Installing Red Hat Virtualization as a standalone Manager with remote databases

How to install the Red Hat Virtualization Manager on one server, and its databases on a second server
How to install the Red Hat Virtualization Manager on one server, and its databases on a second server

Red Hat Virtualization Documentation Team
Red Hat Customer Content Services
rhev-docs@redhat.com
Abstract

This document describes how to install a standalone Manager environment – where the Red Hat Virtualization Manager is installed on either a physical server or a virtual machine hosted in another environment – with the Manager database and the Data Warehouse service and database hosted on a remote server. Although you can choose to host one database locally and the other remotely, this document assumes that both databases will be hosted remotely. If this is not the configuration you want to use, see the other Installation Options in the Product Guide.
Table of Contents

PREFACE .. 4

STANDALONE MANAGER ARCHITECTURE 4

CHAPTER 1. INSTALLATION OVERVIEW .. 6

CHAPTER 2. REQUIREMENTS .. 7

2.1. RED HAT VIRTUALIZATION MANAGER REQUIREMENTS 7

2.1.1. Hardware Requirements 7

2.1.2. Browser Requirements 7

2.1.3. Client Requirements 8

2.1.4. Operating System Requirements 9

2.2. HOST REQUIREMENTS 9

2.2.1. CPU Requirements 9

2.2.1.1. Checking if a Processor Supports the Required Flags 10

2.2.2. Memory Requirements 10

2.2.3. Storage Requirements 10

2.2.4. PCI Device Requirements 11

2.2.5. Device Assignment Requirements 11

2.2.6. vGPU Requirements 12

2.3. NETWORKING REQUIREMENTS 12

2.3.1. General Requirements 12

2.3.2. Firewall Requirements for DNS, NTP, IPMI Fencing, and Metrics Store 12

2.3.3. Red Hat Virtualization Manager Firewall Requirements 13

2.3.4. Host Firewall Requirements 16

2.3.5. Database Server Firewall Requirements 19

CHAPTER 3. INSTALLING THE RED HAT VIRTUALIZATION MANAGER 21

3.1. INSTALLING THE RED HAT VIRTUALIZATION MANAGER MACHINE AND THE REMOTE SERVER 21

3.2. ENABLING THE RED HAT VIRTUALIZATION MANAGER REPOSITORIES 21

3.3. PREPARING A REMOTE POSTGRESQL DATABASE 22

Enabling the Red Hat Virtualization Manager Repositories 22

Initializing the PostgreSQL Database 23

3.4. CONFIGURING THE RED HAT VIRTUALIZATION MANAGER 25

3.5. INSTALLING AND CONFIGURING DATA WAREHOUSE ON A SEPARATE MACHINE 29

Enabling the Red Hat Virtualization Manager Repositories 29

Installing Data Warehouse on a Separate Machine 30

3.6. CONNECTING TO THE ADMINISTRATION PORTAL 32

CHAPTER 4. INSTALLING HOSTS FOR RED HAT VIRTUALIZATION 34

4.1. RED HAT VIRTUALIZATION HOSTS 34

4.1.1. Installing Red Hat Virtualization Hosts 34

4.1.2. Enabling the Red Hat Virtualization Host Repository 36

4.1.3. Advanced Installation 37

4.1.3.1. Custom Partitioning 37

4.1.3.2. Automating Red Hat Virtualization Host Deployment 38

4.1.3.2.1. Preparing the Installation Environment 39

4.1.3.2.2. Configuring the PXE Server and the Boot Loader 39

4.1.3.2.3. Creating and Running a Kickstart File 40

4.2. RED HAT ENTERPRISE LINUX HOSTS 42

4.2.1. Installing Red Hat Enterprise Linux hosts 42

4.2.2. Enabling the Red Hat Enterprise Linux host Repositories 42

4.2.3. Installing Cockpit on Red Hat Enterprise Linux hosts 44
4.3. RECOMMENDED PRACTICES FOR CONFIGURING HOST NETWORKS
4.4. ADDING STANDARD HOSTS TO THE RED HAT VIRTUALIZATION MANAGER

CHAPTER 5. PREPARING STORAGE FOR RED HAT VIRTUALIZATION
5.1. PREPARING NFS STORAGE
5.2. PREPARING ISCSI STORAGE
5.3. PREPARING FCP STORAGE
5.4. PREPARING POSIX-COMPLIANT FILE SYSTEM STORAGE
5.5. PREPARING LOCAL STORAGE
5.6. PREPARING RED HAT GLUSTER STORAGE

CHAPTER 6. ADDING STORAGE FOR RED HAT VIRTUALIZATION
6.1. ADDING NFS STORAGE
6.2. ADDING ISCSI STORAGE
6.3. ADDING FCP STORAGE
6.4. ADDING POSIX-COMPLIANT FILE SYSTEM STORAGE
6.5. ADDING LOCAL STORAGE
6.6. ADDING RED HAT GLUSTER STORAGE

APPENDIX A. CONFIGURING A LOCAL REPOSITORY FOR OFFLINE RED HAT VIRTUALIZATION MANAGER INSTALLATION
Enabling the Red Hat Virtualization Manager Repositories
Configuring the Offline Repository

APPENDIX B. INSTALLING A WEBSOCKET PROXY ON A SEPARATE MACHINE

APPENDIX C. CONFIGURING A HOST FOR PCI PASSTHROUGH

APPENDIX D. REMOVING THE RED HAT VIRTUALIZATION MANAGER

APPENDIX E. SECURING RED HAT VIRTUALIZATION
E.1. DISA STIG FOR RED HAT LINUX 7
E.2. APPLYING THE DISA STIG FOR RED HAT LINUX 7 PROFILE
PREFACE

Standalone Manager installation is manual and customizable. You must install a Red Hat Enterprise Linux machine, then run the configuration script (engine-setup) and provide information about how you want to configure the Red Hat Virtualization Manager. Add hosts and storage after the Manager is running. At least two hosts are required for virtual machine high availability.

In a remote database environment, you must create the Manager database manually before running engine-setup. You can create the Data Warehouse database manually, or let the Data Warehouse configuration script (ovirt-engine-dwh-setup) create it automatically if you are installing the Data Warehouse service on the same machine.

See the Planning and Prerequisites Guide for information on environment options and recommended configuration.

Table 1. Red Hat Virtualization Key Components

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Virtualization Manager</td>
<td>A service that provides a graphical user interface and a REST API to manage the resources in the environment. The Manager is installed on a physical or virtual machine running Red Hat Enterprise Linux.</td>
</tr>
<tr>
<td>Hosts</td>
<td>Red Hat Enterprise Linux hosts (RHEL hosts) and Red Hat Virtualization Hosts (image-based hypervisors) are the two supported types of host. Hosts use Kernel-based Virtual Machine (KVM) technology and provide resources used to run virtual machines.</td>
</tr>
<tr>
<td>Shared Storage</td>
<td>A storage service is used to store the data associated with virtual machines.</td>
</tr>
<tr>
<td>Data Warehouse</td>
<td>A service that collects configuration information and statistical data from the Manager.</td>
</tr>
</tbody>
</table>

STANDALONE MANAGER ARCHITECTURE

The Red Hat Virtualization Manager runs on a physical server, or a virtual machine hosted in a separate virtualization environment. A standalone Manager is easier to deploy and manage, but requires an additional physical server. The Manager is only highly available when managed externally with a product such as Red Hat’s High Availability Add-On.

The minimum setup for a standalone Manager environment includes:

- One Red Hat Virtualization Manager machine. The Manager is typically deployed on a physical server. However, it can also be deployed on a virtual machine, as long as that virtual machine is hosted in a separate environment. The Manager must run on Red Hat Enterprise Linux 7.

- A minimum of two hosts for virtual machine high availability. You can use Red Hat Enterprise Linux hosts or Red Hat Virtualization Hosts (RHVH). VDSM (the host agent) runs on all hosts to facilitate communication with the Red Hat Virtualization Manager.
One storage service, which can be hosted locally or on a remote server, depending on the storage type used. The storage service must be accessible to all hosts.

Figure 1. Standalone Manager Red Hat Virtualization Architecture
CHAPTER 1. INSTALLATION OVERVIEW

Installing a standalone Manager environment with remote databases involves the following steps:

1. Install and configure the Red Hat Virtualization Manager:
 a. Install two Red Hat Enterprise Linux machines: one for the Manager, and one for the databases. The second machine will be referred to as the remote server.
 b. Register the Manager machine with the Content Delivery Network and enable the Red Hat Virtualization Manager repositories.
 c. Manually configure the Manager database on the remote server. You can also use this procedure to manually configure the Data Warehouse database if you do not want the Data Warehouse setup script to configure it automatically.
 d. Configure the Red Hat Virtualization Manager using `engine-setup`.
 e. Install the Data Warehouse service and database on the remote server.
 f. If you want to use the websocket proxy to allow users to connect to virtual machines through the noVNC console, install it on the remote server.
 g. Connect to the Administration Portal to add hosts and storage domains.

2. Install hosts to run virtual machines on:
 a. Use either host type, or both:
 - Red Hat Virtualization Host
 - Red Hat Enterprise Linux
 b. Add the hosts to the Manager.

3. Prepare storage to use for storage domains. You can use one of the following storage types:
 - NFS
 - iSCSI
 - Fibre Channel (FCP)
 - POSIX-compliant file system
 - Local storage
 - Red Hat Gluster Storage

4. Add storage domains to the Manager.

IMPORTANT

Keep the environment up to date. See https://access.redhat.com/articles/2974891 for more information. Since bug fixes for known issues are frequently released, Red Hat recommends using scheduled tasks to update the hosts and the Manager.
CHAPTER 2. REQUIREMENTS

2.1. RED HAT VIRTUALIZATION MANAGER REQUIREMENTS

2.1.1. Hardware Requirements

The minimum and recommended hardware requirements outlined here are based on a typical small to medium-sized installation. The exact requirements vary between deployments based on sizing and load.

Hardware certification for Red Hat Virtualization is covered by the hardware certification for Red Hat Enterprise Linux. For more information, see https://access.redhat.com/solutions/725243. To confirm whether specific hardware items are certified for use with Red Hat Enterprise Linux, see https://access.redhat.com/ecosystem/#certifiedHardware.

Table 2.1. Red Hat Virtualization Manager Hardware Requirements

<table>
<thead>
<tr>
<th>Resource</th>
<th>Minimum</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>A dual core CPU.</td>
<td>A quad core CPU or multiple dual core CPUs.</td>
</tr>
<tr>
<td>Memory</td>
<td>4 GB of available system RAM if Data Warehouse is not installed and if memory is not being consumed by existing processes.</td>
<td>16 GB of system RAM.</td>
</tr>
<tr>
<td>Hard Disk</td>
<td>25 GB of locally accessible, writable disk space.</td>
<td>50 GB of locally accessible, writable disk space.</td>
</tr>
<tr>
<td></td>
<td>You can use the RHV Manager History Database Size Calculator to calculate the appropriate disk space for the Manager history database size.</td>
<td></td>
</tr>
<tr>
<td>Network Interface</td>
<td>1 Network Interface Card (NIC) with bandwidth of at least 1 Gbps.</td>
<td>1 Network Interface Card (NIC) with bandwidth of at least 1 Gbps.</td>
</tr>
</tbody>
</table>

2.1.2. Browser Requirements

The following browser versions and operating systems can be used to access the Administration Portal and the VM Portal.

Browser support is divided into tiers:

- Tier 1: Browser and operating system combinations that are fully tested and fully supported. Red Hat Engineering is committed to fixing issues with browsers on this tier.
- Tier 2: Browser and operating system combinations that are partially tested, and are likely to work. Limited support is provided for this tier. Red Hat Engineering will attempt to fix issues with browsers on this tier.
- Tier 3: Browser and operating system combinations that are not tested, but may work. Minimal support is provided for this tier. Red Hat Engineering will attempt to fix only minor issues with browsers on this tier.

Table 2.2. Browser Requirements

<table>
<thead>
<tr>
<th>Support Tier</th>
<th>Operating System Family</th>
<th>Browser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>Red Hat Enterprise Linux</td>
<td>Mozilla Firefox Extended Support Release (ESR) version</td>
</tr>
<tr>
<td></td>
<td>Any</td>
<td>Most recent version of Google Chrome, Mozilla Firefox, or Microsoft Edge</td>
</tr>
<tr>
<td>Tier 2</td>
<td>Any</td>
<td>Earlier versions of Google Chrome or Mozilla Firefox</td>
</tr>
<tr>
<td>Tier 3</td>
<td>Any</td>
<td>Other browsers</td>
</tr>
</tbody>
</table>

2.1.3. Client Requirements

Virtual machine consoles can only be accessed using supported Remote Viewer (virt-viewer) clients on Red Hat Enterprise Linux and Windows. To install virt-viewer, see Installing Supporting Components on Client Machines in the Virtual Machine Management Guide. Installing virt-viewer requires Administrator privileges.

Virtual machine consoles are accessed through the SPICE, VNC, or RDP (Windows only) protocols. The QXL graphical driver can be installed in the guest operating system for improved/enhanced SPICE functionalities. SPICE currently supports a maximum resolution of 2560x1600 pixels.

Supported QXL drivers are available on Red Hat Enterprise Linux, Windows XP, and Windows 7.

SPICE support is divided into tiers:

- Tier 1: Operating systems on which Remote Viewer has been fully tested and is supported.
- Tier 2: Operating systems on which Remote Viewer is partially tested and is likely to work. Limited support is provided for this tier. Red Hat Engineering will attempt to fix issues with remote-viewer on this tier.

Table 2.3. Client Operating System SPICE Support

<table>
<thead>
<tr>
<th>Support Tier</th>
<th>Operating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>Red Hat Enterprise Linux 7.2 and later</td>
</tr>
<tr>
<td></td>
<td>Microsoft Windows 7</td>
</tr>
<tr>
<td>Tier 2</td>
<td>Microsoft Windows 8</td>
</tr>
</tbody>
</table>
2.1.4. Operating System Requirements

The Red Hat Virtualization Manager must be installed on a base installation of Red Hat Enterprise Linux 7 that has been updated to the latest minor release.

