Installing and configuring Red Hat Process Automation Manager in a Red Hat JBoss EAP clustered environment
Red Hat Process Automation Manager 7.6 Installing and configuring Red Hat Process Automation Manager in a Red Hat JBoss EAP clustered environment

Red Hat Customer Content Services
brms-docs@redhat.com
Abstract

This document describes how to create a Red Hat Process Automation Manager 7.6 clustered environment on Red Hat JBoss Enterprise Application Platform 7.2.
Table of Contents

PREFACE ... 3

CHAPTER 1. RED HAT PROCESS AUTOMATION MANAGER CLUSTERS ... 4

CHAPTER 2. RED HAT PROCESS AUTOMATION MANAGER CLUSTERS IN A DEVELOPMENT (AUTHORING) ENVIRONMENT ... 5
 2.1. INSTALLING AND CONFIGURING RED HAT DATA GRID .. 5
 2.2. DOWNLOADING AND CONFIGURING AMQ BROKER .. 6
 2.3. CONFIGURING AN NFS SERVER .. 7
 2.4. DOWNLOADING AND EXTRACTING RED HAT JBOSS EAP 7.2 AND RED HAT PROCESS AUTOMATION MANAGER .. 8
 2.5. CONFIGURING AND RUNNING BUSINESS CENTRAL IN A CLUSTER ... 9
 2.6. VERIFYING THE RED HAT PROCESS AUTOMATION MANAGER CLUSTER 11

CHAPTER 3. PROCESS SERVER CLUSTERS IN A RUNTIME ENVIRONMENT 13
 3.1. DOWNLOADING AND EXTRACTING RED HAT JBOSS EAP 7.2 AND PROCESS SERVER 13
 3.2. CONFIGURING AND RUNNING A RED HAT JBOSS EAP 7.2 CLUSTER FOR PROCESS SERVER .. 14
 3.3. CLUSTERING PROCESS SERVERS WITH THE HEADLESS PROCESS AUTOMATION MANAGER CONTROLLER .. 17
 3.4. CLUSTERING PROCESS SERVERS WITH SMART ROUTER ... 18

CHAPTER 4. CONFIGURING QUARTZ TIMER SERVICE ... 22

CHAPTER 5. ADDITIONAL RESOURCES ... 24

APPENDIX A. VERSIONING INFORMATION ... 25
PREFACE

As a system engineer, you can create a Red Hat Process Automation Manager clustered environment to provide high availability and load balancing for your development and runtime environments.

Prerequisites

- You have reviewed the information in *Planning a Red Hat Process Automation Manager installation*.

CHAPTER 1. RED HAT PROCESS AUTOMATION MANAGER CLUSTERS

By clustering two or more computers, you have the benefits of high availability, enhanced collaboration, and load balancing. High availability decreases the chance of a loss of data when a single computer fails. When a computer fails, another computer fills the gap by providing a copy of the data that was on the failed computer. When the failed computer comes online again, it resumes its place in the cluster. Load balancing shares the computing load across the nodes of the cluster. Doing this improves the overall performance.

There are several ways that you can cluster Red Hat Process Automation Manager components. This document describes how to cluster the following scenarios:

- Chapter 2, *Red Hat Process Automation Manager clusters in a development (authoring) environment*
- Chapter 3, *Process Server clusters in a runtime environment*
CHAPTER 2. RED HAT PROCESS AUTOMATION MANAGER CLUSTERS IN A DEVELOPMENT (AUTHORING) ENVIRONMENT

NOTE

Configuration of Business Central for high availability is currently technology preview.

Developers can use Red Hat Process Automation Manager to author rules and processes that assist users with decision making.

You can configure Red Hat Process Automation Manager as a clustered development environment to benefit from high availability. With a clustered environment, if a developer is working on $node1 and that node fails, that developer’s work is preserved and visible on any other node of the cluster.

Most development environments consist of Business Central for creating rules and processes and at least one Process Server to test those rules and processes.

To create a Red Hat Process Automation Manager clustered development environment, you must perform the following tasks:

- Configure Red Hat JBoss EAP 7.2 with Red Hat Data Grid 7.3.1 on a machine.
- Configure AMQ Broker, a Java messaging server (JMS) broker, on a machine.
- Configure an NFS file server on a machine.
- Download Red Hat JBoss EAP 7.2 and Red Hat Process Automation Manager 7.6, then install them on each machine that is to become a cluster node.
- Configure and start Business Central on each cluster node to start the operation of the cluster.

