
Red Hat Quay 3.9

Troubleshooting Red Hat Quay

Troubleshooting Red Hat Quay

Last Updated: 2024-01-15

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

Troubleshooting Red Hat Quay

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Troubleshooting Red Hat Quay

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. GETTING SUPPORT
1.1. ABOUT THE RED HAT KNOWLEDGEBASE
1.2. SEARCHING THE RED HAT KNOWLEDGEBASE
1.3. SUBMITTING A SUPPORT CASE

CHAPTER 2. RUNNING RED HAT QUAY IN DEBUG MODE
2.1. RUNNING A STANDALONE RED HAT QUAY DEPLOYMENT IN DEBUG MODE
2.2. RUNNING THE RED HAT QUAY OPERATOR IN DEBUG MODE

CHAPTER 3. LOGGING INFORMATION FOR RED HAT QUAY
3.1. OBTAINING LOG INFORMATION FOR RED HAT QUAY
3.2. EXAMINING VERBOSE LOGS

CHAPTER 4. CONFIGURATION INFORMATION FOR RED HAT QUAY
4.1. OBTAINING CONFIGURATION INFORMATION FOR RED HAT QUAY
4.2. OBTAINING DATABASE CONFIGURATION INFORMATION

CHAPTER 5. PERFORMING HEALTH CHECKS ON RED HAT QUAY DEPLOYMENTS
5.1. RED HAT QUAY HEALTH CHECK ENDPOINTS
5.2. NAVIGATING TO A RED HAT QUAY HEALTH CHECK ENDPOINT

CHAPTER 6. TROUBLESHOOTING RED HAT QUAY COMPONENTS
6.1. TROUBLESHOOTING THE RED HAT QUAY DATABASE

6.1.1. Troubleshooting Red Hat Quay database issues
6.1.1.1. Interacting with the Red Hat Quay database
6.1.1.2. Troubleshooting crashloopbackoff states
6.1.1.3. Checking the connectivity between Red Hat Quay and the database pod
6.1.1.4. Checking resource allocation

6.1.2. Resetting superuser passwords on Red Hat Quay standalone deployments
6.1.3. Resetting superuser passwords on the Red Hat Quay Operator

6.2. TROUBLESHOOTING RED HAT QUAY AUTHENTICATION
6.2.1. Troubleshooting Red Hat Quay authentication and authorization issues for specific users

6.3. TROUBLESHOOTING RED HAT QUAY OBJECT STORAGE
6.3.1. Troubleshooting Red Hat Quay object storage issues

6.4. GEO-REPLICATION
6.4.1. Troubleshooting geo-replication for Red Hat Quay

6.4.1.1. Checking data replication in backend buckets
6.4.1.2. Checking the status of your backend storage

6.5. REPOSITORY MIRRORING
6.5.1. Troubleshooting repository mirroring

6.5.1.1. Verifying authentication and permissions
6.6. CLAIR FOR RED HAT QUAY

6.6.1. Troubleshooting Clair issue
6.6.1.1. Verifying image compatibility
6.6.1.2. Allowlisting Clair updaters
6.6.1.3. Updating Clair scanner and its dependencies
6.6.1.4. Enabling debug mode for Clair
6.6.1.5. Checking Clair configuration
6.6.1.6. Inspect image metadata

3

4
4
4
5

6
6
6

7
7
8

9
9
11

12
12
13

14
14
15
15
16
17
18
19
21
22
23
23
24
24
25
25
25
26
26
26
27
27
27
27
27
28
28
28

Table of Contents

1

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

2

PREFACE
Red Hat offers administrators tools for gathering data for your Red Hat Quay deployment. You can use
this data to troubleshoot your Red Hat Quay deployment yourself, or file a support ticket.

PREFACE

3

CHAPTER 1. GETTING SUPPORT
If you experience difficulty with a procedure described in this documentation, or with Red Hat Quay in
general, visit the Red Hat Customer Portal . From the Customer Portal, you can:

Search or browse through the Red Hat Knowledgebase of articles and solutions relating to Red
Hat products.

Submit a support case to Red Hat Support.

Access other product documentation.

To identify issues with your deployment, you can use the Red Hat Quay debugging tool, or check the
health endpoint of your deployment to obtain information about your problem. After you have
debugged or obtained health information about your deployment, you can search the Red Hat
Knowledgebase for a solution or file a support ticket.

If you have a suggestion for improving this documentation or have found an error, submit a Jira issue to
the ProjectQuay project. Provide specific details, such as the section name and Red Hat Quay version.

1.1. ABOUT THE RED HAT KNOWLEDGEBASE

The Red Hat Knowledgebase provides rich content aimed at helping you make the most of Red Hat’s
products and technologies. The Red Hat Knowledgebase consists of articles, product documentation,
and videos outlining best practices on installing, configuring, and using Red Hat products. In addition, you
can search for solutions to known issues, each providing concise root cause descriptions and remedial
steps.

The Red Hat Quay Support Team also maintains a Consolidate troubleshooting article for Red Hat
Quay that details solutions to common problems. This is an evolving document that can help users
navigate various issues effectively and efficiently.

1.2. SEARCHING THE RED HAT KNOWLEDGEBASE

In the event of an Red Hat Quay issue, you can perform an initial search to determine if a solution
already exists within the Red Hat Knowledgebase.

Prerequisites

You have a Red Hat Customer Portal account.

Procedure

1. Log in to the Red Hat Customer Portal .

2. In the main Red Hat Customer Portal search field, input keywords and strings relating to the
problem, including:

Red Hat Quay components (such as database)

Related procedure (such as installation)

Warnings, error messages, and other outputs related to explicit failures

3. Click Search.

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

4

http://access.redhat.com
https://issues.redhat.com/secure/CreateIssue!default.jspa
https://access.redhat.com/knowledgebase
https://access.redhat.com/articles/6975387
http://access.redhat.com

4. Select the Red Hat Quay product filter.

5. Select the Knowledgebase content type filter.

1.3. SUBMITTING A SUPPORT CASE

Prerequisites

You have a Red Hat Customer Portal account.

You have a Red Hat standard or premium Subscription.

Procedure

1. Log in to the Red Hat Customer Portal and select Open a support case.

2. Select the Troubleshoot tab.

3. For Summary, enter a concise but descriptive problem summary and further details about the
symptoms being experienced, as well as your expectations.

4. Review the list of suggested Red Hat Knowledgebase solutions for a potential match against the
problem that is being reported. If the suggested articles do not address the issue, continue to
the following step.

5. For Product, select Red Hat Quay.

6. Select the version of Red Hat Quay that you are using.

7. Click Continue.

8. Optional. Drag and drop, paste, or browse to upload a file. This could be debug logs gathered
from your Red Hat Quay deployment.

