
Red Hat Quay 3.9

Use Red Hat Quay

Use Red Hat Quay

Last Updated: 2024-01-15

Red Hat Quay 3.9 Use Red Hat Quay

Use Red Hat Quay

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn to use Red Hat Quay

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. USERS AND ORGANIZATIONS IN RED HAT QUAY
1.1. RED HAT QUAY TENANCY MODEL
1.2. CREATING USER ACCOUNTS
1.3. DELETING A RED HAT QUAY USER FROM THE COMMAND LINE
1.4. CREATING ORGANIZATION ACCOUNTS

CHAPTER 2. CREATING A REPOSITORY
2.1. CREATING AN IMAGE REPOSITORY VIA THE UI
2.2. CREATING AN IMAGE REPOSITORY VIA DOCKER OR PODMAN

CHAPTER 3. MANAGING ACCESS TO REPOSITORIES
3.1. ALLOWING ACCESS TO USER REPOSITORIES

3.1.1. Allowing user access to a user repository
3.2. ALLOWING ROBOT ACCESS TO A USER REPOSITORY
3.3. ALLOWING ACCESS TO ORGANIZATION REPOSITORIES

3.3.1. Adding a Team to an organization
3.3.2. Setting a Team role
3.3.3. Adding users to a Team

CHAPTER 4. WORKING WITH TAGS
4.1. VIEWING AND MODIFYING TAGS

4.1.1. Adding a new tag to a tagged image
4.1.2. Moving a tag
4.1.3. Deleting a tag
4.1.4. Viewing tag history and going back in time

4.1.4.1. Viewing tag history
4.1.4.2. Going back in time

4.1.5. Fetching an image by tag or digest
4.2. TAG EXPIRATION

4.2.1. Setting tag expiration from a Dockerfile
4.2.2. Setting tag expiration from the repository

4.3. SECURITY SCANNING

CHAPTER 5. VIEWING AND EXPORTING LOGS
5.1. VIEWING LOGS
5.2. EXPORTING REPOSITORY LOGS

CHAPTER 6. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS
6.1. ARCHITECTURE OVERVIEW

6.1.1. Build manager
6.1.2. Build workers’ control plane
6.1.3. Orchestrator

6.2. OPENSHIFT REQUIREMENTS
6.3. ORCHESTRATOR REQUIREMENTS
6.4. SETTING UP RED HAT QUAY BUILDERS WITH OPENSHIFT

6.4.1. OpenShift TLS component
6.4.2. Prepare OpenShift for Red Hat Quay Builds
6.4.3. Enable Builders and add Build Configuration to Red Hat Quay’s Configuration Bundle

6.5. OPENSHIFT ROUTES LIMITATION
6.6. TROUBLESHOOTING BUILDS

6.6.1. DEBUG config flag

6

7
7
7
8
8

10
10
11

12
12
12
13
14
14
15
16

17
17
17
17
17
17
17
18
18
18
19
19

20

21
21
22

24
24
24
24
24
24
25
25
25
25
27
29
30
30

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

6.7. SETTING UP GITHUB BUILDS (OPTIONAL)

CHAPTER 7. BUILDING DOCKERFILES
7.1. VIEWING AND MANAGING BUILDS
7.2. MANUALLY STARTING A BUILD
7.3. BUILD TRIGGERS

7.3.1. Creating a new build trigger
7.3.2. Manually triggering a build trigger
7.3.3. Build Contexts

CHAPTER 8. SETTING UP A CUSTOM GIT TRIGGER
8.1. CREATING A TRIGGER
8.2. POST TRIGGER-CREATION SETUP

8.2.1. SSH public key access
8.2.2. Webhook

CHAPTER 9. SKIPPING A SOURCE CONTROL-TRIGGERED BUILD

CHAPTER 10. SET UP GITHUB BUILD TRIGGER TAGS
10.1. UNDERSTANDING TAG NAMING FOR BUILD TRIGGERS
10.2. SETTING TAG NAMES FOR BUILD TRIGGERS

CHAPTER 11. CREATING AN OAUTH APPLICATION IN GITHUB
11.1. CREATE NEW GITHUB APPLICATION

CHAPTER 12. REPOSITORY NOTIFICATIONS
12.1. REPOSITORY EVENTS

12.1.1. Repository Push
12.1.2. Dockerfile Build Queued
12.1.3. Dockerfile Build Started
12.1.4. Dockerfile Build Successfully Completed
12.1.5. Dockerfile Build Failed
12.1.6. Dockerfile Build Cancelled
12.1.7. Vulnerability Detected

12.2. NOTIFICATION ACTIONS
12.2.1. Quay Notification
12.2.2. E-mail
12.2.3. Webhook POST
12.2.4. Flowdock Notification
12.2.5. Hipchat Notification
12.2.6. Slack Notification

CHAPTER 13. OPEN CONTAINER INITIATIVE SUPPORT AND RED HAT QUAY
13.1. HELM AND OCI PREREQUISITES

13.1.1. Installing Helm
13.1.2. Upgrading to Helm 3.8
13.1.3. Enabling your system to trust SSL/TLS certificates used by Red Hat Quay
13.1.4. Creating an organization for Helm in Red Hat Quay

13.2. USING HELM CHARTS WITH RED HAT QUAY
13.3. COSIGN OCI SUPPORT WITH RED HAT QUAY
13.4. INSTALLING AND USING COSIGN FOR RED HAT QUAY
13.5. USING OTHER ARTIFACT TYPES WITH RED HAT QUAY
13.6. DISABLING OCI ARTIFACTS IN RED HAT QUAY

CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

31

32
32
32
32
32
32
32

34
34
34
34
35

36

37
37
37

40
40

41
41
41
41

42
43
44
45
46
46
46
46
46
47
47
47

48
48
48
49
49
49
49
50
51
52
53

54

Red Hat Quay 3.9 Use Red Hat Quay

2

. .

. .

. .

14.1. QUOTA MANAGEMENT ARCHITECTURE
14.2. QUOTA MANAGEMENT LIMITATIONS
14.3. QUOTA MANAGEMENT CONFIGURATION FIELDS

14.3.1. Example quota management configuration
14.4. ESTABLISHING QUOTA WITH THE RED HAT QUAY API

14.4.1. Setting the quota
14.4.2. Viewing the quota
14.4.3. Modifying the quota
14.4.4. Pushing images

14.4.4.1. Pushing ubuntu:18.04
14.4.4.2. Using the API to view quota usage
14.4.4.3. Pushing another image

14.4.5. Rejecting pushes using quota limits
14.4.5.1. Setting reject and warning limits
14.4.5.2. Viewing reject and warning limits
14.4.5.3. Pushing an image when the reject limit is exceeded
14.4.5.4. Notifications for limits exceeded

CHAPTER 15. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES
15.1. PROXY CACHE ARCHITECTURE
15.2. PROXY CACHE LIMITATIONS
15.3. USING RED HAT QUAY TO PROXY A REMOTE REGISTRY

15.3.1. Leveraging storage quota limits in proxy organizations
15.3.1.1. Testing the storage quota limits feature in proxy organizations

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS
16.1. RED HAT QUAY ENHANCED BUILD ARCHITECTURE
16.2. RED HAT QUAY BUILD LIMITATIONS
16.3. CREATING A RED HAT QUAY BUILDERS ENVIRONMENT WITH OPENSHIFT CONTAINER PLATFORM

16.3.1. OpenShift Container Platform TLS component
16.3.2. Using OpenShift Container Platform for Red Hat Quay builders

16.3.2.1. Preparing OpenShift Container Platform for virtual builders
16.3.2.2. Manually adding SSL/TLS certificates

16.3.2.2.1. Creating and signing certificates
16.3.2.2.2. Setting TLS to unmanaged
16.3.2.2.3. Creating temporary secrets
16.3.2.2.4. Copying secret data to the configuration YAML

16.3.2.3. Using the UI to create a build trigger
16.3.2.4. Modifying your AWS S3 storage bucket
16.3.2.5. Modifying your Google Cloud Platform object bucket

CHAPTER 17. USING THE RED HAT QUAY V2 UI
17.1. V2 USER INTERFACE CONFIGURATION

17.1.1. Creating a new organization in the Red Hat Quay v2 UI
17.1.2. Deleting an organization using the Red Hat Quay v2 UI
17.1.3. Creating a new repository using the Red Hat Quay v2 UI
17.1.4. Deleting a repository using the Red Hat Quay v2 UI
17.1.5. Pushing an image to the Red Hat Quay v2 UI
17.1.6. Deleting an image using the Red Hat Quay v2 UI
17.1.7. Creating a robot account using the Red Hat Quay v2 UI
17.1.8. Organization settings for the Red Hat Quay v2 UI
17.1.9. Viewing image tag information using the Red Hat Quay v2 UI
17.1.10. Adjusting repository settings using the Red Hat Quay v2 UI

17.2. ENABLING THE RED HAT QUAY LEGACY UI

54
55
55
56
56
57
57
57
58
58
58
59
60
60
61
61

62

64
64
67
68
69
69

71
71
71
71
71
72
72
76
76
77
77
77
79
81

82

84
84
84
85
85
86
86
86
87
88
88
89
90

Table of Contents

3

. .CHAPTER 18. USING THE RED HAT QUAY API
18.1. ACCESSING THE QUAY API FROM QUAY.IO
18.2. CREATE OAUTH ACCESS TOKEN
18.3. ACCESSING YOUR QUAY API FROM A WEB BROWSER
18.4. ACCESSING THE RED HAT QUAY API FROM THE COMMAND LINE

18.4.1. Get superuser information
18.4.2. Creating a superuser using the API
18.4.3. List usage logs

18.4.3.1. Example for pagination
18.4.4. Directory synchronization
18.4.5. Create a repository build via API
18.4.6. Create an org robot
18.4.7. Trigger a build
18.4.8. Create a private repository
18.4.9. Create a mirrored repository

91
91
91

92
92
92
93
94
94
97
97
98
98
98
98

Red Hat Quay 3.9 Use Red Hat Quay

4

Table of Contents

5

PREFACE
Red Hat Quay container image registries let you store container images in a central location. As a
regular user of a Red Hat Quay registry, you can create repositories to organize your images and
selectively add read (pull) and write (push) access to the repositories you control. A user with
administrative privileges can perform a broader set of tasks, such as the ability to add users and control
default settings.

This guide assumes you have a Red Hat Quay deployed and are ready to start setting it up and using it.

Red Hat Quay 3.9 Use Red Hat Quay

6

CHAPTER 1. USERS AND ORGANIZATIONS IN RED HAT QUAY
Before you begin creating repositories to hold your container images in Red Hat Quay, you should
consider how you want to organize those repositories. Every repository in a Red Hat Quay instance must
be associated with either an Organization or a User.

1.1. RED HAT QUAY TENANCY MODEL

Organizations provide a way of sharing repositories under a common namespace which does
not belong to a single user, but rather to many users in a shared setting (such as a company).

Teams provide a way for an organization to delegate permissions (both global and on specific
repositories) to sets or groups of users.

Users can log in to a registry through the Red Hat Quay web UI or a client (such as podman
login). Each user automatically gets a user namespace, for example, quay-
server.example.com/user/<username>.

Super users have enhanced access and privileges via the Super User Admin Panel in the user
interface and through Super User API calls that are not visible or accessible to normal users.

Robot accounts provide automated access to repositories for non-human users such as
pipeline tools and are similar in nature to OpenShift service accounts. Permissions can be
granted to a robot account in a repository by adding that account like any other user or team.

1.2. CREATING USER ACCOUNTS

To create a new user for your Red Hat Quay instance:

1. Log in to Red Hat Quay as the superuser (quay by default).

2. Select your account name from the upper right corner of the home page and choose Super User
Admin Panel.

3. Select the Users icon from the left column.

4. Select the Create User button.

5. Enter the new user’s Username and Email address, then select the Create User button.

6. Back on the Users page, select the Options icon to the right of the new Username. A drop-down

CHAPTER 1. USERS AND ORGANIZATIONS IN RED HAT QUAY

7

6. Back on the Users page, select the Options icon to the right of the new Username. A drop-down
menu appears, as shown in the following figure:

7. Choose Change Password from the menu.

8. Add the new password and verify it, then select the Change User Password button.

The new user can now use that username and password to log in via the web ui or through some
container client.

1.3. DELETING A RED HAT QUAY USER FROM THE COMMAND LINE

When accessing the Users tab in the Superuser Admin panel of the Red Hat Quay UI, you might
encounter a situation where no users are listed. Instead, a message appears, indicating that Red Hat
Quay is configured to use external authentication, and users can only be created in that system.

This error occurs for one of two reasons:

The web UI times out when loading users. When this happens, users are not accessible to
perform any operations on.

On LDAP authentication. When a userID is changed but the associated email is not. Currently,
Red Hat Quay does not allow the creation of a new user with an old email address.

Use the following procedure to delete a user from Red Hat Quay when facing this issue.

Procedure

Enter the following curl command to delete a user from the command line:

NOTE

After deleting the user, any repositories that this user had in his private account
become unavailable.

1.4. CREATING ORGANIZATION ACCOUNTS

Any user can create their own organization to share repositories of container images. To create a new

$ curl -X DELETE -H "Authorization: Bearer <insert token here>"
https://<quay_hostname>/api/v1/superuser/users/<name_of_user>

Red Hat Quay 3.9 Use Red Hat Quay

8

Any user can create their own organization to share repositories of container images. To create a new
organization:

1. While logged in as any user, select the plus sign (+) from the upper right corner of the home
page and choose New Organization.

2. Type the name of the organization. The name must be alphanumeric, all lower case, and
between 2 and 255 characters long

3. Select Create Organization. The new organization appears, ready for you to begin adding
repositories, teams, robot accounts and other features from icons on the left column. The
following figure shows an example of the new organization’s page with the settings tab selected.

CHAPTER 1. USERS AND ORGANIZATIONS IN RED HAT QUAY

9

CHAPTER 2. CREATING A REPOSITORY
A repository provides a central location for storing a related set of container images. There are two ways
to create a repository in Red Hat Quay: via a push (from docker or podman) and via the Red Hat Quay
UI. These are essentially the same, whether you are using Quay.io or your own instance of Red Hat Quay.

2.1. CREATING AN IMAGE REPOSITORY VIA THE UI

To create a repository in the Red Hat Quay UI under a user account: . Log in to the user account through
the web UI. . Click the + icon in the top right of the header on the home page (or other page related to
the user) and choose New Repository, as shown in the following figure:

+

1. On the Create New Repository page that appears

Add the new repository name to your user name

Click Repository Description and type a description of the repository

In Repository Visibility, select whether you want the repository to be public or private

Click the Create Repository button.

The new repository is created, starting out empty. A docker pull command you could use to pull an image
from this repository (minus the image name) appears on the screen.

To create a repository in the Red Hat Quay UI under an organization:

1. Log in as a user that has Admin or Write permission to the organization.

2. From the Repositories view, select the organization name from the right column under Users
and Organizations. The page for the organization appears, similar to the page shown in Figure
2.x:

3. Click +Create New Repository in the upper-right part of the page.

4. On the Create New Repository page that appears:

Add the new repository name to the organization name

Click Repository Description and type a description of the repository

In Repository Visibility, select whether you want the repository to be public or private

Click the Create Repository button.

The new repository is created, starting out empty. A docker pull command you could use to pull an image
from this repository (minus the image name) appears on the screen.

Red Hat Quay 3.9 Use Red Hat Quay

10

2.2. CREATING AN IMAGE REPOSITORY VIA DOCKER OR PODMAN

Assuming you have the proper credentials, pushing an image to a repository that does not yet exist in
your Red Hat Quay instance will create that repository as it pushes the image to that repository. Either
the docker or podman commands will work for these examples.

1. Tag the image: With an image available from docker or podman on your local system, tag that
image with the new repository name and image name. Here are examples for pushing images to
Quay.io or your own Red Hat Quay setup (for example, reg.example.com). For the examples,
replace namespace with your Red Hat Quay user name or organization and repo_name with the
name of the repository you want to create:

sudo podman tag myubi-minimal quay.io/namespace/repo_name
sudo podman tag myubi-standard reg.example.com/namespace/repo_name

2. Push to the appropriate registry. For example:

sudo podman push quay.io/namespace/repo_name
sudo podman push reg.example.com/namespace/repo_name

NOTE

To create an application repository, follow the same procedure you did for creating a
container image repository.

CHAPTER 2. CREATING A REPOSITORY

11

CHAPTER 3. MANAGING ACCESS TO REPOSITORIES
As a Red Hat Quay user, you can create your own repositories and make them accessible to other users
on your Red Hat Quay instance. As an alternative, you can create organizations to allow access to
repositories based on teams. In both user and organization repositories, you can allow access to those
repositories by creating credentials associated with robot accounts. Robot accounts make it easy for a
variety of container clients (such as docker or podman) to access your repos, without requiring that the
client have a Red Hat Quay user account.

3.1. ALLOWING ACCESS TO USER REPOSITORIES

When you create a repository in a user namespace, you can add access to that repository to user
accounts or through robot accounts.

3.1.1. Allowing user access to a user repository

To allow access to a repository associated with a user account, do the following:

1. Log into your Red Hat Quay user account.

2. Select a repository under your user namespace to which you want to share access.

3. Select the Settings icon from the left column.

4. Type the name of the user to which you want to grant access to your repository. The user name
should appear as you type, as shown in the following figure:

5. In the permissions box, select one of the following:

Read - Allows the user to view the repository and pull from it.

Write - Allows the user to view the repository, as well as pull images from or push images to
the repository.

Admin - Allows all administrative settings to the repository, as well as all Read and Write
permissions.

6. Select the Add Permission button. The user now has the assigned permission.

To remove the user permissions to the repository, select the Options icon to the right of the user entry,
then select Delete Permission.

Red Hat Quay 3.9 Use Red Hat Quay

12

3.2. ALLOWING ROBOT ACCESS TO A USER REPOSITORY

Robot accounts are used to set up automated access to the repositories in your Red Hat Quay registry.
They are similar to OpenShift service accounts. When you set up a robot account, you:

Generate credentials that are associated with the robot account

Identify repositories and images that the robot can push images to or pull images from

Copy and paste generated credentials to use with different container clients (such as Docker,
podman, Kubernetes, Mesos and others) to access each defined repository

Keep in mind that each robot account is limited to a single user namespace or organization. So, for
example, the robot could provide access to all repositories accessible to a user jsmith, but not to any
that are not in the user’s list of repositories.

The following procedure steps you through setting up a robot account to allow access to your
repositories.

1. Select Robot icon: From the Repositories view, select the Robot icon from the left column.

2. Create Robot account: Select the Create Robot Account button.

3. Set Robot name: Enter the name and description, then select the Create robot account button.
The robot name becomes a combination of your user name, plus the robot name you set (for
example, jsmith+myrobot)

4. Add permission to the robot account: From the Add permissions screen for the robot account,
define the repositories you want the robot to access as follows:

Put a check mark next to each repository the robot can access

For each repository, select one of the following, and click Add permissions:

None - Robot has no permission to the repository

Read - Robot can view and pull from the repository

Write - Robot can read (pull) from and write (push) to the repository

Admin - Full access to pull from and push to the repository, plus the ability to do
administrative tasks associated with the repository

Select the Add permissions button to apply the settings

5. Get credentials to access repositories via the robot: Back on the Robot Accounts page, select
the Robot account name to see credential information for that robot.

