Red Hat Software Collections 3 3.6 Release Notes

Release Notes for Red Hat Software Collections 3.6

Lenka Špačková
Red Hat Customer Content Services
lspackova@redhat.com

Jaromír Hradílek
Red Hat Customer Content Services
jhradilek@redhat.com

Eliška Slobodová
Red Hat Customer Content Services
Abstract

Table of Contents

CHAPTER 1. RED HAT SOFTWARE COLLECTIONS 3.6 4
 1.1. ABOUT RED HAT SOFTWARE COLLECTIONS 4
 1.1.1. Red Hat Developer Toolset ... 4
 1.2. MAIN FEATURES ... 4
 1.3. CHANGES IN RED HAT SOFTWARE COLLECTIONS 3.6 15
 1.3.1. Overview .. 15
 1.3.2. Changes in Red Hat Developer Toolset 16
 1.3.3. Changes in Git ... 17
 1.3.4. Changes in nginx ... 17
 1.3.5. Changes in Node.js ... 18
 1.3.6. Changes in Apache httpd ... 18
 1.3.7. Changes in Perl ... 18
 1.3.8. Changes in PHP .. 18
 1.3.9. Changes in HAProxy ... 18
 1.3.10. Changes in Ruby ... 19
 1.4. COMPATIBILITY INFORMATION ... 19
 1.5. KNOWN ISSUES .. 19
 Other Notes ... 22
 1.6. DEPRECATED FUNCTIONALITY ... 23

CHAPTER 2. INSTALLATION ... 24
 2.1. GETTING ACCESS TO RED HAT SOFTWARE COLLECTIONS 24
 2.1.1. Using Red Hat Subscription Management 24
 2.1.2. Packages from the Optional Repository 25
 2.2. INSTALLING RED HAT SOFTWARE COLLECTIONS 27
 2.2.1. Installing Individual Software Collections 27
 2.2.2. Installing Optional Packages ... 28
 2.2.3. Installing Debugging Information 28
 2.3. UNINSTALLING RED HAT SOFTWARE COLLECTIONS 28
 2.4. REBUILDING RED HAT SOFTWARE COLLECTIONS 28

CHAPTER 3. USAGE ... 30
 3.1. USING RED HAT SOFTWARE COLLECTIONS 30
 3.1.1. Running an Executable from a Software Collection 30
 3.1.2. Running a Shell Session with a Software Collection as Default .. 30
 3.1.3. Running a System Service from a Software Collection 31
 Running a System Service from a Software Collection in Red Hat Enterprise Linux 6 31
 Running a System Service from a Software Collection in Red Hat Enterprise Linux 7 31
 3.2. ACCESSING A MANUAL PAGE FROM A SOFTWARE COLLECTION 31
 3.3. DEPLOYING APPLICATIONS THAT USE RED HAT SOFTWARE COLLECTIONS 32
 3.4. RED HAT SOFTWARE COLLECTIONS CONTAINER IMAGES 32

CHAPTER 4. SPECIFICS OF INDIVIDUAL SOFTWARE COLLECTIONS 34
 4.1. RED HAT DEVELOPER TOOLSET ... 34
 4.2. MONGODB 3.6 ... 34
 4.3. MAVEN .. 35
 4.4. DATABASE CONNECTORS ... 35
CHAPTER 5. MIGRATION

5.1. MIGRATING TO MARIADB 10.3
5.1.1. Notable Differences Between the rh-mariadb102 and rh-mariadb103 Software Collections
5.1.2. Upgrading from the rh-mariadb102 to the rh-mariadb103 Software Collection
5.2. MIGRATING TO MYSQL 8.0
5.2.1. Notable Differences Between MySQL 5.7 and MySQL 8.0
 Differences Specific to the rh-mysql80 Software Collection
 General Changes in MySQL 8.0
5.2.2. Upgrading to the rh-mysql80 Software Collection
5.3. MIGRATING TO MONGODB 3.6
5.3.1. Notable Differences Between MongoDB 3.4 and MongoDB 3.6
 General Changes
 Compatibility Changes
 Backwards Incompatible Features
5.3.2. Upgrading from the rh-mongodb34 to the rh-mongodb36 Software Collection
5.4. MIGRATING TO POSTGRESQL 12
5.4.1. Migrating from a Red Hat Enterprise Linux System Version of PostgreSQL to the PostgreSQL 12 Software Collection
5.4.2. Migrating from the PostgreSQL 10 Software Collection to the PostgreSQL 12 Software Collection
5.5. MIGRATING TO NGINX 1.18
5.6. MIGRATING TO REDIS 5
 Compatibility Notes

CHAPTER 6. ADDITIONAL RESOURCES

6.1. RED HAT PRODUCT DOCUMENTATION
6.2. RED HAT DEVELOPERS

APPENDIX A. REVISION HISTORY
CHAPTER 1. RED HAT SOFTWARE COLLECTIONS 3.6

This chapter serves as an overview of the Red Hat Software Collections 3.6 content set. It provides a list of components and their descriptions, sums up changes in this version, documents relevant compatibility information, and lists known issues.

1.1. ABOUT RED HAT SOFTWARE COLLECTIONS

For certain applications, more recent versions of some software components are often needed in order to use their latest new features. Red Hat Software Collections is a Red Hat offering that provides a set of dynamic programming languages, database servers, and various related packages that are either more recent than their equivalent versions included in the base Red Hat Enterprise Linux system, or are available for this system for the first time.

Red Hat Software Collections 3.6 is available for Red Hat Enterprise Linux 7; selected previously released components also for Red Hat Enterprise Linux 6. For a complete list of components that are distributed as part of Red Hat Software Collections and a brief summary of their features, see Section 1.2, “Main Features”.

Red Hat Software Collections does not replace the default system tools provided with Red Hat Enterprise Linux 6 or Red Hat Enterprise Linux 7. Instead, a parallel set of tools is installed in the /opt/ directory and can be optionally enabled per application by the user using the supplied scl utility. The default versions of Perl or PostgreSQL, for example, remain those provided by the base Red Hat Enterprise Linux system.

NOTE

In Red Hat Enterprise Linux 8, similar components are provided as Application Streams.

All Red Hat Software Collections components are fully supported under Red Hat Enterprise Linux Subscription Level Agreements, are functionally complete, and are intended for production use. Important bug fix and security errata are issued to Red Hat Software Collections subscribers in a similar manner to Red Hat Enterprise Linux for at least two years from the release of each major version. In each major release stream, each version of a selected component remains backward compatible. For detailed information about length of support for individual components, refer to the Red Hat Software Collections Product Life Cycle document.

1.1.1. Red Hat Developer Toolset

Red Hat Developer Toolset is a part of Red Hat Software Collections, included as a separate Software Collection. For more information about Red Hat Developer Toolset, refer to the Red Hat Developer Toolset Release Notes and the Red Hat Developer Toolset User Guide.

1.2. MAIN FEATURES

Table 1.1, “Red Hat Software Collections Components” lists components that are supported at the time of the Red Hat Software Collections 3.6 release.

Table 1.1. Red Hat Software Collections Components
<table>
<thead>
<tr>
<th>Component</th>
<th>Software Collection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Developer Toolset 10.0</td>
<td>devtoolset-10</td>
<td>Red Hat Developer Toolset is designed for developers working on the Red Hat Enterprise Linux platform. It provides current versions of the GNU Compiler Collection, GNU Debugger, and other development, debugging, and performance monitoring tools. For a complete list of components, see the Red Hat Developer Toolset Components table in the Red Hat Developer Toolset User Guide.</td>
</tr>
<tr>
<td>Perl 5.26.3[a]</td>
<td>rh-perl526</td>
<td>A release of Perl, a high-level programming language that is commonly used for system administration utilities and web programming. The rh-perl526 Software Collection provides additional utilities, scripts, and database connectors for MySQL and PostgreSQL. It includes the DateTime Perl module and the mod_perl Apache httpd module, which is supported only with the httpd24 Software Collection. Additionally, it provides the cpanm utility for easy installation of CPAN modules. The rh-perl526 packaging is aligned with upstream; the perl526-perl package installs also core modules, while the interpreter is provided by the perl-interpreter package.</td>
</tr>
<tr>
<td>Perl 5.30.1[a]</td>
<td>rh-perl530</td>
<td>A release of Perl, a high-level programming language that is commonly used for system administration utilities and web programming. The rh-perl530 Software Collection provides additional utilities, scripts, and database connectors for MySQL, PostgreSQL, and SQLite. It includes the DateTime Perl module and the mod_perl Apache httpd module, which is supported only with the httpd24 Software Collection. Additionally, it provides the cpanm utility for easy installation of CPAN modules, the LWP::UserAgent module for communicating with the HTTP servers, and the LWP::Protocol::https module for securing the communication. The rh-perl530 packaging is aligned with upstream; the perl530-perl package installs also core modules, while the interpreter is provided by the perl-interpreter package.</td>
</tr>
<tr>
<td>PHP 7.3.20[a]</td>
<td>rh-php73</td>
<td>A release of PHP 7.3 with PEAR 1.10.9, APCu 5.1.17, and the Xdebug extension.</td>
</tr>
<tr>
<td>Python 2.7.18</td>
<td>python27</td>
<td>A release of Python 2.7 with a number of additional utilities. This Python version provides various features and enhancements, including an ordered dictionary type, faster I/O operations, and improved forward compatibility with Python 3. The python27 Software Collections contains the Python 2.7.13 interpreter, a set of extension libraries useful for programming web applications and mod_wsgi (only supported with the httpd24 Software Collection), MySQL and PostgreSQL database connectors, and numpy and scipy.</td>
</tr>
<tr>
<td>Component</td>
<td>Software Collection</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Python 3.8.6</td>
<td>rh-python38</td>
<td>The rh-python38 Software Collection contains Python 3.8, which introduces new Python modules, such as <code>contextvars</code>, <code>dataclasses</code>, or <code>importlib.resources</code>, new language features, improved developer experience, and performance improvements. In addition, a set of popular extension libraries is provided, including <code>mod_wsgi</code> (supported only together with the httpd24 Software Collection), <code>numpy</code>, <code>scipy</code>, and the <code>psycopg2</code> PostgreSQL database connector.</td>
</tr>
<tr>
<td>Ruby 2.5.5</td>
<td>rh-ruby25</td>
<td>A release of Ruby 2.5. This version provides multiple performance improvements and new features, for example, simplified usage of blocks with the <code>rescue</code>, <code>else</code>, and <code>ensure</code> keywords, a new <code>yield_self</code> method, support for branch coverage and method coverage measurement, new <code>Hash#slice</code> and <code>Hash#transform_keys</code> methods. Ruby 2.5.0 maintains source-level backward compatibility with Ruby 2.4.</td>
</tr>
<tr>
<td>Ruby 2.6.2</td>
<td>rh-ruby26</td>
<td>A release of Ruby 2.6. This version provides multiple performance improvements and new features, such as endless ranges, the <code>Binding#source_location</code> method, and the <code>$SAFE</code> process global state. Ruby 2.6.0 maintains source-level backward compatibility with Ruby 2.5.</td>
</tr>
<tr>
<td>Ruby 2.7.1</td>
<td>rh-ruby27</td>
<td>A release of Ruby 2.7. This version provides multiple performance improvements and new features, such as Compaction GC or command-line interface for the LALR(1) parser generator, and an enhancement to REPL. Ruby 2.7 maintains source-level backward compatibility with Ruby 2.6.</td>
</tr>
<tr>
<td>MariaDB 10.3.27</td>
<td>rh-mariadb103</td>
<td>A release of MariaDB, an alternative to MySQL for users of Red Hat Enterprise Linux. For all practical purposes, MySQL is binary compatible with MariaDB and can be replaced with it without any data conversions. This version introduces system-versioned tables, invisible columns, a new instant <code>ADD COLUMN</code> operation for <code>InnoDB</code>, and a JDBC connector for MariaDB and MySQL.</td>
</tr>
<tr>
<td>MongoDB 3.6.3</td>
<td>rh-mongodb36</td>
<td>A release of MongoDB, a cross-platform document-oriented database system classified as a NoSQL database. This release introduces change streams, retryable writes, and JSON Schema, as well as other features.</td>
</tr>
<tr>
<td>MySQL 8.0.21</td>
<td>rh-mysql80</td>
<td>A release of the MySQL server, which introduces a number of new security and account management features and enhancements.</td>
</tr>
<tr>
<td>Component</td>
<td>Software Collection</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>PostgreSQL 10.15 [a]</td>
<td>rh-postgresql10</td>
<td>A release of PostgreSQL, which includes a significant performance improvement and a number of new features, such as logical replication using the <code>publish</code> and <code>subscribe</code> keywords, or stronger password authentication based on the SCRAM-SHA-256 mechanism.</td>
</tr>
<tr>
<td>PostgreSQL 12.5 [a]</td>
<td>rh-postgresql12</td>
<td>A release of PostgreSQL, which provides the pgaudit extension, various enhancements to partitioning and parallelism, support for the SQL/JSON path language, and performance improvements.</td>
</tr>
<tr>
<td>Node.js 10.21.0 [a]</td>
<td>rh-nodejs10</td>
<td>A release of Node.js, which provides multiple API enhancements and new features, including V8 engine version 6.6, full N-API support, and stability improvements.</td>
</tr>
<tr>
<td>Node.js 12.19.1 [a]</td>
<td>rh-nodejs12</td>
<td>A release of Node.js with V8 engine version 7.6, support for ES6 modules, and improved support for native modules.</td>
</tr>
<tr>
<td>Node.js 14.15.0 [a]</td>
<td>rh-nodejs14</td>
<td>A release of Node.js with V8 version 8.3, a new experimental WebAssembly System Interface (WASI), and a new experimental Async Local Storage API.</td>
</tr>
<tr>
<td>nginx 1.16.1 [a]</td>
<td>rh-nginx116</td>
<td>A release of nginx, a web and proxy server with a focus on high concurrency, performance, and low memory usage. This version introduces numerous updates related to SSL, several new directives and parameters, and various enhancements.</td>
</tr>
<tr>
<td>nginx 1.18.0 [a]</td>
<td>rh-nginx118</td>
<td>A release of nginx, a web and proxy server with a focus on high concurrency, performance, and low memory usage. This version introduces enhancements to HTTP request rate and connection limiting, and a new auth_delay directive. In addition, support for new variables has been added to multiple directives.</td>
</tr>
<tr>
<td>Apache httpd 2.4.34 [a]</td>
<td>httpd24</td>
<td>A release of the Apache HTTP Server (httpd), including a high performance event-based processing model, enhanced SSL module and FastCGI support. The mod_auth_kerb, mod_auth_mellon, and ModSecurity modules are also included.</td>
</tr>
<tr>
<td>Varnish Cache 5.2.1 [a]</td>
<td>rh-varnish5</td>
<td>A release of Varnish Cache, a high-performance HTTP reverse proxy. This version includes the shard director, experimental HTTP/2 support, and improvements to Varnish configuration through separate VCL files and VCL labels.</td>
</tr>
<tr>
<td>Component</td>
<td>Software Collection</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Varnish Cache 6.0.6</td>
<td>rh-varnish6</td>
<td>A release of Varnish Cache, a high-performance HTTP reverse proxy. This version includes support for Unix Domain Sockets (both for clients and for back-end servers), new level of the VCL language (vcl 4.1), and improved HTTP/2 support.</td>
</tr>
<tr>
<td>Maven 3.6.1</td>
<td>rh-maven36</td>
<td>A release of Maven, a software project management and comprehension tool. This release provides various enhancements and bug fixes.</td>
</tr>
<tr>
<td>Git 2.18.4</td>
<td>rh-git218</td>
<td>A release of Git, a distributed revision control system with a decentralized architecture. As opposed to centralized version control systems with a client–server model, Git ensures that each working copy of a Git repository is its exact copy with complete revision history. This version includes the Large File Storage (LFS) extension.</td>
</tr>
<tr>
<td>Git 2.27.0</td>
<td>rh-git227</td>
<td>A release of Git, a distributed revision control system with a decentralized architecture. This version introduces numerous enhancements; for example, the <code>git checkout</code> command split into <code>git switch</code> and <code>git restore</code>, and changed behavior of the <code>git rebase</code> command. In addition, Git Large File Storage (LFS) has been updated to version 2.11.0.</td>
</tr>
<tr>
<td>Redis 5.0.5</td>
<td>rh-redis5</td>
<td>A release of Redis 5.0, a persistent key-value database. Redis now provides <code>redis-trib</code>, a cluster management tool.</td>
</tr>
<tr>
<td>HAProxy 1.8.24</td>
<td>rh-haproxy18</td>
<td>A release of HAProxy 1.8, a reliable, high-performance network load balancer for TCP and HTTP-based applications.</td>
</tr>
<tr>
<td>JDK Mission Control 7.11</td>
<td>rh-jmc</td>
<td>This Software Collection includes JDK Mission Control (JMC), a powerful profiler for HotSpot JVMs. JMC provides an advanced set of tools for efficient and detailed analysis of extensive data collected by the JDK Flight Recorder. JMC requires JDK version 8 or later to run. Target Java applications must run with at least OpenJDK version 11 so that JMC can access JDK Flight Recorder features. The rh-jmc Software Collection requires the rh-maven35 Software Collection.</td>
</tr>
</tbody>
</table>

