
Red Hat Quay 3.9

Manage Red Hat Quay

Manage Red Hat Quay

Last Updated: 2024-01-15

Red Hat Quay 3.9 Manage Red Hat Quay

Manage Red Hat Quay

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Manage Red Hat Quay

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION
1.1. USING RED HAT QUAY CONFIG TOOL TO MODIFY RED HAT QUAY

1.1.1. Running the Config Tool from the Red Hat Quay Operator
1.1.2. Running the Config Tool from the command line
1.1.3. Deploying the config tool using TLS certificates

1.2. USING THE API TO MODIFY RED HAT QUAY
1.3. EDITING THE CONFIG.YAML FILE TO MODIFY RED HAT QUAY

1.3.1. Add name and company to Red Hat Quay sign-in
1.3.2. Disable TLS Protocols
1.3.3. Rate limit API calls
1.3.4. Adjust database connection pooling

1.3.4.1. Database connection arguments
1.3.4.2. Database SSL configuration

1.3.4.2.1. PostgreSQL SSL connection arguments
1.3.4.2.2. MySQL SSL connection arguments

1.3.4.3. HTTP connection counts
1.3.4.4. Dynamic process counts
1.3.4.5. Environment variables
1.3.4.6. Turning off connection pooling

CHAPTER 2. USING THE CONFIGURATION API
2.1. RETRIEVING THE DEFAULT CONFIGURATION
2.2. RETRIEVING THE CURRENT CONFIGURATION
2.3. VALIDATING CONFIGURATION USING THE API
2.4. DETERMINING THE REQUIRED FIELDS

CHAPTER 3. GETTING RED HAT QUAY RELEASE NOTIFICATIONS

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY
4.1. USING SSL/TLS
4.2. CREATING A CERTIFICATE AUTHORITY AND SIGNING A CERTIFICATE

4.2.1. Creating a certificate authority
4.2.2. Signing a certificate

4.3. CONFIGURING SSL USING THE COMMAND LINE INTERFACE
4.4. CONFIGURING SSL/TLS USING THE RED HAT QUAY UI
4.5. TESTING SSL CONFIGURATION USING THE COMMAND LINE
4.6. TESTING SSL CONFIGURATION USING THE BROWSER
4.7. CONFIGURING PODMAN TO TRUST THE CERTIFICATE AUTHORITY
4.8. CONFIGURING THE SYSTEM TO TRUST THE CERTIFICATE AUTHORITY

CHAPTER 5. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINER
5.1. ADD TLS CERTIFICATES TO RED HAT QUAY
5.2. ADDING CUSTOM SSL/TLS CERTIFICATES WHEN RED HAT QUAY IS DEPLOYED ON KUBERNETES

CHAPTER 6. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH AND SPLUNK
6.1. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH
6.2. CONFIGURING ACTION LOG STORAGE FOR SPLUNK

6.2.1. Installing and creating a username for Splunk
6.2.2. Generating a Splunk token

6.2.2.1. Generating a Splunk token using the Splunk UI
6.2.2.2. Generating a Splunk token using the CLI

6

7
7
7
8
9
9

10
10
10
10
10
11
11
11

12
12
12
13
14

15
15
15
16
17

18

19
19
19
19
19

20
21
22
22
23
24

26
26
26

28
28
29
30
30
30
31

Table of Contents

1

. .

. .

. .

. .

. .

. .

6.2.3. Configuring Red Hat Quay to use Splunk
6.2.4. Creating an action log

CHAPTER 7. CLAIR FOR RED HAT QUAY
7.1. CLAIR VULNERABILITY DATABASES

7.1.1. Information about Open Source Vulnerability (OSV) database for Clair
7.2. SETTING UP CLAIR ON STANDALONE RED HAT QUAY DEPLOYMENTS
7.3. CLAIR ON OPENSHIFT CONTAINER PLATFORM
7.4. TESTING CLAIR

CHAPTER 8. REPOSITORY MIRRORING
8.1. REPOSITORY MIRRORING
8.2. REPOSITORY MIRRORING COMPARED TO GEO-REPLICATION
8.3. USING REPOSITORY MIRRORING
8.4. MIRRORING CONFIGURATION UI
8.5. MIRRORING CONFIGURATION FIELDS
8.6. MIRRORING WORKER
8.7. CREATING A MIRRORED REPOSITORY

8.7.1. Repository mirroring settings
8.7.2. Advanced settings
8.7.3. Synchronize now

8.8. EVENT NOTIFICATIONS FOR MIRRORING
8.9. MIRRORING TAG PATTERNS

8.9.1. Pattern syntax
8.9.2. Example tag patterns

8.10. WORKING WITH MIRRORED REPOSITORIES
8.11. REPOSITORY MIRRORING RECOMMENDATIONS

CHAPTER 9. IPV6 AND DUAL-STACK DEPLOYMENTS
9.1. ENABLING THE IPV6 PROTOCOL FAMILY
9.2. ENABLING THE DUAL-STACK PROTOCOL FAMILY
9.3. IPV6 AND DUA-STACK LIMITATIONS

CHAPTER 10. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY
10.1. CONSIDERATIONS WHEN ENABLING LDAP

Existing Red Hat Quay deployments
Manual User Creation and LDAP authentication

10.2. CONFIGURING LDAP FOR RED HAT QUAY
10.3. ENABLING THE LDAP_RESTRICTED_USER_FILTER CONFIGURATION FIELD
10.4. ENABLING THE LDAP_SUPERUSER_FILTER CONFIGURATION FIELD
10.5. COMMON LDAP CONFIGURATION ISSUES
10.6. LDAP CONFIGURATION FIELDS

CHAPTER 11. CONFIGURING OIDC FOR RED HAT QUAY
11.1. CONFIGURING RED HAT SINGLE SIGN-ON FOR RED HAT QUAY

11.1.1. Configuring the Red Hat Single Sign-On Operator for the Red Hat Quay Operator
11.1.2. Configuring the Red Hat Quay Operator to use Red Hat Single Sign-On

11.2. CONFIGURING AZURE AD OIDC FOR RED HAT QUAY
11.2.1. Configuring Azure AD by using the Red Hat Quay config tool
11.2.2. Configuring Azure AD by updating the Red Hat Quay config.yaml file

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY
12.1. EXPOSING THE PROMETHEUS ENDPOINT

12.1.1. Standalone Red Hat Quay
12.1.2. Red Hat Quay Operator

31
33

34
34
34
34
37
37

39
39
39
40
41
41

42
42
43
44
45
46
46
46
46
47
48

50
50
51
52

53
53
53
53
53
56
57
58
59

60
60
60
61

62
62
63

65
65
65
65

Red Hat Quay 3.9 Manage Red Hat Quay

2

. .

. .

12.1.3. Setting up Prometheus to consume metrics
12.1.4. DNS configuration under Kubernetes
12.1.5. DNS configuration for a manual cluster

12.2. INTRODUCTION TO METRICS
12.2.1. General registry statistics
12.2.2. Queue items
12.2.3. Garbage collection metrics

12.2.3.1. Multipart uploads metrics
12.2.4. Image push / pull metrics

12.2.4.1. Image pulls total
12.2.4.2. Image bytes pulled
12.2.4.3. Image pushes total
12.2.4.4. Image bytes pushed

12.2.5. Authentication metrics

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW
13.1. QUOTA MANAGEMENT ARCHITECTURE
13.2. QUOTA MANAGEMENT LIMITATIONS
13.3. QUOTA MANAGEMENT FOR RED HAT QUAY 3.9

13.3.1. Option A: Configuring quota management for Red Hat Quay 3.9 by adjusting the
QUOTA_TOTAL_DELAY feature flag
13.3.2. Option B: Configuring quota management for Red Hat Quay 3.9 by setting
QUOTA_TOTAL_DELAY_SECONDS to 0

13.4. TESTING QUOTA MANAGEMENT FOR RED HAT QUAY 3.9
13.5. SETTING DEFAULT QUOTA
13.6. ESTABLISHING QUOTA IN RED HAT QUAY UI
13.7. ESTABLISHING QUOTA WITH THE RED HAT QUAY API

13.7.1. Setting the quota
13.7.2. Viewing the quota
13.7.3. Modifying the quota
13.7.4. Pushing images

13.7.4.1. Pushing ubuntu:18.04
13.7.4.2. Using the API to view quota usage
13.7.4.3. Pushing another image

13.7.5. Rejecting pushes using quota limits
13.7.5.1. Setting reject and warning limits
13.7.5.2. Viewing reject and warning limits
13.7.5.3. Pushing an image when the reject limit is exceeded
13.7.5.4. Notifications for limits exceeded

13.8. CALCULATING THE TOTAL REGISTRY SIZE IN RED HAT QUAY 3.9
13.9. PERMANENTLY DELETING AN IMAGE TAG

13.9.1. Permanently deleting an image tag using the Red Hat Quay v2 UI
13.9.2. Permanently deleting an image tag using the Red Hat Quay legacy UI

CHAPTER 14. GEO-REPLICATION
14.1. GEO-REPLICATION FEATURES
14.2. GEO-REPLICATION REQUIREMENTS AND CONSTRAINTS
14.3. GEO-REPLICATION USING STANDALONE RED HAT QUAY

14.3.1. Enable storage replication - standalone Quay
14.3.2. Run Red Hat Quay with storage preferences
14.3.3. Removing a geo-replicated site from your standalone Red Hat Quay deployment

14.4. GEO-REPLICATION USING THE RED HAT QUAY OPERATOR
14.4.1. Setting up geo-replication on OpenShift Container Platform

66
66
66
66
66
67
68
69
70
70
71
71
71
71

73
73
74
74

74

75
76
77
78
84
84
84
85
85
85
86
86
88
88
88
89
90
90
91
91

92

94
94
94
95
96
97
97
99

100

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

. .

14.4.1.1. Configuring geo-replication for the Red Hat Quay Operator on OpenShift Container Platform
14.4.2. Removing a geo-replicated site from your Red Hat Quay Operator deployment

14.5. MIXED STORAGE FOR GEO-REPLICATION

CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY ON A STANDALONE DEPLOYMENT
15.1. BACKING UP RED HAT QUAY ON STANDALONE DEPLOYMENTS
15.2. RESTORING RED HAT QUAY ON STANDALONE DEPLOYMENTS

CHAPTER 16. MIGRATING A STANDALONE RED HAT QUAY DEPLOYMENT TO A RED HAT QUAY OPERATOR
DEPLOYMENT

16.1. BACKING UP A STANDALONE DEPLOYMENT OF RED HAT QUAY
16.2. USING BACKED UP STANDALONE CONTENT TO MIGRATE TO OPENSHIFT CONTAINER PLATFORM.

CHAPTER 17. CONFIGURING ARTIFACT TYPES
17.1. CONFIGURING OCI ARTIFACT TYPES
17.2. CONFIGURING ADDITIONAL ARTIFACT TYPES
17.3. CONFIGURING UNKNOWN MEDIA TYPES

CHAPTER 18. RED HAT QUAY GARBAGE COLLECTION
18.1. RED HAT QUAY GARBAGE COLLECTION IN PRACTICE

18.1.1. Measuring storage reclamation
18.2. GARBAGE COLLECTION CONFIGURATION FIELDS
18.3. DISABLING GARBAGE COLLECTION
18.4. GARBAGE COLLECTION AND QUOTA MANAGEMENT
18.5. GARBAGE COLLECTION IN PRACTICE
18.6. RED HAT QUAY GARBAGE COLLECTION METRICS

CHAPTER 19. USING THE RED HAT QUAY V2 UI
19.1. V2 USER INTERFACE CONFIGURATION

19.1.1. Creating a new organization in the Red Hat Quay v2 UI
19.1.2. Deleting an organization using the Red Hat Quay v2 UI
19.1.3. Creating a new repository using the Red Hat Quay v2 UI
19.1.4. Deleting a repository using the Red Hat Quay v2 UI
19.1.5. Pushing an image to the Red Hat Quay v2 UI
19.1.6. Deleting an image using the Red Hat Quay v2 UI
19.1.7. Creating a robot account using the Red Hat Quay v2 UI
19.1.8. Organization settings for the Red Hat Quay v2 UI
19.1.9. Viewing image tag information using the Red Hat Quay v2 UI
19.1.10. Adjusting repository settings using the Red Hat Quay v2 UI

19.2. ENABLING THE RED HAT QUAY LEGACY UI

CHAPTER 20. PERFORMING HEALTH CHECKS ON RED HAT QUAY DEPLOYMENTS
20.1. RED HAT QUAY HEALTH CHECK ENDPOINTS
20.2. NAVIGATING TO A RED HAT QUAY HEALTH CHECK ENDPOINT

CHAPTER 21. BRANDING A RED HAT QUAY DEPLOYMENT ON THE LEGACY UI

CHAPTER 22. SCHEMA FOR RED HAT QUAY CONFIGURATION
ADDITIONAL RESOURCES

101
104
106

107
107
109

113
113

114

119
120
120
121

122
122
123
123
125
126
126
126

129
129
129
130
130
131
131
131
132
133
133
134
135

136
136
137

138

139
139

Red Hat Quay 3.9 Manage Red Hat Quay

4

Table of Contents

5

PREFACE
Once you have deployed a Red Hat Quay registry, there are many ways you can further configure and
manage that deployment. Topics covered here include:

Advanced Red Hat Quay configuration

Setting notifications to alert you of a new Red Hat Quay release

Securing connections with SSL/TLS certificates

Directing action logs storage to Elasticsearch

Configuring image security scanning with Clair

Scan pod images with the Container Security Operator

Integrate Red Hat Quay into OpenShift Container Platform with the Quay Bridge Operator

Mirroring images with repository mirroring

Sharing Red Hat Quay images with a BitTorrent service

Authenticating users with LDAP

Enabling Quay for Prometheus and Grafana metrics

Setting up geo-replication

Troubleshooting Red Hat Quay

For a complete list of Red Hat Quay configuration fields, see the Configure Red Hat Quay page.

Red Hat Quay 3.9 Manage Red Hat Quay

6

https://access.redhat.com/documentation/en-us/red_hat_quay/3.8/html-single/configure_red_hat_quay/index

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION
You can configure your Red Hat Quay after initial deployment using one of the following interfaces:

The Red Hat Quay Config Tool. With this tool, a web-based interface for configuring the Red
Hat Quay cluster is provided when running the Quay container in config mode. This method is
recommended for configuring the Red Hat Quay service.

Editing the config.yaml. The config.yaml file contains most configuration information for the
Red Hat Quay cluster. Editing the config.yaml file directly is possible, but it is only
recommended for advanced tuning and performance features that are not available through
the Config Tool.

Red Hat Quay API. Some Red Hat Quay features can be configured through the API.

This content in this section describes how to use each of the aforementioned interfaces and how to
configure your deployment with advanced features.

1.1. USING RED HAT QUAY CONFIG TOOL TO MODIFY RED HAT QUAY

The Red Hat Quay Config Tool is made available by running a Quay container in config mode alongside
the regular Red Hat Quay service.

Use the following sections to run the Config Tool from the Red Hat Quay Operator, or to run the Config
Tool on host systems from the command line interface (CLI).

1.1.1. Running the Config Tool from the Red Hat Quay Operator

When running the Red Hat Quay Operator on OpenShift Container Platform, the Config Tool is readily
available to use. Use the following procedure to access the Red Hat Quay Config Tool.

Prerequisites

1. You have deployed the Red Hat Quay Operator on OpenShift Container Platform.

Procedure.

1. On the OpenShift console, select the Red Hat Quay project, for example, quay-enterprise.

2. In the navigation pane, select Networking → Routes. You should see routes to both the Red
Hat Quay application and Config Tool, as shown in the following image:

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION

7

3. Select the route to the Config Tool, for example, example-quayecosystem-quay-config. The
Config Tool UI should open in your browser.

4. Select Modify configuration for this cluster to bring up the Config Tool setup, for example:

5. Make the desired changes, and then select Save Configuration Changes.

6. Make any corrections needed by clicking Continue Editing, or, select Next to continue.

7. When prompted, select Download Configuration. This will download a tarball of your new
config.yaml, as well as any certificates and keys used with your Red Hat Quay setup. The
config.yaml can be used to make advanced changes to your configuration or use as a future
reference.

8. Select Go to deployment rollout → Populate the configuration to deployments. Wait for the
Red Hat Quay pods to restart for the changes to take effect.

1.1.2. Running the Config Tool from the command line

If you are running Red Hat Quay from a host system, you can use the following procedure to make

Red Hat Quay 3.9 Manage Red Hat Quay

8

If you are running Red Hat Quay from a host system, you can use the following procedure to make
changes to your configuration after the initial deployment.

1. Prerequisites

You have installed either podman or docker.

2. Start Red Hat Quay in configuration mode.

3. On the first Quay node, enter the following command:

$ podman run --rm -it --name quay_config -p 8080:8080 \
 -v path/to/config-bundle:/conf/stack \
 registry.redhat.io/quay/quay-rhel8:v3.9.6 config <my_secret_password>

NOTE

To modify an existing config bundle, you can mount your configuration directory
into the Quay container.

4. When the Red Hat Quay configuration tool starts, open your browser and navigate to the URL
and port used in your configuration file, for example, quay-server.example.com:8080.

5. Enter your username and password.

6. Modify your Red Hat Quay cluster as desired.

1.1.3. Deploying the config tool using TLS certificates

You can deploy the config tool with secured TLS certificates by passing environment variables to the
runtime variable. This ensures that sensitive data like credentials for the database and storage backend
are protected.

The public and private keys must contain valid Subject Alternative Names (SANs) for the route that you
deploy the config tool on.

The paths can be specified using CONFIG_TOOL_PRIVATE_KEY and CONFIG_TOOL_PUBLIC_KEY.

If you are running your deployment from a container, the CONFIG_TOOL_PRIVATE_KEY and
CONFIG_TOOL_PUBLIC_KEY values the locations of the certificates inside of the container. For
example:

1.2. USING THE API TO MODIFY RED HAT QUAY

See the Red Hat Quay API Guide for information on how to access Red Hat Quay API.

$ podman run --rm -it --name quay_config -p 7070:8080 \

-v ${PRIVATE_KEY_PATH}:/tls/localhost.key \
-v ${PUBLIC_KEY_PATH}:/tls/localhost.crt \
-e CONFIG_TOOL_PRIVATE_KEY=/tls/localhost.key \
-e CONFIG_TOOL_PUBLIC_KEY=/tls/localhost.crt \
-e DEBUGLOG=true \
-ti config-app:dev

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION

9

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/red_hat_quay_api_guide/index

1.3. EDITING THE CONFIG.YAML FILE TO MODIFY RED HAT QUAY

Some advanced configuration features that are not available through the Config Tool can be
implemented by editing the config.yaml file directly. Available settings are described in the Schema for
Red Hat Quay configuration

The following examples are settings you can change directly in the config.yaml file.

1.3.1. Add name and company to Red Hat Quay sign-in

By setting the following field, users are prompted for their name and company when they first sign in.
This is an optional field, but can provide your with extra data about your Red Hat Quay users.

1.3.2. Disable TLS Protocols

You can change the SSL_PROTOCOLS setting to remove SSL protocols that you do not want to
support in your Red Hat Quay instance. For example, to remove TLS v1 support from the default
SSL_PROTOCOLS:['TLSv1','TLSv1.1','TLSv1.2'], change it to the following:

1.3.3. Rate limit API calls

Adding the FEATURE_RATE_LIMITS parameter to the config.yaml file causes nginx to limit certain
API calls to 30-per-second. If FEATURE_RATE_LIMITS is not set, API calls are limited to 300-per-
second, effectively making them unlimited.

Rate limiting is important when you must ensure that the available resources are not overwhelmed with
traffic.

Some namespaces might require unlimited access, for example, if they are important to CI/CD and take
priority. In that scenario, those namespaces might be placed in a list in the config.yaml file using the
NON_RATE_LIMITED_NAMESPACES.

1.3.4. Adjust database connection pooling

Red Hat Quay is composed of many different processes which all run within the same container. Many of
these processes interact with the database.

With the DB_CONNECTION_POOLING parameter, each process that interacts with the database will
contain a connection pool These per-process connection pools are configured to maintain a maximum of
20 connections. When under heavy load, it is possible to fill the connection pool for every process within
a Red Hat Quay container. Under certain deployments and loads, this might require analysis to ensure
that Red Hat Quay does not exceed the database’s configured maximum connection count.

Over time, the connection pools will release idle connections. To release all connections immediately,
Red Hat Quay must be restarted.

FEATURE_USER_METADATA: true

SSL_PROTOCOLS : ['TLSv1.1','TLSv1.2']

Red Hat Quay 3.9 Manage Red Hat Quay

10

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/manage_red_hat_quay/quay-schema

Database connection pooling can be toggled by setting the DB_CONNECTION_POOLING to true or
false. For example:

When DB_CONNECTION_POOLING is enabled, you can change the maximum size of the connection
pool with the DB_CONNECTION_ARGS in your config.yaml. For example:

1.3.4.1. Database connection arguments

You can customize your Red Hat Quay database connection settings within the config.yaml file. These
are dependent on your deployment’s database driver, for example, psycopg2 for Postgres and
pymysql for MySQL. You can also pass in argument used by Peewee’s connection pooling mechanism.
For example:

1.3.4.2. Database SSL configuration

Some key-value pairs defined under the DB_CONNECTION_ARGS field are generic, while others are
specific to the database. In particular, SSL configuration depends on the database that you are
deploying.

1.3.4.2.1. PostgreSQL SSL connection arguments

The following YAML shows a sample PostgreSQL SSL configuration:

The sslmode parameter determines whether, or with, what priority a secure SSL TCP/IP connection will
be negotiated with the server. There are six modes for the sslmode parameter:

disabl:: Only try a non-SSL connection.

allow: Try a non-SSL connection first. Upon failure, try an SSL connection.

prefer: Default. Try an SSL connection first. Upon failure, try a non-SSL connection.

require: Only try an SSL connection. If a root CA file is present, verify the connection in the

DB_CONNECTION_POOLING: true

DB_CONNECTION_ARGS:
 max_connections: 10

DB_CONNECTION_ARGS:
 max_connections: n # Max Connection Pool size. (Connection Pooling only)
 timeout: n # Time to hold on to connections. (Connection Pooling only)
 stale_timeout: n # Number of seconds to block when the pool is full. (Connection Pooling only)

DB_CONNECTION_ARGS:
 sslmode: verify-ca
 sslrootcert: /path/to/cacert

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION

11

require: Only try an SSL connection. If a root CA file is present, verify the connection in the
same way as if verify-ca was specified.

verify-ca: Only try an SSL connection, and verify that the server certificate is issued by a trust
certificate authority (CA).

verify-full: Only try an SSL connection. Verify that the server certificate is issued by a trust CA,
and that the requested server host name matches that in the certificate.

For more information about the valid arguments for PostgreSQL, see Database Connection Control
Functions.

1.3.4.2.2. MySQL SSL connection arguments

The following YAML shows a sample MySQL SSL configuration:

For more information about the valid connection arguments for MySQL, see Connecting to the Server
Using URI-Like Strings or Key-Value Pairs.

1.3.4.3. HTTP connection counts

You can specify the quantity of simultaneous HTTP connections using environment variables. The
environment variables can be specified as a whole, or for a specific component. The default for each is
50 parallel connections per process. See the following YAML for example environment variables;

NOTE

Specifying a count for a specific component will override any value set in the
WORKER_CONNECTION_COUNT configuration field.

1.3.4.4. Dynamic process counts

To estimate the quantity of dynamically sized processes, the following calculation is used by default.

NOTE

Red Hat Quay queries the available CPU count from the entire machine. Any limits
applied using kubernetes or other non-virtualized mechanisms will not affect this
behavior. Red Hat Quay makes its calculation based on the total number of processors on
the Node. The default values listed are simply targets, but shall not exceed the maximum
or be lower than the minimum.

DB_CONNECTION_ARGS:
 ssl:
 ca: /path/to/cacert

WORKER_CONNECTION_COUNT_REGISTRY=n
WORKER_CONNECTION_COUNT_WEB=n
WORKER_CONNECTION_COUNT_SECSCAN=n
WORKER_CONNECTION_COUNT=n

Red Hat Quay 3.9 Manage Red Hat Quay

12

https://www.postgresql.org/docs/current/libpq-connect.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

Each of the following process quantities can be overridden using the environment variable specified
below:

registry - Provides HTTP endpoints to handle registry action

minimum: 8

maximum: 64

default: $CPU_COUNT x 4

environment variable: WORKER_COUNT_REGISTRY

web - Provides HTTP endpoints for the web-based interface

minimum: 2

maximum: 32

default: $CPU_COUNT x 2

environment_variable: WORKER_COUNT_WEB

secscan - Interacts with Clair

minimum: 2

maximum: 4

default: $CPU_COUNT x 2

environment variable: WORKER_COUNT_SECSCAN

1.3.4.5. Environment variables

Red Hat Quay allows overriding default behavior using environment variables. The following table lists
and describes each variable and the values they can expect.

Table 1.1. Worker count environment variables

Variable Description Values

WORKER_COUNT_REGISTRY Specifies the number of
processes to handle registry
requests within the Quay
container.

Integer between 8 and 64

WORKER_COUNT_WEB Specifies the number of
processes to handle UI/Web
requests within the container.

Integer between 2 and 32

CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION

13

WORKER_COUNT_SECSCAN Specifies the number of
processes to handle Security
Scanning (for example, Clair)
integration within the container.

Integer. Because the Operator
specifies 2 vCPUs for resource
requests and limits, setting this
value between 2 and 4 is safe.
However, users can run more, for
example, 16, if warranted.

DB_CONNECTION_POOLING Toggle database connection
pooling.

true or false

Variable Description Values

1.3.4.6. Turning off connection pooling

Red Hat Quay deployments with a large amount of user activity can regularly hit the 2k maximum
database connection limit. In these cases, connection pooling, which is enabled by default for Red Hat
Quay, can cause database connection count to rise exponentially and require you to turn off connection
pooling.

If turning off connection pooling is not enough to prevent hitting the 2k database connection limit, you
need to take additional steps to deal with the problem. If this happens, you might need to increase the
maximum database connections to better suit your workload.

Red Hat Quay 3.9 Manage Red Hat Quay

14

CHAPTER 2. USING THE CONFIGURATION API
The configuration tool exposes 4 endpoints that can be used to build, validate, bundle and deploy a
configuration. The config-tool API is documented at https://github.com/quay/config-
tool/blob/master/pkg/lib/editor/API.md. In this section, you will see how to use the API to retrieve the
current configuration and how to validate any changes you make.

