‘® redhat.

Red Hat Satellite 6.3

Architecture Guide

Planning Satellite 6 Deployment

Last Updated: 2019-04-16

Red Hat Satellite 6.3 Architecture Guide

Planning Satellite 6 Deployment

Red Hat Satellite Documentation Team
satellite-doc-list@redhat.com

Legal Notice
Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution—Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document explains architecture concepts of Red Hat Satellite 6 and provides recommendations
for your deployment planning.

Table of Contents

Table of Contents

PART . SATELLITEG6 ARCHITECTUREttt ia et atatn e n s arasasannnnnnnnns, 4
CHAPTER 1. INTRODUCTION TO RED HAT SATELLITE 6 ciciuii ittt ininanaannnnnnnnn, 5
1.1. SYSTEM ARCHITECTURE 5
1.2. SYSTEM COMPONENTS 8
1.3. SUPPORTED USAGE 8
1.4. SUPPORTED CLIENT ARCHITECTURES 9
1.4.1. Content Management 9
1.4.2. Host Provisioning 9
1.4.3. Configuration Management 10
CHAPTER 2. CAPSULE SERVER OVERVIEW it i i et it se s ainenana s ananannnns 11
2.1. CAPSULE FEATURES 11
2.2. CAPSULE TYPES 12
2.3. CAPSULE NETWORKING 12
CHAPTER 3. ORGANIZATIONS, LOCATIONS, AND LIFE CYCLE ENVIRONMENTS 15
3.1. ORGANIZATIONS 16
3.2. LOCATIONS 16
3.3. LIFE CYCLE ENVIRONMENTS 16
CHAPTER 4. HOST GROUPING CONCEPTSttt ittt e tia s e ae s a e a e nasnaennnnnrnnns 18
4.1. HOST GROUP STRUCTURES 18
CHAPTER 5. PROVISIONING CONCEPTSttt ittt i e tnasaaae s a e sa e rasnnsnnrnnrnnns 20
5.1. PXE BOOTING 20
5.1.1. PXE Sequence 20
5.1.2. Requirements 20
5.2. KICKSTART 21
5.2.1. Workflow 21
CHAPTER 6. CONTENT DELIVERY NETWORK STRUCTUREttt iiiienaens 22
PART IIl. SATELLITE 6 DEPLOYMENT PLANNINGttt i e e a e ananannnnns 23
CHAPTER 7. DEPLOYMENT CONSIDERATIONSttt i e i e e sannenasasanaannnnns 24
7.1. SATELLITE SERVER CONFIGURATION 24
7.2. LOCATIONS AND TOPOLOGY 25
7.3. CONTENT SOURCES 26
7.4. CONTENT LIFE CYCLE 26
7.5. CONTENT DEPLOYMENT 28
7.6. PROVISIONING 28
7.7. ROLE BASED AUTHENTICATION 28
7.8. ADDITIONAL TASKS 29
CHAPTER 8. COMMON DEPLOYMENT SCENARIOSot ittt a e naananns 31
8.1. SINGLE LOCATION 31
8.2. SINGLE LOCATION WITH SEGREGATED SUBNETS 31
8.3. MULTIPLE LOCATIONS 31
8.4. DISCONNECTED SATELLITE 31
8.5. CAPSULE WITH EXTERNAL SERVICES 32
APPENDIX A. TECHNICAL USERS PROVIDED AND REQUIRED BY SATELLITEccovuat, 33

Red Hat Satellite 6.3 Architecture Guide

APPENDIX B. GLOSSARY OF TERMS

Table of Contents

Red Hat Satellite 6.3 Architecture Guide

PART I. SATELLITE 6 ARCHITECTURE

CHAPTER 1. INTRODUCTION TO RED HAT SATELLITE 6

CHAPTER 1. INTRODUCTION TO RED HAT SATELLITE 6

Red Hat Satellite is a system management solution that enables you to deploy, configure, and maintain
your systems across physical, virtual, and cloud environments. Satellite provides provisioning, remote
management and monitoring of multiple Red Hat Enterprise Linux deployments with a single, centralized
tool. Red Hat Satellite Server synchronizes the content from Red Hat Customer Portal and other sources,
and provides functionality including fine-grained life cycle management, user and group role-based
access control, integrated subscription management, as well as advanced GUI, CLI, or APl access.

Red Hat Satellite Capsule Servermirrors content from Red Hat Satellite Server to facilitate content
federation across various geographical locations. Host systems can pull content and configuration from
the Capsule Server in their location and not from the central Satellite Server. The Capsule Server also

provides localized services such as Puppet Master, DHCP, DNS, or TFTP. Capsule Servers assist you
in scaling Red Hat Satellite as the number of managed systems increases in your environment.

1.1. SYSTEM ARCHITECTURE
The following diagram represents the high-level architecture of Red Hat Satellite 6.

Figure 1.1. Red Hat Satellite 6 System Architecture

@@@7" @) ‘ > b

Red Hat
Operators — Analytics
Life Cycle
Management

RED HAT SATELLITE

Network

RED HAT SATELLITE

CAPSULE SERVERS

MANAGED HOSTS

VMware GCE \ il
RHEV Rackspace - an o - = ol
:(\:,';4 Docker - i E‘"--. ------ T .[LE

LOCATION 1 LOCATION 2 LOCATION 3 LOCATION N

Red Hat Satellite 6.3 Architecture Guide

There are four stages through which content flows in this architecture:

External Content Sources

The Red Hat Satellite Servercan consume diverse types of content from various sources. The
required connection is the one with Red Hat Customer Portal, which is the primary source of software
packages, errata, Puppet modules, and container images. In addition, you can use other supported
content sources (Git repositories, Docker Hub, Puppet Forge, SCAP repositories) as well as your
organization’s internal data store.

Red Hat Satellite Server

The Red Hat Satellite Server enables you to plan and manage the content life cycle and the
configuration of Capsule Servers and hosts through GUI, CLI, or API.

The Satellite Server organizes the life cycle management by using organizations as principal division
units. Organizations isolate content for groups of hosts with specific requirements and administration
tasks. For example, the OS build team can use a different organization than the web development
team.

The Satellite Server also contains a fine-grained authentication system to provide Satellite operators
with permissions to access precisely the parts of the infrastructure that lie in their area of
responsibility.

Capsule Servers

Capsule Servers mirror content from the Satellite Server to establish content sources in various
geographical locations. This enables host systems to pull content and configuration from the Capsule
Servers in their location and not from the central Satellite Server. The recommended minimum
number of Capsule Servers is therefore given by the number of geographic regions where the
organization that uses Satellite operates.

Using Content Views, you can specify the exact subset of content that the Capsule Server makes
available to hosts. See Figure 1.2, “Content Life Cycle in Red Hat Satellite 6” for a closer look at life
cycle management with the use of Content Views.

The communication between managed hosts and the Satellite Server is routed through the Capsule
Server that can also manage multiple services on behalf of hosts. Many of these services use
dedicated network ports, but the Capsule Server ensures that a single source IP address is used for
all communications from the host to the Satellite Server, which simplifies firewall administration. For
more information on Capsule Servers see Chapter 2, Capsule Server Overview.

Managed Hosts

Hosts are the recipients of content from Capsule Servers. Hosts can be either physical or virtual
(deployed on KVM, VMware vSphere, OpenStack, Amazon EC2, Rackspace Cloud Services, Google
Compute Engine, or in a Docker container). The Satellite Server can have directly managed hosts.
The base system running a Capsule Server is also a managed host of the Satellite Server.

The following diagram provides a closer look at the distribution of content from the Satellite Server to
Capsules.

CHAPTER 1. INTRODUCTION TO RED HAT SATELLITE 6

Figure 1.2. Content Life Cycle in Red Hat Satellite 6

ORGANIZATION 1

O

!, o ') > LIBRARY DEV QE PROD

VERSION1 VERSION1

]
]
Operator E
VERSION 2 1 VERSION 2
]
]
D Jii et > v v v
VERSION N VERSION N VERSION N VERSION 2 VERSION 1
B El El Bl Bl
Content Composite Composite Composite Composite
View 1 Content View 2 Content View 2 Content View 2 Content View 2
RED HAT SATELLITE
Network (firewall)
RED HAT
SATELLITE PROD
CAPSULE
SERVERS o
LOCATION 1 LOCATION 2 LOCATION 3 LOCATION N

By default, each organization has a Library of content from external sources. Content Views are subsets
of content from the Library created by intelligent filtering. You can publish and promote Content Views
into life cycle environments (typically Dev, QA, and Production). When creating a Capsule Server, you
can choose which life cycle environments will be copied to that Capsule and made available to managed
hosts.

Content Views can be combined to create Composite Content Views. It can be beneficial to have a
separate Content View for a repository of packages required by an operating system and a separate one
for a repository of packages required by an application. One advantage is that any updates to packages
in one repository only requires republishing the relevant Content View. You can then use Composite
Content Views to combine published Content Views for ease of management.