[a] This Software Collection is available only for Red Hat Enterprise Linux 7

Previously released Software Collections remain available in the same distribution channels. All Software Collections, including retired components, are listed in the Table 1.2, “All Available Software Collections”. Software Collections that are no longer supported are marked with an asterisk (*).
See the Red Hat Software Collections Product Life Cycle document for information on the length of support for individual components. For detailed information regarding previously released components, refer to the Release Notes for earlier versions of Red Hat Software Collections.

Table 1.2. All Available Software Collections

<table>
<thead>
<tr>
<th>Component</th>
<th>Software Collection</th>
<th>Availability</th>
<th>Architectures supported on RHEL7</th>
</tr>
</thead>
</table>

Components New in Red Hat Software Collections 3.6
- Red Hat Developer Toolset 10.0: devtoolset-10, RHEL7, x86_64, s390x, ppc64, ppc64le
- Git 2.27.0: rh-git227, RHEL7, x86_64, s390x, ppc64le
- nginx 1.18.0: rh-nginx118, RHEL7, x86_64, s390x, ppc64le
- Node.js 14.15.0: rh-nodejs14, RHEL7, x86_64, s390x, ppc64le

Components Updated in Red Hat Software Collections 3.6
- Apache httpd 2.4.34: httpd24, RHEL7, x86_64, s390x, aarch64, ppc64le
- PHP 7.3.20: rh-php73, RHEL7, x86_64, s390x, aarch64, ppc64le
- HAProxy 1.8.24: rh-haproxy18, RHEL7, x86_64
- Perl 5.30.1: rh-perl530, RHEL7, x86_64, s390x, aarch64, ppc64le
- Ruby 2.5.5: rh-ruby25, RHEL7, x86_64, s390x, aarch64, ppc64le

Components Last Updated in Red Hat Software Collections 3.5
- Red Hat Developer Toolset 9.1: devtoolset-9, RHEL7, x86_64, s390x, aarch64, ppc64, ppc64le
- Python 3.8.6: rh-python38, RHEL7, x86_64, s390x, aarch64, ppc64le
- Ruby 2.7.1: rh-ruby27, RHEL7, x86_64, s390x, aarch64, ppc64le
<table>
<thead>
<tr>
<th>Components Last Updated in Red Hat Software Collections 3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>JDK Mission Control 7.1.1</td>
</tr>
<tr>
<td>Varnish Cache 6.0.6</td>
</tr>
<tr>
<td>Apache httpd 2.4.34 (the last update for RHEL6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Components Last Updated in Red Hat Software Collections 3.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node.js 12.19.1</td>
</tr>
<tr>
<td>nginx 1.16.1</td>
</tr>
<tr>
<td>PostgreSQL 12.5</td>
</tr>
<tr>
<td>Maven 3.6.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Components Last Updated in Red Hat Software Collections 3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Developer Toolset 8.1</td>
</tr>
<tr>
<td>MariaDB 10.3.27</td>
</tr>
<tr>
<td>Redis 5.0.5</td>
</tr>
<tr>
<td>Ruby 2.6.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Components Last Updated in Red Hat Software Collections 3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHP 7.2.24</td>
</tr>
<tr>
<td>MySQL 8.0.21</td>
</tr>
<tr>
<td>Components Last Updated in Red Hat Software Collections 3.2</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Node.js 10.21.0</td>
</tr>
<tr>
<td>rh-nodejs10</td>
</tr>
<tr>
<td>RHEL7</td>
</tr>
<tr>
<td>x86_64, s390x, aarch64, ppc64le</td>
</tr>
<tr>
<td>nginx 1.14.1</td>
</tr>
<tr>
<td>rh-nginx114*</td>
</tr>
<tr>
<td>RHEL7</td>
</tr>
<tr>
<td>x86_64, s390x, aarch64, ppc64le</td>
</tr>
<tr>
<td>Git 2.18.4</td>
</tr>
<tr>
<td>rh-git218</td>
</tr>
<tr>
<td>RHEL7</td>
</tr>
<tr>
<td>x86_64, s390x, aarch64, ppc64le</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Components Last Updated in Red Hat Software Collections 3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Developer Toolset 7.1</td>
</tr>
<tr>
<td>devtoolset-7*</td>
</tr>
<tr>
<td>RHEL6, RHEL7</td>
</tr>
<tr>
<td>x86_64, s390x, aarch64, ppc64le</td>
</tr>
<tr>
<td>Perl 5.26.3</td>
</tr>
<tr>
<td>rh-perl526</td>
</tr>
<tr>
<td>RHEL7</td>
</tr>
<tr>
<td>x86_64, s390x, aarch64, ppc64le</td>
</tr>
<tr>
<td>MongoDB 3.6.3</td>
</tr>
<tr>
<td>rh-mongodb36</td>
</tr>
<tr>
<td>RHEL7</td>
</tr>
<tr>
<td>x86_64, s390x, aarch64, ppc64le</td>
</tr>
<tr>
<td>Varnish Cache 5.2.1</td>
</tr>
<tr>
<td>rh-varnish5</td>
</tr>
<tr>
<td>RHEL7</td>
</tr>
<tr>
<td>x86_64, s390x, aarch64, ppc64le</td>
</tr>
<tr>
<td>PostgreSQL 10.15</td>
</tr>
<tr>
<td>rh-postgresql10</td>
</tr>
<tr>
<td>RHEL7</td>
</tr>
<tr>
<td>x86_64, s390x, aarch64, ppc64le</td>
</tr>
<tr>
<td>PHP 7.0.27</td>
</tr>
<tr>
<td>rh-php70*</td>
</tr>
<tr>
<td>RHEL6, RHEL7</td>
</tr>
<tr>
<td>x86_64</td>
</tr>
<tr>
<td>MySQL 5.7.24</td>
</tr>
<tr>
<td>rh-mysql57*</td>
</tr>
<tr>
<td>RHEL6, RHEL7</td>
</tr>
<tr>
<td>x86_64, s390x, aarch64, ppc64le</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Components Last Updated in Red Hat Software Collections 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHP 7.1.8</td>
</tr>
<tr>
<td>rh-php71*</td>
</tr>
<tr>
<td>RHEL7</td>
</tr>
<tr>
<td>x86_64, s390x, aarch64, ppc64le</td>
</tr>
<tr>
<td>nginx 1.12.1</td>
</tr>
<tr>
<td>rh-nginx112*</td>
</tr>
<tr>
<td>RHEL7</td>
</tr>
<tr>
<td>x86_64, s390x, aarch64, ppc64le</td>
</tr>
<tr>
<td>Python 3.6.12</td>
</tr>
<tr>
<td>rh-python36*</td>
</tr>
<tr>
<td>RHEL6, RHEL7</td>
</tr>
<tr>
<td>x86_64, s390x, aarch64, ppc64le</td>
</tr>
<tr>
<td>Maven 3.5.0</td>
</tr>
<tr>
<td>rh-maven35*</td>
</tr>
<tr>
<td>RHEL7</td>
</tr>
<tr>
<td>x86_64, s390x, aarch64, ppc64le</td>
</tr>
<tr>
<td>Component</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>MariaDB 10.2.22</td>
</tr>
<tr>
<td>PostgreSQL 9.6.19</td>
</tr>
<tr>
<td>MongoDB 3.4.9</td>
</tr>
<tr>
<td>Node.js 8.11.4</td>
</tr>
<tr>
<td>Red Hat Developer Toolset 6.1</td>
</tr>
<tr>
<td>Scala 2.10.6</td>
</tr>
<tr>
<td>nginx 1.10.2</td>
</tr>
<tr>
<td>Node.js 6.11.3</td>
</tr>
<tr>
<td>Ruby 2.4.6</td>
</tr>
<tr>
<td>Ruby on Rails 5.0.1</td>
</tr>
<tr>
<td>Eclipse 4.6.3</td>
</tr>
<tr>
<td>Python 2.7.18</td>
</tr>
<tr>
<td>Thermostat 1.6.6</td>
</tr>
<tr>
<td>Maven 3.3.9</td>
</tr>
<tr>
<td>Common Java Packages</td>
</tr>
<tr>
<td>Git 2.9.3</td>
</tr>
</tbody>
</table>
Components Last Updated in Red Hat Software Collections 2.3