2.1. RETRIEVING THE DEFAULT CONFIGURATION

If you are running the configuration tool for the first time, and do not have an existing configuration, you
can retrieve the default configuration. Start the container in config mode:

$ sudo podman run --rm -it --name quay_config \
 -p 8080:8080 \
 registry.redhat.io/quay/quay-rhel8:v3.9.6 config secret

Use the config endpoint of the configuration API to get the default:

$ curl -X GET -u quayconfig:secret http://quay-server:8080/api/v1/config | jq

The value returned is the default configuration in JSON format:

2.2. RETRIEVING THE CURRENT CONFIGURATION

If you have already configured and deployed the Quay registry, stop the container and restart it in
configuration mode, loading the existing configuration as a volume:

$ sudo podman run --rm -it --name quay_config \
 -p 8080:8080 \
 -v $QUAY/config:/conf/stack:Z \
 registry.redhat.io/quay/quay-rhel8:v3.9.6 config secret

Use the config endpoint of the API to get the current configuration:

{
 "config.yaml": {
 "AUTHENTICATION_TYPE": "Database",
 "AVATAR_KIND": "local",
 "DB_CONNECTION_ARGS": {
 "autorollback": true,
 "threadlocals": true
 },
 "DEFAULT_TAG_EXPIRATION": "2w",
 "EXTERNAL_TLS_TERMINATION": false,
 "FEATURE_ACTION_LOG_ROTATION": false,
 "FEATURE_ANONYMOUS_ACCESS": true,
 "FEATURE_APP_SPECIFIC_TOKENS": true,

 }

}

CHAPTER 2. USING THE CONFIGURATION API

15

https://github.com/quay/config-tool/blob/master/pkg/lib/editor/API.md

$ curl -X GET -u quayconfig:secret http://quay-server:8080/api/v1/config | jq

The value returned is the current configuration in JSON format, including database and Redis
configuration data:

2.3. VALIDATING CONFIGURATION USING THE API

You can validate a configuration by posting it to the config/validate endpoint:

curl -u quayconfig:secret --header 'Content-Type: application/json' --request POST --data '
{
 "config.yaml": {

 "BROWSER_API_CALLS_XHR_ONLY": false,
 "BUILDLOGS_REDIS": {
 "host": "quay-server",
 "password": "strongpassword",
 "port": 6379
 },
 "DATABASE_SECRET_KEY": "4b1c5663-88c6-47ac-b4a8-bb594660f08b",
 "DB_CONNECTION_ARGS": {
 "autorollback": true,
 "threadlocals": true
 },
 "DB_URI": "postgresql://quayuser:quaypass@quay-server:5432/quay",
 "DEFAULT_TAG_EXPIRATION": "2w",

 }

} http://quay-server:8080/api/v1/config/validate | jq

{
 "config.yaml": {

 "BROWSER_API_CALLS_XHR_ONLY": false,
 "BUILDLOGS_REDIS": {
 "host": "quay-server",
 "password": "strongpassword",
 "port": 6379
 },
 "DATABASE_SECRET_KEY": "4b1c5663-88c6-47ac-b4a8-bb594660f08b",
 "DB_CONNECTION_ARGS": {
 "autorollback": true,
 "threadlocals": true
 },
 "DB_URI": "postgresql://quayuser:quaypass@quay-server:5432/quay",
 "DEFAULT_TAG_EXPIRATION": "2w",

 }

}

Red Hat Quay 3.9 Manage Red Hat Quay

16

The returned value is an array containing the errors found in the configuration. If the configuration is
valid, an empty array [] is returned.

2.4. DETERMINING THE REQUIRED FIELDS

You can determine the required fields by posting an empty configuration structure to the
config/validate endpoint:

curl -u quayconfig:secret --header 'Content-Type: application/json' --request POST --data '
{
 "config.yaml": {
 }

} http://quay-server:8080/api/v1/config/validate | jq

The value returned is an array indicating which fields are required:

[
 {
 "FieldGroup": "Database",
 "Tags": [
 "DB_URI"
],
 "Message": "DB_URI is required."
 },
 {
 "FieldGroup": "DistributedStorage",
 "Tags": [
 "DISTRIBUTED_STORAGE_CONFIG"
],
 "Message": "DISTRIBUTED_STORAGE_CONFIG must contain at least one storage location."
 },
 {
 "FieldGroup": "HostSettings",
 "Tags": [
 "SERVER_HOSTNAME"
],
 "Message": "SERVER_HOSTNAME is required"
 },
 {
 "FieldGroup": "HostSettings",
 "Tags": [
 "SERVER_HOSTNAME"
],
 "Message": "SERVER_HOSTNAME must be of type Hostname"
 },
 {
 "FieldGroup": "Redis",
 "Tags": [
 "BUILDLOGS_REDIS"
],
 "Message": "BUILDLOGS_REDIS is required"
 }
]

CHAPTER 2. USING THE CONFIGURATION API

17

CHAPTER 3. GETTING RED HAT QUAY RELEASE
NOTIFICATIONS

To keep up with the latest Red Hat Quay releases and other changes related to Red Hat Quay, you can
sign up for update notifications on the Red Hat Customer Portal . After signing up for notifications, you
will receive notifications letting you know when there is new a Red Hat Quay version, updated
documentation, or other Red Hat Quay news.

1. Log into the Red Hat Customer Portal with your Red Hat customer account credentials.

2. Select your user name (upper-right corner) to see Red Hat Account and Customer Portal
selections:

3. Select Notifications. Your profile activity page appears.

4. Select the Notifications tab.

5. Select Manage Notifications.

6. Select Follow, then choose Products from the drop-down box.

7. From the drop-down box next to the Products, search for and select Red Hat Quay:

8. Select the SAVE NOTIFICATION button. Going forward, you will receive notifications when
there are changes to the Red Hat Quay product, such as a new release.

Red Hat Quay 3.9 Manage Red Hat Quay

18

https://access.redhat.com
https://access.redhat.com

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED
HAT QUAY

4.1. USING SSL/TLS

To configure Red Hat Quay with a self-signed certificate, you must create a Certificate Authority (CA)
and then generate the required key and certificate files.

NOTE

The following examples assume you have configured the server hostname quay-
server.example.com using DNS or another naming mechanism, such as adding an entry
in your /etc/hosts file:

4.2. CREATING A CERTIFICATE AUTHORITY AND SIGNING A
CERTIFICATE

Use the following procedures to create a certificate file and a primary key file named ssl.cert and
ssl.key.

4.2.1. Creating a certificate authority

Use the following procedure to create a certificate authority (CA)

Procedure

1. Generate the root CA key by entering the following command:

2. Generate the root CA certificate by entering the following command:

3. Enter the information that will be incorporated into your certificate request, including the server
hostname, for example:

4.2.2. Signing a certificate

$ cat /etc/hosts
...
192.168.1.112 quay-server.example.com

$ openssl genrsa -out rootCA.key 2048

$ openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.pem

Country Name (2 letter code) [XX]:IE
State or Province Name (full name) []:GALWAY
Locality Name (eg, city) [Default City]:GALWAY
Organization Name (eg, company) [Default Company Ltd]:QUAY
Organizational Unit Name (eg, section) []:DOCS
Common Name (eg, your name or your server's hostname) []:quay-server.example.com

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

19

https://en.wikipedia.org/wiki/Self-signed_certificate

Use the following procedure to sign a certificate.

Procedure

1. Generate the server key by entering the following command:

2. Generate a signing request by entering the following command:

3. Enter the information that will be incorporated into your certificate request, including the server
hostname, for example:

4. Create a configuration file openssl.cnf, specifying the server hostname, for example:

openssl.cnf

5. Use the configuration file to generate the certificate ssl.cert:

4.3. CONFIGURING SSL USING THE COMMAND LINE INTERFACE

Use the following procedure to configure SSL/TLS using the command line interface.

Prerequisites

You have created a certificate authority and signed the certificate.

Procedure

1. Copy the certificate file and primary key file to your configuration directory, ensuring they are

$ openssl genrsa -out ssl.key 2048

$ openssl req -new -key ssl.key -out ssl.csr

Country Name (2 letter code) [XX]:IE
State or Province Name (full name) []:GALWAY
Locality Name (eg, city) [Default City]:GALWAY
Organization Name (eg, company) [Default Company Ltd]:QUAY
Organizational Unit Name (eg, section) []:DOCS
Common Name (eg, your name or your server's hostname) []:quay-server.example.com

[req]
req_extensions = v3_req
distinguished_name = req_distinguished_name
[req_distinguished_name]
[v3_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names
[alt_names]
DNS.1 = quay-server.example.com
IP.1 = 192.168.1.112

$ openssl x509 -req -in ssl.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
ssl.cert -days 356 -extensions v3_req -extfile openssl.cnf

Red Hat Quay 3.9 Manage Red Hat Quay

20

1. Copy the certificate file and primary key file to your configuration directory, ensuring they are
named ssl.cert and ssl.key respectively:

2. Change into the $QUAY/config directory by entering the following command:

3. Edit the config.yaml file and specify that you want Red Hat Quay to handle TLS/SSL:

config.yaml

4. Optional: Append the contents of the rootCA.pem file to the end of the ssl.cert file by entering
the following command:

5. Stop the Quay container by entering the following command:

6. Restart the registry by entering the following command:

$ sudo podman run -d --rm -p 80:8080 -p 443:8443 \
 --name=quay \
 -v $QUAY/config:/conf/stack:Z \
 -v $QUAY/storage:/datastorage:Z \
 registry.redhat.io/quay/quay-rhel8:v3.9.6

4.4. CONFIGURING SSL/TLS USING THE RED HAT QUAY UI

Use the following procedure to configure SSL/TLS using the Red Hat Quay UI.

To configure SSL using the command line interface, see "Configuring SSL/TLS using the command line
interface".

Prerequisites

You have created a certificate authority and signed the certificate.

Procedure

1. Start the Quay container in configuration mode:

cp ~/ssl.cert ~/ssl.key $QUAY/config

$ cd $QUAY/config

...
SERVER_HOSTNAME: quay-server.example.com
...
PREFERRED_URL_SCHEME: https
...

$ cat rootCA.pem >> ssl.cert

$ sudo podman stop quay

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

21

$ sudo podman run --rm -it --name quay_config -p 80:8080 -p 443:8443
registry.redhat.io/quay/quay-rhel8:v3.9.6 config secret

2. In the Server Configuration section, select Red Hat Quay handles TLS for SSL/TLS. Upload
the certificate file and private key file created earlier, ensuring that the Server Hostname
matches the value used when the certificates were created.

3. Validate and download the updated configuration.

4. Stop the Quay container and then restart the registry by entering the following command:

$ sudo podman rm -f quay
$ sudo podman run -d --rm -p 80:8080 -p 443:8443 \
--name=quay \
-v $QUAY/config:/conf/stack:Z \
-v $QUAY/storage:/datastorage:Z \
registry.redhat.io/quay/quay-rhel8:v3.9.6

4.5. TESTING SSL CONFIGURATION USING THE COMMAND LINE

Use the podman login command to attempt to log in to the Quay registry with SSL enabled:

$ sudo podman login quay-server.example.com
Username: quayadmin
Password:

Error: error authenticating creds for "quay-server.example.com": error pinging docker registry
quay-server.example.com: Get "https://quay-server.example.com/v2/": x509: certificate
signed by unknown authority

Podman does not trust self-signed certificates. As a workaround, use the --tls-verify option:

$ sudo podman login --tls-verify=false quay-server.example.com
Username: quayadmin
Password:

Login Succeeded!

Configuring Podman to trust the root Certificate Authority (CA) is covered in a subsequent section.

4.6. TESTING SSL CONFIGURATION USING THE BROWSER

When you attempt to access the Quay registry, in this case, https://quay-server.example.com, the
browser warns of the potential risk:

Red Hat Quay 3.9 Manage Red Hat Quay

22

https://quay-server.example.com

Proceed to the log in screen, and the browser will notify you that the connection is not secure:

Configuring the system to trust the root Certificate Authority (CA) is covered in the subsequent
section.

4.7. CONFIGURING PODMAN TO TRUST THE CERTIFICATE
AUTHORITY

Podman uses two paths to locate the CA file, namely, /etc/containers/certs.d/ and /etc/docker/certs.d/.

Copy the root CA file to one of these locations, with the exact path determined by the server
hostname, and naming the file ca.crt:

$ sudo cp rootCA.pem /etc/containers/certs.d/quay-server.example.com/ca.crt

Alternatively, if you are using Docker, you can copy the root CA file to the equivalent Docker

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

23

Alternatively, if you are using Docker, you can copy the root CA file to the equivalent Docker
directory:

$ sudo cp rootCA.pem /etc/docker/certs.d/quay-server.example.com/ca.crt

You should no longer need to use the --tls-verify=false option when logging in to the registry:

$ sudo podman login quay-server.example.com

Username: quayadmin
Password:
Login Succeeded!

4.8. CONFIGURING THE SYSTEM TO TRUST THE CERTIFICATE
AUTHORITY

Use the following procedure to configure your system to trust the certificate authority.

Procedure

1. Enter the following command to copy the rootCA.pem file to the consolidated system-wide
trust store:

2. Enter the following command to update the system-wide trust store configuration:

3. Optional. You can use the trust list command to ensure that the Quay server has been
configured:

Now, when you browse to the registry at https://quay-server.example.com, the lock icon
shows that the connection is secure:

$ sudo cp rootCA.pem /etc/pki/ca-trust/source/anchors/

$ sudo update-ca-trust extract

$ trust list | grep quay
 label: quay-server.example.com

Red Hat Quay 3.9 Manage Red Hat Quay

24

https://quay-server.example.com

4. To remove the rootCA.pem file from system-wide trust, delete the file and update the
configuration:

More information can be found in the RHEL 9 documentation in the chapter Using shared system
certificates.

$ sudo rm /etc/pki/ca-trust/source/anchors/rootCA.pem

$ sudo update-ca-trust extract

$ trust list | grep quay

CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY

25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/securing_networks/index#using-shared-system-certificates_securing-networks

CHAPTER 5. ADDING TLS CERTIFICATES TO THE RED HAT
QUAY CONTAINER

To add custom TLS certificates to Red Hat Quay, create a new directory named extra_ca_certs/
beneath the Red Hat Quay config directory. Copy any required site-specific TLS certificates to this new
directory.

5.1. ADD TLS CERTIFICATES TO RED HAT QUAY

1. View certificate to be added to the container

$ cat storage.crt
-----BEGIN CERTIFICATE-----
MIIDTTCCAjWgAwIBAgIJAMVr9ngjJhzbMA0GCSqGSIb3DQEBCwUAMD0xCzAJBgNV
[...]
-----END CERTIFICATE-----

2. Create certs directory and copy certificate there

$ mkdir -p quay/config/extra_ca_certs
$ cp storage.crt quay/config/extra_ca_certs/
$ tree quay/config/
├── config.yaml
├── extra_ca_certs
│ ├── storage.crt

3. Obtain the Quay container’s CONTAINER ID with podman ps:

$ sudo podman ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS
5a3e82c4a75f <registry>/<repo>/quay:v3.9.6 "/sbin/my_init" 24 hours ago Up
18 hours 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp, 443/tcp grave_keller

4. Restart the container with that ID:

$ sudo podman restart 5a3e82c4a75f

5. Examine the certificate copied into the container namespace:

$ sudo podman exec -it 5a3e82c4a75f cat /etc/ssl/certs/storage.pem
-----BEGIN CERTIFICATE-----
MIIDTTCCAjWgAwIBAgIJAMVr9ngjJhzbMA0GCSqGSIb3DQEBCwUAMD0xCzAJBgNV

5.2. ADDING CUSTOM SSL/TLS CERTIFICATES WHEN RED HAT QUAY
IS DEPLOYED ON KUBERNETES

When deployed on Kubernetes, Red Hat Quay mounts in a secret as a volume to store config assets.
Currently, this breaks the upload certificate function of the superuser panel.

As a temporary workaround, base64 encoded certificates can be added to the secret after Red Hat
Quay has been deployed.

Red Hat Quay 3.9 Manage Red Hat Quay

26

Use the following procedure to add custom SSL/TLS certificates when Red Hat Quay is deployed on
Kubernetes.

Prerequisites

Red Hat Quay has been deployed.

You have a custom ca.crt file.

Procedure

1. Base64 encode the contents of an SSL/TLS certificate by entering the following command:

Example output

2. Enter the following kubectl command to edit the quay-enterprise-config-secret file:

3. Add an entry for the certificate and paste the full base64 encoded stringer under the entry. For
example:

4. Use the kubectl delete command to remove all Red Hat Quay pods. For example:

Afterwards, the Red Hat Quay deployment automatically schedules replace pods with the new
certificate data.

$ cat ca.crt | base64 -w 0

...c1psWGpqeGlPQmNEWkJPMjJ5d0pDemVnR2QNCnRsbW9JdEF4YnFSdVd3PT0KLS0tLS1
FTkQgQ0VSVElGSUNBVEUtLS0tLQo=

$ kubectl --namespace quay-enterprise edit secret/quay-enterprise-config-secret

 custom-cert.crt:
c1psWGpqeGlPQmNEWkJPMjJ5d0pDemVnR2QNCnRsbW9JdEF4YnFSdVd3PT0KLS0tLS1F
TkQgQ0VSVElGSUNBVEUtLS0tLQo=

$ kubectl delete pod quay-operator.v3.7.1-6f9d859bd-p5ftc quayregistry-clair-postgres-
7487f5bd86-xnxpr quayregistry-quay-app-upgrade-xq2v6 quayregistry-quay-config-editor-
6dfdcfc44f-hlvwm quayregistry-quay-database-859d5445ff-cqthr quayregistry-quay-redis-
84f888776f-hhgms

CHAPTER 5. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINER

27

CHAPTER 6. CONFIGURING ACTION LOG STORAGE FOR
ELASTICSEARCH AND SPLUNK

By default, the previous three months of usage logs are stored in the Red Hat Quay database and
exposed through the web UI on organization and repository levels. Appropriate administrative privileges
are required to see log entries. For deployments with a large amount of logged operations, you can
store the usage logs in Elasticsearch and Splunk instead of the Red Hat Quay database backend.

6.1. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH

NOTE

To configure action log storage for Elasticsearch, you must provide your own
Elasticsearch stack, as it is not included with Red Hat Quay as a customizable component.

Enabling Elasticsearch logging can be done during Red Hat Quay deployment or post-deployment using
the configuration tool. The resulting configuration is stored in the config.yaml file. When configured,
usage log access continues to be provided through the web UI for repositories and organizations.

Use the following procedure to configure action log storage for Elasticsearch:

Procedure

1. Obtain an Elasticsearch account.

2. Open the Red Hat Quay Config Tool (either during or after Red Hat Quay deployment).

3. Scroll to the Action Log Storage Configuration setting and select Elasticsearch. The
following figure shows the Elasticsearch settings that appear:

4. Fill in the following information for your Elasticsearch instance:

Elasticsearch hostname: The hostname or IP address of the system providing the

Red Hat Quay 3.9 Manage Red Hat Quay

28

Elasticsearch hostname: The hostname or IP address of the system providing the
Elasticsearch service.

Elasticsearch port: The port number providing the Elasticsearch service on the host you just
entered. Note that the port must be accessible from all systems running the Red Hat Quay
registry. The default is TCP port 9200.

Elasticsearch access key: The access key needed to gain access to the Elastic search
service, if required.

Elasticsearch secret key: The secret key needed to gain access to the Elastic search
service, if required.

AWS region: If you are running on AWS, set the AWS region (otherwise, leave it blank).

Index prefix: Choose a prefix to attach to log entries.

Logs Producer: Choose either Elasticsearch (default) or Kinesis to direct logs to an
intermediate Kinesis stream on AWS. You need to set up your own pipeline to send logs
from Kinesis to Elasticsearch (for example, Logstash). The following figure shows additional
fields you would need to fill in for Kinesis:

5. If you chose Elasticsearch as the Logs Producer, no further configuration is needed. If you chose
Kinesis, fill in the following:

Stream name: The name of the Kinesis stream.

AWS access key: The name of the AWS access key needed to gain access to the Kinesis
stream, if required.

AWS secret key: The name of the AWS secret key needed to gain access to the Kinesis
stream, if required.

AWS region: The AWS region.

6. When you are done, save the configuration. The configuration tool checks your settings. If there
is a problem connecting to the Elasticsearch or Kinesis services, you will see an error and have
the opportunity to continue editing. Otherwise, logging will begin to be directed to your
Elasticsearch configuration after the cluster restarts with the new configuration.

6.2. CONFIGURING ACTION LOG STORAGE FOR SPLUNK

CHAPTER 6. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH AND SPLUNK

29

Splunk is an alternative to Elasticsearch that can provide log analyses for your Red Hat Quay data.

Enabling Splunk logging can be done during Red Hat Quay deployment or post-deployment using the
configuration tool. The resulting configuration is stored in the config.yaml file. When configured, usage
log access continues to be provided through the Splunk web UI for repositories and organizations.

Use the following procedures to enable Splunk for your Red Hat Quay deployment.

6.2.1. Installing and creating a username for Splunk

Use the following procedure to install and create Splunk credentials.

Procedure

1. Create a Splunk account by navigating to Splunk and entering the required credentials.

2. Navigate to the Splunk Enterprise Free Trial page, select your platform and installation
package, and then click Download Now.

3. Install the Splunk software on your machine. When prompted, create a username, for example,
splunk_admin and password.

4. After creating a username and password, a localhost URL will be provided for your Splunk
deployment, for example, http://<sample_url>.remote.csb:8000/. Open the URL in your
preferred browser.

5. Log in with the username and password you created during installation. You are directed to the
Splunk UI.

6.2.2. Generating a Splunk token

Use one of the following procedures to create a bearer token for Splunk.

6.2.2.1. Generating a Splunk token using the Splunk UI

Use the following procedure to create a bearer token for Splunk using the Splunk UI.

Prerequisites

You have installed Splunk and created a username.

Procedure

1. On the Splunk UI, navigate to Settings → Tokens.

2. Click Enable Token Authentication.

3. Ensure that Token Authentication is enabled by clicking Token Settings and selecting Token
Authentication if necessary.

4. Optional: Set the expiration time for your token. This defaults at 30 days.

5. Click Save.

6. Click New Token.

Red Hat Quay 3.9 Manage Red Hat Quay

30

https://www.splunk.com/
https://www.splunk.com/en_us/sign-up.html
https://www.splunk.com/en_us/download/splunk-enterprise.html
http://:8000/

7. Enter information for User and Audience.

8. Optional: Set the Expiration and Not Before information.

9. Click Create. Your token appears in the Token box. Copy the token immediately.

IMPORTANT

If you close out of the box before copying the token, you must create a new
token. The token in its entirety is not available after closing the New Token
window.

6.2.2.2. Generating a Splunk token using the CLI

Use the following procedure to create a bearer token for Splunk using the CLI.

Prerequisites

You have installed Splunk and created a username.

Procedure

1. In your CLI, enter the following CURL command to enable token authentication, passing in your
Splunk username and password:

2. Create a token by entering the following CURL command, passing in your Splunk username and
password.

3. Save the generated bearer token.

6.2.3. Configuring Red Hat Quay to use Splunk

Use the following procedure to configure Red Hat Quay to use Splunk.

Prerequisites

You have installed Splunk and created a username.

You have generated a Splunk bearer token.

Procedure

1. Open your Red Hat Quay config.yaml file and add the following configuration fields:

$ curl -k -u <username>:<password> -X POST <scheme>://<host>:
<port>/services/admin/token-auth/tokens_auth -d disabled=false

$ curl -k -u <username>:<password> -X POST <scheme>://<host>:
<port>/services/authorization/tokens?output_mode=json --data name=<username> --data
audience=Users --data-urlencode expires_on=+30d

LOGS_MODEL: splunk

CHAPTER 6. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH AND SPLUNK

31

1

2

3

4

5

6

7

String. The Splunk cluster endpoint.

Integer. The Splunk management cluster endpoint port. Differs from the Splunk GUI
hosted port. Can be found on the Splunk UI under Settings → Server Settings → General
Settings.

String. The generated bearer token for Splunk.

String. The URL scheme for access the Splunk service. If Splunk is configured to use
TLS/SSL, this must be https.

Boolean. Whether to enable TLS/SSL. Defaults to true.

String. The Splunk index prefix. Can be a new, or used, index. Can be created from the
Splunk UI.

String. The relative container path to a single .pem file containing a certificate authority
(CA) for TLS/SSL validation.

2. If you are configuring ssl_ca_path, you must configure the SSL/TLS certificate so that Red Hat
Quay will trust it.

a. If you are using a standalone deployment of Red Hat Quay, SSL/TLS certificates can be
provided by placing the certificate file inside of the extra_ca_certs directory, or inside of
the relative container path and specified by ssl_ca_path.

b. If you are using the Red Hat Quay Operator, create a config bundle secret, including the
certificate authority (CA) of the Splunk server. For example:

Specify the conf/stack/extra_ca_certs/splunkserver.crt file in your config.yaml. For
example:

LOGS_MODEL_CONFIG:
 producer: splunk
 splunk_config:
 host: http://<user_name>.remote.csb 1
 port: 8089 2
 bearer_token: <bearer_token> 3
 url_scheme: <http/https> 4
 verify_ssl: False 5
 index_prefix: <splunk_log_index_name> 6
 ssl_ca_path: <location_to_ssl-ca-cert.pem> 7

$ oc create secret generic --from-file config.yaml=./config_390.yaml --from-file
extra_ca_cert_splunkserver.crt=./splunkserver.crt config-bundle-secret

LOGS_MODEL: splunk
LOGS_MODEL_CONFIG:
 producer: splunk
 splunk_config:
 host: ec2-12-345-67-891.us-east-2.compute.amazonaws.com
 port: 8089
 bearer_token: eyJra

Red Hat Quay 3.9 Manage Red Hat Quay

32

6.2.4. Creating an action log

Use the following procedure to create a user account that can forward action logs to Splunk.

IMPORTANT

You must use the Splunk UI to view Red Hat Quay action logs. At this time, viewing
Splunk action logs on the Red Hat Quay Usage Logs page is unsupported, and returns
the following message: Method not implemented. Splunk does not support log
lookups.

Prerequisites

You have installed Splunk and created a username.

You have generated a Splunk bearer token.

You have configured your Red Hat Quay config.yaml file to enable Splunk.

Procedure

1. Log in to your Red Hat Quay deployment.

2. Click on the name of the organization that you will use to create an action log for Splunk.

3. In the navigation pane, click Robot Accounts → Create Robot Account.

4. When prompted, enter a name for the robot account, for example spunkrobotaccount, then
click Create robot account.

5. On your browser, open the Splunk UI.

6. Click Search and Reporting.

7. In the search bar, enter the name of your index, for example, <splunk_log_index_name> and
press Enter.
The search results populate on the Splunk UI, showing information like host, sourcetype, etc.
By clicking the > arrow, you can see metadata for the logs, such as the ip, JSON metadata, and
account name.

 url_scheme: https
 verify_ssl: true
 index_prefix: quay123456
 ssl_ca_path: conf/stack/splunkserver.crt

CHAPTER 6. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH AND SPLUNK

33

CHAPTER 7. CLAIR FOR RED HAT QUAY
Clair v4 (Clair) is an open source application that leverages static code analyses for parsing image
content and reporting vulnerabilities affecting the content. Clair is packaged with Red Hat Quay and can
be used in both standalone and Operator deployments. It can be run in highly scalable configurations,
where components can be scaled separately as appropriate for enterprise environments.

