environment
- Configuring the PXE Server and the Boot Loader
- Creating and Running a Kickstart File

4.1.3.3.1. Preparing the installation environment

2. Click Download Latest to access the product download page.
3. Choose the appropriate Hypervisor Image for RHV from the list and click Download Now.
5. Extract the squashfs.img hypervisor image file from the RHVH ISO:

```bash
# mount -o loop /path/to/RHVH-ISO /mnt/rhvh
# cp /mnt/rhvh/Packages/redhat-virtualization-host-image-update* /tmp
# cd /tmp
# rpm2cpio redhat-virtualization-host-image-update* | cpio -idmv
```

NOTE

This squashfs.img file, located in the /tmp/usr/share/redhat-virtualization-host/image/ directory, is called redhat-virtualization-host-version_number_version.squashfs.img. It contains the hypervisor image for installation on the physical machine. It should not be confused with the /LiveOS/squashfs.img file, which is used by the Anaconda inst.stage2 option.

4.1.3.3.2. Configuring the PXE server and the boot loader

2. Copy the RHVH boot images to the /tftpboot directory:

```bash
# cp mnt/rhvh/images/pxeboot/{vmlinuz,initrd.img} /var/lib/tftpboot/pxelinux/
```
3. Create a rhvh label specifying the RHVH boot images in the boot loader configuration:

```bash
LABEL rhvh
MENU LABEL Install Red Hat Virtualization Host
KERNEL /var/lib/tftpboot/pxelinux/vmlinuz
APPEND initrd=/var/lib/tftpboot/pxelinux/initrd.img inst.stage2=URL/to/RHVH-ISO
```

RHVH Boot loader configuration example for Red Hat Satellite

If you are using information from Red Hat Satellite to provision the host, you must create a global or host group level parameter called rhvh_image and populate it with the directory URL where the ISO is mounted or extracted:
4. Make the content of the RHVH ISO locally available and export it to the network, for example, using an HTTPD server:

```bash
# cp -a /mnt/rhvh/ /var/www/html/rhvh-install
# curl URL/to/RHVH-ISO/rhv-install
```

4.1.3.3.3. Creating and running a Kickstart file

1. Create a Kickstart file and make it available over the network. See Kickstart Installations in the Red Hat Enterprise Linux Installation Guide.

2. Ensure that the Kickstart file meets the following RHV-specific requirements:

 - The `%packages` section is not required for RHVH. Instead, use the `liveimg` option and specify the `redhat-virtualization-host-version_number_version.squashfs.img` file from the RHVH ISO image:

     ```bash
     liveimg --url=example.com/tmp/usr/share/redhat-virtualization-host/image/redhat-virtualization-host-version_number_version.squashfs.img
     ```

 - Autopartitioning is highly recommended, but use caution: ensure that the local disk is detected first, include the `ignoredisk` command, and specify the local disk to ignore, such as `sda`. To ensure that a particular drive is used, Red Hat recommends using `ignoredisk --only-use=/dev/disk/<path>` or `ignoredisk --only-use=/dev/disk/<ID>`:

     ```bash
     autopart --type=thinp
     ignoredisk --only-use=sda
     ignoredisk --only-use=/dev/disk/<path>
     ignoredisk --only-use=/dev/disk/<ID>
     ```

NOTE

Autopartitioning requires thin provisioning.

The `--no-home` option does not work in RHVH because `/home` is a required directory.
If your installation requires manual partitioning, see Custom Partitioning for a list of limitations that apply to partitions and an example of manual partitioning in a Kickstart file.

- A `%post` section that calls the `nodectl init` command is required:

```
%post
  nodectl init
%end
```

NOTE

Ensure that the `nodectl init` command is at the very end of the `%post` section but before the reboot code, if any.

Kickstart example for deploying RHVH on its own

This Kickstart example shows you how to deploy RHVH. You can include additional commands and options as required.

```
liveimg --url=http://FQDN/tmp/usr/share/redhat-virtualization-host/image/redhat-virtualization-host-version_number_version.squashfs.img
clearpart --all
  autopart --type=thinp
rootpw --plaintext ovirt
timezone --utc America/Phoenix
zerombr
text
reboot
%post --erroronfail
  nodectl init
%end
```

WARNING

This example assumes that all disks are empty and can be initialized. If you have attached disks with data, either remove them or add them to the `ignoredisks` property.

Kickstart example for deploying RHVH with registration and network configuration from Satellite

This Kickstart example uses information from Red Hat Satellite to configure the host network and register the host to the Satellite server. You must create a global or host group level parameter called `rhvh_image` and populate it with the directory URL to the `squashfs.img` file. `ntp_server1` is also a global or host group level variable.
WARNING

This example assumes that all disks are empty and can be initialized. If you have attached disks with data, either remove them or add them to the `ignoredisks` property.

```{%#
kind: provision
name: RHVH Kickstart default
oses:
- RHVH
%
install
liveimg --url=<%= @host.params['rhvh_image'] %>$squashfs.img

network --bootproto static --ip=<%= @host.ip %> --netmask=<%= @host.subnet.mask %>
--gateway=<%= @host.subnet.gateway %> --nameserver=<%= @host.subnet.dns_primary %>
--hostname <%= @host.name %>

zerombr

clearpart --all
autopart --type=thinp

rootpw --iscrypted <%= root_pass %>

# installation answers
lang en_US.UTF-8
timezone <%= @host.params['time-zone'] || 'UTC' %>
keyboard us
firewall --service=ssh
services --enabled=sshd

text
reboot

%post --log=/root/ks.post.log --erroronfail
nodectl init
<%= snippet 'subscription_manager_registration' %>
<%= snippet 'kickstart_networking_setup' %>
/usr/sbin/ntpd -s -u <%= @host.params['ntp_server1'] || '0.fedora.pool.ntp.org' %>
/usr/sbin/hwclock --systohc

/usr/bin/curl <%= foreman_url('built') %>

sync
systemctl reboot
%end
```

3. Add the Kickstart file location to the boot loader configuration file on the PXE server:
4. Install RHVH following the instructions in Booting from the Network Using PXE in the Red Hat Enterprise Linux Installation Guide.

4.2. RED HAT ENTERPRISE LINUX HOSTS

4.2.1. Installing Red Hat Enterprise Linux hosts

A Red Hat Enterprise Linux host is based on a standard basic installation of Red Hat Enterprise Linux 8 on a physical server, with the Red Hat Enterprise Linux Server and Red Hat Virtualization subscriptions attached.

For detailed installation instructions, see the Performing a standard RHEL installation.

The host must meet the minimum host requirements.

WARNING

When installing or reinstalling the host’s operating system, Red Hat strongly recommends that you first detach any existing non-OS storage that is attached to the host to avoid accidental initialization of these disks, and with that, potential data loss.

IMPORTANT

Virtualization must be enabled in your host’s BIOS settings. For information on changing your host’s BIOS settings, refer to your host’s hardware documentation.

IMPORTANT

Do not install third-party watchdogs on Red Hat Enterprise Linux hosts. They can interfere with the watchdog daemon provided by VDSM.

4.2.2. Enabling the Red Hat Enterprise Linux host Repositories

To use a Red Hat Enterprise Linux machine as a host, you must register the system with the Content Delivery Network, attach the Red Hat Enterprise Linux Server and Red Hat Virtualization subscriptions, and enable the host repositories.