Which Content Views should be promoted to which Capsule Server depends on the Capsule’s intended
functionality. Any Capsule Server can run DNS, DHCP, and TFTP as infrastructure services that can be
supplemented, for example, with content or configuration services.

You can update the Capsule Server by creating a new version of a Content View using synchronized
content from the Library. The new Content View version is then promoted through life cycle
environments. You can also create in-place updates of Content Views. This means creating a minor
version of the Content View in its current life cycle environment without promoting it from the Library. For

Red Hat Satellite 6.3 Architecture Guide

example, if you need to apply a security erratum to a Content View used in Production, you can update
the Content View directly without promoting to other life cycles. For more information on content
management see the Red Hat Satellite Content Management Guide.

1.2. SYSTEM COMPONENTS

Red Hat Satellite 6 consists of several open source projects which are integrated, verified, delivered and
supported as Satellite 6. This information is maintained and regularly updated on the Red Hat Customer
Portal, see Satellite 6 Component Versions.

Red Hat Satellite 6 consists of the following open source projects:

Foreman

Foreman is an open source application used for provisioning and life cycle management of physical
and virtual systems. Foreman automatically configures these systems using various methods,
including kickstart and Puppet modules. Foreman also provides historical data for reporting, auditing,
and troubleshooting.

Katello

Katello is a Foreman plug-in for subscription and repository management. It provides a means to
subscribe to Red Hat repositories and download content. You can create and manage different
versions of this content and apply them to specific systems within user-defined stages of the
application life cycle.

Candlepin

Candlepin is a service within Katello that handles subscription management.

Pulp

Pulp is a service within Katello that handles repository and content management. Pulp ensures
efficient storage space by not duplicating RPM packages even when requested by Content Views in
different organizations.

Hammer

Hammer is a CLI tool that provides command line and shell equivalents of most Web Ul functions.

REST API
Red Hat Satellite 6 includes a RESTful API service that allows system administrators and developers
to write custom scripts and third-party applications that interface with Red Hat Satellite.

The terminology used in Red Hat Satellite and its upstream components is extensive, for explanation of
frequent terms see Appendix B, Glossary of Terms.

1.3. SUPPORTED USAGE

Each Red Hat Satellite subscription includes one supported instance of Red Hat Enterprise Linux Server.
This instance should be reserved solely for the purpose of running Red Hat Satellite. Using the operating
system included with Satellite to run other daemons, applications, or services within your environment is

not supported.

Support for Red Hat Satellite components is described below.

Puppet
Red Hat Satellite 6 includes supported Puppet packages. The installation program allows users to

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/content_management_guide/
https://access.redhat.com/articles/1343683

CHAPTER 1. INTRODUCTION TO RED HAT SATELLITE 6

install and configure Puppet Masters as a part of Red Hat Satellite Capsule Servers. A Puppet
module, running on a Puppet Master on the Red Hat Satellite Server or Satellite Capsule Server, is
also supported by Red Hat. For information on what versions of Puppet are supported, see the
Red Hat Knowledgebase article Satellite 6 Component Versions.

Red Hat supports many different scripting and other frameworks, including Puppet modules. Support for
these frameworks is based on the Red Hat Knowledgebase article How does Red Hat support scripting
frameworks.

Pulp

Pulp usage is only supported via the Satellite Server web Ul, CLI, and API. Direct modification or
interaction with Pulp’s local API or database is not supported, as this can cause irreparable damage
to the Red Hat Satellite 6 databases.

Foreman

Foreman can be extended using plug-ins, but only plug-ins packaged with Red Hat Satellite are
supported. Red Hat does not support plug-ins in the Red Hat Satellite Optional repository.

Red Hat Satellite also includes components, configuration and functionality to provision and configure
operating systems other than Red Hat Enterprise Linux. While these features are included and can be
employed, Red Hat supports their usage for Red Hat Enterprise Linux.

Candlepin

The only supported methods of using Candlepin are through the Red Hat Satellite 6 web Ul, CLI, and
API. Red Hat does not support direct interaction with Candlepin, its local API or database, as this can
cause irreparable damage to the Red Hat Satellite 6 databases.

Embedded Tomcat Application Server

The only supported methods of using the embedded Tomcat application server are through the
Red Hat Satellite 6 web Ul, API, and database. Red Hat does not support direct interaction with the
embedded Tomcat application server’s local API or database.

1.4. SUPPORTED CLIENT ARCHITECTURES

1.4.1. Content Management

Supported combinations of major versions of Red Hat Enterprise Linux and hardware architectures for
registering and managing hosts with Satellite 6.3. This includes the Satellite Tools Repositories.

Table 1.1. Content Management Support

Platform Architectures

Red Hat Enterprise Linux 7 x86_64, ppc64 (BE), ppcb4le, aarch64, s390x

Red Hat Enterprise Linux 6 x86_64, 1386, s390x, ppc64 (BE)

1.4.2. Host Provisioning

Supported combinations of major versions of Red Hat Enterprise Linux and hardware architectures for
host provisioning with Satellite 6.3.

https://access.redhat.com/articles/1343683
https://access.redhat.com/articles/369183

Red Hat Satellite 6.3 Architecture Guide

Table 1.2. Host Provisioning Support

Platform Architectures

Red Hat Enterprise Linux 7 x86_64

Red Hat Enterprise Linux 6 x86_64, i386

1.4.3. Configuration Management

Supported combinations of major versions of Red Hat Enterprise Linux and hardware architectures for
configuration management with Satellite 6.3.

Table 1.3. Puppet 4 Support

Platform Architectures

Red Hat Enterprise Linux 7 x86_64

Red Hat Enterprise Linux 6 x86_64, i386

Table 1.4. Puppet 3 Support

Platform Architectures

Red Hat Enterprise Linux 7 x86_64, ppc64 (BE), ppcb4le, aarch64, s390x
Red Hat Enterprise Linux 6 x86_64, 1386, s390x, ppc64 (BE)
NOTE

Usage of all Red Hat Satellite components is supported within the context of Red Hat
Satellite only. Third-party usage of any components falls beyond supported usage.

10

CHAPTER 2. CAPSULE SERVER OVERVIEW

CHAPTER 2. CAPSULE SERVER OVERVIEW

Capsule Servers provide content federation and run localized services to discover, provision, control,
and configure hosts. You can use Capsules to extend the Satellite deployment to various geographical
locations. This section contains an overview of features that can be enabled on Capsules as well as their
simple classification.

For details on Capsule requirements, installation process, scalability considerations and more, see the
Installation Guide.

2.1. CAPSULE FEATURES
There are two sets of features provided by Capsule Servers. You can configure the Capsule to mirror
content from the Satellite Server. You can also use the Capsule to run services required for host
management.
Content related features are:
e Repository synchronization — the content from the Satellite Server (more precisely from
selected life cycle environments) is pulled to the Capsule Server for content delivery (enabled by

Pulp).

e Content delivery — hosts configured to use the Capsule Server download content from that
Capsule rather than from the central Satellite Server (enabled by Pulp).

o Host action delivery — Capsule Server executes scheduled actions on hosts, for example
package updates (provided by the Katello Agent on the host and the Qpid Dispatch Router on
the Capsule).

e Red Hat Subscription Management (RHSM) proxy — hosts are registered to their associated
Capsule Servers rather than to the central Satellite Server or the Red Hat Customer Portal
(provided by Candlepin).

Infrastructure and host management services are:

e DHCP — Capsule can act as a DHCP server or it can integrate with an existing solution,
including ISC DHCP servers, Active Directory, and Libvirt instances.

e DNS - Capsule can act as a DNS server or it can integrate with an existing solution, including
ISC DNS, Active Directory, or BIND.

e TFTP — Capsule can act as a TFTP server or integrate with any UNIX-based TFTP server.
e Realm — Capsule can manage Kerberos realms or domains so that hosts can join them
automatically during provisioning. Capsule can integrate with an existing infrastructure including

IdM, FreelPA, and Active Directory.

e Puppet Master — Capsule can act as a configuration management server by running Puppet
Master.

o Puppet Certificate Authority — Capsule can act as a Puppet CA to provide certificates to hosts.

e Baseboard Management Controller (BMC)— Capsule can provide power management for
hosts.

e Provisioning template proxy — Capsule can serve provisioning templates to hosts.

11

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/installation_guide/

Red Hat Satellite 6.3 Architecture Guide

e OpenSCAP — Capsule can perform security compliance scans on hosts.

2.2. CAPSULE TYPES

Not all Capsule features have to be enabled at once. You can configure a Capsule Server for a specific
limited purpose. Some common configurations include:

e Infrastructure Capsules [DNS + DHCP + TFTP] — provide infrastructure services for hosts. With
provisioning template proxy enabled, infrastructure Capsule has all necessary services for
provisioning new hosts.

e Content Capsules [Pulp] — provide content synchronized from the Satellite Server to hosts.

e Configuration Capsules [Pulp + Puppet + PuppetCA] — provide content and run configuration
services for hosts.

e All-in-one Capsules [DNS + DHCP + TFTP + Pulp + Puppet + PuppetCA] — provide a full set of
Capsule features. All-in-one Capsules enable host isolation by providing a single point of
connection for managed hosts.

