Installation Guide

Red Hat Satellite 6.3

Installing Red Hat Satellite Server and Capsule Server

Red Hat Satellite Documentation Team

Abstract

This guide describes how to install Red Hat Satellite Server and Capsule Server, perform initial configuration, and configure external services.

Chapter 1. What Satellite Server and Capsule Server do

Red Hat Satellite is a system management solution that enables you to deploy, configure, and maintain your systems across physical, virtual, and cloud environments. Satellite provides provisioning, remote management and monitoring of multiple Red Hat Enterprise Linux deployments with a single, centralized tool. Red Hat Satellite Server synchronizes the content from Red Hat Customer Portal, and provides functionality including fine-grained life cycle management, user and group role-based access control, integrated subscription management, as well as advanced GUI, CLI, and API access.

Red Hat Satellite Capsule Server mirrors content from Red Hat Satellite Server to facilitate content federation across various geographical locations. Host systems can pull content from the Capsule Server and not from the central Satellite Server. The Capsule Server also provides localized services such as Puppet Master, DHCP, DNS, or TFTP. Capsule Servers assist you in scaling your Satellite environment as the number of your managed systems increases.

Capsule Servers decrease the load on the central server, increase redundancy, and reduce bandwidth usage. For more information, see the Capsule Server Overview.

Chapter 2. Preparing your environment for installation

2.1. System Requirements

The following requirements apply to the networked base system:

  • 64-bit architecture
  • The latest version of Red Hat Enterprise Linux 7 Server
  • 4-core 2.0 GHz CPU at a minimum
  • A minimum of 20 GB memory is required for the Satellite Server to function. In addition, a minimum of 4 GB of swap space is also recommended. Satellite running with less memory than the minimum value might not operate correctly.
  • A unique host name, which can contain lower-case letters, numbers, dots (.) and hyphens (-)
  • A current Red Hat Satellite subscription
  • Administrative user (root) access
  • A system umask of 0022
  • Full forward and reverse DNS resolution using a fully-qualified domain name

Before you install Satellite Server or Capsule Server, you should ensure that your environment meets the requirements for installation.

Note

The Red Hat Satellite Server and Capsule Server versions must match. For example, a Satellite 6.2 Server cannot run a 6.3 Capsule Server and a Satellite 6.3 Server cannot run a 6.2 Capsule Server. Mismatching Satellite Server and Capsule Server versions results in the Capsule Server failing silently.

Note

Self-registered Satellites are not supported.

If you have a large number of content hosts, see Appendix A, Large Deployment Considerations to ensure that your environment is set up appropriately.

For more information on scaling your Capsule Servers, see Appendix B, Capsule Server Scalability Considerations.

2.2. Storage Requirements and Recommendations

Ensure that your environment meets the minimum requirements before installing Satellite Server or Capsule Server.

Packages that are duplicated in different repositories are only stored once on the disk. Additional repositories containing duplicate packages require less additional storage. The bulk of storage resides in the /var/lib/mongodb/ and /var/lib/pulp/ directories. These end points are not manually configurable. Make sure that storage is available on the /var file system to prevent storage issues.

The /var/cache/pulp/ directory is used to temporarily store content while it is being synchronized. For content in RPM format, a maximum of 5 RPM files are stored in this directory at any time. After each file is synchronized, it is moved to the /var/lib/pulp/ directory. Up to eight RPM content synchronization tasks can be running simultaneously by default, with each using up to 1 GB of metadata. For content in ISO format, all ISO files per synchronization task are stored in /var/cache/pulp/ until the task is complete, after which they are moved to the /var/lib/pulp/ directory. For example, if you are synchronizing four ISO files, each 4 GB in size, this requires a total of 16 GB in the /var/cache/pulp/ directory. Take into account the number of ISO files you intend synchronizing because the temporary disk space required for them typically exceeds that of RPM content.

The /var/lib/qpidd/ directory uses slightly more than 2 MB per Content Host. For example, 10 000 Content Hosts requires 20 GB of disk space in /var/lib/qpidd/.

Storage Requirements

The following tables detail recommended storage requirements for specific directories. These values are based on expected use case scenarios and can vary according to individual environments. The Capsule Server table also applies to the Satellite Server as it has an integrated Capsule by default. Pay attention to your specific use case when reading the tables. For example, you can have a Capsule Server without Pulp enabled, in which case you do not need the same level of storage requirements for directories related to Pulp such as /var/lib/pulp/.

In the following two tables, the runtime size was measured with Red Hat Enterprise Linux 5, 6, and 7 repositories synchronized.

Table 2.1. Storage Requirements for Satellite Server Installation

DirectoryInstallation SizeRuntime SizeConsiderations

/var/cache/pulp/

1 MB

10 GB (Connected Installations Minimum)

See the notes in this section’s introduction.

/var/cache/pulp/

1 MB

30 GB (Disconnected Installations Minimum)

See the notes in this section’s introduction.

/var/lib/pulp/

1 MB

500 GB

  • Continues to grow as content is added to Satellite Server. Plan for expansion over time.
  • Symbolic links cannot be used.

/var/lib/mongodb/

3.5 GB

50 GB

  • Continues to grow as content is added to Satellite Server. Plan for expansion over time.
  • Symbolic links cannot be used.
  • NFS is not recommended with MongoDB.

/var/log/

10 MB

250 MB

None

/var/lib/pgsql/

100 MB

10 GB

A minimum of 2 GB of available storage in /var/lib/pgsql/ with the ability to grow the partition containing this directory as data storage requirements grow. It is recommended not to use NFS with PostgreSQL.

/usr

3 GB

Not Applicable

None

/opt

500 MB (Connected Installations)

Not Applicable

Software collections are installed into the /opt/rh/ and /opt/theforeman/ directories. Write and execute permissions by root are required for installation into to the /opt directory.

/opt

3 GB (Disconnected Installations)

Not Applicable

  • Software collections are installed into the /opt/rh/ and /opt/theforeman/ directories. Write and execute permissions by root are required for installation into to the /opt directory.
  • A copy of the repositories used for installation is stored in this directory.

Table 2.2. Storage Requirements for Capsule Server Installation

DirectoryInstallation SizeRuntime SizeConsiderations

/var/cache/pulp/

1 MB

10 GB (Minimum)

See the notes in this section’s introduction.

/var/lib/pulp/

1 MB

500 GB

  • Continues to grow as content is added. Plan for expansion over time.
  • Symbolic links cannot be used.

/var/lib/mongodb/

3.5 GB

50 GB

  • Continues to grow as content is added. Plan for expansion over time.
  • Symbolic links cannot be used.
  • NFS is not recommended with MongoDB.

Log files are written to /var/log/messages/, /var/log/httpd/, and /var/lib/foreman-proxy/openscap/content/. You can manage the size of these files using logrotate. For more information, see Log Rotation in the System Administrator’s Guide.

Storage Recommendations

  • Because most Satellite as well as Capsule Server data is stored within the /var directory, it is strongly recommended to mount /var on LVM storage, enabling the system to scale.
  • Use high-bandwidth, low-latency storage for the /var/lib/pulp/ and /var/lib/mongodb/ directories. As Red Hat Satellite has many operations that are I/O intensive, using high latency, low-bandwidth storage will cause performance degradation. Ensure your installation has a speed in the range 60 - 80 Megabytes per second. You can use the fio tool to get this data. See the Red Hat Knowledgebase solution Impact of Disk Speed on Satellite 6 Operations for more information on using the fio tool.
  • It is recommended not to use NFS with MongoDB as MongoDB does not use conventional I/O to access data files and performance problems occur when both the data files and the journal files are hosted on NFS. If required to use NFS, mount the volumes with the following option in the /etc/fstab file: bg, nolock, and noatime.
  • Do not use the GFS2 file system as the input-output latency has been found to be too high.
  • For improved performance, use solid state drives (SSD) rather than hard disk drives (HDD).
  • The XFS file system is recommended for Red Hat Satellite 6 because it does not have the inode limitations that ext4 does. As Satellite uses a lot of symbolic links it is likely that your system may run out of inodes if using ext4 and the default number of inodes.
  • When /var/lib/pulp directory is mounted using an NFS share, SELinux blocks the synchronization process. To avoid this, specify the SELinux context of the /var/lib/pulp directory in the file system table by adding the following lines to /etc/fstab:

    nfs.example.com:/nfsshare  /var/lib/pulp/content  nfs  context="system_u:object_r:httpd_sys_rw_content_t:s0"  1 2

    If NFS share is already mounted, remount it using the above recommendation and enter the following command:

    # chcon -R system_u:object_r:httpd_sys_rw_content_t:s0 /var/lib/pulp

2.3. Supported Operating Systems

You can install the operating system from disc, local ISO image, kickstart, or any other method that Red Hat supports. Red Hat Satellite Server and Red Hat Satellite Capsule Server are supported only on the latest versions of Red Hat Enterprise Linux 7 Server that is available at the time when Satellite 6.3 is installed. Previous versions of Red Hat Enterprise Linux including EUS or z-stream are not supported.

Red Hat Satellite Server and Red Hat Satellite Capsule Server require Red Hat Enterprise Linux installations with the @Base package group with no other package-set modifications, and without third-party configurations or software not directly necessary for the direct operation of the server. This restriction includes hardening and other non-Red Hat security software. If you require such software in your infrastructure, install and verify a complete working Satellite Server first, then create a backup of the system before adding any non-Red Hat software.

It is recommended that the Satellite Server be a freshly provisioned system. It is also recommended that Capsule Servers be freshly provisioned systems and not registered to the Red Hat CDN. Using the system for anything other than running Satellite is not supported.

If any of the following exist on the system, they must be removed before installation:

  • Java virtual machines
  • Puppet RPM files
  • Additional yum repositories other than those explicitly required in this guide for installation

2.4. Supported Browsers

The following web browsers are fully supported:

  • Firefox versions 39 and later
  • Chrome versions 28 and later

The following web browsers are partially supported. The Satellite web UI interface functions correctly but certain design elements may not align as expected:

  • Firefox version 38
  • Chrome version 27
  • Internet Explorer versions 10 and 11
Note

The web UI and command-line interface for Satellite Server supports English, Portuguese, Simplified Chinese, Traditional Chinese, Korean, Japanese, Italian, Spanish, Russian, French, and German.

2.5. Ports and Firewalls Requirements

Specific network ports must be open and free on the base operating system, as well as open in any network-based firewalls, to enable the components of Satellite architecture to communicate. The tables in this section explain the need for the ports, and the corresponding firewall commands for host-based firewalls are given in the following section. The installation of a Capsule Server fails if the ports between the Satellite Server and the Capsule Server are not open before installation starts.

The tables indicate the destination port and the direction of network traffic, use this information to configure any network-based firewalls. Note that some cloud solutions need to be specifically configured to allow communications between machines as they isolate machines similarly to network-based firewalls.

Note

The Satellite Server has an integrated Capsule and any host that is directly connected to the Satellite Server is a Client of the Satellite in the context of these tables. This includes the base system on which a Capsule Server is running. Remember to take this into account when planing any network-based firewall configurations.

Systems which are clients of Capsules, other than Satellite’s integrated Capsule, do not need access to the Satellite Server. For more information on Satellite Topology, see Capsule Networking in the Red Hat Satellite Architecture Guide.

Required ports can change based on your configuration.

Table 2.3. Ports for Satellite to Red Hat CDN Communication

PortProtocolServiceRequired For

443

TCP

HTTPS

Subscription Management Services (access.redhat.com) and connecting to the Red Hat CDN (cdn.redhat.com).

Except in the case of a disconnected Satellite, the Satellite Server needs access to the Red Hat CDN. For a list of IP addresses used by the Red Hat CDN (cdn.redhat.com), see the Knowledgebase article Public CIDR Lists for Red Hat on the Red Hat Customer Portal.

Table 2.4. Ports for Browser-based User Interface Access to Satellite

PortProtocolServiceRequired For

443

TCP

HTTPS

Browser-based UI access to Satellite

80

TCP

HTTP

Redirection to HTTPS for web UI access to Satellite (Optional)

Table 2.5. Ports for Client to Satellite Communication

PortProtocolServiceRequired For

80

TCP

HTTP

Anaconda, yum, for obtaining Katello certificates, templates, and for downloading iPXE firmware

443

TCP

HTTPS

Subscription Management Services, yum, Telemetry Services, and for connection to the Katello Agent

5647

TCP

amqp

The Katello Agent to communicate with the Satellite’s Qpid dispatch router

8000

TCP

HTTPS

Anaconda to download kickstart templates to hosts, and for downloading iPXE firmware

8140

TCP

HTTPS

Puppet agent to Puppet master connections

9090

TCP

HTTPS

Sending SCAP reports to the Smart Proxy in the integrated Capsule and for the discovery image during provisioning

5000

TCP

HTTPS

Connection to Katello for the Docker registry

Any managed host that is directly connected to Satellite Server is a client in this context because it is a client of the integrated Capsule. This includes the base system on which a Capsule Server is running.

Table 2.6. Ports for Client to Capsule Communication

PortProtocolServiceRequired for

80

TCP

HTTP

Anaconda, yum, and for obtaining Katello certificate updates

443

TCP

HTTPS

Anaconda, yum, Telemetry Services, and Puppet

5647

TCP

amqp

The Katello agent to communicate with the Capsule’s Qpid dispatch router

8000

TCP

HTTPS

Anaconda to download kickstart templates to hosts, and for downloading iPXE firmware

8140

TCP

HTTPS

Puppet agent to Puppet master connections

8443

TCP

HTTPS

Subscription Management Services and Telemetry Services

9090

TCP

HTTPS

Sending SCAP reports to the Smart Proxy in the Capsule and for the discovery image during provisioning

5000

TCP

HTTPS

Connection to Katello for the Docker registry

53

TCP and UDP

DNS

Client to Capsule DNS queries to a Capsule’s DNS service (Optional)

67

UDP

DHCP

Client to Capsule broadcasts, DHCP broadcasts for Client provisioning from a Capsule (Optional)

69

UDP

TFTP

Clients downloading PXE boot image files from a Capsule for provisioning (Optional)

Table 2.7. Ports for Capsule to Satellite Communication

PortProtocolServiceRequired For

80

TCP

HTTP

Anaconda, yum, and for obtaining Katello certificate updates

443

TCP

HTTPS

Connections to Katello, Foreman, Foreman API, and Pulp

5646

TCP

amqp

Capsule’s Qpid dispatch router to Qpid dispatch router in the Satellite

5647

TCP

amqp

The Katello agent to communicate with the Satellite’s Qpid dispatch router

5000

TCP

HTTPS

Connection to Katello for the Docker registry

Note that the base system on which a Capsule Server is running is a client of the Satellite’s integrated Capsule. See the table Ports for Client to Satellite Communication.

Table 2.8. Ports for Satellite to Capsule Communication

PortProtocolServiceRequired For

443

TCP

HTTPS

Connections to the Pulp server in the Capsule

9090

TCP

HTTPS

Connections to the proxy in the Capsule

80

TCP

HTTP

Downloading a bootdisk (Optional)

Table 2.9. Ports for Capsule to Client Communication

PortProtocolServiceRequired For

7

TCP and UDP

ICMP

DHCP Capsule to Client network, ICMP ECHO to verify IP address is free (Optional)

68

UDP

DHCP

Capsule to Client broadcasts, DHCP broadcasts for Client provisioning from a Capsule (Optional)

8443

TCP

HTTP

Capsule to Client "reboot" command to a discovered host during provisioning (Optional)

Any managed host that is directly connected to Satellite Server is a client in this context because it is a client of the integrated Capsule. This includes the base system on which a Capsule Server is running.

Table 2.10. Optional Network Ports

PortProtocolServiceRequired For

22

TCP

SSH

Satellite and Capsule originated communications, for Remote Execution (Rex)

443

TCP

HTTPS

Satellite originated communications, for vCenter compute resource

7911

TCP

DHCP

  • Capsule originated commands for orchestration of DHCP records (local or external)
  • If DHCP is provided by an external service, you must open the port on the external server.

5000

TCP

HTTP

Satellite originated communications, for compute resources in OpenStack or for running containers

22, 16514

TCP

SSH, SSL/TLS

Satellite originated communications, for compute resources in libvirt

389, 636

TCP

LDAP, LDAPS

Satellite originated communications, for LDAP and secured LDAP authentication sources

5900 to 5930

TCP

SSL/TLS

Satellite originated communications, for NoVNC console in web UI to hypervisors

Note

A DHCP Capsule sends an ICMP ECHO to confirm an IP address is free, no response of any kind is expected. ICMP can be dropped by a networked-based firewall, but any response prevents the allocation of IP addresses.

2.6. Enabling Connections from a Client to Satellite Server

Capsules and Content Hosts that are clients of a Satellite Server’s internal Capsule require access through Satellite’s host-based firewall and any network-based firewalls.

Use this section to configure the host-based firewall on the Red Hat Enterprise Linux 7 system that Satellite is installed on, to enable incoming connections from Clients, and to make the configuration persistent across system reboots. For more information on the ports used, see Section 2.5, “Ports and Firewalls Requirements”.

Configuring the Firewall

  1. Open the ports required for Client to Satellite communication.

    # firewall-cmd \
    --add-port="53/udp" --add-port="53/tcp" \
    --add-port="67/udp" --add-port="69/udp" \
    --add-port="80/tcp"  --add-port="443/tcp" \
    --add-port="5000/tcp" --add-port="5647/tcp" \
    --add-port="8000/tcp" --add-port="8140/tcp" \
    --add-port="9090/tcp"
  2. Repeat the command adding the --permanent option to make these settings persistent.

    # firewall-cmd --permanent \
    --add-port="53/udp" --add-port="53/tcp" \
    --add-port="67/udp" --add-port="69/udp" \
    --add-port="80/tcp"  --add-port="443/tcp" \
    --add-port="5000/tcp" --add-port="5647/tcp" \
    --add-port="8000/tcp" --add-port="8140/tcp" \
    --add-port="9090/tcp"

2.7. Enabling Connections from Capsule Server to Satellite Server

Follow this procedure to enable incoming connections from a Capsule Server to a Satellite Server, and make these rules persistent across reboots. If you do not use an external Capsule Server, you do not need to enable this connection.

Prerequisites

A Capsule Server’s base system is a client of the Satellite Server, therefore the procedure in Section 2.6, “Enabling Connections from a Client to Satellite Server” should be completed first. This procedure opens the extra ports required by an external Capsule Server.

For more information on the ports used, see Section 2.5, “Ports and Firewalls Requirements”.