Red Hat Data Grid is built from the Infinispan open-source software project. It is a distributed in-memory key/value data store that has indexing capabilities that enable you to store, search, and analyze high volumes of data quickly and in near-real time. In a Red Hat Process Automation Manager clustered environment, it enables you to perform complex and efficient searches across cluster nodes.

A JMS broker is a software component that receives messages, stores them locally, and forwards the messages to a recipient. AMQ Broker enables your applications to communicate with any messaging provider. It specifies how components such as message-driven beans, Enterprise JavaBeans, and servlets can send or receive messages.

2.1. INSTALLING AND CONFIGURING RED HAT DATA GRID

Install and configure Red Hat Data Grid for the Red Hat Process Automation Manager clustered environment for more efficient searching across cluster nodes.

Use the following instructions to configure a simplified, non-high availability environment on a separate machine.

For information about advanced installation and configuration options, and Red Hat Data Grid modules for Red Hat JBoss EAP, see the Red Hat Data Grid User Guide.
NOTE
Do not install Red Hat Data Grid on the same node as Business Central.

Prerequisites

- A Java Virtual Machine (JVM) environment compatible with Java 8.0 or later is installed.
- A backed-up Red Hat JBoss EAP installation version 7.2 or higher is available. The base directory of the Red Hat JBoss EAP installation is referred to as \textit{EAP_HOME}.
- Red Hat Process Automation Manager is installed and configured.
- Sufficient user permissions to complete the installation are granted.

Procedure

1. Navigate to the \textit{Software Downloads} page in the Red Hat Customer Portal (login required), and select the product and version from the drop-down options:
 - \textbf{Product}: Data Grid
 - \textbf{Version}: 7.3

2. Download and unzip the Red Hat JBoss Data Grid 7.3.0 Server (jboss-datagrid-7.3.0-1-server.zip) installation file to the preferred location on your system. The unzipped directory is referred to as \textit{JDG_HOME}.

3. To run Red Hat Data Grid, navigate to \textit{JDG_HOME/bin} and enter one of the following commands:
 - On Linux or UNIX-based systems:
 \[
 \texttt{$./standalone.sh -c clustered.xml}
 \]
 - On Windows:
 \[
 \texttt{standalone.bat -c clustered.xml}
 \]

2.2. DOWNLOADING AND CONFIGURING AMQ BROKER

AMQ Broker enables your applications to communicate with any messaging provider. It specifies how components such as message-driven beans, Enterprise JavaBeans, and servlets can send or receive messages.

To configure AMQ Broker for a high availability Red Hat Process Automation Manager clustered environment, see \textit{Using AMQ Broker}.

You can use the following procedure to configure a simplified, non-high availability environment.

Procedure

1. Navigate to the \textit{Software Downloads} page in the Red Hat Customer Portal (login required), and select the product and version from the drop-down options:
2. RED HAT PROCESS AUTOMATION MANAGER CLUSTERS IN A DEVELOPMENT (AUTHORING) ENVIRONMENT

- Product: AMQ Broker
- Version: 7.2.0

2. Click Download next to Red Hat AMQ Broker 7.2.0(amq-broker-7.2.0-bin.zip).

3. Extract the amq-broker-7.2.0-bin.zip file.

4. Change directory to amq-broker-7.2.0-bin/amq-broker-7.2.0/bin.

5. Enter the following command and replace the following placeholders to create the broker and broker user:

 - `<HOST>` is the IP address or host name of the server where you installed AMQ Broker.
 - `<AMQ_USER>` and `<AMQ_PASSWORD>` is a user name and password combination of your choice.
 - `<BROKER_NAME>` is a name for the broker that you are creating.

     ```sh
     /artemis create --host <HOST> --user <AMQ_USER> --password <AMQ_PASSWORD> --require-login <BROKER_NAME>
     ```

6. To run AMQ Broker, enter the following command in the amq-broker-7.2.0-bin/amq-broker-7.2.0/bin directory:

   ```sh
   amq-broker-7.2.0/bin/<BROKER_NAME>/bin/artemis run
   ```

2.3. CONFIGURING AN NFS SERVER

A shared file system is required for a Business Central clustered environment and each client node must have access to the shared file system.

You must deploy and configure an NFS version 4 server.

Procedure

1. Configure a server to export NFS version 4 shares. For instructions about exporting NFS shares on Red Hat Enterprise Linux, see Exporting NFS shares in Managing file systems. For more information about creating the NFS server, see How to configure NFS in RHEL 7.

