& RedHat

Red Hat Quay 3.2

Deploy Red Hat Quay on OpenShift with Quay
Setup Operator

Deploy Red Hat Quay on OpenShift with Quay Setup Operator

Last Updated: 2020-04-30

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup
Operator

Deploy Red Hat Quay on OpenShift with Quay Setup Operator

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Deploy Red Hat Quay on an OpenShift Cluster with the Red Hat Quay Operator

Table of Contents

Table of Contents

[{3 N O PP 4
CHAPTER 1. OVERVIEW ittt ettt ettt ettt et e et et eaeeeaneennnesaneeeaneennneenns 5
CHAPTER 2. ARCHITECTURE 1.ttt ittt ettt ettt et ee e eaeeeaneeeaneeannesaneesaneennneenns 6
CHAPTER 3. PREREQUISITES FORRED HAT QUAY ON OPENSHIFT ... it iiiie e 7
CHAPTER 4. DEPLOYING RED HAT QUAY 1.ttt ittt ettt eaaeeeseanneeeeaannnneesennnns 8
4.1. INSTALL THE RED HAT QUAY SETUP OPERATOR 8
4.2. DEPLOY A RED HAT QUAY ECOSYSTEM 8
CHAPTER 5. CUSTOMIZING YOURRED HAT QUAY CLUSTER ... ittt eeiieeee e, 1
5.1. CHANGING YOUR RED HAT QUAY CREDENTIALS 11
5.1.1. Red Hat Quay superuser credentials 1
5.1.2. Red Hat Quay configuration credentials 1

5.2. PROVIDING PERSISTENT STORAGE USING POSTGRESQL DATABASE 1
5.3. SPECIFYING DATABASE CREDENTIALS 12
5.3.1. Using an existing PostgreSQL database instance 13

5.4. CHOOSING A REGISTRY STORAGE BACKEND 13
5.4.1. Overview of storage backends 13
5.4.2. Sensitive storage values 13
5.4.3. Storage replication 14
5.4.4. Regqistry storage backend types 14
5.4.4.1. Local Storage 14
5.4.4.2. Configuring persistent local storage 15
5.4.4.3. Amazon Web Services (S3) 15
5.4.4.4. Microsoft Azure storage 16
5.4.45. Google Cloud storage 17
5.4.4.6. NooBaa (RHOCS) storage 17
5.4.47. RADOS storage 18
5.4.4.8. Swift (OpenStack) storage 19
5.4.4.9. CloudFront (S3) storage 20
5.5.INJECTING CONFIGURATION FILES 21
5.6. SKIPPING AUTOMATED SETUP 22
5.7. PROVIDING SSL CERTIFICATES 22
5.7.1. User provided certificates 23

5.8. SPECIFYING THE RED HAT QUAY ROUTE 23
5.9. SPECIFYING A RED HAT QUAY CONFIGURATION ROUTE 23
CHAPTER 6. CONFIGURATION DEPLOYMENT AFTERINITIALSETUPttt 25
6.1. SETTING REDIS PASSWORD 25
6.2. ENABLING CLAIR IMAGE SCANNING 25
6.2.1. Clair update interval 26

6.3. SETTING COMMON ATTRIBUTES 26
6.3.1. Image pull secret 26
6.3.2.Image 26
6.3.3. Compute resources 27
6.3.4. Probes 27
6.3.5. Node Selector 28
6.3.6. Deployment strategy 28
6.3.7. Environment Variables 28

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

CHAPTER 7. TROUBLESHOOTING ... i i i i i ettt 30
7.1. ERRORS DURING INITIAL SETUP 30
CHAPTER 8. LOCAL DEVELOPMENT . i i i e i et a et 31
CHAPTER 9. UPGRADING RED HAT QUAY AND CLAIR .. i i 32
CHAPTER10. STARTING TO USE RED HAT QUAY .. i i et 33
ADDITIONAL RESOURCES 33

Table of Contents

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

PREFACE

Red Hat Quay is an enterprise-quality container registry. Use Red Hat Quay to build and store container
images, then make them available to deploy across your enterprise.

Red Hat currently supports two approaches to deploying Red Hat Quay on OpenShift:

® Deploy Red Hat Quay with the Red Hat Quay Setup OperatorThe Red Hat Quay Setup
Operator provides a simple method to deploy and manage a Red Hat Quay cluster. This is the
now preferred procedure for deploying Red Hat Quay on OpenShift and is covered in this guide.

® Deploy Red Hat Quay objects individually This procedure provides a set of yaml files that you
deploy individually to set up your Red Hat Quay cluster. This procedure is expected to
eventually be deprecated.