Do not install any additional packages after the base installation, as they may cause dependency issues when attempting to install the packages required by the Manager.

Do not enable additional repositories other than those required for the Manager installation.

2.2. HOST REQUIREMENTS

Hardware certification for Red Hat Virtualization is covered by the hardware certification for Red Hat Enterprise Linux. For more information, see https://access.redhat.com/solutions/725243. To confirm whether specific hardware items are certified for use with Red Hat Enterprise Linux, see https://access.redhat.com/ecosystem/#certifiedHardware.

For more information on the requirements and limitations that apply to guests see https://access.redhat.com/articles/rhel-limits and https://access.redhat.com/articles/906543.

2.2.1. CPU Requirements

All CPUs must have support for the Intel® 64 or AMD64 CPU extensions, and the AMD-V™ or Intel VT® hardware virtualization extensions enabled. Support for the No eXecute flag (NX) is also required.

The following CPU models are supported:

- AMD
 - Opteron G4
 - Opteron G5
 - EPYC
- Intel
 - Nehalem
 - Westmere
 - Sandybridge
 - Haswell
 - Haswell-noTSX
 - Broadwell
 - Broadwell-noTSX
2.2.1.1. Checking if a Processor Supports the Required Flags

You must enable virtualization in the BIOS. Power off and reboot the host after this change to ensure that the change is applied.

1. At the Red Hat Enterprise Linux or Red Hat Virtualization Host boot screen, press any key and select the **Boot** or **Boot with serial console** entry from the list.

2. Press **Tab** to edit the kernel parameters for the selected option.

3. Ensure there is a space after the last kernel parameter listed, and append the parameter **rescue**.

4. Press **Enter** to boot into rescue mode.

5. At the prompt, determine that your processor has the required extensions and that they are enabled by running this command:

   ```
   # grep -E 'svm|vmx' /proc/cpuinfo | grep nx
   ```

 If any output is shown, the processor is hardware virtualization capable. If no output is shown, your processor may still support hardware virtualization; in some circumstances manufacturers disable the virtualization extensions in the BIOS. If you believe this to be the case, consult the system’s BIOS and the motherboard manual provided by the manufacturer.

2.2.2. Memory Requirements

The minimum required RAM is 2 GB. The maximum supported RAM per VM in Red Hat Virtualization Host is 4 TB.

However, the amount of RAM required varies depending on guest operating system requirements, guest application requirements, and guest memory activity and usage. KVM can also overcommit physical RAM for virtualized guests, allowing you to provision guests with RAM requirements greater than what is physically present, on the assumption that the guests are not all working concurrently at peak load. KVM does this by only allocating RAM for guests as required and shifting underutilized guests into swap.

2.2.3. Storage Requirements

Hosts require storage to store configuration, logs, kernel dumps, and for use as swap space. Storage can be local or network-based. Red Hat Virtualization Host (RHVH) can boot with one, some, or all of its default allocations in network storage. Booting from network storage can result in a freeze if there is a network disconnect. Adding a drop-in multipath configuration file can help address losses in network connectivity. If RHVH boots from SAN storage and loses connectivity, the files become read-only until network connectivity restores. Using network storage might result in a performance downgrade.

The minimum storage requirements of RHVH are documented in this section. The storage requirements for Red Hat Enterprise Linux hosts vary based on the amount of disk space used by their existing configuration but are expected to be greater than those of RHVH.
The minimum storage requirements for host installation are listed below. However, Red Hat recommends using the default allocations, which use more storage space.

- / (root) - 6 GB
- /home - 1 GB
- /tmp - 1 GB
- /boot - 1 GB
- /var - 15 GB
- /var/crash - 10 GB
- /var/log - 8 GB
- /var/log/audit - 2 GB
- swap - 1 GB (for the recommended swap size, see https://access.redhat.com/solutions/15244)
- Anaconda reserves 20% of the thin pool size within the volume group for future metadata expansion. This is to prevent an out-of-the-box configuration from running out of space under normal usage conditions. Overprovisioning of thin pools during installation is also not supported.
- Minimum Total - 55 GB

If you are also installing the RHV-M Appliance for self-hosted engine installation, /var/tmp must be at least 5 GB.

If you plan to use memory overcommitment, add enough swap space to provide virtual memory for all of virtual machines. See Memory Optimization.

2.2.4. PCI Device Requirements

Hosts must have at least one network interface with a minimum bandwidth of 1 Gbps. Red Hat recommends that each host have two network interfaces, with one dedicated to supporting network-intensive activities, such as virtual machine migration. The performance of such operations is limited by the bandwidth available.

For information about how to use PCI Express and conventional PCI devices with Intel Q35-based virtual machines, see Using PCI Express and Conventional PCI Devices with the Q35 Virtual Machine.

2.2.5. Device Assignment Requirements

If you plan to implement device assignment and PCI passthrough so that a virtual machine can use a specific PCIe device from a host, ensure the following requirements are met:

- CPU must support IOMMU (for example, VT-d or AMD-Vi). IBM POWER8 supports IOMMU by default.
- Firmware must support IOMMU.
- CPU root ports used must support ACS or ACS-equivalent capability.
- PCIe devices must support ACS or ACS-equivalent capability.
• Red Hat recommends that all PCIe switches and bridges between the PCIe device and the root port support ACS. For example, if a switch does not support ACS, all devices behind that switch share the same IOMMU group, and can only be assigned to the same virtual machine.

• For GPU support, Red Hat Enterprise Linux 7 supports PCI device assignment of PCIe-based NVIDIA K-Series Quadro (model 2000 series or higher), GRID, and Tesla as non-VGA graphics devices. Currently up to two GPUs may be attached to a virtual machine in addition to one of the standard, emulated VGA interfaces. The emulated VGA is used for pre-boot and installation and the NVIDIA GPU takes over when the NVIDIA graphics drivers are loaded. Note that the NVIDIA Quadro 2000 is not supported, nor is the Quadro K420 card.

Check vendor specification and datasheets to confirm that your hardware meets these requirements. The **lspci -v** command can be used to print information for PCI devices already installed on a system.

2.2.6. vGPU Requirements

If you plan to configure a host to allow virtual machines on that host to install a vGPU, the following requirements must be met:

• vGPU-compatible GPU

• GPU-enabled host kernel

• Installed GPU with correct drivers

• Predefined **mdev_type** set to correspond with one of the mdev types supported by the device

• vGPU-capable drivers installed on each host in the cluster

• vGPU-supported virtual machine operating system with vGPU drivers installed

2.3. NETWORKING REQUIREMENTS

2.3.1. General Requirements

Red Hat Virtualization requires IPv6 to remain enabled on the computer or virtual machine where you are running the Manager (also called “the Manager machine”). **Do not disable IPv6** on the Manager machine, even if your systems do not use it.

2.3.2. Firewall Requirements for DNS, NTP, IPMI Fencing, and Metrics Store

The firewall requirements for all of the following topics are special cases that require individual consideration.

DNS and NTP

Red Hat Virtualization does not create a DNS or NTP server, so the firewall does not need to have open ports for incoming traffic.

By default, Red Hat Enterprise Linux allows outbound traffic to DNS and NTP on any destination address. If you disable outgoing traffic, define exceptions for requests that are sent to DNS and NTP servers.
The Red Hat Virtualization Manager and all hosts (Red Hat Virtualization Host and Red Hat Enterprise Linux host) must have a fully qualified domain name and full, perfectly-aligned forward and reverse name resolution.

Running a DNS service as a virtual machine in the Red Hat Virtualization environment is not supported. All DNS services the Red Hat Virtualization environment uses must be hosted outside of the environment.

Red Hat strongly recommends using DNS instead of the /etc/hosts file for name resolution. Using a hosts file typically requires more work and has a greater chance for errors.

IPMI and Other Fencing Mechanisms (optional)

For IPMI (Intelligent Platform Management Interface) and other fencing mechanisms, the firewall does not need to have open ports for incoming traffic.

By default, Red Hat Enterprise Linux allows outbound IPMI traffic to ports on any destination address. If you disable outgoing traffic, make exceptions for requests being sent to your IPMI or fencing servers.

Each Red Hat Virtualization Host and Red Hat Enterprise Linux host in the cluster must be able to connect to the fencing devices of all other hosts in the cluster. If the cluster hosts are experiencing an error (network error, storage error...) and cannot function as hosts, they must be able to connect to other hosts in the data center.

The specific port number depends on the type of the fence agent you are using and how it is configured.

The firewall requirement tables in the following sections do not represent this option.

Metrics Store, Kibana, and ElasticSearch

For Metrics Store, Kibana, and ElasticSearch, see Network Configuration for Metrics Store virtual machines.

2.3.3. Red Hat Virtualization Manager Firewall Requirements

The Red Hat Virtualization Manager requires that a number of ports be opened to allow network traffic through the system’s firewall.

The engine-setup script can configure the firewall automatically, but this overwrites any pre-existing firewall configuration if you are using iptables. If you want to keep the existing firewall configuration, you must manually insert the firewall rules required by the Manager. The engine-setup command saves a list of the iptables rules required in the /etc/ovirt-engine/iptables.example file. If you are using firewalld, engine-setup does not overwrite the existing configuration.

The firewall configuration documented here assumes a default configuration.

NOTE

A diagram of these firewall requirements is available at https://access.redhat.com/articles/3932211. You can use the IDs in the table to look up connections in the diagram.

Table 2.4. Red Hat Virtualization Manager Firewall Requirements
<table>
<thead>
<tr>
<th>ID</th>
<th>Port(s)</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| M1 | - | ICMP | Red Hat Virtualization Hosts | Red Hat Virtualization Manager | Optional.
May help in diagnosis. |
| M2 | 22 | TCP | System(s) used for maintenance of the Manager including backend configuration, and software upgrades. | Red Hat Virtualization Manager | Secure Shell (SSH) access.
Optional. |
| M3 | 2222 | TCP | Clients accessing virtual machine serial consoles. | Red Hat Virtualization Manager | Secure Shell (SSH) access to enable connection to virtual machine serial consoles. |
| M4 | 80, 443 | TCP | Administration Portal clients
VM Portal clients
Red Hat Virtualization Hosts
Red Hat Enterprise Linux hosts
REST API clients | Red Hat Virtualization Manager | Provides HTTP and HTTPS access to the Manager. |
| M5 | 6100 | TCP | Administration Portal clients
VM Portal clients | Red Hat Virtualization Manager | Provides websocket proxy access for a web-based console client, noVNC, when the websocket proxy is running on the Manager. If the websocket proxy is running on a different host, however, this port is not used. |
<table>
<thead>
<tr>
<th>ID</th>
<th>Port(s)</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>7410</td>
<td>UDP</td>
<td>Red Hat Virtualization Hosts, Red Hat Enterprise Linux hosts</td>
<td>Red Hat Virtualization Manager</td>
<td>If Kdump is enabled on the hosts, open this port for the fence_kdump listener on the Manager. See fence_kdump Advanced Configuration.</td>
</tr>
<tr>
<td>M7</td>
<td>54323</td>
<td>TCP</td>
<td>Administration Portal clients</td>
<td>Red Hat Virtualization Manager (ImageIO Proxy server)</td>
<td>Required for communication with the ImageIO Proxy (ovirt-imageio-proxy).</td>
</tr>
<tr>
<td>M8</td>
<td>6442</td>
<td>TCP</td>
<td>Red Hat Virtualization Hosts, Red Hat Enterprise Linux hosts</td>
<td>Open Virtual Network (OVN) southbound database</td>
<td>Connect to Open Virtual Network (OVN) database</td>
</tr>
<tr>
<td>M9</td>
<td>9696</td>
<td>TCP</td>
<td>Clients of external network provider for OVN</td>
<td>External network provider for OVN</td>
<td>OpenStack Networking API</td>
</tr>
<tr>
<td>M10</td>
<td>35357</td>
<td>TCP</td>
<td>Clients of external network provider for OVN</td>
<td>External network provider for OVN</td>
<td>OpenStack Identity API</td>
</tr>
<tr>
<td>M11</td>
<td>53</td>
<td>TCP, UDP</td>
<td>Red Hat Virtualization Manager</td>
<td>DNS Server</td>
<td>DNS lookup requests from ports above 1023 to port 53, and responses. Open by default.</td>
</tr>
<tr>
<td>M12</td>
<td>123</td>
<td>UDP</td>
<td>Red Hat Virtualization Manager</td>
<td>NTP Server</td>
<td>NTP requests from ports above 1023 to port 123, and responses. Open by default.</td>
</tr>
</tbody>
</table>
NOTE

- A port for the OVN northbound database (6641) is not listed because, in the default configuration, the only client for the OVN northbound database (6641) is `ovirt-provider-ovn`. Because they both run on the same host, their communication is not visible to the network.

- By default, Red Hat Enterprise Linux allows outbound traffic to DNS and NTP on any destination address. If you disable outgoing traffic, make exceptions for the Manager to send requests to DNS and NTP servers. Other nodes may also require DNS and NTP. In that case, consult the requirements for those nodes and configure the firewall accordingly.

2.3.4. Host Firewall Requirements

Red Hat Enterprise Linux hosts and Red Hat Virtualization Hosts (RHVH) require a number of ports to be opened to allow network traffic through the system’s firewall. The firewall rules are automatically configured by default when adding a new host to the Manager, overwriting any pre-existing firewall configuration.

To disable automatic firewall configuration when adding a new host, clear the **Automatically configure host firewall** check box under **Advanced Parameters**.

To customize the host firewall rules, see https://access.redhat.com/solutions/2772331.

NOTE

A diagram of these firewall requirements is available at https://access.redhat.com/articles/3932211. You can use the IDs in the table to look up connections in the diagram.

