Deploying a Red Hat Process Automation Manager environment on Red Hat OpenShift Container Platform using Automation Broker
Red Hat Process Automation Manager 7.5 Deploying a Red Hat Process Automation Manager environment on Red Hat OpenShift Container Platform using Automation Broker

Red Hat Customer Content Services
brms-docs@redhat.com
Abstract

This document describes how to deploy a Red Hat Process Automation Manager 7.5 environment on Red Hat OpenShift Container Platform using the Automation Broker with the Ansible Playbook.
Table of Contents

PREFACE ... 3

CHAPTER 1. OVERVIEW OF RED HAT PROCESS AUTOMATION MANAGER ON RED HAT OPENSIFT CONTAINER PLATFORM ... 4

CHAPTER 2. PREPARING TO DEPLOY RED HAT PROCESS AUTOMATION MANAGER IN YOUR OPENSIFT ENVIRONMENT .. 6
 2.1. ENSURING THE AVAILABILITY OF IMAGE STREAMS AND THE IMAGE REGISTRY 6
 2.2. CREATING THE SECRETS FOR PROCESS SERVER 7
 2.3. CREATING THE SECRETS FOR BUSINESS CENTRAL 7
 2.4. CREATING THE SECRETS FOR SMART ROUTER 8
 2.5. CHANGING GLUSTERFS CONFIGURATION 9

CHAPTER 3. DEPLOYING A RED HAT PROCESS AUTOMATION MANAGER ENVIRONMENT USING THE AUTOMATION BROKER ... 11

CHAPTER 4. DEPROVISIONING A RED HAT PROCESS AUTOMATION MANAGER ENVIRONMENT USING THE AUTOMATION BROKER ... 13

APPENDIX A. VERSIONING INFORMATION ... 14
PREFACE

As a system engineer, you can deploy a Red Hat Process Automation Manager environment on Red Hat OpenShift Container Platform to provide an infrastructure to develop or execute processes and other business assets. You can use the Automation Broker to deploy the environment in an interactive process, setting all parameters as necessary. A Red Hat Process Automation Manager Ansible Playbook for the Automation Broker is available.

Prerequisites

- Red Hat OpenShift Container Platform version 3.11 is deployed.
- At least four gigabytes of memory are available in the OpenShift environment.
- The OpenShift Ansible Broker is installed and started in the OpenShift environment.
- The OpenShift project for the deployment has been created.
- You are logged in to the project using the OpenShift web console and using the `oc` command.
 - Administrator access is required if Red Hat Process Automation Manager 7.5 image streams are not already available in the OpenShift environment.
- Dynamic persistent volume (PV) provisioning is enabled. Alternatively, if dynamic PV provisioning is not enabled, enough persistent volumes must be available. By default, the following sizes are required:
 - Each deployed replicated set of Process Server pods, by default, requires one 1Gi PV for the database. You can change the database PV size in the playbook parameters. You can deploy multiple immutable servers; each requires a separate database PV. This requirement does not apply if you use an external database server.
 - By default, Business Central requires one 1Gi PV. You can change the PV size for Business Central persistent storage in the playbook parameters.
 - Business Central Monitoring requires one 64Mi PV.
 - Smart Router requires one 64Mi PV.
- If you intend to scale any of the Business Central or Business Central Monitoring pods, your OpenShift environment supports persistent volumes with `ReadWriteMany` mode.

IMPORTANT

`ReadWriteMany` mode is not supported on OpenShift Online and OpenShift Dedicated.

NOTE

Since Red Hat Process Automation Manager version 7.5, support for Red Hat OpenShift Container Platform 3.x is deprecated, including installation using all templates and using the Automation Broker (Ansible Playbook). New features might not be added, and this functionality will be removed in a future release.
CHAPTER 1. OVERVIEW OF RED HAT PROCESS AUTOMATION MANAGER ON RED HAT OPENS̀HIFT CONTAINER PLATFORM

You can deploy Red Hat Process Automation Manager into a Red Hat OpenShift Container Platform environment.

In this solution, components of Red Hat Process Automation Manager are deployed as separate OpenShift pods. You can scale each of the pods up and down individually to provide as few or as many containers as required for a particular component. You can use standard OpenShift methods to manage the pods and balance the load.