7.1. CLAIR VULNERABILITY DATABASES

Clair uses the following vulnerability databases to report for issues in your images:

Ubuntu Oval database

Debian Security Tracker

Red Hat Enterprise Linux (RHEL) Oval database

SUSE Oval database

Oracle Oval database

Alpine SecDB database

VMWare Photon OS database

Amazon Web Services (AWS) UpdateInfo

Open Source Vulnerability (OSV) Database

For information about how Clair does security mapping with the different databases, see Claircore
Severity Mapping.

7.1.1. Information about Open Source Vulnerability (OSV) database for Clair

Open Source Vulnerability (OSV) is a vulnerability database and monitoring service that focuses on
tracking and managing security vulnerabilities in open source software.

OSV provides a comprehensive and up-to-date database of known security vulnerabilities in open
source projects. It covers a wide range of open source software, including libraries, frameworks, and
other components that are used in software development. For a full list of included ecosystems, see
defined ecosystems.

Clair also reports vulnerability and security information for golang, java, and ruby ecosystems through
the Open Source Vulnerability (OSV) database.

By leveraging OSV, developers and organizations can proactively monitor and address security
vulnerabilities in open source components that they use, which helps to reduce the risk of security
breaches and data compromises in projects.

For more information about OSV, see the OSV website.

7.2. SETTING UP CLAIR ON STANDALONE RED HAT QUAY
DEPLOYMENTS

For standalone Red Hat Quay deployments, you can set up Clair manually.

Red Hat Quay 3.9 Manage Red Hat Quay

34

https://osv.dev/
https://quay.github.io/claircore/concepts/severity_mapping.html
https://ossf.github.io/osv-schema/#affectedpackage-field
https://osv.dev/

Procedure

1. In your Red Hat Quay installation directory, create a new directory for the Clair database data:

2. Set the appropriate permissions for the postgres-clairv4 file by entering the following
command:

3. Deploy a Clair Postgres database by entering the following command:

4. Install the Postgres uuid-ossp module for your Clair deployment:

Example output

NOTE

Clair requires the uuid-ossp extension to be added to its Postgres database. For
users with proper privileges, creating the extension will automatically be added
by Clair. If users do not have the proper privileges, the extension must be added
before start Clair.

If the extension is not present, the following error will be displayed when Clair
attempts to start: ERROR: Please load the "uuid-ossp" extension.
(SQLSTATE 42501).

5. Stop the Quay container if it is running and restart it in configuration mode, loading the existing
configuration as a volume:

6. Log in to the configuration tool and click Enable Security Scanning in the Security Scanner
section of the UI.

$ mkdir /home/<user-name>/quay-poc/postgres-clairv4

$ setfacl -m u:26:-wx /home/<user-name>/quay-poc/postgres-clairv4

$ sudo podman run -d --name postgresql-clairv4 \
 -e POSTGRESQL_USER=clairuser \
 -e POSTGRESQL_PASSWORD=clairpass \
 -e POSTGRESQL_DATABASE=clair \
 -e POSTGRESQL_ADMIN_PASSWORD=adminpass \
 -p 5433:5433 \
 -v /home/<user-name>/quay-poc/postgres-clairv4:/var/lib/pgsql/data:Z \
 registry.redhat.io/rhel8/postgresql-13:1-109

$ podman exec -it postgresql-clairv4 /bin/bash -c 'echo "CREATE EXTENSION IF NOT
EXISTS \"uuid-ossp\"" | psql -d clair -U postgres'

CREATE EXTENSION

$ sudo podman run --rm -it --name quay_config \
 -p 80:8080 -p 443:8443 \
 -v $QUAY/config:/conf/stack:Z \
 registry.redhat.io/quay/quay-rhel8:{productminv} config secret

CHAPTER 7. CLAIR FOR RED HAT QUAY

35

7. Set the HTTP endpoint for Clair using a port that is not already in use on the quay-server
system, for example, 8081.

8. Create a pre-shared key (PSK) using the Generate PSK button.

Security Scanner UI

9. Validate and download the config.yaml file for Red Hat Quay, and then stop the Quay
container that is running the configuration editor.

10. Extract the new configuration bundle into your Red Hat Quay installation directory, for example:

11. Create a folder for your Clair configuration file, for example:

12. Change into the Clair configuration folder:

13. Create a Clair configuration file, for example:

$ tar xvf quay-config.tar.gz -d /home/<user-name>/quay-poc/

$ mkdir /etc/opt/clairv4/config/

$ cd /etc/opt/clairv4/config/

http_listen_addr: :8081
introspection_addr: :8088
log_level: debug
indexer:
 connstring: host=quay-server.example.com port=5433 dbname=clair user=clairuser
password=clairpass sslmode=disable
 scanlock_retry: 10
 layer_scan_concurrency: 5
 migrations: true
matcher:
 connstring: host=quay-server.example.com port=5433 dbname=clair user=clairuser
password=clairpass sslmode=disable
 max_conn_pool: 100
 migrations: true
 indexer_addr: clair-indexer
notifier:
 connstring: host=quay-server.example.com port=5433 dbname=clair user=clairuser
password=clairpass sslmode=disable
 delivery_interval: 1m
 poll_interval: 5m

Red Hat Quay 3.9 Manage Red Hat Quay

36

For more information about Clair’s configuration format, see Clair configuration reference .

14. Start Clair by using the container image, mounting in the configuration from the file you created:

$ sudo podman run -d --name clairv4 \
-p 8081:8081 -p 8088:8088 \
-e CLAIR_CONF=/clair/config.yaml \
-e CLAIR_MODE=combo \
-v /etc/opt/clairv4/config:/clair:Z \
registry.redhat.io/quay/clair-rhel8:v3.9.6

NOTE

Running multiple Clair containers is also possible, but for deployment scenarios
beyond a single container the use of a container orchestrator like Kubernetes or
OpenShift Container Platform is strongly recommended.

7.3. CLAIR ON OPENSHIFT CONTAINER PLATFORM

To set up Clair v4 (Clair) on a Red Hat Quay deployment on OpenShift Container Platform, it is
recommended to use the Red Hat Quay Operator. By default, the Red Hat Quay Operator will install or
upgrade a Clair deployment along with your Red Hat Quay deployment and configure Clair
automatically.

7.4. TESTING CLAIR

Use the following procedure to test Clair on either a standalone Red Hat Quay deployment, or on an
OpenShift Container Platform Operator-based deployment.

Prerequisites

You have deployed the Clair container image.

Procedure

1. Pull a sample image by entering the following command:

 migrations: true
auth:
 psk:
 key: "MTU5YzA4Y2ZkNzJoMQ=="
 iss: ["quay"]
tracing and metrics
trace:
 name: "jaeger"
 probability: 1
 jaeger:
 agent:
 endpoint: "localhost:6831"
 service_name: "clair"
metrics:
 name: "prometheus"

$ podman pull ubuntu:20.04

CHAPTER 7. CLAIR FOR RED HAT QUAY

37

https://quay.github.io/clair/reference/config.html

2. Tag the image to your registry by entering the following command:

3. Push the image to your Red Hat Quay registry by entering the following command:

4. Log in to your Red Hat Quay deployment through the UI.

5. Click the repository name, for example, quayadmin/ubuntu.

6. In the navigation pane, click Tags.

Report summary

7. Click the image report, for example, 45 medium, to show a more detailed report:

Report details

NOTE

In some cases, Clair shows duplicate reports on images, for example,
ubi8/nodejs-12 or ubi8/nodejs-16. This occurs because vulnerabilities with same
name are for different packages. This behavior is expected with Clair vulnerability
reporting and will not be addressed as a bug.

$ sudo podman tag docker.io/library/ubuntu:20.04 <quay-server.example.com>/<user-
name>/ubuntu:20.04

$ sudo podman push --tls-verify=false quay-server.example.com/quayadmin/ubuntu:20.04

Red Hat Quay 3.9 Manage Red Hat Quay

38

CHAPTER 8. REPOSITORY MIRRORING

8.1. REPOSITORY MIRRORING

Red Hat Quay repository mirroring lets you mirror images from external container registries, or another
local registry, into your Red Hat Quay cluster. Using repository mirroring, you can synchronize images to
Red Hat Quay based on repository names and tags.

From your Red Hat Quay cluster with repository mirroring enabled, you can perform the following:

Choose a repository from an external registry to mirror

Add credentials to access the external registry

Identify specific container image repository names and tags to sync

Set intervals at which a repository is synced

Check the current state of synchronization

To use the mirroring functionality, you need to perform the following actions:

Enable repository mirroring in the Red Hat Quay configuration file

Run a repository mirroring worker

Create mirrored repositories

All repository mirroring configurations can be performed using the configuration tool UI or by the Red
Hat Quay API.

8.2. REPOSITORY MIRRORING COMPARED TO GEO-REPLICATION

Red Hat Quay geo-replication mirrors the entire image storage backend data between 2 or more
different storage backends while the database is shared, for example, one Red Hat Quay registry with
two different blob storage endpoints. The primary use cases for geo-replication include the following:

Speeding up access to the binary blobs for geographically dispersed setups

Guaranteeing that the image content is the same across regions

Repository mirroring synchronizes selected repositories, or subsets of repositories, from one registry to
another. The registries are distinct, with each registry having a separate database and separate image
storage.

The primary use cases for mirroring include the following:

Independent registry deployments in different data centers or regions, where a certain subset of
the overall content is supposed to be shared across the data centers and regions

Automatic synchronization or mirroring of selected (allowlisted) upstream repositories from
external registries into a local Red Hat Quay deployment

NOTE

CHAPTER 8. REPOSITORY MIRRORING

39

NOTE

Repository mirroring and geo-replication can be used simultaneously.

Table 8.1. Red Hat Quay Repository mirroring and geo-replication comparison

Feature / Capability Geo-replication Repository mirroring

What is the feature designed to
do?

A shared, global registry Distinct, different registries

What happens if replication or
mirroring has not been completed
yet?

The remote copy is used (slower) No image is served

Is access to all storage backends
in both regions required?

Yes (all Red Hat Quay nodes) No (distinct storage)

Can users push images from both
sites to the same repository?

Yes No

Is all registry content and
configuration identical across all
regions (shared database)?

Yes No

Can users select individual
namespaces or repositories to be
mirrored?

No Yes

Can users apply filters to
synchronization rules?

No Yes

Are individual / different role-
base access control
configurations allowed in each
region

No Yes

8.3. USING REPOSITORY MIRRORING

The following list shows features and limitations of Red Hat Quay repository mirroring:

With repository mirroring, you can mirror an entire repository or selectively limit which images
are synced. Filters can be based on a comma-separated list of tags, a range of tags, or other
means of identifying tags through Unix shell-style wildcards. For more information, see the
documentation for wildcards.

When a repository is set as mirrored, you cannot manually add other images to that repository.

Because the mirrored repository is based on the repository and tags you set, it will hold only the
content represented by the repository and tag pair. For example if you change the tag so that
some images in the repository no longer match, those images will be deleted.

Red Hat Quay 3.9 Manage Red Hat Quay

40

https://tldp.org/LDP/GNU-Linux-Tools-Summary/html/x11655.htm

Only the designated robot can push images to a mirrored repository, superseding any role-
based access control permissions set on the repository.

Mirroring can be configured to rollback on failure, or to run on a best-effort basis.

With a mirrored repository, a user with read permissions can pull images from the repository but
cannot push images to the repository.

Changing settings on your mirrored repository can be performed in the Red Hat Quay user
interface, using the Repositories → Mirrors tab for the mirrored repository you create.

Images are synced at set intervals, but can also be synced on demand.

8.4. MIRRORING CONFIGURATION UI

1. Start the Quay container in configuration mode and select the Enable Repository Mirroring
check box. If you want to require HTTPS communications and verify certificates during
mirroring, select the HTTPS and cert verification check box.

2. Validate and download the configuration file, and then restart Quay in registry mode using the
updated config file.

8.5. MIRRORING CONFIGURATION FIELDS

Table 8.2. Mirroring configuration

Field Type Description

FEATURE_REPO_MIRROR Boolean Enable or disable repository
mirroring

Default: false

REPO_MIRROR_INTERVAL Number The number of seconds between
checking for repository mirror
candidates

Default: 30

CHAPTER 8. REPOSITORY MIRRORING

41

REPO_MIRROR_SERVER_HOSTNAME String Replaces the
SERVER_HOSTNAME as the
destination for mirroring.

Default: None

Example:
openshift-quay-service

REPO_MIRROR_TLS_VERIFY Boolean Require HTTPS and verify
certificates of Quay registry
during mirror.

Default: false

REPO_MIRROR_ROLLBACK Boolean When set to true, the repository
rolls back after a failed mirror
attempt.

Default: false

Field Type Description

8.6. MIRRORING WORKER

Use the following procedure to start the repository mirroring worker.

Procedure

If you have not configured TLS communications using a /root/ca.crt certificate, enter the
following command to start a Quay pod with the repomirror option:

$ sudo podman run -d --name mirroring-worker \
 -v $QUAY/config:/conf/stack:Z \
 registry.redhat.io/quay/quay-rhel8:v3.9.6 repomirror

If you have configured TLS communications using a /root/ca.crt certificate, enter the following
command to start the repository mirroring worker:

$ sudo podman run -d --name mirroring-worker \
 -v $QUAY/config:/conf/stack:Z \
 -v /root/ca.crt:/etc/pki/ca-trust/source/anchors/ca.crt:Z \
 registry.redhat.io/quay/quay-rhel8:v3.9.6 repomirror

8.7. CREATING A MIRRORED REPOSITORY

When mirroring a repository from an external container registry, you must create a new private
repository. Typically, the same name is used as the target repository, for example, quay-rhel8.

Red Hat Quay 3.9 Manage Red Hat Quay

42

8.7.1. Repository mirroring settings

Use the following procedure to adjust the settings of your mirrored repository.

Prerequisites

You have enabled repository mirroring in your Red Hat Quay configuration file.

You have deployed a mirroring worker.

Procedure

1. In the Settings tab, set the Repository State to Mirror:

2. In the Mirror tab, enter the details for connecting to the external registry, along with the tags,
scheduling and access information:

CHAPTER 8. REPOSITORY MIRRORING

43

3. Enter the details as required in the following fields:

Registry Location: The external repository you want to mirror, for example,
registry.redhat.io/quay/quay-rhel8

Tags: This field is required. You may enter a comma-separated list of individual tags or tag
patterns. (See Tag Patterns section for details.)

Start Date: The date on which mirroring begins. The current date and time is used by
default.

Sync Interval: Defaults to syncing every 24 hours. You can change that based on hours or
days.

Robot User: Create a new robot account or choose an existing robot account to do the
mirroring.

Username: The username for accessing the external registry holding the repository you are
mirroring.

Password: The password associated with the Username. Note that the password cannot
include characters that require an escape character (\).

8.7.2. Advanced settings

In the Advanced Settings section, you can configure SSL/TLS and proxy with the following options:

Verify TLS: Select this option if you want to require HTTPS and to verify certificates when
communicating with the target remote registry.

Accept Unsigned Images: Selecting this option allows unsigned images to be mirrored.

HTTP Proxy: Select this option if you want to require HTTPS and to verify certificates when

Red Hat Quay 3.9 Manage Red Hat Quay

44

HTTP Proxy: Select this option if you want to require HTTPS and to verify certificates when
communicating with the target remote registry.

HTTPS PROXY: Identify the HTTPS proxy server needed to access the remote site, if a proxy
server is needed.

No Proxy: List of locations that do not require proxy.

8.7.3. Synchronize now

Use the following procedure to initiate the mirroring operation.

Procedure

To perform an immediate mirroring operation, press the Sync Now button on the repository’s
Mirroring tab. The logs are available on the Usage Logs tab:

When the mirroring is complete, the images will appear in the Tags tab:

Below is an example of a completed Repository Mirroring screen:

CHAPTER 8. REPOSITORY MIRRORING

45

8.8. EVENT NOTIFICATIONS FOR MIRRORING

There are three notification events for repository mirroring:

Repository Mirror Started

Repository Mirror Success

Repository Mirror Unsuccessful

The events can be configured inside of the Settings tab for each repository, and all existing notification
methods such as email, Slack, Quay UI, and webhooks are supported.

8.9. MIRRORING TAG PATTERNS

At least one tag must be entered. The following table references possible image tag patterns.

8.9.1. Pattern syntax

Pattern Description

* Matches all characters

? Matches any single character

[seq] Matches any character in seq

[!seq] Matches any character not in seq

8.9.2. Example tag patterns

Example Pattern Example Matches

v3* v32, v3.1, v3.2, v3.2-4beta, v3.3

Red Hat Quay 3.9 Manage Red Hat Quay

46

v3.* v3.1, v3.2, v3.2-4beta

v3.? v3.1, v3.2, v3.3

v3.[12] v3.1, v3.2

v3.[12]* v3.1, v3.2, v3.2-4beta

v3.[!1]* v3.2, v3.2-4beta, v3.3

8.10. WORKING WITH MIRRORED REPOSITORIES

Once you have created a mirrored repository, there are several ways you can work with that repository.
Select your mirrored repository from the Repositories page and do any of the following:

Enable/disable the repository: Select the Mirroring button in the left column, then toggle the
Enabled check box to enable or disable the repository temporarily.

Check mirror logs: To make sure the mirrored repository is working properly, you can check the
mirror logs. To do that, select the Usage Logs button in the left column. Here’s an example:

Sync mirror now: To immediately sync the images in your repository, select the Sync Now
button.

Change credentials: To change the username and password, select DELETE from the
Credentials line. Then select None and add the username and password needed to log into the
external registry when prompted.

CHAPTER 8. REPOSITORY MIRRORING

47

Cancel mirroring: To stop mirroring, which keeps the current images available but stops new
ones from being synced, select the CANCEL button.

Set robot permissions: Red Hat Quay robot accounts are named tokens that hold credentials
for accessing external repositories. By assigning credentials to a robot, that robot can be used
across multiple mirrored repositories that need to access the same external registry.
You can assign an existing robot to a repository by going to Account Settings, then selecting the
Robot Accounts icon in the left column. For the robot account, choose the link under the
REPOSITORIES column. From the pop-up window, you can:

Check which repositories are assigned to that robot.

Assign read, write or Admin privileges to that robot from the PERMISSION field shown in
this figure:

Change robot credentials: Robots can hold credentials such as Kubernetes secrets, Docker
login information, and Mesos bundles. To change robot credentials, select the Options gear on
the robot’s account line on the Robot Accounts window and choose View Credentials. Add the
appropriate credentials for the external repository the robot needs to access.

Check and change general setting: Select the Settings button (gear icon) from the left column
on the mirrored repository page. On the resulting page, you can change settings associated
with the mirrored repository. In particular, you can change User and Robot Permissions, to
specify exactly which users and robots can read from or write to the repo.

8.11. REPOSITORY MIRRORING RECOMMENDATIONS

Best practices for repository mirroring include the following:

Repository mirroring pods can run on any node. This means that you can run mirroring on nodes

Red Hat Quay 3.9 Manage Red Hat Quay

48

Repository mirroring pods can run on any node. This means that you can run mirroring on nodes
where Red Hat Quay is already running.

Repository mirroring is scheduled in the database and runs in batches. As a result, repository
workers check each repository mirror configuration file and reads when the next sync needs to
be. More mirror workers means more repositories can be mirrored at the same time. For
example, running 10 mirror workers means that a user can run 10 mirroring operators in parallel.
If a user only has 2 workers with 10 mirror configurations, only 2 operators can be performed.

The optimal number of mirroring pods depends on the following conditions:

The total number of repositories to be mirrored

The number of images and tags in the repositories and the frequency of changes

Parallel batching
For example, if a user is mirroring a repository that has 100 tags, the mirror will be completed
by one worker. Users must consider how many repositories one wants to mirror in parallel,
and base the number of workers around that.

Multiple tags in the same repository cannot be mirrored in parallel.

CHAPTER 8. REPOSITORY MIRRORING

49

CHAPTER 9. IPV6 AND DUAL-STACK DEPLOYMENTS
Your standalone Red Hat Quay deployment can now be served in locations that only support IPv6, such
as Telco and Edge environments. Support is also offered for dual-stack networking so your Red Hat
Quay deployment can listen on IPv4 and IPv6 simultaneously.

For a list of known limitations, see IPv6 limitations

9.1. ENABLING THE IPV6 PROTOCOL FAMILY

Use the following procedure to enable IPv6 support on your standalone Red Hat Quay deployment.

Prerequisites

You have updated Red Hat Quay to 3.8.

Your host and container software platform (Docker, Podman) must be configured to support
IPv6.

Procedure

1. In your deployment’s config.yaml file, add the FEATURE_LISTEN_IP_VERSION parameter
and set it to IPv6, for example:

2. Start, or restart, your Red Hat Quay deployment.

3. Check that your deployment is listening to IPv6 by entering the following command:

After enabling IPv6 in your deployment’s config.yaml, all Red Hat Quay features can be used as normal,
so long as your environment is configured to use IPv6 and is not hindered by the ipv6-limitations[current
limitations].

FEATURE_GOOGLE_LOGIN: false
FEATURE_INVITE_ONLY_USER_CREATION: false
FEATURE_LISTEN_IP_VERSION: IPv6
FEATURE_MAILING: false
FEATURE_NONSUPERUSER_TEAM_SYNCING_SETUP: false

$ curl <quay_endpoint>/health/instance
{"data":{"services":
{"auth":true,"database":true,"disk_space":true,"registry_gunicorn":true,"service_key":true,"web_
gunicorn":true}},"status_code":200}

Red Hat Quay 3.9 Manage Red Hat Quay

50

WARNING

If your environment is configured to IPv4, but the
FEATURE_LISTEN_IP_VERSION configuration field is set to IPv6, Red Hat Quay
will fail to deploy.

9.2. ENABLING THE DUAL-STACK PROTOCOL FAMILY

Use the following procedure to enable dual-stack (IPv4 and IPv6) support on your standalone Red Hat
Quay deployment.

Prerequisites

You have updated Red Hat Quay to 3.8.

Your host and container software platform (Docker, Podman) must be configured to support
IPv6.

Procedure

1. In your deployment’s config.yaml file, add the FEATURE_LISTEN_IP_VERSION parameter
and set it to dual-stack, for example:

2. Start, or restart, your Red Hat Quay deployment.

3. Check that your deployment is listening to both channels by entering the following command:

a. For IPv4, enter the following command:

b. For IPv6, enter the following command:

After enabling dual-stack in your deployment’s config.yaml, all Red Hat Quay features can be used as



FEATURE_GOOGLE_LOGIN: false
FEATURE_INVITE_ONLY_USER_CREATION: false
FEATURE_LISTEN_IP_VERSION: dual-stack
FEATURE_MAILING: false
FEATURE_NONSUPERUSER_TEAM_SYNCING_SETUP: false

$ curl --ipv4 <quay_endpoint>
{"data":{"services":
{"auth":true,"database":true,"disk_space":true,"registry_gunicorn":true,"service_key":true,"
web_gunicorn":true}},"status_code":200}

$ curl --ipv6 <quay_endpoint>
{"data":{"services":
{"auth":true,"database":true,"disk_space":true,"registry_gunicorn":true,"service_key":true,"
web_gunicorn":true}},"status_code":200}

CHAPTER 9. IPV6 AND DUAL-STACK DEPLOYMENTS

51

After enabling dual-stack in your deployment’s config.yaml, all Red Hat Quay features can be used as
normal, so long as your environment is configured for dual-stack.

9.3. IPV6 AND DUA-STACK LIMITATIONS

Currently, attempting to configure your Red Hat Quay deployment with the common Azure
Blob Storage configuration will not work on IPv6 single stack environments. Because the
endpoint of Azure Blob Storage does not support IPv6, there is no workaround in place for this
issue.
For more information, see PROJQUAY-4433.

Currently, attempting to configure your Red Hat Quay deployment with Amazon S3 CloudFront
will not work on IPv6 single stack environments. Because the endpoint of Amazon S3
CloudFront does not support IPv6, there is no workaround in place for this issue.
For more information, see PROJQUAY-4470.

Red Hat Quay 3.9 Manage Red Hat Quay

52

https://issues.redhat.com/browse/PROJQUAY-4433
https://issues.redhat.com/browse/PROJQUAY-4470

CHAPTER 10. LDAP AUTHENTICATION SETUP FOR RED HAT
QUAY

Lightweight Directory Access Protocol (LDAP) is an open, vendor-neutral, industry standard application
protocol for accessing and maintaining distributed directory information services over an Internet
Protocol (IP) network. Red Hat Quay supports using LDAP as an identity provider.

10.1. CONSIDERATIONS WHEN ENABLING LDAP

Prior to enabling LDAP for your Red Hat Quay deployment, you should consider the following.

Existing Red Hat Quay deployments
Conflicts between usernames can arise when you enable LDAP for an existing Red Hat Quay
deployment that already has users configured. For example, one user, alice, was manually created in Red
Hat Quay prior to enabling LDAP. If the username alice also exists in the LDAP directory, Red Hat Quay
automatically creates a new user, alice-1, when alice logs in for the first time using LDAP. Red Hat Quay
then automatically maps the LDAP credentials to the alice account. For consistency reasons, this might
be erroneous for your Red Hat Quay deployment. It is recommended that you remove any potentially
conflicting local account names from Red Hat Quay prior to enabling LDAP.

Manual User Creation and LDAP authentication
When Red Hat Quay is configured for LDAP, LDAP-authenticated users are automatically created in
Red Hat Quay’s database on first log in, if the configuration option FEATURE_USER_CREATION is set
to true. If this option is set to false, the automatic user creation for LDAP users fails, and the user is not
allowed to log in. In this scenario, the superuser needs to create the desired user account first.
Conversely, if FEATURE_USER_CREATION is set to true, this also means that a user can still create an
account from the Red Hat Quay login screen, even if there is an equivalent user in LDAP.

10.2. CONFIGURING LDAP FOR RED HAT QUAY

Use the following procedure to configure LDAP for your Red Hat Quay deployment.