9. Click Get support to file your ticket.

CHAPTER 1. GETTING SUPPORT

5

http://access.redhat.com

CHAPTER 2. RUNNING RED HAT QUAY IN DEBUG MODE
Red Hat recommends gathering your debugging information when opening a support case. Running Red
Hat Quay in debug mode provides verbose logging to help administrators find more information about
various issues. Enabling debug mode can speed up the process to reproduce errors and validate a
solution for things like geo-replication deployments, Operator deployments, standalone Red Hat Quay
deployments, object storage issues, and so on. Additionally, it helps the Red Hat Support to perform a
root cause analysis.

2.1. RUNNING A STANDALONE RED HAT QUAY DEPLOYMENT IN
DEBUG MODE

Running Red Hat Quay in debug mode provides verbose logging to help administrators find more
information about various issues. Enabling debug mode can speed up the process to reproduce errors
and validate a solution.

Use the following procedure to run a standalone deployment of Red Hat Quay in debug mode.

Procedure

1. Enter the following command to run your standalone Red Hat Quay deployment in debug mode:

2. To view the debug logs, enter the following command:

2.2. RUNNING THE RED HAT QUAY OPERATOR IN DEBUG MODE

Use the following procedure to run the Red Hat Quay Operator in debug mode.

Procedure

1. Enter the following command to edit the QuayRegistry custom resource definition:

2. Update the QuayRegistry to add the following parameters:

3. After the Red Hat Quay Operator has restarted with debugging enabled, try pulling an image
from the registry. If it is still slow, dump all dogs from all Quay pods to a file, and check the files
for more information.

$ podman run -p 443:8443 -p 80:8080 -e DEBUGLOG=true -v /config:/conf/stack -v
/storage:/datastorage -d {productrepo}/{quayimage}:{productminv}

$ podman logs quay

$ oc edit quayregistry <quay_registry_name> -n <quay_namespace>

spec:
 - kind: quay
 managed: true
 overrides:
 env:
 - name: DEBUGLOG
 value: "true"

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

6

CHAPTER 3. LOGGING INFORMATION FOR RED HAT QUAY
Obtaining log information using can be beneficial in various ways for managing, monitoring, and
troubleshooting applications running in containers or pods. Some of the reasons why obtaining log
information is valuable include the following:

Debugging and Troubleshooting: Logs provide insights into what’s happening inside the
application, allowing developers and system administrators to identify and resolve issues. By
analyzing log messages, one can identify errors, exceptions, warnings, or unexpected behavior
that might occur during the application’s execution.

Performance Monitoring: Monitoring logs helps to track the performance of the application
and its components. Monitoring metrics like response times, request rates, and resource
utilization can help in optimizing and scaling the application to meet the demand.

Security Analysis: Logs can be essential in auditing and detecting potential security breaches.
By analyzing logs, suspicious activities, unauthorized access attempts, or any abnormal behavior
can be identified, helping in detecting and responding to security threats.

Tracking User Behavior: In some cases, logs can be used to track user activities and behavior.
This is particularly important for applications that handle sensitive data, where tracking user
actions can be useful for auditing and compliance purposes.

Capacity Planning: Log data can be used to understand resource utilization patterns, which can
aid in capacity planning. By analyzing logs, one can identify peak usage periods, anticipate
resource needs, and optimize infrastructure accordingly.

Error Analysis: When errors occur, logs can provide valuable context about what happened
leading up to the error. This can help in understanding the root cause of the issue and
facilitating the debugging process.

Verification of Deployment: Logging during the deployment process can help verify if the
application is starting correctly and if all components are functioning as expected.

Continuous Integration/Continuous Deployment (CI/CD): In CI/CD pipelines, logging is
essential to capture build and deployment statuses, allowing teams to monitor the success or
failure of each stage.

3.1. OBTAINING LOG INFORMATION FOR RED HAT QUAY

Log information can be obtained for all types of Red Hat Quay deployments, including geo-replication
deployments, standalone deployments, and Operator deployments. Log information can also be
obtained for mirrored repositories. It can help you troubleshoot authentication and authorization issues,
and object storage issues. After you have obtained the necessary log information, you can search the
Red Hat Knowledgebase for a solution, or file a support ticket with the Red Hat Support team.

Use the following procedure to obtain logs for your Red Hat Quay deployment.

Procedure

If you are using the Red Hat Quay Operator on OpenShift Container Platform, enter the
following command to view the logs:

$ oc logs <quay_pod_name>

CHAPTER 3. LOGGING INFORMATION FOR RED HAT QUAY

7

https://access.redhat.com/knowledgebase

If you are on a standalone Red Hat Quay deployment, enter the following command:

Example output

3.2. EXAMINING VERBOSE LOGS

Red Hat Quay does not have verbose logs, however, with the following procedures, you can obtain a
detailed status check of your database pod or container.

Procedure

1. Enter the following commands to examine verbose database logs.

a. If you are using the Red Hat Quay Operator on OpenShift Container Platform, enter the
following commands:

b. If you are using a standalone deployment of Red Hat Quay, enter the following commands:

$ podman logs <quay_container_name>

...
gunicorn-web stdout | 2023-01-20 15:41:52,071 [205] [DEBUG] [app] Starting request:
urn:request:0d88de25-03b0-4cf9-b8bc-87f1ac099429 (/oauth2/azure/callback) {'X-
Forwarded-For': '174.91.79.124'}
...

$ oc logs <quay_pod_name> --previous

$ oc logs <quay_pod_name> --previous -c <container_name>

$ oc cp <quay_pod_name>:/var/lib/pgsql/data/userdata/log/*
/path/to/desired_directory_on_host

$ podman logs <quay_container_name> --previous

$ podman logs <quay_container_name> --previous -c <container_name>

$ podman cp <quay_container_name>:/var/lib/pgsql/data/userdata/log/*
/path/to/desired_directory_on_host

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

8

CHAPTER 4. CONFIGURATION INFORMATION FOR RED HAT
QUAY

Checking a configuration YAML can help identify and resolve various issues related to the configuration
of Red Hat Quay. Checking the configuration YAML can help you address the following issues:

Incorrect Configuration Parameters: If the database is not functioning as expected or is
experiencing performance issues, your configuration parameters could be at fault. By checking
the configuration YAML, administrators can ensure that all the required parameters are set
correctly and match the intended settings for the database.

Resource Limitations: The configuration YAML might specify resource limits for the database,
such as memory and CPU limits. If the database is running into resource constraints or
experiencing contention with other services, adjusting these limits can help optimize resource
allocation and improve overall performance.

Connectivity Issues: Incorrect network settings in the configuration YAML can lead to
connectivity problems between the application and the database. Ensuring that the correct
network configurations are in place can resolve issues related to connectivity and
communication.

Data Storage and Paths: The configuration YAML may include paths for storing data and logs.
If the paths are misconfigured or inaccessible, the database may encounter errors while reading
or writing data, leading to operational issues.