The following key components of Red Hat Process Automation Manager are available on OpenShift:

- **Process Server**, also known as *Execution Server* or *KIE Server*, is the infrastructure element that runs decision services, process applications, and other deployable assets (collectively referred to as *services*). All logic of the services runs on execution servers. A database server is normally required for Process Server. You can provide a database server in another OpenShift pod or configure an execution server on OpenShift to use any other database server. Alternatively, Process Server can use an H2 database; in this case, you cannot scale the pod.

You can scale up a Process Server pod to provide as many copies as required, running on the same host or different hosts. As you scale a pod up or down, all of its copies use the same database server and run the same services. OpenShift provides load balancing and a request can be handled by any of the pods.

You can deploy a separate Process Server pod to run a different group of services. That pod can also be scaled up or down. You can have as many separate replicated Process Server pods as required.

- **Business Central** is a web-based interactive environment used for authoring services. It also provides a management and monitoring console. You can use Business Central to develop services and deploy them to Process Servers. You can also use Business Central to monitor the execution of processes.

Business Central is a centralized application. However, you can configure it for high availability, where multiple pods run and share the same data.

Business Central includes a Git repository that holds the source for the services that you develop on it. It also includes a built-in Maven repository. Depending on configuration, Business Central can place the compiled services (KJAR files) into the built-in Maven repository or (if configured) into an external Maven repository.

IMPORTANT

In the current version, high-availability Business Central functionality is for Technology Preview only. For more information on Red Hat Technology Preview features, see Technology Preview Features Scope.

- **Business Central Monitoring** is a web-based management and monitoring console. It can manage the deployment of services to Process Servers and provide monitoring information, but does not include authoring capabilities. You can use this component to manage staging and production environments.

- **Smart Router** is an optional layer between Process Servers and other components that interact with them. When your environment includes many services running on different Process Servers, it provides load balancing and routing functionality.

4
Servers, Smart Router provides a single endpoint to all client applications. A client application can make a REST API call that requires any service. Smart Router automatically calls the Process Server that can process a particular request.

You can arrange these and other components into various environment configurations within OpenShift.

The following environment types are typical:

- **Authoring**: An environment for creating and modifying services using Business Central. It consists of pods that provide Business Central for the authoring work and a Process Server for test execution of the services.

- **Managed deployment**: An environment for running existing services for staging and production purposes. This environment includes several groups of Process Server pods; you can deploy and undeploy services on every such group and also scale the group up or down as necessary. Use Business Central Monitoring to deploy, run, and stop the services and to monitor their execution.

- **Deployment with immutable servers**: An alternate environment for running existing services for staging and production purposes. In this environment, when you deploy a Process Server pod, it builds an image that loads and starts a service or group of services. You cannot stop any service on the pod or add any new service to the pod. If you want to use another version of a service or modify the configuration in any other way, you deploy a new server image and displace the old one. In this system, the Process Server runs like any other pod on the OpenShift environment; you can use any container-based integration workflows and do not need to use any other tools to manage the pods. Optionally, you can use Business Central Monitoring to monitor the performance of the environment and to stop and restart some of the service instances, but not to deploy additional services to any Process Server or undeploy any existing ones (you cannot add or remove containers).

You can also deploy a **trial** or evaluation environment. This environment includes Business Central and a Process Server. You can set it up quickly and use it to evaluate or demonstrate developing and running assets. However, the environment does not use any persistent storage, and any work you do in the environment is not saved.

You can use the Automation Broker with the Red Hat Process Automation Manager Ansible Playbook to deploy a Red Hat Process Automation Manager environment on OpenShift in interactive mode. You can set all possible configuration values during this procedure. During the installation, the Automation Broker can generate all the required secrets automatically. However, for production environments, you need to create correct secrets before the installation.
Before deploying Red Hat Process Automation Manager in your OpenShift environment, you must complete several tasks. You do not need to repeat these tasks if you want to deploy additional images, for example, for new versions of processes or for other processes.

2.1. ENSURING THE AVAILABILITY OF IMAGE STREAMS AND THE IMAGE REGISTRY

To deploy Red Hat Process Automation Manager components on Red Hat OpenShift Container Platform, you must ensure that OpenShift can download the correct images from the Red Hat registry. To download the images, OpenShift requires image streams, which contain the information about the location of images. OpenShift also must be configured to authenticate with the Red Hat registry using your service account user name and password.

