
Red Hat Quay 3

About Quay IO

About Quay IO

Last Updated: 2024-04-03

Red Hat Quay 3 About Quay IO

About Quay IO

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

About Quay IO

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. QUAY.IO OVERVIEW

CHAPTER 2. QUAY.IO SUPPORT

CHAPTER 3. CLAIR SECURITY SCANNER
3.1. ABOUT CLAIR

3.1.1. Clair vulnerability databases
3.1.2. Clair supported dependencies

3.2. CLAIR SEVERITY MAPPING
3.2.1. Clair severity strings

Alpine mapping
AWS mapping
Debian mapping
Oracle mapping
RHEL mapping
SUSE mapping
Ubuntu mapping
OSV mapping

CHAPTER 4. QUAY.IO USER INTERFACE OVERVIEW
4.1. QUAY.IO LANDING PAGE

4.1.1. Creating a Quay.io account
4.1.1.1. Registering for a Red Hat Account
4.1.1.2. Creating a Quay.io user account
4.1.1.3. Quay.io Single Sign On support

Additional resources
4.1.2. Exploring Quay.io
4.1.3. Trying Quay.io (deprecated)
4.1.4. Information about Quay.io pricing

CHAPTER 5. USERS AND ORGANIZATIONS
5.1. TENANCY MODEL
5.2. LOGGING INTO QUAY

5.2.1. Logging into Quay.io
5.2.2. Logging into Quay through the Hybrid Cloud Console

5.3. CREATING A REPOSITORY
5.3.1. Creating an image repository by using the UI
5.3.2. Creating an image repository by using the CLI

5.4. MANAGING ACCESS TO REPOSITORIES
5.4.1. Allowing access to user repositories

5.4.1.1. Allowing user access to a user repository
5.4.1.2. Allowing robot access to a user repository

5.4.2. Organization repositories
5.4.2.1. Creating an Organization

5.4.2.1.1. Creating another Organization by using the API
5.4.2.2. Adding a team to an organization
5.4.2.3. Setting a Team role
5.4.2.4. Adding users to a Team

5.5. USER SETTINGS
5.5.1. Navigating to the User Settings page

5

6

7

8
8
8
9
9

10
10
10
10
11
11
11

12
12

14
14
15
15
16
16
17
17
17
18

20
20
20
21
21
22
22
23
24
24
24
25
27
28
28
29
29
30
31
31

Table of Contents

1

. .

. .

. .

. .

. .

5.5.2. Adjusting user settings
5.5.3. Billing information

CHAPTER 6. WORKING WITH TAGS
6.1. VIEWING AND MODIFYING TAGS

6.1.1. Adding a new image tag to an image
6.1.2. Moving an image tag
6.1.3. Deleting an image tag

6.1.3.1. Viewing tag history
6.1.3.2. Reverting tag changes

6.1.4. Fetching an image by tag or digest
6.2. TAG EXPIRATION

6.2.1. Setting tag expiration from a Dockerfile
6.2.2. Setting tag expiration from the repository

6.3. VIEWING CLAIR SECURITY SCANS

CHAPTER 7. VIEWING AND EXPORTING LOGS
7.1. VIEWING LOGS USING THE UI
7.2. EXPORTING REPOSITORY LOGS

CHAPTER 8. BUILDING CONTAINER IMAGES
8.1. BUILD CONTEXTS
8.2. TAG NAMING FOR BUILD TRIGGERS
8.3. SKIPPING A SOURCE CONTROL-TRIGGERED BUILD
8.4. VIEWING AND MANAGING BUILDS
8.5. CREATING A NEW BUILD
8.6. BUILD TRIGGERS

8.6.1. Creating a Build trigger
8.6.2. Manually triggering a Build

8.7. SETTING UP A CUSTOM GIT TRIGGER
8.7.1. Creating a trigger
8.7.2. Custom trigger creation setup

8.7.2.1. SSH public key access
8.7.2.2. Webhook

CHAPTER 9. REPOSITORY NOTIFICATIONS
9.1. CREATING NOTIFICATIONS
9.2. REPOSITORY EVENTS DESCRIPTION

9.2.1. Repository Push
9.2.2. Dockerfile Build Queued
9.2.3. Dockerfile Build started
9.2.4. Dockerfile Build successfully completed
9.2.5. Dockerfile Build failed
9.2.6. Dockerfile Build cancelled
9.2.7. Vulnerability detected

9.3. NOTIFICATION ACTIONS
9.3.1. Notifications added
9.3.2. E-mail notifications
9.3.3. Webhook POST notifications
9.3.4. Flowdock notifications
9.3.5. Hipchat notifications
9.3.6. Slack notifications

CHAPTER 10. OPEN CONTAINER INITIATIVE SUPPORT

31
32

33
33
34
34
34
35
35
35
35
36
36
37

38
38
39

41
41

42
42
43
43
43
43
45
45
45
45
46
46

48
48
49
49
49
50
51
52
53
53
54
54
54
54
54
54
54

55

Red Hat Quay 3 About Quay IO

2

10.1. HELM AND OCI PREREQUISITES
10.1.1. Installing Helm
10.1.2. Upgrading to Helm 3.8

10.2. USING HELM CHARTS
10.3. COSIGN OCI SUPPORT
10.4. INSTALLING AND USING COSIGN

55
55
56
56
57
58

Table of Contents

3

Red Hat Quay 3 About Quay IO

4

PREFACE
This comprehensive guide provides users with the knowledge and tools needed to make the most of our
robust and feature-rich container registry service, Quay.io.

PREFACE

5

CHAPTER 1. QUAY.IO OVERVIEW
Quay.io is a registry for storing, building, and distributing container images and other OCI artifacts. This
robust and feature-rich container registry service has gained widespread popularity among developers,
organizations, and enterprises, for establishing itself as one of the pioneering platforms in the
containerization ecosystem. It offers both free and paid tiers to cater to various user needs.

At its core, Quay.io serves as a centralized repository for storing, managing, and distributing container
images. One primary advantage of Quay.io is its flexibility and ease of use. It offers an intuitive web
interface that allows users to quickly upload and manage their container images. Developers can create
private repositories, ensuring sensitive or proprietary code remains secure within their organization.
Additionally, users can set up access controls and manage team collaboration, enabling seamless sharing
of container images among designated team members.

Quay.io addresses container security concerns through its integrated image scanner, Clair. The service
automatically scans container images for known vulnerabilities and security issues, providing developers
with valuable insights into potential risks and suggesting remediation steps.

Quay.io excels in automation, and supports integration with popular Continuous Integration/Continuous
Deployment (CI/CD) tools and platforms, enabling seamless automation of the container build and
deployment processes. As a result, developers can streamline their workflows, significantly reducing
manual intervention and improving overall development efficiency.

Quay.io caters to the needs of both large and small-scale deployments. Its robust architecture and
support for high availability ensures that organizations can rely on it for mission-critical applications. The
platform can handle significant container image traffic and offers efficient replication and distribution
mechanisms to deliver container images to various geographical locations.

Quay.io has established itself as an active hub for container enthusiasts. Developers can discover a vast
collection of pre-built, public container images shared by other users, making it easier to find useful
tools, applications, and services for their projects. This open sharing ecosystem fosters collaboration
and accelerates software development within the container community.

As containerization continues to gain momentum in the software development landscape, Quay.io
remains at the forefront, continually improving and expanding its services. The platform’s commitment
to security, ease of use, automation, and community engagement has solidified its position as a
preferred container registry service for both individual developers and large organizations alike.

As technology evolves, it is crucial to verify the latest features and updates on the Quay.io platform
through its official website or other reliable sources. Whether you are an individual developer, part of a
team, or representing an enterprise, Quay.io can enhance your containerization experience and
streamline your journey towards building and deploying modern applications with ease.

Red Hat Quay 3 About Quay IO

6

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/vulnerability_reporting_with_clair_on_red_hat_quay/index

CHAPTER 2. QUAY.IO SUPPORT
Technical support is a crucial aspect of the Quay.io container registry service, providing assistance not
only in managing container images but also ensuring the functionality and availability of the hosted
platform.

To help users with functionality-related issues, Red Hat offers Quay.io customers access to several
resources. The Red Hat Knowledgebase contains valuable content to maximize the potential of Red
Hat’s products and technologies. Users can find articles, product documentation, and videos that outline
best practices for installing, configuring, and utilizing Red Hat products. It also serves as a hub for
solutions to known issues, providing concise root cause descriptions and remedial steps.

Additionally, Quay.io customers can count on the technical support team to address questions,
troubleshoot problems, and provide solutions for an optimized experience with the platform. Whether it
involves understanding specific features, customizing configurations, or resolving container image build
issues, the support team is dedicated to guiding users through each step with clarity and expertise.

For incidents related to service disruptions or performance issues not listed on the Quay.io status page,
which includes availability and functionality concerns, paying customers can raise a technical support
ticket using the Red Hat Customer Portal . A service incident is defined as an unplanned interruption of
service or reduction in service quality, affecting multiple users of the platform.

With this comprehensive technical support system in place, Quay.io ensures that users can confidently
manage their container images, optimize their platform experience, and overcome any challenges that
might arise.

Additional resources

Current Red Hat Quay and Quay.io users can find more information about troubleshooting and support
in the Red Hat Quay Troubleshooting guide .

CHAPTER 2. QUAY.IO SUPPORT

7

https://access.redhat.com/knowledgebase
https://status.quay.io/
http://access.redhat.com
https://access.redhat.com/documentation/en-us/red_hat_quay/3.9/html-single/troubleshooting_red_hat_quay

CHAPTER 3. CLAIR SECURITY SCANNER
Clair v4 (Clair) is an open source application that leverages static code analyses for parsing image
content and reporting vulnerabilities affecting the content. Clair is packaged with Quay.io, is
automatically enabled, and is managed by the Red Hat Quay development team.

For Quay.io users, images are automatically indexed after they are pushed to your repository. Reports
are then fetched from Clair, which matches images against its CVE’s database to report security
information. This process happens automatically on Quay.io, and manual recans are not required.

3.1. ABOUT CLAIR

Clair uses Common Vulnerability Scoring System (CVSS) data from the National Vulnerability Database
(NVD) to enrich vulnerability data, which is a United States government repository of security-related
information, including known vulnerabilities and security issues in various software components and
systems. Using scores from the NVD provides Clair the following benefits:

Data synchronization. Clair can periodically synchronize its vulnerability database with the NVD.
This ensures that it has the latest vulnerability data.

Matching and enrichment. Clair compares the metadata and identifiers of vulnerabilities it
discovers in container images with the data from the NVD. This process involves matching the
unique identifiers, such as Common Vulnerabilities and Exposures (CVE) IDs, to the entries in
the NVD. When a match is found, Clair can enrich its vulnerability information with additional
details from NVD, such as severity scores, descriptions, and references.

