
Red Hat Quay 3

Deploy Red Hat Quay on OpenShift with the
Quay Operator

Deploy Red Hat Quay on OpenShift with Quay Operator

Last Updated: 2021-04-20

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay
Operator

Deploy Red Hat Quay on OpenShift with Quay Operator

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Deploy Red Hat Quay on an OpenShift Cluster with the Red Hat Quay Operator

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT

CHAPTER 2. INSTALLING THE QUAY OPERATOR
2.1. DIFFERENCES FROM EARLIER VERSIONS
2.2. BEFORE INSTALLING THE QUAY OPERATOR

2.2.1. Deciding On a Storage Solution
2.2.2. Enabling OpenShift Container Storage

2.3. INSTALLING THE OPERATOR FROM OPERATORHUB

CHAPTER 3. HIGH LEVEL CONCEPTS
3.1. QUAYREGISTRY API

3.1.1. Components
3.1.1.1. Considerations For Managed Components
3.1.1.2. Using Existing (Un-Managed) Components With the Quay Operator

3.1.2. Config Bundle Secret
3.1.3. AWS S3 CloudFront

3.2. QUAYREGISTRY STATUS
3.2.1. Registry Endpoint
3.2.2. Config Editor Endpoint
3.2.3. Config Editor Credentials Secret
3.2.4. Current Version
3.2.5. Conditions

CHAPTER 4. DEPLOYING QUAY USING THE QUAY OPERATOR
4.1. CREATING A QUAY REGISTRY

4.1.1. OpenShift Console
4.1.2. Command Line

4.2. DEPLOYING QUAY ON INFRASTRUCTURE NODES
4.2.1. Label and taint nodes for infrastructure use
4.2.2. Create a Project with node selector and toleration
4.2.3. Install the Quay Operator in the namespace
4.2.4. Create the registry

CHAPTER 5. UPGRADING QUAY USING THE QUAY OPERATOR
5.1. OPERATOR LIFECYCLE MANAGER
5.2. UPGRADING QUAY BY UPGRADING THE QUAY OPERATOR

5.2.1. Upgrading Quay
5.2.2. Changing the update channel for an Operator
5.2.3. Manually approving a pending Operator upgrade

5.3. UPGRADING A QUAYREGISTRY
5.4. ENABLING NEW FEATURES IN QUAY 3.5

5.4.1. Console monitoring and alerting
5.4.2. OCI and Helm support

5.5. UPGRADING A QUAYECOSYSTEM
5.5.1. Reverting QuayEcosystem Upgrade
5.5.2. Supported QuayEcosystem Configurations for Upgrades

CHAPTER 6. QUAY OPERATOR FEATURES
6.1. HELM OCI SUPPORT AND RED HAT QUAY

6.1.1. Prerequisites
6.1.2. Using Helm charts with Quay

4

5

6
6
6
6
6
7

8
8
8
9
9

10
10
10
10
10
10
11
11

12
12
12
12
13
13
14
14
14

16
16
16
16
16
17
17
18
18
18
18
18
19

21
21
21
21

Table of Contents

1

. .

6.1.3. Explicitly enabling OCI and Helm support
6.2. CONSOLE MONITORING AND ALERTING

6.2.1. Dashboard
6.2.2. Metrics
6.2.3. Alerting

6.3. MANUALLY UPDATING THE VULNERABILITY DATABASES FOR CLAIR IN AN AIR-GAPPED OPENSHIFT
CLUSTER

6.3.1. Obtaining clairctl
6.3.2. Retrieving the Clair config
6.3.3. Exporting the updaters bundle
6.3.4. Configuring access to the Clair database in the air-gapped OpenShift cluster
6.3.5. Importing the updaters bundle into the air-gapped environment

CHAPTER 7. ADVANCED CONCEPTS
7.1. CUSTOMIZING THE QUAY DEPLOYMENT

7.1.1. Quay Application Configuration
7.1.2. Customizing External Access to the Registry

7.1.2.1. Using a Custom Hostname and TLS
7.1.2.2. Using OpenShift Provided TLS Certificate

7.1.3. Disabling Route Component
7.1.4. Resizing Managed Storage

7.1.4.1. Resize Noobaa PVC
7.1.4.2. Add Another Storage Pool

7.1.5. Disabling the Horizontal Pod Autoscaler
7.1.6. Customizing Default Operator Images

7.1.6.1. Environment Variables
7.1.6.2. Applying Overrides to a Running Operator

ADDITIONAL RESOURCES

23
24
24
26
28

28
29
29
30
30
31

32
32
32
32
32
33
34
34
34
35
35
35
35
36
36

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

2

Table of Contents

3

PREFACE
Red Hat Quay is an enterprise-quality container registry. Use Red Hat Quay to build and store container
images, then make them available to deploy across your enterprise.

The Red Hat Quay Operator provides a simple method to deploy and manage a Red Hat Quay cluster.
This is the preferred procedure for deploying Red Hat Quay on OpenShift and is covered in this guide.

Note that this version of the Red Hat Quay Operator has been completely rewritten and differs
substantially from earlier versions. Please review this documentation carefully.

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

4

CHAPTER 1. PREREQUISITES FOR RED HAT QUAY ON
OPENSHIFT

Here are a few things you need to know before you begin the Red Hat Quay Operator on OpenShift
deployment:

OpenShift cluster: You need a privileged account to an OpenShift 4.5 or later cluster on which
to deploy the Red Hat Quay Operator. That account must have the ability to create
namespaces at the cluster scope.

Resource Requirements: Each Red Hat Quay application pod has the following resource
requirements:

8Gi of memory

2000 millicores of CPU.

The Red Hat Quay Operator will create at least one application pod per Red Hat Quay deployment it
manages. Ensure your OpenShift cluster has sufficient compute resources for these requirements.

Object Storage: By default, the Red Hat Quay Operator uses the ObjectBucketClaim
Kubernetes API to provision object storage. Consuming this API decouples the Operator from
any vendor-specific implementation. OpenShift Container Storage provides this API via its
NooBaa component, which will be used in this example. Otherwise, Red Hat Quay can be
manually configured to use any of the following supported cloud storage options:

Amazon S3 (see S3 IAM Bucket Policy for details on configuring an S3 bucket policy for Red
Hat Quay)

Azure Blob Storage

Google Cloud Storage

Ceph Object Gateway (RADOS)

OpenStack Swift

CloudFront + S3

CHAPTER 1. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT

5

https://access.redhat.com/solutions/3680151

CHAPTER 2. INSTALLING THE QUAY OPERATOR

2.1. DIFFERENCES FROM EARLIER VERSIONS

As of Red Hat Quay 3.4.0, the Operator has been completely re-written to provide an improved out of
the box experience as well as support for more Day 2 operations. As a result the new Operator is simpler
to use and is more opinionated. The key differences from earlier versions of the Operator are:

The QuayEcosystem custom resource has been replaced with the QuayRegistry custom
resource

The default installation options produces a fully supported Quay environment with all managed
dependencies (database, object storage, etc) ready for production use

A new robust validation library for Quay’s configuration which is shared by the Quay application
and config tool for consistency

Registry object storage can now be managed by the Operator using the ObjectBucketClaim
Kubernetes API (the NooBaa component of Red Hat OpenShift Container Storage (RHOCS) is
one implementation of this API)

Customization of the container images used by deployed pods for testing and development
scenarios

2.2. BEFORE INSTALLING THE QUAY OPERATOR

2.2.1. Deciding On a Storage Solution

If you want the Operator to manage its own object storage, you will first need to ensure the RHOCS is
available on your OpenShift cluster to provide the ObjectBucketClaim API. If you already have object
storage ready to be used by the Operator, skip to Installing the Operator.