Procedure

1. You can use the Red Hat Quay config tool to configure LDAP.

a. Using the Red Hat Quay config tool, locate the Authentication section. Select LDAP from
the dropdown menu, and update the LDAP configuration fields as required.

b. Optional. On the Team synchronization box, and click Enable Team Syncrhonization
Support. With team synchronization enabled, Red Hat Quay administrators who are also
superusers can set teams to have their membership synchronized with a backing group in
LDAP.

c. For Resynchronization duration enter 60m. This option sets the resynchronization

CHAPTER 10. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY

53

c. For Resynchronization duration enter 60m. This option sets the resynchronization
duration at which a team must be re-synchronized. This field must be set similar to the
following examples: 30m, 1h, 1d.

d. Optional. For Self-service team syncing setup, you can click Allow non-superusers to
enable and manage team syncing to allow superusers the ability to enable and manage
team syncing under the organizations that they are administrators for.

e. Locate the LDAP URI box and provide a full LDAP URI, including the ldap:// or ldaps://
prefix, for example, ldap://117.17.8.101.

f. Under Base DN, provide a name which forms the base path for looking up all LDAP records,
for example, o=<organization_id>,dc=<example_domain_component>,dc=com.

g. Under User Relative DN, provide a list of Distinguished Name path(s), which form the
secondary base path(s) for looking up all user LDAP records relative to the Base DN
defined above. For example, uid=<name>,ou=Users,o=<organization_id>,dc=
<example_domain_component>,dc=com. This path, or these paths, is tried if the user is
not found through the primary relative DN.

NOTE

User Relative DN is relative to Base DN, for example, ou=Users and not
ou=Users,dc=<example_domain_component>,dc=com.

h. Optional. Provide Secondary User Relative DNs if there are multiple Organizational Units
where user objects are located. You can type in the Organizational Units and click Add to
add multiple RDNs. For example, ou=Users,ou=NYC and ou=Users,ou=SFO.
The User Relative DN searches with subtree scope. For example, if your organization has
Organization Units NYC and SFO under the Users OU (that is, ou=SFO,ou=Users and
ou=NYC,ou=Users), Red Hat Quay can authenticate users from both the NYC and SFO
Organizational Units if the User Relative DN is set to Users (ou=Users).

i. Optional. Fill in the Additional User Filter Expression field for all user lookup queries if
desired. Distinguished Names used in the filter must be full based. The Base DN is not

Red Hat Quay 3.9 Manage Red Hat Quay

54

added automatically added to this field, and you must wrap the text in parentheses, for
example, (memberOf=cn=developers,ou=groups,dc=
<example_domain_component>,dc=com).

j. Fill in the Administrator DN field for the Red Hat Quay administrator account. This account
must be able to login and view the records for all users accounts. For example: uid=
<name>,ou=Users,o=<organization_id>,dc=<example_domain_component>,dc=com.

k. Fill in the Administrator DN Password field. This is the password for the administrator
distinguished name.

IMPORTANT

The password for this field is stored in plaintext inside of the config.yaml file.
Setting up a dedicated account of using a password hash is highly
recommended.

l. Optional. Fill in the UID Attribute field. This is the name of the property field in the LDAP
user records that stores your user’s username. Most commonly, uid is entered for this field.
This field can be used to log into your Red Hat Quay deployment.

m. Optional. Fill in the Mail Attribute field. This is the name of the property field in your LDAP
user records that stores your user’s e-mail addresses. Most commonly, mail is entered for
this field. This field can be used to log into your Red Hat Quay deployment.

NOTE

The username to log in must exist in the User Relative DN.

If you are using Microsoft Active Directory to setup your LDAP
deployment, you must use sAMAccountName for your UID attribute.

n. Optional. You can add a custom SSL/TLS certificate by clicking Choose File under the

CHAPTER 10. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY

55

n. Optional. You can add a custom SSL/TLS certificate by clicking Choose File under the
Custom TLS Certificate optionl. Additionally, you can enable fallbacks to insecure, non-TLS
connections by checking the Allow fallback to non-TLS connections box.

If you upload an SSl/TLS certificate, you must provide an ldaps:// prefix, for example,
LDAP_URI: ldaps://ldap_provider.example.org.

2. Alternatively, you can update your config.yaml file directly to include all relevant information.
For example:

3. After you have added all required LDAP fields, click the Save Configuration Changes button to
validate the configuration. All validation must succeed before proceeding. Additional
configuration can be performed by selecting the Continue Editing button.

10.3. ENABLING THE LDAP_RESTRICTED_USER_FILTER
CONFIGURATION FIELD

The LDAP_RESTRICTED_USER_FILTER configuration field is a subset of the LDAP_USER_FILTER
configuration field. When configured, this option allows Red Hat Quay administrators the ability to
configure LDAP users as restricted users when Red Hat Quay uses LDAP as its authentication provider.

Use the following procedure to enable LDAP restricted users on your Red Hat Quay deployment.

Prerequisites

Your Red Hat Quay deployment uses LDAP as its authentication provider.

You have configured the LDAP_USER_FILTER field in your config.yaml file.

Procedure

AUTHENTICATION_TYPE: LDAP

LDAP_ADMIN_DN: uid=<name>,ou=Users,o=<organization_id>,dc=
<example_domain_component>,dc=com
LDAP_ADMIN_PASSWD: ABC123
LDAP_ALLOW_INSECURE_FALLBACK: false
LDAP_BASE_DN:
 - o=<organization_id>
 - dc=<example_domain_component>
 - dc=com
LDAP_EMAIL_ATTR: mail
LDAP_UID_ATTR: uid
LDAP_URI: ldap://<example_url>.com
LDAP_USER_FILTER: (memberof=cn=developers,ou=Users,dc=<domain_name>,dc=com)
LDAP_USER_RDN:
 - ou=<example_organization_unit>
 - o=<organization_id>
 - dc=<example_domain_component>
 - dc=com

Red Hat Quay 3.9 Manage Red Hat Quay

56

1. In your deployment’s config.yaml file, add the LDAP_RESTRICTED_USER_FILTER
parameter and specify the group of restricted users, for example, members:

2. Start, or restart, your Red Hat Quay deployment.

After enabling the LDAP_RESTRICTED_USER_FILTER feature, your LDAP Red Hat Quay users are
restricted from reading and writing content, and creating organizations.

10.4. ENABLING THE LDAP_SUPERUSER_FILTER CONFIGURATION
FIELD

With the LDAP_SUPERUSER_FILTER field configured, Red Hat Quay administrators can configure
Lightweight Directory Access Protocol (LDAP) users as superusers if Red Hat Quay uses LDAP as its
authentication provider.

Use the following procedure to enable LDAP superusers on your Red Hat Quay deployment.

Prerequisites

Your Red Hat Quay deployment uses LDAP as its authentication provider.

You have configured the LDAP_USER_FILTER field field in your config.yaml file.

Procedure

1. In your deployment’s config.yaml file, add the LDAP_SUPERUSER_FILTER parameter and
add the group of users you want configured as super users, for example, root:

AUTHENTICATION_TYPE: LDAP

LDAP_ADMIN_DN: uid=<name>,ou=Users,o=<organization_id>,dc=
<example_domain_component>,dc=com
LDAP_ADMIN_PASSWD: ABC123
LDAP_ALLOW_INSECURE_FALLBACK: false
LDAP_BASE_DN:
 - o=<organization_id>
 - dc=<example_domain_component>
 - dc=com
LDAP_EMAIL_ATTR: mail
LDAP_UID_ATTR: uid
LDAP_URI: ldap://<example_url>.com
LDAP_USER_FILTER: (memberof=cn=developers,ou=Users,o=
<example_organization_unit>,dc=<example_domain_component>,dc=com)
LDAP_RESTRICTED_USER_FILTER: (<filterField>=<value>)
LDAP_USER_RDN:
 - ou=<example_organization_unit>
 - o=<organization_id>
 - dc=<example_domain_component>
 - dc=com

AUTHENTICATION_TYPE: LDAP

CHAPTER 10. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY

57

2. Start, or restart, your Red Hat Quay deployment.

After enabling the LDAP_SUPERUSER_FILTER feature, your LDAP Red Hat Quay users have
superuser privileges. The following options are available to superusers:

Manage users

Manage organizations

Manage service keys

View the change log

Query the usage logs

Create globally visible user messages

10.5. COMMON LDAP CONFIGURATION ISSUES

The following errors might be returned with an invalid configuration.

Invalid credentials. If you receive this error, the Administrator DN or Administrator DN
password values are incorrect. Ensure that you are providing accurate Administrator DN and
password values.

*Verification of superuser %USERNAME% failed. This error is returned for the following
reasons:

The username has not been found.

The user does not exist in the remote authentication system.

LDAP authorization is configured improperly.

Cannot find the current logged in user. When configuring LDAP for Red Hat Quay, there may
be situations where the LDAP connection is established successfully using the username and

LDAP_ADMIN_DN: uid=<name>,ou=Users,o=<organization_id>,dc=
<example_domain_component>,dc=com
LDAP_ADMIN_PASSWD: ABC123
LDAP_ALLOW_INSECURE_FALLBACK: false
LDAP_BASE_DN:
 - o=<organization_id>
 - dc=<example_domain_component>
 - dc=com
LDAP_EMAIL_ATTR: mail
LDAP_UID_ATTR: uid
LDAP_URI: ldap://<example_url>.com
LDAP_USER_FILTER: (memberof=cn=developers,ou=Users,o=
<example_organization_unit>,dc=<example_domain_component>,dc=com)
LDAP_SUPERUSER_FILTER: (<filterField>=<value>)
LDAP_USER_RDN:
 - ou=<example_organization_unit>
 - o=<organization_id>
 - dc=<example_domain_component>
 - dc=com

Red Hat Quay 3.9 Manage Red Hat Quay

58

password provided in the Administrator DN fields. However, if the current logged-in user
cannot be found within the specified User Relative DN path using the UID Attribute or Mail
Attribute fields, there are typically two potential reasons for this:

The current logged in user does not exist in the User Relative DN path.

The Administrator DN does not have rights to search or read the specified LDAP path.
To fix this issue, ensure that the logged in user is included in the User Relative DN path, or
provide the correct permissions to the Administrator DN account.

10.6. LDAP CONFIGURATION FIELDS

For a full list of LDAP configuration fields, see LDAP configuration fields

CHAPTER 10. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY

59

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/configure_red_hat_quay/index#config-fields-ldap

CHAPTER 11. CONFIGURING OIDC FOR RED HAT QUAY
Configuring OpenID Connect (OIDC) for Red Hat Quay can provide several benefits to your Red Hat
Quay deployment. For example, OIDC allows users to authenticate to Red Hat Quay using their existing
credentials from an OIDC provider, such as Red Hat Single Sign-On , Google, Github, Microsoft, or
others. Other benefits of OIDC include centralized user management, enhanced security, and single
sign-on (SSO). Overall, OIDC configuration can simplify user authentication and management, enhance
security, and provide a seamless user experience for Red Hat Quay users.

The following procedures show you how to configure Red Hat Single Sign-On and Azure AD.
Collectively, these procedures include configuring OIDC on the Red Hat Quay Operator, and on
standalone deployments by using the Red Hat Quay config tool.

NOTE

By following these procedures, you will be able to add any OIDC provider to Red Hat
Quay, regardless of which identity provider you choose to use.

11.1. CONFIGURING RED HAT SINGLE SIGN-ON FOR RED HAT QUAY

Based on the Keycloak project, Red Hat Single Sign-On (RH-SSO) is an open source identity and
access management (IAM) solution provided by Red Hat. RH-SSO allows organizations to manage user
identities, secure applications, and enforce access control policies across their systems and applications.
It also provides a unified authentication and authorization framework, which allows users to log in one
time and gain access to multiple applications and resources without needing to re-authenticate. For
more information, see Red Hat Single Sign-On .

By configuring Red Hat Single Sign-On on Red Hat Quay, you can create a seamless authentication
integration between Red Hat Quay and other application platforms like OpenShift Container Platform.

11.1.1. Configuring the Red Hat Single Sign-On Operator for the Red Hat Quay
Operator

Use the following procedure to configure Red Hat Single Sign-On for the Red Hat Quay Operator on
OpenShift Container Platform.

Prerequisites

You have configured Red Hat Single Sign-On for the Red Hat Quay Operator. For more
information, see Red Hat Single Sign-On Operator .

You have configured TLS/SSL for your Red Hat Quay deployment and for Red Hat Single Sign-
On.

You have generated a single Certificate Authority (CA) and uploaded it to your Red Hat Single
Sign-On Operator and to your Red Hat Quay configuration.

You are logged into your OpenShift Container Platform cluster.

You have installed the OpenShift CLI (oc).

Procedure

1. Navigate to the Red Hat Single Sign-On Admin Console.

Red Hat Quay 3.9 Manage Red Hat Quay

60

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.0
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.0
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_installation_and_configuration_guide/index#operator

a. On the OpenShift Container Platform Web Console, navigate to Network → Route.

b. Select the Red Hat Single Sign-On project from the drop-down list.

c. Find the Red Hat Single Sign-On Admin Console in the Routes table.

2. Select the Realm that you will use to configure Red Hat Quay.

3. Click Clients under the Configure section of the navigation panel, and then click the Create
button to add a new OIDC for Red Hat Quay.

4. Enter the following information.

Client ID: quay-enterprise

Client Protocol: openid-connect

Root URL: https://<quay endpoint>/

5. Click Save. This results in a redirect to the Clients setting panel.

6. Navigate to Access Type and select Confidential.

7. Navigate to Valid Redirect URIs. You must provide three redirect URIs. The value should be the
fully qualified domain name of the Red Hat Quay registry appended with
/oauth2/redhatsso/callback. For example:

https://<quay_endpoint>/oauth2/redhatsso/callback

https://<quay_endpoint>/oauth2/redhatsso/callback/attach

https://<quay_endpoint>/oauth2/redhatsso/callback/cli

8. Click Save and navigate to the new Credentials setting.

9. Copy the value of the Secret.

11.1.2. Configuring the Red Hat Quay Operator to use Red Hat Single Sign-On

Use the following procedure to configure Red Hat Single Sign-On with the Red Hat Quay Operator.

Prerequisites

You have configured the Red Hat Single Sign-On Operator for the Red Hat Quay Operator.

Procedure

1. Enter the Red Hat Quay config editor tool by navigating to Operators → Installed Operators.
Click Red Hat Quay → Quay Registry. Then, click the name of your Red Hat Quay registry, and
the URL listed with Config Editor Endpoint.

2. Upload a custom SSL/TLS certificate to your OpenShift Container Platform deployment.

a. Navigate to the Red Hat Quay config tool UI.

b. Under Custom SSL Certificates, click Select file and upload your custom SSL/TLS
certificates.

CHAPTER 11. CONFIGURING OIDC FOR RED HAT QUAY

61

https:
https:/oauth2/redhatsso/callback
https:/oauth2/redhatsso/callback/attach
https:/oauth2/redhatsso/callback/cli

c. Reconfigure your Red Hat Quay deployment.

3. Scroll down to the External Authorization (OAuth) section.

4. Click Add OIDC Provider.

5. When prompted, enter redhatsso.

6. Enter the following information:

OIDC Server: The fully qualified domain name (FQDN) of the Red Hat Single Sign-On
instance, appended with /auth/realms/ and the Realm name. You must include the forward
slash at the end, for example, https://sso-
redhat.example.com//auth/realms/<keycloak_realm_name>/.

Client ID: The client ID of the application that is being reistered with the identity provider,
for example, quay-enterprise.

Client Secret: The Secret from the Credentials tab of the quay-enterprise OIDC client
settings.

Service Name: The name that is displayed on the Red Hat Quay login page, for example,
Red hat Single Sign On.

Verified Email Address Claim: The name of the claim that is used to verify the email
address of the user.

Login Scopes: The scopes to send to the OIDC provider when performing the login flow, for
example, openid. After configuration, you must click Add.

7. Scroll down and click Validate Configuration Changes. Then, click Restart Now to deploy the
Red Hat Quay Operator with OIDC enabled.

11.2. CONFIGURING AZURE AD OIDC FOR RED HAT QUAY

By integrating Azure AD authentication with Red Hat Quay, your organization can take advantage of the
centralized user management and security features offered by Azure AD. Some features include the
ability to manage user access to Red Hat Quay repositories based on their Azure AD roles and
permissions, and the ability to enable multi-factor authentication and other security features provided
by Azure AD.

Azure Active Directory (Azure AD) authentication for Red Hat Quay allows users to authenticate and
access Red Hat Quay using their Azure AD credentials.

11.2.1. Configuring Azure AD by using the Red Hat Quay config tool

The following procedure configures Azure AD for Red Hat Quay using the config tool.

Procedure

1. Enter the Red Hat Quay config editor tool.

a. If you are running a standalone Red Hat Quay deployment, you can enter the following
command:

Red Hat Quay 3.9 Manage Red Hat Quay

62

$ sudo podman run --rm -it --name quay_config -p 80:8080 -p 443:8443
registry.redhat.io/quay/quay-rhel8:v3.9.6 config secret

Use your browser to navigate to the user interface for the configuration tool and log in.

b. If you are on the Red Hat Quay Operator, navigate to Operators → Installed Operators.
Click Red Hat Quay → Quay Registry. Then, click the name of your Red Hat Quay registry,
and the URL listed with Config Editor Endpoint.

2. Scroll down to the External Authorization (OAuth) section.

3. Click Add OIDC Provider.

4. When prompted, enter the ID for the ODIC provider.

NOTE

Your OIDC server must end with /.

5. After the ODIC provider has been added, Red Hat Quay lists three callback URLs that must be
registered on Azure. These addresses allow Azure to direct back to Red Hat Quay after
authentication is confirmed. For example:

https://QUAY_HOSTNAME/oauth2/<name_of_service>/callback

https://QUAY_HOSTNAME/oauth2/<name_of_service>/callback/attach

https://QUAY_HOSTNAME/oauth2/<name_of_service>/callback/cli

6. After all required fields have been set, validate your settings by clicking Validate Configuration
Changes. If any errors are reported, continue editing your configuration until the settings are
valid and Red Hat Quay can connect to your database and Redis servers.

11.2.2. Configuring Azure AD by updating the Red Hat Quay config.yaml file

Use the following procedure to configure Azure AD by updating the Red Hat Quay config.yaml file
directly.

PROCEDURE

Using the following procedure, you can add any ODIC provider to Red Hat Quay,
regardless of which identity provider is being added.

If your system has a firewall in use, or proxy enabled, you must whitelist all Azure
API endpoints for each Oauth application that is created. Otherwise, the
following error is returned: x509: certificate signed by unknown authority.

1. Add the following information to your Red Hat Quay config.yaml file:

AZURE_LOGIN_CONFIG: 1
 CLIENT_ID: <client_id> 2
 CLIENT_SECRET: <client_secret> 3

CHAPTER 11. CONFIGURING OIDC FOR RED HAT QUAY

63

1

2

3

4

5

6

 OIDC_SERVER: <oidc_server_address_> 4
 SERVICE_NAME: Azure AD 5
 VERIFIED_EMAIL_CLAIM_NAME: <verified_email> 6

The parent key that holds the OIDC configuration settings. In this example, the parent key
used is AZURE_LOGIN_CONFIG, however, the string AZURE can be replaced with any
arbitrary string based on your specific needs, for example ABC123.However, the following
strings are not accepted: GOOGLE, GITHUB. These strings are reserved for their
respecitve identity platforms and require a specific config.yaml entry contingent upon
when platform you are using.

The client ID of the application that is being reistered with the identity provider.

The client secret of the application that is being registered with the identity provider.

The address of the OIDC server that is being used for authentication. In this example, you
must use sts.windows.net as the issuer identifier. Using
https://login.microsoftonline.com results in the following error: Could not create
provider for AzureAD. Error: oidc: issuer did not match the issuer returned by
provider, expected "https://login.microsoftonline.com/73f2e714-xxxx-xxxx-xxxx-
dffe1df8a5d5" got "https://sts.windows.net/73f2e714-xxxx-xxxx-xxxx-dffe1df8a5d5/".

The name of the service that is being authenticated.

The name of the claim that is used to verify the email address of the user.

2. Proper configuration of Azure AD results three redirects with the following format:

https://QUAY_HOSTNAME/oauth2/<name_of_service>/callback

https://QUAY_HOSTNAME/oauth2/<name_of_service>/callback/attach

https://QUAY_HOSTNAME/oauth2/<name_of_service>/callback/cli

3. Restart your Red Hat Quay deployment.

Red Hat Quay 3.9 Manage Red Hat Quay

64

https://login.microsoftonline.com

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER
RED HAT QUAY

Red Hat Quay exports a Prometheus- and Grafana-compatible endpoint on each instance to allow for
easy monitoring and alerting.

12.1. EXPOSING THE PROMETHEUS ENDPOINT

12.1.1. Standalone Red Hat Quay

When using podman run to start the Quay container, expose the metrics port 9091:

$ sudo podman run -d --rm -p 80:8080 -p 443:8443 -p 9091:9091\
 --name=quay \
 -v $QUAY/config:/conf/stack:Z \
 -v $QUAY/storage:/datastorage:Z \
 registry.redhat.io/quay/quay-rhel8:v3.9.6

The metrics will now be available:

See Monitoring Quay with Prometheus and Grafana for details on configuring Prometheus and Grafana
to monitor Quay repository counts.

12.1.2. Red Hat Quay Operator

Determine the cluster IP for the quay-metrics service:

Connect to your cluster and access the metrics using the cluster IP and port for the quay-metrics
service:

$ curl quay.example.com:9091/metrics

$ oc get services -n quay-enterprise
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
example-registry-clair-app ClusterIP 172.30.61.161 <none> 80/TCP,8089/TCP
18h
example-registry-clair-postgres ClusterIP 172.30.122.136 <none> 5432/TCP
18h
example-registry-quay-app ClusterIP 172.30.72.79 <none>
443/TCP,80/TCP,8081/TCP,55443/TCP 18h
example-registry-quay-config-editor ClusterIP 172.30.185.61 <none> 80/TCP
18h
example-registry-quay-database ClusterIP 172.30.114.192 <none> 5432/TCP
18h
example-registry-quay-metrics ClusterIP 172.30.37.76 <none> 9091/TCP
18h
example-registry-quay-redis ClusterIP 172.30.157.248 <none> 6379/TCP
18h

$ oc debug node/master-0

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY

65

https://prometheus.io/
https://access.redhat.com/solutions/3750281

12.1.3. Setting up Prometheus to consume metrics

Prometheus needs a way to access all Red Hat Quay instances running in a cluster. In the typical setup,
this is done by listing all the Red Hat Quay instances in a single named DNS entry, which is then given to
Prometheus.

12.1.4. DNS configuration under Kubernetes

A simple Kubernetes service can be configured to provide the DNS entry for Prometheus.

12.1.5. DNS configuration for a manual cluster

SkyDNS is a simple solution for managing this DNS record when not using Kubernetes. SkyDNS can run
on an etcd cluster. Entries for each Red Hat Quay instance in the cluster can be added and removed in
the etcd store. SkyDNS will regularly read them from there and update the list of Quay instances in the
DNS record accordingly.

12.2. INTRODUCTION TO METRICS

Red Hat Quay provides metrics to help monitor the registry, including metrics for general registry usage,
uploads, downloads, garbage collection, and authentication.

12.2.1. General registry statistics

General registry statistics can indicate how large the registry has grown.

Metric name Description

quay_user_rows Number of users in the database

quay_robot_rows Number of robot accounts in the database

quay_org_rows Number of organizations in the database

quay_repository_rows Number of repositories in the database

quay_security_scanning_unscanned_images_remainin
g_total

Number of images that are not scanned by the latest
security scanner

Sample metrics output

sh-4.4# curl 172.30.37.76:9091/metrics

HELP go_gc_duration_seconds A summary of the pause duration of garbage collection cycles.
TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 4.0447e-05
go_gc_duration_seconds{quantile="0.25"} 6.2203e-05
...

HELP quay_user_rows number of users in the database

Red Hat Quay 3.9 Manage Red Hat Quay

66

http://kubernetes.io/docs/user-guide/services/
https://github.com/skynetservices/skydns
https://github.com/coreos/etcd

12.2.2. Queue items

The queue items metrics provide information on the multiple queues used by Quay for managing work.

Metric name Description

quay_queue_items_available Number of items in a specific queue

quay_queue_items_locked Number of items that are running

quay_queue_items_available_unlocked Number of items that are waiting to be processed

Metric labels

queue_name: The name of the queue. One of:

exportactionlogs: Queued requests to export action logs. These logs are then processed
and put in storage. A link is then sent to the requester via email.

namespacegc: Queued namespaces to be garbage collected

notification: Queue for repository notifications to be sent out

repositorygc: Queued repositories to be garbage collected

secscanv4: Notification queue specific for Clair V4

dockerfilebuild: Queue for Quay docker builds

TYPE quay_user_rows gauge
quay_user_rows{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="65",process_name="globalpromstats.py"} 3

HELP quay_robot_rows number of robot accounts in the database
TYPE quay_robot_rows gauge
quay_robot_rows{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="65",process_name="globalpromstats.py"} 2

HELP quay_org_rows number of organizations in the database
TYPE quay_org_rows gauge
quay_org_rows{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="65",process_name="globalpromstats.py"} 2

HELP quay_repository_rows number of repositories in the database
TYPE quay_repository_rows gauge
quay_repository_rows{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="65",process_name="globalpromstats.py"} 4

HELP quay_security_scanning_unscanned_images_remaining number of images that are not
scanned by the latest security scanner
TYPE quay_security_scanning_unscanned_images_remaining gauge
quay_security_scanning_unscanned_images_remaining{host="example-registry-quay-app-
6df87f7b66-9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 5

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY

67

imagestoragereplication: Queued blob to be replicated across multiple storages

chunk_cleanup: Queued blob segments that needs to be deleted. This is only used by some
storage implementations, for example, Swift.

For example, the queue labelled repositorygc contains the repositories marked for deletion by the
repository garbage collection worker. For metrics with a queue_name label of repositorygc:

quay_queue_items_locked is the number of repositories currently being deleted.

quay_queue_items_available_unlocked is the number of repositories waiting to get processed
by the worker.

Sample metrics output

12.2.3. Garbage collection metrics

These metrics show you how many resources have been removed from garbage collection (gc). They
show many times the gc workers have run and how many namespaces, repositories, and blobs were
removed.

Metric name Description

quay_gc_iterations_total Number of iterations by the GCWorker

quay_gc_namespaces_purged_total Number of namespaces purged by the
NamespaceGCWorker

quay_gc_repos_purged_total Number of repositories purged by the
RepositoryGCWorker or NamespaceGCWorker

quay_gc_storage_blobs_deleted_total Number of storage blobs deleted

HELP quay_queue_items_available number of queue items that have not expired
TYPE quay_queue_items_available gauge
quay_queue_items_available{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="63",process_name="exportactionlogsworker.py",queue_name="expo
rtactionlogs"} 0
...