Severity Scores. The NVD assigns severity scores to vulnerabilities, such as the Common
Vulnerability Scoring System (CVSS) score, to indicate the potential impact and risk associated
with each vulnerability. By incorporating NVD’s severity scores, Clair can provide more context
on the seriousness of the vulnerabilities it detects.

If Clair finds vulnerabilities from NVD, a detailed and standardized assessment of the severity and
potential impact of vulnerabilities detected within container images is reported to users on the UI. CVSS
enrichment data provides Clair the following benefits:

Vulnerability prioritization. By utilizing CVSS scores, users can prioritize vulnerabilities based
on their severity, helping them address the most critical issues first.

Assess Risk. CVSS scores can help Clair users understand the potential risk a vulnerability poses
to their containerized applications.

Communicate Severity. CVSS scores provide Clair users a standardized way to communicate
the severity of vulnerabilities across teams and organizations.

Inform Remediation Strategies. CVSS enrichment data can guide Quay.io users in developing
appropriate remediation strategies.

Compliance and Reporting. Integrating CVSS data into reports generated by Clair can help
organizations demonstrate their commitment to addressing security vulnerabilities and
complying with industry standards and regulations.

3.1.1. Clair vulnerability databases

Clair uses the following vulnerability databases to report for issues in your images:

Ubuntu Oval database

Red Hat Quay 3 About Quay IO

8

Debian Security Tracker

Red Hat Enterprise Linux (RHEL) Oval database

SUSE Oval database

Oracle Oval database

Alpine SecDB database

VMware Photon OS database

Amazon Web Services (AWS) UpdateInfo

Open Source Vulnerability (OSV) Database

3.1.2. Clair supported dependencies

Clair supports identifying and managing the following dependencies:

Java

Golang

Python

Ruby

This means that it can analyze and report on the third-party libraries and packages that a project in
these languages relies on to work correctly.

When an image that contains packages from a language unsupported by Clair is pushed to your
repository, a vulnerability scan cannot be performed on those packages. Users do not receive an analysis
or security report for unsupported dependencies or packages. As a result, the following consequences
should be considered:

Security risks. Dependencies or packages that are not scanned for vulnerability might pose
security risks to your organization.

Compliance issues. If your organization has specific security or compliance requirements,
unscanned, or partially scanned, container images might result in non-compliance with certain
regulations.

NOTE

Scanned images are indexed, and a vulnerability report is created, but it might
omit data from certain unsupported languages. For example, if your container
image contains a Lua application, feedback from Clair is not provided because
Clair does not detect it. It can detect other languages used in the container
image, and shows detected CVEs for those languages. As a result, Clair images
are fully scanned based on what it supported by Clair.

3.2. CLAIR SEVERITY MAPPING

Clair offers a comprehensive approach to vulnerability assessment and management. One of its
essential features is the normalization of security databases' severity strings. This process streamlines

CHAPTER 3. CLAIR SECURITY SCANNER

9

https://osv.dev/

the assessment of vulnerability severities by mapping them to a predefined set of values. Through this
mapping, clients can efficiently react to vulnerability severities without the need to decipher the
intricacies of each security database’s unique severity strings. These mapped severity strings align with
those found within the respective security databases, ensuring consistency and accuracy in vulnerability
assessment.

3.2.1. Clair severity strings

Clair alerts users with the following severity strings:

Unknown

Negligible

Low

Medium

High

Critical

These severity strings are similar to the strings found within the relevant security database.

Alpine mapping
Alpine SecDB database does not provide severity information. All vulnerability severities will be
Unknown.

Alpine Severity Clair Severity

* Unknown

AWS mapping
AWS UpdateInfo database provides severity information.

AWS Severity Clair Severity

low Low

medium Medium

important High

critical Critical

Debian mapping
Debian Oval database provides severity information.

Red Hat Quay 3 About Quay IO

10

Debian Severity Clair Severity

* Unknown

Unimportant Low

Low Medium

Medium High

High Critical

Oracle mapping
Oracle Oval database provides severity information.

Oracle Severity Clair Severity

N/A Unknown

LOW Low

MODERATE Medium

IMPORTANT High

CRITICAL Critical

RHEL mapping
RHEL Oval database provides severity information.

RHEL Severity Clair Severity

None Unknown

Low Low

Moderate Medium

Important High

Critical Critical

SUSE mapping
SUSE Oval database provides severity information.

CHAPTER 3. CLAIR SECURITY SCANNER

11

Severity Clair Severity

None Unknown

Low Low

Moderate Medium

Important High

Critical Critical

Ubuntu mapping
Ubuntu Oval database provides severity information.

Severity Clair Severity

Untriaged Unknown

Negligible Negligible

Low Low

Medium Medium

High High

Critical Critical

OSV mapping

Table 3.1. CVSSv3

Base Score Clair Severity

0.0 Negligible

0.1-3.9 Low

4.0-6.9 Medium

7.0-8.9 High

9.0-10.0 Critical

Table 3.2. CVSSv2

Red Hat Quay 3 About Quay IO

12

Base Score Clair Severity

0.0-3.9 Low

4.0-6.9 Medium

7.0-10 High

CHAPTER 3. CLAIR SECURITY SCANNER

13

CHAPTER 4. QUAY.IO USER INTERFACE OVERVIEW
The user interface (UI) of Quay.io is a fundamental component that serves as the user’s gateway to
managing and interacting with container images within the platform’s ecosystem. Quay.io’s UI is
designed to provide an intuitive and user-friendly interface, making it easy for users of all skill levels to
navigate and harness Quay.io’s features and functionalities.

This documentation section aims to introduce users to the key elements and functionalities of Quay.io’s
UI. It will cover essential aspects such as the UI’s layout, navigation, and key features, providing a solid
foundation for users to explore and make the most of Quay.io’s container registry service.

Throughout this documentation, step-by-step instructions, visual aids, and practical examples are
provided on the following topics:

Exploring applications and repositories

Using the Quay.io tutorial

Pricing and Quay.io plans

Signing in and using Quay.io features

Collectively, this document ensures that users can quickly grasp the UI’s nuances and successfully
navigate their containerization journey with Quay.io.

4.1. QUAY.IO LANDING PAGE

The Quay.io landing page serves as the central hub for users to access the container registry services
offered. This page provides essential information and links to guide users in securely storing, building,
and deploying container images effortlessly.

The landing page of Quay.io includes links to the following resources:

Explore. On this page, you can search the Quay.io database for various applications and
repositories.

Tutorial. On this page, you can take a step-by-step walkthrough that shows you how to use
Quay.io.

Pricing. On this page, you can learn about the various pricing tiers offered for Quay.io. There are
also various FAQs addressed on this page.

Sign in . By clicking this link, you are re-directed to sign into your Quay.io repository.

.

The landing page also includes information about scheduled maintenance. During scheduled
maintenance, Quay.io is operational in read-only mode, and pulls function as normal. Pushes and builds
are non-operational during scheduled maintenance. You can subscribe to updates regarding Quay.io
maintenance by navigating to Quay.io Status page and clicking Subscribe To Updates.

Red Hat Quay 3 About Quay IO

14

quay.io
https://quay.io/search
https://quay.io/tutorial/
https://quay.io/plans/
https://quay.io/signin/
https://status.quay.io/incidents/kzyx3gh434cr

The landing page also includes links to the following resources:

Documentation. This page provides documentation for using Quay.io.

Terms. This page provides legal information about Red Hat Online Services.

Privacy. This page provides information about Red Hat’s Privacy Statement.

Security. this page provides information about Quay.io security, including SSL/TLS, encryption,
passwords, access controls, firewalls, and data resilience.

About. This page includes information about packages and projects used and a brief history of
the product.

Contact. This page includes information about support and contacting the Red Hat Support
Team.

All Systems Operational. This page includes information the status of Quay.io and a brief history
of maintenance.

Cookies. By clicking this link, a popup box appears that allows you to set your cookie
preferences.

.

You can also find information about Trying Red Hat Quay on premise or Trying Red Hat Quay on the
cloud, which redirects you to the Pricing page. Each option offers a free trial.

4.1.1. Creating a Quay.io account

New users of Quay.io are required to both Register for a Red Hat account and create a Quay.io
username. These accounts are correlated, with two distinct differences:

The Quay.io account can be used to push and pull container images or Open Container Initiative
images to Quay.io to store images.

The Red Hat account provides users access to the Quay.io user interface. For paying
customers, this account can also be used to access images from the Red Hat Ecosystem
Catalog, which can be pushed to their Quay.io repository.

Users must first register for a Red Hat account, and then create a Quay.io account. Users need both
accounts to properly use all features of Quay.io.

4.1.1.1. Registering for a Red Hat Account

Use the following procedure to register for a Red Hat account for Quay.io.

Procedure

1. Navigate to the Red Hat Customer Portal .

2. In navigation pane, click Log In.

3. When navigated to the log in page, click Register for a Red Hat Account.

CHAPTER 4. QUAY.IO USER INTERFACE OVERVIEW

15

https://docs.projectquay.io/welcome.html
https://cloud.redhat.com/legal/terms
https://www.redhat.com/en/about/privacy-policy
https://quay.io/security/
https://quay.io/about/
https://access.redhat.com/articles/quayio-help
https://status.quay.io/
https://www.redhat.com/en/technologies/cloud-computing/quay
https://quay.io/plans/
https://sso.redhat.com/auth/realms/redhat-external/login-actions/registration?client_id=quay.io&tab_id=6C6R-5nPDLo
registry.redhat.io
https://access.redhat.com/

4. Enter a Red Hat login ID.

5. Enter a password.

6. Enter the following personal information:

First name

Last name

Email address

Phone number

7. Enter the following contact information that is relative to your country or region. For example:

Country/region

Address

Postal code

City

County

8. Select and agree to Red Hat’s terms and conditions.

9. Click Create my account.

10. Navigate to Quay.io and log in.

4.1.1.2. Creating a Quay.io user account

Use the following procedure to create a Quay.io user account.

Prerequisites

You have created a Red Hat account.

Procedure

1. If required, resolve the captcha by clicking I am not a robot and confirming. You are redirected
to a Confirm Username page.

2. On the Confirm Username page, enter a username. By default, a username is generated. If the
same username already exists, a number is added at the end to make it unique. This username is
be used as a namespace in the Quay Container Registry.

3. After deciding on a username, click Confirm Username. You are redirected to the Quay.io
Repositories page, which serves as a dedicated hub where users can access and manage their
repositories with ease. From this page, users can efficiently organize, navigate, and interact with
their container images and related resources.