CHAPTER 1. OVERVIEW

CHAPTER 1. OVERVIEW

Features of Red Hat Quay include:
® High availability
® Geo-replication
® Repository mirroring (Technology Preview in Red Hat Quay v3.1, supported in v3.2)
® Docker v2, schema 2 (multiarch) support
® Continuous integration
® Security scanning with Clair
® Custom log rotation
® Zero downtime garbage collection
® 24/7 support
Red Hat Quay provides support for:
® Multiple authentication and access methods
® Multiple storage backends
® Custom certificates for Quay, Clair, and storage backends
® Application registries

e Different container image types

https://access.redhat.com/support/offerings/techpreview

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

CHAPTER 2. ARCHITECTURE

Red Hat Quay is made up of several core components.
e Database: Used by Red Hat Quay as its primary metadata storage (not for image storage).
® Redis (key, value store) Stores live builder logs and the Red Hat Quay tutorial.

® Quay (container registry): Runs the quay container as a service, consisting of several
components in the pod.

e Clair: Scans container images for vulnerabilities and suggests fixes.
For supported deployments, you need to use one of the following types of storage:

® Public cloud storage: In public cloud environments, you should use the cloud provider's object
storage, such as Amazon S3 (for AWS) or Google Cloud Storage (for Google Cloud).

® Private cloud storage: In private clouds, an S3 or Swift compliant Object Store is needed, such
as Ceph RADOS, or OpenStack Swift.

Do not use "Locally mounted directory" Storage Engine for any production configurations. Mounted
NFS volumes are not supported. Local storage is meant for Red Hat Quay test-only installations.

CHAPTER 3. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT

CHAPTER 3. PREREQUISITES FOR RED HAT QUAY ON

OPENSHIFT

Here are a few things you need to know before you begin the Red Hat Quay on OpenShift deployment:

® OpenShift cluster: You need a privileged account to an OpenShift 3.x or 4.x cluster on which to
deploy the Red Hat Quay. That account must have the ability to create namespaces at the
cluster scope. To use Red Hat Quay builders, OpenShift 3 is required.

® Storage: AWS cloud storage is used as an example in the following procedure. As an alternative,
you can create Ceph cloud storage using steps from the Set up Ceph section of the high
availability Red Hat Quay deployment guide. The following is a list of other supported cloud
storage:

o

Amazon S3 (see S3 IAM Bucket Policy for details on configuring an S3 bucket policy for Red
Hat Quay)

Azure Blob Storage

Google Cloud Storage

Ceph Object Gateway (RADOS)
OpenStack Swift

CloudFront + S3

NooBaa S3 Storage (See Configuring Red Hat OpenShift Container Storage for Red Hat
Quay, currently Technology Preview)

® Services: The OpenShift cluster must have enough capacity to run the following containerized
services:

o

Database: We recommend you use an enterprise-quality database for production use of
Red Hat Quay. PostgreSQL is used as an example in this document. Other options include:

B Crunchy Data PostgreSQL Operator: Although not supported directly by Red Hat, the
CrunchDB Operator is available from Crunchy Data for use with Red Hat Quay. If you
take this route, you should have a support contract with Crunchy Data and work directly
with them for usage guidance or issues relating to the operator and their database.

® |f your organization already has a high-availability (HA) database, you can use that
database with Red Hat Quay. See the Red Hat Quay Support Policy for details on
support for third-party databases and other components.

Key-value database: Redis is used to serve live builder logs and Red Hat Quay tutorial
content to your Red Hat Quay configuration.

Red Hat Quay: The quay container provides the features to manage the Red Hat Quay
registry.

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/deploy_red_hat_quay_-_high_availability/#set_up_ceph
https://access.redhat.com/solutions/3680151
https://access.redhat.com/articles/4356091
https://access.redhat.com/support/offerings/techpreview
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://www.crunchydata.com/
https://access.redhat.com/support/policy/updates/rhquay/policies

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

CHAPTER 4. DEPLOYING RED HAT QUAY

This procedure:
® |nstalls the Red Hat Quay Setup Operator on OpenShift from the OperatorHub
® Deploys a Red Hat Quay cluster on OpenShift with the Setup Operator
You have the option of changing dozens of settings before deploying the Red Hat Quay Setup

Operator. The Operator automates the entire start-up process, by-passing the Red Hat Quay config
tool. You can choose to skip the Operator’s automated configuration and use the config tool directly.

Prerequisites

® An OpenShift 3.x or 4.x cluster
® Cluster-scope admin privilege to the OpenShift cluster

Procedure

You have two choices for deploying the Red Hat Quay Operator:

® Advanced Setup: Go through the Customizing your Red Hat Quay cluster section and
change any setting you desire before running this procedure.

e Standard Setup: Just step through the procedure as is to use all the default setting.

4.1. INSTALL THE RED HAT QUAY SETUP OPERATOR

1. From the OpenShift console, select Operators = OperatorHub, then select the Red Hat Quay
Operator.

2. Select Install. The Operator Subscription page appears.

3. Choose the following then select Subscribe:

® |nstallation Mode: Select a specific namespace to install to
® Update Channel: Choose the update channel (only one may be available)

® Approval Strategy: Choose to approve automatic or manual updates

4.2. DEPLOY A RED HAT QUAY ECOSYSTEM

1. See the Accessing Red Hat Quay article for information on getting credentials needed to obtain
the quay container from Quay.io. Then put those credentials in a file. In this example, we create a
config.json in the local directory.