HELP quay_queue_items_available_unlocked number of queue items that have not expired and are
not locked
TYPE quay_queue_items_available_unlocked gauge
quay_queue_items_available_unlocked{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="63",process_name="exportactionlogsworker.py",queue_name="expo
rtactionlogs"} 0
...

HELP quay_queue_items_locked number of queue items that have been acquired
TYPE quay_queue_items_locked gauge
quay_queue_items_locked{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="63",process_name="exportactionlogsworker.py",queue_name="expo
rtactionlogs"} 0

Red Hat Quay 3.9 Manage Red Hat Quay

68

Sample metrics output

12.2.3.1. Multipart uploads metrics

The multipart uploads metrics show the number of blobs uploads to storage (S3, Rados,

TYPE quay_gc_iterations_created gauge
quay_gc_iterations_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823190189714e+09
...

HELP quay_gc_iterations_total number of iterations by the GCWorker
TYPE quay_gc_iterations_total counter
quay_gc_iterations_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
...

TYPE quay_gc_namespaces_purged_created gauge
quay_gc_namespaces_purged_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823190189433e+09
...

HELP quay_gc_namespaces_purged_total number of namespaces purged by the
NamespaceGCWorker
TYPE quay_gc_namespaces_purged_total counter
quay_gc_namespaces_purged_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
....

TYPE quay_gc_repos_purged_created gauge
quay_gc_repos_purged_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.631782319018925e+09
...

HELP quay_gc_repos_purged_total number of repositories purged by the RepositoryGCWorker or
NamespaceGCWorker
TYPE quay_gc_repos_purged_total counter
quay_gc_repos_purged_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
...

TYPE quay_gc_storage_blobs_deleted_created gauge
quay_gc_storage_blobs_deleted_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823190189059e+09
...

HELP quay_gc_storage_blobs_deleted_total number of storage blobs deleted
TYPE quay_gc_storage_blobs_deleted_total counter
quay_gc_storage_blobs_deleted_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
...

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY

69

The multipart uploads metrics show the number of blobs uploads to storage (S3, Rados,
GoogleCloudStorage, RHOCS). These can help identify issues when Quay is unable to correctly upload
blobs to storage.

Metric name Description

quay_multipart_uploads_started_total Number of multipart uploads to Quay storage that
started

quay_multipart_uploads_completed_total Number of multipart uploads to Quay storage that
completed

Sample metrics output

12.2.4. Image push / pull metrics

A number of metrics are available related to pushing and pulling images.

12.2.4.1. Image pulls total

Metric name Description

quay_registry_image_pulls_total The number of images downloaded from the registry.

Metric labels

TYPE quay_multipart_uploads_completed_created gauge
quay_multipart_uploads_completed_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823308284895e+09
...

HELP quay_multipart_uploads_completed_total number of multipart uploads to Quay storage that
completed
TYPE quay_multipart_uploads_completed_total counter
quay_multipart_uploads_completed_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0

TYPE quay_multipart_uploads_started_created gauge
quay_multipart_uploads_started_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823308284352e+09
...

HELP quay_multipart_uploads_started_total number of multipart uploads to Quay storage that
started
TYPE quay_multipart_uploads_started_total counter
quay_multipart_uploads_started_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
...

Red Hat Quay 3.9 Manage Red Hat Quay

70

protocol: the registry protocol used (should always be v2)

ref: ref used to pull - tag, manifest

status: http return code of the request

12.2.4.2. Image bytes pulled

Metric name Description

quay_registry_image_pulled_estimated_bytes_total The number of bytes downloaded from the registry

Metric labels

protocol: the registry protocol used (should always be v2)

12.2.4.3. Image pushes total

Metric name Description

quay_registry_image_pushes_total The number of images uploaded from the registry.

Metric labels

protocol: the registry protocol used (should always be v2)

pstatus: http return code of the request

pmedia_type: the uploaded manifest type

12.2.4.4. Image bytes pushed

Metric name Description

quay_registry_image_pushed_bytes_total The number of bytes uploaded to the registry

Sample metrics output

12.2.5. Authentication metrics

The authentication metrics provide the number of authentication requests, labeled by type and whether

HELP quay_registry_image_pushed_bytes_total number of bytes pushed to the registry
TYPE quay_registry_image_pushed_bytes_total counter
quay_registry_image_pushed_bytes_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="221",process_name="registry:application"} 0
...

CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY

71

The authentication metrics provide the number of authentication requests, labeled by type and whether
it succeeded or not. For example, this metric could be used to monitor failed basic authentication
requests.

Metric name Description

quay_authentication_attempts_total Number of authentication attempts across the
registry and API

Metric labels

auth_kind: The type of auth used, including:

basic

oauth

credentials

success: true or false

Sample metrics output

TYPE quay_authentication_attempts_created gauge
quay_authentication_attempts_created{auth_kind="basic",host="example-registry-quay-app-
6df87f7b66-
9tfn6",instance="",job="quay",pid="221",process_name="registry:application",success="True"}
1.6317843039374158e+09
...

HELP quay_authentication_attempts_total number of authentication attempts across the registry
and API
TYPE quay_authentication_attempts_total counter
quay_authentication_attempts_total{auth_kind="basic",host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="221",process_name="registry:application",success="True"} 2
...

Red Hat Quay 3.9 Manage Red Hat Quay

72

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND
ENFORCEMENT OVERVIEW

With Red Hat Quay, users have the ability to report storage consumption and to contain registry growth
by establishing configured storage quota limits. On-premise Red Hat Quay users are now equipped with
the following capabilities to manage the capacity limits of their environment:

Quota reporting: With this feature, a superuser can track the storage consumption of all their
organizations. Additionally, users can track the storage consumption of their assigned
organization.

Quota management: With this feature, a superuser can define soft and hard checks for Red Hat
Quay users. Soft checks tell users if the storage consumption of an organization reaches their
configured threshold. Hard checks prevent users from pushing to the registry when storage
consumption reaches the configured limit.

Together, these features allow service owners of a Red Hat Quay registry to define service level
agreements and support a healthy resource budget.

13.1. QUOTA MANAGEMENT ARCHITECTURE

With the quota management feature enabled, individual blob sizes are summed at the repository and
namespace level. For example, if two tags in the same repository reference the same blob, the size of
that blob is only counted once towards the repository total. Additionally, manifest list totals are counted
toward the repository total.

IMPORTANT

Because manifest list totals are counted toward the repository total, the total quota
consumed when upgrading from a previous version of Red Hat Quay might be reportedly
differently in Red Hat Quay 3.9. In some cases, the new total might go over a repository’s
previously-set limit. Red Hat Quay administrators might have to adjust the allotted quota
of a repository to account for these changes.

The quota management feature works by calculating the size of existing repositories and namespace
with a backfill worker, and then adding or subtracting from the total for every image that is pushed or
garbage collected afterwords. Additionally, the subtraction from the total happens when the manifest is
garbage collected.

NOTE

Because subtraction occurs from the total when the manifest is garbage collected, there
is a delay in the size calculation until it is able to be garbage collected. For more
information about garbage collection, see Red Hat Quay garbage collection .

The following database tables hold the quota repository size, quota namespace size, and quota registry
size, in bytes, of a Red Hat Quay repository within an organization:

QuotaRepositorySize

QuotaNameSpaceSize

QuotaRegistrySize

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

73

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#red_hat_quay_garbage_collection

The organization size is calculated by the backfill worker to ensure that it is not duplicated. When an
image push is initialized, the user’s organization storage is validated to check if it is beyond the
configured quota limits. If an image push exceeds defined quota limitations, a soft or hard check occurs:

For a soft check, users are notified.

For a hard check, the push is stopped.

If storage consumption is within configured quota limits, the push is allowed to proceed.

Image manifest deletion follows a similar flow, whereby the links between associated image tags and the
manifest are deleted. Additionally, after the image manifest is deleted, the repository size is
recalculated and updated in the QuotaRepositorySize, QuotaNameSpaceSize, and
QuotaRegistrySize tables.

13.2. QUOTA MANAGEMENT LIMITATIONS

Quota management helps organizations to maintain resource consumption. One limitation of quota
management is that calculating resource consumption on push results in the calculation becoming part
of the push’s critical path. Without this, usage data might drift.

The maximum storage quota size is dependent on the selected database:

Table 13.1. Worker count environment variables

Variable Description

Postgres 8388608 TB

MySQL 8388608 TB

SQL Server 16777216 TB

13.3. QUOTA MANAGEMENT FOR RED HAT QUAY 3.9

If you are upgrading to Red Hat Quay 3.9, you must reconfigure the quota management feature. This is
because with Red Hat Quay 3.9, calculation is done differently. As a result, totals prior to Red Hat Quay
3.9 are no longer valid. There are two methods for configuring quota management in Red Hat Quay 3.9,
which are detailed in the following sections.

NOTE

This is a one time calculation that must be done after you have upgraded to Red
Hat Quay 3.9.

Superuser privileges are required to create, update and delete quotas. While
quotas can be set for users as well as organizations, you cannot reconfigure the
user quota using the Red Hat Quay UI and you must use the API instead.

13.3.1. Option A: Configuring quota management for Red Hat Quay 3.9 by adjusting
the QUOTA_TOTAL_DELAY feature flag

Use the following procedure to recalculate Red Hat Quay 3.9 quota management by adjusting the

Red Hat Quay 3.9 Manage Red Hat Quay

74

1

Use the following procedure to recalculate Red Hat Quay 3.9 quota management by adjusting the
QUOTA_TOTAL_DELAY feature flag.

NOTE

With this recalculation option, the totals appear as 0.00 KB until the allotted time
designated for QUOTA_TOTAL_DELAY.

Prerequisites

You have upgraded to Red Hat Quay 3.9.

You are logged into Red Hat Quay 3.9 as a superuser.

Procedure

1. Deploy Red Hat Quay 3.9 with the following config.yaml settings:

The QUOTA_TOTAL_DELAY_SECONDS flag defaults to 1800 seconds, or 30 minutes.
This allows Red Hat Quay 3.9 to successfully deploy before the quota management
feature begins calculating storage consumption for every blob that has been pushed.
Setting this flag to a lower number might result in miscalculation; it must be set to a
number that is greater than the time it takes your Red Hat Quay deployment to start. 1800
is the recommended setting, however larger deployments that take longer than 30 minutes
to start might require a longer duration than 1800.

2. Navigate to the Red Hat Quay UI and click the name of your Organization.

3. The Total Quota Consumed should read 0.00 KB. Additionally, the Backfill Queued indicator
should be present.

4. After the allotted time, for example, 30 minutes, refresh your Red Hat Quay deployment page
and return to your Organization. Now, the Total Quota Consumed should be present.

13.3.2. Option B: Configuring quota management for Red Hat Quay 3.9 by setting
QUOTA_TOTAL_DELAY_SECONDS to 0

Use the following procedure to recalculate Red Hat Quay 3.9 quota management by setting
QUOTA_TOTAL_DELAY_SECONDS to 0.

NOTE

Using this option prevents the possibility of miscalculations, however is more time
intensive. Use the following procedure for when your Red Hat Quay deployment swaps
the FEATURE_QUOTA_MANAGEMENT parameter from false to true. Most users will
find xref:

FEATURE_QUOTA_MANAGEMENT: true
FEATURE_GARBAGE_COLLECTION: true
PERMANENTLY_DELETE_TAGS: true
QUOTA_TOTAL_DELAY_SECONDS: 1800 1
RESET_CHILD_MANIFEST_EXPIRATION: true

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

75

Prerequisites

You have upgraded to Red Hat Quay 3.9.

You are logged into Red Hat Quay 3.9 as a superuser.

Procedure

1. Deploy Red Hat Quay 3.9 with the following config.yaml settings:

2. Navigate to the Red Hat Quay UI and click the name of your Organization.

3. The Total Quota Consumed should read 0.00 KB.

4. Redeploy Red Hat Quay and set the QUOTA_BACKFILL flag set to true. For example:

NOTE

If you choose to disable quota management after it has calculated totals, Red
Hat Quay marks those totals as stale. If you re-enable the quota management
feature again in the future, those namespaces and repositories are recalculated
by the backfill worker.

13.4. TESTING QUOTA MANAGEMENT FOR RED HAT QUAY 3.9

With quota management configured for Red Hat Quay 3.9, duplicative images are now only counted
once towards the repository total.

Use the following procedure to test that a duplicative image is only counted once toward the repository
total.

Prerequisites

You have configured quota management for Red Hat Quay 3.9.

Procedure

1. Pull a sample image, for example, ubuntu:18.04, by entering the following command:

2. Tag the same image twice by entering the following command:

FEATURE_GARBAGE_COLLECTION: true
FEATURE_QUOTA_MANAGEMENT: true
QUOTA_BACKFILL: false
QUOTA_TOTAL_DELAY_SECONDS: 0
PERMANENTLY_DELETE_TAGS: true
RESET_CHILD_MANIFEST_EXPIRATION: true

QUOTA_BACKFILL: true

$ podman pull ubuntu:18.04

$ podman tag docker.io/library/ubuntu:18.04 quay-server.example.com/quota-
test/ubuntu:tag1

Red Hat Quay 3.9 Manage Red Hat Quay

76

3. Push the sample image to your organization by entering the following commands:

4. On the Red Hat Quay UI, navigate to Organization and click the Repository Name, for
example, quota-test/ubuntu. Then, click Tags. There should be two repository tags, tag1 and
tag2, each with the same manifest. For example:

However, by clicking on the Organization link, we can see that the Total Quota Consumed is
27.94 MB, meaning that the Ubuntu image has only been accounted for once:

If you delete one of the Ubuntu tags, the Total Quota Consumed remains the same.

NOTE

If you have configured the Red Hat Quay time machine to be longer than 0
seconds, subtraction will not happen until those tags pass the time machine
window. If you want to expedite permanent deletion, see Permanently deleting an
image tag in Red Hat Quay 3.9.

13.5. SETTING DEFAULT QUOTA

To specify a system-wide default storage quota that is applied to every organization and user, you can
use the DEFAULT_SYSTEM_REJECT_QUOTA_BYTES configuration flag.

$ podman tag docker.io/library/ubuntu:18.04 quay-server.example.com/quota-
test/ubuntu:tag2

$ podman push --tls-verify=false quay-server.example.com/quota-test/ubuntu:tag1

$ podman push --tls-verify=false quay-server.example.com/quota-test/ubuntu:tag2

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

77

If you configure a specific quota for an organization or user, and then delete that quota, the system-
wide default quota will apply if one has been set. Similarly, if you have configured a specific quota for an
organization or user, and then modify the system-wide default quota, the updated system-wide default
will override any specific settings.

For more information about the DEFAULT_SYSTEM_REJECT_QUOTA_BYTES flag,

see link:

13.6. ESTABLISHING QUOTA IN RED HAT QUAY UI

The following procedure describes how you can report storage consumption and establish storage quota
limits.

Prerequisites

A Red Hat Quay registry.

A superuser account.

Enough storage to meet the demands of quota limitations.

Procedure

1. Create a new organization or choose an existing one. Initially, no quota is configured, as can be
seen on the Organization Settings tab:

2. Log in to the registry as a superuser and navigate to the Manage Organizations tab on the
Super User Admin Panel. Click the Options icon of the organization for which you want to
create storage quota limits:

Red Hat Quay 3.9 Manage Red Hat Quay

78

3. Click Configure Quota and enter the initial quota, for example, 10 MB. Then click Apply and
Close:

4. Check that the quota consumed shows 0 of 10 MB on the Manage Organizations tab of the
superuser panel:

The consumed quota information is also available directly on the Organization page:

Initial consumed quota

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

79

5. To increase the quota to 100MB, navigate to the Manage Organizations tab on the superuser
panel. Click the Options icon and select Configure Quota, setting the quota to 100 MB. Click
Apply and then Close:

6. Pull a sample image by entering the following command:

7. Tag the sample image by entering the following command:

8. Push the sample image to the organization by entering the following command:

9. On the superuser panel, the quota consumed per organization is displayed:

10. The Organization page shows the total proportion of the quota used by the image:

Total Quota Consumed for first image

$ podman pull ubuntu:18.04

$ podman tag docker.io/library/ubuntu:18.04 example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:18.04

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:18.04

Red Hat Quay 3.9 Manage Red Hat Quay

80

11. Pull a second sample image by entering the following command:

12. Tag the second image by entering the following command:

13. Push the second image to the organization by entering the following command:

14. The Organization page shows the total proportion of the quota used by each repository in that
organization:

Total Quota Consumed for each repository

15. Create reject and warning limits:
From the superuser panel, navigate to the Manage Organizations tab. Click the Options icon
for the organization and select Configure Quota. In the Quota Policy section, with the Action
type set to Reject, set the Quota Threshold to 80 and click Add Limit:

$ podman pull nginx

$ podman tag docker.io/library/nginx example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/nginx

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/nginx

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

81

16. To create a warning limit, select Warning as the Action type, set the Quota Threshold to 70
and click Add Limit:

17. Click Close on the quota popup. The limits are viewable, but not editable, on the Settings tab of
the Organization page:

Red Hat Quay 3.9 Manage Red Hat Quay

82

18. Push an image where the reject limit is exceeded:
Because the reject limit (80%) has been set to below the current repository size (~83%), the
next pushed image is rejected automatically.

Sample image push

Sample output when quota exceeded

19. When limits are exceeded, notifications are displayed in the UI:

Quota notifications

$ podman pull ubuntu:20.04

$ podman tag docker.io/library/ubuntu:20.04 example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:20.04

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:20.04

Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0002] failed, retrying in 1s ... (1/3). Error: Error writing blob: Error initiating layer
upload to /v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0005] failed, retrying in 1s ... (2/3). Error: Error writing blob: Error initiating layer
upload to /v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0009] failed, retrying in 1s ... (3/3). Error: Error writing blob: Error initiating layer
upload to /v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
Error: Error writing blob: Error initiating layer upload to /v2/testorg/ubuntu/blobs/uploads/ in
example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been
exceeded on namespace

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

83

13.7. ESTABLISHING QUOTA WITH THE RED HAT QUAY API

When an organization is first created, it does not have a quota applied. Use the
/api/v1/organization/{organization}/quota endpoint:

Sample command

Sample output

13.7.1. Setting the quota

To set a quota for an organization, POST data to the /api/v1/organization/{orgname}/quota
endpoint: .Sample command

Sample output

13.7.2. Viewing the quota

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

[]

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"limit_bytes": 10485760}' https://example-registry-quay-quay-
enterprise.apps.docs.quayteam.org/api/v1/organization/testorg/quota | jq

"Created"

Red Hat Quay 3.9 Manage Red Hat Quay

84

To see the applied quota, GET data from the /api/v1/organization/{orgname}/quota endpoint:

Sample command

Sample output

13.7.3. Modifying the quota

To change the existing quota, in this instance from 10 MB to 100 MB, PUT data to the
/api/v1/organization/{orgname}/quota/{quota_id} endpoint:

Sample command

Sample output

13.7.4. Pushing images

To see the storage consumed, push various images to the organization.

13.7.4.1. Pushing ubuntu:18.04

Push ubuntu:18.04 to the organization from the command line:

Sample commands

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

[
 {
 "id": 1,
 "limit_bytes": 10485760,
 "default_config": false,
 "limits": [],
 "default_config_exists": false
 }
]

$ curl -k -X PUT -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"limit_bytes": 104857600}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1 | jq

{
 "id": 1,
 "limit_bytes": 104857600,
 "default_config": false,
 "limits": [],
 "default_config_exists": false
}

$ podman pull ubuntu:18.04

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

85

13.7.4.2. Using the API to view quota usage

To view the storage consumed, GET data from the /api/v1/repository endpoint:

Sample command

Sample output

13.7.4.3. Pushing another image

1. Pull, tag, and push a second image, for example, nginx:

Sample commands

2. To view the quota report for the repositories in the organization, use the /api/v1/repository

$ podman tag docker.io/library/ubuntu:18.04 example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:18.04

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:18.04

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org/api/v1/repository?
last_modified=true&namespace=testorg&popularity=true&public=true"a=true' | jq

{
 "repositories": [
 {
 "namespace": "testorg",
 "name": "ubuntu",
 "description": null,
 "is_public": false,
 "kind": "image",
 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 27959066,
 "configured_quota": 104857600
 },
 "last_modified": 1651225630,
 "popularity": 0,
 "is_starred": false
 }
]
}

$ podman pull nginx

$ podman tag docker.io/library/nginx example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/nginx

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/nginx

Red Hat Quay 3.9 Manage Red Hat Quay

86

2. To view the quota report for the repositories in the organization, use the /api/v1/repository
endpoint:

Sample command

Sample output

3. To view the quota information in the organization details, use the
/api/v1/organization/{orgname} endpoint:

Sample command

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org/api/v1/repository?
last_modified=true&namespace=testorg&popularity=true&public=true"a=true'

{
 "repositories": [
 {
 "namespace": "testorg",
 "name": "ubuntu",
 "description": null,
 "is_public": false,
 "kind": "image",
 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 27959066,
 "configured_quota": 104857600
 },
 "last_modified": 1651225630,
 "popularity": 0,
 "is_starred": false
 },
 {
 "namespace": "testorg",
 "name": "nginx",
 "description": null,
 "is_public": false,
 "kind": "image",
 "state": "NORMAL",
 "quota_report": {
 "quota_bytes": 59231659,
 "configured_quota": 104857600
 },
 "last_modified": 1651229507,
 "popularity": 0,
 "is_starred": false
 }
]
}

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
'https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg' | jq

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

87

Sample output

13.7.5. Rejecting pushes using quota limits

If an image push exceeds defined quota limitations, a soft or hard check occurs:

For a soft check, or warning, users are notified.

For a hard check, or reject, the push is terminated.

13.7.5.1. Setting reject and warning limits

To set reject and warning limits, POST data to the
/api/v1/organization/{orgname}/quota/{quota_id}/limit endpoint:

Sample reject limit command

Sample warning limit command

13.7.5.2. Viewing reject and warning limits

To view the reject and warning limits, use the /api/v1/organization/{orgname}/quota endpoint:

View quota limits

{
 "name": "testorg",
 ...
 "quotas": [
 {
 "id": 1,
 "limit_bytes": 104857600,
 "limits": []
 }
],
 "quota_report": {
 "quota_bytes": 87190725,
 "configured_quota": 104857600
 }
}

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"type":"Reject","threshold_percent":80}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1/limit

$ curl -k -X POST -H "Authorization: Bearer <token>" -H 'Content-Type: application/json' -d
'{"type":"Warning","threshold_percent":50}' https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota/1/limit

$ curl -k -X GET -H "Authorization: Bearer <token>" -H 'Content-Type: application/json'
https://example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/api/v1/organization/testorg/quota | jq

Red Hat Quay 3.9 Manage Red Hat Quay

88

Sample output for quota limits

13.7.5.3. Pushing an image when the reject limit is exceeded

In this example, the reject limit (80%) has been set to below the current repository size (~83%), so the
next push should automatically be rejected.

Push a sample image to the organization from the command line:

Sample image push

Sample output when quota exceeded

[
 {
 "id": 1,
 "limit_bytes": 104857600,
 "default_config": false,
 "limits": [
 {
 "id": 2,
 "type": "Warning",
 "limit_percent": 50
 },
 {
 "id": 1,
 "type": "Reject",
 "limit_percent": 80
 }
],
 "default_config_exists": false
 }
]

$ podman pull ubuntu:20.04

$ podman tag docker.io/library/ubuntu:20.04 example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:20.04

$ podman push --tls-verify=false example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org/testorg/ubuntu:20.04

Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0002] failed, retrying in 1s ... (1/3). Error: Error writing blob: Error initiating layer upload to
/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0005] failed, retrying in 1s ... (2/3). Error: Error writing blob: Error initiating layer upload to

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

89

13.7.5.4. Notifications for limits exceeded

When limits are exceeded, a notification appears:

Quota notifications

13.8. CALCULATING THE TOTAL REGISTRY SIZE IN RED HAT QUAY 3.9

Use the following procedure to queue a registry total calculation.

NOTE

/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
WARN[0009] failed, retrying in 1s ... (3/3). Error: Error writing blob: Error initiating layer upload to
/v2/testorg/ubuntu/blobs/uploads/ in example-registry-quay-quay-
enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on namespace
Getting image source signatures
Copying blob d4dfaa212623 [--------------------------------------] 8.0b / 3.5KiB
Copying blob cba97cc5811c [--------------------------------------] 8.0b / 15.0KiB
Copying blob 0c78fac124da [--------------------------------------] 8.0b / 71.8MiB
Error: Error writing blob: Error initiating layer upload to /v2/testorg/ubuntu/blobs/uploads/ in example-
registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org: denied: Quota has been exceeded on
namespace

Red Hat Quay 3.9 Manage Red Hat Quay

90

NOTE

This feature is done on-demand, and calculating a registry total is database intensive. Use
with caution.

Prerequisites

You have upgraded to Red Hat Quay 3.9.

You are logged in as a Red Hat Quay superuser.

Procedure

1. On the Red Hat Quay UI, click your username → Super User Admin Panel.

2. In the navigation pane, click Manage Organizations.

3. Click Calculate, next to Total Registry Size: 0.00 KB, Updated: Never , Calculation required.
Then, click Ok.

4. After a few minutes, depending on the size of your registry, refresh the page. Now, the Total
Registry Size should be calculated. For example:

13.9. PERMANENTLY DELETING AN IMAGE TAG

In some cases, users might want to delete an image tag outside of the time machine window. Use the
following procedure to manually delete an image tag permanently.

IMPORTANT

The results of the following procedure cannot be undone. Use with caution.

13.9.1. Permanently deleting an image tag using the Red Hat Quay v2 UI

Use the following procedure to permanently delete an image tag using the Red Hat Quay v2 UI.

Prerequisites

You have set FEATURE_UI_V2 to true in your config.yaml file.

Procedure

1. Ensure that the PERMANENTLY_DELETE_TAGS and

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

91

1. Ensure that the PERMANENTLY_DELETE_TAGS and
RESET_CHILD_MANIFEST_EXPIRATION parameters are set to true in your config.yaml file.
For example:

2. In the navigation pane, click Repositories.

3. Click the name of the repository, for example, quayadmin/busybox.

4. Check the box of the image tag that will be deleted, for example, test.

5. Click Actions → Permanently Delete.

IMPORTANT

This action is permanent and cannot be undone.

13.9.2. Permanently deleting an image tag using the Red Hat Quay legacy UI

Use the following procedure to permanently delete an image tag using the Red Hat Quay legacy UI.

Procedure

1. Ensure that the PERMANENTLY_DELETE_TAGS and
RESET_CHILD_MANIFEST_EXPIRATION parameters are set to true in your config.yaml file.
For example:

2. On the Red Hat Quay UI, click Repositories and the name of the repository that contains the
image tag you will delete, for example, quayadmin/busybox.