2.2.2. Enabling OpenShift Container Storage

To install the RHOCS Operator and configure a lightweight NooBaa (S3-compatible) object storage:

1. Open the OpenShift console and select Operators → OperatorHub, then select the OpenShift
Container Storage Operator.

2. Select Install. Accept all default options and select Install again.

3. After a minute or so, the Operator will install and create a namespace openshift-storage. You
can confirm it is completed when the Status column is marked Succeeded.

4. Create NooBaa object storage. Save the following YAML to a file called noobaa.yml.

apiVersion: noobaa.io/v1alpha1
kind: NooBaa
metadata:
 name: noobaa
 namespace: openshift-storage
spec:
 dbResources:
 requests:

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

6

 cpu: '0.1'
 memory: 1Gi
 coreResources:
 requests:
 cpu: '0.1'
 memory: 1Gi

Then run the following:

$ oc create -n openshift-storage -f noobaa.yml
noobaa.noobaa.io/noobaa created

5. After a minute or so, you should see the object storage ready for use (PHASE column is marked
Ready)

$ oc get -n openshift-storage noobaas noobaa -w
NAME MGMT-ENDPOINTS S3-ENDPOINTS IMAGE
PHASE AGE
noobaa [https://10.0.32.3:30318] [https://10.0.32.3:31958] registry.redhat.io/ocs4/mcg-
core-
rhel8@sha256:56624aa7dd4ca178c1887343c7445a9425a841600b1309f6deace37ce6b8678d
Ready 3d18h

2.3. INSTALLING THE OPERATOR FROM OPERATORHUB

1. Using the OpenShift console, Select Operators → OperatorHub, then select the Quay Operator.
If there is more than one, be sure to use the Red Hat certified Operator and not the community
version.

2. Select Install. The Operator Subscription page appears.

3. Choose the following then select Subscribe:

Installation Mode: Choose either 'All namespaces' or 'A specific namespace' depending on
whether you want the Operator to be available cluster-wide or only within a single
namespace (all-namespaces recommended)

Update Channel: Choose the update channel (only one may be available)

Approval Strategy: Choose to approve automatic or manual updates

4. Select Install.

5. After a minute you will see the Operator installed successfully in the Installed Operators page.

CHAPTER 2. INSTALLING THE QUAY OPERATOR

7

CHAPTER 3. HIGH LEVEL CONCEPTS

3.1. QUAYREGISTRY API

The Quay Operator provides the QuayRegistry custom resource API to declaratively manage Quay
container registries on the cluster. Use either the OpenShift UI or a command-line tool to interact with
this API.

Creating a QuayRegistry will result in the Operator deploying and configuring all necessary
resources needed to run Quay on the cluster.

Editing a QuayRegistry will result in the Operator reconciling the changes and
creating/updating/deleting objects to match the desired configuration.

Deleting a QuayRegistry will result in garbage collection of all previously created resources and
the Quay container registry will no longer be available.

The QuayRegistry API is fairly simple, and the fields are outlined in the following sections.

3.1.1. Components

Quay is a powerful container registry platform and as a result, requires a decent number of
dependencies. These include a database, object storage, Redis, and others. The Quay Operator
manages an opinionated deployment of Quay and its dependencies on Kubernetes. These dependencies
are treated as components and are configured through the QuayRegistry API.

In the QuayRegistry custom resource, the spec.components field configures components. Each
component contains two fields: kind - the name of the component, and managed - boolean whether
the component lifecycle is handled by the Operator. By default (omitting this field), all components are
managed and will be autofilled upon reconciliation for visibility:

Unless your QuayRegistry custom resource specifies otherwise, the Operator will use defaults for the
following managed components:

postgres Stores the registry metadata. Uses a version of Postgres 10 from the Software
Collections.

redis Handles Quay builder coordination and some internal logging.

objectstorage Stores image layer blobs. Utilizes the ObjectBucketClaim Kubernetes API which
is provided by Noobaa/RHOCS.

clair Provides image vulnerability scanning.

horizontalpodautoscaler Adjusts the number of Quay pods depending on memory/cpu
consumption.

mirror Configures a repository mirror worker (to support optional repository mirroring).

spec:
 components:
 - kind: postgres
 managed: true
 ...

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

8

https://www.softwarecollections.org/en/

route Provides an external entrypoint to the Quay registry from outside of OpenShift.

3.1.1.1. Considerations For Managed Components

While the Operator will handle any required configuration and installation work needed for Red Hat
Quay to use the managed components, there are several considerations to keep in mind.

Database backups should be performed regularly using either the supplied tools on the
Postgres image or your own backup infrastructure. The Operator does not currently ensure the
Postgres database is backed up.

Restoring the Postgres database from a backup must be done using Postgres tools and
procedures. Be aware that your Quay Pods should not be running while the database restore is
in progress.

Database disk space is allocated automatically by the Operator with 50 GiB. This number
represents a usable amount of storage for most small to medium Red Hat Quay installations but
may not be sufficient for your use cases. Resizing the database volume is currently not handled
by the Operator.

Object storage disk space is allocated automatically by the Operator with 50 GiB. This number
represents a usable amount of storage for most small to medium Red Hat Quay installations but
may not be sufficient for your use cases. Resizing the RHOCS volume is currently not handled by
the Operator. See the section below on resizing managed storage for more details.

The Operator will deploy an OpenShift Route as the default entrypoint to the registry. If you
prefer a different entrypoint (e.g. Ingress or direct Service access that configuration will need
to be done manually).

If any of these considerations are unacceptable for your environment, it would be suggested to provide
the Operator with unmanaged resources or overrides as described in the following sections.

3.1.1.2. Using Existing (Un-Managed) Components With the Quay Operator

If you have existing components such as Postgres, Redis or object storage that you would like to use
with Quay, you first configure them within the Quay configuration bundle (config.yaml) and then
reference the bundle in your QuayRegistry (as a Kubernetes Secret) while indicating which components
are unmanaged.

For example, to use an existing Postgres database:

1. Create a Secret with the necessary database fields in a config.yaml file:

config.yaml:

$ kubectl create secret generic --from-file config.yaml=./config.yaml test-config-bundle

2. Create a QuayRegistry which marks postgres component as unmanaged and references the
created Secret:

quayregistry.yaml

DB_URI: postgresql://test-quay-database:postgres@test-quay-database:5432/test-quay-
database

CHAPTER 3. HIGH LEVEL CONCEPTS

9

The deployed Quay application will now use the external database.

NOTE

The Quay config editor can also be used to create or modify an existing config bundle
and simplify the process of updating the Kubernetes Secret, especially for multiple
changes. When Quay’s configuration is changed via the config editor and sent to the
Operator, the Quay deployment will be updated to reflect the new configuration.

3.1.2. Config Bundle Secret

The spec.configBundleSecret field is a reference to the metadata.name of a Secret in the same
namespace as the QuayRegistry. This Secret must contain a config.yaml key/value pair. This
config.yaml file is a Quay config YAML file. This field is optional, and will be auto-filled by the Operator
if not provided. If provided, it serves as the base set of config fields which are later merged with other
fields from any managed components to form a final output Secret, which is then mounted into the
Quay application pods.

3.1.3. AWS S3 CloudFront

If you use AWS S3 CloudFront for backend registry storage, specify the private key as shown in the
following example:

$ oc create secret generic --from-file config.yaml=./config_awss3cloudfront.yaml --from-file default-
cloudfront-signing-key.pem=./default-cloudfront-signing-key.pem test-config-bundle

3.2. QUAYREGISTRY STATUS

Lifecycle observability for a given Quay deployment is reported in the status section of the
corresponding QuayRegistry object. The Operator constantly updates this section, and this should be
the first place to look for any problems or state changes in Quay or its managed dependencies.

