Red Hat Satellite 6.14

Installing Capsule Server

Install and configure Capsule
Install and configure Capsule

Red Hat Satellite Documentation Team
satellite-doc-list@redhat.com
Abstract

This guide describes how to install Red Hat Satellite Capsule Server, perform initial configuration, and configure external services.
Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ... 4

CHAPTER 1. PREPARING YOUR ENVIRONMENT FOR INSTALLATION 5
 1.1. SYSTEM REQUIREMENTS .. 5
 1.2. STORAGE REQUIREMENTS .. 6
 1.3. STORAGE GUIDELINES .. 7
 1.4. SUPPORTED OPERATING SYSTEMS ... 8
 1.5. PORTS AND FIREWALLS REQUIREMENTS .. 8
 1.6. ENABLING CONNECTIONS FROM CAPSULE SERVER TO SATELLITE SERVER 12
 1.7. ENABLING CONNECTIONS FROM SATELLITE SERVER AND CLIENTS TO A CAPSULE SERVER 13

CHAPTER 2. INSTALLING CAPSULE SERVER .. 14
 2.1. REGISTERING TO SATELLITE SERVER ... 14
 2.2. ATTACHING THE SATELLITE INFRASTRUCTURE SUBSCRIPTION 15
 2.3. CONFIGURING REPOSITORIES .. 17
 2.4. INSTALLING CAPSULE SERVER PACKAGES ... 18
 2.5. SYNCHRONIZING THE SYSTEM CLOCK WITH CHRONYD 18
 2.6. CONFIGURING CAPSULE SERVER WITH SSL CERTIFICATES 18
 2.6.1. Configuring Capsule Server with a Default SSL Certificate 19
 2.6.2. Configuring Capsule Server with a Custom SSL Certificate 20
 2.6.2.1. Creating a Custom SSL Certificate for Capsule Server 20
 2.6.2.2. Deploying a Custom SSL Certificate to Capsule Server 21
 2.6.2.3. Deploying a Custom SSL Certificate to Hosts 23
 2.7. ASSIGNING THE CORRECT ORGANIZATION AND LOCATION TO CAPSULE SERVER IN THE SATELLITE WEB UI ... 23

CHAPTER 3. PERFORMING ADDITIONAL CONFIGURATION ON CAPSULE SERVER 25
 3.1. CONFIGURING CAPSULE FOR HOST REGISTRATION AND PROVISIONING 25
 3.2. ENABLING KATELLO AGENT ON EXTERNAL CAPSULES 25
 3.3. CONFIGURING REMOTE EXECUTION FOR PULL CLIENT 26
 3.4. ENABLING OPENSCAP ON CAPSULE SERVER .. 26
 3.5. ADDING LIFECYCLE ENVIRONMENTS TO CAPSULE SERVERS 27
 3.6. ENABLING POWER MANAGEMENT ON MANAGED HOSTS 28
 3.7. CONFIGURING DNS, DHCP, AND TFTP ON CAPSULE SERVER 28

CHAPTER 4. CONFIGURING CAPSULE SERVER WITH EXTERNAL SERVICES 30
 4.1. CONFIGURING CAPSULE SERVER WITH EXTERNAL DNS 30
 4.2. CONFIGURING CAPSULE SERVER WITH EXTERNAL DHCP 31
 4.2.1. Configuring an External DHCP Server to Use with Capsule Server 31
 4.2.2. Configuring Satellite Server with an External DHCP Server 33
 4.3. CONFIGURING CAPSULE SERVER WITH EXTERNAL TFTP 35
 4.4. CONFIGURING CAPSULE SERVER WITH EXTERNAL IDM DNS 35
 4.4.1. Configuring Dynamic DNS Update with GSS–TSIG Authentication 36
 4.4.2. Configuring Dynamic DNS Update with TSIG Authentication 39
 4.4.3. Reverting to Internal DNS Service ... 41

CHAPTER 5. MANAGING DHCP USING CAPSULE ... 43
 5.1. SECURING THE DHCPD API ... 43

CHAPTER 6. MANAGING DNS USING CAPSULE ... 44

APPENDIX A. CAPSULE SERVER SCALABILITY CONSIDERATIONS 45

APPENDIX B. TROUBLESHOOTING DNF MODULES ... 47
B.1. RUBY
B.2. POSTGRESQL
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Please let us know how we could make it better.

You can submit feedback by filing a ticket in Bugzilla:

1. Navigate to the Bugzilla website.
2. In the Component field, use Documentation.
3. In the Description field, enter your suggestion for improvement. Include a link to the relevant parts of the documentation.
4. Click Submit Bug.
CHAPTER 1. PREPARING YOUR ENVIRONMENT FOR INSTALLATION

1.1. SYSTEM REQUIREMENTS

The following requirements apply to the networked base operating system:

- x86_64 architecture
- The latest version of Red Hat Enterprise Linux 8
- 4-core 2.0 GHz CPU at a minimum
- A minimum of 12 GB RAM is required for Capsule Server to function. In addition, a minimum of 4 GB RAM of swap space is also recommended. Capsule running with less RAM than the minimum value might not operate correctly.
- A unique host name, which can contain lower-case letters, numbers, dots (.), and hyphens (-)
- A current Red Hat Satellite subscription
- Administrative user (root) access
- Full forward and reverse DNS resolution using a fully-qualified domain name

Satellite only supports UTF-8 encoding. If your territory is USA and your language is English, set en_US.utf-8 as the system-wide locale settings. For more information about configuring system locale in Red Hat Enterprise Linux, see Configuring System Locale guide.

Your Satellite must have the Red Hat Satellite Infrastructure Subscription manifest in your Customer Portal. Satellite must have satellite-capsule-6.x repository enabled and synced. To create, manage, and export a Red Hat Subscription Manifest in the Customer Portal, see Creating and managing manifests for a connected Satellite Server in Subscription Central.

Satellite Server and Capsule Server do not support shortnames in the hostnames. When using custom certificates, the Common Name (CN) of the custom certificate must be a fully qualified domain name (FQDN) instead of a shortname. This does not apply to the clients of a Satellite.

Before you install Capsule Server, ensure that your environment meets the requirements for installation.

WARNING

The version of Capsule must match with the version of Satellite installed. It should not be different. For example, the Capsule version 6.14 cannot be registered with the Satellite version 6.13.

Capsule Server must be installed on a freshly provisioned system that serves no other function except to run Capsule Server. The freshly provisioned system must not have the following users provided by external identity providers to avoid conflicts with the local users that Capsule Server creates:
Apache
foreman-proxy
postgres
pulp
puppet
qdrouterd
redis

For more information on scaling your Capsule Servers, see Capsule Server Scalability Considerations.

Certified Hypervisors

Capsule Server is fully supported on both physical systems and virtual machines that run on hypervisors that are supported to run Red Hat Enterprise Linux. For more information about certified hypervisors, see Certified Guest Operating Systems in Red Hat OpenStack Platform, Red Hat Virtualization, Red Hat OpenShift Virtualization and Red Hat Enterprise Linux with KVM.

SELinux Mode

SELinux must be enabled, either in enforcing or permissive mode. Installation with disabled SELinux is not supported.

FIPS Mode

You can install Satellite on a Red Hat Enterprise Linux system that is operating in FIPS mode. You cannot enable FIPS mode after the installation of Satellite. For more information, see Installing a RHEL 8 system with FIPS mode enabled in Security hardening.

NOTE

Satellite supports DEFAULT and FIPS crypto-policies. The FUTURE crypto-policy is not supported for Satellite and Capsule installations. The FUTURE policy is a stricter forward-looking security level intended for testing a possible future policy. For more information, see Using system-wide cryptographic policies in Red Hat Enterprise Linux guide.

1.2. STORAGE REQUIREMENTS

The following table details storage requirements for specific directories. These values are based on expected use case scenarios and can vary according to individual environments.

The runtime size was measured with Red Hat Enterprise Linux 6, 7, and 8 repositories synchronized.

Table 1.1. Storage Requirements for Capsule Server Installation

<table>
<thead>
<tr>
<th>Directory</th>
<th>Installation Size</th>
<th>Runtime Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>/var/lib/pulp</td>
<td>1 MB</td>
<td>300 GB</td>
</tr>
<tr>
<td>/var/lib/pgsql</td>
<td>100 MB</td>
<td>20 GB</td>
</tr>
</tbody>
</table>
1.3. STORAGE GUIDELINES

Consider the following guidelines when installing Capsule Server to increase efficiency.

- If you mount the `/tmp` directory as a separate file system, you must use the `exec` mount option in the `/etc/fstab` file. If `/tmp` is already mounted with the `noexec` option, you must change the option to `exec` and re-mount the file system. This is a requirement for the `puppetserver` service to work.

- Because most Capsule Server data is stored in the `/var` directory, mounting `/var` on LVM storage can help the system to scale.

- The `/var/lib/qpidd/` directory uses slightly more than 2 MB per Content Host managed by the `goferd` service. For example, 10 000 Content Hosts require 20 GB of disk space in `/var/lib/qpidd/`.

- Use high-bandwidth, low-latency storage for the `/var/lib/pulp/` directories. As Red Hat Satellite has many operations that are I/O intensive, using high latency, low-bandwidth storage causes performance degradation. Ensure your installation has a speed in the range 60–80 Megabytes per second.

You can use the `storage-benchmark` script to get this data. For more information on using the `storage-benchmark` script, see [Impact of Disk Speed on Satellite Operations](#).

File System Guidelines

- Do not use the GFS2 file system as the input-output latency is too high.

Log File Storage

Log files are written to `/var/log/messages/`, `/var/log/httpd/`, and `/var/lib/foreman-proxy/openscap/content/`. You can manage the size of these files using `logrotate`. For more information, see [How to use logrotate utility to rotate log files](#).

The exact amount of storage you require for log messages depends on your installation and setup.