2. Create a secret that includes your credentials, as follows:

$ oc create secret generic redhat-pull-secret \
--from-file=".dockerconfigjson=config.json" --type='kubernetes.io/dockerconfigjson’

3. Create a custom resource file (in this example, named quayecosystem_cr.yaml) or copy one
from the quay-operator examples page. This example uses default settings:

https://access.redhat.com/solutions/3533201
https://github.com/redhat-cop/quay-operator/tree/master/deploy/examples

CHAPTER 4. DEPLOYING RED HAT QUAY

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret

4. Go through the Customizing your Red Hat Quay cluster section to choose configuration
settings you want to change.

5. Deploy the Quay ecosystem from your custom resource file as follows:
I $ oc create -f quayecosystem_cr.yaml

Deploying the custom resource automatically creates and configures the Red Hat Quay cluster,
which includes the Red Hat Quay, PostgreSQL, and Redis services.

6. To check the status of your Red Hat Quay cluster, log in to your OpenShift web console, select
Projects, then select the quay-enterprise project to see the following:

RedHat]
Openshift Container Platform # O ©

kube:admin =

2 Administrat .
minsteter @D quay-enterprise © acve pctions =

Home

Dashboard ~ Overview YAML Workloads Role Bindings
Dashboards

Projects

Search Details View all Status Activity View events
Explore Ongoing
Name @ Active
quay-enterprise There are no angoing activities
Requester
Recent Events Pause

system:admin

Labels 09.44 @ Stopping container.. >

Ne project message 0943 @) @ Readiness prob... >

0943 (@ Started containerq.. >

Inventory 09.43 @ Created container..

Utilization THour = L
09.43 @) Successfully pulled .. >
4 Deployments "

ploy Resource Usage 940 943 946 949 0942 @@ Pullingimage "quay.. *

4 Pods o0 09.42 @B Createdpod- exa.. >
600m

Compute 0PVCs cPu 45.87m 400m 0942 @ Scaledup replicas.. >
200m

__ 4 Services pen 09.42 @) Successfully assign.. %

: Memor 292 GiB Se

1 Route v 263

:] 0941 (@ Started containerq.. »
0941 @ Successfully pulled .. %

1 Config Map
0941 (@ Created container.. »

Filesystem 999 MiB ey)
5, < 5MiB
22 Secrets =M 09.40 @ Pullingimage "quay.. %

If Red Hat Quay is running, here is how to get started using your Red Hat Quay configuration:

® Get the route to your new Red Hat Quay cluster as follows:

$ oc get route
NAME HOST/PORT
PATH SERVICES PORT TERMINATION WILDCARD
example-quayecosystem-quay example-quayecosystem-quay-default.example.com
example-quayecosystem-quay 8443 passthrough/Redirect None

e Using that route, log in with the superuser credentials (Username: quay and Password:
password or change credentials as described in the next section)

Additional resources

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

® For more details on the Red Hat Quay Setup Operator, see the upstream quay-operator
project.

10

https://github.com/redhat-cop/quay-operator/

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

Although you can run a default Red Hat Quay setup by simply creating a secret and the
QuayEcosystem custom resource, the following sections describe how you can modify the default
setup. Some of those modifications must be made when you deploy the QuayEcosystem, while others
can be done after the cluster is running.

5.1. CHANGING YOUR RED HAT QUAY CREDENTIALS

The Red Hat Quay Setup Operator sets up default administrative credentials. Review the default
superuser and configuration credentials and change as needed.

5.1.1. Red Hat Quay superuser credentials

The Red Hat Quay superuser credentials let you manage the users, projects and other components of
your Red Hat Quay deployment. Here's how superuser credentials are set by default:

® Username: quay
® Password: password
® Email: quay@redhat.com

To change the superuser credentials, create a new secret:

$ oc create secret generic <secret_name> \
--from-literal=superuser-username=<username> \
--from-literal=superuser-password=<password> \
--from-literal=superuser-email=<email>

The superuser password must be at least 8 characters.

5.1.2. Red Hat Quay configuration credentials

A dedicated Red Hat Quay deployment runs to manage Red Hat Quay configuration settings. Using the
route to that configuration, you log in with the following credentials:

® Username: quayconfig
® Password: quay

You cannot change the username, but you can change the password as follows:

$ oc create secret generic quay-config-app \
--from-literal=config-app-password=<password>

5.2. PROVIDING PERSISTENT STORAGE USING POSTGRESQL
DATABASE

The PostgreSQL relational database is used by default as the persistent store for Red Hat Quay.
PostgreSQL can either be deployed by the Operator within the namespace or leverage an existing
instance. The determination of whether to provision an instance or not within the current namespace
depends on whether the server property within the QuayEcosystem is defined.

