
Red Hat Customer Content
Services

Red Hat Single Sign-On
7.0
Server Administration Guide

Server Administration Guide

Red Hat Single Sign-On 7.0 Server Administration Guide

Server Administration Guide

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This guide consist of information for administrators for configuring Red Hat Single Sign-On 7.0

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW
1.1. FEATURES
1.2. HOW DOES SECURITY WORK?
1.3. CORE CONCEPTS AND TERMS

CHAPTER 2. SERVER INITIALIZATION

CHAPTER 3. ADMIN CONSOLE
3.1. THE MASTER REALM
3.2. CREATE A NEW REALM
3.3. SSL MODE
3.4. REALM KEY PAIRS
3.5. CLEARING SERVER CACHES
3.6. EMAIL SETTINGS
3.7. THEMES AND INTERNATIONALIZATION

CHAPTER 4. USER MANAGEMENT
4.1. SEARCHING FOR USERS
4.2. CREATING NEW USERS
4.3. USER ATTRIBUTES
4.4. USER CREDENTIALS
4.5. REQUIRED ACTIONS
4.6. IMPERSONATION
4.7. USER REGISTRATION

CHAPTER 5. LOGIN PAGE SETTINGS
5.1. FORGOT PASSWORD
5.2. REMEMBER ME

CHAPTER 6. AUTHENTICATION
6.1. PASSWORD POLICIES
6.2. OTP POLICIES
6.3. AUTHENTICATION FLOWS
6.4. KERBEROS

CHAPTER 7. SSO PROTOCOLS
7.1. OPEN ID CONNECT
7.2. SAML
7.3. OPENID CONNECT VS. SAML

CHAPTER 8. MANAGING CLIENTS
8.1. OIDC CLIENTS
8.2. SERVICE ACCOUNTS
8.3. SAML CLIENTS
8.4. OIDC TOKEN AND SAML ASSERTION MAPPINGS
8.5. GENERATING CLIENT ADAPTER CONFIG
8.6. CLIENT TEMPLATES

CHAPTER 9. ROLES
9.1. REALM ROLES
9.2. CLIENT ROLES
9.3. COMPOSITE ROLES
9.4. USER ROLE MAPPINGS
9.5. CLIENT SCOPE

4
4
4
5

9

11
12
12
14
15
15
16
17

19
19
19
21
21
22
24
26

31
31
33

35
35
37
39
40

47
47
49
50

52
52
58
59
65
68
69

70
70
71
71
72
74

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 10. GROUPS
10.1. GROUPS VS. ROLES
10.2. DEFAULT GROUPS

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS
11.1. MASTER REALM ACCESS CONTROL
11.2. DEDICATED REALM ADMIN CONSOLES

CHAPTER 12. IDENTITY BROKERING
12.1. BROKERING OVERVIEW
12.2. GENERAL CONFIGURATION
12.3. SOCIAL IDENTITY PROVIDERS
12.4. OPENID CONNECT V1.0 IDENTITY PROVIDERS
12.5. SAML V2.0 IDENTITY PROVIDERS
12.6. CLIENT SUGGESTED IDENTITY PROVIDER
12.7. MAPPING CLAIMS AND ASSERTIONS
12.8. AVAILABLE USER SESSION DATA
12.9. FIRST LOGIN FLOW
12.10. RETRIEVING EXTERNAL IDP TOKENS

CHAPTER 13. USER SESSION MANAGEMENT
13.1. ADMINISTERING SESSIONS
13.2. REVOCATION POLICIES
13.3. SESSION AND TOKEN TIMEOUTS
13.4. OFFLINE ACCESS

CHAPTER 14. USER STORAGE FEDERATION
14.1. ADDING A PROVIDER
14.2. LDAP AND ACTIVE DIRECTORY

CHAPTER 15. AUDITING AND EVENTS
15.1. LOGIN EVENTS
15.2. ADMIN EVENTS

CHAPTER 16. EXPORT AND IMPORT
16.1. ADMIN CONSOLE EXPORT/IMPORT

CHAPTER 17. USER ACCOUNT SERVICE
17.1. THEMEABLE

CHAPTER 18. THREAT MODEL MITIGATION
18.1. PASSWORD GUESS: BRUTE FORCE ATTACKS
18.2. CLICKJACKING
18.3. SSL/HTTPS REQUIREMENT
18.4. CSRF ATTACKS
18.5. UNSPECIFIC REDIRECT URIS
18.6. COMPROMISED ACCESS AND REFRESH TOKENS
18.7. COMPROMISED ACCESS CODES
18.8. OPEN REDIRECTORS
18.9. PASSWORD DATABASE COMPROMISED
18.10. LIMITING SCOPE
18.11. SQL INJECTION ATTACKS

76
78
78

80
80
81

82
82
84
88

112
114
116
117
118
118
120

121
121
123
124
125

127
127
128

132
132
136

140
141

143
147

148
148
149
149
150
150
150
151
151
151
151
151

Red Hat Single Sign-On 7.0 Server Administration Guide

2

Table of Contents

3

CHAPTER 1. OVERVIEW

Red Hat Single Sign-On is a single sign on solution for web apps and RESTful web services. The
goal of Red Hat Single Sign-On is to make security simple so that it is easy for application
developers to secure the apps and services they have deployed in their organization. Security
features that developers normally have to write for themselves are provided out of the box and are
easily tailorable to the individual requirements of your organization. Red Hat Single Sign-On
provides customizable user interfaces for login, registration, administration, and account
management. You can also use Red Hat Single Sign-On as an integration platform to hook it into
existing LDAP and Active Directory servers. You can also delegate authentication to third party
identity providers like Facebook and Google+.

1.1. FEATURES

Single-Sign On and Single-Sign Out for browser applications

OpenID Connect support.

OAuth 2.0 support.

SAML support.

Identity Brokering - Authenticate with external OpenID Connect or SAML Identity Providers.

Social Login - Enable login with Google, GitHub, Facebook, Twitter, and other social networks.

User Federation - Sync users from LDAP and Active Directory servers.

Kerberos bridge - Automatically authenticate users that are logged-in to a Kerberos server.

Admin Console for central management of users, roles, role mappings, clients and configuration.

Account Management console that allows users to centrally manage their account.

Theme support - Customize all user facing pages to integrate with your applications and
branding.

Two-factor Authentication - Support for TOTP/HOTP via Google Authenticator or FreeOTP

Login flows - optional user self-registration, recover password, verify email, require password
update, etc.

Session management - Admins and users themselves can view and manage user sessions.

Token mappers - Map user attributes, roles, etc. how you want into tokens and statements.

Not-before revocation policies per realm, application and user.

CORS support - Client adapters have built-in support for CORS

Client adapters for JavaScript applications, JBoss EAP, Fuse, etc.

Supports any platform/language that has an OpenID Connect Resource Provider library or
SAML 2.0 Service Provider library

1.2. HOW DOES SECURITY WORK?

Red Hat Single Sign-On 7.0 Server Administration Guide

4

Red Hat Single Sign-On is a separate server that you manage on your network. Applications are
configured to point to and be secured by this server. Red Hat Single Sign-On uses open protocol
standards like Open ID Connect or SAML 2.0 to secure your applications. Browser applications
redirect a user’s browser from the application to the Red Hat Single Sign-On authentication server
where they enter their credentials. This is important because users are completely isolated from
applications and applications never see a user’s credentials. Applications instead are given an
identity token or assertion that is cryptographically signed. These tokens can have identity
information like username, address, email, and other profile data. They can also hold permission
data so that applications can make authorization decisions. These tokens can also be used to make
secure invocations on REST-based services.

1.3. CORE CONCEPTS AND TERMS

There are some key concepts and terms you should be aware of before attempting to use Red Hat
Single Sign-On to secure your web applications and REST services.

users

Users are entities that are able to log into your system. They can have attributes associated
with themselves like email, username, address, phone number, and birth day. They can be
assigned group membership and have specific roles assigned to them.

authentication

The process of identifying and validating a user.

authorization

The process of granting access to a user.

credentials

Credentials are pieces of data that Red Hat Single Sign-On uses to verify the identity of a
user. Some examples are passwords, one-time-passwords, digital certificates, or even
fingerprints.

roles

Roles identify a type or category of user. Admin, user, manager, and employee are all
typical roles that may exist in an organization. Applications often assign access and
permissions to specific roles rather than individual users as dealing with users can be too
fine grained and hard to manage.

user role mapping

A user role mapping defines a mapping between a role and a user. A user can be associated
with zero or more roles. This role mapping information can be encapsulated into tokens and
assertions so that applications can decide access permissions on various resources they
manage

composite roles

A composite role is a role that can be associated with other roles. For example a
superuser composite role could be associated with the sales-admin and order-
entry-admin roles. If a user is mapped to the superuser role they also inherit the
sales-admin and order-entry-admin roles.

groups

CHAPTER 1. OVERVIEW

5

http://openid.net/connect
http://saml.xml.org/saml-specifications

Groups manage groups of users. Attributes can be defined for a group. You can map roles
to a group as well. Users that become members of a group inherit the attributes and role
mappings that group defines.

realms

A realm manages a set of users, credentials, roles, and groups. A user belongs to and logs
into a realm. Realms are isolated from one another and can only manage and authenticate
the users that they control.

clients

Clients are entities that can request Red Hat Single Sign-On to authenticate a user. Most
often, clients are applications and services that want to use Red Hat Single Sign-On to
secure themselves and provide a single sign-on solution. Clients can also be entities that
just want to request identity information or an access token so that they can securely invoke
other services on the network that are secured by Red Hat Single Sign-On

client adapters

Client adapters are plugins that you install into your application environment to be able to
communicate and be secured by Red Hat Single Sign-On. Red Hat Single Sign-On has a
number of adapters for different platforms that you can download. There are also third-party
adapters you can get for environments that we don’t cover.

consent

Consent is when you as an admin want a user to give permission to a client before that
client can participate in the authentication process. After a user provides their credentials,
Red Hat Single Sign-On will pop up a screen identifying the client requesting a login and
what identity information is requested of the user. User can decide whether or not to grant
the request.

client templates

When a client is registered you need to enter configuration information about that client. It is
often useful to store a template of this to make create new clients easier. Red Hat Single
Sign-On provides the concept of a client template for this.

client role

Clients can define roles that are specific to them. This is basically a role namespace
dedicated to the client.

identity token

A token that provides identity information about the user. Part of the OpenID Connect
specification.

access token

A token that can be provided as part of an HTTP request that grants access to the service
being invoked on. This is part of the OpenID Connect and OAuth 2.0 specification.

assertion

Information about a user. This usually pertains to an XML blob that is included in a SAML
authentication response that provided identity metadata about an authenticated user.

service account

Red Hat Single Sign-On 7.0 Server Administration Guide

6

Each client has a built in service account which allows it to obtain an access token.

direct grant

A way for a client to obtain an access token on behalf of a user via a REST invocation.

protocol mappers

For each client you can tailor what claims and assertions are stored in the OIDC token or
SAML assertion. You do this per client by creating and configuring protocol mappers.

session

When a user logs in, a session is created to manage the login session. A session contains
information like when the user logged in and what applications have participated within
single-sign on during that session. Both admins and users can view session information.

user federation provider

Red Hat Single Sign-On can store and manage users. Often, companies already have
LDAP or Active Directory services that store user and credential information. You can point
Red Hat Single Sign-On to validate credentials from those external stores and pull in
identity information.

identity provider

An identity provider (IDP) is a service that can authenticate a user. Red Hat Single Sign-On
is an IDP.

identity provider federation

Red Hat Single Sign-On can be configured to delegate authentication to one or more IDPs.
Social login via Facebook or Google+ is an example of identity provider federation. You can
also hook Red Hat Single Sign-On to delegate authentication to any other Open ID Connect
or SAML 2.0 IDP.

identity provider mappers

When doing IDP federation you can map incoming tokens and assertions to user and
session attributes. This helps you propagate identity information from the external IDP to
your client requesting authentication.

required actions

Required actions are actions a user must perform during the authentication process. A user
will not be able to complete the authentication process until these actions are complete. For
example, an admin may schedule users to reset their passwords every month. An update
password required action would be set for all these users.

authentication flows

Authentication flows are work flows a user must perform when interacting with certain
aspects of the system. A login flow can define what credential types are required. A
registration flow defines what profile information a user must enter and whether something
like reCAPTCHA must be used to filter out bots. Credential reset flow defines what actions a
user must do before they can reset their password.

events

Events are audit streams that admins can view and hook into.

CHAPTER 1. OVERVIEW

7

themes

Every screen provided by Red Hat Single Sign-On is backed by a theme. Themes define
HTML templates and stylesheets which you can override as needed.

Red Hat Single Sign-On 7.0 Server Administration Guide

8

CHAPTER 2. SERVER INITIALIZATION

After performing all the installation and configuration tasks defined in the Server Installation and
Configuration Guide, you will need to create an initial admin account. Red Hat Single Sign-On does
not have any configured admin account out of the box. This account will allow you to create an
admin that can log into the master realm’s administration console so that you can start creating
realms, users and registering applications to be secured by Red Hat Single Sign-On.

If your server is accessible from localhost, you can boot it up and create this admin user by going
to the http://localhost:8080/auth URL.

Welcome Page

Simply specify the username and password you want for this initial admin.

If you cannot access the server via a localhost address, or just want to provision Red Hat Single
Sign-On from the command line you can do this with the … ​/bin/add-user-keycloak script.

add-user-keycloak script

CHAPTER 2. SERVER INITIALIZATION

9

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-installation-and-configuration-guide/
http://localhost:8080/auth

The parameters are a little different depending if you are using the standalone operation mode or
domain operation mode. For standalone mode, here is how you use the script.

Linux/Unix

$.../bin/add-user-keycloak.sh -r master -u <username> -p <password>

Windows

> ...\bin\add-user-keycloak.bat -r master -u <username> -p <password>

For domain mode, you have to point the script to one of your server hosts using the -sc switch.

Linux/Unix

$.../bin/add-user-keycloak.sh --sc domain/servers/server-
one/configuration -r master -u <username> -p <password>

Windows

> ...\bin\add-user-keycloak.bat --sc domain/servers/server-
one/configuration -r master -u <username> -p <password>

Red Hat Single Sign-On 7.0 Server Administration Guide

10

CHAPTER 3. ADMIN CONSOLE

The bulk of your administrative tasks will be done through the Red Hat Single Sign-On Admin
Console. You can go to the console url directly at http://localhost:8080/auth/admin/

Login Page

Enter the username and password you created on the Welcome Page or the add-user-keycloak
script. This will bring you to the Red Hat Single Sign-On Admin Console

Admin Console

CHAPTER 3. ADMIN CONSOLE

11

http://localhost:8080/auth/admin/

The left drop down menu allows you to pick a realm you want to manage or to create a new one.
The right drop down menu allows you to view your user account or logout. If you are curious about a
certain feature, button, or field within the Admin Console, simply hover your mouse over any
question mark ? icon. This will pop up tooltip text to describe the area of the console you are
interested in. The image above shows the tooltip in action.

3.1. THE MASTER REALM

When you boot Red Hat Single Sign-On for the first time a pre-defined realm is created for you.
This initial realm is called the master realm and is the king of all realms. Admins in this realm have
permissions to view and manage any other realm created on the server instance. When you define
your initial admin account, you are creating an account in the master realm. Your initial login to the
admin console will also be through the master realm.

It is recommended that you do not use the master realm to manage the users and applications in
your organization. Keep the master realm as a place for super admins to create and manage the
realms in your system. This keeps things clean and organized.

It is possible to disable the master realm and define admin accounts at each individual new realm
you create. Each realm has its own dedicated Admin Console that you can log into with local
accounts. This guide talks more about this in the Dedicated Realm Admin Consoles chapter.

3.2. CREATE A NEW REALM

Creating a new realm is very simple. Mouse over the top left corner drop down menu that is titled
with Master. If you are logged in the master realm this drop down menu lists all the realms created.
The last entry of this drop down menu is always Add Realm. Click this to add a realm.

Red Hat Single Sign-On 7.0 Server Administration Guide

12

Add Realm Menu

This menu option will bring you to the Add Realm page. Specify the realm name you want to define
and click the Create button. Alternatively you can import a JSON document that defines your new
realm. We’ll go over this in more detail in the Export and Import chapter.

Create Realm

CHAPTER 3. ADMIN CONSOLE

13

After creating the realm you are brought back to the main Admin Console page. The current realm
will now be set to the realm you just created. You can switch between managing different realms by
doing a mouse over on the top left corner drop down menu.

3.3. SSL MODE

Each realm has an SSL Mode associated with it. The SSL Mode defines the SSL/HTTPS
requirements for interacting with the realm. Browsers and applications that interact with the realm
must honor the SSL/HTTPS requirements defined by the SSL Mode or they will not be allowed to
interact with the server.

To configure the SSL Mode of your realm, you need to click on the Realm Settings left menu
item and go to the Login tab.

Login Tab

The Require SSL option allows you to pick the SSL Mode you want. Here is an explanation of
each mode:

external requests

Warning

Red Hat Single Sign-On is not set up by default to handle SSL/HTTPS. It is highly
recommended that you either enable SSL on the Red Hat Single Sign-On server itself
or on a reverse proxy in front of the Red Hat Single Sign-On server.

Red Hat Single Sign-On 7.0 Server Administration Guide

14

Users can interact with Red Hat Single Sign-On so long as they stick to private IP
addresses like localhost, 127.0.0.1, 10.0.x.x, 192.168.x.x, and 172..16.x.x.
If you try to access Red Hat Single Sign-On from a non-private IP address you will get an
error.

none

Red Hat Single Sign-On does not require SSL. This should really only be used in
development when you are playing around with things and don’t want to bother configuring
SSL on your server.

all

Red Hat Single Sign-On requires SSL for all IP addresses.

3.4. REALM KEY PAIRS

The authentication protocols that are used by Red Hat Single Sign-On require cryptographic
signatures and sometimes even encryption. Red Hat Single Sign-On uses an asymmetric key pair, a
private and public key to accomplish this. When a realm is created a key pair is automatically
generated. It is recommended that you cycle this key pair occasionally. How often you do this is
dependent on your organizational needs and security requirements as you have to make sure every
application that needs the public key or certificate of your realm gets this updated. This can be a lot
of work!

To cycle a key pair click on the Realm Settings left menu item, go to the Keys tab, and push the
Generate new keys button.

Keys tab

This will create a brand new key pair for your realm.

3.5. CLEARING SERVER CACHES

CHAPTER 3. ADMIN CONSOLE

15

Red Hat Single Sign-On will cache everything it can in memory within the limits of your JVM and/or
the limits you’ve configured it for. If the Red Hat Single Sign-On database is modified by a third party
(i.e. a DBA) outside the scope of the server’s REST APIs or Admin Console there’s a chance parts of
the in-memory cache may be stale. You can clear the realm and user caches from the Admin
Console by going to the Realm Settings left menu item and the Cache tab.

Keys tab

Just click the clear button on the cache you want to evict.

3.6. EMAIL SETTINGS

Red Hat Single Sign-On sends emails to users to verify their email address, when they forget their
passwords, or when an admin needs to receive notifications about a server event. To enable Red
Hat Single Sign-On to send emails you need to provide Red Hat Single Sign-On with your SMTP
server settings. This is configured per realm. Go to the Realm Settings left menu item and click
the Email tab.

Email Tab

Red Hat Single Sign-On 7.0 Server Administration Guide

16

As emails are used for recovering usernames and passwords it’s recommended to use SSL or TLS,
especially if the SMTP server is on an external network. To enable SSL click on Enable SSL or to
enable TLS click on Enable TLS. You will most likely also need to change the Port (the default
port for SSL/TLS is 465).

If your SMTP server requires authentication click on Enable Authentication and insert the
Username and Password.

3.7. THEMES AND INTERNATIONALIZATION

Themes allow you to change the look and feel of any UI in Red Hat Single Sign-On. Themes are
configured per realm. To change a theme go to the Realm Settings left menu item and click on
the Themes tab.