SELinux Considerations for NFS Mount

When the `/var/lib/pulp` directory is mounted using an NFS share, SELinux blocks the synchronization process. To avoid this, specify the SELinux context of the `/var/lib/pulp` directory in the file system table by adding the following lines to `/etc/fstab`:

```
nfs.example.com:/nfsshare /var/lib/pulp nfs context="system_u:object_r:var_lib_t:s0" 1 2
```

<table>
<thead>
<tr>
<th>Directory</th>
<th>Installation Size</th>
<th>Runtime Size</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/usr</code></td>
<td>3 GB</td>
<td>Not Applicable</td>
</tr>
<tr>
<td><code>/opt/puppetlabs</code></td>
<td>500 MB</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

The size of the PostgreSQL database on your Capsule Server can grow significantly with an increasing number of lifecycle environments, content views, or repositories that are synchronized from your Satellite Server. In the largest Satellite environments, the size of `/var/lib/pgsql` on Capsule Server can grow to double or triple the size of `/var/lib/pgsql` on your Satellite Server.
If NFS share is already mounted, remount it using the above configuration and enter the following command:

```
# restorecon -R /var/lib/pulp
```

Duplicated Packages

Packages that are duplicated in different repositories are only stored once on the disk. Additional repositories containing duplicate packages require less additional storage. The bulk of storage resides in the `/var/lib/pulp/` directory. These end points are not manually configurable. Ensure that storage is available on the `/var` file system to prevent storage problems.

Symbolic links

You cannot use symbolic links for `/var/lib/pulp/`.

Synchronized RHEL ISO

If you plan to synchronize RHEL content ISOs to Satellite, note that all minor versions of Red Hat Enterprise Linux also synchronize. You must plan to have adequate storage on your Satellite to manage this.

1.4. SUPPORTED OPERATING SYSTEMS

You can install the operating system from a disc, local ISO image, kickstart, or any other method that Red Hat supports. Red Hat Capsule Server is supported on the latest version of Red Hat Enterprise Linux 8 that is available at the time when Capsule Server is installed. Previous versions of Red Hat Enterprise Linux including EUS or z-stream are not supported.

The following operating systems are supported by the installer, have packages, and are tested for deploying Satellite:

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Architecture</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8</td>
<td>x86_64 only</td>
<td></td>
</tr>
</tbody>
</table>

Before you install Satellite, apply all operating system updates if possible.

Red Hat Capsule Server requires a Red Hat Enterprise Linux installation with the `@Base` package group with no other package-set modifications, and without third-party configurations or software not directly necessary for the direct operation of the server. This restriction includes hardening and other non-Red Hat security software. If you require such software in your infrastructure, install and verify a complete working Capsule Server first, then create a backup of the system before adding any non-Red Hat software.

Install Capsule Server on a freshly provisioned system.

Do not register Capsule Server to the Red Hat Content Delivery Network (CDN).

Red Hat does not support using the system for anything other than running Capsule Server.

1.5. PORTS AND FIREWALLS REQUIREMENTS
For the components of Satellite architecture to communicate, ensure that the required network ports are open and free on the base operating system. You must also ensure that the required network ports are open on any network-based firewalls.

The installation of a Capsule Server fails if the ports between Satellite Server and Capsule Server are not open before installation starts.

Use this information to configure any network-based firewalls. Note that some cloud solutions must be specifically configured to allow communications between machines because they isolate machines similarly to network-based firewalls. If you use an application-based firewall, ensure that the application-based firewall permits all applications that are listed in the tables and known to your firewall. If possible, disable the application checking and allow open port communication based on the protocol.

Integrated Capsule

Satellite Server has an integrated Capsule and any host that is directly connected to Satellite Server is a Client of Satellite in the context of this section. This includes the base operating system on which Capsule Server is running.

Clients of Capsule

Hosts which are clients of Capsules, other than Satellite’s integrated Capsule, do not need access to Satellite Server. For more information on Satellite Topology, see Capsule Networking in Satellite Overview, Concepts, and Deployment Considerations.

Required ports can change based on your configuration.

The following tables indicate the destination port and the direction of network traffic:

Table 1.3. Capsule incoming traffic

<table>
<thead>
<tr>
<th>Destination Port</th>
<th>Protocol</th>
<th>Service</th>
<th>Source</th>
<th>Required For</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>TCP and UDP</td>
<td>DNS</td>
<td>DNS Servers and clients</td>
<td>Name resolution</td>
<td>DNS (optional)</td>
</tr>
<tr>
<td>67</td>
<td>UDP</td>
<td>DHCP</td>
<td>Client</td>
<td>Dynamic IP</td>
<td>DHCP (optional)</td>
</tr>
<tr>
<td>69</td>
<td>UDP</td>
<td>TFTP</td>
<td>Client</td>
<td>TFTP Server (optional)</td>
<td></td>
</tr>
<tr>
<td>443, 80</td>
<td>TCP</td>
<td>HTTPS, HTTP</td>
<td>Client</td>
<td>Content Retrieval</td>
<td>Content</td>
</tr>
<tr>
<td>443, 80</td>
<td>TCP</td>
<td>HTTPS, HTTP</td>
<td>Client</td>
<td>Content Host Registration</td>
<td>Capsule CA RPM installation</td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>HTTPS</td>
<td>Red Hat Satellite</td>
<td>Content Mirroring</td>
<td>Management</td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>HTTPS</td>
<td>Red Hat Satellite</td>
<td>Capsule API</td>
<td>Smart Proxy functionality</td>
</tr>
<tr>
<td>Destination Port</td>
<td>Protocol</td>
<td>Service</td>
<td>Source</td>
<td>Required For</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>HTTPS</td>
<td>Client</td>
<td>Content Host registration</td>
<td>Initiation, Uploading facts, Sending installed packages and traces</td>
</tr>
<tr>
<td>1883</td>
<td>TCP</td>
<td>MQTT</td>
<td>Client</td>
<td>Pull based REX (optional)</td>
<td>Content hosts for REX job notification (optional)</td>
</tr>
<tr>
<td>5646, 5647</td>
<td>TCP</td>
<td>AMQP</td>
<td>Client</td>
<td>Goferd message bus</td>
<td>Forward message to client (optional), Katello agent to communicate with Qpid dispatcher</td>
</tr>
<tr>
<td>8000</td>
<td>TCP</td>
<td>HTTP</td>
<td>Client</td>
<td>Provisioning templates</td>
<td>Template retrieval for client installers, iPXE or UEFI HTTP Boot</td>
</tr>
<tr>
<td>8000</td>
<td>TCP</td>
<td>HTTP</td>
<td>Client</td>
<td>PXE Boot</td>
<td>Installation</td>
</tr>
<tr>
<td>8140</td>
<td>TCP</td>
<td>HTTPS</td>
<td>Client</td>
<td>Puppet agent</td>
<td>Client updates (optional)</td>
</tr>
<tr>
<td>8443</td>
<td>TCP</td>
<td>HTTPS</td>
<td>Client</td>
<td>Content Host registration</td>
<td>Deprecated and only needed for Client hosts deployed before upgrades</td>
</tr>
<tr>
<td>9090</td>
<td>TCP</td>
<td>HTTPS</td>
<td>Client</td>
<td>Register Endpoint</td>
<td>Client registration with an external Capsule Server</td>
</tr>
<tr>
<td>9090</td>
<td>TCP</td>
<td>HTTPS</td>
<td>Client</td>
<td>OpenSCAP</td>
<td>Configure Client</td>
</tr>
<tr>
<td>9090</td>
<td>TCP</td>
<td>HTTPS</td>
<td>Discovered Node</td>
<td>Discovery</td>
<td>Host discovery and provisioning</td>
</tr>
<tr>
<td>9090</td>
<td>TCP</td>
<td>HTTPS</td>
<td>Red Hat Satellite</td>
<td>Capsule API</td>
<td>Capsule functionality</td>
</tr>
</tbody>
</table>
Any managed host that is directly connected to Satellite Server is a client in this context because it is a client of the integrated Capsule. This includes the base operating system on which a Capsule Server is running.

A DHCP Capsule performs ICMP ping and TCP echo connection attempts to hosts in subnets with DHCP IPAM set to find out if an IP address considered for use is free. This behavior can be turned off using `satellite-installer --foreman-proxy-dhcp-ping-free-ip=false`.

Table 1.4. Capsule outgoing traffic

<table>
<thead>
<tr>
<th>Destination Port</th>
<th>Protocol</th>
<th>Service</th>
<th>Destination</th>
<th>Required For</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ICMP</td>
<td>ping</td>
<td>Client</td>
<td>DHCP</td>
<td>Free IP checking (optional)</td>
</tr>
<tr>
<td>7</td>
<td>TCP</td>
<td>echo</td>
<td>Client</td>
<td>DHCP</td>
<td>Free IP checking (optional)</td>
</tr>
<tr>
<td>22</td>
<td>TCP</td>
<td>SSH</td>
<td>Target host</td>
<td>Remote execution</td>
<td>Run jobs</td>
</tr>
<tr>
<td>53</td>
<td>TCP and UDP</td>
<td>DNS</td>
<td>DNS Servers on the Internet</td>
<td>DNS Server</td>
<td>Resolve DNS records (optional)</td>
</tr>
<tr>
<td>53</td>
<td>TCP and UDP</td>
<td>DNS</td>
<td>DNS Server</td>
<td>Capsule DNS</td>
<td>Validation of DNS conflicts (optional)</td>
</tr>
<tr>
<td>68</td>
<td>UDP</td>
<td>DHCP</td>
<td>Client</td>
<td>Dynamic IP</td>
<td>DHCP (optional)</td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>HTTPS</td>
<td>Satellite</td>
<td>Capsule</td>
<td>Capsule Configuration management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Template retrieval</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OpenSCAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Remote Execution result upload</td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>HTTPS</td>
<td>Red Hat Portal</td>
<td>SOS report</td>
<td>Assisting support cases (optional)</td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>HTTPS</td>
<td>Satellite</td>
<td>Content</td>
<td>Sync</td>
</tr>
<tr>
<td>443</td>
<td>TCP</td>
<td>HTTPS</td>
<td>Satellite</td>
<td>Client communication</td>
<td>Forward requests from Client to Satellite</td>
</tr>
</tbody>
</table>
When using Infoblox for DHCP, management of the DHCP leases (optional)

BMC On/Off/Cycle/Status

Forward message to Qpid dispatch router on Capsule (optional)

The DHCP target is configured using --foreman-proxy-dhcp-server and defaults to localhost

ISC and remote_isc use a configurable port that defaults to 7911 and uses OMAPI

Capsule sends reboot command to the discovered host (optional)

NOTE

ICMP to Port 7 UDP and TCP must not be rejected, but can be dropped. The DHCP Capsule sends an ECHO REQUEST to the Client network to verify that an IP address is free. Any response will prevent IP addresses being allocated.

1.6. ENABLING CONNECTIONS FROM CAPSULE SERVER TO SATELLITE SERVER

On Satellite Server, you must enable the incoming connection from Capsule Server to Satellite Server and make this rule persistent across reboots.

