& RedHat

Red Hat OpenStack Platform 17.1

Managing secrets with the Key Manager
service

Integrating the Key Manager service (barbican) with your OpenStack deployment.

Last Updated: 2024-02-29

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager
service

Integrating the Key Manager service (barbican) with your OpenStack deployment.

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

How to integrate OpenStack Key Manager (barbican) with your OpenStack deployment.

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE .. ittt ittt ittt eaaens 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ..ottt 4
CHAPTER 1. DEPLOYING AND CONFIGURING OPENSTACK KEY MANAGER (BARBICAN) 5
1.1. OPENSTACK KEY MANAGER WORKFLOW 5
1.2. OPENSTACK KEY MANAGER ENCRYPTION TYPES 6
1.2.1. Configuring multiple encryption mechanisms 7

1.3. DEPLOYING KEY MANAGER 7
1.4. VIEWING KEY MANAGER POLICIES 10
CHAPTER 2. MANAGING SECRETS AND KEYS WITH OPENSTACK KEY MANAGER (BARBICAN) 12
2.1. VIEWING SECRETS 12
2.2. CREATING ASECRET 12
2.3. ADDING A PAYLOAD TO ASECRET 13
2.4. DELETING ASECRET 13
2.5. GENERATING A SYMMETRIC KEY 13
2.6. BACKING UP SIMPLE CRYPTO ENCRYPTION KEYS 14
2.7.RESTORING SIMPLE CRYPTO ENCRYPTION KEYS FROM A BACKUP 16

CHAPTER 3. INTEGRATING OPENSTACK KEY MANAGER (BARBICAN) WITH HARDWARE SECURITY

MODULE (HSM) AP P LIANCES . ittt et ettt ettt et e e aneeraneeeneeeaneenanens 19
3.1. INTEGRATING OPENSTACK KEY MANAGER (BARBICAN) WITH AN ATOS HSM 19
3.2. INTEGRATING OPENSTACK KEY MANAGER (BARBICAN) WITH A THALES LUNA NETWORK HSM 22
3.3. INTEGRATING OPENSTACK KEY MANAGER (BARBICAN) WITH AN ENTRUST NSHIELD CONNECT XC
HSM 24

3.3.1. Load Balancing with Entrust nShield Connect 27
3.4. ROTATING MKEK AND HMAC KEYS 27

CHAPTER 4. ENCRYPTING AND VALIDATING OPENSTACKSERVICESiiiiiiiiiiiiiiiiiieennn, 29
4.1. ENCRYPTING OBJECT STORAGE (SWIFT) AT-REST OBJECTS 29
4.2. ENCRYPTING BLOCK STORAGE (CINDER) VOLUMES 30

4.2.1. Migrating Block Storage volumes to OpenStack Key Manager 33
4.3. VALIDATING BLOCK STORAGE (CINDER) VOLUME IMAGES 36
4.3.1. Automatic deletion of volume image encryption key 37
4.4, SIGNING IMAGE SERVICE (GLANCE) IMAGES 38

4.5. VALIDATING SNAPSHOTS 40

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue
3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not

modify any other fields in the form.

4. Click Create.

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. DEPLOYING AND CONFIGURING OPENSTACK KEY MANAGER (BARBICAN;

CHAPTER 1. DEPLOYING AND CONFIGURING OPENSTACK
KEY MANAGER (BARBICAN)

OpenStack Key Manager (barbican) is the secrets manager for Red Hat OpenStack Platform. You can
use the barbican APl and command line to centrally manage the certificates, keys, and passwords used
by OpenStack services. Barbican is not enabled by default in Red Hat OpenStack Platform. You can
deploy barbican in an existing OpenStack deployment.

Barbican currently supports the following use cases described in this guide:

® Symmetric encryption keys - used for Block Storage (cinder) volume encryption, ephemeral
disk encryption, and Object Storage (swift) encryption, among others.

o Asymmetric keys and certificates- used for glance image signing and verification, among
others.

OpenStack Key Manager integrates with the Block Storage (cinder), Networking (neutron), and
Compute (nova) components.

1.1. OPENSTACK KEY MANAGER WORKFLOW

The following diagram shows the workflow that OpenStack Key Manager uses to manage secrets for
your environment.