6. Get the token: Select Robot Token, as shown in the following figure, to see the token that was
generated for the robot. If you want to reset the token, select Regenerate Token.

NOTE

It is important to understand that regenerating a token makes any previous
tokens for this robot invalid.

CHAPTER 3. MANAGING ACCESS TO REPOSITORIES

13

7. Get credentials: Once you are satisfied with the generated token, get the resulting credentials in
the following ways:

Kubernetes Secret: Select this to download credentials in the form of a Kubernetes pull
secret yaml file.

rkt Configuration: Select this to download credentials for the rkt container runtime in the
form of a json file.

Docker Login: Select this to copy a full docker login command line that includes the
credentials.

Docker Configuration: Select this to download a file to use as a Docker config.json file, to
permanently store the credentials on your client system.

Mesos Credentials: Select this to download a tarball that provides the credentials that can
be identified in the uris field of a Mesos configuration file.

3.3. ALLOWING ACCESS TO ORGANIZATION REPOSITORIES

Once you have created an organization, you can associate a set of repositories directly to that
organization. To add access to the repositories in that organization, you can add Teams (sets of users
with the same permissions) and individual users. Essentially, an organization has the same ability to
create repositories and robot accounts as a user does, but an organization is intended to set up shared
repositories through groups of users (in teams or individually).

Other things to know about organizations:

You cannot have an organization in another organization. To subdivide an organization, you use
teams.

Organizations can’t contain users directly. You must first add a team, then add one or more
users to each team.

Teams can be set up in organizations as just members who use the repos and associated images
or as administrators with special privileges for managing the organization

3.3.1. Adding a Team to an organization

When you create a team for your organization you can select the team name, choose which repositories
to make available to the team, and decide the level of access to the team.

Red Hat Quay 3.9 Use Red Hat Quay

14

1. From the Organization view, select the Teams and Membership icon from the left column. You
will see that an owners Team exists with Admin privilege for the user who created the
Organization.

2. Select Create New Team. You are prompted for the new team name to be associated with the
organization. Type the team name, which must start with a lowercase letter, with the rest of the
team name as any combination of lowercase letters and numbers (no capitals or special
characters allowed).

3. Select the Create team button. The Add permissions window appears, displaying a list of
repositories in the organization.

4. Check each repository you want the team to be able to access. Then select one of the following
permissions for each:

Read - Team members are able to view and pull images

Write - Team members can view, pull, and push images

Admin - Team members have full read/write privilege, plus the ability to do administrative
tasks related to the repository

5. Select Add permissions to save the repository permissions for the team.

3.3.2. Setting a Team role

After you have added a team, you can set the role of that team within the organization. From the Teams
and Membership screen within the organization, select the TEAM ROLE drop-down menu, as shown in
the following figure:

For the selected team, choose one of the following roles:

Member - Inherits all permissions set for the team

Creator - All member permissions, plus the ability to create new repositories

Admin - Full administrative access to the organization, including the ability to create teams, add
members, and set permissions.

CHAPTER 3. MANAGING ACCESS TO REPOSITORIES

15

3.3.3. Adding users to a Team

As someone with Admin privilege to an organization, you can add users and robots to a team. When you
add a user, it sends an email to that user. The user remains pending until that user accepts the invitation.

To add users or robots to a team, start from the organization’s screen and do the following:

1. Select the team you want to add users or robots to.

2. In the Team Members box, type one of the following:

A username from an account on the Red Hat Quay registry

The email address for a user account on the registry

The name of a robot account. The name must be in the form of orgname+robotname

3. In the case of the robot account, it is immediately added to the team. For a user account, an
invitation to join is mailed to the user. Until the user accepts that invitation, the user remains in
the INVITED TO JOIN state.

Next, the user accepts the email invitation to join the team. The next time the user logs in to the Red
Hat Quay instance, the user moves from the INVITED TO JOIN list to the MEMBERS list for the
organization.

Red Hat Quay 3.9 Use Red Hat Quay

16

CHAPTER 4. WORKING WITH TAGS
Tags provide a way to identify the version of an image, as well as offering a means of naming the same
image in different ways. Besides an image’s version, an image tag can identify its uses (such as devel,
testing, or prod) or the fact that it is the most recent version (latest).

From the Tags tab of an image repository, you can view, modify, add, move, delete, and see the history
of tags. You also can fetch command-lines you can use to download (pull) a specific image (based on its
name and tag) using different commands.

4.1. VIEWING AND MODIFYING TAGS

The tags of a repository can be viewed and modified in the tags panel of the repository page, found by
clicking on the Tags tab.

4.1.1. Adding a new tag to a tagged image

A new tag can be added to a tagged image by clicking on the gear icon next to the tag and choosing
Add New Tag. Red Hat Quay will confirm the addition of the new tag to the image.

4.1.2. Moving a tag

Moving a tag to a different image is accomplished by performing the same operation as adding a new
tag, but giving an existing tag name. Red Hat Quay will confirm that you want the tag moved, rather than
added.

4.1.3. Deleting a tag

A specific tag and all its images can be deleted by clicking on the tag’s gear icon and choosing Delete
Tag. This will delete the tag and any images unique to it. Images will not be deleted until no tag
references them either directly or indirectly through a parent child relationship.

4.1.4. Viewing tag history and going back in time

4.1.4.1. Viewing tag history

To view the image history for a tag, click on the View Tags History menu item located under the
Actions menu. The page shown will display each image to which the tag pointed in the past and when it
pointed to that image.

CHAPTER 4. WORKING WITH TAGS

17

4.1.4.2. Going back in time

To revert the tag to a previous image, find the history line where your desired image was overwritten,
and click on the Restore link.

4.1.5. Fetching an image by tag or digest

From the Tags tab, you can view different ways of pulling images from the clients that are ready to use
those images.

1. Select a particular repository/image

2. Select Tags in the left column

3. Select the Fetch Tag icon for a particular image/tag combination

4. When the Fetch Tag pop-up appears, select the Image format box to see a drop-down menu
that shows different ways that are available to pull the image. The selections offer full command
lines for pulling a specific container image to the local system:

You can select to pull a regular of an image by tag name or by digest name using the docker command. .
Choose the type of pull you want, then select Copy Command. The full command-line is copied into
your clipboard. These two commands show a docker pull by tag and by digest:

docker pull quay.io/cnegus/whatever:latest
docker pull
quay.io/cnegus/whatever@sha256:e02231a6aa8ba7f5da3859a359f99d77e371cb47e643ce78e101958
782581fb9

Paste the command into a command-line shell on a system that has the docker command and service
available, and press Enter. At this point, the container image is ready to run on your local system.

On RHEL and Fedora systems, you can substitute podman for docker to pull and run the selected
image.

4.2. TAG EXPIRATION

Images can be set to expire from a Red Hat Quay repository at a chosen date and time using a feature
called tag expiration. Here are a few things to know about about tag expiration:

When a tag expires, the tag is deleted from the repository. If it is the last tag for a specific image,

Red Hat Quay 3.9 Use Red Hat Quay

18

When a tag expires, the tag is deleted from the repository. If it is the last tag for a specific image,
the image is set to be deleted.

Expiration is set on a per-tag basis, not for a repository on the whole.

When a tag expires or is deleted, it is not immediately removed from the registry. The value of
Time Machine (in User settings) defines when the deleted tag is actually removed and garbage
collected. By default, that value is 14 days. Up until that time, a tag can be repointed to an
expired or deleted image.

The Red Hat Quay superuser has no special privilege related to deleting expired images from
user repositories. There is no central mechanism for the superuser to gather information and act
on user repositories. It is up to the owners of each repository to manage expiration and ultimate
deletion of their images.

Tag expiration can be set in different ways:

By setting the quay.expires-after= LABEL in the Dockerfile when the image is created. This
sets a time to expire from when the image is built.

By choosing the expiration date from the EXPIRES column for the repository tag and selecting
a specific date and time to expire.

The following figure shows the Options entry for changing tag expiration and the EXPIRES field for
when the tag expires. Hover over the EXPIRES field to see the expiration date and time that is currently
set.

4.2.1. Setting tag expiration from a Dockerfile

Adding a label like quay.expires-after=20h via the Dockerfile LABEL command will cause a tag to
automatically expire after the time indicated. The time values could be something like 1h, 2d, 3w for
hours, days, and weeks, respectively, from the time the image is built.

4.2.2. Setting tag expiration from the repository

On the Repository Tag page there is a UI column titled EXPIRES that indicates when a tag will expire.
Users can set this by clicking on the time that it will expire or by clicking the Settings button (gear icon)
on the right and choosing Change Expiration.

Choose the date and time when prompted and select Change Expiration. The tag will be set to be
deleted from the repository when the expiration time is reached.

CHAPTER 4. WORKING WITH TAGS

19

4.3. SECURITY SCANNING

By clicking the on the vulnerability or fixable count next to a tab you can jump into the security scanning
information for that tag. There you can find which CVEs your image is susceptible to, and what
remediation options you may have available.

Keep in mind that image scanning only lists vulnerabilities found by the Clair image scanner. What each
user does about the vulnerabilities that are uncovered is completely up to that user. The Red Hat Quay
superuser does not act on those vulnerabilities found.

Red Hat Quay 3.9 Use Red Hat Quay

20

CHAPTER 5. VIEWING AND EXPORTING LOGS
Activity logs are gathered for all repositories and namespaces (users and organizations) in Red Hat
Quay. There are multiple ways of accessing log files, including:

Viewing logs through the web UI

Exporting logs so they can be saved externally.

Accessing log entries via the API

To access logs, you must have Admin privilege to the selected repository or namespace.

NOTE

A maximum of 100 log results are available at a time via the API. To gather more results
that that, you must use the log exporter feature described in this chapter.

5.1. VIEWING LOGS

To view log entries for a repository or namespace from the web UI, do the following:

1. Select a repository or namespace (organization or user) for which you have Admin privileges.

2. Select the Usage Logs icon from the left column. A Usage Logs screen appears, like the one
shown in the following figure:

3. From the Usage Logs page, you can:

Set the date range for viewing log entries by adding dates to the From and to boxes. By
default, the most recent one week of log entries is displayed.

Type a string into the Filter Logs box to display log entries that container the given string.

Toggle the arrow to the left of any log entry to see more or less text associated with that

CHAPTER 5. VIEWING AND EXPORTING LOGS

21

Toggle the arrow to the left of any log entry to see more or less text associated with that
log entry.

5.2. EXPORTING REPOSITORY LOGS

To be able to grab a larger number of log files and save them outside of the Red Hat Quay database, you
can use the Export Logs feature. Here are a few things you should know about using Export Logs:

You can choose a range of dates for the logs you want to gather from a repository.

You can request that the logs be sent to you via an email attachment or directed to a callback
URL.

You need Admin privilege to the repository or namespace to export logs

A maximum of 30 days of log data can be exported at a time

Export Logs only gathers log data that was previously produced. It does not stream logging
data.

Your Red Hat Quay instance must be configured for external storage for this feature (local
storage will not work).

Once the logs are gathered and available, you should immediately copy that data if you want to
save it. By default, the data expires in an hour.

To use the Export Logs feature:

1. Select a repository for which you have Admin privileges.

2. Select the Usage Logs icon from the left column. A Usage Logs screen appears.

3. Choose the From and to date range of the log entries you want to gather.

4. Select the Export Logs button. An Export Usage Logs pop-up appears, as shown

5. Enter the email address or callback URL you want to receive the exported logs. For the callback
URL, you could use a URL to a place such as webhook.site.

6. Select Start Logs Export. This causes Red Hat Quay to begin gathering the selected log entries.
Depending on the amount of logging data being gathered, this can take anywhere from one
minute to an hour to complete.

7. When the log export is completed you will either:

Red Hat Quay 3.9 Use Red Hat Quay

22

Receive an email, alerting you to the availability of your requested exported log entries.

See a successful status of your log export request from the webhook URL. A link to the
exported data will be available for you to select to download the logs.

Keep in mind that the URL points to a location in your Red Hat Quay external storage and is set to expire
within an hour. So make sure you copy the exported logs before that expiration time if you intend to
keep them.

CHAPTER 5. VIEWING AND EXPORTING LOGS

23

CHAPTER 6. AUTOMATICALLY BUILDING DOCKERFILES
WITH BUILD WORKERS

Red Hat Quay supports building Dockerfiles using a set of worker nodes on OpenShift or Kubernetes.
Build triggers, such as GitHub webhooks can be configured to automatically build new versions of your
repositories when new code is committed. This document will walk you through enabling builds with your
Red Hat Quay installation and setting up one or more OpenShift/K8s clusters to accept builds from Red
Hat Quay. With Red Hat Quay 3.4, the underlying Build Manager has been completely re-written as part
of Red Hat Quay’s migration from Python 2 to Python 3. As a result, builder nodes are now dynamically
created as Kubernetes Jobs versus builder nodes that ran continuously in Red Hat Quay 3.3 and earlier.
This greatly simplifies how Red Hat Quay manages builds and provides the same mechanism quay.io
utilizes to handle thousands of container image builds daily. Customers who are currently running static
(“Enterprise” builders under Red Hat Quay 3.3) will be required to migrate to a Kubernetes-based build
mechanism.

6.1. ARCHITECTURE OVERVIEW

The Red Hat Quay Build system is designed for scalability (since it is used to host all builds at quay.io).
The Build Manager component of Red Hat Quay provides an orchestration layer that tracks build
requests and ensures that a Build Executor (OpenShift/K8s cluster) will carry out each request. Each
build is handled by a Kubernetes Job which launches a small virtual machine to completely isolate and
contain the image build process. This ensures that container builds do not affect each other or the
underlying build system. Multiple Executors can be configured to ensure that builds are performed even
in the event of infrastructure failures. Red Hat Quay will automatically send builds to a different
Executor if it detects that one Executor is having difficulties.

NOTE

The upstream version of Red Hat Quay provides instructions on how to configure an
AWS/EC2 based Executor. This configuration is not supported for Red Hat Quay
customers.

6.1.1. Build manager

The build manager is responsible for the lifecycle of scheduled build. Operations requiring updating the
build queue, build phase and running jobs’ status is handled by the build manager.

6.1.2. Build workers’ control plane

Build jobs are run on separate worker nodes, and are scheduled on separate control planes (executor).
Currently, Red Hat Quay supports running jobs on AWS and Kubernetes. Builds are executed using
quay.io/quay/quay-builder. On AWS, builds are scheduled on EC2 instances. On k8s, the builds are
scheduled as job resources.

6.1.3. Orchestrator

The orchestrator is used to store the state of currently running build jobs, and publish events for the
build manager to consume. e.g expiry events. Currently, the supported orchestrator backend is Redis.

6.2. OPENSHIFT REQUIREMENTS

Red Hat Quay builds are supported on Kubernetes and OpenShift 4.5 and higher. A bare metal (non-
virtualized) worker node is required since build pods require the ability to run kvm virtualization. Each

Red Hat Quay 3.9 Use Red Hat Quay

24

build is done in an ephemeral virtual machine to ensure complete isolation and security while the build is
running. In addition, your OpenShift cluster should permit the ServiceAccount associated with Red Hat
Quay builds to run with the necessary SecurityContextConstraint to support privileged containers.

6.3. ORCHESTRATOR REQUIREMENTS

The Red Hat Quay builds need access to a Redis instance to track build status information. It is
acceptable to use the same Redis instance already deployed with your Red Hat Quay installation. All
build queues are managed in the Red Hat Quay database so there is no need for a highly available Redis
instance.

6.4. SETTING UP RED HAT QUAY BUILDERS WITH OPENSHIFT

6.4.1. OpenShift TLS component

The tls component allows you to control TLS configuration.

NOTE

Red Hat Quay 3.7 does not support builders when the TLS component is managed by the
Operator.

If you set tls to unmanaged, you supply your own ssl.cert and ssl.key files. In this instance, if you want
your cluster to support builders, you must add both the Quay route and the builder route name to the
SAN list in the cert, or alternatively use a wildcard. To add the builder route, use the following format:

6.4.2. Prepare OpenShift for Red Hat Quay Builds

There are several actions that are needed on an OpenShift cluster before it can accept builds from Red
Hat Quay.

1. Create a project where builds will be run (e.g. ‘builder’)

$ oc new-project builder

2. Create a ServiceAccount in this Project that will be used to run builds. Ensure that it has
sufficient privileges to create Jobs and Pods. Copy the ServiceAccount’s token for use later.

$ oc create sa -n builder quay-builder
$ oc policy add-role-to-user -n builder edit system:serviceaccount:builder:quay-builder
$ oc sa get-token -n builder quay-builder

3. Identify the URL for the OpenShift cluster’s API server. This can be found from the OpenShift
Console.

4. Identify a worker node label to be used when scheduling build Jobs. Because build pods need to
run on bare metal worker nodes, typically these are identified with specific labels. Check with
your cluster administrator to determine exactly which node label should be used.

5. If the cluster is using a self-signed certificate, get the kube apiserver’s CA to add to Red Hat

[quayregistry-cr-name]-quay-builder-[ocp-namespace].[ocp-domain-name]

CHAPTER 6. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS

25

5. If the cluster is using a self-signed certificate, get the kube apiserver’s CA to add to Red Hat
Quay’s extra certs.

a. Get the name of the secret containing the CA:

$ oc get sa openshift-apiserver-sa --namespace=openshift-apiserver -o json | jq
'.secrets[] | select(.name | contains("openshift-apiserver-sa-token"))'.name

b. Get the ca.crt key value from the secret in the Openshift console. The value should begin
with “-----BEGIN CERTIFICATE-----”

c. Import the CA in Red Hat Quay using the ConfigTool. Ensure the name of this file matches
K8S_API_TLS_CA.

6. Create the necessary security contexts/role bindings for the ServiceAccount:

apiVersion: security.openshift.io/v1
kind: SecurityContextConstraints
metadata:
 name: quay-builder
priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities: null
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: RunAsAny
seccompProfiles:
- '*'
supplementalGroups:
 type: RunAsAny
volumes:
- '*'
allowHostDirVolumePlugin: true
allowHostIPC: true
allowHostNetwork: true
allowHostPID: true
allowHostPorts: true
allowPrivilegeEscalation: true
allowPrivilegedContainer: true
allowedCapabilities:
- '*'
allowedUnsafeSysctls:
- '*'
defaultAddCapabilities: null
fsGroup:
 type: RunAsAny

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: quay-builder-scc
 namespace: builder
rules:
- apiGroups:
 - security.openshift.io

Red Hat Quay 3.9 Use Red Hat Quay

26

 resourceNames:
 - quay-builder
 resources:
 - securitycontextconstraints
 verbs:
 - use

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: quay-builder-scc
 namespace: builder
subjects:
- kind: ServiceAccount
 name: quay-builder
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: quay-builder-scc

6.4.3. Enable Builders and add Build Configuration to Red Hat Quay’s Configuration
Bundle

1. Ensure that you’ve got Builds enabled in your Red Hat Quay configuration.

FEATURE_BUILD_SUPPORT: True

1. Add the following to your Red Hat Quay configuration bundle, replacing each value with a value
specific to your installation.