Prerequisites
Ensure that the firewall rules on Satellite Server are configured to enable connections for client to Satellite communication, because Capsule Server is a client of Satellite Server. For more information, see Enabling Connections from a Client to Satellite Server in Installing Satellite Server in a Connected Network Environment.

Procedure

1. On Satellite Server, enter the following command to open the port for Capsule to Satellite communication:

```
# firewall-cmd --add-port="5646/tcp"
```

2. Make the changes persistent:

```
# firewall-cmd --runtime-to-permanent
```

1.7. ENABLING CONNECTIONS FROM SATELLITE SERVER AND CLIENTS TO A CAPSULE SERVER

On the base operating system on which you want to install Capsule, you must enable incoming connections from Satellite Server and clients to Capsule Server and make these rules persistent across reboots.

Procedure

1. On the base operating system on which you want to install Capsule, enter the following command to open the ports for Satellite Server and clients communication to Capsule Server:

```
# firewall-cmd \
--add-port="53/udp" --add-port="53/tcp" \
--add-port="67/udp" \
--add-port="69/udp" \
--add-port="80/tcp" --add-port="443/tcp" \
--add-port="5647/tcp" \
--add-port="8000/tcp" \
--add-port="8140/tcp" \
--add-port="8443/tcp" \
--add-port="9090/tcp"
```

2. Make the changes persistent:

```
# firewall-cmd --runtime-to-permanent
```

Verification

- Enter the following command:

```
# firewall-cmd --list-all
```

For more information, see Using and Configuring firewalld in Red Hat Enterprise Linux 8 Securing networks.
CHAPTER 2. INSTALLING CAPSULE SERVER

Before you install Capsule Server, you must ensure that your environment meets the requirements for installation. For more information, see Preparing your Environment for Installation.

2.1. REGISTERING TO SATELLITE SERVER

Use this procedure to register the base operating system on which you want to install Capsule Server to Satellite Server.

Red Hat Subscription Manifest Prerequisites

- On Satellite Server, a manifest must be installed and it must contain the appropriate repositories for the organization you want Capsule to belong to.
- The manifest must contain repositories for the base operating system on which you want to install Capsule, as well as any clients that you want to connect to Capsule.
- The repositories must be synchronized.

For more information on manifests and repositories, see Managing Red Hat Subscriptions in Managing Content.

Proxy and Network Prerequisites

- The Satellite Server base operating system must be able to resolve the host name of the Capsule base operating system and vice versa.
- Ensure HTTPS connection using client certificate authentication is possible between Capsule Server and Satellite Server. HTTP proxies between Capsule Server and Satellite Server are not supported.
- You must configure the host and network-based firewalls accordingly. For more information, see Ports and Firewalls Requirements. You can register hosts with Satellite using the host registration feature in the Satellite web UI, Hammer CLI, or the Satellite API. For more information, see Registering Hosts in Managing Hosts.

Procedure

1. In the Satellite web UI, navigate to Hosts > Register Host.

2. From the Activation Keys list, select the activation keys to assign to your host.

3. Click Generate to create the registration command.

4. Click on the files icon to copy the command to your clipboard.

5. Connect to your host using SSH and run the registration command.

6. Check the /etc/yum.repos.d/redhat.repo file and ensure that the appropriate repositories have been enabled.

CLI procedure

1. Generate the host registration command using the Hammer CLI:
If your hosts do not trust the SSL certificate of Satellite Server, you can disable SSL validation by adding the \texttt{--insecure} flag to the registration command.

API procedure

1. Generate the host registration command using the Satellite API:

 \begin{verbatim}
 # curl -X POST https://satellite.example.com/api/registration_commands \
 --user "My_User_Name" \
 -H 'Content-Type: application/json' \
 -d '{ "registration_command": { "activation_keys": ["My_Activation_Key_1, My_Activation_Key_2"] } }'
 \end{verbatim}

 If your hosts do not trust the SSL certificate of Satellite Server, you can disable SSL validation by adding the \texttt{--insecure} flag to the registration command.

 \begin{verbatim}
 # curl -X POST https://satellite.example.com/api/registration_commands \
 --user "My_User_Name" \
 -H 'Content-Type: application/json' \
 -d '{ "registration_command": { "activation_keys": ["My_Activation_Key_1, My_Activation_Key_2"], "insecure": true } }'
 \end{verbatim}

 Use an activation key to simplify specifying the environments. For more information, see \texttt{Managing Activation Keys} in \textit{Managing Content}.

 To enter a password as a command line argument, use \texttt{username:password} syntax. Keep in mind this can save the password in the shell history. Alternatively, you can use a temporary personal access token instead of a password. To generate a token in the Satellite web UI, navigate to \texttt{My Account > Personal Access Tokens}.

2. Connect to your host using SSH and run the registration command.

3. Check the \texttt{/etc/yum.repos.d/redhat.repo} file and ensure that the appropriate repositories have been enabled.

\section*{2.2. ATTACHING THE SATELLITE INFRASTRUCTURE SUBSCRIPTION}
NOTE

Skip this step if you have SCA enabled on Satellite. There is no requirement of attaching the Red Hat Satellite Infrastructure Subscription to the Capsule Server using subscription-manager. For more information about SCA, see Simple Content Access.

After you have registered Capsule Server, you must identify your subscription Pool ID and attach an available subscription. The Red Hat Satellite Infrastructure subscription provides access to the Red Hat Satellite and Red Hat Enterprise Linux content.

Red Hat Satellite Infrastructure is included with all subscriptions that include Satellite, formerly known as Smart Management. For more information, see Satellite Infrastructure Subscriptions MCT3718 MCT3719 in the Red Hat Knowledgebase.

Subscriptions are classified as available if they are not already attached to a system. If you are unable to find an available Satellite subscription, see the Red Hat Knowledgebase solution How do I figure out which subscriptions have been consumed by clients registered under Red Hat Subscription Manager? to run a script to see if another system is consuming your subscription.

Procedure

1. Identify the Pool ID of the Satellite Infrastructure subscription:

```bash
# subscription-manager list --all --available --matches 'Red Hat Satellite Infrastructure Subscription'
```

The command displays output similar to the following:

```
Subscription Name:   Red Hat Satellite Infrastructure Subscription
Provides:            Red Hat Satellite
                      Red Hat Software Collections (for RHEL Server)
                      Red Hat CodeReady Linux Builder for x86_64
                      Red Hat Satellite Capsule
                      Red Hat Ansible Engine
                      Red Hat Satellite with Embedded Oracle
                      Red Hat Satellite 5 Managed DB
                      Red Hat Enterprise Linux Load Balancer (for RHEL Server)
                      Red Hat Beta
                      Red Hat Software Collections Beta (for RHEL Server)
                      Red Hat Enterprise Linux Server
                      Red Hat Enterprise Linux for x86_64
                      Red Hat Satellite Proxy
                      Red Hat Enterprise Linux High Availability for x86_64
                      Red Hat Discovery
SKU:                 MCT3718
Contract:
Pool ID:             8aca43dd771bf31101771c0231f906a5
Provides Management: Yes
Available:           10
Suggested:           1
Service Type:        L1-L3
Roles:               
Service Level:       Premium
Usage:               
Add-ons:             
```
2. Make a note of the subscription Pool ID. Your subscription Pool ID is different from the example provided.

3. Attach the Satellite Infrastructure subscription to the base operating system that your Capsule Server is running on. If SCA is enabled on Satellite Server, you can skip this step:

   ```sh
   # subscription-manager attach --pool=pool_id
   ```

 The command displays output similar to the following:

   ```
   Successfully attached a subscription for: Red Hat Satellite Infrastructure Subscription
   ```

4. Optional: Verify that the Satellite Infrastructure subscription is attached:

   ```sh
   # subscription-manager list --consumed
   ```

2.3. CONFIGURING REPOSITORIES

Use this procedure to enable the repositories that are required to install Capsule Server.

1. Disable all repositories:

   ```sh
   # subscription-manager repos --disable "*"
   ```

2. Enable the following repositories:

   ```sh
   # subscription-manager repos --enable=rhel-8-for-x86_64-baseos-rpms \
   --enable=rhel-8-for-x86_64-appstream-rpms \
   --enable=satellite-capsule-6.14-for-rhel-8-x86_64-rpms \
   --enable=satellite-maintenance-6.14-for-rhel-8-x86_64-rpms
   ```

3. Enable the module:

   ```sh
   # dnf module enable satellite-capsule:el8
   ```

NOTE

If there is any warning about conflicts with Ruby or PostgreSQL while enabling `satellite-capsule:el8` module, see [Troubleshooting DNF modules](#). For more information about modules and lifecycle streams on Red Hat Enterprise Linux 8, see [Red Hat Enterprise Linux Application Streams Life Cycle](#).
NOTE
If you are installing Capsule Server as a virtual machine hosted on Red Hat Virtualization, you must also enable the Red Hat Common repository, and install Red Hat Virtualization guest agents and drivers. For more information, see Installing the Guest Agents and Drivers on Red Hat Enterprise Linux in the Virtual Machine Management Guide.

4. Optional: Verify that the required repositories are enabled:

 # dnf repolist enabled

2.4. INSTALLING CAPSULE SERVER PACKAGES

Before installing Capsule Server packages, you must update all packages that are installed on the base operating system.

Procedure
To install Capsule Server, complete the following steps:

1. Update all packages:

 # dnf update

2. Install the Satellite Server packages:

 # dnf install satellite-capsule

2.5. SYNCHRONIZING THE SYSTEM CLOCK WITH CHRONYD

To minimize the effects of time drift, you must synchronize the system clock on the base operating system on which you want to install Capsule Server with Network Time Protocol (NTP) servers. If the base operating system clock is configured incorrectly, certificate verification might fail.

For more information about the chrony suite, see Using the Chrony suite to configure NTP in Red Hat Enterprise Linux 8 Configuring basic system settings.

Procedure

1. Install the chrony package:

 # dnf install chrony

2. Start and enable the chronyd service:

 # systemctl enable --now chronyd

2.6. CONFIGURING CAPSULE SERVER WITH SSL CERTIFICATES
Red Hat Satellite uses SSL certificates to enable encrypted communications between Satellite Server, external Capsule Servers, and all hosts. Depending on the requirements of your organization, you must configure your Capsule Server with a default or custom certificate.

- If you use a default SSL certificate, you must also configure each external Capsule Server with a distinct default SSL certificate. For more information, see Section 2.6.1, “Configuring Capsule Server with a Default SSL Certificate”.

