& RedHat

Red Hat AMQ Streams 2.3

Release Notes for AMQ Streams 2.3 on
OpenShift

Highlights of what's new and what's changed with this release of AMQ Streams on
OpenShift Container Platform

Last Updated: 2023-03-08






Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on
OpenShift

Highlights of what's new and what's changed with this release of AMQ Streams on OpenShift
Container Platform



Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The release notes summarize the new features, enhancements, and fixes introduced in the AMQ
Streams 2.3 release.



Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... ittt ettt e eiii e eaennnneenn, 4
CHAPTER L FEATURES ...ttt ettt ettt e e aaeeseeanneeeesennnneesesennnneesennnns 5
1.1. OPENSHIFT CONTAINER PLATFORM SUPPORT 5
1.2. KAFKA 3.3.1SUPPORT 5
1.3. SUPPORTING THE VIBETA2 API VERSION 5
1.3.1. Upgrading custom resources to vibeta2 6

1.4. AUTOMATIC APPROVAL OF CRUISE CONTROL OPTIMIZATION PROPOSALS 6
1.5. SUPPORT FOR MULTIPLE OPERATIONS IN ACL RULE CONFIGURATION 6
1.6. NEW CLUSTER-IP INTERNAL LISTENER TYPE 7
1.7. CLUSTER OPERATOR LEADER ELECTION TO RUN MULTIPLE REPLICAS 8
1.8. SUPPORT FOR IBM Z AND LINUXONE ARCHITECTURE 9
1.8.1. Requirements for IBM Z and LinuxONE 9
1.8.2. Unsupported on IBM Z and LinuxONE 9

1.9. SUPPORT FOR IBM POWER ARCHITECTURE 9
1.9.1. Requirements for IBM Power 9
1.9.2. Unsupported on IBM Power 9
110. RED HAT BUILD OF DEBEZIUM FOR CHANGE DATA CAPTURE 9
1.11. RED HAT BUILD OF APICURIO REGISTRY FOR SCHEMA VALIDATION 10
CHAPTER 2. ENHAN CEMEN TS oottt ettt ettt et e e et e aeannneeeenanneneennnnn, n
2.1. KAFKA 3.31 ENHANCEMENTS 1
2.2. KAFKA CONNECTOR STATUS 1
2.3. CONTROLPLANELISTENER FEATURE GATE MOVES TO GA 1
2.4. SERVICEACCOUNTPATCHING FEATURE GATE MOVES TO GA 1
2.5. USESTRIMZIPODSETS FEATURE GATE MOVES TO BETA 1
2.6. RACK AWARENESS CONFIGURATION FOR THE KAFKA BRIDGE 12
2.7.PLUGGABLE POD SECURITY PROFILES 12
2.8. KAFKA BROKER RESTART EVENTS 12
2.9. CONFIGURABLE KAFKA ADMIN CLIENT 13
2.10. CRUISE CONTROL CAPACITY OVERRIDES 13
2.11. OAUTH 2.0 PASSWORD GRANTS FOR KAFKA CLIENTS 14
2.12. AUTHENTICATION AND AUTHORIZATION METRICS 15
CHAPTER 3. TECHNOLOGY PREVIEWS .. ittt et ettt eeaieeeaennnneenannns 16
3.1. OPENTELEMETRY FOR DISTRIBUTED TRACING 16
3.2. KAFKA STATIC QUOTA PLUGIN CONFIGURATION 16
CHAPTER 4. DEVELOPER PREVIEWS L.ttt ittt ittt eeieeeneeeaneennneenneenns 17
4.1. USEKRAFT FEATURE GATE 17
CHAPTER 5. KAFKA BREAKING CHANGES ...ttt ettt e i eieeraneennnennneenns 19
5.1. USING KAFKA'S EXAMPLE FILE CONNECTORS 19
CHAPTER 6. DEPRECATED FEATURES ..ottt ittt ettt etaeeereannneeeeaannnneenannn, 20
6.1. JAVA 8 SUPPORT REMOVED IN AMQ STREAMS 2.4.0 20
6.2. OPENTRACING 20
6.3. ACL RULE CONFIGURATION 20
6.4. KAFKA MIRRORMAKER 1 20
6.5. CRUISE CONTROL TLS SIDECAR PROPERTIES 20
6.6. IDENTITY REPLICATION POLICY 21
6.7. LISTENERSTATUS TYPE PROPERTY 21
6.8. CRUISE CONTROL CAPACITY CONFIGURATION 21



Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

CHAPTER 7. FIXED ISSUES .. i i i e i e ettt ia e aas

CHAPTER 8. KNOWN ISSUES ... i i e it ettt
8.1. KAFKA BRIDGE SENDING MESSAGES WITH CORS ENABLED
8.2. AMQ STREAMS CLUSTER OPERATOR ON IPV6 CLUSTERS
8.3. CRUISE CONTROL CPU UTILIZATION ESTIMATION
8.4. USER OPERATOR SCALABILITY
8.5. OAUTH PASSWORD GRANTS CONFIGURATION
8.6. OPENTELEMETRY: RUNNING JAEGER WITH TLS ENABLED

CHAPTER 9. SUPPORTED INTEGRATION WITH RED HATPRODUCTS ... i

CHAPTER 0. IMPORTANT LINKS . i i i e it



Table of Contents




Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.


https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. FEATURES

CHAPTER 1. FEATURES

AMQ Streams 2.3 introduces the features described in this section.

AMQ Streams 2.3 on OpenShift is based on Kafka 3.3.1 and Strimzi 0.32.x.

NOTE

To view all the enhancements and bugs that are resolved in this release, see the AMQ
Streams Jira project.

1.1. OPENSHIFT CONTAINER PLATFORM SUPPORT
AMQ Streams 2.3 is supported on OpenShift Container Platform 4.8 to 4.12.

For more information about the supported platform versions, see the AMQ Streams Supported
Configurations.

1.2. KAFKA 3.3.1SUPPORT
AMQ Streams now supports Apache Kafka version 3.3.1.
AMQ Streams uses Kafka 3.3.1. Only Kafka distributions built by Red Hat are supported.

You must upgrade the Cluster Operator to AMQ Streams version 2.3 before you can upgrade brokers
and client applications to Kafka 3.3.1. For upgrade instructions, see Upgrading AMQ Streams.

Refer to the Kafka 3.3.0 and Kafka 3.3.1 Release Notes for additional information.

NOTE

Kafka 3.2.x is supported only for the purpose of upgrading to AMQ Streams 2.3.
For more information on supported versions, see the AMQ Streams Component Details.

NOTE

Kafka 3.3.1 provides access to KRaft mode, where Kafka runs without ZooKeeper by
utilizing the Raft protocol. KRaft mode is available as a Developer Preview.