<table>
<thead>
<tr>
<th>ID</th>
<th>Port(s)</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>22</td>
<td>TCP</td>
<td>Red Hat Virtualization Manager</td>
<td>Red Hat Virtualization Hosts, Red Hat Enterprise Linux hosts</td>
<td>Secure Shell (SSH) access. Optional.</td>
</tr>
<tr>
<td>H2</td>
<td>2223</td>
<td>TCP</td>
<td>Red Hat Virtualization Manager</td>
<td>Red Hat Virtualization Hosts, Red Hat Enterprise Linux hosts</td>
<td>Secure Shell (SSH) access to enable connection to virtual machine serial consoles.</td>
</tr>
<tr>
<td>ID</td>
<td>Port(s)</td>
<td>Protocol</td>
<td>Source</td>
<td>Destination</td>
<td>Purpose</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>H3</td>
<td>161</td>
<td>UDP</td>
<td>Red Hat Virtualization Hosts, Red Hat Enterprise Linux hosts</td>
<td>Red Hat Virtualization Manager</td>
<td>Simple network management protocol (SNMP). Only required if you want Simple Network Management Protocol traps sent from the host to one or more external SNMP managers. Optional.</td>
</tr>
<tr>
<td>H4</td>
<td>111</td>
<td>TCP</td>
<td>NFS storage server</td>
<td>Red Hat Virtualization Hosts, Red Hat Enterprise Linux hosts</td>
<td>NFS connections. Optional.</td>
</tr>
<tr>
<td>H5</td>
<td>5900 - 6923</td>
<td>TCP</td>
<td>Administration Portal clients, VM Portal clients</td>
<td>Red Hat Virtualization Hosts, Red Hat Enterprise Linux hosts</td>
<td>Remote guest console access via VNC and SPICE. These ports must be open to facilitate client access to virtual machines.</td>
</tr>
<tr>
<td>H6</td>
<td>5989</td>
<td>TCP, UDP</td>
<td>Common Information Model Object Manager (CIMOM)</td>
<td>Red Hat Virtualization Hosts, Red Hat Enterprise Linux hosts</td>
<td>Used by Common Information Model Object Managers (CIMOM) to monitor virtual machines running on the host. Only required if you want to use a CIMOM to monitor the virtual machines in your virtualization environment. Optional.</td>
</tr>
<tr>
<td>ID</td>
<td>Port(s)</td>
<td>Protocol</td>
<td>Source</td>
<td>Destination</td>
<td>Purpose</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>H7</td>
<td>9090</td>
<td>TCP</td>
<td>Red Hat Virtualization Manager Client machines</td>
<td>Red Hat Virtualization Hosts Red Hat Enterprise Linux hosts</td>
<td>Required to access the Cockpit web interface, if installed.</td>
</tr>
<tr>
<td>H8</td>
<td>16514</td>
<td>TCP</td>
<td>Red Hat Virtualization Hosts Red Hat Enterprise Linux hosts</td>
<td>Red Hat Virtualization Hosts Red Hat Enterprise Linux hosts</td>
<td>Virtual machine migration using libvirt.</td>
</tr>
<tr>
<td>H9</td>
<td>49152 - 49216</td>
<td>TCP</td>
<td>Red Hat Virtualization Hosts Red Hat Enterprise Linux hosts</td>
<td>Red Hat Virtualization Hosts Red Hat Enterprise Linux hosts</td>
<td>Virtual machine migration and fencing using VDSM. These ports must be open to facilitate both automated and manual migration of virtual machines.</td>
</tr>
<tr>
<td>H10</td>
<td>54321</td>
<td>TCP</td>
<td>Red Hat Virtualization Manager Red Hat Virtualization Hosts Red Hat Enterprise Linux hosts</td>
<td>Red Hat Virtualization Hosts Red Hat Enterprise Linux hosts</td>
<td>VDSM communications with the Manager and other virtualization hosts.</td>
</tr>
<tr>
<td>H11</td>
<td>54322</td>
<td>TCP</td>
<td>Red Hat Virtualization Manager (ImageIO Proxy server)</td>
<td>Red Hat Virtualization Hosts Red Hat Enterprise Linux hosts</td>
<td>Required for communication with the ImageIO daemon (ovirt-imageio-daemon).</td>
</tr>
<tr>
<td>H12</td>
<td>6081</td>
<td>UDP</td>
<td>Red Hat Virtualization Hosts Red Hat Enterprise Linux hosts</td>
<td>Red Hat Virtualization Hosts Red Hat Enterprise Linux hosts</td>
<td>Required, when Open Virtual Network (OVN) is used as a network provider, to allow OVN to create tunnels between hosts.</td>
</tr>
</tbody>
</table>
NOTE

By default, Red Hat Enterprise Linux allows outbound traffic to DNS and NTP on any destination address. If you disable outgoing traffic, make exceptions for the Red Hat Virtualization Hosts.

Red Hat Enterprise Linux hosts to send requests to DNS and NTP servers. Other nodes may also require DNS and NTP. In that case, consult the requirements for those nodes and configure the firewall accordingly.

2.3.5. Database Server Firewall Requirements

Red Hat Virtualization supports the use of a remote database server for the Manager database (engine) and the Data Warehouse database (ovirt-engine-history). If you plan to use a remote database server, it must allow connections from the Manager and the Data Warehouse service (which can be separate from the Manager).

Similarly, if you plan to access a local or remote Data Warehouse database from an external system, such as Red Hat CloudForms, the database must allow connections from that system.

IMPORTANT

Accessing the Manager database from external systems is not supported.

NOTE

A diagram of these firewall requirements is available at https://access.redhat.com/articles/3932211. You can use the IDs in the table to look up connections in the diagram.

Table 2.6. Database Server Firewall Requirements
<table>
<thead>
<tr>
<th>ID</th>
<th>Port(s)</th>
<th>Protocol</th>
<th>Source</th>
<th>Destination</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>5432</td>
<td>TCP, UDP</td>
<td>Red Hat Virtualization Manager
Data Warehouse service</td>
<td>Manager (engine) database server
Data Warehouse (ovirt-engine-history) database server</td>
<td>Default port for PostgreSQL database connections.</td>
</tr>
<tr>
<td>D2</td>
<td>5432</td>
<td>TCP, UDP</td>
<td>External systems</td>
<td>Data Warehouse (ovirt-engine-history) database server</td>
<td>Default port for PostgreSQL database connections.</td>
</tr>
</tbody>
</table>
CHAPTER 3. INSTALLING THE RED HAT VIRTUALIZATION MANAGER

3.1. INSTALLING THE RED HAT VIRTUALIZATION MANAGER MACHINE AND THE REMOTE SERVER

1. The Red Hat Virtualization Manager must run on Red Hat Enterprise Linux 7. For detailed instructions on installing Red Hat Enterprise Linux, see the *Red Hat Enterprise Linux 7 Installation Guide*. This machine must meet the minimum Manager hardware requirements.

2. Install a second Red Hat Enterprise Linux machine to use for the databases. This machine will be referred to as the remote server.

To install the Red Hat Virtualization Manager on a system that does not have access to the Content Delivery Network, see Appendix A, *Configuring a Local Repository for Offline Red Hat Virtualization Manager Installation* before configuring the Manager.

3.2. ENABLING THE RED HAT VIRTUALIZATION MANAGER REPOSITORIES

Register the system with Red Hat Subscription Manager, attach the *Red Hat Virtualization Manager* subscription, and enable the Manager repositories.

Procedure

1. Register your system with the Content Delivery Network, entering your Customer Portal user name and password when prompted:

   ```
   # subscription-manager register
   ```

 NOTE

 If you are using an IPv6 network, use an IPv6 transition mechanism to access the Content Delivery Network and subscription manager.

2. Find the *Red Hat Virtualization Manager* subscription pool and record the pool ID:

   ```
   # subscription-manager list --available
   ```

3. Use the pool ID to attach the subscription to the system:

   ```
   # subscription-manager attach --pool=pool_id
   ```
NOTE
To view currently attached subscriptions:

```
# subscription-manager list --consumed
```

To list all enabled repositories:

```
# yum repolist
```

4. Configure the repositories:

```
# subscription-manager repos \
   --disable="*" \ 
   --enable=rhel-7-server-rpms \ 
   --enable=rhel-7-server-supplementary-rpms \ 
   --enable=rhel-7-server-rhv-4.3-manager-rpms \ 
   --enable=rhel-7-server-rhv-4-manager-tools-rpms \ 
   --enable=rhel-7-server-ansible-2-rpms \ 
   --enable=jb-eap-7.2-for-rhel-7-server-rpms
```

Before configuring the Red Hat Virtualization Manager, you must manually configure the Manager database on the remote server. You can also use this procedure to manually configure the Data Warehouse database if you do not want the Data Warehouse setup script to configure it automatically.

3.3. PREPARING A REMOTE POSTGRESQL DATABASE

Manually configure a database on a machine that is separate from the Manager machine.

NOTE

The `engine-setup` and `engine-backup --mode=restore` commands only support system error messages in the `en_US.UTF8` locale, even if the system locale is different.

The locale settings in the `postgresql.conf` file must be set to `en_US.UTF8`.

IMPORTANT

The database name must contain only numbers, underscores, and lowercase letters.

Enabling the Red Hat Virtualization Manager Repositories

Register the system with Red Hat Subscription Manager, attach the **Red Hat Virtualization Manager** subscription, and enable the Manager repositories.

Procedure

1. Register your system with the Content Delivery Network, entering your Customer Portal user name and password when prompted:

```
# subscription-manager register
```
NOTE
If you are using an IPv6 network, use an IPv6 transition mechanism to access the Content Delivery Network and subscription manager.

2. Find the **Red Hat Virtualization Manager** subscription pool and record the pool ID:

```
# subscription-manager list --available
```

3. Use the pool ID to attach the subscription to the system:

```
# subscription-manager attach --pool=pool_id
```

NOTE
To view currently attached subscriptions:

```
# subscription-manager list --consumed
```

To list all enabled repositories:

```
# yum repolist
```

4. Configure the repositories:

```
# subscription-manager repos \
   --disable="*" \
   --enable=rhel-7-server-rpms \
   --enable=rhel-7-server-supplementary-rpms \
   --enable=rhel-7-server-rhv-4.3-manager-rpms \
   --enable=rhel-7-server-rhv-4-manager-tools-rpms \
   --enable=rhel-7-server-ansible-2-rpms \
   --enable=jb-eap-7.2-for-rhel-7-server-rpms
```

Initializing the PostgreSQL Database

1. Install the PostgreSQL server package:

```
# yum install rh-postgresql10 rh-postgresql10-postgresql-contrib
```

2. Initialize the PostgreSQL database, start the **postgresql** service, and ensure that this service starts on boot:

```
# scl enable rh-postgresql10 -- postgresql-setup --initdb
# systemctl enable rh-postgresql10-postgresql
# systemctl start rh-postgresql10-postgresql
```

3. Connect to the **psql** command line interface as the **postgres** user:

```
su - postgres -c 'scl enable rh-postgresql10 -- psql'
```
4. Create a default user. The Manager’s default user is `engine` and Data Warehouse’s default user is `ovirt_engine_history`:
   ```sql
   postgres=# create role user_name with login encrypted password 'password';
   ```

5. Create a database. The Manager’s default database name is `engine` and Data Warehouse’s default database name is `ovirt_engine_history`:
   ```sql
   postgres=# create database database_name owner user_name template template0
   encoding 'UTF8' lc_collate 'en_US.UTF-8' lc_ctype 'en_US.UTF-8';
   ```

6. Connect to the new database:
   ```sql
   postgres=# \c database_name
   ```

7. Add the `uuid-ossp` extension:
   ```sql
   database_name=# CREATE EXTENSION "uuid-ossp";
   ```

8. Add the `plpgsql` language if it does not exist:
   ```sql
   database_name=# CREATE LANGUAGE plpgsql;
   ```

9. Quit the `psql` interface:
   ```sql
   database_name=# \q
   ```

10. Ensure the database can be accessed remotely by enabling md5 client authentication. Edit the `/var/opt/rh/rh-postgresql10/lib/pgsql/data/pg_hba.conf` file, and add the following line immediately underneath the line starting with `local` at the bottom of the file, replacing `X.X.X.X` with the IP address of the Manager or the Data Warehouse machine, and `0-32` or `0-128` with the CIDR mask length:
    ```
    host database_name user_name X.X.X.X/0-32 md5
    host database_name user_name X.X.X.X::/0-128 md5
    ```
 For example:
    ```
    # IPv4, 32-bit address:
    host engine engine 192.168.12.10/32 md5
    # IPv6, 128-bit address:
    host engine engine fe80::7a31:c1ff:0000:0000/96 md5
    ```

11. Allow TCP/IP connections to the database. Edit the `/var/opt/rh/rh-postgresql10/lib/pgsql/data/postgresql.conf` file and add the following line:
    ```
    listen_addresses='*'
    ```
 This example configures the `postgresql` service to listen for connections on all interfaces. You can specify an interface by giving its IP address.
12. Update the PostgreSQL server’s configuration. In the `/var/opt/rh/rh-postgresql10/lib/pgsql/data/postgresql.conf` file, add the following lines to the bottom of the file:

```plaintext
autovacuum_vacuum_scale_factor=0.01
autovacuum_analyze_scale_factor=0.075
autovacuum_max_workers=6
maintenance_work_mem=65536
max_connections=150
work_mem=8192
```

13. Open the default port used for PostgreSQL database connections, and save the updated firewall rules:

```
# firewall-cmd --zone=public --add-service=postgresql
# firewall-cmd --permanent --zone=public --add-service=postgresql
```

14. Restart the `postgresql` service:

```
# systemctl restart rh-postgresql10-postgresql
```

15. Optionally, set up SSL to secure database connections using the instructions at https://www.postgresql.org/docs/10/ssl-tcp.html#SSL-FILE-USAGE.

3.4. CONFIGURING THE RED HAT VIRTUALIZATION MANAGER

Install the `rhvm` package and dependencies, and configure the Red Hat Virtualization Manager using the `engine-setup` command. The script asks you a series of questions and, after you provide the required values for all questions, applies that configuration and starts the `ovirt-engine` service.