Themes Tab

CHAPTER 3. ADMIN CONSOLE

17

Pick the theme you want for each UI category and click Save.

Login Theme

Username password entry, OTP entry, new user registration, and other similar screens
related to login.

Account Theme

Each user has an User Account Management UI.

Admin Console Theme

The skin of the Red Hat Single Sign-On Admin Console.

Email Theme

Whenever Red Hat Single Sign-On has to send out an email, it uses templates defined in
this theme to craft the email.

The Server Developer Guide goes into how to create a new themes or modify existing ones.

3.7.1. Internationalization

Every UI screen is internationalized in Red Hat Single Sign-On. The default language is English, but
if you turn on the Internationalization switch on the Theme tab you can choose which locales
you want to support and what the default locale will be. The next time a user logs in, they will be able
to choose a language on the login page to use for the login screens, User Account Management UI,
and Admin Console. The Server Developer Guide explains how you can offer additional languages.

Red Hat Single Sign-On 7.0 Server Administration Guide

18

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-developer-guide/
https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-developer-guide/

CHAPTER 4. USER MANAGEMENT

This section describes the administration functions for managing users.

4.1. SEARCHING FOR USERS

If you need to manage a specific user, click on Users in the left menu bar.

Users

This menu option brings you to the user list page. In the search box you can type in a full name, last
name, or email address you want to search for in the user database. The query will bring up all
users that match your criteria. The View all users button will list every user in the system. This
will search just local Red Hat Single Sign-On database and not the federated database (ie. LDAP)
because some backends like LDAP don’t have a way to page through users. So if you want the
users from federated backend to be synced into Red Hat Single Sign-On database you need to
either:

Adjust search criteria. That will sync just the backend users matching the criteria into Red Hat
Single Sign-On database.

Go to User Federation tab and click Sync all users or Sync changed users in the
page with your federation provider.

See User Federation for more details.

4.2. CREATING NEW USERS

To create a user click on Users in the left menu bar.

CHAPTER 4. USER MANAGEMENT

19

Users

This menu option brings you to the user list page. On the right side of the empty user list, you should
see an Add User button. Click that to start creating your new user.

Add User

The only required field is Username. Click save. This will bring you to the management page for
your new user.

Red Hat Single Sign-On 7.0 Server Administration Guide

20

4.3. USER ATTRIBUTES

Beyond basic user metadata like name and email, you can store arbitrary user attributes. Choose a
user to manage then click on the Attributes tab.

Users

Enter in the attribute name and value in the empty fields and click the Add button next to it to add a
new field. Note that any edits you make on this page will not be stored until you hit the Save button.

4.4. USER CREDENTIALS

When viewing a user if you go to the Credentials tab you can manage a user’s credentials.

Credential Management

CHAPTER 4. USER MANAGEMENT

21

4.4.1. Changing Passwords

To change a user’s password, type in a new one. A Reset Password button will show up that you
click after you’ve typed everything in. If the Temporary switch is on, this new password can only be
used once and the user will be asked to change their password after they have logged in.

Alternatively, if you have email set up, you can send an email to the user that asks them to reset
their password. Choose Update Password from the Reset Actions list box and click the Reset
Actions Email. The sent email contains a link that will bring the user to the update password
screen.

4.4.2. Changing OTPs

You cannot configure One-Time Passwords for a specific user within the Admin Console. This is the
responsibility of the user. If the user has lost their OTP generator all you can do is disable OTP for
them on the Credentials tab. If OTP is optional in your realm, the user will have to go to the User
Account Management service to re-configure a new OTP generator. If OTP is required, then the user
will be asked to re-configure a new OTP generator when they log in.

Like passwords, you can alternatively send an email to the user that will ask them to reset their OTP
generator. Choose Configure OTP in the Reset Actions list box and click the Send Email
button. The sent email contains a link that will bring the user to the OTP setup screen.

4.5. REQUIRED ACTIONS

Required Actions are tasks that a user must finish before they are allowed to log in. A user must
provide their credentials before required actions are executed. Once a required action is completed,
the user will not have to perform the action again. Here are an explanation of some of the built in
required action types:

Update Password

Red Hat Single Sign-On 7.0 Server Administration Guide

22

When set, a user must change their password.

Configure OTP

When set, a user must configure a one-time password generator on their mobile device
using either the Free OTP or Google Authenticator appliation.

Verify Email

When set, a user must verify that they have a valid email account. An email will be sent to
the user with a link they have to click. Once this workflow is successfully completed, they
will be allowed to log in.

Update Profile

This required action asks the user to update their profile information, i.e. their name,
address, email, and/or phone number.

Admins can add required actions for each individual user within the user’s Details tab in the
Admin Console.

Setting Required Action

In the Required User Actions list box, select all the actions you want to add to the account. If
you want to remove one, click the X next to the action name. Also remember to click the Save button
after you’ve decided what actions to add.

4.5.1. Default Required Actions

You can also specify required actions that will be added to an account whenever a new user is
created, i.e. through the Add User button the user list screen, or via the user registration link on the
login page. To specify the default required actions go to the Authentication left menu item and
click on the Required Actions tab.

CHAPTER 4. USER MANAGEMENT

23

Default Required Actions

Simply click the checkbox in the Default Action column of the required actions that you want to
be executed when a brand new user logs in.

4.5.2. Terms and Conditions

Many organizations have a requirement that when a new user logs in for the first time, they need to
agree to the terms and conditions of the website. Red Hat Single Sign-On has this functionality
implemented as a required action, but it requires some configuration. For one, you have to go to the
Required Actions tab described earlier and enable the Terms and Conditions action. You
must also edit the terms.ftl file in the base login theme. See the Server Developer Guide for more
information on extending and creating themes.

4.6. IMPERSONATION

It is often useful for an admin to impersonate a user. For example, a user may be experiencing a bug
in one of your applications and an admin may want to impersonate the user to see if they can
duplicate the problem. Admins with the appropriate permission can impersonate a user. There are
two locations an admin can initiate impersonation. The first is on the Users list tab.

Users

Red Hat Single Sign-On 7.0 Server Administration Guide

24

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-developer-guide/

You can see here that the admin has searched for jim. Next to Jim’s account you can see an
impersonate button. Click that to impersonate the user.

Also, you can impersonate the user from the user Details tab.

User Details

CHAPTER 4. USER MANAGEMENT

25

Near the bottom of the page you can see the Impersonate button. Click that to impersonate the
user.

When impersonating, if the admin and the user are in the same realm, then the admin will be logged
out and automatically logged in as the user being impersonated. If the admin and user are not in the
same realm, the admin will remain logged in, but additionally be logged in as the user in that user’s
realm. In both cases, the browser will be redirected to the impersonated user’s User Account
Management page.

Any user with the realm’s impersonation role can impersonate a user. Please see the Admin
Console Access Control chapter for more details on assigning administration permissions.

4.7. USER REGISTRATION

You can enable Red Hat Single Sign-On to allow user self registration. When enabled, the login
page has a registration link the user can click on to create their new account. Enabling registration is
pretty simple. Go to the Realm Settings left menu and click it. Then go to the Login tab. There is
a User Registration switch on this tab. Turn it on, then click the Save button.

Login Tab

After you enable this setting, a Register link should show up on the login page.

Registration Link

Red Hat Single Sign-On 7.0 Server Administration Guide

26

Clicking on this link will bring the user to the registration page where they have to enter in some user
profile information and a new password.

Registration Form

CHAPTER 4. USER MANAGEMENT

27

You can change the look and feel of the registration form as well as removing or adding additional
fields that must be entered. See the Server Developer Guide for more information.

4.7.1. reCAPTCHA Support

To safeguard registration against bots, Red Hat Single Sign-On has integration with Google
reCAPTCHA. To enable this you need to first go to Google Recaptcha Website and create an API
key so that you can get your reCAPTCHA site key and secret. (FYI, localhost works by default so
you don’t have to specify a domain).

Next, there are a few steps you need to perform in the Red Hat Single Sign-On Admin Console.
Click the Authentication left menu item and go to the Flows tab. Select the Registration
flow from the drop down list on this page.

Registration Flow

Red Hat Single Sign-On 7.0 Server Administration Guide

28

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-developer-guide/
https://developers.google.com/recaptcha/

Set the 'reCAPTCHA' requirement to Required by clicking the appropriate radio button. This will
enable reCAPTCHA on the screen. Next, you have to enter in the reCAPTCHA site key and secret
that you generated at the Google reCAPTCHA Website. Click on the 'Configure' button that is to the
right of the reCAPTCHA flow entry and enter in the reCAPTCHA site key and secret on this config
page.

Recaptcha Config Page

The final step you have to do is to change some default HTTP response headers that Red Hat
Single Sign-On sets. Red Hat Single Sign-On will prevent a website from including any login page

CHAPTER 4. USER MANAGEMENT

29

within an iframe. This is to prevent clickjacking attacks. You need to authorize Google to use the
registration page within an iframe. Go to the Realm Settings left menu item and then go to the
Security Defenses tab. You will need to add https://www.google.com to the values of both
the X-Frame-Options and Content-Security-Policy headers.

Authorizing Iframes

Once you do this, reCAPTCHA should show up on your registration page. You may want to edit
register.ftl in your login theme to muck around with the placement and styling of the reCAPTCHA
button. See the Server Developer Guide for more information on extending and creating themes.

Red Hat Single Sign-On 7.0 Server Administration Guide

30

https://www.google.com
https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-developer-guide/

CHAPTER 5. LOGIN PAGE SETTINGS

There are several nice built in login page features you can enable if you need the functionality.

5.1. FORGOT PASSWORD

If you enable it, users are able to reset their credentials if they forget their password or lose their
OTP generator. Go to the Realm Settings left menu item, and click on the Login tab. Switch on
the Forgot Password switch.

Login Tab

A forgot password link will now show up on your login pages.

Forgot Password Link

CHAPTER 5. LOGIN PAGE SETTINGS

31

Clicking on this link will bring the user to a page where they can enter in their username or email and
receive an email with a link to reset their credentials.

Forgot Password Page

The text sent in the email is completely configurable. You just need to extend or edit the theme
associated with it. See the Server Developer Guide for more information.

When the user clicks on the email link, they will be asked to update their password, and, if they have

Red Hat Single Sign-On 7.0 Server Administration Guide

32

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-developer-guide/

an OTP generator set up, they will also be asked to reconfigure this as well. Depending on the
security requirements of your organization you may not want users to be able to reset their OTP
generator through email. You can change this behavior by going to the Authentication left menu
item, clicking on the Flows tab, and selecting the Reset Credentials flow:

Reset Credentials Flow

If you do not want OTP reset, then just chose the disabled radio button to the right of Reset OTP.

5.2. REMEMBER ME

If a logged in user closes their browser, their session is destroyed and they will have to log in again.
You can set things up so that if a user checks a remember me checkbox, they will remain logged in
even if the browser is closed. This basically turns the login cookie from a session-only cookie to a
persistence cookie.

To enable this feature go to Realm Settings left menu item and click on the Login tab and turn
on the Remember Me switch:

Login Tab

CHAPTER 5. LOGIN PAGE SETTINGS

33

Once you save this setting, a remember me checkbox will be displayed on the realm’s login page.

Remember Me

Red Hat Single Sign-On 7.0 Server Administration Guide

34

CHAPTER 6. AUTHENTICATION

There are a few features you should be aware of when configuring authentication for your realm.
Many organizations have strict password and OTP policies that you can enforce via settings in the
Admin Console. You may or may not want to require different credential types for authentication.
You may want to give users the option to login via Kerberos or disable or enable various built in
credential types. This chapter covers all of these topics.

6.1. PASSWORD POLICIES

Each new realm created has no password policies associated with it. This means users can have
as short, as long, as complex, as insecure a password as they want. This is great for development
or if you are just learning and playing around with Red Hat Single Sign-On, but pretty much
unacceptable in production environment. Red Hat Single Sign-On has a rich set of password
policies you can enable through the Admin Console.

Click on the Authentication left menu item and go to the Password Policy tab. Choose the
policy you want to add in the right side drop down list box. This will add the policy in the table on the
screen. Choose the parameters for the policy. Hit the Save button to store your changes.

Password Policy

After saving your policy, user registration and the Update Password required action will enforce your
new policy. Here’s what it would look like if the user failed the policy check:

Failed Password Policy

CHAPTER 6. AUTHENTICATION

35

Unfortunately, users are not required to update their password if the password policy changes and
there is no nice way of triggering an Update Password required action other than setting it manually
for every user. This is scheduled as a future enhancement.

6.1.1. Password Policy Types

Here’s an explanation of each policy type:

HashAlgorithm

Passwords are not stored as clear text. Instead they are hashed using standard hashing
algorithms before they are stored or validated. The only currently supported algorithm is
PBKDF2.

HashIterations

This value specifies the number of times a password will be hashed before it is stored or
verified. The default value is 20,000. This hashing is done in the rare case that a hacker
gets access to your password database. Once they have the database they can reverse
engineer user passwords. The industry recommended value for this parameter changes
every year as CPU power improves. The current recommended value is 20,000. Yes,
20,000 iterations! This is a very intensive CPU operation and with this high of a setting your
servers are going to be spending most of their CPU power on hashing. You’ll have to weigh
what is more important to you. Performance or protecting your passwords stores. There
may be more cost effective ways of protecting your password stores.

Digits

How many digits are required to be in the password string?

LowerCase

How many lower case letters are required to be in the password string?

Red Hat Single Sign-On 7.0 Server Administration Guide

36

UpperCase

How many upper case letters are required to be in the password string?

SpecialChars

How many special characters like '?!#%$' are required to be in the password string?

NotUsername

When set, password is not allowed to be the same as the username.

RegexPattern

Define a Perl regular expression pattern that passwords must match.

ForceExpiredPasswordChange

How many days is a password valid for? After the number of days has expired, the user will
be required to change their password.

PasswordHistory

This policy saves a history of previous passwords. The number of old passwords stored is
configurable. When a user changes their password they will not be able to re-use any
password stored in history.

6.2. OTP POLICIES

Red Hat Single Sign-On has a number of policies you can set up for your FreeOTP or Google
Authenticator One-Time Password generator. Click on the Authentication left menu item and go
to the OTP Policy tab.

OTP Policy

CHAPTER 6. AUTHENTICATION

37

Any policies you set here will be used to validate one-time passwords. When configuring OTP,
FreeOTP and Google Authenticator can scan a QR code that is generated on the OTP set up page
that Red Hat Single Sign-On has. The bar code is also generated from information configured on the
OTP Policy tab.

6.2.1. TOTP vs. HOTP

There are two different algorithms to choose from for your OTP generators. Time Based (TOTP) and
Counter Based (HOTP). For TOTP, your token generator will hash the current time and a shared
secret. The server validates the OTP by comparing the all hashes within a certain window of time to
the submitted value. So, TOTPs are valid only for a short window of time (usually 30 seconds). For
HOTP a shared counter is used instead of the current time. The server increments the counter with
each successful OTP login. So, valid OTPs only change after a successful login.

TOTP is considered a little more secure because the matchable OTP is only valid for a short
window of time while the OTP for HOTP can be valid for an indeterminate amount of time. HOTP is
much more user friendly as the user won’t have to hurry to enter in their OTP before the time interval
is up. With the way Red Hat Single Sign-On has implemented TOTP this distinction becomes a little
more blurry. HOTP requires a database update every time the server wants to increment the
counter. This can be a performance drain on the authentication server when there is heavy load. So,
to provide a more efficient alternative, TOTP does not remember passwords used. This bypasses
the need to do any DB updates, but the downside is that TOTPs can be re-used in the valid time
interval. For future versions of Red Hat Single Sign-On it is planned that you will be able to configure
whether TOTP checks older OTPs in the time interval.

6.2.2. TOTP Configuration Options

Hashing Algorithm

Default is SHA1, more secure options are SHA256 and SHA512.

Number of Digits

How many characters is the OTP? Short means more user friendly as it is less the user has
to type. More means more security.

Look Ahead Window

How many intervals ahead should the server try and match the hash? This exists so just in
case the clock of the TOTP generator or authentication server get out of sync. The default
value of 1 is usually good enough. For example, if the time interval for a new token is every
30 seconds, the default value of 1 means that it will only accept valid tokens in that 30
second window. Each increment of this config value will increase the valid window by 30
seconds.

OTP Token Period

Time interval in seconds a new TOTP will be generated by the token generator. And, the
time window the server is matching a hash.

6.2.3. HOTP Configuration Options

Hashing Algorithm

Default is SHA1, more secure options are SHA256 and SHA512.

Red Hat Single Sign-On 7.0 Server Administration Guide

38

Number of Digits

How many characters is the OTP? Short means more user friendly as it is less the user has
to type. More means more security.

Look Ahead Window

How many counters ahead should the server try and match the hash? The default value is
1. This exists to cover the case where the user’s counter gets ahead of the server’s. This
can often happen as users often increment the counter manually too many times by
accident. This value really should be increased to a value of 10 or so.

Initial Counter

What is the value of the initial counter?

6.3. AUTHENTICATION FLOWS

An authentication flow is a container for all authentications, screens, and actions that must happen
during login, registration, and other Red Hat Single Sign-On workflows. If you go to the admin
console Authentication left menu item and go to the Flows tab, you can view all the defined
flows in the system and what actions and checks each flow requires. This section does a walk
through of the browser login flow. In the left drop down list select browser to come to the screen
shown below:

Browser Flow

If you hover over the tooltip (the tiny question mark) to the right of the flow selection list, this will
describe what the flow is and does.

CHAPTER 6. AUTHENTICATION

39

The Auth Type column is the name of authentication or action that will be executed. If an
authentication is indented this means it is in a sub-flow and may or may not be executed depending
on the behavior of its parent. The Requirement column is a set of radio buttons which define
whether or not the action will execute. Let’s describe what each radio button means:

Required

This authentication execution must execute successfully. If the user doesn’t have that type
of authentication mechanism configured and there is a required action associated with that
authentication type, then a required action will be attached to that account. For example, if
you switch OTP Form to Required, users that don’t have an OTP generator configured will
be asked to do so.

Optional

If the user has the authentication type configured, it will be executed. Otherwise, it will be
ignored.

Disabled

If disabled, the authentication type is not executed.

Alternative

This means that at least one alternative authentication type must execute successfully at
that level of the flow.

This is better described in an example. Let’s walk through the browser authentication flow.

1. The first authentication type is Cookie. When a user successfully logs in for the first time, a
session cookie is set. If this cookie has already been set, then this authentication type is
successful. Since the cookie provider returned success and each execution at this level of
the flow is alternative, no other execution is executed and this results in a successful login.

2. Next the flow looks at the Kerberos execution. This authenticator is disabled by default and
will be skipped.

3. The next execution is a subflow called Forms. Since this subflow is marked as alternative it
will not be executed if the Cookie authentication type passed. This subflow contains
additional authentication type that needs to be executed. The executions for this subflow are
loaded and the same processing logic occurs

4. The first execution in the Forms subflow is the Username Password Form. This
authentication type renders the username and password page. It is marked as required so
the user must enter in a valid username and password.

5. The next execution is the OTP Form. This is marked as optional. If the user has OTP set
up, then this authentication type must run and be successful. If the user doesn’t have OTP
set up, this authentication type is ignored.

6.4. KERBEROS

Red Hat Single Sign-On supports login with a Kerberos ticket through the SPNEGO protocol.
SPNEGO (Simple and Protected GSSAPI Negotiation Mechanism) is used to authenticate
transparently through the web browser after the user has been authenticated when logging-in his
session. For non-web cases or when ticket is not available during login, Red Hat Single Sign-On
also supports login with Kerberos username/password.

Red Hat Single Sign-On 7.0 Server Administration Guide

40

A typical use case for web authentication is the following:

1. User logs into his desktop (Such as a Windows machine in Active Directory domain or
Linux machine with Kerberos integration enabled).