1.3. SUPPORTING THE VIBETA2 API VERSION

The vibeta2 API version for all custom resources was introduced with AMQ Streams 1.7. For AMQ
Streams 1.8, vialpha1 and vibeta1 API versions were removed from all AMQ Streams custom
resources apart from KafkaTopic and KafkaUser.

Upgrade of the custom resources to vibeta2 prepares AMQ Streams for a move to Kubernetes CRD
v1, which is required for Kubernetes v1.22.

If you are upgrading from an AMQ Streams version prior to version 1.7:

1. Upgrade to AMQ Streams 1.7


https://issues.redhat.com/issues/?filter=12403129
https://access.redhat.com/articles/6644711
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-upgrade-str
https://archive.apache.org/dist/kafka/3.3.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.3.1/RELEASE_NOTES.html
https://access.redhat.com/articles/6649131

Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

2. Convert the custom resources to vibeta2

3. Upgrade to AMQ Streams 1.8

IMPORTANT

You must upgrade your custom resources to use API version vibeta2 before upgrading
to AMQ Streams version 2.3.

1.3.1. Upgrading custom resources to vibeta2

To support the upgrade of custom resources to vibeta2, AMQ Streams provided the Red Hat AMQ
Streams API Conversion Tool with AMQ Streams 1.8. Download the tool from the AMQ Streams 1.8
software downloads page.

You perform the custom resources upgrades in two steps.

Step one: Convert the format of custom resources

Using the API conversion tool, you can convert the format of your custom resources into a format
applicable to vibeta2 in one of two ways:

e Converting the YAML files that describe the configuration for AMQ Streams custom resources
® Converting AMQ Streams custom resources directly in the cluster

Alternatively, you can manually convert each custom resource into a format applicable to vibeta2.
Instructions for manually converting custom resources are included in the documentation.

Step two: Upgrade CRDs to vibeta2

Next, using the API conversion tool with the crd-upgrade command, you must set vibeta2 as the
storage API version in your CRDs. You cannot perform this step manually.

For more information, see Upgrading from an AMQ Streams version earlier than 1.7 .

1.4. AUTOMATIC APPROVAL OF CRUISE CONTROL OPTIMIZATION
PROPOSALS

When using AMQ Streams with Cruise Control, you can now automate the process of approving the
optimization proposals generated. You generate an optimization proposal using the KafkaRebalance
custom resource. To enable auto-approval, you add strimzi.io/rebalance-auto-approval: "true" as an
annotation to the KafkaRebalance custom resource before you generate the proposal.

With manual approval, you make another request when a generated proposal has a ProposalReady
status. You approve the proposal by adding the strimzi.io/rebalance: approve annotation to the
KafkaRebalance resource in the new request.

With automatic approval, the proposal is generated and approved to complete the rebalance in a single
request.

See Generating optimization proposals.

1.5. SUPPORT FOR MULTIPLE OPERATIONS IN ACL RULE
CONFIGURATION


https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams&version=1.8.0
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#con-upgrade-paths-earlier-versions-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#proc-generating-optimization-proposals-str

CHAPTER 1. FEATURES

The KafkaUser custom resource has been updated to make configuration of ACL lists easier to manage.

Previously, you configured operations for ACL rules separately for each resource using the operation
property.

Old format for configuring ACL rules

authorization:
type: simple
acls:
- resource:
type: topic
name: my-topic
operation: Read
- resource:
type: topic
name: my-topic
operation: Describe
- resource:
type: topic
name: my-topic
operation: Write
- resource:
type: topic
name: my-topic
operation: Create

A new operations property allows you to list multiple ACL operations as a single rule for the same
resource.

New format for configuring ACL rules

authorization:
type: simple
acls:

- resource:
type: topic
name: my-topic

operations:
- Read
- Describe
- Create
- Write

The operation property for the old configuration format is deprecated, but still supported.

See ACLRule schema reference.

1.6. NEW cLusTER-IP INTERNAL LISTENER TYPE

Listeners are used for client connection to Kafka brokers. They are configured in the Kafka resource
using .spec.kafka.listeners properties.


https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#type-AclRule-reference

Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

A new cluster-ip type of internal listener exposes a Kafka cluster based on per-broker ClusterlP
services.

Example cluster-ip listener configuration

#...
spec:
kafka:
#...
listeners:
- name: external-cluster-ip
type: cluster-ip
tls: false
port: 9096
#...

This is a useful option when you can't route through the headless service or you wish to incorporate a
custom access mechanism. For example, you might use this listener when building your own type of
external listener for a specific Ingress controller or the Kubernetes Gateway API.

See GenericKafkaListener schema reference.

1.7. CLUSTER OPERATOR LEADER ELECTION TO RUN MULTIPLE
REPLICAS

Use leader election to run multiple parallel replicas of the Cluster Operator. One replica is elected as the
active leader and operates the deployed resources. The other replicas run in standby mode. Replicas are
useful for high availability. Additional replicas safeguard against disruption caused by major failure. This
is especially important since the introduction of StrimziPodSets, whereby AMQ Streams handles the
creation and management of pods for Kafka clusters. The Cluster Operator is responsible for restarting
the pods.

To enable leader election, the STRIMZI_LEADER_ELECTION_ENABLED environment variable for the
Cluster Operator must be set to true (default). The environment variable is set, along with related
environment variables, in the Deployment custom resource that is used to deploy the Cluster Operator.
By default, AMQ Streams runs with a single Cluster Operator replica that is always the leader replica. To
add more replicas, you update the spec.replicas value in the Deployment custom resource.

Deployment configuration for Cluster Operator replicas and leader election

apiVersion: apps/v1
kind: Deployment
metadata:
name: strimzi-cluster-operator
labels:
app: strimzi
spec:
replicas: 1
#...
spec:
#...
containers:
- name: strimzi-cluster-operator
image: registry.redhat.io/amq7/amqg-streams-rhel8-operator:2.3.0


https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#type-GenericKafkaListener-reference

CHAPTER 1. FEATURES

#...
env:
#...
- name: STRIMZI_LEADER_ELECTION_ENABLED
value: "true"
- name: STRIMZI_LEADER_ELECTION_LEASE_NAME
value: "strimzi-cluster-operator”
- name: STRIMZI_LEADER_ELECTION_LEASE_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace
- name: STRIMZI_LEADER_ELECTION_IDENTITY
valueFrom:
fieldRef:
#...

See Running multiple Cluster Operator replicas with leader election and Leader election environment
variables.

1.8. SUPPORT FOR IBM Z AND LINUXONE ARCHITECTURE
AMQ Streams 2.3 is enabled to run on IBM Z and LinuxONE s390x architecture.