- If you use a custom SSL certificate, you must also configure each external Capsule Server with a distinct custom SSL certificate. For more information, see Section 2.6.2, “Configuring Capsule Server with a Custom SSL Certificate”.

2.6.1. Configuring Capsule Server with a Default SSL Certificate

Use this section to configure Capsule Server with an SSL certificate that is signed by Satellite Server default Certificate Authority (CA).

Prerequisites

- Capsule Server is registered to Satellite Server. For more information, see Registering to Satellite Server.

- Capsule Server packages are installed. For more information, see Installing Capsule Server Packages.

Procedure

1. On Satellite Server, to store all the source certificate files for your Capsule Server, create a directory that is accessible only to the root user, for example /root/capsule_cert:

   ```bash
   # mkdir /root/capsule_cert
   ```

2. On Satellite Server, generate the /root/capsule_cert/capsule.example.com-certs.tar certificate archive for your Capsule Server:

   ```bash
   # capsule-certs-generate
   --foreman-proxy-fqdn capsule.example.com
   --certs-tar /root/capsule_cert/capsule.example.com-certs.tar
   ```

 Retain a copy of the satellite-installer command that the capsule-certs-generate command returns for deploying the certificate to your Capsule Server.

Example output of capsule-certs-generate

```bash
output omitted
satellite-installer --scenario capsule
--certs-tar-file "/root/capsule_cert/capsule.example.com-certs.tar"
--foreman-proxy-register-in-foreman "true"
--foreman-proxy-foreman-base-url "https://satellite.example.com"
--foreman-proxy-trusted-hosts "satellite.example.com"
--foreman-proxy-trusted-hosts "capsule.example.com"
--foreman-proxy-oauth-consumer-key "s97QxvUAaFNAQZNGg4F9zLq2biDsxM7F"
--foreman-proxy-oauth-consumer-secret "6bpzAdMqRAfYaVZtaepYetomgBVQ6ehY"
```
3. On Satellite Server, copy the certificate archive file to your Capsule Server:

```
# scp /root/capsule_cert/capsule.example.com-cert.tar
  root@capsule.example.com:/root/capsule.example.com-cert.tar
```

4. On Capsule Server, to deploy the certificate, enter the `satellite-installer` command that the `capsule-certs-generate` command returns.

When network connections or ports to Satellite are not yet open, you can set the `--foreman-proxy-register-in-foreman` option to `false` to prevent Capsule from attempting to connect to Satellite and reporting errors. Run the installer again with this option set to `true` when the network and firewalls are correctly configured.

IMPORTANT

Do not delete the certificate archive file after you deploy the certificate. It is required, for example, when upgrading Capsule Server.

2.6.2. Configuring Capsule Server with a Custom SSL Certificate

If you configure Satellite Server to use a custom SSL certificate, you must also configure each of your external Capsule Servers with a distinct custom SSL certificate.

To configure your Capsule Server with a custom certificate, complete the following procedures on each Capsule Server:

1. Section 2.6.2.1, "Creating a Custom SSL Certificate for Capsule Server"

2. Section 2.6.2.2, "Deploying a Custom SSL Certificate to Capsule Server"

3. Section 2.6.2.3, "Deploying a Custom SSL Certificate to Hosts"

2.6.2.1. Creating a Custom SSL Certificate for Capsule Server

On Satellite Server, create a custom certificate for your Capsule Server. If you already have a custom SSL certificate for Capsule Server, skip this procedure.

Procedure

1. To store all the source certificate files, create a directory that is accessible only to the `root` user:

   ```
   # mkdir /root/capsule_cert
   ```

2. Create a private key with which to sign the certificate signing request (CSR).
 Note that the private key must be unencrypted. If you use a password-protected private key, remove the private key password.

 If you already have a private key for this Capsule Server, skip this step.

   ```
   # openssl genrsa -out /root/capsule_cert/capsule_cert_key.pem 4096
   ```

3. Create the `/root/capsule_cert/openssl.cnf` configuration file for the CSR and include the following content:

   ```
   [ req ]
   ```
req_extensions = v3_req
distinguished_name = req_distinguished_name
x509_extensions = usr_cert
prompt = no

[req_distinguished_name]
CN = capsule.example.com

[v3_req]
basicConstraints = CA:FALSE
keyUsage = digitalSignature, nonRepudiation, keyEncipherment, dataEncipherment
extendedKeyUsage = serverAuth, clientAuth, codeSigning, emailProtection
subjectAltName = @alt_names

[usr_cert]
basicConstraints=CA:FALSE
nsCertType = client, server, email
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth, clientAuth, codeSigning, emailProtection
nsComment = "OpenSSL Generated Certificate"
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid,issuer

[alt_names]
DNS.1 = capsule.example.com

4. Generate CSR:

 # openssl req -new \
 -key /root/capsule_cert/capsule_cert_key.pem \1
 -config /root/capsule_cert/openssl.cnf \2
 -out /root/capsule_cert/capsule_cert_csr.pem \3

1. Path to the private key.
2. Path to the configuration file.
3. Path to the CSR to generate.

5. Send the certificate signing request to the certificate authority (CA). The same CA must sign certificates for Satellite Server and Capsule Server.

 When you submit the request, specify the lifespan of the certificate. The method for sending the certificate request varies, so consult the CA for the preferred method. In response to the request, you can expect to receive a CA bundle and a signed certificate, in separate files.

2.6.2.2. Deploying a Custom SSL Certificate to Capsule Server

Use this procedure to configure your Capsule Server with a custom SSL certificate signed by a Certificate Authority. The **satellite-installer** command, which the **capsule-certs-generate** command returns, is unique to each Capsule Server. Do not use the same command on more than one Capsule Server.

Prerequisites
Satellite Server is configured with a custom certificate. For more information, see Configuring Satellite Server with a Custom SSL Certificate in Installing Satellite Server in a Connected Network Environment.

Capsule Server is registered to Satellite Server. For more information, see Registering to Satellite Server.

Capsule Server packages are installed. For more information, see Installing Capsule Server Packages.

Procedure

1. On your Satellite Server, validate the custom SSL certificate input files:

```bash
# katello-certs-check \
-t capsule \
-c /root/capsule_cert/capsule_cert.pem 1 \n-k /root/capsule_cert/capsule_cert_key.pem 2 \n-b /root/capsule_cert/ca_cert_bundle.pem 3
```

1. Path to Capsule Server certificate file that is signed by a Certificate Authority.
2. Path to the private key that was used to sign Capsule Server certificate.
3. Path to the Certificate Authority bundle.

If you set a wildcard value * for the certificate’s Common Name CN = in the /root/capsule_cert/openssl.cnf configuration file, you must add the -t capsule option to the katello-certs-check command.

If the command is successful, it returns two capsule-certs-generate commands, one of which you must use to generate the certificate archive file for your Capsule Server.

Example output of katello-certs-check

Validation succeeded.

To use them inside a NEW $CAPSULE, run this command:
capsule-certs-generate --foreman-proxy-fqdn "$CAPSULE" \
--certs-tar "~/CAPSULE-certs.tar" \
--server-cert "/root/capsule_cert/capsule_cert.pem" \
--server-key "/root/capsule_cert/capsule_cert_key.pem" \
--server-ca-cert "/root/capsule_cert/ca_cert_bundle.pem"

To use them inside an EXISTING $CAPSULE, run this command INSTEAD:
capsule-certs-generate --foreman-proxy-fqdn "$CAPSULE" \
--certs-tar "~/CAPSULE-certs.tar" \
--server-cert "/root/capsule_cert/capsule_cert.pem" \
--server-key "/root/capsule_cert/capsule_cert_key.pem" \
--server-ca-cert "/root/capsule_cert/ca_cert_bundle.pem" \
--certs-update-server
2. On your Satellite Server, from the output of the `katello-certs-check` command, depending on your requirements, enter the `capsule-certs-generate` command that generates a certificate for a new or existing Capsule.
 In this command, change `CAPSULE` to the FQDN of your Capsule Server.

3. Retain a copy of the `satellite-installer` command that the `capsule-certs-generate` command returns for deploying the certificate to your Capsule Server.

 Example output of capsule-certs-generate

   ```
   output omitted
   satellite-installer --scenario capsule \
   --certs-tar-file "/root/capsule.example.com-cert.tar" \
   --foreman-proxy-register-in-foreman "true" \
   --foreman-proxy-foreman-base-url "https://satellite.example.com" \
   --foreman-proxy-trusted-hosts "satellite.example.com" \
   --foreman-proxy-trusted-hosts "capsule.example.com" \
   --foreman-proxy-oauth-consumer-key "My_OAuth_Consumer_Key" \
   --foreman-proxy-oauth-consumer-secret "My_OAuth_Consumer_Secret"
   ```

4. On your Satellite Server, copy the certificate archive file to your Capsule Server:

   ```
   # scp /root/capsule_cert/capsule.example.com-certs.tar root@capsule.example.com:/root/capsule.example.com-certs.tar
   ```

5. On your Capsule Server, to deploy the certificate, enter the `satellite-installer` command that the `capsule-certs-generate` command returns.
 If network connections or ports to Satellite are not yet open, you can set the `--foreman-proxy-register-in-foreman` option to `false` to prevent Capsule from attempting to connect to Satellite and reporting errors. Run the installer again with this option set to `true` when the network and firewalls are correctly configured.

 IMPORTANT

 Do not delete the certificate archive file after you deploy the certificate. It is required, for example, when upgrading Capsule Server.

2.6.2.3. Deploying a Custom SSL Certificate to Hosts

After you configure Capsule Server to use a custom SSL certificate, you must also install the `katello-ca-consumer` package on every host that is registered to this Capsule Server.

Procedure

- On each host, install the `katello-ca-consumer` package:

  ```
  # dnf install http://capsule.example.com/pub/katello-ca-consumer-latest.noarch.rpm
  ```

2.7. ASSIGNING THE CORRECT ORGANIZATION AND LOCATION TO CAPSULE SERVER IN THE SATELLITE WEB UI

After installing Capsule Server packages, if there is more than one organization or location, you must assign the correct organization and location to Capsule to make Capsule visible in the Satellite web UI.
NOTE
Assigning a Capsule to the same location as your Satellite Server with an embedded Capsule prevents Red Hat Insights from uploading the Insights inventory. To enable the inventory upload, synchronize SSH keys for both Capsules.