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

Admin/ Tenant Nova (QEMU) Cinder Barbican Barbican Hardware Ceph
Deployer Database Security Cluster
Module
Create Cinder volume encryption type LUKS .
L
Create MKEK through CLI Store MKEK in HSM
> B
Generate a key
K1as needed
Give me a volume V of for encryption Get
encryption type LUKS type LUKS MKEK(pKEK)
b > >
No MKEK(pKEK)
Generate MKEK(pKEK) Generate pKEK

P wrap with MKEK

Store
MKEK(pKEK)
Generate K1 Generate K1,
> decrypt
MKEK(pKEK),
wrap K1 with
pKEK
Return pKEK(K1), MKEK(pKEK)
4
Store pKEK(KT1),
MKEK(pKEK)
as metadata
—_—
Return
refernce to
secret K1 (Kref) Return Kref
4 4
- -
Store Kref
in volume
metadata
Attach Get volume
volume to VM metadata
b »
» >
Read Kref from
metadata
Get secret
Get secret Kref o database entry
»
Entry contains
pKEK(K1),
MKEK(pKEK)
Get K1 Unwrap
P pKek from
MKEK(pKEK),
unwrap K1
from pKEK(KT)
Return K1
4
-
K1supplied to
QEMU attached
volume etc.
Data is encrypted (QEMU <—> LUKS process) cn
the compute node with K1 before entering the Ceph cluster %
Lal
Hardware
Admin/ Barbican Security Ceph
Deployer Tenant Nova (QEMU) Cinder Barbican Database Module Cluster

1.2. OPENSTACK KEY MANAGER ENCRYPTION TYPES

CHAPTER 1. DEPLOYING AND CONFIGURING OPENSTACK KEY MANAGER (BARBICAN;

Secrets such as certificates, APl keys, and passwords, can be stored in an encrypted blob in the barbican
database or directly in a secure storage system. You can use a simple crypto plugin or PKCS#11 crypto
plugin to encrypt secrets.

To store the secrets as an encrypted blob in the barbican database, the following options are available:

e Simple crypto plugin - The simple crypto plugin is enabled by default and uses a single
symmetric key to encrypt all secret payloads. This key is stored in plain text in the
barbican.conf file, so it is important to prevent unauthorized access to this file.

o PKCS#11 crypto plugin - The PKCS#11 crypto plugin encrypts secrets with project-specific key
encryption keys (pKEK), which are stored in the barbican database. These project-specific
pKEKSs are encrypted by a main key-encryption-key (MKEK), which is stored in a hardware
security module (HSM). All encryption and decryption operations take place in the HSM, rather
than in-process memory. The PKCS#11 plugin communicates with the HSM through the
PKCS#11 API. Because the encryption is done in secure hardware, and a different pKEK is used
per project, this option is more secure than the simple crypto plugin.

Red Hat supports the PKCS#11 back end with any of the following HSMs.

Device Supported in release High Availability (HA) support

ATOS Trustway Proteccio 16.0+ 16.1+

NetHSM

Entrust nShield Connect HSM 16.0+ Not supported

Thales Luna Network HSM 16.1+ (Technology Preview) 16.1+ (Technology Preview)
NOTE

Regarding high availability (HA) options: The barbican service runs within Apache
and is configured by director to use HAProxy for high availability. HA options for
the back end layer will depend on the back end being used. For example, for
simple crypto, all the barbican instances have the same encryption key in the
config file, resulting in a simple HA configuration.

1.2.1. Configuring multiple encryption mechanisms

You can configure a single instance of Barbican to use more than one back end. When this is done, you
must specify a back end as the global default back end. You can also specify a default back end per
project. If no mapping exists for a project, the secrets for that project are stored using the global default
back end.

For example, you can configure Barbican to use both the Simple crypto and PKCS#11 plugins. If you set
Simple crypto as the global default, then all projects use that back end. You can then specify which
projects use the PKCS#11 back end by setting PKCS#11 as the preferred back end for that project.

If you decide to migrate to a new back end, you can keep the original available while enabling the new

back end as the global default or as a project-specific back end. As a result, the old secrets remain
available through the old back end, and new secrets are stored in the new global default back end.

1.3. DEPLOYING KEY MANAGER

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

To deploy OpenStack Key Manager, first create an environment file for the barbican service and
redeploy the overcloud with additional environment files. You then add users to the creator role to
create and edit barbican secrets or to create encrypted volumes that store their secret in barbican.