2.3. CAPSULE NETWORKING

The goal of Capsule isolation is to provide a single endpoint for all of the host’s network communications,
so that in remote network segments, you need only open firewall ports to the Capsule itself. The
following diagram shows how the Satellite components interact in the scenario with hosts connecting to
an isolated Capsule.

12

CHAPTER 2. CAPSULE SERVER OVERVIEW

Figure 2.1. Satellite Topology with Isolated Capsule

SATELLITE SERVER

FOREMAN bootdisk Katello Puppet Master Candlepin Qpid
A A
1 1
I
(3]
o i Y
P : !
1 (]
1]
]]
v v
. FOREMAN PROXY
Qpid
Pulp Dispatch
Router DHCP DNS TFTP Discovery Templates SCAP REX
-
INTERNAL CAPSULE TCP 5646
TCP 5000
TCP 80
TCP 443 I — |
° ISOLATED CAPSULE T T T
3
o
E; FOREMAN PROXY opid
[t I
I ?Tl?nh;‘ Pulp ;”ag’gee: Dispatch
| DHCP DNS TFTP Discovery Templates @ SCAP REX Y Router
A A A A A
UDP UDP UDP UDP TCP TCP TCP TCP TCP TCP TCP TCP TCP
provisioning 67 68 53 69 8443 9090 8000 9090 22 8443 80, 443, 8140 5647
l l l 5000

ISOLATED HOST

The following diagram shows how the Satellite components interact when hosts connect directly to the

Satellite Server. Note that as the base system of an external Capsule is a Client of the Satellite, this

diagram is relevant even if you do not intend to have directly connected hosts.

13

Red Hat Satellite 6.3 Architecture Guide

Figure 2.2. Satellite Topology with Internal Capsule

SATELLITE SERVER s
,—P FOREMAN bootdisk Katello Puppet Master Candlepin Qpid
A A
o P
00 e e e e 4 1
o5 [1
< [e T s
< 1 1
o ! j TCP 5647
2 1 1
| 1
1]
[} [}
v v
FOREMAN PROXY
Qpid
Pulp Dispatch
Router DHCP DNS TFTP Discovery Templates SCAP REX
| A A A A A A
=S
a INTERNAL CAPSULE
S
-
TCP TCP TCP UDP UDP UDP uDP TCP TCP TCP TCP TCP TCP TCP
80,443 5000 provisioning 80 67 68 53 69 8443 9090 8000 9090 22 5647 8140
DIRECT HOST

The Ports and Firewalls Requirements section of the Installation Guide contains complete instructions for
configuring the host-based firewall to open the ports required. A matrix table of ports is also available in
the Red Hat Knowledgebase solution Red Hat Satellite 6.3 List of Network Ports.

14

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/installation_guide/preparing_your_environment_for_installation#ports_prerequisites
https://access.redhat.com/solutions/3382741

CHAPTER 3. ORGANIZATIONS, LOCATIONS, AND LIFE CYCLE ENVIRONMENTS

CHAPTER 3. ORGANIZATIONS, LOCATIONS, AND LIFE CYCLE
ENVIRONMENTS

Red Hat Satellite 6 takes a consolidated approach to Organization and Location management. System
administrators define multiple Organizations and multiple Locations in a single Satellite Server. For
example, a company might have three Organizations (Finance, Marketing, and Sales) across three
countries (United States, United Kingdom, and Japan). In this example, the Satellite Server manages all
Organizations across all geographical Locations, creating nine distinct contexts for managing systems. In
addition, users can define specific locations and nest them to create a hierarchy. For example, Satellite
administrators might divide the United States into specific cities, such as Boston, Phoenix, or San
Francisco.

Figure 3.1. Example Topology for Red Hat Satellite 6

@@@7" @) ‘ > b

Red Hat
Operators — Analytics
Life Cycle
Management

RED HAT SATELLITE

Network

RED HAT SATELLITE
CAPSULE SERVERS
MANAGED HOSTS
VMware GCE \ :’—-.-. [|-[|\E
RHEV Rackspace - 00 o | e |

Bare metal - an - ’ : &
OpenStack BT s !
KVM Docker - gg - gg |
EC2 Re——— :

LOCATION 1 LOCATION 2 LOCATION 3 LOCATION N

The Satellite Server defines all locations and organizations. Each respective Satellite Capsule Server
synchronizes content and handles configuration of systems in a different location.

The main Satellite Server retains the management function, while the content and configuration is

synchronized between the main Satellite Server and a Satellite Capsule Server assigned to certain
locations.

15

Red Hat Satellite 6.3 Architecture Guide

3.1. ORGANIZATIONS

Organizations divide Red Hat Satellite 6 resources into logical groups based on ownership, purpose,
content, security level, or other divisions. You can create and manage multiple organizations through
Red Hat Satellite 6, then divide and assign your Red Hat subscriptions to each individual organization.
This provides a method of managing the content of several individual organizations under one
management system.

3.2. LOCATIONS

Locations divide organizations into logical groups based on geographical location. Each location is
created and used by a single Red Hat customer account, although each account can manage multiple
locations and organizations.

3.3. LIFE CYCLE ENVIRONMENTS

Application life cycles are divided into life cycle environments which represent each stage of the
application life cycle. Life cycle environments are linked to form an environment path. You can promote
content along the environment path to the next life cycle environment when required. For example, if
development ends on a particular version of an application, you can promote this version to the testing
environment and start development on the next version.

16

CHAPTER 3. ORGANIZATIONS, LOCATIONS, AND LIFE CYCLE ENVIRONMENTS

Figure 3.2. An Environment Path Containing Four Environments

ORGANIZATION 1

O

[' o ‘] ' LIBRARY DEV QE PROD

VERSION1 VERSION1

i i
i i
Operator ! 1
VERSION 2 1 VERSION 2 !
] 1
I |
D i - > v v v
VERSION N VERSION N VERSION N VERSION 2 VERSION 1
=] = = = =
Content Composite Composite Composite Composite
View 1 Content View 2 Content View 2 Content View 2 Content View 2

RED HAT SATELLITE

Network (firewall)

QE
RED HAT
SATELLITE PROD PROD
CAPSULE
SERVERS ° o

LOCATION 1 LOCATION 2 LOCATION 3 LOCATION N

17

Red Hat Satellite 6.3 Architecture Guide

CHAPTER 4. HOST GROUPING CONCEPTS

Apart from the physical topology of Capsule Servers, Red Hat Satellite provides several logical units for
grouping hosts. Hosts that are members of those groups inherit the group configuration. For example,
the simple parameters that define the provisioning environment can be applied at the following levels (for
more information on the use of parameters, see Parameters in the Puppet Guide):

I Global > Organization > Location > Domain > Host group > Host

The main logical groups in Red Hat Satellite are:

e Organizations — the highest level logical groups for hosts. Organizations provide a strong
separation of content and configuration. Each organization requires a separate Subscription
Manifest, and can be thought of as a separate virtual instance of a Satellite Server. Avoid the
use of organizations if a lower level host grouping is applicable.

e Locations — a grouping of hosts that should match the physical location. Locations can be used
to map the network infrastructure to prevent incorrect host placement or configuration. For
example, you cannot assign a subnet, domain, or compute resources directly to a Capsule
Server, only to a location.

e Host groups — the main carriers of host definitions including assigned Puppet classes, Content
View, or operating system. Find the complete list of host group parameters in Parameters in the
Puppet Guide. It is recommended to configure the majority of settings at the host group level
instead of defining hosts directly. Configuring a new host then largely becomes a matter of
adding it to the right host group. As host groups can be nested, you can create a structure that
best fits your requirements (see Section 4.1, “Host Group Structures”).

e Host collections — a host registered to the Satellite Server for the purpose of subscription and
content management is called content host. Content hosts can be organized into host
collections, which enables performing bulk actions such as package management or errata
installation.

Locations and host groups can be nested, organizations and host collections are flat.

4.1. HOST GROUP STRUCTURES

The fact that host groups can be nested to inherit parameters from each other allows for designing host
group hierarchies that fit particular workflows. A well planned host group structure can help to simplify
the maintenance of host settings. This section outlines four approaches to organizing host groups.