3. In the navigation pane, click Tags.

4. Check the box of the name of the tag you want to delete, for example, test.

5. Click the Actions drop down menu and select Delete Tags → Delete Tag.

6. Click Tag History in the navigation pane.

7. On the name of the tag that was just deleted, for example, test, click Delete test under the
Permanently Delete category. For example:

Permanently delete image tag

PERMANENTLY_DELETE_TAGS: true
RESET_CHILD_MANIFEST_EXPIRATION: true

PERMANENTLY_DELETE_TAGS: true
RESET_CHILD_MANIFEST_EXPIRATION: true

Red Hat Quay 3.9 Manage Red Hat Quay

92

IMPORTANT

This action is permanent and cannot be undone.

CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW

93

CHAPTER 14. GEO-REPLICATION
Geo-replication allows multiple, geographically distributed Red Hat Quay deployments to work as a
single registry from the perspective of a client or user. It significantly improves push and pull
performance in a globally-distributed Red Hat Quay setup. Image data is asynchronously replicated in
the background with transparent failover and redirect for clients.

Deployments of Red Hat Quay with geo-replication is supported on standalone and Operator
deployments.

14.1. GEO-REPLICATION FEATURES

When geo-replication is configured, container image pushes will be written to the preferred
storage engine for that Red Hat Quay instance. This is typically the nearest storage backend
within the region.

After the initial push, image data will be replicated in the background to other storage engines.

The list of replication locations is configurable and those can be different storage backends.

An image pull will always use the closest available storage engine, to maximize pull performance.

If replication has not been completed yet, the pull will use the source storage backend instead.

14.2. GEO-REPLICATION REQUIREMENTS AND CONSTRAINTS

In geo-replicated setups, Red Hat Quay requires that all regions are able to read and write to all
other region’s object storage. Object storage must be geographically accessible by all other
regions.

In case of an object storage system failure of one geo-replicating site, that site’s Red Hat Quay
deployment must be shut down so that clients are redirected to the remaining site with intact
storage systems by a global load balancer. Otherwise, clients will experience pull and push
failures.

Red Hat Quay has no internal awareness of the health or availability of the connected object
storage system. Users must configure a global load balancer (LB) to monitor the health of your
distributed system and to route traffic to different sites based on their storage status.

To check the status of your geo-replication deployment, you must use the /health/endtoend
checkpoint, which is used for global health monitoring. You must configure the redirect manually
using the /health/endtoend endpoint. The /health/instance end point only checks local
instance health.

If the object storage system of one site becomes unavailable, there will be no automatic redirect
to the remaining storage system, or systems, of the remaining site, or sites.

Geo-replication is asynchronous. The permanent loss of a site incurs the loss of the data that
has been saved in that sites' object storage system but has not yet been replicated to the
remaining sites at the time of failure.

A single database, and therefore all metadata and Red Hat Quay configuration, is shared across
all regions.
Geo-replication does not replicate the database. In the event of an outage, Red Hat Quay with
geo-replication enabled will not failover to another database.

Red Hat Quay 3.9 Manage Red Hat Quay

94

A single Redis cache is shared across the entire Red Hat Quay setup and needs to accessible by
all Red Hat Quay pods.

The exact same configuration should be used across all regions, with exception of the storage
backend, which can be configured explicitly using the
QUAY_DISTRIBUTED_STORAGE_PREFERENCE environment variable.

Geo-replication requires object storage in each region. It does not work with local storage.

Each region must be able to access every storage engine in each region, which requires a
network path.

Alternatively, the storage proxy option can be used.

The entire storage backend, for example, all blobs, is replicated. Repository mirroring, by
contrast, can be limited to a repository, or an image.

All Red Hat Quay instances must share the same entrypoint, typically through a load balancer.

All Red Hat Quay instances must have the same set of superusers, as they are defined inside the
common configuration file.

Geo-replication requires your Clair configuration to be set to unmanaged. An unmanaged Clair
database allows the Red Hat Quay Operator to work in a geo-replicated environment, where
multiple instances of the Red Hat Quay Operator must communicate with the same database.
For more information, see Advanced Clair configuration .

Geo-Replication requires SSL/TLS certificates and keys. For more information, see Using
SSL/TLS to protect connections to Red Hat Quay.

If the above requirements cannot be met, you should instead use two or more distinct Red Hat Quay
deployments and take advantage of repository mirroring functions.

14.3. GEO-REPLICATION USING STANDALONE RED HAT QUAY

In the following image, Red Hat Quay is running standalone in two separate regions, with a common
database and a common Redis instance. Localized image storage is provided in each region and image
pulls are served from the closest available storage engine. Container image pushes are written to the
preferred storage engine for the Red Hat Quay instance, and will then be replicated, in the background,
to the other storage engines.

NOTE

If Clair fails in one cluster, for example, the US cluster, US users would not see
vulnerability reports in Red Hat Quay for the second cluster (EU). This is because all Clair
instances have the same state. When Clair fails, it is usually because of a problem within
the cluster.

Geo-replication architecture

CHAPTER 14. GEO-REPLICATION

95

https://access.redhat.com/documentation/en-us/red_hat_quay/3.7/html-single/deploy_red_hat_quay_on_openshift_with_the_quay_operator/index#clair-unmanaged
https://access.redhat.com/documentation/en-us/red_hat_quay/3.7/html-single/deploy_red_hat_quay_for_proof-of-concept_non-production_purposes/index#using_ssl_to_protect_connections_to_red_hat_quay

14.3.1. Enable storage replication - standalone Quay

Use the following procedure to enable storage replication on Red Hat Quay.

Procedure

1. In your Red Hat Quay config editor, locate the Registry Storage section.

2. Click Enable Storage Replication.

3. Add each of the storage engines to which data will be replicated. All storage engines to be used
must be listed.

4. If complete replication of all images to all storage engines is required, click Replicate to storage
engine by default under each storage engine configuration. This ensures that all images are
replicated to that storage engine.

NOTE

Red Hat Quay 3.9 Manage Red Hat Quay

96

NOTE

To enable per-namespace replication, contact Red Hat Quay support.

5. When finished, click Save Configuration Changes. The configuration changes will take effect
after Red Hat Quay restarts.

6. After adding storage and enabling Replicate to storage engine by default for geo-replication,
you must sync existing image data across all storage. To do this, you must oc exec
(alternatively, docker exec or kubectl exec) into the container and enter the following
commands:

NOTE

This is a one time operation to sync content after adding new storage.

14.3.2. Run Red Hat Quay with storage preferences

1. Copy the config.yaml to all machines running Red Hat Quay

2. For each machine in each region, add a QUAY_DISTRIBUTED_STORAGE_PREFERENCE
environment variable with the preferred storage engine for the region in which the machine is
running.
For example, for a machine running in Europe with the config directory on the host available
from $QUAY/config:

$ sudo podman run -d --rm -p 80:8080 -p 443:8443 \
 --name=quay \
 -v $QUAY/config:/conf/stack:Z \
 -e QUAY_DISTRIBUTED_STORAGE_PREFERENCE=europestorage \
 registry.redhat.io/quay/quay-rhel8:v3.9.6

NOTE

The value of the environment variable specified must match the name of a
Location ID as defined in the config panel.

3. Restart all Red Hat Quay containers

14.3.3. Removing a geo-replicated site from your standalone Red Hat Quay
deployment

By using the following procedure, Red Hat Quay administrators can remove sites in a geo-replicated
setup.

Prerequisites

You have configured Red Hat Quay geo-replication with at least two sites, for example,
usstorage and eustorage.

scl enable python27 bash
python -m util.backfillreplication

CHAPTER 14. GEO-REPLICATION

97

Each site has its own Organization, Repository, and image tags.

Procedure

1. Sync the blobs between all of your defined sites by running the following command:

WARNING

Prior to removing storage engines from your Red Hat Quay config.yaml
file, you must ensure that all blobs are synced between all defined sites.
Complete this step before proceeding.

2. In your Red Hat Quay config.yaml file for site usstorage, remove the
DISTRIBUTED_STORAGE_CONFIG entry for the eustorage site.

3. Enter the following command to obtain a list of running containers:

Example output

4. Enter the following command to execute a shell inside of the PostgreSQL container:

5. Enter psql by running the following command:

6. Enter the following command to reveal a list of sites in your geo-replicated deployment:

Example output

$ python -m util.backfillreplication



$ podman ps

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES
92c5321cde38 registry.redhat.io/rhel8/redis-5:1 run-redis 11
days ago Up 11 days ago 0.0.0.0:6379->6379/tcp redis
4e6d1ecd3811 registry.redhat.io/rhel8/postgresql-13:1-109 run-postgresql
33 seconds ago Up 34 seconds ago 0.0.0.0:5432->5432/tcp postgresql-quay
d2eadac74fda registry-proxy.engineering.redhat.com/rh-osbs/quay-quay-rhel8:v3.9.0-131
registry 4 seconds ago Up 4 seconds ago 0.0.0.0:80->8080/tcp, 0.0.0.0:443->8443/tcp
quay

$ podman exec -it postgresql-quay -- /bin/bash

bash-4.4$ psql

quay=# select * from imagestoragelocation;

Red Hat Quay 3.9 Manage Red Hat Quay

98

7. Enter the following command to exit the postgres CLI to re-enter bash-4.4:

8. Enter the following command to permanently remove the eustorage site:

IMPORTANT

The following action cannot be undone. Use with caution.

Example output

14.4. GEO-REPLICATION USING THE RED HAT QUAY OPERATOR

 id | name
----+-------------------
 1 | usstorage
 2 | eustorage

\q

bash-4.4$ python -m util.removelocation eustorage

WARNING: This is a destructive operation. Are you sure you want to remove eustorage from
your storage locations? [y/n] y
Deleted placement 30
Deleted placement 31
Deleted placement 32
Deleted placement 33
Deleted location eustorage

CHAPTER 14. GEO-REPLICATION

99

In the example shown above, the Red Hat Quay Operator is deployed in two separate regions, with a
common database and a common Redis instance. Localized image storage is provided in each region
and image pulls are served from the closest available storage engine. Container image pushes are
written to the preferred storage engine for the Quay instance, and will then be replicated, in the
background, to the other storage engines.

Because the Operator now manages the Clair security scanner and its database separately, geo-
replication setups can be leveraged so that they do not manage the Clair database. Instead, an external
shared database would be used. Red Hat Quay and Clair support several providers and vendors of
PostgreSQL, which can be found in the Red Hat Quay 3.x test matrix. Additionally, the Operator also
supports custom Clair configurations that can be injected into the deployment, which allows users to
configure Clair with the connection credentials for the external database.

14.4.1. Setting up geo-replication on OpenShift Container Platform

Use the following procedure to set up geo-replication on OpenShift Container Platform.

Procedure

1. Deploy a postgres instance for Red Hat Quay.

2. Login to the database by entering the following command:

Red Hat Quay 3.9 Manage Red Hat Quay

100

https://access.redhat.com/articles/4067991

3. Create a database for Red Hat Quay named quay. For example:

4. Enable pg_trm extension inside the database

5. Deploy a Redis instance:

NOTE

Deploying a Redis instance might be unnecessary if your cloud provider has
its own service.

Deploying a Redis instance is required if you are leveraging Builders.

a. Deploy a VM for Redis

b. Verify that it is accessible from the clusters where Red Hat Quay is running

c. Port 6379/TCP must be open

d. Run Redis inside the instance

6. Create two object storage backends, one for each cluster. Ideally, one object storage bucket will
be close to the first, or primary, cluster, and the other will run closer to the second, or
secondary, cluster.

7. Deploy the clusters with the same config bundle, using environment variable overrides to select
the appropriate storage backend for an individual cluster.

8. Configure a load balancer to provide a single entry point to the clusters.

14.4.1.1. Configuring geo-replication for the Red Hat Quay Operator on OpenShift
Container Platform

Use the following procedure to configure geo-replication for the Red Hat Quay Operator.

Procedure

1. Create a config.yaml file that is shared between clusters. This config.yaml file contains the
details for the common PostgreSQL, Redis and storage backends:

Geo-replication config.yaml file

psql -U <username> -h <hostname> -p <port> -d <database_name>

CREATE DATABASE quay;

\c quay;
CREATE EXTENSION IF NOT EXISTS pg_trgm;

sudo dnf install -y podman
podman run -d --name redis -p 6379:6379 redis

SERVER_HOSTNAME: <georep.quayteam.org or any other name> 1

CHAPTER 14. GEO-REPLICATION

101

1

2

A proper SERVER_HOSTNAME must be used for the route and must match the hostname
of the global load balancer.

To retrieve the configuration file for a Clair instance deployed using the OpenShift
Container Platform Operator, see Retrieving the Clair config .

2. Create the configBundleSecret by entering the following command:

3. In each of the clusters, set the configBundleSecret and use the
QUAY_DISTRIBUTED_STORAGE_PREFERENCE environmental variable override to
configure the appropriate storage for that cluster. For example:

NOTE

The config.yaml file between both deployments must match. If making a change
to one cluster, it must also be changed in the other.

US cluster QuayRegistry example

DB_CONNECTION_ARGS:
 autorollback: true
 threadlocals: true
DB_URI: postgresql://postgres:password@10.19.0.1:5432/quay 2
BUILDLOGS_REDIS:
 host: 10.19.0.2
 port: 6379
USER_EVENTS_REDIS:
 host: 10.19.0.2
 port: 6379
DISTRIBUTED_STORAGE_CONFIG:
 usstorage:
 - GoogleCloudStorage
 - access_key: GOOGQGPGVMASAAMQABCDEFG
 bucket_name: georep-test-bucket-0
 secret_key: AYWfEaxX/u84XRA2vUX5C987654321
 storage_path: /quaygcp
 eustorage:
 - GoogleCloudStorage
 - access_key: GOOGQGPGVMASAAMQWERTYUIOP
 bucket_name: georep-test-bucket-1
 secret_key: AYWfEaxX/u84XRA2vUX5Cuj12345678
 storage_path: /quaygcp
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS:
 - usstorage
 - eustorage
DISTRIBUTED_STORAGE_PREFERENCE:
 - usstorage
 - eustorage
FEATURE_STORAGE_REPLICATION: true

$ oc create secret generic --from-file config.yaml=./config.yaml georep-config-bundle

apiVersion: quay.redhat.com/v1

Red Hat Quay 3.9 Manage Red Hat Quay

102

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/quay_operator_features#clair-openshift-config

NOTE

Because SSL/TLS is unmanaged, and the route is managed, you must supply the
certificates with either with the config tool or directly in the config bundle. For
more information, see Configuring TLS and routes.

European cluster

kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: georep-config-bundle
 components:
 - kind: objectstorage
 managed: false
 - kind: route
 managed: true
 - kind: tls
 managed: false
 - kind: postgres
 managed: false
 - kind: clairpostgres
 managed: false
 - kind: redis
 managed: false
 - kind: quay
 managed: true
 overrides:
 env:
 - name: QUAY_DISTRIBUTED_STORAGE_PREFERENCE
 value: usstorage
 - kind: mirror
 managed: true
 overrides:
 env:
 - name: QUAY_DISTRIBUTED_STORAGE_PREFERENCE
 value: usstorage

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: georep-config-bundle
 components:
 - kind: objectstorage
 managed: false
 - kind: route
 managed: true
 - kind: tls
 managed: false
 - kind: postgres

CHAPTER 14. GEO-REPLICATION

103

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/operator-preconfigure#operator-preconfig-tls-routes

NOTE

Because SSL/TLS is unmanaged, and the route is managed, you must supply the
certificates with either with the config tool or directly in the config bundle. For
more information, see Configuring TLS and routes.

14.4.2. Removing a geo-replicated site from your Red Hat Quay Operator
deployment

By using the following procedure, Red Hat Quay administrators can remove sites in a geo-replicated
setup.

Prerequisites

You are logged into OpenShift Container Platform.

You have configured Red Hat Quay geo-replication with at least two sites, for example,
usstorage and eustorage.

Each site has its own Organization, Repository, and image tags.

Procedure

1. Sync the blobs between all of your defined sites by running the following command:

 managed: false
 - kind: clairpostgres
 managed: false
 - kind: redis
 managed: false
 - kind: quay
 managed: true
 overrides:
 env:
 - name: QUAY_DISTRIBUTED_STORAGE_PREFERENCE
 value: eustorage
 - kind: mirror
 managed: true
 overrides:
 env:
 - name: QUAY_DISTRIBUTED_STORAGE_PREFERENCE
 value: eustorage

$ python -m util.backfillreplication

Red Hat Quay 3.9 Manage Red Hat Quay

104

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/deploy_red_hat_quay_on_openshift_with_the_quay_operator/operator-preconfigure#operator-preconfig-tls-routes

WARNING

Prior to removing storage engines from your Red Hat Quay config.yaml
file, you must ensure that all blobs are synced between all defined sites.

When running this command, replication jobs are created which are picked
up by the replication worker. If there are blobs that need replicated, the
script returns UUIDs of blobs that will be replicated. If you run this command
multiple times, and the output from the return script is empty, it does not
mean that the replication process is done; it means that there are no more
blobs to be queued for replication. Customers should use appropriate
judgement before proceeding, as the allotted time replication takes
depends on the number of blobs detected.

Alternatively, you could use a third party cloud tool, such as Microsoft Azure,
to check the synchronization status.

This step must be completed before proceeding.

2. In your Red Hat Quay config.yaml file for site usstorage, remove the
DISTRIBUTED_STORAGE_CONFIG entry for the eustorage site.

3. Enter the following command to identify your Quay application pods:

Example output

4. Enter the following command to open an interactive shell session in the usstorage pod:

5. Enter the following command to permanently remove the eustorage site:

IMPORTANT

The following action cannot be undone. Use with caution.

Example output



$ oc get pod -n <quay_namespace>

quay390usstorage-quay-app-5779ddc886-2drh2
quay390eustorage-quay-app-66969cd859-n2ssm

$ oc rsh quay390usstorage-quay-app-5779ddc886-2drh2

sh-4.4$ python -m util.removelocation eustorage

WARNING: This is a destructive operation. Are you sure you want to remove eustorage from
your storage locations? [y/n] y
Deleted placement 30

CHAPTER 14. GEO-REPLICATION

105

14.5. MIXED STORAGE FOR GEO-REPLICATION

Red Hat Quay geo-replication supports the use of different and multiple replication targets, for
example, using AWS S3 storage on public cloud and using Ceph storage on premise. This complicates
the key requirement of granting access to all storage backends from all Red Hat Quay pods and cluster
nodes. As a result, it is recommended that you use the following:

A VPN to prevent visibility of the internal storage, or

A token pair that only allows access to the specified bucket used by Red Hat Quay

This results in the public cloud instance of Red Hat Quay having access to on-premise storage, but the
network will be encrypted, protected, and will use ACLs, thereby meeting security requirements.

If you cannot implement these security measures, it might be preferable to deploy two distinct Red Hat
Quay registries and to use repository mirroring as an alternative to geo-replication.

Deleted placement 31
Deleted placement 32
Deleted placement 33
Deleted location eustorage

Red Hat Quay 3.9 Manage Red Hat Quay

106

CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY
ON A STANDALONE DEPLOYMENT

Use the content within this section to back up and restore Red Hat Quay in standalone deployments.

15.1. BACKING UP RED HAT QUAY ON STANDALONE DEPLOYMENTS

This procedure describes how to create a backup of Red Hat Quay on standalone deployments.

Procedure

1. Create a temporary backup directory, for example, quay-backup:

2. The following example command denotes the local directory that the Red Hat Quay was started
in, for example, /opt/quay-install:

$ podman run --name quay-app \
 -v /opt/quay-install/config:/conf/stack:Z \
 -v /opt/quay-install/storage:/datastorage:Z \
 registry.redhat.io/quay/quay-rhel8:v3.9.6

Change into the directory that bind-mounts to /conf/stack inside of the container, for example,
/opt/quay-install, by running the following command:

3. Compress the contents of your Red Hat Quay deployment into an archive in the quay-backup
directory by entering the following command:

Example output:

4. Back up the Quay container service by entering the following command:

$ podman inspect quay-app | jq -r '.[0].Config.CreateCommand | .[]' | paste -s -d ' ' -

 /usr/bin/podman run --name quay-app \
 -v /opt/quay-install/config:/conf/stack:Z \
 -v /opt/quay-install/storage:/datastorage:Z \
 registry.redhat.io/quay/quay-rhel8:v3.9.6

5. Redirect the contents of your conf/stack/config.yaml file to your temporary quay-config.yaml

$ mkdir /tmp/quay-backup

$ cd /opt/quay-install

$ tar cvf /tmp/quay-backup/quay-backup.tar.gz *

config.yaml
config.yaml.bak
extra_ca_certs/
extra_ca_certs/ca.crt
ssl.cert
ssl.key

CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY ON A STANDALONE DEPLOYMENT

107

5. Redirect the contents of your conf/stack/config.yaml file to your temporary quay-config.yaml
file by entering the following command:

6. Obtain the DB_URI located in your temporary quay-config.yaml by entering the following
command:

Example output:

$ postgresql://<username>:test123@172.24.10.50/quay

7. Extract the PostgreSQL contents to your temporary backup directory in a backup .sql file by
entering the following command:

8. Print the contents of your DISTRIBUTED_STORAGE_CONFIG by entering the following
command:

9. Export the AWS_ACCESS_KEY_ID by using the access_key credential obtained in Step 7:

10. Export the AWS_SECRET_ACCESS_KEY by using the secret_key obtained in Step 7:

11. Sync the quay bucket to the /tmp/quay-backup/blob-backup/ directory from the hostname of
your DISTRIBUTED_STORAGE_CONFIG:

Example output:

download:
s3://<user_name>/registry/sha256/9c/9c3181779a868e09698b567a3c42f3744584ddb1398efe2
c4ba569a99b823f7a to
registry/sha256/9c/9c3181779a868e09698b567a3c42f3744584ddb1398efe2c4ba569a99b823f
7a

$ podman exec -it quay cat /conf/stack/config.yaml > /tmp/quay-backup/quay-config.yaml

$ grep DB_URI /tmp/quay-backup/quay-config.yaml

$ pg_dump -h 172.24.10.50 -p 5432 -d quay -U <username> -W -O > /tmp/quay-
backup/quay-backup.sql

DISTRIBUTED_STORAGE_CONFIG:
 default:
 - S3Storage
 - s3_bucket: <bucket_name>
 storage_path: /registry
 s3_access_key: <s3_access_key>
 s3_secret_key: <s3_secret_key>
 host: <host_name>

$ export AWS_ACCESS_KEY_ID=<access_key>

$ export AWS_SECRET_ACCESS_KEY=<secret_key>

$ aws s3 sync s3://<bucket_name> /tmp/quay-backup/blob-backup/ --source-region us-east-
2

Red Hat Quay 3.9 Manage Red Hat Quay

108

download:
s3://<user_name>/registry/sha256/e9/e9c5463f15f0fd62df3898b36ace8d15386a6813ffb470f33
2698ecb34af5b0d to
registry/sha256/e9/e9c5463f15f0fd62df3898b36ace8d15386a6813ffb470f332698ecb34af5b0d

It is recommended that you delete the quay-config.yaml file after syncing the quay bucket because it
contains sensitive information. The quay-config.yaml file will not be lost because it is backed up in the
quay-backup.tar.gz file.

15.2. RESTORING RED HAT QUAY ON STANDALONE DEPLOYMENTS

This procedure describes how to restore Red Hat Quay on standalone deployments.

Prerequisites

You have backed up your Red Hat Quay deployment.

Procedure

1. Create a new directory that will bind-mount to /conf/stack inside of the Red Hat Quay
container:

2. Copy the contents of your temporary backup directory created in Backing up Red Hat Quay on
standalone deployments to the new-quay-install1 directory created in Step 1:

3. Change into the new-quay-install directory by entering the following command:

4. Extract the contents of your Red Hat Quay directory:

Example output:

config.yaml
config.yaml.bak
extra_ca_certs/
extra_ca_certs/ca.crt
ssl.cert
ssl.key

5. Recall the DB_URI from your backed-up config.yaml file by entering the following command:

Example output:

$ mkdir /opt/new-quay-install

$ cp /tmp/quay-backup/quay-backup.tar.gz /opt/new-quay-install/

$ cd /opt/new-quay-install/

$ tar xvf /tmp/quay-backup/quay-backup.tar.gz *

$ grep DB_URI config.yaml

CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY ON A STANDALONE DEPLOYMENT

109

6. Run the following command to enter the PostgreSQL database server:

7. Enter psql and create a new database in 172.24.10.50 to restore the quay databases, for
example, example_restore_registry_quay_database, by entering the following command:

Example output:

CREATE DATABASE

8. Connect to the database by running the following command:

Example output:

9. Create a pg_trmg extension of your Quay database by running the following command:

Example output:

10. Exit the postgres CLI by entering the following command:

11. Import the database backup to your new database by running the following command:

Example output:

SET
SET
SET
SET
SET

postgresql://<username>:test123@172.24.10.50/quay

$ sudo postgres

$ psql "host=172.24.10.50 port=5432 dbname=postgres user=<username>
password=test123"
postgres=> CREATE DATABASE example_restore_registry_quay_database;

postgres=# \c "example-restore-registry-quay-database";

You are now connected to database "example-restore-registry-quay-database" as user
"postgres".

example_restore_registry_quay_database=> CREATE EXTENSION IF NOT EXISTS
pg_trgm;

CREATE EXTENSION

\q

$ psql "host=172.24.10.50 port=5432 dbname=example_restore_registry_quay_database
user=<username> password=test123" -W < /tmp/quay-backup/quay-backup.sql

Red Hat Quay 3.9 Manage Red Hat Quay

110

Update the value of DB_URI in your config.yaml from
postgresql://<username>:test123@172.24.10.50/quay to
postgresql://<username>:test123@172.24.10.50/example-restore-registry-quay-database
before restarting the Red Hat Quay deployment.

NOTE

The DB_URI format is DB_URI postgresql://<login_user_name>:
<login_user_password>@<postgresql_host>/<quay_database>. If you are
moving from one PostgreSQL server to another PostgreSQL server, update the
value of <login_user_name>, <login_user_password> and
<postgresql_host> at the same time.

12. In the /opt/new-quay-install directory, print the contents of your
DISTRIBUTED_STORAGE_CONFIG bundle:

Example output:

NOTE

Your DISTRIBUTED_STORAGE_CONFIG in /opt/new-quay-install must be
updated before restarting your Red Hat Quay deployment.