1

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

The following options are a portion of the available options to configure the PostgreSQL database:

Property Description

image Location of the database image

volumeSize Size of the volume in Kubernetes capacity units
NOTE

It is important to note that persistent storage for the database will only be provisioned if
the volumeSize property is specified when provisioned by the operator.

Define the values as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret
database:
volumeSize: 10Gi

5.3.SPECIFYING DATABASE CREDENTIALS

The credentials for accessing the server can be specified through a Secret or when being provisioned by
the operator, leverage the following default values:

® Username: quay

® Password: quay

® Root Password: quayAdmin
® Database Name: quay

To define alternate values, create a secret as shown below:

oc create secret generic <secret_name> \
--from-literal=database-username=<usernamex \
--from-literal=database-password=<password> \
--from-literal=database-root-password=<root-password> \
--from-literal=database-name=<database-name>

Reference the name of the secret in the QuayEcosystem custom resource as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem

12

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

spec:
quay:
imagePullSecretName: redhat-pull-secret
database:
credentialsSecretName: <secret_name>

5.3.1. Using an existing PostgreSQL database instance

Instead of having the operator deploy an instance of PostgreSQL in the project, an existing instance can
be leveraged by specifying the location in the server field along with the credentials for access as
described in the previous section. The following is an example of how to specify connecting to a remote
PostgreSQL instance:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret
database:
credentialsSecretName: <secret_name>
server: postgresql.databases.example.com

5.4. CHOOSING A REGISTRY STORAGE BACKEND

Red Hat Quay supports multiple backends for the purpose of image storage and consist of a variety of
local and cloud storage options. The following sections provide an overview how to configure the Red
Hat Quay Setup Operator to make use of these backends.

5.4.1. Overview of storage backends

Storage for Red Hat Quay can be configured using the registryBackend field within the quay property
in the QuayEcosystem resource which contain an array of backends. The ability to define multiple
backends enables replication and high availability of images.

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadalocalStorageta:

name: example-quayecosystem
spec:

quay:

registryBackends:
- name: backend1
s3:

The definition of a registryBackend is an optional field, and if omitted, LocalStorage will be configured
(ephemeral, through the use of a PersistentVolume, can be enabled if desired).

5.4.2. Sensitive storage values

13

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

In many cases, access to storage requires the use of sensitive values. Each backend that requires such
configuration can be included in a Secret and defined within the credentialsSecretName property of
the backend.

Instead of declaring the registry backend properties within the specific backend, the values can be
added to a secret as shown below:

oc create secret generic s3-credentials \
--from-literal=accessKey=<accessKey> \
--from-literal=secretKey=<secretKey>

With the values now present in the secret, the properties explicitly declared in the backend can be
removed.

Specific details on the types of properties supported for each backend are found in the registry backend
details below.

5.4.3. Storage replication

Support is available to replicate the registry storage to multiple backends. To activate storage
replication, set the enableStorageReplication property to the value of true. Individual registry
backends can also be configured to be replicated by default by setting the replicateByDefault property
to the value of true. A full configuration demonstrating the replication options available is shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
enableStorageReplication: true
registryBackends:

- name: azure-ussouthcentral
credentialsSecretName: azure-ussouthcentral-registry
replicateByDefault: true
azure:

containerName: quay

- name: azure-seasia
credentialsSecretName: azure-seasia-registry
replicateByDefault: true
azure:

containerName: quay

NOTE

Support for replicated storage is not available for the local registry backend and will result
in an error during the verification phase.

5.4.4. Registry storage backend types

One or more of the following registry storage backends can be defined to specify the underlying storage
for the Red Hat Quay registry:

5.4.4.1. Local Storage

14

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

The following is an example for configuring the registry to make use of local storage:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem
spec:

quay:

registryBackends:
- name: local
local:
storagePath: /opt/quayregistry

The following is a comprehensive list of properties for the local registry backend:

Property Description Credential Secret Required
Supported
storagePath Storage Directory No No

5.4.4.2. Configuring persistent local storage

By default, Red Hat Quay uses an ephemeral volume for local storage. In order to avoid data loss,
persistent storage is required. To enable the use of a PersistentVolume to store images, specify the
registryStorage parameter underneath the quay property.

The following example will cause a PersistentVolumeClaim to be created within the project requesting
storage of 10Gi and an access mode of ReadWriteOnce. The default value is ReadWriteMany.

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret
registryStorage:
persistentVolumeAccessModes:
- ReadWriteOnce
persistentVolumeSize: 10Gi

A Storage Class can also be provided using the persistentVolumeStorageClassName property.

5.4.4.3. Amazon Web Services (S3)

The following is an example for configuring the registry to make use of S3 storage on Amazon Web
Services.