18

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/puppet_guide/chap-red_hat_satellite-puppet_guide-adding_puppet_modules_to_red_hat_satellite_6#sect-Red_Hat_Satellite-Puppet_Guide-Adding_Puppet_Modules_to_Red_Hat_Satellite_6-Parameters
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/puppet_guide/chap-red_hat_satellite-puppet_guide-adding_puppet_modules_to_red_hat_satellite_6#sect-Red_Hat_Satellite-Puppet_Guide-Adding_Puppet_Modules_to_Red_Hat_Satellite_6-Parameters

CHAPTER 4. HOST GROUPING CONCEPTS

Figure 4.1. Host Group Structuring Examples

FLAT LC ENVIRONMENT BASED APPLICATION BASED LOCATION BASED
—— dev-infra-git-rhel7 —— DEV —— acmeweb —— Munich
—— ga-infra-git-rhel7 — RHEL7 — frontend — web-dev
—— prod-infra-git-rhel7 git web-dev web-frontend
container web-ga web-backend
_— RHEL® L backend — web-qa
L loghost L web-dev L web-frontend
L—— QA —— infra L Boston

Flat Structure

The advantage of a flat structure is limited complexity, as inheritance is avoided. In a deployment with
few host types, this scenario is the best option. However, without inheritance there is a risk of high
duplication of settings between host groups.

Life Cycle Environment Based Structure

In this hierarchy, the first host group level is reserved for parameters specific to a life cycle environment.
The second level contains operating system related definitions, and the third level contains application
specific settings. Such structure is useful in scenarios where responsibilities are divided among life cycle
environments (for example, a dedicated owner for the Development, QA, and Production life cycle
stages).

Application Based Structure

This hierarchy is based on roles of hosts in a specific application. For example, it enables defining
network settings for groups of back-end and front-end servers. The selected characteristics of hosts are
segregated, which supports Puppet-focused management of complex configurations. However, the
content views can only be assigned to host groups at the bottom level of this hierarchy.

Location Based Structure

In this hierarchy, the distribution of locations is aligned with the host group structure. In a scenario where
the location (Capsule Server) topology determines many other attributes, this approach is the best
option. On the other hand, this structure complicates sharing parameters across locations, therefore in
complex environments with a large number of applications, the number of host group changes required
for each configuration change increases significantly.

19

Red Hat Satellite 6.3 Architecture Guide

CHAPTER 5. PROVISIONING CONCEPTS

An important feature of Red Hat Satellite is unattended provisioning of hosts. To achieve this, Red Hat
Satellite uses DNS and DHCP infrastructures, PXE booting, TFTP, and Kickstart. Use this chapter to
understand the working principle of these concepts.

5.1. PXE BOOTING
Preboot execution environment (PXE) provides the ability to boot a system over a network. Instead of
using local hard drives or a CD-ROM, PXE uses DHCP to provide host with standard information about

the network, to discover a TFTP server, and to download a boot image. For more information about
setting up a PXE server see How to set-up/configure a PXE Server.

5.1.1. PXE Sequence

1. The host boots the PXE image if no other bootable image is found.
2. A NIC of the host sends a broadcast request to the DHCP server.

3. The DHCP server receives the request and sends standard information about the network: IP
address, subnet mask, gateway, DNS, the location of a TFTP server, and a boot image.

4. The host obtains the boot loader image/pxelinux.0 and the configuration file
pxelinux.cfg/00:MA:CA:AD:D from the TFTP server.

5. The host configuration specifies the location of a kernel image, initrd and Kickstart.
6. The host downloads the files and installs the image.

For an example of using PXE Booting by Satellite Server, see Defining the Provisioning Workflow in the
Provisioning Guide.

5.1.2. Requirements

To provision machines through PXE booting ensure that you meet the following requirements:

VM requirements:

e Ensure you set up a network connection which has access to the DHCP and TFTP servers.

Network requirements:

e Ensure the UDP ports 67 and 68 are accessible to enable the VM to receive a DHCP offer with
the boot options.

e Ensure the UDP port 69 is accessible so that the VM can access the TFTP server on the
Capsule.

e Ensure the TCP port 80 is accessible to allow the VM to download files and Kickstart templates
from the Capsule.

Client requirements:

20

https://access.redhat.com/solutions/163253
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/provisioning_guide/understanding_provisioning_basics#Understanding_Provisioning_Basics-Defining_the_Provisioning_Workflow

CHAPTER 5. PROVISIONING CONCEPTS

Configure the DHCP relay agent and point to the DHCP server, if the host and DHCP server are
separated by a router.

Ensure all the network-based firewalls are configured to allow hosts on the subnet to access the
Capsule. For more information, see Figure 2.1, “Satellite Topology with Isolated Capsule”.

Ensure the subnet to which the host belongs to is DHCP enabled.

Satellite requirements:

Ensure DHCP with the correct subnet is enabled using the Satellite installer.
Enable TFTP using the Satellite installer.
The Subnet must be created and associated with a DHCP Capsule in the web Ul to define which

Capsule to use while creating a DHCP reservation. The reservation is always made through a
Capsule.

5.2. KICKSTART

You can use Red Hat Kickstart to automate the installation process of a Red Hat Satellite or Capsule
Server by creating a Kickstart file that contains all the information that is required for the installation. For
more information about Kickstart, see Kickstart Installations in the Red Hat Enterprise Linux 7 Installation

Guide.

5.2.1. Workflow

When you run a Red Hat Satellite Kickstart script, the following workflow occurs:

1.

2.

It specifies the installation location of a Satellite Server or a Capsule Server.
It installs the predefined packages.

It installs Red Hat Subscription Manager.

It uses Activation Keys to subscribe the hosts to Red Hat Satellite.

It installs Puppet, and configures a puppet . conf file to indicate the Red Hat Satellite or
Capsule instance.

It enables Puppet to run and request a certificate.

It runs user defined snippets.

21

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/chap-kickstart-installations.html

Red Hat Satellite 6.3 Architecture Guide

CHAPTER 6. CONTENT DELIVERY NETWORK STRUCTURE

Red Hat Content Delivery Network (CDN), located at cdn. redhat . com, is a geographically distributed
series of static webservers which include content and errata designed to be used by systems. This
content can be accessed directly through a system registered using Red Hat Subscription Manager or
through the Red Hat Satellite 6 web Ul. The accessible subset of the CDN is configured through
subscriptions attached to a system using Red Hat Subscription Management or using Satellite Server.

Red Hat Content Delivery network is protected by X.509 certificate authentication to ensure that only
valid users can access it.

Directory Structure of the CDN.

$ tree -d -L 11
L— content g

— beta g
| L— rhel e

L— server Q
L— 7

L— x86_64 @
L— sat-tools G

|—60

| L— kickstart
L— 7Server

L x86_64
L— os

The content directory.

Directory responsible for the lifecycle of the content. Common directories include beta (for Beta
code), dist (for Production) and eus (For Extended Update Support) directories.

Directory responsible for the Product name. Usually rhel for Red Hat Enterprise Linux.

Directory responsible for the type of the Product. For Red Hat Enterprise Linux this might include
server, workstation, and computenode directories.

Directory responsible for the release version, such as 7, 7.2 or 7Server.

Directory responsible for the base architecture, such as 1386 or x86_64.

Q006 606 0600

Directory responsible for the repository name, such as sat-tools, kickstart, rhscl. Some
components have additional subdirectories which might vary.

This directory structure is also used in the Subscription Manifest.

22

https://access.redhat.com/management/

PART Il. SATELLITE 6 DEPLOYMENT PLANNING

PART Il. SATELLITE 6 DEPLOYMENT PLANNING

23

Red Hat Satellite 6.3 Architecture Guide

CHAPTER 7. DEPLOYMENT CONSIDERATIONS

This section provides an overview of general topics to be considered when planning a Red Hat Satellite

6 deployment together with recommendations and references to more specific documentation. For an
example implementation based on a sample customer scenario (specific to Satellite 6.1), see the

Red Hat Knowledgebase solution 10 Steps to Build an SOE: How Red Hat Satellite 6 Supports Setting up
a Standard Operating Environment.

7.1. SATELLITE SERVER CONFIGURATION

The first step to a working Satellite infrastructure is installing an instance of Red Hat Satellite Server on a
dedicated Red Hat Enterprise Linux 7 Server as described in the Installation Guide. Consider the
Preparing your Environment for Installation and Large Deployment Considerations outlined in the same
guide.

Adding Satellite Subscription Manifests to Satellite Server

A Subscription Manifest is a set of encrypted files that contains your subscription information. Satellite
Server uses this information to access the CDN and find what repositories are available for the
associated subscription. For instructions on how to create and import a Subscription Manifest see
Managing Subscriptions in the Content Management Guide.

Red Hat Satellite 6 requires a single manifest for each organization configured on the Satellite. If you
plan to use the Organization feature of Satellite 6 to manage separate units of your infrastructure under
one Red Hat Network account, then assign subscriptions from the one account to per-organization
manifests as required.

If you plan to have more than one Red Hat Network account, or if you want to manage systems
belonging to another entity that is also a Red Hat Network account holder, then you and the other
account holder can assign subscriptions, as required, to manifests. A customer that does not have a
Satellite subscription can create a Subscription Asset Manager manifest, which can be used with
Satellite, if they have other valid subscriptions. You can then use the multiple manifests in one Satellite
Server to manage multiple organizations.