<table>
<thead>
<tr>
<th>Component</th>
<th>Repository</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redis 3.2.4</td>
<td>rh-redis32*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>Perl 5.24.0</td>
<td>rh-perl524*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>Python 3.5.1</td>
<td>rh-python35*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>MongoDB 3.2.10</td>
<td>rh-mongodb32*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>Ruby 2.3.8</td>
<td>rh-ruby23*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>PHP 5.6.25</td>
<td>rh-php56*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
</tbody>
</table>

Components Last Updated in Red Hat Software Collections 2.2

<table>
<thead>
<tr>
<th>Component</th>
<th>Repository</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Developer Toolset 4.1</td>
<td>devtoolset-4*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>MariaDB 10.1.29</td>
<td>rh-mariadb101*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>MongoDB 3.0.11 upgrade collection</td>
<td>rh-mongodb30upg*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>Node.js 4.6.2</td>
<td>rh-nodejs4*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>PostgreSQL 9.5.14</td>
<td>rh-postgresql95*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>Ruby on Rails 4.2.6</td>
<td>rh-ror42*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>MongoDB 2.6.9</td>
<td>rh-mongodb26*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>Thermostat 1.4.4</td>
<td>thermostat1*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
</tbody>
</table>

Components Last Updated in Red Hat Software Collections 2.1

<table>
<thead>
<tr>
<th>Component</th>
<th>Repository</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varnish Cache 4.0.3</td>
<td>rh-varnish4*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>nginx 1.8.1</td>
<td>rh-nginx18*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>Node.js 0.10</td>
<td>nodejs010*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>Maven 3.0.5</td>
<td>maven30*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
<tr>
<td>V8 3.14.5.10</td>
<td>v8314*</td>
<td>RHEL6, RHEL7, x86_64</td>
</tr>
</tbody>
</table>
Components Last Updated in Red Hat Software Collections 2.0

<table>
<thead>
<tr>
<th>Component</th>
<th>Version</th>
<th>Architecture</th>
<th>Operating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Developer Toolset 3.1</td>
<td>devtoolset-3*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>Perl 5.20.1</td>
<td>rh-perl520*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>Python 3.4.2</td>
<td>rh-python34*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>Ruby 2.2.9</td>
<td>rh-ruby22*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>Ruby on Rails 4.1.5</td>
<td>rh-ror41*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>MariaDB 10.0.33</td>
<td>rh-mariadb100*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>MySQL 5.6.40</td>
<td>rh-mysql56*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>PostgreSQL 9.4.14</td>
<td>rh-postgresql94*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>Passenger 4.0.50</td>
<td>rh-passenger40*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>PHP 5.4.40</td>
<td>php54*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>PHP 5.5.21</td>
<td>php55*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>nginx 1.6.2</td>
<td>nginx16*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>DevAssistant 0.9.3</td>
<td>devassist09*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
</tbody>
</table>

Components Last Updated in Red Hat Software Collections 1

<table>
<thead>
<tr>
<th>Component</th>
<th>Version</th>
<th>Architecture</th>
<th>Operating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Git 1.9.4</td>
<td>git19*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>Perl 5.16.3</td>
<td>perl516*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>Python 3.3.2</td>
<td>python33*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>Ruby 1.9.3</td>
<td>ruby193*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>Ruby 2.0.0</td>
<td>ruby200*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>Ruby on Rails 4.0.2</td>
<td>ror40*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>MariaDB 5.5.53</td>
<td>mariadb55*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
<tr>
<td>MongoDB 2.4.9</td>
<td>mongodb24*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
</tr>
</tbody>
</table>
Components Last Updated in Red Hat Software Collections 1

<table>
<thead>
<tr>
<th>Component</th>
<th>Version</th>
<th>Architectures</th>
<th>RHEL6, RHEL7</th>
<th>x86_64</th>
</tr>
</thead>
<tbody>
<tr>
<td>MySQL 5.5.52</td>
<td>mysql55*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
<td></td>
</tr>
<tr>
<td>PostgreSQL 9.2.18</td>
<td>postgresq92*</td>
<td>RHEL6, RHEL7</td>
<td>x86_64</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- RHEL6 – Red Hat Enterprise Linux 6
- RHEL7 – Red Hat Enterprise Linux 7
- x86_64 – AMD64 and Intel 64 architectures
- s390x – 64-bit IBM Z
- aarch64 – The 64-bit ARM architecture
- ppc64 – IBM POWER, big endian
- ppc64le – IBM POWER, little endian
- * – Retired component; this Software Collection is no longer supported

The tables above list the latest versions available through asynchronous updates.

Note that Software Collections released in Red Hat Software Collections 2.0 and later include a `rh-` prefix in their names.

Eclipse is available as a part of the Red Hat Developer Tools offering.

1.3. CHANGES IN RED HAT SOFTWARE COLLECTIONS 3.6

1.3.1. Overview

Architectures

The Red Hat Software Collections offering contains packages for Red Hat Enterprise Linux 7 running on AMD64 and Intel 64 architectures; certain earlier Software Collections are available also for Red Hat Enterprise Linux 6.

In addition, Red Hat Software Collections 3.6 supports the following architectures on Red Hat Enterprise Linux 7:

- 64-bit IBM Z
- IBM POWER, little endian

For a full list of components and their availability, see Table 1.2, “All Available Software Collections”.

New Software Collections

Red Hat Software Collections 3.6 adds the following new Software Collections:

- devtoolset-10 – see Section 1.3.2, “Changes in Red Hat Developer Toolset”
All new Software Collections are available only for Red Hat Enterprise Linux 7.

Updated Software Collections
The following components has been updated in Red Hat Software Collections 3.6:

- httpd24 – see Section 1.3.6, “Changes in Apache httpd”
- rh-perl530 – see Section 1.3.7, “Changes in Perl”
- rh-php73 – see Section 1.3.8, “Changes in PHP”
- rh-haproxy18 – see Section 1.3.9, “Changes in HAProxy”
- rh-ruby25 – see Section 1.3.10, “Changes in Ruby”

Red Hat Software Collections Container Images
The following container images are new in Red Hat Software Collections 3.6:

- rhscl/devtoolset-10-toolchain-rhel7
- rhscl/devtoolset-10-perftools-rhel7
- rhscl/nginx-118-rhel7
- rhscl/nodejs-14-rhel7

The following container image has been updated in Red Hat Software Collections 3.6

- rhscl/httpd-24-rhel7
- rhscl/php-73-rhel7
- rhscl/perl-530-rhel7
- rhscl/ruby-25-rhel7

For more information about Red Hat Software Collections container images, see Section 3.4, “Red Hat Software Collections Container Images”.

1.3.2. Changes in Red Hat Developer Toolset
The following components have been upgraded in Red Hat Developer Toolset 10.0 compared to the previous release of Red Hat Developer Toolset:

- GCC to version 10.2.1
- binutils to version 2.35
- GDB to version 9.2
- strace to version 5.7
- SystemTap to version 4.3
- OProfile to version 1.4.0
- Valgrind to version 3.16.1
- elfutils to version 0.180
- annobin to version 9.23

For detailed information on changes in 10.0, see the Red Hat Developer Toolset User Guide.

1.3.3. Changes in Git

The new rh-git227 Software Collection includes **Git 2.27.0**, which provides numerous bug fixes and new features compared to the rh-git218 Collection released with Red Hat Software Collections 3.2. Notable changes in this release include:

- The **git checkout** command has been split into two separate commands:
 - **git switch** for managing branches
 - **git restore** for managing changes within the directory tree
- The behavior of the **git rebase** command is now based on the **merge** workflow by default rather than the previous **patch+apply** workflow. To preserve the previous behavior, set the **rebase.backend** configuration variable to **apply**.
- The **git diff** command can now be used also outside a repository.
- Four new configuration variables, `{author,committer}.name, email` have been introduced to override `user.name, email` in more specific cases.
- Several new options have been added that enable users to configure SSL for communication with proxies.
- Handling of commits with log messages in non-UTF-8 character encoding has been improved in the **git fast-export** and **git fast-import** utilities.
- Git Large File Storage (LFS) has been updated to version 2.11.0.

For detailed list of further enhancements, bug fixes, and backward compatibility notes related to **Git 2.27.0**, see the upstream release notes. See also the **Git manual page** for version 2.27.0.

1.3.4. Changes in nginx

The new rh-nginx118 Software Collection introduces **nginx 1.18.0**, which provides a number of bug and security fixes, new features and enhancements over version 1.16. Notable changes include:

- Enhancements to HTTP request rate and connection limiting have been implemented. For example, the **limit_rate** and **limit_rate_after** directives now support variables, including new **$limit_req_status** and **$limit_conn_status** variables. In addition, dry-run mode has been added for the **limit_conn_dry_run** and **limit_req_dry_run** directives.
- A new **auth_delay** directive has been added, which enables delayed processing of unauthorized requests.
- The following directives now support variables: `grpc_pass`, `proxy_upload_rate`, and `proxy_download_rate`.

- Additional PROXY protocol variables have been added, namely `$proxy_protocol_server_addr` and `$proxy_protocol_server_port`.

- `rh-nginx118` uses the `rh-perl530` Software Collection for Perl integration.

For more information regarding changes in nginx, refer to the upstream release notes.

For migration instructions, see Section 5.5, "Migrating to nginx 1.18".

1.3.5. Changes in Node.js

The new `rh-nodejs14` Software Collection provides Node.js 14.15.0, which is the most recent Long Term Support (LTS) version. Notable enhancements in this release include:

- The V8 engine has been upgraded to version 8.3.
- A new experimental WebAssembly System Interface (WASI) has been implemented.
- A new experimental Async Local Storage API has been introduced.
- The diagnostic report feature is now stable.
- The streams APIs have been hardened.
- Experimental modules warnings have been removed.
- Stability has been improved.

For detailed changes in Node.js 14.15.0, see the upstream release notes and upstream documentation.

1.3.6. Changes in Apache httpd

The httpd24 Software Collection has been updated to provide multiple security and bug fixes.

In addition, the `ProxyRemote` configuration directive has been enhanced to optionally take username and password credentials, which are used to authenticate to the remote proxy using HTTP Basic authentication. This feature has been backported from httpd 2.5. For details, see the upstream documentation.

1.3.7. Changes in Perl

The `rh-perl530-perl-CGI` package has been added to the `rh-perl530` Software Collection. The `rh-perl530-perl-CGI` package provides a Perl module that implements Common Gateway Interface (CGI) for running scripts written in the Perl language.

1.3.8. Changes in PHP

The `rh-php73` Software Collection has been updated to version 7.3.20, which provides multiple security and bug fixes.

1.3.9. Changes in HAProxy
The rh-haproxy18 Software Collection has been updated with a bug fix.

1.3.10. Changes in Ruby
The rh-ruby25 Software Collection has been updated with a bug fix.

1.4. COMPATIBILITY INFORMATION
Red Hat Software Collections 3.6 is available for all supported releases of Red Hat Enterprise Linux 7 on AMD64 and Intel 64 architectures, 64-bit IBM Z, and IBM POWER, little endian.

Certain previously released components are available also for the 64-bit ARM architecture.

For a full list of available components, see Table 1.2, “All Available Software Collections”.

1.5. KNOWN ISSUES
rh-ruby27 component, BZ#1836201
When a custom script requires the Psych YAML parser and afterwards uses the Gem.load_yaml method, running the script fails with the following error message:

 superclass mismatch for class Mark (TypeError)

To work around this problem, add the gem 'psych' line to the script somewhere above the require 'psych' line:

 ...
gem 'psych'
 ... require 'psych'
Gem.load_yaml

multiple components, BZ#1716378
Certain files provided by the Software Collections debuginfo packages might conflict with the corresponding debuginfo package files from the base Red Hat Enterprise Linux system or from other versions of Red Hat Software Collections components. For example, the python27-python-debuginfo package files might conflict with the corresponding files from the python-debuginfo package installed on the core system. Similarly, files from the httpd24-mod_auth_mellon-debuginfo package might conflict with similar files provided by the base system mod_auth_mellon-debuginfo package. To work around this problem, uninstall the base system debuginfo package prior to installing the Software Collection debuginfo package.

rh-mysql80 component, BZ#1646363
The mysql-connector-java database connector does not work with the MySQL 8.0 server. To work around this problem, use the mariadb-java-client database connector from the rh-mariadb103 Software Collection.

rh-mysql80 component, BZ#1646158
The default character set has been changed to utf8mb4 in MySQL 8.0 but this character set is unsupported by the php-mysqlnd database connector. Consequently, php-mysqlnd fails to connect in the default configuration. To work around this problem, specify a known character set as a
parameter of the MySQL server configuration. For example, modify the /etc/opt/rh/rh-
mysql80/my.cnf.d/mysql-server.cnf file to read:

```
[mysqld]
character-set-server=utf8
```

httpd24 component, BZ##1429006

Since httpd 2.4.27, the mod_http2 module is no longer supported with the default prefork Multi-
Processing Module (MPM). To enable HTTP/2 support, edit the configuration file at
/opt/rh/httpd24/root/etc/httpd/conf.modules.d/00-mpm.conf and switch to the event or worker MPM.