Procedure

1. Register your system with the Content Delivery Network, entering your Customer Portal user name and password when prompted:

   ```
   # subscription-manager register
   ```
2. Find the Red Hat Enterprise Linux Server and Red Hat Virtualization subscription pools and record the pool IDs:

 # subscription-manager list --available

3. Use the pool IDs to attach the subscriptions to the system:

 # subscription-manager attach --pool=poolid

 NOTE
 To view currently attached subscriptions:

 # subscription-manager list --consumed

 To list all enabled repositories:

 # dnf repolist

4. Configure the repositories:

 # subscription-manager repos
 --disable="*"
 --enable=rhel-8-for-x86_64-baseos-rpms
 --enable=rhel-8-for-x86_64-appstream-rpms
 --enable=rhv-4-mgmt-agent-for-rhel-8-x86_64-rpms
 --enable=fast-datapath-for-rhel-8-x86_64-rpms
 --enable=advanced-virt-for-rhel-8-x86_64-rpms
 --enable=openstack-16.2-cinderlib-for-rhel-8-x86_64-rpms
 --enable=rhceph-4-tools-for-rhel-8-x86_64-rpms

 For Red Hat Enterprise Linux 8 hosts, little endian, on IBM POWER8 or IBM POWER9 hardware:

 # subscription-manager repos
 --disable="*"
 --enable=rhv-4-mgmt-agent-for-rhel-8-ppc64le-rpms
 --enable=rhv-4-tools-for-rhel-8-ppc64le-rpms
 --enable=advanced-virt-for-rhel-8-ppc64le-rpms
 --enable=rhel-8-for-ppc64le-appstream-rpms
 --enable=rhel-8-for-ppc64le-baseos-rpms

5. Ensure that all packages currently installed are up to date:

 # dnf upgrade --nobest

6. Reboot the machine.

 NOTE
 If necessary, you can prevent kernel modules from loading automatically.
4.2.3. Installing Cockpit on Red Hat Enterprise Linux hosts

You can install Cockpit for monitoring the host’s resources and performing administrative tasks.

Procedure

1. Install the dashboard packages:

   ```
   # dnf install cockpit-ovirt-dashboard
   ```

2. Enable and start the `cockpit.socket` service:

   ```
   # systemctl enable cockpit.socket
   # systemctl start cockpit.socket
   ```

3. Check if Cockpit is an active service in the firewall:

   ```
   # firewall-cmd --list-services
   ```

 You should see `cockpit` listed. If it is not, enter the following with root permissions to add `cockpit` as a service to your firewall:

   ```
   # firewall-cmd --permanent --add-service=cockpit
   ```

 The `--permanent` option keeps the `cockpit` service active after rebooting.

You can log in to the Cockpit web interface at `https://HostFQDNorIP:9090`.

4.3. RECOMMENDED PRACTICES FOR CONFIGURING HOST NETWORKS

IMPORTANT

Always use the RHV Manager to modify the network configuration of hosts in your clusters. Otherwise, you might create an unsupported configuration. For details, see [Network Manager Stateful Configuration (nmstate)](”).

If your network environment is complex, you may need to configure a host network manually before adding the host to the Red Hat Virtualization Manager.

Consider the following practices for configuring a host network:

- Configure the network with Cockpit. Alternatively, you can use `nmtui` or `nmcli`.
- If a network is not required for a self-hosted engine deployment or for adding a host to the Manager, configure the network in the Administration Portal after adding the host to the Manager. See [Creating a New Logical Network in a Data Center or Cluster](”).
- Use the following naming conventions:
 - VLAN devices: `VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD`
 - VLAN interfaces: `physical_device.VLAN_ID` (for example, `eth0.23`, `eth1.128`, `enp3s0.50`)
• Bond interfaces: `bondnumber` (for example, `bond0`, `bond1`)

• VLANs on bond interfaces: `bondnumber.VLAN_ID` (for example, `bond0.50`, `bond1.128`)

• Use network bonding. Network teaming is not supported in Red Hat Virtualization and will cause errors if the host is used to deploy a self-hosted engine or added to the Manager.

• Use recommended bonding modes:

 • If the `ovirtmgmt` network is not used by virtual machines, the network may use any supported bonding mode.

 • If the `ovirtmgmt` network is used by virtual machines, see *Which bonding modes work when used with a bridge that virtual machine guests or containers connect to?*.

 • Red Hat Virtualization’s default bonding mode is **(Mode 4) Dynamic Link Aggregation**. If your switch does not support Link Aggregation Control Protocol (LACP), use **(Mode 1) Active-Backup**. See *Bonding Modes* for details.

• Configure a VLAN on a physical NIC as in the following example (although `nmcli` is used, you can use any tool):

  ```
  # nmcli connection add type vlan con-name vlan50 ifname eth0.50 dev eth0 id 50
  # nmcli con mod vlan50 +ipv4.dns 8.8.8.8 +ipv4.addresses 123.123.0.1/24 +ipv4.gateway 123.123.0.254
  ```

• Configure a VLAN on a bond as in the following example (although `nmcli` is used, you can use any tool):

  ```
  # nmcli connection add type bond con-name bond0 ifname bond0 bond.options "mode=active-backup,miimon=100" ipv4.method disabled ipv6.method ignore
  # nmcli connection add type ethernet con-name eth0 ifname eth0 master bond0 slave-type bond
  # nmcli connection add type ethernet con-name eth1 ifname eth1 master bond0 slave-type bond
  # nmcli connection add type vlan con-name vlan50 ifname bond0.50 dev bond0 id 50
  # nmcli con mod vlan50 +ipv4.dns 8.8.8.8 +ipv4.addresses 123.123.0.1/24 +ipv4.gateway 123.123.0.254
  ```

• Do not disable `firewalld`.

• Customize the firewall rules in the Administration Portal after adding the host to the Manager. See *Configuring Host Firewall Rules*.

4.4. ADDING STANDARD HOSTS TO THE RED HAT VIRTUALIZATION MANAGER

IMPORTANT

Always use the RHV Manager to modify the network configuration of hosts in your clusters. Otherwise, you might create an unsupported configuration. For details, see *Network Manager Stateful Configuration (nmstate)*.
Adding a host to your Red Hat Virtualization environment can take some time, as the following steps are completed by the platform: virtualization checks, installation of packages, and creation of a bridge.

Procedure

1. From the Administration Portal, click **Compute → Hosts**.
2. Click **New**.
3. Use the drop-down list to select the **Data Center** and **Host Cluster** for the new host.
4. Enter the **Name** and the **Address** of the new host. The standard SSH port, port 22, is auto-filled in the **SSH Port** field.
5. Select an authentication method to use for the Manager to access the host.
 - Enter the root user’s password to use password authentication.
 - Alternatively, copy the key displayed in the **SSH PublicKey** field to `/root/.ssh/authorized_keys` on the host to use public key authentication.
6. Optionally, click the **Advanced Parameters** button to change the following advanced host settings:
 - Disable automatic firewall configuration.
 - Add a host SSH fingerprint to increase security. You can add it manually, or fetch it automatically.
7. Optionally configure power management, where the host has a supported power management card. For information on power management configuration, see **Host Power Management Settings Explained** in the **Administration Guide**.
8. Click **OK**.

The new host displays in the list of hosts with a status of **Installing**, and you can view the progress of the installation in the **Events** section of the **Notification Drawer** (📢). After a brief delay the host status changes to **Up**.
CHAPTER 5. PREPARING STORAGE FOR RED HAT VIRTUALIZATION

You need to prepare storage to be used for storage domains in the new environment. A Red Hat Virtualization environment must have at least one data storage domain, but adding more is recommended.

WARNING

When installing or reinstalling the host’s operating system, Red Hat strongly recommends that you first detach any existing non-OS storage that is attached to the host to avoid accidental initialization of these disks, and with that, potential data loss.

A data domain holds the virtual hard disks and OVF files of all the virtual machines and templates in a data center, and cannot be shared across data centers while active (but can be migrated between data centers). Data domains of multiple storage types can be added to the same data center, provided they are all shared, rather than local, domains.

You can use one of the following storage types:

- NFS
- iSCSI
- Fibre Channel (FCP)
- POSIX-compliant file system
- Local storage
- Red Hat Gluster Storage

5.1. PREPARING NFS STORAGE

Set up NFS shares on your file storage or remote server to serve as storage domains on Red Hat Enterprise Virtualization Host systems. After exporting the shares on the remote storage and configuring them in the Red Hat Virtualization Manager, the shares will be automatically imported on the Red Hat Virtualization hosts.

For information on setting up, configuring, mounting and exporting NFS, see *Managing file systems* for Red Hat Enterprise Linux 8.