NOTE

Currently only the Build feature itself can be enabled via the Red Hat Quay Config Tool.
The actual configuration of the Build Manager and Executors must be done manually in
the config.yaml file.

BUILD_MANAGER:
- ephemeral
- ALLOWED_WORKER_COUNT: 1
 ORCHESTRATOR_PREFIX: buildman/production/
 ORCHESTRATOR:
 REDIS_HOST: quay-redis-host
 REDIS_PASSWORD: quay-redis-password
 REDIS_SSL: true
 REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
 EXECUTORS:
 - EXECUTOR: kubernetes
 BUILDER_NAMESPACE: builder
 K8S_API_SERVER: api.openshift.somehost.org:6443
 K8S_API_TLS_CA: /conf/stack/extra_ca_certs/build_cluster.crt
 VOLUME_SIZE: 8G
 KUBERNETES_DISTRIBUTION: openshift
 CONTAINER_MEMORY_LIMITS: 5120Mi
 CONTAINER_CPU_LIMITS: 1000m

CHAPTER 6. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS

27

Each configuration field is explained below.

ALLOWED_WORKER_COUNT

Defines how many Build Workers are instantiated per Red Hat Quay Pod. Typically this is ‘1’.

ORCHESTRATOR_PREFIX

Defines a unique prefix to be added to all Redis keys (useful to isolate Orchestrator values from
other Redis keys).

REDIS_HOST

Hostname for your Redis service.

REDIS_PASSWORD

Password to authenticate into your Redis service.

REDIS_SSL

Defines whether or not your Redis connection uses SSL.

REDIS_SKIP_KEYSPACE_EVENT_SETUP

By default, Red Hat Quay does not set up the keyspace events required for key events at runtime.
To do so, set REDIS_SKIP_KEYSPACE_EVENT_SETUP to false.

EXECUTOR

Starts a definition of an Executor of this type. Valid values are ‘kubernetes’ and ‘ec2’

BUILDER_NAMESPACE

Kubernetes namespace where Red Hat Quay builds will take place

K8S_API_SERVER

Hostname for API Server of OpenShift cluster where builds will take place

K8S_API_TLS_CA

The filepath in the Quay container of the build cluster’s CA certificate for the Quay app to trust when
making API calls.

KUBERNETES_DISTRIBUTION

Indicates which type of Kubernetes is being used. Valid values are ‘openshift’ and ‘k8s’.

CONTAINER_*

Define the resource requests and limits for each build pod.

NODE_SELECTOR_*

 CONTAINER_MEMORY_REQUEST: 3968Mi
 CONTAINER_CPU_REQUEST: 500m
 NODE_SELECTOR_LABEL_KEY: beta.kubernetes.io/instance-type
 NODE_SELECTOR_LABEL_VALUE: n1-standard-4
 CONTAINER_RUNTIME: podman
 SERVICE_ACCOUNT_NAME: *****
 SERVICE_ACCOUNT_TOKEN: *****
 QUAY_USERNAME: quay-username
 QUAY_PASSWORD: quay-password
 WORKER_IMAGE: <registry>/quay-quay-builder
 WORKER_TAG: some_tag
 BUILDER_VM_CONTAINER_IMAGE: <registry>/quay-quay-builder-qemu-rhcos:v3.4.0
 SETUP_TIME: 180
 MINIMUM_RETRY_THRESHOLD: 0
 SSH_AUTHORIZED_KEYS:
 - ssh-rsa 12345 someuser@email.com
 - ssh-rsa 67890 someuser2@email.com

Red Hat Quay 3.9 Use Red Hat Quay

28

Defines the node selector label name/value pair where build Pods should be scheduled.

CONTAINER_RUNTIME

Specifies whether the builder should run docker or podman. Customers using Red Hat’s quay-
builder image should set this to podman.

SERVICE_ACCOUNT_NAME/SERVICE_ACCOUNT_TOKEN

Defines the Service Account name/token that will be used by build Pods.

QUAY_USERNAME/QUAY_PASSWORD

Defines the registry credentials needed to pull the Red Hat Quay build worker image that is specified
in the WORKER_IMAGE field. Customers should provide a Red Hat Service Account credential as
defined in the section "Creating Registry Service Accounts" against registry.redhat.io in the article at
https://access.redhat.com/RegistryAuthentication.

WORKER_IMAGE

Image reference for the Red Hat Quay builder image. registry.redhat.io/quay/quay-builder

WORKER_TAG

Tag for the builder image desired. The latest version is v3.4.0.

BUILDER_VM_CONTAINER_IMAGE

The full reference to the container image holding the internal VM needed to run each Red Hat Quay
build (registry.redhat.io/quay/quay-builder-qemu-rhcos:v3.4.0).

SETUP_TIME

Specifies the number of seconds at which a build times out if it has not yet registered itself with the
Build Manager (default is 500 seconds). Builds that time out are attempted to be restarted three
times. If the build does not register itself after three attempts it is considered failed.

MINIMUM_RETRY_THRESHOLD

This setting is used with multiple Executors; it indicates how many retries are attempted to start a
build before a different Executor is chosen. Setting to 0 means there are no restrictions on how
many tries the build job needs to have. This value should be kept intentionally small (three or less) to
ensure failovers happen quickly in the event of infrastructure failures. You must specify a value for
this setting. E.g Kubernetes is set as the first executor and EC2 as the second executor. If we want
the last attempt to run a job to always be executed on EC2 and not Kubernetes, we would set the
Kubernetes executor’s MINIMUM_RETRY_THRESHOLD to 1 and EC2’s
MINIMUM_RETRY_THRESHOLD to 0 (defaults to 0 if not set). In this case, kubernetes’
MINIMUM_RETRY_THRESHOLD > retries_remaining(1) would evaluate to False, thus falling back to
the second executor configured

SSH_AUTHORIZED_KEYS

List of ssh keys to bootstrap in the ignition config. This allows other keys to be used to ssh into the
EC2 instance or QEMU VM

6.5. OPENSHIFT ROUTES LIMITATION

NOTE

This section only applies if you are using the Quay Operator on OpenShift with managed
route component.

Due to a limitation of OpenShift Routes to only be able to serve traffic to a single port, additional steps
are required to set up builds. Ensure that your kubectl or oc CLI tool is configured to work with the
cluster where the Quay Operator is installed and that your QuayRegistry exists (not necessarily the
same as the bare metal cluster where your builders run).

CHAPTER 6. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS

29

https://access.redhat.com/RegistryAuthentication

Ensure that HTTP/2 ingress is enabled on the OpenShift cluster by following these steps.

The Quay Operator will create a Route which directs gRPC traffic to the build manager server
running inside the existing Quay pod(s). If you want to use a custom hostname (such as a
subdomain like builder.registry.example.com), ensure that you create a CNAME record with
your DNS provider which points to the status.ingress[0].host of the created Route:

$ kubectl get -n <namespace> route <quayregistry-name>-quay-builder -o jsonpath=
{.status.ingress[0].host}

Using the OpenShift UI or CLI, update the Secret referenced by spec.configBundleSecret of
the QuayRegistry with the build cluster CA certificate (name the key
extra_ca_cert_build_cluster.cert), and update the config.yaml entry with the correct values
referenced in the builder config above (depending on your build executor) along with the
BUILDMAN_HOSTNAME field:

The extra configuration field is explained below:

BUILDMAN_HOSTNAME

The externally accessible server hostname which the build jobs use to communicate back to the build
manager. Default is the same as SERVER_HOSTNAME. For OpenShift Route, it is either
status.ingress[0].host or the CNAME entry if using a custom hostname. BUILDMAN_HOSTNAME
needs to include the port number, e.g somehost:443 for Openshift Route, as the gRPC client used
to communicate with the build manager does not infer any port if omitted.

6.6. TROUBLESHOOTING BUILDS

The builder instances started by the build manager are ephemeral. This means that they will either get
shut down by Red Hat Quay} on timeouts/failure or garbage collected by the control plane (EC2/K8s).
This means that in order to get the builder logs, one needs to do so while the builds are running.

6.6.1. DEBUG config flag

A DEBUG flag can be set in order to prevent the builder instances from getting cleaned up after
completion/failure. To do so, in the desired executor configuration, set DEBUG to true. For example:

BUILDMAN_HOSTNAME: <build-manager-hostname>
BUILD_MANAGER:
- ephemeral
- ALLOWED_WORKER_COUNT: 1
 ORCHESTRATOR_PREFIX: buildman/production/
 JOB_REGISTRATION_TIMEOUT: 600
 ORCHESTRATOR:
 REDIS_HOST: quay-redis-host
 REDIS_PASSWORD: quay-redis-password
 REDIS_SSL: true
 REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
 EXECUTORS:
 - EXECUTOR: kubernetes
 BUILDER_NAMESPACE: builder
 ...

 EXECUTORS:
 - EXECUTOR: ec2

Red Hat Quay 3.9 Use Red Hat Quay

30

https://docs.openshift.com/container-platform/4.13/networking/ingress-operator.html#nw-http2-haproxy_configuring-ingress

When set to true, DEBUG will prevent the build nodes from shutting down after the quay-builder service
is done or fails, and will prevent the build manager from cleaning up the instances (terminating EC2
instances or deleting k8s jobs). This will allow debugging builder node issues, and should not be set in a
production environment. The lifetime service will still exist. i.e The instance will still shutdown after
approximately 2 hours (EC2 instances will terminate, k8s jobs will complete) Setting DEBUG will also
affect ALLOWED_WORKER_COUNT, as the unterminated instances/jobs will still count towards the
total number of running workers. This means the existing builder workers will need to manually be
deleted if ALLOWED_WORKER_COUNT is reached to be able to schedule new builds.

Use the followings steps:

1. The guest VM forwards its SSH port (22) to its host’s (the pod) port 2222. Port forward the
builder pod’s port 2222 to a port on localhost. e.g

$ kubectl port-forward <builder pod> 9999:2222

2. SSH into the VM running inside the container using a key set from SSH_AUTHORIZED_KEYS:

$ ssh -i /path/to/ssh/key/set/in/ssh_authorized_keys -p 9999 core@localhost

3. Get the quay-builder service logs:

$ systemctl status quay-builder
$ journalctl -f -u quay-builder

Step 2-3 can also be done in a single SSH command:

$ ssh -i /path/to/ssh/key/set/in/ssh_authorized_keys -p 9999 core@localhost ‘systemctl
status quay-builder’
$ ssh -i /path/to/ssh/key/set/in/ssh_authorized_keys -p 9999 core@localhost ‘journalctl -f
-u quay-builder’

6.7. SETTING UP GITHUB BUILDS (OPTIONAL)

If your organization plans to have builds be conducted via pushes to GitHub (or GitHub Enterprise),
continue with Creating an OAuth application in GitHub .

 DEBUG: true
 ...
 - EXECUTOR: kubernetes
 DEBUG: true
 ...

CHAPTER 6. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS

31

CHAPTER 7. BUILDING DOCKERFILES
Red Hat Quay supports the ability to build Dockerfiles on our build fleet and push the resulting image to
the repository.

7.1. VIEWING AND MANAGING BUILDS

Repository Builds can be viewed and managed by clicking the Builds tab in the Repository View.

7.2. MANUALLY STARTING A BUILD

To manually start a repository build, click the + icon in the top right of the header on any repository page
and choose New Dockerfile Build. An uploaded Dockerfile, .tar.gz, or an HTTP URL to either can be
used for the build.

NOTE

You will not be able to specify the Docker build context when manually starting a build.

7.3. BUILD TRIGGERS

Repository builds can also be automatically triggered by events such as a push to an SCM (GitHub,
BitBucket or GitLab) or via a call to a webhook .

7.3.1. Creating a new build trigger

To setup a build trigger, click the Create Build Trigger button on the Builds view page and follow the
instructions of the dialog. You will need to grant Red Hat Quay access to your repositories in order to
setup the trigger and your account requires admin access on the SCM repository .

7.3.2. Manually triggering a build trigger

To trigger a build trigger manually, click the icon next to the build trigger and choose Run Now.

7.3.3. Build Contexts

When building an image with Docker, a directory is specified to become the build context. This holds true
for both manual builds and build triggers because the builds conducted by Red Hat Quay are no
different from running docker build on your own machine.

Red Hat Quay build contexts are always the specified subdirectory from the build setup and fallback to
the root of the build source if none is specified. When a build is triggered, Red Hat Quay build workers
clone the git repository to the worker machine and enter the build context before conducting a build.

For builds based on tar archives, build workers extract the archive and enter the build context. For
example:

example
├── .git
├── Dockerfile

Red Hat Quay 3.9 Use Red Hat Quay

32

http://docs.docker.com/reference/builder/
https://access.redhat.com/documentation/en-us/red_hat_quay/3.9/html-single/use_red_hat_quay/#webhook

├── file
└── subdir
 └── Dockerfile

Imagine the example above is the directory structure for a GitHub repository called "example". If no
subdirectory is specified in the build trigger setup or while manually starting a build, the build will operate
in the example directory.

If subdir is specified to be the subdirectory in the build trigger setup, only the Dockerfile within it is
visible to the build. This means that you cannot use the ADD command in the Dockerfile to add file,
because it is outside of the build context.

Unlike the Docker Hub, the Dockerfile is part of the build context on Red Hat Quay. Thus, it must not
appear in the .dockerignore file.

CHAPTER 7. BUILDING DOCKERFILES

33

CHAPTER 8. SETTING UP A CUSTOM GIT TRIGGER
A Custom Git Trigger is a generic way for any git server to act as a build trigger. It relies solely on SSH
keys and webhook endpoints; everything else is left to the user to implement.

8.1. CREATING A TRIGGER

Creating a Custom Git Trigger is similar to the creation of any other trigger with a few subtle
differences:

It is not possible for Red Hat Quay to automatically detect the proper robot account to use with
the trigger. This must be done manually in the creation process.

There are extra steps after the creation of the trigger that must be done in order to use the
trigger. These steps are detailed below.

8.2. POST TRIGGER-CREATION SETUP

Once a trigger has been created, there are 2 additional steps required before the trigger can be used:

Provide read access to the SSH public key generated when creating the trigger.

Setup a webhook that POSTs to the Red Hat Quay endpoint to trigger a build.

The key and the URL are both available at all times by selecting View Credentials from the gear located
in the trigger listing.

8.2.1. SSH public key access

Red Hat Quay 3.9 Use Red Hat Quay

34

Depending on the Git server setup, there are various ways to install the SSH public key that Red Hat
Quay generates for a custom git trigger. For example, Git documentation describes a small server setup
in which simply adding the key to $HOME/.ssh/authorize_keys would provide access for builders to
clone the repository. For any git repository management software that isn’t officially supported, there is
usually a location to input the key often labeled as Deploy Keys.

8.2.2. Webhook

In order to automatically trigger a build, one must POST a JSON payload to the webhook URL with the
following format:

{
 "commit": "1c002dd", // required
 "ref": "refs/heads/master", // required
 "default_branch": "master", // required
 "commit_info": { // optional
 "url": "gitsoftware.com/repository/commits/1234567", // required
 "message": "initial commit", // required
 "date": "timestamp", // required
 "author": { // optional
 "username": "user", // required
 "avatar_url": "gravatar.com/user.png", // required
 "url": "gitsoftware.com/users/user" // required
 },
 "committer": { // optional
 "username": "user", // required
 "avatar_url": "gravatar.com/user.png", // required
 "url": "gitsoftware.com/users/user" // required
 }
 }
}

NOTE

This request requires a Content-Type header containing application/json in order to be
valid.

Once again, this can be accomplished in various ways depending on the server setup, but for most cases
can be done via a post-receive git hook.

CHAPTER 8. SETTING UP A CUSTOM GIT TRIGGER

35

https://git-scm.herokuapp.com/book/en/v2/Git-on-the-Server-Getting-Git-on-a-Server
https://git-scm.herokuapp.com/book/en/v2/Customizing-Git-Git-Hooks#idp26374144

CHAPTER 9. SKIPPING A SOURCE CONTROL-TRIGGERED
BUILD

To specify that a commit should be ignored by the Red Hat Quay build system, add the text [skip build]
or [build skip] anywhere in the commit message.

Red Hat Quay 3.9 Use Red Hat Quay

36

CHAPTER 10. SET UP GITHUB BUILD TRIGGER TAGS
Red Hat Quay supports using GitHub or GitHub Enterprise as a trigger to building images. If you have
not yet done so, go ahead and enable build support in Red Hat Quay .

10.1. UNDERSTANDING TAG NAMING FOR BUILD TRIGGERS

Prior to Red Hat Quay 3.3, how images created from build triggers were named was limited. Images built
by build triggers were named:

With the branch or tag whose change invoked the trigger

With a latest tag for images that used the default branch

As of Red Hat Quay 3.3 and later, you have more flexibility in how you set image tags. The first thing you
can do is enter custom tags, to have any string of characters assigned as a tag for each built image.
However, as an alternative, you could use the following tag templates to to tag images with information
from each commit:

${commit_info.short_sha}: The commit’s short SHA

${commit_info.date}: The timestamp for the commit

${commit_info.author}: The author from the commit

${commit_info.committer}: The committer of the commit

${parsed_ref.branch}: The branch name

The following procedure describes how you set up tagging for build triggers.

10.2. SETTING TAG NAMES FOR BUILD TRIGGERS

Follow these steps to configure custom tags for build triggers:

1. From the repository view, select the Builds icon from the left navigation.

2. Select the Create Build Trigger menu, and select the type of repository push you want (GitHub,
Bitbucket, GitLab, or Custom Git repository push). For this example, GitHub Repository Push is
chosen, as illustrated in the following figure.

CHAPTER 10. SET UP GITHUB BUILD TRIGGER TAGS

37

https://access.redhat.com/documentation/en-us/red_hat_quay/3.9/html-single/use_red_hat_quay/index#build-support

3. When the Setup Build Trigger page appears, select the repository and namespace in which you
want the trigger set up.

4. Under Configure Trigger, select either Trigger for all branches and tags or Trigger only on
branches and tags matching a regular expression. Then select Continue. The Configure Tagging
section appears, as shown in the following figure:

5. Scroll down to Configure Tagging and select from the following options:

Tag manifest with the branch or tag name: Check this box to use the name of the branch
or tag in which the commit occurred as the tag used on the image. This is enabled by
default.

Add latest tag if on default branch: Check this box to use the latest tag for the image if it
is on the default branch for the repository. This is enabled by default.

Add custom tagging templates: Enter a custom tag or a template into the Enter a tag
template box. There are multiple tag templates you can enter here, as described earlier in
this section. They include ways of using short SHA, timestamps, author name, committer,
and branch name from the commit as tags.

6. Select Continue. You are prompted to select the directory build context for the Docker build.
The build context directory identifies the location of the directory containing the Dockerfile,
along with other files needed when the build is triggered. Enter "/" if the Dockerfile is in the root

Red Hat Quay 3.9 Use Red Hat Quay

38

of the git repository.

7. Select Continue. You are prompted to add an optional Robot Account. Do this if you want to pull
a private base image during the build process. The robot account would need access to the
build.