Note that the HTTP/2 server-push feature does not work on the 64-bit ARM architecture, 64-bit IBM Z, and IBM POWER, little endian.

httpd24 component, BZ##1327548

The mod_ssl module does not support the ALPN protocol on Red Hat Enterprise Linux 6, or on Red Hat Enterprise Linux 7.3 and earlier. Consequently, clients that support upgrading TLS connections to HTTP/2 only using ALPN are limited to HTTP/1.1 support.

httpd24 component, BZ##1224763

When using the mod_proxy_fcg module with FastCGI Process Manager (PHP-FPM), httpd uses port 8000 for the FastCGI protocol by default instead of the correct port 9000. To work around this problem, specify the correct port explicitly in configuration.

httpd24 component, BZ##1382706

When SELinux is enabled, the LD_LIBRARY_PATH environment variable is not passed through to CGI scripts invoked by httpd. As a consequence, in some cases it is impossible to invoke executables from Software Collections enabled in the /opt/rh/httpd24/service-environment file from CGI scripts run by httpd. To work around this problem, set LD_LIBRARY_PATH as desired from within the CGI script.

httpd24 component

Compiling external applications against the Apache Portable Runtime (APR) and APR-util libraries from the httpd24 Software Collection is not supported. The LD_LIBRARY_PATH environment variable is not set in httpd24 because it is not required by any application in this Software Collection.

python27 component, BZ##1330489

The python27-python-pymongo package has been updated to version 3.2.1. Note that this version is not fully compatible with the previously shipped version 2.5.2. For details, see https://api.mongodb.org/python/current/changelog.html.

scl-utils component

In Red Hat Enterprise Linux 7.5 and earlier, due to an architecture-specific macro bug in the scl-utils package, the <collection>/root/usr/lib64/ directory does not have the correct package ownership on the 64-bit ARM architecture and on IBM POWER, little endian. As a consequence, this directory is not removed when a Software Collection is uninstalled. To work around this problem, manually delete <collection>/root/usr/lib64/ when removing a Software Collection.

maven component
When the user has installed both the Red Hat Enterprise Linux system version of maven-local package and the rh-maven*-maven-local package, XMvn, a tool used for building Java RPM packages, run from the Maven Software Collection tries to read the configuration file from the base system and fails. To work around this problem, uninstall the maven-local package from the base Red Hat Enterprise Linux system.

perl component

It is impossible to install more than one mod_perl.so library. As a consequence, it is not possible to use the mod_perl module from more than one Perl Software Collection.

postgresql component

The rh-postgresql9* packages for Red Hat Enterprise Linux 6 do not provide the sepgsql module as this feature requires installation of libselinux version 2.0.99, which is not available in Red Hat Enterprise Linux 6.

httpd, mariadb, mongodb, mysql, nodejs, perl, php, python, ruby, and ror components, BZ#1072319

When uninstalling the httpd24, rh-mariadb*, rh-mongodb*, rh-mysql*, rh-nodejs*, rh-perl*, rh-php*, python27, rh-python*, rh-ruby*, or rh-ror* packages, the order of uninstalling can be relevant due to ownership of dependent packages. As a consequence, some directories and files might not be removed properly and might remain on the system.

mariadb, mysql components, BZ#1194611

Since MariaDB 10 and MySQL 5.6, the rh-mariadb*-mariadb-server and rh-mysql*-mysql-server packages no longer provide the test database by default. Although this database is not created during initialization, the grant tables are prefilled with the same values as when test was created by default. As a consequence, upon a later creation of the test or test_* databases, these databases have less restricted access rights than is default for new databases.

Additionally, when running benchmarks, the run-all-tests script no longer works out of the box with example parameters. You need to create a test database before running the tests and specify the database name in the --database parameter. If the parameter is not specified, test is taken by default but you need to make sure the test database exist.

mariadb, mysql, postgresql, mongodb components

Red Hat Software Collections contains the MySQL 5.7, MySQL 8.0, MariaDB 10.2, MariaDB 10.3, PostgreSQL 9.6, PostgreSQL 10, PostgreSQL 12, MongoDB 3.4, and MongoDB 3.6 databases. The core Red Hat Enterprise Linux 6 provides earlier versions of the MySQL and PostgreSQL databases (client library and daemon). The core Red Hat Enterprise Linux 7 provides earlier versions of the MariaDB and PostgreSQL databases (client library and daemon). Client libraries are also used in database connectors for dynamic languages, libraries, and so on.

The client library packaged in the Red Hat Software Collections database packages in the PostgreSQL component is not supposed to be used, as it is included only for purposes of server utilities and the daemon. Users are instead expected to use the system library and the database connectors provided with the core system.

A protocol, which is used between the client library and the daemon, is stable across database versions, so, for example, using the PostgreSQL 9.2 client library with the PostgreSQL 9.4 or 9.5 daemon works as expected.

The core Red Hat Enterprise Linux 6 and Red Hat Enterprise Linux 7 do not include the client library for MongoDB. In order to use this client library for your application, you should use the client library from Red Hat Software Collections and always use the scl enable ... call every time you run an
application linked against this MongoDB client library.

mariadb, mysql, mongodb components

MariaDB, MySQL, and MongoDB do not make use of the `/opt/provider/collection/root` prefix when creating log files. Note that log files are saved in the `/var/opt/provider/collection/log/` directory, not in `/opt/provider/collection/root/var/log/`.

Other Notes

rh-ruby*, rh-python*, rh-php* components

Using Software Collections on a read-only NFS has several limitations.

- Ruby gems cannot be installed while the rh-ruby* Software Collection is on a read-only NFS. Consequently, for example, when the user tries to install the ab gem using the `gem install ab` command, an error message is displayed, for example:

  ```
  ERROR: While executing gem ... (Errno::EROFS)
  Read-only file system @ dir_s_mkdir - /opt/rh/rh-ruby22/root/usr/local/share/gems
  ```

 The same problem occurs when the user tries to update or install gems from an external source by running the `bundle update` or `bundle install` commands.

- When installing Python packages on a read-only NFS using the Python Package Index (PyPI), running the `pip` command fails with an error message similar to this:

  ```
  Read-only file system: '/opt/rh/rh-python34/root/usr/lib/python3.4/site-packages/ipython-3.1.0.dist-info'
  ```

- Installing packages from PHP Extension and Application Repository (PEAR) on a read-only NFS using the `pear` command fails with the error message:

  ```
  Cannot install, php_dir for channel "pear.php.net" is not writable by the current user
  ```

 This is an expected behavior.

httpd component

Language modules for Apache are supported only with the Red Hat Software Collections version of Apache httpd and not with the Red Hat Enterprise Linux system versions of httpd. For example, the `mod_wsgi` module from the rh-python35 Collection can be used only with the httpd24 Collection.

all components

Since Red Hat Software Collections 2.0, configuration files, variable data, and runtime data of individual Collections are stored in different directories than in previous versions of Red Hat Software Collections.

coreutils, util-linux, screen components

Some utilities, for example, `su`, `login`, or `screen`, do not export environment settings in all cases, which can lead to unexpected results. It is therefore recommended to use `sudo` instead of `su` and set the `env_keep` environment variable in the `/etc/sudoers` file. Alternatively, you can run commands in a reverse order; for example:
su -l postgres -c "scl enable rh-postgresql94 psql"

instead of

scl enable rh-postgresql94 bash
su -l postgres -c psql

When using tools like `screen` or `login`, you can use the following command to preserve the environment settings:

```
source /opt/rh/<collection_name>/enable
```

python component

When the user tries to install more than one scldevel package from the python27 and rh-python* Software Collections, a transaction check error message is returned. This is an expected behavior because the user can install only one set of the macro files provided by the packages (`%scl_python`, `%scl_prefix_python`).

php component

When the user tries to install more than one scldevel package from the rh-php* Software Collections, a transaction check error message is returned. This is an expected behavior because the user can install only one set of the macro files provided by the packages (`%scl_php`, `%scl_prefix_php`).

ruby component

When the user tries to install more than one scldevel package from the rh-ruby* Software Collections, a transaction check error message is returned. This is an expected behavior because the user can install only one set of the macro files provided by the packages (`%sclRuby`, `%scl_prefix_ruby`).

perl component

When the user tries to install more than one scldevel package from the rh-perl* Software Collections, a transaction check error message is returned. This is an expected behavior because the user can install only one set of the macro files provided by the packages (`%scl_perl`, `%scl_prefix_perl`).

nginx component

When the user tries to install more than one scldevel package from the rh-nginx* Software Collections, a transaction check error message is returned. This is an expected behavior because the user can install only one set of the macro files provided by the packages (`%scl_nginx`, `%scl_prefix_nginx`).

1.6. DEPRECATED FUNCTIONALITY

httpd24 component, BZ#1434053

Previously, in an SSL/TLS configuration requiring name-based SSL virtual host selection, the `mod_ssl` module rejected requests with a **400 Bad Request** error, if the host name provided in the `Host` header did not match the host name provided in a Server Name Indication (SNI) header. Such requests are no longer rejected if the configured SSL/TLS security parameters are identical between the selected virtual hosts, in-line with the behavior of upstream `mod_ssl`.
CHAPTER 2. INSTALLATION

This chapter describes in detail how to get access to the content set, install Red Hat Software Collections 3.6 on the system, and rebuild Red Hat Software Collections.

2.1. GETTING ACCESS TO RED HAT SOFTWARE COLLECTIONS

The Red Hat Software Collections content set is available to customers with Red Hat Enterprise Linux 6 and Red Hat Enterprise Linux 7 subscriptions listed at https://access.redhat.com/solutions/472793. For information on how to register your system with Red Hat Subscription Management (RHSM), see Using and Configuring Red Hat Subscription Manager. For detailed instructions on how to enable Red Hat Software Collections using RHSM, see Section 2.1.1, “Using Red Hat Subscription Management”.

Since Red Hat Software Collections 2.2, the Red Hat Software Collections and Red Hat Developer Toolset content is available also in the ISO format at https://access.redhat.com/downloads, specifically for Server and Workstation. Note that packages that require the Optional repository, which are listed in Section 2.1.2, “Packages from the Optional Repository”, cannot be installed from the ISO image.

NOTE

Packages that require the Optional repository cannot be installed from the ISO image. A list of packages that require enabling of the Optional repository is provided in Section 2.1.2, “Packages from the Optional Repository”.

Beta content is unavailable in the ISO format.

2.1.1. Using Red Hat Subscription Management

If your system is registered with Red Hat Subscription Management, complete the following steps to attach the subscription that provides access to the repository for Red Hat Software Collections and enable the repository:

1. Display a list of all subscriptions that are available for your system and determine the pool ID of a subscription that provides Red Hat Software Collections. To do so, type the following at a shell prompt as root:

```
subscription-manager list --available
```

For each available subscription, this command displays its name, unique identifier, expiration date, and other details related to it. The pool ID is listed on a line beginning with Pool Id.

2. Attach the appropriate subscription to your system by running the following command as root:

```
subscription-manager attach --pool=pool_id
```

Replace pool_id with the pool ID you determined in the previous step. To verify the list of subscriptions your system has currently attached, type as root:

```
subscription-manager list --consumed
```

3. Display the list of available Yum list repositories to retrieve repository metadata and determine the exact name of the Red Hat Software Collections repositories. As root, type:
subscription-manager repos --list

Or alternatively, run `yum repolist all` for a brief list.

The repository names depend on the specific version of Red Hat Enterprise Linux you are using and are in the following format:

```
rhel-variant-rhscl-6-rpms
rhel-variant-rhscl-6-debug-rpms
rhel-variant-rhscl-6-source-rpms

rhel-server-rhscl-6-eus-rpms
rhel-server-rhscl-6-eus-source-rpms
rhel-server-rhscl-6-eus-debug-rpms

rhel-variant-rhscl-7-rpms
rhel-variant-rhscl-7-debug-rpms
rhel-variant-rhscl-7-source-rpms

rhel-server-rhscl-7-eus-rpms
rhel-server-rhscl-7-eus-source-rpms
rhel-server-rhscl-7-eus-debug-rpms
```

Replace `variant` with the Red Hat Enterprise Linux system variant, that is, `server` or `workstation`. Note that Red Hat Software Collections is supported neither on the `Client` nor on the `ComputeNode` variant.