Specific system user accounts and system user groups are required by Red Hat Virtualization so the Manager can store data in the storage domains represented by the exported directories. The following procedure sets the permissions for one directory. You must repeat the `chown` and `chmod` steps for all of the directories you intend to use as storage domains in Red Hat Virtualization.

Prerequisites
1. Install the NFS **utils** package.

   ```
   # dnf install nfs-utils -y
   ```

2. To check the enabled versions:

   ```
   # cat /proc/fs/nfsd/versions
   ```

3. Enable the following services:

   ```
   # systemctl enable nfs-server
   # systemctl enable rpcbind
   ```

Procedure

1. Create the group **kvm**:

   ```
   # groupadd kvm -g 36
   ```

2. Create the user **vdsm** in the group **kvm**:

   ```
   # useradd vdsm -u 36 -g kvm
   ```

3. Create the **storage** directory and modify the access rights.

   ```
   # mkdir /storage
   # chmod 0755 /storage
   # chown 36:36 /storage/
   ```

4. Add the **storage** directory to **/etc/exports** with the relevant permissions.

   ```
   # vi /etc/exports
   # cat /etc/exports
   /storage *(rw)
   ```

5. Restart the following services:

   ```
   # systemctl restart rpcbind
   # systemctl restart nfs-server
   ```

6. To see which export are available for a specific IP address:

   ```
   # exportfs
   /nfs_server/srv
   10.46.11.3/24
   /nfs_server <world>
   ```
NOTE

If changes in `/etc/exports` have been made after starting the services, the `exportfs -ra` command can be used to reload the changes. After performing all the above stages, the exports directory should be ready and can be tested on a different host to check that it is usable.

5.2. PREPARING ISCSI STORAGE

Red Hat Virtualization supports iSCSI storage, which is a storage domain created from a volume group made up of LUNs. Volume groups and LUNs cannot be attached to more than one storage domain at a time.

For information on setting up and configuring iSCSI storage, see Getting started with iSCSI in Managing storage devices for Red Hat Enterprise Linux 8.

IMPORTANT

If you are using block storage and intend to deploy virtual machines on raw devices or direct LUNs and manage them with the Logical Volume Manager (LVM), you must create a filter to hide guest logical volumes. This will prevent guest logical volumes from being activated when the host is booted, a situation that could lead to stale logical volumes and cause data corruption. Use the `vdsm-tool config-lvm-filter` command to create filters for the LVM. See Creating an LVM filter

IMPORTANT

Red Hat Virtualization currently does not support block storage with a block size of 4K. You must configure block storage in legacy (512b block) mode.

IMPORTANT

If your host is booting from SAN storage and loses connectivity to the storage, the storage file systems become read-only and remain in this state after connectivity is restored.

To prevent this situation, add a drop-in multipath configuration file on the root file system of the SAN for the boot LUN to ensure that it is queued when there is a connection:

```bash
# cat /etc/multipath/conf.d/host.conf
multipaths {
    multipath {
        wwid boot_LUN_wwid
        no_path_retry queue
    }
}
```

5.3. PREPARING FCP STORAGE

Red Hat Virtualization supports SAN storage by creating a storage domain from a volume group made of pre-existing LUNs. Neither volume groups nor LUNs can be attached to more than one storage domain at a time.
Red Hat Virtualization system administrators need a working knowledge of Storage Area Networks (SAN) concepts. SAN usually uses Fibre Channel Protocol (FCP) for traffic between hosts and shared external storage. For this reason, SAN may occasionally be referred to as FCP storage.

For information on setting up and configuring FCP or multipathing on Red Hat Enterprise Linux, see the Storage Administration Guide and DM Multipath Guide.

IMPORTANT

If you are using block storage and intend to deploy virtual machines on raw devices or direct LUNs and manage them with the Logical Volume Manager (LVM), you must create a filter to hide guest logical volumes. This will prevent guest logical volumes from being activated when the host is booted, a situation that could lead to stale logical volumes and cause data corruption. Use the `vdsm-tool config-lvm-filter` command to create filters for the LVM. See Creating an LVM filter.

IMPORTANT

Red Hat Virtualization currently does not support block storage with a block size of 4K. You must configure block storage in legacy (512b block) mode.

IMPORTANT

If your host is booting from SAN storage and loses connectivity to the storage, the storage file systems become read-only and remain in this state after connectivity is restored.

To prevent this situation, add a drop-in multipath configuration file on the root file system of the SAN for the boot LUN to ensure that it is queued when there is a connection:

```
      # cat /etc/multipath/conf.d/host.conf
      multipaths {
          multipath {
              wwid boot_LUN_wwid
              no_path_retry queue
          }
      }
```

5.4. PREPARING POSIX-COMPLIANT FILE SYSTEM STORAGE

POSIX file system support allows you to mount file systems using the same mount options that you would normally use when mounting them manually from the command line. This functionality is intended to allow access to storage not exposed using NFS, iSCSI, or FCP.

Any POSIX-compliant file system used as a storage domain in Red Hat Virtualization must be a clustered file system, such as Global File System 2 (GFS2), and must support sparse files and direct I/O. The Common Internet File System (CIFS), for example, does not support direct I/O, making it incompatible with Red Hat Virtualization.

For information on setting up and configuring POSIX-compliant file system storage, see Red Hat Enterprise Linux Global File System 2.
IMPORTANT

Do not mount NFS storage by creating a POSIX-compliant file system storage domain. Always create an NFS storage domain instead.

5.5. PREPARING LOCAL STORAGE

On Red Hat Virtualization Host (RHVH), local storage should always be defined on a file system that is separate from / (root). Use a separate logical volume or disk, to prevent possible loss of data during upgrades.

Procedure for Red Hat Enterprise Linux hosts

1. On the host, create the directory to be used for the local storage:

   ```bash
   # mkdir -p /data/images
   ```

2. Ensure that the directory has permissions allowing read/write access to the `vdsm` user (UID 36) and `kvm` group (GID 36):

   ```bash
   # chown 36:36 /data /data/images
   # chmod 0755 /data /data/images
   ```

Procedure for Red Hat Virtualization Hosts

Create the local storage on a logical volume:

1. Create a local storage directory:

   ```bash
   # mkdir /data
   # lvcreate -L $SIZE rhvh -n data
   # mkfs.ext4 /dev/mapper/rhvh-data
   # echo "/dev/mapper/rhvh-data /data ext4 defaults,discard 1 2" >> /etc/fstab
   # mount /data
   ```

2. Mount the new local storage:

   ```bash
   # mount -a
   ```

3. Ensure that the directory has permissions allowing read/write access to the `vdsm` user (UID 36) and `kvm` group (GID 36):

   ```bash
   # chown 36:36 /data/rhvh-data
   # chmod 0755 /data/rhvh-data
   ```

5.6. PREPARING RED HAT GLUSTER STORAGE

For information on setting up and configuring Red Hat Gluster Storage, see the *Red Hat Gluster Storage Installation Guide*.

For the Red Hat Gluster Storage versions that are supported with Red Hat Virtualization, see https://access.redhat.com/articles/2356261.
5.7. CUSTOMIZING MULTIPATH CONFIGURATIONS FOR SAN VENDORS

If your RHV environment is configured to use multipath connections with SANs, you can customize the multipath configuration settings to meet requirements specified by your storage vendor. These customizations can override both the default settings and settings that are specified in /etc/multipath.conf.

To override the multipath settings, do not customize /etc/multipath.conf. Because VDSM owns /etc/multipath.conf, installing or upgrading VDSM or Red Hat Virtualization can overwrite this file including any customizations it contains. This overwriting can cause severe storage failures.

Instead, you create a file in the /etc/multipath/conf.d directory that contains the settings you want to customize or override.

VDSM executes the files in /etc/multipath/conf.d in alphabetical order. So, to control the order of execution, you begin the filename with a number that makes it come last. For example, /etc/multipath/conf.d/90-myfile.conf.