2. On the server, create an `/opt/kie/data` share with the `rw,sync,no_root_squash` options by adding the following line to the `/etc/exports` file:

   ```text
   /opt/kie/data *(rw,sync,no_root_squash)
   ```

 In this example, `/opt/kie/data` is the shared folder, `*` are the IP addresses allowed to connect to the NFS server, and `(rw,sync,no_root_squash)` are the minimum options required for NFS. For example:

   ```text
   /opt/kie/data 192.268.1.0/24(rw,sync,no_root_squash)
   ```
NOTE
You can use another share name instead of '/opt/kie/data'. In this case, you must use this name when configuring all nodes that run Business Central.

3. On each client node, mount the shared folder in an existing directory:

```
# mount <SERVER_IP>:/opt/data /opt/data/niogit
```

4. Add the following properties to the `standalone-full-ha.xml` file to bind the `.niogit` and `maven-repository` directories as nfs shared folders:

```
<property name="org.uberfire.nio.git.dir" value="/opt/kie/data/niogit"/>
<property name="org.guvnor.m2repo.dir" value="/opt/kie/data/maven-repository"/>
```

2.4. Downloading and Extracting Red Hat JBoss EAP 7.2 and Red Hat Process Automation Manager

Download and install Red Hat JBoss EAP 7.2 and Red Hat Process Automation Manager 7.6 on each node of the cluster.

Procedure

1. Download Red Hat JBoss EAP 7.2 on each node of the cluster:

 a. Navigate to the [Software Downloads](#) page in the Red Hat Customer Portal (login required), and select the product and version from the drop-down options:

 - **Product:** Enterprise Application Platform
 - **Version:** 7.2

 b. Click Download next to Red Hat JBoss Enterprise Application Platform 7.2.0 (JBEAP-7.2.0/jboss-eap-7.2.0.zip).

2. Extract the `jboss-eap-7.2.0.zip` file. In the following steps, **EAP_HOME** is the `jboss-eap-7.2/jboss-eap-7.2` directory.

3. Download and apply the latest Red Hat JBoss EAP patch, if available.

4. Download Red Hat Process Automation Manager on each node of the cluster:

 a. Navigate to the [Software Downloads](#) page in the Red Hat Customer Portal, and select the product and version from the drop-down options:

 - **Product:** Process Automation Manager
 - **Version:** 7.6

5. Extract the `rhpam-7.6.0-business-central-eap7-deployable.zip` file to a temporary directory. In the following commands this directory is called **TEMP_DIR**.

7. Download and apply the latest Red Hat Process Automation Manager patch, if available.

8. Navigate to the `EAP_HOME/bin` directory.

9. Create a user with the `admin` role that you will use to log in to Business Central. In the following command, replace `<username>` and `<password>` with the user name and password of your choice.

   ```
   $ ./add-user.sh -a --user <USERNAME> --password <PASSWORD> --role admin,rest-all
   ```

 NOTE

 Make sure that the specified user name is not the same as an existing user, role, or group. For example, do not create a user with the user name `admin`.

 The password must have at least eight characters and must contain at least one number and one non-alphanumeric character, but not `&` (ampersand).

 You must use LDAP or RH-SSO for high availability environments. For more information, see the *Red Hat Single Sign-On Server Administration Guide*.

10. Create a user with the `kie-server` role that you will use to log in to Process Server.

    ```
    $ ./add-user.sh -a --user <USERNAME> --password <PASSWORD> --role kie-server
    ```

11. Make a note of your user names and passwords.

2.5. CONFIGURING AND RUNNING BUSINESS CENTRAL IN A CLUSTER

After you install Red Hat JBoss EAP and Business Central you can use Red Hat Data Grid and the AMQ Broker to configure the cluster. Complete these steps on each node of the cluster.

NOTE

These steps describe a basic cluster configuration. For more complex configurations, see the *Red Hat JBoss EAP 7.2 Configuration Guide*.

Prerequisites

- Red Hat Data Grid 7.3.1 is installed as described in Section 2.1, "Installing and configuring Red Hat Data Grid".
- AMQ Broker is installed and configured, as described in Section 2.2, "Downloading and configuring AMQ Broker".
- Red Hat JBoss EAP and Red Hat Process Automation Manager are installed on each node of the cluster as described in Section 2.4, "Downloading and extracting Red Hat JBoss EAP 7.2 and Red Hat Process Automation Manager".
- An NFS server with a mounted partition is available as described in Section 2.3, "Configuring an NFS server".
Procedure

1. Mount the directory shared over NFS as /data. Enter the following commands as the root user:

```
mkdir /data
mount <NFS_SERVER_IP>:<DATA_SHARE> /data
```

Replace `<NFS_SERVER_IP>` with the IP address or hostname of the NFS server machine. Replace `<DATA_SHARE>` with the share name that you configured (for example, `/opt/kie/data`).