3.2.1. Registry Endpoint

Once Quay is ready to be used, the status.registryEndpoint field will be populated with the publicly
available hostname of the registry.

3.2.2. Config Editor Endpoint

Access Quay’s UI-based config editor using status.configEditorEndpoint.

3.2.3. Config Editor Credentials Secret

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: test
spec:
 configBundleSecret: test-config-bundle
 components:
 - kind: postgres
 managed: false

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

10

The username/password for the config editor UI will be stored in a Secret in the same namespace as the
QuayRegistry referenced by status.configEditorCredentialsSecret.

3.2.4. Current Version

The current version of Quay that is running will be reported in status.currentVersion.

3.2.5. Conditions

Certain conditions will be reported in status.conditions.

CHAPTER 3. HIGH LEVEL CONCEPTS

11

CHAPTER 4. DEPLOYING QUAY USING THE QUAY
OPERATOR

4.1. CREATING A QUAY REGISTRY

The default configuration tells the Operator to manage all of Quay’s dependencies (database, Redis,
object storage, etc).

4.1.1. OpenShift Console

1. Select Operators → Installed Operators, then select the Quay Operator to navigate to the
Operator detail view.

2. Click 'Create Instance' on the 'Quay Registry' tile under 'Provided APIs'.

3. Optionally change the 'Name' of the QuayRegistry. This will affect the hostname of the
registry. All other fields have been populated with defaults.

4. Click 'Create' to submit the QuayRegistry to be deployed by the Quay Operator.

5. You should be redirected to the QuayRegistry list view. Click on the QuayRegistry you just
created to see the detail view.

6. Once the 'Registry Endpoint' has a value, click it to access your new Quay registry via the UI. You
can now select 'Create Account' to create a user and sign in.

4.1.2. Command Line

The same result can be achieved using the CLI.

1. Create the following QuayRegistry custom resource in a file called quay.yaml.

quay.yaml:

2. Create the QuayRegistry in your namespace:

3. Wait until the status.registryEndpoint is populated.

4. Once the status.registryEndpoint has a value, navigate to it using your web browser to access
your new Quay registry via the UI. You can now select 'Create Account' to create a user and sign
in.

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: my-registry

$ oc create -n <your-namespace> -f quay.yaml

$ oc get -n <your-namespace> quayregistry my-registry -o jsonpath="
{.status.registryEndpoint}" -w

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

12

4.2. DEPLOYING QUAY ON INFRASTRUCTURE NODES

By default, Quay-related pods are placed on arbitrary worker nodes when using the Operator to deploy
the registry. The OpenShift Container Platform documentation shows how to use machine sets to
configure nodes to only host infrastructure components (see https://docs.openshift.com/container-
platform/4.7/machine_management/creating-infrastructure-machinesets.html).

If you are not using OCP MachineSet resources to deploy infra nodes, this section shows you how to
manually label and taint nodes for infrastructure purposes.

Once you have your configured your infrastructure nodes, either manually or using machine sets, you can
then control the placement of Quay pods on these nodes using node selectors and tolerations.

4.2.1. Label and taint nodes for infrastructure use

In the cluster used in this example, there are three master nodes and six worker nodes:

$ oc get nodes
NAME STATUS ROLES AGE VERSION
user1-jcnp6-master-0.c.quay-devel.internal Ready master 3h30m v1.20.0+ba45583
user1-jcnp6-master-1.c.quay-devel.internal Ready master 3h30m v1.20.0+ba45583
user1-jcnp6-master-2.c.quay-devel.internal Ready master 3h30m v1.20.0+ba45583
user1-jcnp6-worker-b-65plj.c.quay-devel.internal Ready worker 3h21m v1.20.0+ba45583
user1-jcnp6-worker-b-jr7hc.c.quay-devel.internal Ready worker 3h21m v1.20.0+ba45583
user1-jcnp6-worker-c-jrq4v.c.quay-devel.internal Ready worker 3h21m v1.20.0+ba45583
user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal Ready worker 3h21m v1.20.0+ba45583
user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal Ready worker 3h22m v1.20.0+ba45583
user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal Ready worker 3h21m v1.20.0+ba45583

Label the final three worker nodes for infrastructure use:

$ oc label node --overwrite user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal node-
role.kubernetes.io/infra=
$ oc label node --overwrite user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal node-
role.kubernetes.io/infra=
$ oc label node --overwrite user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal node-
role.kubernetes.io/infra=

Now, when you list the nodes in the cluster, the last 3 worker nodes will have an added role of infra:

$ oc get nodes
NAME STATUS ROLES AGE VERSION
user1-jcnp6-master-0.c.quay-devel.internal Ready master 4h14m v1.20.0+ba45583
user1-jcnp6-master-1.c.quay-devel.internal Ready master 4h15m v1.20.0+ba45583
user1-jcnp6-master-2.c.quay-devel.internal Ready master 4h14m v1.20.0+ba45583
user1-jcnp6-worker-b-65plj.c.quay-devel.internal Ready worker 4h6m v1.20.0+ba45583
user1-jcnp6-worker-b-jr7hc.c.quay-devel.internal Ready worker 4h5m v1.20.0+ba45583
user1-jcnp6-worker-c-jrq4v.c.quay-devel.internal Ready worker 4h5m v1.20.0+ba45583
user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal Ready infra,worker 4h6m v1.20.0+ba45583
user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal Ready infra,worker 4h6m v1.20.0+ba45583
user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal Ready infra,worker 4h6m v1.20.0+ba45583

With an infra node being assigned as a worker, there is a chance that user workloads could get

CHAPTER 4. DEPLOYING QUAY USING THE QUAY OPERATOR

13

https://docs.openshift.com/container-platform/4.7/machine_management/creating-infrastructure-machinesets.html

With an infra node being assigned as a worker, there is a chance that user workloads could get
inadvertently assigned to an infra node. To avoid this, you can apply a taint to the infra node and then
add tolerations for the pods you want to control.

$ oc adm taint nodes user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal node-
role.kubernetes.io/infra:NoSchedule
$ oc adm taint nodes user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal node-
role.kubernetes.io/infra:NoSchedule
$ oc adm taint nodes user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal node-
role.kubernetes.io/infra:NoSchedule

4.2.2. Create a Project with node selector and toleration

If you have already deployed Quay using the Quay Operator, remove the installed operator and any
specific namespace(s) you created for the deployment.

Create a Project resource, specifying a node selector and toleration as shown in the following example:

quay-registry.yaml

kind: Project
apiVersion: project.openshift.io/v1
metadata:
 name: quay-registry
 annotations:
 openshift.io/node-selector: 'node-role.kubernetes.io/infra='
 scheduler.alpha.kubernetes.io/defaultTolerations: >-
 [{"operator": "Exists", "effect": "NoSchedule", "key":
 "node-role.kubernetes.io/infra"}
]

Use the oc apply command to create the project:

$ oc apply -f quay-registry.yaml
project.project.openshift.io/quay-registry created

Any subsequent resources created in the quay-registry namespace should now be scheduled on the
dedicated infrastructure nodes.

