
Red Hat AMQ Streams 2.4

Configuring AMQ Streams on OpenShift

Configure and manage a deployment of AMQ Streams 2.4 on OpenShift Container
Platform

Last Updated: 2023-05-26

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

Configure and manage a deployment of AMQ Streams 2.4 on OpenShift Container Platform

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Configure the operators and Kafka components deployed with AMQ Streams to build a large-scale
messaging network.

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. CONFIGURATION OVERVIEW
1.1. CONFIGURING CUSTOM RESOURCES
1.2. USING CONFIGMAPS TO ADD CONFIGURATION

1.2.1. Naming custom ConfigMaps
1.3. DOCUMENT CONVENTIONS
1.4. ADDITIONAL RESOURCES

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT
2.1. USING STANDARD KAFKA CONFIGURATION PROPERTIES
2.2. KAFKA CLUSTER CONFIGURATION

2.2.1. Configuring Kafka
2.2.2. Configuring the Entity Operator

2.2.2.1. Entity Operator configuration properties
2.2.2.2. Topic Operator configuration properties
2.2.2.3. User Operator configuration properties

2.2.3. Configuring Kafka and ZooKeeper storage
2.2.3.1. Data storage considerations

2.2.3.1.1. File systems
2.2.3.1.2. Disk usage

2.2.3.2. Ephemeral storage
2.2.3.2.1. Mount path of Kafka log directories

2.2.3.3. Persistent storage
2.2.3.3.1. Storage class overrides
2.2.3.3.2. PVC resources for persistent storage
2.2.3.3.3. Mount path of Kafka log directories

2.2.3.4. Resizing persistent volumes
2.2.3.5. JBOD storage

2.2.3.5.1. PVC resource for JBOD storage
2.2.3.5.2. Mount path of Kafka log directories

2.2.3.6. Adding volumes to JBOD storage
2.2.3.7. Removing volumes from JBOD storage

2.2.4. Connecting to ZooKeeper from a terminal
2.2.5. Deleting Kafka nodes manually
2.2.6. Deleting ZooKeeper nodes manually
2.2.7. List of Kafka cluster resources

2.3. KAFKA CONNECT CLUSTER CONFIGURATION
2.3.1. Configuring Kafka Connect
2.3.2. Configuring Kafka Connect for multiple instances
2.3.3. Configuring Kafka Connect user authorization
2.3.4. List of Kafka Connect cluster resources
2.3.5. Integrating with the Red Hat build of Debezium for change data capture

2.4. KAFKA MIRRORMAKER 2 CLUSTER CONFIGURATION
2.4.1. MirrorMaker 2 data replication

2.4.1.1. MirrorMaker 2 configuration
2.4.1.1.1. Cluster configuration
2.4.1.1.2. Bidirectional replication (active/active)
2.4.1.1.3. Unidirectional replication (active/passive)

2.4.1.2. Topic configuration synchronization
2.4.1.3. Offset tracking

9

10
10
10
11

12
12

13
13
13
14
19

20
21
22
22
23
23
24
24
25
25
27
28
28
28
30
30
31
31
32
33
33
34
35
39
39
43
44
46
47
48
48
48
49
49
50
50
50

Table of Contents

1

. .

. .

. .

. .

2.4.1.4. Synchronizing consumer group offsets
2.4.1.5. Connectivity checks

2.4.2. Connector configuration
2.4.3. Connector producer and consumer configuration
2.4.4. Specifying a maximum number of tasks

2.4.4.1. Checking connector task operations
2.4.5. ACL rules synchronization
2.4.6. Configuring Kafka MirrorMaker 2
2.4.7. Securing a Kafka MirrorMaker 2 deployment
2.4.8. Performing a restart of a Kafka MirrorMaker 2 connector
2.4.9. Performing a restart of a Kafka MirrorMaker 2 connector task

2.5. KAFKA MIRRORMAKER CLUSTER CONFIGURATION
2.5.1. Configuring Kafka MirrorMaker
2.5.2. List of Kafka MirrorMaker cluster resources

2.6. KAFKA BRIDGE CLUSTER CONFIGURATION
2.6.1. Configuring the Kafka Bridge
2.6.2. List of Kafka Bridge cluster resources

2.7. CUSTOMIZING OPENSHIFT RESOURCES
2.7.1. Customizing the image pull policy
2.7.2. Applying a termination grace period

2.8. CONFIGURING POD SCHEDULING
2.8.1. Specifying affinity, tolerations, and topology spread constraints

2.8.1.1. Use pod anti-affinity to avoid critical applications sharing nodes
2.8.1.2. Use node affinity to schedule workloads onto specific nodes
2.8.1.3. Use node affinity and tolerations for dedicated nodes

2.8.2. Configuring pod anti-affinity to schedule each Kafka broker on a different worker node
2.8.3. Configuring pod anti-affinity in Kafka components
2.8.4. Configuring node affinity in Kafka components
2.8.5. Setting up dedicated nodes and scheduling pods on them

2.9. LOGGING CONFIGURATION
2.9.1. Logging options for Kafka components and operators
2.9.2. Creating a ConfigMap for logging
2.9.3. Adding logging filters to Operators

CHAPTER 3. LOADING CONFIGURATION VALUES FROM EXTERNAL SOURCES
3.1. LOADING CONFIGURATION VALUES FROM A CONFIGMAP
3.2. LOADING CONFIGURATION VALUES FROM ENVIRONMENT VARIABLES

CHAPTER 4. APPLYING SECURITY CONTEXT TO AMQ STREAMS PODS AND CONTAINERS
4.1. HANDLING OF SECURITY CONTEXT BY OPENSHIFT PLATFORM

CHAPTER 5. VALIDATING SCHEMAS WITH THE RED HAT BUILD OF APICURIO REGISTRY

CHAPTER 6. CUSTOM RESOURCE API REFERENCE
6.1. COMMON CONFIGURATION PROPERTIES

6.1.1. replicas
6.1.2. bootstrapServers
6.1.3. ssl
6.1.4. trustedCertificates
6.1.5. resources
6.1.6. image
6.1.7. livenessProbe and readinessProbe healthchecks
6.1.8. metricsConfig
6.1.9. jvmOptions

51
52
52
55
57
59
59
59
66
73
73
74
74
78
78
79
81

82
83
83
84
84
85
85
85
85
87
88
89
90
91
91

92

96
96
99

101
101

102

103
103
103
103
103
104
105
107
110
110
112

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

2

6.1.10. Garbage collector logging
6.2. SCHEMA PROPERTIES

6.2.1. Kafka schema reference
6.2.2. KafkaSpec schema reference
6.2.3. KafkaClusterSpec schema reference

6.2.3.1. listeners
6.2.3.2. config
6.2.3.3. brokerRackInitImage
6.2.3.4. logging
6.2.3.5. KafkaClusterSpec schema properties

6.2.4. GenericKafkaListener schema reference
6.2.4.1. listeners
6.2.4.2. type
6.2.4.3. port
6.2.4.4. tls
6.2.4.5. authentication
6.2.4.6. networkPolicyPeers
6.2.4.7. GenericKafkaListener schema properties

6.2.5. KafkaListenerAuthenticationTls schema reference
6.2.6. KafkaListenerAuthenticationScramSha512 schema reference
6.2.7. KafkaListenerAuthenticationOAuth schema reference
6.2.8. GenericSecretSource schema reference
6.2.9. CertSecretSource schema reference
6.2.10. KafkaListenerAuthenticationCustom schema reference

6.2.10.1. listenerConfig
6.2.10.2. secrets
6.2.10.3. Principal builder
6.2.10.4. KafkaListenerAuthenticationCustom schema properties

6.2.11. GenericKafkaListenerConfiguration schema reference
6.2.11.1. brokerCertChainAndKey
6.2.11.2. externalTrafficPolicy
6.2.11.3. loadBalancerSourceRanges
6.2.11.4. class
6.2.11.5. preferredNodePortAddressType
6.2.11.6. useServiceDnsDomain
6.2.11.7. GenericKafkaListenerConfiguration schema properties

6.2.12. CertAndKeySecretSource schema reference
6.2.13. GenericKafkaListenerConfigurationBootstrap schema reference

6.2.13.1. alternativeNames
6.2.13.2. host
6.2.13.3. nodePort
6.2.13.4. loadBalancerIP
6.2.13.5. annotations
6.2.13.6. GenericKafkaListenerConfigurationBootstrap schema properties

6.2.14. GenericKafkaListenerConfigurationBroker schema reference
6.2.14.1. GenericKafkaListenerConfigurationBroker schema properties

6.2.15. EphemeralStorage schema reference
6.2.16. PersistentClaimStorage schema reference
6.2.17. PersistentClaimStorageOverride schema reference
6.2.18. JbodStorage schema reference
6.2.19. KafkaAuthorizationSimple schema reference

6.2.19.1. superUsers
6.2.19.2. KafkaAuthorizationSimple schema properties

115
115
115
115
116
116
117
118
119
121
123
124
124
127
128
128
128
129
130
131
131

136
136
136
137
137
137
138
139
139
139
140
140
140
141
141

144
145
145
145
146
147
147
148
149
150
151
151
152
152
153
153
154

Table of Contents

3

6.2.20. KafkaAuthorizationOpa schema reference
6.2.20.1. url
6.2.20.2. allowOnError
6.2.20.3. initialCacheCapacity
6.2.20.4. maximumCacheSize
6.2.20.5. expireAfterMs
6.2.20.6. tlsTrustedCertificates
6.2.20.7. superUsers
6.2.20.8. KafkaAuthorizationOpa schema properties

6.2.21. KafkaAuthorizationKeycloak schema reference
6.2.22. KafkaAuthorizationCustom schema reference

6.2.22.1. authorizerClass
6.2.22.2. superUsers
6.2.22.3. KafkaAuthorizationCustom schema properties

6.2.23. Rack schema reference
6.2.23.1. Spreading partition replicas across racks
6.2.23.2. Consuming messages from the closest replicas
6.2.23.3. Rack schema properties

6.2.24. Probe schema reference
6.2.25. JvmOptions schema reference
6.2.26. SystemProperty schema reference
6.2.27. KafkaJmxOptions schema reference

6.2.27.1. KafkaJmxOptions schema properties
6.2.28. KafkaJmxAuthenticationPassword schema reference
6.2.29. JmxPrometheusExporterMetrics schema reference
6.2.30. ExternalConfigurationReference schema reference
6.2.31. InlineLogging schema reference
6.2.32. ExternalLogging schema reference
6.2.33. KafkaClusterTemplate schema reference
6.2.34. StatefulSetTemplate schema reference
6.2.35. MetadataTemplate schema reference

6.2.35.1. MetadataTemplate schema properties
6.2.36. PodTemplate schema reference

6.2.36.1. hostAliases
6.2.36.2. PodTemplate schema properties

6.2.37. InternalServiceTemplate schema reference
6.2.38. ResourceTemplate schema reference
6.2.39. PodDisruptionBudgetTemplate schema reference

6.2.39.1. PodDisruptionBudgetTemplate schema properties
6.2.40. ContainerTemplate schema reference

6.2.40.1. ContainerTemplate schema properties
6.2.41. ContainerEnvVar schema reference
6.2.42. ZookeeperClusterSpec schema reference

6.2.42.1. config
6.2.42.2. logging
6.2.42.3. ZookeeperClusterSpec schema properties

6.2.43. ZookeeperClusterTemplate schema reference
6.2.44. EntityOperatorSpec schema reference
6.2.45. EntityTopicOperatorSpec schema reference

6.2.45.1. logging
6.2.45.2. EntityTopicOperatorSpec schema properties

6.2.46. EntityUserOperatorSpec schema reference
6.2.46.1. logging

154
154
154
154
154
155
155
155
155
156
158
158
158
159
160
160
161

163
163
164
164
165
166
166
167
167
167
168
168
170
170
171
171
172
172
173
174
174
175
175
176
176
176
176
178
179
180
181

182
182
183
184
184

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

4

6.2.46.2. EntityUserOperatorSpec schema properties
6.2.47. TlsSidecar schema reference

6.2.47.1. TlsSidecar schema properties
6.2.48. EntityOperatorTemplate schema reference
6.2.49. DeploymentTemplate schema reference

6.2.49.1. DeploymentTemplate schema properties
6.2.50. CertificateAuthority schema reference
6.2.51. CruiseControlSpec schema reference

6.2.51.1. config
6.2.51.2. Cross-Origin Resource Sharing (CORS)
6.2.51.3. Cruise Control REST API security
6.2.51.4. brokerCapacity
6.2.51.5. Capacity overrides
6.2.51.6. Logging configuration
6.2.51.7. CruiseControlSpec schema properties

6.2.52. CruiseControlTemplate schema reference
6.2.53. BrokerCapacity schema reference
6.2.54. BrokerCapacityOverride schema reference
6.2.55. KafkaExporterSpec schema reference
6.2.56. KafkaExporterTemplate schema reference
6.2.57. KafkaStatus schema reference
6.2.58. Condition schema reference
6.2.59. ListenerStatus schema reference
6.2.60. ListenerAddress schema reference
6.2.61. KafkaConnect schema reference
6.2.62. KafkaConnectSpec schema reference

6.2.62.1. config
6.2.62.2. logging
6.2.62.3. KafkaConnectSpec schema properties

6.2.63. ClientTls schema reference
6.2.63.1. trustedCertificates
6.2.63.2. ClientTls schema properties

6.2.64. KafkaClientAuthenticationTls schema reference
6.2.64.1. certificateAndKey
6.2.64.2. KafkaClientAuthenticationTls schema properties

6.2.65. KafkaClientAuthenticationScramSha256 schema reference
6.2.65.1. username
6.2.65.2. passwordSecret
6.2.65.3. KafkaClientAuthenticationScramSha256 schema properties

6.2.66. PasswordSecretSource schema reference
6.2.67. KafkaClientAuthenticationScramSha512 schema reference

6.2.67.1. username
6.2.67.2. passwordSecret
6.2.67.3. KafkaClientAuthenticationScramSha512 schema properties

6.2.68. KafkaClientAuthenticationPlain schema reference
6.2.68.1. username
6.2.68.2. passwordSecret
6.2.68.3. KafkaClientAuthenticationPlain schema properties

6.2.69. KafkaClientAuthenticationOAuth schema reference
6.2.69.1. KafkaClientAuthenticationOAuth schema properties

6.2.70. JaegerTracing schema reference
6.2.71. OpenTelemetryTracing schema reference
6.2.72. KafkaConnectTemplate schema reference

186
187
188
189
190
190
190
191
191

193
193
194
195
196
197
198
199

200
200
201

202
202
203
204
204
204
204
206
207
210
210
210
210
210
211
211
211
211
212
212
213
213
213
214
214
215
215
216
216
219
221
221
222

Table of Contents

5

6.2.73. BuildConfigTemplate schema reference
6.2.74. ExternalConfiguration schema reference

6.2.74.1. env
6.2.74.2. volumes
6.2.74.3. ExternalConfiguration schema properties

6.2.75. ExternalConfigurationEnv schema reference
6.2.76. ExternalConfigurationEnvVarSource schema reference
6.2.77. ExternalConfigurationVolumeSource schema reference
6.2.78. Build schema reference

6.2.78.1. output
6.2.78.2. plugins
6.2.78.3. Build schema properties

6.2.79. DockerOutput schema reference
6.2.80. ImageStreamOutput schema reference
6.2.81. Plugin schema reference
6.2.82. JarArtifact schema reference
6.2.83. TgzArtifact schema reference
6.2.84. ZipArtifact schema reference
6.2.85. MavenArtifact schema reference
6.2.86. OtherArtifact schema reference
6.2.87. KafkaConnectStatus schema reference
6.2.88. ConnectorPlugin schema reference
6.2.89. KafkaTopic schema reference
6.2.90. KafkaTopicSpec schema reference
6.2.91. KafkaTopicStatus schema reference
6.2.92. KafkaUser schema reference
6.2.93. KafkaUserSpec schema reference
6.2.94. KafkaUserTlsClientAuthentication schema reference
6.2.95. KafkaUserTlsExternalClientAuthentication schema reference
6.2.96. KafkaUserScramSha512ClientAuthentication schema reference
6.2.97. Password schema reference
6.2.98. PasswordSource schema reference
6.2.99. KafkaUserAuthorizationSimple schema reference
6.2.100. AclRule schema reference

6.2.100.1. resource
6.2.100.2. type
6.2.100.3. operations
6.2.100.4. host
6.2.100.5. AclRule schema properties

6.2.101. AclRuleTopicResource schema reference
6.2.102. AclRuleGroupResource schema reference
6.2.103. AclRuleClusterResource schema reference
6.2.104. AclRuleTransactionalIdResource schema reference
6.2.105. KafkaUserQuotas schema reference

6.2.105.1. quotas
6.2.105.2. KafkaUserQuotas schema properties

6.2.106. KafkaUserTemplate schema reference
6.2.106.1. KafkaUserTemplate schema properties

6.2.107. KafkaUserStatus schema reference
6.2.108. KafkaMirrorMaker schema reference
6.2.109. KafkaMirrorMakerSpec schema reference

6.2.109.1. include
6.2.109.2. KafkaMirrorMakerConsumerSpec and KafkaMirrorMakerProducerSpec

223
223
224
225
228
229
229
229
230
230
231

236
236
237
237
237
238
239
239
240
241
242
242
242
243
243
243
244
245
245
245
246
246
246
247
248
248
248
248
249
250
250
251
251
251

252
252
253
253
254
254
254
254

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

6

. .

6.2.109.3. logging
6.2.109.4. KafkaMirrorMakerSpec schema properties

6.2.110. KafkaMirrorMakerConsumerSpec schema reference
6.2.110.1. numStreams
6.2.110.2. offsetCommitInterval
6.2.110.3. config
6.2.110.4. groupId
6.2.110.5. KafkaMirrorMakerConsumerSpec schema properties

6.2.111. KafkaMirrorMakerProducerSpec schema reference
6.2.111.1. abortOnSendFailure
6.2.111.2. config
6.2.111.3. KafkaMirrorMakerProducerSpec schema properties

6.2.112. KafkaMirrorMakerTemplate schema reference
6.2.113. KafkaMirrorMakerStatus schema reference
6.2.114. KafkaBridge schema reference
6.2.115. KafkaBridgeSpec schema reference

6.2.115.1. logging
6.2.115.2. KafkaBridgeSpec schema properties

6.2.116. KafkaBridgeHttpConfig schema reference
6.2.116.1. cors
6.2.116.2. KafkaBridgeHttpConfig schema properties

6.2.117. KafkaBridgeHttpCors schema reference
6.2.118. KafkaBridgeAdminClientSpec schema reference
6.2.119. KafkaBridgeConsumerSpec schema reference

6.2.119.1. KafkaBridgeConsumerSpec schema properties
6.2.120. KafkaBridgeProducerSpec schema reference

6.2.120.1. KafkaBridgeProducerSpec schema properties
6.2.121. KafkaBridgeTemplate schema reference
6.2.122. KafkaBridgeStatus schema reference
6.2.123. KafkaConnector schema reference
6.2.124. KafkaConnectorSpec schema reference
6.2.125. AutoRestart schema reference

6.2.125.1. AutoRestart schema properties
6.2.126. KafkaConnectorStatus schema reference
6.2.127. AutoRestartStatus schema reference
6.2.128. KafkaMirrorMaker2 schema reference
6.2.129. KafkaMirrorMaker2Spec schema reference
6.2.130. KafkaMirrorMaker2ClusterSpec schema reference

6.2.130.1. config
6.2.130.2. KafkaMirrorMaker2ClusterSpec schema properties

6.2.131. KafkaMirrorMaker2MirrorSpec schema reference
6.2.132. KafkaMirrorMaker2ConnectorSpec schema reference
6.2.133. KafkaMirrorMaker2Status schema reference
6.2.134. KafkaRebalance schema reference
6.2.135. KafkaRebalanceSpec schema reference
6.2.136. KafkaRebalanceStatus schema reference

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files
Installing packages with DNF

254
255
257
257
257
258
259
259
260
260
260
261
262
262
263
263
264
266
267
268
268
268
269
269
270
270
271

272
273
273
273
274
275
275
276
276
277
278
278
279
279
281
281
282
282
284

285
285
285
285
285

Table of Contents

7

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

8

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

9

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. CONFIGURATION OVERVIEW
AMQ Streams simplifies the process of running Apache Kafka in an OpenShift cluster.

This guide describes how to configure and manage an AMQ Streams deployment.

1.1. CONFIGURING CUSTOM RESOURCES

Use custom resources to configure your AMQ Streams deployment.

You can use custom resources to configure and create instances of the following components:

Kafka clusters

Kafka Connect clusters

Kafka MirrorMaker

Kafka Bridge

Cruise Control

You can also use custom resource configuration to manage your instances or modify your deployment
to introduce additional features. This might include configuration that supports the following:

Securing client access to Kafka brokers

Accessing Kafka brokers from outside the cluster

Creating topics

Creating users (clients)

Controlling feature gates

Changing logging frequency

Allocating resource limits and requests

Introducing features, such as AMQ Streams Drain Cleaner, Cruise Control, or distributed tracing.

The Custom resource API reference describes the properties you can use in your configuration.

1.2. USING CONFIGMAPS TO ADD CONFIGURATION

Use ConfigMap resources to add specific configuration to your AMQ Streams deployment. ConfigMaps
use key-value pairs to store non-confidential data. Configuration data added to ConfigMaps is
maintained in one place and can be reused amongst components.

ConfigMaps can only store configuration data related to the following:

Logging configuration

Metrics configuration

External configuration for Kafka Connect connectors

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

10

https://kafka.apache.org/

You can’t use ConfigMaps for other areas of configuration.

When you configure a component, you can add a reference to a ConfigMap using the configMapKeyRef
property.

For example, you can use configMapKeyRef to reference a ConfigMap that provides configuration for
logging. You might use a ConfigMap to pass a Log4j configuration file. You add the reference to the
logging configuration.

Example ConfigMap for logging

To use a ConfigMap for metrics configuration, you add a reference to the metricsConfig configuration
of the component in the same way.

ExternalConfiguration properties make data from a ConfigMap (or Secret) mounted to a pod available
as environment variables or volumes. You can use external configuration data for the connectors used
by Kafka Connect. The data might be related to an external data source, providing the values needed for
the connector to communicate with that data source.

For example, you can use the configMapKeyRef property to pass configuration data from a ConfigMap
as an environment variable.

Example ConfigMap providing environment variable values

If you are using ConfigMaps that are managed externally, use configuration providers to load the data in
the ConfigMaps. For more information on using configuration providers, see Chapter 3, Loading
configuration values from external sources.

1.2.1. Naming custom ConfigMaps

AMQ Streams creates its own ConfigMaps and other resources when it is deployed to OpenShift. The

spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-config-map-key

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 externalConfiguration:
 env:
 - name: MY_ENVIRONMENT_VARIABLE
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-key

CHAPTER 1. CONFIGURATION OVERVIEW

11

AMQ Streams creates its own ConfigMaps and other resources when it is deployed to OpenShift. The
ConfigMaps contain data necessary for running components. The ConfigMaps created by AMQ
Streams must not be edited.

Make sure that any custom ConfigMaps you create do not have the same name as these default
ConfigMaps. If they have the same name, they will be overwritten. For example, if your ConfigMap has
the same name as the ConfigMap for the Kafka cluster, it will be overwritten when there is an update to
the Kafka cluster.

Additional resources

Section 2.2.7, “List of Kafka cluster resources” (including ConfigMaps)

Section 2.9, “Logging configuration”

Section 6.1.8, “metricsConfig”

Section 6.2.74, “ExternalConfiguration schema reference”

Chapter 3, Loading configuration values from external sources

1.3. DOCUMENT CONVENTIONS

User-replaced values

User-replaced values, also known as replaceables, are shown in italics with angle brackets (< >).
Underscores (_) are used for multi-word values. If the value refers to code or commands, monospace
is also used.

For example, in the following code, you will want to replace <my_namespace> with the name of your
namespace:

sed -i 's/namespace: .*/namespace: <my_namespace>/' install/cluster-operator/*RoleBinding*.yaml

1.4. ADDITIONAL RESOURCES

AMQ Streams Overview

Deploying and Upgrading AMQ Streams

Using the AMQ Streams Kafka Bridge

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

12

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/amq_streams_on_openshift_overview/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/using_the_amq_streams_kafka_bridge/index

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON
OPENSHIFT DEPLOYMENT

Configure your AMQ Streams deployment using custom resources. AMQ Streams provides example
configuration files, which can serve as a starting point when building your own Kafka component
configuration for deployment.

NOTE

Labels applied to a custom resource are also applied to the OpenShift resources making
up its cluster. This provides a convenient mechanism for resources to be labeled as
required.

Monitoring an AMQ Streams deployment

You can use Prometheus and Grafana to monitor your AMQ Streams deployment. For more
information, see Introducing metrics to Kafka .

2.1. USING STANDARD KAFKA CONFIGURATION PROPERTIES

Use standard Kafka configuration properties to configure Kafka components.

The properties provide options to control and tune the configuration of the following Kafka components:

Brokers

Topics

Clients (producers and consumers)

Admin client

Kafka Connect

Kafka Streams

Broker and client parameters include options to configure authorization, authentication and encryption.

NOTE

For AMQ Streams on OpenShift, some configuration properties are managed entirely by
AMQ Streams and cannot be changed.

For further information on Kafka configuration properties and how to use the properties to tune your
deployment, see the following guides:

Kafka configuration properties

Kafka configuration tuning

2.2. KAFKA CLUSTER CONFIGURATION

Configure a Kafka deployment using the Kafka resource. A Kafka cluster is deployed with a ZooKeeper
cluster, so configuration options are also available for ZooKeeper within the Kafka resource. The Entity

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

13

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#deploy-examples-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-metrics-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/kafka_configuration_properties/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/kafka_configuration_tuning/index

Operator comprises the Topic Operator and User Operator. You can also configure entityOperator
properties in the Kafka resource to include the Topic Operator and User Operator in the deployment.

Section 6.2.1, “Kafka schema reference” describes the full schema of the Kafka resource.

For more information about Apache Kafka, see the Apache Kafka documentation.

Listener configuration

You configure listeners for connecting clients to Kafka brokers. For more information on configuring
listeners, see Section 6.2.4, “GenericKafkaListener schema reference”.

Managing TLS certificates

When deploying Kafka, the Cluster Operator automatically sets up and renews TLS certificates to
enable encryption and authentication within your cluster. If required, you can manually renew the cluster
and clients CA certificates before their renewal period starts. You can also replace the keys used by the
cluster and clients CA certificates. For more information, see Renewing CA certificates manually and
Replacing private keys.

2.2.1. Configuring Kafka

Use the properties of the Kafka resource to configure your Kafka deployment.

As well as configuring Kafka, you can add configuration for ZooKeeper and the AMQ Streams Operators.
Common configuration properties, such as logging and healthchecks, are configured independently for
each component.

This procedure shows only some of the possible configuration options, but those that are particularly
important include:

Resource requests (CPU / Memory)

JVM options for maximum and minimum memory allocation

Listeners (and authentication of clients)

Authentication

Storage

Rack awareness

Metrics

Cruise Control for cluster rebalancing

Kafka versions

The inter.broker.protocol.version property for the Kafka config must be the version supported by the
specified Kafka version (spec.kafka.version). The property represents the version of Kafka protocol
used in a Kafka cluster.

From Kafka 3.0.0, when the inter.broker.protocol.version is set to 3.0 or higher, the
log.message.format.version option is ignored and doesn’t need to be set.

An update to the inter.broker.protocol.version is required when upgrading your Kafka version. For
more information, see Upgrading Kafka .

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

14

https://kafka.apache.org/documentation/
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-renewing-ca-certs-manually-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-replacing-private-keys-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-upgrading-kafka-versions-str

Prerequisites

An OpenShift cluster

A running Cluster Operator

See the Deploying and Upgrading AMQ Streams on OpenShift guide for instructions on deploying a:

Cluster Operator

Kafka cluster

Procedure

1. Edit the spec properties for the Kafka resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 replicas: 3 1
 version: 3.4.0 2
 logging: 3
 type: inline
 loggers:
 kafka.root.logger.level: "INFO"
 resources: 4
 requests:
 memory: 64Gi
 cpu: "8"
 limits:
 memory: 64Gi
 cpu: "12"
 readinessProbe: 5
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 jvmOptions: 6
 -Xms: 8192m
 -Xmx: 8192m
 image: my-org/my-image:latest 7
 listeners: 8
 - name: plain 9
 port: 9092 10
 type: internal 11
 tls: false 12
 configuration:
 useServiceDnsDomain: true 13
 - name: tls

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

15

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#deploying-kafka-cluster-str

 port: 9093
 type: internal
 tls: true
 authentication: 14
 type: tls
 - name: external 15
 port: 9094
 type: route
 tls: true
 configuration:
 brokerCertChainAndKey: 16
 secretName: my-secret
 certificate: my-certificate.crt
 key: my-key.key
 authorization: 17
 type: simple
 config: 18
 auto.create.topics.enable: "false"
 offsets.topic.replication.factor: 3
 transaction.state.log.replication.factor: 3
 transaction.state.log.min.isr: 2
 default.replication.factor: 3
 min.insync.replicas: 2
 inter.broker.protocol.version: "3.4"
 ssl.cipher.suites: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 19
 ssl.enabled.protocols: TLSv1.2
 ssl.protocol: TLSv1.2
 storage: 20
 type: persistent-claim 21
 size: 10000Gi 22
 rack: 23
 topologyKey: topology.kubernetes.io/zone
 metricsConfig: 24
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef: 25
 name: my-config-map
 key: my-key
 # ...
 zookeeper: 26
 replicas: 3 27
 logging: 28
 type: inline
 loggers:
 zookeeper.root.logger: "INFO"
 resources:
 requests:
 memory: 8Gi
 cpu: "2"
 limits:
 memory: 8Gi
 cpu: "2"
 jvmOptions:
 -Xms: 4096m

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

16

1

2

3

The number of replica nodes .

Kafka version, which can be changed to a supported version by following the upgrade
procedure.

Kafka loggers and log levels added directly (inline) or indirectly (external) through a

 -Xmx: 4096m
 storage:
 type: persistent-claim
 size: 1000Gi
 metricsConfig:
 # ...
 entityOperator: 29
 tlsSidecar: 30
 resources:
 requests:
 cpu: 200m
 memory: 64Mi
 limits:
 cpu: 500m
 memory: 128Mi
 topicOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 logging: 31
 type: inline
 loggers:
 rootLogger.level: "INFO"
 resources:
 requests:
 memory: 512Mi
 cpu: "1"
 limits:
 memory: 512Mi
 cpu: "1"
 userOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 logging: 32
 type: inline
 loggers:
 rootLogger.level: INFO
 resources:
 requests:
 memory: 512Mi
 cpu: "1"
 limits:
 memory: 512Mi
 cpu: "1"
 kafkaExporter: 33
 # ...
 cruiseControl: 34
 # ...

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

17

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-upgrade-str

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Kafka loggers and log levels added directly (inline) or indirectly (external) through a
ConfigMap. A custom ConfigMap must be placed under the log4j.properties key. For the

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

JVM configuration options to optimize performance for the Virtual Machine (VM) running
Kafka.

ADVANCED OPTION: Container image configuration , which is recommended only in
special situations.

Listeners configure how clients connect to the Kafka cluster via bootstrap addresses.
Listeners are configured as internal or external listeners for connection from inside or
outside the OpenShift cluster.

Name to identify the listener. Must be unique within the Kafka cluster.

Port number used by the listener inside Kafka. The port number has to be unique within a
given Kafka cluster. Allowed port numbers are 9092 and higher with the exception of ports
9404 and 9999, which are already used for Prometheus and JMX. Depending on the
listener type, the port number might not be the same as the port number that connects
Kafka clients.

Listener type specified as internal or cluster-ip (to expose Kafka using per-broker
ClusterIP services), or for external listeners, as route (OpenShift only), loadbalancer,
nodeport or ingress (Kubernetes only).

Enables TLS encryption for each listener. Default is false. TLS encryption is not required
for route listeners.

Defines whether the fully-qualified DNS names including the cluster service suffix (usually
.cluster.local) are assigned.

Listener authentication mechanism specified as mTLS, SCRAM-SHA-512, or token-based
OAuth 2.0.

External listener configuration specifies how the Kafka cluster is exposed outside
OpenShift, such as through a route, loadbalancer or nodeport.

Optional configuration for a Kafka listener certificate managed by an external CA
(certificate authority). The brokerCertChainAndKey specifies a Secret that contains a
server certificate and a private key. You can configure Kafka listener certificates on any
listener with enabled TLS encryption.

Authorization enables simple, OAUTH 2.0, or OPA authorization on the Kafka broker.
Simple authorization uses the AclAuthorizer Kafka plugin.

Broker configuration. Standard Apache Kafka configuration may be provided, restricted to
those properties not managed directly by AMQ Streams.

SSL properties for listeners with TLS encryption enabled to enable a specific cipher suite
or TLS version.

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

18

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-installing-certs-per-listener-str

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Storage is configured as ephemeral, persistent-claim or jbod.

Storage size for persistent volumes may be increased and additional volumes may be
added to JBOD storage.

Persistent storage has additional configuration options, such as a storage id and class for
dynamic volume provisioning.

Rack awareness configuration to spread replicas across different racks, data centers, or
availability zones. The topologyKey must match a node label containing the rack ID. The
example used in this configuration specifies a zone using the standard
topology.kubernetes.io/zone label.

Prometheus metrics enabled. In this example, metrics are configured for the Prometheus
JMX Exporter (the default metrics exporter).

Prometheus rules for exporting metrics to a Grafana dashboard through the Prometheus
JMX Exporter, which are enabled by referencing a ConfigMap containing configuration for
the Prometheus JMX exporter. You can enable metrics without further configuration using
a reference to a ConfigMap containing an empty file under
metricsConfig.valueFrom.configMapKeyRef.key.

ZooKeeper-specific configuration, which contains properties similar to the Kafka
configuration.

The number of ZooKeeper nodes . ZooKeeper clusters or ensembles usually run with an odd
number of nodes, typically three, five, or seven. The majority of nodes must be available in
order to maintain an effective quorum. If the ZooKeeper cluster loses its quorum, it will
stop responding to clients and the Kafka brokers will stop working. Having a stable and
highly available ZooKeeper cluster is crucial for AMQ Streams.

Specified ZooKeeper loggers and log levels .

Entity Operator configuration, which specifies the configuration for the Topic Operator
and User Operator.

Entity Operator TLS sidecar configuration. Entity Operator uses the TLS sidecar for
secure communication with ZooKeeper.

Specified Topic Operator loggers and log levels . This example uses inline logging.

Specified User Operator loggers and log levels .

Kafka Exporter configuration. Kafka Exporter is an optional component for extracting
metrics data from Kafka brokers, in particular consumer lag data. For Kafka Exporter to be
able to work properly, consumer groups need to be in use.

Optional configuration for Cruise Control, which is used to rebalance the Kafka cluster.

2. Create or update the resource:

2.2.2. Configuring the Entity Operator

oc apply -f <kafka_configuration_file>

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

19

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#con-metrics-kafka-exporter-lag-str

The Entity Operator is responsible for managing Kafka-related entities in a running Kafka cluster.

The Entity Operator comprises the:

Topic Operator to manage Kafka topics

User Operator to manage Kafka users

Through Kafka resource configuration, the Cluster Operator can deploy the Entity Operator, including
one or both operators, when deploying a Kafka cluster.

The operators are automatically configured to manage the topics and users of the Kafka cluster. The
Topic Operator and User Operator can only watch a single namespace.

NOTE

When deployed, the Entity Operator pod contains the operators according to the
deployment configuration.

2.2.2.1. Entity Operator configuration properties

Use the entityOperator property in Kafka.spec to configure the Entity Operator.

The entityOperator property supports several sub-properties:

tlsSidecar

topicOperator

userOperator

template

The tlsSidecar property contains the configuration of the TLS sidecar container, which is used to
communicate with ZooKeeper.

The template property contains the configuration of the Entity Operator pod, such as labels,
annotations, affinity, and tolerations. For more information on configuring templates, see Section 2.7,
“Customizing OpenShift resources”.

The topicOperator property contains the configuration of the Topic Operator. When this option is
missing, the Entity Operator is deployed without the Topic Operator.

The userOperator property contains the configuration of the User Operator. When this option is
missing, the Entity Operator is deployed without the User Operator.

For more information on the properties used to configure the Entity Operator, see the
EntityUserOperatorSpec schema reference.

Example of basic configuration enabling both operators

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

20

If an empty object ({}) is used for the topicOperator and userOperator, all properties use their default
values.

When both topicOperator and userOperator properties are missing, the Entity Operator is not
deployed.

2.2.2.2. Topic Operator configuration properties

Topic Operator deployment can be configured using additional options inside the topicOperator object.
The following properties are supported:

watchedNamespace

The OpenShift namespace in which the Topic Operator watches for KafkaTopic resources. Default
is the namespace where the Kafka cluster is deployed.

reconciliationIntervalSeconds

The interval between periodic reconciliations in seconds. Default 120.

zookeeperSessionTimeoutSeconds

The ZooKeeper session timeout in seconds. Default 18.

topicMetadataMaxAttempts

The number of attempts at getting topic metadata from Kafka. The time between each attempt is
defined as an exponential back-off. Consider increasing this value when topic creation might take
more time due to the number of partitions or replicas. Default 6.

image

The image property can be used to configure the container image which will be used. For more
details about configuring custom container images, see Section 6.1.6, “image”.

resources

The resources property configures the amount of resources allocated to the Topic Operator. For
more details about resource request and limit configuration, see Section 6.1.5, “resources”.

logging

The logging property configures the logging of the Topic Operator. For more details, see
Section 6.2.45.1, “logging”.

Example Topic Operator configuration

 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 topicOperator: {}
 userOperator: {}

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

21

2.2.2.3. User Operator configuration properties

User Operator deployment can be configured using additional options inside the userOperator object.
The following properties are supported:

watchedNamespace

The OpenShift namespace in which the User Operator watches for KafkaUser resources. Default is
the namespace where the Kafka cluster is deployed.

reconciliationIntervalSeconds

The interval between periodic reconciliations in seconds. Default 120.

image

The image property can be used to configure the container image which will be used. For more
details about configuring custom container images, see Section 6.1.6, “image”.

resources

The resources property configures the amount of resources allocated to the User Operator. For
more details about resource request and limit configuration, see Section 6.1.5, “resources”.

logging

The logging property configures the logging of the User Operator. For more details, see
Section 6.2.45.1, “logging”.

secretPrefix

The secretPrefix property adds a prefix to the name of all Secrets created from the KafkaUser
resource. For example, secretPrefix: kafka- would prefix all Secret names with kafka-. So a
KafkaUser named my-user would create a Secret named kafka-my-user.

Example User Operator configuration

2.2.3. Configuring Kafka and ZooKeeper storage

 entityOperator:
 # ...
 topicOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 userOperator:
 watchedNamespace: my-user-namespace
 reconciliationIntervalSeconds: 60
 # ...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

22

As stateful applications, Kafka and ZooKeeper store data on disk. AMQ Streams supports three storage
types for this data:

Ephemeral (Recommended for development only)

Persistent

JBOD (Kafka only not ZooKeeper)

When configuring a Kafka resource, you can specify the type of storage used by the Kafka broker and its
corresponding ZooKeeper node. You configure the storage type using the storage property in the
following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

The storage type is configured in the type field.

Refer to the schema reference for more information on storage configuration properties:

EphemeralStorage schema reference

PersistentClaimStorage schema reference

JbodStorage schema reference

WARNING

The storage type cannot be changed after a Kafka cluster is deployed.

2.2.3.1. Data storage considerations

For AMQ Streams to work well, an efficient data storage infrastructure is essential. We strongly
recommend using block storage. AMQ Streams is only tested for use with block storage. File storage,
such as NFS, is not tested and there is no guarantee it will work.

Choose one of the following options for your block storage:

A cloud-based block storage solution, such as Amazon Elastic Block Store (EBS)

Persistent storage using local persistent volumes

Storage Area Network (SAN) volumes accessed by a protocol such as Fibre Channel or iSCSI

NOTE

AMQ Streams does not require OpenShift raw block volumes.

2.2.3.1.1. File systems

Kafka uses a file system for storing messages. AMQ Streams is compatible with the XFS and ext4 file



CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

23

https://aws.amazon.com/ebs/
https://kubernetes.io/docs/concepts/storage/volumes/#local

Kafka uses a file system for storing messages. AMQ Streams is compatible with the XFS and ext4 file
systems, which are commonly used with Kafka. Consider the underlying architecture and requirements of
your deployment when choosing and setting up your file system.

For more information, refer to Filesystem Selection in the Kafka documentation.

2.2.3.1.2. Disk usage

Use separate disks for Apache Kafka and ZooKeeper.

Solid-state drives (SSDs), though not essential, can improve the performance of Kafka in large clusters
where data is sent to and received from multiple topics asynchronously. SSDs are particularly effective
with ZooKeeper, which requires fast, low latency data access.

NOTE

You do not need to provision replicated storage because Kafka and ZooKeeper both have
built-in data replication.

2.2.3.2. Ephemeral storage

Ephemeral data storage is transient. All pods on a node share a local ephemeral storage space. Data is
retained for as long as the pod that uses it is running. The data is lost when a pod is deleted. Although a
pod can recover data in a highly available environment.

Because of its transient nature, ephemeral storage is only recommended for development and testing.

Ephemeral storage uses emptyDir volumes to store data. An emptyDir volume is created when a pod is
assigned to a node. You can set the total amount of storage for the emptyDir using the sizeLimit
property .

IMPORTANT

Ephemeral storage is not suitable for single-node ZooKeeper clusters or Kafka topics
with a replication factor of 1.

To use ephemeral storage, you set the storage type configuration in the Kafka or ZooKeeper resource
to ephemeral.

Example ephemeral storage configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: ephemeral
 # ...
 zookeeper:
 # ...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

24

https://kafka.apache.org/documentation/#filesystems
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

2.2.3.2.1. Mount path of Kafka log directories

The ephemeral volume is used by Kafka brokers as log directories mounted into the following path:

Where IDX is the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0.

2.2.3.3. Persistent storage

Persistent data storage retains data in the event of system disruption. For pods that use persistent data
storage, data is persisted across pod failures and restarts.

A dynamic provisioning framework enables clusters to be created with persistent storage. Pod
configuration uses Persistent Volume Claims (PVCs) to make storage requests on persistent volumes
(PVs). PVs are storage resources that represent a storage volume. PVs are independent of the pods
that use them. The PVC requests the amount of storage required when a pod is being created. The
underlying storage infrastructure of the PV does not need to be understood. If a PV matches the
storage criteria, the PVC is bound to the PV.

Because of its permanent nature, persistent storage is recommended for production.

PVCs can request different types of persistent storage by specifying a StorageClass. Storage classes
define storage profiles and dynamically provision PVs. If a storage class is not specified, the default
storage class is used. Persistent storage options might include SAN storage types or local persistent
volumes.

To use persistent storage, you set the storage type configuration in the Kafka or ZooKeeper resource
to persistent-claim.

In the production environment, the following configuration is recommended:

For Kafka, configure type: jbod with one or more type: persistent-claim volumes

For ZooKeeper, configure type: persistent-claim

Persistent storage also has the following configuration options:

id (optional)

A storage identification number. This option is mandatory for storage volumes defined in a JBOD
storage declaration. Default is 0.

size (required)

The size of the persistent volume claim, for example, "1000Gi".

class (optional)

The OpenShift StorageClass to use for dynamic volume provisioning. Storage class configuration
includes parameters that describe the profile of a volume in detail.

selector (optional)

Configuration to specify a specific PV. Provides key:value pairs representing the labels of the volume
selected.

 storage:
 type: ephemeral
 # ...

/var/lib/kafka/data/kafka-logIDX

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

25

https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/volumes/#local
https://kubernetes.io/docs/concepts/storage/storage-classes/

deleteClaim (optional)

Boolean value to specify whether the PVC is deleted when the cluster is uninstalled. Default is false.

WARNING

Increasing the size of persistent volumes in an existing AMQ Streams cluster is only
supported in OpenShift versions that support persistent volume resizing. The
persistent volume to be resized must use a storage class that supports volume
expansion. For other versions of OpenShift and storage classes that do not support
volume expansion, you must decide the necessary storage size before deploying
the cluster. Decreasing the size of existing persistent volumes is not possible.

Example persistent storage configuration for Kafka and ZooKeeper

If you do not specify a storage class, the default is used. The following example specifies a storage class.

Example persistent storage configuration with specific storage class



...
spec:
 kafka:
 # ...
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 1
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 2
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 # ...
 zookeeper:
 storage:
 type: persistent-claim
 size: 1000Gi
...

...
storage:
 type: persistent-claim
 size: 1Gi
 class: my-storage-class
...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

26

Use a selector to specify a labeled persistent volume that provides certain features, such as an SSD.

Example persistent storage configuration with selector

2.2.3.3.1. Storage class overrides

Instead of using the default storage class, you can specify a different storage class for one or more
Kafka brokers or ZooKeeper nodes. This is useful, for example, when storage classes are restricted to
different availability zones or data centers. You can use the overrides field for this purpose.

In this example, the default storage class is named my-storage-class:

Example AMQ Streams cluster using storage class overrides

...
storage:
 type: persistent-claim
 size: 1Gi
 selector:
 hdd-type: ssd
 deleteClaim: true
...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 labels:
 app: my-cluster
 name: my-cluster
 namespace: myproject
spec:
 # ...
 kafka:
 replicas: 3
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 class: my-storage-class
 overrides:
 - broker: 0
 class: my-storage-class-zone-1a
 - broker: 1
 class: my-storage-class-zone-1b
 - broker: 2
 class: my-storage-class-zone-1c
 # ...
 # ...
 zookeeper:
 replicas: 3
 storage:

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

27

As a result of the configured overrides property, the volumes use the following storage classes:

The persistent volumes of ZooKeeper node 0 use my-storage-class-zone-1a.

The persistent volumes of ZooKeeper node 1 use my-storage-class-zone-1b.

The persistent volumes of ZooKeeepr node 2 use my-storage-class-zone-1c.

The persistent volumes of Kafka broker 0 use my-storage-class-zone-1a.

The persistent volumes of Kafka broker 1 use my-storage-class-zone-1b.

The persistent volumes of Kafka broker 2 use my-storage-class-zone-1c.

The overrides property is currently used only to override storage class configurations. Overrides for
other storage configuration properties is not currently supported. Other storage configuration
properties are currently not supported.

2.2.3.3.2. PVC resources for persistent storage

When persistent storage is used, it creates PVCs with the following names:

data-cluster-name-kafka-idx

PVC for the volume used for storing data for the Kafka broker pod idx.

data-cluster-name-zookeeper-idx

PVC for the volume used for storing data for the ZooKeeper node pod idx.

2.2.3.3.3. Mount path of Kafka log directories

The persistent volume is used by the Kafka brokers as log directories mounted into the following path:

Where IDX is the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0.

2.2.3.4. Resizing persistent volumes

You can provision increased storage capacity by increasing the size of the persistent volumes used by an
existing AMQ Streams cluster. Resizing persistent volumes is supported in clusters that use either a
single persistent volume or multiple persistent volumes in a JBOD storage configuration.

NOTE

 deleteClaim: true
 size: 100Gi
 type: persistent-claim
 class: my-storage-class
 overrides:
 - broker: 0
 class: my-storage-class-zone-1a
 - broker: 1
 class: my-storage-class-zone-1b
 - broker: 2
 class: my-storage-class-zone-1c
 # ...

/var/lib/kafka/data/kafka-logIDX

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

28

NOTE

You can increase but not decrease the size of persistent volumes. Decreasing the size of
persistent volumes is not currently supported in OpenShift.

Prerequisites

An OpenShift cluster with support for volume resizing.

The Cluster Operator is running.

A Kafka cluster using persistent volumes created using a storage class that supports volume
expansion.

Procedure

1. Edit the Kafka resource for your cluster.
Change the size property to increase the size of the persistent volume allocated to a Kafka
cluster, a ZooKeeper cluster, or both.

For Kafka clusters, update the size property under spec.kafka.storage.

For ZooKeeper clusters, update the size property under spec.zookeeper.storage.

Kafka configuration to increase the volume size to 2000Gi

2. Create or update the resource:

OpenShift increases the capacity of the selected persistent volumes in response to a request
from the Cluster Operator. When the resizing is complete, the Cluster Operator restarts all pods
that use the resized persistent volumes. This happens automatically.

3. Verify that the storage capacity has increased for the relevant pods on the cluster:

Kafka broker pods with increased storage

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: persistent-claim
 size: 2000Gi
 class: my-storage-class
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

oc get pv

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

29

The output shows the names of each PVC associated with a broker pod.

Additional resources

For more information about resizing persistent volumes in OpenShift, see Resizing Persistent
Volumes using Kubernetes.

2.2.3.5. JBOD storage

You can configure AMQ Streams to use JBOD, a data storage configuration of multiple disks or
volumes. JBOD is one approach to providing increased data storage for Kafka brokers. It can also
improve performance.