2. Open the `EAP_HOME/standalone/configuration/standalone-full.xml` file in a text editor.

3. Edit or add the properties under the `<system-properties>` element and replace the following placeholders:

- `<AMQ_USER>` and `<AMQ_PASSWORD>` are the credentials that you defined when creating the AMQ Broker.
- `<AMQ_BROKER_IP_ADDRESS>` is the IP address of the AMQ Broker.
- `<INFINISPAN_NODE_IP>` is the IP address where Red Hat Data Grid is installed.

```
<system-properties>
    <property name="appformer-jms-connection-mode" value="REMOTE"/>
    <property name="appformer-jms-username" value="<AMQ_USER>"/>
    <property name="appformer-jms-password" value="<AMQ_USER_PASSWORD>"/>
    <property name="appformer-jms-url" value="tcp://<AMQ_BROKER_IP_ADDRESS>:61616?ha=true&retryInterval=1000&retryIntervalMultiplier=1.0&reconnectAttempts=-1"/>
    <property name="org.appformer.ext.metadata.infinispan.port" value="11222"/>
    <property name="org.appformer.ext.metadata.infinispan.host" value="<INFINISPAN_NODE_IP>"/>
    <property name="org.appformer.ext.metadata.infinispan.realm" value="ApplicationRealm"/>
    <property name="org.appformer.ext.metadata.infinispan.cluster" value="kie-cluster"/>
    <property name="org.appformer.ext.metadata.index" value="infinispan"/>
    <property name="org.uberfire.nio.git.dir" value="/data"/>
    <property name="es.set.netty.runtime.available.processors" value="false"/>
</system-properties>
```

4. Optional: If the Red Hat Data Grid deployment requires authentication, edit or add the properties under the `<system-properties>` element and replace the following placeholders:

- `<SERVER_NAME>` is the server name specified in your Red Hat Data Grid server configuration.
- `<SASL_QOP>` is the combination of auth, auth-int and auth-conf values for your Red Hat Data Grid server configuration.

```
<property name="org.appformer.ext.metadata.infinispan.server.name" value="..."/>
```
5. Save the `standalone-full.xml` file.

6. To start the cluster, navigate to `EAP_HOME/bin` and enter one of the following commands:
 - On Linux or UNIX-based systems:
     ```bash
     $ ./standalone.sh -c standalone-full.xml
     ```
 - On Windows:
     ```bash
     standalone.bat -c standalone-full.xml
     ```

2.6. VERIFYING THE RED HAT PROCESS AUTOMATION MANAGER CLUSTER

After configuring the cluster for Red Hat Process Automation Manager, create an asset to verify that the installation is working.

Procedure

1. In a web browser, enter `<node-IP-address>:8080/business-central`. Replace `<node-IP-address>` with the IP address of a particular node.

2. Enter the `admin` user credentials that you created during installation. The Business Central home page appears.

3. Select **Menu → Design → Projects**.

4. Open the **MySpace** space.

5. Click **Try Samples → Mortgages → OK**. The **Assets** window appears.

6. Click **Add Asset → Data Object**.

7. Enter **MyDataObject** in the **Data Object** field and click **OK**.

8. Click **Spaces → MySpace → Mortgages** and confirm that **MyDataObject** is in the list of assets.

9. Enter the following URL in a web browser, where `<node_IP_address>` is the address of a different node of the cluster:
   ```
   http://<node_IP_address>:8080/business-central
   ```

10. Enter the same credentials that you used to log in to Business Central on the first node, where you created the **MyDataObject** asset.

11. Select **Menu→ Design → Projects**.
12. Open the MySpace space.

13. Select the Mortgages project.

14. Verify that MyDataObject is in the asset list.

15. Delete the Mortgages project.
CHAPTER 3. PROCESS SERVER CLUSTERS IN A RUNTIME ENVIRONMENT

In a runtime environment, Process Server runs services that contain rules and processes that support business decisions. The primary benefit of clustering a Process Server runtime environment is load balancing. If activity on one node of the cluster increases, that activity can be shared among the other nodes of the cluster to improve performance.

To create a Process Server clustered runtime environment, you download and extract Red Hat JBoss EAP 7.2 and Process Server. Then, you configure Red Hat JBoss EAP 7.2 for a cluster, start the cluster, and install Process Server on each cluster node.

Optionally, you can then cluster the headless Process Automation Manager controller and Smart Router.