8. Select Continue to complete the setup of the build trigger.

If you were to return to the Repository Builds page for the repository, the build triggers you set up will be
listed under the Build Triggers heading.

CHAPTER 10. SET UP GITHUB BUILD TRIGGER TAGS

39

CHAPTER 11. CREATING AN OAUTH APPLICATION IN GITHUB
You can authorize your registry to access a GitHub account and its repositories by registering it as a
GitHub OAuth application.

11.1. CREATE NEW GITHUB APPLICATION

1. Log into GitHub (Enterprise)

2. Visit the Applications page under your organization’s settings.

3. Click Register New Application. The Register a new OAuth application configuration screen is
displayed:

4. Set Homepage URL: Enter the Quay Enterprise URL as the Homepage URL

NOTE

If using public GitHub, the Homepage URL entered must be accessible by your
users. It can still be an internal URL.

5. Set Authorization callback URL: Enter
https://{$RED_HAT_QUAY_URL}/oauth2/github/callback as the Authorization callback URL.

6. Save your settings by clicking the Register application button. The new new application’s
summary is shown:

7. Record the Client ID and Client Secret shown for the new application.

Red Hat Quay 3.9 Use Red Hat Quay

40

https://github.com/settings/applications/new
https:/oauth2/github/callback

CHAPTER 12. REPOSITORY NOTIFICATIONS
Quay supports adding notifications to a repository for various events that occur in the repository’s
lifecycle. To add notifications, click the Settings tab while viewing a repository and select Create
Notification. From the When this event occurs field, select the items for which you want to receive
notifications:

After selecting an event, further configure it by adding how you will be notified of that event.

NOTE

Adding notifications requires repository admin permission.

The following are examples of repository events.

12.1. REPOSITORY EVENTS

12.1.1. Repository Push

A successful push of one or more images was made to the repository:

{
 "name": "repository",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "homepage": "https://quay.io/repository/dgangaia/repository",
 "updated_tags": [
 "latest"
]
}

12.1.2. Dockerfile Build Queued

Here is a sample response for a Dockerfile build has been queued into the build system. The response
can differ based on the use of optional attributes.

{
 "build_id": "296ec063-5f86-4706-a469-f0a400bf9df2",

CHAPTER 12. REPOSITORY NOTIFICATIONS

41

 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "repo": "test",
 "trigger_metadata": {
 "default_branch": "master",
 "commit": "b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "ref": "refs/heads/master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "date": "2019-03-06T12:48:24+11:00",
 "message": "adding 5",
 "author": { //Optional
 "username": "dgangaia",
 "url": "https://github.com/dgangaia", //Optional
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 },
 "committer": {
 "username": "web-flow",
 "url": "https://github.com/web-flow",
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"
 }
 }
 },
 "is_manual": false,
 "manual_user": null,
 "homepage": "https://quay.io/repository/dgangaia/test/build/296ec063-5f86-4706-a469-
f0a400bf9df2"
}

12.1.3. Dockerfile Build Started

Here is an example of a Dockerfile build being started by the build system. The response can differ
based on some attributes being optional.

{
 "build_id": "a8cc247a-a662-4fee-8dcb-7d7e822b71ba",
 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],

Red Hat Quay 3.9 Use Red Hat Quay

42

 "build_name": "50bc599",
 "trigger_metadata": { //Optional
 "commit": "50bc5996d4587fd4b2d8edc4af652d4cec293c42",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/50bc5996d4587fd4b2d8edc4af652d4cec293c42",
 "date": "2019-03-06T14:10:14+11:00",
 "message": "test build",
 "committer": { //Optional
 "username": "web-flow",
 "url": "https://github.com/web-flow", //Optional
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4" //Optional
 },
 "author": { //Optional
 "username": "dgangaia",
 "url": "https://github.com/dgangaia", //Optional
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 }
 }
 },
 "homepage": "https://quay.io/repository/dgangaia/test/build/a8cc247a-a662-4fee-8dcb-
7d7e822b71ba"
}

12.1.4. Dockerfile Build Successfully Completed

Here is a sample response of a Dockerfile build that has been successfully completed by the build
system.

NOTE

This event will occur simultaneously with a Repository Push event for the built image(s)

{
 "build_id": "296ec063-5f86-4706-a469-f0a400bf9df2",
 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "b7f7d2b",
 "image_id": "sha256:0339f178f26ae24930e9ad32751d6839015109eabdf1c25b3b0f2abf8934f6cb",
 "trigger_metadata": {
 "commit": "b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",

CHAPTER 12. REPOSITORY NOTIFICATIONS

43

 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/b7f7d2b948aacbe844ee465122a85a9368b2b735",
 "date": "2019-03-06T12:48:24+11:00",
 "message": "adding 5",
 "committer": { //Optional
 "username": "web-flow",
 "url": "https://github.com/web-flow", //Optional
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"
//Optional
 },
 "author": { //Optional
 "username": "dgangaia",
 "url": "https://github.com/dgangaia", //Optional
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 }
 }
 },
 "homepage": "https://quay.io/repository/dgangaia/test/build/296ec063-5f86-4706-a469-
f0a400bf9df2",
 "manifest_digests": [

"quay.io/dgangaia/test@sha256:2a7af5265344cc3704d5d47c4604b1efcbd227a7a6a6ff73d6e4e08a27f
d7d99",

"quay.io/dgangaia/test@sha256:569e7db1a867069835e8e97d50c96eccafde65f08ea3e0d5debaf16e25
45d9d1"
]
}

12.1.5. Dockerfile Build Failed

A Dockerfile build has failed

{
 "build_id": "5346a21d-3434-4764-85be-5be1296f293c",
 "trigger_kind": "github", //Optional
 "name": "test",
 "repository": "dgangaia/test",
 "docker_url": "quay.io/dgangaia/test",
 "error_message": "Could not find or parse Dockerfile: unknown instruction: GIT",
 "namespace": "dgangaia",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e", //Optional
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "6ae9a86",
 "trigger_metadata": { //Optional
 "commit": "6ae9a86930fc73dd07b02e4c5bf63ee60be180ad",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": { //Optional
 "url": "https://github.com/dgangaia/test/commit/6ae9a86930fc73dd07b02e4c5bf63ee60be180ad",
 "date": "2019-03-06T14:18:16+11:00",

Red Hat Quay 3.9 Use Red Hat Quay

44

 "message": "failed build test",
 "committer": { //Optional
 "username": "web-flow",
 "url": "https://github.com/web-flow", //Optional
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4" //Optional
 },
 "author": { //Optional
 "username": "dgangaia",
 "url": "https://github.com/dgangaia", //Optional
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4" //Optional
 }
 }
 },
 "homepage": "https://quay.io/repository/dgangaia/test/build/5346a21d-3434-4764-85be-
5be1296f293c"
}

12.1.6. Dockerfile Build Cancelled

A Dockerfile build was cancelled

{
 "build_id": "cbd534c5-f1c0-4816-b4e3-55446b851e70",
 "trigger_kind": "github",
 "name": "test",
 "repository": "dgangaia/test",
 "namespace": "dgangaia",
 "docker_url": "quay.io/dgangaia/test",
 "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e",
 "docker_tags": [
 "master",
 "latest"
],
 "build_name": "cbce83c",
 "trigger_metadata": {
 "commit": "cbce83c04bfb59734fc42a83aab738704ba7ec41",
 "ref": "refs/heads/master",
 "default_branch": "master",
 "git_url": "git@github.com:dgangaia/test.git",
 "commit_info": {
 "url": "https://github.com/dgangaia/test/commit/cbce83c04bfb59734fc42a83aab738704ba7ec41",
 "date": "2019-03-06T14:27:53+11:00",
 "message": "testing cancel build",
 "committer": {
 "username": "web-flow",
 "url": "https://github.com/web-flow",
 "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"
 },
 "author": {
 "username": "dgangaia",
 "url": "https://github.com/dgangaia",
 "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4"
 }
 }
 },

CHAPTER 12. REPOSITORY NOTIFICATIONS

45

 "homepage": "https://quay.io/repository/dgangaia/test/build/cbd534c5-f1c0-4816-b4e3-
55446b851e70"
}

12.1.7. Vulnerability Detected

A vulnerability was detected in the repository

{
 "repository": "dgangaia/repository",
 "namespace": "dgangaia",
 "name": "repository",
 "docker_url": "quay.io/dgangaia/repository",
 "homepage": "https://quay.io/repository/dgangaia/repository",

 "tags": ["latest", "othertag"],

 "vulnerability": {
 "id": "CVE-1234-5678",
 "description": "This is a bad vulnerability",
 "link": "http://url/to/vuln/info",
 "priority": "Critical",
 "has_fix": true
 }
}

12.2. NOTIFICATION ACTIONS

12.2.1. Quay Notification

A notification will be added to the Quay.io notification area. The notification area can be found by
clicking on the bell icon in the top right of any Quay.io page.

Quay.io notifications can be setup to be sent to a User, Team, or the organization as a whole.

12.2.2. E-mail

An e-mail will be sent to the specified address describing the event that occurred.

NOTE

All e-mail addresses will have to be verified on a per-repository basis

12.2.3. Webhook POST

An HTTP POST call will be made to the specified URL with the event’s data (see above for each event’s
data format).

When the URL is HTTPS, the call will have an SSL client certificate set from Quay.io. Verification of this
certificate will prove the call originated from Quay.io. Responses with status codes in the 2xx range are
considered successful. Responses with any other status codes will be considered failures and result in a
retry of the webhook notification.

Red Hat Quay 3.9 Use Red Hat Quay

46

12.2.4. Flowdock Notification

Posts a message to Flowdock.

12.2.5. Hipchat Notification

Posts a message to HipChat.

12.2.6. Slack Notification

Posts a message to Slack.

CHAPTER 12. REPOSITORY NOTIFICATIONS

47

CHAPTER 13. OPEN CONTAINER INITIATIVE SUPPORT AND
RED HAT QUAY

Container registries such as Red Hat Quay were originally designed to support container images in the
Docker image format. To promote the use of additional runtimes apart from Docker, the Open
Container Initiative (OCI) was created to provide a standardization surrounding container runtimes and
image formats. Most container registries support the OCI standardization as it is based on the Docker
image manifest V2, Schema 2 format.

In addition to container images, a variety of artifacts have emerged that support not just individual
applications, but also the Kubernetes platform as a whole. These range from Open Policy Agent (OPA)
policies for security and governance to Helm charts and Operators that aid in application deployment.

Red Hat Quay is a private container registry that not only stores container images, but supports an
entire ecosystem of tooling to aid in the management of containers. Prior to version 3.6, Red Hat Quay
only supported Helm, which is considered to be the de facto package manager for Kubernetes.

Helm simplifies how applications are packaged and deployed. Helm uses a packaging format called
Charts which contain the Kubernetes resources representing an application. Charts can be made
available for general distribution and consumption in repositories. A Helm repository is an HTTP server
that serves an index.yaml metadata file and, optionally, a set of packaged charts. Beginning with Helm
version 3, support was made available for distributing charts in OCI registries as an alternative to a
traditional repository.

As an enhance to Helm support, Red Hat Quay introduced support for OCI-based artifacts from version
3.6 to include support for cosign, the ZStandard compression scheme, and other OCI media types.
Support for Helm and other OCI artifacts are now enabled by default under the
FEATURE_GENERAL_OCI_SUPPORT configuration field, and can be expanded to other artifact types
using the ALLOWED_OCI_ARTIFACT_TYPES and IGNORE_UNKNOWN_MEDIATYPES fields.

Because of the addition of FEATURE_GENERAL_OCI_SUPPORT,
ALLOWED_OCI_ARTIFACT_TYPES, and IGNORE_UNKNOWN_MEDIATYPES, the
FEATURE_HELM_OCI_SUPPORT configuration field has been deprecated. This configuration field is
no longer supported and will be removed in a future version of Red Hat Quay.

13.1. HELM AND OCI PREREQUISITES

Prior to enabling Helm and other Open Container Initiative (OCI) artifact types, you must meet the
following prerequisites.

13.1.1. Installing Helm

Use the following procedure to install the Helm client.

Procedure

1. Download the latest version of Helm from the Helm releases page.

2. Enter the following command to unpack the Helm binary:

3. Move the Helm binary to the desired location:

$ tar -zxvf helm-v3.8.2-linux-amd64.tar.gz

Red Hat Quay 3.9 Use Red Hat Quay

48

https://docs.docker.com/registry/spec/manifest-v2-2/
https://github.com/helm/helm/releases

For more information about installing Helm, see the Installing Helm documentation.

13.1.2. Upgrading to Helm 3.8

Support for OCI registry charts requires that Helm has been upgraded to at least 3.8. If you have already
downloaded Helm and need to upgrade to Helm 3.8, see the Helm Upgrade documentation.

13.1.3. Enabling your system to trust SSL/TLS certificates used by Red Hat Quay

Communication between the Helm client and Red Hat Quay is facilitated over HTTPS. As of Helm 3.5,
support is only available for registries communicating over HTTPS with trusted certificates. In addition,
the operating system must trust the certificates exposed by the registry. You must ensure that your
operating system has been configured to trust the certificates used by Red Hat Quay. Use the following
procedure to enable your system to trust the custom certificates.

Procedure

1. Enter the following command to copy the rootCA.pem file to the /etc/pki/ca-
trust/source/anchors/ folder:

2. Enter the following command to update the CA trust store:

13.1.4. Creating an organization for Helm in Red Hat Quay

It is recommended that you create a new organization for storing Helm charts in Red Hat Quay after you
have downloaded the Helm client. Use the following procedure to create a new organization using the
Red Hat Quay UI.

Procedure

1. Log in to your Red Hat Quay deployment.

2. Click Create New Organization.

3. Enter a name for the organization, for example, helm. Then, click Create Organization.

13.2. USING HELM CHARTS WITH RED HAT QUAY

Use the following example to download and push an etherpad chart from the Red Hat Community of
Practice (CoP) repository.

Procedure

1. As a Red Hat Quay administrators, enable support for Helm by setting
FEATURE_GENERAL_OCI_SUPPORT to true in your config.yaml file:

$ mv linux-amd64/helm /usr/local/bin/helm

$ sudo cp rootCA.pem /etc/pki/ca-trust/source/anchors/

$ sudo update-ca-trust extract

CHAPTER 13. OPEN CONTAINER INITIATIVE SUPPORT AND RED HAT QUAY

49

https://helm.sh/docs/intro/install/
https://helm.sh/docs/helm/helm_upgrade/

2. Add a chart repository:

3. Update the information of available charts locally from the chart repository:

4. Download a chart from a repository:

5. Package the chart into a chart archive:

Example output

6. Log in to your Quay repository using helm registry login:

7. Push the chart to your Quay repository using the helm push command:

Example output:

8. Ensure that the push worked by deleting the local copy, and then pulling the chart from the
repository:

Example output:

13.3. COSIGN OCI SUPPORT WITH RED HAT QUAY

FEATURE_GENERAL_OCI_SUPPORT: true

$ helm repo add redhat-cop https://redhat-cop.github.io/helm-charts

$ helm repo update

$ helm pull redhat-cop/etherpad --version=0.0.4 --untar

$ helm package ./etherpad

Successfully packaged chart and saved it to: /home/user/linux-amd64/etherpad-0.0.4.tgz

$ helm registry login quay370.apps.quayperf370.perfscale.devcluster.openshift.com

$ helm push etherpad-0.0.4.tgz
oci://quay370.apps.quayperf370.perfscale.devcluster.openshift.com

Pushed: quay370.apps.quayperf370.perfscale.devcluster.openshift.com/etherpad:0.0.4
Digest: sha256:a6667ff2a0e2bd7aa4813db9ac854b5124ff1c458d170b70c2d2375325f2451b

$ rm -rf etherpad-0.0.4.tgz

$ helm pull oci://quay370.apps.quayperf370.perfscale.devcluster.openshift.com/etherpad --
version 0.0.4

Pulled: quay370.apps.quayperf370.perfscale.devcluster.openshift.com/etherpad:0.0.4
Digest: sha256:4f627399685880daf30cf77b6026dc129034d68c7676c7e07020b70cf7130902

Red Hat Quay 3.9 Use Red Hat Quay

50

Cosign is a tool that can be used to sign and verify container images. It uses the ECDSA-P256 signature
algorithm and Red Hat’s Simple Signing payload format to create public keys that are stored in PKIX
files. Private keys are stored as encrypted PEM files.

Cosign currently supports the following:

Hardware and KMS Signing

Bring-your-own PKI

OIDC PKI

Built-in binary transparency and timestamping service

13.4. INSTALLING AND USING COSIGN FOR RED HAT QUAY

Use the following procedure to directly install Cosign.

Prerequisites

You have installed Go version 1.16 or later.

You have set FEATURE_GENERAL_OCI_SUPPORT to true in your config.yaml file.

Procedure

1. Enter the following go command to directly install Cosign:

Example output

2. Generate a keypair for Cosign by entering the following command:

Example output

3. Sign the keypair by entering the following command:

Example output

$ go install github.com/sigstore/cosign/cmd/cosign@v1.0.0

go: downloading github.com/sigstore/cosign v1.0.0
go: downloading github.com/peterbourgon/ff/v3 v3.1.0

$ cosign generate-key-pair

Enter password for private key:
Enter again:
Private key written to cosign.key
Public key written to cosign.pub

$ cosign sign -key cosign.key quay-server.example.com/user1/busybox:test

CHAPTER 13. OPEN CONTAINER INITIATIVE SUPPORT AND RED HAT QUAY

51

If you experience the error: signing quay-server.example.com/user1/busybox:test: getting
remote image: GET https://quay-server.example.com/v2/user1/busybox/manifests/test:
UNAUTHORIZED: access to the requested resource is not authorized; map[] error, which
occurs because Cosign relies on ~./docker/config.json for authorization, you might need to
execute the following command:

Example output

4. Enter the following command to see the updated authorization configuration:

13.5. USING OTHER ARTIFACT TYPES WITH RED HAT QUAY

Other artifact types that are not supported by default can be added to your Red Hat Quay deployment
by using the ALLOWED_OCI_ARTIFACT_TYPES configuration field.

Use the following procdure to add additional OCI media types.

Prerequisites

You have set FEATURE_GENERAL_OCI_SUPPORT to true in your config.yaml file.

Procedure

1. In your config.yaml file, add the ALLOWED_OCI_ARTIFACT_TYPES configuration field. For
example:

Enter password for private key:
Pushing signature to: quay-server.example.com/user1/busybox:sha256-
ff13b8f6f289b92ec2913fa57c5dd0a874c3a7f8f149aabee50e3d01546473e3.sig

$ podman login --authfile ~/.docker/config.json quay-server.example.com

Username:
Password:
Login Succeeded!

$ cat ~/.docker/config.json
{
 "auths": {
 "quay-server.example.com": {
 "auth": "cXVheWFkbWluOnBhc3N3b3Jk"
 }
 }

FEATURE_GENERAL_OCI_SUPPORT: true
ALLOWED_OCI_ARTIFACT_TYPES:
 <oci config type 1>:
 - <oci layer type 1>
 - <oci layer type 2>

 <oci config type 2>:
 - <oci layer type 3>
 - <oci layer type 4>

Red Hat Quay 3.9 Use Red Hat Quay

52

https://quay-server.example.com/v2/user1/busybox/manifests/test

2. Add support for your desired artifact type, for example, Singularity Image Format (SIF), by
adding the following to your config.yaml file:

IMPORTANT

When adding artifact types that are not configured by default, Red Hat Quay
administrators will also need to manually add support for Cosign and Helm if
desired.