Support for IBM Z and LinuxONE applies to AMQ Streams running with Kafka on OpenShift Container
Platform 4.10 and later.

1.8.1. Requirements for IBM Z and LinuxONE

® OpenShift Container Platform 4.10 and later

1.8.2. Unsupported on IBM Z and LinuxONE

® AMQ Streams on disconnected OpenShift Container Platform environments

® AMQ Streams OPA integration

1.9. SUPPORT FOR IBM POWER ARCHITECTURE
AMQ Streams 2.3 is enabled to run on IBM Power ppc64le architecture.

Support for IBM Power applies to AMQ Streams running with Kafka on OpenShift Container Platform
4.9 and later.

1.9.1. Requirements for IBM Power

® OpenShift Container Platform 4.9 and later

1.9.2. Unsupported on IBM Power

® AMQ Streams on disconnected OpenShift Container Platform environments

1.10. RED HAT BUILD OF DEBEZIUM FOR CHANGE DATA CAPTURE


https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#ref-operator-cluster-leader-election-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#ref-operator-cluster-leader-election-str

Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

The Red Hat build of Debezium is a distributed change data capture platform. It captures row-level
changes in databases, creates change event records, and streams the records to Kafka topics.
Debezium is built on Apache Kafka. You can deploy and integrate the Red Hat build of Debezium with
AMQ Streams. Following a deployment of AMQ Streams, you deploy Debezium as a connector
configuration through Kafka Connect. Debezium passes change event records to AMQ Streams on
OpenShift. Applications can read these change event streams and access the change events in the
order in which they occurred.
Debezium has multiple uses, including:

® Datareplication

® Updating caches and search indexes

® Simplifying monolithic applications

® Dataintegration

® FEnabling streaming queries
Debezium provides connectors (based on Kafka Connect) for the following common databases:

e Db2

® MongoDB

o MySQL

® PostgreSQL

® SQL Server

For more information on deploying Debezium with AMQ Streams, refer to the Red Hat build of
Debezium documentation.

1.11. RED HAT BUILD OF APICURIO REGISTRY FOR SCHEMA
VALIDATION

You can use the Red Hat build of Apicurio Registry as a centralized store of service schemas for data
streaming. For Kafka, you can use the Red Hat build of Apicurio Registry to store Apache Avro or JSON
schema.

Apicurio Registry provides a REST APl and a Java REST client to register and query the schemas from
client applications through server-side endpoints.

Using Apicurio Registry decouples the process of managing schemas from the configuration of client
applications. You enable an application to use a schema from the registry by specifying its URL in the
client code.

For example, the schemas to serialize and deserialize messages can be stored in the registry, which are
then referenced from the applications that use them to ensure that the messages that they send and
receive are compatible with those schemas.

Kafka client applications can push or pull their schemas from Apicurio Registry at runtime.

For more information on using the Red Hat build of Apicurio Registry with AMQ Streams, refer to the
Red Hat build of Apicurio Registry documentation .

10


https://access.redhat.com/documentation/en-us/red_hat_build_of_debezium
https://access.redhat.com/documentation/en-us/red_hat_build_of_apicurio_registry

CHAPTER 2. ENHANCEMENTS

CHAPTER 2. ENHANCEMENTS

AMQ Streams 2.3 adds a number of enhancements.

2.1. KAFKA 3.3.1ENHANCEMENTS

For an overview of the enhancements introduced with Kafka 3.3.0 and 3.3.1, refer to the Kafka 3.3.0 and
Kafka 3.3.1 Release Notes.

2.2. KAFKA CONNECTOR STATUS

The status of the KafkaConnector custom resource now shows NotReady if the connector or any
associated tasks are reporting as FAILED. Previously, the custom resource would show READY even
when the connector or a task had failed.

2.3. cONTROLPLANELISTENER FEATURE GATE MOVES TO GA

The ControlPlaneListener feature gate has moved to GA, which means it is now permanently enabled
and cannot be disabled.

With ControlPlaneListener enabled, the connections between the Kafka controller and brokers use an
internal control plane listener on port 9090.

See ControlPlaneListener feature gate.

IMPORTANT

With the ControlPlaneListener feature gate permanently enabled, it is no longer
possible to upgrade or downgrade directly between AMQ Streams 1.7 and earlier and
AMQ Streams 2.3 and newer. You have to upgrade or downgrade through one of the
AMQ Streams versions in between. For more information, see Upgrading from an AMQ
Streams version earlier than 1.7.

2.4. SERVICEACCOUNTPATCHING FEATURE GATE MOVES TO GA

The ServiceAccountPatching feature gate has moved to GA, which means it is now permanently
enabled and cannot be disabled.

With ServiceAccountPatching enabled, the Cluster Operator always reconciles service accounts and
updates them when needed. For example, when you change service account labels or annotations using

the template property of a custom resource, the operator automatically updates them on the existing
service account resources.

See ServiceAccountPatching feature gate.

2.5. usesTrRIMzIPODSETS FEATURE GATE MOVES TO BETA

The UseStrimziPodSets feature gate moves to a beta level of maturity, and is now enabled by default.
This means StrimziPodSets are used by default instead of StatefulSets.

1


https://archive.apache.org/dist/kafka/3.3.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.3.1/RELEASE_NOTES.html
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#controlplanelistener_feature_gate
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#con-upgrade-paths-earlier-versions-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#serviceaccountpatching_feature_gate

Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

The feature gate controls a resource for managing pods called StrimziPodSet. AMQ Streams handles
the creation and management of pods instead of OpenShift. Using StrimziPodSets instead of
StatefulSets provides more control over the functionality.

See UseStrimziPodSets feature gate and Feature gate releases.

2.6. RACK AWARENESS CONFIGURATION FOR THE KAFKA BRIDGE

Rack awareness for Kafka Bridge pods is now supported. Use the KafkaBridge custom resource to
configure rack awareness. You can configure a Kafka Bridge pod to be aware of the rack in which it runs.
A rack can represent an availability zone, data center, or an actual rack in your data center.

Example rack configuration for Kafka Bridge

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaBridge
#...
spec:
#...
rack:
topologyKey: topology.kubernetes.io/zone
#...

See Rack schema reference.

2.7. PLUGGABLE POD SECURITY PROFILES

Security context defines constraints on pods and containers. OpenShift uses built-in security context
constraints (SCCs) to control permissions. SCCs are the settings and strategies that control the security
features a pod has access to. You can also create and manage your own SCCs.

The optional STRIMZI_POD_SECURITY_PROVIDER_CLASS environment variable for the Cluster
Operator provides security context configuration for pods and containers.