NOTE

JBOD storage is supported for Kafka only not ZooKeeper.

A JBOD configuration is described by one or more volumes, each of which can be either ephemeral or
persistent. The rules and constraints for JBOD volume declarations are the same as those for ephemeral
and persistent storage. For example, you cannot decrease the size of a persistent storage volume after
it has been provisioned, or you cannot change the value of sizeLimit when the type is ephemeral.

To use JBOD storage, you set the storage type configuration in the Kafka resource to jbod. The
volumes property allows you to describe the disks that make up your JBOD storage array or
configuration.

Example JBOD storage configuration

The IDs cannot be changed once the JBOD volumes are created. You can add or remove volumes from
the JBOD configuration.

2.2.3.5.1. PVC resource for JBOD storage

When persistent storage is used to declare JBOD volumes, it creates a PVC with the following name:

NAME CAPACITY CLAIM
pvc-0ca459ce-... 2000Gi my-project/data-my-cluster-kafka-2
pvc-6e1810be-... 2000Gi my-project/data-my-cluster-kafka-0
pvc-82dc78c9-... 2000Gi my-project/data-my-cluster-kafka-1

...
storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 1
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

30

https://kubernetes.io/blog/2018/07/12/resizing-persistent-volumes-using-kubernetes/

data-id-cluster-name-kafka-idx

PVC for the volume used for storing data for the Kafka broker pod idx. The id is the ID of the volume
used for storing data for Kafka broker pod.

2.2.3.5.2. Mount path of Kafka log directories

The JBOD volumes are used by Kafka brokers as log directories mounted into the following path:

Where id is the ID of the volume used for storing data for Kafka broker pod idx. For example
/var/lib/kafka/data-0/kafka-log0.

2.2.3.6. Adding volumes to JBOD storage

This procedure describes how to add volumes to a Kafka cluster configured to use JBOD storage. It
cannot be applied to Kafka clusters configured to use any other storage type.

NOTE

When adding a new volume under an id which was already used in the past and removed,
you have to make sure that the previously used PersistentVolumeClaims have been
deleted.

Prerequisites

An OpenShift cluster

A running Cluster Operator

A Kafka cluster with JBOD storage

Procedure

1. Edit the spec.kafka.storage.volumes property in the Kafka resource. Add the new volumes to
the volumes array. For example, add the new volume with id 2:

/var/lib/kafka/data-id/kafka-logidx

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 1
 type: persistent-claim
 size: 100Gi

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

31

2. Create or update the resource:

3. Create new topics or reassign existing partitions to the new disks.

TIP

Cruise Control is an effective tool for reassigning partitions. To perform an intra-broker disk
balance, you set rebalanceDisk to true under the KafkaRebalance.spec.

2.2.3.7. Removing volumes from JBOD storage

This procedure describes how to remove volumes from Kafka cluster configured to use JBOD storage. It
cannot be applied to Kafka clusters configured to use any other storage type. The JBOD storage always
has to contain at least one volume.

IMPORTANT

To avoid data loss, you have to move all partitions before removing the volumes.

Prerequisites

An OpenShift cluster

A running Cluster Operator

A Kafka cluster with JBOD storage with two or more volumes

Procedure

1. Reassign all partitions from the disks which are you going to remove. Any data in partitions still
assigned to the disks which are going to be removed might be lost.

TIP

You can use the kafka-reassign-partitions.sh tool to reassign the partitions.

2. Edit the spec.kafka.storage.volumes property in the Kafka resource. Remove one or more
volumes from the volumes array. For example, remove the volumes with ids 1 and 2:

 deleteClaim: false
 - id: 2
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

32

3. Create or update the resource:

2.2.4. Connecting to ZooKeeper from a terminal

Most Kafka CLI tools can connect directly to Kafka, so under normal circumstances you should not need
to connect to ZooKeeper. ZooKeeper services are secured with encryption and authentication and are
not intended to be used by external applications that are not part of AMQ Streams.

However, if you want to use Kafka CLI tools that require a connection to ZooKeeper, you can use a
terminal inside a ZooKeeper container and connect to localhost:12181 as the ZooKeeper address.

Prerequisites

An OpenShift cluster is available.

A Kafka cluster is running.

The Cluster Operator is running.

Procedure

1. Open the terminal using the OpenShift console or run the exec command from your CLI.
For example:

Be sure to use localhost:12181.

You can now run Kafka commands to ZooKeeper.

2.2.5. Deleting Kafka nodes manually

This procedure describes how to delete an existing Kafka node by using an OpenShift annotation.
Deleting a Kafka node consists of deleting both the Pod on which the Kafka broker is running and the
related PersistentVolumeClaim (if the cluster was deployed with persistent storage). After deletion,
the Pod and its related PersistentVolumeClaim are recreated automatically.

 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

oc exec -ti my-cluster-zookeeper-0 -- bin/kafka-topics.sh --list --zookeeper localhost:12181

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

33

WARNING

Deleting a PersistentVolumeClaim can cause permanent data loss. The following
procedure should only be performed if you have encountered storage issues.

Prerequisites

See the Deploying and Upgrading AMQ Streams on OpenShift guide for instructions on running a:

Cluster Operator

Kafka cluster

Procedure

1. Find the name of the Pod that you want to delete.
Kafka broker pods are named <cluster-name>-kafka-<index>, where <index> starts at zero and
ends at the total number of replicas minus one. For example, my-cluster-kafka-0.

2. Annotate the Pod resource in OpenShift.
Use oc annotate:

3. Wait for the next reconciliation, when the annotated pod with the underlying persistent volume
claim will be deleted and then recreated.

2.2.6. Deleting ZooKeeper nodes manually

This procedure describes how to delete an existing ZooKeeper node by using an OpenShift annotation.
Deleting a ZooKeeper node consists of deleting both the Pod on which ZooKeeper is running and the
related PersistentVolumeClaim (if the cluster was deployed with persistent storage). After deletion,
the Pod and its related PersistentVolumeClaim are recreated automatically.

WARNING

Deleting a PersistentVolumeClaim can cause permanent data loss. The following
procedure should only be performed if you have encountered storage issues.

Prerequisites

See the Deploying and Upgrading AMQ Streams on OpenShift guide for instructions on running a:

Cluster Operator

Kafka cluster



oc annotate pod cluster-name-kafka-index strimzi.io/delete-pod-and-pvc=true



Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

34

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#deploying-kafka-cluster-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#deploying-kafka-cluster-str

Procedure

1. Find the name of the Pod that you want to delete.
ZooKeeper pods are named <cluster-name>-zookeeper-<index>, where <index> starts at zero
and ends at the total number of replicas minus one. For example, my-cluster-zookeeper-0.

2. Annotate the Pod resource in OpenShift.
Use oc annotate:

3. Wait for the next reconciliation, when the annotated pod with the underlying persistent volume
claim will be deleted and then recreated.

2.2.7. List of Kafka cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

Shared resources

cluster-name-cluster-ca

Secret with the Cluster CA private key used to encrypt the cluster communication.

cluster-name-cluster-ca-cert

Secret with the Cluster CA public key. This key can be used to verify the identity of the Kafka
brokers.

cluster-name-clients-ca

Secret with the Clients CA private key used to sign user certificates

cluster-name-clients-ca-cert

Secret with the Clients CA public key. This key can be used to verify the identity of the Kafka users.

cluster-name-cluster-operator-certs

Secret with Cluster operators keys for communication with Kafka and ZooKeeper.

ZooKeeper nodes

cluster-name-zookeeper

Name given to the following ZooKeeper resources:

StrimziPodSet or StatefulSet (if the UseStrimziPodSets feature gate is disabled) for
managing the ZooKeeper node pods.

Service account used by the ZooKeeper nodes.

PodDisruptionBudget configured for the ZooKeeper nodes.

cluster-name-zookeeper-idx

Pods created by the ZooKeeper StatefulSet or StrimziPodSet.

cluster-name-zookeeper-nodes

Headless Service needed to have DNS resolve the ZooKeeper pods IP addresses directly.

cluster-name-zookeeper-client

Service used by Kafka brokers to connect to ZooKeeper nodes as clients.

oc annotate pod cluster-name-zookeeper-index strimzi.io/delete-pod-and-pvc=true

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

35

cluster-name-zookeeper-config

ConfigMap that contains the ZooKeeper ancillary configuration, and is mounted as a volume by the
ZooKeeper node pods.

cluster-name-zookeeper-nodes

Secret with ZooKeeper node keys.

cluster-name-network-policy-zookeeper

Network policy managing access to the ZooKeeper services.

data-cluster-name-zookeeper-idx

Persistent Volume Claim for the volume used for storing data for the ZooKeeper node pod idx. This
resource will be created only if persistent storage is selected for provisioning persistent volumes to
store data.

Kafka brokers

cluster-name-kafka

Name given to the following Kafka resources:

StrimziPodSet or StatefulSet (if the UseStrimziPodSets feature gate is disabled) for
managing the Kafka broker pods.

Service account used by the Kafka pods.

PodDisruptionBudget configured for the Kafka brokers.

cluster-name-kafka-idx

Name given to the following Kafka resources:

Pods created by the Kafka StatefulSet or StrimziPodSet.

ConfigMap with Kafka broker configuration (if the UseStrimziPodSets feature gate is
enabled).

cluster-name-kafka-brokers

Service needed to have DNS resolve the Kafka broker pods IP addresses directly.

cluster-name-kafka-bootstrap

Service can be used as bootstrap servers for Kafka clients connecting from within the OpenShift
cluster.

cluster-name-kafka-external-bootstrap

Bootstrap service for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled. The old service name will be used for backwards
compatibility when the listener name is external and port is 9094.

cluster-name-kafka-pod-id

Service used to route traffic from outside the OpenShift cluster to individual pods. This resource is
created only when an external listener is enabled. The old service name will be used for backwards
compatibility when the listener name is external and port is 9094.

cluster-name-kafka-external-bootstrap

Bootstrap route for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled and set to type route. The old route name will be used for
backwards compatibility when the listener name is external and port is 9094.

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

36

cluster-name-kafka-pod-id

Route for traffic from outside the OpenShift cluster to individual pods. This resource is created only
when an external listener is enabled and set to type route. The old route name will be used for
backwards compatibility when the listener name is external and port is 9094.

cluster-name-kafka-listener-name-bootstrap

Bootstrap service for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled. The new service name will be used for all other external
listeners.

cluster-name-kafka-listener-name-pod-id

Service used to route traffic from outside the OpenShift cluster to individual pods. This resource is
created only when an external listener is enabled. The new service name will be used for all other
external listeners.

cluster-name-kafka-listener-name-bootstrap

Bootstrap route for clients connecting from outside the OpenShift cluster. This resource is created
only when an external listener is enabled and set to type route. The new route name will be used for
all other external listeners.

cluster-name-kafka-listener-name-pod-id

Route for traffic from outside the OpenShift cluster to individual pods. This resource is created only
when an external listener is enabled and set to type route. The new route name will be used for all
other external listeners.

cluster-name-kafka-config

ConfigMap containing the Kafka ancillary configuration, which is mounted as a volume by the broker
pods when the UseStrimziPodSets feature gate is disabled.

cluster-name-kafka-brokers

Secret with Kafka broker keys.

cluster-name-network-policy-kafka

Network policy managing access to the Kafka services.

strimzi-namespace-name-cluster-name-kafka-init

Cluster role binding used by the Kafka brokers.

cluster-name-jmx

Secret with JMX username and password used to secure the Kafka broker port. This resource is
created only when JMX is enabled in Kafka.

data-cluster-name-kafka-idx

Persistent Volume Claim for the volume used for storing data for the Kafka broker pod idx. This
resource is created only if persistent storage is selected for provisioning persistent volumes to store
data.

data-id-cluster-name-kafka-idx

Persistent Volume Claim for the volume id used for storing data for the Kafka broker pod idx. This
resource is created only if persistent storage is selected for JBOD volumes when provisioning
persistent volumes to store data.

Entity Operator

These resources are only created if the Entity Operator is deployed using the Cluster Operator.

cluster-name-entity-operator

Name given to the following Entity Operator resources:

Deployment with Topic and User Operators.

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

37

Deployment with Topic and User Operators.

Service account used by the Entity Operator.

cluster-name-entity-operator-random-string

Pod created by the Entity Operator deployment.

cluster-name-entity-topic-operator-config

ConfigMap with ancillary configuration for Topic Operators.

cluster-name-entity-user-operator-config

ConfigMap with ancillary configuration for User Operators.

cluster-name-entity-topic-operator-certs

Secret with Topic Operator keys for communication with Kafka and ZooKeeper.

cluster-name-entity-user-operator-certs

Secret with User Operator keys for communication with Kafka and ZooKeeper.

strimzi-cluster-name-entity-topic-operator

Role binding used by the Entity Topic Operator.

strimzi-cluster-name-entity-user-operator

Role binding used by the Entity User Operator.

Kafka Exporter

These resources are only created if the Kafka Exporter is deployed using the Cluster Operator.

cluster-name-kafka-exporter

Name given to the following Kafka Exporter resources:

Deployment with Kafka Exporter.

Service used to collect consumer lag metrics.

Service account used by the Kafka Exporter.

cluster-name-kafka-exporter-random-string

Pod created by the Kafka Exporter deployment.

Cruise Control

These resources are only created if Cruise Control was deployed using the Cluster Operator.

cluster-name-cruise-control

Name given to the following Cruise Control resources:

Deployment with Cruise Control.

Service used to communicate with Cruise Control.

Service account used by the Cruise Control.

cluster-name-cruise-control-random-string

Pod created by the Cruise Control deployment.

cluster-name-cruise-control-config

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

38

ConfigMap that contains the Cruise Control ancillary configuration, and is mounted as a volume by
the Cruise Control pods.

cluster-name-cruise-control-certs

Secret with Cruise Control keys for communication with Kafka and ZooKeeper.

cluster-name-network-policy-cruise-control

Network policy managing access to the Cruise Control service.

2.3. KAFKA CONNECT CLUSTER CONFIGURATION

Configure a Kafka Connect deployment using the KafkaConnect resource. Kafka Connect is an
integration toolkit for streaming data between Kafka brokers and other systems using connector
plugins. Kafka Connect provides a framework for integrating Kafka with an external data source or
target, such as a database, for import or export of data using connectors. Connectors are plugins that
provide the connection configuration needed.

Section 6.2.61, “KafkaConnect schema reference” describes the full schema of the KafkaConnect
resource.

For more information on deploying connector plugins, see Extending Kafka Connect with connector
plugins.

2.3.1. Configuring Kafka Connect

Use Kafka Connect to set up external data connections to your Kafka cluster. Use the properties of the
KafkaConnect resource to configure your Kafka Connect deployment.

KafkaConnector configuration

KafkaConnector resources allow you to create and manage connector instances for Kafka Connect in
an OpenShift-native way.

In your Kafka Connect configuration, you enable KafkaConnectors for a Kafka Connect cluster by adding
the strimzi.io/use-connector-resources annotation. You can also add a build configuration so that
AMQ Streams automatically builds a container image with the connector plugins you require for your
data connections. External configuration for Kafka Connect connectors is specified through the
externalConfiguration property.

To manage connectors, you can use use KafkaConnector custom resources or the Kafka Connect
REST API. KafkaConnector resources must be deployed to the same namespace as the Kafka Connect
cluster they link to. For more information on using these methods to create, reconfigure, or delete
connectors, see Adding connectors.

Connector configuration is passed to Kafka Connect as part of an HTTP request and stored within Kafka
itself. ConfigMaps and Secrets are standard OpenShift resources used for storing configurations and
confidential data. You can use ConfigMaps and Secrets to configure certain elements of a connector.
You can then reference the configuration values in HTTP REST commands, which keeps the
configuration separate and more secure, if needed. This method applies especially to confidential data,
such as usernames, passwords, or certificates.

Handling high volumes of messages

You can tune the configuration to handle high volumes of messages. For more information, see
Handling high volumes of messages .

Prerequisites

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

39

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#using-kafka-connect-with-plug-ins-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#using-kafka-connect-with-plug-ins-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#con-high-volume-config-properties-str

An OpenShift cluster

A running Cluster Operator

See the Deploying and Upgrading AMQ Streams on OpenShift guide for instructions on running a:

Cluster Operator

Kafka cluster

Procedure

1. Edit the spec properties of the KafkaConnect resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect 1
metadata:
 name: my-connect-cluster
 annotations:
 strimzi.io/use-connector-resources: "true" 2
spec:
 replicas: 3 3
 authentication: 4
 type: tls
 certificateAndKey:
 certificate: source.crt
 key: source.key
 secretName: my-user-source
 bootstrapServers: my-cluster-kafka-bootstrap:9092 5
 tls: 6
 trustedCertificates:
 - secretName: my-cluster-cluster-cert
 certificate: ca.crt
 - secretName: my-cluster-cluster-cert
 certificate: ca2.crt
 config: 7
 group.id: my-connect-cluster
 offset.storage.topic: my-connect-cluster-offsets
 config.storage.topic: my-connect-cluster-configs
 status.storage.topic: my-connect-cluster-status
 key.converter: org.apache.kafka.connect.json.JsonConverter
 value.converter: org.apache.kafka.connect.json.JsonConverter
 key.converter.schemas.enable: true
 value.converter.schemas.enable: true
 config.storage.replication.factor: 3
 offset.storage.replication.factor: 3
 status.storage.replication.factor: 3
 build: 8
 output: 9
 type: docker
 image: my-registry.io/my-org/my-connect-cluster:latest
 pushSecret: my-registry-credentials
 plugins: 10

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

40

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#deploying-kafka-cluster-str

 - name: debezium-postgres-connector
 artifacts:
 - type: tgz
 url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-
postgres/2.1.3.Final/debezium-connector-postgres-2.1.3.Final-plugin.tar.gz
 sha512sum:
c4ddc97846de561755dc0b021a62aba656098829c70eb3ade3b817ce06d852ca12ae50c0281cc
791a5a131cb7fc21fb15f4b8ee76c6cae5dd07f9c11cb7c6e79
 - name: camel-telegram
 artifacts:
 - type: tgz
 url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-
telegram-kafka-connector/0.11.5/camel-telegram-kafka-connector-0.11.5-package.tar.gz
 sha512sum:
d6d9f45e0d1dbfcc9f6d1c7ca2046168c764389c78bc4b867dab32d24f710bb74ccf2a007d7d7a8
af2dfca09d9a52ccbc2831fc715c195a3634cca055185bd91
 externalConfiguration: 11
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsAccessKey
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsSecretAccessKey
 resources: 12
 requests:
 cpu: "1"
 memory: 2Gi
 limits:
 cpu: "2"
 memory: 2Gi
 logging: 13
 type: inline
 loggers:
 log4j.rootLogger: "INFO"
 readinessProbe: 14
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 metricsConfig: 15
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-key
 jvmOptions: 16
 "-Xmx": "1g"
 "-Xms": "1g"
 image: my-org/my-image:latest 17

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

41

1

2

3

4

5

6

7

8

9

10

11

12

Use KafkaConnect.

Enables KafkaConnectors for the Kafka Connect cluster.

The number of replica nodes for the workers that run tasks.

Authentication for the Kafka Connect cluster, specified as mTLS, token-based OAuth,
SASL-based SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN. By default, Kafka Connect
connects to Kafka brokers using a plain text connection.

Bootstrap server for connection to the Kafka Connect cluster.

TLS encryption with key names under which TLS certificates are stored in X.509 format for
the cluster. If certificates are stored in the same secret, it can be listed multiple times.

Kafka Connect configuration of workers (not connectors). Standard Apache Kafka
configuration may be provided, restricted to those properties not managed directly by
AMQ Streams.

Build configuration properties for building a container image with connector plugins
automatically.

(Required) Configuration of the container registry where new images are pushed.

(Required) List of connector plugins and their artifacts to add to the new container image.
Each plugin must be configured with at least one artifact.

External configuration for Kafka connectors using environment variables, as shown here, or
volumes. You can also use configuration provider plugins to load configuration values from
external sources.

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

 rack:
 topologyKey: topology.kubernetes.io/zone 18
 template: 19
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 connectContainer: 20
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

42

13

14

15

16

17

18

19

20

specify the maximum resources that can be consumed.

Specified Kafka Connect loggers and log levels added directly (inline) or indirectly
(external) through a ConfigMap. A custom ConfigMap must be placed under the
log4j.properties or log4j2.properties key. For the Kafka Connect log4j.rootLogger
logger, you can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

Prometheus metrics, which are enabled by referencing a ConfigMap containing
configuration for the Prometheus JMX exporter in this example. You can enable metrics
without further configuration using a reference to a ConfigMap containing an empty file
under metricsConfig.valueFrom.configMapKeyRef.key.

JVM configuration options to optimize performance for the Virtual Machine (VM) running
Kafka Connect.

ADVANCED OPTION: Container image configuration , which is recommended only in
special situations.

SPECIALIZED OPTION: Rack awareness configuration for the deployment. This is a
specialized option intended for a deployment within the same location, not across regions.
Use this option if you want connectors to consume from the closest replica rather than the
leader replica. In certain cases, consuming from the closest replica can improve network
utilization or reduce costs . The topologyKey must match a node label containing the rack
ID. The example used in this configuration specifies a zone using the standard
topology.kubernetes.io/zone label. To consume from the closest replica, enable the
RackAwareReplicaSelector in the Kafka broker configuration.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not
scheduled on nodes with the same hostname.

Environment variables are set for distributed tracing.

2. Create or update the resource:

3. If authorization is enabled for Kafka Connect, configure Kafka Connect users to enable access
to the Kafka Connect consumer group and topics.

Additional resources

Introducing distributed tracing

2.3.2. Configuring Kafka Connect for multiple instances

If you are running multiple instances of Kafka Connect, you have to change the default configuration of
the following config properties:

oc apply -f KAFKA-CONNECT-CONFIG-FILE

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

43

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-distributed-tracing-str

1

2

3

4

The Kafka Connect cluster ID within Kafka.

Kafka topic that stores connector offsets.

Kafka topic that stores connector and task status configurations.

Kafka topic that stores connector and task status updates.

NOTE

Values for the three topics must be the same for all Kafka Connect instances with the
same group.id.

Unless you change the default settings, each Kafka Connect instance connecting to the same Kafka
cluster is deployed with the same values. What happens, in effect, is all instances are coupled to run in a
cluster and use the same topics.

If multiple Kafka Connect clusters try to use the same topics, Kafka Connect will not work as expected
and generate errors.

If you wish to run multiple Kafka Connect instances, change the values of these properties for each
instance.

2.3.3. Configuring Kafka Connect user authorization

This procedure describes how to authorize user access to Kafka Connect.

When any type of authorization is being used in Kafka, a Kafka Connect user requires read/write access
rights to the consumer group and the internal topics of Kafka Connect.

The properties for the consumer group and internal topics are automatically configured by AMQ
Streams, or they can be specified explicitly in the spec of the KafkaConnect resource.

Example configuration properties in the KafkaConnect resource

spec:
 # ...
 config:
 group.id: connect-cluster 1
 offset.storage.topic: connect-cluster-offsets 2
 config.storage.topic: connect-cluster-configs 3
 status.storage.topic: connect-cluster-status 4
 # ...
...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 group.id: my-connect-cluster 1

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

44

1

2

3

4

The Kafka Connect cluster ID within Kafka.

Kafka topic that stores connector offsets.

Kafka topic that stores connector and task status configurations.

Kafka topic that stores connector and task status updates.

This procedure shows how access is provided when simple authorization is being used.

Simple authorization uses ACL rules, handled by the Kafka AclAuthorizer plugin, to provide the right
level of access. For more information on configuring a KafkaUser resource to use simple authorization,
see the AclRule schema reference.

NOTE

The default values for the consumer group and topics will differ when running multiple
instances.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the authorization property in the KafkaUser resource to provide access rights to the user.
In the following example, access rights are configured for the Kafka Connect topics and
consumer group using literal name values:

Property Name

offset.storage.topic connect-cluster-offsets

status.storage.topic connect-cluster-status

config.storage.topic connect-cluster-configs

group connect-cluster

 offset.storage.topic: my-connect-cluster-offsets 2
 config.storage.topic: my-connect-cluster-configs 3
 status.storage.topic: my-connect-cluster-status 4
 # ...
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

45

2. Create or update the resource.

2.3.4. List of Kafka Connect cluster resources

 labels:
 strimzi.io/cluster: my-cluster
spec:
 # ...
 authorization:
 type: simple
 acls:
 # access to offset.storage.topic
 - resource:
 type: topic
 name: connect-cluster-offsets
 patternType: literal
 operations:
 - Create
 - Describe
 - Read
 - Write
 host: "*"
 # access to status.storage.topic
 - resource:
 type: topic
 name: connect-cluster-status
 patternType: literal
 operations:
 - Create
 - Describe
 - Read
 - Write
 host: "*"
 # access to config.storage.topic
 - resource:
 type: topic
 name: connect-cluster-configs
 patternType: literal
 operations:
 - Create
 - Describe
 - Read
 - Write
 host: "*"
 # consumer group
 - resource:
 type: group
 name: connect-cluster
 patternType: literal
 operations:
 - Read
 host: "*"

oc apply -f KAFKA-USER-CONFIG-FILE

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

46

The following resources are created by the Cluster Operator in the OpenShift cluster:

connect-cluster-name-connect

Name given to the following Kafka Connect resources:

Deployment that creates the Kafka Connect worker node pods (when
StableConnectIdentities feature gate is disabled).

StrimziPodSet that creates the Kafka Connect worker node pods (when
StableConnectIdentities feature gate is enabled).

Headless service that provides stable DNS names to the Connect pods (when
StableConnectIdentities feature gate is enabled).

Pod Disruption Budget configured for the Kafka Connect worker nodes.

connect-cluster-name-connect-idx

Pods created by the Kafka Connect StrimziPodSet (when StableConnectIdentities feature gate is
enabled).

connect-cluster-name-connect-api

Service which exposes the REST interface for managing the Kafka Connect cluster.

connect-cluster-name-config

ConfigMap which contains the Kafka Connect ancillary configuration and is mounted as a volume by
the Kafka broker pods.

2.3.5. Integrating with the Red Hat build of Debezium for change data capture

The Red Hat build of Debezium is a distributed change data capture platform. It captures row-level
changes in databases, creates change event records, and streams the records to Kafka topics.
Debezium is built on Apache Kafka. You can deploy and integrate the Red Hat build of Debezium with
AMQ Streams. Following a deployment of AMQ Streams, you deploy Debezium as a connector
configuration through Kafka Connect. Debezium passes change event records to AMQ Streams on
OpenShift. Applications can read these change event streams and access the change events in the
order in which they occurred.

Debezium has multiple uses, including:

Data replication

Updating caches and search indexes

Simplifying monolithic applications

Data integration

Enabling streaming queries

To capture database changes, deploy Kafka Connect with a Debezium database connector. You
configure a KafkaConnector resource to define the connector instance.

For more information on deploying the Red Hat build of Debezium with AMQ Streams, refer to the
product documentation. The documentation includes a Getting Started with Debezium guide that guides
you through the process of setting up the services and connector required to view change event
records for database updates.

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

47

https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium

2.4. KAFKA MIRRORMAKER 2 CLUSTER CONFIGURATION

Configure a Kafka MirrorMaker 2 deployment using the KafkaMirrorMaker2 resource. MirrorMaker 2
replicates data between two or more Kafka clusters, within or across data centers.

Section 6.2.128, “KafkaMirrorMaker2 schema reference” describes the full schema of the
KafkaMirrorMaker2 resource.

MirrorMaker 2 resource configuration differs from the previous version of MirrorMaker. If you choose to
use MirrorMaker 2, there is currently no legacy support, so any resources must be manually converted
into the new format.

2.4.1. MirrorMaker 2 data replication

Data replication across clusters supports scenarios that require:

Recovery of data in the event of a system failure

Aggregation of data for analysis

Restriction of data access to a specific cluster

Provision of data at a specific location to improve latency

2.4.1.1. MirrorMaker 2 configuration

MirrorMaker 2 consumes messages from a source Kafka cluster and writes them to a target Kafka
cluster.

MirrorMaker 2 uses:

Source cluster configuration to consume data from the source cluster

Target cluster configuration to output data to the target cluster

MirrorMaker 2 is based on the Kafka Connect framework, connectors managing the transfer of data
between clusters.

You configure MirrorMaker 2 to define the Kafka Connect deployment, including the connection details
of the source and target clusters, and then run a set of MirrorMaker 2 connectors to make the
connection.

MirrorMaker 2 consists of the following connectors:

MirrorSourceConnector

The source connector replicates topics from a source cluster to a target cluster. It also replicates
ACLs and is necessary for the MirrorCheckpointConnector to run.

MirrorCheckpointConnector

The checkpoint connector periodically tracks offsets. If enabled, it also synchronizes consumer group
offsets between the source and target cluster.

MirrorHeartbeatConnector

The heartbeat connector periodically checks connectivity between the source and target cluster.

NOTE

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

48

NOTE

If you are using the User Operator to manage ACLs, ACL replication through the
connector is not possible.

The process of mirroring data from a source cluster to a target cluster is asynchronous. Each
MirrorMaker 2 instance mirrors data from one source cluster to one target cluster. You can use more
than one MirrorMaker 2 instance to mirror data between any number of clusters.

Figure 2.1. Replication across two clusters

By default, a check for new topics in the source cluster is made every 10 minutes. You can change the
frequency by adding refresh.topics.interval.seconds to the source connector configuration.

2.4.1.1.1. Cluster configuration

You can use MirrorMaker 2 in active/passive or active/active cluster configurations.

active/active cluster configuration

An active/active configuration has two active clusters replicating data bidirectionally. Applications
can use either cluster. Each cluster can provide the same data. In this way, you can make the same
data available in different geographical locations. As consumer groups are active in both clusters,
consumer offsets for replicated topics are not synchronized back to the source cluster.

active/passive cluster configuration

An active/passive configuration has an active cluster replicating data to a passive cluster. The passive
cluster remains on standby. You might use the passive cluster for data recovery in the event of
system failure.

The expectation is that producers and consumers connect to active clusters only. A MirrorMaker 2
cluster is required at each target destination.

2.4.1.1.2. Bidirectional replication (active/active)

The MirrorMaker 2 architecture supports bidirectional replication in an active/active cluster
configuration.

Each cluster replicates the data of the other cluster using the concept of source and remote topics. As
the same topics are stored in each cluster, remote topics are automatically renamed by MirrorMaker 2 to
represent the source cluster. The name of the originating cluster is prepended to the name of the topic.

Figure 2.2. Topic renaming

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

49

Figure 2.2. Topic renaming

By flagging the originating cluster, topics are not replicated back to that cluster.

The concept of replication through remote topics is useful when configuring an architecture that
requires data aggregation. Consumers can subscribe to source and remote topics within the same
cluster, without the need for a separate aggregation cluster.

2.4.1.1.3. Unidirectional replication (active/passive)

The MirrorMaker 2 architecture supports unidirectional replication in an active/passive cluster
configuration.

You can use an active/passive cluster configuration to make backups or migrate data to another cluster.
In this situation, you might not want automatic renaming of remote topics.

You can override automatic renaming by adding IdentityReplicationPolicy to the source connector
configuration. With this configuration applied, topics retain their original names.

2.4.1.2. Topic configuration synchronization

MirrorMaker 2 supports topic configuration synchronization between source and target clusters. You
specify source topics in the MirrorMaker 2 configuration. MirrorMaker 2 monitors the source topics.
MirrorMaker 2 detects and propagates changes to the source topics to the remote topics. Changes
might include automatically creating missing topics and partitions.

NOTE

In most cases you write to local topics and read from remote topics. Though write
operations are not prevented on remote topics, they should be avoided.

2.4.1.3. Offset tracking

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

50

MirrorMaker 2 tracks offsets for consumer groups using internal topics.

offset-syncs topic

The offset-syncs topic maps the source and target offsets for replicated topic partitions from
record metadata.

checkpoints topic

The checkpoints topic maps the last committed offset in the source and target cluster for
replicated topic partitions in each consumer group.

As they used internally by MirrorMaker 2, you do not interact directly with these topics.

MirrorCheckpointConnector emits checkpoints for offset tracking. Offsets for the checkpoints topic
are tracked at predetermined intervals through configuration. Both topics enable replication to be fully
restored from the correct offset position on failover.

The location of the offset-syncs topic is the source cluster by default. You can use the offset-
syncs.topic.location connector configuration to change this to the target cluster. You need read/write
access to the cluster that contains the topic. Using the target cluster as the location of the offset-syncs
topic allows you to use MirrorMaker 2 even if you have only read access to the source cluster.

2.4.1.4. Synchronizing consumer group offsets

The __consumer_offsets topic stores information on committed offsets for each consumer group.
Offset synchronization periodically transfers the consumer offsets for the consumer groups of a source
cluster into the consumer offsets topic of a target cluster.

Offset synchronization is particularly useful in an active/passive configuration. If the active cluster goes
down, consumer applications can switch to the passive (standby) cluster and pick up from the last
transferred offset position.

To use topic offset synchronization, enable the synchronization by adding sync.group.offsets.enabled
to the checkpoint connector configuration, and setting the property to true. Synchronization is disabled
by default.

When using the IdentityReplicationPolicy in the source connector, it also has to be configured in the
checkpoint connector configuration. This ensures that the mirrored consumer offsets will be applied for
the correct topics.

Consumer offsets are only synchronized for consumer groups that are not active in the target cluster. If
the consumer groups are in the target cluster, the synchronization cannot be performed and an
UNKNOWN_MEMBER_ID error is returned.

If enabled, the synchronization of offsets from the source cluster is made periodically. You can change
the frequency by adding sync.group.offsets.interval.seconds and
emit.checkpoints.interval.seconds to the checkpoint connector configuration. The properties specify
the frequency in seconds that the consumer group offsets are synchronized, and the frequency of
checkpoints emitted for offset tracking. The default for both properties is 60 seconds. You can also
change the frequency of checks for new consumer groups using the refresh.groups.interval.seconds
property, which is performed every 10 minutes by default.

Because the synchronization is time-based, any switchover by consumers to a passive cluster will likely
result in some duplication of messages.

NOTE

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

51

NOTE

If you have an application written in Java, you can use the RemoteClusterUtils.java
utility to synchronize offsets through the application. The utility fetches remote offsets
for a consumer group from the checkpoints topic.

2.4.1.5. Connectivity checks

MirrorHeartbeatConnector emits heartbeats to check connectivity between clusters.

An internal heartbeat topic is replicated from the source cluster. Target clusters use the heartbeat topic
to check the following:

The connector managing connectivity between clusters is running

The source cluster is available

2.4.2. Connector configuration

Use Mirrormaker 2 connector configuration for the internal connectors that orchestrate the
synchronization of data between Kafka clusters.

The following table describes connector properties and the connectors you configure to use them.

Table 2.1. MirrorMaker 2 connector configuration properties

Property sourceConnector checkpointConne
ctor

heartbeatConnec
tor

admin.timeout.ms
Timeout for admin tasks, such as
detecting new topics. Default is
60000 (1 minute).

✓ ✓ ✓

replication.policy.class
Policy to define the remote topic
naming convention. Default is
org.apache.kafka.connect.mirror
.DefaultReplicationPolicy.

✓ ✓ ✓

replication.policy.separator
The separator used for topic naming in
the target cluster. Default is . (dot).

✓ ✓ ✓

consumer.poll.timeout.ms
Timeout when polling the source
cluster. Default is 1000 (1 second).

✓ ✓

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

52

offset-syncs.topic.location
The location of the offset-syncs
topic, which can be the source
(default) or target cluster.

✓ ✓

topic.filter.class
Topic filter to select the topics to
replicate. Default is
org.apache.kafka.connect.mirror
.DefaultTopicFilter.

✓ ✓

config.property.filter.class
Topic filter to select the topic
configuration properties to replicate.
Default is
org.apache.kafka.connect.mirror
.DefaultConfigPropertyFilter.

✓

config.properties.exclude
Topic configuration properties that
should not be replicated. Supports
comma-separated property names
and regular expressions.

✓

offset.lag.max
Maximum allowable (out-of-sync)
offset lag before a remote partition is
synchronized. Default is 100.

✓

offset-syncs.topic.replication.factor
Replication factor for the internal
offset-syncs topic. Default is 3.

✓

refresh.topics.enabled
Enables check for new topics and
partitions. Default is true.

✓

refresh.topics.interval.seconds
Frequency of topic refresh. Default is
600 (10 minutes).

✓

Property sourceConnector checkpointConne
ctor

heartbeatConnec
tor

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

53

replication.factor
The replication factor for new topics.
Default is 2.

✓

sync.topic.acls.enabled
Enables synchronization of ACLs from
the source cluster. Default is true. Not
compatible with the User Operator.

✓

sync.topic.acls.interval.seconds
Frequency of ACL synchronization.
Default is 600 (10 minutes).

✓

sync.topic.configs.enabled
Enables synchronization of topic
configuration from the source cluster.
Default is true.

✓

sync.topic.configs.interval.seconds
Frequency of topic configuration
synchronization. Default 600 (10
minutes).

✓

checkpoints.topic.replication.factor
Replication factor for the internal
checkpoints topic. Default is 3.

 ✓

emit.checkpoints.enabled
Enables synchronization of consumer
offsets to the target cluster. Default is
true.

 ✓

emit.checkpoints.interval.seconds
Frequency of consumer offset
synchronization. Default is 60 (1
minute).

 ✓

Property sourceConnector checkpointConne
ctor

heartbeatConnec
tor

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

54

group.filter.class
Group filter to select the consumer
groups to replicate. Default is
org.apache.kafka.connect.mirror
.DefaultGroupFilter.

 ✓

refresh.groups.enabled
Enables check for new consumer
groups. Default is true.

 ✓

refresh.groups.interval.seconds
Frequency of consumer group refresh.
Default is 600 (10 minutes).

 ✓

sync.group.offsets.enabled
Enables synchronization of consumer
group offsets to the target cluster
__consumer_offsets topic. Default
is false.

 ✓

sync.group.offsets.interval.seconds
Frequency of consumer group offset
synchronization. Default is 60 (1
minute).

 ✓

emit.heartbeats.enabled
Enables connectivity checks on the
target cluster. Default is true.

 ✓

emit.heartbeats.interval.seconds
Frequency of connectivity checks.
Default is 1 (1 second).

 ✓

heartbeats.topic.replication.factor
Replication factor for the internal
heartbeats topic. Default is 3.

 ✓

Property sourceConnector checkpointConne
ctor

heartbeatConnec
tor

2.4.3. Connector producer and consumer configuration

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

55

MirrorMaker 2 connectors use internal producers and consumers. If needed, you can configure these
producers and consumers to override the default settings.

For example, you can increase the batch.size for the source producer that sends topics to the target
Kafka cluster to better accommodate large volumes of messages.

IMPORTANT

Producer and consumer configuration options depend on the MirrorMaker 2
implementation, and may be subject to change.

The following tables describe the producers and consumers for each of the connectors and where you
can add configuration.

Table 2.2. Source connector producers and consumers

Type Description Configuration

Producer Sends topic
messages to the
target Kafka
cluster. Consider
tuning the
configuration of
this producer when
it is handling large
volumes of data.

mirrors.sourceConnector.config: producer.override.*

Producer Writes to the
offset-syncs
topic, which maps
the source and
target offsets for
replicated topic
partitions.

mirrors.sourceConnector.config: producer.*

Consumer Retrieves topic
messages from the
source Kafka
cluster.

mirrors.sourceConnector.config: consumer.*

Table 2.3. Checkpoint connector producers and consumers

Type Description Configuration

Producer Emits consumer
offset checkpoints.

mirrors.checkpointConnector.config:
producer.override.*

Consumer Loads the offset-
syncs topic.

mirrors.checkpointConnector.config: consumer.*

NOTE

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

56

NOTE

You can set offset-syncs.topic.location to target to use the target Kafka cluster as the
location of the offset-syncs topic.

Table 2.4. Heartbeat connector producer

Type Description Configuration

Producer Emits heartbeats. mirrors.heartbeatConnector.config:
producer.override.*

The following example shows how you configure the producers and consumers.

Example configuration for connector producers and consumers

Additional resources

Section 6.2.132, “KafkaMirrorMaker2ConnectorSpec schema reference”

Section 6.2.131, “KafkaMirrorMaker2MirrorSpec schema reference”

2.4.4. Specifying a maximum number of tasks

Connectors create the tasks that are responsible for moving data in and out of Kafka. Each connector

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker2
spec:
 version: 3.4.0
 # ...
 mirrors:
 - sourceCluster: "my-cluster-source"
 targetCluster: "my-cluster-target"
 sourceConnector:
 tasksMax: 5
 config:
 producer.override.batch.size: 327680
 producer.override.linger.ms: 100
 producer.request.timeout.ms: 30000
 consumer.fetch.max.bytes: 52428800
 # ...
 checkpointConnector:
 config:
 producer.override.request.timeout.ms: 30000
 consumer.max.poll.interval.ms: 300000
 # ...
 heartbeatConnector:
 config:
 producer.override.request.timeout.ms: 30000
 # ...

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

57

comprises one or more tasks that are distributed across a group of worker pods that run the tasks.
Increasing the number of tasks can help with performance issues when replicating a large number of
partitions or synchronizing the offsets of a large number of consumer groups.

Tasks run in parallel. Workers are assigned one or more tasks. A single task is handled by one worker pod,
so you don’t need more worker pods than tasks. If there are more tasks than workers, workers handle
multiple tasks.

You can specify the maximum number of connector tasks in your MirrorMaker configuration using the
tasksMax property. Without specifying a maximum number of tasks, the default setting is a single task.

The heartbeat connector always uses a single task.

The number of tasks that are started for the source and checkpoint connectors is the lower value
between the maximum number of possible tasks and the value for tasksMax. For the source connector,
the maximum number of tasks possible is one for each partition being replicated from the source cluster.
For the checkpoint connector, the maximum number of tasks possible is one for each consumer group
being replicated from the source cluster. When setting a maximum number of tasks, consider the
number of partitions and the hardware resources that support the process.

If the infrastructure supports the processing overhead, increasing the number of tasks can improve
throughput and latency. For example, adding more tasks reduces the time taken to poll the source
cluster when there is a high number of partitions or consumer groups.

Increasing the number of tasks for the checkpoint connector is useful when you have a large number of
partitions.

Increasing the number of tasks for the source connector

Increasing the number of tasks for the checkpoint connector is useful when you have a large number of
consumer groups.

Increasing the number of tasks for the checkpoint connector

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker2
spec:
 # ...
 mirrors:
 - sourceCluster: "my-cluster-source"
 targetCluster: "my-cluster-target"
 sourceConnector:
 tasksMax: 10
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker2
spec:
 # ...
 mirrors:
 - sourceCluster: "my-cluster-source"
 targetCluster: "my-cluster-target"

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

58

By default, MirrorMaker 2 checks for new consumer groups every 10 minutes. You can adjust the
refresh.groups.interval.seconds configuration to change the frequency. Take care when adjusting
lower. More frequent checks can have a negative impact on performance.

2.4.4.1. Checking connector task operations

If you are using Prometheus and Grafana to monitor your deployment, you can check MirrorMaker 2
performance. The example MirrorMaker 2 Grafana dashboard provided with AMQ Streams shows the
following metrics related to tasks and latency.

The number of tasks

Replication latency

Offset synchronization latency

Additional resources

Grafana dashboards

2.4.5. ACL rules synchronization

ACL access to remote topics is possible if you are not using the User Operator.

If AclAuthorizer is being used, without the User Operator, ACL rules that manage access to brokers
also apply to remote topics. Users that can read a source topic can read its remote equivalent.

NOTE

OAuth 2.0 authorization does not support access to remote topics in this way.

2.4.6. Configuring Kafka MirrorMaker 2

Use the properties of the KafkaMirrorMaker2 resource to configure your Kafka MirrorMaker 2
deployment. Use MirrorMaker 2 to synchronize data between Kafka clusters.

The configuration must specify:

Each Kafka cluster

Connection information for each cluster, including authentication

The replication flow and direction

Cluster to cluster

Topic to topic

NOTE

 checkpointConnector:
 tasksMax: 10
 # ...

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

59

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-metrics-setup-str

NOTE

The previous version of MirrorMaker continues to be supported. If you wish to use the
resources configured for the previous version, they must be updated to the format
supported by MirrorMaker 2.

MirrorMaker 2 provides default configuration values for properties such as replication factors. A minimal
configuration, with defaults left unchanged, would be something like this example:

Minimal configuration for MirrorMaker 2

You can configure access control for source and target clusters using mTLS or SASL authentication.
This procedure shows a configuration that uses TLS encryption and mTLS authentication for the source
and target cluster.

You can specify the topics and consumer groups you wish to replicate from a source cluster in the
KafkaMirrorMaker2 resource. You use the topicsPattern and groupsPattern properties to do this. You
can provide a list of names or use a regular expression. By default, all topics and consumer groups are
replicated if you do not set the topicsPattern and groupsPattern properties. You can also replicate all
topics and consumer groups by using ".*" as a regular expression. However, try to specify only the topics
and consumer groups you need to avoid causing any unnecessary extra load on the cluster.

Handling high volumes of messages

You can tune the configuration to handle high volumes of messages. For more information, see
Handling high volumes of messages .

Prerequisites

AMQ Streams is running

Source and target Kafka clusters are available

Procedure

1. Edit the spec properties for the KafkaMirrorMaker2 resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker2
spec:
 version: 3.4.0
 connectCluster: "my-cluster-target"
 clusters:
 - alias: "my-cluster-source"
 bootstrapServers: my-cluster-source-kafka-bootstrap:9092
 - alias: "my-cluster-target"
 bootstrapServers: my-cluster-target-kafka-bootstrap:9092
 mirrors:
 - sourceCluster: "my-cluster-source"
 targetCluster: "my-cluster-target"
 sourceConnector: {}

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

60

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#con-high-volume-config-properties-str

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker2
spec:
 version: 3.4.0 1
 replicas: 3 2
 connectCluster: "my-cluster-target" 3
 clusters: 4
 - alias: "my-cluster-source" 5
 authentication: 6
 certificateAndKey:
 certificate: source.crt
 key: source.key
 secretName: my-user-source
 type: tls
 bootstrapServers: my-cluster-source-kafka-bootstrap:9092 7
 tls: 8
 trustedCertificates:
 - certificate: ca.crt
 secretName: my-cluster-source-cluster-ca-cert
 - alias: "my-cluster-target" 9
 authentication: 10
 certificateAndKey:
 certificate: target.crt
 key: target.key
 secretName: my-user-target
 type: tls
 bootstrapServers: my-cluster-target-kafka-bootstrap:9092 11
 config: 12
 config.storage.replication.factor: 1
 offset.storage.replication.factor: 1
 status.storage.replication.factor: 1
 ssl.cipher.suites: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 13
 ssl.enabled.protocols: TLSv1.2
 ssl.protocol: TLSv1.2
 ssl.endpoint.identification.algorithm: HTTPS 14
 tls: 15
 trustedCertificates:
 - certificate: ca.crt
 secretName: my-cluster-target-cluster-ca-cert
 mirrors: 16
 - sourceCluster: "my-cluster-source" 17
 targetCluster: "my-cluster-target" 18
 sourceConnector: 19
 tasksMax: 10 20
 autoRestart: 21
 enabled: true
 config:
 replication.factor: 1 22
 offset-syncs.topic.replication.factor: 1 23
 sync.topic.acls.enabled: "false" 24

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

61

 refresh.topics.interval.seconds: 60 25
 replication.policy.separator: "." 26
 replication.policy.class: "org.apache.kafka.connect.mirror.IdentityReplicationPolicy" 27
 heartbeatConnector: 28
 autoRestart:
 enabled: true
 config:
 heartbeats.topic.replication.factor: 1 29
 checkpointConnector: 30
 autoRestart:
 enabled: true
 config:
 checkpoints.topic.replication.factor: 1 31
 refresh.groups.interval.seconds: 600 32
 sync.group.offsets.enabled: true 33
 sync.group.offsets.interval.seconds: 60 34
 emit.checkpoints.interval.seconds: 60 35
 replication.policy.class: "org.apache.kafka.connect.mirror.IdentityReplicationPolicy"
 topicsPattern: "topic1|topic2|topic3" 36
 groupsPattern: "group1|group2|group3" 37
 resources: 38
 requests:
 cpu: "1"
 memory: 2Gi
 limits:
 cpu: "2"
 memory: 2Gi
 logging: 39
 type: inline
 loggers:
 connect.root.logger.level: "INFO"
 readinessProbe: 40
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 jvmOptions: 41
 "-Xmx": "1g"
 "-Xms": "1g"
 image: my-org/my-image:latest 42
 rack:
 topologyKey: topology.kubernetes.io/zone 43
 template: 44
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

62

1

2

3

4

5

6

7

8

9

10

11

12

The Kafka Connect and Mirror Maker 2.0 version, which will always be the same.

The number of replica nodes for the workers that run tasks.

Kafka cluster alias for Kafka Connect, which must specify the target Kafka cluster. The
Kafka cluster is used by Kafka Connect for its internal topics.