If you must manage systems but do not have access to the subscriptions for the RPMs, you must use
Red Hat Enterprise Linux Smart Management Add-On. For more information, see Smart Management
Add-On.

The following diagram shows two Red Hat Network account holders, who want their systems to be
managed by the same Satellite 6 installation. In this scenario, Example Corporation 1 can allocate any
subset of their 60 subscriptions, in this example they have allocated 30, to a manifest. This can be
imported into the Satellite as a distinct Organization. This allows system administrators the ability to
manage Example Corporation 1’s systems using Satellite 6 completely independently of Example
Corporation 2’s organizations (R&D, Operations, and Engineering).

24

https://access.redhat.com/articles/1585273
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/installation_guide/preparing_your_environment_for_installation
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/installation_guide/large_deployment_considerations
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/content_management_guide/managing_subscriptions
https://www.redhat.com/en/store/smart-management-add#?sku=RH00031

CHAPTER 7. DEPLOYMENT CONSIDERATIONS

Figure 7.1. Satellite Server with Multiple Manifests

EXAMPLE EXAMPLE
CORPORATION 1 CORPORATION 2
60 Subscriptions 100 Subscriptions
MANIFEST MANIFEST MANIFEST MANIFEST
IT Subscriptions R&D Subscriptions Operations Engineering
(30) (30) Subscriptions (50) Subscriptions (20)
ORG 1 ORG 2 ORG 3 ORG 4

RED HAT SATELLITE

When creating a Subscription Manifest:

e Add the subscription for Satellite Server to the manifest if planning a disconnected or self-
registered Satellite Server. This is not necessary for a connected Satellite Server that is
subscribed using the Red Hat Subscription Manager utility on the base system.

e Add subscriptions for all Capsule Servers you want to create.
e Add subscriptions for all Red Hat Products you want to manage with Satellite.

e Note the date when the subscriptions are due to expire and plan for their renewal before the
expiry date.

e Create one manifest per organization. You can use multiple manifests and they can be from
different Red Hat subscriptions.

Red Hat Satellite 6.3 allows the use of future-dated subscriptions in the manifest. This enables
uninterrupted access to repositories when future-dated subscriptions are added to a manifest before the
expiry date of existing subscriptions.

Note that the Subscription Manifest can be modified and reloaded to the Satellite Server in case of any
changes in your infrastructure, or when adding more subscriptions. Manifests should not be deleted. If

you delete the manifest from the Red Hat Customer Portal or in the Satellite Web Ul it will unregister all
of your content hosts.

7.2. LOCATIONS AND TOPOLOGY

This section outlines general considerations that should help you to specify your Satellite 6 deployment
scenario. The most common deployment scenarios are listed in Chapter 8, Common Deployment
Scenarios. The defining questions are:

e How many Capsule Servers do | need? — The number of geographic locations where your
organization operates should translate to the number of Capsule Servers. By assigning a
Capsule to each location, you decrease the load on Satellite Server, increase redundancy, and
reduce bandwidth usage. Satellite Server itself can act as a Capsule (it contains an integrated

25

Red Hat Satellite 6.3 Architecture Guide

Capsule by default). This can be used in single location deployments and to provision the base
system’s of Capsule Servers. Using the integrated Capsule to communicate with hosts in remote
locations is not recommended as it can lead to suboptimal network utilization.

e What services will be provided by Capsule Servers? — After establishing the number of
Capsules, decide what services will be enabled on each Capsule. Even though the whole stack
of content and configuration management capabilities is available, some infrastructure services
(DNS, DHCP, TFTP) can be outside of a Satellite administrator’s control. In such case, Capsules
have to integrate with those external services (see Section 8.5, “Capsule with External
Services”).

e Is my Satellite Server required to be disconnected from the Internet? — Disconnected
Satellite is a common deployment scenario (see Section 8.4, “Disconnected Satellite”). If you
require frequent updates of Red Hat content on a disconnected Satellite, plan an additional
Satellite instance for inter-Satellite synchronization.

e What compute resources do | need for my hosts? — Apart from provisioning bare metal
hosts, you can use various compute resources supported by Satellite 6. To learn about
provisioning on different compute resources see the Provisioning Guide.

7.3. CONTENT SOURCES

The Subscription Manifest determines what Red Hat repositories are accessible from your Satellite
Server. Once you enable a Red Hat repository, an associated Satellite Product is created automatically.
For distributing content from custom sources you need to create products and repositories manually.
Red Hat repositories are signed with GPG keys by default, and it is recommended to create GPG keys
also for your custom repositories. The configuration of custom repositories depends on the type of
content they hold (RPM packages, Puppet modules, Docker images, or OSTree snapshots).

Repositories configured as yum repositories, that contain only RPM packages, can make use of the new
download policy setting to save on synchronization time and storage space. This setting enables
selecting from Immediate, On demand, and Background. The On demand setting saves space and
time by only downloading packages when requested by clients. The Background setting saves time by
completing the download after the initial synchronization. For detailed instructions on setting up content
sources see Importing Red Hat Contentin the Content Management Guide.

A custom repository within the Satellite Server is in most cases populated with content from an external
staging server. Such servers lie outside of the Satellite infrastructure, however, it is recommended to use
a revision control system (such as Git) on these servers to have better control over the custom content.

7.4. CONTENT LIFE CYCLE

Satellite 6 provides features for precise management of the content life cycle. A life cycle environment
represents a stage in the content life cycle, a Content View is a filtered set of content, and can be
considered as a defined subset of content. By associating Content Views with life cycle environments,
you make content available to hosts in a defined way (see Figure 1.2, “Content Life Cycle in Red Hat
Satellite 6” for visualization of the process). For a detailed overview of the content management process
see Importing Custom Content in the Content Management Guide. The following section provides
general scenarios for deploying content views as well as life cycle environments.

The default life cycle environment called Library gathers content from all connected sources. It is not
recommended to associate hosts directly with the Library as it prevents any testing of content before
making it available to hosts. Instead, create a life cycle environment path that suits your content
workflow. The following scenarios are common:

26

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/provisioning_guide/
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/content_management_guide/importing_red_hat_content
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/content_management_guide/importing_custom_content

CHAPTER 7. DEPLOYMENT CONSIDERATIONS

e A single life cycle environment — content from Library is promoted directly to the production
stage. This approach limits the complexity but still allows for testing the content within the Library
before making it available to hosts.

e_ PROD

e A single life cycle environment path — both operating system and applications content is
promoted through the same path. The path can consist of several stages (for example
Development, QA, Production), which enables thorough testing but requires additional effort.

©6 0606

e Application specific life cycle environment paths — each application has a separate path,
which allows for individual application release cycles. You can associate specific compute
resources with application life cycle stages to facilitate testing. On the other hand, this scenario
increases the maintenance complexity.

The following content view scenarios are common:

e All in one content view — a content view that contains all necessary content for the majority of
your hosts. Reducing the number of content views is an advantage in deployments with
constrained resources (time, storage space) or with uniform host types. However, this scenario
limits the content view capabilities such as time based snapshots or intelligent filtering. Any
change in content sources affects a proportion of hosts.

e Host specific content view — a dedicated content view for each host type. This approach can
be useful in deployments with a small number of host types (up to 30). However, it prevents
sharing content across host types as well as separation based on criteria other than the host
type (for example between operating system and applications). With critical updates every
content view has to be updated, which increases maintenance efforts.

e Host specific composite content view — a dedicated combination of content views for each
host type. This approach enables separating host specific and shared content, for example you
can have a dedicated content view for Puppet configuration. By including this content view into
composite content views for several host types, you can update Puppet configuration with
higher frequency than other host content.

e Component based content view — a dedicated content view for a specific application. For
example a database content view can be included into several composite content views. This
approach allows for greater standardization but it leads to an increased number of content
views.

The optimal solution depends on the nature of your host environment. Avoid creating a large number of
content views, but keep in mind that the size of a content view affects the speed of related operations

27

Red Hat Satellite 6.3 Architecture Guide

(publishing, promoting). Also make sure that when creating a subset of packages for the content view, all
dependencies are included as well. Note that kickstart repositories should not be added to content views,
as they are used for host provisioning only.

7.5. CONTENT DEPLOYMENT

Content deployment is the management of errata and packages on content hosts. There are two
methods for content deployment on Satellite; the default is Goferd service agent, and a replacement,
available from Satellite 6.2.11 onward, is management via remote execution.

o Goferd service agent - The service communicates to and from the Satellite server and is
primarily tasked with installing, updating, and reporting on packages. It is enabled and started
automatically on content hosts after successfully installing the Katello-agent RPM package.

o Remote execution - Remote execution via SSH transport allows the install, update, or removal
of packages, the bootstrap of configuration management agents, and the trigger of Puppet runs.
While the Satellite Server has remote execution enabled by default, it is disabled by default on
Capsule Servers and content hosts and has to be manually enabled.

e Consider method for content deployment - The use of remote execution allows the Goferd
service to be disabled, thereby reducing memory and CPU load on content hosts. However,
remote execution has to be manually configured on all content hosts before it can replace
Goferd. This configuration process is extensive for systems with large numbers of deployed
content hosts. For details, see Host Management Without Goferd in Managing Hosts.