Authentication and Security: The configuration YAML may contain authentication settings,
including usernames, passwords, and access controls. Verifying these settings is crucial for
maintaining the security of the database and ensuring only authorized users have access.

Plugin and Extension Settings: Some databases support extensions or plugins that enhance
functionality. Issues may arise if these plugins are misconfigured or not loaded correctly.
Checking the configuration YAML can help identify any problems with plugin settings.

Replication and High Availability Settings: In clustered or replicated database setups, the
configuration YAML may define replication settings and high availability configurations.
Incorrect settings can lead to data inconsistency and system instability.

Backup and Recovery Options: The configuration YAML might include backup and recovery
options, specifying how data backups are performed and how data can be recovered in case of
failures. Validating these settings can ensure data safety and successful recovery processes.

By checking your configuration YAML, Red Hat Quay administrators can detect and resolve these issues
before they cause significant disruptions to the application or service relying on the database.

4.1. OBTAINING CONFIGURATION INFORMATION FOR RED HAT QUAY

Configuration information can be obtained for all types of Red Hat Quay deployments, include
standalone, Operator, and geo-replication deployments. Obtaining configuration information can help
you resolve issues with authentication and authorization, your database, object storage, and repository
mirroring. After you have obtained the necessary configuration information, you can update your
config.yaml file, search the Red Hat Knowledgebase for a solution, or file a support ticket with the Red
Hat Support team.

Procedure

1. To obtain configuration information on Red Hat Quay Operator deployments, you can use oc

CHAPTER 4. CONFIGURATION INFORMATION FOR RED HAT QUAY

9

https://access.redhat.com/knowledgebase

1. To obtain configuration information on Red Hat Quay Operator deployments, you can use oc
exec, oc cp, or oc rsync.

a. To use the oc exec command, enter the following command:

This command returns your config.yaml file directly to your terminal.

b. To use the oc copy command, enter the following commands:

To display this information in your terminal, enter the following command:

c. To use the oc rsync command, enter the following commands:

To display this information in your terminal, enter the following command:

Example output

2. To obtain configuration information on standalone Red Hat Quay deployments, you can use
podman cp or podman exec.

a. To use the podman copy command, enter the following commands:

To display this information in your terminal, enter the following command:

$ oc exec -it <quay_pod_name> -- cat /conf/stack/config.yaml

$ oc cp <quay_pod_name>:/conf/stack/config.yaml /tmp/config.yaml

$ cat /tmp/config.yaml

oc rsync <quay_pod_name>:/conf/stack/ /tmp/local_directory/

$ cat /tmp/local_directory/config.yaml

DISTRIBUTED_STORAGE_CONFIG:
local_us:
- RHOCSStorage
- access_key: redacted
 bucket_name: lht-quay-datastore-68fff7b8-1b5e-46aa-8110-c4b7ead781f5
 hostname: s3.openshift-storage.svc.cluster.local
 is_secure: true
 port: 443
 secret_key: redacted
 storage_path: /datastorage/registry
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS:
- local_us
DISTRIBUTED_STORAGE_PREFERENCE:
- local_us

$ podman cp <quay_container_id>:/conf/stack/config.yaml /tmp/local_directory/

$ cat /tmp/local_directory/config.yaml

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

10

b. To use podman exec, enter the following commands:

Example output

4.2. OBTAINING DATABASE CONFIGURATION INFORMATION

You can obtain configuration information about your database by using the following procedure.

WARNING

Interacting with the PostgreSQL database is potentially destructive. It is highly
recommended that you perform the following procedure with the help of a Red Hat
Quay Support Specialist.

Procedure

If you are using the Red Hat Quay Operator on OpenShift Container Platform, enter the
following command:

If you are using a standalone deployment of Red Hat Quay, enter the following command:

$ podman exec -it <quay_container_id> cat /conf/stack/config.yaml

BROWSER_API_CALLS_XHR_ONLY: false
ALLOWED_OCI_ARTIFACT_TYPES:
 application/vnd.oci.image.config.v1+json:
 - application/vnd.oci.image.layer.v1.tar+zstd
 application/vnd.sylabs.sif.config.v1+json:
 - application/vnd.sylabs.sif.layer.v1+tar
AUTHENTICATION_TYPE: Database
AVATAR_KIND: local
BUILDLOGS_REDIS:
 host: quay-server.example.com
 password: strongpassword
 port: 6379
DATABASE_SECRET_KEY: 05ee6382-24a6-43c0-b30f-849c8a0f7260
DB_CONNECTION_ARGS: {}



$ oc exec -it <database_pod> -- cat /var/lib/pgsql/data/userdata/postgresql.conf

$ podman exec -it <database_container> cat /var/lib/pgsql/data/userdata/postgresql.conf

CHAPTER 4. CONFIGURATION INFORMATION FOR RED HAT QUAY

11

CHAPTER 5. PERFORMING HEALTH CHECKS ON RED HAT
QUAY DEPLOYMENTS

Health check mechanisms are designed to assess the health and functionality of a system, service, or
component. Health checks help ensure that everything is working correctly, and can be used to identify
potential issues before they become critical problems. By monitoring the health of a system, Red Hat
Quay administrators can address abnormalities or potential failures for things like geo-replication
deployments, Operator deployments, standalone Red Hat Quay deployments, object storage issues,
and so on. Performing health checks can also help reduce the likelihood of encountering troubleshooting
scenarios.

Health check mechanisms can play a role in diagnosing issues by providing valuable information about
the system’s current state. By comparing health check results with expected benchmarks or predefined
thresholds, deviations or anomalies can be identified quicker.

5.1. RED HAT QUAY HEALTH CHECK ENDPOINTS

IMPORTANT

Links contained herein to any external website(s) are provided for convenience only. Red
Hat has not reviewed the links and is not responsible for the content or its availability. The
inclusion of any link to an external website does not imply endorsement by Red Hat of the
website or its entities, products, or services. You agree that Red Hat is not responsible or
liable for any loss or expenses that may result due to your use of (or reliance on) the
external site or content.

Red Hat Quay has several health check endpoints. The following table shows you the health check, a
description, an endpoint, and an example output.