Specification for the Kafka clusters being synchronized.

Cluster alias for the source Kafka cluster.

Authentication for the source cluster, specified as mTLS, token-based OAuth, SASL-
based SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN.

Bootstrap server for connection to the source Kafka cluster.

TLS encryption with key names under which TLS certificates are stored in X.509 format for
the source Kafka cluster. If certificates are stored in the same secret, it can be listed
multiple times.

Cluster alias for the target Kafka cluster.

Authentication for the target Kafka cluster is configured in the same way as for the source
Kafka cluster.

Bootstrap server for connection to the target Kafka cluster.

Kafka Connect configuration. Standard Apache Kafka configuration may be provided,
restricted to those properties not managed directly by AMQ Streams.

 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 connectContainer: 45
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"
 tracing:
 type: jaeger 46
 externalConfiguration: 47
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsAccessKey
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsSecretAccessKey

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

63

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

SSL properties for external listeners to run with a specific cipher suite for a TLS version.

Hostname verification is enabled by setting to HTTPS. An empty string disables the
verification.

TLS encryption for the target Kafka cluster is configured in the same way as for the source
Kafka cluster.

MirrorMaker 2 connectors.

Cluster alias for the source cluster used by the MirrorMaker 2 connectors.

Cluster alias for the target cluster used by the MirrorMaker 2 connectors.

Configuration for the MirrorSourceConnector that creates remote topics. The config
overrides the default configuration options.

The maximum number of tasks that the connector may create. Tasks handle the data
replication and run in parallel. If the infrastructure supports the processing overhead,
increasing this value can improve throughput. Kafka Connect distributes the tasks between
members of the cluster. If there are more tasks than workers, workers are assigned multiple
tasks. For sink connectors, aim to have one task for each topic partition consumed. For
source connectors, the number of tasks that can run in parallel may also depend on the
external system. The connector creates fewer than the maximum number of tasks if it
cannot achieve the parallelism.

Enables automatic restarts of failed connectors and tasks. Up to seven restart attempts
are made, after which restarts must be made manually.

Replication factor for mirrored topics created at the target cluster.

Replication factor for the MirrorSourceConnector offset-syncs internal topic that maps
the offsets of the source and target clusters.

When ACL rules synchronization is enabled, ACLs are applied to synchronized topics. The
default is true. This feature is not compatible with the User Operator. If you are using the
User Operator, set this property to false.

Optional setting to change the frequency of checks for new topics. The default is for a
check every 10 minutes.

Defines the separator used for the renaming of remote topics.

Adds a policy that overrides the automatic renaming of remote topics. Instead of
prepending the name with the name of the source cluster, the topic retains its original
name. This optional setting is useful for active/passive backups and data migration. To
configure topic offset synchronization, this property must also be set for the
checkpointConnector.config.

Configuration for the MirrorHeartbeatConnector that performs connectivity checks. The
config overrides the default configuration options.

Replication factor for the heartbeat topic created at the target cluster.

Configuration for the MirrorCheckpointConnector that tracks offsets. The config
overrides the default configuration options.

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

64

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Replication factor for the checkpoints topic created at the target cluster.

Optional setting to change the frequency of checks for new consumer groups. The default
is for a check every 10 minutes.

Optional setting to synchronize consumer group offsets, which is useful for recovery in an
active/passive configuration. Synchronization is not enabled by default.

If the synchronization of consumer group offsets is enabled, you can adjust the frequency
of the synchronization.

Adjusts the frequency of checks for offset tracking. If you change the frequency of offset
synchronization, you might also need to adjust the frequency of these checks.

Topic replication from the source cluster defined as a comma-separated list or regular
expression pattern. The source connector replicates the specified topics. The checkpoint
connector tracks offsets for the specified topics. Here we request three topics by name.

Consumer group replication from the source cluster defined as a comma-separated list or
regular expression pattern. The checkpoint connector replicates the specified consumer
groups. Here we request three consumer groups by name.

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Specified Kafka Connect loggers and log levels added directly (inline) or indirectly
(external) through a ConfigMap. A custom ConfigMap must be placed under the
log4j.properties or log4j2.properties key. For the Kafka Connect log4j.rootLogger
logger, you can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

JVM configuration options to optimize performance for the Virtual Machine (VM) running
Kafka MirrorMaker.

ADVANCED OPTION: Container image configuration , which is recommended only in
special situations.

SPECIALIZED OPTION: Rack awareness configuration for the deployment. This is a
specialized option intended for a deployment within the same location, not across regions.
Use this option if you want connectors to consume from the closest replica rather than the
leader replica. In certain cases, consuming from the closest replica can improve network
utilization or reduce costs . The topologyKey must match a node label containing the rack
ID. The example used in this configuration specifies a zone using the standard
topology.kubernetes.io/zone label. To consume from the closest replica, enable the
RackAwareReplicaSelector in the Kafka broker configuration.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not
scheduled on nodes with the same hostname.

Environment variables are set for distributed tracing.

Distributed tracing is enabled for Jaeger.

External configuration for an OpenShift Secret mounted to Kafka MirrorMaker as an
environment variable. You can also use configuration provider plugins to load configuration
values from external sources.

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

65

https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

values from external sources.

2. Create or update the resource:

Additional resources

Introducing distributed tracing

2.4.7. Securing a Kafka MirrorMaker 2 deployment

This procedure describes in outline the configuration required to secure a MirrorMaker 2 deployment.

You need separate configuration for the source Kafka cluster and the target Kafka cluster. You also
need separate user configuration to provide the credentials required for MirrorMaker to connect to the
source and target Kafka clusters.

For the Kafka clusters, you specify internal listeners for secure connections within an OpenShift cluster
and external listeners for connections outside the OpenShift cluster.

You can configure authentication and authorization mechanisms. The security options implemented for
the source and target Kafka clusters must be compatible with the security options implemented for
MirrorMaker 2.

After you have created the cluster and user authentication credentials, you specify them in your
MirrorMaker configuration for secure connections.

NOTE

In this procedure, the certificates generated by the Cluster Operator are used, but you
can replace them by installing your own certificates. You can also configure your listener
to use a Kafka listener certificate managed by an external CA (certificate authority) .

Before you start

Before starting this procedure, take a look at the example configuration files provided by AMQ Streams.
They include examples for securing a deployment of MirrorMaker 2 using mTLS or SCRAM-SHA-512
authentication. The examples specify internal listeners for connecting within an OpenShift cluster.

The examples provide the configuration for full authorization, including all the ACLs needed by
MirrorMaker 2 to allow operations on the source and target Kafka clusters.

Prerequisites

AMQ Streams is running

Separate namespaces for source and target clusters

The procedure assumes that the source and target Kafka clusters are installed to separate namespaces
If you want to use the Topic Operator, you’ll need to do this. The Topic Operator only watches a single
cluster in a specified namespace.

By separating the clusters into namespaces, you will need to copy the cluster secrets so they can be
accessed outside the namespace. You need to reference the secrets in the MirrorMaker configuration.

oc apply -f MIRRORMAKER-CONFIGURATION-FILE

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

66

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-distributed-tracing-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#installing-your-own-ca-certificates-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#proc-installing-certs-per-listener-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#deploy-examples-str

Procedure

1. Configure two Kafka resources, one to secure the source Kafka cluster and one to secure the
target Kafka cluster.
You can add listener configuration for authentication and enable authorization.

In this example, an internal listener is configured for a Kafka cluster with TLS encryption and
mTLS authentication. Kafka simple authorization is enabled.

Example source Kafka cluster configuration with TLS encryption and mTLS
authentication

Example target Kafka cluster configuration with TLS encryption and mTLS
authentication

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-source-cluster
spec:
 kafka:
 version: 3.4.0
 replicas: 1
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 authorization:
 type: simple
 config:
 offsets.topic.replication.factor: 1
 transaction.state.log.replication.factor: 1
 transaction.state.log.min.isr: 1
 default.replication.factor: 1
 min.insync.replicas: 1
 inter.broker.protocol.version: "3.4"
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 zookeeper:
 replicas: 1
 storage:
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 entityOperator:
 topicOperator: {}
 userOperator: {}

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

67

2. Create or update the Kafka resources in separate namespaces.

The Cluster Operator creates the listeners and sets up the cluster and client certificate
authority (CA) certificates to enable authentication within the Kafka cluster.

The certificates are created in the secret <cluster_name>-cluster-ca-cert.

3. Configure two KafkaUser resources, one for a user of the source Kafka cluster and one for a
user of the target Kafka cluster.

a. Configure the same authentication and authorization types as the corresponding source
and target Kafka cluster. For example, if you used tls authentication and the simple
authorization type in the Kafka configuration for the source Kafka cluster, use the same in

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-target-cluster
spec:
 kafka:
 version: 3.4.0
 replicas: 1
 listeners:
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 authorization:
 type: simple
 config:
 offsets.topic.replication.factor: 1
 transaction.state.log.replication.factor: 1
 transaction.state.log.min.isr: 1
 default.replication.factor: 1
 min.insync.replicas: 1
 inter.broker.protocol.version: "3.4"
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 zookeeper:
 replicas: 1
 storage:
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 entityOperator:
 topicOperator: {}
 userOperator: {}

oc apply -f <kafka_configuration_file> -n <namespace>

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

68

the KafkaUser configuration.

b. Configure the ACLs needed by MirrorMaker 2 to allow operations on the source and target
Kafka clusters.
The ACLs are used by the internal MirrorMaker connectors, and by the underlying Kafka
Connect framework.

Example source user configuration for mTLS authentication

Example target user configuration for mTLS authentication

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-source-user
 labels:
 strimzi.io/cluster: my-source-cluster
spec:
 authentication:
 type: tls
 authorization:
 type: simple
 acls:
 # MirrorSourceConnector
 - resource: # Not needed if offset-syncs.topic.location=target
 type: topic
 name: mm2-offset-syncs.my-target-cluster.internal
 operations:
 - Create
 - DescribeConfigs
 - Read
 - Write
 - resource: # Needed for every topic which is mirrored
 type: topic
 name: "*"
 operations:
 - DescribeConfigs
 - Read
 # MirrorCheckpointConnector
 - resource:
 type: cluster
 operations:
 - Describe
 - resource: # Needed for every group for which offsets are synced
 type: group
 name: "*"
 operations:
 - Describe
 - resource: # Not needed if offset-syncs.topic.location=target
 type: topic
 name: mm2-offset-syncs.my-target-cluster.internal
 operations:
 - Read

apiVersion: kafka.strimzi.io/v1beta2

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

69

kind: KafkaUser
metadata:
 name: my-target-user
 labels:
 strimzi.io/cluster: my-target-cluster
spec:
 authentication:
 type: tls
 authorization:
 type: simple
 acls:
 # Underlying Kafka Connect internal topics to store configuration, offsets, or status
 - resource:
 type: group
 name: mirrormaker2-cluster
 operations:
 - Read
 - resource:
 type: topic
 name: mirrormaker2-cluster-configs
 operations:
 - Create
 - Describe
 - DescribeConfigs
 - Read
 - Write
 - resource:
 type: topic
 name: mirrormaker2-cluster-status
 operations:
 - Create
 - Describe
 - DescribeConfigs
 - Read
 - Write
 - resource:
 type: topic
 name: mirrormaker2-cluster-offsets
 operations:
 - Create
 - Describe
 - DescribeConfigs
 - Read
 - Write
 # MirrorSourceConnector
 - resource: # Needed for every topic which is mirrored
 type: topic
 name: "*"
 operations:
 - Create
 - Alter
 - AlterConfigs
 - Write
 # MirrorCheckpointConnector
 - resource:
 type: cluster

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

70

NOTE

You can use a certificate issued outside the User Operator by setting type to tls-
external. For more information, see Section 6.2.93, “KafkaUserSpec schema
reference”.

4. Create or update a KafkaUser resource in each of the namespaces you created for the source
and target Kafka clusters.

The User Operator creates the users representing the client (MirrorMaker), and the security
credentials used for client authentication, based on the chosen authentication type.

The User Operator creates a new secret with the same name as the KafkaUser resource. The
secret contains a private and public key for mTLS authentication. The public key is contained in
a user certificate, which is signed by the clients CA.

5. Configure a KafkaMirrorMaker2 resource with the authentication details to connect to the
source and target Kafka clusters.

Example MirrorMaker 2 configuration with TLS encryption and mTLS authentication

 operations:
 - Describe
 - resource:
 type: topic
 name: my-source-cluster.checkpoints.internal
 operations:
 - Create
 - Describe
 - Read
 - Write
 - resource: # Needed for every group for which the offset is synced
 type: group
 name: "*"
 operations:
 - Read
 - Describe
 # MirrorHeartbeatConnector
 - resource:
 type: topic
 name: heartbeats
 operations:
 - Create
 - Describe
 - Write

oc apply -f <kafka_user_configuration_file> -n <namespace>

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker-2
spec:
 version: 3.4.0
 replicas: 1

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

71

1

2

3

The TLS certificates for the source Kafka cluster. If they are in a separate namespace, copy
the cluster secrets from the namespace of the Kafka cluster.

The user authentication for accessing the source Kafka cluster using the TLS mechanism.

The TLS certificates for the target Kafka cluster.

 connectCluster: "my-target-cluster"
 clusters:
 - alias: "my-source-cluster"
 bootstrapServers: my-source-cluster-kafka-bootstrap:9093
 tls: 1
 trustedCertificates:
 - secretName: my-source-cluster-cluster-ca-cert
 certificate: ca.crt
 authentication: 2
 type: tls
 certificateAndKey:
 secretName: my-source-user
 certificate: user.crt
 key: user.key
 - alias: "my-target-cluster"
 bootstrapServers: my-target-cluster-kafka-bootstrap:9093
 tls: 3
 trustedCertificates:
 - secretName: my-target-cluster-cluster-ca-cert
 certificate: ca.crt
 authentication: 4
 type: tls
 certificateAndKey:
 secretName: my-target-user
 certificate: user.crt
 key: user.key
 config:
 # -1 means it will use the default replication factor configured in the broker
 config.storage.replication.factor: -1
 offset.storage.replication.factor: -1
 status.storage.replication.factor: -1
 mirrors:
 - sourceCluster: "my-source-cluster"
 targetCluster: "my-target-cluster"
 sourceConnector:
 config:
 replication.factor: 1
 offset-syncs.topic.replication.factor: 1
 sync.topic.acls.enabled: "false"
 heartbeatConnector:
 config:
 heartbeats.topic.replication.factor: 1
 checkpointConnector:
 config:
 checkpoints.topic.replication.factor: 1
 sync.group.offsets.enabled: "true"
 topicsPattern: "topic1|topic2|topic3"
 groupsPattern: "group1|group2|group3"

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

72

4 The user authentication for accessing the target Kafka cluster.

6. Create or update the KafkaMirrorMaker2 resource in the same namespace as the target Kafka
cluster.

Additional resources

type-KafkaMirrorMaker2ClusterSpec-reference[]

2.4.8. Performing a restart of a Kafka MirrorMaker 2 connector

This procedure describes how to manually trigger a restart of a Kafka MirrorMaker 2 connector by using
an OpenShift annotation.

Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaMirrorMaker2 custom resource that controls the Kafka MirrorMaker
2 connector you want to restart:

2. Find the name of the Kafka MirrorMaker 2 connector to be restarted from the
KafkaMirrorMaker2 custom resource.

3. To restart the connector, annotate the KafkaMirrorMaker2 resource in OpenShift. In this
example, oc annotate restarts a connector named my-source->my-
target.MirrorSourceConnector:

4. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka MirrorMaker 2 connector is restarted, as long as the annotation was detected by the
reconciliation process. When the restart request is accepted, the annotation is removed from
the KafkaMirrorMaker2 custom resource.

Additional resources

Kafka MirrorMaker 2 cluster configuration .

2.4.9. Performing a restart of a Kafka MirrorMaker 2 connector task

This procedure describes how to manually trigger a restart of a Kafka MirrorMaker 2 connector task by
using an OpenShift annotation.

oc apply -f <mirrormaker2_configuration_file> -n <namespace_of_target_cluster>

oc get KafkaMirrorMaker2

oc describe KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME

oc annotate KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME "strimzi.io/restart-
connector=my-source->my-target.MirrorSourceConnector"

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

73

Prerequisites

The Cluster Operator is running.

Procedure

1. Find the name of the KafkaMirrorMaker2 custom resource that controls the Kafka MirrorMaker
2 connector you want to restart:

2. Find the name of the Kafka MirrorMaker 2 connector and the ID of the task to be restarted from
the KafkaMirrorMaker2 custom resource. Task IDs are non-negative integers, starting from 0.

3. To restart the connector task, annotate the KafkaMirrorMaker2 resource in OpenShift. In this
example, oc annotate restarts task 0 of a connector named my-source->my-
target.MirrorSourceConnector:

4. Wait for the next reconciliation to occur (every two minutes by default).
The Kafka MirrorMaker 2 connector task is restarted, as long as the annotation was detected by
the reconciliation process. When the restart task request is accepted, the annotation is removed
from the KafkaMirrorMaker2 custom resource.

Additional resources

Kafka MirrorMaker 2 cluster configuration .

2.5. KAFKA MIRRORMAKER CLUSTER CONFIGURATION

Configure a Kafka MirrorMaker deployment using the KafkaMirrorMaker resource. KafkaMirrorMaker
replicates data between Kafka clusters.

Section 6.2.108, “KafkaMirrorMaker schema reference” describes the full schema of the
KafkaMirrorMaker resource.

You can use AMQ Streams with MirrorMaker or MirrorMaker 2. MirrorMaker 2 is the latest version, and
offers a more efficient way to mirror data between Kafka clusters.

IMPORTANT

Kafka MirrorMaker 1 (referred to as just MirrorMaker in the documentation) has been
deprecated in Apache Kafka 3.0.0 and will be removed in Apache Kafka 4.0.0. As a result,
the KafkaMirrorMaker custom resource which is used to deploy Kafka MirrorMaker 1 has
been deprecated in AMQ Streams as well. The KafkaMirrorMaker resource will be
removed from AMQ Streams when we adopt Apache Kafka 4.0.0. As a replacement, use
the KafkaMirrorMaker2 custom resource with the IdentityReplicationPolicy.

2.5.1. Configuring Kafka MirrorMaker

oc get KafkaMirrorMaker2

oc describe KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME

oc annotate KafkaMirrorMaker2 KAFKAMIRRORMAKER-2-NAME "strimzi.io/restart-
connector-task=my-source->my-target.MirrorSourceConnector:0"

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

74

Use the properties of the KafkaMirrorMaker resource to configure your Kafka MirrorMaker deployment.

You can configure access control for producers and consumers using TLS or SASL authentication. This
procedure shows a configuration that uses TLS encryption and mTLS authentication on the consumer
and producer side.

Prerequisites

See the Deploying and Upgrading AMQ Streams on OpenShift guide for instructions on running
a:

Cluster Operator

Kafka cluster

Source and target Kafka clusters must be available

Procedure

1. Edit the spec properties for the KafkaMirrorMaker resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 replicas: 3 1
 consumer:
 bootstrapServers: my-source-cluster-kafka-bootstrap:9092 2
 groupId: "my-group" 3
 numStreams: 2 4
 offsetCommitInterval: 120000 5
 tls: 6
 trustedCertificates:
 - secretName: my-source-cluster-ca-cert
 certificate: ca.crt
 authentication: 7
 type: tls
 certificateAndKey:
 secretName: my-source-secret
 certificate: public.crt
 key: private.key
 config: 8
 max.poll.records: 100
 receive.buffer.bytes: 32768
 ssl.cipher.suites: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 9
 ssl.enabled.protocols: TLSv1.2
 ssl.protocol: TLSv1.2
 ssl.endpoint.identification.algorithm: HTTPS 10
 producer:
 bootstrapServers: my-target-cluster-kafka-bootstrap:9092
 abortOnSendFailure: false 11
 tls:

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

75

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#deploying-kafka-cluster-str

 trustedCertificates:
 - secretName: my-target-cluster-ca-cert
 certificate: ca.crt
 authentication:
 type: tls
 certificateAndKey:
 secretName: my-target-secret
 certificate: public.crt
 key: private.key
 config:
 compression.type: gzip
 batch.size: 8192
 ssl.cipher.suites: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 12
 ssl.enabled.protocols: TLSv1.2
 ssl.protocol: TLSv1.2
 ssl.endpoint.identification.algorithm: HTTPS 13
 include: "my-topic|other-topic" 14
 resources: 15
 requests:
 cpu: "1"
 memory: 2Gi
 limits:
 cpu: "2"
 memory: 2Gi
 logging: 16
 type: inline
 loggers:
 mirrormaker.root.logger: "INFO"
 readinessProbe: 17
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 metricsConfig: 18
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-key
 jvmOptions: 19
 "-Xmx": "1g"
 "-Xms": "1g"
 image: my-org/my-image:latest 20
 template: 21
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

76

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

The number of replica nodes .

Bootstrap servers for consumer and producer.

Group ID for the consumer .

The number of consumer streams.

The offset auto-commit interval in milliseconds .

TLS encryption with key names under which TLS certificates are stored in X.509 format for
consumer or producer. If certificates are stored in the same secret, it can be listed multiple
times.

Authentication for consumer or producer, specified as mTLS, token-based OAuth, SASL-
based SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN.

Kafka configuration options for consumer and producer.

SSL properties for external listeners to run with a specific cipher suite for a TLS version.

Hostname verification is enabled by setting to HTTPS. An empty string disables the
verification.

If the abortOnSendFailure property is set to true, Kafka MirrorMaker will exit and the
container will restart following a send failure for a message.

SSL properties for external listeners to run with a specific cipher suite for a TLS version.

Hostname verification is enabled by setting to HTTPS. An empty string disables the
verification.

A included topics mirrored from source to target Kafka cluster.

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Specified loggers and log levels added directly (inline) or indirectly (external) through a
ConfigMap. A custom ConfigMap must be placed under the log4j.properties or
log4j2.properties key. MirrorMaker has a single logger called mirrormaker.root.logger.
You can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

 - mongodb
 topologyKey: "kubernetes.io/hostname"
 connectContainer: 22
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"
 tracing: 23
 type: jaeger

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

77

18

19

20

21

22

23

Prometheus metrics, which are enabled by referencing a ConfigMap containing
configuration for the Prometheus JMX exporter in this example. You can enable metrics

JVM configuration options to optimize performance for the Virtual Machine (VM) running
Kafka MirrorMaker.

ADVANCED OPTION: Container image configuration , which is recommended only in
special situations.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not
scheduled on nodes with the same hostname.

Environment variables are set for distributed tracing.

Distributed tracing is enabled for Jaeger.

WARNING

With the abortOnSendFailure property set to false, the producer
attempts to send the next message in a topic. The original message might
be lost, as there is no attempt to resend a failed message.

2. Create or update the resource:

Additional resources

Introducing distributed tracing

2.5.2. List of Kafka MirrorMaker cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

<mirror-maker-name>-mirror-maker

Deployment which is responsible for creating the Kafka MirrorMaker pods.

<mirror-maker-name>-config

ConfigMap which contains ancillary configuration for the Kafka MirrorMaker, and is mounted as a
volume by the Kafka broker pods.

<mirror-maker-name>-mirror-maker

Pod Disruption Budget configured for the Kafka MirrorMaker worker nodes.

2.6. KAFKA BRIDGE CLUSTER CONFIGURATION

Configure a Kafka Bridge deployment using the KafkaBridge resource. Kafka Bridge provides an API for
integrating HTTP-based clients with a Kafka cluster.

Section 6.2.114, “KafkaBridge schema reference” describes the full schema of the KafkaBridge



oc apply -f <your-file>

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

78

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-distributed-tracing-str

Section 6.2.114, “KafkaBridge schema reference” describes the full schema of the KafkaBridge
resource.

2.6.1. Configuring the Kafka Bridge

Use the Kafka Bridge to make HTTP-based requests to the Kafka cluster.

Use the properties of the KafkaBridge resource to configure your Kafka Bridge deployment.

In order to prevent issues arising when client consumer requests are processed by different Kafka Bridge
instances, address-based routing must be employed to ensure that requests are routed to the right
Kafka Bridge instance. Additionally, each independent Kafka Bridge instance must have a replica. A
Kafka Bridge instance has its own state which is not shared with another instances.

Prerequisites

An OpenShift cluster

A running Cluster Operator

See the Deploying and Upgrading AMQ Streams on OpenShift guide for instructions on running a:

Cluster Operator

Kafka cluster

Procedure

1. Edit the spec properties for the KafkaBridge resource.
The properties you can configure are shown in this example configuration:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 replicas: 3 1
 bootstrapServers: <cluster_name>-cluster-kafka-bootstrap:9092 2
 tls: 3
 trustedCertificates:
 - secretName: my-cluster-cluster-cert
 certificate: ca.crt
 - secretName: my-cluster-cluster-cert
 certificate: ca2.crt
 authentication: 4
 type: tls
 certificateAndKey:
 secretName: my-secret
 certificate: public.crt
 key: private.key
 http: 5
 port: 8080
 cors: 6
 allowedOrigins: "https://strimzi.io"
 allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

79

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#cluster-operator-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#deploying-kafka-cluster-str

1

2

The number of replica nodes .

Bootstrap server for connection to the target Kafka cluster. Use the name of the Kafka
cluster as the <cluster_name>.

 consumer: 7
 config:
 auto.offset.reset: earliest
 producer: 8
 config:
 delivery.timeout.ms: 300000
 resources: 9
 requests:
 cpu: "1"
 memory: 2Gi
 limits:
 cpu: "2"
 memory: 2Gi
 logging: 10
 type: inline
 loggers:
 logger.bridge.level: "INFO"
 # enabling DEBUG just for send operation
 logger.send.name: "http.openapi.operation.send"
 logger.send.level: "DEBUG"
 jvmOptions: 11
 "-Xmx": "1g"
 "-Xms": "1g"
 readinessProbe: 12
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 image: my-org/my-image:latest 13
 template: 14
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 bridgeContainer: 15
 env:
 - name: JAEGER_SERVICE_NAME
 value: my-jaeger-service
 - name: JAEGER_AGENT_HOST
 value: jaeger-agent-name
 - name: JAEGER_AGENT_PORT
 value: "6831"

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

80

3

4

5

6

7

8

9

10

11

12

13

14

15

cluster as the <cluster_name>.

TLS encryption with key names under which TLS certificates are stored in X.509 format for
the source Kafka cluster. If certificates are stored in the same secret, it can be listed
multiple times.

Authentication for the Kafka Bridge cluster, specified as mTLS, token-based OAuth,
SASL-based SCRAM-SHA-256/SCRAM-SHA-512, or PLAIN. By default, the Kafka Bridge
connects to Kafka brokers without authentication.

HTTP access to Kafka brokers.

CORS access specifying selected resources and access methods. Additional HTTP
headers in requests describe the origins that are permitted access to the Kafka cluster.

Consumer configuration options.

Producer configuration options.

Requests for reservation of supported resources, currently cpu and memory, and limits to
specify the maximum resources that can be consumed.

Specified Kafka Bridge loggers and log levels added directly (inline) or indirectly
(external) through a ConfigMap. A custom ConfigMap must be placed under the
log4j.properties or log4j2.properties key. For the Kafka Bridge loggers, you can set the
log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

JVM configuration options to optimize performance for the Virtual Machine (VM) running
the Kafka Bridge.

Healthchecks to know when to restart a container (liveness) and when a container can
accept traffic (readiness).

Optional: Container image configuration , which is recommended only in special situations.

Template customization. Here a pod is scheduled with anti-affinity, so the pod is not
scheduled on nodes with the same hostname.

Environment variables are set for distributed tracing.

2. Create or update the resource:

Additional resources

Using the AMQ Streams Kafka Bridge

Introducing distributed tracing

2.6.2. List of Kafka Bridge cluster resources

The following resources are created by the Cluster Operator in the OpenShift cluster:

bridge-cluster-name-bridge

oc apply -f KAFKA-BRIDGE-CONFIG-FILE

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

81

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/using_the_amq_streams_kafka_bridge/index
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-distributed-tracing-str

Deployment which is in charge to create the Kafka Bridge worker node pods.

bridge-cluster-name-bridge-service

Service which exposes the REST interface of the Kafka Bridge cluster.

bridge-cluster-name-bridge-config

ConfigMap which contains the Kafka Bridge ancillary configuration and is mounted as a volume by the
Kafka broker pods.

bridge-cluster-name-bridge

Pod Disruption Budget configured for the Kafka Bridge worker nodes.

2.7. CUSTOMIZING OPENSHIFT RESOURCES

An AMQ Streams deployment creates OpenShift resources, such as Deployments, StatefulSets, Pods,
and Services. These resources are managed by AMQ Streams operators. Only the operator that is
responsible for managing a particular OpenShift resource can change that resource. If you try to
manually change an operator-managed OpenShift resource, the operator will revert your changes back.

Changing an operator-managed OpenShift resource can be useful if you want to perform certain tasks,
such as:

Adding custom labels or annotations that control how Pods are treated by Istio or other
services

Managing how Loadbalancer-type Services are created by the cluster

You can make the changes using the template property in the AMQ Streams custom resources. The
template property is supported in the following resources. The API reference provides more details
about the customizable fields.

Kafka.spec.kafka

See Section 6.2.33, “KafkaClusterTemplate schema reference”

Kafka.spec.zookeeper

See Section 6.2.43, “ZookeeperClusterTemplate schema reference”

Kafka.spec.entityOperator

See Section 6.2.48, “EntityOperatorTemplate schema reference”

Kafka.spec.kafkaExporter

See Section 6.2.56, “KafkaExporterTemplate schema reference”

Kafka.spec.cruiseControl

See Section 6.2.52, “CruiseControlTemplate schema reference”

KafkaConnect.spec

See Section 6.2.72, “KafkaConnectTemplate schema reference”

KafkaMirrorMaker.spec

See Section 6.2.112, “KafkaMirrorMakerTemplate schema reference”

KafkaMirrorMaker2.spec

See Section 6.2.72, “KafkaConnectTemplate schema reference”

KafkaBridge.spec

See Section 6.2.121, “KafkaBridgeTemplate schema reference”

KafkaUser.spec

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

82

See Section 6.2.106, “KafkaUserTemplate schema reference”

In the following example, the template property is used to modify the labels in a Kafka broker’s pod.

Example template customization

2.7.1. Customizing the image pull policy

AMQ Streams allows you to customize the image pull policy for containers in all pods deployed by the
Cluster Operator. The image pull policy is configured using the environment variable
STRIMZI_IMAGE_PULL_POLICY in the Cluster Operator deployment. The
STRIMZI_IMAGE_PULL_POLICY environment variable can be set to three different values:

Always

Container images are pulled from the registry every time the pod is started or restarted.

IfNotPresent

Container images are pulled from the registry only when they were not pulled before.

Never

Container images are never pulled from the registry.

Currently, the image pull policy can only be customized for all Kafka, Kafka Connect, and Kafka
MirrorMaker clusters at once. Changing the policy will result in a rolling update of all your Kafka, Kafka
Connect, and Kafka MirrorMaker clusters.

Additional resources

Using the Cluster Operator .

Disruptions.

2.7.2. Applying a termination grace period

Apply a termination grace period to give a Kafka cluster enough time to shut down cleanly.

Specify the time using the terminationGracePeriodSeconds property. Add the property to the
template.pod configuration of the Kafka custom resource.

The time you add will depend on the size of your Kafka cluster. The OpenShift default for the

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 labels:
 app: my-cluster
spec:
 kafka:
 # ...
 template:
 pod:
 metadata:
 labels:
 mylabel: myvalue
 # ...

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

83

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#using-the-cluster-operator-str
https://kubernetes.io/docs/concepts/containers/images/#updating-images

The time you add will depend on the size of your Kafka cluster. The OpenShift default for the
termination grace period is 30 seconds. If you observe that your clusters are not shutting down cleanly,
you can increase the termination grace period.

A termination grace period is applied every time a pod is restarted. The period begins when OpenShift
sends a term (termination) signal to the processes running in the pod. The period should reflect the
amount of time required to transfer the processes of the terminating pod to another pod before they
are stopped. After the period ends, a kill signal stops any processes still running in the pod.

The following example adds a termination grace period of 120 seconds to the Kafka custom resource.
You can also specify the configuration in the custom resources of other Kafka components.

Example termination grace period configuration

2.8. CONFIGURING POD SCHEDULING

When two applications are scheduled to the same OpenShift node, both applications might use the
same resources like disk I/O and impact performance. That can lead to performance degradation.
Scheduling Kafka pods in a way that avoids sharing nodes with other critical workloads, using the right
nodes or dedicated a set of nodes only for Kafka are the best ways how to avoid such problems.

2.8.1. Specifying affinity, tolerations, and topology spread constraints

Use affinity, tolerations and topology spread constraints to schedule the pods of kafka resources onto
nodes. Affinity, tolerations and topology spread constraints are configured using the affinity,
tolerations, and topologySpreadConstraint properties in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaBridge.spec.template.pod

KafkaMirrorMaker.spec.template.pod

KafkaMirrorMaker2.spec.template.pod

The format of the affinity, tolerations, and topologySpreadConstraint properties follows the

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 template:
 pod:
 terminationGracePeriodSeconds: 120
 # ...
 # ...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

84

The format of the affinity, tolerations, and topologySpreadConstraint properties follows the
OpenShift specification. The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

Additional resources

Kubernetes node and pod affinity documentation

Kubernetes taints and tolerations

Controlling pod placement by using pod topology spread constraints

2.8.1.1. Use pod anti-affinity to avoid critical applications sharing nodes

Use pod anti-affinity to ensure that critical applications are never scheduled on the same disk. When
running a Kafka cluster, it is recommended to use pod anti-affinity to ensure that the Kafka brokers do
not share nodes with other workloads, such as databases.

2.8.1.2. Use node affinity to schedule workloads onto specific nodes

The OpenShift cluster usually consists of many different types of worker nodes. Some are optimized for
CPU heavy workloads, some for memory, while other might be optimized for storage (fast local SSDs) or
network. Using different nodes helps to optimize both costs and performance. To achieve the best
possible performance, it is important to allow scheduling of AMQ Streams components to use the right
nodes.

OpenShift uses node affinity to schedule workloads onto specific nodes. Node affinity allows you to
create a scheduling constraint for the node on which the pod will be scheduled. The constraint is
specified as a label selector. You can specify the label using either the built-in node label like
beta.kubernetes.io/instance-type or custom labels to select the right node.

2.8.1.3. Use node affinity and tolerations for dedicated nodes

Use taints to create dedicated nodes, then schedule Kafka pods on the dedicated nodes by configuring
node affinity and tolerations.

Cluster administrators can mark selected OpenShift nodes as tainted. Nodes with taints are excluded
from regular scheduling and normal pods will not be scheduled to run on them. Only services which can
tolerate the taint set on the node can be scheduled on it. The only other services running on such nodes
will be system services such as log collectors or software defined networks.

Running Kafka and its components on dedicated nodes can have many advantages. There will be no
other applications running on the same nodes which could cause disturbance or consume the resources
needed for Kafka. That can lead to improved performance and stability.

2.8.2. Configuring pod anti-affinity to schedule each Kafka broker on a different
worker node

Many Kafka brokers or ZooKeeper nodes can run on the same OpenShift worker node. If the worker
node fails, they will all become unavailable at the same time. To improve reliability, you can use
podAntiAffinity configuration to schedule each Kafka broker or ZooKeeper node on a different
OpenShift worker node.

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

85

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://docs.openshift.com/container-platform/latest/nodes/scheduling/nodes-scheduler-pod-topology-spread-constraints.html

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the affinity property in the resource specifying the cluster deployment. To make sure that
no worker nodes are shared by Kafka brokers or ZooKeeper nodes, use the strimzi.io/name
label. Set the topologyKey to kubernetes.io/hostname to specify that the selected pods are
not scheduled on nodes with the same hostname. This will still allow the same worker node to
be shared by a single Kafka broker and a single ZooKeeper node. For example:

Where CLUSTER-NAME is the name of your Kafka custom resource.

2. If you even want to make sure that a Kafka broker and ZooKeeper node do not share the same
worker node, use the strimzi.io/cluster label. For example:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/name
 operator: In
 values:
 - CLUSTER-NAME-kafka
 topologyKey: "kubernetes.io/hostname"
 # ...
 zookeeper:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/name
 operator: In
 values:
 - CLUSTER-NAME-zookeeper
 topologyKey: "kubernetes.io/hostname"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

86

Where CLUSTER-NAME is the name of your Kafka custom resource.

3. Create or update the resource.

2.8.3. Configuring pod anti-affinity in Kafka components

Pod anti-affinity configuration helps with the stability and performance of Kafka brokers. By using
podAntiAffinity, OpenShift will not schedule Kafka brokers on the same nodes as other workloads.
Typically, you want to avoid Kafka running on the same worker node as other network or storage
intensive applications such as databases, storage or other messaging platforms.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the affinity property in the resource specifying the cluster deployment. Use labels to
specify the pods which should not be scheduled on the same nodes. The topologyKey should
be set to kubernetes.io/hostname to specify that the selected pods should not be scheduled

 kafka:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/cluster
 operator: In
 values:
 - CLUSTER-NAME
 topologyKey: "kubernetes.io/hostname"
 # ...
 zookeeper:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: strimzi.io/cluster
 operator: In
 values:
 - CLUSTER-NAME
 topologyKey: "kubernetes.io/hostname"
 # ...

oc apply -f <kafka_configuration_file>

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

87

on nodes with the same hostname. For example:

2. Create or update the resource.
This can be done using oc apply:

2.8.4. Configuring node affinity in Kafka components

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Label the nodes where AMQ Streams components should be scheduled.
This can be done using oc label:

Alternatively, some of the existing labels might be reused.

2. Edit the affinity property in the resource specifying the cluster deployment. For example:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

oc label node NAME-OF-NODE node-type=fast-network

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

88

3. Create or update the resource.
This can be done using oc apply:

2.8.5. Setting up dedicated nodes and scheduling pods on them

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Select the nodes which should be used as dedicated.

2. Make sure there are no workloads scheduled on these nodes.

3. Set the taints on the selected nodes:
This can be done using oc adm taint:

4. Additionally, add a label to the selected nodes as well.
This can be done using oc label:

5. Edit the affinity and tolerations properties in the resource specifying the cluster deployment.
For example:

 template:
 pod:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: node-type
 operator: In
 values:
 - fast-network
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

oc adm taint node NAME-OF-NODE dedicated=Kafka:NoSchedule

oc label node NAME-OF-NODE dedicated=Kafka

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 template:

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

89

6. Create or update the resource.
This can be done using oc apply:

2.9. LOGGING CONFIGURATION

Configure logging levels in the custom resources of Kafka components and AMQ Streams Operators.
You can specify the logging levels directly in the spec.logging property of the custom resource. Or you
can define the logging properties in a ConfigMap that’s referenced in the custom resource using the
configMapKeyRef property.

The advantages of using a ConfigMap are that the logging properties are maintained in one place and
are accessible to more than one resource. You can also reuse the ConfigMap for more than one
resource. If you are using a ConfigMap to specify loggers for AMQ Streams Operators, you can also
append the logging specification to add filters.

You specify a logging type in your logging specification:

inline when specifying logging levels directly

external when referencing a ConfigMap

Example inline logging configuration

Example external logging configuration

 pod:
 tolerations:
 - key: "dedicated"
 operator: "Equal"
 value: "Kafka"
 effect: "NoSchedule"
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: dedicated
 operator: In
 values:
 - Kafka
 # ...
 zookeeper:
 # ...

oc apply -f <kafka_configuration_file>

spec:
 # ...
 logging:
 type: inline
 loggers:
 kafka.root.logger.level: "INFO"

spec:

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

90

Values for the name and key of the ConfigMap are mandatory. Default logging is used if the name or
key is not set.

2.9.1. Logging options for Kafka components and operators

For more information on configuring logging for specific Kafka components or operators, see the
following sections.

Kafka component logging

Kafka logging

ZooKeeper logging

Kafka Connect and Mirror Maker 2.0 logging

MirrorMaker logging

Kafka Bridge logging

Cruise Control logging

Operator logging

Cluster Operator logging

Topic Operator logging

User Operator logging

2.9.2. Creating a ConfigMap for logging

To use a ConfigMap to define logging properties, you create the ConfigMap and then reference it as
part of the logging definition in the spec of a resource.

The ConfigMap must contain the appropriate logging configuration.

log4j.properties for Kafka components, ZooKeeper, and the Kafka Bridge

log4j2.properties for the Topic Operator and User Operator

The configuration must be placed under these properties.

In this procedure a ConfigMap defines a root logger for a Kafka resource.

Procedure

 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-config-map-key

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

91

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#ref-operator-cluster-logging-configmap-str

1. Create the ConfigMap.
You can create the ConfigMap as a YAML file or from a properties file.

ConfigMap example with a root logger definition for Kafka:

If you are using a properties file, specify the file at the command line:

The properties file defines the logging configuration:

2. Define external logging in the spec of the resource, setting the
logging.valueFrom.configMapKeyRef.name to the name of the ConfigMap and
logging.valueFrom.configMapKeyRef.key to the key in this ConfigMap.

3. Create or update the resource.

2.9.3. Adding logging filters to Operators

If you are using a ConfigMap to configure the (log4j2) logging levels for AMQ Streams Operators, you
can also define logging filters to limit what’s returned in the log.

Logging filters are useful when you have a large number of logging messages. Suppose you set the log
level for the logger as DEBUG (rootLogger.level="DEBUG"). Logging filters reduce the number of
logs returned for the logger at that level, so you can focus on a specific resource. When the filter is set,
only log messages matching the filter are logged.

Filters use markers to specify what to include in the log. You specify a kind, namespace and name for the
marker. For example, if a Kafka cluster is failing, you can isolate the logs by specifying the kind as Kafka,
and use the namespace and name of the failing cluster.

kind: ConfigMap
apiVersion: v1
metadata:
 name: logging-configmap
data:
 log4j.properties:
 kafka.root.logger.level="INFO"

oc create configmap logging-configmap --from-file=log4j.properties

Define the logger
kafka.root.logger.level="INFO"
...

spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: logging-configmap
 key: log4j.properties

oc apply -f <kafka_configuration_file>

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

92

1

2

3

4

This example shows a marker filter for a Kafka cluster named my-kafka-cluster.

Basic logging filter configuration

The MarkerFilter type compares a specified marker for filtering.

The onMatch property accepts the log if the marker matches.

The onMismatch property rejects the log if the marker does not match.

The marker used for filtering is in the format KIND(NAMESPACE/NAME-OF-RESOURCE).

You can create one or more filters. Here, the log is filtered for two Kafka clusters.

Multiple logging filter configuration

Adding filters to the Cluster Operator

To add filters to the Cluster Operator, update its logging ConfigMap YAML file (install/cluster-
operator/050-ConfigMap-strimzi-cluster-operator.yaml).

Procedure

1. Update the 050-ConfigMap-strimzi-cluster-operator.yaml file to add the filter properties to
the ConfigMap.
In this example, the filter properties return logs only for the my-kafka-cluster Kafka cluster:

rootLogger.level="INFO"
appender.console.filter.filter1.type=MarkerFilter 1
appender.console.filter.filter1.onMatch=ACCEPT 2
appender.console.filter.filter1.onMismatch=DENY 3
appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster) 4

appender.console.filter.filter1.type=MarkerFilter
appender.console.filter.filter1.onMatch=ACCEPT
appender.console.filter.filter1.onMismatch=DENY
appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster-1)
appender.console.filter.filter2.type=MarkerFilter
appender.console.filter.filter2.onMatch=ACCEPT
appender.console.filter.filter2.onMismatch=DENY
appender.console.filter.filter2.marker=Kafka(my-namespace/my-kafka-cluster-2)

kind: ConfigMap
apiVersion: v1
metadata:
 name: strimzi-cluster-operator
data:
 log4j2.properties:
 #...
 appender.console.filter.filter1.type=MarkerFilter
 appender.console.filter.filter1.onMatch=ACCEPT
 appender.console.filter.filter1.onMismatch=DENY
 appender.console.filter.filter1.marker=Kafka(my-namespace/my-kafka-cluster)

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

93

Alternatively, edit the ConfigMap directly:

2. If you updated the YAML file instead of editing the ConfigMap directly, apply the changes by
deploying the ConfigMap:

Adding filters to the Topic Operator or User Operator

To add filters to the Topic Operator or User Operator, create or edit a logging ConfigMap.

In this procedure a logging ConfigMap is created with filters for the Topic Operator. The same approach
is used for the User Operator.

Procedure

1. Create the ConfigMap.
You can create the ConfigMap as a YAML file or from a properties file.

In this example, the filter properties return logs only for the my-topic topic:

If you are using a properties file, specify the file at the command line:

The properties file defines the logging configuration:

2. Define external logging in the spec of the resource, setting the
logging.valueFrom.configMapKeyRef.name to the name of the ConfigMap and
logging.valueFrom.configMapKeyRef.key to the key in this ConfigMap.

For the Topic Operator, logging is specified in the topicOperator configuration of the Kafka

oc edit configmap strimzi-cluster-operator

oc create -f install/cluster-operator/050-ConfigMap-strimzi-cluster-operator.yaml

kind: ConfigMap
apiVersion: v1
metadata:
 name: logging-configmap
data:
 log4j2.properties:
 rootLogger.level="INFO"
 appender.console.filter.filter1.type=MarkerFilter
 appender.console.filter.filter1.onMatch=ACCEPT
 appender.console.filter.filter1.onMismatch=DENY
 appender.console.filter.filter1.marker=KafkaTopic(my-namespace/my-topic)

oc create configmap logging-configmap --from-file=log4j2.properties

Define the logger
rootLogger.level="INFO"
Set the filters
appender.console.filter.filter1.type=MarkerFilter
appender.console.filter.filter1.onMatch=ACCEPT
appender.console.filter.filter1.onMismatch=DENY
appender.console.filter.filter1.marker=KafkaTopic(my-namespace/my-topic)
...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

94

For the Topic Operator, logging is specified in the topicOperator configuration of the Kafka
resource.

3. Apply the changes by deploying the Cluster Operator:

Additional resources

Configuring Kafka

Cluster Operator logging

Topic Operator logging

User Operator logging

spec:
 # ...
 entityOperator:
 topicOperator:
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: logging-configmap
 key: log4j2.properties

create -f install/cluster-operator -n my-cluster-operator-namespace

CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT

95

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#ref-operator-cluster-logging-configmap-str

CHAPTER 3. LOADING CONFIGURATION VALUES FROM
EXTERNAL SOURCES

Use configuration provider plugins to load configuration data from external sources. The providers
operate independently of AMQ Streams. You can use them to load configuration data for all Kafka
components, including producers and consumers. Use them, for example, to provide the credentials for
Kafka Connect connector configuration.

OpenShift Configuration Provider

The OpenShift Configuration Provider plugin loads configuration data from OpenShift secrets or
ConfigMaps.
Suppose you have a Secret object that’s managed outside the Kafka namespace, or outside the
Kafka cluster. The OpenShift Configuration Provider allows you to reference the values of the secret
in your configuration without extracting the files. You just need to tell the provider what secret to use
and provide access rights. The provider loads the data without needing to restart the Kafka
component, even when using a new Secret or ConfigMap object. This capability avoids disruption
when a Kafka Connect instance hosts multiple connectors.

Environment Variables Configuration Provider

The Environment Variables Configuration Provider plugin loads configuration data from environment
variables.
The values for the environment variables can be mapped from secrets or ConfigMaps. You can use
the Environment Variables Configuration Provider, for example, to load certificates or JAAS
configuration from environment variables mapped from OpenShift secrets.

NOTE

OpenShift Configuration Provider can’t use mounted files. For example, it can’t load
values that need the location of a truststore or keystore. Instead, you can mount
ConfigMaps or secrets into a Kafka Connect pod as environment variables or volumes.
You can use the Environment Variables Configuration Provider to load values for
environment variables. You add configuration using the externalConfiguration property
in KafkaConnect.spec. You don’t need to set up access rights with this approach.
However, Kafka Connect will need a restart when using a new Secret or ConfigMap for a
connector. This will cause disruption to all the Kafka Connect instance’s connectors.

3.1. LOADING CONFIGURATION VALUES FROM A CONFIGMAP

This procedure shows how to use the OpenShift Configuration Provider plugin.

In the procedure, an external ConfigMap object provides configuration properties for a connector.

Prerequisites

An OpenShift cluster is available.

A Kafka cluster is running.

The Cluster Operator is running.

Procedure

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

96

1

2

3

1. Create a ConfigMap or Secret that contains the configuration properties.
In this example, a ConfigMap object named my-connector-configuration contains connector
properties:

Example ConfigMap with connector properties

2. Specify the OpenShift Configuration Provider in the Kafka Connect configuration.
The specification shown here can support loading values from secrets and ConfigMaps.

Example Kafka Connect configuration to enable the OpenShift Configuration
Provider

The alias for the configuration provider is used to define other configuration parameters.
The provider parameters use the alias from config.providers, taking the form
config.providers.${alias}.class.

KubernetesSecretConfigProvider provides values from secrets.