IMPORTANT

The `engine-setup` command guides you through several distinct configuration stages, each comprising several steps that require user input. Suggested configuration defaults are provided in square brackets; if the suggested value is acceptable for a given step, press `Enter` to accept that value.

You can run `engine-setup --accept-defaults` to automatically accept all questions that have default answers. This option should be used with caution and only if you are familiar with `engine-setup`.

Procedure

1. Ensure all packages are up to date:

```
# yum update
```

NOTE

Reboot the machine if any kernel-related packages were updated.

2. Install the `rhvm` package and dependencies.
3. Run the **engine-setup** command to begin configuring the Red Hat Virtualization Manager:

```
# engine-setup
```

4. Press **Enter** to configure the Manager on this machine:

```
Configure Engine on this host (Yes, No) [Yes]:
```

5. Optionally install Open Virtual Network (OVN). Selecting **Yes** will install an OVN central server on the Manager machine, and add it to Red Hat Virtualization as an external network provider. The default cluster will use OVN as its default network provider, and hosts added to the default cluster will automatically be configured to communicate with OVN.

```
Configure ovirt-provider-ovn (Yes, No) [Yes]:
```

For more information on using OVN networks in Red Hat Virtualization, see [Adding Open Virtual Network (OVN) as an External Network Provider](Administration%20Guide) in the *Administration Guide*.

6. Optionally allow **engine-setup** to configure the Image I/O Proxy (**ovirt-imageio-proxy**) to allow the Manager to upload virtual disks into storage domains.

```
Configure Image I/O Proxy on this host? (Yes, No) [Yes]:
```

7. Optionally allow **engine-setup** to configure a websocket proxy server for allowing users to connect to virtual machines through the noVNC console:

```
Configure WebSocket Proxy on this machine? (Yes, No) [Yes]:
```

To configure the websocket proxy on a remote server, answer **No** and see [Appendix B, Installing a Websocket Proxy on a Separate Machine](Administration%20Guide) after completing the Manager configuration.

IMPORTANT

The websocket proxy and noVNC are Technology Preview features only. Technology Preview features are not supported with Red Hat production service-level agreements (SLAs) and might not be functionally complete, and Red Hat does not recommend using them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. For more information see [Red Hat Technology Preview Features Support Scope](Administration%20Guide).

8. Choose whether to configure Data Warehouse on this machine.

```
Configure Data Warehouse on this host (Yes, No) [Yes]:
```

To configure Data Warehouse on a remote server, answer **No** and see [Section 3.5, “Installing and Configuring Data Warehouse on a Separate Machine”](Administration%20Guide) after completing the Manager configuration.
9. Optionally allow access to a virtual machines's serial console from the command line.

Configure VM Console Proxy on this host (Yes, No) [Yes]:

Additional configuration is required on the client machine to use this feature. See Opening a Serial Console to a Virtual Machine in the Virtual Machine Management Guide.

10. Press Enter to accept the automatically detected host name, or enter an alternative host name and press Enter. Note that the automatically detected host name may be incorrect if you are using virtual hosts.

Host fully qualified DNS name of this server [autodetected host name]:

11. The engine-setup command checks your firewall configuration and offers to open the ports used by the Manager for external communication, such as ports 80 and 443. If you do not allow engine-setup to modify your firewall configuration, you must manually open the ports used by the Manager. firewalld is configured as the firewall manager; iptables is deprecated.

Setup can automatically configure the firewall on this system.
Note: automatic configuration of the firewall may overwrite current settings.
NOTICE: iptables is deprecated and will be removed in future releases
Do you want Setup to configure the firewall? (Yes, No) [Yes]:

If you choose to automatically configure the firewall, and no firewall managers are active, you are prompted to select your chosen firewall manager from a list of supported options. Type the name of the firewall manager and press Enter. This applies even in cases where only one option is listed.

12. Specify whether to configure the Manager database on this machine, or on another machine:

Where is the Engine database located? (Local, Remote) [Local]:

- If you select Remote, input the following values for the preconfigured remote database server. Replace localhost with the ip address or FQDN of the remote database server:

 Engine database host [localhost]:
 Engine database port [5432]:
 Engine database secured connection (Yes, No) [No]:
 Engine database name [engine]:
 Engine database user [engine]:
 Engine database password:

13. Set a password for the automatically created administrative user of the Red Hat Virtualization Manager:

Engine admin password:
Confirm engine admin password:

14. Select Gluster, Virt, or Both:

Application mode (Both, Virt, Gluster) [Both]:

- Both offers the greatest flexibility. In most cases, select Both.
- Virt allows you to run virtual...
Both offers the greatest flexibility. In most cases, select Both. Virt allows you to run virtual machines in the environment; Gluster only allows you to manage GlusterFS from the Administration Portal.

15. If you installed the OVN provider, you can choose to use the default credentials, or specify an alternative.

 Use default credentials (admin@internal) for ovirt-provider-ovn (Yes, No) [Yes]:
 oVirt OVN provider user[admin@internal]:
 oVirt OVN provider password:

16. Set the default value for the `wipe_after_delete` flag, which wipes the blocks of a virtual disk when the disk is deleted.

 Default SAN wipe after delete (Yes, No) [No]:

17. The Manager uses certificates to communicate securely with its hosts. This certificate can also optionally be used to secure HTTPS communications with the Manager. Provide the organization name for the certificate:

 Organization name for certificate [autodetected domain-based name]:

18. Optionally allow `engine-setup` to make the landing page of the Manager the default page presented by the Apache web server:

 Setup can configure the default page of the web server to present the application home page. This may conflict with existing applications. Do you wish to set the application as the default web page of the server? (Yes, No) [Yes]:

19. By default, external SSL (HTTPS) communication with the Manager is secured with the self-signed certificate created earlier in the configuration to securely communicate with hosts. Alternatively, choose another certificate for external HTTPS connections; this does not affect how the Manager communicates with hosts:

 Setup can configure apache to use SSL using a certificate issued from the internal CA. Do you wish Setup to configure that, or prefer to perform that manually? (Automatic, Manual) [Automatic]:

20. Review the installation settings, and press Enter to accept the values and proceed with the installation:

 Please confirm installation settings (OK, Cancel) [OK]:

 When your environment has been configured, `engine-setup` displays details about how to access your environment. If you chose to manually configure the firewall, `engine-setup` provides a custom list of ports that need to be opened, based on the options selected during setup. `engine-setup` also saves your answers to a file that can be used to reconfigure the Manager using the same values, and outputs the location of the log file for the Red Hat Virtualization Manager configuration process.

21. If you intend to link your Red Hat Virtualization environment with a directory server, configure the date and time to synchronize with the system clock used by the directory server to avoid unexpected account expiry issues. See Synchronizing the System Clock with a Remote Server in the Red Hat Enterprise Linux System Administrator’s Guide for more information.
22. Install the certificate authority according to the instructions provided by your browser. You can get the certificate authority’s certificate by navigating to \[http://manager-fqdn/ovirt-engine/services/pki-resource?resource=ca-certificate&format=X509-PEM-CA\], replacing \textit{manager-fqdn} with the FQDN that you provided during the installation.

Install the Data Warehouse service and database on the remote server:

\section*{3.5. INSTALLING AND CONFIGURING DATA WAREHOUSE ON A SEPARATE MACHINE}

This section describes installing and configuring the Data Warehouse service on a separate machine from the Red Hat Virtualization Manager. Installing Data Warehouse on a separate machine helps to reduce the load on the Manager machine.

\begin{itemize}
\item You can install the Data Warehouse database on a machine separate from the Data Warehouse service.
\end{itemize}

\section*{Prerequisites}

- The Red Hat Virtualization Manager is installed on a separate machine.
- A physical server or virtual machine running Red Hat Enterprise Linux 7.
- The Manager database password.

\section*{Enabling the Red Hat Virtualization Manager Repositories}

Register the system with Red Hat Subscription Manager, attach the \textit{Red Hat Virtualization Manager} subscription, and enable the Manager repositories.

\section*{Procedure}

1. Register your system with the Content Delivery Network, entering your Customer Portal user name and password when prompted:

\begin{verbatim}
subscription-manager register
\end{verbatim}

\begin{itemize}
\item If you are using an IPv6 network, use an IPv6 transition mechanism to access the Content Delivery Network and subscription manager.
\end{itemize}

2. Find the \textit{Red Hat Virtualization Manager} subscription pool and record the pool ID:

\begin{verbatim}
subscription-manager list --available
\end{verbatim}

3. Use the pool ID to attach the subscription to the system:

\begin{verbatim}
subscription-manager attach --pool=pool_id
\end{verbatim}
NOTE

To view currently attached subscriptions:

subscription-manager list --consumed

To list all enabled repositories:

yum repolist

4. Configure the repositories:

subscription-manager repos \
--disable="*" \
--enable=rhel-7-server-rpms \
--enable=rhel-7-server-supplementary-rpms \
--enable=rhel-7-server-rhv-4.3-manager-rpms \
--enable=rhel-7-server-rhv-4-manager-tools-rpms \
--enable=rhel-7-server-ansible-2-rpms \
--enable=jb-eap-7.2-for-rhel-7-server-rpms

Installing Data Warehouse on a Separate Machine

1. Log in to the machine where you want to install the database.

2. Ensure that all packages are up to date:

 # yum update

3. Install the `ovirt-engine-dwh-setup` package:

 # yum install ovirt-engine-dwh-setup

4. Run the `engine-setup` command to begin the installation:

 # engine-setup

5. Ensure you answer No when asked whether to install the Manager on this machine:

 Configure Engine on this host (Yes, No) [Yes]: No

6. Answer Yes to install Data Warehouse on this machine:

 Configure Data Warehouse on this host (Yes, No) [Yes]:

7. Press Enter to accept the automatically-detected host name, or enter an alternative host name and press Enter:

 Host fully qualified DNS name of this server [autodetected hostname]:

8. Press Enter to automatically configure the firewall, or type No and press Enter to maintain existing settings:
Setup can automatically configure the firewall on this system. Note: automatic configuration of the firewall may overwrite current settings. Do you want Setup to configure the firewall? (Yes, No) [Yes]:

If you choose to automatically configure the firewall, and no firewall managers are active, you are prompted to select your chosen firewall manager from a list of supported options. Type the name of the firewall manager and press Enter. This applies even in cases where only one option is listed.

9. Enter the fully qualified domain name of the Manager machine, and then press Enter:

Host fully qualified DNS name of the engine server []:

10. Press Enter to allow setup to sign the certificate on the Manager via SSH:

Setup will need to do some actions on the remote engine server. Either automatically, using ssh as root to access it, or you will be prompted to manually perform each such action. Please choose one of the following:
1 - Access remote engine server using ssh as root
2 - Perform each action manually, use files to copy content around
(1, 2) [1]:

11. Press Enter to accept the default SSH port, or enter an alternative port number and then press Enter:

ssh port on remote engine server [22]:

12. Enter the root password for the Manager machine:

root password on remote engine server manager.example.com:

13. Specify whether to host the Data Warehouse database on this machine (Local), or on another machine (Remote):

Where is the DWH database located? (Local, Remote) [Local]:

- If you select Local, the engine-setup script can configure your database automatically (including adding a user and a database), or it can connect to a preconfigured local database:

 Setup can configure the local postgresql server automatically for the DWH to run. This may conflict with existing applications. Would you like Setup to automatically configure postgresql and create DWH database, or prefer to perform that manually? (Automatic, Manual) [Automatic]:

 - If you select Automatic by pressing Enter, no further action is required here.
 - If you select Manual, input the following values for the manually-configured local database:

 DWH database secured connection (Yes, No) [No]:
 DWH database name [ovirt_engine_history]:
 DWH database user [ovirt_engine_history]:
DWH database password:

- If you select Remote, you are prompted to provide details about the remote database host. Input the following values for the preconfigured remote database host:

 DWH database host [-]: `dwh-db-fqdn`
 DWH database port [5432]:
 DWH database secured connection (Yes, No) [No]:
 DWH database name [ovirt_engine_history]:
 DWH database user [ovirt_engine_history]:
 DWH database password: `password`

14. Enter the fully qualified domain name and password for the Manager database machine. If you are installing the Data Warehouse database on the same machine where the Manager database is installed, use the same FQDN. Press Enter to accept the default values in each other field:

 Engine database host [-]: `engine-db-fqdn`
 Engine database port [5432]:
 Engine database secured connection (Yes, No) [No]:
 Engine database name [engine]:
 Engine database user [engine]:
 Engine database password: `password`

15. Choose how long Data Warehouse will retain collected data:

 Please choose Data Warehouse sampling scale:
 (1) Basic
 (2) Full
 (1, 2) [1]:

 Full uses the default values for the data storage settings listed in Application Settings for the Data Warehouse service in ovirt-engine-dwhd.conf (recommended when Data Warehouse is installed on a remote host).

 Basic reduces the values of `DWH_TABLES_KEEP_HOURLY` to 720 and `DWH_TABLES_KEEP_DAILY` to 0, easing the load on the Manager machine (recommended when the Manager and Data Warehouse are installed on the same machine).

16. Confirm your installation settings:

 Please confirm installation settings (OK, Cancel) [OK]:

17. After the Data Warehouse configuration is complete, on the Red Hat Virtualization Manager, restart the `ovirt-engine` service:

 # systemctl restart ovirt-engine

18. Optionally, set up SSL to secure database connections using the instructions at link: https://www.postgresql.org/docs/10/ssl-tcp.html#SSL-FILE-USAGE.

Log in to the Administration Portal, where you can add hosts and storage to the environment:

3.6. CONNECTING TO THE ADMINISTRATION PORTAL
Access the Administration Portal using a web browser.

1. In a web browser, navigate to `https://manager-fqdn/ovirt-engine`, replacing `manager-fqdn` with the FQDN that you provided during installation.