  1. Configure the firewall.

    # firewall-cmd --add-port="5000/tcp" --add-port="5646/tcp"
  2. Repeat the command adding the --permanent option to make the settings persistent.

    # firewall-cmd --permanent --add-port="5000/tcp" --add-port="5646/tcp"

2.8. Enabling Connections from Satellite Server and Clients to a Capsule Server

You can enable incoming connections from Satellite Server and clients to Capsule Server and make these rules persistent during reboots. If you do not use an external Capsule Server, you do not need to enable this connection.

For more information on the ports used, see Ports and Firewalls Requirements.

  1. Configure the firewall.

    # firewall-cmd --add-port="53/udp" --add-port="53/tcp" \
    --add-port="67/udp" --add-port="69/udp" \
    --add-port="80/tcp" --add-port="443/tcp" \
    --add-port="5000/tcp" --add-port="5647/tcp" \
    --add-port="8000/tcp" --add-port="8140/tcp" \
    --add-port="8443/tcp" --add-port="9090/tcp"
  2. Repeat the command adding the --permanent option to make the settings persistent.

    # firewall-cmd --permanent --add-port="53/udp" --add-port="53/tcp" \
    --add-port="67/udp" --add-port="69/udp" \
    --add-port="80/tcp" --add-port="443/tcp" \
    --add-port="5000/tcp" --add-port="5647/tcp" \
    --add-port="8000/tcp" --add-port="8140/tcp" \
    --add-port="8443/tcp" --add-port="9090/tcp"

2.9. Verifying Firewall Settings

You can verify changes to firewall settings using the firewall-cmd command.

To verify firewall settings:

# firewall-cmd --list-all

For more information, see Configuring the Firewall Using the firewall-cmd Command-Line Tool in the Red Hat Enterprise Linux 7 Security Guide.

2.10. Verifying DNS resolution

Verify the full forward and reverse DNS resolution using a fully-qualified domain name to prevent issues while installing Satellite.

Ensure that the host name and local host resolve correctly.

# ping -c1 localhost
# ping -c1 `hostname -f` # my_system.domain.com

Successful name resolution results in output similar to the following:

# ping -c1 localhost
PING localhost (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.043 ms

--- localhost ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.043/0.043/0.043/0.000 ms

# ping -c1 `hostname -f`
PING hostname.gateway (XX.XX.XX.XX) 56(84) bytes of data.
64 bytes from hostname.gateway (XX.XX.XX.XX): icmp_seq=1 ttl=64 time=0.019 ms

--- localhost.gateway ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.019/0.019/0.019/0.000 ms

To avoid discrepancies with static and transient host names, set all the host names on the system by entering the following command:

# hostnamectl set-hostname name

For more information, see the Configuring Host Names Using hostnamectl in the Red Hat Enterprise Linux 7 Networking Guide.

Warning

Name resolution is critical to the operation of Satellite 6. If Satellite cannot properly resolve its fully qualified domain name, many options fail. Among these options are content management, subscription management, and provisioning.

2.11. Changing Default SELinux ports

Red Hat Satellite 6 uses a set of predefined ports. Because Red Hat recommends that SELinux on Satellite 6 systems be set to permissive or enforcing, if you need to change the port for any service, you also need to change the associated SELinux port type to allow access to the resources. You only need to change these ports if you use non-standard ports.

For example, if you change the Satellite web UI ports (HTTP/HTTPS) to 8018/8019, you need to add these port numbers to the httpd_port_t SELinux port type.

This change is also required for target ports. For example, when Satellite 6 connects to an external source, like Red Hat Virtualization or Red Hat OpenStack Platform.

You only need to make changes to default port assignments once. Updating or upgrading Satellite has no effect on these assignments. Updating only adds default SELinux ports if no assignments exist.

Before You Begin

Changing default ports to user-specified ports

  1. To change the port from the default port to a user-specified port, execute the commands using values that are relevant to your environment. These examples use port 99999 for demonstration purposes.

    Default PortSELinux Command

    80, 443, 8443

    semanage port -a -t http_port_t -p tcp 99999

    8080

    semanage port -a -t http_cache_port_t -p tcp 99999

    8140

    semanage port -a -t puppet_port_t -p tcp 99999

    9090

    semanage port -a -t websm_port_t -p tcp 99999

    69

    semanage port -a -t tftp_port_t -p udp 99999

    53 (TCP)

    semanage port -a -t dns_port_t -p tcp 99999

    53 (UDP)

    semanage port -a -t dns_port_t -p udp 99999

    67, 68

    semanage port -a -t dhcpd_port_t -p udp 99999

    5671

    semanage port -a -t amqp_port_t -p tcp 99999

    8000

    semanage port -a -t soundd_port_t -p tcp 99999

    7911

    semanage port -a -t dhcpd_port_t -p tcp 99999

    5000 on Red Hat Enterprise Linux 7

    semanage port -a -t commplex_main_port_t -p tcp 99999

    22

    semanage port -a -t ssh_port_t -p tcp 99999

    16514 (libvirt)

    semanage port -a -t virt_port_t -p tcp 99999

    389, 636

    semanage port -a -t ldap_port_t -p tcp 99999

    5910 to 5930

    semanage port -a -t vnc_port_t -p tcp 99999

  2. Disassociate the previously used port number and port type.
# semanage port -d -t virt_port_t -p tcp 99999

Chapter 3. Installing Satellite Server

You can use this chapter to find information about installing Red Hat Satellite Server, performing the initial configuration, creating and installing manifests, and performing additional configuration.

Red Hat Satellite 6.3 uses Puppet 3 by default, but you can optionally install Puppet 4 as part of the following installation procedures by enabling the Puppet 4 upgrade repository before running the installation script. To upgrade to Puppet 4 after installation, and for information on upgrading Puppet modules, see the Upgrading Puppet section in the Upgrading and Updating Red Hat Satellite guide.

There are two methods of installing Satellite Server:

Connected:

You can obtain the packages required to install Satellite Server directly from the Red Hat Content Delivery Network (CDN). Using the CDN ensures that your system always receives the latest updates.

Disconnected:

You must use an external computer to download an ISO image of the packages and copy the packages to the system you want to install Satellite Server on. Use an ISO image only if you require a disconnected environment. The ISO image might not contain the latest updates.

Note

You cannot register Satellite Server to itself.

3.1. Installing Satellite Server from a Connected Network

When you install Satellite Server from a connected network, you can obtain packages and receive updates directly from the Red Hat Content Delivery Network.

Note that the Satellite 6 installation script is based on Puppet, which means that if you run the installation script more than once, it might overwrite any manual configuration changes. ⁠ To avoid this and determine which future changes apply, use the --noop argument when you run the installation script. This argument ensures that no actual changes are made. Potential changes are written to /var/log/katello-installer.log.

Files are always backed up and so you can revert any unwanted changes. For example, in the katello-installer logs, you can see an entry similar to the following about Filebucket:

/Stage[main]/Dhcp/File[/etc/dhcp/dhcpd.conf]: Filebucketed /etc/dhcp/dhcpd.conf to puppet with sum 622d9820b8e764ab124367c68f5fa3a1

You can restore the previous file as follows:

# puppet filebucket -l \
restore /etc/dhcp/dhcpd.conf 622d9820b8e764ab124367c68f5fa3a1

3.1.1. Registering to Red Hat Subscription Management

Registering the host to Red Hat Subscription Management enables the host to subscribe to and consume content for any subscriptions available to the user. This includes content such as Red Hat Enterprise Linux, Red Hat Software Collections (RHSCL), and Red Hat Satellite.

Register your system with the Red Hat Content Delivery Network, entering your Customer Portal user name and password when prompted:

# subscription-manager register

The command displays output similar to the following:

# subscription-manager register
Username: user_name
Password:
The system has been registered with ID: 541084ff2-44cab-4eb1-9fa1-7683431bcf9a

3.1.2. Identifying and Attaching the Satellite Subscription to the Host

After you have registered your host, you need to identify and attach an available Satellite subscription. The Satellite subscription provides access to the Satellite content, as well as Red Hat Enterprise Linux, Red Hat Software Collections (RHSCL), and Red Hat Satellite. This is the only subscription required. Every Red Hat subscription is identified by a Pool ID.

  1. Identify your Satellite subscription.

    # subscription-manager list --available --matches 'Red Hat Satellite'

    This command performs a case-insensitive search of all available subscriptions' fields, including Subscription Name and Provides, matching any instances of Red Hat Satellite. Subscriptions are classified as available if they are not already attached to a system. The search string may also contain the wildcards ? or * to match a single character or zero or more characters, respectively. The wildcard characters may be escaped with a backslash to represent a literal question mark or asterisk. Likewise, to represent a backslash, it must be escaped with another backslash.

    If you are unable to find an available Satellite subscription, see the Red Hat Knowledgebase solution How do I figure out which subscriptions have been consumed by clients registered under Red Hat Subscription Manager? to run a script to allow you to see if your subscription is being consumed by another system.

    If the output is too long, pipe it into a pager utility, such as less or more, so that you can look over the output one screenful at a time.

    1. Regardless of which form of the subscription-manager command is run, the output should be similar to the following:

      Subscription Name: Red Hat Satellite
      Provides:          Red Hat Satellite 6
                         Red Hat Enterprise Linux Server
                         Red Hat Satellite
                         Red Hat Enterprise Linux Load Balancer (for RHEL Server)
      SKU:               MCT0370
      Pool ID:           8a85f9874152663c0541943739717d11
      Available:         3
      Suggested:         1
      Service Level:     Premium
      Service Type:      L1-L3
      Multi-Entitlement: No
      Ends:              10/07/2014
      System Type:       Physical
  2. Make a note of the Pool ID so that you can attach it to your Satellite host. Your Pool ID is different than the example provided.
  3. To attach your subscription to your Satellite Server, enter the following command, using your Pool ID:

    # subscription-manager attach --pool=pool_id

    The output should be similar to the following:

    Successfully attached a subscription for: Red Hat Satellite
  4. To verify that the subscriptions are successfully attached, enter the following command:

    # subscription-manager list --consumed

    The outputs displays something similar to the following:

    +-------------------------------------------+
       Consumed Subscriptions
    +-------------------------------------------+
    Subscription Name: Red Hat Satellite
    Provides:          Red Hat Satellite
                       Red Hat Enterprise Linux Server
                       Red Hat Software Collections (for RHEL Server)
                       Red Hat Satellite
                       Red Hat Satellite 6
                       Red Hat Software Collections  (for RHEL Server)
                       Red Hat Satellite Capsule
                       Red Hat Enterprise Linux Load Balancer (for RHEL Server)
                       Red Hat Satellite with Embedded Oracle
                       Red Hat Satellite Capsule
                       Red Hat Enterprise Linux High Availability (for RHEL Server)
    SKU:               MCT0370
    Contract:          10293569
    Account:           5361051
    Serial:            1653856191250699363
    Pool ID:           8a85f9874152663c0541943739717d11
    Active:            True
    Quantity Used:     1
    Service Level:     Premium
    Service Type:      L1-L3
    Status Details:
    Starts:            10/08/2013
    Ends:              10/07/2014
    System Type:       Physical

3.1.3. Configuring Repositories

  1. Disable all existing repositories.

    # subscription-manager repos --disable "*"
  2. Enable the required repositories:

    • To enable the Red Hat Satellite, Red Hat Enterprise Linux, Red Hat Software Collections, and Puppet 4 repositories, enter the following command:

      # subscription-manager repos \
      --enable=rhel-7-server-rpms \
      --enable=rhel-server-rhscl-7-rpms \
      --enable=rhel-7-server-satellite-6.3-rpms \
      --enable=rhel-7-server-satellite-6.3-puppet4-rpms
    • Alternatively, to enable the Red Hat Satellite, Red Hat Enterprise Linux, Red Hat Software Collections, and Puppet 3 repositories, enter the following command:

      # subscription-manager repos \
      --enable=rhel-7-server-rpms \
      --enable=rhel-server-rhscl-7-rpms \
      --enable=rhel-7-server-satellite-6.3-rpms
      Note

      Satellite 6.3 is the last supported release for Puppet 3. You must upgrade from Puppet 3 to Puppet 4 while on Satellite 6.3, and before upgrading to Satellite 6.4. Satellite 6.4 only supports Puppet 5, and the upgrade to Puppet 5 will be made during the Satellite upgrade.

      Note

      If you are installing Red Hat Satellite as a virtual machine hosted on Red Hat Virtualization (RHV), you also need to enable the Red Hat Common repository, and install RHV guest agents and drivers. For more information, see Installing the Guest Agents and Drivers on Red Hat Enterprise Linux in the Virtual Machine Management Guide for more information.

  3. Ensure that Red Hat Subscription Manager is not set to use a specific operating system release.

    # subscription-manager release --unset
  4. Clear out any metadata left from any non-Red Hat yum repositories.

    # yum clean all
  5. Verify that the repositories have been enabled.

    # yum repolist enabled

    Output similar to the following displays:

    Loaded plugins: product-id, subscription-manager
    repo id                                    repo name                                                                status
    !rhel-7-server-rpms/x86_64                 Red Hat Enterprise Linux 7 Server (RPMs)                                 9,889
    !rhel-7-server-satellite-6.3-rpms/x86_64   Red Hat Satellite 6.3 (for RHEL 7 Server) (RPMs)                           545
    !rhel-server-rhscl-7-rpms/x86_64           Red Hat Software Collections RPMs for Red Hat Enterprise Linux 7 Server  4,279
    repolist: 14,713

3.1.4. Installing the Satellite Server Packages

You must update all packages before installing the Satellite Server packages. After installation, you must perform the initial configuration of Satellite Server, including configuring server certificates, setting your user name, password, and the default organization and location.

  1. Update all packages.

    # yum update
  2. Install the installation package.

    # yum install satellite
  3. Go to Section 3.3, “Performing the Initial Configuration” to run the installation script and perform the initial configuration of your Satellite Server.

3.2. Downloading and Installing from a Disconnected Network

When the intended host for the Red Hat Satellite Server is in a disconnected environment, it is possible to install the Satellite Server by using an ISO image. This method is not recommended for any other situation as ISO images might not contain the latest updates, bug fixes, and functionality.

Note

If the base system has not been updated from the Red Hat CDN, package dependency errors are possible. You must manually download and install the latest version of the required packages. For more information, see Section 3.2.4, “Downloading Packages Manually”.

Before You Begin

  • A copy of the repositories used in the installation are stored in the /opt/ directory. Ensure you have a minimum of 3 GB of space for this file system and directory.

3.2.1. Downloading the Binary DVD Images

  1. Go to Red Hat Customer Portal and log in.
  2. Click DOWNLOADS.
  3. Select Red Hat Enterprise Linux.
  4. Ensure that you have the correct product and version for your environment.

    • Product Variant is set to Red Hat Enterprise Linux Server.
    • Version is set to the latest minor version of the product you plan to use as the base system.
    • Architecture is set to the 64 bit version.
  5. On the Product Software tab, download the Binary DVD image for the latest Red Hat Enterprise Linux Server version.
  6. Click DOWNLOADS and select Red Hat Satellite.
  7. Ensure that you have the correct product and version for your environment.

    • Product Variant is set to Red Hat Satellite.
    • Version is set to the latest minor version of the product you plan to use as the base system.
    • Architecture is set to the 64 bit version.
  8. On the Product Software tab, download the Binary DVD image for the latest Red Hat Satellite version.
  9. Copy the ISO files to the Satellite base system or other accessible storage device.

    # scp localfile username@hostname:remotefile

3.2.2. Configuring the Base System with Offline Repositories

  1. Create a directory to serve as the mount point for the ISO file corresponding to the base system’s version.

    # mkdir /media/rhel7-server
  2. Mount the ISO image for Red Hat Enterprise Linux to the mount point.

    # mount -o loop rhel7-Server-DVD.iso /media/rhel7-server

    The following example shows mounting the ISO using Red Hat Enterprise Linux 7.2:

    # mount -o loop RHEL-7.2-20151030.0-Server-x86_64-dvd1.iso \
    /media/rhel7-server
    mount: /dev/loop0 is write-protected, mounting read-only
  3. Copy the ISO file’s repository data file.

    # cp /media/rhel7-server/media.repo /etc/yum.repos.d/rhel7-server.repo
  4. Edit the repository data file and add the baseurl directive.

    baseurl=file:///media/rhel7-server/

    The following example shows the repository data file using Red Hat Enterprise Linux 7.2:

    # vi /etc/yum.repos.d/rhel7-server.repo
    [InstallMedia]
    name=Red Hat Enterprise Linux 7.2
    mediaid=1446216863.790260
    metadata_expire=-1
    gpgcheck=0
    cost=500
    baseurl=file:///media/rhel7-server/
    enabled=1
  5. Verify that the repository has been configured.

    # yum repolist
    Loaded plugins: product-id, search-disabled-repos, subscription-manager
    This system is not registered to Red Hat Subscription Management. You can use subscription-manager to register.
    repo id          repo name                       status
    InstallMedia     Red Hat Enterprise Linux 7.2    4,620
  6. Create a directory to serve as the mount point for the ISO file of the Satellite Server.

    # mkdir /media/sat6
  7. Mount the ISO image for Red Hat Satellite Server to the mount point.

    # mount -o loop sat6-DVD.iso /media/sat6

    The following example shows mounting the ISO using Red Hat Satellite 6.3.0 for Red Hat Enterprise Linux 7:

    # mount -o loop satellite-6.3.0-rhel-7-x86_64-dvd.iso /media/sat6
    mount: /dev/loop1 is write-protected, mounting read-only
  8. Red Hat Satellite 6.3 uses Puppet 3 by default, but you can also use Puppet 4. To use Puppet 4, create a local repository to access the required packages and add the following contents:

    # vi /etc/yum.repos.d/satellite-puppet4.repo
    [satellite-puppet4]
    name=satellite-puppet4
    baseurl=file:///media/sat6/addons/Puppet4
    enabled=1
    gpgcheck=1

3.2.3. Installing from the Offline Repositories

  1. Ensure the ISO images for Red Hat Enterprise Linux Server and Red Hat Satellite are mounted:

    # findmnt -t iso9660
  2. Import the Red Hat GPG keys.

    # rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
  3. Ensure the base system is up to date with the Binary DVD image.

    # yum update
  4. Change to the directory where the Satellite ISO is mounted.

    # cd /media/sat6/
  5. Run the installation script in the mounted directory.

    # ./install_packages
    	This script will install the foreman packages on the current machine.
       - Ensuring we are in an expected directory.
       - Copying installation files.
       - Creating a Repository File
       - Creating RHSCL Repository File
       - Checking to see if Foreman is already installed.
       - Importing the gpg key.
       - Foreman is not yet installed, installing it.
       - Installation repository will remain configured for future package installs.
       - Installation media can now be safely unmounted.
    