KubernetesConfigMapConfigProvider provides values from config maps.

3. Create or update the resource to enable the provider.

4. Create a role that permits access to the values in the external config map.

Example role to access values from a config map

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-connector-configuration
data:
 option1: value1
 option2: value2

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 # ...
 config:
 # ...
 config.providers: secrets,configmaps 1
 config.providers.secrets.class: io.strimzi.kafka.KubernetesSecretConfigProvider 2
 config.providers.configmaps.class: io.strimzi.kafka.KubernetesConfigMapConfigProvider
3

 # ...

oc apply -f <kafka_connect_configuration_file>

apiVersion: rbac.authorization.k8s.io/v1

CHAPTER 3. LOADING CONFIGURATION VALUES FROM EXTERNAL SOURCES

97

The rule gives the role permission to access the my-connector-configuration config map.

5. Create a role binding to permit access to the namespace that contains the config map.

Example role binding to access the namespace that contains the config map

The role binding gives the role permission to access the my-project namespace.

The service account must be the same one used by the Kafka Connect deployment. The service
account name format is <cluster_name>-connect, where <cluster_name> is the name of the
KafkaConnect custom resource.

6. Reference the config map in the connector configuration.

Example connector configuration referencing the config map

Placeholders for the property values in the config map are referenced in the connector
configuration. The placeholder structure is configmaps:<path_and_file_name>:<property>.

kind: Role
metadata:
 name: connector-configuration-role
rules:
- apiGroups: [""]
 resources: ["configmaps"]
 resourceNames: ["my-connector-configuration"]
 verbs: ["get"]
...

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: connector-configuration-role-binding
subjects:
- kind: ServiceAccount
 name: my-connect-connect
 namespace: my-project
roleRef:
 kind: Role
 name: connector-configuration-role
 apiGroup: rbac.authorization.k8s.io
...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-connector
 labels:
 strimzi.io/cluster: my-connect
spec:
 # ...
 config:
 option: ${configmaps:my-project/my-connector-configuration:option1}
 # ...
...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

98

1

KubernetesConfigMapConfigProvider reads and extracts the option1 property value from the
external config map.

3.2. LOADING CONFIGURATION VALUES FROM ENVIRONMENT
VARIABLES

This procedure shows how to use the Environment Variables Configuration Provider plugin.

In the procedure, environment variables provide configuration properties for a connector. A database
password is specified as an environment variable.

Prerequisites

An OpenShift cluster is available.

A Kafka cluster is running.

The Cluster Operator is running.

Procedure

1. Specify the Environment Variables Configuration Provider in the Kafka Connect configuration.
Define environment variables using the externalConfiguration property.

Example Kafka Connect configuration to enable the Environment Variables
Configuration Provider

The alias for the configuration provider is used to define other configuration parameters.
The provider parameters use the alias from config.providers, taking the form
config.providers.${alias}.class.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
 annotations:
 strimzi.io/use-connector-resources: "true"
spec:
 # ...
 config:
 # ...
 config.providers: env 1
 config.providers.env.class: io.strimzi.kafka.EnvVarConfigProvider 2
 # ...
 externalConfiguration:
 env:
 - name: DB_PASSWORD 3
 valueFrom:
 secretKeyRef:
 name: db-creds 4
 key: dbPassword 5
 # ...

CHAPTER 3. LOADING CONFIGURATION VALUES FROM EXTERNAL SOURCES

99

2

3

4

5

EnvVarConfigProvider provides values from environment variables.

The DB_PASSWORD environment variable takes a password value from a secret.

The name of the secret containing the predefined password.

The key for the password stored inside the secret.

2. Create or update the resource to enable the provider.

3. Reference the environment variable in the connector configuration.

Example connector configuration referencing the environment variable

oc apply -f <kafka_connect_configuration_file>

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-connector
 labels:
 strimzi.io/cluster: my-connect
spec:
 # ...
 config:
 option: ${env:DB_PASSWORD}
 # ...
...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

100

CHAPTER 4. APPLYING SECURITY CONTEXT TO AMQ
STREAMS PODS AND CONTAINERS

Security context defines constraints on pods and containers. By specifying a security context, pods and
containers only have the permissions they need. For example, permissions can control runtime
operations or access to resources.

4.1. HANDLING OF SECURITY CONTEXT BY OPENSHIFT PLATFORM

Handling of security context depends on the tooling of the OpenShift platform you are using.

For example, OpenShift uses built-in security context constraints (SCCs) to control permissions. SCCs
are the settings and strategies that control the security features a pod has access to.

By default, OpenShift injects security context configuration automatically. In most cases, this means you
don’t need to configure security context for the pods and containers created by the Cluster Operator.
Although you can still create and manage your own SCCs.

For more information, see the OpenShift documentation.

CHAPTER 4. APPLYING SECURITY CONTEXT TO AMQ STREAMS PODS AND CONTAINERS

101

https://docs.openshift.com

CHAPTER 5. VALIDATING SCHEMAS WITH THE RED HAT
BUILD OF APICURIO REGISTRY

You can use the Red Hat build of Apicurio Registry with AMQ Streams.

Apicurio Registry is a datastore for sharing standard event schemas and API designs across API and
event-driven architectures. You can use Apicurio Registry to decouple the structure of your data from
your client applications, and to share and manage your data types and API descriptions at runtime using
a REST interface.

Apicurio Registry stores schemas used to serialize and deserialize messages, which can then be
referenced from your client applications to ensure that the messages that they send and receive are
compatible with those schemas. Apicurio Registry provides Kafka client serializers/deserializers for Kafka
producer and consumer applications. Kafka producer applications use serializers to encode messages
that conform to specific event schemas. Kafka consumer applications use deserializers, which validate
that the messages have been serialized using the correct schema, based on a specific schema ID.

You can enable your applications to use a schema from the registry. This ensures consistent schema
usage and helps to prevent data errors at runtime.

Additional resources

Red Hat build of Apicurio Registry documentation

Red Hat build of Apicurio Registry is built on the Apicurio Registry open source community
project available on GitHub: Apicurio/apicurio-registry

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

102

https://access.redhat.com/documentation/en-us/red_hat_build_of_apicurio_registry
https://github.com/apicurio/apicurio-registry

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

6.1. COMMON CONFIGURATION PROPERTIES

Common configuration properties apply to more than one resource.

6.1.1. replicas

Use the replicas property to configure replicas.

The type of replication depends on the resource.

KafkaTopic uses a replication factor to configure the number of replicas of each partition within
a Kafka cluster.

Kafka components use replicas to configure the number of pods in a deployment to provide
better availability and scalability.

NOTE

When running a Kafka component on OpenShift it may not be necessary to run multiple
replicas for high availability. When the node where the component is deployed crashes,
OpenShift will automatically reschedule the Kafka component pod to a different node.
However, running Kafka components with multiple replicas can provide faster failover
times as the other nodes will be up and running.

6.1.2. bootstrapServers

Use the bootstrapServers property to configure a list of bootstrap servers.

The bootstrap server lists can refer to Kafka clusters that are not deployed in the same OpenShift
cluster. They can also refer to a Kafka cluster not deployed by AMQ Streams.

If on the same OpenShift cluster, each list must ideally contain the Kafka cluster bootstrap service which
is named CLUSTER-NAME-kafka-bootstrap and a port number. If deployed by AMQ Streams but on
different OpenShift clusters, the list content depends on the approach used for exposing the clusters
(routes, ingress, nodeports or loadbalancers).

When using Kafka with a Kafka cluster not managed by AMQ Streams, you can specify the bootstrap
servers list according to the configuration of the given cluster.

6.1.3. ssl

You can incorporate SSL configuration and cipher suite specifications to further secure TLS-based
communication between your client application and a Kafka cluster. In addition to the standard TLS
configuration, you can specify a supported TLS version and enable cipher suites in the configuration for
the Kafka broker. You can also add the configuration to your clients if you wish to limit the TLS versions
and cipher suites they use. The configuration on the client must only use protocols and cipher suites that
are enabled on the broker.

A cipher suite is a set of security mechanisms for secure connection and data transfer. For example, the
cipher suite TLS_AES_256_GCM_SHA384 is composed of the following mechanisms, which are used in
conjunction with the TLS protocol:

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

103

1

2

3

4

AES (Advanced Encryption Standard) encryption (256-bit key)

GCM (Galois/Counter Mode) authenticated encryption

SHA384 (Secure Hash Algorithm) data integrity protection

The combination is encapsulated in the TLS_AES_256_GCM_SHA384 cipher suite specification.

The ssl.enabled.protocols property specifies the available TLS versions that can be used for secure
communication between the cluster and its clients. The ssl.protocol property sets the default TLS
version for all connections, and it must be chosen from the enabled protocols. Use the
ssl.endpoint.identification.algorithm property to enable or disable hostname verification.

Example SSL configuration

Cipher suite specifications enabled.

TLS versions supported.

Default TLS version is TLSv1.3. If a client only supports TLSv1.2, it can still connect to the broker
and communicate using that supported version, and vice versa if the configuration is on the client
and the broker only supports TLSv1.2.

Hostname verification is enabled by setting to HTTPS. An empty string disables the verification.

6.1.4. trustedCertificates

Having set tls to configure TLS encryption, use the trustedCertificates property to provide a list of
secrets with key names under which the certificates are stored in X.509 format.

You can use the secrets created by the Cluster Operator for the Kafka cluster, or you can create your
own TLS certificate file, then create a Secret from the file:

Example TLS encryption configuration

...
config:
 ssl.cipher.suites: TLS_AES_256_GCM_SHA384,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 1
 ssl.enabled.protocols: TLSv1.3, TLSv1.2 2
 ssl.protocol: TLSv1.3 3
 ssl.endpoint.identification.algorithm: HTTPS 4
...

oc create secret generic MY-SECRET \
--from-file=MY-TLS-CERTIFICATE-FILE.crt

tls:
 trustedCertificates:
 - secretName: my-cluster-cluster-cert
 certificate: ca.crt
 - secretName: my-cluster-cluster-cert
 certificate: ca2.crt

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

104

If certificates are stored in the same secret, it can be listed multiple times.

If you want to enable TLS encryption, but use the default set of public certification authorities shipped
with Java, you can specify trustedCertificates as an empty array:

Example of enabling TLS with the default Java certificates

For information on configuring mTLS authentication, see the KafkaClientAuthenticationTls schema
reference.

6.1.5. resources

Configure resource requests and limits to control resources for AMQ Streams containers. You can
specify requests and limits for memory and cpu resources. The requests should be enough to ensure a
stable performance of Kafka.

How you configure resources in a production environment depends on a number of factors. For
example, applications are likely to be sharing resources in your OpenShift cluster.

For Kafka, the following aspects of a deployment can impact the resources you need:

Throughput and size of messages

The number of network threads handling messages

The number of producers and consumers

The number of topics and partitions

The values specified for resource requests are reserved and always available to the container. Resource
limits specify the maximum resources that can be consumed by a given container. The amount between
the request and limit is not reserved and might not be always available. A container can use the
resources up to the limit only when they are available. Resource limits are temporary and can be
reallocated.

Resource requests and limits

If you set limits without requests or vice versa, OpenShift uses the same value for both. Setting equal
requests and limits for resources guarantees quality of service, as OpenShift will not kill containers
unless they exceed their limits.

You can configure resource requests and limits for one or more supported resources.

Example resource configuration

tls:
 trustedCertificates: []

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

105

Resource requests and limits for the Topic Operator and User Operator are set in the Kafka resource.

If the resource request is for more than the available free resources in the OpenShift cluster, the pod is
not scheduled.

NOTE

AMQ Streams uses the OpenShift syntax for specifying memory and cpu resources. For
more information about managing computing resources on OpenShift, see Managing
Compute Resources for Containers.

Memory resources

When configuring memory resources, consider the total requirements of the components.
Kafka runs inside a JVM and uses an operating system page cache to store message data before
writing to disk. The memory request for Kafka should fit the JVM heap and page cache. You can
configure the jvmOptions property to control the minimum and maximum heap size.

Other components don’t rely on the page cache. You can configure memory resources without
configuring the jvmOptions to control the heap size.

Memory requests and limits are specified in megabytes, gigabytes, mebibytes, and gibibytes. Use the
following suffixes in the specification:

M for megabytes

G for gigabytes

Mi for mebibytes

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 #...
 resources:
 requests:
 memory: 64Gi
 cpu: "8"
 limits:
 memory: 64Gi
 cpu: "12"
 entityOperator:
 #...
 topicOperator:
 #...
 resources:
 requests:
 memory: 512Mi
 cpu: "1"
 limits:
 memory: 512Mi
 cpu: "1"

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

106

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

Gi for gibibytes

Example resources using different memory units

For more details about memory specification and additional supported units, see Meaning of
memory.

CPU resources

A CPU request should be enough to give a reliable performance at any time. CPU requests and limits
are specified as cores or millicpus/millicores.
CPU cores are specified as integers (5 CPU core) or decimals (2.5 CPU core). 1000 millicores is the
same as 1 CPU core.

Example CPU units

The computing power of 1 CPU core may differ depending on the platform where OpenShift is
deployed.

For more information on CPU specification, see Meaning of CPU.

6.1.6. image

Use the image property to configure the container image used by the component.

Overriding container images is recommended only in special situations where you need to use a different
container registry or a customized image.

For example, if your network does not allow access to the container repository used by AMQ Streams,
you can copy the AMQ Streams images or build them from the source. However, if the configured image
is not compatible with AMQ Streams images, it might not work properly.

A copy of the container image might also be customized and used for debugging.

You can specify which container image to use for a component using the image property in the
following resources:

Kafka.spec.kafka

...
resources:
 requests:
 memory: 512Mi
 limits:
 memory: 2Gi
...

...
resources:
 requests:
 cpu: 500m
 limits:
 cpu: 2.5
...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

107

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-memory
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-cpu

Kafka.spec.zookeeper

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

Kafka.spec.entityOperator.tlsSidecar

KafkaConnect.spec

KafkaMirrorMaker.spec

KafkaMirrorMaker2.spec

KafkaBridge.spec

Configuring the image property for Kafka, Kafka Connect, and Kafka MirrorMaker

Kafka, Kafka Connect, and Kafka MirrorMaker support multiple versions of Kafka. Each component
requires its own image. The default images for the different Kafka versions are configured in the
following environment variables:

STRIMZI_KAFKA_IMAGES

STRIMZI_KAFKA_CONNECT_IMAGES

STRIMZI_KAFKA_MIRROR_MAKER_IMAGES

These environment variables contain mappings between the Kafka versions and their corresponding
images. The mappings are used together with the image and version properties:

If neither image nor version are given in the custom resource then the version will default to
the Cluster Operator’s default Kafka version, and the image will be the one corresponding to
this version in the environment variable.

If image is given but version is not, then the given image is used and the version is assumed to
be the Cluster Operator’s default Kafka version.

If version is given but image is not, then the image that corresponds to the given version in the
environment variable is used.

If both version and image are given, then the given image is used. The image is assumed to
contain a Kafka image with the given version.

The image and version for the different components can be configured in the following properties:

For Kafka in spec.kafka.image and spec.kafka.version.

For Kafka Connect and Kafka MirrorMaker in spec.image and spec.version.

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

108

WARNING

It is recommended to provide only the version and leave the image property
unspecified. This reduces the chance of making a mistake when configuring the
custom resource. If you need to change the images used for different versions of
Kafka, it is preferable to configure the Cluster Operator’s environment variables.

Configuring the image property in other resources

For the image property in the other custom resources, the given value will be used during deployment. If
the image property is missing, the image specified in the Cluster Operator configuration will be used. If
the image name is not defined in the Cluster Operator configuration, then the default value will be used.

For Topic Operator:

1. Container image specified in the STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.4.0 container image.

For User Operator:

1. Container image specified in the STRIMZI_DEFAULT_USER_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.4.0 container image.

For Entity Operator TLS sidecar:

1. Container image specified in the
STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE environment variable
from the Cluster Operator configuration.

2. registry.redhat.io/amq-streams/kafka-34-rhel8:2.4.0 container image.

For Kafka Exporter:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_EXPORTER_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq-streams/kafka-34-rhel8:2.4.0 container image.

For Kafka Bridge:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_BRIDGE_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq-streams/bridge-rhel8:2.4.0 container image.

For Kafka broker initializer:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_INIT_IMAGE environment
variable from the Cluster Operator configuration.



CHAPTER 6. CUSTOM RESOURCE API REFERENCE

109

2. registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.4.0 container image.

Example container image configuration

6.1.7. livenessProbe and readinessProbe healthchecks

Use the livenessProbe and readinessProbe properties to configure healthcheck probes supported in
AMQ Streams.

Healthchecks are periodical tests which verify the health of an application. When a Healthcheck probe
fails, OpenShift assumes that the application is not healthy and attempts to fix it.

For more details about the probes, see Configure Liveness and Readiness Probes .

Both livenessProbe and readinessProbe support the following options:

initialDelaySeconds

timeoutSeconds

periodSeconds

successThreshold

failureThreshold

Example of liveness and readiness probe configuration

For more information about the livenessProbe and readinessProbe options, see the Probe schema
reference.

6.1.8. metricsConfig

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 image: my-org/my-image:latest
 # ...
 zookeeper:
 # ...

...
readinessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

110

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

Use the metricsConfig property to enable and configure Prometheus metrics.

The metricsConfig property contains a reference to a ConfigMap that has additional configurations for
the Prometheus JMX Exporter. AMQ Streams supports Prometheus metrics using Prometheus JMX
exporter to convert the JMX metrics supported by Apache Kafka and ZooKeeper to Prometheus
metrics.

To enable Prometheus metrics export without further configuration, you can reference a ConfigMap
containing an empty file under metricsConfig.valueFrom.configMapKeyRef.key. When referencing an
empty file, all metrics are exposed as long as they have not been renamed.

Example ConfigMap with metrics configuration for Kafka

Example metrics configuration for Kafka

When metrics are enabled, they are exposed on port 9404.

When the metricsConfig (or deprecated metrics) property is not defined in the resource, the
Prometheus metrics are disabled.

kind: ConfigMap
apiVersion: v1
metadata:
 name: my-configmap
data:
 my-key: |
 lowercaseOutputName: true
 rules:
 # Special cases and very specific rules
 - pattern: kafka.server<type=(.+), name=(.+), clientId=(.+), topic=(.+), partition=(.*)><>Value
 name: kafka_server_$1_$2
 type: GAUGE
 labels:
 clientId: "$3"
 topic: "$4"
 partition: "$5"
 # further configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 metricsConfig:
 type: jmxPrometheusExporter
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-key
 # ...
 zookeeper:
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

111

https://github.com/prometheus/jmx_exporter

For more information about setting up and deploying Prometheus and Grafana, see Introducing Metrics
to Kafka in the Deploying and Upgrading AMQ Streams on OpenShift guide.

6.1.9. jvmOptions

The following AMQ Streams components run inside a Java Virtual Machine (JVM):

Apache Kafka

Apache ZooKeeper

Apache Kafka Connect

Apache Kafka MirrorMaker

AMQ Streams Kafka Bridge

To optimize their performance on different platforms and architectures, you configure the jvmOptions
property in the following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

Kafka.spec.entityOperator.userOperator

Kafka.spec.entityOperator.topicOperator

Kafka.spec.cruiseControl

KafkaConnect.spec

KafkaMirrorMaker.spec

KafkaMirrorMaker2.spec

KafkaBridge.spec

You can specify the following options in your configuration:

-Xms

Minimum initial allocation heap size when the JVM starts

-Xmx

Maximum heap size

-XX

Advanced runtime options for the JVM

javaSystemProperties

Additional system properties

gcLoggingEnabled

Enables garbage collector logging

NOTE

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

112

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.4/html-single/deploying_and_managing_amq_streams_on_openshift/index#assembly-metrics-setup-str

NOTE

The units accepted by JVM settings, such as -Xmx and -Xms, are the same units
accepted by the JDK java binary in the corresponding image. Therefore, 1g or 1G means
1,073,741,824 bytes, and Gi is not a valid unit suffix. This is different from the units used
for memory requests and limits , which follow the OpenShift convention where 1G means
1,000,000,000 bytes, and 1Gi means 1,073,741,824 bytes.

-Xms and -Xmx options

In addition to setting memory request and limit values for your containers, you can use the -Xms and -
Xmx JVM options to set specific heap sizes for your JVM. Use the -Xms option to set an initial heap size
and the -Xmx option to set a maximum heap size.

Specify heap size to have more control over the memory allocated to your JVM. Heap sizes should make
the best use of a container’s memory limit (and request) without exceeding it. Heap size and any other
memory requirements need to fit within a specified memory limit. If you don’t specify heap size in your
configuration, but you configure a memory resource limit (and request), the Cluster Operator imposes
default heap sizes automatically. The Cluster Operator sets default maximum and minimum heap values
based on a percentage of the memory resource configuration.

The following table shows the default heap values.

Table 6.1. Default heap settings for components

Component Percent of available
memory allocated to
the heap

Maximum limit

Kafka 50% 5 GB

ZooKeeper 75% 2 GB

Kafka Connect 75% None

MirrorMaker 2 75% None

MirrorMaker 75% None

Cruise Control 75% None

Kafka Bridge 50% 31 Gi

If a memory limit (and request) is not specified, a JVM’s minimum heap size is set to 128M. The JVM’s
maximum heap size is not defined to allow the memory to increase as needed. This is ideal for single
node environments in test and development.

Setting an appropriate memory request can prevent the following:

OpenShift killing a container if there is pressure on memory from other pods running on the
node.

OpenShift scheduling a container to a node with insufficient memory. If -Xms is set to -Xmx, the

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

113

OpenShift scheduling a container to a node with insufficient memory. If -Xms is set to -Xmx, the
container will crash immediately; if not, the container will crash at a later time.

In this example, the JVM uses 2 GiB (=2,147,483,648 bytes) for its heap. Total JVM memory usage can
be a lot more than the maximum heap size.

Example -Xmx and -Xms configuration

Setting the same value for initial (-Xms) and maximum (-Xmx) heap sizes avoids the JVM having to
allocate memory after startup, at the cost of possibly allocating more heap than is really needed.

IMPORTANT

Containers performing lots of disk I/O, such as Kafka broker containers, require available
memory for use as an operating system page cache. For such containers, the requested
memory should be significantly higher than the memory used by the JVM.

-XX option

-XX options are used to configure the KAFKA_JVM_PERFORMANCE_OPTS option of Apache Kafka.

Example -XX configuration

JVM options resulting from the -XX configuration

-XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -
XX:+ExplicitGCInvokesConcurrent -XX:-UseParNewGC

NOTE

When no -XX options are specified, the default Apache Kafka configuration of
KAFKA_JVM_PERFORMANCE_OPTS is used.

javaSystemProperties

javaSystemProperties are used to configure additional Java system properties, such as debugging
utilities.

Example javaSystemProperties configuration

...
jvmOptions:
 "-Xmx": "2g"
 "-Xms": "2g"
...

jvmOptions:
 "-XX":
 "UseG1GC": true
 "MaxGCPauseMillis": 20
 "InitiatingHeapOccupancyPercent": 35
 "ExplicitGCInvokesConcurrent": true

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

114

For more information about the jvmOptions, see the JvmOptions schema reference.

6.1.10. Garbage collector logging

The jvmOptions property also allows you to enable and disable garbage collector (GC) logging. GC
logging is disabled by default. To enable it, set the gcLoggingEnabled property as follows:

Example GC logging configuration

6.2. SCHEMA PROPERTIES

6.2.1. Kafka schema reference

Property Description

spec The specification of the Kafka and ZooKeeper
clusters, and Topic Operator.

KafkaSpec

status The status of the Kafka and ZooKeeper clusters, and
Topic Operator.

KafkaStatus

6.2.2. KafkaSpec schema reference

Used in: Kafka

Property Description

kafka Configuration of the Kafka cluster.

KafkaClusterSpec

zookeeper Configuration of the ZooKeeper cluster.

ZookeeperClusterSpec

jvmOptions:
 javaSystemProperties:
 - name: javax.net.debug
 value: ssl

...
jvmOptions:
 gcLoggingEnabled: true
...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

115

entityOperator Configuration of the Entity Operator.

EntityOperatorSpec

clusterCa Configuration of the cluster certificate authority.

CertificateAuthority

clientsCa Configuration of the clients certificate authority.

CertificateAuthority

cruiseControl Configuration for Cruise Control deployment.
Deploys a Cruise Control instance when specified.

CruiseControlSpec

kafkaExporter Configuration of the Kafka Exporter. Kafka Exporter
can provide additional metrics, for example lag of
consumer group at topic/partition.KafkaExporterSpec

maintenanceTimeWindows A list of time windows for maintenance tasks (that is,
certificates renewal). Each time window is defined by
a cron expression.string array

Property Description

6.2.3. KafkaClusterSpec schema reference

Used in: KafkaSpec

Full list of KafkaClusterSpec schema properties

Configures a Kafka cluster.

6.2.3.1. listeners

Use the listeners property to configure listeners to provide access to Kafka brokers.

Example configuration of a plain (unencrypted) listener without authentication

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 listeners:
 - name: plain
 port: 9092
 type: internal

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

116

6.2.3.2. config

Use the config properties to configure Kafka broker options as keys.

Standard Apache Kafka configuration may be provided, restricted to those properties not managed
directly by AMQ Streams.

Configuration options that cannot be configured relate to:

Security (Encryption, Authentication, and Authorization)

Listener configuration

Broker ID configuration

Configuration of log data directories

Inter-broker communication

ZooKeeper connectivity

The values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the Apache Kafka documentation with the exception
of those options that are managed directly by AMQ Streams. Specifically, all configuration options with
keys equal to or starting with one of the following strings are forbidden:

listeners

advertised.

broker.

listener.

host.name

port

inter.broker.listener.name

sasl.

ssl.

security.

 tls: false
 # ...
 zookeeper:
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

117

https://kafka.apache.org/documentation/#brokerconfigs

password.

principal.builder.class

log.dir

zookeeper.connect

zookeeper.set.acl

authorizer.

super.user

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other supported options are passed to Kafka.

There are exceptions to the forbidden options. For client connection using a specific cipher suite for a
TLS version, you can configure allowed ssl properties. You can also configure the
zookeeper.connection.timeout.ms property to set the maximum time allowed for establishing a
ZooKeeper connection.

Example Kafka broker configuration

6.2.3.3. brokerRackInitImage

When rack awareness is enabled, Kafka broker pods use init container to collect the labels from the

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 config:
 num.partitions: 1
 num.recovery.threads.per.data.dir: 1
 default.replication.factor: 3
 offsets.topic.replication.factor: 3
 transaction.state.log.replication.factor: 3
 transaction.state.log.min.isr: 1
 log.retention.hours: 168
 log.segment.bytes: 1073741824
 log.retention.check.interval.ms: 300000
 num.network.threads: 3
 num.io.threads: 8
 socket.send.buffer.bytes: 102400
 socket.receive.buffer.bytes: 102400
 socket.request.max.bytes: 104857600
 group.initial.rebalance.delay.ms: 0
 ssl.cipher.suites: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 ssl.enabled.protocols: TLSv1.2
 ssl.protocol: TLSv1.2
 zookeeper.connection.timeout.ms: 6000
 # ...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

118

OpenShift cluster nodes. The container image used for this container can be configured using the
brokerRackInitImage property. When the brokerRackInitImage field is missing, the following images
are used in order of priority:

1. Container image specified in STRIMZI_DEFAULT_KAFKA_INIT_IMAGE environment variable
in the Cluster Operator configuration.

2. registry.redhat.io/amq-streams/strimzi-rhel8-operator:2.4.0 container image.

Example brokerRackInitImage configuration

NOTE

Overriding container images is recommended only in special situations, where you need to
use a different container registry. For example, because your network does not allow
access to the container registry used by AMQ Streams. In this case, you should either
copy the AMQ Streams images or build them from the source. If the configured image is
not compatible with AMQ Streams images, it might not work properly.

6.2.3.4. logging

Kafka has its own configurable loggers:

log4j.logger.org.I0Itec.zkclient.ZkClient

log4j.logger.org.apache.zookeeper

log4j.logger.kafka

log4j.logger.org.apache.kafka

log4j.logger.kafka.request.logger

log4j.logger.kafka.network.Processor

log4j.logger.kafka.server.KafkaApis

log4j.logger.kafka.network.RequestChannel$

log4j.logger.kafka.controller

log4j.logger.kafka.log.LogCleaner

log4j.logger.state.change.logger

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 rack:
 topologyKey: topology.kubernetes.io/zone
 brokerRackInitImage: my-org/my-image:latest
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

119

log4j.logger.kafka.authorizer.logger

Kafka uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j.properties. Both
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

Inline logging

External logging

Any available loggers that are not configured have their level set to OFF.

If Kafka was deployed using the Cluster Operator, changes to Kafka logging levels are applied
dynamically.

If you use external logging, a rolling update is triggered when logging appenders are changed.

Garbage collector (GC)

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 kafka:
 # ...
 logging:
 type: inline
 loggers:
 kafka.root.logger.level: "INFO"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: kafka-log4j.properties
 # ...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

120

https://logging.apache.org/

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

6.2.3.5. KafkaClusterSpec schema properties

Property Description

version The kafka broker version. Defaults to 3.4.0. Consult
the user documentation to understand the process
required to upgrade or downgrade the version.string

replicas The number of pods in the cluster.

integer

image The docker image for the pods. The default value
depends on the configured
Kafka.spec.kafka.version.string

listeners Configures listeners of Kafka brokers.

GenericKafkaListener array

config Kafka broker config properties with the following
prefixes cannot be set: listeners, advertised., broker.,
listener., host.name, port, inter.broker.listener.name,
sasl., ssl., security., password., log.dir,
zookeeper.connect, zookeeper.set.acl, zookeeper.ssl,
zookeeper.clientCnxnSocket, authorizer., super.user,
cruise.control.metrics.topic,
cruise.control.metrics.reporter.bootstrap.servers,nod
e.id, process.roles, controller. (with the exception of:
zookeeper.connection.timeout.ms,
sasl.server.max.receive.size,ssl.cipher.suites,
ssl.protocol, ssl.enabled.protocols,
ssl.secure.random.implementation,cruise.control.met
rics.topic.num.partitions,
cruise.control.metrics.topic.replication.factor,
cruise.control.metrics.topic.retention.ms,cruise.contr
ol.metrics.topic.auto.create.retries,
cruise.control.metrics.topic.auto.create.timeout.ms,cr
uise.control.metrics.topic.min.insync.replicas,controll
er.quorum.election.backoff.max.ms,
controller.quorum.election.timeout.ms,
controller.quorum.fetch.timeout.ms).

map

storage Storage configuration (disk). Cannot be updated.
The type depends on the value of the storage.type
property within the given object, which must be one
of [ephemeral, persistent-claim, jbod].

EphemeralStorage, PersistentClaimStorage,
JbodStorage

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

121

authorization Authorization configuration for Kafka brokers. The
type depends on the value of the
authorization.type property within the given
object, which must be one of [simple, opa, keycloak,
custom].

KafkaAuthorizationSimple,
KafkaAuthorizationOpa,
KafkaAuthorizationKeycloak,
KafkaAuthorizationCustom

rack Configuration of the broker.rack broker config.

Rack

brokerRackInitImage The image of the init container used for initializing
the broker.rack.

string

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

jmxOptions JMX Options for Kafka brokers.

KafkaJmxOptions

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

logging Logging configuration for Kafka. The type depends
on the value of the logging.type property within the
given object, which must be one of [inline, external].InlineLogging, ExternalLogging

Property Description

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

122

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core

template Template for Kafka cluster resources. The template
allows users to specify how the StatefulSet, Pods,
and Services are generated.KafkaClusterTemplate

Property Description

6.2.4. GenericKafkaListener schema reference

Used in: KafkaClusterSpec

Full list of GenericKafkaListener schema properties

Configures listeners to connect to Kafka brokers within and outside OpenShift.

You configure the listeners in the Kafka resource.

Example Kafka resource showing listener configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 #...
 listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 - name: external1
 port: 9094
 type: route
 tls: true
 - name: external2
 port: 9095
 type: ingress
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 host: bootstrap.myingress.com
 brokers:
 - broker: 0
 host: broker-0.myingress.com
 - broker: 1

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

123

6.2.4.1. listeners

You configure Kafka broker listeners using the listeners property in the Kafka resource. Listeners are
defined as an array.

Example listener configuration

The name and port must be unique within the Kafka cluster. The name can be up to 25 characters long,
comprising lower-case letters and numbers. Allowed port numbers are 9092 and higher with the
exception of ports 9404 and 9999, which are already used for Prometheus and JMX.

By specifying a unique name and port for each listener, you can configure multiple listeners.

6.2.4.2. type

The type is set as internal, or for external listeners, as route, loadbalancer, nodeport, ingress or
cluster-ip. You can also configure a cluster-ip listener, a type of internal listener you can use to build
custom access mechanisms.

internal

You can configure internal listeners with or without encryption using the tls property.

Example internal listener configuration

 host: broker-1.myingress.com
 - broker: 2
 host: broker-2.myingress.com
 #...

listeners:
 - name: plain
 port: 9092
 type: internal
 tls: false

#...
spec:
 kafka:
 #...
 listeners:
 #...
 - name: plain
 port: 9092
 type: internal
 tls: false
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 #...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

124

route

Configures an external listener to expose Kafka using OpenShift Routes and the HAProxy router.
A dedicated Route is created for every Kafka broker pod. An additional Route is created to serve as
a Kafka bootstrap address. Kafka clients can use these Routes to connect to Kafka on port 443. The
client connects on port 443, the default router port, but traffic is then routed to the port you
configure, which is 9094 in this example.

Example route listener configuration

ingress

Configures an external listener to expose Kafka using Kubernetes Ingress and the Ingress NGINX
Controller for Kubernetes.
A dedicated Ingress resource is created for every Kafka broker pod. An additional Ingress resource
is created to serve as a Kafka bootstrap address. Kafka clients can use these Ingress resources to
connect to Kafka on port 443. The client connects on port 443, the default controller port, but traffic
is then routed to the port you configure, which is 9095 in the following example.

You must specify the hostnames used by the bootstrap and per-broker services using
GenericKafkaListenerConfigurationBootstrap and GenericKafkaListenerConfigurationBroker
properties.

Example ingress listener configuration

#...
spec:
 kafka:
 #...
 listeners:
 #...
 - name: external1
 port: 9094
 type: route
 tls: true
 #...

#...
spec:
 kafka:
 #...
 listeners:
 #...
 - name: external2
 port: 9095
 type: ingress
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 host: bootstrap.myingress.com
 brokers:
 - broker: 0
 host: broker-0.myingress.com
 - broker: 1

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

125

https://github.com/kubernetes/ingress-nginx

NOTE

External listeners using Ingress are currently only tested with the Ingress NGINX
Controller for Kubernetes.

loadbalancer

Configures an external listener to expose Kafka using a Loadbalancer type Service.
A new loadbalancer service is created for every Kafka broker pod. An additional loadbalancer is
created to serve as a Kafka bootstrap address. Loadbalancers listen to the specified port number,
which is port 9094 in the following example.

You can use the loadBalancerSourceRanges property to configure source ranges to restrict
access to the specified IP addresses.

Example loadbalancer listener configuration

nodeport

Configures an external listener to expose Kafka using a NodePort type Service.
Kafka clients connect directly to the nodes of OpenShift. An additional NodePort type of service is
created to serve as a Kafka bootstrap address.

When configuring the advertised addresses for the Kafka broker pods, AMQ Streams uses the
address of the node on which the given pod is running. You can use
preferredNodePortAddressType property to configure the first address type checked as the node
address.

Example nodeport listener configuration

 host: broker-1.myingress.com
 - broker: 2
 host: broker-2.myingress.com
 #...

#...
spec:
 kafka:
 #...
 listeners:
 - name: external3
 port: 9094
 type: loadbalancer
 tls: true
 configuration:
 loadBalancerSourceRanges:
 - 10.0.0.0/8
 - 88.208.76.87/32
 #...

#...
spec:
 kafka:
 #...
 listeners:

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

126

https://github.com/kubernetes/ingress-nginx

NOTE

TLS hostname verification is not currently supported when exposing Kafka clusters
using node ports.

cluster-ip

Configures an internal listener to expose Kafka using a per-broker ClusterIP type Service.
The listener does not use a headless service and its DNS names to route traffic to Kafka brokers. You
can use this type of listener to expose a Kafka cluster when using the headless service is unsuitable.
You might use it with a custom access mechanism, such as one that uses a specific Ingress controller
or the OpenShift Gateway API.

A new ClusterIP service is created for each Kafka broker pod. The service is assigned a ClusterIP
address to serve as a Kafka bootstrap address with a per-broker port number. For example, you can
configure the listener to expose a Kafka cluster over an Nginx Ingress Controller with TCP port
configuration.

Example cluster-ip listener configuration

6.2.4.3. port

The port number is the port used in the Kafka cluster, which might not be the same port used for access
by a client.

loadbalancer listeners use the specified port number, as do internal and cluster-ip listeners

ingress and route listeners use port 443 for access

nodeport listeners use the port number assigned by OpenShift

For client connection, use the address and port for the bootstrap service of the listener. You can
retrieve this from the status of the Kafka resource.

 #...
 - name: external4
 port: 9095
 type: nodeport
 tls: false
 configuration:
 preferredNodePortAddressType: InternalDNS
 #...

#...
spec:
 kafka:
 #...
 listeners:
 - name: external-cluster-ip
 type: cluster-ip
 tls: false
 port: 9096
 #...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

127

Example command to retrieve the address and port for client connection

NOTE

Listeners cannot be configured to use the ports set aside for interbroker communication
(9090 and 9091) and metrics (9404).

6.2.4.4. tls

The TLS property is required.

By default, TLS encryption is not enabled. To enable it, set the tls property to true.

For route and ingress type listeners, TLS encryption must be enabled.

6.2.4.5. authentication

Authentication for the listener can be specified as:

mTLS (tls)

SCRAM-SHA-512 (scram-sha-512)

Token-based OAuth 2.0 (oauth)

Custom (custom)

6.2.4.6. networkPolicyPeers

Use networkPolicyPeers to configure network policies that restrict access to a listener at the network
level. The following example shows a networkPolicyPeers configuration for a plain and a tls listener.

In the following example:

Only application pods matching the labels app: kafka-sasl-consumer and app: kafka-sasl-
producer can connect to the plain listener. The application pods must be running in the same
namespace as the Kafka broker.

Only application pods running in namespaces matching the labels project: myproject and
project: myproject2 can connect to the tls listener.

The syntax of the networkPolicyPeers property is the same as the from property in NetworkPolicy
resources.

Exanmple network policy configuration

oc get kafka <kafka_cluster_name> -o=jsonpath='{.status.listeners[?
(@.name=="<listener_name>")].bootstrapServers}{"\n"}'

listeners:
 #...
 - name: plain
 port: 9092
 type: internal

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

128

6.2.4.7. GenericKafkaListener schema properties

Property Description

name Name of the listener. The name will be used to
identify the listener and the related OpenShift
objects. The name has to be unique within given a
Kafka cluster. The name can consist of lowercase
characters and numbers and be up to 11 characters
long.

string

port Port number used by the listener inside Kafka. The
port number has to be unique within a given Kafka
cluster. Allowed port numbers are 9092 and higher
with the exception of ports 9404 and 9999, which
are already used for Prometheus and JMX.
Depending on the listener type, the port number
might not be the same as the port number that
connects Kafka clients.

integer

 tls: true
 authentication:
 type: scram-sha-512
 networkPolicyPeers:
 - podSelector:
 matchLabels:
 app: kafka-sasl-consumer
 - podSelector:
 matchLabels:
 app: kafka-sasl-producer
 - name: tls
 port: 9093
 type: internal
 tls: true
 authentication:
 type: tls
 networkPolicyPeers:
 - namespaceSelector:
 matchLabels:
 project: myproject
 - namespaceSelector:
 matchLabels:
 project: myproject2
...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

129

type Type of the listener. Currently the supported types
are internal, route, loadbalancer, nodeport and
ingress.

internal type exposes Kafka internally only
within the OpenShift cluster.

route type uses OpenShift Routes to
expose Kafka.

loadbalancer type uses LoadBalancer
type services to expose Kafka.

nodeport type uses NodePort type
services to expose Kafka.

ingress type uses OpenShift Nginx Ingress
to expose Kafka with TLS passthrough.

cluster-ip type uses a per-broker
ClusterIP service.

string (one of [ingress, internal, route, loadbalancer,
cluster-ip, nodeport])

tls Enables TLS encryption on the listener. This is a
required property.

boolean

authentication Authentication configuration for this listener. The
type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
oauth, custom].

KafkaListenerAuthenticationTls,
KafkaListenerAuthenticationScramSha512,
KafkaListenerAuthenticationOAuth,
KafkaListenerAuthenticationCustom

configuration Additional listener configuration.

GenericKafkaListenerConfiguration

networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list. For more information, see the
external documentation for networking.k8s.io/v1
networkpolicypeer.

NetworkPolicyPeer array

Property Description

6.2.5. KafkaListenerAuthenticationTls schema reference

Used in: GenericKafkaListener

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

130

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#networkpolicypeer-v1-networking-k8s-io

The type property is a discriminator that distinguishes use of the KafkaListenerAuthenticationTls type
from KafkaListenerAuthenticationScramSha512, KafkaListenerAuthenticationOAuth,
KafkaListenerAuthenticationCustom. It must have the value tls for the type
KafkaListenerAuthenticationTls.

Property Description

type Must be tls.

string

6.2.6. KafkaListenerAuthenticationScramSha512 schema reference

Used in: GenericKafkaListener

The type property is a discriminator that distinguishes use of the
KafkaListenerAuthenticationScramSha512 type from KafkaListenerAuthenticationTls,
KafkaListenerAuthenticationOAuth, KafkaListenerAuthenticationCustom. It must have the value
scram-sha-512 for the type KafkaListenerAuthenticationScramSha512.

Property Description

type Must be scram-sha-512.

string

6.2.7. KafkaListenerAuthenticationOAuth schema reference

Used in: GenericKafkaListener

The type property is a discriminator that distinguishes use of the KafkaListenerAuthenticationOAuth
type from KafkaListenerAuthenticationTls, KafkaListenerAuthenticationScramSha512,
KafkaListenerAuthenticationCustom. It must have the value oauth for the type
KafkaListenerAuthenticationOAuth.

Property Description

accessTokenIsJwt Configure whether the access token is treated as
JWT. This must be set to false if the authorization
server returns opaque tokens. Defaults to true.boolean

checkAccessTokenType Configure whether the access token type check is
performed or not. This should be set to false if the
authorization server does not include 'typ' claim in
JWT token. Defaults to true.

boolean

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

131

checkAudience Enable or disable audience checking. Audience
checks identify the recipients of tokens. If audience
checking is enabled, the OAuth Client ID also has to
be configured using the clientId property. The Kafka
broker will reject tokens that do not have its clientId
in their aud (audience) claim.Default value is false.

boolean

checkIssuer Enable or disable issuer checking. By default issuer is
checked using the value configured by
validIssuerUri. Default value is true.boolean

clientAudience The audience to use when making requests to the
authorization server’s token endpoint. Used for inter-
broker authentication and for configuring OAuth 2.0
over PLAIN using the clientId and secret method.

string

clientId OAuth Client ID which the Kafka broker can use to
authenticate against the authorization server and use
the introspect endpoint URI.string

clientScope The scope to use when making requests to the
authorization server’s token endpoint. Used for inter-
broker authentication and for configuring OAuth 2.0
over PLAIN using the clientId and secret method.

string

clientSecret Link to OpenShift Secret containing the OAuth client
secret which the Kafka broker can use to
authenticate against the authorization server and use
the introspect endpoint URI.

GenericSecretSource

connectTimeoutSeconds The connect timeout in seconds when connecting to
authorization server. If not set, the effective connect
timeout is 60 seconds.integer

customClaimCheck JsonPath filter query to be applied to the JWT token
or to the response of the introspection endpoint for
additional token validation. Not set by default.string

disableTlsHostnameVerification Enable or disable TLS hostname verification. Default
value is false.

boolean

Property Description

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

132

enableECDSA The enableECDSA property has been
deprecated. Enable or disable ECDSA support by
installing BouncyCastle crypto provider. ECDSA
support is always enabled. The BouncyCastle libraries
are no longer packaged with AMQ Streams. Value is
ignored.

boolean

enableMetrics Enable or disable OAuth metrics. Default value is
false.

boolean

enableOauthBearer Enable or disable OAuth authentication over
SASL_OAUTHBEARER. Default value is true.

boolean

enablePlain Enable or disable OAuth authentication over
SASL_PLAIN. There is no re-authentication support
when this mechanism is used. Default value is false.boolean

failFast Enable or disable termination of Kafka broker
processes due to potentially recoverable runtime
errors during startup. Default value is true.boolean

fallbackUserNameClaim The fallback username claim to be used for the user
id if the claim specified by userNameClaim is not
present. This is useful when client_credentials
authentication only results in the client id being
provided in another claim. It only takes effect if
userNameClaim is set.

string

fallbackUserNamePrefix The prefix to use with the value of
fallbackUserNameClaim to construct the user id.
This only takes effect if fallbackUserNameClaim
is true, and the value is present for the claim.
Mapping usernames and client ids into the same user
id space is useful in preventing name collisions.

string

groupsClaim JsonPath query used to extract groups for the user
during authentication. Extracted groups can be used
by a custom authorizer. By default no groups are
extracted.

string

groupsClaimDelimiter A delimiter used to parse groups when they are
extracted as a single String value rather than a JSON
array. Default value is ',' (comma).string

Property Description

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

133

httpRetries The maximum number of retries to attempt if an
initial HTTP request fails. If not set, the default is to
not attempt any retries.integer

httpRetryPauseMs The pause to take before retrying a failed HTTP
request. If not set, the default is to not pause at all
but to immediately repeat a request.integer

introspectionEndpointUri URI of the token introspection endpoint which can be
used to validate opaque non-JWT tokens.

string

jwksEndpointUri URI of the JWKS certificate endpoint, which can be
used for local JWT validation.

string

jwksExpirySeconds Configures how often are the JWKS certificates
considered valid. The expiry interval has to be at least
60 seconds longer then the refresh interval specified
in jwksRefreshSeconds. Defaults to 360 seconds.integer

jwksIgnoreKeyUse Flag to ignore the 'use' attribute of key declarations
in a JWKS endpoint response. Default value is false.

boolean

jwksMinRefreshPauseSeconds The minimum pause between two consecutive
refreshes. When an unknown signing key is
encountered the refresh is scheduled immediately,
but will always wait for this minimum pause. Defaults
to 1 second.

integer

jwksRefreshSeconds Configures how often are the JWKS certificates
refreshed. The refresh interval has to be at least 60
seconds shorter then the expiry interval specified in
jwksExpirySeconds. Defaults to 300 seconds.

integer

maxSecondsWithoutReauthentication Maximum number of seconds the authenticated
session remains valid without re-authentication. This
enables Apache Kafka re-authentication feature, and
causes sessions to expire when the access token
expires. If the access token expires before max time
or if max time is reached, the client has to re-
authenticate, otherwise the server will drop the
connection. Not set by default - the authenticated
session does not expire when the access token
expires. This option only applies to
SASL_OAUTHBEARER authentication mechanism
(when enableOauthBearer is true).

integer

Property Description

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

134

readTimeoutSeconds The read timeout in seconds when connecting to
authorization server. If not set, the effective read
timeout is 60 seconds.integer

tlsTrustedCertificates Trusted certificates for TLS connection to the OAuth
server.

CertSecretSource array

tokenEndpointUri URI of the Token Endpoint to use with SASL_PLAIN
mechanism when the client authenticates with
clientId and a secret. If set, the client can
authenticate over SASL_PLAIN by either setting
username to clientId, and setting password to
client secret, or by setting username to account
username, and password to access token prefixed
with $accessToken:. If this option is not set, the
password is always interpreted as an access token
(without a prefix), and username as the account
username (a so called 'no-client-credentials' mode).

string

type Must be oauth.

string

userInfoEndpointUri URI of the User Info Endpoint to use as a fallback to
obtaining the user id when the Introspection
Endpoint does not return information that can be
used for the user id.

string

userNameClaim Name of the claim from the JWT authentication
token, Introspection Endpoint response or User Info
Endpoint response which will be used to extract the
user id. Defaults to sub.

string

validIssuerUri URI of the token issuer used for authentication.

string

Property Description

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

135

validTokenType Valid value for the token_type attribute returned by
the Introspection Endpoint. No default value, and not
checked by default.string

Property Description

6.2.8. GenericSecretSource schema reference

Used in: KafkaClientAuthenticationOAuth, KafkaListenerAuthenticationCustom,
KafkaListenerAuthenticationOAuth

Property Description

key The key under which the secret value is stored in the
OpenShift Secret.

string

secretName The name of the OpenShift Secret containing the
secret value.

string

6.2.9. CertSecretSource schema reference

Used in: ClientTls, KafkaAuthorizationKeycloak, KafkaAuthorizationOpa,
KafkaClientAuthenticationOAuth, KafkaListenerAuthenticationOAuth

Property Description

certificate The name of the file certificate in the Secret.

string

secretName The name of the Secret containing the certificate.

string

6.2.10. KafkaListenerAuthenticationCustom schema reference

Used in: GenericKafkaListener

Full list of KafkaListenerAuthenticationCustom schema properties

To configure custom authentication, set the type property to custom.