Table 5.1. Health check endpoints

Health
check

Description Endpoint Example output

instance The instance endpoint acquires the
entire status of the specific Red Hat
Quay instance. Returns a dict with
key-value pairs for the following: auth,
database, disk_space,
registry_gunicorn, service_key,
and web_gunicorn. Returns a
number indicating the health check
response of either 200, which indicates
that the instance is healthy, or 503,
which indicates an issue with your
deployment.

https://{quay-ip-
endpoint}/health/ins
tance or
https://{quay-ip-
endpoint}/health

{"data":{"services":
{"auth":true,"databa
se":true,"disk_spac
e":true,"registry_gu
nicorn":true,"servic
e_key":true,"web_g
unicorn":true}},"stat
us_code":200}

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

12

https:/health/instance
https:/health

endtoend The endtoend endpoint conducts
checks on all services of your Red Hat
Quay instance. Returns a dict with
key-value pairs for the following: auth,
database, redis, storage. Returns a
number indicating the health check
response of either 200, which indicates
that the instance is healthy, or 503,
which indicates an issue with your
deployment.

https://{quay-ip-
endpoint}/health/en
dtoend

{"data":{"services":
{"auth":true,"databa
se":true,"redis":true
,"storage":true}},"st
atus_code":200}

warning The warning endpoint conducts a
check on the warnings. Returns a dict
with key-value pairs for the following:
disk_space_warning. Returns a
number indicating the health check
response of either 200, which indicates
that the instance is healthy, or 503,
which indicates an issue with your
deployment.

https://{quay-ip-
endpoint}/health/war
ning

{"data":{"services":
{"disk_space_warni
ng":true}},"status_c
ode":503}

Health
check

Description Endpoint Example output

5.2. NAVIGATING TO A RED HAT QUAY HEALTH CHECK ENDPOINT

Use the following procedure to navigate to the instance endpoint. This procedure can be repeated for
endtoend and warning endpoints.

Procedure

1. On your web browser, navigate to https://{quay-ip-endpoint}/health/instance.

2. You are taken to the health instance page, which returns information like the following:

For Red Hat Quay, "status_code": 200 means that the instance is health. Conversely, if you
receive "status_code": 503, there is an issue with your deployment.

{"data":{"services":
{"auth":true,"database":true,"disk_space":true,"registry_gunicorn":true,"service_key":true,"we
b_gunicorn":true}},"status_code":200}

CHAPTER 5. PERFORMING HEALTH CHECKS ON RED HAT QUAY DEPLOYMENTS

13

https:/health/endtoend
https:/health/warning
https:/health/instance

CHAPTER 6. TROUBLESHOOTING RED HAT QUAY
COMPONENTS

This document focuses on troubleshooting specific components within Red Hat Quay, providing
targeted guidance for resolving issues that might arise. Designed for system administrators, operators,
and developers, this resource aims to help diagnose and troubleshoot problems related to individual
components of Red Hat Quay.

In addition to the following procedures, Red Hat Quay components can also be troubleshot by running
Red Hat Quay in debug mode, obtaining log information, obtaining configuration information, and
performing health checks on endpoints.

By using the following procedures, you are able to troubleshoot common component issues. Afterwards,
you can search for solutions on the Red Hat Knowledgebase , or file a support ticket with the Red Hat
Support team.

6.1. TROUBLESHOOTING THE RED HAT QUAY DATABASE

The PostgreSQL database used for Red Hat Quay store various types of information related to
container images and their management. Some of the key pieces of information that the PostgreSQL
database stores includes:

Image Metadata. The database stores metadata associated with container images, such as
image names, versions, creation timestamps, and the user or organization that owns the image.
This information allows for easy identification and organization of container images within the
registry.

Image Tags. Red Hat Quay allows users to assign tags to container images, enabling convenient
labeling and versioning. The PostgreSQL database maintains the mapping between image tags
and their corresponding image manifests, allowing users to retrieve specific versions of
container images based on the provided tags.

Image Layers. Container images are composed of multiple layers, which are stored as individual
objects. The database records information about these layers, including their order, checksums,
and sizes. This data is crucial for efficient storage and retrieval of container images.

User and Organization Data. Red Hat Quay supports user and organization management,
allowing users to authenticate and manage access to container images. The PostgreSQL
database stores user and organization information, including usernames, email addresses,
authentication tokens, and access permissions.

Repository Information. Red Hat Quay organizes container images into repositories, which act
as logical units for grouping related images. The database maintains repository data, including
names, descriptions, visibility settings, and access control information, enabling users to manage
and share their repositories effectively.

Event Logs. Red Hat Quay tracks various events and activities related to image management
and repository operations. These event logs, including image pushes, pulls, deletions, and
repository modifications, are stored in the PostgreSQL database, providing an audit trail and
allowing administrators to monitor and analyze system activities.

The content in this section covers the following procedures:

Checking the type of deployment: Determine if the database is deployed as a container on a
virtual machine or as a pod on OpenShift Container Platform.

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

14

https://access.redhat.com/knowledgebase

Checking the container or pod status: Verify the status of the database pod or container
using specific commands based on the deployment type.

Examining the database container or pod logs: Access and examine the logs of the database
pod or container, including commands for different deployment types.

Checking the connectivity between Red Hat Quay and the database pod: Check the
connectivity between Red Hat Quay and the database pod using relevant commands.

Checking the database configuration: Check the database configuration at various levels
(OpenShift Container Platform or PostgreSQL level) based on the deployment type.

Checking resource allocation: Monitor resource allocation for the Red Hat Quay deployment,
including disk usage and other resource usage.

Interacting with the Red Hat Quay database: Learn how to interact with the PostgreSQL
database, including commands to access and query databases.

6.1.1. Troubleshooting Red Hat Quay database issues

Use the following procedures to troubleshoot the PostgreSQL database.

6.1.1.1. Interacting with the Red Hat Quay database

Use the following procedure to interact with the PostgreSQL database.

WARNING

Interacting with the PostgreSQL database is potentially destructive. It is highly
recommended that you perform the following procedure with the help of a Red Hat
Quay Support Specialist.

NOTE

Interacting with the PostgreSQL database can also be used to troubleshoot authorization
and authentication issues.

Procedure

1. Exec into the Red Hat Quay database.

a. Enter the following commands to exec into the Red Hat Quay database pod on OpenShift
Container Platform:

b. Enter the following command to exec into the Red Hat Quay database on a standalone
deployment:



$ oc exec -it <quay_database_pod> -- psql

$ sudo podman exec -it <quay_container_name> /bin/bash

CHAPTER 6. TROUBLESHOOTING RED HAT QUAY COMPONENTS

15

2. Enter the PostgreSQL shell.

WARNING

Interacting with the PostgreSQL database is potentially destructive. It is
highly recommended that you perform the following procedure with the
help of a Red Hat Quay Support Specialist.

a. If you are using the Red Hat Quay Operator, enter the following command to enter the
PostgreSQL shell:

b. If you are on a standalone Red Hat Quay deployment, enter the following command to enter
the PostgreSQL shell:

6.1.1.2. Troubleshooting crashloopbackoff states

Use the following procedure to troueblshoot crashloopbackoff states.