Procedure

1. Log into the Satellite web UI.
2. From the **Organization** list in the upper-left of the screen, select **Any Organization**.
3. From the **Location** list in the upper-left of the screen, select **Any Location**.
4. In the Satellite web UI, navigate to **Hosts > All Hosts** and select Capsule Server.
5. From the **Select Actions** list, select **Assign Organization**.
6. From the **Organization** list, select the organization where you want to assign this Capsule.
7. Click **Fix Organization on Mismatch**.
8. Click **Submit**.
9. Select Capsule Server. From the **Select Actions** list, select **Assign Location**.
10. From the **Location** list, select the location where you want to assign this Capsule.
11. Click **Fix Location on Mismatch**
12. Click **Submit**.
13. In the Satellite web UI, navigate to **Administer > Organizations** and click the organization to which you have assigned Capsule.
14. Click **Capsules** tab and ensure that Capsule Server is listed under the **Selected items** list, then click **Submit**.
15. In the Satellite web UI, navigate to **Administer > Locations** and click the location to which you have assigned Capsule.
16. Click **Capsules** tab and ensure that Capsule Server is listed under the **Selected items** list, then click **Submit**.

Verification

Optionally, you can verify if Capsule Server is correctly listed in the Satellite web UI.

1. Select the organization from the **Organization** list.
2. Select the location from the **Location** list.
3. In the Satellite web UI, navigate to **Hosts > All Hosts**.
4. In the Satellite web UI, navigate to **Infrastructure > Capsules**.
CHAPTER 3. PERFORMING ADDITIONAL CONFIGURATION ON CAPSULE SERVER

Use this chapter to configure additional settings on your Capsule Server.

3.1. CONFIGURING CAPSULE FOR HOST REGISTRATION AND PROVISIONING

Use this procedure to configure Capsule so that you can register and provision hosts using your Capsule Server instead of your Satellite Server.

Procedure

- On Satellite Server, add the Capsule to the list of trusted proxies. This is required for Satellite to recognize hosts' IP addresses forwarded over the `X-Forwarded-For` HTTP header set by Capsule. For security reasons, Satellite recognizes this HTTP header only from localhost by default. You can enter trusted proxies as valid IPv4 or IPv6 addresses of Capsules, or network ranges.

 ![WARNING]
 Do not use a network range that is too wide, because that poses a potential security risk.

Enter the following command. Note that the command overwrites the list that is currently stored in Satellite. Therefore, if you have set any trusted proxies previously, you must include them in the command as well:

```bash
# satellite-installer \
  --foreman-trusted-proxies "127.0.0.1/8" \
  --foreman-trusted-proxies ":1" \
  --foreman-trusted-proxies "My_IP_address" \
  --foreman-trusted-proxies "My_IP_range"
```

The localhost entries are required, do not omit them.

Verification

1. List the current trusted proxies using the full help of Satellite installer:

   ```bash
   # satellite-installer --full-help | grep -A 2 "trusted-proxies"
   ```

2. The current listing contains all trusted proxies you require.

3.2. ENABLING KATELLO AGENT ON EXTERNAL CAPSULES
Remote Execution is the primary method of managing packages on Content Hosts. To be able to use the deprecated Katello Agent it must be enabled on each Capsule.

Procedure

- To enable Katello Agent infrastructure, enter the following command:

```
# satellite-installer --scenario capsule \\
--foreman-proxy-content-enable-katello-agent=true
```

3.3. CONFIGURING REMOTE EXECUTION FOR PULL CLIENT

By default, Remote Execution uses SSH as the transport mechanism for the Script provider. However, Remote Execution also offers pull-based transport, which you can use if your infrastructure prohibits outgoing connections from Capsule to hosts.

This is comprised of pull-mqtt mode on Capsule in combination with a pull client running on hosts. Configure the pull-mqtt mode to migrate from Katello Agent, which is a deprecated method of pull-based transport.

NOTE

The pull-mqtt mode works only with the Script provider. Ansible and other providers will continue to use their default transport settings.

The mode is configured per Capsule. Some Capsules can be configured to use pull-mqtt mode while others use SSH. If this is the case, it is possible that one remote job on a given host will use the pull client and the next job on the same host will use SSH. If you wish to avoid this scenario, configure all Capsules to use the same mode.

Procedure

1. Enable the pull-based transport on each relevant Capsule Server:

```
# satellite-installer --scenario capsule \\
--foreman-proxy-plugin-remote-execution-script-mode pull-mqtt
```

2. Configure the firewall to allow MQTT service on port 1883:

```
# firewall-cmd --add-port="1883/tcp"
# firewall-cmd --runtime-to-permanent
```

3. In pull-mqtt mode, hosts subscribe for job notifications to the Capsule through which they are registered. Therefore, it is recommended to ensure that Satellite Server sends remote execution jobs to that same Capsule. To do this, in the Satellite web UI, navigate to Administer > Settings. On the Content tab, set the value of Prefer registered through Capsule for remote execution to Yes.

4. After you set up the pull-based transport on Capsule, you must also configure it on each host. For more information, see Transport Modes for Remote Execution in Managing Hosts.

3.4. ENABLING OPENSCAP ON CAPSULE SERVERS
On Satellite Server and the integrated Capsule of your Satellite Server, OpenSCAP is enabled by default. To use the OpenSCAP plug-in and content on external Capsules, you must enable OpenSCAP on each Capsule.

Procedure

- To enable OpenSCAP, enter the following command:

```bash
# satellite-installer --scenario capsule \
  --enable-foreman-proxy-plugin-openscap \
  --foreman-proxy-plugin-openscap-ansible-module true \
  --foreman-proxy-plugin-openscap-puppet-module true
```

If you want to use Puppet to deploy compliance policies, you must enable it first. For more information, see *Managing Configurations Using Puppet Integration in Red Hat Satellite*.

3.5. ADDING LIFECYCLE ENVIRONMENTS TO CAPSULE SERVERS

If your Capsule Server has the content functionality enabled, you must add an environment so that Capsule can synchronize content from Satellite Server and provide content to host systems.

Do not assign the *Library* lifecycle environment to your Capsule Server because it triggers an automated Capsule sync every time the CDN updates a repository. This might consume multiple system resources on Capsules, network bandwidth between Satellite and Capsules, and available disk space on Capsules.

You can use Hammer CLI on Satellite Server or the Satellite web UI.

Procedure

1. In the Satellite web UI, navigate to *Infrastructure > Capsules*, and select the Capsule that you want to add a lifecycle to.

2. Click *Edit* and click the *Lifecycle Environments* tab.

3. From the left menu, select the lifecycle environments that you want to add to Capsule and click *Submit*.

4. To synchronize the content on the Capsule, click the *Overview* tab and click *Synchronize*.

5. Select either *Optimized Sync* or *Complete Sync*.
 For definitions of each synchronization type, see *Recovering a Repository*.

CLI procedure

1. To display a list of all Capsule Servers, on Satellite Server, enter the following command:

```bash
# hammer capsule list
```

Note the Capsule ID of the Capsule to which you want to add a lifecycle.

2. Using the ID, verify the details of your Capsule:

```bash
# hammer capsule info \
  --id My_capsule_ID
```
3. To view the lifecycle environments available for your Capsule Server, enter the following command and note the ID and the organization name:

```
# hammer capsule content available-lifecycle-environments \
--id My_capsule_ID
```

4. Add the lifecycle environment to your Capsule Server:

```
# hammer capsule content add-lifecycle-environment \
--id My_capsule_ID \
--lifecycle-environment-id My_Lifecycle_Environment_ID \
--organization "My_Organization"
```

Repeat for each lifecycle environment you want to add to Capsule Server.

5. Synchronize the content from Satellite to Capsule.

- To synchronize all content from your Satellite Server environment to Capsule Server, enter the following command:

```
# hammer capsule content synchronize \
--id My_capsule_ID
```

- To synchronize a specific lifecycle environment from your Satellite Server to Capsule Server, enter the following command:

```
# hammer capsule content synchronize \
--id My_capsule_ID \
--lifecycle-environment-id My_Lifecycle_Environment_ID
```

3.6. ENABLING POWER MANAGEMENT ON MANAGED HOSTS

To perform power management tasks on managed hosts using the intelligent platform management interface (IPMI) or a similar protocol, you must enable the baseboard management controller (BMC) module on Capsule Server.

Prerequisites

- All managed hosts must have a network interface of BMC type. Capsule Server uses this NIC to pass the appropriate credentials to the host. For more information, see Adding a Baseboard Management Controller (BMC) Interface in Managing Hosts.

Procedure

- To enable BMC, enter the following command:

```
# satellite-installer --scenario capsule \
--foreman-proxy-bmc "true" \ 
--foreman-proxy-bmc-default-provider "freeipmi"
```

3.7. CONFIGURING DNS, DHCP, AND TFTP ON CAPSULE SERVER
To configure the DNS, DHCP, and TFTP services on Capsule Server, use the `satellite-installer` command with the options appropriate for your environment. To view a complete list of configurable options, enter the `satellite-installer --scenario satellite --help` command.

Any changes to the settings require entering the `satellite-installer` command again. You can enter the command multiple times and each time it updates all configuration files with the changed values.

To use external DNS, DHCP, and TFTP services instead, see Chapter 4, Configuring Capsule Server with External Services.

Adding Multihomed DHCP details

If you want to use Multihomed DHCP, you must inform the installer.

Prerequisites

- You must have the correct network name (`dns-interface`) for the DNS server.
- You must have the correct interface name (`dhcp-interface`) for the DHCP server.
- Contact your network administrator to ensure that you have the correct settings.

Procedure

- Enter the `satellite-installer` command with the options appropriate for your environment. The following example shows configuring full provisioning services:

```
# satellite-installer --scenario capsule \
--foreman-proxy-dns true \ 
--foreman-proxy-dns-managed true \ 
--foreman-proxy-dns-zone example.com \ 
--foreman-proxy-dns-reverse 2.0.192.in-addr.arpa \ 
--foreman-proxy-dhcp true \ 
--foreman-proxy-dhcp-managed true \ 
--foreman-proxy-dhcp-range "192.0.2.100 192.0.2.150" \ 
--foreman-proxy-dhcp-gateway 192.0.2.1 \ 
--foreman-proxy-dhcp-nameservers 192.0.2.2 \ 
--foreman-proxy-tftp true \ 
--foreman-proxy-tftp-managed true \ 
--foreman-proxy-tftp-servername 192.0.2.3
```

For more information about configuring DHCP, DNS, and TFTP services, see Configuring Network Services in Provisioning Hosts.
CHAPTER 4. CONFIGURING CAPSULE SERVER WITH EXTERNAL SERVICES

If you do not want to configure the DNS, DHCP, and TFTP services on Capsule Server, use this section to configure your Capsule Server to work with external DNS, DHCP and TFTP services.