Custom authentication allows for any type of kafka-supported authentication to be used.

Example custom OAuth authentication configuration

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

136

A protocol map is generated that uses the sasl and tls values to determine which protocol to map to the
listener.

SASL = True, TLS = True → SASL_SSL

SASL = False, TLS = True → SSL

SASL = True, TLS = False → SASL_PLAINTEXT

SASL = False, TLS = False → PLAINTEXT

6.2.10.1. listenerConfig

Listener configuration specified using listenerConfig is prefixed with listener.name.<listener_name>-
<port>. For example, sasl.enabled.mechanisms becomes listener.name.<listener_name>-
<port>.sasl.enabled.mechanisms.

6.2.10.2. secrets

Secrets are mounted to /opt/kafka/custom-authn-secrets/custom-listener-<listener_name>-
<port>/<secret_name> in the Kafka broker nodes' containers.

For example, the mounted secret (example) in the example configuration would be located at
/opt/kafka/custom-authn-secrets/custom-listener-oauth-bespoke-9093/example.

6.2.10.3. Principal builder

You can set a custom principal builder in the Kafka cluster configuration. However, the principal builder
is subject to the following requirements:

The specified principal builder class must exist on the image. Before building your own, check if
one already exists. You’ll need to rebuild the AMQ Streams images with the required classes.

spec:
 kafka:
 config:
 principal.builder.class: SimplePrincipal.class
 listeners:
 - name: oauth-bespoke
 port: 9093
 type: internal
 tls: true
 authentication:
 type: custom
 sasl: true
 listenerConfig:
 oauthbearer.sasl.client.callback.handler.class: client.class
 oauthbearer.sasl.server.callback.handler.class: server.class
 oauthbearer.sasl.login.callback.handler.class: login.class
 oauthbearer.connections.max.reauth.ms: 999999999
 sasl.enabled.mechanisms: oauthbearer
 oauthbearer.sasl.jaas.config: |
 org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required ;
 secrets:
 - name: example

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

137

No other listener is using oauth type authentication. This is because an OAuth listener appends
its own principle builder to the Kafka configuration.

The specified principal builder is compatible with AMQ Streams.

Custom principal builders must support peer certificates for authentication, as AMQ Streams uses these
to manage the Kafka cluster.

NOTE

Kafka’s default principal builder class supports the building of principals based on the
names of peer certificates. The custom principal builder should provide a principal of type
user using the name of the SSL peer certificate.

The following example shows a custom principal builder that satisfies the OAuth requirements of AMQ
Streams.

Example principal builder for custom OAuth configuration

6.2.10.4. KafkaListenerAuthenticationCustom schema properties

The type property is a discriminator that distinguishes use of the KafkaListenerAuthenticationCustom
type from KafkaListenerAuthenticationTls, KafkaListenerAuthenticationScramSha512,
KafkaListenerAuthenticationOAuth. It must have the value custom for the type
KafkaListenerAuthenticationCustom.

Property Description

listenerConfig Configuration to be used for a specific listener. All
values are prefixed with
listener.name.<listener_name>.map

public final class CustomKafkaPrincipalBuilder implements KafkaPrincipalBuilder {

 public KafkaPrincipalBuilder() {}

 @Override
 public KafkaPrincipal build(AuthenticationContext context) {
 if (context instanceof SslAuthenticationContext) {
 SSLSession sslSession = ((SslAuthenticationContext) context).session();
 try {
 return new KafkaPrincipal(
 KafkaPrincipal.USER_TYPE, sslSession.getPeerPrincipal().getName());
 } catch (SSLPeerUnverifiedException e) {
 throw new IllegalArgumentException("Cannot use an unverified peer for authentication", e);
 }
 }

 // Create your own KafkaPrincipal here
 ...
 }
}

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

138

https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/common/security/authenticator/DefaultKafkaPrincipalBuilder.java#L73-L79

sasl Enable or disable SASL on this listener.

boolean

secrets Secrets to be mounted to /opt/kafka/custom-
authn-secrets/custom-listener-<listener_name>-
<port>/<secret_name>.GenericSecretSource array

type Must be custom.

string

Property Description

6.2.11. GenericKafkaListenerConfiguration schema reference

Used in: GenericKafkaListener

Full list of GenericKafkaListenerConfiguration schema properties

Configuration for Kafka listeners.

6.2.11.1. brokerCertChainAndKey

The brokerCertChainAndKey property is only used with listeners that have TLS encryption enabled.
You can use the property to provide your own Kafka listener certificates.

Example configuration for a loadbalancer external listener with TLS encryption enabled

6.2.11.2. externalTrafficPolicy

The externalTrafficPolicy property is used with loadbalancer and nodeport listeners. When exposing
Kafka outside of OpenShift you can choose Local or Cluster. Local avoids hops to other nodes and
preserves the client IP, whereas Cluster does neither. The default is Cluster.

listeners:
 #...
 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: tls
 configuration:
 brokerCertChainAndKey:
 secretName: my-secret
 certificate: my-listener-certificate.crt
 key: my-listener-key.key
...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

139

6.2.11.3. loadBalancerSourceRanges

The loadBalancerSourceRanges property is only used with loadbalancer listeners. When exposing
Kafka outside of OpenShift use source ranges, in addition to labels and annotations, to customize how a
service is created.

Example source ranges configured for a loadbalancer listener

6.2.11.4. class

The class property is only used with ingress listeners. You can configure the Ingress class using the
class property.

Example of an external listener of type ingress using Ingress class nginx-internal

6.2.11.5. preferredNodePortAddressType

The preferredNodePortAddressType property is only used with nodeport listeners.

Use the preferredNodePortAddressType property in your listener configuration to specify the first
address type checked as the node address. This property is useful, for example, if your deployment does
not have DNS support, or you only want to expose a broker internally through an internal DNS or IP
address. If an address of this type is found, it is used. If the preferred address type is not found, AMQ
Streams proceeds through the types in the standard order of priority:

1. ExternalDNS

2. ExternalIP

listeners:
 #...
 - name: external
 port: 9094
 type: loadbalancer
 tls: false
 configuration:
 externalTrafficPolicy: Local
 loadBalancerSourceRanges:
 - 10.0.0.0/8
 - 88.208.76.87/32
 # ...
...

listeners:
 #...
 - name: external
 port: 9094
 type: ingress
 tls: true
 configuration:
 class: nginx-internal
 # ...
...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

140

3. Hostname

4. InternalDNS

5. InternalIP

Example of an external listener configured with a preferred node port address type

6.2.11.6. useServiceDnsDomain

The useServiceDnsDomain property is only used with internal and cluster-ip listeners. It defines
whether the fully-qualified DNS names that include the cluster service suffix (usually .cluster.local) are
used. With useServiceDnsDomain set as false, the advertised addresses are generated without the
service suffix; for example, my-cluster-kafka-0.my-cluster-kafka-brokers.myproject.svc. With
useServiceDnsDomain set as true, the advertised addresses are generated with the service suffix; for
example, my-cluster-kafka-0.my-cluster-kafka-brokers.myproject.svc.cluster.local. Default is false.

Example of an internal listener configured to use the Service DNS domain

If your OpenShift cluster uses a different service suffix than .cluster.local, you can configure the suffix
using the KUBERNETES_SERVICE_DNS_DOMAIN environment variable in the Cluster Operator
configuration.

6.2.11.7. GenericKafkaListenerConfiguration schema properties

Property Description

listeners:
 #...
 - name: external
 port: 9094
 type: nodeport
 tls: false
 configuration:
 preferredNodePortAddressType: InternalDNS
 # ...
...

listeners:
 #...
 - name: plain
 port: 9092
 type: internal
 tls: false
 configuration:
 useServiceDnsDomain: true
 # ...
...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

141

brokerCertChainAndKey Reference to the Secret which holds the certificate
and private key pair which will be used for this
listener. The certificate can optionally contain the
whole chain. This field can be used only with listeners
with enabled TLS encryption.

CertAndKeySecretSource

externalTrafficPolicy Specifies whether the service routes external traffic
to node-local or cluster-wide endpoints. Cluster
may cause a second hop to another node and
obscures the client source IP. Local avoids a second
hop for LoadBalancer and Nodeport type services
and preserves the client source IP (when supported
by the infrastructure). If unspecified, OpenShift will
use Cluster as the default.This field can be used
only with loadbalancer or nodeport type listener.

string (one of [Local, Cluster])

loadBalancerSourceRanges A list of CIDR ranges (for example 10.0.0.0/8 or
130.211.204.1/32) from which clients can connect
to load balancer type listeners. If supported by the
platform, traffic through the loadbalancer is
restricted to the specified CIDR ranges. This field is
applicable only for loadbalancer type services and is
ignored if the cloud provider does not support the
feature. This field can be used only with
loadbalancer type listener.

string array

bootstrap Bootstrap configuration.

GenericKafkaListenerConfigurationBootstrap

brokers Per-broker configurations.

GenericKafkaListenerConfigurationBroker
array

ipFamilyPolicy Specifies the IP Family Policy used by the service.
Available options are SingleStack,
PreferDualStack and RequireDualStack.
SingleStack is for a single IP family.
PreferDualStack is for two IP families on dual-
stack configured clusters or a single IP family on
single-stack clusters. RequireDualStack fails
unless there are two IP families on dual-stack
configured clusters. If unspecified, OpenShift will
choose the default value based on the service type.
Available on OpenShift 1.20 and newer.

string (one of [RequireDualStack, SingleStack,
PreferDualStack])

Property Description

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

142

ipFamilies Specifies the IP Families used by the service.
Available options are IPv4 and IPv6. If
unspecified, OpenShift will choose the
default value based on the `ipFamilyPolicy
setting. Available on OpenShift 1.20 and newer.

string (one or more of [IPv6, IPv4]) array

createBootstrapService Whether to create the bootstrap service or not. The
bootstrap service is created by default (if not
specified differently). This field can be used with the
loadBalancer type listener.

boolean

class Configures a specific class for Ingress and
LoadBalancer that defines which controller will be
used. This field can only be used with ingress and
loadbalancer type listeners. If not specified, the
default controller is used. For an ingress listener, set
the ingressClassName property in the Ingress
resources. For a loadbalancer listener, set the
loadBalancerClass property in the Service
resources.

string

finalizers A list of finalizers which will be configured for the
LoadBalancer type Services created for this
listener. If supported by the platform, the finalizer
service.kubernetes.io/load-balancer-cleanup
to make sure that the external load balancer is
deleted together with the service.For more
information, see
https://kubernetes.io/docs/tasks/access-
application-cluster/create-external-load-
balancer/#garbage-collecting-load-balancers. This
field can be used only with loadbalancer type
listeners.

string array

maxConnectionCreationRate The maximum connection creation rate we allow in
this listener at any time. New connections will be
throttled if the limit is reached.integer

maxConnections The maximum number of connections we allow for
this listener in the broker at any time. New
connections are blocked if the limit is reached.integer

Property Description

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

143

https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/#garbage-collecting-load-balancers

preferredNodePortAddressType Defines which address type should be used as the
node address. Available types are: ExternalDNS,
ExternalIP, InternalDNS, InternalIP and
Hostname. By default, the addresses will be used in
the following order (the first one found will be used):

ExternalDNS

ExternalIP

InternalDNS

InternalIP

Hostname

This field is used to select the preferred address
type, which is checked first. If no address is found for
this address type, the other types are checked in the
default order. This field can only be used with
nodeport type listener.

string (one of [ExternalDNS, ExternalIP, Hostname,
InternalIP, InternalDNS])

useServiceDnsDomain Configures whether the OpenShift service DNS
domain should be used or not. If set to true, the
generated addresses will contain the service DNS
domain suffix (by default .cluster.local, can be
configured using environment variable
KUBERNETES_SERVICE_DNS_DOMAIN).
Defaults to false.This field can be used only with
internal and cluster-ip type listeners.

boolean

Property Description

6.2.12. CertAndKeySecretSource schema reference

Used in: GenericKafkaListenerConfiguration, KafkaClientAuthenticationTls

Property Description

certificate The name of the file certificate in the Secret.

string

key The name of the private key in the Secret.

string

secretName The name of the Secret containing the certificate.

string

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

144

6.2.13. GenericKafkaListenerConfigurationBootstrap schema reference

Used in: GenericKafkaListenerConfiguration

Full list of GenericKafkaListenerConfigurationBootstrap schema properties

Broker service equivalents of nodePort, host, loadBalancerIP and annotations properties are
configured in the GenericKafkaListenerConfigurationBroker schema.

6.2.13.1. alternativeNames

You can specify alternative names for the bootstrap service. The names are added to the broker
certificates and can be used for TLS hostname verification. The alternativeNames property is
applicable to all types of listeners.

Example of an external route listener configured with an additional bootstrap address

6.2.13.2. host

The host property is used with route and ingress listeners to specify the hostnames used by the
bootstrap and per-broker services.

A host property value is mandatory for ingress listener configuration, as the Ingress controller does not
assign any hostnames automatically. Make sure that the hostnames resolve to the Ingress endpoints.
AMQ Streams will not perform any validation that the requested hosts are available and properly routed
to the Ingress endpoints.

Example of host configuration for an ingress listener

listeners:
 #...
 - name: external
 port: 9094
 type: route
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 alternativeNames:
 - example.hostname1
 - example.hostname2
...

listeners:
 #...
 - name: external
 port: 9094
 type: ingress
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 host: bootstrap.myingress.com

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

145

By default, route listener hosts are automatically assigned by OpenShift. However, you can override the
assigned route hosts by specifying hosts.

AMQ Streams does not perform any validation that the requested hosts are available. You must ensure
that they are free and can be used.

Example of host configuration for a route listener

6.2.13.3. nodePort

By default, the port numbers used for the bootstrap and broker services are automatically assigned by
OpenShift. You can override the assigned node ports for nodeport listeners by specifying the
requested port numbers.

AMQ Streams does not perform any validation on the requested ports. You must ensure that they are
free and available for use.

Example of an external listener configured with overrides for node ports

 brokers:
 - broker: 0
 host: broker-0.myingress.com
 - broker: 1
 host: broker-1.myingress.com
 - broker: 2
 host: broker-2.myingress.com
...

...
listeners:
 #...
 - name: external
 port: 9094
 type: route
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 host: bootstrap.myrouter.com
 brokers:
 - broker: 0
 host: broker-0.myrouter.com
 - broker: 1
 host: broker-1.myrouter.com
 - broker: 2
 host: broker-2.myrouter.com
...

...
listeners:
 #...
 - name: external
 port: 9094
 type: nodeport

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

146

6.2.13.4. loadBalancerIP

Use the loadBalancerIP property to request a specific IP address when creating a loadbalancer. Use this
property when you need to use a loadbalancer with a specific IP address. The loadBalancerIP field is
ignored if the cloud provider does not support the feature.

Example of an external listener of type loadbalancer with specific loadbalancer IP address
requests

6.2.13.5. annotations

Use the annotations property to add annotations to OpenShift resources related to the listeners. You
can use these annotations, for example, to instrument DNS tooling such as External DNS, which
automatically assigns DNS names to the loadbalancer services.

Example of an external listener of type loadbalancer using annotations

 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 nodePort: 32100
 brokers:
 - broker: 0
 nodePort: 32000
 - broker: 1
 nodePort: 32001
 - broker: 2
 nodePort: 32002
...

...
listeners:
 #...
 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 loadBalancerIP: 172.29.3.10
 brokers:
 - broker: 0
 loadBalancerIP: 172.29.3.1
 - broker: 1
 loadBalancerIP: 172.29.3.2
 - broker: 2
 loadBalancerIP: 172.29.3.3
...

...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

147

https://github.com/kubernetes-incubator/external-dns

6.2.13.6. GenericKafkaListenerConfigurationBootstrap schema properties

Property Description

alternativeNames Additional alternative names for the bootstrap
service. The alternative names will be added to the
list of subject alternative names of the TLS
certificates.

string array

host The bootstrap host. This field will be used in the
Ingress resource or in the Route resource to specify
the desired hostname. This field can be used only
with route (optional) or ingress (required) type
listeners.

string

nodePort Node port for the bootstrap service. This field can be
used only with nodeport type listener.

integer

listeners:
 #...
 - name: external
 port: 9094
 type: loadbalancer
 tls: true
 authentication:
 type: tls
 configuration:
 bootstrap:
 annotations:
 external-dns.alpha.kubernetes.io/hostname: kafka-bootstrap.mydomain.com.
 external-dns.alpha.kubernetes.io/ttl: "60"
 brokers:
 - broker: 0
 annotations:
 external-dns.alpha.kubernetes.io/hostname: kafka-broker-0.mydomain.com.
 external-dns.alpha.kubernetes.io/ttl: "60"
 - broker: 1
 annotations:
 external-dns.alpha.kubernetes.io/hostname: kafka-broker-1.mydomain.com.
 external-dns.alpha.kubernetes.io/ttl: "60"
 - broker: 2
 annotations:
 external-dns.alpha.kubernetes.io/hostname: kafka-broker-2.mydomain.com.
 external-dns.alpha.kubernetes.io/ttl: "60"
...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

148

loadBalancerIP The loadbalancer is requested with the IP address
specified in this field. This feature depends on
whether the underlying cloud provider supports
specifying the loadBalancerIP when a load
balancer is created. This field is ignored if the cloud
provider does not support the feature.This field can
be used only with loadbalancer type listener.

string

annotations Annotations that will be added to the Ingress,
Route, or Service resource. You can use this field
to configure DNS providers such as External DNS.
This field can be used only with loadbalancer,
nodeport, route, or ingress type listeners.

map

labels Labels that will be added to the Ingress, Route, or
Service resource. This field can be used only with
loadbalancer, nodeport, route, or ingress type
listeners.

map

Property Description

6.2.14. GenericKafkaListenerConfigurationBroker schema reference

Used in: GenericKafkaListenerConfiguration

Full list of GenericKafkaListenerConfigurationBroker schema properties

You can see example configuration for the nodePort, host, loadBalancerIP and annotations
properties in the GenericKafkaListenerConfigurationBootstrap schema, which configures bootstrap
service overrides.

Advertised addresses for brokers

By default, AMQ Streams tries to automatically determine the hostnames and ports that your Kafka
cluster advertises to its clients. This is not sufficient in all situations, because the infrastructure on which
AMQ Streams is running might not provide the right hostname or port through which Kafka can be
accessed.

You can specify a broker ID and customize the advertised hostname and port in the configuration
property of the listener. AMQ Streams will then automatically configure the advertised address in the
Kafka brokers and add it to the broker certificates so it can be used for TLS hostname verification.
Overriding the advertised host and ports is available for all types of listeners.

Example of an external route listener configured with overrides for advertised addresses

listeners:
 #...
 - name: external
 port: 9094
 type: route

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

149

6.2.14.1. GenericKafkaListenerConfigurationBroker schema properties

Property Description

broker ID of the kafka broker (broker identifier). Broker IDs
start from 0 and correspond to the number of broker
replicas.integer

advertisedHost The host name which will be used in the brokers'
advertised.brokers.

string

advertisedPort The port number which will be used in the brokers'
advertised.brokers.

integer

host The broker host. This field will be used in the Ingress
resource or in the Route resource to specify the
desired hostname. This field can be used only with
route (optional) or ingress (required) type
listeners.

string

nodePort Node port for the per-broker service. This field can
be used only with nodeport type listener.

integer

loadBalancerIP The loadbalancer is requested with the IP address
specified in this field. This feature depends on
whether the underlying cloud provider supports
specifying the loadBalancerIP when a load
balancer is created. This field is ignored if the cloud
provider does not support the feature.This field can
be used only with loadbalancer type listener.

string

 tls: true
 authentication:
 type: tls
 configuration:
 brokers:
 - broker: 0
 advertisedHost: example.hostname.0
 advertisedPort: 12340
 - broker: 1
 advertisedHost: example.hostname.1
 advertisedPort: 12341
 - broker: 2
 advertisedHost: example.hostname.2
 advertisedPort: 12342
...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

150

annotations Annotations that will be added to the Ingress or
Service resource. You can use this field to configure
DNS providers such as External DNS. This field can
be used only with loadbalancer, nodeport, or
ingress type listeners.

map

labels Labels that will be added to the Ingress, Route, or
Service resource. This field can be used only with
loadbalancer, nodeport, route, or ingress type
listeners.

map

Property Description

6.2.15. EphemeralStorage schema reference

Used in: JbodStorage, KafkaClusterSpec, ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the EphemeralStorage type from
PersistentClaimStorage. It must have the value ephemeral for the type EphemeralStorage.

Property Description

id Storage identification number. It is mandatory only
for storage volumes defined in a storage of type
'jbod'.integer

sizeLimit When type=ephemeral, defines the total amount of
local storage required for this EmptyDir volume (for
example 1Gi).string

type Must be ephemeral.

string

6.2.16. PersistentClaimStorage schema reference

Used in: JbodStorage, KafkaClusterSpec, ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the PersistentClaimStorage type from
EphemeralStorage. It must have the value persistent-claim for the type PersistentClaimStorage.

Property Description

type Must be persistent-claim.

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

151

string

size When type=persistent-claim, defines the size of the
persistent volume claim (i.e 1Gi). Mandatory when
type=persistent-claim.string

selector Specifies a specific persistent volume to use. It
contains key:value pairs representing labels for
selecting such a volume.map

deleteClaim Specifies if the persistent volume claim has to be
deleted when the cluster is un-deployed.

boolean

class The storage class to use for dynamic volume
allocation.

string

id Storage identification number. It is mandatory only
for storage volumes defined in a storage of type
'jbod'.integer

overrides Overrides for individual brokers. The overrides field
allows to specify a different configuration for
different brokers.PersistentClaimStorageOverride array

Property Description

6.2.17. PersistentClaimStorageOverride schema reference

Used in: PersistentClaimStorage

Property Description

class The storage class to use for dynamic volume
allocation for this broker.

string

broker Id of the kafka broker (broker identifier).

integer

6.2.18. JbodStorage schema reference

Used in: KafkaClusterSpec

The type property is a discriminator that distinguishes use of the JbodStorage type from

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

152

The type property is a discriminator that distinguishes use of the JbodStorage type from
EphemeralStorage, PersistentClaimStorage. It must have the value jbod for the type JbodStorage.

Property Description

type Must be jbod.

string

volumes List of volumes as Storage objects representing the
JBOD disks array.

EphemeralStorage, PersistentClaimStorage
array

6.2.19. KafkaAuthorizationSimple schema reference

Used in: KafkaClusterSpec

Full list of KafkaAuthorizationSimple schema properties

Simple authorization in AMQ Streams uses the AclAuthorizer plugin, the default Access Control Lists
(ACLs) authorization plugin provided with Apache Kafka. ACLs allow you to define which users have
access to which resources at a granular level.

Configure the Kafka custom resource to use simple authorization. Set the type property in the
authorization section to the value simple, and configure a list of super users.

Access rules are configured for the KafkaUser, as described in the ACLRule schema reference .

6.2.19.1. superUsers

A list of user principals treated as super users, so that they are always allowed without querying ACL
rules.

An example of simple authorization configuration

NOTE

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 authorization:
 type: simple
 superUsers:
 - CN=client_1
 - user_2
 - CN=client_3
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

153

NOTE

The super.user configuration option in the config property in Kafka.spec.kafka is
ignored. Designate super users in the authorization property instead. For more
information, see Kafka broker configuration .

6.2.19.2. KafkaAuthorizationSimple schema properties

The type property is a discriminator that distinguishes use of the KafkaAuthorizationSimple type from
KafkaAuthorizationOpa, KafkaAuthorizationKeycloak, KafkaAuthorizationCustom. It must have the
value simple for the type KafkaAuthorizationSimple.

Property Description

type Must be simple.

string

superUsers List of super users. Should contain list of user
principals which should get unlimited access rights.

string array

6.2.20. KafkaAuthorizationOpa schema reference

Used in: KafkaClusterSpec

Full list of KafkaAuthorizationOpa schema properties

To use Open Policy Agent authorization, set the type property in the authorization section to the value
opa, and configure OPA properties as required. AMQ Streams uses Open Policy Agent plugin for Kafka
authorization as the authorizer. For more information about the format of the input data and policy
examples, see Open Policy Agent plugin for Kafka authorization .

6.2.20.1. url

The URL used to connect to the Open Policy Agent server. The URL has to include the policy which will
be queried by the authorizer. Required.

6.2.20.2. allowOnError

Defines whether a Kafka client should be allowed or denied by default when the authorizer fails to query
the Open Policy Agent, for example, when it is temporarily unavailable. Defaults to false - all actions will
be denied.

6.2.20.3. initialCacheCapacity

Initial capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent for
every request. Defaults to 5000.

6.2.20.4. maximumCacheSize

Maximum capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

154

https://www.openpolicyagent.org/
https://github.com/anderseknert/opa-kafka-plugin

Maximum capacity of the local cache used by the authorizer to avoid querying the Open Policy Agent
for every request. Defaults to 50000.

6.2.20.5. expireAfterMs

The expiration of the records kept in the local cache to avoid querying the Open Policy Agent for every
request. Defines how often the cached authorization decisions are reloaded from the Open Policy Agent
server. In milliseconds. Defaults to 3600000 milliseconds (1 hour).

6.2.20.6. tlsTrustedCertificates

Trusted certificates for TLS connection to the OPA server.

6.2.20.7. superUsers

A list of user principals treated as super users, so that they are always allowed without querying the open
Policy Agent policy.

An example of Open Policy Agent authorizer configuration

6.2.20.8. KafkaAuthorizationOpa schema properties

The type property is a discriminator that distinguishes use of the KafkaAuthorizationOpa type from
KafkaAuthorizationSimple, KafkaAuthorizationKeycloak, KafkaAuthorizationCustom. It must have
the value opa for the type KafkaAuthorizationOpa.

Property Description

type Must be opa.

string

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject
spec:
 kafka:
 # ...
 authorization:
 type: opa
 url: http://opa:8181/v1/data/kafka/allow
 allowOnError: false
 initialCacheCapacity: 1000
 maximumCacheSize: 10000
 expireAfterMs: 60000
 superUsers:
 - CN=fred
 - sam
 - CN=edward
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

155

url The URL used to connect to the Open Policy Agent
server. The URL has to include the policy which will
be queried by the authorizer. This option is required.

string

allowOnError Defines whether a Kafka client should be allowed or
denied by default when the authorizer fails to query
the Open Policy Agent, for example, when it is
temporarily unavailable). Defaults to false - all
actions will be denied.

boolean

initialCacheCapacity Initial capacity of the local cache used by the
authorizer to avoid querying the Open Policy Agent
for every request Defaults to 5000.integer

maximumCacheSize Maximum capacity of the local cache used by the
authorizer to avoid querying the Open Policy Agent
for every request. Defaults to 50000.integer

expireAfterMs The expiration of the records kept in the local cache
to avoid querying the Open Policy Agent for every
request. Defines how often the cached authorization
decisions are reloaded from the Open Policy Agent
server. In milliseconds. Defaults to 3600000.

integer

tlsTrustedCertificates Trusted certificates for TLS connection to the OPA
server.

CertSecretSource array

superUsers List of super users, which is specifically a list of user
principals that have unlimited access rights.

string array

enableMetrics Defines whether the Open Policy Agent authorizer
plugin should provide metrics. Defaults to false.

boolean

Property Description

6.2.21. KafkaAuthorizationKeycloak schema reference

Used in: KafkaClusterSpec

The type property is a discriminator that distinguishes use of the KafkaAuthorizationKeycloak type
from KafkaAuthorizationSimple, KafkaAuthorizationOpa, KafkaAuthorizationCustom. It must have
the value keycloak for the type KafkaAuthorizationKeycloak.

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

156

Property Description

type Must be keycloak.

string

clientId OAuth Client ID which the Kafka client can use to
authenticate against the OAuth server and use the
token endpoint URI.string

tokenEndpointUri Authorization server token endpoint URI.

string

tlsTrustedCertificates Trusted certificates for TLS connection to the OAuth
server.

CertSecretSource array

disableTlsHostnameVerification Enable or disable TLS hostname verification. Default
value is false.

boolean

delegateToKafkaAcls Whether authorization decision should be delegated
to the 'Simple' authorizer if DENIED by Red Hat
Single Sign-On Authorization Services policies.
Default value is false.

boolean

grantsRefreshPeriodSeconds The time between two consecutive grants refresh
runs in seconds. The default value is 60.

integer

grantsRefreshPoolSize The number of threads to use to refresh grants for
active sessions. The more threads, the more
parallelism, so the sooner the job completes.
However, using more threads places a heavier load
on the authorization server. The default value is 5.

integer

superUsers List of super users. Should contain list of user
principals which should get unlimited access rights.

string array

connectTimeoutSeconds The connect timeout in seconds when connecting to
authorization server. If not set, the effective connect
timeout is 60 seconds.integer

readTimeoutSeconds The read timeout in seconds when connecting to
authorization server. If not set, the effective read
timeout is 60 seconds.

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

157

integer

httpRetries The maximum number of retries to attempt if an
initial HTTP request fails. If not set, the default is to
not attempt any retries.integer

enableMetrics Enable or disable OAuth metrics. Default value is
false.

boolean

Property Description

6.2.22. KafkaAuthorizationCustom schema reference

Used in: KafkaClusterSpec

Full list of KafkaAuthorizationCustom schema properties

To use custom authorization in AMQ Streams, you can configure your own Authorizer plugin to define
Access Control Lists (ACLs).

ACLs allow you to define which users have access to which resources at a granular level.

Configure the Kafka custom resource to use custom authorization. Set the type property in the
authorization section to the value custom, and the set following properties.

IMPORTANT

The custom authorizer must implement the
org.apache.kafka.server.authorizer.Authorizer interface, and support configuration of
super.users using the super.users configuration property.

6.2.22.1. authorizerClass

(Required) Java class that implements the org.apache.kafka.server.authorizer.Authorizer interface
to support custom ACLs.

6.2.22.2. superUsers

A list of user principals treated as super users, so that they are always allowed without querying ACL
rules.

You can add configuration for initializing the custom authorizer using Kafka.spec.kafka.config.

An example of custom authorization configuration under Kafka.spec

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
 namespace: myproject

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

158

In addition to the Kafka custom resource configuration, the JAR file containing the custom authorizer
class along with its dependencies must be available on the classpath of the Kafka broker.

The AMQ Streams Maven build process provides a mechanism to add custom third-party libraries to the
generated Kafka broker container image by adding them as dependencies in the pom.xml file under the
docker-images/kafka/kafka-thirdparty-libs directory. The directory contains different folders for
different Kafka versions. Choose the appropriate folder. Before modifying the pom.xml file, the third-
party library must be available in a Maven repository, and that Maven repository must be accessible to
the AMQ Streams build process.

NOTE

The super.user configuration option in the config property in Kafka.spec.kafka is
ignored. Designate super users in the authorization property instead. For more
information, see Kafka broker configuration .

Custom authorization can make use of group membership information extracted from the JWT token
during authentication when using oauth authentication and configuring groupsClaim configuration
attribute. Groups are available on the OAuthKafkaPrincipal object during authorize() call as follows:

 public List<AuthorizationResult> authorize(AuthorizableRequestContext requestContext,
List<Action> actions) {

 KafkaPrincipal principal = requestContext.principal();
 if (principal instanceof OAuthKafkaPrincipal) {
 OAuthKafkaPrincipal p = (OAuthKafkaPrincipal) principal;

 for (String group: p.getGroups()) {
 System.out.println("Group: " + group);
 }
 }
 }

6.2.22.3. KafkaAuthorizationCustom schema properties

The type property is a discriminator that distinguishes use of the KafkaAuthorizationCustom type
from KafkaAuthorizationSimple, KafkaAuthorizationOpa, KafkaAuthorizationKeycloak. It must have
the value custom for the type KafkaAuthorizationCustom.

spec:
 kafka:
 # ...
 authorization:
 type: custom
 authorizerClass: io.mycompany.CustomAuthorizer
 superUsers:
 - CN=client_1
 - user_2
 - CN=client_3
 # ...
 config:
 authorization.custom.property1=value1
 authorization.custom.property2=value2
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

159

Property Description

type Must be custom.

string

authorizerClass Authorization implementation class, which must be
available in classpath.

string

superUsers List of super users, which are user principals with
unlimited access rights.

string array

supportsAdminApi Indicates whether the custom authorizer supports
the APIs for managing ACLs using the Kafka Admin
API. Defaults to false.boolean

6.2.23. Rack schema reference

Used in: KafkaBridgeSpec, KafkaClusterSpec, KafkaConnectSpec, KafkaMirrorMaker2Spec

Full list of Rack schema properties

The rack option configures rack awareness. A rack can represent an availability zone, data center, or an
actual rack in your data center. The rack is configured through a topologyKey. topologyKey identifies a
label on OpenShift nodes that contains the name of the topology in its value. An example of such a label
is topology.kubernetes.io/zone (or failure-domain.beta.kubernetes.io/zone on older OpenShift
versions), which contains the name of the availability zone in which the OpenShift node runs. You can
configure your Kafka cluster to be aware of the rack in which it runs, and enable additional features such
as spreading partition replicas across different racks or consuming messages from the closest replicas.

For more information about OpenShift node labels, see Well-Known Labels, Annotations and Taints .
Consult your OpenShift administrator regarding the node label that represents the zone or rack into
which the node is deployed.

6.2.23.1. Spreading partition replicas across racks

When rack awareness is configured, AMQ Streams will set broker.rack configuration for each Kafka
broker. The broker.rack configuration assigns a rack ID to each broker. When broker.rack is configured,
Kafka brokers will spread partition replicas across as many different racks as possible. When replicas are
spread across multiple racks, the probability that multiple replicas will fail at the same time is lower than
if they would be in the same rack. Spreading replicas improves resiliency, and is important for availability
and reliability. To enable rack awareness in Kafka, add the rack option to the .spec.kafka section of the
Kafka custom resource as shown in the example below.

Example rack configuration for Kafka

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

160

https://kubernetes.io/docs/reference/kubernetes-api/labels-annotations-taints/

NOTE

The rack in which brokers are running can change in some cases when the pods are
deleted or restarted. As a result, the replicas running in different racks might then share
the same rack. Use Cruise Control and the KafkaRebalance resource with the
RackAwareGoal to make sure that replicas remain distributed across different racks.

When rack awareness is enabled in the Kafka custom resource, AMQ Streams will automatically add the
OpenShift preferredDuringSchedulingIgnoredDuringExecution affinity rule to distribute the Kafka
brokers across the different racks. However, the preferred rule does not guarantee that the brokers will
be spread. Depending on your exact OpenShift and Kafka configurations, you should add additional
affinity rules or configure topologySpreadConstraints for both ZooKeeper and Kafka to make sure the
nodes are properly distributed accross as many racks as possible. For more information see Section 2.8,
“Configuring pod scheduling”.

6.2.23.2. Consuming messages from the closest replicas

Rack awareness can also be used in consumers to fetch data from the closest replica. This is useful for
reducing the load on your network when a Kafka cluster spans multiple datacenters and can also reduce
costs when running Kafka in public clouds. However, it can lead to increased latency.

In order to be able to consume from the closest replica, rack awareness has to be configured in the Kafka
cluster, and the RackAwareReplicaSelector has to be enabled. The replica selector plugin provides the
logic that enables clients to consume from the nearest replica. The default implementation uses
LeaderSelector to always select the leader replica for the client. Specify RackAwareReplicaSelector
for the replica.selector.class to switch from the default implementation.

Example rack configuration with enabled replica-aware selector

In addition to the Kafka broker configuration, you also need to specify the client.rack option in your
consumers. The client.rack option should specify the rack ID in which the consumer is running.
RackAwareReplicaSelector associates matching broker.rack and client.rack IDs, to find the nearest

 name: my-cluster
spec:
 kafka:
 # ...
 rack:
 topologyKey: topology.kubernetes.io/zone
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 rack:
 topologyKey: topology.kubernetes.io/zone
 config:
 # ...
 replica.selector.class: org.apache.kafka.common.replica.RackAwareReplicaSelector
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

161

replica and consume from it. If there are multiple replicas in the same rack, RackAwareReplicaSelector
always selects the most up-to-date replica. If the rack ID is not specified, or if it cannot find a replica
with the same rack ID, it will fall back to the leader replica.

Figure 6.1. Example showing client consuming from replicas in the same availability zone

You can also configure Kafka Connect, MirrorMaker 2 and Kafka Bridge so that connectors consume
messages from the closest replicas. You enable rack awareness in the KafkaConnect,
KafkaMirrorMaker2, and KafkaBridge custom resources. The configuration does does not set affinity
rules, but you can also configure affinity or topologySpreadConstraints. For more information see
Section 2.8, “Configuring pod scheduling” .

When deploying Kafka Connect using AMQ Streams, you can use the rack section in the KafkaConnect
custom resource to automatically configure the client.rack option.

Example rack configuration for Kafka Connect

When deploying MirrorMaker 2 using AMQ Streams, you can use the rack section in the
KafkaMirrorMaker2 custom resource to automatically configure the client.rack option.

Example rack configuration for MirrorMaker 2

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
...
spec:
 # ...
 rack:
 topologyKey: topology.kubernetes.io/zone
 # ...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

162

When deploying Kafka Bridge using AMQ Streams, you can use the rack section in the KafkaBridge
custom resource to automatically configure the client.rack option.

Example rack configuration for Kafka Bridge

6.2.23.3. Rack schema properties

Property Description

topologyKey A key that matches labels assigned to the OpenShift
cluster nodes. The value of the label is used to set a
broker’s broker.rack config, and the client.rack
config for Kafka Connect or MirrorMaker 2.

string

6.2.24. Probe schema reference

Used in: CruiseControlSpec, EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec,
KafkaClusterSpec, KafkaConnectSpec, KafkaExporterSpec, KafkaMirrorMaker2Spec,
KafkaMirrorMakerSpec, TlsSidecar, ZookeeperClusterSpec

Property Description

failureThreshold Minimum consecutive failures for the probe to be
considered failed after having succeeded. Defaults to
3. Minimum value is 1.integer

initialDelaySeconds The initial delay before first the health is first
checked. Default to 15 seconds. Minimum value is 0.

integer

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
...
spec:
 # ...
 rack:
 topologyKey: topology.kubernetes.io/zone
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
...
spec:
 # ...
 rack:
 topologyKey: topology.kubernetes.io/zone
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

163

periodSeconds How often (in seconds) to perform the probe.
Default to 10 seconds. Minimum value is 1.

integer

successThreshold Minimum consecutive successes for the probe to be
considered successful after having failed. Defaults to
1. Must be 1 for liveness. Minimum value is 1.integer

timeoutSeconds The timeout for each attempted health check.
Default to 5 seconds. Minimum value is 1.

integer

Property Description

6.2.25. JvmOptions schema reference

Used in: CruiseControlSpec, EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec,
KafkaClusterSpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, KafkaMirrorMakerSpec,
ZookeeperClusterSpec

Property Description

-XX A map of -XX options to the JVM.

map

-Xms -Xms option to to the JVM.

string

-Xmx -Xmx option to to the JVM.

string

gcLoggingEnabled Specifies whether the Garbage Collection logging is
enabled. The default is false.

boolean

javaSystemProperties A map of additional system properties which will be
passed using the -D option to the JVM.

SystemProperty array

6.2.26. SystemProperty schema reference

Used in: JvmOptions

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

164

Property Description

name The system property name.

string

value The system property value.

string

6.2.27. KafkaJmxOptions schema reference

Used in: KafkaClusterSpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, ZookeeperClusterSpec

Full list of KafkaJmxOptions schema properties

Configures JMX connection options.

Get JMX metrics from Kafka brokers, ZooKeeper nodes, Kafka Connect, and MirrorMaker 2. by
connecting to port 9999. Use the jmxOptions property to configure a password-protected or an
unprotected JMX port. Using password protection prevents unauthorized pods from accessing the port.

You can then obtain metrics about the component.

For example, for each Kafka broker you can obtain bytes-per-second usage data from clients, or the
request rate of the network of the broker.

To enable security for the JMX port, set the type parameter in the authentication field to password.

Example password-protected JMX configuration for Kafka brokers and ZooKeeper nodes

You can then deploy a pod into a cluster and obtain JMX metrics using the headless service by
specifying which broker you want to address.

For example, to get JMX metrics from broker 0 you specify:

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 jmxOptions:
 authentication:
 type: "password"
 # ...
 zookeeper:
 # ...
 jmxOptions:
 authentication:
 type: "password"
 #...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

165

CLUSTER-NAME-kafka-0 is name of the broker pod, and CLUSTER-NAME-kafka-brokers is the name
of the headless service to return the IPs of the broker pods.

If the JMX port is secured, you can get the username and password by referencing them from the JMX
Secret in the deployment of your pod.

For an unprotected JMX port, use an empty object {} to open the JMX port on the headless service.
You deploy a pod and obtain metrics in the same way as for the protected port, but in this case any pod
can read from the JMX port.

Example open port JMX configuration for Kafka brokers and ZooKeeper nodes

Additional resources

For more information on the Kafka component metrics exposed using JMX, see the Apache
Kafka documentation.

6.2.27.1. KafkaJmxOptions schema properties

Property Description

authentication Authentication configuration for connecting to the
JMX port. The type depends on the value of the
authentication.type property within the given
object, which must be one of [password].

KafkaJmxAuthenticationPassword

6.2.28. KafkaJmxAuthenticationPassword schema reference

Used in: KafkaJmxOptions

The type property is a discriminator that distinguishes use of the KafkaJmxAuthenticationPassword
type from other subtypes which may be added in the future. It must have the value password for the
type KafkaJmxAuthenticationPassword.

"CLUSTER-NAME-kafka-0.CLUSTER-NAME-kafka-brokers"

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 jmxOptions: {}
 # ...
 zookeeper:
 # ...
 jmxOptions: {}
 # ...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

166

https://kafka.apache.org/documentation/

Property Description

type Must be password.

string

6.2.29. JmxPrometheusExporterMetrics schema reference

Used in: CruiseControlSpec, KafkaClusterSpec, KafkaConnectSpec, KafkaMirrorMaker2Spec,
KafkaMirrorMakerSpec, ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the JmxPrometheusExporterMetrics
type from other subtypes which may be added in the future. It must have the value
jmxPrometheusExporter for the type JmxPrometheusExporterMetrics.

Property Description

type Must be jmxPrometheusExporter.

string

valueFrom ConfigMap entry where the Prometheus JMX
Exporter configuration is stored. For details of the
structure of this configuration, see the Prometheus
JMX Exporter.

ExternalConfigurationReference

6.2.30. ExternalConfigurationReference schema reference

Used in: ExternalLogging, JmxPrometheusExporterMetrics

Property Description

configMapKeyRef Reference to the key in the ConfigMap containing
the configuration. For more information, see the
external documentation for core/v1
configmapkeyselector.

ConfigMapKeySelector

6.2.31. InlineLogging schema reference

Used in: CruiseControlSpec, EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec,
KafkaClusterSpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, KafkaMirrorMakerSpec,
ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the InlineLogging type from
ExternalLogging. It must have the value inline for the type InlineLogging.

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

167

https://github.com/prometheus/jmx_exporter
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#configmapkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#configmapkeyselector-v1-core

Property Description

type Must be inline.

string

loggers A Map from logger name to logger level.

map

6.2.32. ExternalLogging schema reference

Used in: CruiseControlSpec, EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec,
KafkaClusterSpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, KafkaMirrorMakerSpec,
ZookeeperClusterSpec

The type property is a discriminator that distinguishes use of the ExternalLogging type from
InlineLogging. It must have the value external for the type ExternalLogging.

Property Description

type Must be external.

string

valueFrom ConfigMap entry where the logging configuration is
stored.

ExternalConfigurationReference

6.2.33. KafkaClusterTemplate schema reference

Used in: KafkaClusterSpec

Property Description

statefulset Template for Kafka StatefulSet.

StatefulSetTemplate

pod Template for Kafka Pods.

PodTemplate

bootstrapService Template for Kafka bootstrap Service.

InternalServiceTemplate

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

168

brokersService Template for Kafka broker Service.

InternalServiceTemplate

externalBootstrapService Template for Kafka external bootstrap Service.

ResourceTemplate

perPodService Template for Kafka per-pod Services used for
access from outside of OpenShift.

ResourceTemplate

externalBootstrapRoute Template for Kafka external bootstrap Route.

ResourceTemplate

perPodRoute Template for Kafka per-pod Routes used for access
from outside of OpenShift.

ResourceTemplate

externalBootstrapIngress Template for Kafka external bootstrap Ingress.

ResourceTemplate

perPodIngress Template for Kafka per-pod Ingress used for access
from outside of OpenShift.

ResourceTemplate

persistentVolumeClaim Template for all Kafka PersistentVolumeClaims.

ResourceTemplate

podDisruptionBudget Template for Kafka PodDisruptionBudget.

PodDisruptionBudgetTemplate

kafkaContainer Template for the Kafka broker container.

ContainerTemplate

initContainer Template for the Kafka init container.

ContainerTemplate

Property Description

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

169

clusterCaCert Template for Secret with Kafka Cluster certificate
public key.

ResourceTemplate

serviceAccount Template for the Kafka service account.

ResourceTemplate

jmxSecret Template for Secret of the Kafka Cluster JMX
authentication.

ResourceTemplate

clusterRoleBinding Template for the Kafka ClusterRoleBinding.

ResourceTemplate

podSet Template for Kafka StrimziPodSet resource.

ResourceTemplate

Property Description

6.2.34. StatefulSetTemplate schema reference

Used in: KafkaClusterTemplate, ZookeeperClusterTemplate

Property Description

metadata Metadata applied to the resource.

MetadataTemplate

podManagementPolicy PodManagementPolicy which will be used for this
StatefulSet. Valid values are Parallel and
OrderedReady. Defaults to Parallel.string (one of [OrderedReady, Parallel])

6.2.35. MetadataTemplate schema reference

Used in: BuildConfigTemplate, DeploymentTemplate, InternalServiceTemplate,
PodDisruptionBudgetTemplate, PodTemplate, ResourceTemplate, StatefulSetTemplate

Full list of MetadataTemplate schema properties

Labels and Annotations are used to identify and organize resources, and are configured in the
metadata property.

For example:

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

170

The labels and annotations fields can contain any labels or annotations that do not contain the
reserved string strimzi.io. Labels and annotations containing strimzi.io are used internally by AMQ
Streams and cannot be configured.

6.2.35.1. MetadataTemplate schema properties

Property Description

labels Labels added to the resource template. Can be
applied to different resources such as StatefulSets,
Deployments, Pods, and Services.map

annotations Annotations added to the resource template. Can be
applied to different resources such as StatefulSets,
Deployments, Pods, and Services.map

6.2.36. PodTemplate schema reference

Used in: CruiseControlTemplate, EntityOperatorTemplate, KafkaBridgeTemplate,
KafkaClusterTemplate, KafkaConnectTemplate, KafkaExporterTemplate,
KafkaMirrorMakerTemplate, ZookeeperClusterTemplate

Full list of PodTemplate schema properties

Configures the template for Kafka pods.

Example PodTemplate configuration

...
template:
 pod:
 metadata:
 labels:
 label1: value1
 label2: value2
 annotations:
 annotation1: value1
 annotation2: value2
...

...
template:
 pod:
 metadata:
 labels:
 label1: value1
 annotations:
 anno1: value1
 imagePullSecrets:
 - name: my-docker-credentials
 securityContext:
 runAsUser: 1000001

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

171

6.2.36.1. hostAliases

Use the hostAliases property to a specify a list of hosts and IP addresses, which are injected into the
/etc/hosts file of the pod.

This configuration is especially useful for Kafka Connect or MirrorMaker when a connection outside of
the cluster is also requested by users.

Example hostAliases configuration

6.2.36.2. PodTemplate schema properties

Property Description

metadata Metadata applied to the resource.

MetadataTemplate

imagePullSecrets List of references to secrets in the same namespace
to use for pulling any of the images used by this Pod.
When the STRIMZI_IMAGE_PULL_SECRETS
environment variable in Cluster Operator and the
imagePullSecrets option are specified, only the
imagePullSecrets variable is used and the
STRIMZI_IMAGE_PULL_SECRETS variable is
ignored. For more information, see the external
documentation for core/v1 localobjectreference.

LocalObjectReference array

securityContext Configures pod-level security attributes and common
container settings. For more information, see the
external documentation for core/v1
podsecuritycontext.