4.1.1.3. Quay.io Single Sign On support

Red Hat Single Sign On (SSO) can be used with Quay.io. Use the following procedure to set up Red Hat

Red Hat Quay 3 About Quay IO

16

Red Hat Single Sign On (SSO) can be used with Quay.io. Use the following procedure to set up Red Hat
SSO with Quay.io. For most users, these accounts are already linked. However, for some legacy Quay.io
users, this procedure might be required.

Prerequisites

You have created a Quay.io account.

Procedure

1. Navigate to to the Quay.io Recovery page.

2. Enter your username and password, then click Sign in to Quay Container Registry.

3. In the navigation pane, click your username → Account Settings.

4. In the navigation pane, click External Logins and Applications.

5. Click Attach to Red Hat.

6. If you are already signed into Red Hat SSO, your account is automatically linked. Otherwise, you
are prompted to sign into Red Hat SSO by entering your Red Hat login or email, and the
password. Alternatively, you might need to create a new account first.
After signing into Red Hat SSO, you can choose to authenticate against Quay.io using your Red
Hat account from the login page.

Additional resources

For more information, see Quay.io Now Supports Red Hat Single Sign On .

4.1.2. Exploring Quay.io

The Quay.io Explore page is a valuable hub that allows users to delve into a vast collection of container
images, applications, and repositories shared by the Quay.io community. With its intuitive and user-
friendly design, the Explore page offers a powerful search function, enabling users to effortlessly
discover containerized applications and resources.

4.1.3. Trying Quay.io (deprecated)

NOTE

The Red Hat Quay tutorial is currently deprecated and will be removed when the v2 UI
goes generally available (GA).

The Quay.io Tutorial page offers users and introduction to the Quay.io container registry service. By
clicking Continue Tutorial users learn how to perform the following features on Quay.io:

Logging into Quay Container Registry from the Docker CLI

Starting a container

Creating images from a container

Pushing a repository to Quay Container Registry

CHAPTER 4. QUAY.IO USER INTERFACE OVERVIEW

17

recovery.quay.io
https://access.redhat.com/articles/5363231
https://quay.io/search
https://quay.io/tutorial

Viewing a repository

Setting up build triggers

Changing a repository’s permissions

4.1.4. Information about Quay.io pricing

In addition to a free tier, Quay.io also offers several paid plans that have enhanced benefits.

The Quay.io Pricing page offers information about Quay.io plans and the associated prices of each plan.
The cost of each tier can be found on the Pricing page. All Quay.io plans include the following benefits:

Continuous integration

Public repositories

Robot accounts

Teams

SSL/TLS encryption

Logging and auditing

Invoice history

Quay.io subscriptions are handled by the Stripe payment processing platform. A valid credit card is
required to sign up for Quay.io.

To sign up for Quay.io, use the following procedure.

Procedure

1. Navigate to the Quay.io Pricing page.

2. Decide on a plan, for example, Small, and click Buy Now. You are redirected to the Create New
Organization page. Enter the following information:

Organization Name

Organization Email

Optional. You can select a different plan if you want a plan larger, than, for example, Small.

3. Resolve that captcha, and select Create Organization.

4. You are redirected to Stripe. Enter the following information:

Card information, including MM/YY and the CVC

Name on card

Country or region

ZIP (if applicable)

Red Hat Quay 3 About Quay IO

18

https://quay.io/plans/
https://stripe.com
https://quay.io/plans/

Check the box if you want your information to be saved.

Phone Number

5. Click Subscribe after all boxes have been filled.

CHAPTER 4. QUAY.IO USER INTERFACE OVERVIEW

19

CHAPTER 5. USERS AND ORGANIZATIONS
Before creating repositories to contain your container images in Quay.io, you should consider how these
repositories will be structured. With Quay.io, each repository requires a connection with either an
Organization or a User. This affiliation defines ownership and access control for the repositories.

5.1. TENANCY MODEL

Organizations provide a way of sharing repositories under a common namespace that does not
belong to a single user. Instead, these repositories belong to several users in a shared setting,
such as a company.

Teams provide a way for an Organization to delegate permissions. Permissions can be set at the
global level (for example, across all repositories), or on specific repositories. They can also be
set for specific sets, or groups, of users.

Users can log in to a registry through the web UI or a by using a client, such as Podman or
Docker, using their respective login commands, for example, $ podman login. Each user
automatically gets a user namespace, for example, <quay-
server.example.com>/<user>/<username>, or quay.io/<username>.

Robot accounts provide automated access to repositories for non-human users like pipeline
tools. Robot accounts are similar to OpenShift Container Platform Service Accounts.
Permissions can be granted to a robot account in a repository by adding that account like you
would another user or team.

5.2. LOGGING INTO QUAY

A user account for Quay.io represents an individual with authenticated access to the platform’s features
and functionalities. Through this account, you gain the capability to create and manage repositories,
upload and retrieve container images, and control access permissions for these resources. This account
is pivotal for organizing and overseeing your container image management within Quay.io.

NOTE

Not all features on Quay.io require that users be logged in. For example, you can
anonymously pull an image from Quay.io without being logged in, so long as the image
you are pulling comes from a public repository.

Red Hat Quay 3 About Quay IO

20

Users have two options for logging into Quay.io:

By logging in through Quay.io.
This option provides users with the legacy UI, as well as an option to user the beta UI
environment, which adheres to PatternFly UI principles.

By logging in through the Red Hat Hybrid Cloud Console .
This option uses Red Hat SSO for authentication, and is a public managed service offering by
Red Hat. This option always requires users to login. Like other managed services, Quay on the
Red Hat Hybrid Cloud Console enhances the user experience by adhering to PatternFly UI
principles.

Differences between using Quay.io directly and Quay on the Red Hat Hybrid Cloud Console are
negligible, including for users on the free tier. Whether you are using Quay.io directly, on the Hybrid
Cloud Console, features that require login, such as pushing to a repository, use your Quay.io username
specifications.

5.2.1. Logging into Quay.io

Use the following procedure to log into Quay.io.

Prerequisites

You have created a Red Hat account and a Quay.io account. For more information, see
"Creating a Quay.io account".

Procedure

1. Navigate to Quay.io.

2. In the navigation pane, select Sign In and log in using your Red Hat credentials.

3. If it is your first time logging in, you must confirm the automatically-generated username. Click
Confirm Username to log in.
You are redirected to the Quay.io repository landing page.

5.2.2. Logging into Quay through the Hybrid Cloud Console

Prerequisites

You have created a Red Hat account and a Quay.io account. For more information, see
"Creating a Quay.io account".

Procedure

1. Navigate to the Quay on the Red Hat Hybrid Cloud Console and log in using your Red Hat
account. You are redirected to the Quay repository landing page:

CHAPTER 5. USERS AND ORGANIZATIONS

21

https://www.patternfly.org/
console.redhat.com/quay
https://www.patternfly.org/
console.redhat.com/quay
quay.io
console.redhat.com/quay

5.3. CREATING A REPOSITORY

A repository provides a central location for storing a related set of container images. These images can
be used to build applications along with their dependencies in a standardized format.

Repositories are organized by namespaces. Each namespace can have multiple repositories. For
example, you might have a namespace for your personal projects, one for your company, or one for a
specific team within your organization.

With a paid plan, Quay.io provides users with access controls for their repositories. Users can make a
repository public, meaning that anyone can pull, or download, the images from it, or users can make it
private, restricting access to authorized users or teams.

NOTE

The free tier of Quay.io does not allow for private repositories. You must upgrade to a
paid tier of Quay.io to create a private repository. For more information, see "Information
about Quay.io pricing".

There are two ways to create a repository in Quay.io: by pushing an image with the relevant docker or
podman command, or by using the Quay.io UI.

If you push an image through the command-line interface (CLI) without first creating a repository on
the UI, the created repository is set to Private, regardless of the plan you have.

NOTE

It is recommended that you create a repository on the Quay.io UI before pushing an
image. Quay.io checks the plan status and does not allow creation of a private repository
if a plan is not active.

5.3.1. Creating an image repository by using the UI

Use the following procedure to create a repository using the Quay.io UI.

Procedure

1. Log in to your user account through the web UI.

2. On the Quay.io landing page, click Create New Repository. Alternatively, you can click the +
icon → New Repository. For example:

Red Hat Quay 3 About Quay IO

22

3. On the Create New Repository page:

a. Append a Repository Name to your username or to the Organization that you wish to use.

IMPORTANT

Do not use the following words in your repository name: * build * trigger *
tag

When these words are used for repository names, users are unable access
the repository, and are unable to permanently delete the repository.
Attempting to delete these repositories returns the following error: Failed to
delete repository <repository_name>, HTTP404 - Not Found.

b. Optional. Click Click to set repository description to add a description of the repository.

c. Click Public or Private depending on your needs.

d. Optional. Select the desired repository initialization.

4. Click Create Private Repository to create a new, empty repository.

5.3.2. Creating an image repository by using the CLI

With the proper credentials, you can push an image to a repository using either Docker or Podman that
does not yet exist in your Quay.io instance. Pushing an image refers to the process of uploading a
container image from your local system or development environment to a container registry like Quay.io.
After pushing an image to Quay.io, a repository is created.

If you push an image through the command-line interface (CLI) without first creating a repository on
the UI, the created repository is set to Private, regardless of the plan you have.

NOTE

It is recommended that you create a repository on the Quay.io UI before pushing an
image. Quay.io checks the plan status and does not allow creation of a private repository
if a plan is not active.

Use the following procedure to create an image repository by pushing an image.

Prerequisites

You have download and installed the podman CLI.

You have logged into Quay.io.

CHAPTER 5. USERS AND ORGANIZATIONS

23

You have pulled an image, for example, busybox.

Procedure

1. Pull a sample page from an example registry. For example:

$ podman pull busybox

Example output

2. Tag the image on your local system with the new repository and image name. For example:

3. Push the image to the registry. Following this step, you can use your browser to see the tagged
image in your repository.

Example output

5.4. MANAGING ACCESS TO REPOSITORIES

As a Quay.io user, you can create your own repositories and make them accessible to other users that
are part of your instance. Alternatively, you can create a specific Organization to allow access to
repositories based on defined teams.

In both User and Organization repositories, you can allow access to those repositories by creating
credentials associated with Robot Accounts. Robot Accounts make it easy for a variety of container
clients, such as Docker or Podman, to access your repositories without requiring that the client have a
Quay.io user account.

5.4.1. Allowing access to user repositories

When you create a repository in a user namespace, you can add access to that repository to user
accounts or through Robot Accounts.