 NOTE
 You can access the Administration Portal using alternate host names or IP addresses. To do so, you need to add a configuration file under `/etc/ovirt-engine/engine.conf.d/`. For example:

   ```
   # vi /etc/ovirt-engine/engine.conf.d/99-custom-sso-setup.conf
   SSO_ALTERNATE_ENGINE_FQDNS="alias1.example.com alias2.example.com"
   ```

 The list of alternate host names needs to be separated by spaces. You can also add the IP address of the Manager to the list, but using IP addresses instead of DNS-resolvable host names is not recommended.

2. Click Administration Portal. An SSO login page displays. SSO login enables you to log in to the Administration and VM Portal at the same time.

3. Enter your User Name and Password. If you are logging in for the first time, use the user name `admin` along with the password that you specified during installation.

4. Select the Domain to authenticate against. If you are logging in using the internal `admin` user name, select the `internal` domain.

5. Click Log In.

6. You can view the Administration Portal in multiple languages. The default selection is chosen based on the locale settings of your web browser. If you want to view the Administration Portal in a language other than the default, select your preferred language from the drop-down list on the welcome page.

To log out of the Red Hat Virtualization Administration Portal, click your user name in the header bar and click Sign Out. You are logged out of all portals and the Manager welcome screen displays.
CHAPTER 4. INSTALLING HOSTS FOR RED HAT VIRTUALIZATION

Red Hat Virtualization supports two types of hosts: Red Hat Virtualization Hosts (RHVH) and Red Hat Enterprise Linux hosts. Depending on your environment, you may want to use one type only, or both. At least two hosts are required for features such as migration and high availability.

See Section 4.3, “Recommended Practices for Configuring Host Networks” for networking information.

IMPORTANT

SELinux is in enforcing mode upon installation. To verify, run `getenforce`. SELinux must be in enforcing mode on all hosts and Managers for your Red Hat Virtualization environment to be supported.

Table 4.1. Host Types

<table>
<thead>
<tr>
<th>Host Type</th>
<th>Other Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Virtualization Host</td>
<td>RHVH, thin host</td>
<td>This is a minimal operating system based on Red Hat Enterprise Linux. It is distributed as an ISO file from the Customer Portal and contains only the packages required for the machine to act as a host.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux host</td>
<td>RHEL host, thick host</td>
<td>Red Hat Enterprise Linux systems with the appropriate subscriptions attached can be used as hosts.</td>
</tr>
</tbody>
</table>

Host Compatibility

When you create a new data center, you can set the compatibility version. Select the compatibility version that suits all the hosts in the data center. Once set, version regression is not allowed. For a fresh Red Hat Virtualization installation, the latest compatibility version is set in the default data center and default cluster; to use an earlier compatibility version, you must create additional data centers and clusters. For more information about compatibility versions see Red Hat Virtualization Manager Compatibility in the Red Hat Virtualization Life Cycle.

4.1. RED HAT VIRTUALIZATION HOSTS

4.1.1. Installing Red Hat Virtualization Hosts

Red Hat Virtualization Host (RHVH) is a minimal operating system based on Red Hat Enterprise Linux that is designed to provide a simple method for setting up a physical machine to act as a hypervisor in a Red Hat Virtualization environment. The minimal operating system contains only the packages required for the machine to act as a hypervisor, and features a Cockpit web interface for monitoring the host and performing administrative tasks. See http://cockpit-project.org/running.html for the minimum browser requirements.
RHVH supports NIST 800-53 partitioning requirements to improve security. RHVH uses a NIST 800-53 partition layout by default.

The host must meet the minimum host requirements.

Procedure

1. Download the RHVH ISO image from the Customer Portal:
 a. Log in to the Customer Portal at https://access.redhat.com.
 b. Click **Downloads** in the menu bar.
 c. Click **Red Hat Virtualization**. Scroll up and click **Download Latest** to access the product download page.
 d. Go to **Hypervisor Image for RHV 4.3** and click **Download Now**.
 e. Create a bootable media device. See **Making Media** in the *Red Hat Enterprise Linux Installation Guide* for more information.

2. Start the machine on which you are installing RHVH, booting from the prepared installation media.

3. From the boot menu, select **Install RHVH 4.3** and press **Enter**.

 NOTE

 You can also press the **Tab** key to edit the kernel parameters. Kernel parameters must be separated by a space, and you can boot the system using the specified kernel parameters by pressing the **Enter** key. Press the **Esc** key to clear any changes to the kernel parameters and return to the boot menu.

4. Select a language, and click **Continue**.

5. Select a time zone from the **Date & Time** screen and click **Done**.

6. Select a keyboard layout from the **Keyboard** screen and click **Done**.

7. Select the device on which to install RHVH from the **Installation Destination** screen. Optionally, enable encryption. Click **Done**.

 IMPORTANT

 Red Hat strongly recommends using the **Automatically configure partitioning** option.

8. Select a network from the **Network & Host Name** screen and click **Configure...** to configure the connection details.
NOTE

To use the connection every time the system boots, select the **Automatically connect to this network when it is available** check box. For more information, see Edit Network Connections in the *Red Hat Enterprise Linux 7 Installation Guide*.

Enter a host name in the **Host name** field, and click **Done**.

10. Click **Begin Installation**.

11. Set a root password and, optionally, create an additional user while RHVH installs.

12. Click **Reboot** to complete the installation.

NOTE

When RHVH restarts, `nodectl check` performs a health check on the host and displays the result when you log in on the command line. The message **node status: OK** or **node status: DEGRADED** indicates the health status. Run `nodectl check` to get more information. The service is enabled by default.

4.1.2. Enabling the Red Hat Virtualization Host Repository

Register the system to receive updates. Red Hat Virtualization Host only requires one repository. This section provides instructions for registering RHVH with the **Content Delivery Network**, or with **Red Hat Satellite 6**.

Registering RHVH with the Content Delivery Network

1. Log in to the Cockpit web interface at `https://HostFQDNorIP:9090`.

2. Navigate to **Subscriptions**, click **Register System**, and enter your Customer Portal user name and password. The **Red Hat Virtualization Host** subscription is automatically attached to the system.

3. Click **Terminal**.

4. Enable the **Red Hat Virtualization Host 7** repository to allow later updates to the Red Hat Virtualization Host:
Registering RHVH with Red Hat Satellite 6

1. Log in to the Cockpit web interface at https://HostFQDNorIP:9090.

2. Click Terminal.

3. Register RHVH with Red Hat Satellite 6:

```bash
# rpm -Uvh http://satellite.example.com/pub/katello-ca-consumer-latest.noarch.rpm
# subscription-manager register --org="org_id"
# subscription-manager list --available
# subscription-manager attach --pool=pool_id
# subscription-manager repos --disable='*' --enable=rhel-7-server-rhvh-4-rpms
```

4.1.3. Advanced Installation

4.1.3.1. Custom Partitioning

Custom partitioning on Red Hat Virtualization Host (RHVH) is not recommended. Red Hat strongly recommends using the **Automatically configure partitioning** option in the **Installation Destination** window.

If your installation requires custom partitioning, select the **I will configure partitioning** option during the installation, and note that the following restrictions apply:

- Ensure the default **LVM Thin Provisioning** option is selected in the **Manual Partitioning** window.
- The following directories are required and must be on thin provisioned logical volumes:
 - root (/)
 - /home
 - /tmp
 - /var
 - /var/crash
 - /var/log
 - /var/log/audit

IMPORTANT

Do not create a separate partition for `/usr`. Doing so will cause the installation to fail.

/`usr` must be on a logical volume that is able to change versions along with RHVH, and therefore should be left on root (/).
For information about the required storage sizes for each partition, see Section 2.2.3, “Storage Requirements”.

- The `/boot` directory should be defined as a standard partition.
- The `/var` directory must be on a separate volume or disk.
- Only XFS or Ext4 file systems are supported.

Configuring Manual Partitioning in a Kickstart File

The following example demonstrates how to configure manual partitioning in a Kickstart file.

```bash
# Kickstart file example

# Clear all partitions
clearpart --all

# Define boot partition
part /boot --fstype=xfs --size=1000 --ondisk=sda

# Define volume group and pv
part pv.01 --size=42000 --grow
volgroup HostVG pv.01 --reserved-percent=20

# Define swap and root partitions
logvol swap --vgname=HostVG --name=swap --fstype=swap --recommended
logvol none --vgname=HostVG --name=HostPool --size=40000 --grow
logvol / --vgname=HostVG --name=root --thin --fstype=ext4 --poolname=HostPool --fsoptions="defaults,discard" --size=6000 --grow
logvol /var --vgname=HostVG --name=var --thin --fstype=ext4 --poolname=HostPool --fsoptions="defaults,discard" --size=15000
logvol /var/crash --vgname=HostVG --name=var_crash --thin --fstype=ext4 --poolname=HostPool --fsoptions="defaults,discard" --size=10000
logvol /var/log --vgname=HostVG --name=var_log --thin --fstype=ext4 --poolname=HostPool --fsoptions="defaults,discard" --size=8000
logvol /var/log/audit --vgname=HostVG --name=var_audit --thin --fstype=ext4 --poolname=HostPool --fsoptions="defaults,discard" --size=2000
logvol /home --vgname=HostVG --name=home --thin --fstype=ext4 --poolname=HostPool --fsoptions="defaults,discard" --size=1000
logvol /tmp --vgname=HostVG --name=tmp --thin --fstype=ext4 --poolname=HostPool --fsoptions="defaults,discard" --size=1000

# NOTE
If you use `logvol --thinpool --grow`, you must also include `volgroup --reserved-space` or `volgroup --reserved-percent` to reserve space in the volume group for the thin pool to grow.

**4.1.3.2. Automating Red Hat Virtualization Host Deployment**

You can install Red Hat Virtualization Host (RHVH) without a physical media device by booting from a PXE server over the network with a Kickstart file that contains the answers to the installation questions.

General instructions for installing from a PXE server with a Kickstart file are available in the Red Hat Enterprise Linux Installation Guide, as RHVH is installed in much the same way as Red Hat Enterprise Linux. RHVH-specific instructions, with examples for deploying RHVH with Red Hat Satellite, are described below.

The automated RHVH deployment has 3 stages:

- **Section 4.1.3.2.1, “Preparing the Installation Environment”**
- **Section 4.1.3.2.2, “Configuring the PXE Server and the Boot Loader”**
4.1.3.2.1. Preparing the Installation Environment

1. Log in to the Customer Portal.

2. Click Downloads in the menu bar.

3. Click Red Hat Virtualization. Scroll up and click Download Latest to access the product download page.

4. Go to Hypervisor Image for RHV 4.3 and click Download Now.


6. Extract the squashfs.img hypervisor image file from the RHVH ISO:

   ```
 # mount -o loop /path/to/RHVH-ISO /mnt/rhvh
 # cp /mnt/rhvh/Packages/redhat-virtualization-host-image-update* /tmp
 # cd /tmp
 # rpm2cpio redhat-virtualization-host-image-update* | cpio -idmv
   ```

   **NOTE**

   This squashfs.img file, located in the /tmp/usr/share/redhat-virtualization-host/image/ directory, is called redhat-virtualization-host-version_number_version.squashfs.img. It contains the hypervisor image for installation on the physical machine. It should not be confused with the /LiveOS/squashfs.img file, which is used by the Anaconda inst.stage2 option.

4.1.3.2.2. Configuring the PXE Server and the Boot Loader


2. Copy the RHVH boot images to the /tftpboot directory:

   ```
 # cp mnt/rhvh/images/pxeboot/{vmlinuz,initrd.img} /var/lib/tftpboot/pxelinux/
   ```

3. Create a rhvh label specifying the RHVH boot images in the boot loader configuration:

   ```
 LABEL rhvh
 MENU LABEL Install Red Hat Virtualization Host
 KERNEL /var/lib/tftpboot/pxelinux/vmlinuz
 APPEND initrd=/var/lib/tftpboot/pxelinux/initrd.img inst.stage2=URL/to/RHVH-ISO
   ```

   **RHVH Boot Loader Configuration Example for Red Hat Satellite**

   If you are using information from Red Hat Satellite to provision the host, you must create a global or host group level parameter called rhvh_image and populate it with the directory URL where the ISO is mounted or extracted:

   ```
 <%
 #
   ```
4. Make the content of the RHVH ISO locally available and export it to the network, for example, using an HTTPD server:

```bash
cp -a /mnt/rhvh/ /var/www/html/rhvh-install
curl URL/to/RHVH-ISO/rhvh-install
```

### 4.1.3.2.3. Creating and Running a Kickstart File

1. Create a Kickstart file and make it available over the network. See [Kickstart Installations](#) in the [Red Hat Enterprise Linux Installation Guide](#).

2. Ensure that the Kickstart file meets the following RHV-specific requirements:

   - The `%packages` section is not required for RHVH. Instead, use the `liveimg` option and specify the `redhat-virtualization-host-version_number_version.squashfs.img` file from the RHVH ISO image:

     ```bash
 liveimg --url=example.com/tmp/usr/share/redhat-virtualization-host/image/redhat-virtualization-host-version_number_version.squashfs.img
     ```

   - Autopartitioning is highly recommended:

     ```bash
 autopart --type=thinp
     ```

     **NOTE**
     Thin provisioning must be used with autopartitioning.

     The `--no-home` option does not work in RHVH because `/home` is a required directory.

     If your installation requires manual partitioning, see Section 4.1.3.1, "Custom Partitioning" for a list of limitations that apply to partitions and an example of manual partitioning in a Kickstart file.

   - A `%post` section that calls the `nodectl init` command is required:
%post
nodectl init
%end

Kickstart Example for Deploying RHVH on Its Own

This Kickstart example shows you how to deploy RHVH. You can include additional commands and options as required.

liveimg --url=http://FQDN/tmp/usr/share/redhat-virtualization-host/image/redhat-virtualization-host-version_number_version.squashfs.img
clearpart --all
autopart --type=thinp
rootpw --plaintext ovirt
timezone --utc America/Phoenix
zerombr
text
reboot
%post --erroronfail
nodectl init
%end

Kickstart Example for Deploying RHVH with Registration and Network Configuration from Satellite

This Kickstart example uses information from Red Hat Satellite to configure the host network and register the host to the Satellite server. You must create a global or host group level parameter called rhvh_image and populate it with the directory URL to the squashfs.img file. ntp_server1 is also a global or host group level variable.

<%#
kind: provision
name: RHVH Kickstart default
oses:
- RHVH
%>
install
liveimg --url=<%= @host.params['rhvh_image'] %>squashfs.img

network --bootproto static --ip=<%= @host.ip %> --netmask=<%= @host.subnet.mask %> --gateway=<%= @host.subnet.gateway %> --nameserver=<%= @host.subnet.dns_primary %> --hostname <%= @host.name %>
zerombr
clearpart --all
autopart --type=thinp
rootpw --iscrypted <%= root_pass %>

# installation answers
lang en_US.UTF-8
timezone <%= @host.params['time-zone'] || 'UTC' %>
keyboard us
3. Add the Kickstart file location to the boot loader configuration file on the PXE server:

```
APPEND initrd=/var/tftpboot/pxelinux/initrd.img inst.stage2=URL/to/RHVH-ISO
inst.ks=URL/to/RHVH-ks.cfg
```

4. Install RHVH following the instructions in Booting from the Network Using PXE in the Red Hat Enterprise Linux Installation Guide.

4.2. RED HAT ENTERPRISE LINUX HOSTS

4.2.1. Installing Red Hat Enterprise Linux hosts

A Red Hat Enterprise Linux host is based on a standard basic installation of Red Hat Enterprise Linux 7 on a physical server, with the Red Hat Enterprise Linux Server and Red Hat Virtualization subscriptions attached.

For detailed installation instructions, see the Red Hat Enterprise Linux 7 Installation Guide.

The host must meet the minimum host requirements.

**IMPORTANT**

Virtualization must be enabled in your host’s BIOS settings. For information on changing your host’s BIOS settings, refer to your host’s hardware documentation.

**IMPORTANT**

Third-party watchdogs should not be installed on Red Hat Enterprise Linux hosts, as they can interfere with the watchdog daemon provided by VDSM.

4.2.2. Enabling the Red Hat Enterprise Linux host Repositories
To use a Red Hat Enterprise Linux machine as a host, you must register the system with the Content Delivery Network, attach the **Red Hat Enterprise Linux Server** and **Red Hat Virtualization** subscriptions, and enable the host repositories.

**Procedure**

1. Register your system with the Content Delivery Network, entering your Customer Portal user name and password when prompted:

   ```bash
 # subscription-manager register
   ```

2. Find the **Red Hat Enterprise Linux Server** and **Red Hat Virtualization** subscription pools and record the pool IDs:

   ```bash
 # subscription-manager list --available
   ```

3. Use the pool IDs to attach the subscriptions to the system:

   ```bash
 # subscription-manager attach --pool=poolid
   ```

   **NOTE**
   
   To view currently attached subscriptions:

   ```bash
 # subscription-manager list --consumed
   ```

   To list all enabled repositories:

   ```bash
 # yum repolist
   ```

4. Configure the repositories:

   ```bash
 # subscription-manager repos \
 --disable='*' \
 --enable=rhel-7-server-rpms \
 --enable=rhel-7-server-rhv-4-mgmt-agent-rpms \
 --enable=rhel-7-server-ansible-2-rpms
   ```

   For Red Hat Enterprise Linux 7 hosts, little endian, on IBM POWER8 hardware:

   ```bash
 # subscription-manager repos \
 --disable='*' \
 --enable=rhel-7-server-rhv-4-mgmt-agent-for-power-le-rpms \
 --enable=rhel-7-for-power-le-rpms
   ```

   For Red Hat Enterprise Linux 7 hosts, little endian, on IBM POWER9 hardware:

   ```bash
 # subscription-manager repos \
 --disable='*' \
 --enable=rhel-7-server-rhv-4-mgmt-agent-for-power-9-rpms \
 --enable=rhel-7-for-power-9-rpms
   ```
5. Ensure that all packages currently installed are up to date:

```yaml
yum update
```

6. Reboot the machine.

### 4.2.3. Installing Cockpit on Red Hat Enterprise Linux hosts

You can install Cockpit for monitoring the host’s resources and performing administrative tasks.

**Procedure**

1. Install the dashboard packages:

```bash
yum install cockpit-ovirt-dashboard
```

2. Enable and start the `cockpit.socket` service:

```bash
systemctl enable cockpit.socket
systemctl start cockpit.socket
```

3. Check if Cockpit is an active service in the firewall:

```bash
firewall-cmd --list-services
```

You should see `cockpit` listed. If it is not, enter the following with root permissions to add `cockpit` as a service to your firewall:

```bash
firewall-cmd --permanent --add-service=cockpit
```

The `--permanent` option keeps the `cockpit` service active after rebooting.

You can log in to the Cockpit web interface at `https://HostFQDNorIP:9090`.

### 4.3. RECOMMENDED PRACTICES FOR CONFIGURING HOST NETWORKS

If your network environment is complex, you may need to configure a host network manually before adding the host to the Red Hat Virtualization Manager.

Red Hat recommends the following practices for configuring a host network:

- Configure the network with Cockpit. Alternatively, you can use `nmtui` or `nmcli`.
- If a network is not required for a self-hosted engine deployment or for adding a host to the Manager, configure the network in the Administration Portal after adding the host to the Manager. See [Creating a New Logical Network in a Data Center or Cluster](#).
- Use the following naming conventions:
  - VLAN devices: `VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD`
  - VLAN interfaces: `physical_device.VLAN_ID` (for example, `eth0.23`, `eth1.128`, `enp3s0.50`)
Bond interfaces: **bondnumber** (for example, bond0, bond1)

- VLANs on bond interfaces: **bondnumber.VLAN_ID** (for example, bond0.50, bond1.128)

- Use network bonding. Networking teaming is not supported in Red Hat Virtualization and will cause errors if the host is used to deploy a self-hosted engine or added to the Manager.

- Use recommended bonding modes:
  - If the **ovirtmgmt** network is not used by virtual machines, the network may use any supported bonding mode.
  - If the **ovirtmgmt** network is used by virtual machines, see [Which bonding modes work when used with a bridge that virtual machine guests or containers connect to?](https://access.redhat.com/solutions/3981311).
  - Red Hat Virtualization’s default bonding mode is (Mode 4) **Dynamic Link Aggregation**. If your switch does not support Link Aggregation Control Protocol (LACP), use (Mode 1) **Active-Backup**. See [Bonding Modes](https://access.redhat.com/solutions/3981311) for details.

- Configure a VLAN on a physical NIC as in the following example (although **nmcli** is used, you can use any tool):

  ```
 # nmcli connection add type vlan con-name vlan50 ifname eth0.50 dev eth0 id 50
 # nmcli con mod vlan50 +ipv4.dns 8.8.8.8 +ipv4.addresses 123.123.0.1/24 +ipv4.gateway 123.123.0.254
  ```

- Configure a VLAN on a bond as in the following example (although **nmcli** is used, you can use any tool):

  ```
 # nmcli connection add type bond con-name bond0 ifname bond0 bond.options "mode=active-backup,miimon=100" ipv4.method disabled ipv6.method ignore
 # nmcli connection add type ethernet con-name eth0 ifname eth0 master bond0 slave-type bond
 # nmcli connection add type ethernet con-name eth1 ifname eth1 master bond0 slave-type bond
 # nmcli connection add type vlan con-name vlan50 ifname bond0.50 dev bond0 id 50
 # nmcli con mod vlan50 +ipv4.dns 8.8.8.8 +ipv4.addresses 123.123.0.1/24 +ipv4.gateway 123.123.0.254
  ```

- Do not disable **firewalld**.

- Customize the firewall rules in the Administration Portal after adding the host to the Manager. See [Configuring Host Firewall Rules](https://access.redhat.com/solutions/3981311).

**IMPORTANT**

When creating a management bridge that uses a static IPv6 address, disable network manager control in its interface configuration (ifcfg) file before adding a host. See [https://access.redhat.com/solutions/3981311](https://access.redhat.com/solutions/3981311) for more information.

### 4.4. ADDING STANDARD HOSTS TO THE RED HAT VIRTUALIZATION MANAGER

Adding a host to your Red Hat Virtualization environment can take some time, as the following steps are completed by the platform: virtualization checks, installation of packages, and creation of a bridge.
IMPORTANT

When creating a management bridge that uses a static IPv6 address, disable network manager control in its interface configuration (ifcfg) file before adding a host. See https://access.redhat.com/solutions/3981311 for more information.

Procedure

1. From the Administration Portal, click Compute → Hosts.
2. Click New.
3. Use the drop-down list to select the Data Center and Host Cluster for the new host.
4. Enter the Name and the Address of the new host. The standard SSH port, port 22, is auto-filled in the SSH Port field.
5. Select an authentication method to use for the Manager to access the host.
   - Enter the root user’s password to use password authentication.
   - Alternatively, copy the key displayed in the SSH PublicKey field to /root/.ssh/authorized_keys on the host to use public key authentication.
6. Optionally, click the Advanced Parameters button to change the following advanced host settings:
   - Disable automatic firewall configuration.
   - Add a host SSH fingerprint to increase security. You can add it manually, or fetch it automatically.
7. Optionally configure power management, where the host has a supported power management card. For information on power management configuration, see Host Power Management Settings Explained in the Administration Guide.
8. Click OK.

The new host displays in the list of hosts with a status of Installing, and you can view the progress of the installation in the Events section of the Notification Drawer (口头通知). After a brief delay the host status changes to Up.
CHAPTER 5. PREPARING STORAGE FOR RED HAT VIRTUALIZATION

Prepare storage to be used for storage domains in the new environment. A Red Hat Virtualization environment must have at least one data storage domain, but adding more is recommended.

A data domain holds the virtual hard disks and OVF files of all the virtual machines and templates in a data center, and cannot be shared across data centers while active (but can be migrated between data centers). Data domains of multiple storage types can be added to the same data center, provided they are all shared, rather than local, domains.

You can use one of the following storage types:

- NFS
- iSCSI
- Fibre Channel (FCP)
- POSIX-compliant file system
- Local storage
- Red Hat Gluster Storage

5.1. PREPARING NFS STORAGE

Set up NFS shares that will serve as storage domains on a Red Hat Enterprise Linux server.

For information on setting up and configuring NFS, see Network File System (NFS) in the Red Hat Enterprise Linux 7 Storage Administration Guide.

Specific system user accounts and system user groups are required by Red Hat Virtualization so the Manager can store data in the storage domains represented by the exported directories. The following procedure sets the permissions for one directory. You must repeat the `chown` and `chmod` steps for all of the directories you intend to use as storage domains in Red Hat Virtualization.

Procedure

1. Create the group `kvm`:
   ```bash
 # groupadd kvm -g 36
   ```

2. Create the user `vdsm` in the group `kvm`:
   ```bash
 # useradd vdsm -u 36 -g 36
   ```

3. Set the ownership of your exported directory to 36:36, which gives `vdsm:kvm` ownership:
   ```bash
 # chown -R 36:36 /exports/data
   ```

4. Change the mode of the directory so that read and write access is granted to the owner, and so that read and execute access is granted to the group and other users:
5.2. PREPARING ISCSI STORAGE

Red Hat Virtualization supports iSCSI storage, which is a storage domain created from a volume group made up of LUNs. Volume groups and LUNs cannot be attached to more than one storage domain at a time.

For information on setting up and configuring iSCSI storage, see Online Storage Management in the Red Hat Enterprise Linux 7 Storage Administration Guide.

**IMPORTANT**

If you are using block storage and you intend to deploy virtual machines on raw devices or direct LUNs and to manage them with the Logical Volume Manager, you must create a filter to hide the guest logical volumes. This will prevent guest logical volumes from being activated when the host is booted, a situation that could lead to stale logical volumes and cause data corruption. See https://access.redhat.com/solutions/2662261 for details.

**IMPORTANT**

Red Hat Virtualization currently does not support storage with a block size of 4K. You must configure block storage in legacy (512b block) mode.

**IMPORTANT**

If your host is booting from SAN storage and loses connectivity to the storage, the storage file systems become read-only and remain in this state after connectivity is restored.

To prevent this situation, Red Hat recommends adding a drop-in multipath configuration file on the root file system of the SAN for the boot LUN to ensure that it is queued when there is a connection:

```bash
cat /etc/multipath/conf.d/host.conf
multipaths {
 multipath {
 wwid boot_LUN_wwid
 no_path_retry queue
 }
}
```

5.3. PREPARING FCP STORAGE

Red Hat Virtualization supports SAN storage by creating a storage domain from a volume group made of pre-existing LUNs. Neither volume groups nor LUNs can be attached to more than one storage domain at a time.

Red Hat Virtualization system administrators need a working knowledge of Storage Area Networks (SAN) concepts. SAN usually uses Fibre Channel Protocol (FCP) for traffic between hosts and shared external storage. For this reason, SAN may occasionally be referred to as FCP storage.

For information on setting up and configuring FCP or multipathing on Red Hat Enterprise Linux, see the Storage Administration Guide and DM Multipath Guide.
5.4. PREPARING POSIX-COMPLIANT FILE SYSTEM STORAGE

POSIX file system support allows you to mount file systems using the same mount options that you would normally use when mounting them manually from the command line. This functionality is intended to allow access to storage not exposed using NFS, iSCSI, or FCP.

Any POSIX-compliant file system used as a storage domain in Red Hat Virtualization must be a clustered file system, such as Global File System 2 (GFS2), and must support sparse files and direct I/O. The Common Internet File System (CIFS), for example, does not support direct I/O, making it incompatible with Red Hat Virtualization.

For information on setting up and configuring POSIX-compliant file system storage, see Red Hat Enterprise Linux Global File System 2.

IMPORTANT

Do not mount NFS storage by creating a POSIX-compliant file system storage domain. Always create an NFS storage domain instead.
Virtual machines created in a single-host cluster cannot be migrated, fenced, or scheduled.

**IMPORTANT**

On Red Hat Virtualization Host (RHVH), local storage should always be defined on a file system that is separate from `/` (root). Red Hat recommends using a separate logical volume or disk, to prevent possible loss of data during upgrades.

Preparing Local Storage for Red Hat Enterprise Linux hosts

1. On the host, create the directory to be used for the local storage:
   
   ```
 # mkdir -p /data/images
   ```

2. Ensure that the directory has permissions allowing read/write access to the `vdsm` user (UID 36) and `kvm` group (GID 36):
   
   ```
 # chown 36:36 /data /data/images
 # chmod 0755 /data /data/images
   ```

Preparing Local Storage for Red Hat Virtualization Hosts

Red Hat recommends creating the local storage on a logical volume as follows:

1. Create a local storage directory:
   
   ```
 # mkdir /data
 # lvcreate -L $SIZE rhvh -n data
 # mkfs.ext4 /dev/mapper/rhvh-data
 # echo "/dev/mapper/rhvh-data /data ext4 defaults,discard 1 2" >> /etc/fstab
 # mount /data
   ```

2. Mount the new local storage, and then modify the permissions and ownership:
   
   ```
 # mount -a
 # chown 36:36 /data /rhvh-data
 # chmod 0755 /data /rhvh-data
   ```

5.6. PREPARING RED HAT GLUSTER STORAGE

For information on setting up and configuring Red Hat Gluster Storage, see the *Red Hat Gluster Storage Installation Guide*.

For the Red Hat Gluster Storage versions that are supported with Red Hat Virtualization, see [https://access.redhat.com/articles/2356261](https://access.redhat.com/articles/2356261).
Add storage as data domains in the new environment. A Red Hat Virtualization environment must have at least one data domain, but adding more is recommended.

Add the storage you prepared earlier:

- NFS
- iSCSI
- Fibre Channel (FCP)
- POSIX-compliant file system
- Local storage
- Red Hat Gluster Storage

### 6.1. ADDING NFS STORAGE

This procedure shows you how to attach existing NFS storage to your Red Hat Virtualization environment as a data domain.

If you require an ISO or export domain, use this procedure, but select **ISO** or **Export** from the Domain Function list.

**Procedure**

1. In the Administration Portal, click **Storage → Domains**.
2. Click **New Domain**.
3. Enter a **Name** for the storage domain.
4. Accept the default values for the **Data Center**, **Domain Function**, **Storage Type**, **Format**, and **Host** lists.
5. Enter the **Export Path** to be used for the storage domain. The export path should be in the format of `123.123.0.10:/data` (for IPv4), `[2001:0:0:0:0:0:0:5db1]:/data` (for IPv6), or domain.example.com:/data.
6. Optionally, you can configure the advanced parameters:
   a. Click **Advanced Parameters**.
   b. Enter a percentage value into the **Warning Low Space Indicator** field. If the free space available on the storage domain is below this percentage, warning messages are displayed to the user and logged.
   c. Enter a GB value into the **Critical Space Action Blocker** field. If the free space available on the storage domain is below this value, error messages are displayed to the user and logged, and any new action that consumes space, even temporarily, will be blocked.
Select the **Wipe After Delete** check box to enable the wipe after delete option. This option can be edited after the domain is created, but doing so will not change the wipe after delete property of disks that already exist.

7. Click **OK**.

The new NFS data domain has a status of **Locked** until the disk is prepared. The data domain is then automatically attached to the data center.

### 6.2. ADDING ISCSI STORAGE

This procedure shows you how to attach existing iSCSI storage to your Red Hat Virtualization environment as a data domain.

**Procedure**

1. Click **Storage → Domains**.
2. Click **New Domain**.
3. Enter the **Name** of the new storage domain.
4. Select a **Data Center** from the drop-down list.
5. Select **Data** as the **Domain Function** and **iSCSI** as the **Storage Type**.
6. Select an active host as the **Host**.

**IMPORTANT**

Communication to the storage domain is from the selected host and not directly from the Manager. Therefore, all hosts must have access to the storage device before the storage domain can be configured.

7. The Manager can map iSCSI targets to LUNs or LUNs to iSCSI targets. The **New Domain** window automatically displays known targets with unused LUNs when the iSCSI storage type is selected. If the target that you are using to add storage does not appear, you can use target discovery to find it; otherwise proceed to the next step.

   a. Click **Discover Targets** to enable target discovery options. When targets have been discovered and logged in to, the **New Domain** window automatically displays targets with LUNs unused by the environment.

   **NOTE**

   LUNs used externally to the environment are also displayed.

   You can use the **Discover Targets** options to add LUNs on many targets or multiple paths to the same LUNs.

   b. Enter the FQDN or IP address of the iSCSI host in the **Address** field.

   c. Enter the port with which to connect to the host when browsing for targets in the **Port** field. The default is **3260**.
6.3. ADDING FCP STORAGE

If you have configured multiple storage connection paths to the same target, follow the procedure in Configuring iSCSI Multipathing to complete iSCSI bonding.

If you want to migrate your current storage network to an iSCSI bond, see Migrating a Logical Network to an iSCSI Bond.
This procedure shows you how to attach existing FCP storage to your Red Hat Virtualization environment as a data domain.

Procedure

1. Click **Storage → Domains**.
2. Click **New Domain**.
3. Enter the **Name** of the storage domain.
4. Select an FCP **Data Center** from the drop-down list. If you do not yet have an appropriate FCP data center, select (none).
5. Select the **Domain Function** and the **Storage Type** from the drop-down lists. The storage domain types that are not compatible with the chosen data center are not available.
6. Select an active host in the **Host** field. If this is not the first data domain in a data center, you must select the data center’s SPM host.

**IMPORTANT**

All communication to the storage domain is through the selected host and not directly from the Red Hat Virtualization Manager. At least one active host must exist in the system and be attached to the chosen data center. All hosts must have access to the storage device before the storage domain can be configured.

7. The **New Domain** window automatically displays known targets with unused LUNs when **Fibre Channel** is selected as the storage type. Select the **LUN ID** check box to select all of the available LUNs.
8. Optionally, you can configure the advanced parameters.
   a. Click **Advanced Parameters**.
   b. Enter a percentage value into the **Warning Low Space Indicator** field. If the free space available on the storage domain is below this percentage, warning messages are displayed to the user and logged.
   c. Enter a GB value into the **Critical Space Action Blocker** field. If the free space available on the storage domain is below this value, error messages are displayed to the user and logged, and any new action that consumes space, even temporarily, will be blocked.
   d. Select the **Wipe After Delete** check box to enable the wipe after delete option. This option can be edited after the domain is created, but doing so will not change the wipe after delete property of disks that already exist.
   e. Select the **Discard After Delete** check box to enable the discard after delete option. This option can be edited after the domain is created. This option is only available to block storage domains.
9. Click **OK**.

The new FCP data domain remains in a **Locked** status while it is being prepared for use. When ready, it is automatically attached to the data center.
6.4. ADDING POSIX-COMPLIANT FILE SYSTEM STORAGE

This procedure shows you how to attach existing POSIX-compliant file system storage to your Red Hat Virtualization environment as a data domain.

**Procedure**

1. Click **Storage → Domains**.

2. Click **New Domain**.

3. Enter the **Name** for the storage domain.

4. Select the **Data Center** to be associated with the storage domain. The data center selected must be of type **POSIX (POSIX compliant FS)**. Alternatively, select **(none)**.

5. Select **Data** from the **Domain Function** drop-down list, and **POSIX compliant FS** from the **Storage Type** drop-down list. If applicable, select the **Format** from the drop-down menu.

6. Select a host from the **Host** drop-down list.

7. Enter the **Path** to the POSIX file system, as you would normally provide it to the `mount` command.

8. Enter the **VFS Type**, as you would normally provide it to the `mount` command using the `-t` argument. See `man mount` for a list of valid VFS types.

9. Enter additional **Mount Options**, as you would normally provide them to the `mount` command using the `-o` argument. The mount options should be provided in a comma-separated list. See `man mount` for a list of valid mount options.

10. Optionally, you can configure the advanced parameters.
    
    a. Click **Advanced Parameters**.
    
    b. Enter a percentage value in the **Warning Low Space Indicator** field. If the free space available on the storage domain is below this percentage, warning messages are displayed to the user and logged.
    
    c. Enter a GB value in the **Critical Space Action Blocker** field. If the free space available on the storage domain is below this value, error messages are displayed to the user and logged, and any new action that consumes space, even temporarily, will be blocked.
    
    d. Select the **Wipe After Delete** check box to enable the wipe after delete option. This option can be edited after the domain is created, but doing so will not change the wipe after delete property of disks that already exist.

11. Click **OK**.

6.5. ADDING LOCAL STORAGE

Adding local storage to a host places the host in a new data center and cluster. The local storage configuration window combines the creation of a data center, a cluster, and storage into a single process.

**Procedure**


Procedure

1. Click Compute → Hosts and select the host.

2. Click Management → Maintenance and click OK.

3. Click Management → Configure Local Storage.

4. Click the Edit buttons next to the Data Center, Cluster, and Storage fields to configure and name the local storage domain.

5. Set the path to your local storage in the text entry field.

6. If applicable, click the Optimization tab to configure the memory optimization policy for the new local storage cluster.

7. Click OK.

Your host comes online in a data center of its own.

6.6. ADDING RED HAT GLUSTER STORAGE

To use Red Hat Gluster Storage with Red Hat Virtualization, see Configuring Red Hat Virtualization with Red Hat Gluster Storage.

For the Red Hat Gluster Storage versions that are supported with Red Hat Virtualization, see https://access.redhat.com/articles/2356261.
APPENDIX A. CONFIGURING A LOCAL REPOSITORY FOR OFFLINE RED HAT VIRTUALIZATION MANAGER INSTALLATION

To install Red Hat Virtualization Manager on a system that does not have a direct connection to the Content Delivery Network, download the required packages on a system that has Internet access, then create a repository that can be shared with the offline Manager machine. The system hosting the repository must be connected to the same network as the client systems where the packages are to be installed.

Prerequisites

- A Red Hat Enterprise Linux 7 Server installed on a system that has access to the Content Delivery Network. This system downloads all the required packages, and distributes them to your offline system(s).

- A large amount of free disk space available. This procedure downloads a large number of packages, and requires up to 50GB of free disk space.

Enable the Red Hat Virtualization Manager repositories on the online system:

Enabling the Red Hat Virtualization Manager Repositories

Register the system with Red Hat Subscription Manager, attach the Red Hat Virtualization Manager subscription, and enable the Manager repositories.

Procedure

1. Register your system with the Content Delivery Network, entering your Customer Portal user name and password when prompted:

   ```
 # subscription-manager register
   ```

   **NOTE**

   If you are using an IPv6 network, use an IPv6 transition mechanism to access the Content Delivery Network and subscription manager.

2. Find the Red Hat Virtualization Manager subscription pool and record the pool ID:

   ```
 # subscription-manager list --available
   ```

3. Use the pool ID to attach the subscription to the system:

   ```
 # subscription-manager attach --pool=pool_id
   ```
NOTE

To view currently attached subscriptions:

```
subscription-manager list --consumed
```

To list all enabled repositories:

```
yum repolist
```

4. Configure the repositories:

```
subscription-manager repos \
 --disable="*" \
 --enable=rhel-7-server-rpms \
 --enable=rhel-7-server-supplementary-rpms \
 --enable=rhel-7-server-rhv-4.3-manager-rpms \
 --enable=rhel-7-server-rhv-4-manager-tools-rpms \
 --enable=rhel-7-server-ansible-2-rpms \
 --enable=jb-eap-7.2-for-rhel-7-server-rpms
```

Configuring the Offline Repository

1. Servers that are not connected to the Internet can access software repositories on other systems using File Transfer Protocol (FTP). To create the FTP repository, install and configure `vsftpd`:

   a. Install the `vsftpd` package:

   ```
 # yum install vsftpd
   ```

   b. Start the `vsftpd` service, and ensure the service starts on boot:

   ```
 # systemctl start vsftpd.service
 # systemctl enable vsftpd.service
   ```

   c. Create a sub-directory inside the `/var/ftp/pub/` directory. This is where the downloaded packages will be made available:

   ```
 # mkdir /var/ftp/pub/rhvrepo
   ```

2. Download packages from all configured software repositories to the `rhvrepo` directory. This includes repositories for all Content Delivery Network subscription pools attached to the system, and any locally configured repositories:

   ```
 # reposync -l -p /var/ftp/pub/rhvrepo
   ```

   This command downloads a large number of packages, and takes a long time to complete. The `-l` option enables yum plug-in support.

3. Install the `createrepo` package:

   ```
 # yum install createrepo
   ```
4. Create repository metadata for each of the sub-directories where packages were downloaded under /var/ftp/pub/rhvrepo:

```
for DIR in $(find /var/ftp/pub/rhvrepo -maxdepth 1 -mindepth 1 -type d); do createrepo $DIR; done
```

5. Create a repository file, and copy it to the /etc/yum.repos.d/ directory on the offline machine on which you will install the Manager. The configuration file can be created manually or with a script. Run the script below on the system hosting the repository, replacing ADDRESS in the baseurl with the IP address or FQDN of the system hosting the repository:

```
#!/bin/sh

REPOFILE="/etc/yum.repos.d/rhev.repo"
echo -e " " > $REPOFILE
for DIR in $(find /var/ftp/pub/rhvrepo -maxdepth 1 -mindepth 1 -type d);
 do
echo -e "[${(basename $DIR)}]" >> $REPOFILE
echo -e "name=${(basename $DIR)}" >> $REPOFILE
echo -e "baseurl=ftp://_ADDRESS_/pub/rhvrepo/`basename $DIR`" >> $REPOFILE
echo -e "enabled=1" >> $REPOFILE
echo -e "gpgcheck=0" >> $REPOFILE
echo -e "\n" >> $REPOFILE
done
```

Return to Section 3.4, “Configuring the Red Hat Virtualization Manager”. Packages are installed from the local repository, instead of from the Content Delivery Network.
APPENDIX B. INSTALLING A WEBSOCKET PROXY ON A SEPARATE MACHINE

IMPORTANT

The websocket proxy and noVNC are Technology Preview features only. Technology Preview features are not supported with Red Hat production service-level agreements (SLAs) and might not be functionally complete, and Red Hat does not recommend using them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process. For more information see Red Hat Technology Preview Features Support Scope.

The websocket proxy allows users to connect to virtual machines through a noVNC console. The noVNC client uses websockets to pass VNC data. However, the VNC server in QEMU does not provide websocket support, so a websocket proxy must be placed between the client and the VNC server. The proxy can run on any machine that has access to the network, including the the Manager machine.

For security and performance reasons, users may want to configure the websocket proxy on a separate machine.

Procedure

1. Install the websocket proxy:

   # yum install ovirt-engine-websocket-proxy

2. Run the `engine-setup` command to configure the websocket proxy.

   # engine-setup

   NOTE

   If the `rhvm` package has also been installed, choose **No** when asked to configure the Manager (Engine) on this host.

3. Press **Enter** to allow `engine-setup` to configure a websocket proxy server on the machine.

   Configure WebSocket Proxy on this machine? (Yes, No) [Yes]:

4. Press **Enter** to accept the automatically detected host name, or enter an alternative host name and press **Enter**. Note that the automatically detected host name may be incorrect if you are using virtual hosts:

   Host fully qualified DNS name of this server [host.example.com]:

5. Press **Enter** to allow `engine-setup` to configure the firewall and open the ports required for external communication. If you do not allow `engine-setup` to modify your firewall configuration, then you must manually open the required ports.
Setup can automatically configure the firewall on this system. 
Note: automatic configuration of the firewall may overwrite current settings. 
Do you want Setup to configure the firewall? (Yes, No) [Yes]:

6. Enter the FQDN of the Manager machine and press Enter.
   
   Host fully qualified DNS name of the engine server []: manager.example.com

7. Press Enter to allow engine-setup to perform actions on the Manager machine, or press 2 to manually perform the actions.
   
   Setup will need to do some actions on the remote engine server. Either automatically, using 
   ssh as root to access it, or you will be prompted to manually perform each such action. 
   Please choose one of the following:
   1 - Access remote engine server using ssh as root 
   2 - Perform each action manually, use files to copy content around 
(1, 2) [1]:

   a. Press Enter to accept the default SSH port number, or enter the port number of the 
      Manager machine.
      
      ssh port on remote engine server [22]:

   b. Enter the root password to log in to the Manager machine and press Enter.
      
      root password on remote engine server engine_host.example.com:

8. Select whether to review iptables rules if they differ from the current settings.
   
   Generated iptables rules are different from current ones. 
   Do you want to review them? (Yes, No) [No]:

9. Press Enter to confirm the configuration settings.

   ---- CONFIGURATION PREVIEW ----
   
   Firewall manager : iptables 
   Update Firewall : True 
   Host FQDN : host.example.com 
   Configure WebSocket Proxy : True 
   Engine Host FQDN : engine_host.example.com 

Instructions are provided to configure the Manager machine to use the configured websocket 
proxy.

Manual actions are required on the engine host 
in order to enroll certs for this host and configure the engine about it.

Please execute this command on the engine host:
   engine-config -s WebSocketProxy=host.example.com:6100 
and then restart the engine service to make it effective.
10. Log in to the Manager machine and execute the provided instructions.

# engine-config -s WebSocketProxy=host.example.com:6100
# systemctl restart ovirt-engine.service
Enabling PCI passthrough allows a virtual machine to use a host device as if the device were directly attached to the virtual machine. To enable the PCI passthrough function, you must enable virtualization extensions and the IOMMU function. The following procedure requires you to reboot the host. If the host is attached to the Manager already, ensure you place the host into maintenance mode first.

Prerequisites

- Ensure that the host hardware meets the requirements for PCI device passthrough and assignment. See PCI Device Requirements for more information.

Configuring a Host for PCI Passthrough

1. Enable the virtualization extension and IOMMU extension in the BIOS. See Enabling Intel VT-x and AMD-V virtualization hardware extensions in BIOS in the Red Hat Enterprise Linux Virtualization Deployment and Administration Guide for more information.

2. Enable the IOMMU flag in the kernel by selecting the Hostdev Passthrough & SR-IOV check box when adding the host to the Manager or by editing the grub configuration file manually.
   - To enable the IOMMU flag from the Administration Portal, see Adding Standard Hosts to the Red Hat Virtualization Manager and Kernel Settings Explained.
   - To edit the grub configuration file manually, see Enabling IOMMU Manually.

3. For GPU passthrough, you need to run additional configuration steps on both the host and the guest system. See Preparing Host and Guest Systems for GPU Passthrough for more information.

Enabling IOMMU Manually

1. Enable IOMMU by editing the grub configuration file.

   NOTE
   
   If you are using IBM POWER8 hardware, skip this step as IOMMU is enabled by default.

   - For Intel, boot the machine, and append \texttt{intel\_iommu=on} to the end of the \texttt{GRUB\_CMDLINE\_LINUX} line in the \texttt{grub} configuration file.

```
 # vi /etc/default/grub
 ...
 GRUB_CMDLINE_LINUX="nofb splash=quiet console=tt0 \ldots intel_iommu=on"
 ...
```
For AMD, boot the machine, and append `amd_iommu=on` to the end of the `GRUB_CMDLINE_LINUX` line in the `grub` configuration file.

```
vi /etc/default/grub
...
GRUB_CMDLINE_LINUX="nofb splash=quiet console=tty0 ... amd_iommu=on
...
```

**NOTE**

If `intel_iommu=on` or `amd_iommu=on` works, you can try adding `iommu=pt` or `amd_iommu=pt`. The `pt` option only enables IOMMU for devices used in passthrough and provides better host performance. However, the option might not be supported on all hardware. Revert to previous option if the `pt` option doesn’t work for your host.

If the passthrough fails because the hardware does not support interrupt remapping, you can consider enabling the `allow_unsafe_interrupts` option if the virtual machines are trusted. The `allow_unsafe_interrupts` is not enabled by default because enabling it potentially exposes the host to MSI attacks from virtual machines. To enable the option:

```
vi /etc/modprobe.d
options vfio_iommu_type1 allow_unsafe_interrupts=1
```

2. Refresh the `grub.cfg` file and reboot the host for these changes to take effect:

```
grub2-mkconfig -o /boot/grub2/grub.cfg
reboot
```

To enable SR-IOV and assign dedicated virtual NICs to virtual machines, see https://access.redhat.com/articles/2335291.
APPENDIX D. REMOVING THE RED HAT VIRTUALIZATION MANAGER

You can use the `engine-cleanup` command to remove specific components or all components of the Red Hat Virtualization Manager.

**NOTE**

A backup of the Manager database and a compressed archive of the PKI keys and configuration are always automatically created. These files are saved under `/var/lib/ovirt-engine/backups/`, and include the date and `engine-` and `engine-pki-` in their file names respectively.

**Procedure**

1. Run the following command on the Manager machine:

   ```
 # engine-cleanup
   ```

2. You are prompted whether to remove all Red Hat Virtualization Manager components:

   - Type **Yes** and press **Enter** to remove all components:
     ```
 Do you want to remove all components? (Yes, No) [Yes]:
     ```
   - Type **No** and press **Enter** to select the components to remove. You can select whether to retain or remove each component individually:
     ```
 Do you want to remove Engine database content? All data will be lost (Yes, No) [No]:
 Do you want to remove PKI keys? (Yes, No) [No]:
 Do you want to remove PKI configuration? (Yes, No) [No]:
 Do you want to remove Apache SSL configuration? (Yes, No) [No]:
     ```

3. You are given another opportunity to change your mind and cancel the removal of the Red Hat Virtualization Manager. If you choose to proceed, the `ovirt-engine` service is stopped, and your environment’s configuration is removed in accordance with the options you selected.

   ```
 During execution engine service will be stopped (OK, Cancel) [OK]:
 ovirt-engine is about to be removed, data will be lost (OK, Cancel) [Cancel]:OK
   ```

4. Remove the Red Hat Virtualization packages:

   ```
 # yum remove rhvm* vdsm-bootstrap
   ```
APPENDIX E. SECURING RED HAT VIRTUALIZATION

This topic includes limited information about how to secure Red Hat Virtualization. This information will increase over time.

This information is specific to Red Hat Virtualization; it does not cover fundamental security practices related to:
- Disabling unnecessary services
- Authentication
- Authorization
- Accounting
- Penetration testing and hardening of non-RHV services
- Encryption of sensitive application data

Prerequisites

- You should be proficient in your organization's security standards and practices. If possible, consult with your organization’s Security Officer.
- Consult the Red Hat Enterprise Linux Security Guide before deploying RHEL hosts.

E.1. DISA STIG FOR RED HAT LINUX 7

The Defense Information Systems Agency (DISA) distributes Security Technical Implementation Guides (STIGs) for various platforms and operating systems.

While installing Red Hat Virtualization Host (RHVH), the DISA STIG for Red Hat Linux 7 profile is one of the security policies available. Enabling this profile as your security policy during installation removes the need to regenerate SSH keys, SSL certificates, or otherwise re-configure the host later in the deployment process.

IMPORTANT

The DISA STIG security policy is the only security policy that Red Hat officially tests and certifies.

DISA STIGs are “configuration standards for DOD IA and IA-enabled devices/systems. Since 1998, DISA has played a critical role in enhancing the security posture of DoD’s security systems by providing the Security Technical Implementation Guides (STIGs). The STIGs contain technical guidance to ‘lock down’ information systems/software that might otherwise be vulnerable to a malicious computer attack.”

These STIGs are based on requirements put forth by the National Institute of Standards and Technology (NIST) Special Publication 800-53, a catalog of security controls for all U.S. federal information systems except those related to national security.

To determine which various profiles overlap, Red Hat refers to the Cloud Security Alliance’s Cloud Controls Matrix (CCM). This CCM specifies a comprehensive set of cloud-specific security controls, and maps each one to the requirements of leading standards, best practices, and regulations.
To help you verify your security policy, Red Hat provides OpenSCAP tools and Security Content Automation Protocol (SCAP) profiles for various Red Hat platforms, including RHEL and RHV.

Red Hat’s OpenSCAP project provides open source tools for administrators and auditors to assess, measure, and enforce SCAP baselines. NIST awarded SCAP 1.2 certification to OpenSCAP in 2014.

NIST maintains the SCAP standard. SCAP-compliant profiles provide detailed low-level guidance on setting the security configuration of operating systems and applications.

Red Hat publishes SCAP baselines for various products and platforms to two locations:

- The NIST National Checklist Program (NCP), the U.S. government repository of publicly available security checklists (or benchmarks).
- The Department of Defense (DoD) Cyber Exchange

Additional resources

- NIST National Checklist Program Repository for Red Hat
- The DoD Cyber Exchange download page for Unix/Linux-related STIGs
- NIST Special Publication 800-53 Rev. 4
- NIST Special Publication 800-53 Rev. 5 (DRAFT)
- The OpenSCAP Project
- Cloud Security Alliance: Cloud Controls Matrix

E.2. APPLYING THE DISA STIG FOR RED HAT LINUX 7 PROFILE

This topic shows you how to enable the DISA STIG for Red Hat Linux 7 security profile while installing the Red Hat Virtualization (RHV) Manager ("the Manager"), the Red Hat Virtualization Host (RHVH), and the Red Hat Enterprise Linux host.

Enable DISA STIG for Red Hat Linux 7 for RHVH

The following procedure applies to installing Red Hat Virtualization Host (RHVH) for two different purposes:

- Using RHVH as the host for the Manager virtual machine when you deploy the Manager as a self-hosted engine.
- Using RHVH as an ordinary host in an RHV cluster.

If you use the Anaconda installer to install RHVH:
1. On the **Installation Summary** screen, select **Security Policy**.

![Installation Summary Screen](image)

2. On the **Security Policy** screen that opens, toggle the **Apply security policy** setting to **On**.

3. Scroll down the list of profiles and select **DISA STIG for Red Hat Linux 7**

4. Click the **Select profile** button. This action adds a green checkmark next to the profile and adds packages to the list of **Changes that were done or need to be done**.
NOTE

These packages are already part of the RHVH image. RHVH ships as a single system image. Installation of packages required by any other selected security profiles which are not part of the RHVH image may not be possible. Please see the RHVH package manifest for a list of included packages.

5. Click Done.

6. On the Installation Summary screen, verify that the status of Security Policy is Everything okay.
7. Later, when you log into RHVH, the command line displays the following information.

You are accessing a U.S. Government (USG) Information System (IS) that is provided for USG-authorized use only. By using this IS (which includes any device attached to this IS), you consent to the following conditions:

- The USG routinely intercepts and monitors communications on this IS for purposes including, but not limited to, penetration testing, COMSEC monitoring, network operations and defense, personnel misconduct (PM), law enforcement (LE), and counterintelligence (CI) investigations.

- At any time, the USG may inspect and seize data stored on this IS.

- Communications using, or data stored on, this IS are not private, are subject to routine monitoring, interception, and search, and may be disclosed or used for any USG-authorized purpose.

- This IS includes security measures (e.g., authentication and access controls) to protect USG interests—not for your personal benefit or privacy.

- Notwithstanding the above, using this IS does not constitute consent to PM, LE or CI investigative searching or monitoring of the content of privileged communications, or work product, related to personal representation or services by attorneys, psychotherapists, or clergy, and their assistants. Such communications and work product are private and confidential. See User Agreement for details.

localhost login:

NOTE

If you deploy RHV as a Self-Hosted Engine using the command line, during the series of prompts after you enter `ovirt-hosted-engine-setup`, the command line will ask Do you want to apply a default OpenSCAP security profile? Enter Yes and follow the instructions to select the DISA STIG for Red Hat Linux 7 profile.

Additional resources

- Configuring and Applying SCAP Policies During Installation