Now, users can tag SIF images for their Red Hat Quay registry.

13.6. DISABLING OCI ARTIFACTS IN RED HAT QUAY

Use the following procedure to disable support for OCI artifacts.

Procedure

Disable OCI artifact support by setting FEATURE_GENERAL_OCI_SUPPORT to false in your
config.yaml file. For example:

ALLOWED_OCI_ARTIFACT_TYPES:
 application/vnd.oci.image.config.v1+json:
 - application/vnd.dev.cosign.simplesigning.v1+json
 application/vnd.cncf.helm.config.v1+json:
 - application/tar+gzip
 application/vnd.sylabs.sif.config.v1+json:
 - application/vnd.sylabs.sif.layer.v1+tar

FEATURE_GENERAL_OCI_SUPPORT = false

CHAPTER 13. OPEN CONTAINER INITIATIVE SUPPORT AND RED HAT QUAY

53

CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND
ENFORCEMENT OVERVIEW

With Red Hat Quay, users have the ability to report storage consumption and to contain registry growth
by establishing configured storage quota limits. On-premise Red Hat Quay users are now equipped with
the following capabilities to manage the capacity limits of their environment:

Quota reporting: With this feature, a superuser can track the storage consumption of all their
organizations. Additionally, users can track the storage consumption of their assigned
organization.

Quota management: With this feature, a superuser can define soft and hard checks for Red Hat
Quay users. Soft checks tell users if the storage consumption of an organization reaches their
configured threshold. Hard checks prevent users from pushing to the registry when storage
consumption reaches the configured limit.

Together, these features allow service owners of a Red Hat Quay registry to define service level
agreements and support a healthy resource budget.

14.1. QUOTA MANAGEMENT ARCHITECTURE

With the quota management feature enabled, individual blob sizes are summed at the repository and
namespace level. For example, if two tags in the same repository reference the same blob, the size of
that blob is only counted once towards the repository total. Additionally, manifest list totals are counted
toward the repository total.

IMPORTANT

Because manifest list totals are counted toward the repository total, the total quota
consumed when upgrading from a previous version of Red Hat Quay might be reportedly
differently in Red Hat Quay 3.9. In some cases, the new total might go over a repository’s
previously-set limit. Red Hat Quay administrators might have to adjust the allotted quota
of a repository to account for these changes.

The quota management feature works by calculating the size of existing repositories and namespace
with a backfill worker, and then adding or subtracting from the total for every image that is pushed or
garbage collected afterwords. Additionally, the subtraction from the total happens when the manifest is
garbage collected.

NOTE

Because subtraction occurs from the total when the manifest is garbage collected, there
is a delay in the size calculation until it is able to be garbage collected. For more
information about garbage collection, see Red Hat Quay garbage collection .

The following database tables hold the quota repository size, quota namespace size, and quota registry
size, in bytes, of a Red Hat Quay repository within an organization:

QuotaRepositorySize

QuotaNameSpaceSize

QuotaRegistrySize

Red Hat Quay 3.9 Use Red Hat Quay

54

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#red_hat_quay_garbage_collection

The organization size is calculated by the backfill worker to ensure that it is not duplicated. When an
image push is initialized, the user’s organization storage is validated to check if it is beyond the
configured quota limits. If an image push exceeds defined quota limitations, a soft or hard check occurs:

For a soft check, users are notified.

For a hard check, the push is stopped.

If storage consumption is within configured quota limits, the push is allowed to proceed.

Image manifest deletion follows a similar flow, whereby the links between associated image tags and the
manifest are deleted. Additionally, after the image manifest is deleted, the repository size is
recalculated and updated in the QuotaRepositorySize, QuotaNameSpaceSize, and
QuotaRegistrySize tables.

14.2. QUOTA MANAGEMENT LIMITATIONS

Quota management helps organizations to maintain resource consumption. One limitation of quota
management is that calculating resource consumption on push results in the calculation becoming part
of the push’s critical path. Without this, usage data might drift.

The maximum storage quota size is dependent on the selected database:

Table 14.1. Worker count environment variables

Variable Description

Postgres 8388608 TB

MySQL 8388608 TB

SQL Server 16777216 TB

14.3. QUOTA MANAGEMENT CONFIGURATION FIELDS

Table 14.2. Quota management configuration

Field Type Description

FEATURE_QUOTA_MANAGEMENT Boolean Enables configuration, caching,
and validation for quota
management feature.

Default: `False`

DEFAULT_SYSTEM_REJECT_QUOTA_BYTES String Enables system default quota
reject byte allowance for all
organizations.

By default, no limit is set.

CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

55

QUOTA_BACKFILL Boolean Enables the quota backfill worker
to calculate the size of pre-
existing blobs.

Default: True

QUOTA_TOTAL_DELAY_SECONDS String The time delay for starting the
quota backfill. Rolling
deployments can cause incorrect
totals. This field must be set to a
time longer than it takes for the
rolling deployment to complete.

Default: 1800

PERMANENTLY_DELETE_TAGS Boolean Enables functionality related to
the removal of tags from the time
machine window.

Default: False

RESET_CHILD_MANIFEST_EXPIRATION Boolean Resets the expirations of
temporary tags targeting the
child manifests. With this feature
set to True, child manifests are
immediately garbage collected.

Default: False

Field Type Description

14.3.1. Example quota management configuration

The following YAML is the suggested configuration when enabling quota management.

Quota management YAML configuration

14.4. ESTABLISHING QUOTA WITH THE RED HAT QUAY API

When an organization is first created, it does not have a quota applied. Use the
/api/v1/organization/{organization}/quota endpoint:

Sample command

FEATURE_QUOTA_MANAGEMENT: true
FEATURE_GARBAGE_COLLECTION: true
PERMANENTLY_DELETE_TAGS: true
QUOTA_TOTAL_DELAY_SECONDS: 1800
RESET_CHILD_MANIFEST_EXPIRATION: true

Red Hat Quay 3.9 Use Red Hat Quay

56

Sample output

14.4.1. Setting the quota

To set a quota for an organization, POST data to the /api/v1/organization/{orgname}/quota
endpoint: .Sample command

Sample output

14.4.2. Viewing the quota

To see the applied quota, GET data from the /api/v1/organization/{orgname}/quota endpoint:

Sample command

Sample output

14.4.3. Modifying the quota

To change the existing quota, in this instance from 10 MB to 100 MB, PUT data to the
/api/v1/organization/{orgname}/quota/{quota_id} endpoint:

Sample command

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

[]

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"limit_bytes": 10485760}' https://example-registry-quay-quay-
enterprise.apps.docs.quayteam.org/api/v1/organization/testorg/quota | jq

"Created"

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

[
 {
 "id": 1,
 "limit_bytes": 10485760,
 "default_config": false,
 "limits": [],
 "default_config_exists": false
 }
]

CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

57

Sample output

14.4.4. Pushing images

To see the storage consumed, push various images to the organization.

14.4.4.1. Pushing ubuntu:18.04

Push ubuntu:18.04 to the organization from the command line:

Sample commands

14.4.4.2. Using the API to view quota usage

To view the storage consumed, GET data from the /api/v1/repository endpoint:

Sample command

Sample output

$ curl -k -X PUT -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"limit_bytes": 104857600}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1 | jq

{
 "id": 1,
 "limit_bytes": 104857600,
 "default_config": false,
 "limits": [],
 "default_config_exists": false
}

$ podman pull ubuntu:18.04

$ podman tag docker.io/library/ubuntu:18.04 example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:18.04

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:18.04

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org/api/v1/repository?
last_modified=true&namespace=testorg&popularity=true&public=true"a=true' | jq

{
 "repositories": [
 {
 "namespace": "testorg",
 "name": "ubuntu",
 "description": null,
 "is_public": false,
 "kind": "image",

Red Hat Quay 3.9 Use Red Hat Quay

58

14.4.4.3. Pushing another image

1. Pull, tag, and push a second image, for example, nginx:

Sample commands

2. To view the quota report for the repositories in the organization, use the /api/v1/repository
endpoint:

Sample command

Sample output

 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 27959066,
 "configured_quota": 104857600
 },
 "last_modified": 1651225630,
 "popularity": 0,
 "is_starred": false
 }
]
}

$ podman pull nginx

$ podman tag docker.io/library/nginx example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/nginx

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/nginx

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org/api/v1/repository?
last_modified=true&namespace=testorg&popularity=true&public=true"a=true'

{
 "repositories": [
 {
 "namespace": "testorg",
 "name": "ubuntu",
 "description": null,
 "is_public": false,
 "kind": "image",
 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 27959066,
 "configured_quota": 104857600
 },
 "last_modified": 1651225630,
 "popularity": 0,
 "is_starred": false
 },

CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

59

3. To view the quota information in the organization details, use the
/api/v1/organization/{orgname} endpoint:

Sample command

Sample output

14.4.5. Rejecting pushes using quota limits

If an image push exceeds defined quota limitations, a soft or hard check occurs:

For a soft check, or warning, users are notified.

For a hard check, or reject, the push is terminated.

14.4.5.1. Setting reject and warning limits

 {
 "namespace": "testorg",
 "name": "nginx",
 "description": null,
 "is_public": false,
 "kind": "image",
 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 59231659,
 "configured_quota": 104857600
 },
 "last_modified": 1651229507,
 "popularity": 0,
 "is_starred": false
 }
]
}

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg' | jq

{
 "name": "testorg",
 ...
 "quotas": [
 {
 "id": 1,
 "limit_bytes": 104857600,
 "limits": []
 }
],
 "quota_report": {
 "quota_bytes": 87190725,
 "configured_quota": 104857600
 }
}

Red Hat Quay 3.9 Use Red Hat Quay

60

To set reject and warning limits, POST data to the
/api/v1/organization/{orgname}/quota/{quota_id}/limit endpoint:

Sample reject limit command

Sample warning limit command

14.4.5.2. Viewing reject and warning limits

To view the reject and warning limits, use the /api/v1/organization/{orgname}/quota endpoint:

View quota limits

Sample output for quota limits

14.4.5.3. Pushing an image when the reject limit is exceeded

In this example, the reject limit (80%) has been set to below the current repository size (~83%), so the
next push should automatically be rejected.

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"type":"Reject","threshold_percent":80}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1/limit

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"type":"Warning","threshold_percent":50}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1/limit

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

[
 {
 "id": 1,
 "limit_bytes": 104857600,
 "default_config": false,
 "limits": [
 {
 "id": 2,
 "type": "Warning",
 "limit_percent": 50
 },
 {
 "id": 1,
 "type": "Reject",
 "limit_percent": 80
 }
],
 "default_config_exists": false
 }
]

CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

61

Push a sample image to the organization from the command line:

Sample image push

Sample output when quota exceeded

14.4.5.4. Notifications for limits exceeded

When limits are exceeded, a notification appears:

Quota notifications

$ podman pull ubuntu:20.04

$ podman tag docker.io/library/ubuntu:20.04 example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:20.04

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:20.04

Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0002] failed, retrying in 1s ... (1/3). Error: Error writing blob: Error initiating layer upload to
/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0005] failed, retrying in 1s ... (2/3). Error: Error writing blob: Error initiating layer upload to
/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0009] failed, retrying in 1s ... (3/3). Error: Error writing blob: Error initiating layer upload to
/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
Error: Error writing blob: Error initiating layer upload to /v2/testorg/ubuntu/blobs/uploads/ in example-
registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on
namespace

Red Hat Quay 3.9 Use Red Hat Quay

62

CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

63

CHAPTER 15. RED HAT QUAY AS A PROXY CACHE FOR
UPSTREAM REGISTRIES

With the growing popularity of container development, customers increasingly rely on container images
from upstream registries like Docker or Google Cloud Platform to get services up and running. Today,
registries have rate limitations and throttling on the number of times users can pull from these registries.

With this feature, Red Hat Quay will act as a proxy cache to circumvent pull-rate limitations from
upstream registries. Adding a cache feature also accelerates pull performance, because images are
pulled from the cache rather than upstream dependencies. Cached images are only updated when the
upstream image digest differs from the cached image, reducing rate limitations and potential throttling.

With Red Hat Quay cache proxy, the following features are available:

Specific organizations can be defined as a cache for upstream registries.

Configuration of a Quay organization that acts as a cache for a specific upstream registry. This
repository can be defined by using the Quay UI, and offers the following configurations:

Upstream registry credentials for private repositories or increased rate limiting.

Expiration timer to avoid surpassing cache organization size.

Global on/off configurable via the configuration application.

Caching of entire upstream registries or just a single namespace, for example, all of docker.io or
just docker.io/library.

Logging of all cache pulls.

Cached images scannability by Clair.

15.1. PROXY CACHE ARCHITECTURE

The following image shows the expected design flow and architecture of the proxy cache feature.

Red Hat Quay 3.9 Use Red Hat Quay

64

When a user pulls an image, for example, postgres:14, from an upstream repository on Red Hat Quay,
the repository checks to see if an image is present. If the image does not exist, a fresh pull is initiated.
After being pulled, the image layers are saved to cache and server to the user in parallel. The following
image depicts an architectural overview of this scenario:

If the image in the cache exists, users can rely on Quay’s cache to stay up-to-date with the upstream
source so that newer images from the cache are automatically pulled. This happens when tags of the
original image have been overwritten in the upstream registry. The following image depicts an
architectural overview of what happens when the upstream image and cached version of the image are
different:

CHAPTER 15. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES

65

If the upstream image and cached version are the same, no layers are pulled and the cached image is
delivered to the user.

In some cases, users initiate pulls when the upstream registry is down. If this happens with the configured
staleness period, the image stored in cache is delivered. If the pull happens after the configured
staleness period, the error is propagated to the user. The following image depicts an architectural
overview when a pull happens after the configured staleness period:

Red Hat Quay 3.9 Use Red Hat Quay

66

Quay administrators can leverage the configurable size limit of an organization to limit cache size so that
backend storage consumption remains predictable. This is achieved by discarding images from the
cache according to the frequency in which an image is used. The following image depicts an
architectural overview of this scenario:

15.2. PROXY CACHE LIMITATIONS

Proxy caching with Red Hat Quay has the following limitations:

Your proxy cache must have a size limit of greater than, or equal to, the image you want to
cache. For example, if your proxy cache organization has a maximum size of 500 MB, and the
image a user wants to pull is 700 MB, the image will be cached and will overflow beyond the
configured limit.

Cached images must have the same properties that images on a Quay repository must have.

CHAPTER 15. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES

67

15.3. USING RED HAT QUAY TO PROXY A REMOTE REGISTRY

The following procedure describes how you can use Red Hat Quay to proxy a remote registry. This
procedure is set up to proxy quay.io, which allows users to use podman to pull any public image from
any namespace on quay.io.

Prerequisites

FEATURE_PROXY_CACHE in your config.yaml is set to true.

Assigned the Member team role. For more information about team roles, see Users and
organizations in Red Hat Quay.

Procedure

1. In your Quay organization on the UI, for example, cache-quayio, click Organization Settings on
the left hand pane.

2. Optional: Click Add Storage Quota to configure quota management for your organization. For
more information about quota management, see Quota Management.

NOTE

In some cases, pulling images with Podman might return the following error when
quota limit is reached during a pull: unable to pull image: Error parsing image
configuration: Error fetching blob: invalid status code from registry 403
(Forbidden). Error 403 is inaccurate, and occurs because Podman hides the
correct API error: Quota has been exceeded on namespace. This known issue
will be fixed in a future Podman update.

3. In Remote Registry enter the name of the remote registry to be cached, for example, quay.io,
and click Save.

NOTE

By adding a namespace to the Remote Registry, for example,
quay.io/<namespace>, users in your organization will only be able to proxy from
that namespace.

4. Optional: Add a Remote Registry Username and Remote Registry Password.

NOTE

If you do not set a Remote Registry Username and Remote Registry Password,
you cannot add one without removing the proxy cache and creating a new
registry.

5. Optional: Set a time in the Expiration field.

NOTE

Red Hat Quay 3.9 Use Red Hat Quay

68

https://access.redhat.com/documentation/en-us/red_hat_quay/3.9/html/use_red_hat_quay/user-org-intro
https://access.redhat.com//documentation/en-us/red_hat_quay/3.7/html-single/use_red_hat_quay#red-hat-quay-quota-management-and-enforcement

NOTE

The default tag Expiration field for cached images in a proxy organization is
set to 86400 seconds. In the proxy organization, the tag expiration is
refreshed to the value set in the UI’s Expiration field every time the tag is
pulled. This feature is different than Quay’s default individual tag expiration
feature. In a proxy organization, it is possible to override the individual tag
feature. When this happens, the individual tag’s expiration is reset according
to the Expiration field of the proxy organization.

Expired images will disappear after the allotted time, but are still stored in
Quay. The time in which an image is completely deleted, or collected,
depends on the Time Machine setting of your organization. The default time
for garbage collection is 14 days unless otherwise specified.

6. Click Save.

7. On the CLI, pull a public image from the registry, for example, quay.io, acting as a proxy cache:

$ podman pull <registry_url>/<organization_name>/<quayio_namespace>/<image_name>

IMPORTANT

If your organization is set up to pull from a single namespace in the remote
registry, the remote registry namespace must be omitted from the URL. For
example, podman pull <registry_url>/<organization_name>/<image_name>.

15.3.1. Leveraging storage quota limits in proxy organizations

With Red Hat Quay 3.8, the proxy cache feature has been enhanced with an auto-pruning feature for
tagged images. The auto-pruning of image tags is only available when a proxied namespace has quota
limitations configured. Currently, if an image size is greater than quota for an organization, the image is
skipped from being uploaded until an administrator creates the necessary space. Now, when an image is
pushed that exceeds the allotted space, the auto-pruning enhancement marks the least recently used
tags for deletion. As a result, the new image tag is stored, while the least used image tag is marked for
deletion.

IMPORTANT

As part of the auto-pruning feature, the tags that are marked for deletion are
eventually garbage collected by the garbage collector (gc) worker process. As a
result, the quota size restriction is not fully enforced during this period.

Currently, the namespace quota size computation does not take into account the
size for manifest child. This is a known issue and will be fixed in a future version of
Red Hat Quay.

15.3.1.1. Testing the storage quota limits feature in proxy organizations

Use the following procedure to test the auto-pruning feature of an organization with proxy cache and
storage quota limitations enabled.

Prerequisites

Your organization is configured to serve as a proxy organization. The following example proxies

CHAPTER 15. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES

69

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/use_red_hat_quay/index#tag-expiration

Your organization is configured to serve as a proxy organization. The following example proxies
from quay.io.

FEATURE_PROXY_CACHE is set to true in your config.yaml file.

FEATURE_QUOTA_MANAGEMENT is set to true in your config.yaml file.

Your organization is configured with a quota limit, for example, 150 MB.