    Install is complete. Please run satellite-installer --scenario satellite.

    If the script fails due to missing or outdated packages, you must download and install these separately. See Section 3.2.4, “Downloading Packages Manually” for instructions.

    If the script fails due to installed packages being newer than those required, enter yum distribution-synchronization to downgrade the installed packages to the versions that came from the Red Hat Enterprise Linux ISO, then run the installation script again. This should only occur if you have repositories configured whose source is not the Red Hat Enterprise Linux ISO. Use of such repositories is an unsupported configuration.

3.2.4. Downloading Packages Manually

If required to download a package manually, proceed as follows:

  1. Go to Red Hat Customer Portal and log in.
  2. Click DOWNLOADS.
  3. Select Red Hat Satellite.
  4. Ensure that you have the correct product and version for your environment.

    • Product Variant is set to Red Hat Satellite.
    • Version is set to the latest minor version of the product you are using as the base system.
    • Architecture is set to the 64 bit version.
  5. On the Packages tab, enter the name of the package required in the Search box.
  6. Click Download Latest next to the package required.

3.3. Performing the Initial Configuration

This section details how to perform the initial configuration of the host operating system when installing Red Hat Satellite Server. This includes synchronizing the time, installing the sos package, and specifying an installation option.

Before you continue, consider which manifests or packages are relevant for your environment. For more information on manifests, see Managing Subscriptions in the Red Hat Satellite Content Management Guide.

3.3.1. Synchronizing Time

You must start and enable a time synchronizer on the host operating system to minimize the effects of time drift. If a system’s time is incorrect, certificate verification can fail.

Two time synchronizers are available: NTP and chronyd. Each of these has its advantages. chronyd is recommended for systems that are frequently suspended and for systems, such as mobile and virtual systems, that intermittently disconnect and reestablish network connection. NTP is recommended for systems that are expected to remain in running states and are expected to be connected to a network without interruption.

For more information on the differences between NTP and chronyd, see Differences Between ntpd and chronyd in the Red Hat Enterprise Linux 7 System Administrator’s Guide.

Synchronizing Time using NTP

  1. Install ntp.

    # yum install ntp
  2. Verify that your NTP server is available.

    # ntpdate -q ntp_server_address
  3. Set the system time.

    # ntpdate ntp_server_address

Synchronizing Time using chronyd

  1. Install chronyd.

    # yum install chrony
  2. Start and enable the chronyd service.

    # systemctl start chronyd
    # systemctl enable chronyd

3.3.2. Installing the SOS Package on the Host Operating System

You should install the sos package on the host operating system. The sos package enables you to collect configuration and diagnostic information from a Red Hat Enterprise Linux system. You can also use it to provide the initial system analysis, which is required when opening a service request with Red Hat Technical Support. For more information on using sos, see the Knowledgebase solution What is a sosreport and how to create one in Red Hat Enterprise Linux 4.6 and later? on the Red Hat Customer Portal.

Install the sos package.

# yum install sos

3.3.3. Specifying Installation Options

Satellite Server is installed using the satellite-installer installation script and as part of the initial configuration, you either automatically or manually configure Satellite.

Choose from one of these two methods:

  • Automatic Configuration - This method is performed by using an answer file to automate the configuration process when running the installation script. An answer file is a file containing a list of parameters that are read by a command or script. The default Satellite answer file is /etc/foreman-installer/scenarios.d/satellite-answers.yaml. The answer file in use is set by the answer_file directive in the /etc/foreman-installer/scenarios.d/satellite.yaml configuration file.

    To perform the initial configuration using the installation script with an answer file, see Section 3.3.3.2, “Performing the Initial Configuration Automatically using an Answer File”.

  • Manual Configuration - This method is performed by running the installation script with one or more command options. The command options override the corresponding default initial configuration options and are recorded in the Satellite answer file. You can run the script as often as needed to configure any necessary options.

    To perform the initial configuration using the installation script with command-line options, see Section 3.3.3.1, “Performing the Initial Configuration Manually”.

Note

Depending on the options that you use when running the Satellite installer, the configuration can take several minutes to complete. An administrator is able to view the answer file to see previously used options for both methods.

3.3.3.1. Performing the Initial Configuration Manually

This initial configuration procedure creates an organization, location, user name, and password. After the initial configuration, you can create additional organizations and locations if required.

The installation process can take tens of minutes to complete. If you are connecting remotely to the system, consider using a utility such as screen that allows suspending and reattaching a communication session so that you can check the installation progress in case you become disconnected from the remote system. The Red Hat Knowledgebase article How to use the screen command describes installing screen; alternately see the screen manual page for more information. If you lose connection to the shell where the installation command is running, see the log at /var/log/foreman-installer/satellite.log to determine if the process completed successfully.

Manually configuring Satellite Server

Use the satellite-installer --scenario satellite --help command to display the available options and any default values. If you do not specify any values, the default values are used.

It is recommended to specify a meaningful value for the option: --foreman-initial-organization. This can be your company name. An internal label that matches the value is also created and cannot be changed later on. If you do not specify a value, an organization called Default Organization with the label Default_Organization is created. You can rename the organization name but not the label.

By default, all configuration files configured by the installer are managed by Puppet. When satellite-installer runs, it overwrites any manual changes to the Puppet managed files with the initial values. By default, Satellite Server is installed with the Puppet agent running as a service. If required, you can disable Puppet agent on Satellite Server using the --puppet-runmode=none option.

If you want to be able to manage DNS files and DHCP files manually, use the --foreman-proxy-dns-managed=false and --foreman-proxy-dhcp-managed=false options so that Puppet does not manages the files related to the respective services. For more information on how to apply custom configuration on other services, see Appendix C, Applying Custom Configuration to Red Hat Satellite.

# satellite-installer --scenario satellite \
--foreman-initial-organization "initial_organization_name" \
--foreman-initial-location "initial_location_name" \
--foreman-admin-username admin_user_name \
--foreman-admin-password admin_password \
--foreman-proxy-dns-managed=false \
--foreman-proxy-dhcp-managed=false

When the script completes successfully, the following output is displayed:

Installing             Done
[100%] [..............................................]
  Success!
  * Satellite is running at https://rhel7-4-sat6-3.example.com
      Initial credentials are admin / changeme
  * To install an additional Capsule on separate machine continue by running:

      capsule-certs-generate --foreman-proxy-fqdn "$CAPSULE" --certs-tar "/root/$CAPSULE-certs.tar"
  The full log is at /var/log/foreman-installer/satellite.log

If you have been installing in a disconnected environment, unmount the ISO images.

# umount /media/sat6
# umount /media/rhel7-server

3.3.3.2. Performing the Initial Configuration Automatically using an Answer File

You can use answer files to automate installations with customized options. The initial answer file is sparsely populated and after you run the satellite-installer script the first time, the answer file is populated with the standard parameter values for installation. If you have already installed Satellite Server using the method described in Section 3.3.3.1, “Performing the Initial Configuration Manually”, then you do not need to use this method. You can, however, use it to make changes to the configuration of Satellite Server at any time.

You should use the FQDN instead of the IP address where possible in case of network changes.

Automatically configuring Satellite Server using an Answer File

  1. Copy the default answer file /etc/foreman-installer/scenarios.d/satellite-answers.yaml to a location on your local file system.

    # cp /etc/foreman-installer/scenarios.d/satellite-answers.yaml \
    /etc/foreman-installer/scenarios.d/my-answer-file.yaml
  2. To view all of the configurable options, enter the satellite-installer --scenario satellite --help command.
  3. Open your copy of the answer file, edit the values to suit your environment, and save the file.
  4. Open the /etc/foreman-installer/scenarios.d/satellite.yaml file and edit the answer file entry to point to your custom answer file.

    :answer_file: /etc/foreman-installer/scenarios.d/my-answer-file.yaml
  5. Run the satellite-installer script.

    # satellite-installer --scenario satellite
  6. If you have been installing in a disconnected environment, unmount the ISO images.

    # umount /media/sat6
    # umount /media/rhel7-server

3.3.4. Creating a Subscription Allocation in Customer Portal

You can access your subscription information on the Red Hat Customer Portal. You can also assign subscriptions for use in on-premise management applications, such as Red Hat Satellite, using subscription allocations.

  1. Open https://access.redhat.com/ in your browser and log in to your Red Hat account.
  2. Navigate to Subscriptions in the upper-left corner of the Customer Portal.
  3. Navigate to Subscription Allocations.
  4. Click Create New subscription allocation.
  5. In the Name field, enter a name.
  6. From the Type list, select the type and version that corresponds to your Satellite Server.
  7. Click Create.

3.3.5. Adding Subscriptions to an Allocation

The following procedure explains how to add subscriptions to an allocation.

  1. Navigate to Subscription Allocations.
  2. Select the name of the subscription you want to change.
  3. Click the Subscriptions tab.
  4. Click Add Subscriptions.
  5. A list of your Red Hat product subscriptions appears. Enter the Entitlement Quantity for each product.
  6. Click Submit to complete the assignment.

When you have added subscriptions to the allocation, export the manifest file.

3.3.6. Exporting a Subscription Manifest from the Customer Portal

While viewing a subscription allocation that has at least one subscription, you can export a manifest in either of two places:

  • From the Details tab, under the Subscription section, by clicking the Export Manifest button.
  • From the Subscriptions tab, by clicking the Export Manifest button.

When the manifest is exported, the Customer Portal encodes the selected subscriptions certificates and creates a .zip archive. This is the Subscription Manifest, which can be uploaded into the Satellite Server.

3.3.6.1. Importing a Subscription Manifest into the Satellite Server

Both the Red Hat Satellite 6 Web UI and CLI provide methods for importing the manifest.

For Web UI Users

  1. Ensure the context is set to the organization you want to use.
  2. Navigate to Content > Red Hat Subscriptions.
  3. Click Manage Manifest to display the manifest page for the organization.
  4. Click Choose file, select the Subscription Manifest, then click Upload.

For CLI Users

The Red Hat Satellite 6 CLI requires the manifest to be on the Satellite Server. On your local client system, copy the manifest to the Satellite Server:

[user@client ~]$ scp ~/manifest_file.zip root@satellite.example.com:~/.

Then import it using the following command:

[root@satellite ~]# hammer subscription upload \
--file ~/manifest_file.zip \
--organization "organization_name"

After a few minutes, the CLI reports a successful manifest import.

When you complete this section, you can enable repositories and import Red Hat content. This is a prerequisite for some of the following procedures. For more information, see Importing Red Hat Content in the Red Hat Satellite Content Management Guide.

3.4. Performing Additional Configuration

3.4.1. Installing the Satellite Tools Repository

The Satellite Tools repository provides the katello-agent and puppet packages for clients registered to Satellite Server. Installing the katello agent is recommended to allow remote updates of clients. The base system of a Capsule Server is a client of Satellite Server and therefore should also have the katello agent installed.

To Install the Satellite Tools Repository:

  1. In the Satellite web UI, go to Content > Red Hat Repositories and select the RPMs tab.
  2. Find and expand the Red Hat Enterprise Linux Server item.
  3. Find and expand the Red Hat Satellite Tools 6.3 (for Red Hat Enterprise Linux 7 Server) (RPMs) item.

    If the Red Hat Satellite Tools 6.3 items are not visible, it may be because they are not included in the Subscription Manifest obtained from the Customer Portal. To correct that, log in to the Customer Portal, add these repositories, download the Subscription Manifest and import it into Satellite.

  4. Select the Enabled check box next to the Satellite 6.3 Tools repository’s name.

Enable the Satellite Tools repository for every supported major version of Red Hat Enterprise Linux running on your hosts. After enabling a Red Hat repository, a Product for this repository is automatically created.

To Synchronize the Satellite Tools Repository:

  1. Go to Content > Sync Status.

    A list of product repositories available for synchronization is displayed.

  2. Click the arrow next to the product content to view available content.
  3. Select the content you want to synchronize.
  4. Click Synchronize Now.

3.4.2. Configuring Satellite Server with HTTP Proxy

If your network uses an HTTP Proxy, you can configure Satellite Server to use it. Use the FQDN instead of the IP address where possible to avoid losing connectivity because of network changes.

  1. Verify that the http_proxy, https_proxy, and no_proxy variables are not set.

    # export http_proxy=""
    # export https_proxy=$http_proxy
    # export no_proxy=$http_proxy
  2. Run satellite-installer with the HTTP proxy options.

    # satellite-installer --scenario satellite \
    --katello-proxy-url=http://myproxy.example.com \
    --katello-proxy-port=8080 \
    --katello-proxy-username=proxy_username \
    --katello-proxy-password=proxy_password
  3. Verify that Satellite Server can connect to the Red Hat Content Delivery Network (CDN) and can synchronize its repositories.

    1. On the network gateway and the HTTP Proxy, enable TCP for the following host names:

      Host namePortProtocol

      subscription.rhsm.redhat.com

      443

      HTTPS

      cdn.redhat.com

      443

      HTTPS

      *.akamaiedge.net

      443

      HTTPS

      cert-api.access.redhat.com (if using Red Hat Insights)

      443

      HTTPS

      api.access.redhat.com (if using Red Hat Insights)

      443

      HTTPS

      Satellite Server communicates with the Red Hat CDN securely over SSL. Use of an SSL interception proxy interferes with this communication. These hosts must be whitelisted on the proxy.

      For a list of IP addresses used by the Red Hat CDN (cdn.redhat.com), see the Knowledgebase article Public CIDR Lists for Red Hat on the Red Hat Customer Portal.

    2. On Satellite Server, complete the following details in the /etc/rhsm/rhsm.conf file:

      # an http proxy server to use (enter server FQDN)
      proxy_hostname = http_proxy.example.com
      
      # port for http proxy server
      proxy_port = 8080
      
      # user name for authenticating to an http proxy, if needed
      proxy_user =
      
      # password for basic http proxy auth, if needed
      proxy_password =
  4. SELinux ensures access of Red Hat Satellite 6 and Red Hat Subscription Manager only to specific ports. In the case of the HTTP cache, the TCP ports are 8080, 8118, 8123, and 10001 - 10010. If you use a port that does not have SELinux type http_cache_port_t, complete the following steps:

    1. To verify the ports that are permitted by SELinux for the HTTP cache, enter a command as follows:

      # semanage port -l | grep http_cache
      http_cache_port_t       tcp    8080, 8118, 8123, 10001-10010
      [output truncated]
    2. To configure SELinux to permit a port for the HTTP cache, for example 8088, enter a command as follows:

      # semanage port -a -t http_cache_port_t -p tcp 8088

For more information on SELinux port settings, see Section 2.11, “Changing Default SELinux ports”.

3.4.3. Configuring DNS, DHCP, and TFTP on Satellite Server

You can configure DNS, DHCP, and TFTP on Satellite Server.

If you want to configure external services, see Chapter 5, Configuring External Services for more information.

If you want to disable these services in Satellite in order to manage them manually, see Section 3.4.4, “Disabling DNS, DHCP, and TFTP for Unmanaged Networks” for more information.

To view a complete list of configurable options, enter the satellite-installer --scenario satellite --help command.

Before You Begin

  • Contact your network administrator to ensure that you have the correct settings.
  • You should have the following information available:

    • DHCP IP address ranges
    • DHCP gateway IP address
    • DHCP nameserver IP address
    • DNS information
    • TFTP server name
  • Use the FQDN instead of the IP address where possible in case of network changes.
Note

The information in the task is an example. You should use the information relevant to your own environment.

Configure DNS, DHCP, and TFTP on Satellite Server

  1. Run satellite-installer with the options appropriate for your environment.

    # satellite-installer --scenario satellite \
    --foreman-proxy-dns true \
    --foreman-proxy-dns-interface eth0 \
    --foreman-proxy-dns-zone example.com \
    --foreman-proxy-dns-forwarders 172.17.13.1 \
    --foreman-proxy-dns-reverse 13.17.172.in-addr.arpa \
    --foreman-proxy-dhcp true \
    --foreman-proxy-dhcp-interface eth0 \
    --foreman-proxy-dhcp-range "172.17.13.100 172.17.13.150" \
    --foreman-proxy-dhcp-gateway 172.17.13.1 \
    --foreman-proxy-dhcp-nameservers 172.17.13.2 \
    --foreman-proxy-tftp true \
    --foreman-proxy-tftp-servername $(hostname)

    The status of the installation is displayed. You can view the user name and password in the command output. You can also retrieve the information from the admin_password parameter in the /etc/foreman-installer/scenarios.d/satellite-answers.yaml file.

    Success!
      * Satellite is running at https://satellite.example.com
          Default credentials are 'admin:*******'
      * Capsule is running at https://satellite.example.com:9090
      * To install additional capsule on separate machine continue by running:
    
          capsule-certs-generate --foreman-proxy-fqdn "$CAPSULE" --certs-tar "~/$CAPSULE-certs.tar"
    
      The full log is at /var/log/foreman-installer/satellite.log
Note

Any changes to the settings require running satellite-installer again. You can run the script multiple times and it updates all configuration files with the changed values.

3.4.4. Disabling DNS, DHCP, and TFTP for Unmanaged Networks

Satellite 6 provides full management capabilities for TFTP, DHCP, and DNS network services running on Satellite’s internal or external Capsules. If you want to manage those services manually or use some external method, then Satellite 6 cannot directly integrate with them. While it is possible to develop custom integration scripts using Foreman Hooks (such as creating DNS records after a new host is created), this integration, also known as orchestration, must be disabled in order to prevent DHCP and DNS validation errors.

  1. In the web UI, go to Infrastructure > Subnets and select a subnet.
  2. On the Capsules tab, ensure that there is no DHCP Capsule or TFTP Capsule associated by setting the drop-down list to None.
  3. Disable forward record orchestration.

    1. Go to Infrastructure > Domains and select a domain.
    2. On the Domain tab, setting the DNS Capsule drop-down list to None.
  4. Disable reverse (PTR) record orchestration.

    1. Go to Infrastructure > Subnets and select a subnet.
    2. On the Capsules tab, setting the Reverse DNS Capsule drop-down list to None.
  5. Optional: If you use a DHCP service supplied by a third party, configure your DHCP server to pass the following options:

    Option 66: IP_address_of_Satellite_or_Capsule
    Option 67: /pxelinux.0

    For more information about DHCP options, see RFC 2132.