Procedure

1. If your container or pod is in a crashloopbackoff state, you can enter the following commands.

a. Enter the following command to scale down the Red Hat Quay Operator:

Example output

b. Enter the following command to scale down the Red Hat Quay database:

Example output

c. Enter the following command to edit the Red Hat Quay database:



$ oc rsh <quay_pod_name> psql -U your_username -d your_database_name

bash-4.4$ psql -U your_username -d your_database_name

$ oc scale deployment/quay-operator.v3.8.z --replicas=0

deployment.apps/quay-operator.v3.8.z scaled

$ oc scale deployment/<quay_database> --replicas=0

deployment.apps/<quay_database> scaled

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

16

1

WARNING

Interacting with the PostgreSQL database is potentially destructive. It is
highly recommended that you perform the following procedure with the
help of a Red Hat Quay Support Specialist.

Add this line in the same indentation.

Example output

d. Execute the following command inside of your <quay_database>:

6.1.1.3. Checking the connectivity between Red Hat Quay and the database pod



$ oc edit deployment <quay_database>

...
 template:
 metadata:
 creationTimestamp: null
 labels:
 quay-component: <quay_database>
 quay-operator/quayregistry: quay-operator.v3.8.z
 spec:
 containers:
 - env:
 - name: POSTGRESQL_USER
 value: postgres
 - name: POSTGRESQL_DATABASE
 value: postgres
 - name: POSTGRESQL_PASSWORD
 value: postgres
 - name: POSTGRESQL_ADMIN_PASSWORD
 value: postgres
 - name: POSTGRESQL_MAX_CONNECTIONS
 value: "1000"
 image: registry.redhat.io/rhel8/postgresql-
10@sha256:a52ad402458ec8ef3f275972c6ebed05ad64398f884404b9bb8e3010c5c95291

 imagePullPolicy: IfNotPresent
 name: postgres
 command: ["/bin/bash", "-c", "sleep 86400"] 1
...

deployment.apps/<quay_database> edited

$ oc exec -it <quay_database> -- cat /var/lib/pgsql/data/userdata/postgresql/logs/*
/path/to/desired_directory_on_host

CHAPTER 6. TROUBLESHOOTING RED HAT QUAY COMPONENTS

17

Use the following procedure to check the connectivity between Red Hat Quay and the database pod

Procedure

1. Check the connectivity between Red Hat Quay and the database pod.

a. If you are using the Red Hat Quay Operator on OpenShift Container Platform, enter the
following command:

b. If you are using a standalone deployment of Red Hat Quay, enter the following command:

6.1.1.4. Checking resource allocation

Use the following procedure to check resource allocation.

Procedure

1. Obtain a list of running containers.

2. Monitor disk usage of your Red Hat Quay deployment.

a. If you are using the Red Hat Quay Operator on OpenShift Container Platform, enter the
following command:

b. If you are using a standalone deployment of Red Hat Quay, enter the following command:

3. Monitor other resource usage.

a. Enter the following command to check resource allocation on a Red Hat Quay Operator
deployment:

b. Enter the following command to check the status of a specific pod on a standalone
deployment of Red Hat Quay:

c. Enter the following command to check the status of a specific container on a standalone
deployment of Red Hat Quay:

The following information is returned:

CPU %. The percentage of CPU usage by the container since the last measurement.

$ oc exec -it _quay_pod_name_ -- curl -v telnet://<database_pod_name>:5432

$ podman exec -it <quay_container_name >curl -v
telnet://<database_container_name>:5432

$ oc exec -it <quay_database_pod_name> -- df -ah

$ podman exec -it <quay_database_conatiner_name> df -ah

$ oc adm top pods

$ podman pod stats <pod_name>

$ podman stats <container_name>

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

18

CPU %. The percentage of CPU usage by the container since the last measurement.
This value represents the container’s share of the available CPU resources.

MEM USAGE / LIMIT. The current memory usage of the container followed by its
memory limit. The values are displayed in the format current_usage / memory_limit.
For example, 300.4MiB / 7.795GiB indicates that the container is currently using 300.4
megabytes of memory out of a limit of 7.795 gigabytes.

MEM %. The percentage of memory usage by the container in relation to its memory
limit.

NET I/O. The network I/O (input/output) statistics of the container. It displays the
amount of data transmitted and received by the container over the network. The values
are displayed in the format: transmitted_bytes / received_bytes.

BLOCK I/O. The block I/O (input/output) statistics of the container. It represents the
amount of data read from and written to the block devices (for example, disks) used by
the container. The values are displayed in the format read_bytes / written_bytes.

6.1.2. Resetting superuser passwords on Red Hat Quay standalone deployments

Use the following procedure to reset a superuser’s password.

Prerequisites

You have created a Red Hat Quay superuser.

You have installed Python 3.9.

You have installed the pip package manager for Python.

You have installed the bcrypt package for pip.

Procedure

1. Generate a secure, hashed password using the bcrypt package in Python 3.9 by entering the
following command:

Example output

2. Enter the following command to show the container ID of your Red Hat Quay container registry:

Example output

$ python3.9 -c 'import bcrypt; print(bcrypt.hashpw(b"newpass1234",
bcrypt.gensalt(12)).decode("utf-8"))'

$2b$12$T8pkgtOoys3G5ut7FV1She6vXlYgU.6TeoGmbbAVQtN8X8ch4knKm

$ sudo podman ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
70560beda7aa registry.redhat.io/rhel8/redis-5:1 run-redis 2 hours ago Up 2 hours

CHAPTER 6. TROUBLESHOOTING RED HAT QUAY COMPONENTS

19

3. Execute an interactive shell for the postgresql container image by entering the following
command:

4. Re-enter the quay PostgreSQL database server, specifying the database, username, and host
address:

5. Update the password_hash of the superuser admin who lost their password:

Example output

6. Enter the following to command to ensure that the password_hash has been updated:

Example output

7. Log in to your Red Hat Quay deployment using the new password:

ago 0.0.0.0:6379->6379/tcp redis
8012f4491d10 registry.redhat.io/quay/quay-rhel8:v3.8.2 registry 3 minutes ago Up 8
seconds ago 0.0.0.0:80->8080/tcp, 0.0.0.0:443->8443/tcp quay
8b35b493ac05 registry.redhat.io/rhel8/postgresql-10:1 run-postgresql 39 seconds ago Up
39 seconds ago 0.0.0.0:5432->5432/tcp postgresql-quay

$ sudo podman exec -it 8b35b493ac05 /bin/bash

bash-4.4$ psql -d quay -U quayuser -h 192.168.1.28 -W

quay=> UPDATE public.user SET password_hash =
'$2b$12$T8pkgtOoys3G5ut7FV1She6vXlYgU.6TeoGmbbAVQtN8X8ch4knKm' where
username = 'quayadmin';

UPDATE 1

quay=> select * from public.user;

id | uuid | username | password_hash | email | verified | stripe_id | organization | robot |
invoice_email | invalid_login_attempts | last_invalid_login |removed_tag_expiration_s |
enabled | invoice_email_address | company | family_name | given_name | location |
maximum_queued_builds_count | creation_date | last_accessed
----+--------------------------------------+-----------+---
-------+-----------------------+---
-------+-----------+--------------+-------+---------------+------------------------+--------------------------
--+--------------------------+------
---+-----------------------+---------+-------------+------------+----------+-----------------------------+---
-------------------------+-----------
1 | 73f04ef6-19ba-41d3-b14d-f2f1eed94a4a | quayadmin |
$2b$12$T8pkgtOoys3G5ut7FV1She6vXlYgU.6TeoGmbbAVQtN8X8ch4knKm |
quayadmin@example.com | t | | f | f | f | 0 | 2023-02-23 07:54:39.116485 | 1209600 | t | | | | | |
| 2023-02-23 07:54:39.116492

$ sudo podman login -u quayadmin -p newpass1234 http://quay-server.example.com --tls-
verify=false

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

20

Example output

Additional resources

For more information, see Resetting Superuser Password for Quay.