PodSecurityContext

 fsGroup: 0
 terminationGracePeriodSeconds: 120
...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
#...
spec:
 # ...
 template:
 pod:
 hostAliases:
 - ip: "192.168.1.86"
 hostnames:
 - "my-host-1"
 - "my-host-2"
 #...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

172

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#localobjectreference-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#localobjectreference-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#podsecuritycontext-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#podsecuritycontext-v1-core

terminationGracePeriodSeconds The grace period is the duration in seconds after the
processes running in the pod are sent a termination
signal, and the time when the processes are forcibly
halted with a kill signal. Set this value to longer than
the expected cleanup time for your process. Value
must be a non-negative integer. A zero value
indicates delete immediately. You might need to
increase the grace period for very large Kafka
clusters, so that the Kafka brokers have enough time
to transfer their work to another broker before they
are terminated. Defaults to 30 seconds.

integer

affinity The pod’s affinity rules. For more information, see
the external documentation for core/v1 affinity.

Affinity

tolerations The pod’s tolerations. For more information, see the
external documentation for core/v1 toleration.

Toleration array

priorityClassName The name of the priority class used to assign priority
to the pods. For more information about priority
classes, see Pod Priority and Preemption.string

schedulerName The name of the scheduler used to dispatch this
Pod. If not specified, the default scheduler will be
used.string

hostAliases The pod’s HostAliases. HostAliases is an optional list
of hosts and IPs that will be injected into the Pod’s
hosts file if specified. For more information, see the
external documentation for core/v1 hostalias.

HostAlias array

tmpDirSizeLimit Defines the total amount (for example 1Gi) of local
storage required for temporary EmptyDir volume
(/tmp). Default value is 5Mi.string

enableServiceLinks Indicates whether information about services should
be injected into Pod’s environment variables.

boolean

topologySpreadConstraints The pod’s topology spread constraints. For more
information, see the external documentation for
core/v1 topologyspreadconstraint.TopologySpreadConstraint array

Property Description

6.2.37. InternalServiceTemplate schema reference

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

173

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#toleration-v1-core
https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#hostalias-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#hostalias-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#topologyspreadconstraint-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#topologyspreadconstraint-v1-core

Used in: CruiseControlTemplate, KafkaBridgeTemplate, KafkaClusterTemplate,
KafkaConnectTemplate, ZookeeperClusterTemplate

Property Description

metadata Metadata applied to the resource.

MetadataTemplate

ipFamilyPolicy Specifies the IP Family Policy used by the service.
Available options are SingleStack,
PreferDualStack and RequireDualStack.
SingleStack is for a single IP family.
PreferDualStack is for two IP families on dual-
stack configured clusters or a single IP family on
single-stack clusters. RequireDualStack fails
unless there are two IP families on dual-stack
configured clusters. If unspecified, OpenShift will
choose the default value based on the service type.
Available on OpenShift 1.20 and newer.

string (one of [RequireDualStack, SingleStack,
PreferDualStack])

ipFamilies Specifies the IP Families used by the service.
Available options are IPv4 and IPv6. If
unspecified, OpenShift will choose the
default value based on the `ipFamilyPolicy
setting. Available on OpenShift 1.20 and newer.

string (one or more of [IPv6, IPv4]) array

6.2.38. ResourceTemplate schema reference

Used in: CruiseControlTemplate, EntityOperatorTemplate, KafkaBridgeTemplate,
KafkaClusterTemplate, KafkaConnectTemplate, KafkaExporterTemplate,
KafkaMirrorMakerTemplate, KafkaUserTemplate, ZookeeperClusterTemplate

Property Description

metadata Metadata applied to the resource.

MetadataTemplate

6.2.39. PodDisruptionBudgetTemplate schema reference

Used in: CruiseControlTemplate, KafkaBridgeTemplate, KafkaClusterTemplate,
KafkaConnectTemplate, KafkaMirrorMakerTemplate, ZookeeperClusterTemplate

Full list of PodDisruptionBudgetTemplate schema properties

AMQ Streams creates a PodDisruptionBudget for every new StrimziPodSet, StatefulSet, or
Deployment. By default, pod disruption budgets only allow a single pod to be unavailable at a given
time. You can increase the amount of unavailable pods allowed by changing the default value of the
maxUnavailable property.

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

174

An example of PodDisruptionBudget template

6.2.39.1. PodDisruptionBudgetTemplate schema properties

Property Description

metadata Metadata to apply to the
PodDisruptionBudgetTemplate resource.

MetadataTemplate

maxUnavailable Maximum number of unavailable pods to allow
automatic Pod eviction. A Pod eviction is allowed
when the maxUnavailable number of pods or
fewer are unavailable after the eviction. Setting this
value to 0 prevents all voluntary evictions, so the
pods must be evicted manually. Defaults to 1.

integer

6.2.40. ContainerTemplate schema reference

Used in: CruiseControlTemplate, EntityOperatorTemplate, KafkaBridgeTemplate,
KafkaClusterTemplate, KafkaConnectTemplate, KafkaExporterTemplate,
KafkaMirrorMakerTemplate, ZookeeperClusterTemplate

Full list of ContainerTemplate schema properties

You can set custom security context and environment variables for a container.

The environment variables are defined under the env property as a list of objects with name and value
fields. The following example shows two custom environment variables and a custom security context
set for the Kafka broker containers:

...
template:
 podDisruptionBudget:
 metadata:
 labels:
 key1: label1
 key2: label2
 annotations:
 key1: label1
 key2: label2
 maxUnavailable: 1
...

...
template:
 kafkaContainer:
 env:
 - name: EXAMPLE_ENV_1
 value: example.env.one
 - name: EXAMPLE_ENV_2
 value: example.env.two

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

175

Environment variables prefixed with KAFKA_ are internal to AMQ Streams and should be avoided. If you
set a custom environment variable that is already in use by AMQ Streams, it is ignored and a warning is
recorded in the log.

6.2.40.1. ContainerTemplate schema properties

Property Description

env Environment variables which should be applied to the
container.

ContainerEnvVar array

securityContext Security context for the container. For more
information, see the external documentation for
core/v1 securitycontext.SecurityContext

6.2.41. ContainerEnvVar schema reference

Used in: ContainerTemplate

Property Description

name The environment variable key.

string

value The environment variable value.

string

6.2.42. ZookeeperClusterSpec schema reference

Used in: KafkaSpec

Full list of ZookeeperClusterSpec schema properties

Configures a ZooKeeper cluster.

6.2.42.1. config

Use the config properties to configure ZooKeeper options as keys.

Standard Apache ZooKeeper configuration may be provided, restricted to those properties not managed
directly by AMQ Streams.

 securityContext:
 runAsUser: 2000
...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

176

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#securitycontext-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#securitycontext-v1-core

Configuration options that cannot be configured relate to:

Security (Encryption, Authentication, and Authorization)

Listener configuration

Configuration of data directories

ZooKeeper cluster composition

The values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the ZooKeeper documentation with the exception of
those managed directly by AMQ Streams. Specifically, all configuration options with keys equal to or
starting with one of the following strings are forbidden:

server.

dataDir

dataLogDir

clientPort

authProvider

quorum.auth

requireClientAuthScheme

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other supported options are passed to ZooKeeper.

There are exceptions to the forbidden options. For client connection using a specific cipher suite for a
TLS version, you can configure allowed ssl properties.

Example ZooKeeper configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 config:
 autopurge.snapRetainCount: 3
 autopurge.purgeInterval: 1
 ssl.cipher.suites: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

177

https://zookeeper.apache.org/doc/r3.6.3/

6.2.42.2. logging

ZooKeeper has a configurable logger:

zookeeper.root.logger

ZooKeeper uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j.properties. Both
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

Inline logging

External logging

 ssl.enabled.protocols: TLSv1.2
 ssl.protocol: TLSv1.2
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 zookeeper:
 # ...
 logging:
 type: inline
 loggers:
 zookeeper.root.logger: "INFO"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
spec:
 # ...
 zookeeper:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

178

https://logging.apache.org/

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

6.2.42.3. ZookeeperClusterSpec schema properties

Property Description

replicas The number of pods in the cluster.

integer

image The docker image for the pods.

string

storage Storage configuration (disk). Cannot be updated.
The type depends on the value of the storage.type
property within the given object, which must be one
of [ephemeral, persistent-claim].

EphemeralStorage, PersistentClaimStorage

config The ZooKeeper broker config. Properties with the
following prefixes cannot be set: server., dataDir,
dataLogDir, clientPort, authProvider, quorum.auth,
requireClientAuthScheme, snapshot.trust.empty,
standaloneEnabled, reconfigEnabled,
4lw.commands.whitelist, secureClientPort, ssl.,
serverCnxnFactory, sslQuorum (with the exception
of: ssl.protocol, ssl.quorum.protocol,
ssl.enabledProtocols, ssl.quorum.enabledProtocols,
ssl.ciphersuites, ssl.quorum.ciphersuites,
ssl.hostnameVerification,
ssl.quorum.hostnameVerification).

map

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

 name: customConfigMap
 key: zookeeper-log4j.properties
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

179

jmxOptions JMX Options for Zookeeper nodes.

KafkaJmxOptions

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

logging Logging configuration for ZooKeeper. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

template Template for ZooKeeper cluster resources. The
template allows users to specify how the
StatefulSet, Pods, and Services are generated.ZookeeperClusterTemplate

Property Description

6.2.43. ZookeeperClusterTemplate schema reference

Used in: ZookeeperClusterSpec

Property Description

statefulset Template for ZooKeeper StatefulSet.

StatefulSetTemplate

pod Template for ZooKeeper Pods.

PodTemplate

clientService Template for ZooKeeper client Service.

InternalServiceTemplate

nodesService Template for ZooKeeper nodes Service.

InternalServiceTemplate

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

180

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core

persistentVolumeClaim Template for all ZooKeeper
PersistentVolumeClaims.

ResourceTemplate

podDisruptionBudget Template for ZooKeeper PodDisruptionBudget.

PodDisruptionBudgetTemplate

zookeeperContainer Template for the ZooKeeper container.

ContainerTemplate

serviceAccount Template for the ZooKeeper service account.

ResourceTemplate

jmxSecret Template for Secret of the Zookeeper Cluster JMX
authentication.

ResourceTemplate

podSet Template for ZooKeeper StrimziPodSet resource.

ResourceTemplate

Property Description

6.2.44. EntityOperatorSpec schema reference

Used in: KafkaSpec

Property Description

topicOperator Configuration of the Topic Operator.

EntityTopicOperatorSpec

userOperator Configuration of the User Operator.

EntityUserOperatorSpec

tlsSidecar TLS sidecar configuration.

TlsSidecar

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

181

template Template for Entity Operator resources. The
template allows users to specify how a Deployment
and Pod is generated.EntityOperatorTemplate

Property Description

6.2.45. EntityTopicOperatorSpec schema reference

Used in: EntityOperatorSpec

Full list of EntityTopicOperatorSpec schema properties

Configures the Topic Operator.

6.2.45.1. logging

The Topic Operator has a configurable logger:

rootLogger.level

The Topic Operator uses the Apache log4j2 logger implementation.

Use the logging property in the entityOperator.topicOperator field of the Kafka resource Kafka
resource to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j2.properties. Both
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

Inline logging

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 topicOperator:
 watchedNamespace: my-topic-namespace

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

182

https://logging.apache.org/

External logging

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

6.2.45.2. EntityTopicOperatorSpec schema properties

Property Description

watchedNamespace The namespace the Topic Operator should watch.

string

image The image to use for the Topic Operator.

string

reconciliationIntervalSeconds Interval between periodic reconciliations.

integer

 reconciliationIntervalSeconds: 60
 logging:
 type: inline
 loggers:
 rootLogger.level: INFO
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 topicOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: topic-operator-log4j2.properties
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

183

zookeeperSessionTimeoutSeconds Timeout for the ZooKeeper session.

integer

startupProbe Pod startup checking.

Probe

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

topicMetadataMaxAttempts The number of attempts at getting topic metadata.

integer

logging Logging configuration. The type depends on the
value of the logging.type property within the given
object, which must be one of [inline, external].InlineLogging, ExternalLogging

jvmOptions JVM Options for pods.

JvmOptions

Property Description

6.2.46. EntityUserOperatorSpec schema reference

Used in: EntityOperatorSpec

Full list of EntityUserOperatorSpec schema properties

Configures the User Operator.

6.2.46.1. logging

The User Operator has a configurable logger:

rootLogger.level

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

184

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core

The User Operator uses the Apache log4j2 logger implementation.

Use the logging property in the entityOperator.userOperator field of the Kafka resource to configure
loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j2.properties. Both
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

Inline logging

External logging

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 userOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 logging:
 type: inline
 loggers:
 rootLogger.level: INFO
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 userOperator:
 watchedNamespace: my-topic-namespace

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

185

https://logging.apache.org/

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

6.2.46.2. EntityUserOperatorSpec schema properties

Property Description

watchedNamespace The namespace the User Operator should watch.

string

image The image to use for the User Operator.

string

reconciliationIntervalSeconds Interval between periodic reconciliations.

integer

zookeeperSessionTimeoutSeconds The zookeeperSessionTimeoutSeconds
property has been deprecated. This property has
been deprecated because ZooKeeper is not used
anymore by the User Operator. Timeout for the
ZooKeeper session.

integer

secretPrefix The prefix that will be added to the KafkaUser name
to be used as the Secret name.

string

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.

 reconciliationIntervalSeconds: 60
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: user-operator-log4j2.properties
 # ...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

186

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core

ResourceRequirements

logging Logging configuration. The type depends on the
value of the logging.type property within the given
object, which must be one of [inline, external].InlineLogging, ExternalLogging

jvmOptions JVM Options for pods.

JvmOptions

Property Description

6.2.47. TlsSidecar schema reference

Used in: CruiseControlSpec, EntityOperatorSpec

Full list of TlsSidecar schema properties

Configures a TLS sidecar, which is a container that runs in a pod, but serves a supporting purpose. In
AMQ Streams, the TLS sidecar uses TLS to encrypt and decrypt communication between components
and ZooKeeper.

The TLS sidecar is used in the Entity Operator.

The TLS sidecar is configured using the tlsSidecar property in Kafka.spec.entityOperator.

The TLS sidecar supports the following additional options:

image

resources

logLevel

readinessProbe

livenessProbe

The resources property specifies the memory and CPU resources allocated for the TLS sidecar.

The image property configures the container image which will be used.

The readinessProbe and livenessProbe properties configure healthcheck probes for the TLS sidecar.

The logLevel property specifies the logging level. The following logging levels are supported:

emerg

alert

crit

err

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

187

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core

warning

notice

info

debug

The default value is notice.

Example TLS sidecar configuration

6.2.47.1. TlsSidecar schema properties

Property Description

image The docker image for the container.

string

livenessProbe Pod liveness checking.

Probe

logLevel The log level for the TLS sidecar. Default value is
notice.

string (one of [emerg, debug, crit, err, alert, warning,
notice, info])

readinessProbe Pod readiness checking.

Probe

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 entityOperator:
 # ...
 tlsSidecar:
 resources:
 requests:
 cpu: 200m
 memory: 64Mi
 limits:
 cpu: 500m
 memory: 128Mi
 # ...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

188

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

Property Description

6.2.48. EntityOperatorTemplate schema reference

Used in: EntityOperatorSpec

Property Description

deployment Template for Entity Operator Deployment.

DeploymentTemplate

pod Template for Entity Operator Pods.

PodTemplate

topicOperatorContainer Template for the Entity Topic Operator container.

ContainerTemplate

userOperatorContainer Template for the Entity User Operator container.

ContainerTemplate

tlsSidecarContainer Template for the Entity Operator TLS sidecar
container.

ContainerTemplate

serviceAccount Template for the Entity Operator service account.

ResourceTemplate

entityOperatorRole Template for the Entity Operator Role.

ResourceTemplate

topicOperatorRoleBinding Template for the Entity Topic Operator RoleBinding.

ResourceTemplate

userOperatorRoleBinding Template for the Entity Topic Operator RoleBinding.

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

189

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core

ResourceTemplate

Property Description

6.2.49. DeploymentTemplate schema reference

Used in: CruiseControlTemplate, EntityOperatorTemplate, KafkaBridgeTemplate,
KafkaConnectTemplate, KafkaExporterTemplate, KafkaMirrorMakerTemplate

Full list of DeploymentTemplate schema properties

Use deploymentStrategy to specify the strategy used to replace old pods with new ones when
deployment configuration changes.

Use one of the following values:

RollingUpdate: Pods are restarted with zero downtime.

Recreate: Pods are terminated before new ones are created.

Using the Recreate deployment strategy has the advantage of not requiring spare resources, but the
disadvantage is the application downtime.

Example showing the deployment strategy set to Recreate.

This configuration change does not cause a rolling update.

6.2.49.1. DeploymentTemplate schema properties

Property Description

metadata Metadata applied to the resource.

MetadataTemplate

deploymentStrategy Pod replacement strategy for deployment
configuration changes. Valid values are
RollingUpdate and Recreate. Defaults to
RollingUpdate.

string (one of [RollingUpdate, Recreate])

6.2.50. CertificateAuthority schema reference

Used in: KafkaSpec

Configuration of how TLS certificates are used within the cluster. This applies to certificates used for

...
template:
 deployment:
 deploymentStrategy: Recreate
...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

190

Configuration of how TLS certificates are used within the cluster. This applies to certificates used for
both internal communication within the cluster and to certificates used for client access via
Kafka.spec.kafka.listeners.tls.

Property Description

generateCertificateAuthority If true then Certificate Authority certificates will be
generated automatically. Otherwise the user will need
to provide a Secret with the CA certificate. Default is
true.

boolean

generateSecretOwnerReference If true, the Cluster and Client CA Secrets are
configured with the ownerReference set to the
Kafka resource. If the Kafka resource is deleted
when true, the CA Secrets are also deleted. If false,
the ownerReference is disabled. If the Kafka
resource is deleted when false, the CA Secrets are
retained and available for reuse. Default is true.

boolean

validityDays The number of days generated certificates should be
valid for. The default is 365.

integer

renewalDays The number of days in the certificate renewal period.
This is the number of days before the a certificate
expires during which renewal actions may be
performed. When generateCertificateAuthority is
true, this will cause the generation of a new
certificate. When generateCertificateAuthority is
true, this will cause extra logging at WARN level
about the pending certificate expiry. Default is 30.

integer

certificateExpirationPolicy How should CA certificate expiration be handled
when generateCertificateAuthority=true. The
default is for a new CA certificate to be generated
reusing the existing private key.

string (one of [replace-key, renew-certificate])

6.2.51. CruiseControlSpec schema reference

Used in: KafkaSpec

Full list of CruiseControlSpec schema properties

Configures a Cruise Control cluster.

Configuration options relate to:

Goals configuration

Capacity limits for resource distribution goals

6.2.51.1. config

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

191

Use the config properties to configure Cruise Control options as keys.

Standard Cruise Control configuration may be provided, restricted to those properties not managed
directly by AMQ Streams.

Configuration options that cannot be configured relate to the following:

Security (Encryption, Authentication, and Authorization)

Connection to the Kafka cluster

Client ID configuration

ZooKeeper connectivity

Web server configuration

Self healing

The values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the Cruise Control documentation with the
exception of those options that are managed directly by AMQ Streams. See the description of the
config property for a list of forbidden prefixes.

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other supported options are passed to Cruise Control.

There are exceptions to the forbidden options. For client connection using a specific cipher suite for a
TLS version, you can configure allowed ssl properties. You can also configure webserver properties to
enable Cross-Origin Resource Sharing (CORS).

Example Cruise Control configuration

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 cruiseControl:
 # ...
 config:
 # Note that `default.goals` (superset) must also include all `hard.goals` (subset)
 default.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal
 hard.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal
 cpu.balance.threshold: 1.1
 metadata.max.age.ms: 300000

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

192

https://github.com/linkedin/cruise-control/wiki/Configurations

1

2

3

6.2.51.2. Cross-Origin Resource Sharing (CORS)

Cross-Origin Resource Sharing (CORS) is a HTTP mechanism for controlling access to REST APIs.
Restrictions can be on access methods or originating URLs of client applications. You can enable CORS
with Cruise Control using the webserver.http.cors.enabled property in the config. When enabled,
CORS permits read access to the Cruise Control REST API from applications that have different
originating URLs than AMQ Streams. This allows applications from specified origins to use GET requests
to fetch information about the Kafka cluster through the Cruise Control API. For example, applications
can fetch information on the current cluster load or the most recent optimization proposal. POST
requests are not permitted.

NOTE

For more information on using CORS with Cruise Control, see REST APIs in the Cruise
Control Wiki.

Enabling CORS for Cruise Control

You enable and configure CORS in Kafka.spec.cruiseControl.config.

Enables CORS.

Specifies permitted origins for the Access-Control-Allow-Origin HTTP response header. You can
use a wildcard or specify a single origin as a URL. If you use a wildcard, a response is returned
following requests from any origin.

Exposes specified header names for the Access-Control-Expose-Headers HTTP response
header. Applications in permitted origins can read responses with the specified headers.

6.2.51.3. Cruise Control REST API security

The Cruise Control REST API is secured with HTTP Basic authentication and SSL to protect the cluster

 send.buffer.bytes: 131072
 webserver.http.cors.enabled: true
 webserver.http.cors.origin: "*"
 webserver.http.cors.exposeheaders: "User-Task-ID,Content-Type"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 cruiseControl:
 # ...
 config:
 webserver.http.cors.enabled: true 1
 webserver.http.cors.origin: "*" 2
 webserver.http.cors.exposeheaders: "User-Task-ID,Content-Type" 3

 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

193

https://github.com/linkedin/cruise-control/wiki/REST-APIs

The Cruise Control REST API is secured with HTTP Basic authentication and SSL to protect the cluster
against potentially destructive Cruise Control operations, such as decommissioning Kafka brokers. We
recommend that Cruise Control in AMQ Streams is only used with these settings enabled.

However, it is possible to disable these settings by specifying the following Cruise Control configuration:

To disable the built-in HTTP Basic authentication, set webserver.security.enable to false.

To disable the built-in SSL, set webserver.ssl.enable to false.

Cruise Control configuration to disable API authorization, authentication, and SSL

6.2.51.4. brokerCapacity

Cruise Control uses capacity limits to determine if optimization goals for resource distribution are being
broken. There are four goals of this type:

DiskUsageDistributionGoal - Disk utilization distribution

CpuUsageDistributionGoal - CPU utilization distribution

NetworkInboundUsageDistributionGoal - Network inbound utilization distribution

NetworkOutboundUsageDistributionGoal - Network outbound utilization distribution

You specify capacity limits for Kafka broker resources in the brokerCapacity property in
Kafka.spec.cruiseControl . They are enabled by default and you can change their default values.
Capacity limits can be set for the following broker resources:

cpu - CPU resource in millicores or CPU cores (Default: 1)

inboundNetwork - Inbound network throughput in byte units per second (Default: 10000KiB/s)

outboundNetwork - Outbound network throughput in byte units per second (Default:
10000KiB/s)

For network throughput, use an integer value with standard OpenShift byte units (K, M, G) or their
bibyte (power of two) equivalents (Ki, Mi, Gi) per second.

NOTE

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 cruiseControl:
 config:
 webserver.security.enable: false
 webserver.ssl.enable: false
...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

194

NOTE

Disk and CPU capacity limits are automatically generated by AMQ Streams, so you do not
need to set them. In order to guarantee accurate rebalance proposals when using CPU
goals, you can set CPU requests equal to CPU limits in Kafka.spec.kafka.resources.
That way, all CPU resources are reserved upfront and are always available. This
configuration allows Cruise Control to properly evaluate the CPU utilization when
preparing the rebalance proposals based on CPU goals. In cases where you cannot set
CPU requests equal to CPU limits in Kafka.spec.kafka.resources, you can set the CPU
capacity manually for the same accuracy.

Example Cruise Control brokerCapacity configuration using bibyte units

6.2.51.5. Capacity overrides

Brokers might be running on nodes with heterogeneous network or CPU resources. If that’s the case,
specify overrides that set the network capacity and CPU limits for each broker. The overrides ensure an
accurate rebalance between the brokers. Override capacity limits can be set for the following broker
resources:

cpu - CPU resource in millicores or CPU cores (Default: 1)

inboundNetwork - Inbound network throughput in byte units per second (Default: 10000KiB/s)

outboundNetwork - Outbound network throughput in byte units per second (Default:
10000KiB/s)

An example of Cruise Control capacity overrides configuration using bibyte units

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 cruiseControl:
 # ...
 brokerCapacity:
 cpu: "2"
 inboundNetwork: 10000KiB/s
 outboundNetwork: 10000KiB/s
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 # ...
 cruiseControl:
 # ...
 brokerCapacity:
 cpu: "1"
 inboundNetwork: 10000KiB/s
 outboundNetwork: 10000KiB/s

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

195

For more information, refer to the BrokerCapacity schema reference .

6.2.51.6. Logging configuration

Cruise Control has its own configurable logger:

rootLogger.level

Cruise Control uses the Apache log4j2 logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j.properties. Both
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. Here we see examples of inline and
external logging.

Inline logging

External logging

 overrides:
 - brokers: [0]
 cpu: "2.755"
 inboundNetwork: 20000KiB/s
 outboundNetwork: 20000KiB/s
 - brokers: [1, 2]
 cpu: 3000m
 inboundNetwork: 30000KiB/s
 outboundNetwork: 30000KiB/s

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
...
spec:
 cruiseControl:
 # ...
 logging:
 type: inline
 loggers:
 rootLogger.level: "INFO"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
...
spec:
 cruiseControl:
 # ...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

196

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

6.2.51.7. CruiseControlSpec schema properties

Property Description

image The docker image for the pods.

string

tlsSidecar The tlsSidecar property has been deprecated.
TLS sidecar configuration.

TlsSidecar

resources CPU and memory resources to reserve for the Cruise
Control container. For more information, see the
external documentation for core/v1
resourcerequirements.

ResourceRequirements

livenessProbe Pod liveness checking for the Cruise Control
container.

Probe

readinessProbe Pod readiness checking for the Cruise Control
container.

Probe

jvmOptions JVM Options for the Cruise Control container.

JvmOptions

logging Logging configuration (Log4j 2) for Cruise Control.
The type depends on the value of the logging.type
property within the given object, which must be one
of [inline, external].

InlineLogging, ExternalLogging

template Template to specify how Cruise Control resources,
Deployments and Pods, are generated.

CruiseControlTemplate

 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: cruise-control-log4j.properties
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

197

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core

brokerCapacity The Cruise Control brokerCapacity configuration.

BrokerCapacity

config The Cruise Control configuration. For a full list of
configuration options refer to
https://github.com/linkedin/cruise-
control/wiki/Configurations. Note that properties
with the following prefixes cannot be set:
bootstrap.servers, client.id, zookeeper., network.,
security., failed.brokers.zk.path,webserver.http.,
webserver.api.urlprefix, webserver.session.path,
webserver.accesslog., two.step.,
request.reason.required,metric.reporter.sampler.boot
strap.servers, capacity.config.file, self.healing., ssl.,
kafka.broker.failure.detection.enable,
topic.config.provider.class (with the exception of:
ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols,
webserver.http.cors.enabled,
webserver.http.cors.origin,
webserver.http.cors.exposeheaders,
webserver.security.enable, webserver.ssl.enable).

map

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

Property Description

6.2.52. CruiseControlTemplate schema reference

Used in: CruiseControlSpec

Property Description

deployment Template for Cruise Control Deployment.

DeploymentTemplate

pod Template for Cruise Control Pods.

PodTemplate

apiService Template for Cruise Control API Service.

InternalServiceTemplate

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

198

https://github.com/linkedin/cruise-control/wiki/Configurations

podDisruptionBudget Template for Cruise Control
PodDisruptionBudget.

PodDisruptionBudgetTemplate

cruiseControlContainer Template for the Cruise Control container.

ContainerTemplate

tlsSidecarContainer The tlsSidecarContainer property has been
deprecated. Template for the Cruise Control TLS
sidecar container.ContainerTemplate

serviceAccount Template for the Cruise Control service account.

ResourceTemplate

Property Description

6.2.53. BrokerCapacity schema reference

Used in: CruiseControlSpec

Property Description

disk The disk property has been deprecated. The
Cruise Control disk capacity setting has been
deprecated, is ignored, and will be removed in the
future Broker capacity for disk in bytes. Use a
number value with either standard OpenShift byte
units (K, M, G, or T), their bibyte (power of two)
equivalents (Ki, Mi, Gi, or Ti), or a byte value with or
without E notation. For example, 100000M,
100000Mi, 104857600000, or 1e+11.

string

cpuUtilization The cpuUtilization property has been
deprecated. The Cruise Control CPU capacity
setting has been deprecated, is ignored, and will be
removed in the future Broker capacity for CPU
resource utilization as a percentage (0 - 100).

integer

cpu Broker capacity for CPU resource in cores or
millicores. For example, 1, 1.500, 1500m. For more
information on valid CPU resource units see
https://kubernetes.io/docs/concepts/configuration/
manage-resources-containers/#meaning-of-cpu.

string

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

199

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu

inboundNetwork Broker capacity for inbound network throughput in
bytes per second. Use an integer value with standard
OpenShift byte units (K, M, G) or their bibyte (power
of two) equivalents (Ki, Mi, Gi) per second. For
example, 10000KiB/s.

string

outboundNetwork Broker capacity for outbound network throughput in
bytes per second. Use an integer value with standard
OpenShift byte units (K, M, G) or their bibyte (power
of two) equivalents (Ki, Mi, Gi) per second. For
example, 10000KiB/s.

string

overrides Overrides for individual brokers. The overrides
property lets you specify a different capacity
configuration for different brokers.BrokerCapacityOverride array

Property Description

6.2.54. BrokerCapacityOverride schema reference

Used in: BrokerCapacity

Property Description

brokers List of Kafka brokers (broker identifiers).

integer array

cpu Broker capacity for CPU resource in cores or
millicores. For example, 1, 1.500, 1500m. For more
information on valid CPU resource units see
https://kubernetes.io/docs/concepts/configuration/
manage-resources-containers/#meaning-of-cpu.

string

inboundNetwork Broker capacity for inbound network throughput in
bytes per second. Use an integer value with standard
OpenShift byte units (K, M, G) or their bibyte (power
of two) equivalents (Ki, Mi, Gi) per second. For
example, 10000KiB/s.

string

outboundNetwork Broker capacity for outbound network throughput in
bytes per second. Use an integer value with standard
OpenShift byte units (K, M, G) or their bibyte (power
of two) equivalents (Ki, Mi, Gi) per second. For
example, 10000KiB/s.

string

6.2.55. KafkaExporterSpec schema reference

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

200

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu

Used in: KafkaSpec

Property Description

image The docker image for the pods.

string

groupRegex Regular expression to specify which consumer groups
to collect. Default value is .*.

string

topicRegex Regular expression to specify which topics to collect.
Default value is .*.

string

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

logging Only log messages with the given severity or above.
Valid levels: [info, debug, trace]. Default log level is
info.string

enableSaramaLogging Enable Sarama logging, a Go client library used by
the Kafka Exporter.

boolean

template Customization of deployment templates and pods.

KafkaExporterTemplate

livenessProbe Pod liveness check.

Probe

readinessProbe Pod readiness check.

Probe

6.2.56. KafkaExporterTemplate schema reference

Used in: KafkaExporterSpec

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

201

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core

Property Description

deployment Template for Kafka Exporter Deployment.

DeploymentTemplate

pod Template for Kafka Exporter Pods.

PodTemplate

service The service property has been deprecated. The
Kafka Exporter service has been removed. Template
for Kafka Exporter Service.ResourceTemplate

container Template for the Kafka Exporter container.

ContainerTemplate

serviceAccount Template for the Kafka Exporter service account.

ResourceTemplate

6.2.57. KafkaStatus schema reference

Used in: Kafka

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

listeners Addresses of the internal and external listeners.

ListenerStatus array

clusterId Kafka cluster Id.

string

6.2.58. Condition schema reference

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

202

Used in: KafkaBridgeStatus, KafkaConnectorStatus, KafkaConnectStatus,
KafkaMirrorMaker2Status, KafkaMirrorMakerStatus, KafkaRebalanceStatus, KafkaStatus,
KafkaTopicStatus, KafkaUserStatus

Property Description

type The unique identifier of a condition, used to
distinguish between other conditions in the resource.

string

status The status of the condition, either True, False or
Unknown.

string

lastTransitionTime Last time the condition of a type changed from one
status to another. The required format is 'yyyy-MM-
ddTHH:mm:ssZ', in the UTC time zone.string

reason The reason for the condition’s last transition (a single
word in CamelCase).

string

message Human-readable message indicating details about
the condition’s last transition.

string

6.2.59. ListenerStatus schema reference

Used in: KafkaStatus

Property Description

type The type property has been deprecated, and
should now be configured using name. The name
of the listener.string

name The name of the listener.

string

addresses A list of the addresses for this listener.

ListenerAddress array

bootstrapServers A comma-separated list of host:port pairs for
connecting to the Kafka cluster using this listener.

string

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

203

certificates A list of TLS certificates which can be used to verify
the identity of the server when connecting to the
given listener. Set only for tls and external listeners.string array

Property Description

6.2.60. ListenerAddress schema reference

Used in: ListenerStatus

Property Description

host The DNS name or IP address of the Kafka bootstrap
service.

string

port The port of the Kafka bootstrap service.

integer

6.2.61. KafkaConnect schema reference

Property Description

spec The specification of the Kafka Connect cluster.

KafkaConnectSpec

status The status of the Kafka Connect cluster.

KafkaConnectStatus

6.2.62. KafkaConnectSpec schema reference

Used in: KafkaConnect

Full list of KafkaConnectSpec schema properties

Configures a Kafka Connect cluster.

6.2.62.1. config

Use the config properties to configure Kafka options as keys.

Standard Apache Kafka Connect configuration may be provided, restricted to those properties not
managed directly by AMQ Streams.

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

204

Configuration options that cannot be configured relate to:

Kafka cluster bootstrap address

Security (Encryption, Authentication, and Authorization)

Listener / REST interface configuration

Plugin path configuration

The values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the Apache Kafka documentation with the exception
of those options that are managed directly by AMQ Streams. Specifically, configuration options with
keys equal to or starting with one of the following strings are forbidden:

ssl.

sasl.

security.

listeners

plugin.path

rest.

bootstrap.servers

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other options are passed to Kafka Connect.

IMPORTANT

The Cluster Operator does not validate keys or values in the config object provided.
When an invalid configuration is provided, the Kafka Connect cluster might not start or
might become unstable. In this circumstance, fix the configuration in the
KafkaConnect.spec.config object, then the Cluster Operator can roll out the new
configuration to all Kafka Connect nodes.

Certain options have default values:

group.id with default value connect-cluster

offset.storage.topic with default value connect-cluster-offsets

config.storage.topic with default value connect-cluster-configs

status.storage.topic with default value connect-cluster-status

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

205

https://kafka.apache.org/documentation/#connectconfigs

key.converter with default value org.apache.kafka.connect.json.JsonConverter

value.converter with default value org.apache.kafka.connect.json.JsonConverter

These options are automatically configured in case they are not present in the
KafkaConnect.spec.config properties.

There are exceptions to the forbidden options. You can use three allowed ssl configuration options for
client connection using a specific cipher suite for a TLS version. A cipher suite combines algorithms for
secure connection and data transfer. You can also configure the ssl.endpoint.identification.algorithm
property to enable or disable hostname verification.

Example Kafka Connect configuration

For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties. You can also configure the ssl.endpoint.identification.algorithm property to enable or
disable hostname verification.

6.2.62.2. logging

Kafka Connect has its own configurable loggers:

connect.root.logger.level

log4j.logger.org.reflections

Further loggers are added depending on the Kafka Connect plugins running.

Use a curl request to get a complete list of Kafka Connect loggers running from any Kafka broker pod:

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 group.id: my-connect-cluster
 offset.storage.topic: my-connect-cluster-offsets
 config.storage.topic: my-connect-cluster-configs
 status.storage.topic: my-connect-cluster-status
 key.converter: org.apache.kafka.connect.json.JsonConverter
 value.converter: org.apache.kafka.connect.json.JsonConverter
 key.converter.schemas.enable: true
 value.converter.schemas.enable: true
 config.storage.replication.factor: 3
 offset.storage.replication.factor: 3
 status.storage.replication.factor: 3
 ssl.cipher.suites: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 ssl.enabled.protocols: TLSv1.2
 ssl.protocol: TLSv1.2
 ssl.endpoint.identification.algorithm: HTTPS
 # ...

curl -s http://<connect-cluster-name>-connect-api:8083/admin/loggers/

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

206

Kafka Connect uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j.properties. Both
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging.

Inline logging

External logging

Any available loggers that are not configured have their level set to OFF.

If Kafka Connect was deployed using the Cluster Operator, changes to Kafka Connect logging levels are
applied dynamically.

If you use external logging, a rolling update is triggered when logging appenders are changed.

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

6.2.62.3. KafkaConnectSpec schema properties

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
spec:
 # ...
 logging:
 type: inline
 loggers:
 connect.root.logger.level: "INFO"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: connect-logging.log4j
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

207

https://logging.apache.org/

Property Description

version The Kafka Connect version. Defaults to 3.4.0.
Consult the user documentation to understand the
process required to upgrade or downgrade the
version.

string

replicas The number of pods in the Kafka Connect group.

integer

image The docker image for the pods.

string

bootstrapServers Bootstrap servers to connect to. This should be
given as a comma separated list of
<hostname>:_<port>_ pairs.string

tls TLS configuration.

ClientTls

authentication Authentication configuration for Kafka Connect. The
type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-256,
scram-sha-512, plain, oauth].

KafkaClientAuthenticationTls,
KafkaClientAuthenticationScramSha256,
KafkaClientAuthenticationScramSha512,
KafkaClientAuthenticationPlain,
KafkaClientAuthenticationOAuth

config The Kafka Connect configuration. Properties with the
following prefixes cannot be set: ssl., sasl., security.,
listeners, plugin.path, rest., bootstrap.servers,
consumer.interceptor.classes,
producer.interceptor.classes (with the exception of:
ssl.endpoint.identification.algorithm, ssl.cipher.suites,
ssl.protocol, ssl.enabled.protocols).

map

resources The maximum limits for CPU and memory resources
and the requested initial resources. For more
information, see the external documentation for
core/v1 resourcerequirements.

ResourceRequirements

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

208

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core

Probe

jvmOptions JVM Options for pods.

JvmOptions

jmxOptions JMX Options.

KafkaJmxOptions

logging Logging configuration for Kafka Connect. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

clientRackInitImage The image of the init container used for initializing
the client.rack.

string

rack Configuration of the node label which will be used as
the client.rack consumer configuration.

Rack

tracing The configuration of tracing in Kafka Connect. The
type depends on the value of the tracing.type
property within the given object, which must be one
of [jaeger, opentelemetry].

JaegerTracing, OpenTelemetryTracing

template Template for Kafka Connect and Kafka Mirror Maker
2 resources. The template allows users to specify
how the Deployment, Pods and Service are
generated.

KafkaConnectTemplate

externalConfiguration Pass data from Secrets or ConfigMaps to the Kafka
Connect pods and use them to configure connectors.

ExternalConfiguration

build Configures how the Connect container image should
be built. Optional.

Build

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

Property Description

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

209

6.2.63. ClientTls schema reference

Used in: KafkaBridgeSpec, KafkaConnectSpec, KafkaMirrorMaker2ClusterSpec,
KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

Full list of ClientTls schema properties

Configures TLS trusted certificates for connecting KafkaConnect, KafkaBridge, KafkaMirror,
KafkaMirrorMaker2 to the cluster.

6.2.63.1. trustedCertificates

Provide a list of secrets using the trustedCertificates property.

6.2.63.2. ClientTls schema properties

Property Description

trustedCertificates Trusted certificates for TLS connection.

CertSecretSource array

6.2.64. KafkaClientAuthenticationTls schema reference

Used in: KafkaBridgeSpec, KafkaConnectSpec, KafkaMirrorMaker2ClusterSpec,
KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

Full list of KafkaClientAuthenticationTls schema properties

To configure mTLS authentication, set the type property to the value tls. mTLS uses a TLS certificate
to authenticate.

6.2.64.1. certificateAndKey

The certificate is specified in the certificateAndKey property and is always loaded from an OpenShift
secret. In the secret, the certificate must be stored in X509 format under two different keys: public and
private.

You can use the secrets created by the User Operator, or you can create your own TLS certificate file,
with the keys used for authentication, then create a Secret from the file:

NOTE

mTLS authentication can only be used with TLS connections.

Example mTLS configuration

oc create secret generic MY-SECRET \
--from-file=MY-PUBLIC-TLS-CERTIFICATE-FILE.crt \
--from-file=MY-PRIVATE.key

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

210

6.2.64.2. KafkaClientAuthenticationTls schema properties

The type property is a discriminator that distinguishes use of the KafkaClientAuthenticationTls type
from KafkaClientAuthenticationScramSha256, KafkaClientAuthenticationScramSha512,
KafkaClientAuthenticationPlain, KafkaClientAuthenticationOAuth. It must have the value tls for the
type KafkaClientAuthenticationTls.

Property Description

certificateAndKey Reference to the Secret which holds the certificate
and private key pair.

CertAndKeySecretSource

type Must be tls.

string

6.2.65. KafkaClientAuthenticationScramSha256 schema reference

Used in: KafkaBridgeSpec, KafkaConnectSpec, KafkaMirrorMaker2ClusterSpec,
KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

Full list of KafkaClientAuthenticationScramSha256 schema properties

To configure SASL-based SCRAM-SHA-256 authentication, set the type property to scram-sha-256.
The SCRAM-SHA-256 authentication mechanism requires a username and password.

6.2.65.1. username

Specify the username in the username property.

6.2.65.2. passwordSecret

In the passwordSecret property, specify a link to a Secret containing the password.

You can use the secrets created by the User Operator.

If required, you can create a text file that contains the password, in cleartext, to use for authentication:

You can then create a Secret from the text file, setting your own field name (key) for the password:

authentication:
 type: tls
 certificateAndKey:
 secretName: my-secret
 certificate: my-public-tls-certificate-file.crt
 key: private.key

echo -n PASSWORD > MY-PASSWORD.txt

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

211

Example Secret for SCRAM-SHA-256 client authentication for Kafka Connect

The secretName property contains the name of the Secret, and the password property contains the
name of the key under which the password is stored inside the Secret.

IMPORTANT

Do not specify the actual password in the password property.

Example SASL-based SCRAM-SHA-256 client authentication configuration for Kafka
Connect

6.2.65.3. KafkaClientAuthenticationScramSha256 schema properties

Property Description

passwordSecret Reference to the Secret which holds the password.

PasswordSecretSource

type Must be scram-sha-256.

string

username Username used for the authentication.

string

6.2.66. PasswordSecretSource schema reference

Used in: KafkaClientAuthenticationOAuth, KafkaClientAuthenticationPlain,

oc create secret generic MY-CONNECT-SECRET-NAME --from-file=MY-PASSWORD-FIELD-
NAME=./MY-PASSWORD.txt

apiVersion: v1
kind: Secret
metadata:
 name: my-connect-secret-name
type: Opaque
data:
 my-connect-password-field: LFTIyFRFlMmU2N2Tm

authentication:
 type: scram-sha-256
 username: my-connect-username
 passwordSecret:
 secretName: my-connect-secret-name
 password: my-connect-password-field

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

212

Used in: KafkaClientAuthenticationOAuth, KafkaClientAuthenticationPlain,
KafkaClientAuthenticationScramSha256, KafkaClientAuthenticationScramSha512

Property Description

password The name of the key in the Secret under which the
password is stored.

string

secretName The name of the Secret containing the password.

string

6.2.67. KafkaClientAuthenticationScramSha512 schema reference

Used in: KafkaBridgeSpec, KafkaConnectSpec, KafkaMirrorMaker2ClusterSpec,
KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

Full list of KafkaClientAuthenticationScramSha512 schema properties

To configure SASL-based SCRAM-SHA-512 authentication, set the type property to scram-sha-512.
The SCRAM-SHA-512 authentication mechanism requires a username and password.

6.2.67.1. username

Specify the username in the username property.

6.2.67.2. passwordSecret

In the passwordSecret property, specify a link to a Secret containing the password.

You can use the secrets created by the User Operator.

If required, you can create a text file that contains the password, in cleartext, to use for authentication:

You can then create a Secret from the text file, setting your own field name (key) for the password:

Example Secret for SCRAM-SHA-512 client authentication for Kafka Connect

echo -n PASSWORD > MY-PASSWORD.txt

oc create secret generic MY-CONNECT-SECRET-NAME --from-file=MY-PASSWORD-FIELD-
NAME=./MY-PASSWORD.txt

apiVersion: v1
kind: Secret
metadata:
 name: my-connect-secret-name
type: Opaque
data:
 my-connect-password-field: LFTIyFRFlMmU2N2Tm

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

213

The secretName property contains the name of the Secret, and the password property contains the
name of the key under which the password is stored inside the Secret.

IMPORTANT

Do not specify the actual password in the password property.

Example SASL-based SCRAM-SHA-512 client authentication configuration for Kafka
Connect

6.2.67.3. KafkaClientAuthenticationScramSha512 schema properties

Property Description

passwordSecret Reference to the Secret which holds the password.

PasswordSecretSource

type Must be scram-sha-512.

string

username Username used for the authentication.

string

6.2.68. KafkaClientAuthenticationPlain schema reference

Used in: KafkaBridgeSpec, KafkaConnectSpec, KafkaMirrorMaker2ClusterSpec,
KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

Full list of KafkaClientAuthenticationPlain schema properties

To configure SASL-based PLAIN authentication, set the type property to plain. SASL PLAIN
authentication mechanism requires a username and password.

authentication:
 type: scram-sha-512
 username: my-connect-username
 passwordSecret:
 secretName: my-connect-secret-name
 password: my-connect-password-field

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

214

WARNING

The SASL PLAIN mechanism will transfer the username and password across the
network in cleartext. Only use SASL PLAIN authentication if TLS encryption is
enabled.

6.2.68.1. username

Specify the username in the username property.

6.2.68.2. passwordSecret

In the passwordSecret property, specify a link to a Secret containing the password.

You can use the secrets created by the User Operator.

If required, create a text file that contains the password, in cleartext, to use for authentication:

You can then create a Secret from the text file, setting your own field name (key) for the password:

Example Secret for PLAIN client authentication for Kafka Connect

The secretName property contains the name of the Secret and the password property contains the
name of the key under which the password is stored inside the Secret.

IMPORTANT

Do not specify the actual password in the password property.

An example SASL based PLAIN client authentication configuration



echo -n PASSWORD > MY-PASSWORD.txt

oc create secret generic MY-CONNECT-SECRET-NAME --from-file=MY-PASSWORD-FIELD-
NAME=./MY-PASSWORD.txt

apiVersion: v1
kind: Secret
metadata:
 name: my-connect-secret-name
type: Opaque
data:
 my-password-field-name: LFTIyFRFlMmU2N2Tm

authentication:
 type: plain
 username: my-connect-username

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

215

6.2.68.3. KafkaClientAuthenticationPlain schema properties

The type property is a discriminator that distinguishes use of the KafkaClientAuthenticationPlain type
from KafkaClientAuthenticationTls, KafkaClientAuthenticationScramSha256,
KafkaClientAuthenticationScramSha512, KafkaClientAuthenticationOAuth. It must have the value
plain for the type KafkaClientAuthenticationPlain.

Property Description

passwordSecret Reference to the Secret which holds the password.

PasswordSecretSource

type Must be plain.

string

username Username used for the authentication.

string

6.2.69. KafkaClientAuthenticationOAuth schema reference

Used in: KafkaBridgeSpec, KafkaConnectSpec, KafkaMirrorMaker2ClusterSpec,
KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

Full list of KafkaClientAuthenticationOAuth schema properties

To configure OAuth client authentication, set the type property to oauth.

OAuth authentication can be configured using one of the following options:

Client ID and secret

Client ID and refresh token

Access token

Username and password

TLS

Client ID and secret

You can configure the address of your authorization server in the tokenEndpointUri property together
with the client ID and client secret used in authentication. The OAuth client will connect to the OAuth
server, authenticate using the client ID and secret and get an access token which it will use to

 passwordSecret:
 secretName: my-connect-secret-name
 password: my-password-field-name

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

216

authenticate with the Kafka broker. In the clientSecret property, specify a link to a Secret containing
the client secret.

An example of OAuth client authentication using client ID and client secret

Optionally, scope and audience can be specified if needed.

Client ID and refresh token

You can configure the address of your OAuth server in the tokenEndpointUri property together with
the OAuth client ID and refresh token. The OAuth client will connect to the OAuth server, authenticate
using the client ID and refresh token and get an access token which it will use to authenticate with the
Kafka broker. In the refreshToken property, specify a link to a Secret containing the refresh token.

An example of OAuth client authentication using client ID and refresh token

Access token

You can configure the access token used for authentication with the Kafka broker directly. In this case,
you do not specify the tokenEndpointUri. In the accessToken property, specify a link to a Secret
containing the access token.

An example of OAuth client authentication using only an access token

Username and password

OAuth username and password configuration uses the OAuth Resource Owner Password Grant
mechanism. The mechanism is deprecated, and is only supported to enable integration in environments
where client credentials (ID and secret) cannot be used. You might need to use user accounts if your
access management system does not support another approach or user accounts are required for
authentication.