Note

Satellite 6 does not perform orchestration when a Capsule is not set for a given subnet and domain. When enabling or disabling Capsule associations, orchestration commands for existing hosts can fail if the expected records and configuration files are not present. When associating a Capsule in order to turn orchestration on, make sure the required DHCP and DNS records as well as the TFTP files are in place for existing Satellite 6 managed hosts in order to prevent host deletion failures in the future.

3.4.5. Configuring Satellite Server for Outgoing Emails

To send email messages from Satellite Server, you can use either an SMTP server, or the sendmail command.

Prerequisites

If you have upgraded from a previous release, rename or remove the configuration file /usr/share/foreman/config/email.yaml and restart the httpd service. For example:

# mv /usr/share/foreman/config/email.yaml \
/usr/share/foreman/config/email.yaml-backup
# systemctl restart httpd

To Configure Satellite Server for Outgoing Emails:

  1. In the Satellite web UI, navigate to AdministerSettings.
  2. Click the Email tab and set the configuration options to match your preferred delivery method. The changes have an immediate effect.

    1. The following example shows the configuration options for using an SMTP server:

      Table 3.1. Using an SMTP server as a delivery method

      NameExample value

      Delivery method

      SMTP

      SMTP address

      smtp.example.com

      SMTP authentication

      login

      SMTP HELO/EHLO domain

      example.com

      SMTP password

      password

      SMTP port

      25

      SMTP username

      satellite@example.com

      The SMTP username and SMTP password specify the login credentials for the SMTP server.

    2. The following example uses gmail.com as an SMTP server:

      Table 3.2. Using gmail.com as an SMTP server

      NameExample value

      Delivery method

      SMTP

      SMTP address

      smtp.gmail.com

      SMTP authentication

      plain

      SMTP HELO/EHLO domain

      smtp.gmail.com

      SMTP enable StartTLS auto

      Yes

      SMTP password

      password

      SMTP port

      587

      SMTP username

      user@gmail.com

    3. The following example uses the sendmail command as a delivery method:

      Table 3.3. Using sendmail as a delivery method

      NameExample value

      Delivery method

      Sendmail

      Sendmail arguments

      -i -t -G

      The Sendmail arguments specify the options passed to the sendmail command. The default value is -i -t. For more information see the sendmail 1 man page.

  3. If you decide to send email using an SMTP server which uses TLS authentication, also perform one of the following steps:

    • Mark the CA certificate of the SMTP server as trusted. To do so, execute the following commands on Satellite Server:

      # cp mailca.crt /etc/pki/ca-trust/source/anchors/
      # update-ca-trust enable
      # update-ca-trust

      Where mailca.crt is the CA certificate of the SMTP server.

    • Alternatively, in the web UI, set the SMTP enable StartTLS auto option to No.
  4. Click Test email to send a test message to the user’s email address to confirm the configuration is working. If a message fails to send, the web UI displays an error. See the log at /var/log/foreman/production.log for further details.
Note

For information on configuring email notifications for individual users or user groups, see Configuring Email Notifications in Administering Red Hat Satellite.

3.4.6. Configuring Satellite Server with a Custom Server Certificate

SSL certificates are used to protect information and enable secure communication. Red Hat Satellite 6 creates self-signed SSL certificates to enable encrypted communications between the Satellite Server, external Capsule Servers, and all hosts. Instead of using these self-signed certificates, you can install custom SSL certificates issued by a Certificate Authority which is an external, trusted company. For example, your company might have a security policy stating that SSL certificates must be obtained from a Certificate Authority. To obtain the certificate, create a Certificate Signing Request and send it to the Certificate Authority, as described in Section 3.4.6.1, “Obtain an SSL Certificate for the Satellite Server”. In return, you receive a signed SSL certificate.

Note

Obtain custom SSL certificates for the Satellite Server and all external Capsule Servers before starting this procedure.

To use a custom certificate on Satellite Server, complete these steps:

If you have external Capsule Servers, you must also complete the steps in Section 4.7.6, “Configuring Capsule Server with a Custom Server Certificate”.

3.4.6.1. Obtain an SSL Certificate for the Satellite Server

Important

Only PEM encoding must be used for the SSL Certificates.

Note

If you already have a custom SSL Certificate for the Satellite Server, skip this procedure.

  1. Create a directory to contain all the source certificate files, accessible to only the root user.

    In these examples, the directory is /root/sat_cert.

    # mkdir /root/sat_cert
    # cd /root/sat_cert
  2. Create a private key with which to sign the Certificate Signing Request (CSR).

    Note

    If you already have a private key for the Satellite Server, skip this step.

    # openssl genrsa -out /root/sat_cert/satellite_cert_key.pem 4096
  3. Create a Certificate Signing Request (CSR)

    A Certificate Signing Request is a text file containing details of the server for which you are requesting a certificate. For this command, you provide the private key (output by the previous step), answer some questions about the Satellite Server, and the Certificate Signing Request is created.

    Note

    The certificate’s Common Name (CN) must match the fully-qualified domain name (FQDN) of the server on which it is used. If you are requesting a certificate for a Satellite Server, this is the FQDN of the Satellite Server. If you are requesting a certificate for a Capsule Server, this is the FQDN of the Capsule Server.

    To confirm a server’s FQDN, enter the following command on that server: hostname -f.

    # openssl req -new \
      -key /root/sat_cert/satellite_cert_key.pem \ 1
      -out /root/sat_cert/satellite_cert_csr.pem   2
    1
    Satellite Server’s private key, used to sign the certificate
    2
    Certificate Signing Request file

    Example Certificate Signing Request session

    You are about to be asked to enter information that will be incorporated
    into your certificate request.
    What you are about to enter is what is called a Distinguished Name or a DN.
    There are quite a few fields but you can leave some blank
    For some fields there will be a default value,
    If you enter '.', the field will be left blank.
    
    Country Name (2 letter code) [XX]:AU
    State or Province Name (full name) []:Queensland
    Locality Name (eg, city) [Default City]:Brisbane
    Organization Name (eg, company) [Default Company Ltd]:Example
    Organizational Unit Name (eg, section) []:Sales
    Common Name (eg, your name or your server's hostname) []:satellite.example.com
    Email Address []:example@example.com
    
    Please enter the following 'extra' attributes
    to be sent with your certificate request
    A challenge password []:password
    An optional company name []:Example

  4. Send the certificate request to the Certificate Authority.

    When you submit the request, be sure to specify the lifespan of the certificate. The method for sending the certificate request varies, so consult the Certificate Authority for the preferred method. In response to the request you can expect to receive a Certificate Authority bundle, and a signed certificate, in separate files.

3.4.6.2. Validate the Satellite Server’s SSL Certificate

Enter the katello-certs-check command with the required parameters as per the following example. This validates the input files required for custom certificates and outputs the commands necessary to install them on the Satellite Server, all Capsule Servers, and hosts under management with Satellite.

  1. Validate the custom SSL certificate input files. Change the files' names to match your files.

    # katello-certs-check \
       -c /root/sat_cert/satellite_cert.pem \      1
       -k /root/sat_cert/satellite_cert_key.pem \  2
       -r /root/sat_cert/satellite_cert_csr.pem \  3
       -b /root/sat_cert/ca_cert_bundle.pem        4
    1
    Certificate file for the Satellite Server, signed by your Certificate Authority
    2
    Satellite Server’s private key, used to sign the certificate
    3
    Certificate signing request file for the Satellite Server
    4
    Certificate Authority bundle

Example output of katello-certs-check

Checking expiration of certificate: [OK]
Checking expiration of CA bundle: [OK]
Validating the certificate subject= /C=AU/ST=Queensland/L=Brisbane/O=Example/OU=Sales/CN=satellite.example.com/emailAddress=example@example.com
Checking to see if the private key matches the certificate: [OK]
Checking ca bundle against the cert file: [OK]
Checking for non ascii characters[OK]

Validation succeeded.

To install the Satellite server with the following custom certificates, run:

    satellite-installer --scenario satellite\
              --certs-server-cert "/root/sat_cert/satellite_cert.pem"\
              --certs-server-cert-req "/root/sat_cert/satellite_cert_csr.pem"\
              --certs-server-key "/root/sat_cert/satellite_cert_key.pem"\
              --certs-server-ca-cert "/root/sat_cert/ca_cert_bundle.pem"

To update the certificates on a currently running Satellite installation, run:

    satellite-installer --scenario satellite\
              --certs-server-cert "/root/sat_cert/satellite_cert.pem"\
              --certs-server-cert-req "/root/sat_cert/satellite_cert_csr.pem"\
              --certs-server-key "/root/sat_cert/satellite_cert_key.pem"\
              --certs-server-ca-cert "/root/sat_cert/ca_cert_bundle.pem"\
              --certs-update-server --certs-update-server-ca

To use them inside a NEW $CAPSULE, run this command:

    capsule-certs-generate --foreman-proxy-fqdn "$CAPSULE"\
              --certs-tar  "~/$CAPSULE-certs.tar"\
              --server-cert "/root/sat_cert/satellite_cert.pem"\
              --server-cert-req "/root/sat_cert/satellite_cert_csr.pem"\
              --server-key "/root/sat_cert/satellite_cert_key.pem"\
              --server-ca-cert "/root/sat_cert/ca_cert_bundle.pem"\

To use them inside an EXISTING $CAPSULE, run this command INSTEAD:

    capsule-certs-generate --foreman-proxy-fqdn "$CAPSULE"\
              --certs-tar  "~/$CAPSULE-certs.tar"\
              --server-cert "/root/sat_cert/satellite_cert.pem"\
              --server-cert-req "/root/sat_cert/satellite_cert_csr.pem"\
              --server-key "/root/sat_cert/satellite_cert_key.pem"\
              --server-ca-cert "/root/sat_cert/ca_cert_bundle.pem"\
              --certs-update-server

3.4.6.3. Run the Satellite Installer with Custom Certificate Parameters

Now that you have created an SSL certificate and verified it is valid for use with Red Hat Satellite 6, the next step is to install the custom SSL certificate on the Satellite Server and all its hosts.

There is a minor variation to this step, depending on whether or not the Satellite Server is already installed. If it is already installed, the existing certificates must be updated with those in the certificates archive.

The commands in this section are output by the katello-certs-check command, as detailed in Section 3.4.6.2, “Validate the Satellite Server’s SSL Certificate”, and can be copied and pasted into a terminal.

  1. Enter the satellite-installer command, depending on your situation:

    1. If Satellite is already installed, enter the following command on the Satellite Server:

      # satellite-installer --scenario satellite \
      --certs-server-cert /root/sat_cert/satellite_cert.pem \
      --certs-server-cert-req /root/sat_cert/satellite_cert_csr.pem \
      --certs-server-key /root/sat_cert/satellite_cert_key.pem \
      --certs-server-ca-cert /root/sat_cert/ca_cert_bundle.pem \
      --certs-update-server --certs-update-server-ca

      Important parameters in this command include --certs-update-server and --certs-update-server-ca, which specify that the server’s SSL certificate and certificate authority are to be updated. For a brief description of all the installer’s parameters, enter the command: satellite-installer --scenario satellite --help.

      Note

      For all files in the satellite-installer command, use full path names, not relative path names. The installer records all files' paths and names, and if you enter the installer again, but from a different directory, it may fail as it is unable to find the original files.

    2. If Satellite is not already installed, enter the following command on the Satellite Server:

      # satellite-installer --scenario satellite \
      --certs-server-cert /root/sat_cert/satellite_cert.pem \
      --certs-server-cert-req /root/sat_cert/satellite_cert_csr.pem \
      --certs-server-key /root/sat_cert/satellite_cert_key.pem \
      --certs-server-ca-cert /root/sat_cert/ca_cert_bundle.pem
      Note

      For all files in the satellite-installer command, use full path names, not relative path names. The installer records all files' paths and names, and if you enter the installer again, but from a different directory, it may fail as it is unable to find the original files.

  2. Verify the certificate has been successfully installed on the Satellite Server before installing it on hosts. On a computer with network access to the Satellite Server, start a web browser, navigate to the URL https://satellite.example.com and view the certificate’s details.

3.4.6.4. Install the New Certificate on all Hosts Connected to the Satellite Server

Now that the custom SSL certificate has been installed on the Satellite Server, it must also be installed on every host registered to the Satellite Server. Enter the following commands on all applicable hosts.

  1. Delete the current katello-ca-consumer package on the host.

    # yum remove 'katello-ca-consumer*'
  2. Install the custom SSL certificate on the host.

    # yum localinstall http://satellite.example.com/pub/katello-ca-consumer-latest.noarch.rpm

3.4.7. Restricting Access to mongod

Only the apache and root users should be allowed access to the MongoDB database daemon, mongod, to reduce the risk of data loss.

Restrict access to mongod on Satellite and Capsule Servers using the following commands.

  1. Configure the Firewall.

    # firewall-cmd  --direct --add-rule ipv4 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 27017 -m owner --uid-owner apache -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv6 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 27017 -m owner --uid-owner apache -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv4 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 27017 -m owner --uid-owner root -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv6 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 27017 -m owner --uid-owner root -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv4 filter OUTPUT 1 -o lo -p \
    tcp -m tcp --dport 27017 -j DROP \
    && firewall-cmd  --direct --add-rule ipv6 filter OUTPUT 1 -o lo -p \
    tcp -m tcp --dport 27017 -j DROP \
    && firewall-cmd  --direct --add-rule ipv4 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 28017 -m owner --uid-owner apache -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv6 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 28017 -m owner --uid-owner apache -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv4 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 28017 -m owner --uid-owner root -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv6 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 28017 -m owner --uid-owner root -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv4 filter OUTPUT 1 -o lo -p \
    tcp -m tcp --dport 28017 -j DROP \
    && firewall-cmd  --direct --add-rule ipv6 filter OUTPUT 1 -o lo -p \
    tcp -m tcp --dport 28017 -j DROP
  2. Repeat the command adding the --permanent option to make the settings persistent.

    # firewall-cmd --permanent --direct --add-rule ipv4 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 27017 -m owner \
    --uid-owner apache -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv6 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 27017 -m owner \
    --uid-owner apache -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv4 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 27017 -m owner \
    --uid-owner root -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv6 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 27017 -m owner \
    --uid-owner root -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv4 filter OUTPUT 1 \
    -o lo -p tcp -m tcp --dport 27017 -j DROP \
    && firewall-cmd --permanent --direct --add-rule ipv6 filter OUTPUT 1 \
    -o lo -p tcp -m tcp --dport 27017 -j DROP \
    && firewall-cmd --permanent --direct --add-rule ipv4 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 28017 -m owner \
    --uid-owner apache -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv6 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 28017 -m owner \
    --uid-owner apache -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv4 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 28017 -m owner \
    --uid-owner root -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv6 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 28017 -m owner \
    --uid-owner root -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv4 filter OUTPUT 1 \
    -o lo -p tcp -m tcp --dport 28017 -j DROP \
    && firewall-cmd --permanent --direct --add-rule ipv6 filter OUTPUT 1 \
    -o lo -p tcp -m tcp --dport 28017 -j DROP

Chapter 4. Installing Capsule Server

Before you install Capsule Server, you should ensure that your environment meets the requirements for installation. Capsule Server has the same requirements for installation as Satellite Server, with the additional requirement that you have not configured it to use a proxy to connect to the Red Hat CDN. For more information, see Section 2.1, “System Requirements”.

4.1. Registering Capsule Server to Satellite Server

Before You Begin

  • The Satellite Server must have a manifest installed with the appropriate repositories for the organization you intend to subscribe to. The manifest must contain repositories for the Capsule’s base system as well as any clients connected to the Capsule. The repositories must be synchronized. For more information on manifests and repositories, see Managing Subscriptions in the Red Hat Satellite Content Management Guide.
  • The Satellite Server’s base system must be able to resolve the host name of the Capsule Server’s base system and vice versa.
  • You must revert any changes related to the use of proxies which prevent access to Red Hat Satellite.
  • You must have configured host and network-based firewalls. For more information, see Section 2.5, “Ports and Firewalls Requirements”.
  • You must have a Satellite Server user name and password. For more information, see Configuring External Authentication in Administering Red Hat Satellite.

Register Capsule Server to Satellite Server

  1. Install the Satellite Server’s CA certificate in the Capsule Server.

    # rpm -Uvh http://satellite.example.com/pub/katello-ca-consumer-latest.noarch.rpm
  2. Register the Capsule Server with your organization.

    # subscription-manager register --org organization_name

4.2. Identifying and Attaching the Capsule Server Subscription

After you have registered the Capsule Server, you must identify your Capsule Server subscription Pool ID. The Pool ID enables you to attach the required subscription to your Capsule Server. The Capsule Server subscription provides access to the Capsule Server content, as well as Red Hat Enterprise Linux, Red Hat Software Collections (RHSCL), and Red Hat Satellite. This is the only subscription required.

  1. Identify your Capsule Server subscription.

    # subscription-manager list --all --available

    The command displays output similar to the following:

    +-------------------------------------------+
        Available Subscriptions
    +-------------------------------------------+
    
    Subscription Name: Red Hat Satellite Capsule Server
    Provides:          Red Hat Satellite Proxy
                       Red Hat Satellite Capsule
                       Red Hat Software Collections (for RHEL Server)
                       Red Hat Satellite Capsule
                       Red Hat Enterprise Linux Server
                       Red Hat Enterprise Linux High Availability (for RHEL Server)
                       Red Hat Software Collections (for RHEL Server)
                       Red Hat Enterprise Linux Load Balancer (for RHEL Server)
    SKU:               MCT0369
    Pool ID:           9e4cc4e9b9fb407583035861bb6be501
    Available:         3
    Suggested:         1
    Service Level:     Premium
    Service Type:      L1-L3
    Multi-Entitlement: No
    Ends:              10/07/2022
    System Type:       Physical
  2. Make a note of the Pool ID so that you can attach it to your Satellite host. Your Pool ID is different than the example provided.
  3. Attach your subscription to your Capsule Server, using your Pool ID:

    # subscription-manager attach --pool=Red_Hat_Satellite_Capsule_Pool_Id

    The outputs displays something similar to the following:

    Successfully attached a subscription for: Red Hat Capsule Server
  4. To verify that the subscriptions are successfully attached, enter the following command:

    # subscription-manager list --consumed

4.3. Configuring Repositories

  1. Disable all existing repositories.

    # subscription-manager repos --disable "*"
  2. Enable the Red Hat Satellite Capsule, Red Hat Enterprise Linux, and Red Hat Software Collections repositories.

    The Red Hat Software Collections repository provides a later version of Ruby required by some Red Hat Satellite Capsule features, including the Remote Execution feature.