4.2.3. Install the Quay Operator in the namespace

When installing the Quay Operator, specify the appropriate project namespace explicitly, in this case
quay-registry. This will result in the operator pod itself landing on one of the three infrastructure nodes:

$ oc get pods -n quay-registry -o wide
NAME READY STATUS RESTARTS AGE IP NODE

quay-operator.v3.4.1-6f6597d8d8-bd4dp 1/1 Running 0 30s 10.131.0.16 user1-jcnp6-
worker-d-h5tv2.c.quay-devel.internal

4.2.4. Create the registry

Create the registry as explained earlier, and then wait for the deployment to be ready. When you list the

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

14

Create the registry as explained earlier, and then wait for the deployment to be ready. When you list the
Quay pods, you should now see that they have only been scheduled on the three nodes that you have
labelled for infrastructure purposes:

$ oc get pods -n quay-registry -o wide
NAME READY STATUS RESTARTS AGE IP NODE

example-registry-clair-app-789d6d984d-gpbwd 1/1 Running 1 5m57s 10.130.2.80
user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal
example-registry-clair-postgres-7c8697f5-zkzht 1/1 Running 0 4m53s 10.129.2.19
user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal
example-registry-quay-app-56dd755b6d-glbf7 1/1 Running 1 5m57s 10.129.2.17
user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal
example-registry-quay-config-editor-7bf9bccc7b-dpc6d 1/1 Running 0 5m57s
10.131.0.23 user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal
example-registry-quay-database-8dc7cfd69-dr2cc 1/1 Running 0 5m43s 10.129.2.18
 user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal
example-registry-quay-mirror-78df886bcc-v75p9 1/1 Running 0 5m16s 10.131.0.24
user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal
example-registry-quay-postgres-init-8s8g9 0/1 Completed 0 5m54s 10.130.2.79
user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal
example-registry-quay-redis-5688ddcdb6-ndp4t 1/1 Running 0 5m56s 10.130.2.78
user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal
quay-operator.v3.4.1-6f6597d8d8-bd4dp 1/1 Running 0 22m 10.131.0.16
user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal

CHAPTER 4. DEPLOYING QUAY USING THE QUAY OPERATOR

15

CHAPTER 5. UPGRADING QUAY USING THE QUAY
OPERATOR

The Quay Operator follows a synchronized versioning scheme, which means that each version of the
Operator is tied to the version of Quay and its components which it manages. There is no field on the
QuayRegistry custom resource which sets the version of Quay to deploy; the Operator only knows how
to deploy a single version of all components. This scheme was chosen to ensure that all components
work well together and to reduce the complexity of the Operator needing to know how to manage the
lifecycles of many different versions of Quay on Kubernetes.

5.1. OPERATOR LIFECYCLE MANAGER

The Quay Operator should be installed and upgraded using the Operator Lifecycle Manager (OLM).
When creating a Subscription with the default approvalStrategy: Automatic, OLM will automatically
upgrade the Quay Operator whenever a new version becomes available.

WARNING

When the Quay Operator is installed via Operator Lifecycle Manager it may be
configured to support automatic or manual upgrades. This option is shown on the
Operator Hub page for the Quay Operator during installation. It can also be found in
the Quay Operator Subscription object via the approvalStrategy field. Choosing
Automatic means that your Quay Operator will automatically be upgraded
whenever a new Operator version is released. If this is not desireable, then the
Manual approval strategy should be selected.

5.2. UPGRADING QUAY BY UPGRADING THE QUAY OPERATOR

The general approach for upgrading installed Operators on OpenShift is documented at Upgrading
installed Operators.

5.2.1. Upgrading Quay

From a Red Hat Quay point of view, to update from one minor version to the next, for example, 3.4 →
3.5, you need to actively change the update channel for the Quay Operator.

For z stream upgrades, for example, 3.4.2 → 3.4.3, updates are released in the major-minor channel that
the user initially selected during install. The procedure to perform a z stream upgrade depends on the
approvalStrategy as outlined above. If the approval strategy is set to Automatic, the Operator will
upgrade automatically to the newest z stream, resulting in automatic, rolling Quay updates to newer z
streams with little to no downtime. Otherwise, the update must be manually approved before installation
can begin.

5.2.2. Changing the update channel for an Operator

The subscription of an installed Operator specifies an update channel, which is used to track and receive
updates for the Operator. To upgrade the Quay Operator to start tracking and receiving updates from a
newer channel, change the update channel in the Subscription tab for the installed Quay Operator. For

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

16

https://docs.openshift.com/container-platform/4.6/operators/understanding/olm/olm-understanding-olm.html
https://docs.openshift.com/container-platform/4.7/operators/admin/olm-upgrading-operators.html

subscriptions with an Automatic approval strategy, the upgrade begins automatically and can be
monitored on the page that lists the Installed Operators.

5.2.3. Manually approving a pending Operator upgrade

If an installed Operator has the approval strategy in its subscription set to Manual, when new updates are
released in its current update channel, the update must be manually approved before installation can
begin. If the Quay Operator has a pending upgrade, this status will be displayed in the list of Installed
Operators. In the Subscription tab for the Quay Operator, you can preview the install plan and review
the resources that are listed as available for upgrade. If satisfied, click Approve and return to the page
that lists Installed Operators to monitor the progress of the upgrade.

The following image shows the Subscription tab in the UI, including the update Channel, the Approval
strategy, the Upgrade status and the InstallPlan:

The list of Installed Operators provides a high-level summary of the current Quay installation:

5.3. UPGRADING A QUAYREGISTRY

When the Quay Operator starts up, it immediately looks for any QuayRegistries it can find in the
namespace(s) it is configured to watch. When it finds one, the following logic is used:

If status.currentVersion is unset, reconcile as normal.

If status.currentVersion equals the Operator version, reconcile as normal.

If status.currentVersion does not equal the Operator version, check if it can be upgraded. If it

CHAPTER 5. UPGRADING QUAY USING THE QUAY OPERATOR

17

If status.currentVersion does not equal the Operator version, check if it can be upgraded. If it
can, perform upgrade tasks and set the status.currentVersion to the Operator’s version once
complete. If it cannot be upgraded, return an error and leave the QuayRegistry and its
deployed Kubernetes objects alone.

5.4. ENABLING NEW FEATURES IN QUAY 3.5

5.4.1. Console monitoring and alerting

The support for monitoring of Quay 3.5 in the OpenShift console requires that the Operator is installed
in all namespaces. If you previously installed the Operator in a specific namespace, delete the Operator
itself and re-install it for all namespaces, once the upgrade has taken place.

5.4.2. OCI and Helm support

Support for Helm and OCI artifacts is now enabled by default in Red Hat Quay 3. If you want to explicitly
enable the feature, for example, if you are upgrading from a version where it is not enabled by default,
you need to reconfigure your Quay deployment to enable the use of OCI artifacts using the following
properties:

5.5. UPGRADING A QUAYECOSYSTEM

Upgrades are supported from previous versions of the Operator which used the QuayEcosystem API
for a limited set of configurations. To ensure that migrations do not happen unexpectedly, a special label
needs to be applied to the QuayEcosystem for it to be migrated. A new QuayRegistry will be created
for the Operator to manage, but the old QuayEcosystem will remain until manually deleted to ensure
that you can roll back and still access Quay in case anything goes wrong. To migrate an existing
QuayEcosystem to a new QuayRegistry, follow these steps:

1. Add "quay-operator/migrate": "true" to the metadata.labels of the QuayEcosystem.

$ oc edit quayecosystem <quayecosystemname>

2. Wait for a QuayRegistry to be created with the same metadata.name as your
QuayEcosystem. The QuayEcosystem will be marked with the label "quay-
operator/migration-complete": "true".

3. Once the status.registryEndpoint of the new QuayRegistry is set, access Quay and confirm all
data and settings were migrated successfully.

4. When you are confident everything worked correctly, you may delete the QuayEcosystem and
Kubernetes garbage collection will clean up all old resources.