5.4.1.1. Allowing user access to a user repository

Trying to pull docker.io/library/busybox...
Getting image source signatures
Copying blob 4c892f00285e done
Copying config 22667f5368 done
Writing manifest to image destination
Storing signatures
22667f53682a2920948d19c7133ab1c9c3f745805c14125859d20cede07f11f9

$ podman tag docker.io/library/busybox quay.io/quayadmin/busybox:test

$ podman push --tls-verify=false quay.io/quayadmin/busybox:test

Getting image source signatures
Copying blob 6b245f040973 done
Copying config 22667f5368 done
Writing manifest to image destination
Storing signatures

Red Hat Quay 3 About Quay IO

24

Use the following procedure to allow access to a repository associated with a user account.

Procedure

1. Log into Quay.io with your user account.

2. Select a repository under your user namespace that will be shared across multiple users.

3. Select Settings in the navigation pane.

4. Type the name of the user to which you want to grant access to your repository. As you type,
the name should appear. For example:

5. In the permissions box, select one of the following:

Read. Allows the user to view and pull from the repository.

Write. Allows the user to view the repository, pull images from the repository, or push
images to the repository.

Admin. Provides the user with all administrative settings to the repository, as well as all Read
and Write permissions.

6. Select the Add Permission button. The user now has the assigned permission.

7. Optional. You can remove or change user permissions to the repository by selecting the
Options icon, and then selecting Delete Permission.

5.4.1.2. Allowing robot access to a user repository

Robot Accounts are used to set up automated access to the repositories in your Quay.io registry. They
are similar to OpenShift Container Platform service accounts.

Setting up a Robot Account results in the following:

Credentials are generated that are associated with the Robot Account.

Repositories and images that the Robot Account can push and pull images from are identified.

Generated credentials can be copied and pasted to use with different container clients, such as
Docker, Podman, Kubernetes, Mesos, and so on, to access each defined repository.

Each Robot Account is limited to a single user namespace or Organization. For example, the Robot

CHAPTER 5. USERS AND ORGANIZATIONS

25

Each Robot Account is limited to a single user namespace or Organization. For example, the Robot
Account could provide access to all repositories for the user jsmith. However, it cannot provide access
to repositories that are not in the user’s list of repositories.

Use the following procedure to set up a Robot Account that can allow access to your repositories.

Procedure

1. On the Repositories landing page, click the name of a user.

2. Click Robot Accounts on the navigation pane.

3. Click Create Robot Account.

4. Provide a name for your Robot Account.

5. Optional. Provide a description for your Robot Account.

6. Click Create Robot Account. The name of your Robot Account becomes a combination of your
username plus the name of the robot, for example, jsmith+robot

7. Select the repositories that you want the Robot Account to be associated with.

8. Set the permissions of the Robot Account to one of the following:

None. The Robot Account has no permission to the repository.

Read. The Robot Account can view and pull from the repository.

Write. The Robot Account can read (pull) from and write (push) to the repository.

Admin. Full access to pull from, and push to, the repository, plus the ability to do
administrative tasks associated with the repository.

9. Click the Add permissions button to apply the settings.

10. On the Robot Accounts page, select the Robot Account to see credential information for that
robot.

11. Under the Robot Account option, copy the generated token for the robot by clicking Copy to
Clipboard. To generate a new token, you can click Regenerate Token.

NOTE

Regenerating a token makes any previous tokens for this robot invalid.

Red Hat Quay 3 About Quay IO

26

12. Obtain the resulting credentials in the following ways:

Kubernetes Secret: Select this to download credentials in the form of a Kubernetes pull
secret yaml file.

rkt Configuration: Select this to download credentials for the rkt container runtime in the
form of a .json file.

Docker Login: Select this to copy a full docker login command line that includes the
credentials.

Docker Configuration: Select this to download a file to use as a Docker config.json file, to
permanently store the credentials on your client system.

Mesos Credentials: Select this to download a tarball that provides the credentials that can
be identified in the URI field of a Mesos configuration file.

5.4.2. Organization repositories

After you have created an Organization, you can associate a set of repositories directly to that
Organization. An Organization’s repository differs from a basic repository in that the Organization is
intended to set up shared repositories through groups of users. In Quay.io, groups of users can be either
Teams, or sets of users with the same permissions, or individual users.

Other useful information about Organizations includes the following:

You cannot have an Organization embedded within another Organization. To subdivide an
Organization, you use teams.

Organizations cannot contain users directly. You must first add a team, and then add one or
more users to each team.

NOTE

Individual users can be added to specific repositories inside of an organization.
Consequently, those users are not members of any team on the Repository
Settings page. The Collaborators View on the Teams and Memberships page
shows users who have direct access to specific repositories within the
organization without needing to be part of that organization specifically.

Teams can be set up in Organizations as just members who use the repositories and associated

CHAPTER 5. USERS AND ORGANIZATIONS

27

Teams can be set up in Organizations as just members who use the repositories and associated
images, or as administrators with special privileges for managing the Organization.

5.4.2.1. Creating an Organization

Use the following procedure to create an Organization.

Procedure

1. On the Repositories landing page, click Create New Organization.

2. Under Organization Name, enter a name that is at least 2 characters long, and less than 225
characters long.

3. Under Organization Email, enter an email that is different from your account’s email.

4. Choose a plan for your Organization, selecting either the free plan, or one of the paid plans.

5. Click Create Organization to finalize creation.

5.4.2.1.1. Creating another Organization by using the API

You can create another Organization by using the API. To do this, you must have created the first
Organization by using the UI. You must also have generated an OAuth Access Token.

Use the following procedure to create another Organization by using the Red Hat Quay API endpoint.

Prerequisites

You have already created at least one Organization by using the UI.

You have generated an OAuth Access Token. For more information, see "Creating an OAuth
Access Token".

Procedure

1. Create a file named data.json by entering the following command:

2. Add the following content to the file, which will be the name of the new Organization:

3. Enter the following command to create the new Organization using the API endpoint, passing in
your OAuth Access Token and Red Hat Quay registry endpoint:

Example output

$ touch data.json

{"name":"testorg1"}

$ curl -X POST -k -d @data.json -H "Authorization: Bearer <access_token>" -H "Content-
Type: application/json" http://<quay-server.example.com>/api/v1/organization/

"Created"

Red Hat Quay 3 About Quay IO

28

5.4.2.2. Adding a team to an organization

When you create a team for your Organization you can select the team name, choose which repositories
to make available to the team, and decide the level of access to the team.

Use the following procedure to create a team for your Organization.

Prerequisites

You have created an organization.

Procedure

1. On the Repositories landing page, select an Organization to add teams to.

2. In the navigation pane, select Teams and Membership. By default, an owners team exists with
Admin privileges for the user who created the Organization.

3. Click Create New Team.

4. Enter a name for your new team. Note that the team must start with a lowercase letter. It can
also only use lowercase letters and numbers. Capital letters or special characters are not
allowed.

5. Click Create team.

6. Click the name of your team to be redirected to the Team page. Here, you can add a description
of the team, and add team members, like registered users, robots, or email addresses. For more
information, see "Adding users to a team".

7. Click the No repositories text to bring up a list of available repositories. Select the box of each
repository you will provide the team access to.

8. Select the appropriate permissions that you want the team to have:

None. Team members have no permission to the repository.

Read. Team members can view and pull from the repository.

Write. Team members can read (pull) from and write (push) to the repository.

Admin. Full access to pull from, and push to, the repository, plus the ability to do
administrative tasks associated with the repository.

9. Click Add permissions to save the repository permissions for the team.

5.4.2.3. Setting a Team role

After you have added a team, you can set the role of that team within the Organization.

Prerequisites

You have created a team.

Procedure

CHAPTER 5. USERS AND ORGANIZATIONS

29

1. On the Repository landing page, click the name of your Organization.

2. In the navigation pane, click Teams and Membership.

3. Select the TEAM ROLE drop-down menu, as shown in the following figure:

4. For the selected team, choose one of the following roles:

Member. Inherits all permissions set for the team.

Creator. All member permissions, plus the ability to create new repositories.

Admin. Full administrative access to the organization, including the ability to create teams,
add members, and set permissions.

5.4.2.4. Adding users to a Team

With administrative privileges to an Organization, you can add users and robot accounts to a team. When
you add a user, Quay.io sends an email to that user. The user remains pending until they accept the
invitation.

Use the following procedure to add users or robot accounts to a team.

Procedure

1. On the Repository landing page, click the name of your Organization.

2. In the navigation pane, click Teams and Membership.

3. Select the team you want to add users or robot accounts to.

4. In the Team Members box, enter information for one of the following:

A username from an account on the registry.

The email address for a user account on the registry.

The name of a robot account. The name must be in the form of <organization_name>+
<robot_name>.

NOTE

Red Hat Quay 3 About Quay IO

30

NOTE

Robot Accounts are immediately added to the team. For user accounts, an
invitation to join is mailed to the user. Until the user accepts that invitation,
the user remains in the INVITED TO JOIN state. After the user accepts the
email invitation to join the team, they move from the INVITED TO JOIN list
to the MEMBERS list for the Organization.

5.5. USER SETTINGS

The User Settings page provides users a way to set their email address, password, account type, set up
desktop notifications, select an avatar, delete an account, adjust the time machine setting, and view
billing information.

5.5.1. Navigating to the User Settings page

Use the following procedure to navigate to the User Settings page.

Procedure

1. On Quay.io, click your username in the header.

2. Select Account Settings. You are redirected to the User Settings page.

5.5.2. Adjusting user settings

Use the following procedure to adjust user settings.

Procedure

To change your email address, select the current email address for Email Address. In the pop-
up window, enter a new email address, then, click Change Email. A verification email will be sent
before the change is applied.

To change your password, click Change password. Enter the new password in both boxes, then
click Change Password.

Change the account type by clicking Individual Account, or the option next to Account Type. In
some cases, you might have to leave an organization prior to changing the account type.

Adjust your desktop notifications by clicking the option next to Desktop Notifications. Users
can either enable, or disable, this feature.

You can delete an account by clicking Begin deletion. You cannot delete an account if you have
an active plan, or if you are a member of an organization where you are the only administrator.
You must confirm deletion by entering the namespace.

IMPORTANT

Deleting an account is not reversible and will delete all of the account’s data
including repositories, created build triggers, and notifications.

You can set the time machine feature by clicking the drop-box next to Time Machine. This

CHAPTER 5. USERS AND ORGANIZATIONS

31

You can set the time machine feature by clicking the drop-box next to Time Machine. This
feature dictates the amount of time after a tag is deleted that the tag is accessible in time
machine before being garbage collected. After selecting a time, click Save Expiration Time.

5.5.3. Billing information

You can view billing information on the User Settings. In this section, the following information is
available:

Current Plan. This section denotes the current plan Quay.io plan that you are signed up for. It
also shows the amount of private repositories you have.