    # subscription-manager repos --enable rhel-7-server-rpms \
    --enable rhel-7-server-satellite-capsule-6.3-rpms \
    --enable rhel-server-rhscl-7-rpms
  3. Optionally, if your Puppet modules have been upgraded to Puppet 4, you can change from the default Puppet 3 to Puppet 4 as part of the installation process. To enable the Puppet 4 repositories.

    # subscription-manager repos \
    --enable=rhel-7-server-satellite-capsule-6.3-puppet4-rpms
  4. Clear out any metadata left from any non-Red Hat yum repositories.

    # yum clean all
  5. Verify that the repositories have been enabled.

    # yum repolist enabled

    Output similar to the following displays:

    Loaded plugins: langpacks, product-id, subscription-manager
    repo id                                            repo name                                                 status
    !rhel-7-server-rpms/7Server/x86_64                 Red Hat Enterprise Linux 7 Server (RPMs)                   7,617
    !rhel-7-server-satellite-capsule-6.3-rpms/x86_64   Red Hat Satellite Capsule 6.3(for RHEL 7 Server) (RPMs)      176
    repolist: 7,793

4.4. Synchronizing Time

You must start and enable a time synchronizer on the host operating system to minimize the effects of time drift. If a system’s time is incorrect, certificate verification can fail.

Two time synchronizers are available: NTP and chronyd. Each of these has its advantages. chronyd is recommended for systems that are frequently suspended and for systems, such as mobile and virtual systems, that intermittently disconnect and reestablish network connection. NTP is recommended for systems that are expected to remain in running states and are expected to be connected to a network without interruption.

For more information on the differences between NTP and chronyd, see Differences Between ntpd and chronyd in the Red Hat Enterprise Linux 7 System Administrator’s Guide.

Synchronizing Time using NTP

  1. Install ntp.

    # yum install ntp
  2. Verify that your NTP server is available.

    # ntpdate -q ntp_server_address
  3. Set the system time.

    # ntpdate ntp_server_address

Synchronizing Time using chronyd

  1. Install chronyd.

    # yum install chrony
  2. Start and enable the chronyd service.

    # systemctl start chronyd
    # systemctl enable chronyd

4.5. Installing Capsule Server

  1. Install the installation package.

    # yum install satellite-capsule

4.6. Performing Initial Configuration of Capsule Server

This section demonstrates a default installation of Capsule Server, including use of default certificates, DNS, and DHCP configuration. For details of more advanced configuration options, see Section 4.7, “Performing Additional Configuration on Capsule Server”.

4.6.1. Configuring Capsule Server with a Default Server Certificate

You can use the default certificate authority (CA) that comes with Capsule Server, which is used by both the server and the client SSL certificates for the authentication of subservices.

Before You Begin

Configure Capsule Server with a Default Server Certificate

  1. Create the certificates archive on Satellite Server.

    # capsule-certs-generate \
    --foreman-proxy-fqdn mycapsule.example.com \
    --certs-tar mycapsule.example.com-certs.tar
  2. Ensure that the satellite-installer package is available on the Capsule Server.
  3. Copy the generated archive .tar file from Satellite Server to Capsule Server.
  4. Enable the certificate based on the needs of your environment. For more information, see satellite-installer --scenario capsule --help.

    # satellite-installer --scenario capsule \
    --foreman-proxy-content-parent-fqdn satellite.example.com \
    --foreman-proxy-register-in-foreman true \
    --foreman-proxy-foreman-base-url https://satellite.example.com \
    --foreman-proxy-trusted-hosts satellite.example.com \
    --foreman-proxy-trusted-hosts mycapsule.example.com \
    --foreman-proxy-oauth-consumer-key UVrAZfMaCfBiiWejoUVLYCZHT2xhzuFV \
    --foreman-proxy-oauth-consumer-secret \
    ZhH8p7M577ttNU3WmUGWASag3JeXKgUX \
    --foreman-proxy-content-pulp-oauth-secret TPk42MYZ42nAE3rZvyLBh7Lxob3nEUi8 \
    --foreman-proxy-content-certs-tar mycapsule.example.com-certs.tar
Note

When network connections or ports to the Satellite are not yet open, you can set the --foreman-proxy-register-in-foreman option to false to prevent Capsule from attempting to connect to Satellite and reporting errors. Run the installer again with this option set to true when the network and firewalls are correctly configured.

4.7. Performing Additional Configuration on Capsule Server

4.7.1. Installing the katello Agent

Installing the katello agent is recommended to allow remote updates of clients. The base system of a Capsule Server is a client of Satellite Server and therefore should also have the katello agent installed.

Before You Begin

  • You must have enabled the Satellite Tools repositories in Satellite Server.
  • You must have synchronized the Satellite Tools repositories in Satellite Server.

To Install katello-agent:

  1. Log into the system.
  2. Enable the Satellite tools repository for this version of Satellite.

    # subscription-manager repos \
    --enable=rhel-7-server-satellite-tools-6.3-rpms
  3. Install the package.

    # yum install katello-agent

4.7.2. Enabling Remote Execution on Capsule Server

If you want to run commands on a Capsule Server’s hosts, ensure that you enable the remote execution.

Note

Remote execution on external Capsules is disabled by default. To use remote execution on a Capsule Server you need to enable it by running the following command:

# satellite-installer --scenario capsule \
--enable-foreman-proxy-plugin-remote-execution-ssh

4.7.3. Adding Life Cycle Environments to Capsule Servers

If your Capsule Server has content functionality enabled, you must add one or more life cycle environments to it. Adding an environment enables Capsule Server to synchronize content from Satellite Server and provide content to host systems.

Red Hat recommends that you create one or multiple life cycle environments and assign them to your Capsule Server. This ensures that Capsule receives only the repositories contained in Content Views that are promoted to the respective life cycle environments, and results in optimizing the usage of system resources.

Note

Avoid assigning the Library Lifecycle Environment to your Capsule Server as it triggers an automated Capsule sync every time a repository is updated from the CDN. This may consume multiple system resources on Capsules, network bandwidth between Satellite and Capsules, and available disk space on Capsules.

Capsule Server is configurable using Hammer CLI on Satellite Server, or through the web UI.

To add Life Cycle Environments to Capsule Servers using Hammer CLI:

  1. Log in to the Satellite Server CLI as root.
  2. Display a list of all Capsule Servers and note the ID:

    # hammer capsule list
  3. Using the ID, verify the details of your Capsule Server:

    # hammer capsule info --id capsule_id_number
  4. Verify the life cycle environments available and note the environment ID:

    # hammer capsule content available-lifecycle-environments \
    --id capsule_id_number

    Available life cycle environments are available for Capsule Server, but not currently attached.

  5. Add the life cycle environment to your Capsule Server:

    # hammer capsule content add-lifecycle-environment \
    --id capsule_id_number --environment-id environment_id_number
  6. Repeat for each life cycle environment you want to add to Capsule Server.
  7. To synchronize all content from your Satellite Server environment to Capsule Server, enter the following command:

    # hammer capsule content synchronize --id capsule_id_number
  8. To synchronize a specific life cycle environment from your Satellite Server to Capsule Server, enter the following command:

    # hammer capsule content synchronize --id external_capsule_id_number \
    --environment-id environment_id_number

For more information on working with Life Cycle Environments, see Creating an Application Life Cycle in the Red Hat Satellite Content Management Guide.

To Add Life Cycle Environments to Capsule Servers using Web UI:

  1. In the Satellite web UI, go to Infrastructure > Capsules, and select the Capsule.
  2. Click Edit.
  3. Select Env in the Life Cycle Environments tab.
  4. To synchronize capsule’s content, click the Synchronize button in the Overview tab.
  5. Select one of two options:

    • Optimized Sync
    • Complete Sync

4.7.4. Enabling Power Management on Managed Hosts

When you enable the baseboard management controller (BMC) module on the Capsule Server, you can use power management commands on managed hosts using the intelligent platform management interface (IPMI) or a similar protocol.

The BMC service on the satellite Capsule Server enables you to perform a range of power management tasks. The underlying protocol for this feature is IPMI; also referred to as the BMC function. IPMI uses a special network interface on the managed hardware that is connected to a dedicated processor that runs independently of the host’s CPUs. In many instances the BMC functionality is built into chassis-based systems as part of chassis management (a dedicated module in the chassis).

For more information on the BMC service, see Configuring an Additional Network Interface in Managing Hosts.

Before You Begin

  • All managed hosts must have a network interface, with type BMC. Satellite uses this NIC to pass the appropriate credentials to the host.

Enable Power Management on Managed Hosts

  1. Run the installer with the options to enable BMC.

    # satellite-installer --scenario capsule \
    --foreman-proxy-bmc "true" \
    --foreman-proxy-bmc-default-provider "freeipmi"

4.7.5. Configuring DNS and DHCP on Capsule Server

You can configure DNS, DHCP, and TFTP on Capsule Server.

You can also configure Capsule Server to use external DNS and DHCP services. See Chapter 5, Configuring External Services for more information.

To view a complete list of configurable options, enter the satellite-installer --scenario capsule --help command.

Before You Begin

  • You must have the correct network name (dns-interface) for the DNS server.
  • You must have the correct interface name (dhcp-interface) for the DHCP server.

Configure DNS, DHCP, and TFTP on Capsule Server

  1. Run capsule installer with the options applicable to your environment.

    The following example shows full provisioning services:

    # satellite-installer --scenario capsule \
    --foreman-proxy-tftp=true \
    --foreman-proxy-foreman-oauth-key _your_organization_key_ \
    --foreman-proxy-foreman-oauth-secret _your_organization_secret_ \
    --foreman-proxy-content-certs-tar capsule.example.com-certs.tar \
    --foreman-proxy-templates=true \
    --foreman-proxy-dhcp=true \
    --foreman-proxy-dhcp-gateway=192.168.122.1 \
    --foreman-proxy-dhcp-nameservers=192.168.122.1 \
    --foreman-proxy-dhcp-range="192.168.122.100 192.168.122.200" \
    --foreman-proxy-dhcp-interface=eth0 \
    --foreman-proxy-dns=true \
    --foreman-proxy-dns-forwarders=8.8.8.8 \
    --foreman-proxy-dns-interface=eth0 \
    --foreman-proxy-dns-zone=example.com
    
    # satellite-installer --scenario capsule \
    --foreman-proxy-dns true \
    --foreman-proxy-dns-interface eth0 \
    --foreman-proxy-dns-zone example.com \
    --foreman-proxy-dns-forwarders 172.17.13.1 \
    --foreman-proxy-dns-reverse 13.17.172.in-addr.arpa \
    --foreman-proxy-dhcp true \
    --foreman-proxy-dhcp-interface eth0 \
    --foreman-proxy-dhcp-range "172.17.13.100 172.17.13.150" \
    --foreman-proxy-dhcp-gateway 172.17.13.1 \
    --foreman-proxy-dhcp-nameservers 172.17.13.2 \
    --foreman-proxy-tftp true \
    --foreman-proxy-tftp-servername $(hostname) \
    --foreman-proxy-puppetca true

4.7.6. Configuring Capsule Server with a Custom Server Certificate

Red Hat Satellite 6 includes default SSL certificates to enable encrypted communications between the Satellite Server, Capsule Servers, and all hosts. You can replace the default certificates with custom certificates if required. For example, your company’s security policy might dictate that SSL certificates must be obtained from a specific Certificate Authority.

Prerequisites

To use custom certificates on each Capsule Server, complete these procedures:

4.7.6.1. Obtain an SSL Certificate for the Capsule Server

Important

This procedure generates PEM encoded certificates. Only PEM encoding must be used for the SSL Certificates.

Note
  • Do not use the Satellite Server’s certificate on any Capsule Server as each server’s certificate is unique.
  1. Create a directory to contain all the source certificate files, accessible to only the root user.

    # mkdir /root/capsule_cert
    # cd /root/capsule_cert

    In these examples, the directory is /root/capsule_cert. If you have multiple Capsule Servers, name the directory to match. For example, if you have Capsule Servers named capsule_apac and capsule_emea, you might create directories named capsule_apac and capsule_emea respectively. This is not required, but reduces the risk of using files from one Capsule Server on another Capsule Server.

  2. Create a private key with which to sign the Certificate Signing Request (CSR).

    Note

    If you already have a private key for the Capsule Server, skip this step.

    # openssl genrsa -out /root/capsule_cert/capsule_cert_key.pem 4096
  3. Create a Certificate Signing Request (CSR).

    A Certificate Signing Request is a text file containing details of the server for which you are requesting a certificate. For this command, you provide the private key (output by the previous step), answer some questions about the Capsule Server, and the Certificate Signing Request is stored in a file.

    Note

    The certificate’s Common Name (CN) must match the fully-qualified domain name (FQDN) of the server on which it is used.

    To confirm a server’s FQDN, enter the command hostname -f on the server.

    # openssl req -new \
      -key /root/capsule_cert/capsule_cert_key.pem \ 1
      -out /root/capsule_cert/capsule_cert_csr.pem   2
    1
    Capsule Server’s private key, used to sign the certificate
    2
    Certificate Signing Request file

    Example Certificate Signing Request session

    You are about to be asked to enter information that will be incorporated
    into your certificate request.
    What you are about to enter is what is called a Distinguished Name or a DN.
    There are quite a few fields but you can leave some blank
    For some fields there will be a default value,
    If you enter '.', the field will be left blank.
    
    Country Name (2 letter code) [XX]:AU
    State or Province Name (full name) []:Queensland
    Locality Name (eg, city) [Default City]:Brisbane
    Organization Name (eg, company) [Default Company Ltd]:Example
    Organizational Unit Name (eg, section) []:Sales
    Common Name (eg, your name or your server's hostname) []:capsule.example.com
    Email Address []:example@example.com
    
    Please enter the following 'extra' attributes
    to be sent with your certificate request
    A challenge password []:password
    An optional company name []:Example

  4. Send the certificate signing request to the Certificate Authority.

    When you submit the request, be sure to specify the lifespan of the certificate. The method for sending the certificate signing request varies, so consult the Certificate Authority for the preferred method. In response to the request you can expect to receive a Certificate Authority bundle, and a signed certificate, in separate files.

4.7.6.2. Validate the Capsule Server’s SSL Certificate

On the Satellite Server, validate the Capsule Server’s certificate input files with the katello-certs-check command. This process requires that you have copied the Capsule Server key, CSR, and SSL certificate from Capsule Server to Satellite Server.

# katello-certs-check \
   -c /root/capsule_cert/capsule_cert.pem \      1
   -k /root/capsule_cert/capsule_cert_key.pem \  2
   -r /root/capsule_cert/capsule_cert_csr.pem \  3
   -b /root/capsule_cert/ca_cert_bundle.pem      4
1
Capsule Server certificate file, provided by your Certificate Authority
2
Capsule Server’s private key, used to sign the certificate
3
Capsule Server’s certificate signing request file
4
Certificate Authority bundle, provided by your Certificate Authority

If the certificate is successfully validated, the output contains the following information.

Check private key matches the certificate: [OK]
Check ca bundle verifies the cert file: [OK]

Retain a copy of the example capsule-certs-generate command that is output by the katello-certs-check command for use in the following procedure.

Proceed to Section 4.7.6.3, “Create the Capsule Server’s Certificate Archive File”.

4.7.6.3. Create the Capsule Server’s Certificate Archive File

The Capsule Server’s installer requires the server certificates to be in an archive file. To create this file, use the capsule-certs-generate command on the Satellite Server.

The capsule-certs-generate command must be run once for every external Capsule Server. In these examples, capsule.example.com is the example FQDN and capsule_certs.tar the example archive file’s name. Replace these with values appropriate to your environment, taking care not to overwrite an existing certificate archive file. For example, if you have Capsule Servers named capsule1 and capsule2, you can name the certificate archive files capsule1_certs.tar and capsule2_certs.tar.

The capsule-certs-generate command, including parameters, is output by the katello-certs-check command in Section 3.4.6.2, “Validate the Satellite Server’s SSL Certificate”.

  1. In an editor, prepare a copy of the capsule-certs-generate command.
  2. Edit the values for --foreman-proxy-fqdn to match the Capsule Server’s FQDN, and --certs-tar to the file path and name for the certificate archive file.
  3. If the Capsule Server has not already been installed, remove the --certs-update-server parameter. This is used only to update an existing Capsule Server’s certificate.
  4. Copy the modified capsule-certs-generate command from the text editor to the terminal.
  5. Run the modified capsule-certs-generate command.

    Example capsule-certs-generate command

    # capsule-certs-generate --foreman-proxy-fqdn capsule.example.com \
    --certs-tar  /root/capsule_cert/capsule_certs.tar \
    --server-cert /root/capsule_cert/capsule_cert.pem \
    --server-cert-req /root/capsule_cert/capsule_cert_csr.pem \
    --server-key /root/capsule_cert/capsule_cert_key.pem \
    --server-ca-cert /root/sat_cert/ca_cert_bundle.pem \
    --certs-update-server

  6. On the Satellite Server, copy the certificate archive file to the Capsule Server, providing the root user’s password when prompted.

    In this example the archive file is copied to the root user’s home directory, but you may prefer to copy it elsewhere.

    # scp /root/capsule_cert/capsule_certs.tar root@capsule.example.com:

Retain a copy of the example satellite-installer command that is output by the capsule-certs-generate command for use in the following procedure.

Proceed to Section 4.7.6.4, “Install the Capsule Server’s Custom Certificate”.

4.7.6.4. Install the Capsule Server’s Custom Certificate

Warning

Complete this procedure on the Capsule Server.

To install the Capsule Server’s custom certificates, run the satellite-installer script with custom parameters. The command, including parameters, is output by the capsule-certs-generate command in Section 4.7.6.3, “Create the Capsule Server’s Certificate Archive File”.

  1. In an editor, prepare a copy of the satellite-installer command.
  2. Edit the value for --foreman-proxy-content-certs-tar to match the location of the certificates archive file.
  3. If you want to enable additional features on the Capsule Server, append their parameters to the satellite-installer command. For a description of all the installer’s parameters, enter the command satellite-installer --scenario capsule --help.
  4. Copy the modified satellite-installer command from the text editor to the terminal.
  5. Run the modified satellite-installer command.