To avoid causing severe storage failures, follow these guidelines:

- Do not modify /etc/multipath.conf. If the file contains user modifications, and the file is overwritten, it can cause unexpected storage problems.
- Do not override the user_friendly_names and find_multipaths settings. For details, see Recommended Settings for Multipath.conf.
- Avoid overriding the no_path_retry and polling_interval settings unless a storage vendor specifically requires you to do so. For details, see Recommended Settings for Multipath.conf.

⚠️ WARNING

Not following these guidelines can cause catastrophic storage errors.

Prerequisites

- VDSM is configured to use the multipath module. To verify this, enter:

 # vdsm-tool is-configured --module multipath

Procedure

1. Create a new configuration file in the /etc/multipath/conf.d directory.

2. Copy the individual setting you want to override from /etc/multipath.conf to the new configuration file in /etc/multipath/conf.d/<my_device>.conf. Remove any comment marks, edit the setting values, and save your changes.

3. Apply the new configuration settings by entering:
systemctl reload multipathd

NOTE

Do not restart the multipathd service. Doing so generates errors in the VDSM logs.

Verification steps

1. Test that the new configuration performs as expected on a non-production cluster in a variety of failure scenarios. For example, disable all of the storage connections.

2. Enable one connection at a time and verify that doing so makes the storage domain reachable.

Additional resources

- Recommended Settings for Multipath.conf
- Red Hat Enterprise Linux DM Multipath
- Configuring iSCSI Multipathing
- How do I customize /etc/multipath.conf on my RHVH hypervisors? What values must not change and why?

5.8. RECOMMENDED SETTINGS FOR MULTIPATH.CONF

Do not override the following settings:

user_friendly_names no

Device names must be consistent across all hypervisors. For example, `/dev/mapper/{WWID}`. The default value of this setting, `no`, prevents the assignment of arbitrary and inconsistent device names such as `/dev/mapper/mpath{N}` on various hypervisors, which can lead to unpredictable system behavior.

WARNING

Do not change this setting to `user_friendly_names yes`. User-friendly names are likely to cause unpredictable system behavior or failures, and are not supported.

find_multipaths no

This setting controls whether RHVH tries to access devices through multipath only if more than one path is available. The current value, `no`, allows RHV to access devices through multipath even if only one path is available.
Avoid overriding the following settings unless required by the storage system vendor:

no_path_retry 4
This setting controls the number of polling attempts to retry when no paths are available. Before RHV version 4.2, the value of no_path_retry was fail because QEMU had trouble with the I/O queuing when no paths were available. The fail value made it fail quickly and paused the virtual machine. RHV version 4.2 changed this value to 4 so when multipathd detects the last path has failed, it checks all of the paths four more times. Assuming the default 5-second polling interval, checking the paths takes 20 seconds. If no path is up, multipathd tells the kernel to stop queuing and fails all outstanding and future I/O until a path is restored. When a path is restored, the 20-second delay is reset for the next time all paths fail. For more details, see the commit that changed this setting.

polling_interval 5
This setting determines the number of seconds between polling attempts to detect whether a path is open or has failed. Unless the vendor provides a clear reason for increasing the value, keep the VDSM-generated default so the system responds to path failures sooner.
CHAPTER 6. ADDING STORAGE FOR RED HAT VIRTUALIZATION

Add storage as data domains in the new environment. A Red Hat Virtualization environment must have at least one data domain, but adding more is recommended.

Add the storage you prepared earlier:

- NFS
- iSCSI
- Fibre Channel (FCP)
- POSIX-compliant file system
- Local storage
- Red Hat Gluster Storage

6.1. ADDING NFS STORAGE

This procedure shows you how to attach existing NFS storage to your Red Hat Virtualization environment as a data domain.

If you require an ISO or export domain, use this procedure, but select ISO or Export from the Domain Function list.

Procedure

1. In the Administration Portal, click Storage → Domains.

2. Click New Domain.

3. Enter a Name for the storage domain.

4. Accept the default values for the Data Center, Domain Function, Storage Type, Format, and Host lists.

5. Enter the Export Path to be used for the storage domain. The export path should be in the format of 123.123.0.10:/data (for IPv4), [2001:0:0:0:0:0:5db1]/data (for IPv6), or domain.example.com:/data.

6. Optionally, you can configure the advanced parameters:

 a. Click Advanced Parameters.

 b. Enter a percentage value into the Warning Low Space Indicator field. If the free space available on the storage domain is below this percentage, warning messages are displayed to the user and logged.

 c. Enter a GB value into the Critical Space Action Blocker field. If the free space available on the storage domain is below this value, error messages are displayed to the user and logged, and any new action that consumes space, even temporarily, will be blocked.
d. Select the **Wipe After Delete** check box to enable the wipe after delete option. This option can be edited after the domain is created, but doing so will not change the wipe after delete property of disks that already exist.

7. Click **OK**.

The new NFS data domain has a status of **Locked** until the disk is prepared. The data domain is then automatically attached to the data center.

6.2. ADDING ISCSI STORAGE

This procedure shows you how to attach existing iSCSI storage to your Red Hat Virtualization environment as a data domain.

Procedure

1. Click **Storage → Domains**.
2. Click **New Domain**.
3. Enter the **Name** of the new storage domain.
4. Select a **Data Center** from the drop-down list.
5. Select **Data** as the **Domain Function** and **iSCSI** as the **Storage Type**.
6. Select an active host as the **Host**.

IMPORTANT

Communication to the storage domain is from the selected host and not directly from the Manager. Therefore, all hosts must have access to the storage device before the storage domain can be configured.

7. The Manager can map iSCSI targets to LUNs or LUNs to iSCSI targets. The **New Domain** window automatically displays known targets with unused LUNs when the iSCSI storage type is selected. If the target that you are using to add storage does not appear, you can use target discovery to find it; otherwise proceed to the next step.

 a. Click **Discover Targets** to enable target discovery options. When targets have been discovered and logged in to, the **New Domain** window automatically displays targets with LUNs unused by the environment.

NOTE

LUNs used externally for the environment are also displayed.

You can use the **Discover Targets** options to add LUNs on many targets or multiple paths to the same LUNs.
b. Enter the FQDN or IP address of the iSCSI host in the Address field.

c. Enter the port with which to connect to the host when browsing for targets in the Port field. The default is **3260**.

d. If CHAP is used to secure the storage, select the User Authentication check box. Enter the CHAP user name and CHAP password.

NOTE

You can define credentials for an iSCSI target for a specific host with the REST API. See **StorageServerConnectionExtensions: add** in the **REST API Guide** for more information.

e. Click Discover.

f. Select one or more targets from the discovery results and click **Login** for one target or **Login All** for multiple targets.

IMPORTANT

If more than one path access is required, you must discover and log in to the target through all the required paths. Modifying a storage domain to add additional paths is currently not supported.

IMPORTANT

When using the REST API **iscsilogin** method to log in, you must use the iscsi details from the discovered targets results in the **discoveriscsi** method. See **iscsilogin** in the **REST API Guide** for more information.

8. Click the + button next to the desired target. This expands the entry and displays all unused LUNs attached to the target.

9. Select the check box for each LUN that you are using to create the storage domain.

10. Optionally, you can configure the advanced parameters:

 a. Click Advanced Parameters.

 b. Enter a percentage value into the **Warning Low Space Indicator** field. If the free space available on the storage domain is below this percentage, warning messages are displayed to the user and logged.

 c. Enter a GB value into the **Critical Space Action Blocker** field. If the free space available on the storage domain is below this value, error messages are displayed to the user and logged, and any new action that consumes space, even temporarily, will be blocked.
d. Select the **Wipe After Delete** check box to enable the wipe after delete option. This option can be edited after the domain is created, but doing so will not change the wipe after delete property of disks that already exist.

e. Select the **Discard After Delete** check box to enable the discard after delete option. This option can be edited after the domain is created. This option is only available to block storage domains.

11. Click **OK**.

If you have configured multiple storage connection paths to the same target, follow the procedure in Configuring iSCSI Multipathing to complete iSCSI bonding.