Invoices. If you are on a paid plan, you can click View Invoices to view a list of invoices.

Receipts. If you are on a paid plan, you can select whether to have receipts for payment emailed
to you, another user, or to opt out of receipts altogether.

Red Hat Quay 3 About Quay IO

32

CHAPTER 6. WORKING WITH TAGS
An image tag refers to a label or identifier assigned to a specific version or variant of a container image.
Container images are typically composed of multiple layers that represent different parts of the image.
Image tags are used to differentiate between different versions of an image or to provide additional
information about the image.

Image tags have the following benefits:

Versioning and Releases: Image tags allow you to denote different versions or releases of an
application or software. For example, you might have an image tagged as v1.0 to represent the
initial release and v1.1 for an updated version. This helps in maintaining a clear record of image
versions.

Rollbacks and Testing: If you encounter issues with a new image version, you can easily revert to
a previous version by specifying its tag. This is particularly helpful during debugging and testing
phases.

Development Environments: Image tags are beneficial when working with different
environments. You might use a dev tag for a development version, qa for quality assurance
testing, and prod for production, each with their respective features and configurations.

Continuous Integration/Continuous Deployment (CI/CD): CI/CD pipelines often utilize image
tags to automate the deployment process. New code changes can trigger the creation of a new
image with a specific tag, enabling seamless updates.

Feature Branches: When multiple developers are working on different features or bug fixes,
they can create distinct image tags for their changes. This helps in isolating and testing
individual features.

Customization: You can use image tags to customize images with different configurations,
dependencies, or optimizations, while keeping track of each variant.

Security and Patching: When security vulnerabilities are discovered, you can create patched
versions of images with updated tags, ensuring that your systems are using the latest secure
versions.

Dockerfile Changes: If you modify the Dockerfile or build process, you can use image tags to
differentiate between images built from the previous and updated Dockerfiles.

Overall, image tags provide a structured way to manage and organize container images, enabling
efficient development, deployment, and maintenance workflows.

6.1. VIEWING AND MODIFYING TAGS

To view image tags on Quay.io, navigate to a repository and click on the Tags tab. For example:

View and modify tags from your repository

CHAPTER 6. WORKING WITH TAGS

33

6.1.1. Adding a new image tag to an image

You can add a new tag to an image in Quay.io.

Procedure

1. Click the Settings, or gear, icon next to the tag and clicking Add New Tag.

2. Enter a name for the tag, then, click Create Tag.
The new tag is now listed on the Repository Tags page.

6.1.2. Moving an image tag

You can move a tag to a different image if desired.

Procedure

Click the Settings, or gear, icon next to the tag and clicking Add New Tag and enter an existing
tag name. Quay.io confirms that you want the tag moved instead of added.

6.1.3. Deleting an image tag

Deleting an image tag effectively removes that specific version of the image from the registry.

To delete an image tag, use the following procedure.

Procedure

1. Navigate to the Tags page of a repository.

2. Click Delete Tag. This deletes the tag and any images unique to it.

NOTE

Deleting an image tag can be reverted based on the amount of time allotted
assigned to the time machine feature. For more information, see "Reverting tag
changes".

Red Hat Quay 3 About Quay IO

34

6.1.3.1. Viewing tag history

Quay.io offers a comprehensive history of images and their respective image tags.

Procedure

Navigate to the Tag History page of a repository to view the image tag history.

6.1.3.2. Reverting tag changes

Quay.io offers a comprehensive time machine feature that allows older images tags to remain in the
repository for set periods of time so that they can revert changes made to tags. This feature allows
users to revert tag changes, like tag deletions.

Procedure

1. Navigate to the Tag History page of a repository.

2. Find the point in the timeline at which image tags were changed or removed. Next, click the
option under Revert to restore a tag to its image, or click the option under Permanently Delete
to permanently delete the image tag.

6.1.4. Fetching an image by tag or digest

Quay.io offers multiple ways of pulling images using Docker and Podman clients.

Procedure

1. Navigate to the Tags page of a repository.

2. Under Manifest, click the Fetch Tag icon.

3. When the popup box appears, users are presented with the following options:

Podman Pull (by tag)

Docker Pull (by tag)

Podman Pull (by digest)

Docker Pull (by digest)
Selecting any one of the four options returns a command for the respective client that
allows users to pull the image.

4. Click Copy Command to copy the command, which can be used on the command-line interface
(CLI). For example:

6.2. TAG EXPIRATION

Images can be set to expire from a Quay.io repository at a chosen date and time using the tag expiration
feature. This feature includes the following characteristics:

When an image tag expires, it is deleted from the repository. If it is the last tag for a specific

$ podman pull quay.io/quayadmin/busybox:test2

CHAPTER 6. WORKING WITH TAGS

35

When an image tag expires, it is deleted from the repository. If it is the last tag for a specific
image, the image is also set to be deleted.

Expiration is set on a per-tag basis. It is not set for a repository as a whole.

After a tag is expired or deleted, it is not immediately removed from the registry. This is
contingent upon the allotted time designed in the time machine feature, which defines when the
tag is permanently deleted, or garbage collected. By default, this value is set at 14 days, however
the administrator can adjust this time to one of multiple options. Up until the point that garbage
collection occurs, tags changes can be reverted.

Tag expiration can be set up in one of two ways:

By setting the quay.expires-after= LABEL in the Dockerfile when the image is created. This
sets a time to expire from when the image is built.

By selecting an expiration date on the Quay.io UI. For example:

6.2.1. Setting tag expiration from a Dockerfile

Adding a label, for example, quay.expires-after=20h by using the docker label command causes a tag
to automatically expire after the time indicated. The following values for hours, days, or weeks are
accepted:

1h

2d

3w

Expiration begins from the time that the image is pushed to the registry.

6.2.2. Setting tag expiration from the repository

Tag expiration can be set on the Quay.io UI.

Procedure

1. Navigate to a repository and click Tags in the navigation pane.

2. Click the Settings, or gear icon, for an image tag and select Change Expiration.

3. Select the date and time when prompted, and select Change Expiration. The tag is set to be
deleted from the repository when the expiration time is reached.

Red Hat Quay 3 About Quay IO

36

6.3. VIEWING CLAIR SECURITY SCANS

Quay.io comes equipped with Clair security scanner. For more information about Clair on Quay.io, see
"Clair security scanner."

Procedure

1. Navigate to a repository and click Tags in the navigation pane. This page shows the results of
the security scan.

2. To reveal more information about multi-architecture images, click See Child Manifests to see
the list of manifests in extended view.

3. Click a relevant link under See Child Manifests, for example, 1 Unknown to be redirected to the
Security Scanner page.

4. The Security Scanner page provides information for the tag, such as which CVEs the image is
susceptible to, and what remediation options you might have available.

NOTE

Image scanning only lists vulnerabilities found by Clair security scanner. What users do
about the vulnerabilities are uncovered is up to said user.

CHAPTER 6. WORKING WITH TAGS

37

CHAPTER 7. VIEWING AND EXPORTING LOGS
Activity logs are gathered for all repositories and namespace in Quay.io.

Viewing usage logs of Quay.io. can provide valuable insights and benefits for both operational and
security purposes. Usage logs might reveal the following information:

Resource Planning: Usage logs can provide data on the number of image pulls, pushes, and
overall traffic to your registry.

User Activity: Logs can help you track user activity, showing which users are accessing and
interacting with images in the registry. This can be useful for auditing, understanding user
behavior, and managing access controls.

Usage Patterns: By studying usage patterns, you can gain insights into which images are
popular, which versions are frequently used, and which images are rarely accessed. This
information can help prioritize image maintenance and cleanup efforts.

Security Auditing: Usage logs enable you to track who is accessing images and when. This is
crucial for security auditing, compliance, and investigating any unauthorized or suspicious
activity.

Image Lifecycle Management: Logs can reveal which images are being pulled, pushed, and
deleted. This information is essential for managing image lifecycles, including deprecating old
images and ensuring that only authorized images are used.

Compliance and Regulatory Requirements: Many industries have compliance requirements
that mandate tracking and auditing of access to sensitive resources. Usage logs can help you
demonstrate compliance with such regulations.

Identifying Abnormal Behavior: Unusual or abnormal patterns in usage logs can indicate
potential security breaches or malicious activity. Monitoring these logs can help you detect and
respond to security incidents more effectively.

Trend Analysis: Over time, usage logs can provide trends and insights into how your registry is
being used. This can help you make informed decisions about resource allocation, access
controls, and image management strategies.

There are multiple ways of accessing log files:

Viewing logs through the web UI.

Exporting logs so that they can be saved externally.

Accessing log entries using the API.

To access logs, you must have administrative privileges for the selected repository or namespace.

NOTE

A maximum of 100 log results are available at a time via the API. To gather more results
that that, you must use the log exporter feature described in this chapter.

7.1. VIEWING LOGS USING THE UI

Use the following procedure to view log entries for a repository or namespace using the web UI.

Red Hat Quay 3 About Quay IO

38

Procedure

1. Navigate to a repository or namespace for which you are an administrator of.

2. In the navigation pane, select Usage Logs.

3. Optional. On the usage logs page:

a. Set the date range for viewing log entries by adding dates to the From and to boxes. By
default, the UI shows you the most recent week of log entries.

b. Type a string into the Filter Logs box to display log entries that of the specified keyword.
For example, you can type delete to filter the logs to show deleted tags.

c. Under Description, toggle the arrow of a log entry to see more, or less, text associated with
a specific log entry.

7.2. EXPORTING REPOSITORY LOGS

You can obtain a larger number of log files and save them outside of Quay.io by using the Export Logs
feature. This feature has the following benefits and constraints:

You can choose a range of dates for the logs you want to gather from a repository.

You can request that the logs be sent to you by an email attachment or directed to a callback
URL.

To export logs, you must be an administrator of the repository or namespace.

30 days worth of logs are retained for all users.

Export logs only gathers log data that was previously produced. It does not stream logging data.

When logs are gathered and made available to you, you should immediately copy that data if you
want to save it. By default, the data expires after one hour.

CHAPTER 7. VIEWING AND EXPORTING LOGS

39

Use the following procedure to export logs.

Procedure

1. Select a repository for which you have administrator privileges.

2. In the navigation pane, select Usage Logs.

3. Optional. If you want to specify specific dates, enter the range in the From and to boxes.

4. Click the Export Logs button. An Export Usage Logs pop-up appears, as shown

5. Enter an email address or callback URL to receive the exported log. For the callback URL, you
can use a URL to a specified domain, for example, <webhook.site>.

6. Select Start Logs Export to start the process for gather the selected log entries. Depending on
the amount of logging data being gathered, this can take anywhere from a few minutes to
several hours to complete.