Some versions of the OpenShift environment include the required image streams. You must check if they are available. If image streams are available in OpenShift by default, you can use them if the OpenShift infrastructure is configured for registry authentication server. The administrator must complete the registry authentication configuration when installing the OpenShift environment.

Otherwise, you must configure registry authentication and install the image streams in the openshift namespace. You must have administrator access to your OpenShift environment to make these changes.

Procedure

1. Determine whether Red Hat OpenShift Container Platform is configured with the user name and password for Red Hat registry access. For details about the required configuration, see Configuring a Registry Location. If you are using an OpenShift Online subscription, it is configured for Red Hat registry access.

2. If Red Hat OpenShift Container Platform is configured with the user name and password for Red Hat registry access, enter the following commands:

 $ oc get imagestreamtag -n openshift | grep -F rhpam-businesscentral | grep -F 7.5
 $ oc get imagestreamtag -n openshift | grep -F rhpam-kieserver | grep -F 7.5

 If the outputs of both commands are not empty, the required image streams are available in the openshift namespace and no further action is required.

3. If the output of one or both of the commands is empty or if OpenShift is not configured with the user name and password for Red Hat registry access, complete the following steps:
 a. Log in to OpenShift with the oc command as a user with administrator permissions.
 b. Complete the steps documented in Registry Service Accounts for Shared Environments. You must log in to the Red Hat Customer Portal to access the document and to complete the steps to create a registry service account.
 c. Select the OpenShift Secret tab and click the link under Download secret to download the YAML secret file.
d. View the downloaded file and note the name that is listed in the **name:** entry.

e. Enter the following commands:

```
  oc create -f <file_name>.yaml -n openshift
  oc secrets link default <secret_name> --for=pull -n openshift
  oc secrets link builder <secret_name> --for=pull -n openshift
```

Replace `<file_name>` with the name of the downloaded file and `<secret_name>` with the name that is listed in the **name:** entry of the file.

f. Download the `rhapam-7.5.1-openshift-templates.zip` product deliverable file from the Software Downloads page and extract the `rhpam75-image-streams.yaml` file.

g. Enter the following command:

```
  $ oc apply -f rhpam75-image-streams.yaml -n openshift
```

2.2. Creating the Secrets for Process Server

OpenShift uses objects called secrets to hold sensitive information such as passwords or keystores. For more information about OpenShift secrets, see the [Secrets chapter](#) in the OpenShift documentation.

In order to provide HTTPS access, Process Server uses an SSL certificate. The deployment can create a sample secret automatically. However, in production environments you must create an SSL certificate for Process Server and provide it to your OpenShift environment as a secret.

Procedure

1. Generate an SSL keystore with a private and public key for SSL encryption for Process Server. For more information on how to create a keystore with self-signed or purchased SSL certificates, see [Generate a SSL Encryption Key and Certificate](#).

 ![NOTE]

 In a production environment, generate a valid signed certificate that matches the expected URL for Process Server.

2. Save the keystore in a file named `keystore.jks`.

3. Record the name of the certificate. The default value for this name in Red Hat Process Automation Manager configuration is `jboss`.

4. Record the password of the keystore file. The default value for this name in Red Hat Process Automation Manager configuration is `mykeystorepass`.

5. Use the `oc` command to generate a secret named `kieserver-app-secret` from the new keystore file:

   ```
   $ oc create secret generic kieserver-app-secret --from-file=keystore.jks
   ```

2.3. Creating the Secrets for Business Central

In order to provide HTTPS access, Business Central uses an SSL certificate. The deployment can create a sample secret automatically. However, in production environments you must create an SSL certificate for Business Central and provide it to your OpenShift environment as a secret.
In order to provide HTTPS access, Business Central uses an SSL certificate. The deployment can create a sample secret automatically. However, in production environments you must create an SSL certificate for Business Central and provide it to your OpenShift environment as a secret.

Do not use the same certificate and keystore for Business Central and Process Server.

Procedure

1. Generate an SSL keystore with a private and public key for SSL encryption for Business Central. For more information on how to create a keystore with self-signed or purchased SSL certificates, see [Generate a SSL Encryption Key and Certificate](#).