If you want to migrate your current storage network to an iSCSI bond, see Migrating a Logical Network to an iSCSI Bond.

6.3. ADDING FCP STORAGE

This procedure shows you how to attach existing FCP storage to your Red Hat Virtualization environment as a data domain.

Procedure

1. Click **Storage → Domains**.

2. Click **New Domain**.

3. Enter the **Name** of the storage domain.

4. Select an FCP **Data Center** from the drop-down list.

 If you do not yet have an appropriate FCP data center, select (none).

5. Select the **Domain Function** and the **Storage Type** from the drop-down lists. The storage domain types that are not compatible with the chosen data center are not available.

6. Select an active host in the **Host** field. If this is not the first data domain in a data center, you must select the data center’s SPM host.

 IMPORTANT

 All communication to the storage domain is through the selected host and not directly from the Red Hat Virtualization Manager. At least one active host must exist in the system and be attached to the chosen data center. All hosts must have access to the storage device before the storage domain can be configured.

7. The **New Domain** window automatically displays known targets with unused LUNs when Fibre Channel is selected as the storage type. Select the **LUN ID** check box to select all of the available LUNs.

8. Optionally, you can configure the advanced parameters.

 a. Click **Advanced Parameters**.
b. Enter a percentage value into the Warning Low Space Indicator field. If the free space available on the storage domain is below this percentage, warning messages are displayed to the user and logged.

c. Enter a GB value into the Critical Space Action Blocker field. If the free space available on the storage domain is below this value, error messages are displayed to the user and logged, and any new action that consumes space, even temporarily, will be blocked.

d. Select the Wipe After Delete check box to enable the wipe after delete option. This option can be edited after the domain is created, but doing so will not change the wipe after delete property of disks that already exist.

e. Select the Discard After Delete check box to enable the discard after delete option. This option can be edited after the domain is created. This option is only available to block storage domains.

9. Click OK.

The new FCP data domain remains in a Locked status while it is being prepared for use. When ready, it is automatically attached to the data center.

6.4. ADDING POSIX-COMPLIANT FILE SYSTEM STORAGE

This procedure shows you how to attach existing POSIX-compliant file system storage to your Red Hat Virtualization environment as a data domain.

Procedure

1. Click Storage → Domains.

2. Click New Domain.

3. Enter the Name for the storage domain.

4. Select the Data Center to be associated with the storage domain. The data center selected must be of type POSIX (POSIX compliant FS). Alternatively, select (none).

5. Select Data from the Domain Function drop-down list, and POSIX compliant FS from the Storage Type drop-down list.
 If applicable, select the Format from the drop-down menu.

6. Select a host from the Host drop-down list.

7. Enter the Path to the POSIX file system, as you would normally provide it to the mount command.

8. Enter the VFS Type, as you would normally provide it to the mount command using the -t argument. See man mount for a list of valid VFS types.

9. Enter additional Mount Options, as you would normally provide them to the mount command using the -o argument. The mount options should be provided in a comma-separated list. See man mount for a list of valid mount options.

10. Optionally, you can configure the advanced parameters.
 a. Click Advanced Parameters.
b. Enter a percentage value in the **Warning Low Space Indicator** field. If the free space available on the storage domain is below this percentage, warning messages are displayed to the user and logged.

c. Enter a GB value in the **Critical Space Action Blocker** field. If the free space available on the storage domain is below this value, error messages are displayed to the user and logged, and any new action that consumes space, even temporarily, will be blocked.

d. Select the **Wipe After Delete** check box to enable the wipe after delete option. This option can be edited after the domain is created, but doing so will not change the wipe after delete property of disks that already exist.

11. Click OK.

6.5. ADDING A LOCAL STORAGE DOMAIN

When adding a local storage domain to a host, setting the path to the local storage directory automatically creates and places the host in a local data center, local cluster, and local storage domain.

Procedure

1. Click **Compute → Hosts** and select the host.

2. Click **Management → Maintenance** and OK. The host’s status changes to **Maintenance**.

3. Click **Management → Configure Local Storage**.

4. Click the **Edit** buttons next to the **Data Center**, **Cluster**, and **Storage** fields to configure and name the local storage domain.

5. Set the path to your local storage in the text entry field.

6. If applicable, click the **Optimization** tab to configure the memory optimization policy for the new local storage cluster.

7. Click OK.

The Manager sets up the local data center with a local cluster, local storage domain. It also changes the host’s status to **Up**.

Verification

1. Click **Storage → Domains**.

2. Locate the local storage domain you just added.

The domain’s status should be **Active** (↑), and the value in the **Storage Type** column should be **Local on Host**.

You can now upload a disk image in the new local storage domain.

6.6. ADDING RED HAT GLUSTER STORAGE

To use Red Hat Gluster Storage with Red Hat Virtualization, see [Configuring Red Hat Virtualization with Red Hat Gluster Storage](#).
For the Red Hat Gluster Storage versions that are supported with Red Hat Virtualization, see https://access.redhat.com/articles/2356261.
APPENDIX A. CONFIGURING A LOCAL REPOSITORY FOR OFFLINE RED HAT VIRTUALIZATION MANAGER INSTALLATION

To install Red Hat Virtualization Manager on a system that does not have a direct connection to the Content Delivery Network, download the required packages on a system that has internet access, then create a repository that can be shared with the offline Manager machine. The system hosting the repository must be connected to the same network as the client systems where the packages are to be installed.

Prerequisites

- A Red Hat Enterprise Linux 8 Server installed on a system that has access to the Content Delivery Network. This system downloads all the required packages, and distributes them to your offline systems.
- A large amount of free disk space available. This procedure downloads a large number of packages, and requires up to 50GB of free disk space.

Begin by enabling the Red Hat Virtualization Manager repositories on the online system:

Enabling the Red Hat Virtualization Manager Repositories

You need to log in and register the online machine with Red Hat Subscription Manager, attach the Red Hat Virtualization Manager subscription, and enable the Manager repositories.

Procedure

1. Register your system with the Content Delivery Network, entering your Customer Portal user name and password when prompted:

   ```bash
   # subscription-manager register
   ```

 NOTE

 If you are using an IPv6 network, use an IPv6 transition mechanism to access the Content Delivery Network and subscription manager.

2. Find the Red Hat Virtualization Manager subscription pool and record the pool ID:

   ```bash
   # subscription-manager list --available
   ```

3. Use the pool ID to attach the subscription to the system:

   ```bash
   # subscription-manager attach --pool=pool_id
   ```
NOTE

To view currently attached subscriptions:

subscription-manager list --consumed

To list all enabled repositories:

dnf repolist

4. Configure the repositories:

```
# subscription-manager repos
--disable="*"
--enable=rhel-8-for-x86_64-baseos-rpms
--enable=rhel-8-for-x86_64-appstream-rpms
--enable=rhv-4.4-manager-for-rhel-8-x86_64-rpms
--enable=fast-datapath-for-rhel-8-x86_64-rpms
--enable=ib-eap-7.4-for-rhel-8-x86_64-rpms
--enable=openstack-16.2-cinderlib-for-rhel-8-x86_64-rpms
--enable=rhceph-4-tools-for-rhel-8-x86_64-rpms
```

5. Enable the **pki-deps** module.

```
# dnf module -y enable pki-deps
```

6. Enable version 12 of the **postgresql** module.

```
# dnf module -y enable postgresql:12
```

7. Synchronize installed packages to update them to the latest available versions.

```
# dnf distro-sync --nobest
```

Additional resources

For information on modules and module streams, see the following sections in *Installing, managing, and removing user-space components*:

- Module streams
- Selecting a stream before installation of packages
- Resetting module streams
- Switching to a later stream