Procedure

1. Pull an image to your repository from your proxy organization, for example:

$ podman pull quay-server.example.com/proxytest/projectquay/quay:3.7.9

2. Depending on the space left in your repository, you might need to pull additional images from
your proxy organization, for example:

$ podman pull quay-server.example.com/proxytest/projectquay/quay:3.6.2

3. In the Red Hat Quay registry UI, click the name of your repository.

Click Tags in the navigation pane and ensure that quay:3.7.9 and quay:3.6.2 are tagged.

4. Pull the last image that will result in your repository exceeding the the allotted quota, for
example:

$ podman pull quay-server.example.com/proxytest/projectquay/quay:3.5.1

5. Refresh the Tags page of your Red Hat Quay registry. The first image that you pushed, for
example, quay:3.7.9 should have been auto-pruned. The Tags page should now show
quay:3.6.2 and quay:3.5.1.

Red Hat Quay 3.9 Use Red Hat Quay

70

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS
Red Hat Quay builds can be run on virtualized platforms. Backwards compatibility to run previous build
configurations are also available.

16.1. RED HAT QUAY ENHANCED BUILD ARCHITECTURE

The following image shows the expected design flow and architecture of the enhanced build features:

With this enhancement, the build manager first creates the Job Object. Then, the Job Object then
creates a pod using the quay-builder-image. The quay-builder-image will contain the quay-builder
binary and the Podman service. The created pod runs as unprivileged. The quay-builder binary then
builds the image while communicating status and retrieving build information from the Build Manager.

16.2. RED HAT QUAY BUILD LIMITATIONS

Running builds in Red Hat Quay in an unprivileged context might cause some commands that were
working under the previous build strategy to fail. Attempts to change the build strategy could potentially
cause performance issues and reliability with the build.

Running builds directly in a container does not have the same isolation as using virtual machines.
Changing the build environment might also caused builds that were previously working to fail.

16.3. CREATING A RED HAT QUAY BUILDERS ENVIRONMENT WITH
OPENSHIFT CONTAINER PLATFORM

The procedures in this section explain how to create a Red Hat Quay virtual builders environment with
OpenShift Container Platform.

16.3.1. OpenShift Container Platform TLS component

The tls component allows you to control TLS configuration.

NOTE

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS

71

NOTE

Red Hat Quay 3.9 does not support builders when the TLS component is managed by the
Operator.

If you set tls to unmanaged, you supply your own ssl.cert and ssl.key files. In this instance, if you want
your cluster to support builders, you must add both the Quay route and the builder route name to the
SAN list in the cert, or use a wildcard.

To add the builder route, use the following format:

16.3.2. Using OpenShift Container Platform for Red Hat Quay builders

Builders require SSL/TLS certificates. For more information about SSL/TLS certificates, see Adding
TLS certificates to the Red Hat Quay container.

If you are using Amazon Web Service (AWS) S3 storage, you must modify your storage bucket in the
AWS console, prior to running builders. See "Modifying your AWS S3 storage bucket" in the following
section for the required parameters.

16.3.2.1. Preparing OpenShift Container Platform for virtual builders

Use the following procedure to prepare OpenShift Container Platform for Red Hat Quay virtual builders.

NOTE

This procedure assumes you already have a cluster provisioned and a Quay
Operator running.

This procedure is for setting up a virtual namespace on OpenShift Container
Platform.

Procedure

1. Log in to your Red Hat Quay cluster using a cluster administrator account.

2. Create a new project where your virtual builders will be run, for example, virtual-builders, by
running the following command:

3. Create a ServiceAccount in the project that will be used to run builds by entering the following
command:

4. Provide the created service account with editing permissions so that it can run the build:

[quayregistry-cr-name]-quay-builder-[ocp-namespace].[ocp-domain-name]:443

$ oc new-project virtual-builders

$ oc create sa -n virtual-builders quay-builder

$ oc adm policy -n virtual-builders add-role-to-user edit system:serviceaccount:virtual-
builders:quay-builder

Red Hat Quay 3.9 Use Red Hat Quay

72

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/advanced_red_hat_quay_deployment#using_ssl_to_protect_connections_to_red_hat_quay

5. Grant the Quay builder anyuid scc permissions by entering the following command:

NOTE

This action requires cluster admin privileges. This is required because builders
must run as the Podman user for unprivileged or rootless builds to work.

6. Obtain the token for the Quay builder service account.

a. If using OpenShift Container Platform 4.10 or an earlier version, enter the following
command:

b. If using OpenShift Container Platform 4.11 or later, enter the following command:

Example output

7. Determine the builder route by entering the following command:

Example output

8. Generate a self-signed SSL/TlS certificate with the .crt extension by entering the following
command:

Example output

9. Rename the ca.crt file to extra_ca_cert_build_cluster.crt by entering the following command:

10. Locate the secret for you configuration bundle in the Console, and select Actions → Edit

$ oc adm policy -n virtual-builders add-scc-to-user anyuid -z quay-builder

oc sa get-token -n virtual-builders quay-builder

$ oc create token quay-builder -n virtual-builders

eyJhbGciOiJSUzI1NiIsImtpZCI6IldfQUJkaDVmb3ltTHZ0dGZMYjhIWnYxZTQzN2dJVEJxc
DJscldSdEUtYWsifQ...

$ oc get route -n quay-enterprise

NAME HOST/PORT PATH
SERVICES PORT TERMINATION WILDCARD
...
example-registry-quay-builder example-registry-quay-builder-quay-
enterprise.apps.docs.quayteam.org example-registry-quay-app grpc
edge/Redirect None
...

$ oc extract cm/kube-root-ca.crt -n openshift-apiserver

ca.crt

$ mv ca.crt extra_ca_cert_build_cluster.crt

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS

73

1

2

3

10. Locate the secret for you configuration bundle in the Console, and select Actions → Edit
Secret and add the appropriate builder configuration:

The build route is obtained by running oc get route -n with the name of your OpenShift
Operator’s namespace. A port must be provided at the end of the route, and it should use
the following format: [quayregistry-cr-name]-quay-builder-[ocp-namespace].[ocp-
domain-name]:443.

If the JOB_REGISTRATION_TIMEOUT parameter is set too low, you might receive the
following error: failed to register job to build manager: rpc error: code =
Unauthenticated desc = Invalid build token: Signature has expired. It is suggested that
this parameter be set to at least 240.

If your Redis host has a password or SSL/TLS certificates, you must update accordingly.

FEATURE_USER_INITIALIZE: true
BROWSER_API_CALLS_XHR_ONLY: false
SUPER_USERS:
- <superusername>
FEATURE_USER_CREATION: false
FEATURE_QUOTA_MANAGEMENT: true
FEATURE_BUILD_SUPPORT: True
BUILDMAN_HOSTNAME: <sample_build_route> 1
BUILD_MANAGER:
 - ephemeral
 - ALLOWED_WORKER_COUNT: 1
 ORCHESTRATOR_PREFIX: buildman/production/
 JOB_REGISTRATION_TIMEOUT: 3600 2
 ORCHESTRATOR:
 REDIS_HOST: <sample_redis_hostname> 3
 REDIS_PASSWORD: ""
 REDIS_SSL: false
 REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
 EXECUTORS:
 - EXECUTOR: kubernetesPodman
 NAME: openshift
 BUILDER_NAMESPACE: <sample_builder_namespace> 4
 SETUP_TIME: 180
 MINIMUM_RETRY_THRESHOLD: 0
 BUILDER_CONTAINER_IMAGE: <sample_builder_container_image> 5
 # Kubernetes resource options
 K8S_API_SERVER: <sample_k8s_api_server> 6
 K8S_API_TLS_CA: <sample_crt_file> 7
 VOLUME_SIZE: 8G
 KUBERNETES_DISTRIBUTION: openshift
 CONTAINER_MEMORY_LIMITS: 300m 8
 CONTAINER_CPU_LIMITS: 1G 9
 CONTAINER_MEMORY_REQUEST: 300m 10
 CONTAINER_CPU_REQUEST: 1G 11
 NODE_SELECTOR_LABEL_KEY: ""
 NODE_SELECTOR_LABEL_VALUE: ""
 SERVICE_ACCOUNT_NAME: <sample_service_account_name>
 SERVICE_ACCOUNT_TOKEN: <sample_account_token> 12

Red Hat Quay 3.9 Use Red Hat Quay

74

4

5

6

7

8

9

10

11

12

Set to match the name of your virtual builders namespace, for example, virtual-builders.

For early access, the BUILDER_CONTAINER_IMAGE is currently
quay.io/projectquay/quay-builder:3.7.0-rc.2. Note that this might change during the
early access window. If this happens, customers are alerted.

The K8S_API_SERVER is obtained by running oc cluster-info.

You must manually create and add your custom CA cert, for example, K8S_API_TLS_CA:
/conf/stack/extra_ca_certs/build_cluster.crt.

Defaults to 5120Mi if left unspecified.

For virtual builds, you must ensure that there are enough resources in your cluster.
Defaults to 1000m if left unspecified.

Defaults to 3968Mi if left unspecified.

Defaults to 500m if left unspecified.

Obtained when running oc create sa.

Sample configuration

FEATURE_USER_INITIALIZE: true
BROWSER_API_CALLS_XHR_ONLY: false
SUPER_USERS:
- quayadmin
FEATURE_USER_CREATION: false
FEATURE_QUOTA_MANAGEMENT: true
FEATURE_BUILD_SUPPORT: True
BUILDMAN_HOSTNAME: example-registry-quay-builder-quay-
enterprise.apps.docs.quayteam.org:443
BUILD_MANAGER:
 - ephemeral
 - ALLOWED_WORKER_COUNT: 1
 ORCHESTRATOR_PREFIX: buildman/production/
 JOB_REGISTRATION_TIMEOUT: 3600
 ORCHESTRATOR:
 REDIS_HOST: example-registry-quay-redis
 REDIS_PASSWORD: ""
 REDIS_SSL: false
 REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
 EXECUTORS:
 - EXECUTOR: kubernetesPodman
 NAME: openshift
 BUILDER_NAMESPACE: virtual-builders
 SETUP_TIME: 180
 MINIMUM_RETRY_THRESHOLD: 0
 BUILDER_CONTAINER_IMAGE: quay.io/projectquay/quay-builder:3.7.0-rc.2
 # Kubernetes resource options
 K8S_API_SERVER: api.docs.quayteam.org:6443
 K8S_API_TLS_CA: /conf/stack/extra_ca_certs/build_cluster.crt
 VOLUME_SIZE: 8G
 KUBERNETES_DISTRIBUTION: openshift

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS

75

1

2

16.3.2.2. Manually adding SSL/TLS certificates

Due to a known issue with the configuration tool, you must manually add your custom SSL/TLS
certificates to properly run builders. Use the following procedure to manually add custom SSL/TLS
certificates.

For more information creating SSL/TLS certificates, see Adding TLS certificates to the Red Hat Quay
container.

16.3.2.2.1. Creating and signing certificates

Use the following procedure to create and sign an SSL/TLS certificate.

Procedure

Create a certificate authority and sign a certificate. For more information, see Create a
Certificate Authority and sign a certificate.

openssl.cnf

An alt_name for the URL of your Red Hat Quay registry must be included.

An alt_name for the BUILDMAN_HOSTNAME

Sample commands

 CONTAINER_MEMORY_LIMITS: 1G
 CONTAINER_CPU_LIMITS: 1080m
 CONTAINER_MEMORY_REQUEST: 1G
 CONTAINER_CPU_REQUEST: 580m
 NODE_SELECTOR_LABEL_KEY: ""
 NODE_SELECTOR_LABEL_VALUE: ""
 SERVICE_ACCOUNT_NAME: quay-builder
 SERVICE_ACCOUNT_TOKEN:
"eyJhbGciOiJSUzI1NiIsImtpZCI6IldfQUJkaDVmb3ltTHZ0dGZMYjhIWnYxZTQzN2dJVEJxcDJs
cldSdEUtYWsifQ"

[req]
req_extensions = v3_req
distinguished_name = req_distinguished_name
[req_distinguished_name]
[v3_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names
[alt_names]
DNS.1 = example-registry-quay-quay-enterprise.apps.docs.quayteam.org 1
DNS.2 = example-registry-quay-builder-quay-enterprise.apps.docs.quayteam.org 2

$ openssl genrsa -out rootCA.key 2048
$ openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem
$ openssl genrsa -out ssl.key 2048

Red Hat Quay 3.9 Use Red Hat Quay

76

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/advanced_red_hat_quay_deployment#using_ssl_to_protect_connections_to_red_hat_quay
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/advanced_red_hat_quay_deployment#create-a-ca-and-sign-a-certificate

16.3.2.2.2. Setting TLS to unmanaged

Use the following procedure to set king:tls to unmanaged.

Procedure

1. In your Red Hat Quay Registry YAML, set kind: tls to managed: false:

2. On the Events page, the change is blocked until you set up the appropriate config.yaml file.
For example:

16.3.2.2.3. Creating temporary secrets

Use the following procedure to create temporary secrets for the CA certificate.

Procedure

1. Create a secret in your default namespace for the CA certificate:

$ oc create secret generic -n quay-enterprise temp-crt --from-file
extra_ca_cert_build_cluster.crt

2. Create a secret in your default namespace for the ssl.key and ssl.cert files:

$ oc create secret generic -n quay-enterprise quay-config-ssl --from-file ssl.cert --from-file
ssl.key

16.3.2.2.4. Copying secret data to the configuration YAML

Use the following procedure to copy secret data to your config.yaml file.

Procedure

1. Locate the new secrets in the console UI at Workloads → Secrets.

2. For each secret, locate the YAML view:

$ openssl req -new -key ssl.key -out ssl.csr
$ openssl x509 -req -in ssl.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
ssl.cert -days 356 -extensions v3_req -extfile openssl.cnf

 - kind: tls
 managed: false

 - lastTransitionTime: '2022-03-28T12:56:49Z'
 lastUpdateTime: '2022-03-28T12:56:49Z'
 message: >-
 required component `tls` marked as unmanaged, but `configBundleSecret`
 is missing necessary fields
 reason: ConfigInvalid
 status: 'True'

kind: Secret

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS

77

3. Locate the secret for your Red Hat Quay registry configuration bundle in the UI, or through the
command line by running a command like the following:

4. In the OpenShift Container Platform console, select the YAML tab for your configuration
bundle secret, and add the data from the two secrets you created:

apiVersion: v1
metadata:
 name: temp-crt
 namespace: quay-enterprise
 uid: a4818adb-8e21-443a-a8db-f334ace9f6d0
 resourceVersion: '9087855'
 creationTimestamp: '2022-03-28T13:05:30Z'
...
data:
 extra_ca_cert_build_cluster.crt: >-
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURNakNDQWhxZ0F3SUJBZ0l....
type: Opaque

kind: Secret
apiVersion: v1
metadata:
 name: quay-config-ssl
 namespace: quay-enterprise
 uid: 4f5ae352-17d8-4e2d-89a2-143a3280783c
 resourceVersion: '9090567'
 creationTimestamp: '2022-03-28T13:10:34Z'
...
data:
 ssl.cert: >-
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUVaakNDQTA2Z0F3SUJBZ0lVT...
 ssl.key: >-
 LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFcFFJQkFBS0NBUUVBc...
type: Opaque

$ oc get quayregistries.quay.redhat.com -o jsonpath="{.items[0].spec.configBundleSecret}
{'\n'}" -n quay-enterprise

kind: Secret
apiVersion: v1
metadata:
 name: init-config-bundle-secret
 namespace: quay-enterprise
 uid: 4724aca5-bff0-406a-9162-ccb1972a27c1
 resourceVersion: '4383160'
 creationTimestamp: '2022-03-22T12:35:59Z'
...
data:
 config.yaml: >-
 RkVBVFVSRV9VU0VSX0lOSVRJQUxJWkU6IHRydWUKQlJ...
 extra_ca_cert_build_cluster.crt: >-

LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURNakNDQWhxZ0F3SUJBZ0ldw....
 ssl.cert: >-
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUVaakNDQTA2Z0F3SUJBZ0lVT...

Red Hat Quay 3.9 Use Red Hat Quay

78

5. Click Save.

6. Enter the following command to see if your pods are restarting:

Example output

7. After your Red Hat Quay registry has reconfigured, enter the following command to check if the
Red Hat Quay app pods are running:

Example output

8. In your browser, access the registry endpoint and validate that the certificate has been updated
appropriately. For example:

16.3.2.3. Using the UI to create a build trigger

Use the following procedure to use the UI to create a build trigger.

Procedure

 ssl.key: >-
 LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFcFFJQkFBS0NBUUVBc...
type: Opaque

$ oc get pods -n quay-enterprise

NAME READY STATUS RESTARTS AGE
...
example-registry-quay-app-6786987b99-vgg2v 0/1 ContainerCreating 0 2s
example-registry-quay-app-7975d4889f-q7tvl 1/1 Running 0 5d21h
example-registry-quay-app-7975d4889f-zn8bb 1/1 Running 0 5d21h
example-registry-quay-app-upgrade-lswsn 0/1 Completed 0 6d1h
example-registry-quay-config-editor-77847fc4f5-nsbbv 0/1 ContainerCreating 0 2s
example-registry-quay-config-editor-c6c4d9ccd-2mwg2 1/1 Running 0
5d21h
example-registry-quay-database-66969cd859-n2ssm 1/1 Running 0 6d1h
example-registry-quay-mirror-764d7b68d9-jmlkk 1/1 Terminating 0 5d21h
example-registry-quay-mirror-764d7b68d9-jqzwg 1/1 Terminating 0 5d21h
example-registry-quay-redis-7cc5f6c977-956g8 1/1 Running 0 5d21h

$ oc get pods -n quay-enterprise

example-registry-quay-app-6786987b99-sz6kb 1/1 Running 0 7m45s
example-registry-quay-app-6786987b99-vgg2v 1/1 Running 0 9m1s
example-registry-quay-app-upgrade-lswsn 0/1 Completed 0 6d1h
example-registry-quay-config-editor-77847fc4f5-nsbbv 1/1 Running 0 9m1s
example-registry-quay-database-66969cd859-n2ssm 1/1 Running 0 6d1h
example-registry-quay-mirror-758fc68ff7-5wxlp 1/1 Running 0 8m29s
example-registry-quay-mirror-758fc68ff7-lbl82 1/1 Running 0 8m29s
example-registry-quay-redis-7cc5f6c977-956g8 1/1 Running 0 5d21h

Common Name (CN) example-registry-quay-quay-enterprise.apps.docs.quayteam.org
Organisation (O) DOCS
Organisational Unit (OU) QUAY

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS

79

Procedure

1. Log in to your Red Hat Quay repository.

2. Click Create New Repository and create a new registry, for example, testrepo.

3. On the Repositories page, click the Builds tab on the navigation pane. Alternatively, use the
corresponding URL directly:

https://example-registry-quay-quay-
enterprise.apps.docs.quayteam.org/repository/quayadmin/testrepo?tab=builds

IMPORTANT

In some cases, the builder might have issues resolving hostnames. This issue
might be related to the dnsPolicy being set to default on the job object.
Currently, there is no workaround for this issue. It will be resolved in a future
version of Red Hat Quay.