    Example custom satellite-installer command

    # satellite-installer --scenario capsule \
    --foreman-proxy-content-parent-fqdn "satellite.example.com" \
    --foreman-proxy-register-in-foreman "true" \
    --foreman-proxy-foreman-base-url "https://satellite.example.com" \
    --foreman-proxy-trusted-hosts "satellite.example.com" \
    --foreman-proxy-trusted-hosts "capsule.example.com" \
    --foreman-proxy-oauth-consumer-key "FeQsbASvCjvvaqE6duKH6SoYZWg4jwjg" \
    --foreman-proxy-oauth-consumer-secret "7UhPXFPDBongvdTbNixbsWR5WFZsKEgF" \
    --foreman-proxy-content-pulp-oauth-secret "VpQ9587tVmYeuY4Du6VitmZpZE5vy9ac" \
    --foreman-proxy-content-certs-tar "/root/capsule_certs.tar"

Note

The satellite-installer command, as output by the capsule-certs-generate command, is unique to each Capsule Server. Do not use the same command on more than one Capsule Server.

Do NOT delete the certificates archive file (the .tar file) even after the certificates have been deployed to all relevant hosts. It is required, for example, when upgrading the Capsule Server. If the certificates archive file is not found by the installer, it fails with a message similar to the following:

[ERROR YYYY-MM-DD hh:mm:ss main]  tar -xzf /var/tmp/srvcapsule01.tar returned 2 instead of one of [0]

Proceed to Section 4.7.6.5, “Install the Capsule Server’s New Certificate on All Hosts”.

4.7.6.5. Install the Capsule Server’s New Certificate on All Hosts

Hosts which connect to an external Capsule Server require that server’s custom certificate. Run the following command on all the Capsule Server’s hosts.

Note

Use the Capsule Server’s host name, not that of the Satellite Server.

# yum -y localinstall \
http://capsule.example.com/pub/katello-ca-consumer-latest.noarch.rpm

4.7.7. Restricting Access to mongod

Only the apache and root users should be allowed access to the MongoDB database daemon, mongod, to reduce the risk of data loss.

Restrict access to mongod on Satellite and Capsule Servers using the following commands.

  1. Configure the Firewall.

    # firewall-cmd  --direct --add-rule ipv4 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 27017 -m owner --uid-owner apache -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv6 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 27017 -m owner --uid-owner apache -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv4 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 27017 -m owner --uid-owner root -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv6 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 27017 -m owner --uid-owner root -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv4 filter OUTPUT 1 -o lo -p \
    tcp -m tcp --dport 27017 -j DROP \
    && firewall-cmd  --direct --add-rule ipv6 filter OUTPUT 1 -o lo -p \
    tcp -m tcp --dport 27017 -j DROP \
    && firewall-cmd  --direct --add-rule ipv4 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 28017 -m owner --uid-owner apache -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv6 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 28017 -m owner --uid-owner apache -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv4 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 28017 -m owner --uid-owner root -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv6 filter OUTPUT 0 -o lo -p \
    tcp -m tcp --dport 28017 -m owner --uid-owner root -j ACCEPT \
    && firewall-cmd  --direct --add-rule ipv4 filter OUTPUT 1 -o lo -p \
    tcp -m tcp --dport 28017 -j DROP \
    && firewall-cmd  --direct --add-rule ipv6 filter OUTPUT 1 -o lo -p \
    tcp -m tcp --dport 28017 -j DROP
  2. Repeat the command adding the --permanent option to make the settings persistent.

    # firewall-cmd --permanent --direct --add-rule ipv4 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 27017 -m owner \
    --uid-owner apache -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv6 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 27017 -m owner \
    --uid-owner apache -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv4 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 27017 -m owner \
    --uid-owner root -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv6 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 27017 -m owner \
    --uid-owner root -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv4 filter OUTPUT 1 \
    -o lo -p tcp -m tcp --dport 27017 -j DROP \
    && firewall-cmd --permanent --direct --add-rule ipv6 filter OUTPUT 1 \
    -o lo -p tcp -m tcp --dport 27017 -j DROP \
    && firewall-cmd --permanent --direct --add-rule ipv4 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 28017 -m owner \
    --uid-owner apache -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv6 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 28017 -m owner \
    --uid-owner apache -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv4 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 28017 -m owner \
    --uid-owner root -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv6 filter OUTPUT 0 \
    -o lo -p tcp -m tcp --dport 28017 -m owner \
    --uid-owner root -j ACCEPT \
    && firewall-cmd --permanent --direct --add-rule ipv4 filter OUTPUT 1 \
    -o lo -p tcp -m tcp --dport 28017 -j DROP \
    && firewall-cmd --permanent --direct --add-rule ipv6 filter OUTPUT 1 \
    -o lo -p tcp -m tcp --dport 28017 -j DROP

Chapter 5. Configuring External Services

Some environments have existing DNS, DHCP, and TFTP services and do not need to use the Satellite Server to provide these services. If you want to use external servers to provide DNS, DHCP, or TFTP, you can configure them for use with Satellite Server.

If you want to disable these services in Satellite in order to manage them manually, see Section 3.4.4, “Disabling DNS, DHCP, and TFTP for Unmanaged Networks” for more information.

5.1. Configuring Satellite with External DNS

You can configure Satellite to use an external server to provide DNS service.

  1. Deploy a Red Hat Enterprise Linux Server and install the ISC DNS Service.

    # yum install bind bind-utils
  2. Create the configuration for the domain.

    The following example configures a domain virtual.lan as one subnet 192.168.38.0/24, a security key named foreman, and sets forwarders to Google’s public DNS addresses (8.8.8.8 and 8.8.4.4).

    # cat /etc/named.conf
    include "/etc/rndc.key";
    
    controls  {
        inet 192.168.38.2 port 953 allow { 192.168.38.1; 192.168.38.2; } keys { "capsule"; };
    };
    
    options  {
        directory "/var/named";
        forwarders { 8.8.8.8; 8.8.4.4; };
    };
    
    include "/etc/named.rfc1912.zones";
    
    zone "38.168.192.in-addr.arpa" IN {
        type master;
        file "dynamic/38.168.192-rev";
        update-policy {
            grant "capsule" zonesub ANY;
        };
    };
    
    zone "virtual.lan" IN {
        type master;
        file "dynamic/virtual.lan";
        update-policy {
            grant "capsule" zonesub ANY;
        };
    };

    The inet line must be entered as one line in the configuration file.

  3. Create a key file.

    # ddns-confgen -k capsule

    This command can take a long time to complete.

  4. Copy and paste the output from the key section into a separate file called /etc/rndc.key.

    # cat /etc/rndc.key
    key "capsule" {
            algorithm hmac-sha256;
            secret "GeBbgGoLedEAAwNQPtPh3zP56MJbkwM84UJDtaUS9mw=";
    };
    Important

    This is the key used to change DNS server configuration. Only the root user should read and write to it.

  5. Create zone files.

    # cat /var/named/dynamic/virtual.lan
    $ORIGIN .
    $TTL 10800      ; 3 hours
    virtual.lan             IN SOA  service.virtual.lan. root.virtual.lan. (
                                    9          ; serial
                                    86400      ; refresh (1 day)
                                    3600       ; retry (1 hour)
                                    604800     ; expire (1 week)
                                    3600       ; minimum (1 hour)
                                    )
                            NS      service.virtual.lan.
    $ORIGIN virtual.lan.
    $TTL 86400      ; 1 day
    capsule                 A       192.168.38.1
    service                 A       192.168.38.2
  6. Create the reverse zone file.

    # cat /var/named/dynamic/38.168.192-rev
    $ORIGIN .
    $TTL 10800      ; 3 hours
    38.168.192.in-addr.arpa IN SOA  service.virtual.lan. root.38.168.192.in-addr.arpa. (
                                    4          ; serial
                                    86400      ; refresh (1 day)
                                    3600       ; retry (1 hour)
                                    604800     ; expire (1 week)
                                    3600       ; minimum (1 hour)
                                    )
                            NS      service.virtual.lan.
    $ORIGIN 38.168.192.in-addr.arpa.
    $TTL 86400      ; 1 day
    1                PTR     capsule.virtual.lan.
    2                PTR     service.virtual.lan.

    There should be no extra non-ASCII characters.

5.2. Verifying and Starting the DNS Service

  1. Validate the syntax.

    # named-checkconf -z /etc/named.conf
  2. Start the server.

    # systemctl restart named
  3. Add a new host.

    The following uses the example host 192.168.38.2. You should change this to suit your environment.

    # echo -e "server 192.168.38.2\n \
    update add aaa.virtual.lan 3600 IN A 192.168.38.10\n \
    send\n" | nsupdate -k /etc/rndc.key
  4. Test that the DNS service can resolve the new host.

    # nslookup aaa.virtual.lan 192.168.38.2
  5. If necessary, delete the new entry.

    # echo -e "server 192.168.38.2\n \
    update delete aaa.virtual.lan 3600 IN A 192.168.38.10\n \
    send\n" | nsupdate -k /etc/rndc.key
  6. Configure the firewall for external access to the DNS service (UDP and TCP on port 53).

    # firewall-cmd --add-port="53/udp" --add-port="53/tcp" \
    && firewall-cmd --permanent --add-port="53/udp" --add-port="53/tcp"

5.3. Configuring Capsule Server with External DNS

  1. On the Red Hat Enterprise Linux Server, install the ISC DNS Service.

    # yum install bind bind-utils

    Ensure that the nsupdate utility was installed. The Capsule uses the nsupdate utility to update DNS records on the remote server.

  2. Copy the /etc/rndc.key file from the services server to the Capsule Server.

    # scp localfile username@hostname:remotefile
  3. Verify that the key file has the correct owner, permissions, and SELinux label.

    # ls /etc/rndc.key -Zla
    -rw-r-----. root named system_u:object_r:dnssec_t:s0    /etc/rndc.key
  4. Test the nsupdate utility by adding a host remotely.

    # echo -e "server 192.168.38.2\n \
    update add aaa.virtual.lan 3600 IN A 192.168.38.10\n \
    send\n" | nsupdate -k /etc/rndc.key
    # nslookup aaa.virtual.lan 192.168.38.2
    # echo -e "server 192.168.38.2\n \
    update delete aaa.virtual.lan 3600 IN A 192.168.38.10\n \
    send\n" | nsupdate -k /etc/rndc.key
  5. Run the satellite-installer script to make the following persistent changes to the /etc/foreman-proxy/settings.d/dns.yml file.

    # satellite-installer --foreman-proxy-dns=true \
    --foreman-proxy-dns-managed=false \
    --foreman-proxy-dns-provider=nsupdate \
    --foreman-proxy-dns-server="192.168.38.2" \
    --foreman-proxy-keyfile=/etc/rndc.key \
    --foreman-proxy-dns-ttl=86400
  6. Restart the foreman-proxy service.

    # systemctl restart foreman-proxy
  7. Log in to the Satellite Server web UI.
  8. Go to Infrastructure > Capsules. Locate the appropriate Capsule Server and from the Actions drop-down list, select Refresh. The DNS feature should appear.
  9. Associate the DNS service with the appropriate subnets and domain.

5.4. Configuring Satellite Server with External DHCP

You can use this section to configure your Red Hat Satellite Server to work with an external DHCP server.

To configure the DHCP server and share the DHCP configuration and lease files

  1. Deploy a Red Hat Enterprise Linux Server and install the ISC DHCP Service and Berkeley Internet Name Domain (BIND).

    # yum install dhcp bind
  2. Generate a security token in an empty directory.

    # dnssec-keygen -a HMAC-MD5 -b 512 -n HOST omapi_key

    The above command can take a long time, for less-secure proof-of-concept deployments you can use a non-blocking random number generator.

    # dnssec-keygen -r /dev/urandom -a HMAC-MD5 -b 512 -n HOST omapi_key

    This creates the key pair in two files in the current directory.

  3. Copy the secret hash from the key.

    # cat Komapi_key.+*.private |grep ^Key|cut -d ' ' -f2
  4. Edit the dhcpd configuration file for all of the subnets and add the key as in the example:

    # cat /etc/dhcp/dhcpd.conf
    default-lease-time 604800;
    max-lease-time 2592000;
    log-facility local7;
    
    subnet 192.168.38.0 netmask 255.255.255.0 {
    	range 192.168.38.10 192.168.38.100;
    	option routers 192.168.38.1;
    	option subnet-mask 255.255.255.0;
    	option domain-search "virtual.lan";
    	option domain-name "virtual.lan";
    	option domain-name-servers 8.8.8.8;
    }
    
    omapi-port 7911;
    key omapi_key {
    	algorithm HMAC-MD5;
    	secret "jNSE5YI3H1A8Oj/tkV4...A2ZOHb6zv315CkNAY7DMYYCj48Umw==";
    };
    omapi-key omapi_key;
  5. Delete the two key files from the directory where you created them.
  6. Define each subnet on the Satellite Server.

    It is recommended to set up a lease range and reservation range separately to prevent conflicts. For example, the lease range is 192.168.38.10 to 192.168.38.100 so the reservation range (defined in the Satellite web UI) is 192.168.38.101 to 192.168.38.250. Do not set DHCP Capsule for the defined Subnet yet.

  7. Configure the firewall for external access to the DHCP server.

    # firewall-cmd --add-service dhcp \
    && firewall-cmd --permanent --add-service dhcp
  8. Determine the UID and GID numbers of the foreman user on the Satellite Server.

    # id -u foreman
    993
    # id -g foreman
    990
  9. Create the same user and group with the same IDs on the DHCP server.

    # groupadd -g 990 foreman
    # useradd -u 993 -g 990 -s /sbin/nologin foreman
  10. To make the configuration files readable, restore the read and execute flags.

    # chmod o+rx /etc/dhcp/
    # chmod o+r /etc/dhcp/dhcpd.conf
    # chattr +i /etc/dhcp/ /etc/dhcp/dhcpd.conf
  11. Start the DHCP service.

    # systemctl start dhcpd
  12. Export the DHCP configuration and leases files using NFS.

    # yum install nfs-utils
    # systemctl enable rpcbind nfs-server
    # systemctl start rpcbind nfs-server nfs-lock nfs-idmapd
  13. Create the DHCP configuration and leases files to be exported using NFS.

    # mkdir -p /exports/var/lib/dhcpd /exports/etc/dhcp
  14. Add the following line to the /etc/fstab file to create mount points for the newly created directories.

    /var/lib/dhcpd /exports/var/lib/dhcpd none bind,auto 0 0
    /etc/dhcp /exports/etc/dhcp none bind,auto 0 0
  15. Mount the file systems in /etc/fstab.

    # mount -a
  16. Ensure the following lines are present in /etc/exports:

    /exports 192.168.38.1(rw,async,no_root_squash,fsid=0,no_subtree_check)
    
    /exports/etc/dhcp 192.168.38.1(ro,async,no_root_squash,no_subtree_check,nohide)
    
    /exports/var/lib/dhcpd 192.168.38.1(ro,async,no_root_squash,no_subtree_check,nohide)
  17. Reload the NFS server.

    # exportfs -rva
  18. Configure the firewall for the DHCP omapi port 7911 for the Satellite Server.

    # firewall-cmd --add-port="7911/tcp" \
    && firewall-cmd --permanent --add-port="7911/tcp"
  19. If required, configure the firewall for external access to NFS.

    Clients are configured using NFSv3.

    • Use the firewalld daemon’s NFS service to configure the firewall.

      # firewall-cmd --zone public --add-service mountd \
      && firewall-cmd --zone public --add-service rpc-bind \
      && firewall-cmd --zone public --add-service nfs \
      && firewall-cmd --permanent --zone public --add-service mountd \
      && firewall-cmd --permanent --zone public --add-service rpc-bind \
      && firewall-cmd --permanent --zone public --add-service nfs

To configure the Satellite Server

  1. Install the NFS client.

    # yum install nfs-utils
  2. Create the DHCP directories for NFS.

    # mkdir -p /mnt/nfs/etc/dhcp /mnt/nfs/var/lib/dhcpd
  3. Change the file owner.

    # chown -R foreman-proxy /mnt/nfs
  4. Verify communication with the NFS server and RPC communication paths.

    # showmount -e your_DHCP_server_FQDN
    # rpcinfo -p your_DHCP_server_FQDN
  5. Add the following lines to the /etc/fstab file:

    your_DHCP_server_FQDN:/exports/etc/dhcp /mnt/nfs/etc/dhcp nfs
    ro,vers=3,auto,nosharecache,context="system_u:object_r:dhcp_etc_t:s0" 0 0
    
    your_DHCP_server_FQDN:/exports/var/lib/dhcpd /mnt/nfs/var/lib/dhcpd nfs
    ro,vers=3,auto,nosharecache,context="system_u:object_r:dhcpd_state_t:s0" 0 0
  6. Mount the file systems on /etc/fstab.

    # mount -a
  7. Read the relevant files.

    # su foreman-proxy -s /bin/bash
    bash-4.2$ cat /mnt/nfs/etc/dhcp/dhcpd.conf
    bash-4.2$ cat /mnt/nfs/var/lib/dhcpd/dhcpd.leases
    bash-4.2$ exit
  8. Run the satellite-installer script to make the following persistent changes to the /etc/foreman-proxy/settings.d/dhcp.yml file.

    # satellite-installer --foreman-proxy-dhcp=true \
    --foreman-proxy-dhcp-provider=remote_isc \
    --foreman-proxy-plugin-dhcp-remote-isc-dhcp-config /mnt/nfs/etc/dhcp/dhcpd.conf \
    --foreman-proxy-plugin-dhcp-remote-isc-dhcp-leases /mnt/nfs/var/lib/dhcpd/dhcpd.leases \
    --foreman-proxy-plugin-dhcp-remote-isc-key-name=omapi_key \
    --foreman-proxy-plugin-dhcp-remote-isc-key-secret=jNSE5YI3H1A8Oj/tkV4...A2ZOHb6zv315CkNAY7DMYYCj48Umw== \
    --foreman-proxy-plugin-dhcp-remote-isc-omapi-port=7911 \
    --enable-foreman-proxy-plugin-dhcp-remote-isc \
    --foreman-proxy-dhcp-server=your_DHCP_server_FQDN
  9. Restart the foreman-proxy service.

    # systemctl restart foreman-proxy
  10. Log in to the Satellite Server web UI.
  11. Go to Infrastructure > Capsules. Locate the appropriate Capsule Server and from the Actions drop-down list, select Refresh. The DHCP feature should appear.
  12. Associate the DHCP service with the appropriate subnets and domain.

5.5. Configuring Capsule Server with External DHCP

You can use this section to configure your Red Hat Satellite Capsule Server to work with an external DHCP server.

Prerequisites

  • The DHCP server is configured and the DHCP configuration and lease files are shared via NFS, see Section 5.4, “Configuring Satellite Server with External DHCP” for more information.