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:

15

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

quay:
registryBackends:
- name: s3
s3:
accessKey: <accessKey>
bucketName: <bucketName>
secretKey: <secretKey
host: <host>

The following is a comprehensive list of properties for the 3 registry backend:

Property Description Credential Secret Required
Supported
storagePath Storage Directory No No
bucketName S3 Bucket No Yes
accessKey AWS Access Key Yes Yes
secretKey AWS Secret Key Yes Yes
host S3 Host No No
port S3 Port No No

5.4.4.4. Microsoft Azure storage

The following is an example for configuring the registry to make use of Blob storage on the Microsoft
Azure platform.

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
registryBackends:
- name: azure
azure:
containerName: <containerName>
accountName: <accountName>
accountKey: <accountKey>

The following is a comprehensive list of properties for the azure registry backend:

Property Description Credential Secret Required
Suppazureorted
storagePath Storage Directory No No

16

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

containerName Azure Storage No Yes
Container

accountName Azure Account Name No Yes

accountKey Azure Account Key No Yes

sas_token Azure SAS Token No No

5.4.4.5. Google Cloud storage

The following is an example for configuring the registry to make use of Blob storage on the Google
Cloud Platform.

apiVersion: redhatcop.redhat.io/vialphalazure
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
registryBackends:
- name: googleCloud
googleCloud:
accessKey: <accessKey>
secretKey: <secretKey>
bucketName: <bucketName>

The following is a comprehensive list of properties for the googlecloud registry backend:

Property Description Credential Secret Required
Supported

storagePath Storage Directory No No

accessKey Cloud Access Key Yes Yes

secretKey Cloud Secret Key Yes Yes

bucketName GCS Bucket No Yes

5.4.4.6. NooBaa (RHOCS) storage

The following is an example for configuring the registry to make use of NooBaa (Red Hat OpenShift
Container Storage) storage.

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem

17

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

spec:
quay:
registryBackends:
- name: rhocs
rhocs:

hostname: <hostname>
secure: <secure>
accessKey: <accessKey>
secretKey: <secretKey>
bucketName: <bucketName>

The following is a comprehensive list of properties for the rhocs registry backend:

Property Description Credential Secret Required
Supported
storagePath Storage Directory No No
hostname NooBaa Server No Yes
Hostname

port Custom Port No No
secure Is Secure No No
secretKey Secret Key Yes Yes
bucketName Bucket Name No Yes

5.4.4.7. RADOS storage

The following is an example for configuring the registry to make use of RADOS storage.

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
registryBackends:
- hame: rados
rhocs:
hostname: <hostname>
secure: <is_secure>
accessKey: <accessKey>
secretKey: <secretKey>
bucketName: <bucketName>

The following is a comprehensive list of properties for the rados registry backend:

18

Property

storagePath

hostname

port

secure

accessKey

secretKey

bucketName

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

Description

Storage Directory

Rados Server Hostname

Custom Port

Is Secure

Access Key

Secret Key

Bucket Name

5.4.4.8. Swift (OpenStack) storage

Credential Secret
Supported

No

No

No

No

Yes

Yes

No

Required

No

Yes

No

No

Yes

Yes

Yes

The following is an example for configuring the registry to make use of Swift storage.

apiVersion: redhatcop.redhat.io/vialphat

kind: QuayEcosystem

metadata:

name: example-quayecosystem

spec:
quay:

registryBackends:
- name: swift
rhocs:

authVersion: <authVersion>
authURL: <authURL>
container: <container>

user: <user>

password: <password>
caCertPath: <caCertPath>

osOptions:
object_storage_url: <object_storage_url>

user_domain_name: <user_domain_name>
project_id: <project_id>

The following is a comprehensive list of properties for the swift registry backend:

Property

storagePath

Description

Storage Directory

Credential Secret

Supported

No

Required

No

19

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

authVersion Swift Auth Version No Yes
authURL Swift Auth URL No Yes
container Swift Container Name No Yes
user Username Yes Yes
password Key/Password Yes Yes
caCertPath CA Cert Filename No No
tempURLKey Temp URL Key No No
osOptions OS Options No No

5.4.4.9. CloudFront (S3) storage

The following is an example for configuring the registry to make use of S3 storage on Amazon Web
Services.

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
registryBackends:
- name: s3
s3:
accessKey: <accessKey>
bucketName: <bucketName>
secretKey: <secretKey>
host: <host>
distributionDomain: <distributionDomain>
key_ID: <key_ID>
privateKeyFilename: <privateKeyFilename>

The following is a comprehensive list of properties for the cloudfrontS3 registry backend:

Property Description Credential Secret Required
Supported

storagePath Storage Directory No No

bucketName S3 Bucket No Yes

accessKey AWS Access Key Yes Yes

20

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

secretKey AWS Secret Key Yes Yes
host S3 Host No No
port S3 Port No No
distributionDomain CloudFront Distribution No Yes

Domain Name
keylD CloudFront Key ID No Yes

privateKeyFilename CloudFront Private Key No Yes

5.5.INJECTING CONFIGURATION FILES

Files related to the configuration of Red Hat Quay are located in the /conf/stack directory. There are
situations for which additional user-defined configuration files need to be added to this directory (such
as certificates and private keys). For Red Hat Quay deployments not managed by the Operator, these
files are managed by the Red Hat Quay config tool.