NOTE

This procedure configures barbican to use the simple_crypto back end. Additional back
ends are available, such as PKCS#11 which requires a different configuration, and
different heat template files depending on which HSM is used. Other back ends such as
KMIP, Hashicorp Vault and DogTag are not supported.

Prerequisites

® Overcloud is deployed and running

Procedure

1. On the undercloud node, create an environment file for barbican.

$ cat /home/stack/templates/configure-barbican.yaml

parameter_defaults:
BarbicanSimpleCryptoGlobalDefault: true

The BarbicanSimpleCryptoGlobalDefault sets this plugin as the global default plugin.

You can also add the following options to the environment file:

BarbicanPassword - Sets a password for the barbican service account.

BarbicanWorkers - Sets the number of workers for barbican::wsgi::apache. Uses '%
{::processorcount}' by default.

BarbicanDebug - Enables debugging.

BarbicanPolicies - Defines policies to configure for barbican. Uses a hash value, for
example: { barbican-context_is_admin: { key: context_is_admin, value: 'role:admin’ } }.
This entry is then added to /etc/barbican/policy.json. Policies are described in detail in a
later section.

BarbicanSimpleCryptoKek - The Key Encryption Key (KEK) is generated by director, if
none is specified.

2. Add the following files to the openstack overcloud deploy command, without removing
previously added role, template or environment files from the script:

® /usr/share/openstack-tripleo-heat-templates/environments/services/barbican.yaml

® /usr/share/openstack-tripleo-heat-templates/environments/barbican-backend-simple-

crypto.yaml

® /home/stack/templates/configure-barbican.yaml

3. Re-run the deployment script to apply changes to your deployment:

$ openstack overcloud deploy \

--timeout 100 \

CHAPTER 1. DEPLOYING AND CONFIGURING OPENSTACK KEY MANAGER (BARBICAN;

--templates /usr/share/openstack-tripleo-heat-templates \

--stack overcloud \

--libvirt-type kvm \

--ntp-server clock.redhat.com \

-e /home/stack/containers-prepare-parameter.yaml \

-e /home/stack/templates/config_Ilvm.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \

-e /home/stack/templates/network/network-environment.yaml \

-e /home/stack/templates/hostnames.yml \

-e /home/stack/templates/nodes_data.yaml \

-e /home/stack/templates/extra_templates.yaml \

-e /home/stack/container-parameters-with-barbican.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/services/barbican.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/barbican-backend-simple-
crypto.yaml\

-e /home/stack/templates/configure-barbican.yaml \

--log-file overcloud_deployment_38.log

4. Retrieve the id of the creator role:

openstack role show creator

+ + +
| Field | Value |
+ + +

| domain_id | None |

|id | 4€9¢c560c6f104608948450fbf316f9d7 |
| name | creator |

+ + +

NOTE

You will not see the creator role unless OpenStack Key Manager (barbican) is
installed.

5. Assign a user to the creator role and specify the relevant project. In this example, a user named
user1in the project_a project is added to the creator role:

I openstack role add --user user1 --project project_a 4e9c560c6f104608948450fbf316f9d7
Verification
1. Create a test secret. For example:

$ openstack secret store --name testSecret --payload 'TestPayload'

+ + +

| Field | Value |

+ + +

| Secret href | https://192.168.123.163/key-manager/v1/secrets/4cc5ffe0-eea2-449d-9e64-
b664d574be53 |

| Name | testSecret |

| Created | None |

| Status | None |

| Content types | None |
| Algorithm | aes |

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

| Bit length | 256 |

| Secret type | opaque |

| Mode | cbc |

| Expiration | None |

+- + +

2. Retrieve the payload for the secret you just created:

openstack secret get https://192.168.123.163/key-manager/v1/secrets/4cc5ffe0-eea2-449d-
9e64-b664d574be53 --payload

+- + +
| Field | Value |
+- + +
| Payload | TestPayload |
+- + +

1.4. VIEWING KEY MANAGER POLICIES

Barbican uses policies to determine which users are allowed to perform actions against the secrets, such
as adding or deleting keys. To implement these controls, keystone project roles such as creator you
created earlier, are mapped to barbican internal permissions. As a result, users assigned to those project
roles receive the corresponding barbican permissions.