4. Click Create Build Trigger → Custom Git Repository Push.

5. Enter the HTTPS or SSH style URL used to clone your Git repository, then click Continue. For
example:

https://github.com/gabriel-rh/actions_test.git

6. Check Tag manifest with the branch or tag name and then click Continue.

7. Enter the location of the Dockerfile to build when the trigger is invoked, for example,
/Dockerfile and click Continue.

8. Enter the location of the context for the Docker build, for example, /, and click Continue.

9. If warranted, create a Robot Account. Otherwise, click Continue.

10. Click Continue to verify the parameters.

11. On the Builds page, click Options icon of your Trigger Name, and then click Run Trigger Now.

12. Enter a commit SHA from the Git repository and click Start Build.

13. You can check the status of your build by clicking the commit in the Build History page, or by
running oc get pods -n virtual-builders. For example:

$ oc get pods -n virtual-builders

Example output

NAME READY STATUS RESTARTS AGE
f192fe4a-c802-4275-bcce-d2031e635126-9l2b5-25lg2 1/1 Running 0 7s

Example output

$ oc get pods -n virtual-builders

Red Hat Quay 3.9 Use Red Hat Quay

80

NAME READY STATUS RESTARTS AGE
f192fe4a-c802-4275-bcce-d2031e635126-9l2b5-25lg2 1/1 Terminating 0 9s

$ oc get pods -n virtual-builders

Example output

No resources found in virtual-builders namespace.

14. When the build is finished, you can check the status of the tag under Tags on the navigation
pane.

NOTE

With early access, full build logs and timestamps of builds are currently
unavailable.

16.3.2.4. Modifying your AWS S3 storage bucket

If you are using AWS S3 storage, you must change your storage bucket in the AWS console, prior to
running builders.

Procedure

1. Log in to your AWS console at s3.console.aws.com.

2. In the search bar, search for S3 and then click S3.

3. Click the name of your bucket, for example, myawsbucket.

4. Click the Permissions tab.

5. Under Cross-origin resource sharing (CORS), include the following parameters:

 [
 {
 "AllowedHeaders": [
 "Authorization"
],
 "AllowedMethods": [
 "GET"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [],
 "MaxAgeSeconds": 3000
 },
 {
 "AllowedHeaders": [
 "Content-Type",
 "x-amz-acl",
 "origin"
],

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS

81

https://s3.console.aws.amazon.com

16.3.2.5. Modifying your Google Cloud Platform object bucket

Use the following procedure to configure cross-origin resource sharing (CORS) for virtual builders.

NOTE

Without CORS configuration, uploading a build Dockerfile fails.

Procedure

1. Use the following reference to create a JSON file for your specific CORS needs. For example:

Example output

2. Enter the following command to update your GCP storage bucket:

Example output

 "AllowedMethods": [
 "PUT"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [],
 "MaxAgeSeconds": 3000
 }
]

$ cat gcp_cors.json

[
 {
 "origin": ["*"],
 "method": ["GET"],
 "responseHeader": ["Authorization"],
 "maxAgeSeconds": 3600
 },
 {
 "origin": ["*"],
 "method": ["PUT"],
 "responseHeader": [
 "Content-Type",
 "x-goog-acl",
 "origin"],
 "maxAgeSeconds": 3600
 }
]

$ gcloud storage buckets update gs://<bucket_name> --cors-file=./gcp_cors.json

Updating
 Completed 1

Red Hat Quay 3.9 Use Red Hat Quay

82

3. You can display the updated CORS configuration of your GCP bucket by running the following
command:

Example output

$ gcloud storage buckets describe gs://<bucket_name> --format="default(cors)"

cors:
- maxAgeSeconds: 3600
 method:
 - GET
 origin:
 - '*'
 responseHeader:
 - Authorization
- maxAgeSeconds: 3600
 method:
 - PUT
 origin:
 - '*'
 responseHeader:
 - Content-Type
 - x-goog-acl
 - origin

CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS

83

CHAPTER 17. USING THE RED HAT QUAY V2 UI
Use the following procedures to configure, and use, the Red Hat Quay v2 UI.

17.1. V2 USER INTERFACE CONFIGURATION

With FEATURE_UI_V2 enabled, you can toggle between the current version of the user interface and
the new version of the user interface.

IMPORTANT

This UI is currently in beta and subject to change. In its current state, users can
only create, view, and delete organizations, repositories, and image tags.

When running Red Hat Quay in the old UI, timed-out sessions would require that
the user input their password again in the pop-up window. With the new UI, users
are returned to the main page and required to input their username and
password credentials. This is a known issue and will be fixed in a future version of
the new UI.

There is a discrepancy in how image manifest sizes are reported between the
legacy UI and the new UI. In the legacy UI, image manifests were reported in
mebibytes. In the new UI, Red Hat Quay uses the standard definition of
megabyte (MB) to report image manifest sizes.

Procedure

1. In your deployment’s config.yaml file, add the FEATURE_UI_V2 parameter and set it to true,
for example:

2. Log in to your Red Hat Quay deployment.

3. In the navigation pane of your Red Hat Quay deployment, you are given the option to toggle
between Current UI and New UI. Click the toggle button to set it to new UI, and then click Use
Beta Environment, for example:

17.1.1. Creating a new organization in the Red Hat Quay v2 UI

Prerequisites

You have toggled your Red Hat Quay deployment to use the v2 UI.

Use the following procedure to create an organization using the Red Hat Quay v2 UI.

Procedure

FEATURE_TEAM_SYNCING: false
FEATURE_UI_V2: true
FEATURE_USER_CREATION: true

Red Hat Quay 3.9 Use Red Hat Quay

84

1. Click Organization in the navigation pane.

2. Click Create Organization.

3. Enter an Organization Name, for example, testorg.

4. Click Create.

Now, your example organization should populate under the Organizations page.

17.1.2. Deleting an organization using the Red Hat Quay v2 UI

Use the following procedure to delete an organization using the Red Hat Quay v2 UI.

Procedure

1. On the Organizations page, select the name of the organization you want to delete, for
example, testorg.

2. Click the More Actions drop down menu.

3. Click Delete.

NOTE

On the Delete page, there is a Search input box. With this box, users can search
for specific organizations to ensure that they are properly scheduled for deletion.
For example, if a user is deleting 10 organizations and they want to ensure that a
specific organization was deleted, they can use the Search input box to confirm
said organization is marked for deletion.

4. Confirm that you want to permanently delete the organization by typing confirm in the box.

5. Click Delete.
After deletion, you are returned to the Organizations page.

NOTE

You can delete more than one organization at a time by selecting multiple
organizations, and then clicking More Actions → Delete.

17.1.3. Creating a new repository using the Red Hat Quay v2 UI

Use the following procedure to create a repository using the Red Hat Quay v2 UI.

Procedure

1. Click Repositories on the navigation pane.

2. Click Create Repository.

3. Select a namespace, for example, quayadmin, and then enter a Repository name, for example,
testrepo.

CHAPTER 17. USING THE RED HAT QUAY V2 UI

85

4. Click Create.
Now, your example repository should populate under the Repositories page.

17.1.4. Deleting a repository using the Red Hat Quay v2 UI

Prerequisites

You have created a repository.

Procedure

1. On the Repositories page of the Red Hat Quay v2 UI, click the name of the image you want to
delete, for example, quay/admin/busybox.

2. Click the More Actions drop-down menu.

3. Click Delete.

NOTE

If desired, you could click Make Public or Make Private.

4. Type confirm in the box, and then click Delete.

5. After deletion, you are returned to the Repositories page.

17.1.5. Pushing an image to the Red Hat Quay v2 UI

Use the following procedure to push an image to the Red Hat Quay v2 UI.

Procedure

1. Pull a sample image from an external registry:

2. Tag the image:

3. Push the image to your Red Hat Quay registry:

4. Navigate to the Repositories page on the Red Hat Quay UI and ensure that your image has
been properly pushed.

5. You can check the security details by selecting your image tag, and then navigating to the
Security Report page.

17.1.6. Deleting an image using the Red Hat Quay v2 UI

$ podman pull busybox

$ podman tag docker.io/library/busybox quay-server.example.com/quayadmin/busybox:test

$ podman push quay-server.example.com/quayadmin/busybox:test

Red Hat Quay 3.9 Use Red Hat Quay

86

Use the following procedure to delete an image using theRed Hat Quay v2 UI.

Prerequisites

You have pushed an image to your Red Hat Quay registry.

Procedure

1. On the Repositories page of the Red Hat Quay v2 UI, click the name of the image you want to
delete, for example, quay/admin/busybox.

2. Click the More Actions drop-down menu.

3. Click Delete.

NOTE

If desired, you could click Make Public or Make Private.

4. Type confirm in the box, and then click Delete.

5. After deletion, you are returned to the Repositories page.

17.1.7. Creating a robot account using the Red Hat Quay v2 UI

Use the following procedure to create a robot account using the Red Hat Quay v2 UI.

Procedure

1. On the Red Hat Quay v2 UI, click Organizations.

2. Click the name of the organization that you will create the robot account for, for example, test-
org.

3. Click the Robot accounts tab → Create robot account.

4. In the Provide a name for your robot account box, enter a name, for example, robot1.

5. Optional. The following options are available if desired:

a. Add the robot to a team.

b. Add the robot to a repository.

c. Adjust the robot’s permissions.

6. On the Review and finish page, review the information you have provided, then click Review
and finish.

7. Optional. You can click Expand or Collapse to reveal descriptive information about the robot
account.

8. Optional. You can change permissions of the robot account by clicking the kebab menu → Set
repository permissions.

9. Optional. To delete your robot account, check the box of the robot account and click the trash

CHAPTER 17. USING THE RED HAT QUAY V2 UI

87

9. Optional. To delete your robot account, check the box of the robot account and click the trash
can icon. A popup box appears. Type confirm in the text box, then, click Delete. Alternatively,
you can click the kebab menu → Delete.

17.1.8. Organization settings for the Red Hat Quay v2 UI

Use the following procedure to alter your organization settings using the Red Hat Quay v2 UI.

Procedure

1. On the Red Hat Quay v2 UI, click Organizations.

2. Click the name of the organization that you will create the robot account for, for example, test-
org.

3. Click the Settings tab.

4. Optional. Enter the email address associated with the organization.

5. Optional. Set the allotted time for the Time Machine feature to one of the following:

1 week

1 month

1 year

Never

6. Click Save.

17.1.9. Viewing image tag information using the Red Hat Quay v2 UI

Use the following procedure to view image tag information using the Red Hat Quay v2 UI.

Procedure

1. On the Red Hat Quay v2 UI, click Repositories.

2. Click the name of a repository, for example, quayadmin/busybox.

3. Click the name of the tag, for example, test. You are taken to the Details page of the tag. The
page reveals the following information:

Name

Repository

Digest

Vulnerabilities

Creation

Modified

Size

Red Hat Quay 3.9 Use Red Hat Quay

88

Labels

How to fetch the image tag

4. Optional. Click Security Report to view the tag’s vulnerabilities. You can expand an advisory
column to open up CVE data.

5. Optional. Click Packages to view the tag’s packages.

6. Click the name of the repository, for example, busybox, to return to the Tags page.

7. Optional. Hover over the Pull icon to reveal the ways to fetch the tag.

8. Check the box of the tag, or multiple tags, click the Actions drop down menu, and then Delete
to delete the tag. Confirm deletion by clicking Delete in the popup box.

17.1.10. Adjusting repository settings using the Red Hat Quay v2 UI

Use the following procedure to adjust various settings for a repository using the Red Hat Quay v2 UI.

Procedure

1. On the Red Hat Quay v2 UI, click Repositories.

2. Click the name of a repository, for example, quayadmin/busybox.

3. Click the Settings tab.

4. Optional. Click User and robot permissions. You can adjust the settings for a user or robot
account by clicking the dropdown menu option under Permissions. You can change the settings
to Read, Write, or Admin.

5. Optional. Click Events and notifications. You can create an event and notification by clicking
Create Notification. The following event options are available:

Push to Repository

Package Vulnerability Found

Image build failed

Image build queued

Image build started

Image build success

Image build cancelled
Then, issue a notification. The following options are available:

Email Notification

Flowdock Team Notification

HipChat Room Notification

Slack Notification

CHAPTER 17. USING THE RED HAT QUAY V2 UI

89

Webhook POST
After selecting an event option and the method of notification, include a Room ID #, a
Room Notification Token, then, click Submit.

6. Optional. Click Repository visibility. You can make the repository private, or public, by clicking
Make Public.

7. Optional. Click Delete repository. You can delete the repository by clicking Delete Repository.

17.2. ENABLING THE RED HAT QUAY LEGACY UI

1. In the navigation pane of your Red Hat Quay deployment, you are given the option to toggle
between Current UI and New UI. Click the toggle button to set it to Current UI.

Red Hat Quay 3.9 Use Red Hat Quay

90

CHAPTER 18. USING THE RED HAT QUAY API
Red Hat Quay provides a full OAuth 2, RESTful API that:

Is available from endpoints of each Red Hat Quay instance from the URL
https://<yourquayhost>/api/v1

Lets you connect to endpoints, via a browser, to get, delete, post, and put Red Hat Quay
settings by enabling the Swagger UI

Can be accessed by applications that make API calls and use OAuth tokens

Sends and receives data as JSON

The following text describes how to access the Red Hat Quay API and use it to view and modify setting
in your Red Hat Quay cluster. The next section lists and describes API endpoints.

18.1. ACCESSING THE QUAY API FROM QUAY.IO

If you don’t have your own Red Hat Quay cluster running yet, you can explore the Red Hat Quay API
available from Quay.io from your web browser:

https://docs.quay.io/api/swagger/

The API Explorer that appears shows Quay.io API endpoints. You will not see superuser API endpoints
or endpoints for Red Hat Quay features that are not enabled on Quay.io (such as Repository Mirroring).

From API Explorer, you can get, and sometimes change, information on:

Billing, subscriptions, and plans

Repository builds and build triggers

Error messages and global messages

Repository images, manifests, permissions, notifications, vulnerabilities, and image signing

Usage logs

Organizations, members and OAuth applications

User and robot accounts

and more…​

Select to open an endpoint to view the Model Schema for each part of the endpoint. Open an endpoint,
enter any required parameters (such as a repository name or image), then select the Try it out! button
to query or change settings associated with a Quay.io endpoint.

18.2. CREATE OAUTH ACCESS TOKEN

To create an OAuth access token so you can access the API for your organization:

1. Log in to Red Hat Quay and select your Organization (or create a new one).

CHAPTER 18. USING THE RED HAT QUAY API

91

https://oauth.net/2/
https:/api/v1

2. Select the Applications icon from the left navigation.

3. Select Create New Application and give the new application a name when prompted.

4. Select the new application.

5. Select Generate Token from the left navigation.

6. Select the checkboxes to set the scope of the token and select Generate Access Token.

7. Review the permissions you are allowing and select Authorize Application to approve it.

8. Copy the newly generated token to use to access the API.

18.3. ACCESSING YOUR QUAY API FROM A WEB BROWSER

By enabling Swagger, you can access the API for your own Red Hat Quay instance through a web
browser. This URL exposes the Red Hat Quay API explorer via the Swagger UI and this URL:

https://<yourquayhost>/api/v1/discovery.

That way of accessing the API does not include superuser endpoints that are available on Red Hat Quay
installations. Here is an example of accessing a Red Hat Quay API interface running on the local system
by running the swagger-ui container image:

export SERVER_HOSTNAME=<yourhostname>
sudo podman run -p 8888:8080 -e API_URL=https://$SERVER_HOSTNAME:8443/api/v1/discovery
docker.io/swaggerapi/swagger-ui

With the swagger-ui container running, open your web browser to localhost port 8888 to view API
endpoints via the swagger-ui container.

To avoid errors in the log such as "API calls must be invoked with an X-Requested-With header if called
from a browser," add the following line to the config.yaml on all nodes in the cluster and restart Red Hat
Quay:

BROWSER_API_CALLS_XHR_ONLY: false

18.4. ACCESSING THE RED HAT QUAY API FROM THE COMMAND LINE

You can use the curl command to GET, PUT, POST, or DELETE settings via the API for your Red Hat
Quay cluster. Replace <token> with the OAuth access token you created earlier to get or change
settings in the following examples.

18.4.1. Get superuser information

$ curl -X GET -H "Authorization: Bearer <token_here>" \
 "https://<yourquayhost>/api/v1/superuser/users/"

For example:

$ curl -X GET -H "Authorization: Bearer mFCdgS7SAIoMcnTsHCGx23vcNsTgziAa4CmmHIsg"
http://quay-server:8080/api/v1/superuser/users/ | jq

Red Hat Quay 3.9 Use Red Hat Quay

92

18.4.2. Creating a superuser using the API

Configure a superuser name, as described in the Deploy Quay book:

Use the configuration editor UI or

Edit the config.yaml file directly, with the option of using the configuration API to validate
(and download) the updated configuration bundle

Create the user account for the superuser name:

Obtain an authorization token as detailed above, and use curl to create the user:

$ curl -H "Content-Type: application/json" -H "Authorization: Bearer
Fava2kV9C92p1eXnMawBZx9vTqVnksvwNm0ckFKZ" -X POST --data '{
 "username": "quaysuper",
 "email": "quaysuper@example.com"
}' http://quay-server:8080/api/v1/superuser/users/ | jq

The returned content includes a generated password for the new user account:

Now, when you request the list of users , it will show quaysuper as a superuser:

{
 "users": [
 {
 "kind": "user",
 "name": "quayadmin",
 "username": "quayadmin",
 "email": "quayadmin@example.com",
 "verified": true,
 "avatar": {
 "name": "quayadmin",
 "hash": "357a20e8c56e69d6f9734d23ef9517e8",
 "color": "#5254a3",
 "kind": "user"
 },
 "super_user": true,
 "enabled": true
 }
]
}

{
 "username": "quaysuper",
 "email": "quaysuper@example.com",
 "password": "EH67NB3Y6PTBED8H0HC6UVHGGGA3ODSE",
 "encrypted_password":
"fn37AZAUQH0PTsU+vlO9lS0QxPW9A/boXL4ovZjIFtlUPrBz9i4j9UDOqMjuxQ/0HTfy38go
KEpG8zYXVeQh3lOFzuOjSvKic2Vq7xdtQsU="
}

$ curl -X GET -H "Authorization: Bearer mFCdgS7SAIoMcnTsHCGx23vcNsTgziAa4CmmHIsg"
http://quay-server:8080/api/v1/superuser/users/ | jq

CHAPTER 18. USING THE RED HAT QUAY API

93

18.4.3. List usage logs

An intrnal API, /api/v1/superuser/logs, is available to list the usage logs for the current system. The
results are paginated, so in the following example, more than 20 repos were created to show how to use
multiple invocations to access the entire result set.