 NOTE

 In a production environment, generate a valid signed certificate that matches the expected URL for Business Central.

2. Save the keystore in a file named `keystore.jks`.

3. Record the name of the certificate. The default value for this name in Red Hat Process Automation Manager configuration is `jboss`.

4. Record the password of the keystore file. The default value for this name in Red Hat Process Automation Manager configuration is `mykeystorepass`.

5. Use the `oc` command to generate a secret named `businesscentral-app-secret` from the new keystore file:

   ```
   $ oc create secret generic businesscentral-app-secret --from-file=keystore.jks
   ```

2.4. CREATING THE SECRETS FOR SMART ROUTER

In order to provide HTTPS access, Smart Router uses an SSL certificate. The deployment can create a sample secret automatically. However, in production environments you must create an SSL certificate for Smart Router and provide it to your OpenShift environment as a secret.

Do not use the same certificate and keystore for Smart Router as the ones used for Process Server or Business Central.

Procedure

1. Generate an SSL keystore with a private and public key for SSL encryption for Smart Router. For more information on how to create a keystore with self-signed or purchased SSL certificates, see [Generate a SSL Encryption Key and Certificate](#).

 NOTE

 In a production environment, generate a valid signed certificate that matches the expected URL for Smart Router.

2. Save the keystore in a file named `keystore.jks`.

3. Record the name of the certificate. The default value for this name in Red Hat Process Automation Manager configuration is `jboss`.
4. Record the password of the keystore file. The default value for this name in Red Hat Process Automation Manager configuration is `mykeystorepass`.

5. Use the `oc` command to generate a secret named `smartrouter-app-secret` from the new keystore file:

   ```bash
   $ oc create secret generic smartrouter-app-secret --from-file=keystore.jks
   ```

2.5. CHANGING GLUSTERFS CONFIGURATION

You must check whether your OpenShift environment uses GlusterFS to provide permanent storage volumes. If it uses GlusterFS, to ensure optimal performance of Business Central, you must tune your GlusterFS storage by changing the storage class configuration.

Procedure

1. To check whether your environment uses GlusterFS, enter the following command:

   ```bash
   oc get storageclass
   ```

 In the results, check whether the `(default)` marker is on the storage class that lists `glusterfs`. For example, in the following output the default storage class is `gluster-container`, which does list `glusterfs`:

 - NAME: gluster-block PROVISIONER: gluster.org/glusterblock AGE: 8d
 - NAME: gluster-container (default) PROVISIONER: kubernetes.io/glusterfs AGE: 8d

 If the result has a default storage class that does not list `glusterfs` or if the result is empty, you do not need to make any changes. In this case, skip the rest of this procedure.

2. To save the configuration of the default storage class into a YAML file, enter the following command:

   ```bash
   oc get storageclass <class-name> -o yaml >storage_config.yaml
   ```

 Replace `<class-name>` with the name of the default storage class. Example:

   ```bash
   oc get storageclass gluster-container -o yaml >storage_config.yaml
   ```

3. Edit the `storage_config.yaml` file:

 a. Remove the lines with the following keys:

 - `creationTimestamp`
 - `resourceVersion`
 - `selfLink`
 - `uid`

 b. If you are planning to use Business Central only as a single pod, without high-availability configuration, on the line with the `volumeOptions` key, add the following options:
features.cache-invalidation on
performance.nl-cache on

For example:

volumeoptions: client.ssl off, server.ssl off, features.cache-invalidation on,
performance.nl-cache on

c. If you are planning to use Business Central in a high-availability configuration, on the line with the volumeoptions key, add the following options:

features.cache-invalidation on
nfs.trusted-write on
nfs.trusted-sync on
performance.nl-cache on
performance.stat-prefetch off
performance.read-ahead off
performance.write-behind off
performance.readdir-ahead off
performance.io-cache off
performance.quick-read off
performance.open-behind off
locks.mandatory-locking off
performance.strict-o-direct on

For example:

volumeoptions: client.ssl off, server.ssl off, features.cache-invalidation on,
nfs.trusted-write on, nfs.trusted-sync on, performance.nl-cache on, performance.stat-
prefetch off, performance.read-ahead off, performance.write-behind off,
performance.readdir-ahead off, performance.io-cache off, performance.quick-read off,
performance.open-behind off, locks.mandatory-locking off, performance.strict-o-
direct on