3.1. DOWNLOADING AND EXTRACTING RED HAT JBOSS EAP 7.2 AND PROCESS SERVER

Complete the steps in this section to download and install Red Hat JBoss EAP 7.2 and Process Server for installation in a clustered environment.

Procedure

1. Download Red Hat JBoss EAP 7.2 on each node of the cluster:
 a. Navigate to the Software Downloads page in the Red Hat Customer Portal (login required) and select the product and version from the drop-down options:
 - Product: Red Hat JBoss EAP
 - Version: 7.2
 b. Click Download next to Red Hat JBoss Enterprise Application Platform 7.2.0 (jboss-eap-7.2.0.zip).

2. Extract the jboss-eap-7.2.0.zip file. The jboss-eap-7.2/jboss-eap-7.2 directory is referred to as EAP_HOME.

3. Download and apply the latest Red Hat JBoss EAP patch, if available.

4. Download Process Server:
 a. Navigate to the Software Downloads page in the Red Hat Customer Portal and select the product and version from the drop-down options:
 - Product: Process Automation Manager
 - Version: 7.6

5. Extract the rhpam-7.6.0-kie-server-ee8.zip archive to a temporary directory. In the following examples this directory is called TEMP_DIR.

7. Copy the contents of the `TEMP_DIR/rhpam-7.6.0-kie-server-ee8/rhpam-7.6.0-kie-server-ee8/SecurityPolicy/` to `EAP_HOME/bin`. When asked to overwrite files, click Replace.

8. In the `EAP_HOME/standalone/deployments/` directory, create an empty file named `kie-server.war.dodeploy`. This file ensures that Process Server is automatically deployed when the server starts.

9. Download and apply the latest Red Hat Process Automation Manager patch, if available.

10. Navigate to the `EAP_HOME/bin` directory.

11. Create a user with the `kie-server` role that you will use to log in to Process Server.

   ```bash
   $ ./add-user.sh -a --user <USERNAME> --password <PASSWORD> --role kie-server
   ```

12. Make a note of your user names and passwords.

3.2. Configuring and Running a Red Hat JBoss EAP 7.2 Cluster for Process Server

Configure the Red Hat JBoss EAP cluster for Process Server, and then start the cluster.

Procedure

1. Install the JDBC driver on all Red Hat JBoss EAP instances that are part of this cluster. For more information, see the "JDBC Drivers" section of the Red Hat JBoss EAP 7.2 Configuration Guide.

2. Open the `EAP_HOME/standalone/configuration/standalone-full.xml` file in a text editor.

3. Edit the `data-stores` property and the `timer-service thread-pool-name` above it:

 - The `datasource-jndi-name` is the JNDI name of the database specified at the beginning of this procedure.

 - You can enter any name for the value of the `partition` property. However, a node will only see timers from other nodes that have the same partition name. Grouping nodes into partitions by assigning partition names enables you to break a large cluster up into several smaller clusters. Doing this improves performance. For example, instead of having a cluster of 100 nodes, where all 100 nodes are trying to execute and refresh the same timers, you can create 20 clusters of 5 nodes by giving every group of 5 a different partition name.

 - Replace the `default-data-store` attribute value with `ejb_timer_ds`.
Set the value of refresh-interval in milliseconds to specify how often the EJB timer connects to the database to synchronize and load tasks to be processed.

```xml
<timer-service thread-pool-name="default" default-data-store="ejb_timer_ds">
  <data-stores>
    <database-data-store name="ejb_timer_ds" datasource-jndi-name="java:jboss/datasources/ejb_timer" database="postgresql" partition="ejb_timer_part" refresh-interval="30000"/>
  </data-stores>
</timer-service>
```

The following table lists the supported databases and the corresponding database attribute value:

<table>
<thead>
<tr>
<th>Database</th>
<th>Attribute value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyper SQL (for demonstration purposes only, not supported)</td>
<td>hsql</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>postgresql</td>
</tr>
<tr>
<td>Oracle</td>
<td>oracle</td>
</tr>
<tr>
<td>IBM DB2</td>
<td>db2</td>
</tr>
<tr>
<td>Microsoft SQL Server</td>
<td>mssql</td>
</tr>
<tr>
<td>MySQL and MariaDB</td>
<td>mysql</td>
</tr>
</tbody>
</table>

4. Add the Process Server and EJB timer data sources to the standalone-full.xml file. In these examples, `<DATABASE>` is the name of the database, `<SERVER_NAME>` is the host name of the JNDI database, and `<USER_NAME>` and `<USER_PWD>` are the credentials for that database.