See Applying security context to AMQ Streams pods and containers .

2.8. KAFKA BROKER RESTART EVENTS

After the Cluster Operator restarts a Kafka pod in an OpenShift cluster, it emits an OpenShift event into
the pod'’s namespace explaining why the pod restarted. For help in understanding cluster behavior, you
can check the reason for a restart event from the command line. When checking restart events from the
command line, you can also specify a reason or other field-selector options to filter the events
returned.

The following example returns restart events that were triggered due to an error.

Returning restart events that were triggered for a specified reason

oc -n kafka get events --field-selector reportingController=strimzi.io/cluster-
operator,reason=PodForceRestartOnError

See Finding information on Kafka restarts.

12


https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#ref-operator-use-strimzi-pod-sets-feature-gate-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#ref-operator-cluster-feature-gate-releases-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#type-Rack-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#assembly-security-providers-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-deploy-restart-events-str

CHAPTER 2. ENHANCEMENTS

2.9. CONFIGURABLE KAFKA ADMIN CLIENT

A new User Operator environment variable called
STRIMZI_KAFKA_ADMIN_CLIENT_CONFIGURATION can pass additional configuration to the Kafka
Admin client. The Kafka Admin client helps manage brokers and topics. You can now tune the Kafka
Admin client without rebuilding the User Operator. For example, you can use it to pass SASL
configuration or tune timeouts.

Kafka Admin client timeout configuration

apiVersion: apps/v1
kind: Deployment
metadata:
name: strimzi-user-operator
labels:
app: strimzi
spec:
#...
template:
#...
spec:
#...
containers:
- name: strimzi-user-operator
#...
env:
- name: STRIMZI_KAFKA_ADMIN_CLIENT_CONFIGURATION
value: |
default.api.timeout.ms=120000
request.timeout.ms=60000

NOTE

This is an advanced configuration option, provided without validation.

-

See Deploying the standalone User Operator.

2.10. CRUISE CONTROL CAPACITY OVERRIDES
New Cruise Control configuration options allow you to specify overrides that set the network capacity
and CPU limits for each Kafka broker. You can use these options when brokers are running on nodes
with heterogeneous network or CPU resources.
Override capacity limits can be set for the following broker resources:

® cpu - CPU resource in millicores or CPU cores (Default: 1)

e inboundNetwork - Inbound network throughput in byte units per second (Default: 10000KiB/s)

e outboundNetwork - Outbound network throughput in byte units per second (Default:
10000KiB/s)

An example of Cruise Control capacity overrides configuration using bibyte units

13


https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-the-user-operator-standalone-str

Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
#...
cruiseControl:
#...
brokerCapacity:
cpu: "1"
inboundNetwork: 10000KiB/s
outboundNetwork: 10000KiB/s
overrides:
- brokers: [0]
cpu: "2.755"
inboundNetwork: 20000KiB/s
outboundNetwork: 20000KiB/s
- brokers: [1, 2]
cpu: 3000m
inboundNetwork: 30000KiB/s
outboundNetwork: 30000KiB/s

See Capacity overrides.

2.11. OAUTH 2.0 PASSWORD GRANTS FOR KAFKA CLIENTS

You can now configure Kafka clients to use the OAuth password grants mechanism for interaction with
Kafka brokers.

Password grants mechanism properties

1]
2]
o

o

14

security.protocol=SASL_SSL

sasl.mechanism=0OAUTHBEARER

sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required \
oauth.token.endpoint.uri="<token_endpoint_url>" \
oauth.client.id="<client_id>"\ )
oauth.client.secret="<client_secret>"\ 9
oauth.password.grant.username="<username>"\ 6
oauth.password.grant.password="<password>" \ ﬂ
oauth.scope="<scope>"\
oauth.audience="<audience>" ;
#...

Client ID, which is the name used when creating the client in the authorization server.
(Optional) Client secret created when creating the client in the authorization server.

Username for password grant authentication. OAuth password grant configuration (username and
password) uses the OAuth 2.0 password grant method. To use password grants, create a user
account for a client on your authorization server with limited permissions. The account should act
like a service account. Use in environments where user accounts are required for authentication,
but consider using a refresh token first.

Password for password grant authentication.


https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#property-cruise-control-capacity-overrides-reference

CHAPTER 2. ENHANCEMENTS

See Configuring Kafka Java clients to use OAuth 2.0 .

NOTE

At the time of release, a minor issue was discovered that currently prevents password
grants from working with the Kafka Bridge for AMQ Streams on OpenShift. For more
information, see the known issue for OAuth password grants configuration .

-

2.12. AUTHENTICATION AND AUTHORIZATION METRICS

You can now collect metrics specific to oauth authentication and opa or keycloak authorization. You
do this by setting the enableMetrics property to true in the listener configuration of the Kafka resource.
For example, set enableMetrics to true in spec.kafka.listeners.authentication and
spec.kafka.authorization. Similarly, you can enable metrics for oauth authentication in the
KafkaBridge, KafkaConnect, KafkaMirrorMaker, and KafkaMirrorMaker2 custom resources.

See Introducing metrics.

15


https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#proc-oauth-client-config-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-metrics-setup-str

Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

CHAPTER 3. TECHNOLOGY PREVIEWS

Technology Preview features included with AMQ Streams 2.3.

IMPORTANT

Technology Preview features are not supported with Red Hat production service-level
agreements (SLAs) and might not be functionally complete; therefore, Red Hat does not
recommend implementing any Technology Preview features in production environments.
This Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about the support scope, see Technology Preview Features
Support Scope.

3.1. OPENTELEMETRY FOR DISTRIBUTED TRACING

This release introduces OpenTelemetry for distributed tracing as a technology preview. You can use
OpenTelemetry with a specified tracing system. OpenTelemetry is replacing OpenTracing for
distributed tracing. Support for OpenTracing is deprecated.

By Default, OpenTelemetry uses the OTLP (OpenTelemetry Protocol) exporter for tracing. AMQ
Streams with OpenTelemetry is distributed for use with the Jaeger exporter, but you can specify other
tracing systems supported by OpenTelemetry. AMQ Streams plans to migrate to using OpenTelemetry
with the OTLP exporter by default, and is phasing out support for the Jaeger exporter.

See Introducing distributed tracing.

3.2. KAFKA STATIC QUOTA PLUGIN CONFIGURATION

Use the Kafka Static Quota plugin to set throughput and storage limits on brokers in your Kafka cluster.
You enable the plugin and set limits by configuring the Kafka resource. You can set a byte-rate
threshold and storage quotas to put limits on the clients interacting with your brokers.