A typical approach is to create a special user account in your authorization server that represents your
client application. You then give the account a long randomly generated password and a very limited set

authentication:
 type: oauth
 tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
 clientId: my-client-id
 clientSecret:
 secretName: my-client-oauth-secret
 key: client-secret

authentication:
 type: oauth
 tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
 clientId: my-client-id
 refreshToken:
 secretName: my-refresh-token-secret
 key: refresh-token

authentication:
 type: oauth
 accessToken:
 secretName: my-access-token-secret
 key: access-token

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

217

of permissions. For example, the account can only connect to your Kafka cluster, but is not allowed to
use any other services or login to the user interface.

Consider using a refresh token mechanism first.

You can configure the address of your authorization server in the tokenEndpointUri property together
with the client ID, username and the password used in authentication. The OAuth client will connect to
the OAuth server, authenticate using the username, the password, the client ID, and optionally even the
client secret to obtain an access token which it will use to authenticate with the Kafka broker.

In the passwordSecret property, specify a link to a Secret containing the password.

Normally, you also have to configure a clientId using a public OAuth client. If you are using a confidential
OAuth client, you also have to configure a clientSecret.

An example of OAuth client authentication using username and a password with a public
client

An example of OAuth client authentication using a username and a password with a
confidential client

Optionally, scope and audience can be specified if needed.

TLS

Accessing the OAuth server using the HTTPS protocol does not require any additional configuration as
long as the TLS certificates used by it are signed by a trusted certification authority and its hostname is
listed in the certificate.

If your OAuth server is using certificates which are self-signed or are signed by a certification authority
which is not trusted, you can configure a list of trusted certificates in the custom resource. The
tlsTrustedCertificates property contains a list of secrets with key names under which the certificates
are stored. The certificates must be stored in X509 format.

An example of TLS certificates provided

authentication:
 type: oauth
 tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
 username: my-username
 passwordSecret:
 secretName: my-password-secret-name
 password: my-password-field-name
 clientId: my-public-client-id

authentication:
 type: oauth
 tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
 username: my-username
 passwordSecret:
 secretName: my-password-secret-name
 password: my-password-field-name
 clientId: my-confidential-client-id
 clientSecret:
 secretName: my-confidential-client-oauth-secret
 key: client-secret

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

218

The OAuth client will by default verify that the hostname of your OAuth server matches either the
certificate subject or one of the alternative DNS names. If it is not required, you can disable the
hostname verification.

An example of disabled TLS hostname verification

6.2.69.1. KafkaClientAuthenticationOAuth schema properties

The type property is a discriminator that distinguishes use of the KafkaClientAuthenticationOAuth
type from KafkaClientAuthenticationTls, KafkaClientAuthenticationScramSha256,
KafkaClientAuthenticationScramSha512, KafkaClientAuthenticationPlain. It must have the value
oauth for the type KafkaClientAuthenticationOAuth.

Property Description

accessToken Link to OpenShift Secret containing the access
token which was obtained from the authorization
server.GenericSecretSource

accessTokenIsJwt Configure whether access token should be treated
as JWT. This should be set to false if the
authorization server returns opaque tokens. Defaults
to true.

boolean

audience OAuth audience to use when authenticating against
the authorization server. Some authorization servers
require the audience to be explicitly set. The possible
values depend on how the authorization server is
configured. By default, audience is not specified
when performing the token endpoint request.

string

clientId

authentication:
 type: oauth
 tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
 clientId: my-client-id
 refreshToken:
 secretName: my-refresh-token-secret
 key: refresh-token
 tlsTrustedCertificates:
 - secretName: oauth-server-ca
 certificate: tls.crt

authentication:
 type: oauth
 tokenEndpointUri: https://sso.myproject.svc:8443/auth/realms/internal/protocol/openid-connect/token
 clientId: my-client-id
 refreshToken:
 secretName: my-refresh-token-secret
 key: refresh-token
 disableTlsHostnameVerification: true

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

219

OAuth Client ID which the Kafka client can use to
authenticate against the OAuth server and use the
token endpoint URI.

string

clientSecret Link to OpenShift Secret containing the OAuth client
secret which the Kafka client can use to authenticate
against the OAuth server and use the token endpoint
URI.

GenericSecretSource

connectTimeoutSeconds The connect timeout in seconds when connecting to
authorization server. If not set, the effective connect
timeout is 60 seconds.integer

disableTlsHostnameVerification Enable or disable TLS hostname verification. Default
value is false.

boolean

enableMetrics Enable or disable OAuth metrics. Default value is
false.

boolean

httpRetries The maximum number of retries to attempt if an
initial HTTP request fails. If not set, the default is to
not attempt any retries.integer

httpRetryPauseMs The pause to take before retrying a failed HTTP
request. If not set, the default is to not pause at all
but to immediately repeat a request.integer

maxTokenExpirySeconds Set or limit time-to-live of the access tokens to the
specified number of seconds. This should be set if
the authorization server returns opaque tokens.integer

passwordSecret Reference to the Secret which holds the password.

PasswordSecretSource

readTimeoutSeconds The read timeout in seconds when connecting to
authorization server. If not set, the effective read
timeout is 60 seconds.integer

refreshToken Link to OpenShift Secret containing the refresh
token which can be used to obtain access token from
the authorization server.GenericSecretSource

Property Description

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

220

scope OAuth scope to use when authenticating against the
authorization server. Some authorization servers
require this to be set. The possible values depend on
how authorization server is configured. By default
scope is not specified when doing the token
endpoint request.

string

tlsTrustedCertificates Trusted certificates for TLS connection to the OAuth
server.

CertSecretSource array

tokenEndpointUri Authorization server token endpoint URI.

string

type Must be oauth.

string

username Username used for the authentication.

string

Property Description

6.2.70. JaegerTracing schema reference

The type JaegerTracing has been deprecated.

Used in: KafkaBridgeSpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, KafkaMirrorMakerSpec

The type property is a discriminator that distinguishes use of the JaegerTracing type from
OpenTelemetryTracing. It must have the value jaeger for the type JaegerTracing.

Property Description

type Must be jaeger.

string

6.2.71. OpenTelemetryTracing schema reference

Used in: KafkaBridgeSpec, KafkaConnectSpec, KafkaMirrorMaker2Spec, KafkaMirrorMakerSpec

The type property is a discriminator that distinguishes use of the OpenTelemetryTracing type from
JaegerTracing. It must have the value opentelemetry for the type OpenTelemetryTracing.

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

221

Property Description

type Must be opentelemetry.

string

6.2.72. KafkaConnectTemplate schema reference

Used in: KafkaConnectSpec, KafkaMirrorMaker2Spec

Property Description

deployment Template for Kafka Connect Deployment.

DeploymentTemplate

podSet Template for Kafka Connect StrimziPodSet
resource.

ResourceTemplate

pod Template for Kafka Connect Pods.

PodTemplate

apiService Template for Kafka Connect API Service.

InternalServiceTemplate

headlessService Template for Kafka Connect headless Service.

InternalServiceTemplate

connectContainer Template for the Kafka Connect container.

ContainerTemplate

initContainer Template for the Kafka init container.

ContainerTemplate

podDisruptionBudget Template for Kafka Connect
PodDisruptionBudget.

PodDisruptionBudgetTemplate

serviceAccount Template for the Kafka Connect service account.

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

222

ResourceTemplate

clusterRoleBinding Template for the Kafka Connect ClusterRoleBinding.

ResourceTemplate

buildPod Template for Kafka Connect Build Pods. The build
pod is used only on OpenShift.

PodTemplate

buildContainer Template for the Kafka Connect Build container. The
build container is used only on OpenShift.

ContainerTemplate

buildConfig Template for the Kafka Connect BuildConfig used to
build new container images. The BuildConfig is used
only on OpenShift.BuildConfigTemplate

buildServiceAccount Template for the Kafka Connect Build service
account.

ResourceTemplate

jmxSecret Template for Secret of the Kafka Connect Cluster
JMX authentication.

ResourceTemplate

Property Description

6.2.73. BuildConfigTemplate schema reference

Used in: KafkaConnectTemplate

Property Description

metadata Metadata to apply to the
PodDisruptionBudgetTemplate resource.

MetadataTemplate

pullSecret Container Registry Secret with the credentials for
pulling the base image.

string

6.2.74. ExternalConfiguration schema reference

Used in: KafkaConnectSpec, KafkaMirrorMaker2Spec

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

223

Full list of ExternalConfiguration schema properties

Configures external storage properties that define configuration options for Kafka Connect connectors.

You can mount ConfigMaps or Secrets into a Kafka Connect pod as environment variables or volumes.
Volumes and environment variables are configured in the externalConfiguration property in
KafkaConnect.spec.

When applied, the environment variables and volumes are available for use when developing your
connectors.

6.2.74.1. env

Use the env property to specify one or more environment variables. These variables can contain a value
from either a ConfigMap or a Secret.

Example Secret containing values for environment variables

NOTE

The names of user-defined environment variables cannot start with KAFKA_ or
STRIMZI_.

To mount a value from a Secret to an environment variable, use the valueFrom property and the
secretKeyRef.

Example environment variables set to values from a Secret

apiVersion: v1
kind: Secret
metadata:
 name: aws-creds
type: Opaque
data:
 awsAccessKey: QUtJQVhYWFhYWFhYWFhYWFg=
 awsSecretAccessKey: Ylhsd1lYTnpkMjl5WkE=

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 externalConfiguration:
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsAccessKey
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

224

A common use case for mounting Secrets is for a connector to communicate with Amazon AWS. The
connector needs to be able to read the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

To mount a value from a ConfigMap to an environment variable, use configMapKeyRef in the
valueFrom property as shown in the following example.

Example environment variables set to values from a ConfigMap

6.2.74.2. volumes

Use volumes to mount ConfigMaps or Secrets to a Kafka Connect pod.

Using volumes instead of environment variables is useful in the following scenarios:

Mounting a properties file that is used to configure Kafka Connect connectors

Mounting truststores or keystores with TLS certificates

Volumes are mounted inside the Kafka Connect containers on the path /opt/kafka/external-
configuration/<volume-name>. For example, the files from a volume named connector-config will
appear in the directory /opt/kafka/external-configuration/connector-config.

Configuration providers load values from outside the configuration. Use a provider mechanism to avoid
passing restricted information over the Kafka Connect REST interface.

FileConfigProvider loads configuration values from properties in a file.

DirectoryConfigProvider loads configuration values from separate files within a directory
structure.

Use a comma-separated list if you want to add more than one provider, including custom providers. You
can use custom providers to load values from other file locations.

Using FileConfigProvider to load property values

In this example, a Secret named mysecret contains connector properties that specify a database name
and password:

 secretKeyRef:
 name: aws-creds
 key: awsSecretAccessKey

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 externalConfiguration:
 env:
 - name: MY_ENVIRONMENT_VARIABLE
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-key

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

225

1

2

1

2

3

4

Example Secret with database properties

The connector configuration in properties file format.

Database username and password properties used in the configuration.

The Secret and the FileConfigProvider configuration provider are specified in the Kafka Connect
configuration.

The Secret is mounted to a volume named connector-config.

FileConfigProvider is given the alias file.

Example external volumes set to values from a Secret

The alias for the configuration provider is used to define other configuration parameters.

FileConfigProvider provides values from properties files. The parameter uses the alias from
config.providers, taking the form config.providers.${alias}.class.

The name of the volume containing the Secret. Each volume must specify a name in the name
property and a reference to a ConfigMap or Secret.

The name of the Secret.

Placeholders for the property values in the Secret are referenced in the connector configuration. The
placeholder structure is file:PATH-AND-FILE-NAME:PROPERTY. FileConfigProvider reads and

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque
stringData:
 connector.properties: |- 1
 dbUsername: my-username 2
 dbPassword: my-password

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 config.providers: file 1
 config.providers.file.class: org.apache.kafka.common.config.provider.FileConfigProvider 2
 #...
 externalConfiguration:
 volumes:
 - name: connector-config 3
 secret:
 secretName: mysecret 4

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

226

extracts the database username and password property values from the mounted Secret in connector
configurations.

Example connector configuration showing placeholders for external values

Using DirectoryConfigProvider to load property values from separate files

In this example, a Secret contains TLS truststore and keystore user credentials in separate files.

Example Secret with user credentials

The Secret and the DirectoryConfigProvider configuration provider are specified in the Kafka Connect
configuration.

The Secret is mounted to a volume named connector-config.

DirectoryConfigProvider is given the alias directory.

Example external volumes set for user credentials files

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-source-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: io.debezium.connector.mysql.MySqlConnector
 tasksMax: 2
 config:
 database.hostname: 192.168.99.1
 database.port: "3306"
 database.user: "${file:/opt/kafka/external-configuration/connector-config/mysecret:dbUsername}"
 database.password: "${file:/opt/kafka/external-configuration/connector-
config/mysecret:dbPassword}"
 database.server.id: "184054"
 #...

apiVersion: v1
kind: Secret
metadata:
 name: my-user
 labels:
 strimzi.io/kind: KafkaUser
 strimzi.io/cluster: my-cluster
type: Opaque
data:
 ca.crt: <public_key> # Public key of the clients CA
 user.crt: <user_certificate> # Public key of the user
 user.key: <user_private_key> # Private key of the user
 user.p12: <store> # PKCS #12 store for user certificates and keys
 user.password: <password_for_store> # Protects the PKCS #12 store

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

227

1 The DirectoryConfigProvider provides values from files in a directory. The parameter uses the
alias from config.providers, taking the form config.providers.${alias}.class.

Placeholders for the credentials are referenced in the connector configuration. The placeholder
structure is directory:PATH:FILE-NAME. DirectoryConfigProvider reads and extracts the credentials
from the mounted Secret in connector configurations.

Example connector configuration showing placeholders for external values

6.2.74.3. ExternalConfiguration schema properties

metadata:
 name: my-connect
spec:
 # ...
 config:
 config.providers: directory
 config.providers.directory.class: org.apache.kafka.common.config.provider.DirectoryConfigProvider
1

 #...
 externalConfiguration:
 volumes:
 - name: cluster-ca
 secret:
 secretName: my-cluster-cluster-ca-cert
 - name: my-user
 secret:
 secretName: my-user

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-source-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: io.debezium.connector.mysql.MySqlConnector
 tasksMax: 2
 config:
 # ...
 database.history.producer.security.protocol: SSL
 database.history.producer.ssl.truststore.type: PEM
 database.history.producer.ssl.truststore.certificates: "${directory:/opt/kafka/external-
configuration/cluster-ca:ca.crt}"
 database.history.producer.ssl.keystore.type: PEM
 database.history.producer.ssl.keystore.certificate.chain: "${directory:/opt/kafka/external-
configuration/my-user:user.crt}"
 database.history.producer.ssl.keystore.key: "${directory:/opt/kafka/external-configuration/my-
user:user.key}"
 #...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

228

Property Description

env Makes data from a Secret or ConfigMap available in
the Kafka Connect pods as environment variables.

ExternalConfigurationEnv array

volumes Makes data from a Secret or ConfigMap available in
the Kafka Connect pods as volumes.

ExternalConfigurationVolumeSource array

6.2.75. ExternalConfigurationEnv schema reference

Used in: ExternalConfiguration

Property Description

name Name of the environment variable which will be
passed to the Kafka Connect pods. The name of the
environment variable cannot start with KAFKA_ or
STRIMZI_.

string

valueFrom Value of the environment variable which will be
passed to the Kafka Connect pods. It can be passed
either as a reference to Secret or ConfigMap field.
The field has to specify exactly one Secret or
ConfigMap.

ExternalConfigurationEnvVarSource

6.2.76. ExternalConfigurationEnvVarSource schema reference

Used in: ExternalConfigurationEnv

Property Description

configMapKeyRef Reference to a key in a ConfigMap. For more
information, see the external documentation for
core/v1 configmapkeyselector.ConfigMapKeySelector

secretKeyRef Reference to a key in a Secret. For more information,
see the external documentation for core/v1
secretkeyselector.SecretKeySelector

6.2.77. ExternalConfigurationVolumeSource schema reference

Used in: ExternalConfiguration

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

229

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#configmapkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#configmapkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#secretkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#secretkeyselector-v1-core

Property Description

configMap Reference to a key in a ConfigMap. Exactly one
Secret or ConfigMap has to be specified. For more
information, see the external documentation for
core/v1 configmapvolumesource.

ConfigMapVolumeSource

name Name of the volume which will be added to the Kafka
Connect pods.

string

secret Reference to a key in a Secret. Exactly one Secret or
ConfigMap has to be specified. For more
information, see the external documentation for
core/v1 secretvolumesource.

SecretVolumeSource

6.2.78. Build schema reference

Used in: KafkaConnectSpec

Full list of Build schema properties

Configures additional connectors for Kafka Connect deployments.

6.2.78.1. output

To build new container images with additional connector plugins, AMQ Streams requires a container
registry where the images can be pushed to, stored, and pulled from. AMQ Streams does not run its own
container registry, so a registry must be provided. AMQ Streams supports private container registries as
well as public registries such as Quay or Docker Hub. The container registry is configured in the
.spec.build.output section of the KafkaConnect custom resource. The output configuration, which is
required, supports two types: docker and imagestream.

Using Docker registry

To use a Docker registry, you have to specify the type as docker, and the image field with the full name
of the new container image. The full name must include:

The address of the registry

Port number (if listening on a non-standard port)

The tag of the new container image

Example valid container image names:

docker.io/my-org/my-image/my-tag

quay.io/my-org/my-image/my-tag

image-registry.image-registry.svc:5000/myproject/kafka-connect-build:latest

Each Kafka Connect deployment must use a separate image, which can mean different tags at the most
basic level.

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

230

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#configmapvolumesource-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#configmapvolumesource-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#secretvolumesource-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#secretvolumesource-v1-core
https://quay.io/
https://hub.docker.com//

1

2

3

1

2

If the registry requires authentication, use the pushSecret to set a name of the Secret with the registry
credentials. For the Secret, use the kubernetes.io/dockerconfigjson type and a .dockerconfigjson
file to contain the Docker credentials. For more information on pulling an image from a private registry,
see Create a Secret based on existing Docker credentials .

Example output configuration

(Required) Type of output used by AMQ Streams.

(Required) Full name of the image used, including the repository and tag.

(Optional) Name of the secret with the container registry credentials.

Using OpenShift ImageStream

Instead of Docker, you can use OpenShift ImageStream to store a new container image. The
ImageStream has to be created manually before deploying Kafka Connect. To use ImageStream, set the
type to imagestream, and use the image property to specify the name of the ImageStream and the tag
used. For example, my-connect-image-stream:latest.

Example output configuration

(Required) Type of output used by AMQ Streams.

(Required) Name of the ImageStream and tag.

6.2.78.2. plugins

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 build:
 output:
 type: docker 1
 image: my-registry.io/my-org/my-connect-cluster:latest 2
 pushSecret: my-registry-credentials 3
 #...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 build:
 output:
 type: imagestream 1
 image: my-connect-build:latest 2
 #...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

231

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#registry-secret-existing-credentials

1

Connector plugins are a set of files that define the implementation required to connect to certain types
of external system. The connector plugins required for a container image must be configured using the
.spec.build.plugins property of the KafkaConnect custom resource. Each connector plugin must have
a name which is unique within the Kafka Connect deployment. Additionally, the plugin artifacts must be
listed. These artifacts are downloaded by AMQ Streams, added to the new container image, and used in
the Kafka Connect deployment. The connector plugin artifacts can also include additional components,
such as (de)serializers. Each connector plugin is downloaded into a separate directory so that the
different connectors and their dependencies are properly sandboxed. Each plugin must be configured
with at least one artifact.

Example plugins configuration with two connector plugins

(Required) List of connector plugins and their artifacts.

AMQ Streams supports the following types of artifacts:

JAR files, which are downloaded and used directly

TGZ archives, which are downloaded and unpacked

ZIP archives, which are downloaded and unpacked

Maven artifacts, which uses Maven coordinates

Other artifacts, which are downloaded and used directly

IMPORTANT

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 build:
 output:
 #...
 plugins: 1
 - name: debezium-postgres-connector
 artifacts:
 - type: tgz
 url: https://repo1.maven.org/maven2/io/debezium/debezium-connector-
postgres/2.1.3.Final/debezium-connector-postgres-2.1.3.Final-plugin.tar.gz
 sha512sum:
c4ddc97846de561755dc0b021a62aba656098829c70eb3ade3b817ce06d852ca12ae50c0281cc791a5a
131cb7fc21fb15f4b8ee76c6cae5dd07f9c11cb7c6e79
 - name: camel-telegram
 artifacts:
 - type: tgz
 url: https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-
telegram-kafka-connector/0.11.5/camel-telegram-kafka-connector-0.11.5-package.tar.gz
 sha512sum:
d6d9f45e0d1dbfcc9f6d1c7ca2046168c764389c78bc4b867dab32d24f710bb74ccf2a007d7d7a8af2dfca0
9d9a52ccbc2831fc715c195a3634cca055185bd91
 #...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

232

1

2

3

IMPORTANT

AMQ Streams does not perform any security scanning of the downloaded artifacts. For
security reasons, you should first verify the artifacts manually, and configure the
checksum verification to make sure the same artifact is used in the automated build and
in the Kafka Connect deployment.

Using JAR artifacts

JAR artifacts represent a JAR file that is downloaded and added to a container image. To use a JAR
artifacts, set the type property to jar, and specify the download location using the url property.

Additionally, you can specify a SHA-512 checksum of the artifact. If specified, AMQ Streams will verify
the checksum of the artifact while building the new container image.

Example JAR artifact

(Required) Type of artifact.

(Required) URL from which the artifact is downloaded.

(Optional) SHA-512 checksum to verify the artifact.

Using TGZ artifacts

TGZ artifacts are used to download TAR archives that have been compressed using Gzip compression.
The TGZ artifact can contain the whole Kafka Connect connector, even when comprising multiple
different files. The TGZ artifact is automatically downloaded and unpacked by AMQ Streams while
building the new container image. To use TGZ artifacts, set the type property to tgz, and specify the
download location using the url property.

Additionally, you can specify a SHA-512 checksum of the artifact. If specified, AMQ Streams will verify
the checksum before unpacking it and building the new container image.

Example TGZ artifact

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 build:
 output:
 #...
 plugins:
 - name: my-plugin
 artifacts:
 - type: jar 1
 url: https://my-domain.tld/my-jar.jar 2
 sha512sum: 589...ab4 3
 - type: jar
 url: https://my-domain.tld/my-jar2.jar
 #...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

233

1

2

3

(Required) Type of artifact.

(Required) URL from which the archive is downloaded.

(Optional) SHA-512 checksum to verify the artifact.

Using ZIP artifacts

ZIP artifacts are used to download ZIP compressed archives. Use ZIP artifacts in the same way as the
TGZ artifacts described in the previous section. The only difference is you specify type: zip instead of
type: tgz.

Using Maven artifacts

maven artifacts are used to specify connector plugin artifacts as Maven coordinates. The Maven
coordinates identify plugin artifacts and dependencies so that they can be located and fetched from a
Maven repository.

NOTE

The Maven repository must be accessible for the connector build process to add the
artifacts to the container image.

Example Maven artifact

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 build:
 output:
 #...
 plugins:
 - name: my-plugin
 artifacts:
 - type: tgz 1
 url: https://my-domain.tld/my-connector-archive.tgz 2
 sha512sum: 158...jg10 3
 #...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 build:
 output:
 #...
 plugins:
 - name: my-plugin
 artifacts:

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

234

1

2

3

4

5

1

2

3

4

(Required) Type of artifact.

(Optional) Maven repository to download the artifacts from. If you do not specify a repository,
Maven Central repository is used by default.

(Required) Maven group ID.

(Required) Maven artifact type.

(Required) Maven version number.

Using other artifacts

other artifacts represent any kind of file that is downloaded and added to a container image. If you want
to use a specific name for the artifact in the resulting container image, use the fileName field. If a file
name is not specified, the file is named based on the URL hash.

Additionally, you can specify a SHA-512 checksum of the artifact. If specified, AMQ Streams will verify
the checksum of the artifact while building the new container image.

Example other artifact

(Required) Type of artifact.

(Required) URL from which the artifact is downloaded.

(Optional) SHA-512 checksum to verify the artifact.

(Optional) The name under which the file is stored in the resulting container image.

 - type: maven 1
 repository: https://mvnrepository.com 2
 group: org.apache.camel.kafkaconnector 3
 artifact: camel-kafka-connector 4
 version: 0.11.0 5
 #...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 build:
 output:
 #...
 plugins:
 - name: my-plugin
 artifacts:
 - type: other 1
 url: https://my-domain.tld/my-other-file.ext 2
 sha512sum: 589...ab4 3
 fileName: name-the-file.ext 4
 #...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

235

https://mvnrepository.com/repos/central

6.2.78.3. Build schema properties

Property Description

output Configures where should the newly built image be
stored. Required. The type depends on the value of
the output.type property within the given object,
which must be one of [docker, imagestream].

DockerOutput, ImageStreamOutput

resources CPU and memory resources to reserve for the build.
For more information, see the external
documentation for core/v1 resourcerequirements.ResourceRequirements

plugins List of connector plugins which should be added to
the Kafka Connect. Required.

Plugin array

6.2.79. DockerOutput schema reference

Used in: Build

The type property is a discriminator that distinguishes use of the DockerOutput type from
ImageStreamOutput. It must have the value docker for the type DockerOutput.

Property Description

image The full name which should be used for tagging and
pushing the newly built image. For example
quay.io/my-organization/my-custom-
connect:latest. Required.

string

pushSecret Container Registry Secret with the credentials for
pushing the newly built image.

string

additionalKanikoOptions Configures additional options which will be passed to
the Kaniko executor when building the new Connect
image. Allowed options are: --customPlatform, --
insecure, --insecure-pull, --insecure-registry, --log-
format, --log-timestamp, --registry-mirror, --
reproducible, --single-snapshot, --skip-tls-verify, --
skip-tls-verify-pull, --skip-tls-verify-registry, --
verbosity, --snapshotMode, --use-new-run. These
options will be used only on OpenShift where the
Kaniko executor is used. They will be ignored on
OpenShift. The options are described in the Kaniko
GitHub repository. Changing this field does not
trigger new build of the Kafka Connect image.

string array

type Must be docker.

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

236

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core
https://github.com/GoogleContainerTools/kaniko

string

Property Description

6.2.80. ImageStreamOutput schema reference

Used in: Build

The type property is a discriminator that distinguishes use of the ImageStreamOutput type from
DockerOutput. It must have the value imagestream for the type ImageStreamOutput.

Property Description

image The name and tag of the ImageStream where the
newly built image will be pushed. For example my-
custom-connect:latest. Required.string

type Must be imagestream.

string

6.2.81. Plugin schema reference

Used in: Build

Property Description

name The unique name of the connector plugin. Will be
used to generate the path where the connector
artifacts will be stored. The name has to be unique
within the KafkaConnect resource. The name has to
follow the following pattern: ̂ [a-z][-_a-z0-9]*[a-
z]$. Required.

string

artifacts List of artifacts which belong to this connector
plugin. Required.

JarArtifact, TgzArtifact, ZipArtifact,
MavenArtifact, OtherArtifact array

6.2.82. JarArtifact schema reference

Used in: Plugin

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

237

Property Description

url URL of the artifact which will be downloaded. AMQ
Streams does not do any security scanning of the
downloaded artifacts. For security reasons, you
should first verify the artifacts manually and
configure the checksum verification to make sure the
same artifact is used in the automated build.
Required for jar, zip, tgz and other artifacts. Not
applicable to the maven artifact type.

string

sha512sum SHA512 checksum of the artifact. Optional. If
specified, the checksum will be verified while building
the new container. If not specified, the downloaded
artifact will not be verified. Not applicable to the
maven artifact type.

string

insecure By default, connections using TLS are verified to
check they are secure. The server certificate used
must be valid, trusted, and contain the server name.
By setting this option to true, all TLS verification is
disabled and the artifact will be downloaded, even
when the server is considered insecure.

boolean

type Must be jar.

string

6.2.83. TgzArtifact schema reference

Used in: Plugin

Property Description

url URL of the artifact which will be downloaded. AMQ
Streams does not do any security scanning of the
downloaded artifacts. For security reasons, you
should first verify the artifacts manually and
configure the checksum verification to make sure the
same artifact is used in the automated build.
Required for jar, zip, tgz and other artifacts. Not
applicable to the maven artifact type.

string

sha512sum SHA512 checksum of the artifact. Optional. If
specified, the checksum will be verified while building
the new container. If not specified, the downloaded
artifact will not be verified. Not applicable to the
maven artifact type.

string

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

238

insecure By default, connections using TLS are verified to
check they are secure. The server certificate used
must be valid, trusted, and contain the server name.
By setting this option to true, all TLS verification is
disabled and the artifact will be downloaded, even
when the server is considered insecure.

boolean

type Must be tgz.

string

Property Description

6.2.84. ZipArtifact schema reference

Used in: Plugin

Property Description

url URL of the artifact which will be downloaded. AMQ
Streams does not do any security scanning of the
downloaded artifacts. For security reasons, you
should first verify the artifacts manually and
configure the checksum verification to make sure the
same artifact is used in the automated build.
Required for jar, zip, tgz and other artifacts. Not
applicable to the maven artifact type.

string

sha512sum SHA512 checksum of the artifact. Optional. If
specified, the checksum will be verified while building
the new container. If not specified, the downloaded
artifact will not be verified. Not applicable to the
maven artifact type.

string

insecure By default, connections using TLS are verified to
check they are secure. The server certificate used
must be valid, trusted, and contain the server name.
By setting this option to true, all TLS verification is
disabled and the artifact will be downloaded, even
when the server is considered insecure.

boolean

type Must be zip.

string

6.2.85. MavenArtifact schema reference

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

239

Used in: Plugin

The type property is a discriminator that distinguishes use of the MavenArtifact type from JarArtifact,
TgzArtifact, ZipArtifact, OtherArtifact. It must have the value maven for the type MavenArtifact.

Property Description

repository Maven repository to download the artifact from.
Applicable to the maven artifact type only.

string

group Maven group id. Applicable to the maven artifact
type only.

string

artifact Maven artifact id. Applicable to the maven artifact
type only.

string

version Maven version number. Applicable to the maven
artifact type only.

string

type Must be maven.

string

6.2.86. OtherArtifact schema reference

Used in: Plugin

Property Description

url URL of the artifact which will be downloaded. AMQ
Streams does not do any security scanning of the
downloaded artifacts. For security reasons, you
should first verify the artifacts manually and
configure the checksum verification to make sure the
same artifact is used in the automated build.
Required for jar, zip, tgz and other artifacts. Not
applicable to the maven artifact type.

string

sha512sum SHA512 checksum of the artifact. Optional. If
specified, the checksum will be verified while building
the new container. If not specified, the downloaded
artifact will not be verified. Not applicable to the
maven artifact type.

string

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

240

fileName Name under which the artifact will be stored.

string

insecure By default, connections using TLS are verified to
check they are secure. The server certificate used
must be valid, trusted, and contain the server name.
By setting this option to true, all TLS verification is
disabled and the artifact will be downloaded, even
when the server is considered insecure.

boolean

type Must be other.

string

Property Description

6.2.87. KafkaConnectStatus schema reference

Used in: KafkaConnect

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

url The URL of the REST API endpoint for managing and
monitoring Kafka Connect connectors.

string

connectorPlugins The list of connector plugins available in this Kafka
Connect deployment.

ConnectorPlugin array

labelSelector Label selector for pods providing this resource.

string

replicas The current number of pods being used to provide
this resource.

integer

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

241

6.2.88. ConnectorPlugin schema reference

Used in: KafkaConnectStatus, KafkaMirrorMaker2Status

Property Description

type The type of the connector plugin. The available types
are sink and source.

string

version The version of the connector plugin.

string

class The class of the connector plugin.

string

6.2.89. KafkaTopic schema reference

Property Description

spec The specification of the topic.

KafkaTopicSpec

status The status of the topic.

KafkaTopicStatus

6.2.90. KafkaTopicSpec schema reference

Used in: KafkaTopic

Property Description

partitions The number of partitions the topic should have. This
cannot be decreased after topic creation. It can be
increased after topic creation, but it is important to
understand the consequences that has, especially for
topics with semantic partitioning. When absent this
will default to the broker configuration for
num.partitions.

integer

replicas The number of replicas the topic should have. When
absent this will default to the broker configuration for
default.replication.factor.

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

242

integer

config The topic configuration.

map

topicName The name of the topic. When absent this will default
to the metadata.name of the topic. It is
recommended to not set this unless the topic name is
not a valid OpenShift resource name.

string

Property Description

6.2.91. KafkaTopicStatus schema reference

Used in: KafkaTopic

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

topicName Topic name.

string

6.2.92. KafkaUser schema reference

Property Description

spec The specification of the user.

KafkaUserSpec

status The status of the Kafka User.

KafkaUserStatus

6.2.93. KafkaUserSpec schema reference

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

243

Used in: KafkaUser

Property Description

authentication Authentication mechanism enabled for this Kafka
user. The supported authentication mechanisms are
scram-sha-512, tls, and tls-external.

scram-sha-512 generates a secret with
SASL SCRAM-SHA-512 credentials.

tls generates a secret with user certificate
for mutual TLS authentication.

tls-external does not generate a user
certificate. But prepares the user for using
mutual TLS authentication using a user
certificate generated outside the User
Operator. ACLs and quotas set for this user
are configured in the CN=<username>
format.

Authentication is optional. If authentication is not
configured, no credentials are generated. ACLs and
quotas set for the user are configured in the
<username> format suitable for SASL
authentication. The type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, tls-external, scram-
sha-512].

KafkaUserTlsClientAuthentication,
KafkaUserTlsExternalClientAuthentication,
KafkaUserScramSha512ClientAuthentication

authorization Authorization rules for this Kafka user. The type
depends on the value of the authorization.type
property within the given object, which must be one
of [simple].

KafkaUserAuthorizationSimple

quotas Quotas on requests to control the broker resources
used by clients. Network bandwidth and request rate
quotas can be enforced.Kafka documentation for
Kafka User quotas can be found at
http://kafka.apache.org/documentation/#design_qu
otas.

KafkaUserQuotas

template Template to specify how Kafka User Secrets are
generated.

KafkaUserTemplate

6.2.94. KafkaUserTlsClientAuthentication schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the KafkaUserTlsClientAuthentication
type from KafkaUserTlsExternalClientAuthentication,
KafkaUserScramSha512ClientAuthentication. It must have the value tls for the type
KafkaUserTlsClientAuthentication.

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

244

http://kafka.apache.org/documentation/#design_quotas

Property Description

type Must be tls.

string

6.2.95. KafkaUserTlsExternalClientAuthentication schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the
KafkaUserTlsExternalClientAuthentication type from KafkaUserTlsClientAuthentication,
KafkaUserScramSha512ClientAuthentication. It must have the value tls-external for the type
KafkaUserTlsExternalClientAuthentication.

Property Description

type Must be tls-external.

string

6.2.96. KafkaUserScramSha512ClientAuthentication schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the
KafkaUserScramSha512ClientAuthentication type from KafkaUserTlsClientAuthentication,
KafkaUserTlsExternalClientAuthentication. It must have the value scram-sha-512 for the type
KafkaUserScramSha512ClientAuthentication.

Property Description

password Specify the password for the user. If not set, a new
password is generated by the User Operator.

Password

type Must be scram-sha-512.

string

6.2.97. Password schema reference

Used in: KafkaUserScramSha512ClientAuthentication

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

245

Property Description

valueFrom Secret from which the password should be read.

PasswordSource

6.2.98. PasswordSource schema reference

Used in: Password

Property Description

secretKeyRef Selects a key of a Secret in the resource’s
namespace. For more information, see the external
documentation for core/v1 secretkeyselector.SecretKeySelector

6.2.99. KafkaUserAuthorizationSimple schema reference

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes use of the KafkaUserAuthorizationSimple type
from other subtypes which may be added in the future. It must have the value simple for the type
KafkaUserAuthorizationSimple.

Property Description

type Must be simple.

string

acls List of ACL rules which should be applied to this
user.

AclRule array

6.2.100. AclRule schema reference

Used in: KafkaUserAuthorizationSimple

Full list of AclRule schema properties

Configures access control rules for a KafkaUser when brokers are using the AclAuthorizer.

Example KafkaUser configuration with authorization

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

246

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#secretkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#secretkeyselector-v1-core

6.2.100.1. resource

Use the resource property to specify the resource that the rule applies to.

Simple authorization supports four resource types, which are specified in the type property:

Topics (topic)

Consumer Groups (group)

Clusters (cluster)

Transactional IDs (transactionalId)

For Topic, Group, and Transactional ID resources you can specify the name of the resource the rule
applies to in the name property.

Cluster type resources have no name.

A name is specified as a literal or a prefix using the patternType property.

Literal names are taken exactly as they are specified in the name field.

Prefix names use the name value as a prefix and then apply the rule to all resources with names
starting with that value.

When patternType is set as literal, you can set the name to * to indicate that the rule applies to all
resources.

Example ACL rule that allows the user to read messages from all topics

 labels:
 strimzi.io/cluster: my-cluster
spec:
 # ...
 authorization:
 type: simple
 acls:
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operations:
 - Read
 - Describe
 - resource:
 type: group
 name: my-group
 patternType: prefix
 operations:
 - Read

 acls:
 - resource:
 type: topic
 name: "*"

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

247

6.2.100.2. type

The type of rule, which is to allow or deny (not currently supported) an operations.

The type field is optional. If type is unspecified, the ACL rule is treated as an allow rule.

6.2.100.3. operations

Specify a list of operations for the rule to allow or deny.

The following operations are supported:

Read

Write

Delete

Alter

Describe

All

IdempotentWrite

ClusterAction

Create

AlterConfigs

DescribeConfigs

Only certain operations work with each resource.

For more details about AclAuthorizer, ACLs and supported combinations of resources and operations,
see Authorization and ACLs.

6.2.100.4. host

Use the host property to specify a remote host from which the rule is allowed or denied.

Use an asterisk (*) to allow or deny the operation from all hosts. The host field is optional. If host is
unspecified, the * value is used by default.

6.2.100.5. AclRule schema properties

 patternType: literal
 operations:
 - Read

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

248

http://kafka.apache.org/documentation/#security_authz

Property Description

host The host from which the action described in the ACL
rule is allowed or denied.

string

operation The operation property has been deprecated, and
should now be configured using
spec.authorization.acls[*].operations.
Operation which will be allowed or denied. Supported
operations are: Read, Write, Create, Delete, Alter,
Describe, ClusterAction, AlterConfigs,
DescribeConfigs, IdempotentWrite and All.

string (one of [Read, Write, Delete, Alter, Describe,
All, IdempotentWrite, ClusterAction, Create,
AlterConfigs, DescribeConfigs])

operations List of operations which will be allowed or denied.
Supported operations are: Read, Write, Create,
Delete, Alter, Describe, ClusterAction, AlterConfigs,
DescribeConfigs, IdempotentWrite and All.

string (one or more of [Read, Write, Delete, Alter,
Describe, All, IdempotentWrite, ClusterAction,
Create, AlterConfigs, DescribeConfigs]) array

resource Indicates the resource for which given ACL rule
applies. The type depends on the value of the
resource.type property within the given object,
which must be one of [topic, group, cluster,
transactionalId].

AclRuleTopicResource,
AclRuleGroupResource,
AclRuleClusterResource,
AclRuleTransactionalIdResource

type The type of the rule. Currently the only supported
type is allow. ACL rules with type allow are used to
allow user to execute the specified operations.
Default value is allow.

string (one of [allow, deny])

6.2.101. AclRuleTopicResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleTopicResource type from
AclRuleGroupResource, AclRuleClusterResource, AclRuleTransactionalIdResource. It must have
the value topic for the type AclRuleTopicResource.

Property Description

type Must be topic.

string

name Name of resource for which given ACL rule applies.
Can be combined with patternType field to use
prefix pattern.string

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

249

patternType Describes the pattern used in the resource field. The
supported types are literal and prefix. With literal
pattern type, the resource field will be used as a
definition of a full topic name. With prefix pattern
type, the resource name will be used only as a prefix.
Default value is literal.

string (one of [prefix, literal])

Property Description

6.2.102. AclRuleGroupResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleGroupResource type from
AclRuleTopicResource, AclRuleClusterResource, AclRuleTransactionalIdResource. It must have
the value group for the type AclRuleGroupResource.

Property Description

type Must be group.

string

name Name of resource for which given ACL rule applies.
Can be combined with patternType field to use
prefix pattern.string

patternType Describes the pattern used in the resource field. The
supported types are literal and prefix. With literal
pattern type, the resource field will be used as a
definition of a full topic name. With prefix pattern
type, the resource name will be used only as a prefix.
Default value is literal.

string (one of [prefix, literal])

6.2.103. AclRuleClusterResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleClusterResource type from
AclRuleTopicResource, AclRuleGroupResource, AclRuleTransactionalIdResource. It must have the
value cluster for the type AclRuleClusterResource.

Property Description

type Must be cluster.

string

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

250

6.2.104. AclRuleTransactionalIdResource schema reference

Used in: AclRule

The type property is a discriminator that distinguishes use of the AclRuleTransactionalIdResource
type from AclRuleTopicResource, AclRuleGroupResource, AclRuleClusterResource. It must have
the value transactionalId for the type AclRuleTransactionalIdResource.

Property Description

type Must be transactionalId.

string

name Name of resource for which given ACL rule applies.
Can be combined with patternType field to use
prefix pattern.string

patternType Describes the pattern used in the resource field. The
supported types are literal and prefix. With literal
pattern type, the resource field will be used as a
definition of a full name. With prefix pattern type,
the resource name will be used only as a prefix.
Default value is literal.

string (one of [prefix, literal])

6.2.105. KafkaUserQuotas schema reference

Used in: KafkaUserSpec

Full list of KafkaUserQuotas schema properties

Kafka allows a user to set quotas to control the use of resources by clients.

6.2.105.1. quotas

You can configure your clients to use the following types of quotas:

Network usage quotas specify the byte rate threshold for each group of clients sharing a quota.

CPU utilization quotas specify a window for broker requests from clients. The window is the
percentage of time for clients to make requests. A client makes requests on the I/O threads and
network threads of the broker.

Partition mutation quotas limit the number of partition mutations which clients are allowed to
make per second.

A partition mutation quota prevents Kafka clusters from being overwhelmed by concurrent topic
operations. Partition mutations occur in response to the following types of user requests:

Creating partitions for a new topic

Adding partitions to an existing topic

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

251

Deleting partitions from a topic

You can configure a partition mutation quota to control the rate at which mutations are accepted for
user requests.

Using quotas for Kafka clients might be useful in a number of situations. Consider a wrongly configured
Kafka producer which is sending requests at too high a rate. Such misconfiguration can cause a denial of
service to other clients, so the problematic client ought to be blocked. By using a network limiting quota,
it is possible to prevent this situation from significantly impacting other clients.

AMQ Streams supports user-level quotas, but not client-level quotas.

Example Kafka user quota configuration

For more information about Kafka user quotas, refer to the Apache Kafka documentation.

6.2.105.2. KafkaUserQuotas schema properties

Property Description

consumerByteRate A quota on the maximum bytes per-second that each
client group can fetch from a broker before the
clients in the group are throttled. Defined on a per-
broker basis.

integer

controllerMutationRate A quota on the rate at which mutations are accepted
for the create topics request, the create partitions
request and the delete topics request. The rate is
accumulated by the number of partitions created or
deleted.

number

producerByteRate A quota on the maximum bytes per-second that each
client group can publish to a broker before the clients
in the group are throttled. Defined on a per-broker
basis.

integer

requestPercentage A quota on the maximum CPU utilization of each
client group as a percentage of network and I/O
threads.integer

6.2.106. KafkaUserTemplate schema reference

Used in: KafkaUserSpec

Full list of KafkaUserTemplate schema properties

spec:
 quotas:
 producerByteRate: 1048576
 consumerByteRate: 2097152
 requestPercentage: 55
 controllerMutationRate: 10

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

252

http://kafka.apache.org/documentation/#design_quotas

Specify additional labels and annotations for the secret created by the User Operator.

An example showing the KafkaUserTemplate

6.2.106.1. KafkaUserTemplate schema properties

Property Description

secret Template for KafkaUser resources. The template
allows users to specify how the Secret with
password or TLS certificates is generated.ResourceTemplate

6.2.107. KafkaUserStatus schema reference

Used in: KafkaUser

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

username Username.

string

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: tls
 template:
 secret:
 metadata:
 labels:
 label1: value1
 annotations:
 anno1: value1
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

253

secret The name of Secret where the credentials are
stored.

string

Property Description

6.2.108. KafkaMirrorMaker schema reference

The type KafkaMirrorMaker has been deprecated. Please use KafkaMirrorMaker2 instead.

Property Description

spec The specification of Kafka MirrorMaker.

KafkaMirrorMakerSpec

status The status of Kafka MirrorMaker.

KafkaMirrorMakerStatus

6.2.109. KafkaMirrorMakerSpec schema reference

Used in: KafkaMirrorMaker

Full list of KafkaMirrorMakerSpec schema properties

Configures Kafka MirrorMaker.

6.2.109.1. include

Use the include property to configure a list of topics that Kafka MirrorMaker mirrors from the source to
the target Kafka cluster.

The property allows any regular expression from the simplest case with a single topic name to complex
patterns. For example, you can mirror topics A and B using A|B or all topics using *. You can also pass
multiple regular expressions separated by commas to the Kafka MirrorMaker.

6.2.109.2. KafkaMirrorMakerConsumerSpec and KafkaMirrorMakerProducerSpec

Use the KafkaMirrorMakerConsumerSpec and KafkaMirrorMakerProducerSpec to configure source
(consumer) and target (producer) clusters.

Kafka MirrorMaker always works together with two Kafka clusters (source and target). To establish a
connection, the bootstrap servers for the source and the target Kafka clusters are specified as comma-
separated lists of HOSTNAME:PORT pairs. Each comma-separated list contains one or more Kafka
brokers or a Service pointing to Kafka brokers specified as a HOSTNAME:PORT pair.

6.2.109.3. logging

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

254

Kafka MirrorMaker has its own configurable logger:

mirrormaker.root.logger

MirrorMaker uses the Apache log4j logger implementation.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. Inside the ConfigMap, the
logging configuration is described using log4j.properties. Both
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. A ConfigMap using the exact logging configuration specified is created with
the custom resource when the Cluster Operator is running, then recreated after each reconciliation. If
you do not specify a custom ConfigMap, default logging settings are used. If a specific logger value is
not set, upper-level logger settings are inherited for that logger. For more information about log levels,
see Apache logging services .

Here we see examples of inline and external logging:

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

6.2.109.4. KafkaMirrorMakerSpec schema properties

Property Description

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
spec:
 # ...
 logging:
 type: inline
 loggers:
 mirrormaker.root.logger: "INFO"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker
spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: mirror-maker-log4j.properties
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

255

https://logging.apache.org/

version The Kafka MirrorMaker version. Defaults to 3.4.0.
Consult the documentation to understand the
process required to upgrade or downgrade the
version.

string

replicas The number of pods in the Deployment.

integer

image The docker image for the pods.

string

consumer Configuration of source cluster.

KafkaMirrorMakerConsumerSpec

producer Configuration of target cluster.

KafkaMirrorMakerProducerSpec

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

whitelist The whitelist property has been deprecated, and
should now be configured using spec.include. List
of topics which are included for mirroring. This option
allows any regular expression using Java-style
regular expressions. Mirroring two topics named A
and B is achieved by using the expression A|B. Or, as
a special case, you can mirror all topics using the
regular expression *. You can also specify multiple
regular expressions separated by commas.

string

include List of topics which are included for mirroring. This
option allows any regular expression using Java-style
regular expressions. Mirroring two topics named A
and B is achieved by using the expression A|B. Or, as
a special case, you can mirror all topics using the
regular expression *. You can also specify multiple
regular expressions separated by commas.

string

jvmOptions JVM Options for pods.

JvmOptions

Property Description

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

256

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core

logging Logging configuration for MirrorMaker. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

tracing The configuration of tracing in Kafka MirrorMaker.
The type depends on the value of the tracing.type
property within the given object, which must be one
of [jaeger, opentelemetry].

JaegerTracing, OpenTelemetryTracing

template Template to specify how Kafka MirrorMaker
resources, Deployments and Pods, are generated.

KafkaMirrorMakerTemplate

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

Property Description

6.2.110. KafkaMirrorMakerConsumerSpec schema reference

Used in: KafkaMirrorMakerSpec

Full list of KafkaMirrorMakerConsumerSpec schema properties

Configures a MirrorMaker consumer.

6.2.110.1. numStreams

Use the consumer.numStreams property to configure the number of streams for the consumer.

You can increase the throughput in mirroring topics by increasing the number of consumer threads.
Consumer threads belong to the consumer group specified for Kafka MirrorMaker. Topic partitions are
assigned across the consumer threads, which consume messages in parallel.

6.2.110.2. offsetCommitInterval

Use the consumer.offsetCommitInterval property to configure an offset auto-commit interval for the
consumer.