7. When the log export is completed, the one of following two events happens:

An email is received, alerting you to the available of your requested exported log entries.

A successful status of your log export request from the webhook URL is returned.
Additionally, a link to the exported data is made available for you to delete to download the
logs.

Red Hat Quay 3 About Quay IO

40

CHAPTER 8. BUILDING CONTAINER IMAGES
Building container images involves creating a blueprint for a containerized application. Blueprints rely on
base images from other public repositories that define how the application should be installed and
configured.

NOTE

Because blueprints rely on images from other public repositories, they might be subject to
rate limiting. Consequently, your build could fail.

Quay.io supports the ability to build Docker and Podman container images. This functionality is valuable
for developers and organizations who rely on container and container orchestration.

On Quay.io, this feature works the same across both free, and paid, tier plans.

NOTE

Quay.io limits the number of simultaneous builds that a single user can submit at one
time.

8.1. BUILD CONTEXTS

When building an image with Docker or Podman, a directory is specified to become the build context.
This is true for both manual Builds and Build triggers, because the Build that is created by Quay.io is not
different than running docker build or podman build on your local machine.

Quay.io Build contexts are always specified in the subdirectory from the Build setup, and fallback to the
root of the Build source if a directory is not specified.

When a build is triggered, Quay.io Build workers clone the Git repository to the worker machine, and
then enter the Build context before conducting a Build.

For Builds based on .tar archives, Build workers extract the archive and enter the Build context. For
example:

Extracted Build archive

Imagine that the Extracted Build archive is the directory structure got a Github repository called
example. If no subdirectory is specified in the Build trigger setup, or when manually starting the Build,
the Build operates in the example directory.

If a subdirectory is specified in the Build trigger setup, for example, subdir, only the Dockerfile within it is
visible to the Build. This means that you cannot use the ADD command in the Dockerfile to add file,
because it is outside of the Build context.

Unlike Docker Hub, the Dockerfile is part of the Build context on Quay.io. As a result, it must not appear

example
├── .git
├── Dockerfile
├── file
└── subdir
 └── Dockerfile

CHAPTER 8. BUILDING CONTAINER IMAGES

41

Unlike Docker Hub, the Dockerfile is part of the Build context on Quay.io. As a result, it must not appear
in the .dockerignore file.

8.2. TAG NAMING FOR BUILD TRIGGERS

Custom tags are available for use in Quay.io.

One option is to include any string of characters assigned as a tag for each built image. Alternatively, you
can use the following tag templates on the Configure Tagging section of the build trigger to tag
images with information from each commit:

${commit}: Full SHA of the issued commit

${parsed_ref.branch}: Branch information (if available)

${parsed_ref.tag}: Tag information (if available)

${parsed_ref.remote}: The remote name

${commit_info.date}: Date when the commit was issued

${commit_info.author.username}: Username of the author of the commit

${commit_info.short_sha}: First 7 characters of the commit SHA

${committer.properties.username}: Username of the committer

This list is not complete, but does contain the most useful options for tagging purposes. You can find the
complete tag template schema on this page.

For more information, see Set up custom tag templates in build triggers for Red Hat Quay and Quay.io

8.3. SKIPPING A SOURCE CONTROL-TRIGGERED BUILD

To specify that a commit should be ignored by the Quay.io build system, add the text [skip build] or
[build skip] anywhere in your commit message.

Red Hat Quay 3 About Quay IO

42

https://github.com/quay/quay/blob/abfde5b9d2cf7d7145e68a00c9274011b4fe0661/buildtrigger/basehandler.py#L96-L195
https://access.redhat.com/solutions/7033393

8.4. VIEWING AND MANAGING BUILDS

Repository Builds can be viewed and managed on the Quay.io UI.

Procedure

1. Navigate to Quay.io and select a repository.

2. In the navigation pane, select Builds.

8.5. CREATING A NEW BUILD

By default, Quay.io users can create new Builds out-of-the-box.

Prerequisites

You have navigated to the Builds page of your repository.

Procedure

1. On the Builds page, click Start New Build.

2. When prompted, click Upload Dockerfile to upload a Dockerfile or an archive that contains a
Dockerfile at the root directory.

3. Click Start Build.

NOTE

Currently, users cannot specify the Docker build context when manually
starting a build.

Currently, BitBucket is unsupported on the Red Hat Quay v2 UI.

4. You are redirected to the Build, which can be viewed in real-time. Wait for the Dockerfile Build
to be completed and pushed.

5. Optional. you can click Download Logs to download the logs, or Copy Logs to copy the logs.

6. Click the back button to return to the Repository Builds page, where you can view the Build
History.

8.6. BUILD TRIGGERS

Build triggers invoke builds whenever the triggered condition is met, for example, a source control push,
creating a webhook call, and so on.

8.6.1. Creating a Build trigger

CHAPTER 8. BUILDING CONTAINER IMAGES

43

quay.io
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/use_red_hat_quay/#webhook

Use the following procedure to create a Build trigger using a custom Git repository.

NOTE

The following procedure assumes that you have not included Github credentials in your
config.yaml file.

Prerequisites

You have navigated to the Builds page of your repository.

Procedure

1. On the Builds page, click Create Build Trigger.

2. Select the desired platform, for example, Github, BitBucket, Gitlab, or use a custom Git
repository. For this example, we are using a custom Git repository from Github.

3. Enter a custom Git repository name, for example, git@github.com:<username>/<repo>.git.
Then, click Next.

4. When prompted, configure the tagging options by selecting one of, or both of, the following
options:

Tag manifest with the branch or tag name. When selecting this option, the built manifest
the name of the branch or tag for the git commit are tagged.

Add latest tag if on default branch. When selecting this option, the built manifest with
latest if the build occurred on the default branch for the repository are tagged.
Optionally, you can add a custom tagging template. There are multiple tag templates that
you can enter here, including using short SHA IDs, timestamps, author names, committer,
and branch names from the commit as tags. For more information, see "Tag naming for
Build triggers".

After you have configured tagging, click Next.

5. When prompted, select the location of the Dockerfile to be built when the trigger is invoked. If
the Dockerfile is located at the root of the git repository and named Dockerfile, enter
/Dockerfile as the Dockerfile path. Then, click Next.

6. When prompted, select the context for the Docker build. If the Dockerfile is located at the root
of the Git repository, enter / as the build context directory. Then, click Next.

7. Optional. Choose an optional robot account. This allows you to pull a private base image during
the build process. If you know that a private base image is not used, you can skip this step.

8. Click Next. Check for any verification warnings. If necessary, fix the issues before clicking Finish.

9. You are alerted that the trigger has been successfully activated. Note that using this trigger
requires the following actions:

You must give the following public key read access to the git repository.

You must set your repository to POST to the following URL to trigger a build.
Save the SSH Public Key, then click Return to <organization_name>/<repository_name>.
You are redirected to the Builds page of your repository.

Red Hat Quay 3 About Quay IO

44

10. On the Builds page, you now have a Build trigger. For example:

8.6.2. Manually triggering a Build

Builds can be triggered manually by using the following procedure.

Procedure

1. On the Builds page, Start new build.

2. When prompted, select Invoke Build Trigger.

3. Click Run Trigger Now to manually start the process.
After the build starts, you can see the Build ID on the Repository Builds page.

8.7. SETTING UP A CUSTOM GIT TRIGGER

A custom Git trigger is a generic way for any Git server to act as a Build trigger. It relies solely on SSH
keys and webhook endpoints. Everything else is left for the user to implement.

8.7.1. Creating a trigger

Creating a custom Git trigger is similar to the creation of any other trigger, with the exception of the
following:

Quay.io cannot automatically detect the proper Robot Account to use with the trigger. This
must be done manually during the creation process.

There are extra steps after the creation of the trigger that must be done. These steps are
detailed in the following sections.

8.7.2. Custom trigger creation setup

When creating a custom Git trigger, two additional steps are required:

1. You must provide read access to the SSH public key that is generated when creating the
trigger.

2. You must setup a webhook that POSTs to the Quay.io endpoint to trigger the build.

The key and the URL are available by selecting View Credentials from the Settings, or gear icon.

View and modify tags from your repository

CHAPTER 8. BUILDING CONTAINER IMAGES

45

8.7.2.1. SSH public key access

Depending on the Git server configuration, there are multiple ways to install the SSH public key that
Quay.io generates for a custom Git trigger.

For example, Git documentation describes a small server setup in which adding the key to
$HOME/.ssh/authorize_keys would provide access for Builders to clone the repository. For any git
repository management software that is not officially supported, there is usually a location to input the
key often labeled as Deploy Keys.

8.7.2.2. Webhook

To automatically trigger a build, one must POST a .json payload to the webhook URL using the
following format.

This can be accomplished in various ways depending on the server setup, but for most cases can be
done with a post-receive Git Hook.

NOTE

This request requires a Content-Type header containing application/json in order to be
valid.

Example webhook

{
 "commit": "1c002dd", // required
 "ref": "refs/heads/master", // required
 "default_branch": "master", // required
 "commit_info": { // optional
 "url": "gitsoftware.com/repository/commits/1234567", // required
 "message": "initial commit", // required

Red Hat Quay 3 About Quay IO

46

https://git-scm.herokuapp.com/book/en/v2/Git-on-the-Server-Getting-Git-on-a-Server
https://git-scm.herokuapp.com/book/en/v2/Customizing-Git-Git-Hooks#idp26374144

 "date": "timestamp", // required
 "author": { // optional
 "username": "user", // required
 "avatar_url": "gravatar.com/user.png", // required
 "url": "gitsoftware.com/users/user" // required
 },
 "committer": { // optional
 "username": "user", // required
 "avatar_url": "gravatar.com/user.png", // required
 "url": "gitsoftware.com/users/user" // required
 }
 }
}

CHAPTER 8. BUILDING CONTAINER IMAGES

47

CHAPTER 9. REPOSITORY NOTIFICATIONS
Quay.io supports adding notifications to a repository for various events that occur in the repository’s
lifecycle.

9.1. CREATING NOTIFICATIONS

Use the following procedure to add notifications.

Prerequisites

You have created a repository.

You have administrative privileges for the repository.

Procedure

1. Navigate to a repository on Quay.io.

2. In the navigation pane, click Settings.

3. In the Events and Notifications category, click Create Notification to add a new notification
for a repository event. You are redirected to a Create repository notification page.

4. On the Create repository notification page, select the drop-down menu to reveal a list of
events. You can select a notification for the following types of events:

Push to Repository

Dockerfile Build Queued

Dockerfile Build Started

Dockerfile Build Successfully Completed

Docker Build Cancelled

Package Vulnerability Found

5. After you have selected the event type, select the notification method. The following methods
are supported:

Quay Notification

E-mail

Webhook POST

Flowdock Team Notification

HipChat Room Notification

Slack Room Notification
Depending on the method that you choose, you must include additional information. For
example, if you select E-mail, you are required to include an e-mail address and an optional
notification title.