2. User then uses his browser (IE/Firefox/Chrome) to access a web application secured by
Red Hat Single Sign-On.

3. Application redirects to Red Hat Single Sign-On login.

4. Red Hat Single Sign-On renders HTML login screen together with status 401 and HTTP
header WWW-Authenticate: Negotiate

5. In case that the browser has Kerberos ticket from desktop login, it transfers the desktop
sign on information to the Red Hat Single Sign-On in header Authorization:
Negotiate 'spnego-token' . Otherwise it just displays the login screen.

6. Red Hat Single Sign-On validates token from the browser and authenticates the user. It
provisions user data from LDAP (in case of LDAPFederationProvider with Kerberos
authentication support) or let user to update his profile and prefill data (in case of
KerberosFederationProvider).

7. Red Hat Single Sign-On returns back to the application. Communication between Red Hat
Single Sign-On and application happens through OpenID Connect or SAML messages. The
fact that Red Hat Single Sign-On was authenticated through Kerberos is hidden from the
application. So Red Hat Single Sign-On acts as broker to Kerberos/SPNEGO login.

For setup there are 3 main parts:

1. Setup and configuration of Kerberos server (KDC)

2. Setup and configuration of Red Hat Single Sign-On server

3. Setup and configuration of client machines

6.4.1. Setup of Kerberos server

This is platform dependent. Exact steps depend on your OS and the Kerberos vendor you’re going
to use. Consult Windows Active Directory, MIT Kerberos and your OS documentation for how
exactly to setup and configure Kerberos server.

At least you will need to:

Add some user principals to your Kerberos database. You can also integrate your Kerberos with
LDAP, which means that user accounts will be provisioned from LDAP server.

Add service principal for "HTTP" service. For example if your Red Hat Single Sign-On server will
be running on www.mydomain.org you may need to add principal
HTTP/www.mydomain.org@MYDOMAIN.ORG assuming that MYDOMAIN.ORG will be your
Kerberos realm.

For example on MIT Kerberos you can run a "kadmin" session. If you are on the same machine
where is MIT Kerberos, you can simply use the command:

sudo kadmin.local

Then add HTTP principal and export his key to a keytab file with the commands like:

CHAPTER 6. AUTHENTICATION

41

addprinc -randkey HTTP/www.mydomain.org@MYDOMAIN.ORG
ktadd -k /tmp/http.keytab HTTP/www.mydomain.org@MYDOMAIN.ORG

The Keytab file /tmp/http.keytab will need to be accessible on the host where Red Hat Single
Sign-On server will be running.

6.4.2. Setup and configuration of Red Hat Single Sign-On server

You need to install a kerberos client on your machine. This is also platform dependent. If you are on
Fedora, Ubuntu or RHEL, you can install the package freeipa-client, which contains a
Kerberos client and several other utilities. Configure the kerberos client (on linux it’s in file
/etc/krb5.conf). You need to put your Kerberos realm and at least configure the HTTP domains
your server will be running on. For the example realm MYDOMAIN.ORG you may configure the
domain_realm section like this:

[domain_realm]
 .mydomain.org = MYDOMAIN.ORG
 mydomain.org = MYDOMAIN.ORG

Next you need to export the keytab file with the HTTP principal and make sure the file is accessible
to the process under which Red Hat Single Sign-On server is running. For production, it’s ideal if it’s
readable just by this process and not by someone else. For the MIT Kerberos example above, we
already exported keytab to /tmp/http.keytab . If your KDC and Red Hat Single Sign-On are
running on same host, you have that file already available.

6.4.2.1. Enable SPNEGO Processing

Red Hat Single Sign-On does not have the SPNEGO protocol support turned on by default. So, you
have to go to the browser flow and enable Kerberos.

Browser Flow

Red Hat Single Sign-On 7.0 Server Administration Guide

42

Switch the Kerberos requirement from disabled to either alternative or required. Alternative
basically means that Kerberos is optional. If the user’s browser hasn’t been configured to work with
SPNEGO/Kerberos, then Red Hat Single Sign-On will fall back to the regular login screens. If you
set the requirement to required then all users must have Kerberos enabled for their browser.

6.4.2.2. Configure Kerberos User Storage Federation Provider

Now that the SPNEGO protocol is turned on at the authentication server, you’ll need to configure
how Red Hat Single Sign-On interprets the Kerberos ticket. This is done through User Storage
Federation. We have 2 different federation providers with Kerberos authentication support.

If you want to authenticate with Kerberos backed by an LDAP server, you have to first configure the
LDAP Federation Provider. If you look at the configuration page for your LDAP provider you’ll see a
Kerberos Integration section.

LDAP Kerberos Integration

CHAPTER 6. AUTHENTICATION

43

Turning on the switch Allow Kerberos authentication will make Red Hat Single Sign-On
use the Kerberos principal to lookup information about the user so that it can be imported into the
Red Hat Single Sign-On environment.

If your Kerberos solution is not backed by an LDAP server, you have to use the Kerberos User
Storage Federation Provider. Go to the User Federation left menu item and select Kerberos
from the right Add provider select box.

Kerberos User Storage Provider

Red Hat Single Sign-On 7.0 Server Administration Guide

44

This provider parses the Kerberos ticket for simple principal information and does a small import
into the local Red Hat Single Sign-On database. User profile information like first name, last name,
and email are not provisioned.

6.4.3. Setup and configuration of client machines

Clients need to install kerberos client and setup krb5.conf as described above. Additionally they
need to enable SPNEGO login support in their browser. See configuring Firefox for Kerberos if you
are using that browser. URI .mydomain.org must be allowed in the network.negotiate-
auth.trusted-uris config option.

In a Windows domain, clients usually don’t need to configure anything special as IE is already able
to participate in SPNEGO authentication for the Windows domain.

6.4.4. Credential Delegation

Kerberos 5 supports the concept of credential delegation. In this scenario, your applications may
want access to the Kerberos ticket so that they can re-use it to interact with other services secured
by Kerberos. Since the SPNEGO protocol is processed in the Red Hat Single Sign-On server, you
have to propagate the GSS credential to your application within the OpenID Connect token claim or
a SAML assertion attribute that is transmitted to your application from the Red Hat Single Sign-On
server. To have this claim inserted into the token or assertion, each application will need to enable
the built-in protocol mapper called gss delegation credential. This is enabled in the
Mappers tab of the application’s client page. See Protocol Mappers chapter for more details.

Applications will need to deserialize the claim it receives from Red Hat Single Sign-On before it can
use it to make GSS calls against other services. Once you deserialize the credential from the access
token to the GSSCredential object, the GSSContext will need to be created with this credential
passed to the method GSSManager.createContext for example like this:

// Obtain accessToken in your application.

CHAPTER 6. AUTHENTICATION

45

http://www.microhowto.info/howto/configure_firefox_to_authenticate_using_spnego_and_kerberos.html

KeycloakPrincipal keycloakPrincipal = (KeycloakPrincipal)
servletReq.getUserPrincipal();
AccessToken accessToken =
keycloakPrincipal.getKeycloakSecurityContext().getToken();

// Retrieve kerberos credential from accessToken and deserialize it
String serializedGssCredential = (String) accessToken.getOtherClaims().

get(org.keycloak.common.constants.KerberosConstants.GSS_DELEGATION_CRED
ENTIAL);

GSSCredential deserializedGssCredential =
org.keycloak.common.util.KerberosSerializationUtils.
 deserializeCredential(serializedGssCredential);

// Create GSSContext to call other kerberos-secured services
GSSContext context = gssManager.createContext(serviceName, krb5Oid,
 deserializedGssCredential, GSSContext.DEFAULT_LIFETIME);

Note that you also need to configure forwardable kerberos tickets in krb5.conf file and add
support for delegated credentials to your browser.

6.4.5. Troubleshooting

If you have issues, we recommend that you enable additional logging to debug the problem:

Enable Debug flag in admin console for Kerberos or LDAP federation providers

Enable TRACE logging for category org.keycloak in logging section of
standalone/configuration/standalone.xml to receive more info
standalone/log/server.log

Add system properties -Dsun.security.krb5.debug=true and -
Dsun.security.spnego.debug=true

Warning

Credential delegation has some security implications so only use it if you really need it.
It’s highly recommended to use it together with HTTPS. See for example this article for
more details.

Red Hat Single Sign-On 7.0 Server Administration Guide

46

http://www.microhowto.info/howto/configure_firefox_to_authenticate_using_spnego_and_kerberos.html#idp27072

CHAPTER 7. SSO PROTOCOLS

The chapter gives a brief overview of the authentication protocols and how the Red Hat Single Sign-
On authentication server and the applications it secures interact with these protocols.

7.1. OPEN ID CONNECT

Open ID Connect (OIDC) is an authentication protocol that is an extension of OAuth 2.0. While
OAuth 2.0 is only a framework for building authorization protocols and is mainly incomplete, OIDC is
a full-fledged authentication and authorization protocol. OIDC also makes heavy use of the Json
Web Token (JWT) set of standards. These standards define an identity token JSON format and
ways to digitally sign and encrypt that data in a compact and web-friendly way.

There are really two types of use cases when using OIDC. The first is an application that asks the
Red Hat Single Sign-On server to authenticate a user for them. After a successful login, the
application will receive an identity token and an access token. The identity token contains
information about the user such as username, email, and other profile information. The access token
is digitally signed by the realm and contains access information (like user role mappings) that the
application can use to determine what resources the user is allowed to access on the application.

The second type of use cases is that of a client that wants to gain access to remote services. In this
case, the client asks Red Hat Single Sign-On to obtain an access token it can use to invoke on
other remote services on behalf of the user. Red Hat Single Sign-On authenticates the user then
asks the user for consent to grant access to the client requesting it. The client then receives the
access token. This access token is digitally signed by the realm. The client can make REST
invocations on remote services using this access token. The REST service extracts the access
token, verifies the signature of the token, then decides based on access information within the token
whether or not to process the request.

7.1.1. OIDC Auth Flows

OIDC has different ways for a client or application to authenticate a user and receive an identity and
access token. Which path you use depends greatly on the type of application or client requesting
access. All of these flows are described in the OIDC and OAuth 2.0 specifications so only a brief
overview will be provided here.

7.1.1.1. Authorization Code Flow

This is a browser-based protocol and it is what we recommend you use to authenticate and
authorize browser-based applications. It makes heavy use of browser redirects to obtain an identity
and access token. Here’s a brief summary:

1. Browser visits application. The application notices the user is not logged in, so it redirects
the browser to Red Hat Single Sign-On to be authenticated. The application passes along a
callback URL (a redirect URL) as a query parameter in this browser redirect that Red Hat
Single Sign-On will use when it finishes authentication.

2. Red Hat Single Sign-On authenticates the user and creates a one-time, very short lived,
temporary code. Red Hat Single Sign-On redirects back to the application using the callback
URL provided earlier and additionally adds the temporary code as a query parameter in the
callback URL.

3. The application extracts the temporary code and makes a background out of band REST
invocation to Red Hat Single Sign-On to exchange the code for an identity, access and

CHAPTER 7. SSO PROTOCOLS

47

http://openid.net/connect/
https://tools.ietf.org/html/rfc6749
https://jwt.io

refresh token. Once this temporary code has been used once to obtain the tokens, it can
never be used again. This prevents potential reply attacks.

It is important to note that access tokens are usually short lived and often expired after only minutes.
The additional refresh token that was transmitted by the login protocol allows the application to
obtain a new access token after it expires. This refresh protocol is important in the situation of a
compromised system. If access tokens are short lived, the whole system is only vulnerable to a
stolen token for the lifetime of the access token. Future refresh token requests will fail if an admin
has revoked access. This makes things more secure and more scalable.

Another important aspect of this flow is the concept of a public vs. a confidential client. Confidential
clients are required to provide a client secret when they exchange the temporary codes for tokens.
Public clients are not required to provide this client secret. Public clients are perfectly fine so long as
HTTPS is strictly enforced and you are very strict about what redirect URIs are registered for the
client. HTML5/JavaScript clients always have to be public clients because there is no way to
transmit the client secret to them in a secure manner. Again, this is ok so long as you use HTTPS
and strictly enforce redirect URI registration. This guide goes more detail into this in the Managing
Clients chapter.

7.1.1.2. Implicit Flow

This is a browser-based protocol that is similar to Authorization Code Flow except there are fewer
requests and no refresh tokens involved. We do not recommend this flow as there remains the
possibility of access tokens being leaked in the browser history as tokens are transmitted via redirect
URIs (see below). Also, since this flow doesn’t provide the client with a refresh token, access tokens
would either have to be long-lived or users would have to re-authenticate when they expired. This
flow is supported because it is in the OIDC and OAuth 2.0 specification. Here’s a brief summary of
the protocol:

1. Browser visits application. The application notices the user is not logged in, so it redirects
the browser to Red Hat Single Sign-On to be authenticated. The application passes along a
callback URL (a redirect URL) as a query parameter in this browser redirect that Red Hat
Single Sign-On will use when it finishes authentication.

2. Red Hat Single Sign-On authenticates the user and creates an identity and access token.
Red Hat Single Sign-On redirects back to the application using the callback URL provided
earlier and additionally adding the identity and access tokens as query parameters in the
callback URL.

3. The application extracts the the identity and access tokens from the callback URL.

7.1.1.3. Resource Owner Password Credentials Grant (Direct Grants)

This is referred to in the Admin Console as Direct Grants. This is used by REST clients that want to
obtain a token on behalf of a user. It is one HTTP POST request that contains the credentials of the
user as well as the id of the client and the client’s secret (if it is a confidential client). The user’s
credentials are sent within form parameters. The HTTP response contains identity, access, and
refresh tokens.

7.1.1.4. Client Credentials Grant

This is also used by REST clients, but instead of obtaining a token that works on behalf of an
external user, a token is created based on the metadata and permissions of a service account that is
associated with the client. More info together with example is in Service Accounts chapter.

Red Hat Single Sign-On 7.0 Server Administration Guide

48

7.1.2. Red Hat Single Sign-On Server OIDC URI Endpoints

Here’s a list of OIDC endpoints that the Red Hat Single Sign-On publishes. These URLs are useful
if you are using a non-Red Hat Single Sign-On client adapter to talk OIDC with the auth server.
These are all relative URLs and the root of the URL being the HTTP(S) protocol, hostname, and
usually path prefixed with /auth: i.e. https://localhost:8080/auth

/realms/{realm-name}/protocol/openid-connect/token

This is the URL endpoint for obtaining a temporary code in the Authorization Code Flow or
for obtaining tokens via the Implicit Flow, Direct Grants, or Client Grants.

/realms/{realm-name}/protocol/openid-connect/auth

This is the URL endpoint for the Authorization Code Flow to turn a temporary code into a
token.

/realms/{realm-name}/protocol/openid-connect/logout

This is the URL endpoint for performing logouts.

/realms/{realm-name}/protocol/openid-connect/userinfo

This is the URL endpoint for the User Info service described in the OIDC specification.

In all of these replace {realm-name} with the name of the realm.

7.2. SAML

SAML 2.0 is a similar specification to OIDC but a lot older and more mature. It has its roots in SOAP
and the plethora of WS-* specifications so it tends to be a bit more verbose than OIDC. SAML 2.0 is
primarily an authentication protocol that works by exchanging XML documents between the
authentication server and the application. XML signatures and encryption is used to verify requests
and responses.

There is really two types of use cases when using SAML. The first is an application that asks the
Red Hat Single Sign-On server to authenticate a user for them. After a successful login, the
application will receive an XML document that contains something called a SAML assertion that
specify various attributes about the user. This XML document is digitally signed by the realm and
contains access information (like user role mappings) that the application can use to determine what
resources the user is allowed to access on the application.

The second type of use cases is that of a client that wants to gain access to remote services. In this
case, the client asks Red Hat Single Sign-On to obtain an SAML assertion it can use to invoke on
other remote services on behalf of the user.

7.2.1. SAML Bindings

SAML defines a few different ways to exchange XML documents when executing the authentication
protocol. The Redirect and Post bindings cover browser based applications. The ECP binding
covers REST invocations. There are other binding types but Red Hat Single Sign-On only supports
those three.

7.2.1.1. Redirect Binding

CHAPTER 7. SSO PROTOCOLS

49

http://saml.xml.org/saml-specifications

The Redirect Binding uses a series of browser redirect URIs to exchange information. This is a
rough overview of how it works.

1. The user visits the application and the application finds the user is not authenticated. It
generates an XML authentication request document and encodes it as a query param in a
URI that is used to redirect to the Red Hat Single Sign-On server. Depending on your
settings, the application may also digitally sign this XML document and also stuff this
signature as a query param in the redirect URI to Red Hat Single Sign-On. This signature is
used to validate the client that sent this request.

2. The browser is redirected to Red Hat Single Sign-On. The server extracts the XML auth
request document and verifies the digital signature if required. The user then has to enter in
their credentials to be authenticated.

3. After authentication, the server generates an XML authentication response document. This
document contains a SAML assertion that holds metadata about the user like name,
address, email, and any role mappings the user might have. This document is almost
always digitally signed using XML signatures, and may also be encrypted.

4. The XML auth response document is then encoded as a query param in a redirect URI that
brings the browser back to the application. The digital signature is also included as a query
param.

5. The application receives the redirect URI and extracts the XML document and verifies the
realm’s signature to make sure it is receiving a valid auth response. The information inside
the SAML assertion is then used to make access decisions or display user data.

7.2.1.2. POST Binding

The SAML POST binding works almost the exact same way as the Redirect binding, but instead of
GET requests, XML documents are exchanged by POST requests. The POST Binding uses
JavaScript to trick the browser into making a POST request to the Red Hat Single Sign-On server or
application when exchanging documents. Basically HTTP responses contain an HTML document
that contains an HTML form with embedded JavaScript. When the page is loaded, the JavaScript
automatically invokes the form. You really don’t need to know about this stuff, but it is a pretty clever
trick.

7.2.1.3. ECP

ECP stands for "Enhanced Client or Proxy", a SAML v.2.0 profile which allows for the exchange of
SAML attributes outside the context of a web browser. This is used most often for REST or SOAP-
based clients.

7.2.2. Red Hat Single Sign-On Server SAML URI Endpoints

Red Hat Single Sign-On really only has one endpoint for all SAML requests.

http(s)://authserver.host/auth/realms/{realm-name}/protocol/saml

All bindings use this endpoint.

7.3. OPENID CONNECT VS. SAML

Red Hat Single Sign-On 7.0 Server Administration Guide

50

Choosing between OpenID Connect and SAML is not just a matter of using a newer protocol (OIDC)
instead of the older more mature protocol (SAML).

In most cases Red Hat Single Sign-On recommends using OIDC.

SAML tends to be a bit more verbose than OIDC.

Beyond verbosity of exchanged data, if you compare the specifications you’ll find that OIDC was
designed to work with the web while SAML was retrofitted to work on top of the web. For example,
OIDC is also more suited for HTML5/JavaScript applications because it is easier to implement on
the client side than SAML. As tokens are in the JSON format, they are easier to consume by
JavaScript. You will also find several nice features that make implementing security in your web
applications easier. For example, check out the iframe trick that the specification uses to easily
determine if a user is still logged in or not.

SAML has its uses though. As you see the OIDC specifications evolve you see they implement
more and more features that SAML has had for years. What we often see is that people pick SAML
over OIDC because of the perception that it is more mature and also because they already have
existing applications that are secured with it.

CHAPTER 7. SSO PROTOCOLS

51

CHAPTER 8. MANAGING CLIENTS

Clients are entities that can request authentication of a user. Clients come in two forms. The first
type of client is an application that wants to participate in single-sign-on. These clients just want Red
Hat Single Sign-On to provide security for them. The other type of client is one that is requesting an
access token so that it can invoke other services on behalf of the authenticated user. This section
discusses various aspects around configuring clients and various ways to do it.

8.1. OIDC CLIENTS

OpenID Connect is the preferred protocol to secure applications. It was designed from the ground
up to be web friendly and work best with HTML5/JavaScript applications.

To create an OIDC client go to the Clients left menu item. On this page you’ll see a Create
button on the right.