Example Kafka Static Quota plugin configuration

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
config:
client.quota.callback.class: io.strimzi.kafka.quotas.StaticQuotaCallback
client.quota.callback.static.produce: 1000000
client.quota.callback.static.fetch: 1000000
client.quota.callback.static.storage.soft: 400000000000
client.quota.callback.static.storage.hard: 500000000000
client.quota.callback.static.storage.check-interval: 5

See Setting limits on brokers using the Kafka Static Quota plugin .

16


https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-distributed-tracing-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#proc-setting-broker-limits-str

CHAPTER 4. DEVELOPER PREVIEWS

CHAPTER 4. DEVELOPER PREVIEWS

Developer preview features included with AMQ Streams 2.3.

IMPORTANT

Developer Preview features are not supported with Red Hat production service-level
agreements (SLAs) and might not be functionally complete; therefore, Red Hat does not
recommend implementing any Developer Preview features in production environments.
This Developer Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about the support scope, see Developer Preview Support Scope.

4.1. usekRAFT FEATURE GATE

As a Kafka cluster administrator, you can toggle a subset of features on and off using feature gates in
the Cluster Operator deployment configuration.

Apache Kafka is in the process of phasing out the need for ZooKeeper. With the new UseKRaft feature
gate enabled, you can try deploying a Kafka cluster in KRaft (Kafka Raft metadata) mode without
ZooKeeper.

This feature gate is at an alpha level of maturity, and should be treated as a developer preview.

CAUTION

This feature gate is experimental, intended only for development and testing, and must not be enabled
for a production environment.

To enable the UseKRaft feature gate, specify +UseKRaft and +UseStrimziPodSets as values for the
STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration. The
UseKRaft feature gate depends on the UseStrimziPodSets feature gate.

Enabling the UseKRaft feature gate

env:
- name: STRIMZI _FEATURE_GATES
value: +UseKRaft, +UseStrimziPodSets

Currently, the KRaft mode in AMQ Streams has the following major limitations:

® Moving from Kafka clusters with ZooKeeper to KRaft clusters or the other way around is not
supported.

® Upgrades and downgrades of Apache Kafka versions or the AMQ Streams operator are not
supported. Users might need to delete the cluster, upgrade the operator and deploy a new
Kafka cluster.

® The Topic Operator is not supported. The spec.entityOperator.topicOperator property must
be removed from the Kafka custom resource.

® SCRAM-SHA-512 authentication is not supported.

17


https://access.redhat.com/support/offerings/devpreview/

Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

® JBOD storage is not supported. The type: jbod storage can be used, but the JBOD array can
contain only one disk.

® Liveness and readiness probes are disabled.

e Al Kafka nodes have both the controller and broker KRaft roles. Kafka clusters with separate
controller and broker nodes are not supported.

See UseKRaft feature gate and Feature gate releases.

18


https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#ref-operator-use-kraft-feature-gate-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#ref-operator-cluster-feature-gate-releases-str

CHAPTER 5. KAFKA BREAKING CHANGES

CHAPTER 5. KAFKA BREAKING CHANGES

This section describes any changes to Kafka that required a corresponding change to AMQ Streams to
continue to work.

5.1. USING KAFKA'S EXAMPLE FILE CONNECTORS

Kafka no longer includes the example file connectors FileStreamSourceConnector and
FileStreamSinkConnector in its CLASSPATH and plugin.path by default. AMQ Streams has been
updated so that you can still use these example connectors. The examples now have to be added to the
plugin path like any connector.

Two example connector configuration files are provided:

e examples/connect/kafka-connect-build.yaml provides a Kafka Connect build configuration,
which you can deploy to build a new Kafka Connect image with the file connectors.

e examples/connect/source-connector.yaml provides the configuration required to deploy the
file connectors as KafkaConnector resources.

See Deploying example KafkaConnector resources and Extending Kafka Connect with connector
plugins.

19


https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#proc-deploying-kafkaconnector-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#using-kafka-connect-with-plug-ins-str

Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

CHAPTER 6. DEPRECATED FEATURES

The features deprecated in this release, and that were supported in previous releases of AMQ Streams,
are outlined below.

6.1. JAVA 8 SUPPORT REMOVED IN AMQ STREAMS 2.4.0

Support for Java 8 was deprecated in Kafka 3.0.0 and AMQ Streams 2.0. Support for Java 8 will be
removed in AMQ Streams 2.4.0. This applies to all AMQ Streams components, including clients.

AMQ Streams supports Java 11. Use Java 11 when developing new applications. Plan to migrate any
applications that currently use Java 8 to Java 1l.

If you want to continue using Java 8 for the time being, AMQ Streams 2.2 provides Long Term Support
(LTS). For information on the LTS terms and dates, see the AMQ Streams LTS Support Policy .

6.2. OPENTRACING
Support for type: jaeger tracing is deprecated.

The Jaeger clients are now retired and the OpenTracing project archived. As such, we cannot guarantee
their support for future Kafka versions. We are introducing a new tracing implementation based on the
OpenTelemetry project.

6.3. ACL RULE CONFIGURATION

The operation property for configuring operations for ACL rules is deprecated. A new, more-
streamlined configuration format using the operations property is now available. For more information,
see Section 1.5, “Support for multiple operations in ACL rule configuration” .

6.4. KAFKA MIRRORMAKER1

Kafka MirrorMaker replicates data between two or more active Kafka clusters, within or across data
centers. Kafka MirrorMaker 1is deprecated for Kafka 3.0.0 and will be removed in Kafka 4.0.0.
MirrorMaker 2.0 will be the only version available. MirrorMaker 2.0 is based on the Kafka Connect
framework, connectors managing the transfer of data between clusters.

As a consequence, the AMQ Streams KafkaMirrorMaker custom resource which is used to deploy Kafka
MirrorMaker 1 has been deprecated. The KafkaMirrorMaker resource will be removed from AMQ
Streams when Kafka 4.0.0 is adopted.

If you are using MirrorMaker 1 (referred to as just MirrorMaker in the AMQ Streams documentation), use
the KafkaMirrorMaker2 custom resource with the ldentityReplicationPolicy. MirrorMaker 2.0 renames
topics replicated to a target cluster. IdentityReplicationPolicy configuration overrides the automatic
renaming. Use it to produce the same active/passive unidirectional replication as MirrorMaker 1.

See Kafka MirrorMaker 2.0 cluster configuration.

6.5. CRUISE CONTROL TLS SIDECAR PROPERTIES

The Cruise Control TLS sidecar has been removed. As a result, the .spec.cruiseControl.tlsSidecar and
.spec.cruiseControl.template.tisSidecar properties are now deprecated. The properties are ignored
and will be removed in the future.