4. To remove the existing default storage class, enter the following command:

 oc delete storageclass <class-name>

 Replace <class-name> with the name of the default storage class. Example:

 oc delete storageclass gluster-container

5. To re-create the storage class using the new configuration, enter the following command:

 oc create -f storage_config.yaml
CHAPTER 3. DEPLOYING A RED HAT PROCESS AUTOMATION MANAGER ENVIRONMENT USING THE AUTOMATION BROKER

To deploy a Red Hat Process Automation Manager environment using the Automation Broker, you must find the Ansible Playbook in the OpenShift catalog, run it, and set the parameters as required.

Procedure

1. In the OpenShift Web UI, select **Add to Project → Browse Catalog**
2. In the search field, type **Red Hat Process Automation Manager**.
3. Select the **Red Hat Process Automation Manager 7.5 APB** catalog entry.
4. Click **Next**.
5. Select the required architecture elements, as described on the screen, and click the **Next** button.

IMPORTANT

If you want to deploy an environment with immutable servers and a monitoring infrastructure, you must first install the **Immutable Server - Monitor** option and then the **Immutable Server - KIE Process Server** option.

6. Enter the parameters as described on the screen. In most cases, the default values lead to a working deployment; you can modify them as necessary. You must enter the following settings:

- **For the Immutable Server - Monitor** option:
 - The **Maven repository URL** field. You must provide a Maven repository with the same versions of all the artifacts that are deployed on any monitored immutable servers.
 - The **Admin password** field. You must record the administrative user name and password to configure monitored servers to connect to Business Central Monitoring.

- **For the Immutable Server - KIE Process Server** option:
 - The **KIE Server Container Deployment Git Repository URL**, **Git Repository Reference** fields. These settings determine the source code that the deployment process builds and deploys on the Process Server.
 - If you deployed the **Immutable Server - Monitor** option and want to connect the server to the monitoring infrastructure:
 - Under **Router integration**, the service name of the `rhpam-immutable-mon-smartrouter` service.
 - Under **Controller integration**, the service name of the `rhpam-immutable-mon-rhpamcentrmon` service and the admin username and password that you set in the **Immutable Server - KIE Process Server** option.
IMPORTANT

Avoid each of the following combinations of settings. These combinations produce an invalid environment.

- Process server > Database type H2 and Process server > Number of replicas exceeding 1.

7. If you are using the External database type for the Process Server in the Authoring, Immutable Server - Process Server, or Managed Environment option, set the parameters under the External Database heading. Set the host, port, database name, and database JDBC URL to the correct values for your database server. Use the following values for the other fields:

- **Driver name**: The driver for the server, depending on the server type:
 - mysql
 - postgresql

- **Dialect class** (KIE_SERVER_EXTERNALDB_DIALECT): The Hibernate dialect for the server, depending on the server type:
 - org.hibernate.dialect.MySQL5Dialect (used for MySQL and MariaDB)
 - org.hibernate.dialect.PostgreSQLDialect

NOTE

In Red Hat Process Automation Manager 7.5, when you deploy an environment using the Ansible Broker, only MySQL and PostgreSQL external database servers are supported.

8. Click **Next** to commence deployment.

 After deploying the environment, you can access it using the HTTPS routes displayed in the OpenShift Web console. HTTP requests are redirected to HTTPS.

IMPORTANT

After deploying the service, you can scale the Process Server pods up and down as necessary. Do not scale the database pods.
CHAPTER 4. DEPROVISIONING A RED HAT PROCESS AUTOMATION MANAGER ENVIRONMENT USING THE AUTOMATION BROKER

If you deployed a Red Hat Process Automation Manager environment using the Automation Broker, you can also use the Broker to deprovision the environment.

Procedure

1. In the OpenShift Web UI, view the Overview page for your project.

2. Locate the Service Instance for the Red Hat Process Automation Manager environment that you want to remove.

3. Click the menu button at the instance and select **Delete**. The Automation Broker runs the deprovisioning playbook.
APPENDIX A. VERSIONING INFORMATION

Documentation last updated on Friday, June 25, 2021.