4. Enable the appropriate repository by running the following command as `root`:

```
subscription-manager repos --enable repository
```

Once the subscription is attached to the system, you can install Red Hat Software Collections as described in Section 2.2, “Installing Red Hat Software Collections”. For more information on how to register your system using Red Hat Subscription Management and associate it with subscriptions, see Using and Configuring Red Hat Subscription Manager.

NOTE

Subscription through RHN is no longer available. For information how to migrate to RHSM, see https://access.redhat.com/products/red-hat-subscription-management/#migration.

2.1.2. Packages from the Optional Repository

Some of the Red Hat Software Collections packages require the `Optional` repository to be enabled in order to complete the full installation of these packages. For detailed instructions on how to subscribe your system to this repository, see the relevant Knowledgebase article at https://access.redhat.com/solutions/392003.

Packages from Software Collections for Red Hat Enterprise Linux that require the `Optional` repository to be enabled are listed in the tables below. Note that packages from the `Optional` repository are unsupported. For details, see the Knowledgebase article at https://access.redhat.com/articles/1150793.

Table 2.1. Packages That Require Enabling of the Optional Repository in Red Hat Enterprise Linux 7
<table>
<thead>
<tr>
<th>Package from a Software Collection</th>
<th>Required Package from the Optional Repository</th>
</tr>
</thead>
<tbody>
<tr>
<td>devtoolset-10-build</td>
<td>scl-utils-build</td>
</tr>
<tr>
<td>devtoolset-10-dyninst-testsuite</td>
<td>glibc-static</td>
</tr>
<tr>
<td>devtoolset-10-elfutils-debuginfo</td>
<td>bsd.tar</td>
</tr>
<tr>
<td>devtoolset-10-gcc-plugin-devel</td>
<td>libmpc-devel</td>
</tr>
<tr>
<td>devtoolset-10-gdb</td>
<td>source-highlight</td>
</tr>
<tr>
<td>devtoolset-9-build</td>
<td>scl-utils-build</td>
</tr>
<tr>
<td>devtoolset-9-dyninst-testsuite</td>
<td>glibc-static</td>
</tr>
<tr>
<td>devtoolset-9-gcc-plugin-devel</td>
<td>libmpc-devel</td>
</tr>
<tr>
<td>devtoolset-9-gdb</td>
<td>source-highlight</td>
</tr>
<tr>
<td>httpd24-mod_ldap</td>
<td>apr-util-ldap</td>
</tr>
<tr>
<td>httpd24-mod_session</td>
<td>apr-util-openssl</td>
</tr>
<tr>
<td>python27-python-debug</td>
<td>tix</td>
</tr>
<tr>
<td>python27-python-devel</td>
<td>scl-utils-build</td>
</tr>
<tr>
<td>python27-tkinter</td>
<td>tix</td>
</tr>
<tr>
<td>rh-git218-git-cvs</td>
<td>cvspss</td>
</tr>
<tr>
<td>rh-git218-git-svn</td>
<td>perl-Git-SVN, subversion</td>
</tr>
<tr>
<td>rh-git218-perl-Git-SVN</td>
<td>subversion-perl</td>
</tr>
<tr>
<td>rh-git227-git-cvs</td>
<td>cvspss</td>
</tr>
<tr>
<td>rh-git227-git-svn</td>
<td>perl-Git-SVN, subversion</td>
</tr>
<tr>
<td>rh-git227-perl-Git-SVN</td>
<td>subversion-perl</td>
</tr>
<tr>
<td>rh-java-common-ant-apache-bsf</td>
<td>rhino</td>
</tr>
<tr>
<td>rh-java-common-batik</td>
<td>rhino</td>
</tr>
</tbody>
</table>
2.2. INSTALLING RED HAT SOFTWARE COLLECTIONS

Red Hat Software Collections is distributed as a collection of RPM packages that can be installed, updated, and uninstalled by using the standard package management tools included in Red Hat Enterprise Linux. Note that a valid subscription is required to install Red Hat Software Collections on your system. For detailed instructions on how to associate your system with an appropriate subscription and get access to Red Hat Software Collections, see Section 2.1, “Getting Access to Red Hat Software Collections”.

Use of Red Hat Software Collections 3.6 requires the removal of any earlier pre-release versions. If you have installed any previous version of Red Hat Software Collections 2.1 component, uninstall it from your system and install the new version as described in the Section 2.3, “Uninstalling Red Hat Software Collections” and Section 2.2.1, “Installing Individual Software Collections” sections.

The in-place upgrade from Red Hat Enterprise Linux 6 to Red Hat Enterprise Linux 7 is not supported by Red Hat Software Collections. As a consequence, the installed Software Collections might not work correctly after the upgrade. If you want to upgrade from Red Hat Enterprise Linux 6 to Red Hat Enterprise Linux 7, it is strongly recommended to remove all Red Hat Software Collections packages, perform the in-place upgrade, update the Red Hat Software Collections repository, and install the Software Collections packages again. It is advisable to back up all data before upgrading.

2.2.1. Installing Individual Software Collections

To install any of the Software Collections that are listed in Table 1.1, “Red Hat Software Collections Components”, install the corresponding meta package by typing the following at a shell prompt as root:

```
yum install software_collection...
```

Replace `software_collection` with a space-separated list of Software Collections you want to install. For example, to install php54 and rh-mariadb100, type as root:

```
~]# yum install rh-php72 rh-mariadb102
```
This installs the main meta package for the selected Software Collection and a set of required packages as its dependencies. For information on how to install additional packages such as additional modules, see Section 2.2.2, “Installing Optional Packages”.

2.2.2. Installing Optional Packages

Each component of Red Hat Software Collections is distributed with a number of optional packages that are not installed by default. To list all packages that are part of a certain Software Collection but are not installed on your system, type the following at a shell prompt:

```
yum list available software_collection-
```

To install any of these optional packages, type as root:

```
yum install package_name...
```

Replace `package_name` with a space-separated list of packages that you want to install. For example, to install the `rh-perl526-perl-CPAN` and `rh-perl526-perl-Archive-Tar`, type:

```
~# yum install rh-perl526-perl-CPAN rh-perl526-perl-Archive-Tar
```

2.2.3. Installing Debugging Information

To install debugging information for any of the Red Hat Software Collections packages, make sure that the yum-utils package is installed and type the following command as root:

```
debuginfo-install package_name
```

For example, to install debugging information for the `rh-ruby25-ruby` package, type:

```
~# debuginfo-install rh-ruby25-ruby
```

Note that you need to have access to the repository with these packages. If your system is registered with Red Hat Subscription Management, enable the `rhel-variant-rhscl-6-debug-rpms` or `rhel-variant-rhscl-7-debug-rpms` repository as described in Section 2.1.1, “Using Red Hat Subscription Management”. For more information on how to get access to debuginfo packages, see https://access.redhat.com/solutions/9907.

2.3. UNINSTALLING RED HAT SOFTWARE COLLECTIONS

To uninstall any of the Software Collections components, type the following at a shell prompt as root:

```
yum remove software_collection-
```

Replace `software_collection` with the Software Collection component you want to uninstall.

Note that uninstallation of the packages provided by Red Hat Software Collections does not affect the Red Hat Enterprise Linux system versions of these tools.

2.4. REBUILDING RED HAT SOFTWARE COLLECTIONS
<collection>-build packages are not provided by default. If you wish to rebuild a collection and do not want or cannot use the `rpmbuild --define 'scl foo'` command, you first need to rebuild the metapackage, which provides the <collection>-build package.

Note that existing collections should not be rebuilt with different content. To add new packages into an existing collection, you need to create a new collection containing the new packages and make it dependent on packages from the original collection. The original collection has to be used without changes.

For detailed information on building Software Collections, refer to the Red Hat Software Collections Packaging Guide.
CHAPTER 3. USAGE

This chapter describes the necessary steps for using Red Hat Software Collections 3.6, and deploying applications that use Red Hat Software Collections.

3.1. USING RED HAT SOFTWARE COLLECTIONS

3.1.1. Running an Executable from a Software Collection

To run an executable from a particular Software Collection, type the following command at a shell prompt:

```
scl enable software_collection... 'command...'`
```

Or, alternatively, use the following command:

```
scl enable software_collection... -- command...
```

Replace `software_collection` with a space-separated list of Software Collections you want to use and `command` with the command you want to run. For example, to execute a Perl program stored in a file named `hello.pl` with the Perl interpreter from the `perl526` Software Collection, type:

```
~]$ scl enable rh-perl526 'perl hello.pl'
Hello, World!
```

You can execute any command using the `scl` utility, causing it to be run with the executables from a selected Software Collection in preference to their possible Red Hat Enterprise Linux system equivalents. For a complete list of Software Collections that are distributed with Red Hat Software Collections, see Table 1.1, "Red Hat Software Collections Components".

3.1.2. Running a Shell Session with a Software Collection as Default

To start a new shell session with executables from a selected Software Collection in preference to their Red Hat Enterprise Linux equivalents, type the following at a shell prompt:

```
scl enable software_collection... bash
```

Replace `software_collection` with a space-separated list of Software Collections you want to use. For example, to start a new shell session with the `python27` and `rh-postgresql10` Software Collections as default, type:

```
~]$ scl enable python27 rh-postgresql10 bash
```

The list of Software Collections that are enabled in the current session is stored in the `$X_SCLS` environment variable, for instance:

```
~]$ echo $X_SCLS
python27 rh-postgresql10
```

For a complete list of Software Collections that are distributed with Red Hat Software Collections, see Table 1.1, "Red Hat Software Collections Components".
3.1.3. Running a System Service from a Software Collection

Running a System Service from a Software Collection in Red Hat Enterprise Linux 6
Software Collections that include system services install corresponding init scripts in the `/etc/rc.d/init.d/` directory. To start such a service in the current session, type the following at a shell prompt as `root`:

```
service software_collection-service_name start
```

Replace `software_collection` with the name of the Software Collection and `service_name` with the name of the service you want to start.

To configure this service to start automatically at boot time, type the following command as `root`:

```
chkconfig software_collection-service_name on
```

For example, to start the `postgresql` service from the `rh-postgresql96` Software Collection and enable it in runlevels 2, 3, 4, and 5, type as `root`:

```
~# service rh-postgresql96-postgresql start
Starting rh-postgresql96-postgresql service: [ OK ]
```

```
~# chkconfig rh-postgresql96-postgresql on
```

For more information on how to manage system services in Red Hat Enterprise Linux 6, refer to the *Red Hat Enterprise Linux 6 Deployment Guide*. For a complete list of Software Collections that are distributed with Red Hat Software Collections, see Table 1.1, “Red Hat Software Collections Components”.

Running a System Service from a Software Collection in Red Hat Enterprise Linux 7
In Red Hat Enterprise Linux 7, init scripts have been replaced by `systemd` service unit files, which end with the `.service` file extension and serve a similar purpose as init scripts. To start a service in the current session, execute the following command as `root`:

```
systemctl start software_collection-service_name.service
```

Replace `software_collection` with the name of the Software Collection and `service_name` with the name of the service you want to start.

To configure this service to start automatically at boot time, type the following command as `root`:

```
systemctl enable software_collection-service_name.service
```

For example, to start the `postgresql` service from the `rh-postgresql10` Software Collection and enable it at boot time, type as `root`:

```
~# systemctl start rh-postgresql10-postgresql.service
```

```
~# systemctl enable rh-postgresql10-postgresql.service
```

For more information on how to manage system services in Red Hat Enterprise Linux 7, refer to the *Red Hat Enterprise Linux 7 System Administrator’s Guide*. For a complete list of Software Collections that are distributed with Red Hat Software Collections, see Table 1.1, “Red Hat Software Collections Components”.

3.2. ACCESSING A MANUAL PAGE FROM A SOFTWARE COLLECTION
Every Software Collection contains a general manual page that describes the content of this component. Each manual page has the same name as the component and it is located in the `/opt/rh` directory.

To read a manual page for a Software Collection, type the following command:

```
scl enable software_collection 'man software_collection'
```

Replace `software_collection` with the particular Red Hat Software Collections component. For example, to display the manual page for `rh-mariadb102`, type:

```
~]$ scl enable rh-mariadb102 "man rh-mariadb102"
```

3.3. DEPLOYING APPLICATIONS THAT USE RED HAT SOFTWARE COLLECTIONS

In general, you can use one of the following two approaches to deploy an application that depends on a component from Red Hat Software Collections in production:

- Install all required Software Collections and packages manually and then deploy your application, or
- Create a new Software Collection for your application and specify all required Software Collections and other packages as dependencies.