7.6. PROVISIONING

Satellite 6 provides several features to help you automate the host provisioning, including provisioning
templates, configuration management with Puppet, and host groups for standardized provisioning of
host roles. For a description of the provisioning workflow see Understanding the Provisioning Workflow
in the Provisioning Guide. The same guide contains instructions for provisioning on various compute
resources.

7.7. ROLE BASED AUTHENTICATION

Assigning a role to a user enables controlling access to Satellite 6 components based on a set of
permissions. You can think of role based authentication as a way of hiding unnecessary objects from
users who are not supposed to interact with them.

There are various criteria for distinguishing among different roles within an organization. Apart from the
administrator role, the following types are common:

o Roles related to applications or parts of infrastructure — for example, roles for owners of Red
Hat Enterprise Linux as the operating system versus owners of application servers and database
servers.

e Roles related to a particular stage of the software life cycle— for example, roles divided
among the development, testing, and production phases, where each phase has one or more
owners.

o Roles related to specific tasks — such as security manager, license manager, or Access
Insights administrator.

When defining a custom role, consider the following recommendations:

28

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/managing_hosts/appe-red_hat_satellite-managing_hosts-host_management_without_goferd
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/provisioning_guide/understanding_provisioning_basics

CHAPTER 7. DEPLOYMENT CONSIDERATIONS

Define the expected tasks and responsibilities — define the subset of the Satellite
infrastructure that will be accessible to the role as well as actions permitted on this subset. Think
of the responsibilities of the role and how it would differ from other roles.

Use predefined roles whenever possible — Satellite 6 provides a number of sample roles that
can be used alone or as part of a role combination. Copying and editing an existing role can be a
good start for creating a custom role.

Consider all affected entities — for example, a content view promotion automatically creates
new Puppet Environments for the particular life cycle environment and content view combination.
Therefore, if a role is expected to promote content views, it also needs permissions to create
and edit Puppet Environments.

Consider areas of interest — even though a role has a limited area of responsibility, there might
be a wider area of interest. Therefore, you can grant the role a read only access to parts of
Satellite infrastructure that influence its area of responsibility. This allows users to get earlier
access to information about potential upcoming changes.

Add permissions step by step — test your custom role to make sure it works as intended. A
good approach in case of problems is to start with a limited set of permissions, add permissions
step by step, and test continuously.

Find instructions on defining roles and assigning them to users in Administering Red Hat Satellite. The
same guide contains information on configuring external authentication sources.

7.8. ADDITIONAL TASKS

This section provides a short overview of selected Satellite capabilities that can be used for automating
certain tasks or extending the core usage of Satellite 6:

Importing existing hosts — if you have existing hosts that have not been managed by Satellite
6 in the past, you can import those hosts to the Satellite Server. This procedure is usually a step
in transitioning from Red Hat Satellite 5, see the Transition Guide for detailed documentation. A
high level overview of the transition process is available in the Red Hat Knowledgebase solution
Transitioning from Red Hat Satellite 5 to Satellite 6.

Discovering bare metal hosts — the Satellite 6 Discovery plug-in enables automatic bare-metal
discovery of unknown hosts on the provisioning network. These new hosts register themselves
to the Satellite Server and the Puppet Agent on the client uploads system facts collected by
Facter, such as serial ID, network interface, memory, and disk information. After registration you
can initialize provisioning of those discovered hosts. For details, see Discovering Bare-metal
Hosts on Satellite in Managing Hosts.

Backup management — procedures for backup and disaster recovery of Satellite Server are
available (see Backing Up and Restoring Satellite Server and Capsule Serverin Administering
Red Hat Satellite). Using remote execution, you can also configure recurring backup tasks on
managed hosts. For more information on remote execution see Running Jobs on Hosts in
Managing Hosts.

Security management — Satellite 6 supports security management in various ways, including
update and errata management, OpenSCAP integration for system verification, update and
security compliance reporting, and fine grained role based authentication. Find more information
on errata management and OpenSCAP concepts in Managing Hosts.

Incident management — Satellite 6 supports the incident management process by providing a
centralized overview of all systems including reporting and email notifications. Detailed

29

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/administering_red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/transition_guide/
https://access.redhat.com/articles/1187643
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/managing_hosts/chap-red_hat_satellite-managing_hosts-discovering_bare_metal_hosts_on_satellite
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/administering_red_hat_satellite/chap-red_hat_satellite-administering_red_hat_satellite-backup_and_disaster_recovery
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/managing_hosts/chap-managing_hosts-running_remote_jobs_on_hosts
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/managing_hosts/

Red Hat Satellite 6.3 Architecture Guide

information on each host is accessible from the Satellite Server, including the event history of
recent changes. Satellite 6 is also integrated with the Red Hat Insights.

e Scripting with Hammer and API — Satellite 6 provides a command line tool called Hammer that
provides a CLI equivalent to the majority of web Ul procedures. In addition, you can use the
access to the Satellite API to write automation scripts in a selected programming language. For
more information see the Hammer CLI Guide and API Guide.

30

https://access.redhat.com/products/red-hat-insights/#sat6
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/hammer_cli_guide/
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/api_guide/

CHAPTER 8. COMMON DEPLOYMENT SCENARIOS

CHAPTER 8. COMMON DEPLOYMENT SCENARIOS

This section provides a brief overview of common deployment scenarios for Red Hat Satellite. Note that
many variations and combinations of the following layouts are possible.

8.1. SINGLE LOCATION

An integrated Capsule is a virtual Capsule Server that is created by default in Satellite Server during the
installation process. This means Satellite Server can be used to provision directly connected hosts for
Satellite deployment in a single geographical location, therefore only one physical server is needed. The
base systems of isolated Capsules can be directly managed by Satellite Server, however it is not
recommended to use this layout to manage other hosts in remote locations.

8.2. SINGLE LOCATION WITH SEGREGATED SUBNETS

Your infrastructure might require multiple isolated subnets even if Red Hat Satellite is deployed in a
single geographic location. This can be achieved for example by deploying multiple Capsule Servers
with DHCP and DNS services, but the recommended way is to create segregated subnets using a single
Capsule. This Capsule is then used to manage hosts and compute resources in those segregated
networks to ensure they only have to access the Capsule for provisioning, configuration, errata, and
general management. For more information on configuring subnets see Managing Hosts.

8.3. MULTIPLE LOCATIONS

It is recommended to create at least one Capsule Server per geographic location. This practice can save
bandwidth since hosts obtain content from a local Capsule Server. Synchronization of content from
remote repositories is done only by the Capsule, not by each host in a location. In addition, this layout
makes the provisioning infrastructure more reliable and easier to configure. See Figure 1.1, “Red Hat
Satellite 6 System Architecture” for an illustration of this approach.

8.4. DISCONNECTED SATELLITE

In high security environments where hosts are required to function in a closed network disconnected
from the Internet, Red Hat Satellite can provision systems with the latest security updates, errata,
packages and other content. In such case, the Satellite Server does not have direct access to the
Internet, but the layout of other infrastructure components is not affected. For information on how to
install or upgrade a disconnected Satellite see the Installation Guide.

There are two options for importing content to a disconnected Satellite Server:

o Disconnected Satellite with Content ISO — in this setup, you download ISO images with
content from the Red Hat Customer Portal and extract them to the Satellite Server or a local web
server. The content on Satellite Server is then synchronized locally. This allows for complete
network isolation of the Satellite Server, however, the release frequency of content ISO images is
around six weeks and not all product content is included (today only Red Hat Enterprise Linux
and layered products such as RHEL-OSP7, RHDS, and Red Hat Enterprise Linux for Real
Time). For instructions on how to import content ISOs to a disconnected Satellite, see Importing
Content ISOs into a Disconnected Satellite in the Content Management Guide.

e Disconnected Satellite with Inter-Satellite Synchronization— in this setup, you install a

connected Satellite Server and export content from it to populate a disconnected Satellite using
some storage device. This allows for exporting both Red Hat provided and custom content at the

31

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/managing_hosts/
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/content_management_guide/importing_content_isos_into_disconnected_satellite

Red Hat Satellite 6.3 Architecture Guide

frequency you choose, but requires deploying an additional server with a separate subscription.
For instructions on how to configure Inter-Satellite synchronization, see Synchronizing Content
Between Satellite Servers in the Content Management Guide.

The above methods for importing content to a disconnected Satellite Server can also be used to speed
up the initial population of a connected Satellite.