- Add the data source to allow Process Server to connect to the database, for example:

```xml
<xa-datasource jndi-name="java:/jboss.datasources/rhpam" pool-name="rhpam-RHPAM" use-java-context="true" enabled="true">
  <xa-datasource-property name="DatabaseName"><DATABASE></xa-datasource-property>
  <xa-datasource-property name="PortNumber">5432</xa-datasource-property>
  <xa-datasource-property name="ServerName"><SERVER_NAME></xa-datasource-property>
  <driver>postgresql</driver>
  <security>
    <user-name><USER_NAME></user-name>
    <password><USER_PWD></password>
  </security>
</xa-datasource>
```

- Add the data source to enable the EJB timer, for example:
You must use two different databases for Process Server runtime data and EJB timer data.

5. Add the following properties to the `<system-properties>` element and replace the following placeholders:

- `<JNDI_NAME>` is the JNDI name of your data source. For Red Hat Process Automation Manager, this is `java:jboss/datasources/rhpam`.

- `<DIALECT>` is the hibernate dialect for your database. The following dialects are supported:
 - DB2: `org.hibernate.dialect.DB2Dialect`
 - MSSQL: `org.hibernate.dialect.SQLServer2012Dialect`
 - MySQL: `org.hibernate.dialect.MySQL5InnoDBDialect`
 - MariaDB: `org.hibernate.dialect.MySQL5InnoDBDialect`
 - Oracle: `org.hibernate.dialect.Oracle10gDialect`
 - PostgreSQL: `org.hibernate.dialect.PostgreSQL82Dialect`
 - PostgreSQL plus: `org.hibernate.dialect.PostgresPlusDialect`

7. To start the cluster, navigate to \textit{EAP_HOME/bin} and enter one of the following commands:
 - On Linux or UNIX-based systems:
 \[
 \texttt{./standalone.sh -c standalone-full.xml}
 \]
 - On Windows:
 \[
 \texttt{standalone.bat -c standalone-full.xml}
 \]

\textbf{3.3. CLUSTERING PROCESS SERVERS WITH THE HEADLESS PROCESS AUTOMATION MANAGER CONTROLLER}

The Process Automation Manager controller is integrated with Business Central. However, if you do not install Business Central, you can install the headless Process Automation Manager controller and use the REST API or the Process Server Java Client API to interact with it.

\textbf{Prerequisites}

- A backed-up Red Hat JBoss EAP installation version 7.2 or later is available. The base directory of the Red Hat JBoss EAP installation is referred to as \textit{EAP_HOME}.
- Sufficient user permissions to complete the installation are granted.
- An NFS server with a mounted partition is available as described in \textit{Section 2.3, “Configuring an NFS server”}.

\textbf{Procedure}

1. Navigate to the \textit{Software Downloads} page in the Red Hat Customer Portal (login required), and select the product and version from the drop-down options:
 - \textbf{Product:} Process Automation Manager
 - \textbf{Version:} 7.6

4. Extract the \textit{rhpam-7.6.0-controller-ee7} archive to a temporary directory. In the following examples this directory is called \textit{TEMP_DIR}.

5. Copy the \textit{TEMP_DIR/rhpam-7.6.0-controller-ee7/controller.war} directory to \textit{EAP_HOME/standalone/deployments/}.
6. Copy the contents of the `TEMP_DIR/rhpam-7.6.0-controller-ee7/SecurityPolicy` directory to `EAP_HOME/bin`. When asked to overwrite files, select Yes.

7. In the `EAP_HOME/standalone/deployments` directory, create an empty file named `controller.war.dodeploy`. This file ensures that the headless Process Automation Manager controller is automatically deployed when the server starts.

8. Open the `EAP_HOME/standalone/configuration/standalone.xml` file in a text editor.

9. Add the following properties to the `<system-properties>` element and replace `<NFS_STORAGE>` with the absolute path to the NFS storage where the template configuration is stored:

```
<system-properties>
  <property name="org.kie.server.controller.templatefile.watcher.enabled" value="true"/>
  <property name="org.kie.server.controller.templatefile" value="<NFS_STORAGE>"/>
</system-properties>
```

Template files contain default configurations for specific deployment scenarios.

If the value of the `org.kie.server.controller.templatefile.watcher.enabled` property is set to true, a separate thread is started to watch for modifications of the template file. The default interval for these checks is 30000 milliseconds and can be further controlled by the `org.kie.server.controller.templatefile.watcher.interval` system property. If the value of this property is set to false, changes to the template file are detected only when the server restarts.