For more information on how to manually install individual Red Hat Software Collections components, see Section 2.2, “Installing Red Hat Software Collections”. For further details on how to use Red Hat Software Collections, see Section 3.1, “Using Red Hat Software Collections”. For a detailed explanation of how to create a custom Software Collection or extend an existing one, read the Red Hat Software Collections Packaging Guide.

3.4. RED HAT SOFTWARE COLLECTIONS CONTAINER IMAGES

Container images based on Red Hat Software Collections include applications, daemons, and databases. The images can be run on Red Hat Enterprise Linux 7 Server and Red Hat Enterprise Linux Atomic Host. For information about their usage, see Using Red Hat Software Collections 3 Container Images. For details regarding container images based on Red Hat Software Collections versions 2.4 and earlier, see Using Red Hat Software Collections 2 Container Images.

Note that only the latest version of each container image is supported.

The following container images are available with Red Hat Software Collections 3.6:

- `rhscl/devtoolset-10-toolchain-rhel7`
- `rhscl/devtoolset-10-perftools-rhel7`
- `rhscl/httpd-24-rhel7`
- `rhscl/nginx-118-rhel7`
- `rhscl/nodej-14-rhel7`
- `rhscl/perl-530-rhel7`
- rhscl/php-73-rhel7
- rhscl/ruby-25-rhel7

The following container images are based on Red Hat Software Collections 3.5:
- rhscl/python-38-rhel7
- rhscl/ruby-27-rhel7
- rhscl/varnish-6-rhel7

The following container images are based on Red Hat Software Collections 3.4:
- rhscl/nginx-116-rhel7
- rhscl/nodejs-12-rhel7
- rhscl/postgresql-12-rhel7

The following container images are based on Red Hat Software Collections 3.3:
- rhscl/mariadb-103-rhel7
- rhscl/redis-5-rhel7
- rhscl/ruby-26-rhel7

The following container images are based on Red Hat Software Collections 3.2:
- rhscl/mysql-80-rhel7
- rhscl/nodejs-10-rhel7

The following container images are based on Red Hat Software Collections 3.1:
- rhscl/mongodb-36-rhel7
- rhscl/perl-526-rhel7
- rhscl/postgresql-10-rhel7
- rhscl/varnish-5-rhel7

The following container images are based on Red Hat Software Collections 2:
- rhscl/python-27-rhel7
- rhscl/s2i-base-rhel7
CHAPTER 4. SPECIFICS OF INDIVIDUAL SOFTWARE COLLECTIONS

This chapter is focused on the specifics of certain Software Collections and provides additional details concerning these components.

4.1. RED HAT DEVELOPER TOOLSET

Red Hat Developer Toolset is designed for developers working on the Red Hat Enterprise Linux platform. Red Hat Developer Toolset provides current versions of the GNU Compiler Collection, GNU Debugger, and other development, debugging, and performance monitoring tools. Similarly to other Software Collections, an additional set of tools is installed into the /opt/ directory. These tools are enabled by the user on demand using the supplied scl utility. Similarly to other Software Collections, these do not replace the Red Hat Enterprise Linux system versions of these tools, nor will they be used in preference to those system versions unless explicitly invoked using the scl utility.

For an overview of features, refer to the Features section of the Red Hat Developer Toolset Release Notes. For detailed information regarding usage and changes in 10.0, see the Red Hat Developer Toolset User Guide.

4.2. MONGODB 3.6

The rh-mongodb36 Software Collection is available only for Red Hat Enterprise Linux 7.

To install the rh-mongodb36 collection, type the following command as root:

```
yum install rh-mongodb36
```

To run the MongoDB shell utility, type the following command:

```
scl enable rh-mongodb36 'mongo'
```

NOTE

The rh-mongodb36-mongo-cxx-driver package has been built with the -std=gnu++14 option using GCC from Red Hat Developer Toolset 6. Binaries using the shared library for the MongoDB C++ Driver that use C++11 (or later) features have to be built also with Red Hat Developer Toolset 6 or later. See C++ compatibility details in the Red Hat Developer Toolset 6 User Guide.

To start the MongoDB daemon, type the following command as root:

```
systemctl start rh-mongodb36-mongod.service
```

To start the MongoDB daemon on boot, type this command as root:

```
systemctl enable rh-mongodb36-mongod.service
```

To start the MongoDB sharding server, type the following command as root:

```
systemctl start rh-mongodb36-mongos.service
```
To start the MongoDB sharding server on boot, type this command as root:

```
systemctl enable rh-mongodb36-mongos.service
```

Note that the MongoDB sharding server does not work unless the user starts at least one configuration server and specifies it in the `mongos.conf` file.

4.3. MAVEN

The rh-maven36 Software Collection, available only for Red Hat Enterprise Linux 7, provides a software project management and comprehension tool. Based on the concept of a project object model (POM), Maven can manage a project’s build, reporting, and documentation from a central piece of information.

To install the rh-maven36 Collection, type the following command as root:

```
yum install rh-maven36
```

To enable this collection, type the following command at a shell prompt:

```
scl enable rh-maven36 bash
```

Global Maven settings, such as remote repositories or mirrors, can be customized by editing the `/opt/rh/rh-maven36/root/etc/maven/settings.xml` file.

For more information about using Maven, refer to the [Maven documentation](#). Usage of plug-ins is described in this section; to find documentation regarding individual plug-ins, see the index of plug-ins.

4.4. DATABASE CONNECTORS

Database connector packages provide the database client functionality, which is necessary for local or remote connection to a database server. Table 4.1, “Interoperability Between Languages and Databases” lists Software Collections with language runtimes that include connectors for certain database servers:

- **yes** - the combination is supported
- **no** - the combination is not supported

Table 4.1. Interoperability Between Languages and Databases

<table>
<thead>
<tr>
<th>Language (Software Collection)</th>
<th>MariaDB</th>
<th>MongoDB</th>
<th>MySQL</th>
<th>PostgreSQL</th>
<th>Redis</th>
<th>SQLite3</th>
</tr>
</thead>
<tbody>
<tr>
<td>rh-nodejs4</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>rh-nodejs6</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>rh-nodejs8</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Language (Software Collection)</td>
<td>MariaDB</td>
<td>MongoDB</td>
<td>MySQL</td>
<td>PostgreSQL</td>
<td>Redis</td>
<td>SQLite3</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>rh-nodejs10</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>rh-nodejs12</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>rh-nodejs14</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>rh-perl520</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>rh-perl524</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>rh-perl526</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>rh-perl530</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>rh-php56</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>rh-php70</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>rh-php71</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>rh-php72</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>rh-php73</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>python27</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>rh-python34</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>rh-python35</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>rh-python36</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>rh-python38</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>rh-ror41</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>rh-ror42</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>rh-ror50</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>rh-ruby25</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Language (Software Collection)</td>
<td>MariaDB</td>
<td>MongoDB</td>
<td>MySQL</td>
<td>PostgreSQL</td>
<td>Redis</td>
<td>SQLite3</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>rh-ruby26</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>rh-ruby27</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
CHAPTER 5. MIGRATION

This chapter provides information on migrating to versions of components included in Red Hat Software Collections 3.6.

5.1. MIGRATING TO MARIADB 10.3

The rh-mariadb103 Software Collection is available for Red Hat Enterprise Linux 7, which includes MariaDB 5.5 as the default MySQL implementation.

The rh-mariadb103 Software Collection does not conflict with the mysql or mariadb packages from the core systems. Unless the *-syspaths packages are installed (see below), it is possible to install the rh-mariadb103 Software Collection together with the mysql or mariadb packages. It is also possible to run both versions at the same time, however, the port number and the socket in the my.cnf files need to be changed to prevent these specific resources from conflicting. Additionally, it is possible to install the rh-mariadb103 Software Collection while the rh-mariadb102 Collection is still installed and even running.

The rh-mariadb103 Software Collection includes the rh-mariadb103-syspaths package, which installs packages that provide system-wide wrappers for binaries, scripts, manual pages, and other. After installing the rh-mariadb103*-syspaths packages, users are not required to use the scl enable command for correct functioning of the binaries and scripts provided by the rh-mariadb103* packages. Note that the *-syspaths packages conflict with the corresponding packages from the base Red Hat Enterprise Linux system and from the rh-mariadb102 and rh-mysql80 Software Collections. To find out more about syssaths, see the Red Hat Software Collections Packaging Guide.

The recommended migration path from MariaDB 5.5 to MariaDB 10.3 is to upgrade to MariaDB 10.0 first, and then upgrade by one version successively. For details, see instructions in earlier Red Hat Software Collections Release Notes: Migrating to MariaDB 10.0, Migrating to MariaDB 10.1, and Migrating to MariaDB 10.2.

NOTE

The rh-mariadb103 Software Collection supports neither mounting over NFS nor dynamical registering using the scl register command.

5.1.1. Notable Differences Between the rh-mariadb102 and rh-mariadb103 Software Collections

- The mariadb-bench subpackage has been removed.
- The default allowed level of the plug-in maturity has been changed to one level less than the server maturity. As a result, plug-ins with a lower maturity level that were previously working, will no longer load.

For more information regarding MariaDB 10.3, see the upstream documentation about changes and about upgrading.

5.1.2. Upgrading from the rh-mariadb102 to the rh-mariadb103 Software Collection

IMPORTANT

Prior to upgrading, back up all your data, including any MariaDB databases.
1. Stop the rh-mariadb102 database server if it is still running.

 Before stopping the server, set the `innodb_fast_shutdown` option to 0, so that InnoDB performs a slow shutdown, including a full purge and insert buffer merge. Read more about this option in the [upstream documentation](#). This operation can take a longer time than in case of a normal shutdown.

   ```
   mysql -uroot -p -e "SET GLOBAL innodb_fast_shutdown = 0"
   ```

 Stop the rh-mariadb102 server.

   ```
   systemctl stop rh-mariadb102-mariadb.service
   ```

2. Install the rh-mariadb103 Software Collection, including the subpackage providing the `mysql_upgrade` utility.

   ```
   yum install rh-mariadb103-mariadb-server rh-mariadb103-mariadb-server-utils
   ```

 Note that it is possible to install the rh-mariadb103 Software Collection while the rh-mariadb102 Software Collection is still installed because these Collections do not conflict.

4. All data of the rh-mariadb102 Software Collection is stored in the `/var/opt/rh/rh-mariadb102/lib/mysql/` directory unless configured differently. Copy the whole content of this directory to `/var/opt/rh/rh-mariadb103/lib/mysql/`. You can move the content but remember to back up your data before you continue to upgrade. Make sure the data are owned by the `mysql` user and SELinux context is correct.

5. Start the rh-mariadb103 database server.

   ```
   systemctl start rh-mariadb103-mariadb.service
   ```

6. Perform the data migration. Note that running the `mysql_upgrade` command is required due to upstream changes introduced in MDEV-14637.

   ```
   scl enable rh-mariadb103 mysql_upgrade
   ```

 If the `root` user has a non-empty password defined (it should have a password defined), it is necessary to call the `mysql_upgrade` utility with the `-p` option and specify the password.

   ```
   scl enable rh-mariadb103 -- mysql_upgrade -p
   ```

 Note that when the rh-mariadb103*-syspaths packages are installed, the `scl enable` command is not required. However, the *-syspaths packages conflict with the corresponding packages from the base Red Hat Enterprise Linux system and from the rh-mariadb102 and rh-mysql80 Software Collections.

5.2. MIGRATING TO MYSQL 8.0
The rh-mysql80 Software Collection is available for Red Hat Enterprise Linux 7, which includes MariaDB 5.5 as the default MySQL implementation.

The rh-mysql80 Software Collection conflicts neither with the mysql or mariadb packages from the core systems nor with the rh-mysql* or rh-mariadb* Software Collections, unless the *-syspaths packages are installed (see below). It is also possible to run multiple versions at the same time; however, the port number and the socket in the my.cnf files need to be changed to prevent these specific resources from conflicting.

Note that it is possible to upgrade to MySQL 8.0 only from MySQL 5.7. If you need to upgrade from an earlier version, upgrade to MySQL 5.7 first. For instructions, see Migration to MySQL 5.7.

5.2.1. Notable Differences Between MySQL 5.7 and MySQL 8.0

Differences Specific to the rh-mysql80 Software Collection

- The MySQL 8.0 server provided by the rh-mysql80 Software Collection is configured to use mysql_native_password as the default authentication plug-in because client tools and libraries in Red Hat Enterprise Linux 7 are incompatible with the caching_sha2_password method, which is used by default in the upstream MySQL 8.0 version.

To change the default authentication plug-in to caching_sha2_password, edit the /etc/opt/rh/rh-mysql80/my.cnf.d/mysql-default-authentication-plugin.cnf file as follows:

```
[mysqld]
default_authentication_plugin=caching_sha2_password
```

For more information about the caching_sha2_password authentication plug-in, see the upstream documentation.