Clients

This will bring you to the Add Client page.

Add Client

Red Hat Single Sign-On 7.0 Server Administration Guide

52

Enter in the Client ID of the client. This should be a simple alpha-numeric string that will be used
in requests and in the Red Hat Single Sign-On database to identity the client. Next select openid-
connect in the Client Protocol drop down box. Ignore the Client Template listbox for now,
we’ll go over that later in this chapter. Finally enter in the base URL of your application in the Root
URL field and click Save. This will create the client and bring you to the client Settings tab.

Client Settings

CHAPTER 8. MANAGING CLIENTS

53

Let’s walk through each configuration item on this page.

Client ID

This specifies an alpha-numeric string that will be used as the client identifier for OIDC requests.

Name

This is the display name for the client whenever it is displayed in a Red Hat Single Sign-On UI
screen. You can localize the value of this field by setting up a replacement string value i.e.
${myapp}. See the Server Developer Guide for more information.

Description

This specifies the description of the client. This can also be localized.

Enabled

If this is turned off, the client will not be allowed to request authentication.

Consent Required

If this is on, then users will get a consent page which asks the user if they grant access to that
application. It will also display the metadata that the client is interested in so that the user knows
exactly what information the client is getting access to. If you’ve ever done a social login to Google,
you’ll often see a similar page. Red Hat Single Sign-On provides the same functionality.

Access Type

Red Hat Single Sign-On 7.0 Server Administration Guide

54

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-developer-guide/

This defines the type of the OIDC client.

confidential

Confidential access type is for server-side clients that need to perform a browser login and
require a client secret when they turn an access code into an access token, (see Access
Token Request in the OAuth 2.0 spec for more details). This type should be used for server-
side applications.

public

Public access type is for client-side clients that need to perform a browser login. With a
client-side application there is no way to keep a secret safe. Instead it is very important to
restrict access by configuring correct redirect URIs for the client.

bearer-only

Bearer-only access type means that the application only allows bearer token requests. If
this is turned on, this application cannot participate in browser logins.

Root URL

If Red Hat Single Sign-On uses any configured relative URLs, this value is prepended to them.

Valid Redirect URIs

This is a required field. Enter in a URL pattern and click the + sign to add. Click the - sign next to
URLs you want to remove. Remember that you still have to click the Save button! Wildcards (*) are
only allowed at the end of a URI, i.e. http://host.com/*

You should take extra precautions when registering valid redirect URI patterns. If you make them
too general you are vulnerable to attacks. See Threat Model Mitigation chapter for more information.

Base URL

If Red Hat Single Sign-On needs to link to the client, this URL is used.

Standard Flow Enabled

If this is on, clients are allowed to use the OIDC Authorization Code Flow.

Implicit Flow Enabled

If this is on, clients are allowed to use the OIDC Implicit Flow.

Direct Grants Enabled

If this is on, clients are allowed to use the OIDC Direct Grants.

Admin URL

For Red Hat Single Sign-On specific client adapters, this is the callback endpoint for the client. The
Red Hat Single Sign-On server will use this URI to make callbacks like pushing revocation policies,
performing backchannel logout, and other administrative operations. For Red Hat Single Sign-On
servlet adapters, this can be the root URL of the servlet application. See Securing Applications and
Services Guide for more information.

Web Origins

This option centers around CORS which stands for Cross-Origin Resource Sharing. If browser
JavaScript tries to make an AJAX HTTP request to a server whose domain is different from the one

CHAPTER 8. MANAGING CLIENTS

55

http://tools.ietf.org/html/rfc6749#section-4.1.3
https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/securing-applications-and-services-guide/
http://www.w3.org/TR/cors/

the JavaScript code came from, then the request must use CORS. The server must handle CORS
requests in a special way, otherwise the browser will not display or allow the request to be
processed. This protocol exists to protect against XSS, CSRF and other JavaScript-based attacks.

Red Hat Single Sign-On has support for validated CORS requests. The way it works is that the
domains listed in the Web Origins setting for the client are embedded within the access token
sent to the client application. The client application can then use this information to decide whether
or not to allow a CORS request to be invoked on it. This is an extension to the OIDC protocol so
only Red Hat Single Sign-On client adapters support this feature. See Securing Applications and
Services Guide for more information.

To fill in the Web Origins data, enter in a base URL and click the + sign to add. Click the - sign
next to URLs you want to remove. Remember that you still have to click the Save button!

8.1.1. Confidential Client Credentials

If you’ve set the client’s access type to confidential in the client’s Settings tab, a new
Credentials tab will show up. As part of dealing with this type of client you have to configure the
client’s credentials.

Credentials Tab

The Client Authenticator list box specifies the type of credential you are going to use for your
confidential client. It defaults to client ID and secret. The secret is automatically generated for you
and the Regenerate Secret button allows you to recreate this secret if you want or need to.

Alternatively, you can opt to use a signed Json Web Token (JWT) instead of a secret.

Signed JWT

Red Hat Single Sign-On 7.0 Server Administration Guide

56

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/securing-applications-and-services-guide/

When choosing this credential type you will have to also generate a private key and certificate for
the client. The private key will be used to sign the JWT, while the certificate is used by the server to
verify the signature. Click on the Generate new keys and certificate button to start this
process.

Generate Keys

When you generate these keys, Red Hat Single Sign-On will store the certificate, and you’ll need to
download the private key and certificate for your client to use. Pick the archive format you want and
specify the password for the private key and store.

CHAPTER 8. MANAGING CLIENTS

57

You can also opt to generate these via an external tool and just import the client’s certificate.

Import Certificate

There are multiple formats you can import from, just choose the archive format you have the
certificate stored in, select the file, and click the Import button.

8.2. SERVICE ACCOUNTS

Each OIDC client has a built in service account which allows it to obtain an access token. This is
covered in the OAuth 2.0 specifiation under Client Credentials Grant To use this feature you must
set the Access Type of your client to confidential. When you do this, the Service Accounts
Enabled switch will appear. You need to turn on this switch. Also make sure that you have
configured your client credentials.

To use it you must have registered a valid confidential Client and you need to check the switch
Service Accounts Enabled in Red Hat Single Sign-On admin console for this client. In tab
Service Account Roles you can configure the roles available to the service account retrieved
on behalf of this client. Don’t forget that you need those roles to be available in Scopes of this client
as well (unless you have Full Scope Allowed on). As in normal login, roles from access token
are the intersection of scopes and the service account roles.

The REST URL to invoke on is /{server-root-usualy-auth}/realms/{realm-
name}/protocol/openid-connect/token. Invoking on this URL is a POST request and
requires you to post the client credentials. By default, client credentials are represented by clientId
and clientSecret of the client in Authorization: Basic header, but you can also authenticate
the client with a signed JWT assertion or any other custom mechanism for client authentication. You
also need to use the parameter grant_type=client_credentials as per the OAuth2
specification.

For example the POST invocation to retrieve a service account can look like this:

Red Hat Single Sign-On 7.0 Server Administration Guide

58

 POST /auth/realms/demo/protocol/openid-connect/token
 Authorization: Basic cHJvZHVjdC1zYS1jbGllbnQ6cGFzc3dvcmQ=
 Content-Type: application/x-www-form-urlencoded

 grant_type=client_credentials

The response would be this standard JSON document from the OAuth 2.0 specification.

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
 "access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"bearer",
 "expires_in":60,
 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "refresh_expires_in":600,
 "id_token":"tGzv3JOkF0XG5Qx2TlKWIA",
 "not-before-policy":0,
 "session_state":"234234-234234-234234"
}

The retrieved access token can be refreshed or logged out by an out-of-bound request.

8.3. SAML CLIENTS

Red Hat Single Sign-On supports SAML 2.0 for registered applications. Both POST and Redirect
bindings are supported. You can choose to require client signature validation and can have the
server sign and/or encrypt responses as well.

To create a SAML client go to the Clients left menu item. On this page you’ll see a Create
button on the right.

Clients

CHAPTER 8. MANAGING CLIENTS

59

http://tools.ietf.org/html/rfc6749#section-4.4.3

This will bring you to the Add Client page.

Add Client

Red Hat Single Sign-On 7.0 Server Administration Guide

60

Enter in the Client ID of the client. This is often a URL and will be the expected issuer value in
SAML requests sent by the application. Next select saml in the Client Protocol drop down
box. Ignore the Client Template listbox for now, we’ll go over that later in this chapter. Finally
enter in the Client SAML Endpoint URL. Enter the URL you want the Red Hat Single Sign-On
server to send SAML requests and responses to. Usually applications have only one URL for
processing SAML requests. If your application has different URLs for its bindings, don’t worry, you
can fix this in the Settings tab of the client. Click Save. This will create the client and bring you to
the client Settings tab.

Client Settings

CHAPTER 8. MANAGING CLIENTS

61

Client ID

This value must match the issuer value sent with AuthNRequests. Red Hat Single Sign-On
will pull the issuer from the Authn SAML request and match it to a client by this value.

Name

This is the display name for the client whenever it is displayed in a Red Hat Single Sign-On
UI screen. You can localize the value of this field by setting up a replacement string value
i.e. ${myapp}. See the Server Developer Guide for more information.

Description

This specifies the description of the client. This can also be localized.

Enabled

If this is turned off, the client will not be allowed to request authentication.

Consent Required

If this is on, then users will get a consent page which asks the user if they grant access to
that application. It will also display the metadata that the client is interested in so that the
user knows exactly what information the client is getting access to. If you’ve ever done a
social login to Google, you’ll often see a similar page. Red Hat Single Sign-On provides the
same functionality.

Include AuthnStatement

Red Hat Single Sign-On 7.0 Server Administration Guide

62

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-developer-guide/

SAML login responses may specify the authentication method used (password, etc.) as well
as a timestamp of the login. Setting this to on will include that statement in the response
document.

Sign Documents

When turned on, Red Hat Single Sign-On will sign the document using the realm’s private
key.

Sign Assertions

The Sign Documents switch signs the whole document. With this setting the assertion is
also signed and embedded within the SAML XML Auth response.

Signature Algorithm

Choose between a variety of algorithms for signing SAML documents.

Canonicalization Method

Canonicalization method for XML signatures.

Encrypt Assertions

Encrypt assertions in SAML documents with the realm’s private key. The AES algorithm is
used with a key size of 128 bits.

Client Signature Required

Expect that documents coming from a client are signed. Red Hat Single Sign-On will
validate this signature using the client public key or cert set up in the SAML Keys tab.

Force POST Binding

By default, Red Hat Single Sign-On will respond using the initial SAML binding of the
original request. By turning on this switch, you will force Red Hat Single Sign-On to always
respond using the SAML POST Binding even if the original request was the Redirect
binding.

Front Channel Logout

If true, this application requires a browser redirect to be able to perform a logout. For
example, the application may require a cookie to be reset which could only be done via a
redirect. If this switch is false, then Red Hat Single Sign-On will invoke a background SAML
request to logout the application.

Force Name ID Format

If the request has a name ID policy, ignore it and used the value configured in the admin
console under Name ID Format

Name ID Format

Name ID Format for the subject. If no name ID policy is specified in the request or if the
Force Name ID Format attribute is true, this value is used. Properties used for each of the
respective formats are defined below.

Root URL

If Red Hat Single Sign-On uses any configured relative URLs, this value is prepended to
them.

CHAPTER 8. MANAGING CLIENTS

63

Valid Redirect URIs

This is an optional field. Enter in a URL pattern and click the + sign to add. Click the - sign
next to URLs you want to remove. Remember that you still have to click the Save button!
Wildcards (*) are only allowed at the end of of a URI, i.e. http://host.com/*. This field is used
when the exact SAML endpoints are not registered and Red Hat Single Sign-On is pull the
Assertion Consumer URL from the request.

Base URL

If Red Hat Single Sign-On needs to link to the client, this URL would be used.

Master SAML Processing URL

This URL will be used for all SAML requests and the response will be directed to the SP. It
will be used as the Assertion Consumer Service URL and the Single Logout Service URL. If
a login request contains the Assertion Consumer Service URL, that will take precedence,
but this URL must be valided by a registered Valid Redirect URI pattern

Assertion Consumer Service POST Binding URL

POST Binding URL for the Assertion Consumer Service.

Assertion Consumer Service Redirect Binding URL

Redirect Binding URL for the Assertion Consumer Service.

Logout Service POST Binding URL

POST Binding URL for the Logout Service.

Logout Service Redirect Binding URL

Redirect Binding URL for the Logout Service.

8.3.1. IDP Initiated Login

IDP Initiated Login is a feature that allows you to set up an endpoint on the Red Hat Single Sign-On
server that will log you into a specific application/client. In the Settings tab for your client, you
need to specify the IDP Initiated SSO URL Name. This is a simple string with no whitespace in
it. After this you can reference your client at the following URL:
root/auth/realms/{realm}/protocol/saml/clients/{url-name}

If your client requires a special relay state, you can also configure this on the Settings tab in the
IDP Initiated SSO Relay State field. Alternatively, browsers can specify the relay state in a
RelayState query parameter, i.e.
root/auth/realms/{realm}/protocol/saml/clients/{url-name}?
RelayState=thestate.

8.3.2. SAML Entity Descriptors

Instead of manually registering a SAML 2.0 client, you can import it via a standard SAML Entity
Descriptor XML file. There is an Import option on the Add Client page.

Add Client

Red Hat Single Sign-On 7.0 Server Administration Guide

64

Click the Select File button and load your entity descriptor file. You should review all the
information there to make sure everything is set up correctly.

Some SAML client adapters like mod-auth-mellon need the XML Entity Descriptor for the IDP. You
can obtain this by going to this public URL:
root/auth/realms/{realm}/protocol/saml/descriptor

8.4. OIDC TOKEN AND SAML ASSERTION MAPPINGS

Applications that receive ID Tokens, Access Tokens, or SAML assertions may need or want different
user metadata and roles. Red Hat Single Sign-On allows you to define what exactly is transferred.
You can hardcode roles, claims and custom attributes. You can pull user metadata into a token or
assertion. You can rename roles. Basically you have a lot of control of what exactly goes back to the
client.

Within the Admin Console, if you go to an application you’ve registered, you’ll see a Mappers tab.
Here’s one for an OIDC based client.

Mappers Tab

CHAPTER 8. MANAGING CLIENTS

65

Each client has several built-in mappers that are created for it by default. They map things like, for
example, email address to a specific claim in the identity and access token. Their function should
each be self explanatory from their name. There are additional pre-configured mappers that are not
attached to the client that you can add by clicking the Add Builtin button.

Each mapper has common settings as well as additional ones depending on which type of mapper
you are adding. Click the Edit button next to one of the mappers in the list to get to the config
screen.

Mapper Config

Red Hat Single Sign-On 7.0 Server Administration Guide

66

The best way to learn about a config option is to hover over its tooltip. There are a few config options
that are common to all mappers:

Consent

If your client requires consent, this mapper will be displayed on the consent screen shown to
the user.

Consent Text

If your client requires consent and the Consent switch is on, this is the text that will be
displayed by the user. The value for this text is localizable by specifying a substitution
variable with ${var-name} strings. The localized value is then configured within property
files in your theme. See the Server Developer Guide for more information on localization.

Most OIDC mappers also allow you to control where the claim gets put. You can opt to include or
exclude the claim from both the id and access tokens by fiddling with the Add to ID token and
Add to access token switches.

Finally, you can also add other mapper types. If you go back to the Mappers tab, click the Create
button.

Add Mapper

CHAPTER 8. MANAGING CLIENTS

67

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-developer-guide/

Pick a Mapper Type from the list box. If you hover over the tooltip, you’ll see a description of what
that mapper type does. Different config parameters will appear for different mapper types.

8.5. GENERATING CLIENT ADAPTER CONFIG

The Red Hat Single Sign-On can pre-generate configuration files that you can use to install a client
adapter for in your application’s deployment environment. A number of adapter types are supported
for both OIDC and SAML. Go to the Installation tab of the client you want to generate
configuration for.

Red Hat Single Sign-On 7.0 Server Administration Guide

68

Select the Format Option you want configuration generated for. All Red Hat Single Sign-On
client adapters for OIDC and SAML are supported. The mod-auth-mellon Apache HTTPD adapter
for SAML is supported as well as standard SAML entity descriptor files.

8.6. CLIENT TEMPLATES

If you have a lot of applications you need to secure and register within your organization it can
become quite tedious to configure the protocol mappers and scope for each of these clients. Red
Hat Single Sign-On allows you to define shared client configuration in an entity called a client
template.

To create a client template, go to the Client Templates left menu item. This initial screen shows
you a list of currently defined templates.

To create a template click the Create button. This brings you to a simple screen in which you
name the template and hit save. A client template will have similar tabs to regular clients. You’ll be
able to define protocol mappers and scope which can be inherited by other clients.

Having a client inherit from a template is as simple as choosing the template from the Client
Template drop down list on either the Add Client or client Settings tab. You will see the
Mappers and Scope tabs get additional switches which allow you to turn on or off inheriting from
the parent template.

Future versions of client templating may get more inheritable configuration options, but for now,
that’s all there is to talk about.

CHAPTER 8. MANAGING CLIENTS

69

CHAPTER 9. ROLES

Roles identify a type or category of user. Admin, user, manager, and employee are all typical
roles that may exist in an organization. Applications often assign access and permissions to specific
roles rather than individual users as dealing with users can be too fine grained and hard to manage.
For example, the Admin Console has specific roles which give permission to users to access parts of
the Admin Console UI and perform certain actions. There is a global namespace for roles and each
client also has its own dedicated namespace where roles can be defined.

9.1. REALM ROLES

Realm level roles are a global namespace to define your roles. You can see the list of built-in and
created roles by clicking on the Roles left menu item.

To create a role just click on the Add Role button on this page, enter in the name and description
of the role and hit the Save button.

Add Role

Red Hat Single Sign-On 7.0 Server Administration Guide

70

The value for the description field is localizable by specifying a substitution variable with
${var-name} strings. The localized value is then configured within property files in your theme.
See the Server Developer Guide for more information on localization. If a client requires user
consent, this description string will be displayed on the consent page for the user.

9.2. CLIENT ROLES

Client roles are basically a namespace dedicated to a client. Each client gets its own namespace.
Client roles are managed under the Roles tab under each individual client. You interact with this UI
the same way you do for realm level roles.

9.3. COMPOSITE ROLES

Any realm or client level role can be turned into a composite role. A composite role is a role that has
one or more additional roles associated with it. When a composite role is mapped to the user, the
user also gains the roles associated with that composite. This inheritance is recursive so any
composite of composites also gets inherited.

To turn a regular role into a composite role, go to the role detail page and flip the Composite Role
switch on.

Composite Role

CHAPTER 9. ROLES

71

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-developer-guide/

Once you flip this switch the role selection UI will be displayed lower on the page and you’ll be able
to associate realm level and client level roles to the composite you are creating. In this example, the
employee realm-level role was associated with the developer composite role. Any user with the
developer role will now also inherit the employee role too.

Note

When tokens and SAML assertions are created, any composite will also have its
associated roles added to the claims and assertions of the authentication response sent
back to the client.

9.4. USER ROLE MAPPINGS

User role mappings can be assigned individually to each user through the Role Mappings tab for
that single user.

Role Mappings

Red Hat Single Sign-On 7.0 Server Administration Guide

72

In the above example, we are about to assign the composite role developer that was created in
the Composite Roles chapter.

Effective Role Mappings

Once the developer role is assigned, you see that the employee role that is associated with the
developer composite shows up in the Effective Roles. Effective Roles are all roles that
are explicitly assigned to the user as well as any roles that are inherited from composites.

CHAPTER 9. ROLES

73

9.4.1. Default Roles

Default roles allow you to automatically assign user role mappings when any user is newly created
or imported through Identity Brokering. To specify default roles go to the Roles left menu item, and
click the Default Roles tab.

Default Roles

As you can see from the screenshot, there are already a number of default roles set up by default.