10. To start the headless Process Automation Manager controller, navigate to `EAP_HOME/bin` and enter the following command:

 - On Linux or UNIX-based systems:
      ```bash
      $ ./standalone.sh
      ```
 - On Windows:
      ```cmd
      standalone.bat
      ```

3.4. CLUSTERING PROCESS SERVERS WITH SMART ROUTER

You can use Smart Router to aggregate multiple independent Process Server instances as though they are a single server. It performs the role of an intelligent load balancer because it can route requests to individual Process Servers and aggregate data from different Process Servers. Smart Router uses aliases to perform as a proxy. Smart Router performs the following tasks:
• Collects information from various server instances in a single client request
• Finds the correct server for a specific request
• Aggregates responses from different servers
• Provides efficient load balancing
• Manages changing environments, for example adding and removing server instances
• Manages registration with the Process Automation Manager controller

This section describes how to install Smart Router and configure it for a Red Hat Process Automation Manager runtime environment.

NOTE
Load balancing requests for Smart router cluster must be managed externally, using standard load balancing tools.

Prerequisites
• Process Server is installed on each node of a Red Hat JBoss EAP 7.2 cluster.

Procedure
1. Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and select the product and version from the drop-down options:
 • Product: Process Automation Manager
 • Version: 7.6

2. Download Red Hat Process Automation Manager 7.6.0 Add-Ons

3. Extract the downloaded rhpam-7.6.0-add-ons.zip file to a temporary directory. The rhpam-7.6-smart-router.jar file is in the extracted rhpam-7.6.0-add-ons directory.

4. Copy the rhpam-7.6-smart-router.jar file to the location where you will run the file.

5. From the temporary directory, enter the following command to start Smart Router:

   ```java
   -Dorg.kie.server.router.host=<ROUTER_HOST>
   -Dorg.kie.server.router.port=<ROUTER_PORT>
   -Dorg.kie.server.controller=<CONTROLLER_URL>
   -Dorg.kie.server.controller.user=<CONTROLLER_USER>
   -Dorg.kie.server.controller.pwd=<CONTROLLER_PWD>
   -Dorg.kie.server.router.config.watcher.enabled=true
   -Dorg.kie.server.router.repo=<NFS_STORAGE>
   -jar rhpam-7.6-smart-router.jar
   ```

 The properties in the preceding command have the following default values:

   ```
   org.kie.server.router.host=localhost
   org.kie.server.router.port=9000
   ```
NOTE

The router is capable of providing an aggregate sort, however the data returned when used through the management console is in raw format. Therefore, sorting is in whatever way individual servers return.

Paging is supported in its standard format.

6. Optional: To start Smart Router from the client side, use the Smart Router URL instead of the Process Server URL, for example:

```java
KieServicesConfiguration config =
   KieServicesFactory.newRestConfiguration("http://smartrouter.example.com:9000",
   "USERNAME", "PASSWORD");
```

In this example, `smartrouter.example.com` is the Smart Router URL, and `USERNAME` and `PASSWORD` are the login credentials for the Smart Router configuration.

`org.kie.server.controller` is the URL of the server controller, for example:

`org.kie.server.controller=http://<HOST>:<PORT>/controller/rest/controller`

`org.kie.server.router.config.watcher.enabled` is an optional setting to enable the watcher service system property.

7. Optional: To start Smart Router with HTTPS enabled, use the TLS keystore properties, for example:

```java
org.kie.server.router.tls.keystore = <KEYSTORE_PATH>
org.kie.server.router.tls.keystore.password = <KEYSTORE_PWD>
org.kie.server.router.tls.keystore.keyalias = <KEYSTORE_ALIAS>
org.kie.server.router.tls.port = <HTTPS_PORT>
-jar kie-server-router-proxy-7.10.0-SNAPSHOT.jar
```

`org.kie.server.router.tls.port` is a property used to configure the HTTPS port. The default HTTPS port value is `9443`.

NOTE

You must create the container directly against the `kie-server`. For example:

```
$ curl -v -X POST -H 'Content-type: application/xml' -H 'X-KIE-Content-Type: xstream'
   -d @create-container.xml -u ${KIE_CRED} http://${KIE-SERVER-HOST}:${KIE-SERVER-PORT}/kie-server/services/rest/server/config/
```

```
$ cat create-container.xml
<script>
```
A message about the deployed container is displayed in the smart-router console. For example:

```
INFO: Added http://localhost:8180/kie-server/services/rest/server as server location for container example:timer-test:1.1
```

To display a list of containers, enter the following command:

```
$ curl http://localhost:9000/mgmt/list
```