13. Export the AWS_ACCESS_KEY_ID by using the access_key credential obtained in Step 13:

14. Export the AWS_SECRET_ACCESS_KEY by using the secret_key obtained in Step 13:

15. Create a new s3 bucket by entering the following command:

Example output:

$ cat config.yaml | grep DISTRIBUTED_STORAGE_CONFIG -A10

DISTRIBUTED_STORAGE_CONFIG:
 default:
DISTRIBUTED_STORAGE_CONFIG:
 default:
 - S3Storage
 - s3_bucket: <bucket_name>
 storage_path: /registry
 s3_access_key: <s3_access_key>
 s3_secret_key: <s3_secret_key>
 host: <host_name>

$ export AWS_ACCESS_KEY_ID=<access_key>

$ export AWS_SECRET_ACCESS_KEY=<secret_key>

$ aws s3 mb s3://<new_bucket_name> --region us-east-2

$ make_bucket: quay

CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY ON A STANDALONE DEPLOYMENT

111

1

16. Upload all blobs to the new s3 bucket by entering the following command:

The Red Hat Quay registry endpoint must be the same before backup and after restore.

Example output:

17. Before restarting your Red Hat Quay deployment, update the storage settings in your
config.yaml:

$ aws s3 sync --no-verify-ssl \
--endpoint-url <example_endpoint_url> 1
/tmp/quay-backup/blob-backup/. s3://quay/

upload: ../../tmp/quay-backup/blob-
backup/datastorage/registry/sha256/50/505edb46ea5d32b5cbe275eb766d960842a52ee77ac2
25e4dc8abb12f409a30d to
s3://quay/datastorage/registry/sha256/50/505edb46ea5d32b5cbe275eb766d960842a52ee77ac
225e4dc8abb12f409a30d
upload: ../../tmp/quay-backup/blob-
backup/datastorage/registry/sha256/27/27930dc06c2ee27ac6f543ba0e93640dd21eea458eac4
7355e8e5989dea087d0 to
s3://quay/datastorage/registry/sha256/27/27930dc06c2ee27ac6f543ba0e93640dd21eea458ea
c47355e8e5989dea087d0
upload: ../../tmp/quay-backup/blob-
backup/datastorage/registry/sha256/8c/8c7daf5e20eee45ffe4b36761c4bb6729fb3ee60d4f588f
712989939323110ec to
s3://quay/datastorage/registry/sha256/8c/8c7daf5e20eee45ffe4b36761c4bb6729fb3ee60d4f58
8f712989939323110ec
...

DISTRIBUTED_STORAGE_CONFIG:
 default:
DISTRIBUTED_STORAGE_CONFIG:
 default:
 - S3Storage
 - s3_bucket: <new_bucket_name>
 storage_path: /registry
 s3_access_key: <s3_access_key>
 s3_secret_key: <s3_secret_key>
 host: <host_name>

Red Hat Quay 3.9 Manage Red Hat Quay

112

CHAPTER 16. MIGRATING A STANDALONE RED HAT QUAY
DEPLOYMENT TO A RED HAT QUAY OPERATOR

DEPLOYMENT
The following procedures allow you to back up a standalone Red Hat Quay deployment and migrate it to
the Red Hat Quay Operator on OpenShift Container Platform.

16.1. BACKING UP A STANDALONE DEPLOYMENT OF RED HAT QUAY

Procedure

1. Back up the config.yaml of your standalone Red Hat Quay deployment:

2. Create a backup of the database that your standalone Red Hat Quay deployment is using:

3. Install the AWS CLI if you do not have it already.

4. Create an ~/.aws/ directory:

5. Obtain the access_key and secret_key from the config.yaml of your standalone deployment:

Example output:

6. Store the access_key and secret_key from the config.yaml file in your ~/.aws directory:

7. Optional: Check that your access_key and secret_key are stored:

$ mkdir /tmp/quay-backup
$ cp /path/to/Quay/config/directory/config.yaml /tmp/quay-backup

$ pg_dump -h DB_HOST -p 5432 -d QUAY_DATABASE_NAME -U
QUAY_DATABASE_USER -W -O > /tmp/quay-backup/quay-database-backup.sql

$ mkdir ~/.aws/

$ grep -i DISTRIBUTED_STORAGE_CONFIG -A10 /tmp/quay-backup/config.yaml

DISTRIBUTED_STORAGE_CONFIG:
 minio-1:
 - RadosGWStorage
 - access_key: ##########
 bucket_name: quay
 hostname: 172.24.10.50
 is_secure: false
 port: "9000"
 secret_key: ##########
 storage_path: /datastorage/registry

$ touch ~/.aws/credentials

$ cat > ~/.aws/credentials << EOF

CHAPTER 16. MIGRATING A STANDALONE RED HAT QUAY DEPLOYMENT TO A RED HAT QUAY OPERATOR DEPLOYMENT

113

https://docs.aws.amazon.com/cli/v1/userguide/install-linux.html#install-linux-bundled-sudo

Example output:

NOTE

If the aws cli does not automatically collect the access_key and secret_key
from the `~/.aws/credentials file, you can, you can configure these by running
aws configure and manually inputting the credentials.

8. In your quay-backup directory, create a bucket_backup directory:

9. Backup all blobs from the S3 storage:

NOTE

The PUBLIC_S3_ENDPOINT can be read from the Red Hat Quay config.yaml
file under hostname in the DISTRIBUTED_STORAGE_CONFIG. If the endpoint
is insecure, use http instead of https in the endpoint URL.

Up to this point, you should have a complete backup of all Red Hat Quay data, blobs, the database, and
the config.yaml file stored locally. In the following section, you will migrate the standalone deployment
backup to Red Hat Quay on OpenShift Container Platform.

16.2. USING BACKED UP STANDALONE CONTENT TO MIGRATE TO
OPENSHIFT CONTAINER PLATFORM.

Prerequisites

Your standalone Red Hat Quay data, blobs, database, and config.yaml have been backed up.

Red Hat Quay is deployed on OpenShift Container Platform using the Red Hat Quay Operator.

A QuayRegistry with all components set to managed.

PROCEDURE

The procedure in this documents uses the following namespace: quay-enterprise.

1. Scale down the Red Hat Quay Operator:

[default]
aws_access_key_id = ACCESS_KEY_FROM_QUAY_CONFIG
aws_secret_access_key = SECRET_KEY_FROM_QUAY_CONFIG
EOF

aws_access_key_id = ACCESS_KEY_FROM_QUAY_CONFIG
aws_secret_access_key = SECRET_KEY_FROM_QUAY_CONFIG

$ mkdir /tmp/quay-backup/bucket-backup

$ aws s3 sync --no-verify-ssl --endpoint-url https://PUBLIC_S3_ENDPOINT:PORT
s3://QUAY_BUCKET/ /tmp/quay-backup/bucket-backup/

Red Hat Quay 3.9 Manage Red Hat Quay

114

2. Scale down the application and mirror deployments:

3. Copy the database SQL backup to the Quay PostgreSQL database instance:

4. Obtain the database password from the Operator-created config.yaml file:

Example output:

Example output:

postgresql://QUAY_DATABASE_OWNER:PASSWORD@DATABASE_HOST/QUAY_DATAB
ASE_NAME

5. Execute a shell inside of the database pod:

6. Enter psql:

7. Drop the database:

Example output:

DROP DATABASE

8. Create a new database and set the owner as the same name:

$ oc scale --replicas=0 deployment quay-operator.v3.6.2 -n openshift-operators

$ oc scale --replicas=0 deployment QUAY_MAIN_APP_DEPLOYMENT
QUAY_MIRROR_DEPLOYMENT

$ oc cp /tmp/user/quay-backup/quay-database-backup.sql quay-enterprise/quayregistry-
quay-database-54956cdd54-p7b2w:/var/lib/pgsql/data/userdata

$ oc get deployment quay-quay-app -o json | jq
'.spec.template.spec.volumes[].projected.sources' | grep -i config-secret

 "name": "QUAY_CONFIG_SECRET_NAME"

$ oc get secret quay-quay-config-secret-9t77hb84tb -o json | jq '.data."config.yaml"' | cut -d '"'
-f2 | base64 -d -w0 > /tmp/quay-backup/operator-quay-config-yaml-backup.yaml

cat /tmp/quay-backup/operator-quay-config-yaml-backup.yaml | grep -i DB_URI

oc exec -it quay-postgresql-database-pod -- /bin/bash

bash-4.4$ psql

postgres=# DROP DATABASE "example-restore-registry-quay-database";

postgres=# CREATE DATABASE "example-restore-registry-quay-database" OWNER
"example-restore-registry-quay-database";

CHAPTER 16. MIGRATING A STANDALONE RED HAT QUAY DEPLOYMENT TO A RED HAT QUAY OPERATOR DEPLOYMENT

115

Example output:

CREATE DATABASE

9. Connect to the database:

Example output:

10. Create a pg_trmg extension of your Quay database:

Example output:

11. Exit the postgres CLI to re-enter bash-4.4:

12. Set the password for your PostgreSQL deployment:

Example output:

SET
SET
SET
SET
SET

13. Exit bash mode:

14. Create a new configuration bundle for the Red Hat Quay Operator.

15. In your new config-bundle.yaml, include all of the information that the registry requires, such as
LDAP configuration, keys, and other modifications that your old registry had. Run the following
command to move the secret_key to your config-bundle.yaml:

postgres=# \c "example-restore-registry-quay-database";

You are now connected to database "example-restore-registry-quay-database" as user
"postgres".

example-restore-registry-quay-database=# create extension pg_trgm ;

CREATE EXTENSION

\q

bash-4.4$ psql -h localhost -d "QUAY_DATABASE_NAME" -U QUAY_DATABASE_OWNER
-W < /var/lib/pgsql/data/userdata/quay-database-backup.sql

bash-4.4$ exit

$ touch config-bundle.yaml

Red Hat Quay 3.9 Manage Red Hat Quay

116

NOTE

You must manually copy all the LDAP, OIDC and other information and add it to
the /tmp/quay-backup/config-bundle.yaml file.

16. Create a configuration bundle secret inside of your OpenShift cluster:

17. Scale up the Quay pods:

$ oc scale --replicas=1 deployment quayregistry-quay-app
deployment.apps/quayregistry-quay-app scaled

18. Scale up the mirror pods:

$ oc scale --replicas=1 deployment quayregistry-quay-mirror
deployment.apps/quayregistry-quay-mirror scaled

19. Patch the QuayRegistry CRD so that it contains the reference to the new custom configuration
bundle:

$ oc patch quayregistry QUAY_REGISTRY_NAME --type=merge -p '{"spec":
{"configBundleSecret":"new-custom-config-bundle"}}'

NOTE

If Red Hat Quay returns a 500 internal server error, you might have to update the
location of your DISTRIBUTED_STORAGE_CONFIG to default.

20. Create a new AWS credentials.yaml in your /.aws/ directory and include the access_key and
secret_key from the Operator-created config.yaml file:

NOTE

$ cat /tmp/quay-backup/config.yaml | grep SECRET_KEY > /tmp/quay-backup/config-
bundle.yaml

$ oc create secret generic new-custom-config-bundle --from-file=config.yaml=/tmp/quay-
backup/config-bundle.yaml

$ touch credentials.yaml

$ grep -i DISTRIBUTED_STORAGE_CONFIG -A10 /tmp/quay-backup/operator-quay-config-
yaml-backup.yaml

$ cat > ~/.aws/credentials << EOF
[default]
aws_access_key_id = ACCESS_KEY_FROM_QUAY_CONFIG
aws_secret_access_key = SECRET_KEY_FROM_QUAY_CONFIG
EOF

CHAPTER 16. MIGRATING A STANDALONE RED HAT QUAY DEPLOYMENT TO A RED HAT QUAY OPERATOR DEPLOYMENT

117

NOTE

If the aws cli does not automatically collect the access_key and secret_key
from the `~/.aws/credentials file, you can configure these by running aws
configure and manually inputting the credentials.

21. Record the NooBaa’s publicly available endpoint:

22. Sync the backup data to the NooBaa backend storage:

23. Scale the Operator back up to 1 pod:

The Operator uses the custom configuration bundle provided and reconciles all secrets and
deployments. Your new Red Hat Quay deployment on OpenShift Container Platform should contain all
of the information that the old deployment had. You should be able to pull all images.

$ oc get route s3 -n openshift-storage -o yaml -o jsonpath="{.spec.host}{'\n'}"

$ aws s3 sync --no-verify-ssl --endpoint-url https://NOOBAA_PUBLIC_S3_ROUTE
/tmp/quay-backup/bucket-backup/* s3://QUAY_DATASTORE_BUCKET_NAME

$ oc scale –replicas=1 deployment quay-operator.v3.6.4 -n openshift-operators

Red Hat Quay 3.9 Manage Red Hat Quay

118

CHAPTER 17. CONFIGURING ARTIFACT TYPES
As a Red Hat Quay administrator, you can configure Open Container Initiative (OCI) artifact types and
other experimental artifact types through the FEATURE_GENERAL_OCI_SUPPORT,
ALLOWED_OCI_ARTIFACT_TYPES, and IGNORE_UNKNOWN_MEDIATYPES configuration fields.

The following Open Container Initiative (OCI) artifact types are built into Red Hat Quay by default and
are enabled through the FEATURE_GENERAL_OCI_SUPPORT configuration field:

Field Media Type Supported content types

Helm application/v
nd.cncf.helm
.config.v1+js
on

application/tar+gzip,
application/vnd.cncf.helm.c
hart.content.v1.tar+gzip

Cosign application/v
nd.oci.image
.config.v1+js
on

application/vnd.dev.cosign.s
implesigning.v1+json,
application/vnd.dsse.envelo
pe.v1+json

SPDX application/v
nd.oci.image
.config.v1+js
on

text/spdx, text/spdx+xml,
text/spdx+json

Syft application/v
nd.oci.image
.config.v1+js
on

application/vnd.syft+json

CycloneDX application/v
nd.oci.image
.config.v1+js
on

application/vnd.cyclonedx,
application/vnd.cyclonedx+x
ml,
application/vnd.cyclonedx+j
son

In-toto application/v
nd.oci.image
.config.v1+js
on

application/vnd.in-toto+json

Unknown application/v
nd.cncf.open
policyagent.
policy.layer.v
1+rego

application/vnd.cncf.openpo
licyagent.policy.layer.v1+reg
o,
application/vnd.cncf.openpo
licyagent.data.layer.v1+json

Additionally, Red Hat Quay uses the ZStandard, or zstd, to reduce the size of container images or other
related artifacts. Zstd helps optimize storage and improve transfer speeds when working with container
images.

CHAPTER 17. CONFIGURING ARTIFACT TYPES

119

Use the following procedures to configure support for the default and experimental OCI media types.

17.1. CONFIGURING OCI ARTIFACT TYPES

Use the following procedure to configure artifact types that are embedded in Red Hat Quay by default.

Prerequisites

You have Red Hat Quay administrator privileges.

Procedure

In your Red Hat Quay config.yaml file, enable support for general OCI support by setting the
FEATURE_GENERAL_OCI_SUPPORT field to true. For example:

With FEATURE_GENERAL_OCI_SUPPORT set to true, Red Hat Quay users can now push
and pull charts of the default artifact types to their Red Hat Quay deployment.

17.2. CONFIGURING ADDITIONAL ARTIFACT TYPES

Use the following procedure to configure additional, and specific, artifact types for your Red Hat Quay
deployment.

NOTE

Using the ALLOWED_OCI_ARTIFACT_TYPES configuration field, you can restrict which
artifact types are accepted by your Red Hat Quay registry. If you want your Red Hat Quay
deployment to accept all artifact types, see "Configuring unknown media types".

Prerequistes

You have Red Hat Quay administrator privileges.

Procedure

Add the ALLOWED_OCI_ARTIFACT_TYPES configuration field, along with the configuration
and layer types:

For example, you can add Singularity Image Format (SIF) support by adding the following to
your config.yaml file:

FEATURE_GENERAL_OCI_SUPPORT: true

FEATURE_GENERAL_OCI_SUPPORT: true
ALLOWED_OCI_ARTIFACT_TYPES:
 <oci config type 1>:
 - <oci layer type 1>
 - <oci layer type 2>

 <oci config type 2>:
 - <oci layer type 3>
 - <oci layer type 4>

Red Hat Quay 3.9 Manage Red Hat Quay

120

NOTE

When adding OCI artifact types that are not configured by default, Red Hat Quay
administrators will also need to manually add support for Cosign and Helm if
desired.

Now, users can tag SIF images for their Red Hat Quay registry.

17.3. CONFIGURING UNKNOWN MEDIA TYPES

Use the following procedure to enable all artifact types for your Red Hat Quay deployment.

NOTE

With this field enabled, your Red Hat Quay deployment accepts all artifact types.

Prerequistes

You have Red Hat Quay administrator privileges.

Procedure

1. Add the IGNORE_UNKNOWN_MEDIATYPES configuration field to your Red Hat Quay
config.yaml file:

With this field enabled, your Red Hat Quay deployment accepts unknown and unrecognized
artifact types.

ALLOWED_OCI_ARTIFACT_TYPES:
 application/vnd.oci.image.config.v1+json:
 - application/vnd.dev.cosign.simplesigning.v1+json
 application/vnd.cncf.helm.config.v1+json:
 - application/tar+gzip
 application/vnd.sylabs.sif.config.v1+json:
 - application/vnd.sylabs.sif.layer.v1+tar

IGNORE_UNKNOWN_MEDIATYPES: true

CHAPTER 17. CONFIGURING ARTIFACT TYPES

121

CHAPTER 18. RED HAT QUAY GARBAGE COLLECTION
Red Hat Quay includes automatic and continuous image garbage collection. Garbage collection ensures
efficient use of resources for active objects by removing objects that occupy sizeable amounts of disk
space, such as dangling or untagged images, repositories, and blobs, including layers and manifests.
Garbage collection performed by Red Hat Quay can reduce downtime in your organization’s
environment.

18.1. RED HAT QUAY GARBAGE COLLECTION IN PRACTICE

Currently, all garbage collection happens discreetly, and there are no commands to manually run
garbage collection. Red Hat Quay provides metrics that track the status of the different garbage
collection workers.

For namespace and repository garbage collection, the progress is tracked based on the size of their
respective queues. Namespace and repository garbage collection workers require a global lock to work.
As a result, and for performance reasons, only one worker runs at a time.

NOTE

Red Hat Quay shares blobs between namespaces and repositories in order to conserve
disk space. For example, if the same image is pushed 10 times, only one copy of that
image will be stored.

It is possible that tags can share their layers with different images already stored
somewhere in Red Hat Quay. In that case, blobs will stay in storage, because deleting
shared blobs would make other images unusable.

Blob expiration is independent of the time machine. If you push a tag to Red Hat Quay
and the time machine is set to 0 seconds, and then you delete a tag immediately, garbage
collection deletes the tag and everything related to that tag, but will not delete the blob
storage until the blob expiration time is reached.

Garbage collecting tagged images works differently than garbage collection on namespaces or
repositories. Rather than having a queue of items to work with, the garbage collection workers for
tagged images actively search for a repository with inactive or expired tags to clean up. Each instance of
garbage collection workers will grab a repository lock, which results in one worker per repository.

NOTE

In Red Hat Quay, inactive or expired tags are manifests without tags because the
last tag was deleted or it expired. The manifest stores information about how the
image is composed and stored in the database for each individual tag. When a
tag is deleted and the allotted time from Time Machine has been met, Red Hat
Quay garbage collects the blobs that are not connected to any other manifests in
the registry. If a particular blob is connected to a manifest, then it is preserved in
storage and only its connection to the manifest that is being deleted is removed.

Expired images will disappear after the allotted time, but are still stored in Red
Hat Quay. The time in which an image is completely deleted, or collected,
depends on the Time Machine setting of your organization. The default time for
garbage collection is 14 days unless otherwise specified. Until that time, tags can
be pointed to an expired or deleted images.

Red Hat Quay 3.9 Manage Red Hat Quay

122

For each type of garbage collection, Red Hat Quay provides metrics for the number of rows per table
deleted by each garbage collection worker. The following image shows an example of how Red Hat
Quay monitors garbage collection with the same metrics:

18.1.1. Measuring storage reclamation

Red Hat Quay does not have a way to track how much space is freed up by garbage collection. Currently,
the best indicator of this is by checking how many blobs have been deleted in the provided metrics.

NOTE

The UploadedBlob table in the Red Hat Quay metrics tracks the various blobs that are
associated with a repository. When a blob is uploaded, it will not be garbage collected
before the time designated by the PUSH_TEMP_TAG_EXPIRATION_SEC parameter.
This is to avoid prematurely deleting blobs that are part of an ongoing push. For example,
if garbage collection is set to run often, and a tag is deleted in the span of less than one
hour, then it is possible that the associated blobs will not get cleaned up immediately.
Instead, and assuming that the time designated by the
PUSH_TEMP_TAG_EXPIRATION_SEC parameter has passed, the associated blobs will
be removed the next time garbage collection runs on that same repository.

18.2. GARBAGE COLLECTION CONFIGURATION FIELDS

The following configuration fields are available to customize what is garbage collected, and the
frequency at which garbage collection occurs:

Name Description Schema

CHAPTER 18. RED HAT QUAY GARBAGE COLLECTION

123

FEATURE_GARBAGE_COLLECTION Whether
garbage
collection is
enabled for
image tags.
Defaults to
true.

Boolean

FEATURE_NAMESPACE_GARBAGE_COLLECTION Whether
garbage
collection is
enabled for
namespaces.
Defaults to
true.

Boolean

FEATURE_REPOSITORY_GARBAGE_COLLECTIO
N

Whether
garbage
collection is
enabled for
repositories.
Defaults to
true.

Boolean

GARBAGE_COLLECTION_FREQUENCY The frequency,
in seconds, at
which the
garbage
collection
worker runs.
Affects only
garbage
collection
workers.
Defaults to 30
seconds.

String

Name Description Schema

Red Hat Quay 3.9 Manage Red Hat Quay

124

PUSH_TEMP_TAG_EXPIRATION_SEC The number of
seconds that
blobs will not
be garbage
collected after
being
uploaded. This
feature
prevents
garbage
collection from
cleaning up
blobs that are
not referenced
yet, but still
used as part of
an ongoing
push.

String

TAG_EXPIRATION_OPTIONS List of valid tag
expiration
values.

String

DEFAULT_TAG_EXPIRATION Tag expiration
time for time
machine.

String

CLEAN_BLOB_UPLOAD_FOLDER Automatically
cleans stale
blobs left over
from an S3
multipart
upload. By
default, blob
files older than
two days are
cleaned up
every hour.

Boolean

+ Default: true

Name Description Schema

18.3. DISABLING GARBAGE COLLECTION

The garbage collection features for image tags, namespaces, and repositories are stored in the
config.yaml file. These features default to true.

In rare cases, you might want to disable garbage collection, for example, to control when garbage
collection is performed. You can disable garbage collection by setting the GARBAGE_COLLECTION
features to false. When disabled, dangling or untagged images, repositories, namespaces, layers, and
manifests are not removed. This might increase the downtime of your environment.

NOTE

CHAPTER 18. RED HAT QUAY GARBAGE COLLECTION

125

NOTE

There is no command to manually run garbage collection. Instead, you would disable, and
then re-enable, the garbage collection feature.

18.4. GARBAGE COLLECTION AND QUOTA MANAGEMENT

Red Hat Quay introduced quota management in 3.7. With quota management, users have the ability to
report storage consumption and to contain registry growth by establishing configured storage quota
limits.

As of Red Hat Quay 3.7, garbage collection reclaims memory that was allocated to images, repositories,
and blobs after deletion. Because the garbage collection feature reclaims memory after deletion, there
is a discrepancy between what is stored in an environment’s disk space and what quota management is
reporting as the total consumption. There is currently no workaround for this issue.

18.5. GARBAGE COLLECTION IN PRACTICE

Use the following procedure to check your Red Hat Quay logs to ensure that garbage collection is
working.

Procedure

1. Enter the following command to ensure that garbage collection is properly working:

Example output:

2. Delete an image tag.

3. Enter the following command to ensure that the tag was deleted:

Example output:

18.6. RED HAT QUAY GARBAGE COLLECTION METRICS

The following metrics show how many resources have been removed by garbage collection. These
metrics show how many times the garbage collection workers have run and how many namespaces,
repositories, and blobs were removed.

$ sudo podman logs <container_id>

gcworker stdout | 2022-11-14 18:46:52,458 [63] [INFO] [apscheduler.executors.default] Job
"GarbageCollectionWorker._garbage_collection_repos (trigger: interval[0:00:30], next run at:
2022-11-14 18:47:22 UTC)" executed successfully

$ podman logs quay-app

gunicorn-web stdout | 2022-11-14 19:23:44,574 [233] [INFO] [gunicorn.access] 192.168.0.38
- - [14/Nov/2022:19:23:44 +0000] "DELETE /api/v1/repository/quayadmin/busybox/tag/test
HTTP/1.0" 204 0 "http://quay-server.example.com/repository/quayadmin/busybox?tab=tags"
"Mozilla/5.0 (X11; Linux x86_64; rv:102.0) Gecko/20100101 Firefox/102.0"

Red Hat Quay 3.9 Manage Red Hat Quay

126

Metric name Description

quay_gc_iterations_total Number of iterations by the GCWorker

quay_gc_namespaces_purged_total Number of namespaces purged by the
NamespaceGCWorker

quay_gc_repos_purged_total Number of repositories purged by the
RepositoryGCWorker or NamespaceGCWorker

quay_gc_storage_blobs_deleted_total Number of storage blobs deleted

Sample metrics output

TYPE quay_gc_iterations_created gauge
quay_gc_iterations_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823190189714e+09
...

HELP quay_gc_iterations_total number of iterations by the GCWorker
TYPE quay_gc_iterations_total counter
quay_gc_iterations_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
...

TYPE quay_gc_namespaces_purged_created gauge
quay_gc_namespaces_purged_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823190189433e+09
...

HELP quay_gc_namespaces_purged_total number of namespaces purged by the
NamespaceGCWorker
TYPE quay_gc_namespaces_purged_total counter
quay_gc_namespaces_purged_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
....

TYPE quay_gc_repos_purged_created gauge
quay_gc_repos_purged_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.631782319018925e+09
...

HELP quay_gc_repos_purged_total number of repositories purged by the RepositoryGCWorker or
NamespaceGCWorker
TYPE quay_gc_repos_purged_total counter
quay_gc_repos_purged_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
...

TYPE quay_gc_storage_blobs_deleted_created gauge

CHAPTER 18. RED HAT QUAY GARBAGE COLLECTION

127

quay_gc_storage_blobs_deleted_created{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"}
1.6317823190189059e+09
...

HELP quay_gc_storage_blobs_deleted_total number of storage blobs deleted
TYPE quay_gc_storage_blobs_deleted_total counter
quay_gc_storage_blobs_deleted_total{host="example-registry-quay-app-6df87f7b66-
9tfn6",instance="",job="quay",pid="208",process_name="secscan:application"} 0
...

Red Hat Quay 3.9 Manage Red Hat Quay

128

CHAPTER 19. USING THE RED HAT QUAY V2 UI
Use the following procedures to configure, and use, the Red Hat Quay v2 UI.