9.5. CLIENT SCOPE

When an OIDC access token or SAML assertion is created, all the user role mappings of the user
are, by default, added as claims within the token or assertion. Applications use this information to
make access decisions on the resources controlled by that application. In Red Hat Single Sign-On,
access tokens are digitally signed and can actually be re-used by the application to invoke on other
remotely secured REST services. This means that if an application gets compromised or there is a
rogue client registered with the realm, attackers can get access tokens that have a broad range of
permissions and your whole network is compromised. This is where client scope becomes
important.

Client scope is a way to limit the roles that get declared inside an access token. When a client
requests that a user be authenticated, the access token they receive back will only contain the role
mappings you’ve explicitly specified for the client’s scope. This allows you to limit the permissions
each individual access token has rather than giving the client access to all of the user’s permissions.
By default, each client gets all the role mappings of the user. You can view this in the Scope tab of
each client.

Full Scope

Red Hat Single Sign-On 7.0 Server Administration Guide

74

You can see from the picture that the effective roles of the scope are every declared role in the
realm. To change this default behavior, you must explicitly turn off the Full Scope Allowed
switch and declare the specific roles you want in each individual client. Alternatively, you can also
use client templates to define the scope for a whole set of clients.

Partial Scope

CHAPTER 9. ROLES

75

CHAPTER 10. GROUPS

Groups in Red Hat Single Sign-On allow you to manage a common set of attributes and role
mappings for a set of users. Users can be members of zero or more groups. Users inherit the
attributes and role mappings assigned to each group. To manage groups go to the Groups left
menu item.

Groups

Groups are hierarchical. A group can have many subgroups, but a group can only have one parent.
Subgroups inherit the attributes and role mappings from the parent. This applies to the user as well.
So, if you have a parent group and a child group and a user that only belongs to the child group, the
user inherits the attributes and role mappings of both the parent and child. In this example, we have
a top level Sales group and a child North America subgroup. To add a group, click on the parent
you want to add a new child to and click New button. Select the Groups icon in the tree to make a
top-level group. Entering in a group name in the Create Group screen and hitting Save will bring
you to the individual group management page.

Group

Red Hat Single Sign-On 7.0 Server Administration Guide

76

The Attributes and Role Mappings tab work exactly as the tabs with similar names under a
user. Any attributes and role mappings you define will be inherited by the groups and users that are
members of this group.

To add a user to a group you need to go all the way back to the user detail page and click on the
Groups tab there.

User Groups

CHAPTER 10. GROUPS

77

Select a group from the Available Groups tree and hit the join button to add the user to a
group. Vice versa to remove a group. Here we’ve added the user Jim to the North America sales
group. If you go back to the detail page for that group and select the Membership tab, Jim is now
displayed there.

Group Membership

10.1. GROUPS VS. ROLES

In the IT world the concepts of Group and Role are often blurred and interchangeable. In Red Hat
Single Sign-On, Groups are just a collection of users that you can apply roles and attributes to in
one place. Roles define a type of user and applications assign permission and access control to
roles

Aren’t Composite Roles also similar to Groups? Logically they provide the same exact functionality,
but the difference is conceptual. Composite roles should be used to apply the permission model to
your set of services and applications. Groups should focus on collections of users and their roles in
your organization. Use groups to manage users. Use composite roles to manage applications and
services.

10.2. DEFAULT GROUPS

Default groups allow you to automatically assign group membership whenever any new user is
created or imported through Identity Brokering. To specify default groups go to the Groups left
menu item, and click the Default Groups tab.

Default Groups

Red Hat Single Sign-On 7.0 Server Administration Guide

78

CHAPTER 10. GROUPS

79

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND
PERMISSIONS

Each realm created on the Red Hat Single Sign-On has a dedicated Admin Console from which that
realm can be managed. The master realm is a special realm that allows admins to manage more
than one realm on the system. You can also define fine-grained access to users in different realms
to manage the server. This chapter goes over all the scenarios for this.

11.1. MASTER REALM ACCESS CONTROL

The master realm in Red Hat Single Sign-On is a special realm and treated differently than other
realms. Users in the Red Hat Single Sign-On master realm can be granted permission to manage
zero or more realms that are deployed on the Red Hat Single Sign-On server. When a realm is
created, Red Hat Single Sign-On automatically creates various roles that grant fine-grain
permissions to access that new realm. Access to The Admin Console and Admin REST endpoints
can be controlled by mapping these roles to users in the master realm. It’s possible to create
multiple super users, as well as users that can only manage specific realms.

11.1.1. Global Roles

There are two realm-level roles in the master realm. These are:

admin

create-realm

Users with the admin role are super users and have full access to manage any realm on the server.
Users with the create-realm role are allowed to create new realms. They will be granted full
access to any new realm they create.

11.1.2. Realm Specific Roles

Admin users within the master realm can be granted management privileges to one or more other
realms in the system. Each realm in Red Hat Single Sign-On is represented by a client in the
master realm. The name of the client is <realm name>-realm. These clients each have client-
level roles defined which define varying level of access to manage an individual realm.

The roles available are:

view-realm

view-users

view-clients

view-events

manage-realm

manage-users

create-client

manage-clients

Red Hat Single Sign-On 7.0 Server Administration Guide

80

manage-events

view-identity-providers

manage-identity-providers

impersonation

Assign the roles you want to your users and they will only be able to use that specific part of the
administration console.

11.2. DEDICATED REALM ADMIN CONSOLES

Each realm has a dedicated Admin Console that can be accessed by going to the url
/auth/admin/{realm-name}/console. Users within that realm can be granted realm
management permissions by assigning specific user role mappings.

Each realm has a built-in client called realm-management. You can view this client by going to
the Clients left menu item of your realm. This client defines client-level roles that specify
permissions that can be granted to manage the realm.

view-realm

view-users

view-clients

view-events

manage-realm

manage-users

create-client

manage-clients

manage-events

view-identity-providers

manage-identity-providers

impersonation

Assign the roles you want to your users and they will only be able to use that specific part of the
administration console.

CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS

81

CHAPTER 12. IDENTITY BROKERING

An Identity Broker is an intermediary service that connects multiple service providers with different
identity providers. As an intermediary service, the identity broker is responsible for creating a trust
relationship with an external identity provider in order to use its identities to access internal services
exposed by service providers.

From a user perspective, an identity broker provides a user-centric and centralized way to manage
identities across different security domains or realms. An existing account can be linked with one or
more identities from different identity providers or even created based on the identity information
obtained from them.

An identity provider is usually based on a specific protocol that is used to authenticate and
communicate authentication and authorization information to their users. It can be a social provider
such as Facebook, Google or Twitter. It can be a business partner whose users need to access your
services. Or it an be a cloud-based identity service that you want to integrate with.

Usually, identity providers are based on the following protocols:

SAML v2.0

OpenID Connect v1.0

OAuth v2.0

In the next sections we’ll see how to configure and use Red Hat Single Sign-On as an identity
broker, covering some important aspects such as:

Social Authentication

OpenID Connect v1.0 Brokering

SAML v2.0 Brokering

Identity Federation

12.1. BROKERING OVERVIEW

When using Red Hat Single Sign-On as an identity broker, users are not forced to provide their
credentials in order to authenticate in a specific realm. Instead, they are presented with a list of
identity providers from which they can authenticate.

You can also configure a default broker. In this case the user will not be given a choice, but instead
be redirected directly to the parent broker. The following diagram demonstrates the steps involved
when using Red Hat Single Sign-On to broker an external identity provider:

Identity Broker Flow

Red Hat Single Sign-On 7.0 Server Administration Guide

82

1. User is not authenticated and requests a protected resource in a client application.

2. The client applications redirects the user to Red Hat Single Sign-On to authenticate.

3. At this point the user is presented with the login page where there is a list of identity
providers supported by a realm.

4. User selects one of the identity providers by clicking on its respective button or link.

5. Red Hat Single Sign-On issues an authentication request to the target identity provider
asking for authentication and the user is redirected to the login page of the identity provider.
The connection properties and other configuration options for the identity provider were
previously set by the administrator in the Admin Console.

6. User provides his credentials or consent in order to authenticate in the identity provider.

7. Upon a successful authentication by the identity provider, the user is redirected back to Red
Hat Single Sign-On with an authentication response. Usually this response contains a
security token that will be used by Red Hat Single Sign-On to trust the authentication
performed by the identity provider and retrieve information about the user.

8. Now Red Hat Single Sign-On is going to check if the response from the identity provider is
valid. If valid, it will import and create a new user or just skip that if the user already exists. If
it is a new user, Red Hat Single Sign-On may ask the identity provider for information about
the user if that info doesn’t already exist in the token. This is what we call identity federation.
If the user already exists Red Hat Single Sign-On may ask him to link the identity returned
from the identity provider with his existing account. We call this process account linking.
What exactly is done is configurable and can be specified by setup of First Login Flow . At
the end of this step, Red Hat Single Sign-On authenticates the user and issues its own
token in order to access the requested resource in the service provider.

CHAPTER 12. IDENTITY BROKERING

83

9. Once the user is locally authenticated, Red Hat Single Sign-On redirects the user to the
service provider by sending the token previously issued during the local authentication.

10. The service provider receives the token from Red Hat Single Sign-On and allows access to
the protected resource.

There are some variations of this flow that we will talk about later. For instance, instead of
presenting a list of identity providers, the client application can request a specific one. Or you can
tell Red Hat Single Sign-On to force the user to provide additional information before federating his
identity.

Note

Different protocols may require different authentication flows. At this moment, all the
identity providers supported by Red Hat Single Sign-On use a flow just like described
above. However, despite the protocol in use, user experience should be pretty much the
same.

As you may notice, at the end of the authentication process Red Hat Single Sign-On will always
issue its own token to client applications. What this means is that client applications are completely
decoupled from external identity providers. They don’t need to know which protocol (eg.: SAML,
OpenID Connect, OAuth, etc) was used or how the user’s identity was validated. They only need to
know about Red Hat Single Sign-On.

12.2. GENERAL CONFIGURATION

The identity broker configuration is all based on identity providers. Identity providers are created for
each realm and by default they are enabled for every single application. That means that users from
a realm can use any of the registered identity providers when signing in to an application.

In order to create an identity provider click the Identity Providers left menu item.

Identity Providers

Red Hat Single Sign-On 7.0 Server Administration Guide

84

In the right hand drop down list box, choose the identity provider you want to add. This will bring you
to the configuration page for that identity provider type.

Add Identity Provider

Above is an example of configuring a Google social login provider. Once you configure an IDP, it will
appear on the Red Hat Single Sign-On login page as an option.

CHAPTER 12. IDENTITY BROKERING

85

IDP login page

Social

Social providers allow you to enable social authentication in your realm. Red Hat Single
Sign-On makes it easy to let users log in to your application using an existing account with
a social network. Currently Facebook, Google, Twitter, GitHub, LinkedIn, Microsoft, and
StackOverflow are supported with more planned for the future.

Protocol-based

Protocol-based providers are those that rely on a specific protocol in order to authenticate
and authorize users. They allow you to connect to any identity provider compliant with a
specific protocol. Red Hat Single Sign-On provides support for SAML v2.0 and OpenID
Connect v1.0 protocols. It makes it easy to configure and broker any identity provider based
on these open standards.

Although each type of identity provider has its own configuration options, all of them share some
very common configuration. Regardless the identity provider you are creating, you’ll see the
following configuration options avaivable:

Table 12.1. Common Configuration

Configuration Description

Red Hat Single Sign-On 7.0 Server Administration Guide

86

Alias The alias is an unique identifier for an identity
provider. It is used to reference an identity provider
internally. Some protocols such as OpenID
Connect require a redirect URI or callback url in
order to communicate with an identity provider. In
this case, the alias is used to build the redirect
URI. Every single identity provider must have an
alias. Examples are facebook, google,
idp.acme.com, etc.

Enabled Turn the provider on/off

Store Tokens Whether or not to store the token received from
the identity provider.

Stored Tokens Readable Whether or not users are allowed to retrieve the
stored identity provider token. This also applies to
the broker client-level role read token

Trust email If the identity provider supplies an email address
this email address will be trusted. If the realm
required email validation, users that log in from this
IDP will not have to go through the email
verification process.

Authenticate By Default If checked, the Red Hat Single Sign-On login
screen will be completely bypassed and the
browser will be redirected directly to the IDP.

GUI order The order number that sorts how the available IDPs
are listed on the Red Hat Single Sign-On login
page.

First Login Flow This is the authentication flow that will be triggered
for users that log into Red Hat Single Sign-On
through this IDP for the first time ever.

Configuration Description

CHAPTER 12. IDENTITY BROKERING

87

Post Login Flow Authentication flow that is triggered after the user
finishes logging in with the external identity
provider.

Configuration Description

12.3. SOCIAL IDENTITY PROVIDERS

For Internet facing applications, it is quite burdensome for users to have to register at your site to
obtain access. It requires them to remember yet another username and password combination.
Social identity providers allow you to delegate authentication to a semi-trusted and respected entity
where the user probably already has an account. Red Hat Single Sign-On provides built-in support
for the most common social networks out there, such as Google, Facebook, Twitter, Github,
LinkedIn, Microsoft and StackOverflow.

12.3.1. Google

There are a number of steps you have to complete to be able to login to Google. First, go to the
Identity Providers left menu item and select Google from the Add provider drop down list.
This will bring you to the Add identity provider page.

Add Identity Provider

Red Hat Single Sign-On 7.0 Server Administration Guide

88

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from Google.
One piece of data you’ll need from this page is the Redirect URI. You’ll have to provide that to
Google when you register Red Hat Single Sign-On as a client there, so copy this URI to your
clipboard.

To enable login with Google you first have to create a project and a client in the Google Developer
Console. Then you need to copy the client id and secret into the Red Hat Single Sign-On Admin
Console.

Note

Google often changes the look and feel of the Google Developer Console, so these
directions might not always be up to date and the configuration steps might be slightly
different.

Let’s see first how to create a project with Google.

Log in to the Google Developer Console.

Google Developer Console

Click the Create Project button. Use any value for Project name and Project ID you want,
then click the Create button. Wait for the project to be created (this may take a while). Once
created you will be brought to the project’s dashboard.

Dashboard

CHAPTER 12. IDENTITY BROKERING

89

https://cloud.google.com/console/project
https://cloud.google.com/console/project

To be able to retrieve the profiles of Google users, you need to turn on the Google+ APIs. Select the
Enable and manage APIs and click the Google+ API link.

APIs

Click the Enable button on this page. You will get a message that you must create the credentials
of your project. So click the Go to Credentials button.

Red Hat Single Sign-On 7.0 Server Administration Guide

90

Go To Credentials

You will then be brought to the credentials page.

Note

If you logout in the middle of this, there is a menu in the top left hand corner. Select API
Manager and it will bring you to your desired screen.

You will then be asked to specify what credentials you need and what type of data you will be
accessing.

Add Credentials

CHAPTER 12. IDENTITY BROKERING

91

Select Web server and User data and click the What credentials do I need? button.

Create OAuth ID

Red Hat Single Sign-On 7.0 Server Administration Guide

92

Next you’ll need to create an OAuth 2.0 client ID. Specify the name you want for your client. You’ll
also need to copy and paste the Redirect URI from the Red Hat Single Sign-On Add Identity
Provider page into the Authorized redirect URIs field. After you do this, click the Create
client ID button.

When users log into Google from Red Hat Single Sign-On they will see a consent screen from
Google which will ask the user if Red Hat Single Sign-On is allowed to view information about their
user profile. The next Google config screen asks you for information about this screen.

Once you click Done you will be brought to the Credentials page. Click on your new OAuth 2.0
Client ID to view the settings of your new Google Client.

Google Client Credentials

You will need to obtain the client ID and secret from this page so you can enter them into the Red
Hat Single Sign-On Add identity provider page. Go back to Red Hat Single Sign-On and
specify those items.

One config option to note on the Add identity provider page for Google is the Default
Scopes field. This field allows you to manually specify the scopes that users must authorize when
authenticating with this provider. For a complete list of scopes, please take a look at
https://developers.google.com/oauthplayground/ . By default, Red Hat Single Sign-On uses the
following scopes: openid profile email.

12.3.2. Facebook

There are a number of steps you have to complete to be able to login to Facebook. First, go to the
Identity Providers left menu item and select Facebook from the Add provider drop down
list. This will bring you to the Add identity provider page.

CHAPTER 12. IDENTITY BROKERING

93

https://developers.google.com/oauthplayground/

Add Identity Provider

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from
Facebook. One piece of data you’ll need from this page is the Redirect URI. You’ll have to
provide that to Facebook when you register Red Hat Single Sign-On as a client there, so copy this
URI to your clipboard.

To enable login with Facebook you first have to create a project and a client in the Facebook
Developer Console.

Note

Facebook often changes the look and feel of the Facebook Developer Console, so these
directions might not always be up to date and the configuration steps might be slightly
different.

Once you’ve logged into the console there is a pull down menu in the top right corner of the screen
that says My Apps. Select the Add a New App menu item.

Add a New App

Red Hat Single Sign-On 7.0 Server Administration Guide

94

https://developers.facebook.com/

Select the Website icon. Click the Skip and Create App ID button.

Create a New App ID

The email address and app category are required fields. Once you’re done with that, you will be
brought to the dashboard for the application. Click the Settings left menu item.

CHAPTER 12. IDENTITY BROKERING

95

Create a New App ID

Click on the + Add Platform button at the end of this page and select the Website icon. Copy
and paste the Redirect URI from the Red Hat Single Sign-On Add identity provider page
into the Site URL of the Facebook Website settings block.

Specify Website

Red Hat Single Sign-On 7.0 Server Administration Guide

96

After this it is necessary to make the Facebook app public. Click App Review left menu item and
switch button to "Yes".

You will need also to obtain the App ID and App Secret from this page so you can enter them into
the Red Hat Single Sign-On Add identity provider page. To obtain this click on the
Dashboard left menu item and click on Show under App Secret. Go back to Red Hat Single Sign-
On and specify those items and finally save your Facebook Identity Provider.

One config option to note on the Add identity provider page for Facebook is the Default
Scopes field. This field allows you to manually specify the scopes that users must authorize when
authenticating with this provider. For a complete list of scopes, please take a look at
https://developers.facebook.com/docs/graph-api. By default, Red Hat Single Sign-On uses the
following scopes: email.

12.3.3. Twitter

There are a number of steps you have to complete to be able to login to Twitter. First, go to the
Identity Providers left menu item and select Twitter from the Add provider drop down
list. This will bring you to the Add identity provider page.

Add Identity Provider

CHAPTER 12. IDENTITY BROKERING

97

https://developers.facebook.com/docs/graph-api

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from Twitter.
One piece of data you’ll need from this page is the Redirect URI. You’ll have to provide that to
Twitter when you register Red Hat Single Sign-On as a client there, so copy this URI to your
clipboard.

To enable login with Twtter you first have to create an application in the Twitter Application
Management.

Register Application

Red Hat Single Sign-On 7.0 Server Administration Guide

98

https://dev.twitter.com/apps

Click on the Create New App button. This will bring you to the Create an Application page.

Register Application

CHAPTER 12. IDENTITY BROKERING

99

Enter in a Name and Description. The Website can be anything, but cannot have a localhost
address. For the Callback URL you must copy the Redirect URI from the Red Hat Single Sign-
On Add Identity Provider page.

After clicking save you will be brought to the Details page.

App Details

Next go to the Keys and Access Tokens tab.

Keys and Access Tokens

Warning

You cannot use localhost in the Callback URL. Instead replace it with 127.0.0.1
if you are trying to testdrive Twitter login on your laptop.

Red Hat Single Sign-On 7.0 Server Administration Guide

100

Finally, you will need to obtain the API Key and secret from this page and copy them back into the
Client ID and Client Secret fields on the Red Hat Single Sign-On Add identity
provider page.

12.3.4. Github

There are a number of steps you have to complete to be able to login to Github. First, go to the
Identity Providers left menu item and select Github from the Add provider drop down list.
This will bring you to the Add identity provider page.