- The rh-mysql80 Software Collection includes the rh-mysql80-syspaths package, which installs the rh-mysql80-mysql-config-syspaths, rh-mysql80-mysql-server-syspaths, and rh-mysql80-mysql-syspaths packages. These subpackages provide system-wide wrappers for binaries, scripts, manual pages, and other. After installing the rh-mysql80*-syspaths packages, users are not required to use the scl enable command for correct functioning of the binaries and scripts provided by the rh-mysql80* packages. Note that the *-syspaths packages conflict with the corresponding packages from the base Red Hat Enterprise Linux system and from the rh-mariadb102 and rh-mariadb103 Software Collections. To find out more about syspaths, see the Red Hat Software Collections Packaging Guide.

General Changes in MySQL 8.0

- Binary logging is enabled by default during the server startup. The log_bin system variable is now set to ON by default even if the --log-bin option has not been specified. To disable binary logging, specify the --skip-log-bin or --disable-log-bin option at startup.

- For a CREATE FUNCTION statement to be accepted, at least one of the DETERMINISTIC, NO SQL, or READS SQL DATA keywords must be specified explicitly, otherwise an error occurs.

- Certain features related to account management have been removed. Namely, using the GRANT statement to modify account properties other than privilege assignments, such as authentication, SSL, and resource-limit, is no longer possible. To establish the mentioned properties at account-creation time, use the CREATE USER statement. To modify these properties, use the ALTER USER statement.

- Certain SSL-related options have been removed on the client-side. Use the --ssl-
mode=REQUIRED option instead of --ssl=1 or --enable-ssl. Use the --ssl-mode=DISABLED option instead of --ssl=0, --skip-ssl, or --disable-ssl. Use the --ssl-mode=VERIFY_IDENTITY option instead of --ssl-verify-server-cert options. Note that these option remains unchanged on the server side.

- The default character set has been changed from latin1 to utf8mb4.
- The utf8 character set is currently an alias for utf8mb3 but in the future, it will become a reference to utf8mb4. To prevent ambiguity, specify utf8mb4 explicitly for character set references instead of utf8.
- Setting user variables in statements other than SET has been deprecated.
- The log_syslog variable, which previously configured error logging to the system logs, has been removed.
- Certain incompatible changes to spatial data support have been introduced.
- The deprecated ASC or DESC qualifiers for GROUP BY clauses have been removed. To produce a given sort order, provide an ORDER BY clause.

For detailed changes in MySQL 8.0 compared to earlier versions, see the upstream documentation: What Is New in MySQL 8.0 and Changes Affecting Upgrades to MySQL 8.0.

5.2.2. Upgrading to the rh-mysql80 Software Collection

IMPORTANT

Prior to upgrading, back-up all your data, including any MySQL databases.

1. Install the rh-mysql80 Software Collection.

 `yum install rh-mysql80-mysql-server`

2. Inspect the configuration of rh-mysql80, which is stored in the `/etc/opt/rh/rh-mysql80/my.cnf` file and the `/etc/opt/rh/rh-mysql80/my.cnf.d/` directory. Compare it with the configuration of rh-mysql57 stored in `/etc/opt/rh/rh-mysql57/my.cnf` and `/etc/opt/rh/rh-mysql57/my.cnf.d/` and adjust it if necessary.

3. Stop the rh-mysql57 database server, if it is still running.

 `systemctl stop rh-mysql57-mysqld.service`

4. All data of the rh-mysql57 Software Collection is stored in the `/var/opt/rh/rh-mysql57/lib/mysql/` directory. Copy the whole content of this directory to `/var/opt/rh/rh-mysql80/lib/mysql/`. You can also move the content but remember to back up your data before you continue to upgrade.

5. Start the rh-mysql80 database server.

 `systemctl start rh-mysql80-mysqld.service`

6. Perform the data migration.
scl enable rh-mysql80 mysql_upgrade

If the root user has a non-empty password defined (it should have a password defined), it is necessary to call the mysql_upgrade utility with the -p option and specify the password.

scl enable rh-mysql80 -- mysql_upgrade -p

Note that when the rh-mysql80*-syspaths packages are installed, the scl enable command is not required. However, the *-syspaths packages conflict with the corresponding packages from the base Red Hat Enterprise Linux system and from the rh-mariadb102 and rh-mariadb103 Software Collections.

5.3. MIGRATING TO MONGODB 3.6

Red Hat Software Collections 3.6 is released with MongoDB 3.6, provided by the rh-mongodb36 Software Collection and available only for Red Hat Enterprise Linux 7.

The rh-mongodb36 Software Collection includes the rh-mongodb36-syspaths package, which installs packages that provide system-wide wrappers for binaries, scripts, manual pages, and other. After installing the rh-mongodb36*-syspaths packages, users are not required to use the scl enable command for correct functioning of the binaries and scripts provided by the rh-mongodb36* packages. To find out more about syspaths, see the Red Hat Software Collections Packaging Guide.

5.3.1. Notable Differences Between MongoDB 3.4 and MongoDB 3.6

General Changes
The rh-mongodb36 Software Collection introduces the following significant general change:

- On Non-Uniform Access Memory (NUMA) hardware, it is possible to configure systemd services to be launched using the numactl command; see the upstream recommendation. To use MongoDB with the numactl command, you need to install the numactl RPM package and change the /etc/opt/rh/rh-mongodb36/sysconfig/mongod and /etc/opt/rh/rh-mongodb36/sysconfig/mongos configuration files accordingly.

Compatibility Changes
MongoDB 3.6 includes various minor changes that can affect compatibility with previous versions of MongoDB:

- MongoDB binaries now bind to localhost by default, so listening on different IP addresses needs to be explicitly enabled. Note that this is already the default behavior for systemd services distributed with MongoDB Software Collections.

- The MONGODB-CR authentication mechanism has been deprecated. For databases with users created by MongoDB versions earlier than 3.0, upgrade authentication schema to SCRAM.

- The HTTP interface and REST API have been removed

- Arbiters in replica sets have priority 0

- Master-slave replication has been deprecated

For detailed compatibility changes in MongoDB 3.6, see the upstream release notes.

Backwards Incompatible Features
The following **MongoDB 3.6** features are backwards incompatible and require the version to be set to 3.6 using the `featureCompatibilityVersion` command:

- UUID for collections
- `$jsonSchema` document validation
- Change streams
- Chunk aware secondaries
- View definitions, document validators, and partial index filters that use version 3.6 query features
- Sessions and retryable writes
- Users and roles with `authenticationRestrictions`

For details regarding backward incompatible changes in **MongoDB 3.6**, see the **upstream release notes**.

5.3.2. Upgrading from the `rh-mongodb34` to the `rh-mongodb36` Software Collection

IMPORTANT

Before migrating from the `rh-mongodb34` to the `rh-mongodb36` Software Collection, back up all your data, including any **MongoDB** databases, which are by default stored in the `/var/opt/rh/rh-mongodb34/lib/mongodb/` directory. In addition, see the **Compatibility Changes** to ensure that your applications and deployments are compatible with **MongoDB 3.6**.

To upgrade to the `rh-mongodb36` Software Collection, perform the following steps.

1. To be able to upgrade, the `rh-mongodb34` instance must have `featureCompatibilityVersion` set to **3.4**. Check `featureCompatibilityVersion`:

   ```
   ~]$ scl enable rh-mongodb34 'mongo --host localhost --port 27017 admin' --eval 'db.adminCommand({getParameter: 1, featureCompatibilityVersion: 1})'
   ```

 If the `mongod` server is configured with enabled access control, add the `--username` and `--password` options to the `mongo` command.

2. Install the **MongoDB** servers and shells from the `rh-mongodb36` Software Collections:

   ```
   ~]# yum install rh-mongodb36
   ```

3. Stop the **MongoDB 3.4** server:

   ```
   ~]# systemctl stop rh-mongodb34-mongod.service
   ```

4. Copy your data to the new location:

6. Start the MongoDB 3.6 server:

```
~$ systemctl start rh-mongodb36-mongod.service
```

7. Enable backwards incompatible features:

```
~$ scl enable rh-mongodb36 'mongo --host localhost --port 27017 admin' --eval
db.adminCommand( { setFeatureCompatibilityVersion: "3.6" } )'
```

If the `mongod` server is configured with enabled access control, add the `--username` and `--password` options to the `mongo` command.

NOTE

After upgrading, it is recommended to run the deployment first without enabling the backwards incompatible features for a burn-in period of time, to minimize the likelihood of a downgrade.

For detailed information about upgrading, see the [upstream release notes](#).

For information about upgrading a Replica Set, see the upstream [MongoDB Manual](#).

For information about upgrading a Sharded Cluster, see the upstream [MongoDB Manual](#).

5.4. MIGRATING TO POSTGRESQL 12

Red Hat Software Collections 3.6 is distributed with **PostgreSQL 12**, available only for Red Hat Enterprise Linux 7. The rh-postgresql12 Software Collection can be safely installed on the same machine in parallel with the base Red Hat Enterprise Linux system version of PostgreSQL or any PostgreSQL Software Collection. It is also possible to run more than one version of PostgreSQL on a machine at the same time, but you need to use different ports or IP addresses and adjust SELinux policy.

The rh-postgresql12 Software Collection includes the `rh-postgresql12-syspaths` package, which installs packages that provide system-wide wrappers for binaries, scripts, manual pages, and other. After installing the `rh-postgresql12*-syspaths` packages, users are not required to use the `scl enable` command for correct functioning of the binaries and scripts provided by the `rh-postgresql12*` packages. Note that the `*`-syspaths packages conflict with the corresponding packages from the base Red Hat Enterprise Linux system. To find out more about syspaths, see the [Red Hat Software Collections Packaging Guide](#).

IMPORTANT

Before migrating to **PostgreSQL 12**, see the upstream compatibility notes for **PostgreSQL 11** and **PostgreSQL 12**.

In case of upgrading the PostgreSQL database in a container, see the container-specific instructions.
The following table provides an overview of different paths in a Red Hat Enterprise Linux 7 system version of PostgreSQL provided by the postgresql package, and in the rh-postgresql10 and rh-postgresql12 Software Collection.

Table 5.1. Differences in the PostgreSQL paths

<table>
<thead>
<tr>
<th>Content</th>
<th>postgresql</th>
<th>rh-postgresql10</th>
<th>rh-postgresql12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executables</td>
<td>/usr/bin/</td>
<td>/opt/rh/rh-postgresql10/root/usr/bin/</td>
<td>/opt/rh/rh-postgresql12/root/usr/bin/</td>
</tr>
<tr>
<td>Source</td>
<td>not installed</td>
<td>not installed</td>
<td>not installed</td>
</tr>
<tr>
<td>Development Headers</td>
<td>/usr/include/pgsql/</td>
<td>/opt/rh/postgresql10/root/usr/include/pgsql/</td>
<td>/opt/rh/postgresql12/root/usr/include/pgsql/</td>
</tr>
</tbody>
</table>
5.4.1. Migrating from a Red Hat Enterprise Linux System Version of PostgreSQL to the PostgreSQL 12 Software Collection

Red Hat Enterprise Linux 7 is distributed with PostgreSQL 9.2. To migrate your data from a Red Hat Enterprise Linux system version of PostgreSQL to the rh-postgresql12 Software Collection, you can either perform a fast upgrade using the `pg_upgrade` tool (recommended), or dump the database data into a text file with SQL commands and import it in the new database. Note that the second method is usually significantly slower and may require manual fixes; see the PostgreSQL documentation for more information about this upgrade method.

IMPORTANT

Before migrating your data from a Red Hat Enterprise Linux system version of PostgreSQL to PostgreSQL 12, make sure that you back up all your data, including the PostgreSQL database files, which are by default located in the `/var/lib/pgsql/data/` directory.

Procedure 5.1. Fast Upgrade Using the `pg_upgrade` Tool

To perform a fast upgrade of your PostgreSQL server, complete the following steps:

1. Stop the old PostgreSQL server to ensure that the data is not in an inconsistent state. To do so, type the following at a shell prompt as `root`:

   ```bash
   systemctl stop postgresql.service
   ```

 To verify that the server is not running, type:

   ```bash
   systemctl status postgresql.service
   ```

2. Verify that the old directory `/var/lib/pgsql/data/` exists:

   ```bash
   file /var/lib/pgsql/data/
   ```

 and back up your data.