18.4.3.1. Example for pagination

First invocation

Initial output

{
 "users": [
 {
 "kind": "user",
 "name": "quayadmin",
 "username": "quayadmin",
 "email": "quayadmin@example.com",
 "verified": true,
 "avatar": {
 "name": "quayadmin",
 "hash": "357a20e8c56e69d6f9734d23ef9517e8",
 "color": "#5254a3",
 "kind": "user"
 },
 "super_user": true,
 "enabled": true
 },
 {
 "kind": "user",
 "name": "quaysuper",
 "username": "quaysuper",
 "email": "quaysuper@example.com",
 "verified": true,
 "avatar": {
 "name": "quaysuper",
 "hash": "c0e0f155afcef68e58a42243b153df08",
 "color": "#969696",
 "kind": "user"
 },
 "super_user": true,
 "enabled": true
 }
]
}

$ curl -X GET -k -H "Authorization: Bearer qz9NZ2Np1f55CSZ3RVOvxjeUdkzYuCp0pKggABCD"
https://example-registry-quay-quay-enterprise.apps.example.com/api/v1/superuser/logs | jq

{
 "start_time": "Sun, 12 Dec 2021 11:41:55 -0000",
 "end_time": "Tue, 14 Dec 2021 11:41:55 -0000",

Red Hat Quay 3.9 Use Red Hat Quay

94

 "logs": [
 {
 "kind": "create_repo",
 "metadata": {
 "repo": "t21",
 "namespace": "namespace1"
 },
 "ip": "10.131.0.13",
 "datetime": "Mon, 13 Dec 2021 11:41:16 -0000",
 "performer": {
 "kind": "user",
 "name": "user1",
 "is_robot": false,
 "avatar": {
 "name": "user1",
 "hash": "5d40b245471708144de9760f2f18113d75aa2488ec82e12435b9de34a6565f73",
 "color": "#ad494a",
 "kind": "user"
 }
 },
 "namespace": {
 "kind": "org",
 "name": "namespace1",
 "avatar": {
 "name": "namespace1",
 "hash": "6cf18b5c19217bfc6df0e7d788746ff7e8201a68cba333fca0437e42379b984f",
 "color": "#e377c2",
 "kind": "org"
 }
 }
 },
 {
 "kind": "create_repo",
 "metadata": {
 "repo": "t20",
 "namespace": "namespace1"
 },
 "ip": "10.131.0.13",
 "datetime": "Mon, 13 Dec 2021 11:41:05 -0000",
 "performer": {
 "kind": "user",
 "name": "user1",
 "is_robot": false,
 "avatar": {
 "name": "user1",
 "hash": "5d40b245471708144de9760f2f18113d75aa2488ec82e12435b9de34a6565f73",
 "color": "#ad494a",
 "kind": "user"
 }
 },
 "namespace": {
 "kind": "org",
 "name": "namespace1",
 "avatar": {
 "name": "namespace1",
 "hash": "6cf18b5c19217bfc6df0e7d788746ff7e8201a68cba333fca0437e42379b984f",

CHAPTER 18. USING THE RED HAT QUAY API

95

Second invocation using next_page

Output from second invocation

 "color": "#e377c2",
 "kind": "org"
 }
 }
 },
...

 {
 "kind": "create_repo",
 "metadata": {
 "repo": "t2",
 "namespace": "namespace1"
 },
 "ip": "10.131.0.13",
 "datetime": "Mon, 13 Dec 2021 11:25:17 -0000",
 "performer": {
 "kind": "user",
 "name": "user1",
 "is_robot": false,
 "avatar": {
 "name": "user1",
 "hash": "5d40b245471708144de9760f2f18113d75aa2488ec82e12435b9de34a6565f73",
 "color": "#ad494a",
 "kind": "user"
 }
 },
 "namespace": {
 "kind": "org",
 "name": "namespace1",
 "avatar": {
 "name": "namespace1",
 "hash": "6cf18b5c19217bfc6df0e7d788746ff7e8201a68cba333fca0437e42379b984f",
 "color": "#e377c2",
 "kind": "org"
 }
 }
 }
],
 "next_page":
"gAAAAABhtzGDsH38x7pjWhD8MJq1_2FAgqUw2X9S2LoCLNPH65QJqB4XAU2qAxYb6QqtlcWj9eI6
DUiMN_q3e3I0agCvB2VPQ8rY75WeaiUzM3rQlMc4i6ElR78t8oUxVfNp1RMPIRQYYZyXP9h6E8LZZhq
TMs0S-SedaQJ3kVFtkxZqJwHVjgt23Ts2DonVoYwtKgI3bCC5"
}

$ curl -X GET -k -H "Authorization: Bearer qz9NZ2Np1f55CSZ3RVOvxjeUdkzYuCp0pKggABCD"
https://example-registry-quay-quay-enterprise.apps.example.com/api/v1/superuser/logs?
next_page=gAAAAABhtzGDsH38x7pjWhD8MJq1_2FAgqUw2X9S2LoCLNPH65QJqB4XAU2qAxYb6Q
qtlcWj9eI6DUiMN_q3e3I0agCvB2VPQ8rY75WeaiUzM3rQlMc4i6ElR78t8oUxVfNp1RMPIRQYYZyXP9h
6E8LZZhqTMs0S-SedaQJ3kVFtkxZqJwHVjgt23Ts2DonVoYwtKgI3bCC5 | jq

{

Red Hat Quay 3.9 Use Red Hat Quay

96

18.4.4. Directory synchronization

To enable directory synchronization for the team newteam in organization testadminorg, where the
corresponding group name in LDAP is ldapgroup:

$ curl -X POST -H "Authorization: Bearer 9rJYBR3v3pXcj5XqIA2XX6Thkwk4gld4TCYLLWDF" \
 -H "Content-type: application/json" \
 -d '{"group_dn": "cn=ldapgroup,ou=Users"}' \
 http://quay1-server:8080/api/v1/organization/testadminorg/team/newteam/syncing

To disable synchronization for the same team:

$ curl -X DELETE -H "Authorization: Bearer 9rJYBR3v3pXcj5XqIA2XX6Thkwk4gld4TCYLLWDF" \
 http://quay1-server:8080/api/v1/organization/testadminorg/team/newteam/syncing

18.4.5. Create a repository build via API

In order to build a repository from the specified input and tag the build with custom tags, users can use

 "start_time": "Sun, 12 Dec 2021 11:42:46 -0000",
 "end_time": "Tue, 14 Dec 2021 11:42:46 -0000",
 "logs": [
 {
 "kind": "create_repo",
 "metadata": {
 "repo": "t1",
 "namespace": "namespace1"
 },
 "ip": "10.131.0.13",
 "datetime": "Mon, 13 Dec 2021 11:25:07 -0000",
 "performer": {
 "kind": "user",
 "name": "user1",
 "is_robot": false,
 "avatar": {
 "name": "user1",
 "hash": "5d40b245471708144de9760f2f18113d75aa2488ec82e12435b9de34a6565f73",
 "color": "#ad494a",
 "kind": "user"
 }
 },
 "namespace": {
 "kind": "org",
 "name": "namespace1",
 "avatar": {
 "name": "namespace1",
 "hash": "6cf18b5c19217bfc6df0e7d788746ff7e8201a68cba333fca0437e42379b984f",
 "color": "#e377c2",
 "kind": "org"
 }
 }
 },
 ...
]
}

CHAPTER 18. USING THE RED HAT QUAY API

97

In order to build a repository from the specified input and tag the build with custom tags, users can use
requestRepoBuild endpoint. It takes the following data:

{
"docker_tags": [
 "string"
],
"pull_robot": "string",
"subdirectory": "string",
"archive_url": "string"
}

The archive_url parameter should point to a tar or zip archive that includes the Dockerfile and other
required files for the build. The file_id parameter was apart of our older build system. It cannot be used
anymore. If Dockerfile is in a sub-directory it needs to be specified as well.

The archive should be publicly accessible. OAuth app should have "Administer Organization" scope
because only organization admins have access to the robots' account tokens. Otherwise, someone could
get robot permissions by simply granting a build access to a robot (without having access themselves),
and use it to grab the image contents. In case of errors, check the json block returned and ensure the
archive location, pull robot, and other parameters are being passed correctly. Click "Download logs" on
the top-right of the individual build’s page to check the logs for more verbose messaging.

18.4.6. Create an org robot

$ curl -X PUT https://quay.io/api/v1/organization/{orgname}/robots/{robot shortname} \
 -H 'Authorization: Bearer <token>''

18.4.7. Trigger a build

$ curl -X POST https://quay.io/api/v1/repository/YOURORGNAME/YOURREPONAME/build/ \
 -H 'Authorization: Bearer <token>'

Python with requests

import requests
r = requests.post('https://quay.io/api/v1/repository/example/example/image', headers={'content-type':
'application/json', 'Authorization': 'Bearer <redacted>'}, data={[<request-body-contents>})
print(r.text)

18.4.8. Create a private repository

$ curl -X POST https://quay.io/api/v1/repository \
 -H 'Authorization: Bearer {token}' \
 -H 'Content-Type: application/json' \
 -d '{"namespace":"yournamespace", "repository":"yourreponame",
 "description":"descriptionofyourrepo", "visibility": "private"}' | jq

18.4.9. Create a mirrored repository

Minimal configuration

Red Hat Quay 3.9 Use Red Hat Quay

98

curl -X POST
 -H "Authorization: Bearer ${bearer_token}"
 -H "Content-Type: application/json"
 --data '{"external_reference": "quay.io/minio/mc", "external_registry_username": "", "sync_interval":
600, "sync_start_date": "2021-08-06T11:11:39Z", "root_rule": {"rule_kind": "tag_glob_csv",
"rule_value": ["latest"]}, "robot_username": "orga+robot"}'
https://${quay_registry}/api/v1/repository/${orga}/${repo}/mirror | jq

Extended configuration

$ curl -X POST
 -H "Authorization: Bearer ${bearer_token}"
 -H "Content-Type: application/json"
 --data '{"is_enabled": true, "external_reference": "quay.io/minio/mc", "external_registry_username":
"username", "external_registry_password": "password", "external_registry_config":
{"unsigned_images":true, "verify_tls": false, "proxy": {"http_proxy": "http://proxy.tld", "https_proxy":
"https://proxy.tld", "no_proxy": "domain"}}, "sync_interval": 600, "sync_start_date": "2021-08-
06T11:11:39Z", "root_rule": {"rule_kind": "tag_glob_csv", "rule_value": ["*"]}, "robot_username":
"orga+robot"}' https://${quay_registry}/api/v1/repository/${orga}/${repo}/mirror | jq

CHAPTER 18. USING THE RED HAT QUAY API

99

	Table of Contents
	PREFACE
	CHAPTER 1. USERS AND ORGANIZATIONS IN RED HAT QUAY
	1.1. RED HAT QUAY TENANCY MODEL
	1.2. CREATING USER ACCOUNTS
	1.3. DELETING A RED HAT QUAY USER FROM THE COMMAND LINE
	1.4. CREATING ORGANIZATION ACCOUNTS

	CHAPTER 2. CREATING A REPOSITORY
	2.1. CREATING AN IMAGE REPOSITORY VIA THE UI
	2.2. CREATING AN IMAGE REPOSITORY VIA DOCKER OR PODMAN

	CHAPTER 3. MANAGING ACCESS TO REPOSITORIES
	3.1. ALLOWING ACCESS TO USER REPOSITORIES
	3.1.1. Allowing user access to a user repository

	3.2. ALLOWING ROBOT ACCESS TO A USER REPOSITORY
	3.3. ALLOWING ACCESS TO ORGANIZATION REPOSITORIES
	3.3.1. Adding a Team to an organization
	3.3.2. Setting a Team role
	3.3.3. Adding users to a Team

	CHAPTER 4. WORKING WITH TAGS
	4.1. VIEWING AND MODIFYING TAGS
	4.1.1. Adding a new tag to a tagged image
	4.1.2. Moving a tag
	4.1.3. Deleting a tag
	4.1.4. Viewing tag history and going back in time
	4.1.4.1. Viewing tag history
	4.1.4.2. Going back in time

	4.1.5. Fetching an image by tag or digest

	4.2. TAG EXPIRATION
	4.2.1. Setting tag expiration from a Dockerfile
	4.2.2. Setting tag expiration from the repository

	4.3. SECURITY SCANNING

	CHAPTER 5. VIEWING AND EXPORTING LOGS
	5.1. VIEWING LOGS
	5.2. EXPORTING REPOSITORY LOGS

	CHAPTER 6. AUTOMATICALLY BUILDING DOCKERFILES WITH BUILD WORKERS
	6.1. ARCHITECTURE OVERVIEW
	6.1.1. Build manager
	6.1.2. Build workers’ control plane
	6.1.3. Orchestrator

	6.2. OPENSHIFT REQUIREMENTS
	6.3. ORCHESTRATOR REQUIREMENTS
	6.4. SETTING UP RED HAT QUAY BUILDERS WITH OPENSHIFT
	6.4.1. OpenShift TLS component
	6.4.2. Prepare OpenShift for Red Hat Quay Builds
	6.4.3. Enable Builders and add Build Configuration to Red Hat Quay’s Configuration Bundle

	6.5. OPENSHIFT ROUTES LIMITATION
	6.6. TROUBLESHOOTING BUILDS
	6.6.1. DEBUG config flag

	6.7. SETTING UP GITHUB BUILDS (OPTIONAL)

	CHAPTER 7. BUILDING DOCKERFILES
	7.1. VIEWING AND MANAGING BUILDS
	7.2. MANUALLY STARTING A BUILD
	7.3. BUILD TRIGGERS
	7.3.1. Creating a new build trigger
	7.3.2. Manually triggering a build trigger
	7.3.3. Build Contexts

	CHAPTER 8. SETTING UP A CUSTOM GIT TRIGGER
	8.1. CREATING A TRIGGER
	8.2. POST TRIGGER-CREATION SETUP
	8.2.1. SSH public key access
	8.2.2. Webhook

	CHAPTER 9. SKIPPING A SOURCE CONTROL-TRIGGERED BUILD
	CHAPTER 10. SET UP GITHUB BUILD TRIGGER TAGS
	10.1. UNDERSTANDING TAG NAMING FOR BUILD TRIGGERS
	10.2. SETTING TAG NAMES FOR BUILD TRIGGERS

	CHAPTER 11. CREATING AN OAUTH APPLICATION IN GITHUB
	11.1. CREATE NEW GITHUB APPLICATION

	CHAPTER 12. REPOSITORY NOTIFICATIONS
	12.1. REPOSITORY EVENTS
	12.1.1. Repository Push
	12.1.2. Dockerfile Build Queued
	12.1.3. Dockerfile Build Started
	12.1.4. Dockerfile Build Successfully Completed
	12.1.5. Dockerfile Build Failed
	12.1.6. Dockerfile Build Cancelled
	12.1.7. Vulnerability Detected

	12.2. NOTIFICATION ACTIONS
	12.2.1. Quay Notification
	12.2.2. E-mail
	12.2.3. Webhook POST
	12.2.4. Flowdock Notification
	12.2.5. Hipchat Notification
	12.2.6. Slack Notification

	CHAPTER 13. OPEN CONTAINER INITIATIVE SUPPORT AND RED HAT QUAY
	13.1. HELM AND OCI PREREQUISITES
	13.1.1. Installing Helm
	13.1.2. Upgrading to Helm 3.8
	13.1.3. Enabling your system to trust SSL/TLS certificates used by Red Hat Quay
	13.1.4. Creating an organization for Helm in Red Hat Quay

	13.2. USING HELM CHARTS WITH RED HAT QUAY
	13.3. COSIGN OCI SUPPORT WITH RED HAT QUAY
	13.4. INSTALLING AND USING COSIGN FOR RED HAT QUAY
	13.5. USING OTHER ARTIFACT TYPES WITH RED HAT QUAY
	13.6. DISABLING OCI ARTIFACTS IN RED HAT QUAY

	CHAPTER 14. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW
	14.1. QUOTA MANAGEMENT ARCHITECTURE
	14.2. QUOTA MANAGEMENT LIMITATIONS
	14.3. QUOTA MANAGEMENT CONFIGURATION FIELDS
	14.3.1. Example quota management configuration

	14.4. ESTABLISHING QUOTA WITH THE RED HAT QUAY API
	14.4.1. Setting the quota
	14.4.2. Viewing the quota
	14.4.3. Modifying the quota
	14.4.4. Pushing images
	14.4.4.1. Pushing ubuntu:18.04
	14.4.4.2. Using the API to view quota usage
	14.4.4.3. Pushing another image

	14.4.5. Rejecting pushes using quota limits
	14.4.5.1. Setting reject and warning limits
	14.4.5.2. Viewing reject and warning limits
	14.4.5.3. Pushing an image when the reject limit is exceeded
	14.4.5.4. Notifications for limits exceeded

	CHAPTER 15. RED HAT QUAY AS A PROXY CACHE FOR UPSTREAM REGISTRIES
	15.1. PROXY CACHE ARCHITECTURE
	15.2. PROXY CACHE LIMITATIONS
	15.3. USING RED HAT QUAY TO PROXY A REMOTE REGISTRY
	15.3.1. Leveraging storage quota limits in proxy organizations
	15.3.1.1. Testing the storage quota limits feature in proxy organizations

	CHAPTER 16. RED HAT QUAY BUILD ENHANCEMENTS
	16.1. RED HAT QUAY ENHANCED BUILD ARCHITECTURE
	16.2. RED HAT QUAY BUILD LIMITATIONS
	16.3. CREATING A RED HAT QUAY BUILDERS ENVIRONMENT WITH OPENSHIFT CONTAINER PLATFORM
	16.3.1. OpenShift Container Platform TLS component
	16.3.2. Using OpenShift Container Platform for Red Hat Quay builders
	16.3.2.1. Preparing OpenShift Container Platform for virtual builders
	16.3.2.2. Manually adding SSL/TLS certificates
	16.3.2.3. Using the UI to create a build trigger
	16.3.2.4. Modifying your AWS S3 storage bucket
	16.3.2.5. Modifying your Google Cloud Platform object bucket

	CHAPTER 17. USING THE RED HAT QUAY V2 UI
	17.1. V2 USER INTERFACE CONFIGURATION
	17.1.1. Creating a new organization in the Red Hat Quay v2 UI
	17.1.2. Deleting an organization using the Red Hat Quay v2 UI
	17.1.3. Creating a new repository using the Red Hat Quay v2 UI
	17.1.4. Deleting a repository using the Red Hat Quay v2 UI
	17.1.5. Pushing an image to the Red Hat Quay v2 UI
	17.1.6. Deleting an image using the Red Hat Quay v2 UI
	17.1.7. Creating a robot account using the Red Hat Quay v2 UI
	17.1.8. Organization settings for the Red Hat Quay v2 UI
	17.1.9. Viewing image tag information using the Red Hat Quay v2 UI
	17.1.10. Adjusting repository settings using the Red Hat Quay v2 UI

	17.2. ENABLING THE RED HAT QUAY LEGACY UI

	CHAPTER 18. USING THE RED HAT QUAY API
	18.1. ACCESSING THE QUAY API FROM QUAY.IO
	18.2. CREATE OAUTH ACCESS TOKEN
	18.3. ACCESSING YOUR QUAY API FROM A WEB BROWSER
	18.4. ACCESSING THE RED HAT QUAY API FROM THE COMMAND LINE
	18.4.1. Get superuser information
	18.4.2. Creating a superuser using the API
	18.4.3. List usage logs
	18.4.3.1. Example for pagination

	18.4.4. Directory synchronization
	18.4.5. Create a repository build via API
	18.4.6. Create an org robot
	18.4.7. Trigger a build
	18.4.8. Create a private repository
	18.4.9. Create a mirrored repository