20


https://access.redhat.com/articles/6975608
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#assembly-mirrormaker-str

CHAPTER 6. DEPRECATED FEATURES

6.6. IDENTITY REPLICATION POLICY

Identity replication policy is used with MirrorMaker 2.0 to override the automatic renaming of remote
topics. Instead of prepending the name with the name of the source cluster, the topic retains its original
name. This optional setting is useful for active/passive backups and data migration.

The AMQ Streams Identity Replication Policy class
(io.strimzi.kafka.connect.mirror.ldentityReplicationPolicy) is now deprecated and will be removed in

the future. You can update to use Kafka's own Identity Replication Policy (class
org.apache.kafka.connect.mirror.ldentityReplicationPolicy).

See Kafka MirrorMaker 2.0 cluster configuration.

6.7. LISTENERSTATUS TYPE PROPERTY

The type property of ListenerStatus has been deprecated and will be removed in the future.
ListenerStatus is used to specify the addresses of internal and external listeners. Instead of using the
type, the addresses are now specified by name.

See ListenerStatus schema reference.

6.8. CRUISE CONTROL CAPACITY CONFIGURATION
The disk and cpuUtilization capacity configuration properties have been deprecated, are ignored, and
will be removed in the future. The properties were used in setting capacity limits in optimization

proposals to determine if resource-based optimization goals are being broken. Disk and CPU capacity
limits are now automatically generated by AMQ Streams.

See Configuring and deploying Cruise Control with Kafka.

21


https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#assembly-mirrormaker-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#type-ListenerStatus-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#proc-configuring-deploying-cruise-control-str

Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

CHAPTER 7. FIXED ISSUES
The issues fixed in AMQ Streams 2.3 on OpenShift.

For details of the issues fixed in Kafka 3.3.0 and 3.3.1, refer to the Kafka 3.3.0 and Kafka 3.3.1 Release
Notes.

Table 7.1. Fixed issues

Issue Number Description

ENTMQST-4273

ENTMQST-4095

ENTMQST-1366

ENTMQST-4065

ENTMQST-4178

ENTMQST-4177

ENTMQST-4483

ENTMQST-4016

ENTMQST-3840

ENTMQST-4093

Avoid unnecessary rolling updates during upgrades when only
inter.broker.protocol.version is set

Badly formatted response from Connect can cause the operator to get stack on a
single reconciliation

Remove unused @DefaultValue annotations

Fix NPE when user specifies incorrect TLS secret or key inside that secret

Fix various issues in the standalone UO and TO installation files

Ignore errors when trying to clean the /tmp directory

KafkaTopic config: {} is automatically added or removed

Incorrect KafkaRebalance related annotation value logged when it's not
valid/unknown

ZooKeeper rolling update handling of unready pods

[KAFKA] log.cleaner.io.max.bytes.per.second cannot be changed

Table 7.2. Fixed common vulnerabilities and exposures (CVESs)

Issue Number Description

ENTMQST-4312

ENTMQST-4311

ENTMQST-4302

ENTMQST-4188

CVE-2022-42004 jackson-databind: use of deeply nested arrays

CVE-2022-42003 jackson-databind: deep wrapper array nesting wrt
UNWRAP_SINGLE_VALUE_ARRAYS

CVE-2022-38752 snakeyaml: Uncaught exception in
java.base/java.util. ArrayList.hashCode

CVE-2022-2047 jetty-http: improver hostname input handling


https://archive.apache.org/dist/kafka/3.3.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.3.1/RELEASE_NOTES.html
https://issues.redhat.com/browse/ENTMQST-4273
https://issues.redhat.com/browse/ENTMQST-4095
https://issues.redhat.com/browse/ENTMQST-1366
https://issues.redhat.com/browse/ENTMQST-4065
https://issues.redhat.com/browse/ENTMQST-4178
https://issues.redhat.com/browse/ENTMQST-4177
https://issues.redhat.com/browse/ENTMQST-4483
https://issues.redhat.com/browse/ENTMQST-4016
https://issues.redhat.com/browse/ENTMQST-3840
https://issues.redhat.com/browse/ENTMQST-4093
https://issues.redhat.com/browse/ENTMQST-4312
https://issues.redhat.com/browse/ENTMQST-4311
https://issues.redhat.com/browse/ENTMQST-4302
https://issues.redhat.com/browse/ENTMQST-4188

CHAPTER 8. KNOWN ISSUES

CHAPTER 8. KNOWN ISSUES

This section lists the known issues for AMQ Streams 2.3 on OpenShift.

8.1. KAFKA BRIDGE SENDING MESSAGES WITH CORS ENABLED

If Cross-Origin Resource Sharing (CORS) is enabled for the Kafka Bridge, a 400 bad request error is
returned when sending a HTTP request to produce messages.

Workaround

To avoid this error, disable CORS in the Kafka Bridge configuration. HTTP requests to produce
messages must have CORS disabled in the Kafka Bridge. This issue will be fixed in a future release of
AMQ Streams.

To use CORS, you can deploy Red Hat 3scale for the Kafka Bridge.

e Forinformation on deploying 3scale see, Using 3scale APl Management with the AMQ Streams
Kafka Bridge.

e Forinformation on CORS request handling by 3scale, see Administering the APl Gateway.

8.2. AMQ STREAMS CLUSTER OPERATOR ON IPV6 CLUSTERS

The AMQ Streams Cluster Operator does not start on Internet Protocol version 6 (IPv6) clusters.

Workaround

There are two workarounds for this issue.

Workaround one: Set the KUBERNETES_MASTER environment variable

1. Display the address of the Kubernetes master node of your OpenShift Container Platform
cluster:

oc cluster-info
Kubernetes master is running at <master_address>
#...

Copy the address of the master node.