6.1.3. Resetting superuser passwords on the Red Hat Quay Operator

Prerequisites

You have created a Red Hat Quay superuser.

You have installed Python 3.9.

You have installed the pip package manager for Python.

You have installed the bcrypt package for pip.

Procedure

1. Log in to your Red Hat Quay deployment.

2. On the OpenShift Container Platform UI, navigate to Workloads → Secrets.

3. Select the namespace for your Red Hat Quay deployment, for example, Project quay.

4. Locate and store the PostgreSQL database credentials.

5. Generate a secure, hashed password using the bcrypt package in Python 3.9 by entering the
following command:

Example output

6. On the CLI, log in to the database, for example:

7. Enter the following command to open a connection to the quay PostgreSQL database server,
specifying the database, username, and host address:

8. Enter the following command to connect to the default database for the current user:

Login Succeeded!

$ python3.9 -c 'import bcrypt; print(bcrypt.hashpw(b"newpass1234",
bcrypt.gensalt(12)).decode("utf-8"))'

$2b$12$zoilcTG6XQeAoVuDuIZH0..UpvQEZcKh3V6puksQJaUQupHgJ4.4y

$ oc rsh quayuser-quay-quay-database-669c8998f-v9qsl

sh-4.4$ psql -U quayuser-quay-quay-database -d quayuser-quay-quay-database -W

quay=> \c

CHAPTER 6. TROUBLESHOOTING RED HAT QUAY COMPONENTS

21

https://access.redhat.com/solutions/6964805

9. Update the password_hash of the superuser admin who lost their password:

10. Enter the following to command to ensure that the password_hash has been updated:

Example output

11. Navigate to your Red Hat Quay UI on OpenShift Container Platform and log in using the new
credentials.

6.2. TROUBLESHOOTING RED HAT QUAY AUTHENTICATION

Authentication and authorization is crucial for secure access to Red Hat Quay. Together, they safeguard
sensitive container images, verify user identities, enforce access controls, facilitate auditing and
accountability, and enable seamless integration with external identity providers. By prioritizing
authentication, organizations can bolster the overall security and integrity of their container registry
environment.

The following authentication methods are supported by Red Hat Quay:

Username and password. Users can authentication by providing their username and password,
which are validated against the user database configured in Red Hat Quay. This traditional
method requires users to enter their credentials to gain access.

OAuth. Red Hat Quay supports OAuth authentication, which allows users to authenticate using
their credentials from third party services like Google, GitHub, or Keycloak. OAuth enables a
seamless and federated login experience, eliminating the need for separate account creation
and simplifying user management.

OIDC. OpenID Connect enables single sign-on (SSO) capabilities and integration with
enterprise identity providers. With OpenID Connect, users can authenticate using their existing
organizational credentials, providing a unified authentication experience across various systems
and applications.

Token-based authentication. Users can obtain unique tokens that grant access to specific

quay=> UPDATE public.user SET password_hash =
'$2b$12$zoilcTG6XQeAoVuDuIZH0..UpvQEZcKh3V6puksQJaUQupHgJ4.4y' where
username = 'quayadmin';

quay=> select * from public.user;

id | uuid | username | password_hash | email | verified | stripe_id | organization | robot |
invoice_email | invalid_login_attempts | last_invalid_login |removed_tag_expiration_s |
enabled | invoice_email_address | company | family_name | given_name | location |
maximum_queued_builds_count | creation_date | last_accessed
----+--------------------------------------+-----------+---
-------+-----------------------+---
-------+-----------+--------------+-------+---------------+------------------------+--------------------------
--+--------------------------+------
---+-----------------------+---------+-------------+------------+----------+-----------------------------+---
-------------------------+-----------
1 | 73f04ef6-19ba-41d3-b14d-f2f1eed94a4a | quayadmin |
$2b$12$zoilcTG6XQeAoVuDuIZH0..UpvQEZcKh3V6puksQJaUQupHgJ4.4y |
quayadmin@example.com | t | | f | f | f | 0 | 2023-02-23 07:54:39.116485 | 1209600 | t | | | | | |
| 2023-02-23 07:54:39.116492

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

22

Token-based authentication. Users can obtain unique tokens that grant access to specific
resources within Red Hat Quay. Tokens can be obtained through various means, such as OAuth
or by generating API tokens within the Red Hat Quay user interface. Token-based
authentication is often used for automated or programmatic access to the registry.

External identity provider. Red Hat Quay can integrate with external identity providers, such as
LDAP or AzureAD, for authentication purposes. This integration allows organizations to use their
existing identity management infrastructure, enabling centralized user authentication and
reducing the need for separate user databases.

6.2.1. Troubleshooting Red Hat Quay authentication and authorization issues for
specific users

Use the following procedure to troubleshoot authentication and authorization issues for specific users.

Procedure

1. Exec into the Red Hat Quay pod or container. For more information, see "Interacting with the
Red Hat Quay database".

2. Enter the following command to show all users for external authentication:

Example output

3. Verify that the users are inserted into the user table:

Example output

6.3. TROUBLESHOOTING RED HAT QUAY OBJECT STORAGE

quay=# select * from federatedlogin;

id | user_id | service_id | service_ident | metadata_json
----+---------+------------+---+-------------------------------------

1 | 1 | 3 | testuser0 | {}
2 | 1 | 8 | PK7Zpg2Yu2AnfUKG15hKNXqOXirqUog6G-oE7OgzSWc |
{"service_username": "live.com#testuser0"}
3 | 2 | 3 | testuser1 | {}
4 | 2 | 4 | 110875797246250333431 | {"service_username":
"testuser1"}
5 | 3 | 3 | testuser2 | {}
6 | 3 | 1 | 26310880 | {"service_username": "testuser2"}
(6 rows)

quay=# select username, email from "user";

username | email
-----------+----------------------
testuser0 | testuser0@outlook.com
testuser1 | testuser1@gmail.com
testuser2 | testuser2@redhat.com
(3 rows)

CHAPTER 6. TROUBLESHOOTING RED HAT QUAY COMPONENTS

23

Object storage is a type of data storage architecture that manages data as discrete units called objects.
Unlike traditional file systems that organize data into hierarchical directories and files, object storage
treats data as independent entities with unique identifiers. Each object contains the data itself, along
with metadata that describes the object and enables efficient retrieval.