Add Identity Provider

CHAPTER 12. IDENTITY BROKERING

101

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from Github.
One piece of data you’ll need from this page is the Redirect URI. You’ll have to provide that to
Github when you register Red Hat Single Sign-On as a client there, so copy this URI to your
clipboard.

To enable login with Github you first have to register an application project in GitHub Application
Settings. Select the Developer applications tab.

Note

Github often changes the look and feel of application registration, so these directions
might not always be up to date and the configuration steps might be slightly different.

Add a New App

Red Hat Single Sign-On 7.0 Server Administration Guide

102

https://github.com/settings/applications

Click the Register a new application button.

Register App

CHAPTER 12. IDENTITY BROKERING

103

You’ll have to copy the Redirect URI from the Red Hat Single Sign-On Add Identity
Provider page and enter it into the Authorization callback URL field on the Github
Register a new OAuth application page. Once you’ve completed this page you will be
brought to the application’s management page.

Github App Page

You will need to obtain the client ID and secret from this page so you can enter them into the Red
Hat Single Sign-On Add identity provider page. Go back to Red Hat Single Sign-On and
specify those items.

12.3.5. LinkedIn

There are a number of steps you have to complete to be able to login to LinkedIn. First, go to the
Identity Providers left menu item and select LinkedIn from the Add provider drop down
list. This will bring you to the Add identity provider page.

Add Identity Provider

Red Hat Single Sign-On 7.0 Server Administration Guide

104

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from LinkedIn.
One piece of data you’ll need from this page is the Redirect URI. You’ll have to provide that to
LinkedIn when you register Red Hat Single Sign-On as a client there, so copy this URI to your
clipboard.

To enable login with LinkedIn you first have to create an application in LinkedIn Developer Network.

Note

LinkedIn may change the look and feel of application registration, so these directions may
not always be up to date.

Developer Network

CHAPTER 12. IDENTITY BROKERING

105

https://www.linkedin.com/secure/developer

Click on the Create Application button. This will bring you to the Create a New
Application Page.

Create App

Red Hat Single Sign-On 7.0 Server Administration Guide

106

Fill in the form with the approriate values, then click the Submit button. This will bring you to the
new application’s settings page.

App Settings

Select r_basicprofile and r_emailaddress in the Default Application Permissions
section. You’ll have to copy the Redirect URI from the Red Hat Single Sign-On Add Identity
Provider page and enter it into the OAuth 2.0 Authorized Redirect URLs field on the
LinkedIn app settings page. Don’t forget to click the Update button after you do this!

You will then need to obtain the client ID and secret from this page so you can enter them into the
Red Hat Single Sign-On Add identity provider page. Go back to Red Hat Single Sign-On
and specify those items.

12.3.6. Microsoft

There are a number of steps you have to complete to be able to login to Microsoft. First, go to the
Identity Providers left menu item and select Microsoft from the Add provider drop down
list. This will bring you to the Add identity provider page.

Add Identity Provider

CHAPTER 12. IDENTITY BROKERING

107

You can’t click save yet, as you’ll need to obtain a Client ID and Client Secret from
Microsoft. One piece of data you’ll need from this page is the Redirect URI. You’ll have to provide
that to Microsoft when you register Red Hat Single Sign-On as a client there, so copy this URI to
your clipboard.

To enable login with Microsoft account you first have to register an OAuth application at Microsoft.
Go to the Microsoft Application Registration url.

Note

Microsoft often changes the look and feel of application registration, so these directions
might not always be up to date and the configuration steps might be slightly different.

Register Application

Red Hat Single Sign-On 7.0 Server Administration Guide

108

https://account.live.com/developers/applications/create

Enter in the application name and click Create application. This will bring you to the
application settings page of your new application.

Settings

CHAPTER 12. IDENTITY BROKERING

109

You’ll have to copy the Redirect URI from the Red Hat Single Sign-On Add Identity
Provider page and add it to the Redirect URIs field on the Microsoft application page. Be sure
to click the Add Url button and Save your changes.

Finally, you will need to obtain the Application ID and secret from this page so you can enter them
back on the Red Hat Single Sign-On Add identity provider page. Go back to Red Hat Single
Sign-On and specify those items.

12.3.7. StackOverflow

There are a number of steps you have to complete to be able to login to StackOverflow. First, go to
the Identity Providers left menu item and select StackOverflow from the Add provider
drop down list. This will bring you to the Add identity provider page.

Add Identity Provider

To enable login with StackOverflow you first have to register an OAuth application on StackApps.
Go to registering your application on Stack Apps url and login.

Note

StackOverflow often changes the look and feel of application registration, so these
directions might not always be up to date and the configuration steps might be slightly
different.

Register Application

Red Hat Single Sign-On 7.0 Server Administration Guide

110

https://stackapps.com/
http://stackapps.com/apps/oauth/register

Enter in the application name and the OAuth Domain Name of your application and click Register
your Application. Type in anything you want for the other items.

Settings

CHAPTER 12. IDENTITY BROKERING

111

Finally, you will need to obtain the client ID, secret, and key from this page so you can enter them
back on the Red Hat Single Sign-On Add identity provider page. Go back to Red Hat Single
Sign-On and specify those items.

12.4. OPENID CONNECT V1.0 IDENTITY PROVIDERS

Red Hat Single Sign-On can broker identity providers based on the OpenID Connect protocol.
These IDPs must support the Authorization Code Flow as defined by the specification in order to
authenticate the user and authorize access.

To begin configuring an OIDC provider, go to the Identity Providers left menu item and select
OpenID Connect v1.0 from the Add provider drop down list. This will bring you to the Add
identity provider page.

Add Identity Provider

The initial configuration options on this page are described in General IDP Configuration. You must
define the OpenID Connection configuration options as well. They basically describe the OIDC IDP
you are communicating with.

Table 12.2. OpenID Connect Config

Configuration Description

Authorization URL Authorization URL endpoint required by the OIDC
protocol

Red Hat Single Sign-On 7.0 Server Administration Guide

112

Token URL Token URL endpoint required by the OIDC protocol

Logout URL Logout URL endpoint defined in the OIDC protocol.
This value is optional.

Backchannel Logout Backchannel logout is a background, out-of-band,
REST invocation to the IDP to logout the user.
Some IDPs can only perform logout through
browser redirects as they may only be able to
identity sessions via a browser cookie.

User Info URL User Info URL endpoint defined by the OIDC
protocol. This is an endpoint from which user
profile information can be downloaded.

Client ID This realm will act as an OIDC client to the external
federation IDP you are configuring here. Your
realm will need a OIDC client ID when using the
Authorization Code Flow to interact with the
external IDP

Client Secret This realm will need a client secret to use when
using the Authorization Code Flow.

Issuer Responses from the IDP may contain an issuer
claim. This config value is optional. If specified, this
claim will be validated against the value you
provide.

Default Scopes Space-separated list of OIDC scopes to send with
the authentication request. The default is openid

Prompt Another optional switch. This is the prompt
parameter defined by the OIDC specification.
Through it you can force re-authentication and
other options. See the specification for more
details

Configuration Description

You can also import all this configuration data by providing a URL or file that points to OpenID

CHAPTER 12. IDENTITY BROKERING

113

Provider Metadata (see OIDC Discovery specification). If you are connecting to a Red Hat Single
Sign-On external IDP, you can import the IDP setttings from the url
<root>/auth/realms/{realm-name}/.well-known/openid-configuration. This link is
a JSON document describing metadata about the IDP.

12.5. SAML V2.0 IDENTITY PROVIDERS

Red Hat Single Sign-On can broker identity providers based on the SAML v2.0 protocol.

To begin configuring an OIDC provider, go to the Identity Providers left menu item and select
SAML v2.0 from the Add provider drop down list. This will bring you to the Add identity
provider page.

Add Identity Provider

The initial configuration options on this page are described in General IDP Configuration. You must
define the SAML configuration options as well. They basically describe the SAML IDP you are
communicating with.

Table 12.3. SAML Config

Configuration Description

Single Sign-On Service URL This is a required field and specifies the SAML
endpoint to start the authentication process. If your
SAML IDP publishes an IDP entity descriptor, the
value of this field will be specified there.

Red Hat Single Sign-On 7.0 Server Administration Guide

114

Single Logout Service URL This is an optional field that specifies the SAML
logout endpoint. If your SAML IDP publishes an
IDP entity descriptor, the value of this field will be
specified there.

Backchannel Logout Enable if your SAML IDP supports backchannel
logout

NameID Policy Format Specifies the URI reference corresponding to a
name identifier format. Defaults to
urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent.

HTTP-POST Binding Response When this realm responds to any SAML requests
sent by the external IDP, which SAML binding
should be used? If set to off, then the Redirect
Binding will be used.

HTTP-POST Binding for AuthnRequest When this realm requests authentication from the
external SAML IDP, which SAML binding should be
used? If set to off, then the Redirect Binding will
be used.

Want AuthnRequests Signed If true, it will use the realm’s keypair to sign
requests sent to the external SAML IDP

Signature Algorithm If Want AuthnRequests Signed is on, then
you can also pick the signature algorithm to use.

Force Authentication Indicates that the user will be forced to enter in
their credentials at the external IDP even if they are
already logged in.

Validate Signature Whether or not the realm should expect that SAML
requests and responses from the external IDP be
digitally signed. It is highly recommended you turn
this on!

Configuration Description

CHAPTER 12. IDENTITY BROKERING

115

Validating X509 Certificate The public certificate that will be used to validate
the signatures of SAML requests and responses
from the external IDP.

Configuration Description

You can also import all this configuration data by providing a URL or file that points to the SAML IDP
entity descriptor of the external IDP. If you are connecting to a Red Hat Single Sign-On external IDP,
you can import the IDP setttings from the url <root>/auth/realms/{realm-
name}/protocol/saml/descriptor. This link is an XML document describing metadata about
the IDP.

You can also import all this configuration data by providing a URL or XML file that points to the entity
descriptor of the external SAML IDP you want to connect to.

12.5.1. SP Descriptor

Once you create a SAML provider, there is an EXPORT button that appears when viewing that
provider. Clicking this button will export a SAML SP entity descriptor which you can use to import
into the external SP provider.

This metadata is also available publicly by going to the URL

http[s]://{host:port}/auth/realms/{realm-name}/broker/{broker-
alias}/endpoint/descriptor

12.6. CLIENT SUGGESTED IDENTITY PROVIDER

Each identity provider has an option Authenticate By Default, which allows that Identity
provider to be automatically selected during authentication. The user won’t see the Red Hat Single
Sign-On login page and will instead be automatically redirected to the default identity provider.

OIDC applications can also bypass the Red Hat Single Sign-On login page by specifying a hint on
which identity provider they want to use. This is done by appending the kc_idp_hint query
parameter in the Authorization Code Flow authorization endpoint.

Red Hat Single Sign-On OIDC client adapters also allow you to specify this query parameter when
you access a secured resource at the application.

For example

In this case, is expected that your realm has an identity provider with an alias facebook.

If you are using keycloak.js adapter, you can also achieve the same behavior:

GET /myapplication.com?kc_idp_hint=facebook HTTP/1.1
Host: localhost:8080

var keycloak = new Keycloak('keycloak.json');

keycloak.createLoginUrl({
 idpHint: 'facebook'

Red Hat Single Sign-On 7.0 Server Administration Guide

116

12.7. MAPPING CLAIMS AND ASSERTIONS

You can import the SAML and OpenID Connect metadata provided by the external IDP you are
authenticating with into the environment of the realm. This allows you to extract user profile
metadata and other information so that you can make it available to your applications.

Each new user that logs into your realm via an external identity provider will have an entry for it
created in the local Red Hat Single Sign-On database. The act of importing metadata from the
SAML or OIDC assertions and claims will create this data with the local realm database.

If you click on an identity provider listed in the Identity Providers page for your realm, you will
be brought to the IDPs Settings tab. On this page is also a Mappers tab. Click on that tab to start
mapping your incoming IDP metadata.

There is a Create button on this page. Clicking on this create button allows you to create a broker
mapper. Broker mappers can import SAML attributes or OIDC ID/Access token claims into user
attributes and user role mappings.

});

CHAPTER 12. IDENTITY BROKERING

117

Select a mapper from the Mapper Type list. Hover over the tooltip to see a description of what the
mapper does. The tooltips also describe what configuration information you need to enter. Click
Save and your new mapper will be added.

For JSON based claims, you can use dot notation for nesting and square brackets to access array
fields by index. For example 'contact.address[0].country'.

To investigate the structure of user profile JSON data provided by social providers you can enable
the DEBUG level logger org.keycloak.social.user_profile_dump. This is done in the
server’s app-server configuration file (domain.xml or standalone.xml).

12.8. AVAILABLE USER SESSION DATA

After a user logs in from the external IDP, there’s some additional user session note data that Red
Hat Single Sign-On stores that you can access. This data can be propagated to the client requesting
a login via the token or SAML assertion being passed back to it by using an appropriate client
mapper.

BROKER_PROVIDER_ID

This is the IDP alias of the broker used to perform the login.

You can use a Protocol Mapper to propagate this information to your clients.

12.9. FIRST LOGIN FLOW

When a user logs in through identity brokering some aspects of the user are imported and linked
within the realm’s local database. When Red Hat Single Sign-On successfully authenticates users
through an external identity provider there can be two situations:

Red Hat Single Sign-On 7.0 Server Administration Guide

118

There is already a Red Hat Single Sign-On user account imported and linked with the
authenticated identity provider account. In this case, Red Hat Single Sign-On will just
authenticate as the existing user and redirect back to application.

There is not yet an existing Red Hat Single Sign-On user account imported and linked for this
external user. Usually you just want to register and import the new account into Red Hat Single
Sign-On database, but what if there is an existing Red Hat Single Sign-On account with the
same email? Automatically linking the existing local account to the external identity provider is a
potential security hole as you can’t always trust the information you get from the external identity
provider.

Different organizations have different requirements when dealing with some of the conflicts and
situations listed above. For this, there is a First Login Flow option in the IDP settings which
allows you to choose a workflow that will be used after a user logs in from an external IDP the first
time. By default it points to first broker login flow, but you can configure and use your own
flow and use different flows for different identity providers.

The flow itself is configured in admin console under Authentication tab. When you choose
First Broker Login flow, you will see what authenticators are used by default. You can re-
configure the existing flow. (For example you can disable some authenticators, mark some of them
as required, configure some authenticators, etc).

12.9.1. Default First Login Flow

Let’s describe the default behaviour provided by First Broker Login flow.

Review Profile

This authenticator might display the profile info page, where the user can review his profile
retrieved from an identity provider. The authenticator is configurable. You can set the
Update Profile On First Login option. When On, users will be always presented
with the profile page asking for additional information in order to federate their identities.
When missing, users will be presented with the profile page only if some mandatory
information (email, first name, last name) is not provided by the identity provider. If Off, the
profile page won’t be displayed, unless user clicks in later phase on Review profile
info link (page displayed in later phase by Confirm Link Existing Account
authenticator)

Create User If Unique

This authenticator checks if there is already an existing Red Hat Single Sign-On account
with same email or username like the account from the identity provider. If it’s not, then the
authenticator just creates a new local Red Hat Single Sign-On account and links it with the
identity provider and the whole flow is finished. Otherwise it goes to the next Handle
Existing Account subflow. If you always want to ensure that there is no duplicated
account, you can mark this authenticator as REQUIRED . In this case, the user will see the
error page if there is existing Red Hat Single Sign-On account and the user will need to link
his identity provider account through Account management.

Confirm Link Existing Account

On the info page, the user will see that there is an existing Red Hat Single Sign-On account
with same email. He can review his profile again and use different email or username (flow
is restarted and goes back to Review Profile authenticator). Or he can confirm that he
wants to link the identity provider account with his existing Red Hat Single Sign-On

CHAPTER 12. IDENTITY BROKERING

119

account. Disable this authenticator if you don’t want users to see this confirmation page, but
go straight to linking identity provider account by email verification or re-authentication.

Verify Existing Account By Email

This authenticator is ALTERNATIVE by default, so it’s used only if the realm has SMTP
setup configured. It will send mail to the user, where he can confirm that he wants to link the
identity provider with his Red Hat Single Sign-On account. Disable this if you don’t want to
confirm linking by email, but instead you always want users to reauthenticate with their
password (and alternatively OTP).

Verify Existing Account By Re-authentication

This authenticator is used if email authenticator is disabled or non-available (SMTP not
configured for realm). It will display a login screen where the user needs to authenticate with
his password to link his Red Hat Single Sign-On account with the Identity provider. User
can also re-authenticate with some different identity provider, which is already linked to his
Red Hat Single Sign-On account. You can also force users to use OTP. Otherwise it’s
optional and used only if OTP is already set for the user account.

12.10. RETRIEVING EXTERNAL IDP TOKENS

Red Hat Single Sign-On allows you to store tokens and responses from the authentication process
with the external IDP. For that, you can use the Store Token configuration option on the IDP’s
settings page.

Application code can retrieve these tokens and responses to pull in extra user information, or to
securely invoke requests on the external IDP. For example, an application might want to use the
Google token to invoke on other Google services and REST APIs. To retrieve a token for a particular
identity provider you need to send a request as follows:

An application must have authenticated with Red Hat Single Sign-On and have received an access
token. This access token will need to have the broker client-level role read-token set. This
means that the user must have a role mapping for this role and the client application must have that
role within its scope. In this case, given that you are accessing a protected service in Red Hat Single
Sign-On, you need to send the access token issued by Red Hat Single Sign-On during the user
authentication.

In the broker configuration page you can automatically assign this role to newly imported users by
turning on the Stored Tokens Readable switch.

GET /auth/realms/{realm}/broker/{provider_alias}/token HTTP/1.1
Host: localhost:8080
Authorization: Bearer {keycloak_access_token}

Red Hat Single Sign-On 7.0 Server Administration Guide

120

CHAPTER 13. USER SESSION MANAGEMENT

When a user logs into a realm, Red Hat Single Sign-On maintains a user session for them and
remembers each and every client they have visited within the session. There are a lot of
administrative functions that realm admins can perform on these user sessions. They can view login
stats for the entire realm and dive down into each client to see who is logged in and where. Admins
can logout a user or set of users from the Admin Console. They can revoke tokens and set up all the
token and session timeouts there too.

13.1. ADMINISTERING SESSIONS

If you go to the Sessions left menu item you can see a top level view of the number of sessions
that are currently active in the realm.

Sessions

A list of clients is given and how many active sessions there currently are for that client. You can
also logout all users in the realm by clicking the Logout all button on the right side of this list.

13.1.1. Logout All Limitations

Any SSO cookies set will now be invalid and clients that request authentication in active browser
sessions will now have to re-login. Only certain clients are notified of this logout event, specifically
clients that are using the Red Hat Single Sign-On OIDC client adapter. Other client types (i.e.
SAML) will not receive a backchannel logout request.

It is important to note that any outstanding access tokens are not revoked by clicking Logout all.
They have to expire naturally. You have to push a revocation policy out to clients, but that also only
works with clients using the Red Hat Single Sign-On OIDC client adapter.

CHAPTER 13. USER SESSION MANAGEMENT

121

13.1.2. Application Drilldown

On the Sessions page, you can also drill down to each client. This will bring you to the Sessions
tab of that client. Clicking on the Show Sessions button there allows you to see which users are
logged into that application.

Application Sessions

13.1.3. User Drilldown

If you go to the Sessions tab of an individual user, you can also view the session information.

User Sessions

Red Hat Single Sign-On 7.0 Server Administration Guide

122

13.2. REVOCATION POLICIES

If your system is compromised you will want a way to revoke all sessions and access tokens that
have been handed out. You can do this by going to the Revocation tab of the Sessions screen.

Revocation

CHAPTER 13. USER SESSION MANAGEMENT

123

You can only set a time-based revocation policy. The console allows you to specify a time and date
where any session or token issued before that time and date is invalid. The Set to now will set the
policy to the current time and date. The Push button will push this revocation policy to any registered
OIDC client that has the Red Hat Single Sign-On OIDC client adapter installed.