2. List all Operator subscriptions:
I oc get subs -n <operator_namespace>
3. Edit the Subscription resource for AMQ Streams:

I oc edit sub amqg-streams -n <operator_namespace>

4. In spec.config.env, add the KUBERNETES_MASTER environment variable, set to the address
of the Kubernetes master node. For example:

apiVersion: operators.coreos.com/vialphai
kind: Subscription

23


https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html/using_3scale_api_management_with_the_amq_streams_kafka_bridge/index
https://access.redhat.com/documentation/en-us/red_hat_3scale/2-saas/html-single/administering_the_api_gateway/index

Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

metadata:
name: amqg-streams
namespace: <operator_namespace>
spec:
channel: amg-streams-1.8.x
installPlanApproval: Automatic
name: amqg-streams
source: mirror-amqg-streams
sourceNamespace: openshift-marketplace
config:
env:
- name: KUBERNETES_MASTER
value: MASTER-ADDRESS

5. Save and exit the editor.

6. Check that the Subscription was updated:

I oc get sub amq-streams -n <operator_namespace>

7. Check that the Cluster Operator Deployment was updated to use the new environment
variable:

I oc get deployment <cluster_operator_deployment_name>

Workaround two: Disable hostname verification

1. List all Operator subscriptions:

I oc get subs -n <operator_namespace>

2. Edit the Subscription resource for AMQ Streams:
I oc edit sub amqg-streams -n <operator_namespace>

3. Inspec.config.env, add the KUBERNETES_DISABLE_HOSTNAME_VERIFICATION
environment variable, set to true. For example:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: amqg-streams
namespace: <operator_namespace>
spec:
channel: amg-streams-1.8.x
installPlanApproval: Automatic
name: amqg-streams
source: mirror-amqg-streams
sourceNamespace: openshift-marketplace
config:
env:
- name: KUBERNETES_DISABLE_HOSTNAME_VERIFICATION
value: "true"

24



CHAPTER 8. KNOWN ISSUES

4. Save and exit the editor.

5. Check that the Subscription was updated:

I oc get sub amqg-streams -n <operator_namespace>

6. Check that the Cluster Operator Deployment was updated to use the new environment
variable:

I oc get deployment <cluster_operator_deployment_name>

8.3. CRUISE CONTROL CPU UTILIZATION ESTIMATION

Cruise Control for AMQ Streams has a known issue that relates to the calculation of CPU utilization
estimation. CPU utilization is calculated as a percentage of the defined capacity of a broker pod. The
issue occurs when running Kafka brokers across nodes with varying CPU cores. For example, nodel
might have 2 CPU cores and node2 might have 4 CPU cores. In this situation, Cruise Control can
underestimate and overestimate CPU load of brokers The issue can prevent cluster rebalances when
the pod is under heavy load.

Workaround

There are two workarounds for this issue.

Workaround one: Equal CPU requests and limits

You can set CPU requests equal to CPU limits in Kafka.spec.kafka.resources. That way, all CPU
resources are reserved upfront and are always available. This configuration allows Cruise Control to
properly evaluate the CPU utilization when preparing the rebalance proposals based on CPU goals.

Workaround two: Exclude CPU goals

You can exclude CPU goals from the hard and default goals specified in the Cruise Control
configuration.

Example Cruise Control configuration without CPU goals

apiVersion: kafka.strimzi.io/vibeta2
kind: Kafka
metadata:
name: my-cluster
spec:
kafka:
#...
zookeeper:
#...
entityOperator:
topicOperator: {}
userOperator: {}
cruiseControl:
brokerCapacity:
inboundNetwork: 10000KB/s
outboundNetwork: 10000KB/s
config:
hard.goals: >
com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,

25



Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

com.linkedin.kafka.cruisecontrol.analyzer.goals.MinTopicLeadersPerBrokerGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworklnboundCapacityGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal
default.goals: >
com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.MinTopicLeadersPerBrokerGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworklnboundCapacityGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaDistributionGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.PotentialNwOutGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskUsageDistributionGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworklnboundUsageDistributionGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundUsageDistributionGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.TopicReplicaDistributionGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderReplicaDistributionGoal,
com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderBytesInDistributionGoal

For more information, see Insufficient CPU capacity.

8.4. USER OPERATOR SCALABILITY

The User Operator can timeout when creating multiple users at the same time. Reconciliation can take
too long.

Workaround

If you encounter this issue, reduce the number of users you are creating at the same time. And wait until
they are ready before creating more users.

8.5. OAUTH PASSWORD GRANTS CONFIGURATION

OAuth password grants are currently not being handled correctly by the Kafka Bridge. The OAuth
authentication is not being configured properly.

This will be fixed for the next release.

Issue Number Description

ENTMQST-4479 Newly added OAuth Password Grant feature not
working in Kafka Bridge

8.6. OPENTELEMETRY: RUNNING JAEGER WITH TLS ENABLED

Support for tracing using OpenTelemetry is built in to the following Kafka components:
e Kafka Connect

® MirrorMaker

26


https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.3/html-single/configuring_amq_streams_on_openshift/index#proc-generating-optimization-proposals-str
https://issues.redhat.com/browse/ENTMQST-4479

CHAPTER 8. KNOWN ISSUES

® MirrorMaker 2
® AMQ Streams Kafka Bridge

When using the Jaeger exporter, trace data is retrieved through the Jaeger gPRC endpoint. By default,
this endpoint does not have TLS enabled. However, it can still be configured to use TLS when deploying
the Jaeger instance using the Jaeger operator. For example, when running the Red Hat OpenShift
distributed tracing operator on OpenShift, which is a Jaeger operator, the operator automatically
enables TLS. Jaeger instances with TLS on the gRPC endpoint are not supported on AMQ Streams.

There are two workarounds for this issue.

Workaround one: Disable TLS on the gRPC endpoint

Create a Jaeger custom resource and disable TLS on the gRPC port by specifying the following
properties.

e collector.grpc.tis.enabled: false
® reporter.grpc.tls.enabled: false

Example Jaeger custom resource to disable TLS

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
name: my-jaeger
spec:
alllnOne:
options:
agent.grpc.tls.enabled: false
collector.grpc.tls.enabled: false

NOTE

This configuration uses the alllnOne strategy, which deploys all Jaeger componentsin a
single pod. Other deployment strategies, such as the production strategy for production
environments, separate the Jaeger components into separate pods for increased
scalability and reliability.

Workaround two: Export traces through an OpenTelemetry collector

Use a collector to receive, process, and export the OpenTelemetry trace data. To resolve the issue by
exporting trace data through an OpenTelemetry collector, you can follow these steps:

1. Deploy the Red Hat OpenShift distributed tracing collection operator.

2. Configure an OpenTelemetryCollector custom resource to deploy the collector to receive
trace data through a non-TLS-enabled endpoint and pass it to a TLS-enabled endpoint.

3. Inthe custom resource, specify the receivers properties to create a non-TLS-enabled Jaeger
gRPC endpoint on port 14250. You can also create other endpoints, such as an OTLP endpoint,

if you are using other tracing systems.

4. Specify the exporters properties to point to the TLS-enabled Jaeger gRPC endpoint.

27



Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

5. Declare the pipeline configuration in the pipelines properties of the custom resource.

In this example, the pipeline is from Jaeger and OTLP receivers to a Jaeger gRPC endpoint.