Red Hat Quay uses object storage as the underlying storage mechanism for storing and managing
container images. It stores container images as individual objects. Each container image is treated as an
object, with its own unique identifier and associated metadata.

6.3.1. Troubleshooting Red Hat Quay object storage issues

Use the following options to troubleshoot Red Hat Quay object storage issues.

Procedure

Enter the following command to see what object storage is used:

Ensure that the object storage you are using is officially supported by Red Hat Quay by checking
the tested integrations page.

Enable debug mode. For more information, see "Running Red Hat Quay in debug mode".

Check your object storage configuration in your config.yaml file. Ensure that it is accurate and
matches the settings provided by your object storage provider. You can check information like
access credentials, endpoint URLs, bucket and container names, and other relevant
configuration parameters.

Ensure that Red Hat Quay has network connectivity to the object storage endpoint. Check the
network configurations to ensure that there are no restrictions blocking the communication
between Red Hat Quay and the object storage endpoint.

If FEATURE_STORAGE_PROXY is enabled in your config.yaml file, check to see if its
download URL is accessible. This can be found in the Red Hat Quay debug logs. For example:

Try access the object storage service outside of Red Hat Quay to determine if the issue is
specific to your deployment, or the underlying object storage. You can use command line tools
like aws, gsutil, or s3cmd provided by the object storage provider to perform basic operations
like listing buckets, containers, or uploading and downloading objects. This might help you
isolate the problem.

6.4. GEO-REPLICATION

Geo-replication allows multiple, geographically distributed Red Hat Quay deployments to work as a
single registry from the perspective of a client or user. It significantly improves push and pull
performance in a globally-distributed Red Hat Quay setup. Image data is asynchronously replicated in

$ oc get quayregistry quay-registry-name -o yaml

$ curl -vvv
"https://QUAY_HOSTNAME/_storage_proxy/dhaWZKRjlyO......Kuhc=/https/quay.hostname.co
m/quay-
test/datastorage/registry/sha256/0e/0e1d17a1687fa270ba4f52a85c0f0e7958e13d3ded5123c3
851a8031a9e55681?
AWSAccessKeyId=xxxx&Signature=xxxxxx4%3D&Expires=1676066703"

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

24

https://access.redhat.com/articles/4067991

the background with transparent failover and redirect for clients.

Deployments of Red Hat Quay with geo-replication is supported on standalone and Operator
deployments.

6.4.1. Troubleshooting geo-replication for Red Hat Quay

Use the following sections to troubleshoot geo-replication for Red Hat Quay.

6.4.1.1. Checking data replication in backend buckets

Use the following procedure to ensure that your data is properly replicated in all backend buckets.

Prerequisites

You have installed the aws CLI.

Procedure

1. Enter the following command to ensure that your data is replicated in all backend buckets:

Example output

6.4.1.2. Checking the status of your backend storage

Use the following resources to check the status of your backend storage.

Amazon Web Service Storage (AWS). Check the AWS S3 service health status on the AWS
Service Health Dashboard. Validate your access to S3 by listing objects in a known bucket using
the aws CLI or SDKs.

Google Cloud Storage (GCS). Check the Google Cloud Status Dashboard for the status of the
GCS service. Verify your access to GCS by listing objects in a known bucket using the Google
Cloud SDK or GCS client libraries.

NooBaa. Check the NooBaa management console or administrative interface for any health or
status indicators. Ensure that the NooBaa services and related components are running and
accessible. Verify access to NooBaa by listing objects in a known bucket using the NooBaa CLI
or SDK.

Red Hat OpenShift Data Foundation. Check the OpenShift Container Platform Console or
management interface for the status of the Red Hat OpenShift Data Foundation components.
Verify the availability of Red Hat OpenShift Data Foundation S3 interface and services. Ensure
that the Red Hat OpenShift Data Foundation services are running and accessible. Validate
access to Red Hat OpenShift Data Foundation S3 by listing objects in a known bucket using the
appropriate S3-compatible SDK or CLI.

Ceph. Check the status of Ceph services, including Ceph monitors, OSDs, and RGWs. Validate

$ aws --profile quay_prod_s3 --endpoint=http://10.0.x.x:port s3 ls ocp-quay --recursive --
human-readable --summarize

Total Objects: 17996
Total Size: 514.4 GiB

CHAPTER 6. TROUBLESHOOTING RED HAT QUAY COMPONENTS

25

https://health.aws.amazon.com/health/status
https://status.cloud.google.com/

Ceph. Check the status of Ceph services, including Ceph monitors, OSDs, and RGWs. Validate
that the Ceph cluster is healthy and operational. Verify access to Ceph object storage by listing
objects in a known bucket using the appropriate Ceph object storage API or CLI.

Azure Blob Storage. Check the Azure Status Dashboard to see the health status of the Azure
Blob Storage service. Validate your access to Azure Blob Storage by listing containers or
objects using the Azure CLI or Azure SDKs.

OpenStack Swift. Check the OpenStack Status page to verify the status of the OpenStack
Swift service. Ensure that the Swift services, like the proxy server, container servers, object
servers, are running and accessible. Validate your access to Swift by listing containers or objects
using the appropriate Swift CLI or SDK.

After checking the status of your backend storage, ensure that all Red Hat Quay instances have access
to all s3 storage backends.

6.5. REPOSITORY MIRRORING

Red Hat Quay repository mirroring lets you mirror images from external container registries, or another
local registry, into your Red Hat Quay cluster. Using repository mirroring, you can synchronize images to
Red Hat Quay based on repository names and tags.

From your Red Hat Quay cluster with repository mirroring enabled, you can perform the following:

Choose a repository from an external registry to mirror

Add credentials to access the external registry

Identify specific container image repository names and tags to sync

Set intervals at which a repository is synced

Check the current state of synchronization

To use the mirroring functionality, you need to perform the following actions:

Enable repository mirroring in the Red Hat Quay configuration file

Run a repository mirroring worker

Create mirrored repositories

All repository mirroring configurations can be performed using the configuration tool UI or by the Red
Hat Quay API.

6.5.1. Troubleshooting repository mirroring

Use the following sections to troubleshoot repository mirroring for Red Hat Quay.

6.5.1.1. Verifying authentication and permissions

Ensure that the authentication credentials used for mirroring have the necessary permissions and
access rights on both the source and destination Red Hat Quay instances.