The Red Hat Quay Setup Operator supports the injection of these assets within the configFiles
property in the quay property of the QuayEcosystem object where one or more assets can be
specified.

Two types of configuration files can be specified by the type property:
e config: Configuration files that will be added to the /conf/stack directory
e extraCaCerts: Certificates to be trusted by the quay container

Configuration files are stored as values within Secrets. The first step is to create a secret containing
these files. The following command illustrates how a private key can be added:

I $ oc create secret generic quayconfigfile --from-file=<path_to_file>

With the secret created, the secret containing the configuration file can be referenced in the
QuayEcosystem object as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:

name: example-quayecosystem
spec:

quay:

configFiles:
- secretName: quayconfigfile

By default, the config type is assumed. If the contents of the secret contains certificates that should be
added to the extra_ca_certs directory, specify the type as extraCaCert as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem

21

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

metadata:
name: example-quayecosystem
spec:
quay:
configFiles:
- secretName: quayconfigfile
type: extraCaCert

Individual keys within a secret can be referenced to fine tune the resources that are added to the
configuration using the files property as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
configFiles:
- secretName: quayconfigfile
files:
- key: myprivatekey.pem
filename: cloudfront.pemQuay
- key: myExtraCaCert.crt
type: extraCaCert

The example above assumes that two files have been added to a secret called quayconfigfile. The file
myprivatekey.pem that was added to the secret will be mounted in the quay pod at the path
/conf/stack/cloudfront.pem since it is a config file type and specifies a custom filename that should be
projected into the pod. The myExtraCaCert.crt file will be added to the Quay pod within at the path
/conf/stack/extra_certs/myExtraCert.crt

NOTE

The type property within files property overrides the value in the configFiles property.

5.6. SKIPPING AUTOMATED SETUP

The operator by default is configured to complete the automated setup process for Red Hat Quay. This
can be bypassed by setting the skipSetup field to true as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret
skipSetup: true

5.7. PROVIDING SSL CERTIFICATES

Red Hat Quay, as a secure registry, makes use of SSL certificates to secure communication between the
various components within the ecosystem. Transport to the Quay user interface and container registry

22

CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER

is secured via SSL certificates. These certificates are generated at startup with the OpenShift route
being configured with a TLS termination type of Passthrough.

5.7.1. User provided certificates

SSL certificates can be provided and used instead of having the operator generate certificates.
Certificates can be provided in a secret which is then referenced in the QuayEcosystem custom
resource.

The secret containing custom certificates must define the following keys:
e ssl.cert: All of the certificates (root, intermediate, certificate) concatinated into a single file
® ssl.key: Private key as for the SSL certificate

Create a secret containing the certificate and private key:

oc create secret generic custom-quay-ssl \
--from-file=ssl.key=<ssl|_private_key> \
--from-file=ssl.cert=<ssl_certificate>

The secret containing the certificates are referenced using the sslCertificatesSecretName property as
shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret
sslCertificatesSecretName: custom-quay-ssl

5.8. SPECIFYING THE RED HAT QUAY ROUTE

Red Hat Quay makes use of an OpenShift route to enable ingress. The hostname for this route is
automatically generated as per the configuration of the OpenShift cluster. Alternatively, the hostname
for this route can be explicitly specified using the hostname property under the quay field as shown
below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
hostname: example-quayecosystem-quay-quay-enterprise.apps.openshift.example.com
imagePullSecretName: redhat-pull-secret

5.9.SPECIFYING A RED HAT QUAY CONFIGURATION ROUTE

During the development process, you may want to test the provisioning and setup of Red Hat Quay. By
default, the Operator will use the internal service to communicate with the configuration pod. However,

23

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

when running external to the cluster, you will need to specify the ingress location for which the setup
process can use.

Specify the configHostname as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
configHostname: example-quayecosystem-quay-config-quay-
enterprise.apps.openshift.example.com
imagePullSecretName: redhat-pull-secret

24

CHAPTER 6. CONFIGURATION DEPLOYMENT AFTER INITIAL SETUP

CHAPTER 6. CONFIGURATION DEPLOYMENT AFTERINITIAL
SETUP

In order to conserve resources, the configuration deployment of Red Hat Quay is removed after the
initial setup. In certain cases, there may be a need to further configure the Red Hat Quay environment.
To specify that the configuration deployment should be retained, the keepConfigDeployment property
within the quay object can be set as true as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret
keepConfigDeployment: true

6.1. SETTING REDIS PASSWORD

By default, the operator managed Redis instance is deployed without a password. A password can be
specified by creating a secret containing the password in the key password. The following command
can be used to create the secret:

$ oc create secret generic <secret_name> \
--from-literal=password=<password>
The secret can then be specified within the redis section using the credentialsSecretName as shown
below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
redis:
credentialsSecretName: <secret_name>
imagePullSecretName: redhat-pull-secret

6.2. ENABLING CLAIR IMAGE SCANNING

Clair is a vulnerability assessment tool for application containers. Support is available to automatically
provision and configure both Clair and its integration with Red Hat Quay. A property called clair can be
specified in the QuayEcosystem object along with enabled: true within this field in order to deploy
Clair. An example is shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret

25

https://github.com/quay/clair

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

clair:
enabled: true
imagePullSecretName: redhat-pull-secret

6.2.1. Clair update interval

Clair routinely queries CVE databases in order to build its own internal database. By default, this value is
set at 500m. You can modify the time interval between checks by setting the updatelnterval property
as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret
clair:
enabled: true
imagePullSecretName: redhat-pull-secret
updatelnterval: "60m"

The above configuration would have Clair update every 60 minutes.

6.3. SETTING COMMON ATTRIBUTES

Each of the following components expose a set of similar properties that can be specified in order to
customize the runtime execution:

® Red Hat Quay

® Red Hat Quay Configuration
® Red Hat Quay PostgreSQL
® Redis

o Clair

Clair PostgreSQL

6.3.1. Image pull secret

As referenced in prior sections, an Image Pull Secret can specify the name of the secret containing
credentials to an image from a protected registry using the property imagePullSecret.

6.3.2. Image

There may be a desire to make use of an alternate image or source location for each of the components
in the Quay ecosystem. The most common use case is to make use of an image registry that contains all
of the needed images instead of being sourced from the public internet. Each component has a property
called image where the location of the related image can be referenced from.

The following is an example of how a customized image location can be specified:

26

CHAPTER 6. CONFIGURATION DEPLOYMENT AFTER INITIAL SETUP

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
image: myregistry.example.com/quay/quay:v3.1.0

6.3.3. Compute resources

Compute Resources such as memory and CPU can be specified in the same form as any other value in a
PodTemplate. CPU and Memory values for requests and limits can be specified under a property
called resources.

NOTE

In the case of the QuayConfiguration deployment, configResources is the property
which should be referenced underneath the quay property.

The following is an example of how compute resources can be specified:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret
resources:
requests:
memory: 512Mi

6.3.4. Probes

Readiness and Liveness Probes can be specified in the same form as any other valueina PodTemplate.

The following is how a readinessProbe and livenessProbe can be specified:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret
livenessProbe:
initialDelaySeconds: 120
httpGet:
path: /health/instance
port: 8443
scheme: HTTPS
readinessProbe:
initialDelaySeconds: 10

27

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#resource-requests-and-limits-of-pod-and-container
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

httpGet:
path: /health/instance
port: 8443
scheme: HTTPS

NOTE

If a value for either property is not specified, an opinionated default value is applied.

-

6.3.5. Node Selector

Components of the QuayEcosystem may need to be deployed to only a subset of available nodes in a
Kubernetes cluster. This functionality can be set on each of the resources using the nodeSelector
property as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret
nodeSelector:
node-role.kubernetes.io/infra: true

6.3.6. Deployment strategy

Each of the core components consist of Kubernetes Deployments. This resource supports the method
in which new versions are released. This operator supports making use of the RollingUpdate and
Recreate strategies. Either value can be defined by using the deploymentStrategy property on the
desired resource as shown below:

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret
deploymentStrategy: RollingUpdate

NOTE

The absence of a defined value will make use of the RollingUpdate strategy.

6.3.7. Environment Variables

In addition to environment variables that are automatically configured by the operator, users can define
their own set of environment variables in order to customize the managed resources. Each core
component includes a property called envVars where environment variables can be defined. An example
is shown below:

28

CHAPTER 6. CONFIGURATION DEPLOYMENT AFTER INITIAL SETUP

apiVersion: redhatcop.redhat.io/vialphat
kind: QuayEcosystem
metadata:
name: example-quayecosystem
spec:
quay:
imagePullSecretName: redhat-pull-secret
envVars:
- name: FOO
value: bar

NOTE

Environment variables for the Quay configuration pod can be managed by specifying the
configEnvVars property on the quay resource.

' WARNING
A User defined environment variables are given precedence over those managed by

the operator. Undesirable results may occur if conflicting keys are used.

29

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

CHAPTER 7. TROUBLESHOOTING

To resolve issues running, configuring and utilizing the operator, the following steps may be utilized:

7.1. ERRORS DURING INITIAL SETUP

The QuayEcosystem custom resource will attempt to provide the progress of the status of the
deployment and configuration of Red Hat Quay. Additional information related to any errors in the setup
process can be found by viewing the log messages of the config pod as shown below:

I $ oc logs $(oc get pods -I=quay-enterprise-component=config -o name)

From the OpenShift console, you can follow the Pods and Deployments that are created for your Red
Hat Quay cluster.