5.5.1. Reverting QuayEcosystem Upgrade

If something goes wrong during the automatic upgrade from QuayEcosystem to QuayRegistry, follow

FEATURE_GENERAL_OCI_SUPPORT: true
FEATURE_HELM_OCI_SUPPORT: true

metadata:
 labels:
 quay-operator/migrate: "true"

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

18

If something goes wrong during the automatic upgrade from QuayEcosystem to QuayRegistry, follow
these steps to revert back to using the QuayEcosystem:

Delete the QuayRegistry using either the UI or kubectl:

If external access was provided using a Route, change the Route to point back to the original
Service using the UI or kubectl.

NOTE

If your QuayEcosystem was managing the Postgres database, the upgrade process will
migrate your data to a new Postgres database managed by the upgraded Operator. Your
old database will not be changed or removed but Quay will no longer use it once the
migration is complete. If there are issues during the data migration, the upgrade process
will exit and it is recommended that you continue with your database as an unmanaged
component.

5.5.2. Supported QuayEcosystem Configurations for Upgrades

The Quay Operator will report errors in its logs and in status.conditions if migrating a QuayEcosystem
component fails or is unsupported. All unmanaged components should migrate successfully because no
Kubernetes resources need to be adopted and all the necessary values are already provided in Quay’s
config.yaml.

Database

Ephemeral database not supported (volumeSize field must be set).

Redis

Nothing special needed.

External Access

Only passthrough Route access supported for automatic migration. Manual migration required for other
methods.

LoadBalancer without custom hostname: After the QuayEcosystem is marked with label
"quay-operator/migration-complete": "true", delete the metadata.ownerReferences field
from existing Service before deleting the QuayEcosystem to prevent Kubernetes from
garbage collecting the Service and removing the load balancer. A new Service will be created
with metadata.name format <QuayEcosystem-name>-quay-app. Edit the spec.selector of
the existing Service to match the spec.selector of the new Service so traffic to the old load
balancer endpoint will now be directed to the new pods. You are now responsible for the old
Service; the Quay Operator will not manage it.

LoadBalancer/NodePort/Ingress with custom hostname: A new Service of type
LoadBalancer will be created with metadata.name format <QuayEcosystem-name>-quay-
app. Change your DNS settings to point to the status.loadBalancer endpoint provided by the
new Service.

Clair

Nothing special needed.

$ kubectl delete -n <namespace> quayregistry <quayecosystem-name>

CHAPTER 5. UPGRADING QUAY USING THE QUAY OPERATOR

19

Object Storage

QuayEcosystem did not have a managed object storage component, so object storage will always be
marked as unmanaged. Local storage is not supported.

Repository Mirroring

Nothing special needed.

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

20

CHAPTER 6. QUAY OPERATOR FEATURES

6.1. HELM OCI SUPPORT AND RED HAT QUAY

Container registries such as Red Hat Quay were originally designed to support container images in the
Docker image format. To promote the use of additional runtimes apart from Docker, the Open
Container Initiative (OCI) was created to provide a standardization surrounding container runtimes and
image formats. Most container registries support the OCI standardization as it is based on the Docker
image manifest V2, Schema 2 format.

In addition to container images, a variety of artifacts have emerged that support not just individual
applications, but the Kubernetes platform as a whole. These range from Open Policy Agent (OPA)
policies for security and governance to Helm charts and Operators to aid in application deployment.

Red Hat Quay is a private container registry that not only stores container images, but supports an
entire ecosystem of tooling to aid in the management of containers. With the release of Red Hat Quay
3, support for the use of OCI based artifacts, and specifically Helm Charts, has graduated from
Technical Preview (TP) and now has General Availability (GA) status.

When Red Hat Quay 3 is deployed using the OpenShift Operator, support for Helm and OCI artifacts is
now enabled by default. If you need to explicitly enable the feature, for example, if it has previously been
disabled or if you have upgraded from a version where it is not enabled by default, see the section
Section 6.1.3, “Explicitly enabling OCI and Helm support” .

6.1.1. Prerequisites

Trusted certificates: Communication between the Helm client and Quay is facilitated over
HTTPS and as of Helm 3.5, support is only available for registries communicating over HTTPS
with trusted certificates. In addition, the operating system must trust the certificates exposed by
the registry. Support in future Helm releases will allow for communicating with remote registries
insecurely. With that in mind, ensure that your operating system has been configured to trust
the certificates used by Quay, for example:

$ sudo cp rootCA.pem /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

Experimental feature: Many of the commands for interacting with Helm and OCI registries
make use of the helm chart subcommand. At the time of writing, OCI support in Helm is still
marked as an “experimental” feature and must be enabled explicitly. This is accomplished by
setting the environment variable HELM_EXPERIMENTAL_OCI=1.

Install Helm client: Download your desired version from
https://github.com/helm/helm/releases, for example, https://get.helm.sh/helm-v3.5.3-linux-
amd64.tar.gz. Unpack it and move the helm binary to its desired destination:

$ tar -zxvf helm-v3.5.3-linux-amd64.tar.gz
$ mv linux-amd64/helm /usr/local/bin/helm

Create organization in Quay: Create a new organization for storing the Helm charts, using the
Quay registry UI. For example, create an organization named helm.

6.1.2. Using Helm charts with Quay

Helm, as a graduated project of the Cloud Native Computing Foundation (CNCF), has become the de

CHAPTER 6. QUAY OPERATOR FEATURES

21

https://docs.docker.com/registry/spec/manifest-v2-2/
https://github.com/helm/helm/releases
https://get.helm.sh/helm-v3.5.3-linux-amd64.tar.gz

facto package manager for Kubernetes as it simplifies how applications are packaged and deployed.
Helm uses a packaging format called Charts which contain the Kubernetes resources representing an
application. Charts can be made available for general distribution and consumption in repositories. A
Helm repository is an HTTP server that serves an index.yaml metadata file and optionally a set of
packaged charts. Beginning with Helm version 3, support was made available for distributing charts in
OCI registries as an alternative to a traditional repository. To demonstrate how Quay can be used as a
registry for Helm charts, an existing chart from a Helm repository will be used to showcase the
interaction with OCI registries for chart developers and users.

In the following example, a sample etherpad chart is downloaded from from the Red Community of
Practice (CoP) repository and pushed to a local Red Hat Quay repository using the following steps:

Add the appropriate repository

Update the repository with the latest metadata

Download and untar the chart to create a local directory called etherpad

For example:

$ helm repo add redhat-cop https://redhat-cop.github.io/helm-charts
$ helm repo update
$ helm pull redhat-cop/etherpad --version=0.0.4 --untar

Tagging the chart requires use of the helm chart save command - this corresponds to using podman
tag for tagging images.