On the Red Hat Quay UI, check the following settings:

The access control settings. Ensure that the user or service account performing the mirroring

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

26

https://azure.status.microsoft/en-us/status
https://www.ibm.com/docs/ro/cmwo/4.3.0.0?topic=services-checking-status

The access control settings. Ensure that the user or service account performing the mirroring
operation has the required privileges.

The permissions of your robot account on the Red Hat Quay registry.

6.6. CLAIR FOR RED HAT QUAY

Clair v4 (Clair) is an open source application that leverages static code analyses for parsing image
content and reporting vulnerabilities affecting the content. Clair is packaged with Red Hat Quay and can
be used in both standalone and Operator deployments. It can be run in highly scalable configurations,
where components can be scaled separately as appropriate for enterprise environments.

6.6.1. Troubleshooting Clair issue

Use the following procedures to troubleshoot Clair.

6.6.1.1. Verifying image compatibility

If you are using Clair, ensure that the images you are trying to scan are supported by Clair. Clair has
certain requirements and does not support all image formats or configurations.

For more information, see Clair vulnerability databases.

6.6.1.2. Allowlisting Clair updaters

If you are using Clair behind a proxy configuration, you must allowlist the updaters in your proxy or
firewall configuration. For more information about updater URLs, see Clair updater URLs .

6.6.1.3. Updating Clair scanner and its dependencies

Ensure that you are using the latest version of Clair security scanner. Outdated versions might lack
support for newer image formats, or might have known issues.

Use the following procedure to check your version of Clair.

NOTE

Checking Clair logs can also be used to check if there are any errors from the updaters
microservice in your Clair logs. By default, Clair updates the vulnerability database every
30 minutes.

Procedure

1. Check your version of Clair.

a. If you are running Clair on the Red Hat Quay Operator, enter the following command:

b. If you are running a standalone deployment of Red Hat Quay and using a Clair container,
enter the following command:

$ oc logs clair-pod

$ podman logs clair-container

CHAPTER 6. TROUBLESHOOTING RED HAT QUAY COMPONENTS

27

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/manage_red_hat_quay/clair-vulnerability-scanner#clair-vulnerability-scanner-hosts
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/vulnerability_reporting_with_clair_on_red_hat_quay/clair-concepts#clair-updater-urls

Example output

6.6.1.4. Enabling debug mode for Clair

By default, debug mode for Clair is enabled. You can enable debug mode for Clair by updating your Clair
config.yaml file.

Use the following procedure to enable debug mode for Clair.

Procedure

1. Enable debug mode for Clair

a. If you are running Clair on the Red Hat Quay Operator, enter the following command:

b. If you are running a standalone deployment of Red Hat Quay and using a Clair container,
enter the following command:

2. Update your Clair config.yaml file to enable debugging:

6.6.1.5. Checking Clair configuration

Check your Clair config.yaml file to ensure that there are no misconfigurations or inconsistencies that
could lead to issues. For more information, see Clair configuration overview .

6.6.1.6. Inspect image metadata

In some cases, you might receive an Unsupported message. This might indicate that the scanner is
unable to extract the necessary metadata from the image. Check if the image metadata is properly
formatted and accessible.

Additional resources

For more information, see Troubleshooting Clair .

"level":"info",
"component":"main",
"version":"v4.5.1",

$ oc exec -it clair-pod-name -- cat /clair/config.yaml

$ podman exec -it clair-container-name cat /clair/config.yaml

http_listen_addr: :8081
introspection_addr: :8088
log_level: debug

Red Hat Quay 3.9 Troubleshooting Red Hat Quay

28

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/vulnerability_reporting_with_clair_on_red_hat_quay/index#config-fields-overview
https://access.redhat.com/articles/7018077

	Table of Contents
	PREFACE
	CHAPTER 1. GETTING SUPPORT
	1.1. ABOUT THE RED HAT KNOWLEDGEBASE
	1.2. SEARCHING THE RED HAT KNOWLEDGEBASE
	1.3. SUBMITTING A SUPPORT CASE

	CHAPTER 2. RUNNING RED HAT QUAY IN DEBUG MODE
	2.1. RUNNING A STANDALONE RED HAT QUAY DEPLOYMENT IN DEBUG MODE
	2.2. RUNNING THE RED HAT QUAY OPERATOR IN DEBUG MODE

	CHAPTER 3. LOGGING INFORMATION FOR RED HAT QUAY
	3.1. OBTAINING LOG INFORMATION FOR RED HAT QUAY
	3.2. EXAMINING VERBOSE LOGS

	CHAPTER 4. CONFIGURATION INFORMATION FOR RED HAT QUAY
	4.1. OBTAINING CONFIGURATION INFORMATION FOR RED HAT QUAY
	4.2. OBTAINING DATABASE CONFIGURATION INFORMATION

	CHAPTER 5. PERFORMING HEALTH CHECKS ON RED HAT QUAY DEPLOYMENTS
	5.1. RED HAT QUAY HEALTH CHECK ENDPOINTS
	5.2. NAVIGATING TO A RED HAT QUAY HEALTH CHECK ENDPOINT

	CHAPTER 6. TROUBLESHOOTING RED HAT QUAY COMPONENTS
	6.1. TROUBLESHOOTING THE RED HAT QUAY DATABASE
	6.1.1. Troubleshooting Red Hat Quay database issues
	6.1.1.1. Interacting with the Red Hat Quay database
	6.1.1.2. Troubleshooting crashloopbackoff states
	6.1.1.3. Checking the connectivity between Red Hat Quay and the database pod
	6.1.1.4. Checking resource allocation

	6.1.2. Resetting superuser passwords on Red Hat Quay standalone deployments
	6.1.3. Resetting superuser passwords on the Red Hat Quay Operator

	6.2. TROUBLESHOOTING RED HAT QUAY AUTHENTICATION
	6.2.1. Troubleshooting Red Hat Quay authentication and authorization issues for specific users

	6.3. TROUBLESHOOTING RED HAT QUAY OBJECT STORAGE
	6.3.1. Troubleshooting Red Hat Quay object storage issues

	6.4. GEO-REPLICATION
	6.4.1. Troubleshooting geo-replication for Red Hat Quay
	6.4.1.1. Checking data replication in backend buckets
	6.4.1.2. Checking the status of your backend storage

	6.5. REPOSITORY MIRRORING
	6.5.1. Troubleshooting repository mirroring
	6.5.1.1. Verifying authentication and permissions

	6.6. CLAIR FOR RED HAT QUAY
	6.6.1. Troubleshooting Clair issue
	6.6.1.1. Verifying image compatibility
	6.6.1.2. Allowlisting Clair updaters
	6.6.1.3. Updating Clair scanner and its dependencies
	6.6.1.4. Enabling debug mode for Clair
	6.6.1.5. Checking Clair configuration
	6.6.1.6. Inspect image metadata