8.5. CAPSULE WITH EXTERNAL SERVICES

You can configure a Capsule Server (integrated or standalone) to use external DNS, DHCP, or TFTP
service. If you already have a server that provides these services in your environment, you can integrate
it with your Satellite deployment. For information on how to configure a Capsule with external services,
see Configuring External Services in the Installation Guide.

32

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/content_management_guide/using_iss
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/installation_guide/configuring_external_services

APPENDIX A. TECHNICAL USERS PROVIDED AND REQUIRED BY SATELLITE

APPENDIX A. TECHNICAL USERS PROVIDED AND REQUIRED
BY SATELLITE

During the installation of Satellite, system accounts are created. They are used to manage files and
process ownership of the components integrated into Satellite. Some of these accounts have fixed UIDs
while others take the next available UID on the system instead. In order to control the UIDs assigned to
the various accounts, it is possible to fix the UID by predefining those accounts. Because some of the
accounts have hard-coded UIDs, it is not possible to do this with all accounts created during Satellite
installation.

The following table provides an overview of all the accounts created by Satellite during installation.
Accounts marked with flex UID are allowed to be pre-defined with a custom UID before the installation of
Satellite.

Red Hat does not recommend changing any parameter or value of a given account other than the UID,
because fields such as home or shell are requirements for Satellite to work correctly.

Table A.1. Technical Users Provided and Required by Satellite

Username uiD Flex UID Home Shell
qpidd N/A yes /var/lib/gpidd /sbin/nologin
foreman N/A yes /usr/share/foreman /sbin/nologin
unbound N/A yes /etc/unbound /sbin/nologin
foreman-proxy N/A yes /usr/share/foreman /sbin/nologin
-proxy
puppet 52 no /var/lib/puppet /sbin/nologin
postgres 26 no /var/lib/pgsql /bin/bash
mongodb 184 no /var/lib/mongodb /sbin/nologin
apache 48 no /usr/share/httpd /sbin/nologin
tomcat 91 no /usr/share/tomcat /bin/nologin
qdrouterd N/A yes N/A /sbin/nologin
saslauth 76 yes N/A /sbin/nologin

33

Red Hat Satellite 6.3 Architecture Guide

APPENDIX B. GLOSSARY OF TERMS

This glossary documents various terms used in relation to Red Hat Satellite 6.

Activation Key

A token for host registration and subscription attachment. Activation keys define subscriptions,
products, content views, and other parameters to be associated with a newly created host.

Answer File

A configuration file that defines settings for an installation scenario. Answer files are defined in the
YAML format and stored in the /etc/foreman-installer/scenarios.d/ directory.

ARF Report

The result of an OpenSCAP audit. Summarizes the security compliance of hosts managed by
Red Hat Satellite.

Audits

Provide a report on changes made by a specific user. Audits can be viewed in the Satellite web Ul
under Monitor > Audits

Baseboard Management Controller (BMC)

Enables remote power management of bare-metal hosts. In Satellite 6, you can create a BMC
interface to manage selected hosts.

Boot Disk

An I1SO image used for PXE-less provisioning. This ISO enables the host to connect to the Satellite
Server, boot the installation media, and install the operating system. There are several kinds of boot
disks: host image, full host image, generic image, and subnet image.

Capsule (Capsule Server)

An additional server that can be used in a Red Hat Satellite 6 deployment to facilitate content
federation and distribution (act as a Pulp node), and to run other localized services (Puppet Master,
DHCP, DNS, TFTP, and more). Capsules are useful for Satellite deployment across various
geographical locations. In upstream Foreman terminology, Capsule is referred to as Smart Proxy.

Catalog

A document that describes the desired system state for one specific host managed by Puppet. It lists
all of the resources that need to be managed, as well as any dependencies between those resources.
Catalogs are compiled by a Puppet Master from Puppet Manifests and data from Puppet Agents.

Candlepin

A service within Katello responsible for subscription management.

Compliance Policy

Refers to a scheduled task executed on the Satellite Server that checks the specified hosts for
compliance against SCAP content.

Compute Profile

Specifies default attributes for new virtual machines on a compute resource.

Compute Resource

34

APPENDIX B. GLOSSARY OF TERMS

A virtual or cloud infrastructure, which Red Hat Satellite 6 uses for deployment of hosts and systems.
Examples include Red Hat Enterprise Virtualization, OpenStack, EC2, and VMWare.

Container (Docker Container)

An isolated application sandbox that contains all runtime dependencies required by an application.
Satellite 6 supports container provisioning on a dedicated compute resource.

Container Image
A static snapshot of the container’s configuration. Satellite 6 supports various methods of importing
container images as well as distributing images to hosts through content views.

Content

A general term for everything Satellite distributes to hosts. Includes software packages (RPM files),
Puppet Modules, Docker images, or OSTree snapshots. Content is synchronized into the Library and
then promoted into life cycle environments using content views so that they can be consumed by
hosts.

Content Delivery Network (CDN)
The mechanism used to deliver Red Hat content to the Satellite Server.

Content Host
The part of a host that manages tasks related to content and subscriptions.

Content View
A subset of Library content created by intelligent filtering. Once a content view is published, it can be
promoted through the life cycle environment path, or modified using incremental upgrades. Content
views are a refinement of the combination of channels and cloning from Red Hat Satellite 5.
Discovered Host
A bare-metal host detected on the provisioning network by the Discovery plug-in.

Discovery Image
Refers to the minimal operating system based on Red Hat Enterprise Linux that is PXE-booted on
hosts to acquire initial hardware information and to communicate with the Satellite Server before
starting the provisioning process.

Discovery Plug-in
Enables automatic bare-metal discovery of unknown hosts on the provisioning network. The plug-in
consists of three components: services running on the Satellite Server and the Capsule Server, and
the Discovery image running on host.

Discovery Rule
A set of predefined provisioning rules which assigns a host group to discovered hosts and triggers
provisioning automatically.

Docker Tag
A mark used to differentiate container images, typically by the version of the application stored in the
image. In the Satellite 6 web Ul, you can filter images by tag under Content > Docker Tags.

ERB

Embedded Ruby (ERB) is a template syntax used in provisioning and job templates.

Errata

35

Red Hat Satellite 6.3 Architecture Guide

Updated RPM packages containing security fixes, bug fixes, and enhancements. In relationship to a
host, erratum is applicable if it updates a package installed on the host andinstallable if it is
present in the host’s content view (which means it is accessible for installation on the host).

External Node Classifier

A Puppet construct that provides additional data for a Puppet Master to use when configuring hosts.
Red Hat Satellite 6 acts as an External Node Classifier to Puppet Masters in a Satellite deployment.

Facter

A program that provides information (facts) about the system on which it is run; for example, Facter
can report total memory, operating system version, architecture, and more. Puppet modules enable
specific configurations based on host data gathered by Facter.

Facts

Host parameters such as total memory, operating system version, or architecture. Facts are reported
by Facter and used by Puppet.

Foreman

The Red Hat Satellite 6 component mainly responsible for provisioning and content life cycle
management. Foreman is the main upstream counterpart of Red Hat Satellite 6.

Foreman Hook

An executable that is automatically triggered when an orchestration event occurs, such as when a
host is created or when provisioning of a host has completed.

Full Host Image

A boot disk used for PXE-less provisioning of a specific host. The full host image contains an
embedded Linux kernel and init RAM disk of the associated operating system installer.

Generic Image

A boot disk for PXE-less provisioning that is not tied to a specific host. The generic image sends the
host's MAC address to the Satellite Server, which matches it against the host entry.

Hammer

A command line tool for managing Red Hat Satellite 6. You can execute Hammer commands from
the command line or utilize them in scripts. Hammer also provides an interactive shell.

Host
Refers to any system, either physical or virtual, that Red Hat Satellite 6 manages.

Host Collection

A user defined group of one or more Hosts used for bulk actions such as errata installation.
Equivalent to a Satellite 5 System Group.

Host Group

A template for building a host. Host groups hold shared parameters, such as subnet or life cycle
environment, that are inherited by host group members. Host groups can be nested to create a
hierarchical structure.

Host Image

A boot disk used for PXE-less provisioning of a specific host. The host image only contains the boot
files necessary to access the installation media on the Satellite Server.

36

APPENDIX B. GLOSSARY OF TERMS

Incremental Upgrade (of a Content View)

The act of creating a new (minor) content view version in a life cycle environment. Incremental
upgrades provide a way to make in-place modification of an already published content view. Useful
for rapid updates, for example when applying security errata.

Job

A command executed remotely on a host from the Satellite Server. Every job is defined in a job
template. Similar to remote command in Satellite 5.

Job Template
Defines properties of a job.

Katello
A Foreman plug-in responsible for subscription and repository management.
Lazy Sync

The ability to change a yum repository’s default download policy of Immediate to On Demand or
Background. The On Demand setting saves storage space and synchronization time by only
downloading the packages when requested by a client, and the Background setting saves
synchronization time by downloading packages after synchronizing the repository’s metadata.