The default policy is defined in code and typically does not require any amendments. If policy changes
have not been made, you can view the default policy using the existing container in your environment. If

changes have been made to the default policy, and you would like to see the defaults, use a separate
system to pull the openstack-barbican-api container first.

Prerequisites
® OpenStack Key Manager is deployed and running
Procedure
1. Use your Red Hat credentials to log in to podman:
podman login

username. *kkkkkkk
password « kkkkkkkk

2. Pull the openstack-barbican-api container:
podman pull \
registry.redhat.io/rhosp-rhel8/openstack-barbican-api:17.1

3. Generate the policy file in the current working directory:

podman run -it \
registry.redhat.io/rhosp-rhel8/openstack-barbican-api:17.1 \
oslopolicy-policy-generator \

--namespace barbican > barbican-policy.yaml|

Verification

10

CHAPTER 1. DEPLOYING AND CONFIGURING OPENSTACK KEY MANAGER (BARBICAN;

Review the barbican-policy.yaml file to check the policies used by barbican. The policy is implemented
by four different roles that define how a user interacts with secrets and secret metadata. A user receives
these permissions by being assigned to a particular role:

admin
The admin role can read, create, edit and delete secrets across all projects.
creator

The creator role can read, create, edit, and delete secrets that are in the project for which the creator
is scoped.

observer
The observer role can only read secrets.
audit

The audit role can only read metadata. The audit role can not read secrets.

For example, the following entries list the admin, observer, and creator keystone roles for each project.
On the right, notice that they are assigned the role:admin, role:observer, and role:creator permissions:

#
#"admin": "role:admin"

#
#"observer": "role:observer"

#
#"creator": "role:creator"

These roles can also be grouped together by barbican. For example, rules that specify
admin_or_creator can apply to members of either rule:admin or rule:creator.

Further down in the file, there are secret:put and secret:delete actions. To their right, notice which roles
have permissions to execute these actions. In the following example, secret:delete means that only
admin and creator role members can delete secret entries. In addition, the rule states that users in the
admin or creator role for that project can delete a secret in that project. The project match is defined

by the secret_project_match rule, which is also defined in the policy.

I secret:delete": "rule:admin_or_creator and rule:secret_project._match"

1

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

CHAPTER 2. MANAGING SECRETS AND KEYS WITH
OPENSTACK KEY MANAGER (BARBICAN)

You use OpenStack Key Manager to create, update, and delete secrets and encryption keys. You can
also back up and restore the encryption keys and the barbican database. It is recommended that you
regularly back up your encryption keys and barbican database.

2.1. VIEWING SECRETS

To view the list of secrets, run the openstack secret list command. The list includes the URI, name,
type, and other information about the secrets.

Procedure

® \/iew the list of secrets:

$ openstack secret list

+- e et
+ + + + + +
Fommmmmmmees +
| Secret href | Name | Created | Status
| Content types | Algorithm | Bit length | Secret type | Mode | Expiration |
+- e et
+ + + + + +
Fommmmmmmees +

| https://192.168.123.169:9311/v1/secrets/24845e6d-64a5-4071-ba99-0fdd1046172e | None |
2018-01-22T02:23:15+00:00 | ACTIVE | {u'default’: u'application/octet-stream'} | aes |
256 | symmetric | None | None |

+- e Hommmemmmm e
+ + + + + +
et +
2.2. CREATING ASECRET

To create a secret, run the openstack secret store command and specify the name of the secret and

12

optionally the payload for the secret.

Procedure

® Create asecret. For example:

$ openstack secret store --name testSecret --payload 'TestPayload'

+- + +

| Field | Value |

+- + +

| Secret href | https://192.168.123.163:9311/v1/secrets/ecc7b2a4-f0b0-47ba-b451-
0f7d42bc1746 |

| Name | testSecret |

| Created | None |

| Status | None |

Content types	None
Algorithm	aes
Bit length	256

CHAPTER 2. MANAGING SECRETS AND KEYS WITH OPENSTACK KEY MANAGER (BARBICAN;

| Secret type | opaque |

| Mode | cbc |

| Expiration | None |

+- + +

2.3. ADDING A PAYLOAD TO ASECRET

You cannot change the payload of a secret (other than deleting the secret), but if you created a secret
without specifying a payload, you can later add a payload to it by using the openstack secret update
command.