4.1. CONFIGURING CAPSULE SERVER WITH EXTERNAL DNS

You can configure Capsule Server with external DNS. Capsule Server uses the `nsupdate` utility to update DNS records on the remote server.

To make any changes persistent, you must enter the `satellite-installer` command with the options appropriate for your environment.

Prerequisites

- You must have a configured external DNS server.
- This guide assumes you have an existing installation.

Procedure

1. Copy the `/etc/rndc.key` file from the external DNS server to Capsule Server:

   ```bash
   # scp root@dns.example.com:/etc/rndc.key /etc/foreman-proxy/rndc.key
   ```

2. Configure the ownership, permissions, and SELinux context:

   ```bash
   # restorecon -v /etc/foreman-proxy/rndc.key
   # chown -v root:foreman-proxy /etc/foreman-proxy/rndc.key
   # chmod -v 640 /etc/foreman-proxy/rndc.key
   ```

3. To test the `nsupdate` utility, add a host remotely:

   ```bash
   # echo -e "server DNS_IP_Address
   update add aaa.example.com 3600 IN A Host_IP_Address
   send" | nsupdate -k /etc/foreman-proxy/rndc.key
   # nslookup aaa.example.com DNS_IP_Address
   # echo -e "server DNS_IP_Address
   update delete aaa.example.com 3600 IN A Host_IP_Address
   send" | nsupdate -k /etc/foreman-proxy/rndc.key
   ```

4. Enter the `satellite-installer` command to make the following persistent changes to the `/etc/foreman-proxy/settings.d/dns.yml` file:

   ```bash
   # satellite-installer --foreman-proxy-dns=true
   --foreman-proxy-dns-managed=false
   --foreman-proxy-dns-provider=nsupdate
   --foreman-proxy-dns-server="DNS_IP_Address"
   --foreman-proxy-keyfile=/etc/foreman-proxy/rndc.key
   ```

5. In the Satellite web UI, navigate to Infrastructure > Capsules.
6. Locate the Capsule Server and select **Refresh** from the list in the **Actions** column.

7. Associate the DNS service with the appropriate subnets and domain.

4.2. CONFIGURING CAPSULE SERVER WITH EXTERNAL DHCP

To configure Capsule Server with external DHCP, you must complete the following procedures:

1. Section 4.2.1, “Configuring an External DHCP Server to Use with Capsule Server”

2. Section 4.2.2, “Configuring Satellite Server with an External DHCP Server”

4.2.1. Configuring an External DHCP Server to Use with Capsule Server

To configure an external DHCP server running Red Hat Enterprise Linux to use with Capsule Server, you must install the ISC DHCP Service and Berkeley Internet Name Domain (BIND) utilities packages. You must also share the DHCP configuration and lease files with Capsule Server. The example in this procedure uses the distributed Network File System (NFS) protocol to share the DHCP configuration and lease files.

NOTE

If you use dnsmasq as an external DHCP server, enable the `dhcp-no-override` setting. This is required because Satellite creates configuration files on the TFTP server under the `grub2/` subdirectory. If the `dhcp-no-override` setting is disabled, clients fetch the bootloader and its configuration from the root directory, which might cause an error.

Procedure

1. On your Red Hat Enterprise Linux host, install the ISC DHCP Service and Berkeley Internet Name Domain (BIND) utilities packages:

   ```
   # dnf install dhcp-server bind-utils
   ```

2. Generate a security token:

   ```
   # dnssec-keygen -a HMAC-MD5 -b 512 -n HOST omapi_key
   ```

 As a result, a key pair that consists of two files is created in the current directory.

3. Copy the secret hash from the key:

   ```
   # grep ^Key Komapi_key.+*.private | cut -d ' ' -f2
   ```

4. Edit the `dhcpd` configuration file for all subnets and add the key. The following is an example:

   ```
   # cat /etc/dhcp/dhcpd.conf
   default-lease-time 604800;
   max-lease-time 2592000;
   log-facility local7;
   subnet 192.168.38.0 netmask 255.255.255.0 {
   range 192.168.38.10 192.168.38.100;
   option routers 192.168.38.1;
   ```
option subnet-mask 255.255.255.0;
option domain-search "virtual.lan";
option domain-name "virtual.lan";
option domain-name-servers 8.8.8.8;
}

omapi-port 7911;
key omapi_key {
 algorithm HMAC-MD5;
 secret "jNSE5Yi3H1A8Oj/tkV4...A2ZOHB6v315CkNAY7DMYYCj48Umw==";
};
omapi-key omapi_key;

Note that the **option routers** value is the Satellite or Capsule IP address that you want to use with an external DHCP service.

5. Delete the two key files from the directory that they were created in.

6. On Satellite Server, define each subnet. Do not set DHCP Capsule for the defined Subnet yet. To prevent conflicts, set up the lease and reservation ranges separately. For example, if the lease range is 192.168.38.10 to 192.168.38.100, in the Satellite web UI define the reservation range as 192.168.38.101 to 192.168.38.250.

7. Configure the firewall for external access to the DHCP server:

   ```bash
   # firewall-cmd --add-service dhcp 
   && firewall-cmd --runtime-to-permanent
   
   # firewall-cmd --add-port 7911/tcp
   # firewall-cmd --add-port 67/udp
   # firewall-cmd --permanent
   # firewall-cmd --reload
   ```

8. On Satellite Server, determine the UID and GID of the **foreman** user:

   ```bash
   # id -u foreman
   993
   # id -g foreman
   990
   ```

9. On the DHCP server, create the **foreman** user and group with the same IDs as determined in a previous step:

   ```bash
   # groupadd -g 990 foreman
   # useradd -u 993 -g 990 -s /sbin/nologin foreman
   ```

10. To ensure that the configuration files are accessible, restore the read and execute flags:

    ```bash
    # chmod o+rx /etc/dhcp/
    # chmod o+r /etc/dhcp/dhcpd.conf
    # chattr +i /etc/dhcp/ /etc/dhcp/dhcpd.conf
    ```

11. Enable and start the DHCP service:

    ```bash
    # systemctl enable --now dhcpd
    ```

12. Export the DHCP configuration and lease files using NFS:
dnf install nfs-utils
systemctl enable --now nfs-server

13. Create directories for the DHCP configuration and lease files that you want to export using NFS:

 # mkdir -p /exports/var/lib/dhcpd /exports/etc/dhcp

14. To create mount points for the created directories, add the following line to the /etc/fstab file:

 /var/lib/dhcpd /exports/var/lib/dhcpd none bind,auto 0 0
 /etc/dhcp /exports/etc/dhcp none bind,auto 0 0

15. Mount the file systems in /etc/fstab:

 # mount -a

16. Ensure the following lines are present in /etc/exports:

 /exports 192.168.38.1 (rw,async,no_root_squash,fsid=0,no_subtree_check)
 /exports/etc/dhcp 192.168.38.1 (ro,async,no_root_squash,no_subtree_check,nohide)
 /exports/var/lib/dhcpd 192.168.38.1 (ro,async,no_root_squash,no_subtree_check,nohide)

 Note that the IP address that you enter is the Satellite or Capsule IP address that you want to use with an external DHCP service.

17. Reload the NFS server:

 # exportfs -rva

18. Configure the firewall for DHCP omapi port 7911:

 # firewall-cmd --add-port=7911/tcp
 # firewall-cmd --runtime-to-permanent

19. Optional: Configure the firewall for external access to NFS. Clients are configured using NFSv3.

 # firewall-cmd --zone public --add-service mountd
 && firewall-cmd --zone public --add-service rpc-bind
 && firewall-cmd --zone public --add-service nfs
 && firewall-cmd --runtime-to-permanent

4.2.2. Configuring Satellite Server with an External DHCP Server

You can configure Capsule Server with an external DHCP server.

Prerequisite
• Ensure that you have configured an external DHCP server and that you have shared the DHCP configuration and lease files with Capsule Server. For more information, see Section 4.2.1, “Configuring an External DHCP Server to Use with Capsule Server”.

Procedure

1. Install the `nfs-utils` package:

   ```bash
   # dnf install nfs-utils
   ```

2. Create the DHCP directories for NFS:

   ```bash
   # mkdir -p /mnt/nfs/etc/dhcp /mnt/nfs/var/lib/dhcpd
   ```

3. Change the file owner:

   ```bash
   # chown -R foreman-proxy /mnt/nfs
   ```

4. Verify communication with the NFS server and the Remote Procedure Call (RPC) communication paths:

   ```bash
   # showmount -e DHCP_Server_FQDN
   # rpcinfo -p DHCP_Server_FQDN
   ```

5. Add the following lines to the `/etc/fstab` file:

   ```bash
   DHCP_Server_FQDN:/exports/etc/dhcp /mnt/nfs/etc/dhcp nfs
   ro,vers=3,auto,nosharecache,context="system_u:object_r:dhcpd_etc_t:s0" 0 0
   
   DHCP_Server_FQDN:/exports/var/lib/dhcpd /mnt/nfs/var/lib/dhcpd nfs
   ro,vers=3,auto,nosharecache,context="system_u:object_r:dhcpd_state_t:s0" 0 0
   ```

6. Mount the file systems on `/etc/fstab`:

   ```bash
   # mount -a
   ```

7. To verify that the `foreman-proxy` user can access the files that are shared over the network, display the DHCP configuration and lease files:

   ```bash
   # su foreman-proxy -s /bin/bash
   bash-4.2$ cat /mnt/nfs/etc/dhcp/dhcpd.conf
   bash-4.2$ cat /mnt/nfs/var/lib/dhcpd/dhcpd.leases
   bash-4.2$ exit
   ```

8. Enter the `satellite-installer` command to make the following persistent changes to the `/etc/foreman-proxy/settings.d/dhcp.yml` file:

   ```bash
   # satellite-installer --foreman-proxy-dhcp=true \  
   --foreman-proxy-dhcp-provider=remote_isc \  
   --foreman-proxy-plugin-dhcp-remote-isc-dhcp-config /mnt/nfs/etc/dhcp/dhcpd.conf \  
   --foreman-proxy-plugin-dhcp-remote-isc-dhcp-leases /mnt/nfs/var/lib/dhcpd/dhcpd.leases \  
   --foreman-proxy-plugin-dhcp-remote-isc-key-name=omapi_key \  
   --foreman-proxy-plugin-dhcp-remote-isc-key-
9. Associate the DHCP service with the appropriate subnets and domain.

### 4.3. Configuring Capsule Server with External TFTP

You can configure Capsule Server with external TFTP services.

**Procedure**

1. Create the TFTP directory for NFS:
   ```bash
 # mkdir -p /mnt/nfs/var/lib/tftpboot
   ```

2. In the `/etc/fstab` file, add the following line:
   ```
 TFTP_Server_IP_Address:/exports/var/lib/tftpboot /mnt/nfs/var/lib/tftpboot nfs rw,vers=3,auto,nosharecache,context="system_u:object_r:tftpdir_rw_t:s0" 0 0
   ```

3. Mount the file systems in `/etc/fstab`:
   ```bash
 # mount -a
   ```

4. Enter the `satellite-installer` command to make the following persistent changes to the `/etc/foreman-proxy/settings.d/tftp.yml` file:
   ```bash
 # satellite-installer --foreman-proxy-tftp=true \\n --foreman-proxy-tftp-root /mnt/nfs/var/lib/tftpboot
   ```

5. If the TFTP service is running on a different server than the DHCP service, update the `tftp_servername` setting with the FQDN or IP address of the server that the TFTP service is running on:
   ```bash
 # satellite-installer --foreman-proxy-tftp-servername=\n TFTP_Server_FQDN
   ```

6. In the Satellite web UI, navigate to Infrastructure > Capsules.

7. Locate the Capsule Server and select Refresh from the list in the Actions column.

8. Associate the TFTP service with the appropriate subnets and domain.

### 4.4. Configuring Capsule Server with External IDM DNS

When Satellite Server adds a DNS record for a host, it first determines which Capsule is providing DNS for that domain. It then communicates with the Capsule that is configured to provide DNS service for your deployment and adds the record. The hosts are not involved in this process. Therefore, you must install and configure the IdM client on the Satellite or Capsule that is currently configured to provide a DNS service for the domain you want to manage using the IdM server.
Capsule Server can be configured to use a Red Hat Identity Management (IdM) server to provide DNS service. For more information about Red Hat Identity Management, see the Linux Domain Identity, Authentication, and Policy Guide.

To configure Capsule Server to use a Red Hat Identity Management (IdM) server to provide DNS service, use one of the following procedures:

- Section 4.4.1, “Configuring Dynamic DNS Update with GSS-TSIG Authentication”
- Section 4.4.2, “Configuring Dynamic DNS Update with TSIG Authentication”

To revert to internal DNS service, use the following procedure:

- Section 4.4.3, “Reverting to Internal DNS Service”

**NOTE**

You are not required to use Capsule Server to manage DNS. When you are using the realm enrollment feature of Satellite, where provisioned hosts are enrolled automatically to IdM, the `ipa-client-install` script creates DNS records for the client. Configuring Capsule Server with external IdM DNS and realm enrollment are mutually exclusive. For more information about configuring realm enrollment, see External Authentication for Provisioned Hosts in Installing Satellite Server in a Connected Network Environment.

### 4.4.1. Configuring Dynamic DNS Update with GSS-TSIG Authentication

You can configure the IdM server to use the generic security service algorithm for secret key transaction (GSS-TSIG) technology defined in RFC3645. To configure the IdM server to use the GSS-TSIG technology, you must install the IdM client on the Capsule Server base operating system.

**Prerequisites**

- You must ensure the IdM server is deployed and the host-based firewall is configured correctly. For more information, see Port Requirements for IdM in the Installing Identity Management Guide.

- You must contact the IdM server administrator to ensure that you obtain an account on the IdM server with permissions to create zones on the IdM server.

- You should create a backup of the answer file. You can use the backup to restore the answer file to its original state if it becomes corrupted. For more information, see Configuring Satellite Server.

**Procedure**

To configure dynamic DNS update with GSS-TSIG authentication, complete the following steps:

**Creating a Kerberos Principal on the IdM Server**

1. Obtain a Kerberos ticket for the account obtained from the IdM administrator:

   ```
 # kinit idm_user
   ```

2. Create a new Kerberos principal for Capsule Server to use to authenticate on the IdM server.

   ```
 # ipa service-add capsule.example.com
   ```
Installing and Configuring the IdM Client

1. On the base operating system of either the Satellite or Capsule that is managing the DNS service for your deployment, install the `ipa-client` package:

   ```
 # satellite-maintain packages install ipa-client
   ```

2. Configure the IdM client by running the installation script and following the on-screen prompts:

   ```
 # ipa-client-install
   ```

3. Obtain a Kerberos ticket:

   ```
 # kinit admin
   ```

4. Remove any preexisting `keytab`:

   ```
 # rm /etc/foreman-proxy/dns.keytab
   ```

5. Obtain the `keytab` for this system:

   ```
 # ipa-getkeytab -p capsule/satellite.example.com@example.com -s idm1.example.com -k /etc/foreman-proxy/dns.keytab
   ```

   **NOTE**

   When adding a keytab to a standby system with the same host name as the original system in service, add the `r` option to prevent generating new credentials and rendering the credentials on the original system invalid.

6. For the `dns.keytab` file, set the group and owner to `foreman-proxy`:

   ```
 # chown foreman-proxy:foreman-proxy /etc/foreman-proxy/dns.keytab
   ```

7. Optional: To verify that the `keytab` file is valid, enter the following command:

   ```
 # kinit -kt /etc/foreman-proxy/dns.keytab /etc/foreman-proxy/dns.keytab
   ```

Configuring DNS Zones in the IdM web UI

1. Create and configure the zone that you want to manage:

   a. Navigate to **Network Services** > DNS > DNS Zones.

   b. Select **Add** and enter the zone name. For example, `example.com`.

   c. Click **Add and Edit**

   d. Click the Settings tab and in the **BIND update policy** box, add the following to the semi-colon separated list:
grant capsule\047satellite.example.com@EXAMPLE.COM wildcard * ANY;

e. Set Dynamic update to True.

f. Enable Allow PTR sync.

g. Click Save to save the changes.

2. Create and configure the reverse zone:

a. Navigate to Network Services > DNS > DNS Zones.

b. Click Add.

c. Select Reverse zone IP network and add the network address in CIDR format to enable reverse lookups.

d. Click Add and Edit.

e. Click the Settings tab and in the BIND update policy box, add the following to the semi-colon separated list:

```
grant capsule\047satellite.example.com@EXAMPLE.COM wildcard * ANY;
```

f. Set Dynamic update to True.

g. Click Save to save the changes.

Configuring the Satellite or Capsule Server that Manages the DNS Service for the Domain

1. Use the satellite-installer command to configure the Satellite or Capsule that manages the DNS Service for the domain:

- On Satellite, enter the following command:

```
satellite-installer --scenario satellite \
--foreman-proxy-dns-managed=false \
--foreman-proxy-dns-provider=nsupdate_gss \
--foreman-proxy-dns-server="idm1.example.com" \
--foreman-proxy-dns-tsig-keytab=/etc/foreman-proxy/dns.keytab \
--foreman-proxy-dns-tsig-principal="capsule/satellite.example.com@EXAMPLE.COM" \
--foreman-proxy-dns=true
```

- On Capsule, enter the following command:

```
satellite-installer --scenario capsule \
--foreman-proxy-dns-managed=false \
--foreman-proxy-dns-provider=nsupdate_gss \
--foreman-proxy-dns-server="idm1.example.com" \
--foreman-proxy-dns-tsig-keytab=/etc/foreman-proxy/dns.keytab \
--foreman-proxy-dns-tsig-principal="capsule/satellite.example.com@EXAMPLE.COM" \
--foreman-proxy-dns=true
```

After you run the satellite-installer command to make any changes to your Capsule configuration, you must update the configuration of each affected Capsule in the Satellite web UI.
Updating the Configuration in the Satellite web UI

1. In the Satellite web UI, navigate to Infrastructure > Capsules, locate the Capsule Server, and from the list in the Actions column, select Refresh.

2. Configure the domain:
   a. In the Satellite web UI, navigate to Infrastructure > Domains and select the domain name.
   b. In the Domain tab, ensure DNS Capsule is set to the Capsule where the subnet is connected.

3. Configure the subnet:
   a. In the Satellite web UI, navigate to Infrastructure > Subnets and select the subnet name.
   b. In the Subnet tab, set IPAM to None.
   c. In the Domains tab, select the domain that you want to manage using the IdM server.
   d. In the Capsules tab, ensure Reverse DNS Capsule is set to the Capsule where the subnet is connected.
   e. Click Submit to save the changes.

4.4.2. Configuring Dynamic DNS Update with TSIG Authentication

You can configure an IdM server to use the secret key transaction authentication for DNS (TSIG) technology that uses the `rndc.key` key file for authentication. The TSIG protocol is defined in RFC2845.

Prerequisites

- You must ensure the IdM server is deployed and the host-based firewall is configured correctly. For more information, see Port Requirements in the Linux Domain Identity, Authentication, and Policy Guide.
- You must obtain root user access on the IdM server.
- You must confirm whether Satellite Server or Capsule Server is configured to provide DNS service for your deployment.
- You must configure DNS, DHCP and TFTP services on the base operating system of either the Satellite or Capsule that is managing the DNS service for your deployment.
- You must create a backup of the answer file. You can use the backup to restore the answer file to its original state if it becomes corrupted. For more information, see Configuring Satellite Server.

Procedure

To configure dynamic DNS update with TSIG authentication, complete the following steps:

Enabling External Updates to the DNS Zone in the IdM Server

1. On the IdM Server, add the following to the top of the `/etc/named.conf` file:

```
##
```
include "/etc/rndc.key";
controls {
inert _IdM_Server_IP_Address_ port 953 allow { _Satellite_IP_Address_; } keys { "rndc-key"; }
};
########################################################################

2. Reload the **named** service to make the changes take effect:

```bash
systemctl reload named
```

3. In the IdM web UI, navigate to **Network Services > DNS > DNS Zones** and click the name of the zone. In the **Settings** tab, apply the following changes:

   a. Add the following in the **BIND update policy** box:

   ```
 grant "rndc-key" zonesub ANY;
   ```

   b. Set **Dynamic update** to **True**.

   c. Click **Update** to save the changes.

4. Copy the `/etc/rndc.key` file from the IdM server to the base operating system of your Satellite Server. Enter the following command:

```bash
scp /etc/rndc.key root@satellite.example.com:/etc/rndc.key
```

5. To set the correct ownership, permissions, and SELinux context for the `rndc.key` file, enter the following command:

```bash
restorecon -v /etc/rndc.key
chown -v root:named /etc/rndc.key
chmod -v 640 /etc/rndc.key
```

6. Assign the **foreman-proxy** user to the **named** group manually. Normally, satellite-installer ensures that the **foreman-proxy** user belongs to the **named** UNIX group, however, in this scenario Satellite does not manage users and groups, therefore you need to assign the **foreman-proxy** user to the **named** group manually.