The list of containers is displayed:

```
{
  "containerInfo": [
    {
      "alias": "timer-test",
      "containerId": "example:timer-test:1.1",
      "releaseId": "example:timer-test:1.1"
    }
  ],
  "containers": [
    {"example:timer-test:1.1": ["http://localhost:8180/kie-server/services/rest/server"]},
    {"timer-test": ["http://localhost:8180/kie-server/services/rest/server"]}
  ],
  "servers": [
    {"kieserver2": []},
    {"kieserver1": ["http://localhost:8180/kie-server/services/rest/server"]}
  ]
}
```

To initiate a process using the Smart Router URL, enter the following command:

```
$ curl -s -X POST -H 'Content-type: application/json' -H 'X-KIE-Content-Type: json' -d '{"timerDuration": "9s"}' -u kieserver:kieserver1!
```
CHAPTER 4. CONFIGURING QUARTZ TIMER SERVICE

When you run Process Server in a cluster you can configure the Quartz timer service.

Before you configure a database on your application server, you must prepare the database for Quartz to create Quartz tables, which will hold the timer data, and the Quartz definition file.

Prerequisites

- A supported non-JTA data source is connected to your application server, for example a PostgreSQL data source.

Procedure

1. Create Quartz tables in your database to enable timer events to synchronize using the DDL script for your database.
 The DDL script is available in the extracted supplementary ZIP archive in \QUARTZ_HOME\docs\dbTables.

2. Create the Quartz configuration file \quartz-definition.properties\ in the \JBoss_HOME/MODE/configuration/ directory and add the following example content:

```properties
#=========================================================================  
# Configure Main Scheduler Properties                                 
#=========================================================================  

org.quartz.scheduler.instanceName = jBPMClusteredScheduler
org.quartz.scheduler.instanceId = AUTO
#=========================================================================  

# Configure ThreadPool                                                  
#=========================================================================  

org.quartz.threadPool.class = org.quartz.simpl.SimpleThreadPool
org.quartz.threadPool.threadCount = 5
org.quartz.threadPool.threadPriority = 5
#=========================================================================  

# Configure JobStore                                                    
#=========================================================================  

org.quartz.jobStore.misfireThreshold = 60000
org.quartz.jobStore.class = org.quartz.impl.jdbcjobstore.JobStoreCMT
org.quartz.jobStore.driverDelegateClass = org.quartz.impl.jdbcjobstore.PostgreSQLDelegate
org.quartz.jobStore.useProperties = false
org.quartz.jobStore.dataSource = managedDS
org.quartz.jobStore.nonManagedTXDataSource = notManagedDS
org.quartz.jobStore.tablePrefix = QRTZ_
org.quartz.jobStore.isClustered = true
org.quartz.jobStore.clusterCheckinInterval = 20000
#=========================================================================  

# Configure Datasources                                                 
#=========================================================================  
```
 IMPORTANT

The recommended interval for cluster discovery is 20 seconds and is set in the org.quartz.jobStore.clusterCheckinInterval attribute of the quartz-definition.properties file. Consider the performance impact on your system and modify the settings as necessary.

3. Provide the absolute path to your quartz-definition.properties file in the org.quartz.properties property.

4. Optional: To configure the number of retries and delay for the Quartz trigger, update the following system properties:

 - org.jbpm.timer.quartz.retries (default value is 5)
 - org.jbpm.timer.quartz.delay in milliseconds (default value is 1000)

 NOTE

By default, Quartz requires two data sources:

- Managed data source to participate in the transaction of the process engine.
- Unmanaged data source to look up timers to trigger without any transaction handling

Red Hat Process Automation Manager business applications assume that the Quartz database (schema) will be co-located with Red Hat Process Automation Manager tables and therefore produce data sources used for transactional operations for Quartz.

The other (non transactional) data source must be configured but it should point to the same database as the main data source.
CHAPTER 5. ADDITIONAL RESOURCES

- Installing and configuring Red Hat Process Automation Manager on Red Hat JBoss EAP 7.2
- Planning a Red Hat Process Automation Manager installation
- Deploying a Red Hat Process Automation Manager immutable server environment on Red Hat OpenShift Container Platform
- Deploying a Red Hat Process Automation Manager authoring environment on Red Hat OpenShift Container Platform
- Deploying a Red Hat Process Automation Manager freeform managed server environment on Red Hat OpenShift Container Platform
- Deploying a Red Hat Process Automation Manager environment on Red Hat OpenShift Container Platform using Operators
APPENDIX A. VERSIONING INFORMATION

Documentation last updated on Friday, May 22, 2020.