13.3. SESSION AND TOKEN TIMEOUTS

Red Hat Single Sign-On gives you fine grain control of session, cookie, and token timeouts. This is
all done on the Tokens tab in the Realm Settings left menu item.

Tokens Tab

Let’s walk through each of the items on this page.

Configuration Description

Revoke Refresh Token For OIDC clients that are doing the refresh token
flow, this flag, if on, will revoke that refresh token
and issue another with the request that the client
has to use. This basically means that refresh
tokens have a one time use.

Red Hat Single Sign-On 7.0 Server Administration Guide

124

SSO Session Idle Also pertains to OIDC clients. If the user is not
active for longer than this timeout, the user session
will be invalidated. How is idle time checked? A
client requesting authentication will bump the idle
timeout. Referesh token requests will also bump
the idle timeout.

SSO Session Max Maximum time before a user session is expired
and invalidated. This is a hard number and time. It
controls the maximum time a user session can
remain active, regardless of activity.

Offline Session Idle For offline access, this is the time the session is
allowed to remain idle before the offline token is
revoked.

Access Token Lifespan When an OIDC access token is created, this value
affects the expiration.

Access Token Lifespan For Implicit Flow With the Implicit Flow no refresh token is provided.
For this reason there’s a separate timeout for
access tokens created with the Implicit Flow.

Client login timeout This is the maximum time that a client has to finish
the Authentication Code Flow in OIDC.

Login timeout Total time a login must take. If authentication takes
longer than this time then the user will have to start
the authentication process over.

Login action timeout Maximum time a user can spend on any one page
in the authentication process.

Configuration Description

13.4. OFFLINE ACCESS

Offline access is a feature described in OpenID Connect specification . The idea is that during login,
your client application will request an Offline token instead of a classic Refresh token. The
application can save this offline token in a database or on disk and can use it later even if user is
logged out. This is useful if your application needs to do some "offline" actions on behalf of user
even when the user is not online. An example is a periodic backup of some data every night.

CHAPTER 13. USER SESSION MANAGEMENT

125

http://openid.net/specs/openid-connect-core-1_0.html#OfflineAccess

Your application is responsible for persisting the offline token in some storage (usually a database)
and then using it to manually retrieve new access token from Red Hat Single Sign-On server.

The difference between a classic Refresh token and an Offline token is, that an offline token will
never expire and is not subject of SSO Session Idle timeout . The offline token is valid even
after a user logout or server restart. However by default you do need to use the offline token for a
refresh token action at least once per 30 days (this value, Offline Session Idle timeout,
can be changed in the administration console in the Tokens tab under Realm Settings). Also if
you enable the option Revoke refresh tokens, then each offline token can be used just once.
So after refresh, you always need to store the new offline token from refresh response into your DB
instead of the previous one.

Users can view and revoke offline tokens that have been granted by them in the User Account
Service. The admin user can revoke offline tokens for individual users in admin console in the
Consents tab of a particular user. The admin can also view all the offline tokens issued in the
Offline Access tab of each client. Offline tokens can also be revoked by setting a revocation
policy.

To be able to issue an offline token, users need to have the role mapping for the realm-level role
offline_access. Clients also need to have that role in their scope.

The client can request an offline token by adding the parameter scope=offline_access when
sending authorization request to Red Hat Single Sign-On. The Red Hat Single Sign-On OIDC client
adapter automatically adds this parameter when you use it to access secured URL of your
application (i.e. http://localhost:8080/customer-portal/secured?scope=offline_access). The Direct
Access Grant and Service Accounts also support offline tokens if you include
scope=offline_access in the body of the authentication request.

Red Hat Single Sign-On 7.0 Server Administration Guide

126

CHAPTER 14. USER STORAGE FEDERATION

Red Hat Single Sign-On can federate external user databases. Out of the box we have support for
LDAP and Active Directory. Before you dive into this, you should understand how Red Hat Single
Sign-On does federation.

Red Hat Single Sign-On performs federation a bit differently than other products/projects. The vision
of Red Hat Single Sign-On is that it is an out of the box solution that should provide a core set of
features regardless of the backend user storage you want to use. Because of this
requirement/vision, Red Hat Single Sign-On has a set data model that all of its services use. Most of
the time when you want to federate an external user store, much of the metadata that would be
needed to provide this complete feature set does not exist in that external store. For example your
LDAP server may only provide password validation, but not support TOTP or user role mappings.
The Red Hat Single Sign-On User Federation SPI was written to support these completely variable
configurations.

The way user federation works is that Red Hat Single Sign-On will import your federated users on
demand to its local storage. How much metadata is imported depends on the underlying federation
plugin and how that plugin is configured. Some federation plugins may only import the username
into Red Hat Single Sign-On storage. Others might import everything from name, address, and
phone number, to user role mappings. Some plugins might want to import credentials directly into
Red Hat Single Sign-On storage and let Red Hat Single Sign-On handle credential validation.
Others might want to handle credential validation themselves. The goal of the User Storage
Federation SPI is to support all of these scenarios.

14.1. ADDING A PROVIDER

To add a storage provider go to the User Federation left menu item in the Admin Console.

User Federation

CHAPTER 14. USER STORAGE FEDERATION

127

On the right side, there is an Add Provider list box. Choose the provider you want to add and you
will be brought to the configuration page of that provider.

14.2. LDAP AND ACTIVE DIRECTORY

Red Hat Single Sign-On comes with a built-in LDAP/AD plugin. By default, it is set up only to import
username, email, first name, and last name. But you are free to configure additional mappers and
add more attributes or delete the default ones. It supports password validation via LDAP/AD
protocols and different user metadata synchronization modes. To configure a federated LDAP store
go to the Admin Console. Click on the User Federation left menu option. When you get to this
page there is an Add Provider select box. You should see ldap within this list. Selecting ldap will
bring you to the ldap configuration page.

14.2.1. Edit Mode

Users, through the User Account Service, and admins through the Admin Console have the ability to
modify user metadata. Depending on your setup you may or may not have LDAP update privileges.
The Edit Mode configuration option defines the edit policy you have with your LDAP store.

READONLY

Username, email, first name, last name, and other mapped attributes will be unchangeable.
Red Hat Single Sign-On will show an error anytime anybody tries to update these fields.
Also, password updates will not be supported.

WRITABLE

Username, email, first name, last name, and other mapped attributes and passwords can all
be updated and will be synchronized automatically with your LDAP store.

UNSYNCED

Any changes to username, email, first name, last name, and passwords will be stored in
Red Hat Single Sign-On local storage. It is up to you to figure out how to synchronize back
to LDAP. This allows Red Hat Single Sign-On deployments to support updates of user
metadata on a read-only LDAP server.

14.2.2. Other config options

Console Display Name

Name used when this provider is referenced in the admin console

Priority

The priority of this provider when looking up users or for adding registrations.

Sync Registrations

If a new user is added through a registration page or admin console, should the user be
eligible to be synchronized to this provider?

Allow Kerberos authentication

Enable Kerberos/SPNEGO authentication in realm with users data provisioned from LDAP.
More info in Kerberos section.

Red Hat Single Sign-On 7.0 Server Administration Guide

128

Other options

The rest of the configuration options should be self explanatory. You can mouseover the
tooltips in Admin Console to see some more details about them.

14.2.3. Connect to LDAP over SSL

When you configure a secured connection URL to your LDAP store(for example
ldaps://myhost.com:636), Red Hat Single Sign-On will use SSL for the communication with
LDAP server. The important thing is to properly configure a truststore on the Red Hat Single Sign-
On server side, otherwise Red Hat Single Sign-On can’t trust the SSL connection to LDAP.

The global truststore for the Red Hat Single Sign-On can be configured with the Truststore SPI.
Please check out the Server Installation and Configuration Guide for more detail. If you don’t
configure the truststore SPI, the truststore will fallback to the default mechanism provided by Java
(either the file provided by system property javax.net.ssl.trustStore or the cacerts file from
the JDK if the system property is not set).

There is a configuration property Use Truststore SPI in the LDAP federation provider
configuration, where you can choose whether the Truststore SPI is used. By default, the value is
Only for ldaps, which is fine for most deployments. The Truststore SPI will only be used if the
connection to LDAP starts with ldaps.

14.2.4. Sync of LDAP users to Red Hat Single Sign-On

LDAP Federation Provider will automatically take care of synchronization (import) of needed LDAP
users into the Red Hat Single Sign-On local database. As users log in, the LDAP Federation
provider will import the LDAP user into the Red Hat Single Sign-On database and then authenticate
against the LDAP password. This is the only time users will be imported. If you go to the Users left
menu item in the Admin Console and click the View all users button, you will only see those
LDAP users that have been authenticated at least once by Red Hat Single Sign-On. It is
implemented this way so that admins don’t accidentally try to import a huge LDAP DB of users.

If you want to sync all LDAP users into the Red Hat Single Sign-On database, you may configure
and enable the Sync Settings of the LDAP provider you configured. There are 2 types of
synchronization:

Periodic Full sync

This will synchronize all LDAP users into Red Hat Single Sign-On DB. Those LDAP users,
which already exist in Red Hat Single Sign-On and were changed in LDAP directly will be
updated in Red Hat Single Sign-On DB (For example if user Mary Kelly was changed in
LDAP to Mary Smith).

Periodic Changed users sync

When syncing occurs, only those users that were created or updated after the last sync will
be updated and/or imported.

The best way to handle syncing is to click the Synchronize all users button when you first
create the LDAP provider, then set up a periodic sync of changed users. The configuration page for
your LDAP Provider has several options to support you.

14.2.5. LDAP/Federation mappers

LDAP mappers are listeners, which are triggered by the LDAP Federation provider at various

CHAPTER 14. USER STORAGE FEDERATION

129

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-installation-and-configuration-guide/

points, provide another extension point to LDAP integration. They are triggered when a user logs in
via LDAP and needs to be imported, during Red Hat Single Sign-On initiated registration, or when a
user is queried from the Admin Console. When you create an LDAP Federation provider, Red Hat
Single Sign-On will automatically provide set of builtin mappers for this provider. You are free to
change this set and create a new mapper or update/delete existing ones.

User Attribute Mapper

This allows you to specify which LDAP attribute is mapped to which attribute of Red Hat
Single Sign-On user. So, for example, you can configure that LDAP attribute mail to the
attribute email in the Red Hat Single Sign-On database. For this mapper implementation,
there is always a one-to-one mapping (one LDAP attribute is mapped to one Red Hat Single
Sign-On attribute)

FullName Mapper

This allows you to specify that the full name of the user, which is saved in some LDAP
attribute (usually cn) will be mapped to firstName and lastname attributes in the Red
Hat Single Sign-On database. Having cn to contain full name of user is a common case for
some LDAP deployments.

Role Mapper

This allows you to configure role mappings from LDAP into Red Hat Single Sign-On role
mappings. One Role mapper can be used to map LDAP roles (usually groups from a
particular branch of LDAP tree) into roles corresponding to either realm roles or client roles
of a specified client. It’s not a problem to configure more Role mappers for the same LDAP
provider. So for example you can specify that role mappings from groups under
ou=main,dc=example,dc=org will be mapped to realm role mappings and role
mappings from groups under ou=finance,dc=example,dc=org will be mapped to client
role mappings of client finance .

Hardcoded Role Mapper

This mapper will grant a specified Red Hat Single Sign-On role to each Red Hat Single
Sign-On user linked with LDAP.

Group Mapper

This allows you to configure group mappings from LDAP into Red Hat Single Sign-On
group mappings. Group mapper can be used to map LDAP groups from a particular branch
of an LDAP tree into groups in Red Hat Single Sign-On. It will also propagate user-group
mappings from LDAP into user-group mappings in Red Hat Single Sign-On.

MSAD User Account Mapper

This mapper is specific to Microsoft Active Directory (MSAD). It’s able to tightly integrate the
MSAD user account state into the Red Hat Single Sign-On account state (account enabled,
password is expired etc). It’s using the userAccountControl and pwdLastSet LDAP
attributes. (both are specific to MSAD and are not LDAP standard). For example if
pwdLastSet is 0, the Red Hat Single Sign-On user is required to update their password
and there will be an UPDATE_PASSWORD required action added to the user. If
userAccountControl is 514 (disabled account) the Red Hat Single Sign-On user is
disabled as well.

Red Hat Single Sign-On 7.0 Server Administration Guide

130

By default, there is set of User Attribute mappers that map basic Red Hat Single Sign-On user
attributes like username, first name, lastname, and email to corresponding LDAP attributes. You are
free to extend these and provide additional attribute mappings. Admin console provides tooltips,
which should help with configuring the corresponding mappers.

CHAPTER 14. USER STORAGE FEDERATION

131

CHAPTER 15. AUDITING AND EVENTS

Red Hat Single Sign-On provides a rich set of auditing capabilities. Every single login action can be
recorded and stored in the database and reviewed in the Admin Console. All admin actions can also
be recorded and reviewed. There is also a Listener SPI with which plugins can listen for these
events and perform some action. Built in listeners include a simple log file and the ability to send an
email if an event occurs.

15.1. LOGIN EVENTS

Login events occur for things like when a user logs in successfully, when somebody enters in a bad
password, or when a user account is updated. Every single event that happens to a user can be
recorded and viewed. By default, no events are stored or viewed in the Admin Console. Only error
events are logged to the console and the server’s log file. To start persisting you’ll need to enable
storage. Go to the Events left menu item and select the Config tab.

Event Configuration

To start storing events you’ll need to turn the Save Events switch to on under the Login Events
Settings.

Save Events

Red Hat Single Sign-On 7.0 Server Administration Guide

132

The Saved Types field allows you to specify which event types you want to store in the event
store. The Clear events button allows you to delete all the events in the database. The
Expiration field allows you to specify how long you want to keep events stored. Once you’ve
enabled storage of login events and decided on your settings, don’t forget to click the Save button
on the bottom of this page.

To view events, go to the Login Events tab.

Login Events

CHAPTER 15. AUDITING AND EVENTS

133

As you can see, there’s a lot of information stored and, if you are storing every event, there are a lot
of events stored for each login action. The Filter button on this page allows you to filter which
events you are actually interested in.

Login Event Filter

In this screenshot, we’re filtering only Login events. Clicking the Update button runs the filter.

Red Hat Single Sign-On 7.0 Server Administration Guide

134

15.1.1. Event Types

Login events:

Login - A user has logged in.

Register - A user has registered.

Logout - A user has logged out.

Code to Token - An application/client has exchanged a code for a token.

Refresh Token - An application/client has refreshed a token.

Account events:

Social Link - An account has been linked to a social provider.

Remove Social Link - A social provider has been removed from an account.

Update Email - The email address for an account has changed.

Update Profile - The profile for an account has changed.

Send Password Reset - A password reset email has been sent.

Update Password - The password for an account has changed.

Update TOTP - The TOTP settings for an account have changed.

Remove TOTP - TOTP has been removed from an account.

Send Verify Email - An email verification email has been sent.

Verify Email - The email address for an account has been verified.

For all events there is a corresponding error event.

15.1.2. Event Listener

Event listeners listen for events and perform an action based on that event. There are two built in
listeners that come with Red Hat Single Sign-On: Logging Event Listener and Email Event Listener.

The Logging Event Listener writes to a log file whenever an error event occurs and is enabled by
default. Here’s an example log message:

11:36:09,965 WARN [org.keycloak.events] (default task-51)
type=LOGIN_ERROR, realmId=master,
 clientId=myapp,
 userId=19aeb848-96fc-44f6-b0a3-59a17570d374,
ipAddress=127.0.0.1,
 error=invalid_user_credentials,
auth_method=openid-connect, auth_type=code,
 redirect_uri=http://localhost:8180/myapp,
 code_id=b669da14-cdbb-41d0-b055-0810a0334607,
username=admin

CHAPTER 15. AUDITING AND EVENTS

135

This logging is very useful if you want to use a tool like Fail2Ban to detect if there is a hacker bot
somewhere that is trying to guess user passwords. You can parse the log file for LOGIN_ERROR and
pull out the IP Address. Then feed this information into Fail2Ban so that it can help prevent attacks.

The Email Event Listener sends an email to the user’s account when an event occurs. The Email
Event Listener only supports the following events at the moment:

Login Error

Update Password

Update TOTP

Remove TOTP

To enable the Email Listener go to the Config tab and click on the Event Listeners field. This
will show a drop down list box where you can select email.

You can exclude one or more events by editing the keycloak-server.json that comes with your
distribution and adding for example:

"eventsListener": {
 "email": {
 "exclude-events": ["UPDATE_TOTP", "REMOVE_TOTP"]
 }
}

See the Server Installation and Configuration Guide for more details on where the keycloak-
server.json file lives.

15.2. ADMIN EVENTS

Any action an admin performs within the admin console can be recorded for auditing purposes. The
Admin Console performs administrative functions by invoking on the Red Hat Single Sign-On REST
interface. Red Hat Single Sign-On audits these REST invocations. The resulting events can then be
viewed in the Admin Console.

To enable auditing of Admin actions, go to the Events left menu item and select the Config tab.

Event Configuration

Red Hat Single Sign-On 7.0 Server Administration Guide

136

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-installation-and-configuration-guide/

In the Admin Events Settings section, turn on the Save Events switch.

Admin Event Configuration

The Include Representation switch will include any JSON document that is sent through the
admin REST API. This allows you to view exactly what an admin has done, but can lead to a lot of
information stored in the database. The Clear admin events button allows you to wipe out the
current information stored.

CHAPTER 15. AUDITING AND EVENTS

137

To view the admin events go to the Admin Events tab.

Admin Events

If the Details column has a Representation box, you can click on that to view the JSON that
was sent with that operation.

Admin Representation

Red Hat Single Sign-On 7.0 Server Administration Guide

138

You can also filter for the events you are interested in by clicking the Filter button.

Admin Event Filter

CHAPTER 15. AUDITING AND EVENTS

139

CHAPTER 16. EXPORT AND IMPORT

Red Hat Single Sign-On has the ability export and import the entire database. This can be
especially useful if you want to migrate your whole Red Hat Single Sign-On database from one
environment to another or migrate to a different database (for example from MySQL to Oracle).
Export and import is triggered at server boot time and its parameters are passed in via Java system
properties. It is important to note that because import and export happens at server startup, no other
actions should be taken on the server or the database while this happens.

You can export/import your database either to:

Directory on local filesystem

Single JSON file on your filesystem

When importing using the directory strategy, note that the files need to follow the naming convention
specified below. If you are importing files which were previously exported, the files already follow
this convention.

{REALM_NAME}-realm.json, such as "acme-roadrunner-affairs-realm.json" for the realm named
"acme-roadrunner-affairs"

{REALM_NAME}-users-{INDEX}.json, such as "acme-roadrunner-affairs-users-0.json" for the
first users file of the realm named "acme-roadrunner-affairs"

If you export to a directory, you can also specify the number of users that will be stored in each
JSON file.

Note

If you have bigger amount of users in your database (500 or more), it’s highly
recommended to export into directory rather than to single file. Exporting into single file
may lead to the very big file. Also the directory provider is using separate transaction for
each "page" (file with users), which leads to much better performance. Default count of
users per file (and transaction) is 50, which showed us best performance, but you have
possibility to override (See below). Exporting to single file is using one transaction per
whole export and one per whole import, which results in bad performance with large
amount of users.

To export into unencrypted directory you can use:

bin/standalone.sh -Dkeycloak.migration.action=export
-Dkeycloak.migration.provider=dir -Dkeycloak.migration.dir=<DIR TO
EXPORT TO>

And similarly for import just use -Dkeycloak.migration.action=import instead of export .
To export into single JSON file you can use:

bin/standalone.sh -Dkeycloak.migration.action=export
-Dkeycloak.migration.provider=singleFile -Dkeycloak.migration.file=
<FILE TO EXPORT TO>

Here’s an example of importing:

Red Hat Single Sign-On 7.0 Server Administration Guide

140

bin/standalone.sh -Dkeycloak.migration.action=import
-Dkeycloak.migration.provider=singleFile -Dkeycloak.migration.file=
<FILE TO IMPORT>
-Dkeycloak.migration.strategy=OVERWRITE_EXISTING

Other available options are:

-Dkeycloak.migration.realmName

This property is used if you want to export just one specified realm instead of all. If not
specified, then all realms will be exported.