    1. Install the NFS client.

      # yum install nfs-utils
    2. Create the DHCP directories for NFS.

      # mkdir -p /mnt/nfs/etc/dhcp /mnt/nfs/var/lib/dhcpd
    3. Change the file owner.

      # chown -R foreman-proxy /mnt/nfs
    4. Verify communication with the NFS server and RPC communication paths.

      # showmount -e your_DHCP_server_FQDN
      # rpcinfo -p your_DHCP_server_FQDN
    5. Add the following lines to the /etc/fstab file:

      your_DHCP_server_FQDN:/exports/etc/dhcp /mnt/nfs/etc/dhcp nfs
      ro,vers=3,auto,nosharecache,context="system_u:object_r:dhcp_etc_t:s0" 0 0
      
      your_DHCP_server_FQDN:/exports/var/lib/dhcpd /mnt/nfs/var/lib/dhcpd nfs
      ro,vers=3,auto,nosharecache,context="system_u:object_r:dhcpd_state_t:s0" 0 0
    6. Mount the file systems on /etc/fstab.

      # mount -a
    7. Read the relevant files.

      # su foreman-proxy -s /bin/bash
      bash-4.2$ cat /mnt/nfs/etc/dhcp/dhcpd.conf
      bash-4.2$ cat /mnt/nfs/var/lib/dhcpd/dhcpd.leases
      bash-4.2$ exit
    8. Run the satellite-installer script to make the following persistent changes to the /etc/foreman-proxy/settings.d/dhcp.yml file.

      # satellite-installer --foreman-proxy-dhcp=true \
      --foreman-proxy-dhcp-provider=remote_isc \
      --foreman-proxy-plugin-dhcp-remote-isc-dhcp-config /mnt/nfs/etc/dhcp/dhcpd.conf \
      --foreman-proxy-plugin-dhcp-remote-isc-dhcp-leases /mnt/nfs/var/lib/dhcpd/dhcpd.leases \
      --foreman-proxy-plugin-dhcp-remote-isc-key-name=omapi_key \
      --foreman-proxy-plugin-dhcp-remote-isc-key-secret=jNSE5YI3H1A8Oj/tkV4...A2ZOHb6zv315CkNAY7DMYYCj48Umw== \
      --foreman-proxy-plugin-dhcp-remote-isc-omapi-port=7911 \
      --enable-foreman-proxy-plugin-dhcp-remote-isc \
      --foreman-proxy-dhcp-server=your_DHCP_server_FQDN
    9. Restart the foreman-proxy service.

      # systemctl restart foreman-proxy
    10. Log in to the Satellite Server web UI.
    11. Go to Infrastructure > Capsules. Locate the appropriate Capsule Server and from the Actions drop-down list, select Refresh. The DHCP feature should appear.
    12. Associate the DHCP service with the appropriate subnets and domain.

5.6. Configuring Satellite Server with External TFTP

Before You Begin

Configure Satellite Server with External TFTP

  1. Install and enable the TFTP server.

    # yum install tftp-server syslinux
  2. Enable and activate the tftp.socket unit.

    # systemctl enable tftp.socket
    # systemctl start tftp.socket
  3. Configure the PXELinux environment.

    # mkdir -p /var/lib/tftpboot/{boot,pxelinux.cfg}
    # cp /usr/share/syslinux/{pxelinux.0,menu.c32,chain.c32} \
    /var/lib/tftpboot/
  4. Restore SELinux file contexts.

    # restorecon -RvF /var/lib/tftpboot/
  5. Create the TFTP directory to be exported using NFS.

    # mkdir -p /exports/var/lib/tftpboot
  6. Add the newly created mount point to the /etc/fstab file.

    /var/lib/tftpboot /exports/var/lib/tftpboot none bind,auto 0 0
  7. Mount the file systems in /etc/fstab.

    # mount -a
  8. Ensure the following lines are present in /etc/exports:

    /exports 192.168.38.1(rw,async,no_root_squash,fsid=0,no_subtree_check)
    /exports/var/lib/tftpboot 192.168.38.1(rw,async,no_root_squash,no_subtree_check,nohide)

    The first line is common to the DHCP configuration and therefore should already be present if the previous procedure was completed on this system.

  9. Reload the NFS server.

    # exportfs -rva

5.6.1. Configuring the Firewall for External Access to TFTP

  1. Configure the firewall (UDP on port 69).

    # firewall-cmd --add-port="69/udp" \
    && firewall-cmd --permanent --add-port="69/udp"

5.7. Configuring Capsule Server with External TFTP

  1. Create the TFTP directory to prepare for NFS.

    # mkdir -p /mnt/nfs/var/lib/tftpboot
  2. Add the following line in the /etc/fstab file:

    192.168.38.2:/exports/var/lib/tftpboot /mnt/nfs/var/lib/tftpboot nfs rw,vers=3,auto,nosharecache,context="system_u:object_r:tftpdir_rw_t:s0" 0 0
  3. Mount the file systems in /etc/fstab.

    # mount -a
  4. Run the satellite-installer script to make the following persistent changes to the /etc/foreman-proxy/settings.d/tftp.yml file.

    # satellite-installer --foreman-proxy-tftp=true \
    --foreman-proxy-tftp-root /mnt/nfs/var/lib/tftpboot
  5. If the TFTP service is running on a different server than the DHCP service, update the tftp_servername setting with the FQDN or IP address of that server.

    # satellite-installer --foreman-proxy-tftp-servername=new_FQDN

    This updates all configuration files with the new value.

  6. Log in to the Satellite Server web UI.
  7. Go to Infrastructure > Capsules. Locate the appropriate Capsule Server and from the Actions drop-down list, select Refresh. The TFTP feature should appear.
  8. Associate the TFTP service with the appropriate subnets and domain.

5.8. Configuring Satellite with External IdM DNS

Red Hat Satellite can be configured to use a Red Hat Identity Management (IdM) server to provide the DNS service. Two methods are described here to achieve this, both using a transaction key. For more information on Red Hat Identity Management, see the Linux Domain Identity, Authentication, and Policy Guide.

The first method is to install the IdM client which automates the process with the generic security service algorithm for secret key transaction (GSS-TSIG) technology defined in RFC3645. This method requires installing the IdM client on the Satellite Server or Capsule’s base system and having an account created by the IdM server administrator for use by the Satellite administrator. See Section 5.8.1, “Configuring Dynamic DNS Update with GSS-TSIG Authentication” to use this method.

The second method, secret key transaction authentication for DNS (TSIG), uses an rndc.key for authentication. It requires root access to the IdM server to edit the BIND configuration file, installing the BIND utility on the Satellite Server’s base system, and coping the rndc.key to between the systems. This technology is defined in RFC2845. See Section 5.8.2, “Configuring Dynamic DNS Update with TSIG Authentication” to use this method.

Note

You are not required to use Satellite to manage DNS. If you are using the Realm enrollment feature of Satellite, where provisioned hosts are enrolled automatically to IdM, then the ipa-client-install script creates DNS records for the client. The following procedure and Realm enrollment are therefore mutually exclusive. For more information on configuring Realm enrollment, see External Authentication for Provisioned Hosts in Administering Red Hat Satellite.

Determining where to install the IdM Client

When Satellite Server wants to add a DNS record for a host, it first determines which Capsule is providing DNS for that domain. It then communicates with the Capsule and adds the record. The hosts themselves are not involved in this process. This means you should install and configure the IdM client on the Satellite or Capsule that is currently configured to provide a DNS service for the domain you want to manage using the IdM server.

5.8.1. Configuring Dynamic DNS Update with GSS-TSIG Authentication

In this example, Satellite Server has the following settings.

Host name

satellite.example.com

Network

192.168.55.0/24

The IdM server has the following settings.

Host name

idm1.example.com

Domain name

example.com

Before you Begin.

  1. Confirm the IdM server is deployed and the host-based firewall has been configured correctly. For more information, see Port Requirements in the Linux Domain Identity, Authentication, and Policy Guide.
  2. Obtain an account on the IdM server with permissions to create zones on the IdM server.
  3. Confirm if the Satellite or an external Capsule is managing DNS for a domain.
  4. Confirm that the Satellite or external Capsule are currently working as expected.
  5. In the case of a newly installed system, complete the installation procedures in this guide first. In particular, DNS and DHCP configuration should have been completed.
  6. Make a backup of the answer file in case you have to revert the changes. See Section 3.3.3, “Specifying Installation Options” for more information.

Create a Kerberos Principal on the IdM Server.

  1. Ensure you have a Kerberos ticket.

    # kinit idm_user

    Where idm_user is the account created for you by the IdM administrator.

  2. Create a new Kerberos principal for the Satellite or Capsule to use to authenticate to the IdM server.

    # ipa service-add capsule/satellite.example.com

Install and Configure the IdM Client.

Do this on the Satellite or Capsule Server that is managing the DNS service for a domain.

  1. Install the IdM client package.

    # yum install ipa-client
  2. Configure the IdM client by running the installation script and following the on-screen prompts.

    # ipa-client-install
  3. Ensure you have a Kerberos ticket.

    # kinit admin
  4. Remove any preexisting keytab.

    # rm /etc/foreman-proxy/dns.keytab
  5. Get the keytab created for this system.

    # ipa-getkeytab -p capsule/satellite.example.com@EXAMPLE.COM \
    -s idm1.example.com -k /etc/foreman-proxy/dns.keytab
    Note

    When adding a keytab to a standby system with the same host name as the original system in service, add the r option to prevent generating new credentials and rendering the credentials on the original system invalid.

  6. Set the group and owner for the keytab file to foreman-proxy as follows.

    # chown foreman-proxy:foreman-proxy /etc/foreman-proxy/dns.keytab
  7. If required, check the keytab is valid.

    # kinit -kt /etc/foreman-proxy/dns.keytab \
    capsule/satellite.example.com@EXAMPLE.COM

Configure DNS Zones in the IdM web UI.

  1. Create and configure the zone to be managed:

    1. Navigate to Network Services > DNS > DNS Zones.
    2. Select Add and enter the zone name. In this example, example.com.
    3. Click Add and Edit.
    4. On the Settings tab, in the BIND update policy box, add an entry as follows to the semi-colon separated list.

      grant capsule\047satellite.example.com@EXAMPLE.COM wildcard * ANY;
    5. Ensure Dynamic update is set to True.
    6. Enable Allow PTR sync.
    7. Select Save to save the changes.
  2. Create and Configure the reverse zone.

    1. Navigate to Network Services > DNS > DNS Zones.
    2. Select Add.
    3. Select Reverse zone IP network and add the network address in CIDR format to enable reverse lookups.
    4. Click Add and Edit.
    5. On the Settings tab, in the BIND update policy box, add an entry as follows to the semi-colon separated list:

      grant capsule\047satellite.example.com@EXAMPLE.COM wildcard * ANY;
    6. Ensure Dynamic update is set to True.
    7. Select Save to save the changes.

Configure the Satellite or Capsule Server Managing the DNS Service for the Domain.

  • On a Satellite Server’s Base System.

    satellite-installer --scenario satellite \
    --foreman-proxy-dns=true \
    --foreman-proxy-dns-managed=true \
    --foreman-proxy-dns-provider=nsupdate_gss \
    --foreman-proxy-dns-server="idm1.example.com" \
    --foreman-proxy-dns-tsig-principal="capsule/satellite.example.com@EXAMPLE.COM" \
    --foreman-proxy-dns-tsig-keytab=/etc/foreman-proxy/dns.keytab \
    --foreman-proxy-dns-reverse="55.168.192.in-addr.arpa" \
    --foreman-proxy-dns-zone=example.com \
    --foreman-proxy-dns-ttl=86400
  • On a Capsule Server’s Base System.

    satellite-installer --scenario capsule \
    --foreman-proxy-dns=true \
    --foreman-proxy-dns-managed=true \
    --foreman-proxy-dns-provider=nsupdate_gss \
    --foreman-proxy-dns-server="idm1.example.com" \
    --foreman-proxy-dns-tsig-principal="capsule/satellite.example.com@EXAMPLE.COM" \
    --foreman-proxy-dns-tsig-keytab=/etc/foreman-proxy/dns.keytab \
    --foreman-proxy-dns-reverse="55.168.192.in-addr.arpa" \
    --foreman-proxy-dns-zone=example.com \
    --foreman-proxy-dns-ttl=86400

Restart the Satellite or Capsule’s Proxy Service.

# systemctl restart foreman-proxy

Update the Configuration in Satellite web UI.

After you have run the installation script to make any changes to a Capsule, instruct Satellite to scan the configuration on each affected Capsule as follows:

  1. Navigate to Infrastructure > Capsules.
  2. For each Capsule to be updated, from the Actions drop-down menu, select Refresh.
  3. Configure the domain:

    1. Go to Infrastructure > Domains and select the domain name.
    2. On the Domain tab, ensure DNS Capsule is set to the Capsule where the subnet is connected.
  4. Configure the subnet:

    1. Go to Infrastructure > Subnets and select the subnet name.
    2. On the Subnet tab, set IPAM to None.
    3. On the Domains tab, ensure the domain to be managed by the IdM server is selected.
    4. On the Capsules tab, ensure Reverse DNS Capsule is set to the Capsule where the subnet is connected.
    5. Click Submit to save the changes.

5.8.2. Configuring Dynamic DNS Update with TSIG Authentication

In this example, Satellite Server has the following settings.

IP address

192.168.25.1

Host name

satellite.example.com

The IdM server has the following settings.

Host name

idm1.example.com

IP address

192.168.25.2

Domain name

example.com

Before you Begin

  1. Confirm the IdM Server is deployed and the host-based firewall has been configured correctly. For more information, see Port Requirements in the Linux Domain Identity, Authentication, and Policy Guide.
  2. Obtain root user privileges on the IdM server.
  3. Confirm if the Satellite or an external Capsule is managing DNS for a domain.
  4. Confirm that the Satellite or external Capsule are currently working as expected.
  5. In the case of a newly installed system, complete the installation procedures in this guide first. In particular, DNS and DHCP configuration should have been completed.
  6. Make a backup of the answer file in case you have to revert the changes. See Section 3.3.3, “Specifying Installation Options” for more information.

Enabling External Updates to the DNS Zone in the IdM Server

  1. On the IdM Server, add the following to the top of the /etc/named.conf file.

    // This was added to allow Satellite Server at 192.168.25.1 to make DNS updates.
    ########################################################################
    include "/etc/rndc.key";
    controls  {
    inet 192.168.25.2 port 953 allow { 192.168.25.1; } keys { "rndc-key"; };
    };
    ########################################################################
  2. In the IdM web UI, go to Network Services > DNS > DNS Zones. Select the name of the zone. On the Settings tab:

    1. Add the following in the BIND update policy box.

      grant "rndc-key" zonesub ANY;
    2. Ensure Dynamic update is set to True.
    3. Click Update to save the changes.
  3. Copy the /etc/rndc.key file from the IdM server to a secure location for later use. Alternatively, copy it directly to Satellite’s base system as follows.

    # scp /etc/rndc.key root@satellite.example.com:/etc/rndc.key
  4. On Satellite Server, run the installation script as follows to use the external DNS server.

    # satellite-installer --scenario satellite \
    --foreman-proxy-dns=true \
    --foreman-proxy-dns-managed=false \
    --foreman-proxy-dns-provider=nsupdate \
    --foreman-proxy-dns-server="192.168.25.2" \
    --foreman-proxy-keyfile=/etc/rndc.key \
    --foreman-proxy-dns-ttl=86400

Testing External Updates to the DNS Zone in the IdM Server

  1. Install bind-utils for testing with nsupdate.

    # yum install bind-utils
  2. Ensure the key in the /etc/rndc.key file on Satellite Server is the same one as used on the IdM server.

    key "rndc-key" {
            algorithm hmac-md5;
            secret "secret-key==";
    };
  3. On Satellite Server, create a test DNS entry for a host. For example, host test.example.com with an A record of 192.168.25.20 on the IdM server at 192.168.25.1.

    # echo -e "server 192.168.25.1\n \
    update add test.example.com 3600 IN A 192.168.25.20\n \
    send\n" | nsupdate -k /etc/rndc.key
  4. On Satellite Server, test the DNS entry.

    # nslookup test.example.com 192.168.25.1
    Server:		192.168.25.1
    Address:	192.168.25.1#53
    
    Name:	test.example.com
    Address: 192.168.25.20
  5. To view the entry in the IdM web UI, go to Network Services > DNS > DNS Zones. Select the name of the zone and search for the host by name.
  6. If resolved successfully, remove the test DNS entry.

    # echo -e "server 192.168.25.1\n \
    update delete test.example.com 3600 IN A 192.168.25.20\n \
    send\n" | nsupdate -k /etc/rndc.key
  7. Confirm that the DNS entry was removed.

    # nslookup test.example.com 192.168.25.1

    The above nslookup command fails and outputs the SERVFAIL error message if the record was successfully deleted.

5.8.3. Reverting to Internal DNS Service

To revert to using Satellite Server and Capsule Server as DNS providers, follow this procedure.

On the Satellite or Capsule Server that is to manage DNS for the domain.

  • If you backed up the answer file before the change to external DNS, restore the answer file and then run the installation script:

    # satellite-installer
  • If you do not have a suitable backup of the answer file, back up the answer file now, and then run the installation script on Satellite and Capsules as described below.

    See Section 3.3.3, “Specifying Installation Options” for more information on the answer file.

To configure Satellite or Capsule as DNS server without using an answer file.

# satellite-installer \
--foreman-proxy-dns=true \
--foreman-proxy-dns-managed=true \
--foreman-proxy-dns-provider=nsupdate \
--foreman-proxy-dns-server="127.0.0.1"  \
--foreman-proxy-dns-tsig-principal="foremanproxy/satellite.example.com@EXAMPLE.COM" \
--foreman-proxy-dns-tsig-keytab=/etc/foreman-proxy/dns.keytab

See Section 4.7.5, “Configuring DNS and DHCP on Capsule Server” for more information.

Update the Configuration in Satellite web UI.

After you have run the installation script to make any changes to a Capsule, instruct Satellite to scan the configuration on each affected Capsule as follows:

  1. Navigate to Infrastructure > Capsules.
  2. For each Capsule to be updated, from the Actions drop-down menu, select Refresh.
  3. Configure the domain:

    1. Go to Infrastructure > Domains and select the domain name.
    2. On the Domain tab, ensure DNS Capsule is set to the Capsule where the subnet is connected.
  4. Configure the subnet:

    1. Go to Infrastructure > Subnets and select the subnet name.
    2. On the Subnet tab, set IPAM to DHCP or Internal DB.
    3. On the Domains tab, ensure the domain to be managed by the Satellite or Capsule is selected.
    4. On the Capsules tab, ensure Reverse DNS Capsule is set to the Capsule where the subnet is connected.
    5. Click Submit to save the changes.