19.1. V2 USER INTERFACE CONFIGURATION

With FEATURE_UI_V2 enabled, you can toggle between the current version of the user interface and
the new version of the user interface.

IMPORTANT

This UI is currently in beta and subject to change. In its current state, users can
only create, view, and delete organizations, repositories, and image tags.

When running Red Hat Quay in the old UI, timed-out sessions would require that
the user input their password again in the pop-up window. With the new UI, users
are returned to the main page and required to input their username and
password credentials. This is a known issue and will be fixed in a future version of
the new UI.

There is a discrepancy in how image manifest sizes are reported between the
legacy UI and the new UI. In the legacy UI, image manifests were reported in
mebibytes. In the new UI, Red Hat Quay uses the standard definition of
megabyte (MB) to report image manifest sizes.

Procedure

1. In your deployment’s config.yaml file, add the FEATURE_UI_V2 parameter and set it to true,
for example:

2. Log in to your Red Hat Quay deployment.

3. In the navigation pane of your Red Hat Quay deployment, you are given the option to toggle
between Current UI and New UI. Click the toggle button to set it to new UI, and then click Use
Beta Environment, for example:

19.1.1. Creating a new organization in the Red Hat Quay v2 UI

Prerequisites

You have toggled your Red Hat Quay deployment to use the v2 UI.

Use the following procedure to create an organization using the Red Hat Quay v2 UI.

Procedure

FEATURE_TEAM_SYNCING: false
FEATURE_UI_V2: true
FEATURE_USER_CREATION: true

CHAPTER 19. USING THE RED HAT QUAY V2 UI

129

1. Click Organization in the navigation pane.

2. Click Create Organization.

3. Enter an Organization Name, for example, testorg.

4. Click Create.

Now, your example organization should populate under the Organizations page.

19.1.2. Deleting an organization using the Red Hat Quay v2 UI

Use the following procedure to delete an organization using the Red Hat Quay v2 UI.

Procedure

1. On the Organizations page, select the name of the organization you want to delete, for
example, testorg.

2. Click the More Actions drop down menu.

3. Click Delete.

NOTE

On the Delete page, there is a Search input box. With this box, users can search
for specific organizations to ensure that they are properly scheduled for deletion.
For example, if a user is deleting 10 organizations and they want to ensure that a
specific organization was deleted, they can use the Search input box to confirm
said organization is marked for deletion.

4. Confirm that you want to permanently delete the organization by typing confirm in the box.

5. Click Delete.
After deletion, you are returned to the Organizations page.

NOTE

You can delete more than one organization at a time by selecting multiple
organizations, and then clicking More Actions → Delete.

19.1.3. Creating a new repository using the Red Hat Quay v2 UI

Use the following procedure to create a repository using the Red Hat Quay v2 UI.

Procedure

1. Click Repositories on the navigation pane.

2. Click Create Repository.

3. Select a namespace, for example, quayadmin, and then enter a Repository name, for example,
testrepo.

Red Hat Quay 3.9 Manage Red Hat Quay

130

4. Click Create.
Now, your example repository should populate under the Repositories page.

19.1.4. Deleting a repository using the Red Hat Quay v2 UI

Prerequisites

You have created a repository.

Procedure

1. On the Repositories page of the Red Hat Quay v2 UI, click the name of the image you want to
delete, for example, quay/admin/busybox.

2. Click the More Actions drop-down menu.

3. Click Delete.

NOTE

If desired, you could click Make Public or Make Private.

4. Type confirm in the box, and then click Delete.

5. After deletion, you are returned to the Repositories page.

19.1.5. Pushing an image to the Red Hat Quay v2 UI

Use the following procedure to push an image to the Red Hat Quay v2 UI.

Procedure

1. Pull a sample image from an external registry:

2. Tag the image:

3. Push the image to your Red Hat Quay registry:

4. Navigate to the Repositories page on the Red Hat Quay UI and ensure that your image has
been properly pushed.

5. You can check the security details by selecting your image tag, and then navigating to the
Security Report page.

19.1.6. Deleting an image using the Red Hat Quay v2 UI

$ podman pull busybox

$ podman tag docker.io/library/busybox quay-server.example.com/quayadmin/busybox:test

$ podman push quay-server.example.com/quayadmin/busybox:test

CHAPTER 19. USING THE RED HAT QUAY V2 UI

131

Use the following procedure to delete an image using theRed Hat Quay v2 UI.

Prerequisites

You have pushed an image to your Red Hat Quay registry.

Procedure

1. On the Repositories page of the Red Hat Quay v2 UI, click the name of the image you want to
delete, for example, quay/admin/busybox.

2. Click the More Actions drop-down menu.

3. Click Delete.

NOTE

If desired, you could click Make Public or Make Private.

4. Type confirm in the box, and then click Delete.

5. After deletion, you are returned to the Repositories page.

19.1.7. Creating a robot account using the Red Hat Quay v2 UI

Use the following procedure to create a robot account using the Red Hat Quay v2 UI.

Procedure

1. On the Red Hat Quay v2 UI, click Organizations.

2. Click the name of the organization that you will create the robot account for, for example, test-
org.

3. Click the Robot accounts tab → Create robot account.

4. In the Provide a name for your robot account box, enter a name, for example, robot1.

5. Optional. The following options are available if desired:

a. Add the robot to a team.

b. Add the robot to a repository.

c. Adjust the robot’s permissions.

6. On the Review and finish page, review the information you have provided, then click Review
and finish.

7. Optional. You can click Expand or Collapse to reveal descriptive information about the robot
account.

8. Optional. You can change permissions of the robot account by clicking the kebab menu → Set
repository permissions.

9. Optional. To delete your robot account, check the box of the robot account and click the trash

Red Hat Quay 3.9 Manage Red Hat Quay

132

9. Optional. To delete your robot account, check the box of the robot account and click the trash
can icon. A popup box appears. Type confirm in the text box, then, click Delete. Alternatively,
you can click the kebab menu → Delete.

19.1.8. Organization settings for the Red Hat Quay v2 UI

Use the following procedure to alter your organization settings using the Red Hat Quay v2 UI.

Procedure

1. On the Red Hat Quay v2 UI, click Organizations.

2. Click the name of the organization that you will create the robot account for, for example, test-
org.

3. Click the Settings tab.

4. Optional. Enter the email address associated with the organization.

5. Optional. Set the allotted time for the Time Machine feature to one of the following:

1 week

1 month

1 year

Never

6. Click Save.

19.1.9. Viewing image tag information using the Red Hat Quay v2 UI

Use the following procedure to view image tag information using the Red Hat Quay v2 UI.

Procedure

1. On the Red Hat Quay v2 UI, click Repositories.

2. Click the name of a repository, for example, quayadmin/busybox.

3. Click the name of the tag, for example, test. You are taken to the Details page of the tag. The
page reveals the following information:

Name

Repository

Digest

Vulnerabilities

Creation

Modified

Size

CHAPTER 19. USING THE RED HAT QUAY V2 UI

133

Labels

How to fetch the image tag

4. Optional. Click Security Report to view the tag’s vulnerabilities. You can expand an advisory
column to open up CVE data.

5. Optional. Click Packages to view the tag’s packages.

6. Click the name of the repository, for example, busybox, to return to the Tags page.

7. Optional. Hover over the Pull icon to reveal the ways to fetch the tag.

8. Check the box of the tag, or multiple tags, click the Actions drop down menu, and then Delete
to delete the tag. Confirm deletion by clicking Delete in the popup box.

19.1.10. Adjusting repository settings using the Red Hat Quay v2 UI

Use the following procedure to adjust various settings for a repository using the Red Hat Quay v2 UI.

Procedure

1. On the Red Hat Quay v2 UI, click Repositories.

2. Click the name of a repository, for example, quayadmin/busybox.

3. Click the Settings tab.

4. Optional. Click User and robot permissions. You can adjust the settings for a user or robot
account by clicking the dropdown menu option under Permissions. You can change the settings
to Read, Write, or Admin.

5. Optional. Click Events and notifications. You can create an event and notification by clicking
Create Notification. The following event options are available:

Push to Repository

Package Vulnerability Found

Image build failed

Image build queued

Image build started

Image build success

Image build cancelled
Then, issue a notification. The following options are available:

Email Notification

Flowdock Team Notification

HipChat Room Notification

Slack Notification

Red Hat Quay 3.9 Manage Red Hat Quay

134

Webhook POST
After selecting an event option and the method of notification, include a Room ID #, a
Room Notification Token, then, click Submit.

6. Optional. Click Repository visibility. You can make the repository private, or public, by clicking
Make Public.

7. Optional. Click Delete repository. You can delete the repository by clicking Delete Repository.

19.2. ENABLING THE RED HAT QUAY LEGACY UI

1. In the navigation pane of your Red Hat Quay deployment, you are given the option to toggle
between Current UI and New UI. Click the toggle button to set it to Current UI.

CHAPTER 19. USING THE RED HAT QUAY V2 UI

135

CHAPTER 20. PERFORMING HEALTH CHECKS ON RED HAT
QUAY DEPLOYMENTS

Health check mechanisms are designed to assess the health and functionality of a system, service, or
component. Health checks help ensure that everything is working correctly, and can be used to identify
potential issues before they become critical problems. By monitoring the health of a system, Red Hat
Quay administrators can address abnormalities or potential failures for things like geo-replication
deployments, Operator deployments, standalone Red Hat Quay deployments, object storage issues,
and so on. Performing health checks can also help reduce the likelihood of encountering troubleshooting
scenarios.

Health check mechanisms can play a role in diagnosing issues by providing valuable information about
the system’s current state. By comparing health check results with expected benchmarks or predefined
thresholds, deviations or anomalies can be identified quicker.

20.1. RED HAT QUAY HEALTH CHECK ENDPOINTS

IMPORTANT

Links contained herein to any external website(s) are provided for convenience only. Red
Hat has not reviewed the links and is not responsible for the content or its availability. The
inclusion of any link to an external website does not imply endorsement by Red Hat of the
website or its entities, products, or services. You agree that Red Hat is not responsible or
liable for any loss or expenses that may result due to your use of (or reliance on) the
external site or content.

Red Hat Quay has several health check endpoints. The following table shows you the health check, a
description, an endpoint, and an example output.

Table 20.1. Health check endpoints

Health
check

Description Endpoint Example output

instance The instance endpoint acquires the
entire status of the specific Red Hat
Quay instance. Returns a dict with
key-value pairs for the following: auth,
database, disk_space,
registry_gunicorn, service_key,
and web_gunicorn. Returns a
number indicating the health check
response of either 200, which indicates
that the instance is healthy, or 503,
which indicates an issue with your
deployment.

https://{quay-ip-
endpoint}/health/ins
tance or
https://{quay-ip-
endpoint}/health

{"data":{"services":
{"auth":true,"databa
se":true,"disk_spac
e":true,"registry_gu
nicorn":true,"servic
e_key":true,"web_g
unicorn":true}},"stat
us_code":200}

Red Hat Quay 3.9 Manage Red Hat Quay

136

https:/health/instance
https:/health

endtoend The endtoend endpoint conducts
checks on all services of your Red Hat
Quay instance. Returns a dict with
key-value pairs for the following: auth,
database, redis, storage. Returns a
number indicating the health check
response of either 200, which indicates
that the instance is healthy, or 503,
which indicates an issue with your
deployment.

https://{quay-ip-
endpoint}/health/en
dtoend

{"data":{"services":
{"auth":true,"databa
se":true,"redis":true
,"storage":true}},"st
atus_code":200}

warning The warning endpoint conducts a
check on the warnings. Returns a dict
with key-value pairs for the following:
disk_space_warning. Returns a
number indicating the health check
response of either 200, which indicates
that the instance is healthy, or 503,
which indicates an issue with your
deployment.

https://{quay-ip-
endpoint}/health/war
ning

{"data":{"services":
{"disk_space_warni
ng":true}},"status_c
ode":503}

Health
check

Description Endpoint Example output

20.2. NAVIGATING TO A RED HAT QUAY HEALTH CHECK ENDPOINT

Use the following procedure to navigate to the instance endpoint. This procedure can be repeated for
endtoend and warning endpoints.

Procedure

1. On your web browser, navigate to https://{quay-ip-endpoint}/health/instance.

2. You are taken to the health instance page, which returns information like the following:

For Red Hat Quay, "status_code": 200 means that the instance is health. Conversely, if you
receive "status_code": 503, there is an issue with your deployment.

{"data":{"services":
{"auth":true,"database":true,"disk_space":true,"registry_gunicorn":true,"service_key":true,"we
b_gunicorn":true}},"status_code":200}

CHAPTER 20. PERFORMING HEALTH CHECKS ON RED HAT QUAY DEPLOYMENTS

137

https:/health/endtoend
https:/health/warning
https:/health/instance

1

2

3

4

5

CHAPTER 21. BRANDING A RED HAT QUAY DEPLOYMENT ON
THE LEGACY UI

You can brand the UI of your Red Hat Quay deployment by changing the registry title, logo, footer
image, and by directing users to a website embedded in the footer image.

Procedure

1. Update your Red Hat Quay config.yaml file to add the following parameters:

The URL of the image that will appear at the top of your Red Hat Quay deployment.

The URL of the image that will appear at the bottom of your Red Hat Quay deployment.

The URL of the website that users will be directed to when clicking the footer image.

The the long-form title for the registry. This is displayed in frontend of your Red Hat Quay
deployment, for example, at the sign in page of your organization.

The short-form title for the registry. The title is displayed on various pages of your
organization, for example, as the title of the tutorial on your organization’s Tutorial page.

2. Restart your Red Hat Quay deployment. After restarting, your Red Hat Quay deployment is
updated with a new logo, footer image, and footer image URL.

BRANDING:
 logo: 1
 footer_img: 2
 footer_url: 3

REGISTRY_TITLE: 4
REGISTRY_TITLE_SHORT: 5

Red Hat Quay 3.9 Manage Red Hat Quay

138

CHAPTER 22. SCHEMA FOR RED HAT QUAY CONFIGURATION
Most Red Hat Quay configuration information is stored in the config.yaml file that is created using the
browser-based config tool when Red Hat Quay is first deployed.

The configuration options are described in the Red Hat Quay Configuration Guide.

ADDITIONAL RESOURCES

CHAPTER 22. SCHEMA FOR RED HAT QUAY CONFIGURATION

139

	Table of Contents
	PREFACE
	CHAPTER 1. ADVANCED RED HAT QUAY CONFIGURATION
	1.1. USING RED HAT QUAY CONFIG TOOL TO MODIFY RED HAT QUAY
	1.1.1. Running the Config Tool from the Red Hat Quay Operator
	1.1.2. Running the Config Tool from the command line
	1.1.3. Deploying the config tool using TLS certificates

	1.2. USING THE API TO MODIFY RED HAT QUAY
	1.3. EDITING THE CONFIG.YAML FILE TO MODIFY RED HAT QUAY
	1.3.1. Add name and company to Red Hat Quay sign-in
	1.3.2. Disable TLS Protocols
	1.3.3. Rate limit API calls
	1.3.4. Adjust database connection pooling
	1.3.4.1. Database connection arguments
	1.3.4.2. Database SSL configuration
	1.3.4.3. HTTP connection counts
	1.3.4.4. Dynamic process counts
	1.3.4.5. Environment variables
	1.3.4.6. Turning off connection pooling

	CHAPTER 2. USING THE CONFIGURATION API
	2.1. RETRIEVING THE DEFAULT CONFIGURATION
	2.2. RETRIEVING THE CURRENT CONFIGURATION
	2.3. VALIDATING CONFIGURATION USING THE API
	2.4. DETERMINING THE REQUIRED FIELDS

	CHAPTER 3. GETTING RED HAT QUAY RELEASE NOTIFICATIONS
	CHAPTER 4. USING SSL TO PROTECT CONNECTIONS TO RED HAT QUAY
	4.1. USING SSL/TLS
	4.2. CREATING A CERTIFICATE AUTHORITY AND SIGNING A CERTIFICATE
	4.2.1. Creating a certificate authority
	4.2.2. Signing a certificate

	4.3. CONFIGURING SSL USING THE COMMAND LINE INTERFACE
	4.4. CONFIGURING SSL/TLS USING THE RED HAT QUAY UI
	4.5. TESTING SSL CONFIGURATION USING THE COMMAND LINE
	4.6. TESTING SSL CONFIGURATION USING THE BROWSER
	4.7. CONFIGURING PODMAN TO TRUST THE CERTIFICATE AUTHORITY
	4.8. CONFIGURING THE SYSTEM TO TRUST THE CERTIFICATE AUTHORITY

	CHAPTER 5. ADDING TLS CERTIFICATES TO THE RED HAT QUAY CONTAINER
	5.1. ADD TLS CERTIFICATES TO RED HAT QUAY
	5.2. ADDING CUSTOM SSL/TLS CERTIFICATES WHEN RED HAT QUAY IS DEPLOYED ON KUBERNETES

	CHAPTER 6. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH AND SPLUNK
	6.1. CONFIGURING ACTION LOG STORAGE FOR ELASTICSEARCH
	6.2. CONFIGURING ACTION LOG STORAGE FOR SPLUNK
	6.2.1. Installing and creating a username for Splunk
	6.2.2. Generating a Splunk token
	6.2.2.1. Generating a Splunk token using the Splunk UI
	6.2.2.2. Generating a Splunk token using the CLI

	6.2.3. Configuring Red Hat Quay to use Splunk
	6.2.4. Creating an action log

	CHAPTER 7. CLAIR FOR RED HAT QUAY
	7.1. CLAIR VULNERABILITY DATABASES
	7.1.1. Information about Open Source Vulnerability (OSV) database for Clair

	7.2. SETTING UP CLAIR ON STANDALONE RED HAT QUAY DEPLOYMENTS
	7.3. CLAIR ON OPENSHIFT CONTAINER PLATFORM
	7.4. TESTING CLAIR

	CHAPTER 8. REPOSITORY MIRRORING
	8.1. REPOSITORY MIRRORING
	8.2. REPOSITORY MIRRORING COMPARED TO GEO-REPLICATION
	8.3. USING REPOSITORY MIRRORING
	8.4. MIRRORING CONFIGURATION UI
	8.5. MIRRORING CONFIGURATION FIELDS
	8.6. MIRRORING WORKER
	8.7. CREATING A MIRRORED REPOSITORY
	8.7.1. Repository mirroring settings
	8.7.2. Advanced settings
	8.7.3. Synchronize now

	8.8. EVENT NOTIFICATIONS FOR MIRRORING
	8.9. MIRRORING TAG PATTERNS
	8.9.1. Pattern syntax
	8.9.2. Example tag patterns

	8.10. WORKING WITH MIRRORED REPOSITORIES
	8.11. REPOSITORY MIRRORING RECOMMENDATIONS

	CHAPTER 9. IPV6 AND DUAL-STACK DEPLOYMENTS
	9.1. ENABLING THE IPV6 PROTOCOL FAMILY
	9.2. ENABLING THE DUAL-STACK PROTOCOL FAMILY
	9.3. IPV6 AND DUA-STACK LIMITATIONS

	CHAPTER 10. LDAP AUTHENTICATION SETUP FOR RED HAT QUAY
	10.1. CONSIDERATIONS WHEN ENABLING LDAP
	Existing Red Hat Quay deployments
	Manual User Creation and LDAP authentication

	10.2. CONFIGURING LDAP FOR RED HAT QUAY
	10.3. ENABLING THE LDAP_RESTRICTED_USER_FILTER CONFIGURATION FIELD
	10.4. ENABLING THE LDAP_SUPERUSER_FILTER CONFIGURATION FIELD
	10.5. COMMON LDAP CONFIGURATION ISSUES
	10.6. LDAP CONFIGURATION FIELDS

	CHAPTER 11. CONFIGURING OIDC FOR RED HAT QUAY
	11.1. CONFIGURING RED HAT SINGLE SIGN-ON FOR RED HAT QUAY
	11.1.1. Configuring the Red Hat Single Sign-On Operator for the Red Hat Quay Operator
	11.1.2. Configuring the Red Hat Quay Operator to use Red Hat Single Sign-On

	11.2. CONFIGURING AZURE AD OIDC FOR RED HAT QUAY
	11.2.1. Configuring Azure AD by using the Red Hat Quay config tool
	11.2.2. Configuring Azure AD by updating the Red Hat Quay config.yaml file

	CHAPTER 12. PROMETHEUS AND GRAFANA METRICS UNDER RED HAT QUAY
	12.1. EXPOSING THE PROMETHEUS ENDPOINT
	12.1.1. Standalone Red Hat Quay
	12.1.2. Red Hat Quay Operator
	12.1.3. Setting up Prometheus to consume metrics
	12.1.4. DNS configuration under Kubernetes
	12.1.5. DNS configuration for a manual cluster

	12.2. INTRODUCTION TO METRICS
	12.2.1. General registry statistics
	12.2.2. Queue items
	12.2.3. Garbage collection metrics
	12.2.3.1. Multipart uploads metrics

	12.2.4. Image push / pull metrics
	12.2.4.1. Image pulls total
	12.2.4.2. Image bytes pulled
	12.2.4.3. Image pushes total
	12.2.4.4. Image bytes pushed

	12.2.5. Authentication metrics

	CHAPTER 13. RED HAT QUAY QUOTA MANAGEMENT AND ENFORCEMENT OVERVIEW
	13.1. QUOTA MANAGEMENT ARCHITECTURE
	13.2. QUOTA MANAGEMENT LIMITATIONS
	13.3. QUOTA MANAGEMENT FOR RED HAT QUAY 3.9
	13.3.1. Option A: Configuring quota management for Red Hat Quay 3.9 by adjusting the QUOTA_TOTAL_DELAY feature flag
	13.3.2. Option B: Configuring quota management for Red Hat Quay 3.9 by setting QUOTA_TOTAL_DELAY_SECONDS to 0

	13.4. TESTING QUOTA MANAGEMENT FOR RED HAT QUAY 3.9
	13.5. SETTING DEFAULT QUOTA
	13.6. ESTABLISHING QUOTA IN RED HAT QUAY UI
	13.7. ESTABLISHING QUOTA WITH THE RED HAT QUAY API
	13.7.1. Setting the quota
	13.7.2. Viewing the quota
	13.7.3. Modifying the quota
	13.7.4. Pushing images
	13.7.4.1. Pushing ubuntu:18.04
	13.7.4.2. Using the API to view quota usage
	13.7.4.3. Pushing another image

	13.7.5. Rejecting pushes using quota limits
	13.7.5.1. Setting reject and warning limits
	13.7.5.2. Viewing reject and warning limits
	13.7.5.3. Pushing an image when the reject limit is exceeded
	13.7.5.4. Notifications for limits exceeded

	13.8. CALCULATING THE TOTAL REGISTRY SIZE IN RED HAT QUAY 3.9
	13.9. PERMANENTLY DELETING AN IMAGE TAG
	13.9.1. Permanently deleting an image tag using the Red Hat Quay v2 UI
	13.9.2. Permanently deleting an image tag using the Red Hat Quay legacy UI

	CHAPTER 14. GEO-REPLICATION
	14.1. GEO-REPLICATION FEATURES
	14.2. GEO-REPLICATION REQUIREMENTS AND CONSTRAINTS
	14.3. GEO-REPLICATION USING STANDALONE RED HAT QUAY
	14.3.1. Enable storage replication - standalone Quay
	14.3.2. Run Red Hat Quay with storage preferences
	14.3.3. Removing a geo-replicated site from your standalone Red Hat Quay deployment

	14.4. GEO-REPLICATION USING THE RED HAT QUAY OPERATOR
	14.4.1. Setting up geo-replication on OpenShift Container Platform
	14.4.1.1. Configuring geo-replication for the Red Hat Quay Operator on OpenShift Container Platform

	14.4.2. Removing a geo-replicated site from your Red Hat Quay Operator deployment

	14.5. MIXED STORAGE FOR GEO-REPLICATION

	CHAPTER 15. BACKING UP AND RESTORING RED HAT QUAY ON A STANDALONE DEPLOYMENT
	15.1. BACKING UP RED HAT QUAY ON STANDALONE DEPLOYMENTS
	15.2. RESTORING RED HAT QUAY ON STANDALONE DEPLOYMENTS

	CHAPTER 16. MIGRATING A STANDALONE RED HAT QUAY DEPLOYMENT TO A RED HAT QUAY OPERATOR DEPLOYMENT
	16.1. BACKING UP A STANDALONE DEPLOYMENT OF RED HAT QUAY
	16.2. USING BACKED UP STANDALONE CONTENT TO MIGRATE TO OPENSHIFT CONTAINER PLATFORM.

	CHAPTER 17. CONFIGURING ARTIFACT TYPES
	17.1. CONFIGURING OCI ARTIFACT TYPES
	17.2. CONFIGURING ADDITIONAL ARTIFACT TYPES
	17.3. CONFIGURING UNKNOWN MEDIA TYPES

	CHAPTER 18. RED HAT QUAY GARBAGE COLLECTION
	18.1. RED HAT QUAY GARBAGE COLLECTION IN PRACTICE
	18.1.1. Measuring storage reclamation

	18.2. GARBAGE COLLECTION CONFIGURATION FIELDS
	18.3. DISABLING GARBAGE COLLECTION
	18.4. GARBAGE COLLECTION AND QUOTA MANAGEMENT
	18.5. GARBAGE COLLECTION IN PRACTICE
	18.6. RED HAT QUAY GARBAGE COLLECTION METRICS

	CHAPTER 19. USING THE RED HAT QUAY V2 UI
	19.1. V2 USER INTERFACE CONFIGURATION
	19.1.1. Creating a new organization in the Red Hat Quay v2 UI
	19.1.2. Deleting an organization using the Red Hat Quay v2 UI
	19.1.3. Creating a new repository using the Red Hat Quay v2 UI
	19.1.4. Deleting a repository using the Red Hat Quay v2 UI
	19.1.5. Pushing an image to the Red Hat Quay v2 UI
	19.1.6. Deleting an image using the Red Hat Quay v2 UI
	19.1.7. Creating a robot account using the Red Hat Quay v2 UI
	19.1.8. Organization settings for the Red Hat Quay v2 UI
	19.1.9. Viewing image tag information using the Red Hat Quay v2 UI
	19.1.10. Adjusting repository settings using the Red Hat Quay v2 UI

	19.2. ENABLING THE RED HAT QUAY LEGACY UI

	CHAPTER 20. PERFORMING HEALTH CHECKS ON RED HAT QUAY DEPLOYMENTS
	20.1. RED HAT QUAY HEALTH CHECK ENDPOINTS
	20.2. NAVIGATING TO A RED HAT QUAY HEALTH CHECK ENDPOINT

	CHAPTER 21. BRANDING A RED HAT QUAY DEPLOYMENT ON THE LEGACY UI
	CHAPTER 22. SCHEMA FOR RED HAT QUAY CONFIGURATION
	ADDITIONAL RESOURCES