$ helm chart save ./etherpad example-registry-quay-quay-
enterprise.apps.user1.example.com/helm/etherpad:0.0.4

ref: example-registry-quay-quay-enterprise.apps.user1.example.com/helm/etherpad:0.0.4
digest: 6850d9b21dd4b87cf20ad49f2e2c7def9655c52ea573e1ddb9d1464eeb6a46a6
size: 3.5 KiB
name: etherpad
version: 0.0.4
0.0.4: saved

Use the helm chart list command to see the local instance of the chart:

helm chart list

REF NAME VERSION DIGEST SIZE CREATED
example-registry-quay-quay-enterprise.apps.user1.example.com/helm/etherpad:0.0.4 etherpad 0.0.4
ce0233f 3.5 KiB 23 seconds

Before pushing the chart, log in to the repository using the helm registry login command:

$ helm registry login example-registry-quay-quay-enterprise.apps.user1.example.com
Username: quayadmin
Password:
Login succeeded

Push the chart to your local Quay repository using the helm chart push command:

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

22

$ helm chart push example-registry-quay-quay-
enterprise.apps.user1.example.com/helm/etherpad:0.0.4

The push refers to repository [example-registry-quay-quay-
enterprise.apps.user1.example.com/helm/etherpad]
ref: example-registry-quay-quay-enterprise.apps.user1.example.com/helm/etherpad:0.0.4
digest: ce0233fd014992b8e27cc648cdabbebd4dd6850aca8fb8e50f7eef6f2f49833d
size: 3.5 KiB
name: etherpad
version: 0.0.4
0.0.4: pushed to remote (1 layer, 3.5 KiB total)

To test that the push worked, delete the local copy and then pull the chart from the repository:

$ helm chart rm example-registry-quay-quay-enterprise.apps.user1.example.com/helm/etherpad:0.0.4
$ rm -rf etherpad
$ helm chart pull example-registry-quay-quay-
enterprise.apps.user1.example.com/helm/etherpad:0.0.4

0.0.4: Pulling from example-registry-quay-quay-enterprise.apps.user1.example.com/helm/etherpad
ref: example-registry-quay-quay-enterprise.apps.user1.example.com/helm/etherpad:0.0.4
digest: 6850d9b21dd4b87cf20ad49f2e2c7def9655c52ea573e1ddb9d1464eeb6a46a6
size: 3.5 KiB
name: etherpad
version: 0.0.4
Status: Downloaded newer chart for example-registry-quay-quay-
enterprise.apps.user1.example.com/helm/etherpad:0.0.4

Use the helm chart export command to extract the chart files:

$ helm chart export example-registry-quay-quay-
enterprise.apps.user1.example.com/helm/etherpad:0.0.4

ref: example-registry-quay-quay-enterprise.apps.user1.example.com/helm/etherpad:0.0.4
digest: ce0233fd014992b8e27cc648cdabbebd4dd6850aca8fb8e50f7eef6f2f49833d
size: 3.5 KiB
name: etherpad
version: 0.0.4
Exported chart to etherpad/

6.1.3. Explicitly enabling OCI and Helm support

Support for Helm and OCI artifacts is now enabled by default in Red Hat Quay 3. If you need to explicitly
enable the feature, for example, if it has previously been disabled or if you have upgraded from a version
where it is not enabled by default, you need to add two properties in the Quay configuration to enable
the use of OCI artifacts:

Customizations to the configuration of Quay can be provided in a secret containing the configuration
bundle. Execute the following command which will create a new secret called quay-config-bundle, in the
appropriate namespace, containing the necessary properties to enable OCI support.

FEATURE_GENERAL_OCI_SUPPORT: true
FEATURE_HELM_OCI_SUPPORT: true

CHAPTER 6. QUAY OPERATOR FEATURES

23

quay-config-bundle.yaml

Create the secret in the appropriate namespace, in this example quay-enterprise:

$ oc create -n quay-enterprise -f quay-config-bundle.yaml

Specify the secret for the spec.configBundleSecret field:

quay-registry.yaml

Create the registry with the specified configuration:

$ oc create -n quay-enterprise -f quay-config-bundle.yaml

6.2. CONSOLE MONITORING AND ALERTING

Red Hat Quay 3 provides support for monitoring Quay instances that were deployed using the
Operator, from inside the OpenShift console. The new monitoring features include a Grafana
dashboard, access to individual metrics, and alerting to notify for frequently restarting Quay pods.

NOTE

To enable the monitoring features, the Operator must be installed in "all namespaces"
mode.

6.2.1. Dashboard

In the OpenShift console, navigate to Monitoring → Dashboards and search for the dashboard of your
desired Quay registry instance:

apiVersion: v1
stringData:
 config.yaml: |
 FEATURE_GENERAL_OCI_SUPPORT: true
 FEATURE_HELM_OCI_SUPPORT: true
kind: Secret
metadata:
 name: quay-config-bundle
 namespace: quay-enterprise
type: Opaque

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: quay-config-bundle

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

24

The dashboard shows various statistics including:

The number of Organizations, Repositories, Users and Robot accounts

CPU Usage and Max Memory Usage

Rates of Image Pulls and Pushes, and Authentication requests

API request rate

Latencies

CHAPTER 6. QUAY OPERATOR FEATURES

25

6.2.2. Metrics

You can see the underlying metrics behind the Quay dashboard, by accessing Monitoring → Metrics in
the UI. In the Expression field, enter the text quay_ to see the list of metrics available:

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

26

Select a sample metric, for example, quay_org_rows:

CHAPTER 6. QUAY OPERATOR FEATURES

27

This metric shows the number of organizations in the registry, and it is directly surfaced in the dashboard
as well.

6.2.3. Alerting

An alert is raised if the Quay pods restart too often. The alert can be configured by accessing the
Alerting rules tab from Monitoring → Alerting in the consol UI and searching for the Quay-specific alert:

Select the QuayPodFrequentlyRestarting rule detail to configure the alert:

6.3. MANUALLY UPDATING THE VULNERABILITY DATABASES FOR
CLAIR IN AN AIR-GAPPED OPENSHIFT CLUSTER

Clair utilizes packages called updaters that encapsulate the logic of fetching and parsing different
vulnerability databases. Clair supports running updaters in a different environment and importing the
results. This is aimed at supporting installations that disallow the Clair cluster from talking to the
Internet directly.

To manually update the vulnerability databases for Clair in an air-gapped OpenShift cluster, use the

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

28

To manually update the vulnerability databases for Clair in an air-gapped OpenShift cluster, use the
following steps:

Obtain the clairctl program

Retrieve the Clair config

Use clairctl to export the updaters bundle from a Clair instance that has access to the internet

Update the Clair config in the air-gapped OpenShift cluster to allow access to the Clair
database

Transfer the updaters bundle from the system with internet access, to make it available inside
the air-gapped environment

Use clairctl to import the updaters bundle into the Clair instance for the air-gapped OpenShift
cluster

6.3.1. Obtaining clairctl

To obtain the clairctl program from a Clair deployment in an OpenShift cluster, use the oc cp
command, for example:

$ oc -n quay-enterprise cp example-registry-clair-app-64dd48f866-6ptgw:/usr/bin/clairctl ./clairctl
$ chmod u+x ./clairctl

For a standalone Clair deployment, use the podman cp command, for example:

$ sudo podman cp clairv4:/usr/bin/clairctl ./clairctl
$ chmod u+x ./clairctl

6.3.2. Retrieving the Clair config

To retrieve the configuration file for a Clair instance deployed using the OpenShift Operator, retrieve
and decode the config secret using the appropriate namespace, and save it to file, for example:

$ kubectl get secret -n quay-enterprise example-registry-clair-config-secret -o "jsonpath=
{$.data['config\.yaml']}" | base64 -d > clair-config.yaml

An excerpt from a Clair configuration file is shown below:

clair-config.yaml

http_listen_addr: :8080
introspection_addr: ""
log_level: info
indexer:
 connstring: host=example-registry-clair-postgres port=5432 dbname=postgres user=postgres
password=postgres sslmode=disable
 scanlock_retry: 10
 layer_scan_concurrency: 5
 migrations: true
 scanner:
 package: {}

CHAPTER 6. QUAY OPERATOR FEATURES

29

For standalone Clair deployments, the config file is the one specified in CLAIR_CONF environment
variable in the podman run command, for example:

sudo podman run -d --rm --name clairv4 \
 -p 8081:8081 -p 8089:8089 \
 -e CLAIR_CONF=/clair/config.yaml -e CLAIR_MODE=combo \
 -v /etc/clairv4/config:/clair:Z \
 registry.redhat.io/quay/clair-rhel8:v3.5.1

6.3.3. Exporting the updaters bundle

From a Clair instance that has access to the internet, use clairctl with the appropriate configuration file
to export the updaters bundle:

$./clairctl --config ./config.yaml export-updaters updates.gz

6.3.4. Configuring access to the Clair database in the air-gapped OpenShift cluster

Use kubectl to determine the Clair database service:

$ kubectl get svc -n quay-enterprise

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
example-registry-clair-app ClusterIP 172.30.224.93 <none>
80/TCP,8089/TCP 4d21h
example-registry-clair-postgres ClusterIP 172.30.246.88 <none> 5432/TCP
4d21h
...