Red Hat Quay 3 About Quay IO

48

6. After selecting an event and notification method, click Create Notification.

9.2. REPOSITORY EVENTS DESCRIPTION

The following sections detail repository events.

9.2.1. Repository Push

A successful push of one or more images was made to the repository:

{
 "name": "repository",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "homepage": "https://quay.io/repository/dgangaia/repository",
 "updated_tags": [
 "latest"
]
}

9.2.2. Dockerfile Build Queued

The following example is a response from a Dockerfile Build that has been queued into the Build system.

NOTE

Responses can differ based on the use of optional attributes.

{
 "build_id": "296ec063-5f86-4706-a469-f0a400bf9df2",
 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "repo": "test",
 "trigger_metadata": {
 "default_branch": "master",
 "commit": "b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "ref": "refs/heads/master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "date": "2019-03-06T12:48:24+11:00",
 "message": "adding 5",
 "author": { //Optional
 "username": "dgangaia",

CHAPTER 9. REPOSITORY NOTIFICATIONS

49

 "url": "https://github.com/dgangaia", //Optional
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 },
 "committer": {
 "username": "web-flow",
 "url": "https://github.com/web-flow",
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"
 }
 }
 },
 "is_manual": false,
 "manual_user": null,
 "homepage": "https://quay.io/repository/dgangaia/test/build/296ec063-5f86-4706-a469-
f0a400bf9df2"
}

9.2.3. Dockerfile Build started

The following example is a response from a Dockerfile Build that has been queued into the Build system.

NOTE

Responses can differ based on the use of optional attributes.

{
 "build_id": "a8cc247a-a662-4fee-8dcb-7d7e822b71ba",
 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "50bc599",
 "trigger_metadata": { //Optional
 "commit": "50bc5996d4587fd4b2d8edc4af652d4cec293c42",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/50bc5996d4587fd4b2d8edc4af652d4cec293c42",
 "date": "2019-03-06T14:10:14+11:00",
 "message": "test build",
 "committer": { //Optional
 "username": "web-flow",
 "url": "https://github.com/web-flow", //Optional
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4" //Optional
 },
 "author": { //Optional
 "username": "dgangaia",
 "url": "https://github.com/dgangaia", //Optional

Red Hat Quay 3 About Quay IO

50

 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 }
 }
 },
 "homepage": "https://quay.io/repository/dgangaia/test/build/a8cc247a-a662-4fee-8dcb-
7d7e822b71ba"
}

9.2.4. Dockerfile Build successfully completed

The following example is a response from a Dockerfile Build that has been successfully completed by the
Build system.

NOTE

This event occurs simultaneously with a Repository Push event for the built image or
images.

{
 "build_id": "296ec063-5f86-4706-a469-f0a400bf9df2",
 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "b7f7d2b",
 "image_id": "sha256:0339f178f26ae24930e9ad32751d6839015109eabdf1c25b3b0f2abf8934f6cb",
 "trigger_metadata": {
 "commit": "b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "date": "2019-03-06T12:48:24+11:00",
 "message": "adding 5",
 "committer": { //Optional
 "username": "web-flow",
 "url": "https://github.com/web-flow", //Optional
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"
//Optional
 },
 "author": { //Optional
 "username": "dgangaia",
 "url": "https://github.com/dgangaia", //Optional
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 }
 }
 },

CHAPTER 9. REPOSITORY NOTIFICATIONS

51

 "homepage": "https://quay.io/repository/dgangaia/test/build/296ec063-5f86-4706-a469-
f0a400bf9df2",
 "manifest_digests": [

"quay.io/dgangaia/test@sha256:2a7af5265344cc3704d5d47c4604b1efcbd227a7a6a6ff73d6e4e08a27f
d7d99",

"quay.io/dgangaia/test@sha256:569e7db1a867069835e8e97d50c96eccafde65f08ea3e0d5debaf16e25
45d9d1"
]
}

9.2.5. Dockerfile Build failed

The following example is a response from a Dockerfile Build that has failed.

{
 "build_id": "5346a21d-3434-4764-85be-5be1296f293c",
 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "docker_url": "quay.io/dgangaia/test",
 "error_message": "Could not find or parse Dockerfile: unknown instruction: GIT",
 "namespace": "dgangaia",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "6ae9a86",
 "trigger_metadata": { //Optional
 "commit": "6ae9a86930fc73dd07b02e4c5bf63ee60be180ad",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/6ae9a86930fc73dd07b02e4c5bf63ee60be180ad",
 "date": "2019-03-06T14:18:16+11:00",
 "message": "failed build test",
 "committer": { //Optional
 "username": "web-flow",
 "url": "https://github.com/web-flow", //Optional
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4" //Optional
 },
 "author": { //Optional
 "username": "dgangaia",
 "url": "https://github.com/dgangaia", //Optional
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 }
 }
 },
 "homepage": "https://quay.io/repository/dgangaia/test/build/5346a21d-3434-4764-85be-
5be1296f293c"
}

Red Hat Quay 3 About Quay IO

52

9.2.6. Dockerfile Build cancelled

The following example is a response from a Dockerfile Build that has been cancelled.

{
 "build_id": "cbd534c5-f1c0-4816-b4e3-55446b851e70",
 "trigger_kind": "github",
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e",
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "cbce83c",
 "trigger_metadata": {
 "commit": "cbce83c04bfb59734fc42a83aab738704ba7ec41",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": {
 "url": "https://github.com/dgangaia/test/commit/cbce83c04bfb59734fc42a83aab738704ba7ec41",
 "date": "2019-03-06T14:27:53+11:00",
 "message": "testing cancel build",
 "committer": {
 "username": "web-flow",
 "url": "https://github.com/web-flow",
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"
 },
 "author": {
 "username": "dgangaia",
 "url": "https://github.com/dgangaia",
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4"
 }
 }
 },
 "homepage": "https://quay.io/repository/dgangaia/test/build/cbd534c5-f1c0-4816-b4e3-
55446b851e70"
}

9.2.7. Vulnerability detected

The following example is a response from a Dockerfile Build has detected a vulnerability in the
repository.

{
 "repository": "dgangaia/repository",
 "namespace": "dgangaia",
 "name": "repository",
 "docker_url": "quay.io/dgangaia/repository",
 "homepage": "https://quay.io/repository/dgangaia/repository",

 "tags": ["latest", "othertag"],

CHAPTER 9. REPOSITORY NOTIFICATIONS

53

 "vulnerability": {
 "id": "CVE-1234-5678",
 "description": "This is a bad vulnerability",
 "link": "http://url/to/vuln/info",
 "priority": "Critical",
 "has_fix": true
 }
}

9.3. NOTIFICATION ACTIONS

9.3.1. Notifications added

Notifications are added to the Events and Notifications section of the Repository Settings page. They
are also added to the Notifications window, which can be found by clicking the bell icon in the
navigation pane of Quay.io.

Quay.io notifications can be setup to be sent to a User, Team, or the organization as a whole.

9.3.2. E-mail notifications

E-mails are sent to specified addresses that describe the specified event. E-mail addresses must be
verified on a per-repository basis.

9.3.3. Webhook POST notifications

An HTTP POST call is made to the specified URL with the event’s data. For more information about
event data, see "Repository events description".

When the URL is HTTPS, the call has an SSL client certificate set from Quay.io. Verification of this
certificate proves that the call originated from Quay.io. Responses with the status code in the 2xx range
are considered successful. Responses with any other status code are considered failures and result in a
retry of the webhook notification.

9.3.4. Flowdock notifications

Posts a message to Flowdock.

9.3.5. Hipchat notifications

Posts a message to HipChat.

9.3.6. Slack notifications

Posts a message to Slack.

Red Hat Quay 3 About Quay IO

54

CHAPTER 10. OPEN CONTAINER INITIATIVE SUPPORT
Container registries were originally designed to support container images in the Docker image format.
To promote the use of additional runtimes apart from Docker, the Open Container Initiative (OCI) was
created to provide a standardization surrounding container runtimes and image formats. Most container
registries support the OCI standardization as it is based on the Docker image manifest V2, Schema 2
format.

In addition to container images, a variety of artifacts have emerged that support not just individual
applications, but also the Kubernetes platform as a whole. These range from Open Policy Agent (OPA)
policies for security and governance to Helm charts and Operators that aid in application deployment.

Quay.io is a private container registry that not only stores container images, but also supports an entire
ecosystem of tooling to aid in the management of containers. Quay.io strives to be as compatible as
possible with the OCI 1.0 Image and Distribution specifications , and supports common media types like
Helm charts (as long as they pushed with a version of Helm that supports OCI) and a variety of arbitrary
media types within the manifest or layer components of container images. Support for such novel media
types differs from previous iterations of Quay.io, when the registry was more strict about accepted
media types. Because Quay.io now works with a wider array of media types, including those that were
previously outside the scope of its support, it is now more versatile accommodating not only standard
container image formats but also emerging or unconventional types.

In addition to its expanded support for novel media types, Quay.io ensures compatibility with Docker
images, including V2_2 and V2_1 formats. This compatibility with Docker V2_2 and V2_1 images
demonstrates Quay.io’s commitment to providing a seamless experience for Docker users. Moreover,
Quay.io continues to extend its support for Docker V1 pulls, catering to users who might still rely on this
earlier version of Docker images.

Support for OCI artifacts are enabled by default.

10.1. HELM AND OCI PREREQUISITES

Helm simplifies how applications are packaged and deployed. Helm uses a packaging format called
Charts which contain the Kubernetes resources representing an application. Quay.io supports Helm
charts so long as they are a version supported by OCI.

Use the following procedures to pre-configure your system to use Helm and other OCI media types.

10.1.1. Installing Helm

Use the following procedure to install the Helm client.

Procedure

1. Download the latest version of Helm from the Helm releases page.

2. Enter the following command to unpack the Helm binary:

3. Move the Helm binary to the desired location:

$ tar -zxvf helm-v3.8.2-linux-amd64.tar.gz

$ mv linux-amd64/helm /usr/local/bin/helm

CHAPTER 10. OPEN CONTAINER INITIATIVE SUPPORT

55

https://docs.docker.com/registry/spec/manifest-v2-2/
https://opencontainers.org/posts/announcements/2021-05-04-oci-dist-spec-v1/
https://github.com/helm/helm/releases

For more information about installing Helm, see the Installing Helm documentation.

10.1.2. Upgrading to Helm 3.8

Support for OCI registry charts requires that Helm has been upgraded to at least 3.8. If you have already
downloaded Helm and need to upgrade to Helm 3.8, see the Helm Upgrade documentation.