Configuring the Offline Repository

1. Servers that are not connected to the Internet can access software repositories on other systems using File Transfer Protocol (FTP). To create the FTP repository, install and configure **vsftpd** on the intended Manager machine:

 a. Install the **vsftpd** package:
Enable ftp access for an anonymous user to have access to rpm files from the intended Manager machine, and to keep it secure, disable write on ftp server. Edit the /etc/vsftpd/vsftpd.conf file and change the values for anonymous_enable and write_enable as follows:

```bash
anonymous_enable=YES
write_enable=NO
```

c. Start the vsftpd service, and ensure the service starts on boot:

```bash
# systemctl start vsftpd.service
# systemctl enable vsftpd.service
```

d. Create a firewall rule to allow FTP service and reload the firewalld service to apply changes:

```bash
# firewall-cmd --permanent --add-service=ftp
# firewall-cmd --reload
```

e. Red Hat Enterprise Linux 8 enforces SELinux by default, so configure SELinux to allow FTP access:

```bash
# setsebool -P allow_ftpd_full_access=1
```

f. Create a sub-directory inside the /var/ftp/pub/ directory, where the downloaded packages are made available:

```bash
# mkdir /var/ftp/pub/rhvrepo
```

2. Download packages from all configured software repositories to the rhvrepo directory. This includes repositories for all Content Delivery Network subscription pools attached to the system, and any locally configured repositories:

```bash
#reposync -p /var/ftp/pub/rhvrepo --download-metadata
```

This command downloads a large number of packages and their metadata, and takes a long time to complete.

3. Create a repository file, and copy it to the /etc/yum.repos.d/ directory on the intended Manager machine.

You can create the configuration file manually or with a script. Run the script below on the machine hosting the repository, replacing ADDRESS in the baseurl with the IP address or FQDN of the machine hosting the repository:

```bash
#!/bin/sh

REPOFILE="/etc/yum.repos.d/rhev.repo"
echo -e " " > $REPOFILE
for DIR in $(find /var/ftp/pub/rhvrepo -maxdepth 1 -mindepth 1 -type d);
do
    echo -e "["$(basename $DIR)]" >> $REPOFILE
```
Troubleshooting

When running `reposync`, the following error message appears

```
No available modular metadata for modular package "package_name_from_module" it cannot be installed on the system
```

Solution

Ensure you have `yum-utils-4.0.8-3.el8.noarch` or higher installed so reposync correctly downloads all the packages. For more information, see Create a local repo with Red Hat Enterprise Linux 8.

```bash
echo -e "name=$(basename $DIR)" >> $REPOFILE
echo -e "baseurl=ftp://__ADDRESS__/pub/rhvrepo/`basename $DIR`" >> $REPOFILE
echo -e "enabled=1" >> $REPOFILE
echo -e "gpgcheck=0" >> $REPOFILE
echo -e "\n" >> $REPOFILE
done
```
APPENDIX B. PREPARING A LOCAL MANUALLY CONFIGURED POSTGRESQL DATABASE

Use this procedure to set up the Manager database. Set up this database before you configure the Manager; you must supply the database credentials during `engine-setup`.

NOTE

The `engine-setup` and `engine-backup --mode=restore` commands only support system error messages in the `en_US.UTF8` locale, even if the system locale is different.

The locale settings in the `postgresql.conf` file must be set to `en_US.UTF8`.

IMPORTANT

The database name must contain only numbers, underscores, and lowercase letters.

Enabling the Red Hat Virtualization Manager Repositories

You need to log in and register the Manager machine with Red Hat Subscription Manager, attach the Red Hat Virtualization Manager subscription, and enable the Manager repositories.

Procedure

1. Register your system with the Content Delivery Network, entering your Customer Portal user name and password when prompted:

   ```bash
   # subscription-manager register
   ```

 NOTE

 If you are using an IPv6 network, use an IPv6 transition mechanism to access the Content Delivery Network and subscription manager.

2. Find the Red Hat Virtualization Manager subscription pool and record the pool ID:

   ```bash
   # subscription-manager list --available
   ```

3. Use the pool ID to attach the subscription to the system:

   ```bash
   # subscription-manager attach --pool=pool_id
   ```

 NOTE

 To view currently attached subscriptions:

   ```bash
   # subscription-manager list --consumed
   ```

 To list all enabled repositories:

   ```bash
   # dnf repolist
   ```
4. Configure the repositories:

```bash
# subscription-manager repos
 --disable='*' \ 
 --enable=rhel-8-for-x86_64-baseos-rpms \ 
 --enable=rhel-8-for-x86_64-appstream-rpms \ 
 --enable=rhv-4.4-manager-for-rhel-8-x86_64-rpms
```

5. Enable version 12 of the `postgresql` module.

```bash
# dnf module -y enable postgresql:12
```

6. Synchronize installed packages to update them to the latest available versions.

```bash
# dnf distro-sync --nobest
```

Additional resources

For information on modules and module streams, see the following sections in *Installing, managing, and removing user-space components*

- Module streams
- Selecting a stream before installation of packages
- Resetting module streams
- Switching to a later stream

Initializing the PostgreSQL Database

1. Install the PostgreSQL server package:

```bash
# dnf install postgresql-server postgresql-contrib
```

2. Initialize the PostgreSQL database instance:

```bash
# postgresql-setup --initdb
```

3. Start the `postgresql` service, and ensure that this service starts on boot:

```bash
# systemctl enable postgresql
# systemctl start postgresql
```

4. Connect to the `psql` command line interface as the `postgres` user:

```bash
# su - postgres -c psql
```

5. Create a default user. The Manager’s default user is `engine` and Data Warehouse’s default user is `ovirt_engine_history`:

```bash
postgres=# create role user_name with login encrypted password 'password';
```
6. Create a database. The Manager’s default database name is `engine` and Data Warehouse’s default database name is `ovirt_engine_history`:

   ```
   postgres=# create database database_name owner user_name template template0
   encoding 'UTF8' lc_collate 'en_US.UTF-8' lc_ctype 'en_US.UTF-8';
   ```

7. Connect to the new database:

   ```
   postgres=# \c database_name
   ```

8. Add the `uuid-ossp` extension:

   ```
   database_name=# CREATE EXTENSION "uuid-ossp";
   ```

9. Add the `plpgsql` language if it does not exist:

   ```
   database_name=# CREATE LANGUAGE plpgsql;
   ```

10. Quit the `psql` interface:

    ```
    database_name=# \q
    ```

11. Edit the `/var/lib/pgsql/data/pg_hba.conf` file to enable md5 client authentication, so the engine can access the database locally. Add the following line immediately below the line that starts with `local` at the bottom of the file:

    ```
    host database_name user_name 0.0.0.0/0 0.0.0.0/0 md5
    host database_name user_name ::0/0 md5
    ```

12. Update the PostgreSQL server’s configuration. Edit the `/var/lib/pgsql/data/postgresql.conf` file and add the following lines to the bottom of the file:

    ```
    autovacuum_vacuum_scale_factor=0.01
    autovacuum_analyze_scale_factor=0.075
    autovacuum_max_workers=6
    maintenance_work_mem=65536
    max_connections=150
    work_mem=8192
    ```

13. Restart the `postgresql` service:

    ```
    # systemctl restart postgresql
    ```

14. Optionally, set up SSL to secure database connections using the instructions at http://www.postgresql.org/docs/12/static/ssl-tcp.html#SSL-FILE-USAGE.

Return to Configuring the Manager, and answer Local and Manual when asked about the database.
Enabling PCI passthrough allows a virtual machine to use a host device as if the device were directly attached to the virtual machine. To enable the PCI passthrough function, you must enable virtualization extensions and the IOMMU function. The following procedure requires you to reboot the host. If the host is attached to the Manager already, ensure you place the host into maintenance mode first.

Prerequisites

- Ensure that the host hardware meets the requirements for PCI device passthrough and assignment. See PCI Device Requirements for more information.

Configuring a Host for PCI Passthrough

1. Enable the virtualization extension and IOMMU extension in the BIOS. See Enabling Intel VT-x and AMD-V virtualization hardware extensions in BIOS in the Red Hat Enterprise Linux Virtualization Deployment and Administration Guide for more information.