Forward the Clair database port so that it is accessible from the local machine, for example:

 dist: {}
 repo: {}
 airgap: false
matcher:
 connstring: host=example-registry-clair-postgres port=5432 dbname=postgres user=postgres
password=postgres sslmode=disable
 max_conn_pool: 100
 indexer_addr: ""
 migrations: true
 period: null
 disable_updaters: false
notifier:
 connstring: host=example-registry-clair-postgres port=5432 dbname=postgres user=postgres
password=postgres sslmode=disable
 migrations: true
 indexer_addr: ""
 matcher_addr: ""
 poll_interval: 5m
 delivery_interval: 1m
 ...

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

30

$ kubectl port-forward -n quay-enterprise service/example-registry-clair-postgres 5432:5432

Update the Clair configuration file, replacing the value of the host in the multiple connstring
fields with localhost, for example:

clair-config.yaml

NOTE

As an alternative to using kubectl port-forward, you can use kubefwd instead. With this
method, there is no need to modify the connstring field in the Clair configuration file to
use localhost.

6.3.5. Importing the updaters bundle into the air-gapped environment

After transferring the updaters bundle to the air-gapped environment, use clairctl to import the bundle
into the Clair database deployed by the OpenShift Operator:

$./clairctl --config ./clair-config.yaml import-updaters updates.gz

 ...
 connstring: host=localhost port=5432 dbname=postgres user=postgres
password=postgres sslmode=disable
 ...

CHAPTER 6. QUAY OPERATOR FEATURES

31

CHAPTER 7. ADVANCED CONCEPTS

7.1. CUSTOMIZING THE QUAY DEPLOYMENT

The Quay Operator takes an opinionated strategy towards deploying Quay and its dependencies,
however there are places where the Quay deployment can be customized.

7.1.1. Quay Application Configuration

Once deployed, the Quay application itself can be configured as normal using the config editor UI or by
modifying the Secret containing the Quay configuration bundle. The Operator uses the Secret named
in the spec.configBundleSecret field but does not watch this resource for changes. It is recommended
that configuration changes be made to a new Secret resource and the spec.configBundleSecret field
be updated to reflect the change. In the event there are issues with the new configuration, it is simple to
revert the value of spec.configBundleSecret to the older Secret.

7.1.2. Customizing External Access to the Registry

When running on OpenShift, the Routes API is available and will automatically be used as a managed
component. After creating the QuayRegistry, the external access point can be found in the status block
of the QuayRegistry:

When running on native Kubernetes, the Operator creates a Service of type: ClusterIP for your registry.
You are then responsible for external access (like Ingress).

$ kubectl get services -n <namespace>
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
some-quay ClusterIP 172.30.143.199 <none> 443/TCP,9091/TCP 23h

7.1.2.1. Using a Custom Hostname and TLS

By default, a Route will be created with the default generated hostname and a certificate/key pair will
be generated for TLS. If you want to access Red Hat Quay using a custom hostname and bring your own
TLS certificate/key pair, follow these steps.

If FEATURE_BUILD_SUPPORT: true, then make sure the certificate/key pair is also valid for the
BUILDMAN_HOSTNAME.

If the given cert/key pair is invalid for the above hostnames, then the Quay Operator will reject your
provided certificate/key pair and generate one to be used by Red Hat Quay.

Next, create a Secret with the following content:

status:
 registryEndpoint: some-quay.my-namespace.apps.mycluster.com

apiVersion: v1
kind: Secret
metadata:
 name: my-config-bundle
data:

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

32

Then, create a QuayRegistry which references the created Secret:

7.1.2.2. Using OpenShift Provided TLS Certificate

It is preferred to have TLS terminated in the Quay app container. Therefore, to use the OpenShift
provided TLS, you must create a Route with type "reencrypt", which will use the OpenShift provided
TLS at the edge, and Quay Operator-generated TLS within the cluster. This is achieved by marking the
route component as unmanaged, and creating your own Route which reencrypts TLS using the
Operator-generated CA certificate.

Create a Secret with a config.yaml key containing the SERVER_HOSTNAME field of value <route-
name>-<namespace>.apps.<cluster-domain> (the Route with this hostname will be created in a later
step).

Create a QuayRegistry referencing the above Secret and with the route component unmanaged:

Wait for the QuayRegistry to be fully reconciled by the Quay Operator. Then, acquire the generated
TLS certificate by finding the Secret being mounted into the Quay app pods and copying the tls.cert
value.

Create a Route with TLS reencryption and the destination CA certificate you copied above:

 config.yaml: <must include SERVER_HOSTNAME field with your custom hostname>
 ssl.cert: <your TLS certificate>
 ssl.key: <your TLS key>

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: some-quay
spec:
 configBundleSecret: my-config-bundle

apiVersion: v1
kind: Secret
metadata:
 name: my-config-bundle
data:
 config.yaml: <must include SERVER_HOSTNAME field with your custom hostname>

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: some-quay
spec:
 configBundleSecret: my-config-bundle
 components:
 - kind: route
 managed: false

apiVersion: v1
kind: Route
metadata:
 name: registry

CHAPTER 7. ADVANCED CONCEPTS

33

https://docs.openshift.com/container-platform/4.7/networking/routes/secured-routes.html

You can now access your Quay registry using the created Route.

7.1.3. Disabling Route Component

To prevent the Operator from creating a Route, mark the component as unmanaged in the
QuayRegistry:

NOTE

Disabling the default Route means you are now responsible for creating a Route,
Service, or Ingress in order to access the Quay instance and that whatever DNS you use
must match the SERVER_HOSTNAME in the Quay config.

7.1.4. Resizing Managed Storage

The Quay Operator creates default object storage using the defaults provided by RHOCS when creating
a NooBaa object (50 Gib). There are two ways to extend this storage; you can resize an existing PVC or
add more PVCs to a new storage pool.

7.1.4.1. Resize Noobaa PVC

1. Log into the OpenShift console and select Storage → Persistent Volume Claims.

2. Select the PersistentVolumeClaim named like noobaa-default-backing-store-noobaa-pvc-*.

3. From the Action menu, select Expand PVC.

4. Enter the new size of the Persistent Volume Claim and select Expand.

After a few minutes (depending on the size of the PVC), the expanded size should reflect in the PVC’s
Capacity field.

NOTE

 namespace: <namespace>
spec:
 to:
 kind: Service
 name: <quay-service-name>
 tls:
 termination: reencrypt
 destinationCACertificate:
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: some-quay
spec:
 components:
 - kind: route
 managed: false

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

34

NOTE

Expanding CSI volumes is a Technology Preview feature only. For more information, see
https://access.redhat.com/documentation/en-
us/openshift_container_platform/4.6/html/storage/expanding-persistent-volumes.

7.1.4.2. Add Another Storage Pool

1. Log into the OpenShift console and select Networking → Routes. Make sure the openshift-
storage project is selected.

2. Click on the Location field for the noobaa-mgmt Route.

3. Log into the Noobaa Management Console.

4. On the main dashboard, under Storage Resources, select Add Storage Resources.

5. Select Deploy Kubernetes Pool

6. Enter a new pool name. Click Next.

7. Choose the number of Pods to manage the pool and set the size per node. Click Next.

8. Click Deploy.

After a few minutes, the additional storage pool will be added to the Noobaa resources and available for
use by Red Hat Quay.