-Dkeycloak.migration.usersExportStrategy

This property is used to specify where users are exported. Possible values are:

DIFFERENT_FILES - Users will be exported into different files according to the
maximum number of users per file. This is default value.

SKIP - Exporting of users will be skipped completely.

REALM_FILE - All users will be exported to same file with the realm settings. (The result
will be a file like "foo-realm.json" with both realm data and users.)

SAME_FILE - All users will be exported to same file but different from the realm file.
(The result will be a file like "foo-realm.json" with realm data and "foo-users.json" with
users.)

-Dkeycloak.migration.usersPerFile

This property is used to specify the number of users per file (and also per DB transaction).
It’s 50 by default. It’s used only if usersExportStrategy is DIFFERENT_FILES

-Dkeycloak.migration.strategy

This property is used during import. It can be used to specify how to proceed if a realm with
same name already exists in the database where you are going to import data. Possible
values are:

IGNORE_EXISTING - Ignore importing if a realm of this name already exists.

OVERWRITE_EXISTING - Remove existing realm and import it again with new data
from the JSON file. If you want to fully migrate one environment to another and ensure
that the new environment will contain the same data as the old one, you can specify this.

When importing realm files that weren’t exported before, the option keycloak.import can be
used. If more than one realm file needs to be imported, a comma separated list of file names can be
specified. This is more appropriate than the cases before, as this will happen only after the master
realm has been initialized. Examples:

-Dkeycloak.import=/tmp/realm1.json

-Dkeycloak.import=/tmp/realm1.json,/tmp/realm2.json

16.1. ADMIN CONSOLE EXPORT/IMPORT

Import of most resources can be performed from the admin console. Exporting resources will be
supported in future versions.

CHAPTER 16. EXPORT AND IMPORT

141

The files created during a "startup" export can be used to import from the admin UI. This way, you
can export from one realm and import to another realm. Or, you can export from one server and
import to another.

Warning

The admin console import allows you to "overwrite" resources if you choose. Use this
feature with caution, especially on a production system.

Red Hat Single Sign-On 7.0 Server Administration Guide

142

CHAPTER 17. USER ACCOUNT SERVICE

Red Hat Single Sign-On has a built in User Account Service which every user has access to. This
service allows users to manage their account, change their credentials, update their profile, and
view their login sessions. The URL to this service is <server-root>/auth/realms/{realm-
name}/account.

Account Service

The initial page is the user’s profile, which is the Account left menu item. This is where they specify
basic data about themselves. This screen can be extended to allow the user to manage additional
attributes. See the Server Developer Guide for more details.

The Password left menu item allows the user to change their password.

Password Update

CHAPTER 17. USER ACCOUNT SERVICE

143

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-developer-guide/

The Authenticator menu item allows the user to set up OTP if they desire. This will only show
up if OTP is a valid authentication mechanism for your realm. Users are given directions to install
FreeOTP or Google Authenticator on their mobile device to be their OTP generator. The QR code
you see in the screen shot can be scanned into the FreeOTP or Google Authenticator mobile
application for nice and easy setup.

OTP Authenticator

Red Hat Single Sign-On 7.0 Server Administration Guide

144

https://fedorahosted.org/freeotp/
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2

The Federated Identity menu item allows the user to link their account with an identity broker
(this is usually used to link social provier accounts together). This will show the list of external
identity providers you have configured for your realm.

Federated Identity

CHAPTER 17. USER ACCOUNT SERVICE

145

The Sessions menu item allows the user to view and manage which devices are logged in and
from where. They can perform logout of these sessions from this screen too.

Sessions

The Applications menu item shows users which applications they have access to.

Applications

Red Hat Single Sign-On 7.0 Server Administration Guide

146

17.1. THEMEABLE

Like all UIs in Red Hat Single Sign-On, the User Account Service is completely themeable and
internationalizable. See the Server Developer Guide for more details.

CHAPTER 17. USER ACCOUNT SERVICE

147

https://access.redhat.com/documentation/en/red-hat-single-sign-on/7.0/server-developer-guide/

CHAPTER 18. THREAT MODEL MITIGATION

This chapter discusses possible security vulnerabilities any authentication server could have and
how Red Hat Single Sign-On mitigates those vulnerabilities. A good list of potential vulnerabilities
and what security implementations should do to mitigate them can be found in the OAuth 2.0 Threat
Model document put out by the IETF. Many of those vulnerabilities are discussed here.

18.1. PASSWORD GUESS: BRUTE FORCE ATTACKS

A brute force attack happens when an attacker is trying to guess a user’s password. Red Hat Single
Sign-On has some limited brute force detection capabilities. If turned on, a user account will be
temporarily disabled if a threshold of login failures is reached. To enable this feature go to the Realm
Settings left menu item, click on the Security Defenses tab, then additional go to the Brute
Force Detection sub-tab.

Brute Force Detection

The way this works is that if there are Max Login Failures during a period of Failure Reset
Time, the account is temporarily disabled for the Wait Increment multiplied by the number of
failures over the max. After Failure Reset Time is reached all failures are wiped clean. The Max
Wait is the maximum amount of time an account can be disabled. Another preventive measure is
that if there are subsequent login failures for one account that are too quick for a human to initiate
the account will be disabled. This is controlled by the Quick Login Check Milli Seconds
value. So, if there are two login failures for the same account within that value, the account will be
disabled for Minimum Quick Login Wait.

The downside of Red Hat Single Sign-On brute force detection is that the server becomes
vulnerable to denial of service attacks. An attacker can simply try to guess passwords for any
accounts it knows and these account will be disabled. Eventually we will expand this functionality to
take client IP address into account when deciding whether to block a user.

Red Hat Single Sign-On 7.0 Server Administration Guide

148

http://tools.ietf.org/html/rfc6819

A better option might be a tool like Fail2Ban. You can point this service at the Red Hat Single Sign-
On server’s log file. Red Hat Single Sign-On logs every login failure and client IP address that had
the failure. Fail2Ban can be used to modify firewalls after it detects an attack to block connections
from specific IP addresses.

18.1.1. Password Policies

Another thing you should do to prevent password guess is to have a complex enough password
policy to ensure that users pick hard to guess passwords. See the Password Policies chapter for
more details.

The best way to prevent password guessing though is to set up the server to use a one-time-
password (OTP).

18.2. CLICKJACKING

With clickjacking, a malicious site loads the target site in a transparent iFrame overlaid on top of a
set of dummy buttons that are carefully constructed to be placed directly under important buttons on
the target site. When a user clicks a visible button, they are actually clicking a button (such as a
"login" button) on the hidden page. An attacker can steal a user’s authentication credentials and
access their resources.

By default, every response by Red Hat Single Sign-On sets some specific browser headers that can
prevent this from happening. Specifically, it sets X-FRAME_OPTIONS and Content-Security-Policy.
You should take a look at the definition of both of these headers as there is a lot of fine-grain
browser access you can control. In the admin console you can specify the values these headers will
have. Go to the Realm Settings left menu item and click the Security Defenses tab and
make sure you are on the Headers sub-tab.

By default, Red Hat Single Sign-On only sets up a same-origin policy for iframes.

18.3. SSL/HTTPS REQUIREMENT

CHAPTER 18. THREAT MODEL MITIGATION

149

http://www.fail2ban.org
http://tools.ietf.org/html/rfc7034
http://www.w3.org/TR/CSP/

18.3. SSL/HTTPS REQUIREMENT

If you do not use SSL/HTTPS for all communication between the Red Hat Single Sign-On auth
server and the clients it secures you will be very vulnerable to man in the middle attacks. OAuth
2.0/OpenID Connect uses access tokens for security. Without SSL/HTTPS, attackers can sniff your
network and obtain an access token. Once they have an access token they can do any operation
that the token has been given permission for.

Red Hat Single Sign-On has three modes for SSL/HTTPS. SSL can be hard to set up, so out of the
box, Red Hat Single Sign-On allows non-HTTPS communication over private IP addresses like
localhost, 192.168.x.x, and other private IP addresses. In production, you should make sure SSL is
enabled and required across the board.

On the adapter/client side, Red Hat Single Sign-On allows you to turn off the SSL trust manager.
The trust manager ensures identity the client is talking to. It checks the DNS domain name against
the server’s certificate. In production you should make sure that each of your client adapters is
configured to use a truststore. Otherwise you are vulnerable to DNS man in the middle attacks.

18.4. CSRF ATTACKS

Cross-site request forgery (CSRF) is a web-based attack whereby HTTP requests are transmitted
from a user that the web site trusts or has authenticated with(e.g. via HTTP redirects or HTML
forms). Any site that uses cookie based authentication is vulnerable to these types of attacks. These
attacks are mitigated by matching a state cookie against a posted form or query parameter.

The OAuth 2.0 login specification requires that a state cookie be used and matched against a
transmitted state parameter. Red Hat Single Sign-On fully implements this part of the specification
so all logins are protected.

The Red Hat Single Sign-On Admin Console is a pure JavaScript/HTML5 application that makes
REST calls to the backend Red Hat Single Sign-On admin REST API. These calls all require bearer
token authentication and are made via JavaScript Ajax calls. CSRF does not apply here. The admin
REST API can also be configured to validate the CORS origins as well.

The only part of Red Hat Single Sign-On that really falls into CSRF is the user account management
pages. To mitigate this Red Hat Single Sign-On sets a state cookie and also embeds the value of
this state cookie within hidden form fields or query parameters in action links. This query or form
parameter is checked against the state cookie to verify that the call was made by the user.

18.5. UNSPECIFIC REDIRECT URIS

For the Authorization Code Flow, if you register redirect URIs that are too general, then it would be
possible for a rogue client to impersonate a different client that has a broader scope of access. This
could happen for instance if two clients live under the same domain. So, it’s a good idea to make
your registered redirect URIs as specific as feasible.

18.6. COMPROMISED ACCESS AND REFRESH TOKENS

There are a few things you can do to mitigate access tokens and refresh tokens from being stolen.
The most important thing is to enforce SSL/HTTPS communication between Red Hat Single Sign-
On and its clients and applications. This might seem like a no-brainer, but since Red Hat Single
Sign-On does not have SSL enabled by default, many naive admins might not realize they have to
do this.

Another thing you can do to mitigate leaked access tokens is to shorten their lifespans. You can

Red Hat Single Sign-On 7.0 Server Administration Guide

150

specify this within the timeouts page. Short lifespans (minutes) for access tokens for clients and
applications to refresh their access tokens after a short amount of time. If an admin detects a leak,
they can logout all user sessions to invalidate these refresh tokens or set up a revocation policy.
Making sure refresh tokens always stay private to the client and are never transmitted ever is very
important as well.

If an access token or refresh token is compromised, the first thing you should do is go to the admin
console and push a not-before revocation policy to all applications. This will enforce that any tokens
issued prior to that date are now invalid. You can also disable specific applications, clients, and
users if you feel that any one of those entities is completely compromised.

18.7. COMPROMISED ACCESS CODES

For the OIDC Auth Code Flow, it would be very hard for an attacker to compromise Red Hat Single
Sign-On access codes. Red Hat Single Sign-On generates a cryptographically strong random value
for its access codes so it would be very hard to guess an access token. An access code can only be
used once to obtain an access token. In the admin console you can specify how long an access
token is valid for on the timeouts page. This value should be really short, as short as a few seconds
and just long enough for the client to make the request to obtain a token from the code.

18.8. OPEN REDIRECTORS

An attacker could use the end-user authorization endpoint and the redirect URI parameter to abuse
the authorization server as an open redirector. An open redirector is an endpoint using a parameter
to automatically redirect a user agent to the location specified by the parameter value without any
validation. An attacker could utilize a user’s trust in an authorization server to launch a phishing
attack.

Red Hat Single Sign-On requires that all registered applications and clients register at least one
redirection URI pattern. Any time a client asks Red Hat Single Sign-On to perform a redirect (on
login or logout for example), Red Hat Single Sign-On will check the redirect URI vs. the list of valid
registered URI patterns. It is important that clients and applications register as specific a URI pattern
as possible to mitigate open redirector attacks.

18.9. PASSWORD DATABASE COMPROMISED

Red Hat Single Sign-On does not store passwords in raw text. It stores a hash of them using the
PBKDF2 algorithm. It actually uses a default of 20,000 hasing iterations! This is the security
community’s recommended number of iterations. This can be a rather large performance hit on your
system as PBKDF2, by design, gobbles up a significant amount of CPU. It is up to you to decide
how serious you want to be to protect your password database.

18.10. LIMITING SCOPE

By default, each new client application has an unlimited scope. This means that every access token
that is created for that client will contain all the permissions the user has. If the client gets
compromised and the access token is leaked, then each system that the user has permission to
access is now also compromised. It is highly suggested that you limit the roles an access token is
assigned by using the Scope menu for each client.

18.11. SQL INJECTION ATTACKS

CHAPTER 18. THREAT MODEL MITIGATION

151

At this point in time, there is no knowledge of any SQL injection vulnerabilities in Red Hat Single
Sign-On.

Red Hat Single Sign-On 7.0 Server Administration Guide

152

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. FEATURES
	1.2. HOW DOES SECURITY WORK?
	1.3. CORE CONCEPTS AND TERMS

	CHAPTER 2. SERVER INITIALIZATION
	CHAPTER 3. ADMIN CONSOLE
	3.1. THE MASTER REALM
	3.2. CREATE A NEW REALM
	3.3. SSL MODE
	3.4. REALM KEY PAIRS
	3.5. CLEARING SERVER CACHES
	3.6. EMAIL SETTINGS
	3.7. THEMES AND INTERNATIONALIZATION
	3.7.1. Internationalization

	CHAPTER 4. USER MANAGEMENT
	4.1. SEARCHING FOR USERS
	4.2. CREATING NEW USERS
	4.3. USER ATTRIBUTES
	4.4. USER CREDENTIALS
	4.4.1. Changing Passwords
	4.4.2. Changing OTPs

	4.5. REQUIRED ACTIONS
	4.5.1. Default Required Actions
	4.5.2. Terms and Conditions

	4.6. IMPERSONATION
	4.7. USER REGISTRATION
	4.7.1. reCAPTCHA Support

	CHAPTER 5. LOGIN PAGE SETTINGS
	5.1. FORGOT PASSWORD
	5.2. REMEMBER ME

	CHAPTER 6. AUTHENTICATION
	6.1. PASSWORD POLICIES
	6.1.1. Password Policy Types

	6.2. OTP POLICIES
	6.2.1. TOTP vs. HOTP
	6.2.2. TOTP Configuration Options
	6.2.3. HOTP Configuration Options

	6.3. AUTHENTICATION FLOWS
	6.4. KERBEROS
	6.4.1. Setup of Kerberos server
	6.4.2. Setup and configuration of Red Hat Single Sign-On server
	6.4.2.1. Enable SPNEGO Processing
	6.4.2.2. Configure Kerberos User Storage Federation Provider

	6.4.3. Setup and configuration of client machines
	6.4.4. Credential Delegation
	6.4.5. Troubleshooting

	CHAPTER 7. SSO PROTOCOLS
	7.1. OPEN ID CONNECT
	7.1.1. OIDC Auth Flows
	7.1.1.1. Authorization Code Flow
	7.1.1.2. Implicit Flow
	7.1.1.3. Resource Owner Password Credentials Grant (Direct Grants)
	7.1.1.4. Client Credentials Grant

	7.1.2. Red Hat Single Sign-On Server OIDC URI Endpoints

	7.2. SAML
	7.2.1. SAML Bindings
	7.2.1.1. Redirect Binding
	7.2.1.2. POST Binding
	7.2.1.3. ECP

	7.2.2. Red Hat Single Sign-On Server SAML URI Endpoints

	7.3. OPENID CONNECT VS. SAML

	CHAPTER 8. MANAGING CLIENTS
	8.1. OIDC CLIENTS
	8.1.1. Confidential Client Credentials

	8.2. SERVICE ACCOUNTS
	8.3. SAML CLIENTS
	8.3.1. IDP Initiated Login
	8.3.2. SAML Entity Descriptors

	8.4. OIDC TOKEN AND SAML ASSERTION MAPPINGS
	8.5. GENERATING CLIENT ADAPTER CONFIG
	8.6. CLIENT TEMPLATES

	CHAPTER 9. ROLES
	9.1. REALM ROLES
	9.2. CLIENT ROLES
	9.3. COMPOSITE ROLES
	9.4. USER ROLE MAPPINGS
	9.4.1. Default Roles

	9.5. CLIENT SCOPE

	CHAPTER 10. GROUPS
	10.1. GROUPS VS. ROLES
	10.2. DEFAULT GROUPS

	CHAPTER 11. ADMIN CONSOLE ACCESS CONTROL AND PERMISSIONS
	11.1. MASTER REALM ACCESS CONTROL
	11.1.1. Global Roles
	11.1.2. Realm Specific Roles

	11.2. DEDICATED REALM ADMIN CONSOLES

	CHAPTER 12. IDENTITY BROKERING
	12.1. BROKERING OVERVIEW
	12.2. GENERAL CONFIGURATION
	12.3. SOCIAL IDENTITY PROVIDERS
	12.3.1. Google
	12.3.2. Facebook
	12.3.3. Twitter
	12.3.4. Github
	12.3.5. LinkedIn
	12.3.6. Microsoft
	12.3.7. StackOverflow

	12.4. OPENID CONNECT V1.0 IDENTITY PROVIDERS
	12.5. SAML V2.0 IDENTITY PROVIDERS
	12.5.1. SP Descriptor

	12.6. CLIENT SUGGESTED IDENTITY PROVIDER
	12.7. MAPPING CLAIMS AND ASSERTIONS
	12.8. AVAILABLE USER SESSION DATA
	12.9. FIRST LOGIN FLOW
	12.9.1. Default First Login Flow

	12.10. RETRIEVING EXTERNAL IDP TOKENS

	CHAPTER 13. USER SESSION MANAGEMENT
	13.1. ADMINISTERING SESSIONS
	13.1.1. Logout All Limitations
	13.1.2. Application Drilldown
	13.1.3. User Drilldown

	13.2. REVOCATION POLICIES
	13.3. SESSION AND TOKEN TIMEOUTS
	13.4. OFFLINE ACCESS

	CHAPTER 14. USER STORAGE FEDERATION
	14.1. ADDING A PROVIDER
	14.2. LDAP AND ACTIVE DIRECTORY
	14.2.1. Edit Mode
	14.2.2. Other config options
	14.2.3. Connect to LDAP over SSL
	14.2.4. Sync of LDAP users to Red Hat Single Sign-On
	14.2.5. LDAP/Federation mappers

	CHAPTER 15. AUDITING AND EVENTS
	15.1. LOGIN EVENTS
	15.1.1. Event Types
	15.1.2. Event Listener

	15.2. ADMIN EVENTS

	CHAPTER 16. EXPORT AND IMPORT
	16.1. ADMIN CONSOLE EXPORT/IMPORT

	CHAPTER 17. USER ACCOUNT SERVICE
	17.1. THEMEABLE

	CHAPTER 18. THREAT MODEL MITIGATION
	18.1. PASSWORD GUESS: BRUTE FORCE ATTACKS
	18.1.1. Password Policies

	18.2. CLICKJACKING
	18.3. SSL/HTTPS REQUIREMENT
	18.4. CSRF ATTACKS
	18.5. UNSPECIFIC REDIRECT URIS
	18.6. COMPROMISED ACCESS AND REFRESH TOKENS
	18.7. COMPROMISED ACCESS CODES
	18.8. OPEN REDIRECTORS
	18.9. PASSWORD DATABASE COMPROMISED
	18.10. LIMITING SCOPE
	18.11. SQL INJECTION ATTACKS