30

CHAPTER 8. LOCAL DEVELOPMENT

CHAPTER 8. LOCAL DEVELOPMENT

Execute the following steps to develop the functionality locally. It is recommended that development be
done using a cluster with cluster-admin permissions.

Clone the repository, then resolve all dependencies using go mod:

$ export GO111MODULE=0n
$ go mod vendor

Using the operator-sdk, run the operator locally:

I $ operator-sdk up local --namespace=quay-enterprise

31

https://github.com/operator-framework/operator-sdk

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift with Quay Setup Operator

CHAPTER 9. UPGRADING RED HAT QUAY AND CLAIR

Before upgrading to a new version of Red Hat Quay or Clair, refer to the Upgrade Red Hat Quay guide
for details. The instructions here tell you how to change the quay and clair-jwt containers, but do not
provide the full upgrade instructions.

At the point in the upgrade instructions where you are ready to identify the new quay and clair-jwt
containers, here is what you do:

I $ oc edit quayecosystem/quayecosystem
Find and update the following entries:

image: quay.io/redhat/clair-jwt:vX.X.X
image: quay.io/redhat/quay:vX.X.X

Once saved, the operator will automatically apply the upgrade.

NOTE

If you used a different name than QuayEcosystem for the custom resource to deploy
your Quay ecosystem, you will have to replace the name to fit the proper value.

32

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/upgrade_red_hat_quay/index

CHAPTER10. STARTING TO USE RED HAT QUAY

CHAPTER10. STARTING TO USE RED HAT QUAY

With Red Hat Quay now running, you can:
® Select Tutorial from the Quay home page to try the 15-minute tutorial. In the tutorial, you learn
to log into Quay, start a container, create images, push repositories, view repositories, and

change repository permissions with Quay.

e Refer to the Use Red Hat Quay for information on working with Red Hat Quay repositories.

ADDITIONAL RESOURCES

33

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/use_red_hat_quay/

	Table of Contents
	PREFACE
	CHAPTER 1. OVERVIEW
	CHAPTER 2. ARCHITECTURE
	CHAPTER 3. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT
	CHAPTER 4. DEPLOYING RED HAT QUAY
	4.1. INSTALL THE RED HAT QUAY SETUP OPERATOR
	4.2. DEPLOY A RED HAT QUAY ECOSYSTEM

	CHAPTER 5. CUSTOMIZING YOUR RED HAT QUAY CLUSTER
	5.1. CHANGING YOUR RED HAT QUAY CREDENTIALS
	5.1.1. Red Hat Quay superuser credentials
	5.1.2. Red Hat Quay configuration credentials

	5.2. PROVIDING PERSISTENT STORAGE USING POSTGRESQL DATABASE
	5.3. SPECIFYING DATABASE CREDENTIALS
	5.3.1. Using an existing PostgreSQL database instance

	5.4. CHOOSING A REGISTRY STORAGE BACKEND
	5.4.1. Overview of storage backends
	5.4.2. Sensitive storage values
	5.4.3. Storage replication
	5.4.4. Registry storage backend types
	5.4.4.1. Local Storage
	5.4.4.2. Configuring persistent local storage
	5.4.4.3. Amazon Web Services (S3)
	5.4.4.4. Microsoft Azure storage
	5.4.4.5. Google Cloud storage
	5.4.4.6. NooBaa (RHOCS) storage
	5.4.4.7. RADOS storage
	5.4.4.8. Swift (OpenStack) storage
	5.4.4.9. CloudFront (S3) storage

	5.5. INJECTING CONFIGURATION FILES
	5.6. SKIPPING AUTOMATED SETUP
	5.7. PROVIDING SSL CERTIFICATES
	5.7.1. User provided certificates

	5.8. SPECIFYING THE RED HAT QUAY ROUTE
	5.9. SPECIFYING A RED HAT QUAY CONFIGURATION ROUTE

	CHAPTER 6. CONFIGURATION DEPLOYMENT AFTER INITIAL SETUP
	6.1. SETTING REDIS PASSWORD
	6.2. ENABLING CLAIR IMAGE SCANNING
	6.2.1. Clair update interval

	6.3. SETTING COMMON ATTRIBUTES
	6.3.1. Image pull secret
	6.3.2. Image
	6.3.3. Compute resources
	6.3.4. Probes
	6.3.5. Node Selector
	6.3.6. Deployment strategy
	6.3.7. Environment Variables

	CHAPTER 7. TROUBLESHOOTING
	7.1. ERRORS DURING INITIAL SETUP

	CHAPTER 8. LOCAL DEVELOPMENT
	CHAPTER 9. UPGRADING RED HAT QUAY AND CLAIR
	CHAPTER 10. STARTING TO USE RED HAT QUAY
	ADDITIONAL RESOURCES