3. Verify that the new data directory `/var/opt/rh/rh-postgresql12/lib/pgsql/data/` does not exist:

   ```bash
   file /var/opt/rh/rh-postgresql12/lib/pgsql/data/
   ```
If you are running a fresh installation of **PostgreSQL 12**, this directory should not be present in your system. If it is, back it up by running the following command as **root**:

```bash
mv /var/opt/rh/rh-postgresql12/lib/pgsql/data{,-scl-backup}
```

4. Upgrade the database data for the new server by running the following command as **root**:

```bash
scl enable rh-postgresql12 -- postgresql-setup --upgrade
```

Alternatively, you can use the `/opt/rh/rh-postgresql12/root/usr/bin/postgresql-setup --upgrade` command.

Note that you can use the `--upgrade-from` option for upgrade from different versions of **PostgreSQL**. The list of possible upgrade scenarios is available using the `--upgrade-ids` option.

It is recommended that you read the resulting `/var/lib/pgsql/upgrade_rh-postgresql12-postgresql.log` log file to find out if any problems occurred during the upgrade.

5. Start the new server as **root**:

```bash
systemctl start rh-postgresql12-postgresql.service
```

It is also advised that you run the `analyze_new_cluster.sh` script as follows:

```bash
su - postgres -c 'scl enable rh-postgresql12 ~/analyze_new_cluster.sh'
```

6. Optionally, you can configure the PostgreSQL 12 server to start automatically at boot time. To disable the old system PostgreSQL server, type the following command as **root**:

```bash
chkconfig postgresql off
```

To enable the PostgreSQL 12 server, type as **root**:

```bash
chkconfig rh-postgresql12-postgresql on
```

7. If your configuration differs from the default one, make sure to update configuration files, especially the `/var/opt/rh/rh-postgresql12/lib/pgsql/data/pg_hba.conf` configuration file. Otherwise only the **postgres** user will be allowed to access the database.

Procedure 5.2. Performing a Dump and Restore Upgrade

To perform a dump and restore upgrade of your PostgreSQL server, complete the following steps:

1. Ensure that the old PostgreSQL server is running by typing the following at a shell prompt as **root**:

```bash
systemctl start postgresql.service
```

2. Dump all data in the PostgreSQL database into a script file. As **root**, type:

```bash
su - postgres -c 'pg_dumpall > ~/pgdump_file.sql'
```
3. Stop the old server by running the following command as `root`:

```
systemctl stop postgresql.service
```

4. Initialize the data directory for the new server as `root`:

```
scl enable rh-postgresql12 -- postgresql-setup initdb
```

5. Start the new server as `root`:

```
systemctl start rh-postgresql12-postgresql.service
```

6. Import data from the previously created SQL file:

```
su - postgres -c 'scl enable rh-postgresql12 "psql -f ~/pgdump_file.sql postgres"'
```

7. Optionally, you can configure the PostgreSQL 12 server to start automatically at boot time. To disable the old system PostgreSQL server, type the following command as `root`:

```
chkconfig postgresql off
```

To enable the PostgreSQL 12 server, type as `root`:

```
chkconfig rh-postgresql12-postgresql on
```

8. If your configuration differs from the default one, make sure to update configuration files, especially the `/var/opt/rh/rh-postgresql12/lib/pgsql/data/pg_hba.conf` configuration file. Otherwise only the `postgres` user will be allowed to access the database.

5.4.2. Migrating from the PostgreSQL 10 Software Collection to the PostgreSQL 12 Software Collection

To migrate your data from the `rh-postgresql10` Software Collection to the `rh-postgresql12` Collection, you can either perform a fast upgrade using the `pg_upgrade` tool (recommended), or dump the database data into a text file with SQL commands and import it in the new database. Note that the second method is usually significantly slower and may require manual fixes; see the PostgreSQL documentation for more information about this upgrade method.

IMPORTANT

Before migrating your data from PostgreSQL 10 to PostgreSQL 12, make sure that you back up all your data, including the PostgreSQL database files, which are by default located in the `/var/opt/rh/rh-postgresql10/lib/pgsql/data/` directory.

Procedure 5.3. Fast Upgrade Using the `pg_upgrade` Tool

To perform a fast upgrade of your PostgreSQL server, complete the following steps:

1. Stop the old PostgreSQL server to ensure that the data is not in an inconsistent state. To do so, type the following at a shell prompt as `root`:
systemctl stop rh-postgresql10-postgresql.service

To verify that the server is not running, type:

systemctl status rh-postgresql10-postgresql.service

2. Verify that the old directory /var/opt/rh/rh-postgresql10/lib/pgsql/data/ exists:

 file /var/opt/rh/rh-postgresql10/lib/pgsql/data/

 and back up your data.

3. Verify that the new data directory /var/opt/rh/rh-postgresql12/lib/pgsql/data/ does not exist:

 file /var/opt/rh/rh-postgresql12/lib/pgsql/data/

 If you are running a fresh installation of PostgreSQL 12, this directory should not be present in your system. If it is, back it up by running the following command as root:

 mv /var/opt/rh/rh-postgresql12/lib/pgsql/data{,-scl-backup}

4. Upgrade the database data for the new server by running the following command as root:

 scl enable rh-postgresql12 -- postgresql-setup --upgrade --upgrade-from=rh-postgresql10-postgresql

 Alternatively, you can use the /opt/rh/rh-postgresql12/root/usr/bin/postgresql-setup --upgrade --upgrade-from=rh-postgresql10-postgresql command.

 Note that you can use the --upgrade-from option for upgrading from different versions of PostgreSQL. The list of possible upgrade scenarios is available using the --upgrade-ids option.

 It is recommended that you read the resulting /var/lib/pgsql/upgrade_rh-postgresql12-postgresql.log log file to find out if any problems occurred during the upgrade.

5. Start the new server as root:

 systemctl start rh-postgresql12-postgresql.service

 It is also advised that you run the analyze_new_cluster.sh script as follows:

 su - postgres -c 'scl enable rh-postgresql12 ~/analyze_new_cluster.sh'

6. Optionally, you can configure the PostgreSQL 12 server to start automatically at boot time. To disable the old PostgreSQL 10 server, type the following command as root:

 chkconfig rh-postgresql10-postgresql off

 To enable the PostgreSQL 12 server, type as root:

 chkconfig rh-postgresql12-postgresql on
7. If your configuration differs from the default one, make sure to update configuration files, especially the /var/opt/rh/rh-postgresql12/lib/pgsql/data/pg_hba.conf configuration file. Otherwise only the postgres user will be allowed to access the database.

Procedure 5.4. Performing a Dump and Restore Upgrade

To perform a dump and restore upgrade of your PostgreSQL server, complete the following steps:

1. Ensure that the old PostgreSQL server is running by typing the following at a shell prompt as root:
   ```bash
   systemctl start rh-postgresql10-postgresql.service
   ```

2. Dump all data in the PostgreSQL database into a script file. As root, type:
   ```bash
   su - postgres -c 'scl enable rh-postgresql10 "pg_dumpall > ~/pgdump_file.sql"'
   ```

3. Stop the old server by running the following command as root:
   ```bash
   systemctl stop rh-postgresql10-postgresql.service
   ```

4. Initialize the data directory for the new server as root:
   ```bash
   scl enable rh-postgresql12 -- postgresql-setup initdb
   ```

5. Start the new server as root:
   ```bash
   systemctl start rh-postgresql12-postgresql.service
   ```

6. Import data from the previously created SQL file:
   ```bash
   su - postgres -c 'scl enable rh-postgresql12 "psql -f ~/pgdump_file.sql postgres"'
   ```

7. Optionally, you can configure the PostgreSQL 12 server to start automatically at boot time. To disable the old PostgreSQL 10 server, type the following command as root:
   ```bash
   chkconfig rh-postgresql10-postgresql off
   ```
 To enable the PostgreSQL 12 server, type as root:
   ```bash
   chkconfig rh-postgresql12-postgresql on
   ```

8. If your configuration differs from the default one, make sure to update configuration files, especially the /var/opt/rh/rh-postgresql12/lib/pgsql/data/pg_hba.conf configuration file. Otherwise only the postgres user will be allowed to access the database.

5.5. MIGRATING TO NGINX 1.18

The root directory for the rh-nginx118 Software Collection is located in /opt/rh/rh-nginx118/root/. The error log is stored in /var/opt/rh/rh-nginx118/log/nginx by default.
Configuration files are stored in the `/etc/opt/rh/rh-nginx118/nginx/` directory. Configuration files in nginx 1.18 have the same syntax and largely the same format as previous nginx Software Collections.

Configuration files (with a `.conf` extension) in the `/etc/opt/rh/rh-nginx118/nginx/default.d/` directory are included in the default server block configuration for port 80.

IMPORTANT

Before upgrading from nginx 1.16 to nginx 1.18, back up all your data, including web pages located in the `/opt/rh/nginx116/root/` tree and configuration files located in the `/etc/opt/rh/nginx116/nginx/` tree.

If you have made any specific changes, such as changing configuration files or setting up web applications, in the `/opt/rh/nginx116/root/` tree, replicate those changes in the new `/opt/rh/rh-nginx118/root/` and `/etc/opt/rh/rh-nginx118/nginx/` directories, too.

You can use this procedure to upgrade directly from nginx 1.12 or nginx 1.14 to nginx 1.18. Use the appropriate paths in this case.

5.6. MIGRATING TO REDIS 5

Redis 3.2, provided by the rh-redis32 Software Collection, is mostly a strict subset of Redis 4.0, which is mostly a strict subset of Redis 5.0. Therefore, no major issues should occur when upgrading from version 3.2 to version 5.0.

To upgrade a Redis Cluster to version 5.0, a mass restart of all the instances is needed.

Compatibility Notes

- The format of RDB files has been changed. Redis 5 is able to read formats of all the earlier versions, but earlier versions are incapable of reading the Redis 5 format.

- Since version 4.0, the Redis Cluster bus protocol is no longer compatible with Redis 3.2.

- For minor non-backward compatible changes, see the upstream release notes for version 4.0 and version 5.0.
CHAPTER 6. ADDITIONAL RESOURCES

This chapter provides references to other relevant sources of information about Red Hat Software Collections 3.6 and Red Hat Enterprise Linux.

6.1. RED HAT PRODUCT DOCUMENTATION

The following documents are directly or indirectly relevant to this book:

- **Red Hat Software Collections 3.6 Packaging Guide** — The *Packaging Guide* for Red Hat Software Collections explains the concept of Software Collections, documents the `scl` utility, and provides a detailed explanation of how to create a custom Software Collection or extend an existing one.

- **Red Hat Developer Toolset 10.0 Release Notes** — The *Release Notes* for Red Hat Developer Toolset document known problems, possible issues, changes, and other important information about this Software Collection.

- **Using Red Hat Software Collections Container Images** — This book provides information on how to use container images based on Red Hat Software Collections. The available container images include applications, daemons, databases, as well as the Red Hat Developer Toolset container images. The images can be run on Red Hat Enterprise Linux 7 Server and Red Hat Enterprise Linux Atomic Host.

- **Getting Started with Containers** — This guide contains a comprehensive overview of information about building and using container images on Red Hat Enterprise Linux 7 and Red Hat Enterprise Linux Atomic Host.

- **Using and Configuring Red Hat Subscription Manager** — The *Using andConfiguring Red Hat Subscription Manager* book provides detailed information on how to register Red Hat Enterprise Linux systems, manage subscriptions, and view notifications for the registered systems.

- **Red Hat Enterprise Linux 6 Deployment Guide** — The *Deployment Guide* for Red Hat Enterprise Linux 6 provides relevant information regarding the deployment, configuration, and administration of this system.

- **Red Hat Enterprise Linux 7 System Administrator’s Guide** — The *System Administrator’s Guide* for Red Hat Enterprise Linux 7 provides information on deployment, configuration, and administration of this system.

6.2. RED HAT DEVELOPERS

- **Red Hat Developer Program** — The *Red Hat Developers* community portal.

- **Overview of Red Hat Software Collections on Red Hat Developers** — The *Red Hat Developers* portal provides a number of tutorials to get you started with developing code using different development technologies. This includes the Node.js, Perl, PHP, Python, and Ruby Software Collections.

- **Red Hat Developer Blog** — The *Red Hat Developer Blog* contains up-to-date information, best practices, opinion, product and program announcements as well as pointers to sample code and
other resources for those who are designing and developing applications based on Red Hat technologies.
APPENDIX A. REVISION HISTORY

Revision 3.6-3 Fri Nov 12 2021 Lenka Špačková
Updated Section 4.4, "Database Connectors".

Revision 3.6-2 Tue Apr 06 2021 Lenka Špačková
Improved the list of supported architectures.

Revision 3.6-1 Tue Dec 01 2020 Lenka Špačková

Revision 3.6-0 Tue Oct 29 2020 Lenka Špačková
Release of Red Hat Software Collections 3.6 Beta Release Notes.