2. Enable the IOMMU flag in the kernel by selecting the Hostdev Passthrough & SR-IOV check box when adding the host to the Manager or by editing the grub configuration file manually.
 - To enable the IOMMU flag from the Administration Portal, see Adding Standard Hosts to the Red Hat Virtualization Manager and Kernel Settings Explained.
 - To edit the grub configuration file manually, see Enabling IOMMU Manually.

3. For GPU passthrough, you need to run additional configuration steps on both the host and the guest system. See GPU device passthrough: Assigning a host GPU to a single virtual machine in Setting up an NVIDIA GPU for a virtual machine in Red Hat Virtualization for more information.

Enabling IOMMU Manually

1. Enable IOMMU by editing the grub configuration file.

 NOTE

 If you are using IBM POWER8 hardware, skip this step as IOMMU is enabled by default.

 - For Intel, boot the machine, and append `intel_iommu=on` to the end of the `GRUB_CMDLINE_LINUX` line in the `grub` configuration file.

     ```
     # vi /etc/default/grub
     ...
     GRUB_CMDLINE_LINUX="nofb splash=quiet console=tty0 ... intel_iommu=on
     ...
     ```
For AMD, boot the machine, and append `amd_iommu=on` to the end of the `GRUB_CMDLINE_LINUX` line in the `grub` configuration file.

```bash
# vi /etc/default/grub
...
GRUB_CMDLINE_LINUX="nokb splash=quiet console=tty0 ... amd_iommu=on
...
```

NOTE

If `intel_iommu=on` or an AMD IOMMU is detected, you can try adding `iommu=pt`. The `pt` option only enables IOMMU for devices used in passthrough and provides better host performance. However, the option might not be supported on all hardware. Revert to the previous option if the `pt` option doesn’t work for your host.

If the passthrough fails because the hardware does not support interrupt remapping, you can consider enabling the `allow_unsafe_interrupts` option if the virtual machines are trusted. The `allow_unsafe_interrupts` is not enabled by default because enabling it potentially exposes the host to MSI attacks from virtual machines. To enable the option:

```bash
# vi /etc/modprobe.d
options vfio_iommu_type1 allow_unsafe_interrupts=1
```

2. Refresh the `grub.cfg` file and reboot the host for these changes to take effect:

```bash
# grub2-mkconfig -o /boot/grub2/grub.cfg
# reboot
```

To enable SR-IOV and assign dedicated virtual NICs to virtual machines, see https://access.redhat.com/articles/2335291.
APPENDIX D. REMOVING THE STANDALONE RED HAT VIRTUALIZATION MANAGER

The `engine-cleanup` command removes all components of the Red Hat Virtualization Manager and automatically backs up the following:

- the Grafana database, in `/var/lib/grafana/`
- the Manager database in `/var/lib/ovirt-engine/backups/`
- a compressed archive of the PKI keys and configuration in `/var/lib/ovirt-engine/backups/`

Backup file names include the date and time.

WARNING

You should use this procedure only on a standalone installation of the Red Hat Virtualization Manager.

Procedure

1. Run the following command on the Manager machine:

   ```sh
   # engine-cleanup
   ```

2. The Manager service must be stopped before proceeding. You are prompted to confirm. Enter `OK` to proceed:

   ```sh
   During execution engine service will be stopped (OK, Cancel) [OK]:
   ```

3. You are prompted to confirm that you want to remove all Manager components. Enter `OK` to remove all components, or `Cancel` to exit `engine-cleanup`:

   ```sh
   All the installed ovirt components are about to be removed, data will be lost (OK, Cancel) [Cancel]: OK
   ```

 `engine-cleanup` details the components that are removed, and the location of backup files.

4. Remove the Red Hat Virtualization packages:

   ```sh
   # dnf remove rhvm* vdsm-bootstrap
   ```
APPENDIX E. PREVENTING KERNEL MODULES FROM LOADING AUTOMATICALLY

You can prevent a kernel module from being loaded automatically, whether the module is loaded directly, loaded as a dependency from another module, or during the boot process.

Procedure

1. The module name must be added to a configuration file for the `modprobe` utility. This file must reside in the configuration directory `/etc/modprobe.d`. For more information on this configuration directory, see the man page `modprobe.d`.

2. Ensure the module is not configured to get loaded in any of the following:
 - `/etc/modprobe.conf`
 - `/etc/modprobe.d/*`
 - `/etc/rc.modules`
 - `/etc/sysconfig/modules/*`

   ```
   # modprobe --showconfig <_configuration_file_name_>  
   # modprobe --ignore-install <_module_name_>  
   # modprobe -r <_module_name_>  
   ```

3. If the module appears in the output, ensure it is ignored and not loaded:

   ```
   # modprobe --ignore-install <_module_name_>  
   ```

4. Unload the module from the running system, if it is loaded:

   ```
   # modprobe -r <_module_name_>  
   ```

5. Prevent the module from being loaded directly by adding the `blacklist` line to a configuration file specific to the system - for example `/etc/modprobe.d/local-dontload.conf`:

   ```
   # echo "blacklist <_module_name_>" >> /etc/modprobe.d/local-dontload.conf  
   ```

 NOTE

 This step does not prevent a module from loading if it is a required or an optional dependency of another module.

6. Prevent optional modules from being loading on demand:

   ```
   # echo "install <_module_name_>/bin/false" >> /etc/modprobe.d/local-dontload.conf  
   ```

 IMPORTANT

 If the excluded module is required for other hardware, excluding it might cause unexpected side effects.
7. Make a backup copy of your initramfs:

```bash
# cp /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.$(date +%m-%d-%H%M%S).bak
```

8. If the kernel module is part of the initramfs, rebuild your initial ramdisk image, omitting the module:

```bash
# dracut --omit-drivers <_module_name_> -f
```

9. Get the current kernel command line parameters:

```bash
# grub2-editenv -l | grep kernelopts
```

10. Append `<_module_name_>.blacklist=1 rd.driver.blacklist=<_module_name_>` to the generated output:

```bash
# grub2-editenv -set kernelopts="<> <_module_name_>.blacklist=1 rd.driver.blacklist=<_module_name_>"
```

For example:

```bash
# grub2-editenv -set kernelopts="root=/dev/mapper/rhel_example-root ro crashkernel=auto resume=/dev/mapper/rhel_example-swap rd.lvm.lv=rhel_example/root rd.lvm.lv=rhel_example/swap <_module_name_>.blacklist=1 rd.driver.blacklist=<_module_name_>"
```

11. Make a backup copy of the kdump initramfs:

```bash
# cp /boot/initramfs-$(uname -r)kdump.img /boot/initramfs-$(uname -r)kdump.img.$(date +%m-%d-%H%M%S).bak
```

12. Append `rd.driver.blacklist=<_module_name_>` to the KDUMP_COMMANDLINE_APPEND setting in `/etc/sysconfig/kdump` to omit it from the kdump initramfs:

```bash
# sed -i '/^KDUMP_COMMANDLINE_APPEND=/s/"$/ rd.driver.blacklist=module_name"/' /etc/sysconfig/kdump
```

13. Restart the kdump service to pick up the changes to the kdump initrd:

```bash
# kdumpctl restart
```

14. Rebuild the kdump initial ramdisk image:

```bash
# mkdumprd -f /boot/initramfs-$(uname -r)kdump.img
```

15. Reboot the system.

E.1. REMOVING A MODULE TEMPORARILY

You can remove a module temporarily.
Procedure

1. Run `modprobe` to remove any currently-loaded module:

   ```
   # modprobe -r <module name>
   ```

2. If the module cannot be unloaded, a process or another module might still be using the module. If so, terminate the process and run the `modpole` command written above another time to unload the module.
APPENDIX F. PREVENTING KERNEL MODULES FROM LOADING AUTOMATICALLY

You can prevent a kernel module from being loaded automatically, whether the module is loaded directly, loaded as a dependency from another module, or during the boot process.

Procedure

1. The module name must be added to a configuration file for the `modprobe` utility. This file must reside in the configuration directory `/etc/modprobe.d`. For more information on this configuration directory, see the man page `modprobe.d`.