10.2. USING HELM CHARTS

Use the following example to download and push an etherpad chart from the Red Hat Community of
Practice (CoP) repository.

Prerequisites

You have logged into Quay.io.

Procedure

1. Add a chart repository by entering the following command:

2. Enter the following command to update the information of available charts locally from the chart
repository:

3. Enter the following command to pull a chart from a repository:

4. Enter the following command to package the chart into a chart archive:

Example output

5. Log in to Quay.io using helm registry login:

6. Push the chart to your repository using the helm push command:

Example output:

$ helm repo add redhat-cop https://redhat-cop.github.io/helm-charts

$ helm repo update

$ helm pull redhat-cop/etherpad --version=0.0.4 --untar

$ helm package ./etherpad

Successfully packaged chart and saved it to: /home/user/linux-amd64/etherpad-0.0.4.tgz

$ helm registry login quay.io

helm push etherpad-0.0.4.tgz oci://quay.io/<organization_name>/helm

Pushed: quay370.apps.quayperf370.perfscale.devcluster.openshift.com/etherpad:0.0.4
Digest: sha256:a6667ff2a0e2bd7aa4813db9ac854b5124ff1c458d170b70c2d2375325f2451b

Red Hat Quay 3 About Quay IO

56

https://helm.sh/docs/intro/install/
https://helm.sh/docs/helm/helm_upgrade/

7. Ensure that the push worked by deleting the local copy, and then pulling the chart from the
repository:

Example output:

10.3. COSIGN OCI SUPPORT

Cosign is a tool that can be used to sign and verify container images. It uses the ECDSA-P256 signature
algorithm and Red Hat’s Simple Signing payload format to create public keys that are stored in PKIX
files. Private keys are stored as encrypted PEM files.

Cosign currently supports the following:

Hardware and KMS Signing

Bring-your-own PKI

OIDC PKI

Built-in binary transparency and timestamping service

Use the following procedure to directly install Cosign.

Prerequisites

You have installed Go version 1.16 or later.

Procedure

1. Enter the following go command to directly install Cosign:

Example output

2. Generate a key-value pair for Cosign by entering the following command:

Example output

$ rm -rf etherpad-0.0.4.tgz

$ helm pull oci://quay.io/<organization_name>/helm/etherpad --version 0.0.4

Pulled: quay370.apps.quayperf370.perfscale.devcluster.openshift.com/etherpad:0.0.4
Digest: sha256:4f627399685880daf30cf77b6026dc129034d68c7676c7e07020b70cf7130902

$ go install github.com/sigstore/cosign/cmd/cosign@v1.0.0

go: downloading github.com/sigstore/cosign v1.0.0
go: downloading github.com/peterbourgon/ff/v3 v3.1.0

$ cosign generate-key-pair

Enter password for private key:

CHAPTER 10. OPEN CONTAINER INITIATIVE SUPPORT

57

3. Sign the key-value pair by entering the following command:

Example output

If you experience the error: signing quay-server.example.com/user1/busybox:test: getting
remote image: GET https://quay-server.example.com/v2/user1/busybox/manifests/test:
UNAUTHORIZED: access to the requested resource is not authorized; map[] error, which
occurs because Cosign relies on ~./docker/config.json for authorization, you might need to
execute the following command:

Example output

4. Enter the following command to see the updated authorization configuration:

10.4. INSTALLING AND USING COSIGN

Use the following procedure to directly install Cosign.

Prerequisites

You have installed Go version 1.16 or later.

You have set FEATURE_GENERAL_OCI_SUPPORT to true in your config.yaml file.

Procedure

1. Enter the following go command to directly install Cosign:

Enter again:
Private key written to cosign.key
Public key written to cosign.pub

$ cosign sign -key cosign.key quay.io/user1/busybox:test

Enter password for private key:
Pushing signature to: quay-server.example.com/user1/busybox:sha256-
ff13b8f6f289b92ec2913fa57c5dd0a874c3a7f8f149aabee50e3d01546473e3.sig

$ podman login --authfile ~/.docker/config.json quay.io

Username:
Password:
Login Succeeded!

$ cat ~/.docker/config.json
{
 "auths": {
 "quay-server.example.com": {
 "auth": "cXVheWFkbWluOnBhc3N3b3Jk"
 }
 }

Red Hat Quay 3 About Quay IO

58

https://quay-server.example.com/v2/user1/busybox/manifests/test

Example output

2. Generate a key-value pair for Cosign by entering the following command:

Example output

3. Sign the key-value pair by entering the following command:

Example output

If you experience the error: signing quay-server.example.com/user1/busybox:test: getting
remote image: GET https://quay-server.example.com/v2/user1/busybox/manifests/test:
UNAUTHORIZED: access to the requested resource is not authorized; map[] error, which
occurs because Cosign relies on ~./docker/config.json for authorization, you might need to
execute the following command:

Example output

4. Enter the following command to see the updated authorization configuration:

$ go install github.com/sigstore/cosign/cmd/cosign@v1.0.0

go: downloading github.com/sigstore/cosign v1.0.0
go: downloading github.com/peterbourgon/ff/v3 v3.1.0

$ cosign generate-key-pair

Enter password for private key:
Enter again:
Private key written to cosign.key
Public key written to cosign.pub

$ cosign sign -key cosign.key quay.io/user1/busybox:test

Enter password for private key:
Pushing signature to: quay-server.example.com/user1/busybox:sha256-
ff13b8f6f289b92ec2913fa57c5dd0a874c3a7f8f149aabee50e3d01546473e3.sig

$ podman login --authfile ~/.docker/config.json quay.io

Username:
Password:
Login Succeeded!

$ cat ~/.docker/config.json
{
 "auths": {
 "quay-server.example.com": {
 "auth": "cXVheWFkbWluOnBhc3N3b3Jk"
 }
 }

CHAPTER 10. OPEN CONTAINER INITIATIVE SUPPORT

59

https://quay-server.example.com/v2/user1/busybox/manifests/test

Red Hat Quay 3 About Quay IO

60

	Table of Contents
	PREFACE
	CHAPTER 1. QUAY.IO OVERVIEW
	CHAPTER 2. QUAY.IO SUPPORT
	CHAPTER 3. CLAIR SECURITY SCANNER
	3.1. ABOUT CLAIR
	3.1.1. Clair vulnerability databases
	3.1.2. Clair supported dependencies

	3.2. CLAIR SEVERITY MAPPING
	3.2.1. Clair severity strings
	Alpine mapping
	AWS mapping
	Debian mapping
	Oracle mapping
	RHEL mapping
	SUSE mapping
	Ubuntu mapping
	OSV mapping

	CHAPTER 4. QUAY.IO USER INTERFACE OVERVIEW
	4.1. QUAY.IO LANDING PAGE
	4.1.1. Creating a Quay.io account
	4.1.1.1. Registering for a Red Hat Account
	4.1.1.2. Creating a Quay.io user account
	4.1.1.3. Quay.io Single Sign On support

	4.1.2. Exploring Quay.io
	4.1.3. Trying Quay.io (deprecated)
	4.1.4. Information about Quay.io pricing

	CHAPTER 5. USERS AND ORGANIZATIONS
	5.1. TENANCY MODEL
	5.2. LOGGING INTO QUAY
	5.2.1. Logging into Quay.io
	5.2.2. Logging into Quay through the Hybrid Cloud Console

	5.3. CREATING A REPOSITORY
	5.3.1. Creating an image repository by using the UI
	5.3.2. Creating an image repository by using the CLI

	5.4. MANAGING ACCESS TO REPOSITORIES
	5.4.1. Allowing access to user repositories
	5.4.1.1. Allowing user access to a user repository
	5.4.1.2. Allowing robot access to a user repository

	5.4.2. Organization repositories
	5.4.2.1. Creating an Organization
	5.4.2.2. Adding a team to an organization
	5.4.2.3. Setting a Team role
	5.4.2.4. Adding users to a Team

	5.5. USER SETTINGS
	5.5.1. Navigating to the User Settings page
	5.5.2. Adjusting user settings
	5.5.3. Billing information

	CHAPTER 6. WORKING WITH TAGS
	6.1. VIEWING AND MODIFYING TAGS
	6.1.1. Adding a new image tag to an image
	6.1.2. Moving an image tag
	6.1.3. Deleting an image tag
	6.1.3.1. Viewing tag history
	6.1.3.2. Reverting tag changes

	6.1.4. Fetching an image by tag or digest

	6.2. TAG EXPIRATION
	6.2.1. Setting tag expiration from a Dockerfile
	6.2.2. Setting tag expiration from the repository

	6.3. VIEWING CLAIR SECURITY SCANS

	CHAPTER 7. VIEWING AND EXPORTING LOGS
	7.1. VIEWING LOGS USING THE UI
	7.2. EXPORTING REPOSITORY LOGS

	CHAPTER 8. BUILDING CONTAINER IMAGES
	8.1. BUILD CONTEXTS
	8.2. TAG NAMING FOR BUILD TRIGGERS
	8.3. SKIPPING A SOURCE CONTROL-TRIGGERED BUILD
	8.4. VIEWING AND MANAGING BUILDS
	8.5. CREATING A NEW BUILD
	8.6. BUILD TRIGGERS
	8.6.1. Creating a Build trigger
	8.6.2. Manually triggering a Build

	8.7. SETTING UP A CUSTOM GIT TRIGGER
	8.7.1. Creating a trigger
	8.7.2. Custom trigger creation setup
	8.7.2.1. SSH public key access
	8.7.2.2. Webhook

	CHAPTER 9. REPOSITORY NOTIFICATIONS
	9.1. CREATING NOTIFICATIONS
	9.2. REPOSITORY EVENTS DESCRIPTION
	9.2.1. Repository Push
	9.2.2. Dockerfile Build Queued
	9.2.3. Dockerfile Build started
	9.2.4. Dockerfile Build successfully completed
	9.2.5. Dockerfile Build failed
	9.2.6. Dockerfile Build cancelled
	9.2.7. Vulnerability detected

	9.3. NOTIFICATION ACTIONS
	9.3.1. Notifications added
	9.3.2. E-mail notifications
	9.3.3. Webhook POST notifications
	9.3.4. Flowdock notifications
	9.3.5. Hipchat notifications
	9.3.6. Slack notifications

	CHAPTER 10. OPEN CONTAINER INITIATIVE SUPPORT
	10.1. HELM AND OCI PREREQUISITES
	10.1.1. Installing Helm
	10.1.2. Upgrading to Helm 3.8

	10.2. USING HELM CHARTS
	10.3. COSIGN OCI SUPPORT
	10.4. INSTALLING AND USING COSIGN