You can specify the regular time interval at which an offset is committed after Kafka MirrorMaker has

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

257

You can specify the regular time interval at which an offset is committed after Kafka MirrorMaker has
consumed data from the source Kafka cluster. The time interval is set in milliseconds, with a default
value of 60,000.

6.2.110.3. config

Use the consumer.config properties to configure Kafka options for the consumer.

The config property contains the Kafka MirrorMaker consumer configuration options as keys, with
values set in one of the following JSON types:

String

Number

Boolean

For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties. You can also configure the ssl.endpoint.identification.algorithm property to enable or
disable hostname verification.

Exceptions

You can specify and configure the options listed in the Apache Kafka configuration documentation for
consumers.

However, there are exceptions for options automatically configured and managed directly by AMQ
Streams related to:

Kafka cluster bootstrap address

Security (encryption, authentication, and authorization)

Consumer group identifier

Interceptors

Specifically, all configuration options with keys equal to or starting with one of the following strings are
forbidden:

bootstrap.servers

group.id

interceptor.classes

ssl. (not including specific exceptions)

sasl.

security.

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other options are passed to Kafka MirrorMaker.

IMPORTANT

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

258

https://kafka.apache.org/documentation/#consumerconfigs

IMPORTANT

The Cluster Operator does not validate keys or values in the provided config object.
When an invalid configuration is provided, the Kafka MirrorMaker might not start or might
become unstable. In such cases, the configuration in the
KafkaMirrorMaker.spec.consumer.config object should be fixed and the Cluster
Operator will roll out the new configuration for Kafka MirrorMaker.

6.2.110.4. groupId

Use the consumer.groupId property to configure a consumer group identifier for the consumer.

Kafka MirrorMaker uses a Kafka consumer to consume messages, behaving like any other Kafka
consumer client. Messages consumed from the source Kafka cluster are mirrored to a target Kafka
cluster. A group identifier is required, as the consumer needs to be part of a consumer group for the
assignment of partitions.

6.2.110.5. KafkaMirrorMakerConsumerSpec schema properties

Property Description

numStreams Specifies the number of consumer stream threads to
create.

integer

offsetCommitInterval Specifies the offset auto-commit interval in ms.
Default value is 60000.

integer

bootstrapServers A list of host:port pairs for establishing the initial
connection to the Kafka cluster.

string

groupId A unique string that identifies the consumer group
this consumer belongs to.

string

authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-256,
scram-sha-512, plain, oauth].

KafkaClientAuthenticationTls,
KafkaClientAuthenticationScramSha256,
KafkaClientAuthenticationScramSha512,
KafkaClientAuthenticationPlain,
KafkaClientAuthenticationOAuth

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

259

config The MirrorMaker consumer config. Properties with
the following prefixes cannot be set: ssl.,
bootstrap.servers, group.id, sasl., security.,
interceptor.classes (with the exception of:
ssl.endpoint.identification.algorithm, ssl.cipher.suites,
ssl.protocol, ssl.enabled.protocols).

map

tls TLS configuration for connecting MirrorMaker to the
cluster.

ClientTls

Property Description

6.2.111. KafkaMirrorMakerProducerSpec schema reference

Used in: KafkaMirrorMakerSpec

Full list of KafkaMirrorMakerProducerSpec schema properties

Configures a MirrorMaker producer.

6.2.111.1. abortOnSendFailure

Use the producer.abortOnSendFailure property to configure how to handle message send failure from
the producer.

By default, if an error occurs when sending a message from Kafka MirrorMaker to a Kafka cluster:

The Kafka MirrorMaker container is terminated in OpenShift.

The container is then recreated.

If the abortOnSendFailure option is set to false, message sending errors are ignored.

6.2.111.2. config

Use the producer.config properties to configure Kafka options for the producer.

The config property contains the Kafka MirrorMaker producer configuration options as keys, with values
set in one of the following JSON types:

String

Number

Boolean

For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties. You can also configure the ssl.endpoint.identification.algorithm property to enable or
disable hostname verification.

Exceptions

You can specify and configure the options listed in the Apache Kafka configuration documentation for

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

260

You can specify and configure the options listed in the Apache Kafka configuration documentation for
producers.

However, there are exceptions for options automatically configured and managed directly by AMQ
Streams related to:

Kafka cluster bootstrap address

Security (encryption, authentication, and authorization)

Interceptors

Specifically, all configuration options with keys equal to or starting with one of the following strings are
forbidden:

bootstrap.servers

interceptor.classes

ssl. (not including specific exceptions)

sasl.

security.

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Cluster Operator log file. All other options are passed to Kafka MirrorMaker.

IMPORTANT

The Cluster Operator does not validate keys or values in the provided config object.
When an invalid configuration is provided, the Kafka MirrorMaker might not start or might
become unstable. In such cases, the configuration in the
KafkaMirrorMaker.spec.producer.config object should be fixed and the Cluster
Operator will roll out the new configuration for Kafka MirrorMaker.

6.2.111.3. KafkaMirrorMakerProducerSpec schema properties

Property Description

bootstrapServers A list of host:port pairs for establishing the initial
connection to the Kafka cluster.

string

abortOnSendFailure Flag to set the MirrorMaker to exit on a failed send.
Default value is true.

boolean

authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-256,
scram-sha-512, plain, oauth].

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

261

https://kafka.apache.org/documentation/#producerconfigs

KafkaClientAuthenticationTls,
KafkaClientAuthenticationScramSha256,
KafkaClientAuthenticationScramSha512,
KafkaClientAuthenticationPlain,
KafkaClientAuthenticationOAuth

config The MirrorMaker producer config. Properties with the
following prefixes cannot be set: ssl.,
bootstrap.servers, sasl., security., interceptor.classes
(with the exception of:
ssl.endpoint.identification.algorithm, ssl.cipher.suites,
ssl.protocol, ssl.enabled.protocols).

map

tls TLS configuration for connecting MirrorMaker to the
cluster.

ClientTls

Property Description

6.2.112. KafkaMirrorMakerTemplate schema reference

Used in: KafkaMirrorMakerSpec

Property Description

deployment Template for Kafka MirrorMaker Deployment.

DeploymentTemplate

pod Template for Kafka MirrorMaker Pods.

PodTemplate

podDisruptionBudget Template for Kafka MirrorMaker
PodDisruptionBudget.

PodDisruptionBudgetTemplate

mirrorMakerContainer Template for Kafka MirrorMaker container.

ContainerTemplate

serviceAccount Template for the Kafka MirrorMaker service account.

ResourceTemplate

6.2.113. KafkaMirrorMakerStatus schema reference

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

262

Used in: KafkaMirrorMaker

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

labelSelector Label selector for pods providing this resource.

string

replicas The current number of pods being used to provide
this resource.

integer

6.2.114. KafkaBridge schema reference

Property Description

spec The specification of the Kafka Bridge.

KafkaBridgeSpec

status The status of the Kafka Bridge.

KafkaBridgeStatus

6.2.115. KafkaBridgeSpec schema reference

Used in: KafkaBridge

Full list of KafkaBridgeSpec schema properties

Configures a Kafka Bridge cluster.

Configuration options relate to:

Kafka cluster bootstrap address

Security (Encryption, Authentication, and Authorization)

Consumer configuration

Producer configuration

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

263

HTTP configuration

6.2.115.1. logging

Kafka Bridge has its own configurable loggers:

logger.bridge

logger.<operation-id>

You can replace <operation-id> in the logger.<operation-id> logger to set log levels for specific
operations:

createConsumer

deleteConsumer

subscribe

unsubscribe

poll

assign

commit

send

sendToPartition

seekToBeginning

seekToEnd

seek

healthy

ready

openapi

Each operation is defined according OpenAPI specification, and has a corresponding API endpoint
through which the bridge receives requests from HTTP clients. You can change the log level on each
endpoint to create fine-grained logging information about the incoming and outgoing HTTP requests.

Each logger has to be configured assigning it a name as http.openapi.operation.<operation-id>. For
example, configuring the logging level for the send operation logger means defining the following:

logger.send.name = http.openapi.operation.send
logger.send.level = DEBUG

Kafka Bridge uses the Apache log4j2 logger implementation. Loggers are defined in the
log4j2.properties file, which has the following default configuration for healthy and ready endpoints:

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

264

logger.healthy.name = http.openapi.operation.healthy
logger.healthy.level = WARN
logger.ready.name = http.openapi.operation.ready
logger.ready.level = WARN

The log level of all other operations is set to INFO by default.

Use the logging property to configure loggers and logger levels.

You can set the log levels by specifying the logger and level directly (inline) or use a custom (external)
ConfigMap. If a ConfigMap is used, you set logging.valueFrom.configMapKeyRef.name property to
the name of the ConfigMap containing the external logging configuration. The
logging.valueFrom.configMapKeyRef.name and logging.valueFrom.configMapKeyRef.key
properties are mandatory. Default logging is used if the name or key is not set. Inside the ConfigMap,
the logging configuration is described using log4j.properties. For more information about log levels, see
Apache logging services .

Here we see examples of inline and external logging.

Inline logging

External logging

Any available loggers that are not configured have their level set to OFF.

If the Kafka Bridge was deployed using the Cluster Operator, changes to Kafka Bridge logging levels are
applied dynamically.

If you use external logging, a rolling update is triggered when logging appenders are changed.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
spec:
 # ...
 logging:
 type: inline
 loggers:
 logger.bridge.level: "INFO"
 # enabling DEBUG just for send operation
 logger.send.name: "http.openapi.operation.send"
 logger.send.level: "DEBUG"
 # ...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
spec:
 # ...
 logging:
 type: external
 valueFrom:
 configMapKeyRef:
 name: customConfigMap
 key: bridge-logj42.properties
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

265

https://logging.apache.org/

Garbage collector (GC)

Garbage collector logging can also be enabled (or disabled) using the jvmOptions property.

6.2.115.2. KafkaBridgeSpec schema properties

Property Description

replicas The number of pods in the Deployment.

integer

image The docker image for the pods.

string

bootstrapServers A list of host:port pairs for establishing the initial
connection to the Kafka cluster.

string

tls TLS configuration for connecting Kafka Bridge to the
cluster.

ClientTls

authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-256,
scram-sha-512, plain, oauth].

KafkaClientAuthenticationTls,
KafkaClientAuthenticationScramSha256,
KafkaClientAuthenticationScramSha512,
KafkaClientAuthenticationPlain,
KafkaClientAuthenticationOAuth

http The HTTP related configuration.

KafkaBridgeHttpConfig

adminClient Kafka AdminClient related configuration.

KafkaBridgeAdminClientSpec

consumer Kafka consumer related configuration.

KafkaBridgeConsumerSpec

producer Kafka producer related configuration.

KafkaBridgeProducerSpec

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

266

resources CPU and memory resources to reserve. For more
information, see the external documentation for
core/v1 resourcerequirements.ResourceRequirements

jvmOptions Currently not supported JVM Options for pods.

JvmOptions

logging Logging configuration for Kafka Bridge. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

clientRackInitImage The image of the init container used for initializing
the client.rack.

string

rack Configuration of the node label which will be used as
the client.rack consumer configuration.

Rack

enableMetrics Enable the metrics for the Kafka Bridge. Default is
false.

boolean

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

template Template for Kafka Bridge resources. The template
allows users to specify how a Deployment and Pod
is generated.KafkaBridgeTemplate

tracing The configuration of tracing in Kafka Bridge. The type
depends on the value of the tracing.type property
within the given object, which must be one of [jaeger,
opentelemetry].

JaegerTracing, OpenTelemetryTracing

Property Description

6.2.116. KafkaBridgeHttpConfig schema reference

Used in: KafkaBridgeSpec

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

267

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core

Full list of KafkaBridgeHttpConfig schema properties

Configures HTTP access to a Kafka cluster for the Kafka Bridge.

The default HTTP configuration is for the Kafka Bridge to listen on port 8080.

6.2.116.1. cors

As well as enabling HTTP access to a Kafka cluster, HTTP properties provide the capability to enable and
define access control for the Kafka Bridge through Cross-Origin Resource Sharing (CORS). CORS is a
HTTP mechanism that allows browser access to selected resources from more than one origin. To
configure CORS, you define a list of allowed resource origins and HTTP access methods. For the origins,
you can use a URL or a Java regular expression.

Example Kafka Bridge HTTP configuration

6.2.116.2. KafkaBridgeHttpConfig schema properties

Property Description

port The port which is the server listening on.

integer

cors CORS configuration for the HTTP Bridge.

KafkaBridgeHttpCors

6.2.117. KafkaBridgeHttpCors schema reference

Used in: KafkaBridgeHttpConfig

Property Description

allowedOrigins List of allowed origins. Java regular expressions can
be used.

string array

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 http:
 port: 8080
 cors:
 allowedOrigins: "https://strimzi.io"
 allowedMethods: "GET,POST,PUT,DELETE,OPTIONS,PATCH"
 # ...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

268

allowedMethods List of allowed HTTP methods.

string array

Property Description

6.2.118. KafkaBridgeAdminClientSpec schema reference

Used in: KafkaBridgeSpec

Property Description

config The Kafka AdminClient configuration used for
AdminClient instances created by the bridge.

map

6.2.119. KafkaBridgeConsumerSpec schema reference

Used in: KafkaBridgeSpec

Full list of KafkaBridgeConsumerSpec schema properties

Configures consumer options for the Kafka Bridge as keys.

The values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the Apache Kafka configuration documentation for
consumers with the exception of those options which are managed directly by AMQ Streams.
Specifically, all configuration options with keys equal to or starting with one of the following strings are
forbidden:

ssl.

sasl.

security.

bootstrap.servers

group.id

When one of the forbidden options is present in the config property, it is ignored and a warning
message will be printed to the Cluster Operator log file. All other options will be passed to Kafka

IMPORTANT

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

269

https://kafka.apache.org/documentation/#consumerconfigs

IMPORTANT

The Cluster Operator does not validate keys or values in the config object. If an invalid
configuration is provided, the Kafka Bridge cluster might not start or might become
unstable. Fix the configuration so that the Cluster Operator can roll out the new
configuration to all Kafka Bridge nodes.

There are exceptions to the forbidden options. For client connection using a specific cipher suite for a
TLS version, you can configure allowed ssl properties.

Example Kafka Bridge consumer configuration

6.2.119.1. KafkaBridgeConsumerSpec schema properties

Property Description

config The Kafka consumer configuration used for consumer
instances created by the bridge. Properties with the
following prefixes cannot be set: ssl.,
bootstrap.servers, group.id, sasl., security. (with the
exception of: ssl.endpoint.identification.algorithm,
ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols).

map

6.2.120. KafkaBridgeProducerSpec schema reference

Used in: KafkaBridgeSpec

Full list of KafkaBridgeProducerSpec schema properties

Configures producer options for the Kafka Bridge as keys.

The values can be one of the following JSON types:

String

Number

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 consumer:
 config:
 auto.offset.reset: earliest
 enable.auto.commit: true
 ssl.cipher.suites: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 ssl.enabled.protocols: TLSv1.2
 ssl.protocol: TLSv1.2
 ssl.endpoint.identification.algorithm: HTTPS
 # ...

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

270

Boolean

You can specify and configure the options listed in the Apache Kafka configuration documentation for
producers with the exception of those options which are managed directly by AMQ Streams. Specifically,
all configuration options with keys equal to or starting with one of the following strings are forbidden:

ssl.

sasl.

security.

bootstrap.servers

When one of the forbidden options is present in the config property, it is ignored and a warning
message will be printed to the Cluster Operator log file. All other options will be passed to Kafka

IMPORTANT

The Cluster Operator does not validate keys or values in the config object. If an invalid
configuration is provided, the Kafka Bridge cluster might not start or might become
unstable. Fix the configuration so that the Cluster Operator can roll out the new
configuration to all Kafka Bridge nodes.

There are exceptions to the forbidden options. For client connection using a specific cipher suite for a
TLS version, you can configure allowed ssl properties.

Example Kafka Bridge producer configuration

6.2.120.1. KafkaBridgeProducerSpec schema properties

Property Description

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 producer:
 config:
 acks: 1
 delivery.timeout.ms: 300000
 ssl.cipher.suites: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
 ssl.enabled.protocols: TLSv1.2
 ssl.protocol: TLSv1.2
 ssl.endpoint.identification.algorithm: HTTPS
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

271

https://kafka.apache.org/documentation/#producerconfigs

config The Kafka producer configuration used for producer
instances created by the bridge. Properties with the
following prefixes cannot be set: ssl.,
bootstrap.servers, sasl., security. (with the exception
of: ssl.endpoint.identification.algorithm,
ssl.cipher.suites, ssl.protocol, ssl.enabled.protocols).

map

Property Description

6.2.121. KafkaBridgeTemplate schema reference

Used in: KafkaBridgeSpec

Property Description

deployment Template for Kafka Bridge Deployment.

DeploymentTemplate

pod Template for Kafka Bridge Pods.

PodTemplate

apiService Template for Kafka Bridge API Service.

InternalServiceTemplate

podDisruptionBudget Template for Kafka Bridge PodDisruptionBudget.

PodDisruptionBudgetTemplate

bridgeContainer Template for the Kafka Bridge container.

ContainerTemplate

clusterRoleBinding Template for the Kafka Bridge ClusterRoleBinding.

ResourceTemplate

serviceAccount Template for the Kafka Bridge service account.

ResourceTemplate

initContainer Template for the Kafka Bridge init container.

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

272

ContainerTemplate

Property Description

6.2.122. KafkaBridgeStatus schema reference

Used in: KafkaBridge

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

url The URL at which external client applications can
access the Kafka Bridge.

string

labelSelector Label selector for pods providing this resource.

string

replicas The current number of pods being used to provide
this resource.

integer

6.2.123. KafkaConnector schema reference

Property Description

spec The specification of the Kafka Connector.

KafkaConnectorSpec

status The status of the Kafka Connector.

KafkaConnectorStatus

6.2.124. KafkaConnectorSpec schema reference

Used in: KafkaConnector

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

273

Property Description

class The Class for the Kafka Connector.

string

tasksMax The maximum number of tasks for the Kafka
Connector.

integer

autoRestart Automatic restart of connector and tasks
configuration.

AutoRestart

config The Kafka Connector configuration. The following
properties cannot be set: connector.class, tasks.max.

map

pause Whether the connector should be paused. Defaults
to false.

boolean

6.2.125. AutoRestart schema reference

Used in: KafkaConnectorSpec, KafkaMirrorMaker2ConnectorSpec

Full list of AutoRestart schema properties

Configures automatic restarts for connectors and tasks that are in a FAILED state.

When enabled, a back-off algorithm applies the automatic restart to each failed connector and its tasks.

The operator attempts an automatic restart on reconciliation. If the first attempt fails, the operator
makes up to six more attempts. The duration between each restart attempt increases from 2 to 30
minutes. After each restart, failed connectors and tasks transit from FAILED to RESTARTING. If the
restart fails after the final attempt, there is likely to be a problem with the connector configuration. The
connector and tasks remain in a FAILED state and you have to restart them manually. You can do this by
annotating the KafKaConnector custom resource with strimzi.io/restart: "true".

For Kafka Connect connectors, use the autoRestart property of the KafkaConnector resource to
enable automatic restarts of failed connectors and tasks.

Enabling automatic restarts of failed connectors for Kafka Connect

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaConnector
metadata:
 name: my-source-connector
spec:
 autoRestart:
 enabled: true

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

274

For MirrorMaker 2, use the autoRestart property of connectors in the KafkaMirrorMaker2 resource to
enable automatic restarts of failed connectors and tasks.

Enabling automatic restarts of failed connectors for MirrorMaker 2

6.2.125.1. AutoRestart schema properties

Property Description

enabled Whether automatic restart for failed connectors and
tasks should be enabled or disabled.

boolean

6.2.126. KafkaConnectorStatus schema reference

Used in: KafkaConnector

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

autoRestart The auto restart status.

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mm2-cluster
spec:
 mirrors:
 - sourceConnector:
 autoRestart:
 enabled: true
 # ...
 heartbeatConnector:
 autoRestart:
 enabled: true
 # ...
 checkpointConnector:
 autoRestart:
 enabled: true
 # ...

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

275

AutoRestartStatus

connectorStatus The connector status, as reported by the Kafka
Connect REST API.

map

tasksMax The maximum number of tasks for the Kafka
Connector.

integer

topics The list of topics used by the Kafka Connector.

string array

Property Description

6.2.127. AutoRestartStatus schema reference

Used in: KafkaConnectorStatus, KafkaMirrorMaker2Status

Property Description

count The number of times the connector or task is
restarted.

integer

connectorName The name of the connector being restarted.

string

lastRestartTimestamp The last time the automatic restart was attempted.
The required format is 'yyyy-MM-ddTHH:mm:ssZ' in
the UTC time zone.string

6.2.128. KafkaMirrorMaker2 schema reference

Property Description

spec The specification of the Kafka MirrorMaker 2 cluster.

KafkaMirrorMaker2Spec

status The status of the Kafka MirrorMaker 2 cluster.

KafkaMirrorMaker2Status

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

276

6.2.129. KafkaMirrorMaker2Spec schema reference

Used in: KafkaMirrorMaker2

Property Description

version The Kafka Connect version. Defaults to 3.4.0.
Consult the user documentation to understand the
process required to upgrade or downgrade the
version.

string

replicas The number of pods in the Kafka Connect group.

integer

image The docker image for the pods.

string

connectCluster The cluster alias used for Kafka Connect. The alias
must match a cluster in the list at spec.clusters.

string

clusters Kafka clusters for mirroring.

KafkaMirrorMaker2ClusterSpec array

mirrors Configuration of the MirrorMaker 2 connectors.

KafkaMirrorMaker2MirrorSpec array

resources The maximum limits for CPU and memory resources
and the requested initial resources. For more
information, see the external documentation for
core/v1 resourcerequirements.

ResourceRequirements

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

277

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#resourcerequirements-v1-core

jmxOptions JMX Options.

KafkaJmxOptions

logging Logging configuration for Kafka Connect. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

clientRackInitImage The image of the init container used for initializing
the client.rack.

string

rack Configuration of the node label which will be used as
the client.rack consumer configuration.

Rack

tracing The configuration of tracing in Kafka Connect. The
type depends on the value of the tracing.type
property within the given object, which must be one
of [jaeger, opentelemetry].

JaegerTracing, OpenTelemetryTracing

template Template for Kafka Connect and Kafka Mirror Maker
2 resources. The template allows users to specify
how the Deployment, Pods and Service are
generated.

KafkaConnectTemplate

externalConfiguration Pass data from Secrets or ConfigMaps to the Kafka
Connect pods and use them to configure connectors.

ExternalConfiguration

metricsConfig Metrics configuration. The type depends on the value
of the metricsConfig.type property within the
given object, which must be one of
[jmxPrometheusExporter].

JmxPrometheusExporterMetrics

Property Description

6.2.130. KafkaMirrorMaker2ClusterSpec schema reference

Used in: KafkaMirrorMaker2Spec

Full list of KafkaMirrorMaker2ClusterSpec schema properties

Configures Kafka clusters for mirroring.

6.2.130.1. config

Use the config properties to configure Kafka options.

Standard Apache Kafka configuration may be provided, restricted to those properties not managed

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

278

Standard Apache Kafka configuration may be provided, restricted to those properties not managed
directly by AMQ Streams.

For client connection using a specific cipher suite for a TLS version, you can configure allowed ssl
properties. You can also configure the ssl.endpoint.identification.algorithm property to enable or
disable hostname verification.

6.2.130.2. KafkaMirrorMaker2ClusterSpec schema properties

Property Description

alias Alias used to reference the Kafka cluster.

string

bootstrapServers A comma-separated list of host:port pairs for
establishing the connection to the Kafka cluster.

string

tls TLS configuration for connecting MirrorMaker 2
connectors to a cluster.

ClientTls

authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-256,
scram-sha-512, plain, oauth].

KafkaClientAuthenticationTls,
KafkaClientAuthenticationScramSha256,
KafkaClientAuthenticationScramSha512,
KafkaClientAuthenticationPlain,
KafkaClientAuthenticationOAuth

config The MirrorMaker 2 cluster config. Properties with the
following prefixes cannot be set: ssl., sasl., security.,
listeners, plugin.path, rest., bootstrap.servers,
consumer.interceptor.classes,
producer.interceptor.classes (with the exception of:
ssl.endpoint.identification.algorithm, ssl.cipher.suites,
ssl.protocol, ssl.enabled.protocols).

map

6.2.131. KafkaMirrorMaker2MirrorSpec schema reference

Used in: KafkaMirrorMaker2Spec

Property Description

sourceCluster The alias of the source cluster used by the Kafka
MirrorMaker 2 connectors. The alias must match a
cluster in the list at spec.clusters.string

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

279

targetCluster The alias of the target cluster used by the Kafka
MirrorMaker 2 connectors. The alias must match a
cluster in the list at spec.clusters.

string

sourceConnector The specification of the Kafka MirrorMaker 2 source
connector.

KafkaMirrorMaker2ConnectorSpec

heartbeatConnector The specification of the Kafka MirrorMaker 2
heartbeat connector.

KafkaMirrorMaker2ConnectorSpec

checkpointConnector The specification of the Kafka MirrorMaker 2
checkpoint connector.

KafkaMirrorMaker2ConnectorSpec

topicsPattern A regular expression matching the topics to be
mirrored, for example, "topic1|topic2|topic3".
Comma-separated lists are also supported.string

topicsBlacklistPattern The topicsBlacklistPattern property has been
deprecated, and should now be configured using
.spec.mirrors.topicsExcludePattern. A regular
expression matching the topics to exclude from
mirroring. Comma-separated lists are also
supported.

string

topicsExcludePattern A regular expression matching the topics to exclude
from mirroring. Comma-separated lists are also
supported.string

groupsPattern A regular expression matching the consumer groups
to be mirrored. Comma-separated lists are also
supported.string

groupsBlacklistPattern The groupsBlacklistPattern property has been
deprecated, and should now be configured using
.spec.mirrors.groupsExcludePattern. A regular
expression matching the consumer groups to exclude
from mirroring. Comma-separated lists are also
supported.

string

groupsExcludePattern A regular expression matching the consumer groups
to exclude from mirroring. Comma-separated lists
are also supported.string

Property Description

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

280

6.2.132. KafkaMirrorMaker2ConnectorSpec schema reference

Used in: KafkaMirrorMaker2MirrorSpec

Property Description

tasksMax The maximum number of tasks for the Kafka
Connector.

integer

config The Kafka Connector configuration. The following
properties cannot be set: connector.class, tasks.max.

map

autoRestart Automatic restart of connector and tasks
configuration.

AutoRestart

pause Whether the connector should be paused. Defaults
to false.

boolean

6.2.133. KafkaMirrorMaker2Status schema reference

Used in: KafkaMirrorMaker2

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

url The URL of the REST API endpoint for managing and
monitoring Kafka Connect connectors.

string

autoRestartStatuses List of MirrorMaker 2 connector auto restart
statuses.

AutoRestartStatus array

connectorPlugins The list of connector plugins available in this Kafka
Connect deployment.

ConnectorPlugin array

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

281

connectors List of MirrorMaker 2 connector statuses, as
reported by the Kafka Connect REST API.

map array

labelSelector Label selector for pods providing this resource.

string

replicas The current number of pods being used to provide
this resource.

integer

Property Description

6.2.134. KafkaRebalance schema reference

Property Description

spec The specification of the Kafka rebalance.

KafkaRebalanceSpec

status The status of the Kafka rebalance.

KafkaRebalanceStatus

6.2.135. KafkaRebalanceSpec schema reference

Used in: KafkaRebalance

Property Description

mode Mode to run the rebalancing. The supported modes
are full, add-brokers, remove-brokers. If not
specified, the full mode is used by default.

full mode runs the rebalancing across all the
brokers in the cluster.

add-brokers mode can be used after
scaling up the cluster to move some
replicas to the newly added brokers.

remove-brokers mode can be used
before scaling down the cluster to move
replicas out of the brokers to be removed.

string (one of [remove-brokers, full, add-brokers])

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

282

brokers The list of newly added brokers in case of scaling up
or the ones to be removed in case of scaling down to
use for rebalancing. This list can be used only with
rebalancing mode add-brokers and removed-
brokers. It is ignored with full mode.

integer array

goals A list of goals, ordered by decreasing priority, to use
for generating and executing the rebalance proposal.
The supported goals are available at
https://github.com/linkedin/cruise-control#goals. If
an empty goals list is provided, the goals declared in
the default.goals Cruise Control configuration
parameter are used.

string array

skipHardGoalCheck Whether to allow the hard goals specified in the Kafka
CR to be skipped in optimization proposal
generation. This can be useful when some of those
hard goals are preventing a balance solution being
found. Default is false.

boolean

rebalanceDisk Enables intra-broker disk balancing, which balances
disk space utilization between disks on the same
broker. Only applies to Kafka deployments that use
JBOD storage with multiple disks. When enabled,
inter-broker balancing is disabled. Default is false.

boolean

excludedTopics A regular expression where any matching topics will
be excluded from the calculation of optimization
proposals. This expression will be parsed by the
java.util.regex.Pattern class; for more information on
the supported format consult the documentation for
that class.

string

concurrentPartitionMovementsPerBroker The upper bound of ongoing partition replica
movements going into/out of each broker. Default is
5.integer

Property Description

CHAPTER 6. CUSTOM RESOURCE API REFERENCE

283

https://github.com/linkedin/cruise-control#goals

concurrentIntraBrokerPartitionMovements The upper bound of ongoing partition replica
movements between disks within each broker.
Default is 2.integer

concurrentLeaderMovements The upper bound of ongoing partition leadership
movements. Default is 1000.

integer

replicationThrottle The upper bound, in bytes per second, on the
bandwidth used to move replicas. There is no limit by
default.integer

replicaMovementStrategies A list of strategy class names used to determine the
execution order for the replica movements in the
generated optimization proposal. By default
BaseReplicaMovementStrategy is used, which will
execute the replica movements in the order that they
were generated.

string array

Property Description

6.2.136. KafkaRebalanceStatus schema reference

Used in: KafkaRebalance

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD that was last reconciled
by the operator.

integer

sessionId The session identifier for requests to Cruise Control
pertaining to this KafkaRebalance resource. This is
used by the Kafka Rebalance operator to track the
status of ongoing rebalancing operations.

string

optimizationResult A JSON object describing the optimization result.

map

Red Hat AMQ Streams 2.4 Configuring AMQ Streams on OpenShift

284

APPENDIX A. USING YOUR SUBSCRIPTION
AMQ Streams is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the AMQ Streams for Apache Kafka entries in the INTEGRATION AND
AUTOMATION category.

3. Select the desired AMQ Streams product. The Software Downloads page opens.

4. Click the Download link for your component.

Installing packages with DNF
To install a package and all the package dependencies, use:

To install a previously-downloaded package from a local directory, use:

Revised on 2023-05-26 13:23:38 UTC

dnf install <package_name>

dnf install <path_to_download_package>

APPENDIX A. USING YOUR SUBSCRIPTION

285

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. CONFIGURATION OVERVIEW
	1.1. CONFIGURING CUSTOM RESOURCES
	1.2. USING CONFIGMAPS TO ADD CONFIGURATION
	1.2.1. Naming custom ConfigMaps

	1.3. DOCUMENT CONVENTIONS
	1.4. ADDITIONAL RESOURCES

	CHAPTER 2. CONFIGURING AN AMQ STREAMS ON OPENSHIFT DEPLOYMENT
	2.1. USING STANDARD KAFKA CONFIGURATION PROPERTIES
	2.2. KAFKA CLUSTER CONFIGURATION
	2.2.1. Configuring Kafka
	2.2.2. Configuring the Entity Operator
	2.2.2.1. Entity Operator configuration properties
	2.2.2.2. Topic Operator configuration properties
	2.2.2.3. User Operator configuration properties

	2.2.3. Configuring Kafka and ZooKeeper storage
	2.2.3.1. Data storage considerations
	2.2.3.2. Ephemeral storage
	2.2.3.3. Persistent storage
	2.2.3.4. Resizing persistent volumes
	2.2.3.5. JBOD storage
	2.2.3.6. Adding volumes to JBOD storage
	2.2.3.7. Removing volumes from JBOD storage

	2.2.4. Connecting to ZooKeeper from a terminal
	2.2.5. Deleting Kafka nodes manually
	2.2.6. Deleting ZooKeeper nodes manually
	2.2.7. List of Kafka cluster resources

	2.3. KAFKA CONNECT CLUSTER CONFIGURATION
	2.3.1. Configuring Kafka Connect
	2.3.2. Configuring Kafka Connect for multiple instances
	2.3.3. Configuring Kafka Connect user authorization
	2.3.4. List of Kafka Connect cluster resources
	2.3.5. Integrating with the Red Hat build of Debezium for change data capture

	2.4. KAFKA MIRRORMAKER 2 CLUSTER CONFIGURATION
	2.4.1. MirrorMaker 2 data replication
	2.4.1.1. MirrorMaker 2 configuration
	2.4.1.2. Topic configuration synchronization
	2.4.1.3. Offset tracking
	2.4.1.4. Synchronizing consumer group offsets
	2.4.1.5. Connectivity checks

	2.4.2. Connector configuration
	2.4.3. Connector producer and consumer configuration
	2.4.4. Specifying a maximum number of tasks
	2.4.4.1. Checking connector task operations

	2.4.5. ACL rules synchronization
	2.4.6. Configuring Kafka MirrorMaker 2
	2.4.7. Securing a Kafka MirrorMaker 2 deployment
	2.4.8. Performing a restart of a Kafka MirrorMaker 2 connector
	2.4.9. Performing a restart of a Kafka MirrorMaker 2 connector task

	2.5. KAFKA MIRRORMAKER CLUSTER CONFIGURATION
	2.5.1. Configuring Kafka MirrorMaker
	2.5.2. List of Kafka MirrorMaker cluster resources

	2.6. KAFKA BRIDGE CLUSTER CONFIGURATION
	2.6.1. Configuring the Kafka Bridge
	2.6.2. List of Kafka Bridge cluster resources

	2.7. CUSTOMIZING OPENSHIFT RESOURCES
	2.7.1. Customizing the image pull policy
	2.7.2. Applying a termination grace period

	2.8. CONFIGURING POD SCHEDULING
	2.8.1. Specifying affinity, tolerations, and topology spread constraints
	2.8.1.1. Use pod anti-affinity to avoid critical applications sharing nodes
	2.8.1.2. Use node affinity to schedule workloads onto specific nodes
	2.8.1.3. Use node affinity and tolerations for dedicated nodes

	2.8.2. Configuring pod anti-affinity to schedule each Kafka broker on a different worker node
	2.8.3. Configuring pod anti-affinity in Kafka components
	2.8.4. Configuring node affinity in Kafka components
	2.8.5. Setting up dedicated nodes and scheduling pods on them

	2.9. LOGGING CONFIGURATION
	2.9.1. Logging options for Kafka components and operators
	2.9.2. Creating a ConfigMap for logging
	2.9.3. Adding logging filters to Operators

	CHAPTER 3. LOADING CONFIGURATION VALUES FROM EXTERNAL SOURCES
	3.1. LOADING CONFIGURATION VALUES FROM A CONFIGMAP
	3.2. LOADING CONFIGURATION VALUES FROM ENVIRONMENT VARIABLES

	CHAPTER 4. APPLYING SECURITY CONTEXT TO AMQ STREAMS PODS AND CONTAINERS
	4.1. HANDLING OF SECURITY CONTEXT BY OPENSHIFT PLATFORM

	CHAPTER 5. VALIDATING SCHEMAS WITH THE RED HAT BUILD OF APICURIO REGISTRY
	CHAPTER 6. CUSTOM RESOURCE API REFERENCE
	6.1. COMMON CONFIGURATION PROPERTIES
	6.1.1. replicas
	6.1.2. bootstrapServers
	6.1.3. ssl
	6.1.4. trustedCertificates
	6.1.5. resources
	6.1.6. image
	6.1.7. livenessProbe and readinessProbe healthchecks
	6.1.8. metricsConfig
	6.1.9. jvmOptions
	6.1.10. Garbage collector logging

	6.2. SCHEMA PROPERTIES
	6.2.1. Kafka schema reference
	6.2.2. KafkaSpec schema reference
	6.2.3. KafkaClusterSpec schema reference
	6.2.3.1. listeners
	6.2.3.2. config
	6.2.3.3. brokerRackInitImage
	6.2.3.4. logging
	6.2.3.5. KafkaClusterSpec schema properties

	6.2.4. GenericKafkaListener schema reference
	6.2.4.1. listeners
	6.2.4.2. type
	6.2.4.3. port
	6.2.4.4. tls
	6.2.4.5. authentication
	6.2.4.6. networkPolicyPeers
	6.2.4.7. GenericKafkaListener schema properties

	6.2.5. KafkaListenerAuthenticationTls schema reference
	6.2.6. KafkaListenerAuthenticationScramSha512 schema reference
	6.2.7. KafkaListenerAuthenticationOAuth schema reference
	6.2.8. GenericSecretSource schema reference
	6.2.9. CertSecretSource schema reference
	6.2.10. KafkaListenerAuthenticationCustom schema reference
	6.2.10.1. listenerConfig
	6.2.10.2. secrets
	6.2.10.3. Principal builder
	6.2.10.4. KafkaListenerAuthenticationCustom schema properties

	6.2.11. GenericKafkaListenerConfiguration schema reference
	6.2.11.1. brokerCertChainAndKey
	6.2.11.2. externalTrafficPolicy
	6.2.11.3. loadBalancerSourceRanges
	6.2.11.4. class
	6.2.11.5. preferredNodePortAddressType
	6.2.11.6. useServiceDnsDomain
	6.2.11.7. GenericKafkaListenerConfiguration schema properties

	6.2.12. CertAndKeySecretSource schema reference
	6.2.13. GenericKafkaListenerConfigurationBootstrap schema reference
	6.2.13.1. alternativeNames
	6.2.13.2. host
	6.2.13.3. nodePort
	6.2.13.4. loadBalancerIP
	6.2.13.5. annotations
	6.2.13.6. GenericKafkaListenerConfigurationBootstrap schema properties

	6.2.14. GenericKafkaListenerConfigurationBroker schema reference
	6.2.14.1. GenericKafkaListenerConfigurationBroker schema properties

	6.2.15. EphemeralStorage schema reference
	6.2.16. PersistentClaimStorage schema reference
	6.2.17. PersistentClaimStorageOverride schema reference
	6.2.18. JbodStorage schema reference
	6.2.19. KafkaAuthorizationSimple schema reference
	6.2.19.1. superUsers
	6.2.19.2. KafkaAuthorizationSimple schema properties

	6.2.20. KafkaAuthorizationOpa schema reference
	6.2.20.1. url
	6.2.20.2. allowOnError
	6.2.20.3. initialCacheCapacity
	6.2.20.4. maximumCacheSize
	6.2.20.5. expireAfterMs
	6.2.20.6. tlsTrustedCertificates
	6.2.20.7. superUsers
	6.2.20.8. KafkaAuthorizationOpa schema properties

	6.2.21. KafkaAuthorizationKeycloak schema reference
	6.2.22. KafkaAuthorizationCustom schema reference
	6.2.22.1. authorizerClass
	6.2.22.2. superUsers
	6.2.22.3. KafkaAuthorizationCustom schema properties

	6.2.23. Rack schema reference
	6.2.23.1. Spreading partition replicas across racks
	6.2.23.2. Consuming messages from the closest replicas
	6.2.23.3. Rack schema properties

	6.2.24. Probe schema reference
	6.2.25. JvmOptions schema reference
	6.2.26. SystemProperty schema reference
	6.2.27. KafkaJmxOptions schema reference
	6.2.27.1. KafkaJmxOptions schema properties

	6.2.28. KafkaJmxAuthenticationPassword schema reference
	6.2.29. JmxPrometheusExporterMetrics schema reference
	6.2.30. ExternalConfigurationReference schema reference
	6.2.31. InlineLogging schema reference
	6.2.32. ExternalLogging schema reference
	6.2.33. KafkaClusterTemplate schema reference
	6.2.34. StatefulSetTemplate schema reference
	6.2.35. MetadataTemplate schema reference
	6.2.35.1. MetadataTemplate schema properties

	6.2.36. PodTemplate schema reference
	6.2.36.1. hostAliases
	6.2.36.2. PodTemplate schema properties

	6.2.37. InternalServiceTemplate schema reference
	6.2.38. ResourceTemplate schema reference
	6.2.39. PodDisruptionBudgetTemplate schema reference
	6.2.39.1. PodDisruptionBudgetTemplate schema properties

	6.2.40. ContainerTemplate schema reference
	6.2.40.1. ContainerTemplate schema properties

	6.2.41. ContainerEnvVar schema reference
	6.2.42. ZookeeperClusterSpec schema reference
	6.2.42.1. config
	6.2.42.2. logging
	6.2.42.3. ZookeeperClusterSpec schema properties

	6.2.43. ZookeeperClusterTemplate schema reference
	6.2.44. EntityOperatorSpec schema reference
	6.2.45. EntityTopicOperatorSpec schema reference
	6.2.45.1. logging
	6.2.45.2. EntityTopicOperatorSpec schema properties

	6.2.46. EntityUserOperatorSpec schema reference
	6.2.46.1. logging
	6.2.46.2. EntityUserOperatorSpec schema properties

	6.2.47. TlsSidecar schema reference
	6.2.47.1. TlsSidecar schema properties

	6.2.48. EntityOperatorTemplate schema reference
	6.2.49. DeploymentTemplate schema reference
	6.2.49.1. DeploymentTemplate schema properties

	6.2.50. CertificateAuthority schema reference
	6.2.51. CruiseControlSpec schema reference
	6.2.51.1. config
	6.2.51.2. Cross-Origin Resource Sharing (CORS)
	6.2.51.3. Cruise Control REST API security
	6.2.51.4. brokerCapacity
	6.2.51.5. Capacity overrides
	6.2.51.6. Logging configuration
	6.2.51.7. CruiseControlSpec schema properties

	6.2.52. CruiseControlTemplate schema reference
	6.2.53. BrokerCapacity schema reference
	6.2.54. BrokerCapacityOverride schema reference
	6.2.55. KafkaExporterSpec schema reference
	6.2.56. KafkaExporterTemplate schema reference
	6.2.57. KafkaStatus schema reference
	6.2.58. Condition schema reference
	6.2.59. ListenerStatus schema reference
	6.2.60. ListenerAddress schema reference
	6.2.61. KafkaConnect schema reference
	6.2.62. KafkaConnectSpec schema reference
	6.2.62.1. config
	6.2.62.2. logging
	6.2.62.3. KafkaConnectSpec schema properties

	6.2.63. ClientTls schema reference
	6.2.63.1. trustedCertificates
	6.2.63.2. ClientTls schema properties

	6.2.64. KafkaClientAuthenticationTls schema reference
	6.2.64.1. certificateAndKey
	6.2.64.2. KafkaClientAuthenticationTls schema properties

	6.2.65. KafkaClientAuthenticationScramSha256 schema reference
	6.2.65.1. username
	6.2.65.2. passwordSecret
	6.2.65.3. KafkaClientAuthenticationScramSha256 schema properties

	6.2.66. PasswordSecretSource schema reference
	6.2.67. KafkaClientAuthenticationScramSha512 schema reference
	6.2.67.1. username
	6.2.67.2. passwordSecret
	6.2.67.3. KafkaClientAuthenticationScramSha512 schema properties

	6.2.68. KafkaClientAuthenticationPlain schema reference
	6.2.68.1. username
	6.2.68.2. passwordSecret
	6.2.68.3. KafkaClientAuthenticationPlain schema properties

	6.2.69. KafkaClientAuthenticationOAuth schema reference
	6.2.69.1. KafkaClientAuthenticationOAuth schema properties

	6.2.70. JaegerTracing schema reference
	6.2.71. OpenTelemetryTracing schema reference
	6.2.72. KafkaConnectTemplate schema reference
	6.2.73. BuildConfigTemplate schema reference
	6.2.74. ExternalConfiguration schema reference
	6.2.74.1. env
	6.2.74.2. volumes
	6.2.74.3. ExternalConfiguration schema properties

	6.2.75. ExternalConfigurationEnv schema reference
	6.2.76. ExternalConfigurationEnvVarSource schema reference
	6.2.77. ExternalConfigurationVolumeSource schema reference
	6.2.78. Build schema reference
	6.2.78.1. output
	6.2.78.2. plugins
	6.2.78.3. Build schema properties

	6.2.79. DockerOutput schema reference
	6.2.80. ImageStreamOutput schema reference
	6.2.81. Plugin schema reference
	6.2.82. JarArtifact schema reference
	6.2.83. TgzArtifact schema reference
	6.2.84. ZipArtifact schema reference
	6.2.85. MavenArtifact schema reference
	6.2.86. OtherArtifact schema reference
	6.2.87. KafkaConnectStatus schema reference
	6.2.88. ConnectorPlugin schema reference
	6.2.89. KafkaTopic schema reference
	6.2.90. KafkaTopicSpec schema reference
	6.2.91. KafkaTopicStatus schema reference
	6.2.92. KafkaUser schema reference
	6.2.93. KafkaUserSpec schema reference
	6.2.94. KafkaUserTlsClientAuthentication schema reference
	6.2.95. KafkaUserTlsExternalClientAuthentication schema reference
	6.2.96. KafkaUserScramSha512ClientAuthentication schema reference
	6.2.97. Password schema reference
	6.2.98. PasswordSource schema reference
	6.2.99. KafkaUserAuthorizationSimple schema reference
	6.2.100. AclRule schema reference
	6.2.100.1. resource
	6.2.100.2. type
	6.2.100.3. operations
	6.2.100.4. host
	6.2.100.5. AclRule schema properties

	6.2.101. AclRuleTopicResource schema reference
	6.2.102. AclRuleGroupResource schema reference
	6.2.103. AclRuleClusterResource schema reference
	6.2.104. AclRuleTransactionalIdResource schema reference
	6.2.105. KafkaUserQuotas schema reference
	6.2.105.1. quotas
	6.2.105.2. KafkaUserQuotas schema properties

	6.2.106. KafkaUserTemplate schema reference
	6.2.106.1. KafkaUserTemplate schema properties

	6.2.107. KafkaUserStatus schema reference
	6.2.108. KafkaMirrorMaker schema reference
	6.2.109. KafkaMirrorMakerSpec schema reference
	6.2.109.1. include
	6.2.109.2. KafkaMirrorMakerConsumerSpec and KafkaMirrorMakerProducerSpec
	6.2.109.3. logging
	6.2.109.4. KafkaMirrorMakerSpec schema properties

	6.2.110. KafkaMirrorMakerConsumerSpec schema reference
	6.2.110.1. numStreams
	6.2.110.2. offsetCommitInterval
	6.2.110.3. config
	6.2.110.4. groupId
	6.2.110.5. KafkaMirrorMakerConsumerSpec schema properties

	6.2.111. KafkaMirrorMakerProducerSpec schema reference
	6.2.111.1. abortOnSendFailure
	6.2.111.2. config
	6.2.111.3. KafkaMirrorMakerProducerSpec schema properties

	6.2.112. KafkaMirrorMakerTemplate schema reference
	6.2.113. KafkaMirrorMakerStatus schema reference
	6.2.114. KafkaBridge schema reference
	6.2.115. KafkaBridgeSpec schema reference
	6.2.115.1. logging
	6.2.115.2. KafkaBridgeSpec schema properties

	6.2.116. KafkaBridgeHttpConfig schema reference
	6.2.116.1. cors
	6.2.116.2. KafkaBridgeHttpConfig schema properties

	6.2.117. KafkaBridgeHttpCors schema reference
	6.2.118. KafkaBridgeAdminClientSpec schema reference
	6.2.119. KafkaBridgeConsumerSpec schema reference
	6.2.119.1. KafkaBridgeConsumerSpec schema properties

	6.2.120. KafkaBridgeProducerSpec schema reference
	6.2.120.1. KafkaBridgeProducerSpec schema properties

	6.2.121. KafkaBridgeTemplate schema reference
	6.2.122. KafkaBridgeStatus schema reference
	6.2.123. KafkaConnector schema reference
	6.2.124. KafkaConnectorSpec schema reference
	6.2.125. AutoRestart schema reference
	6.2.125.1. AutoRestart schema properties

	6.2.126. KafkaConnectorStatus schema reference
	6.2.127. AutoRestartStatus schema reference
	6.2.128. KafkaMirrorMaker2 schema reference
	6.2.129. KafkaMirrorMaker2Spec schema reference
	6.2.130. KafkaMirrorMaker2ClusterSpec schema reference
	6.2.130.1. config
	6.2.130.2. KafkaMirrorMaker2ClusterSpec schema properties

	6.2.131. KafkaMirrorMaker2MirrorSpec schema reference
	6.2.132. KafkaMirrorMaker2ConnectorSpec schema reference
	6.2.133. KafkaMirrorMaker2Status schema reference
	6.2.134. KafkaRebalance schema reference
	6.2.135. KafkaRebalanceSpec schema reference
	6.2.136. KafkaRebalanceStatus schema reference

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files
	Installing packages with DNF