7.1.5. Disabling the Horizontal Pod Autoscaler

If you wish to disable autoscaling or create your own HorizontalPodAutoscaler, simply specify the
component as unmanaged in the QuayRegistry instance:

7.1.6. Customizing Default Operator Images

NOTE

Using this mechanism is not supported for production Quay environments and is strongly
encouraged only for development/testing purposes. There is no guarantee your
deployment will work correctly when using non-default images with the Quay Operator.

In certain circumstances, it may be useful to override the default images used by the Operator. This can
be done by setting one or more environment variables in the Quay Operator ClusterServiceVersion.

7.1.6.1. Environment Variables

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: some-quay
spec:
 components:
 - kind: horizontalpodautoscaler
 managed: false

CHAPTER 7. ADVANCED CONCEPTS

35

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html/storage/expanding-persistent-volumes

The following environment variables are used in the Operator to override component images:

Environment Variable Component

RELATED_IMAGE_COMPONENT_QUAY base

RELATED_IMAGE_COMPONENT_CLAIR clair

RELATED_IMAGE_COMPONENT_POSTGRE
S

postgres and clair databases

RELATED_IMAGE_COMPONENT_REDIS redis

NOTE

Override images must be referenced by manifest (@sha256:), not by tag (:latest).

7.1.6.2. Applying Overrides to a Running Operator

When the Quay Operator is installed in a cluster via the Operator Lifecycle Manager (OLM), the
managed component container images can be easily overridden by modifying the
ClusterServiceVersion object, which is OLM’s representation of a running Operator in the cluster. Find
the Quay Operator’s ClusterServiceVersion either by using a Kubernetes UI or kubectl/oc:

$ oc get clusterserviceversions -n <your-namespace>

Using the UI, oc edit, or any other method, modify the Quay ClusterServiceVersion to include the
environment variables outlined above to point to the override images:

JSONPath: spec.install.spec.deployments[0].spec.template.spec.containers[0].env

Note that this is done at the Operator level, so every QuayRegistry will be deployed using these same
overrides.

ADDITIONAL RESOURCES

For more details on the Red Hat Quay Operator, see the upstream quay-operator project.

- name: RELATED_IMAGE_COMPONENT_QUAY
 value:
quay.io/projectquay/quay@sha256:c35f5af964431673f4ff5c9e90bdf45f19e38b8742b5903d41c10cc7f63
39a6d
- name: RELATED_IMAGE_COMPONENT_CLAIR
 value:
quay.io/projectquay/clair@sha256:70c99feceb4c0973540d22e740659cd8d616775d3ad1c1698ddf71d
0221f3ce6
- name: RELATED_IMAGE_COMPONENT_POSTGRES
 value: centos/postgresql-10-
centos7@sha256:de1560cb35e5ec643e7b3a772ebaac8e3a7a2a8e8271d9e91ff023539b4dfb33
- name: RELATED_IMAGE_COMPONENT_REDIS
 value: centos/redis-32-
centos7@sha256:06dbb609484330ec6be6090109f1fa16e936afcf975d1cbc5fff3e6c7cae7542

Red Hat Quay 3 Deploy Red Hat Quay on OpenShift with the Quay Operator

36

https://docs.openshift.com/container-platform/4.6/operators/understanding/olm/olm-understanding-olm.html
https://github.com/quay/quay-operator/

CHAPTER 7. ADVANCED CONCEPTS

37

	Table of Contents
	PREFACE
	CHAPTER 1. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT
	CHAPTER 2. INSTALLING THE QUAY OPERATOR
	2.1. DIFFERENCES FROM EARLIER VERSIONS
	2.2. BEFORE INSTALLING THE QUAY OPERATOR
	2.2.1. Deciding On a Storage Solution
	2.2.2. Enabling OpenShift Container Storage

	2.3. INSTALLING THE OPERATOR FROM OPERATORHUB

	CHAPTER 3. HIGH LEVEL CONCEPTS
	3.1. QUAYREGISTRY API
	3.1.1. Components
	3.1.1.1. Considerations For Managed Components
	3.1.1.2. Using Existing (Un-Managed) Components With the Quay Operator

	3.1.2. Config Bundle Secret
	3.1.3. AWS S3 CloudFront

	3.2. QUAYREGISTRY STATUS
	3.2.1. Registry Endpoint
	3.2.2. Config Editor Endpoint
	3.2.3. Config Editor Credentials Secret
	3.2.4. Current Version
	3.2.5. Conditions

	CHAPTER 4. DEPLOYING QUAY USING THE QUAY OPERATOR
	4.1. CREATING A QUAY REGISTRY
	4.1.1. OpenShift Console
	4.1.2. Command Line

	4.2. DEPLOYING QUAY ON INFRASTRUCTURE NODES
	4.2.1. Label and taint nodes for infrastructure use
	4.2.2. Create a Project with node selector and toleration
	4.2.3. Install the Quay Operator in the namespace
	4.2.4. Create the registry

	CHAPTER 5. UPGRADING QUAY USING THE QUAY OPERATOR
	5.1. OPERATOR LIFECYCLE MANAGER
	5.2. UPGRADING QUAY BY UPGRADING THE QUAY OPERATOR
	5.2.1. Upgrading Quay
	5.2.2. Changing the update channel for an Operator
	5.2.3. Manually approving a pending Operator upgrade

	5.3. UPGRADING A QUAYREGISTRY
	5.4. ENABLING NEW FEATURES IN QUAY 3.5
	5.4.1. Console monitoring and alerting
	5.4.2. OCI and Helm support

	5.5. UPGRADING A QUAYECOSYSTEM
	5.5.1. Reverting QuayEcosystem Upgrade
	5.5.2. Supported QuayEcosystem Configurations for Upgrades

	CHAPTER 6. QUAY OPERATOR FEATURES
	6.1. HELM OCI SUPPORT AND RED HAT QUAY
	6.1.1. Prerequisites
	6.1.2. Using Helm charts with Quay
	6.1.3. Explicitly enabling OCI and Helm support

	6.2. CONSOLE MONITORING AND ALERTING
	6.2.1. Dashboard
	6.2.2. Metrics
	6.2.3. Alerting

	6.3. MANUALLY UPDATING THE VULNERABILITY DATABASES FOR CLAIR IN AN AIR-GAPPED OPENSHIFT CLUSTER
	6.3.1. Obtaining clairctl
	6.3.2. Retrieving the Clair config
	6.3.3. Exporting the updaters bundle
	6.3.4. Configuring access to the Clair database in the air-gapped OpenShift cluster
	6.3.5. Importing the updaters bundle into the air-gapped environment

	CHAPTER 7. ADVANCED CONCEPTS
	7.1. CUSTOMIZING THE QUAY DEPLOYMENT
	7.1.1. Quay Application Configuration
	7.1.2. Customizing External Access to the Registry
	7.1.2.1. Using a Custom Hostname and TLS
	7.1.2.2. Using OpenShift Provided TLS Certificate

	7.1.3. Disabling Route Component
	7.1.4. Resizing Managed Storage
	7.1.4.1. Resize Noobaa PVC
	7.1.4.2. Add Another Storage Pool

	7.1.5. Disabling the Horizontal Pod Autoscaler
	7.1.6. Customizing Default Operator Images
	7.1.6.1. Environment Variables
	7.1.6.2. Applying Overrides to a Running Operator

	ADDITIONAL RESOURCES