2. Ensure the module is not configured to get loaded in any of the following:
 - `/etc/modprobe.conf`
 - `/etc/modprobe.d/*`
 - `/etc/rc.modules`
 - `/etc/sysconfig/modules/*`
   ```
   # modprobe --showconfig <_configuration_file_name_>
   # modprobe --ignore-install <_module_name_>
   # modprobe -r <_module_name_>
   ```

3. If the module appears in the output, ensure it is ignored and not loaded:
   ```
   # modprobe --ignore-install <_module_name_>
   ```

4. Unload the module from the running system, if it is loaded:
   ```
   # modprobe -r <_module_name_>
   ```

5. Prevent the module from being loaded directly by adding the `blacklist` line to a configuration file specific to the system - for example `/etc/modprobe.d/local-dontload.conf`:
   ```
   # echo "blacklist <_module_name_> >> /etc/modprobe.d/local-dontload.conf
   ```

 NOTE
 This step does not prevent a module from loading if it is a required or an optional dependency of another module.

6. Prevent optional modules from being loading on demand:
   ```
   # echo "install <_module_name_>/bin/false" >> /etc/modprobe.d/local-dontload.conf
   ```

 IMPORTANT
 If the excluded module is required for other hardware, excluding it might cause unexpected side effects.
7. Make a backup copy of your initramfs:

```bash
# cp /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.$(date +%m-%d-%H%M%S).bak
```

8. If the kernel module is part of the initramfs, rebuild your initial ramdisk image, omitting the module:

```bash
# dracut --omit-drivers <_module_name_> -f
```

9. Get the current kernel command line parameters:

```bash
# grub2-editenv -l | grep kernelopts
```

10. Append `<_module_name_>.blacklist=1 rd.driver.blacklist=<_module_name_>` to the generated output:

```bash
# grub2-editenv -set kernelopts="<> <_module_name_>.blacklist=1 rd.driver.blacklist=<_module_name_>"
```

For example:

```bash
# grub2-editenv -set kernelopts="root=/dev/mapper/rhel_example-root ro crashkernel=auto resume=/dev/mapper/rhel_example-swap rd.lvm.lv=rhel_example/root rd.lvm.lv=rhel_example/swap <_module_name_>.blacklist=1 rd.driver.blacklist=<_module_name_>"
```

11. Make a backup copy of the kdump initramfs:

```bash
# cp /boot/initramfs-$(uname -r)kdump.img /boot/initramfs-$(uname -r)kdump.img.$(date +%m-%d-%H%M%S).bak
```

12. Append `rd.driver.blacklist=<_module_name_>` to the KDUMP_COMMANDLINE_APPEND setting in /etc/sysconfig/kdump to omit it from the kdump initramfs:

```bash
# sed -i '/^KDUMP_COMMANDLINE_APPEND=/s/"$/ rd.driver.blacklist=module_name"/' /etc/sysconfig/kdump
```

13. Restart the kdump service to pick up the changes to the kdump initrd:

```bash
# kdumpctl restart
```

14. Rebuild the kdump initial ramdisk image:

```bash
# mkdumpt -f /boot/initramfs-$(uname -r)kdump.img
```

15. Reboot the system.

F.1. REMOVING A MODULE TEMPORARILY

You can remove a module temporarily.
Procedure

1. Run `modprobe` to remove any currently-loaded module:
   ```
   # modprobe -r <module name>
   ```

2. If the module cannot be unloaded, a process or another module might still be using the module. If so, terminate the process and run the `modpole` command written above another time to unload the module.
APPENDIX G. SECURING RED HAT VIRTUALIZATION

This information is specific to Red Hat Virtualization. It does not cover fundamental security practices related to any of the following:

- Disabling unnecessary services
- Authentication
- Authorization
- Accounting
- Penetration testing and hardening of non-RHV services
- Encryption of sensitive application data

Prerequisites

- You should be proficient in your organization’s security standards and practices. If possible, consult with your organization’s Security Officer.
- Consult the Red Hat Enterprise Linux Security hardening before deploying RHEL hosts.

G.1. DISA STIG FOR RED HAT VIRTUALIZATION 4.4

The Defense Information Systems Agency (DISA) distributes Security Technical Implementation Guides (STIGs) for various platforms and operating systems.

When installing Red Hat Virtualization Host (RHVH), the [DRAFT] DISA STIG for Red Hat Virtualization Host (RHVH) profile is one of the security policies available. Enabling this profile as your security policy during installation removes the need to regenerate SSH keys, SSL certificates, or otherwise re-configure the host later in the deployment process.

When installing a RHEL host, you can use the DISA STIG for Red Hat Enterprise Linux 8 profile. For information on applying a security policy, see Configuring a security policy in Performing a standard RHEL installation.

IMPORTANT

The DISA STIG security policy is the only security policy that Red Hat officially tests and certifies.

DISA STIGs are “configuration standards for DOD IA and IA-enabled devices/systems. Since 1998, DISA has played a critical role in enhancing the security posture of DoD’s security systems by providing the Security Technical Implementation Guides (STIGs). The STIGs contain technical guidance to ‘lock down’ information systems/software that might otherwise be vulnerable to a malicious computer attack.”

These STIGs are based on requirements put forth by the National Institute of Standards and Technology (NIST) Special Publication 800-53, a catalog of security controls for all U.S. federal information systems except those related to national security.

To determine which various profiles overlap, Red Hat refers to the Cloud Security Alliance’s Cloud Controls Matrix (CCM). This CCM specifies a comprehensive set of cloud-specific security controls, and maps each one to the requirements of leading standards, best practices, and regulations.
To help you verify your security policy, Red Hat provides OpenSCAP tools and Security Content Automation Protocol (SCAP) profiles for various Red Hat platforms, including RHEL and RHV.

Red Hat’s OpenSCAP project provides open source tools for administrators and auditors to assess, measure, and enforce of SCAP baselines. NIST awarded SCAP 1.2 certification to OpenSCAP in 2014.

NIST maintains the SCAP standard. SCAP-compliant profiles provide detailed low-level guidance on setting the security configuration of operating systems and applications.

Red Hat publishes SCAP baselines for various products and platforms to two locations:

- The NIST National Checklist Program (NCP), the U.S. government repository of publicly available security checklists (or benchmarks).
- The Department of Defense (DoD) Cyber Exchange

Additional resources

- NIST National Checklist Program Repository for Red Hat
- The DoD Cyber Exchange download page for Unix/Linux-related STIGs
- NIST Special Publication 800-53 Rev. 4
- NIST Special Publication 800-53 Rev. 5 (DRAFT)
- The OpenSCAP Project
- Cloud Security Alliance: Cloud Controls Matrix

G.2. APPLYING THE DISA STIG PROFILE IN RED HAT VIRTUALIZATION HOST

You can apply the DISA STIG profile on hosts, either Red Hat Virtualization Host (RHVH) or Red Hat Enterprise Linux hosts, either to serve as the host for the Manager virtual machine when you deploy the Manager as a self-hosted engine, or to serve as an ordinary host in a Red Hat Virtualization cluster.

![WARNING]

Some security hardening, such as disabling SSH for the root user, renders the host unusable for use as a host for Red Hat Virtualization.

When installing RHVH, you can select the DISA STIG profile with the GUI installer.

Procedure

2. On the Security Policy screen that opens, toggle the Apply security policy setting to On.
3. Select [DRAFT] DISA STIG for Red Hat Virtualization Host (RHVH)

4. Click the Select profile button. This action adds a green checkmark next to the profile and adds packages to the list of Changes that were done or need to be done. Follow the onscreen instructions if they direct you to make any changes.

5. Click Done.

6. On the Installation Summary screen, verify that the status of Security Policy is Everything okay.

7. Reboot the host.

Next steps

When you log into RHVH, the command line displays the following information.

NOTE

These packages are already part of the RHVH image. RHVH ships as a single system image. Installation of packages required by any other selected security profiles which are not part of the RHVH image might not be possible. See the RHVH package manifest for a list of included packages.