Chapter 6. Uninstalling Satellite Server and Capsule Server

If you no longer need Satellite Server or Capsule Server, you can uninstall them.

6.1. Uninstalling Satellite Server

Uninstalling Satellite Server and Capsule Server erases all applications used on the target system. If you use any applications or application data for purposes other than Satellite Server, you should back up the information before the removal process.

Before you Begin

The katello-remove script issues two warnings, requiring confirmation before removing all packages and configuration files in the system.

Warning

This script erases many packages and config files, such as the following important packages:

  • httpd (apache)
  • mongodb
  • tomcat6
  • puppet
  • ruby
  • rubygems
  • All Katello and Foreman Packages

Uninstall Satellite Server

  1. Uninstall Satellite Server.

    # katello-remove

    The following message displays:

    Once these packages and configuration files are removed there is no going back.
    If you use this system for anything other than Katello and Foreman you probably
    do not want to execute this script.
    Read the source for a list of what is removed.  Are you sure(Y/N)? y
    ARE YOU SURE?: This script permanently deletes data and configuration.
    Read the source for a list of what is removed.  Type [remove] to continue? remove
    Shutting down Katello services...

6.2. Uninstalling Capsule Servers

Uninstalling Capsule Server erases all applications used on the target system. If you use any applications or application data for purposes other than Satellite Server, you must back up the information before the removal process.

Before you Begin

The katello-remove script issues two warnings, requiring confirmation before removing all packages and configuration files in the system.

Warning

This script erases packages and config files such as the following:

  • httpd (apache)
  • mongodb
  • tomcat6
  • puppet
  • ruby
  • rubygems
  • All Katello and Foreman Packages

Uninstall Capsule Server

  1. Uninstall Capsule Server.

    # katello-remove

    The following message displays:

    Once these packages and configuration files are removed there is no going back.
    If you use this system for anything other than Katello and Foreman you probably
    do not want to execute this script.
    Read the source for a list of what is removed.  Are you sure(Y/N)? y
    ARE YOU SURE?: This script permanently deletes data and configuration.
    Read the source for a list of what is removed.  Type [remove] to continue? remove
    Shutting down Katello services...

Chapter 7. Where to find more information

At the end of the initial installation and setup, you can perform additional configuration and set up your Satellite environment. You can use the following Satellite documentation resources to assist you:

Chapter 8. Running Red Hat Satellite on Amazon Web Services

Use this guide to ensure that you make all the necessary preparations for installing Red Hat Satellite Server and Capsules in Amazon Web Services (AWS) Elastic Compute Cloud (Amazon EC2).

Use the Deployment Scenarios section to understand the different architecture setups that are available for Satellite and Capsule installation on AWS.

Use the Prerequisites section to prepare your Red Hat and Amazon Web resources for the Red Hat Satellite installation.

Subscriptions

Not all subscriptions are eligible to run in public cloud environments. For more information about subscription eligibility, see the Cloud Access Page. You can create additional organizations and then import additional manifests to the organizations. For more information, see Creating an Organization in the Content Management Guide.

8.1. Use case considerations

Because Amazon Web Services is an image-only service, there are common Satellite use cases that do not work, or require extra configuration in an Amazon Web Service environment. If you plan to use Satellite on AWS, ensure that the use case scenarios that you want to use are available in an AWS environment.

8.1.1. Use Cases Known to Work

You can perform the following Red Hat Satellite use cases on AWS:

Multi-homed Satellite and Capsule

If you want Satellite to use multiple interfaces with distinct host names, you must perform additional configuration of the Satellite Server and Satellite Capsule Server CA certificates. If you want to deploy Satellite in this configuration, contact Red Hat.

You must do this when Satellite Server or Capsule Server has different internal and external DNS host names and there is no site-to-site VPN connection between the locations where you deploy Satellite Server and Capsule Server.

On demand content sources

You can use the On demand download policy to reduce the storage footprint of the Red Hat Enterprise Linux server that runs Satellite. When you set the download policy to On Demand, content syncs to the Satellite Server or Capsule Server when a content host requests it.

For more information, see Importing Red Hat Content in the Content Management Guide.

8.1.2. Use Cases that Do Not Work

In AWS, you cannot manage the DHCP. Because of this, most of Satellite Server’s kickstart and PXE provisioning models are unusable. This includes:

  • PXE Provisioning
  • Discovery and Discovery Rules
  • ISO Provisioning methods.

    • PXE-Less Discovery (iPXE)
    • Per-host ISO
    • Generic ISO
    • Full-host ISO

8.2. Deployment Scenarios

There are three deployment scenarios for Red Hat Satellite in Amazon Web Services:

  1. One region setup
  2. Connecting on-premise and AWS region
  3. Connecting different regions

Scenario 1: One region setup

aws image1

The least complex configuration of Satellite Server in Amazon Web Services consists of both the Satellite Server and the content hosts residing within the same region and within the Virtual Private Cloud (VPC).

You can also use a different availability zone.

Scenario 2: Connecting on-premise and AWS region

Create a VPN connection between the on-premise location and the AWS region where the Capsule resides.

It is also possible to use the external host name of Satellite Server when you register the instance which runs Capsule Server.

Option 1: Site-to-Site VPN connection between the AWS region and the On-Premise Datacenter

aws image2

Option 2: Direct connection using the External DNS host name

aws image3

Scenario 3: Connecting different regions

Create a site-to-site VPN connection between the different regions so that you can use the Internal DNS host name when you register the instance that runs Capsule Server to the Satellite Server.

If you do not establish a site-to-site VPN connection, use the external DNS host name when you register the instance that runs Capsule Server to the Satellite Server.

Note

Most Public Cloud Providers do not charge for data being transferred into a region, or between availability zones within a single region; however, they do charge for data leaving the region to the Internet.

Option 1: Site-to-Site VPN connection between AWS regions

aws image4

Option 2: Direct connection using the External DNS host name

aws image5

8.3. Prerequisites

Before you can install and register Red Hat Satellite and Capsule, you must set up accounts with Amazon Web Services (AWS) and create and start Red Hat Enterprise Linux instances on AWS.

8.3.1. Amazon Web Service Assumptions

To use this guide, you must have a working knowledge of the following aspects of Amazon Web Services:

  • Creating and accessing Red Hat Enterprise Linux images in AWS
  • Editing network access in AWS Security
  • Creating EC2 instances and how to create EBS volumes
  • Launching instances
  • Importing and exporting virtual machines in AWS.
  • Using AWS Direct Connect

To install Satellite and Capsule in an AWS environment, you must ensure that your AWS set up meets the Section 2.1, “System Requirements” for Satellite and Capsule.

For more information about Amazon Web Services and terminology, see Amazon Elastic Compute Cloud Documentation.

For more information about Amazon Web Services Direct Connect, see What is AWS Direct Connect?

8.3.2. Red Hat Cloud prerequisites

To use this guide, you must complete the following steps:

  • Register with Red Hat Cloud Access.
  • Migrate any Red Hat subscriptions that you want to use.
  • Create an AWS instance and deploy a Red Hat Enterprise Linux virtual machine to the instance.
  • Ensure that your subscriptions are eligible for transfer to Red Hat Cloud. For more information, see Red Hat Cloud Access Program Details.

For more information about deploying Red Hat Enterprise Linux in AWS, see How to Locate Red Hat Cloud Access Gold Images on AWS EC2.

8.3.3. Red Hat Satellite-specific prerequisites

  • Ensure that the Amazon EC2 instance type meets or exceeds the system and storage requirements in Chapter 2, Preparing your environment for installation. For the best performance, use an AWS Storage Optimized instance.
  • Use Chapter 2, Preparing your environment for installation to understand and assign the correct storage to your AWS EBS volumes.
  • Store the synced content on an EBS volume that is separate to the boot volume.
  • Mount the synced content EBS volume separately in the operating system.
  • Optional: store other data, for example, the mongodb directory on a separate EBS volume.
  • If you want the Satellite Server and Capsule Server to communicate using external DNS hostnames, open the required ports for communication in the AWS Security Group that is associated with the instance.

8.3.4. Preparing for the Red Hat Satellite Installation

In your AWS environment, complete the following steps:

  1. Launch an EC2 instance of a Red Hat Enterprise Linux AMI
  2. Connect to the newly created instance.

If you use a Red Hat Gold Image, remove the RHUI client and set the enabled parameter in the product-id.conf to 1.

# yum -y remove rh-amazon-rhui-client*
# yum clean all
# cat << EOF > /etc/yum/pluginconf.d/product-id.conf
> [main]
> enabled=1
> EOF

8.4. Installing Satellite Server on AWS

On your AWS environment, complete the following steps:

  1. Connect to the new instance.
  2. Use Chapter 3, Installing Satellite Server to install Satellite Server.

8.5. Installing Capsule on AWS

On your AWS environment, complete the following steps:

  1. Connect to the new instance.
  2. Use Chapter 4, Installing Capsule Server to install Capsule Server.

8.6. Registering Hosts to Satellite Using The Bootstrap Script

When you install Satellite Server and Capsule Server, you must then register the content hosts on EC2 instances to Satellite with the bootstrap script.

For more information about using the bootstrap script, see Registering Hosts to Satellite Using The Bootstrap Script in the User Guide.

Install the Katello Agent. For more information, see Section 4.7.1, “Installing the katello Agent”.

Appendix A. Large Deployment Considerations

Increasing the Maximum Number of File Descriptors for Apache

With more than 800 content hosts registered, Apache can reach several system-level limits, resulting in new content host registration failure. To avoid this, file descriptor limits must be increased before deploying a large number of content hosts.

  1. Create the /etc/systemd/system/httpd.service.d/limits.conf file and insert the following text:

    [Service]
    LimitNOFILE=65536
  2. Apply the changes to the unit.

    # systemctl daemon-reload
  3. Restart Katello services.

    # katello-service restart

Increasing the Maximum Number of File Descriptors for qpid

With more than 1100 content hosts with goferd running for errata updates, the qpid reach system-level limits, resulting in registration failures. To avoid this, file descriptors limits must be increased before deploying a large number of content hosts.

Increasing the Maximum Number of File Descriptors for qpid

  1. Create the /etc/systemd/system/qpidd.service.d/limits.conf file and insert the following text:

    [Service]
    LimitNOFILE=65536
  2. Apply the changes to the unit.

    # systemctl daemon-reload
    # systemctl restart qpidd.service

Increasing the Shared Buffer and Work Memory

You can increase the shared_buffer and work_mem to 256M and 4M respectively.

  1. On Red Hat Enterprise Linux 7, create the /var/lib/pgsql/data/postgresql.conf file and insert the following text:

    work_mem = 4MB
    shared_buffers = 256MB
  2. Restart postgresql services.

    # systemctl restart postgresql

Increasing Concurrent Content Host Registrations

To avoid reaching system-level limits, you can increase the global passenger queue limit to accommodate up to 250 concurrent content hosts. For more information, see Passenger Configuration in the Tuning Red Hat Satellite Guide. Follow these steps to increase the global passenger queue limit.

  1. Adjust the maximum passenger pool size to 1.5 times the physical CPU cores available to the Satellite Server.

    For example, if you have a Satellite Server with 16 cores, then the maximum passenger pool size is 24. This number is referenced as an example and you should use the number applicable to your environment.

  2. Edit the /etc/httpd/conf.d/passenger.conf file, updating the IfModule stanza to match the following text:

    <IfModule mod_passenger.c>
      PassengerRoot /usr/share/gems/gems/passenger-4.0.18/lib/phusion_passenger/locations.ini
      PassengerRuby /usr/bin/ruby
      PassengerMaxPoolSize 24
      PassengerMaxRequestQueueSize 200
      PassengerStatThrottleRate 120
    </IfModule>
  3. Edit the Foreman Passenger application configuration file /etc/httpd/conf.d/05-foreman-ssl.conf, updating the stanza starting with PassengerAppRoot to match the following text:

     PassengerAppRoot /usr/share/foreman
     PassengerRuby /usr/bin/tfm-ruby
     PassengerMinInstances 6
     PassengerStartTimeout 90
     PassengerMaxPreloaderIdleTime 0
     PassengerMaxRequests 10000
     PassengerPreStart https://example.com
  4. Edit the Puppet Passenger application configuration file /etc/httpd/conf.d/25-puppet.conf, adding the following text to the end of the virtual host definition:

     PassengerMinInstances 6
     PassengerStartTimeout 90
     PassengerMaxPreloaderIdleTime 0
     PassengerMaxRequests 10000
     PassengerPreStart https://example.com:8140
  5. Change the maximum connections in the /var/lib/pgsql/data/postgresql.conf file.

    max_connections = 500
  6. Restart postgresql services.

    # systemctl restart postgresql

Increasing the maximum number of open files for qdrouterd

With more than 1000 content hosts registered, qdrouterd can reach the default maximum number of open files. To avoid this, increase the maximum number of open files on the Satellite Server and all external Capsule Servers.

  1. Calculate the required maximum number of open files, using the following equation.

    (3 x number of content hosts) + 100

    For example, with 1020 content hosts, the new maximum should be set to 3160 ((3 x 1020) + 100).

  2. Create the file /etc/systemd/system/qdrouterd.service.d/limits.conf and add the following text.

    [Service]
    LimitNOFILE=maximum_number_of_files
    1. Apply the changes to the unit.

      # systemctl daemon-reload
    2. Restart the Satellite services.

      # katello-service restart

Appendix B. Capsule Server Scalability Considerations

The maximum number of Capsule Servers that the Satellite Server can support has no fixed limit. The tested limit is 17 Capsule Servers with 2 vCPUs on a Satellite Server with Red Hat Enterprise Linux 7. However, scalability is highly variable, especially when managing Puppet clients.

Capsule Server scalability when managing Puppet clients depends on the number of CPUs, the run-interval distribution, and the number of Puppet managed resources. The Capsule Server has a limitation of 100 concurrent Puppet agents running at any single point in time. Running more than 100 concurrent Puppet agents results in a 503 HTTP error.

For example, assuming that Puppet agent runs are evenly distributed with less than 100 concurrent Puppet agents running at any single point during a run-interval, a Capsule Server with 4 CPUs has a maximum of 1250-1600 Puppet clients with a moderate workload of 10 Puppet classes assigned to each Puppet client. Depending on the number of Puppet clients required, the Satellite installation can scale out the number of Capsule Servers to support them.

If you want to scale your Capsule Server when managing Puppet clients, the following assumptions are made:

  • There are no external Puppet clients reporting directly to the Satellite 6 integrated Capsule.
  • All other Puppet clients report directly to an external Capsule.
  • There is an evenly distributed run-interval of all Puppet agents.
Note

Deviating from the even distribution increases the risk of filling the passenger request queue. The limit of 100 concurrent requests applies.

The following table describes the scalability limits using the recommended 4 CPUs.

Table B.1. Puppet Scalability Using 4 CPUs

Puppet Managed Resources per HostRun-Interval Distribution

1

3000-2500

10

2400-2000

20

1700-1400

The following table describes the scalability limits using the minimum 2 CPUs.

Table B.2. Puppet Scalability Using 2 CPUs

Puppet Managed Resources per HostRun-Interval Distribution

1

1700-1450

10

1500-1250

20

850-700

For more information about tuning your Satellite environment for stability and scalability, see the Tuning Red Hat Satellite Guide.

Appendix C. Applying Custom Configuration to Red Hat Satellite

When you install and configure Satellite for the first time using satellite-installer, you can specify that the DNS and DHCP configuration files are not to be managed by Puppet using the installer flags --foreman-proxy-dns-managed=false and --foreman-proxy-dhcp-managed=false. If these flags are not specified during the initial installer run, rerunning of the installer overwrites all manual changes, for example, rerun for upgrade purposes. If changes are overwritten, you must run the restore procedure to restore the manual changes. For more information, see How to Restore Manual Changes Overwritten by a Puppet Run in the Installation Guide.

To view all installer flags available for custom configuration, run satellite-installer --scenario satellite --full-help. Some Puppet classes are not exposed to the Satellite installer. To manage them manually and prevent the installer from overwriting their values, specify the configuration values by adding entries to configuration file /etc/foreman-installer/custom-hiera.yaml. This configuration file is in YAML format, consisting of one entry per line in the format of <puppet class>::<parameter name>: <value>. Configuration values specified in this file persist across installer reruns.

Common examples include:

  • For Apache, to set the ServerTokens directive to only return the Product name:

    apache::server_tokens: Prod
  • To turn off the Apache server signature entirely:

    apache::server_signature: Off
  • For Pulp, to configure the number of pulp workers:

    pulp::num_workers: 8

The Puppet modules for the Satellite installer are stored under /usr/share/foreman-installer/modules and /usr/share/katello-installer-base/modules. Check the .pp files (for example: moduleName/manifests/example.pp) to look up the classes, parameters, and values. Alternatively, use the grep command to do keyword searches.

Setting some values may have unintended consequences that affect the performance or functionality of Red Hat Satellite. Consider the impact of the changes before you apply them, and test the changes in a non-production environment first. If you do not have a non-production Satellite environment, run the Satellite installer with the --noop and --verbose options. If your changes cause problems, remove the offending lines from custom-hiera.yaml and rerun the Satellite installer. If you have any specific questions about whether a particular value is safe to alter, contact Red Hat support.

C.1. How to Restore Manual Changes Overwritten by a Puppet Run

If your manual configuration has been overwritten by a Puppet run, you can restore the files to the previous state. The following example shows you how to restore a DHCP configuration file overwritten by a Puppet run.

  1. Copy the file you intend to restore. This allows you to compare the files to check for any mandatory changes required by the upgrade. This is not common for DNS or DHCP services.

    # cp /etc/dhcp/dhcpd.conf /etc/dhcp/dhcpd.backup
  2. Check the log files to note down the md5sum of the overwritten file. For example:

    # journalctl -xe
    ...
    /Stage[main]/Dhcp/File[/etc/dhcp/dhcpd.conf]: Filebucketed /etc/dhcp/dhcpd.conf to puppet with sum 622d9820b8e764ab124367c68f5fa3a1
    ...
  3. Restore the overwritten file:

    # puppet filebucket restore --local --bucket \
    /var/lib/puppet/clientbucket /etc/dhcp/dhcpd.conf \ 622d9820b8e764ab124367c68f5fa3a1
  4. Compare the backup file and the restored file, and edit the restored file to include any mandatory changes required by the upgrade.

Legal Notice

Copyright © 2018 Red Hat, Inc.
The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are the property of their respective owners.