Example OpenTelemetry collector configuration

apiVersion: opentelemetry.io/vialphai
kind: OpenTelemetryCollector
metadata:
name: cluster-collector
namespace: <namespace>
spec:
mode: deployment
config: |
receivers:
otlp:
protocols:
grpc:
http:
jaeger:
protocols:
grpc:
exporters:
jaeger:
endpoint: jaeger-all-in-one-inmemory-collector-headless.openshift-distributed-
tracing.svc.cluster.local: 14250
tls:
ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"
service:
pipelines:
traces:
receivers: [otlp,jaeger]
exporters: [jaeger]

To use the collector, you then need to specify the collector endpoint as the exporter endpoint in the
tracing configuration.

Example tracing configuration for Kafka Connect using OpenTelemetry

apiVersion: kafka.strimzi.io/vibeta2
kind: KafkaConnect
metadata:
name: my-connect-cluster
spec:
#...
template:
connectContainer:
env:
- name: OTEL_SERVICE_NAME
value: my-otel-service
- name: OTEL_EXPORTER_JAEGER_ENDPOINT
value: "http:/ jaeger-all-in-one-inmemory-collector-headless.openshift-distributed-

tracing.svc.cluster.local:14250"

28



CHAPTER 8. KNOWN ISSUES

tracing:
type: opentelemetry
#...

29



Red Hat AMQ Streams 2.3 Release Notes for AMQ Streams 2.3 on OpenShift

CHAPTER 9. SUPPORTED INTEGRATION WITH RED HAT
PRODUCTS

AMQ Streams 2.3 supports integration with the following Red Hat products.

Red Hat Single Sign-On
Provides OAuth 2.0 authentication and OAuth 2.0 authorization.
Red Hat 3scale APl Management
Secures the Kafka Bridge and provides additional APl management features.
Red Hat Debezium
Monitors databases and creates event streams.
Red Hat Red Hat build of Apicurio Registry

Provides a centralized store of service schemas for data streaming.

For information on the functionality these products can introduce to your AMQ Streams deployment,
refer to the product documentation.

Additional resources

® Red Hat Single Sign-On Supported Configurations
® Red Hat 3scale APl Management Supported Configurations
® Red Hat Debezium Supported Configurations

® Red Hat Service Registry Supported Configurations

30


https://access.redhat.com/articles/2342861
https://access.redhat.com/articles/2798521
https://access.redhat.com/articles/4938181
https://access.redhat.com/articles/5208571

CHAPTER 10. IMPORTANT LINKS

CHAPTER 10. IMPORTANT LINKS

® AMQ Streams Supported Configurations
® AMQ Streams Component Details

Revised on 2023-03-08 11:58:48 UTC

31


https://access.redhat.com/articles/6644711
https://access.redhat.com/articles/6649131

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. FEATURES
	1.1. OPENSHIFT CONTAINER PLATFORM SUPPORT
	1.2. KAFKA 3.3.1 SUPPORT
	1.3. SUPPORTING THE V1BETA2 API VERSION
	1.3.1. Upgrading custom resources to v1beta2

	1.4. AUTOMATIC APPROVAL OF CRUISE CONTROL OPTIMIZATION PROPOSALS
	1.5. SUPPORT FOR MULTIPLE OPERATIONS IN ACL RULE CONFIGURATION
	1.6. NEW CLUSTER-IP INTERNAL LISTENER TYPE
	1.7. CLUSTER OPERATOR LEADER ELECTION TO RUN MULTIPLE REPLICAS
	1.8. SUPPORT FOR IBM Z AND LINUXONE ARCHITECTURE
	1.8.1. Requirements for IBM Z and LinuxONE
	1.8.2. Unsupported on IBM Z and LinuxONE

	1.9. SUPPORT FOR IBM POWER ARCHITECTURE
	1.9.1. Requirements for IBM Power
	1.9.2. Unsupported on IBM Power

	1.10. RED HAT BUILD OF DEBEZIUM FOR CHANGE DATA CAPTURE
	1.11. RED HAT BUILD OF APICURIO REGISTRY FOR SCHEMA VALIDATION

	CHAPTER 2. ENHANCEMENTS
	2.1. KAFKA 3.3.1 ENHANCEMENTS
	2.2. KAFKA CONNECTOR STATUS
	2.3. CONTROLPLANELISTENER FEATURE GATE MOVES TO GA
	2.4. SERVICEACCOUNTPATCHING FEATURE GATE MOVES TO GA
	2.5. USESTRIMZIPODSETS FEATURE GATE MOVES TO BETA
	2.6. RACK AWARENESS CONFIGURATION FOR THE KAFKA BRIDGE
	2.7. PLUGGABLE POD SECURITY PROFILES
	2.8. KAFKA BROKER RESTART EVENTS
	2.9. CONFIGURABLE KAFKA ADMIN CLIENT
	2.10. CRUISE CONTROL CAPACITY OVERRIDES
	2.11. OAUTH 2.0 PASSWORD GRANTS FOR KAFKA CLIENTS
	2.12. AUTHENTICATION AND AUTHORIZATION METRICS

	CHAPTER 3. TECHNOLOGY PREVIEWS
	3.1. OPENTELEMETRY FOR DISTRIBUTED TRACING
	3.2. KAFKA STATIC QUOTA PLUGIN CONFIGURATION

	CHAPTER 4. DEVELOPER PREVIEWS
	4.1. USEKRAFT FEATURE GATE

	CHAPTER 5. KAFKA BREAKING CHANGES
	5.1. USING KAFKA’S EXAMPLE FILE CONNECTORS

	CHAPTER 6. DEPRECATED FEATURES
	6.1. JAVA 8 SUPPORT REMOVED IN AMQ STREAMS 2.4.0
	6.2. OPENTRACING
	6.3. ACL RULE CONFIGURATION
	6.4. KAFKA MIRRORMAKER 1
	6.5. CRUISE CONTROL TLS SIDECAR PROPERTIES
	6.6. IDENTITY REPLICATION POLICY
	6.7. LISTENERSTATUS TYPE PROPERTY
	6.8. CRUISE CONTROL CAPACITY CONFIGURATION

	CHAPTER 7. FIXED ISSUES
	CHAPTER 8. KNOWN ISSUES
	8.1. KAFKA BRIDGE SENDING MESSAGES WITH CORS ENABLED
	8.2. AMQ STREAMS CLUSTER OPERATOR ON IPV6 CLUSTERS
	8.3. CRUISE CONTROL CPU UTILIZATION ESTIMATION
	8.4. USER OPERATOR SCALABILITY
	8.5. OAUTH PASSWORD GRANTS CONFIGURATION
	8.6. OPENTELEMETRY: RUNNING JAEGER WITH TLS ENABLED

	CHAPTER 9. SUPPORTED INTEGRATION WITH RED HAT PRODUCTS
	CHAPTER 10. IMPORTANT LINKS