```bash
usermod -a -G named foreman-proxy
```

7. On Satellite Server, enter the following **satellite-installer** command to configure Satellite to use the external DNS server:

```bash
satellite-installer --scenario satellite
--foreman-proxy-dns=true
--foreman-proxy-dns-managed=false
--foreman-proxy-dns-provider=nsupdate
--foreman-proxy-dns-server="IdM_Server_IP_Address"
--foreman-proxy-keyfile="/etc/rndc.key"
--foreman-proxy-dns-ttl=86400
```
Testing External Updates to the DNS Zone in the IdM Server

1. Ensure that the key in the `/etc/rndc.key` file on Satellite Server is the same key file that is used on the IdM server:

   ```
 key "rndc-key" {
 algorithm hmac-md5;
 secret "secret-key==";
 }
   ```

2. On Satellite Server, create a test DNS entry for a host. For example, host `test.example.com` with an A record of `192.168.25.20` on the IdM server at `192.168.25.1`.

   ```
 # echo -e "server 192.168.25.1\n update add test.example.com 3600 IN A 192.168.25.20\n send\n" | nsupdate -k /etc/rndc.key
   ```

3. On Satellite Server, test the DNS entry:

   ```
 # nslookup test.example.com 192.168.25.1
 Server: 192.168.25.1
 Address: 192.168.25.1#53

 Name: test.example.com
 Address: 192.168.25.20
   ```

4. To view the entry in the IdM web UI, navigate to **Network Services > DNS > DNS Zones**. Click the name of the zone and search for the host by name.

5. If resolved successfully, remove the test DNS entry:

   ```
 # echo -e "server 192.168.25.1\n update delete test.example.com 3600 IN A 192.168.25.20\n send\n" | nsupdate -k /etc/rndc.key
   ```

6. Confirm that the DNS entry was removed:

   ```
 # nslookup test.example.com 192.168.25.1
   ```

   The above `nslookup` command fails and returns the `SERVFAIL` error message if the record was successfully deleted.

4.4.3. Reverting to Internal DNS Service

You can revert to using Satellite Server and Capsule Server as your DNS providers. You can use a backup of the answer file that was created before configuring external DNS, or you can create a backup of the answer file. For more information about answer files, see Configuring Satellite Server.

**Procedure**

On the Satellite or Capsule Server that you want to configure to manage DNS service for the domain, complete the following steps:

### Configuring Satellite or Capsule as a DNS Server
• If you have created a backup of the answer file before configuring external DNS, restore the answer file and then enter the `satellite-installer` command:

```
satellite-installer
```

• If you do not have a suitable backup of the answer file, create a backup of the answer file now. To configure Satellite or Capsule as DNS server without using an answer file, enter the following `satellite-installer` command on Satellite or Capsule:

```
satellite-installer \
--foreman-proxy-dns=true \
--foreman-proxy-dns-managed=true \
--foreman-proxy-dns-provider=nsupdate \
--foreman-proxy-dns-server="127.0.0.1"
```

For more information, see Configuring DNS, DHCP, and TFTP on Capsule Server.

After you run the `satellite-installer` command to make any changes to your Capsule configuration, you must update the configuration of each affected Capsule in the Satellite web UI.

**Updating the Configuration in the Satellite web UI**

1. In the Satellite web UI, navigate to Infrastructure > Capsules.

2. For each Capsule that you want to update, from the Actions list, select Refresh.

3. Configure the domain:
   a. In the Satellite web UI, navigate to Infrastructure > Domains and click the domain name that you want to configure.
   b. In the Domain tab, set DNS Capsule to the Capsule where the subnet is connected.

4. Configure the subnet:
   a. In the Satellite web UI, navigate to Infrastructure > Subnets and select the subnet name.
   b. In the Subnet tab, set IPAM to DHCP or Internal DB.
   c. In the Domains tab, select the domain that you want to manage using Satellite or Capsule.
   d. In the Capsules tab, set Reverse DNS Capsule to the Capsule where the subnet is connected.
   e. Click Submit to save the changes.
CHAPTER 5. MANAGING DHCP USING CAPSULE

Satellite can integrate with a DHCP service using your Capsule. A Capsule has multiple DHCP providers that you can use to integrate Satellite with your existing DHCP infrastructure or deploy a new one. You can use the DHCP module of Capsule to query for available IP addresses, add new, and delete existing reservations. Note that your Capsule cannot manage subnet declarations.

Available DHCP providers

- **dhcp_infoblox** – For more information, see Using Infoblox as DHCP and DNS Providers in Provisioning Hosts.

- **dhcp_isc** – ISC DHCP server over OMAPI. For more information, see Configuring DNS, DHCP, and TFTP on Capsule Server in Installing Capsule Server.

- **dhcp_remote_isc** – ISC DHCP server over OMAPI with leases mounted through networking. For more information, see Configuring an External DHCP Server to Use with Capsule Server in Installing Capsule Server.

5.1. SECURING THE DHCPD API

Capsule interacts with DHCP daemon using the dhcpd API to manage DHCP. By default, the dhcpd API listens to any host without access control. You can add an omapi_key to provide basic security.

Procedure

1. Install the required packages:

   ```bash
 # dnf install bind-utils
   ```

2. Generate a key:

   ```bash
 # dnssec-keygen -r /dev/urandom -a HMAC-MD5 -b 512 -n HOST omapi_key
 # cat Komapi_key.+*.private | grep ^Key|cut -d ' ' -f2-
   ```

3. Use satellite-installer to secure the dhcpd API:

   ```bash
 # satellite-installer
 --foreman-proxy-dhcp-key-name "My_Name"
 --foreman-proxy-dhcp-key-secret "My_Secret"
   ```
CHAPTER 6. MANAGING DNS USING CAPSULE

Satellite can manage DNS records using your Capsule. DNS management contains updating and removing DNS records from existing DNS zones. A Capsule has multiple DNS providers that you can use to integrate Satellite with your existing DNS infrastructure or deploy a new one.

After you have enabled DNS, your Capsule can manipulate any DNS server that complies with RFC 2136 using the \texttt{dns_nsupdate} provider. Other providers provide more direct integration, such as \texttt{dns_infoblox} for Infoblox.

Available DNS Providers

- \texttt{dns_infoblox} – For more information, see Using Infoblox as DHCP and DNS Providers in Provisioning Hosts.

- \texttt{dns_nsupdate} – Dynamic DNS update using nsupdate. For more information, see Using Infoblox as DHCP and DNS Providers in Provisioning Hosts.

- \texttt{dns_nsupdate_gss} – Dynamic DNS update with GSS-TSIG. For more information, see Section 4.4.1, “Configuring Dynamic DNS Update with GSS-TSIG Authentication”.

APPENDIX A. CAPSULE SERVER SCALABILITY CONSIDERATIONS

The maximum number of Capsule Servers that Satellite Server can support has no fixed limit. It was tested that a Satellite Server can support 17 Capsule Servers with 2 vCPUs. However, scalability is highly variable, especially when managing Puppet clients.

Capsule Server scalability when managing Puppet clients depends on the number of CPUs, the run-interval distribution, and the number of Puppet managed resources. Capsule Server has a limitation of 100 concurrent Puppet agents running at any single point in time. Running more than 100 concurrent Puppet agents results in a 503 HTTP error.

For example, assuming that Puppet agent runs are evenly distributed with less than 100 concurrent Puppet agents running at any single point during a run-interval, a Capsule Server with 4 CPUs has a maximum of 1250 – 1600 Puppet clients with a moderate workload of 10 Puppet classes assigned to each Puppet client. Depending on the number of Puppet clients required, the Satellite installation can scale out the number of Capsule Servers to support them.

If you want to scale your Capsule Server when managing Puppet clients, the following assumptions are made:

- There are no external Puppet clients reporting directly to the Satellite integrated Capsule.
- All other Puppet clients report directly to an external Capsule.
- There is an evenly distributed run-interval of all Puppet agents.

**NOTE**

Deviating from the even distribution increases the risk of overloading Satellite Server. The limit of 100 concurrent requests applies.

The following table describes the scalability limits using the recommended 4 CPUs.

<table>
<thead>
<tr>
<th>Puppet Managed Resources per Host</th>
<th>Run-Interval Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3000 – 2500</td>
</tr>
<tr>
<td>10</td>
<td>2400 – 2000</td>
</tr>
<tr>
<td>20</td>
<td>1700 – 1400</td>
</tr>
</tbody>
</table>

The following table describes the scalability limits using the minimum 2 CPUs.

<table>
<thead>
<tr>
<th>Puppet Managed Resources per Host</th>
<th>Run-Interval Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1700 – 1450</td>
</tr>
<tr>
<td>Puppet Managed Resources per Host</td>
<td>Run-Interval Distribution</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>10</td>
<td>1500 – 1250</td>
</tr>
<tr>
<td>20</td>
<td>850 – 700</td>
</tr>
</tbody>
</table>
If DNF modules fails to enable, it can mean an incorrect module is enabled. In that case, you have to resolve dependencies manually as follows. List the enabled modules:

```
dnf module list --enabled
```

### B.1. RUBY

If Ruby module fails to enable, it can mean an incorrect module is enabled. In that case, you have to resolve dependencies manually as follows:

List the enabled modules:

```
dnf module list --enabled
```

If the Ruby 2.5 module has already been enabled, perform a module reset:

```
dnf module reset ruby
```

### B.2. POSTGRESQL

If PostgreSQL module fails to enable, it can mean an incorrect module is enabled. In that case, you have to resolve dependencies manually as follows:

List the enabled modules:

```
dnf module list --enabled
```

If the PostgreSQL 10 module has already been enabled, perform a module reset:

```
dnf module reset postgresql
```

If a database was previously created using PostgreSQL 10, perform an upgrade:

1. Enable the DNF modules:

```
dnf module enable satellite:el8
```

2. Install the PostgreSQL upgrade package:

```
dnf install postgresql-upgrade
```

3. Perform the upgrade:

```
postgresql-setup --upgrade
```