Location
A collection of default settings that represent a physical place.

Library

A container for content from all synchronized repositories on the Satellite Server. The primary life
cycle environment existing by default for each organization, the root of every life cycle environment
path and the source of content for every content view.

Life Cycle Environment

A container for content view versions consumed by the content hosts. A Life Cycle Environment
represents a step in the life cycle environment path. Content moves through life cycle environments
by publishing and promoting content views.

Life Cycle Environment Path

A sequence of life cycle environments through which the content views are promoted. You can
promote a content view through a typical promotion path; for example, from development to test to
production. Channel cloning implements this concept in Red Hat Satellite 5.

Manifest (Subscription Manifest)

A mechanism for transferring subscriptions from Red Hat Customer Portal to Red Hat Satellite 6. This
is similar in function to certificates used with Red Hat Satellite 5.
Do not confuse with Puppet Manifest.

OpenSCAP

A project implementing security compliance auditing according to the Security Content Automation
Protocol (SCAP). OpenSCAP is integrated in Satellite 6 to provide compliance auditing for managed
hosts.

Organization
An isolated collection of systems, content, and other functionality within a Satellite 6 deployment.

37

Red Hat Satellite 6.3 Architecture Guide

OSTree

A tool for managing bootable, immutable, versioned file system trees. Satellite 6 supports mirroring
OSTree snapshots as well as distributing them in content views.

Parameter

Defines the behavior of Red Hat Satellite components during provisioning. Depending on the
parameter scope, we distinguish between global, domain, host group, and host parameters.
Depending on the parameter complexity, we distinguish between simple parameters (key-value pair)
and smart parameters (conditional arguments, validation, overrides).

Parametrized Class (Smart Class Parameter)
A parameter created by importing a class from Puppet Master.

Permission

Defines an action related to a selected part of Satellite infrastructure (resource type). Each resource
type is associated with a set of permissions, for example the Architecture resource type has the
following permissions: view_architectures, create_architectures, edit_architectures, and
destroy_architectures. You can group permissions into roles and associate them with users or user
groups.

Product

A collection of content repositories. Products are either provided by Red Hat CDN or created by the
Satellite administrator to group custom repositories.

Promote (a Content View)

The act of moving a content view from one life cycle environment to another.

Provisioning Template

Defines host provisioning settings. Provisioning templates can be associated with host groups, life
cycle environments, or operating systems. In Satellite 6 they provide similar functionality to Kickstart
Profiles and Cobbler Snippets in Red Hat Satellite 5.

Publish (a Content View)

The act of making a content view version available in a life cycle environment and usable by hosts.

Pulp

A service within Katello responsible for repository and content management.

Pulp Node

A Capsule Server component that mirrors content. This is similar to the Red Hat Satellite 5 Proxy. The
main difference is that content can be staged on the Pulp Node before it is used by a host.

Puppet
The configuration management component of Satellite 6.

Puppet Agent

A service running on a host that applies configuration changes to that host.

Puppet Environment
An isolated set of Puppet Agent nodes that can be associated with a specific set of Puppet Modules.

Puppet Manifest

38

APPENDIX B. GLOSSARY OF TERMS

Refers to Puppet scripts, which are files with the .pp extension. The files contain code to define a set
of necessary resources, such as packages, services, files, users and groups, and so on, using a set
of key-value pairs for their attributes. For more information and examples of usage, see Examining
the Anatomy of a Puppet Module in the Puppet Guide.

Do not confuse with Manifest (Subscription Manifest).

Puppet Master

A Capsule Server component that provides Puppet Manifests to hosts for execution by the Puppet
Agent.

Puppet Module

A self-contained bundle of code (Puppet Manifests) and data (facts) that you can use to manage
resources such as users, files, and services.

Recurring Logic

A job executed automatically according to a schedule. In the Satellite 6 web Ul, you can view those
jobs under Monitor > Recurring logics.

Registry

An archive of container images. Satellite 6 supports importing images from local and external
registries. Satellite itself can act as an image registry for hosts. However, hosts cannot push changes
back to the registry.

Red Hat Access Insights
A module providing access to selected Red Hat Customer Portal services from the Satellite web Ul.

Repository

Provides storage for a collection of content.

Resource Type

Refers to a part of Satellite infrastructure, for example host, capsule, or architecture. Used in
permission filtering.

Role

Specifies a collection of permissions that are applied to a set of resources, such as hosts. Roles can
be assigned to users and user groups. Satellite provides a number of predefined roles.

SCAP content

A file containing the configuration and security baseline against which hosts are checked. Used in
compliance policies.

Scenario

A set of predefined settings for the Satellite CLI installer. Scenario defines the type of installation, for
example to install the Capsule Server execute satellite-installer --scenario capsule.
Every scenario has its own answer file to store the scenario settings.

Smart Proxy

A Capsule Server component that can integrate with external services, such as DNS or DHCP. In
upstream Foreman terminology, Smart Proxy is a synonym of Capsule.

Smart Variable
A configuration value used by classes in Puppet modules.

39

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/puppet_guide/chap-red_hat_satellite-puppet_guide-building_puppet_modules_from_scratch#sect-Red_Hat_Satellite-Puppet_Guide-Building_Puppet_Modules_from_Scratch-Examining_the_Anatomy_of_a_Puppet_Module

Red Hat Satellite 6.3 Architecture Guide

Standard Operating Environment (SOE)
A controlled version of the operating system on which applications are deployed.

Subnet Image
A type of generic image for PXE-less provisioning that communicates through the Capsule Server.

Subscription

An entitlement for receiving content and service from Red Hat.

Synchronization

Refers to mirroring content from external resources into the Red Hat Satellite 6 Library.

Synchronization Plan

Provides scheduled execution of content synchronization.

Task

A background process executed on the Satellite or Capsule Server, such as repository
synchronization or content view publishing. You can monitor the task status in the Satellite web Ul
under Monitor > Tasks.

Trend

A means of tracking changes in specific parts of Satellite 6 infrastructure. Configure trends in Satellite
web Ul under Monitor > Trends.

User Group

A collection of roles which can be assigned to a collection of users. This is similar to a Role in
Red Hat Satellite 5.

User

Anyone registered to use Red Hat Satellite. Authentication and authorization is possible through built-
in logic, through external resources (LDAP, Identity Management, or Active Directory), or with
Kerberos.

virt-who

An agent for retrieving I1Ds of virtual machines from the hypervisor. When used with Satellite 6, virt-
who reports those IDs to the Satellite Server so that it can provide subscriptions for hosts provisioned
on virtual machines.

40

	Table of Contents
	PART I. SATELLITE 6 ARCHITECTURE
	CHAPTER 1. INTRODUCTION TO RED HAT SATELLITE 6
	1.1. SYSTEM ARCHITECTURE
	1.2. SYSTEM COMPONENTS
	1.3. SUPPORTED USAGE
	1.4. SUPPORTED CLIENT ARCHITECTURES
	1.4.1. Content Management
	1.4.2. Host Provisioning
	1.4.3. Configuration Management

	CHAPTER 2. CAPSULE SERVER OVERVIEW
	2.1. CAPSULE FEATURES
	2.2. CAPSULE TYPES
	2.3. CAPSULE NETWORKING

	CHAPTER 3. ORGANIZATIONS, LOCATIONS, AND LIFE CYCLE ENVIRONMENTS
	3.1. ORGANIZATIONS
	3.2. LOCATIONS
	3.3. LIFE CYCLE ENVIRONMENTS

	CHAPTER 4. HOST GROUPING CONCEPTS
	4.1. HOST GROUP STRUCTURES

	CHAPTER 5. PROVISIONING CONCEPTS
	5.1. PXE BOOTING
	5.1.1. PXE Sequence
	5.1.2. Requirements

	5.2. KICKSTART
	5.2.1. Workflow

	CHAPTER 6. CONTENT DELIVERY NETWORK STRUCTURE
	PART II. SATELLITE 6 DEPLOYMENT PLANNING
	CHAPTER 7. DEPLOYMENT CONSIDERATIONS
	7.1. SATELLITE SERVER CONFIGURATION
	7.2. LOCATIONS AND TOPOLOGY
	7.3. CONTENT SOURCES
	7.4. CONTENT LIFE CYCLE
	7.5. CONTENT DEPLOYMENT
	7.6. PROVISIONING
	7.7. ROLE BASED AUTHENTICATION
	7.8. ADDITIONAL TASKS

	CHAPTER 8. COMMON DEPLOYMENT SCENARIOS
	8.1. SINGLE LOCATION
	8.2. SINGLE LOCATION WITH SEGREGATED SUBNETS
	8.3. MULTIPLE LOCATIONS
	8.4. DISCONNECTED SATELLITE
	8.5. CAPSULE WITH EXTERNAL SERVICES

	APPENDIX A. TECHNICAL USERS PROVIDED AND REQUIRED BY SATELLITE
	APPENDIX B. GLOSSARY OF TERMS