Procedure

® Add a payload to a secret:

$ openstack secret update https://192.168.123.163:9311/v1/secrets/ca34a264-fd09-44a1-
8856-c6e7116¢c3b16 'TestPayload-updated'
$

2.4. DELETING ASECRET

To delete a secret, run the openstack secret delete command and specify the secret URI.

Procedure

® Delete a secret with the specified URI:

$ openstack secret delete https://192.168.123.163:9311/v1/secrets/ecc7b2a4-f0b0-47ba-
b451-0f7d42bc1746

$

2.5. GENERATING A SYMMETRIC KEY

To generate a symmetric key, use the order create command and then store the key in barbican. You
can then use symmetric keys for certain tasks, such as nova disk encryption and swift object encryption.

Prerequisites

® OpenStack Key Manager is installed and running
Procedure
1. Generate a new 256-bit key using order create and store it in barbican. For example:

$ openstack secret order create --name swift_key --algorithm aes --mode ctr --bit-length 256
--payload-content-type=application/octet-stream key

+- + +

| Field | Value |

+- + +

| Order href | https://192.168.123.173:9311/v1/orders/043383fe-d504-42cf-a9b1-
bc328d0b4832 |

| Type | Key |

13

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

| Container href | N/A |

| Secret href | None |

| Created | None |

| Status | None |

| Error code | None |

| Error message | None |

+ + +

You can also use the --mode option to configure generated keys to use a particular mode, such
as ctr or cbc. For more information, see NIST SP 800-38A.

2. View the details of the order to identify the location of the generated key, shown here as the
Secret href value:

$ openstack secret order get https://192.168.123.173:9311/v1/orders/043383fe-d504-42cf-
a9b1-bc328d0b4832

+ + +
| Field | Value |
+ + +

| Order href | https://192.168.123.173:9311/v1/orders/043383fe-d504-42cf-a9b1-
bc328d0b4832 |

| Type | Key |

| Container href | N/A |

| Secret href | https://192.168.123.173:9311/v1/secrets/efcfec49-b9a3-4425-a9b6-
5ba69cb18719 |

| Created | 2018-01-24T04:24:33+00:00 |

| Status | ACTIVE |

| Error code | None |

| Error message | None |

+ + +

3. Retrieve the details of the secret:

$ openstack secret get https://192.168.123.173:9311/v1/secrets/efcfec49-b9a3-4425-a9b6-
5ba69cb18719

+ + +
| Field | Value |
+ + +

| Secret href | https://192.168.123.173:9311/v1/secrets/efcfec49-b9a3-4425-a9b6-
5ba69cb18719 |

| Name | swift_key |

| Created | 2018-01-24T04:24:33+00:00 |

| Status | ACTIVE |

| Content types | {u'default’: u'application/octet-stream'’} |
| Algorithm | aes |

| Bit length | 256 |

| Secret type | symmetric |

| Mode | ctr |

| Expiration | None |

+ + +

2.6. BACKING UP SIMPLE CRYPTO ENCRYPTION KEYS

To backup simple crypto encryption keys, back up the barbican.conf file that contains the main KEK to
a security hardened location, and then back up the barbican database.

14

CHAPTER 2. MANAGING SECRETS AND KEYS WITH OPENSTACK KEY MANAGER (BARBICAN;

IMPORTANT

The procedure includes steps to generate a test secret and key. If you already generated
a key for your secrets, skip the test key steps and use the key that you generated.

Prerequisites

® OpenStack Key Manager is installed and running

® You have a security hardened location for the KEK backup
Procedure
1. On the overcloud, generate a new 256-bit key and store it in barbican:

(overcloud) [stack@undercloud-0 ~]$ openstack secret order create --name swift_key --
algorithm aes --mode ctr --bit-length 256 --payload-content-type=application/octet-stream key

+ + +

| Field | Value |

+ + +

| Order href | http://10.0.0.104:9311/v1/orders/2a11584d-851c-4bc2-83b7-35d04d3bae86 |
| Type | Key |

| Container href | N/A |

| Secret href | None |

| Created | None |

| Status | None |

| Error code | None |

| Error message | None |

+ + +

2. Create a test secret:

(overcloud) [stack@undercloud-0 ~]$ openstack secret store --name testSecret --payload

"TestPayload'

+ + +

| Field | Value |

+ + +

| Secret href | http://10.0.0.104:9311/v1/secrets/93f62cfd-e008-401f-be74-bf057¢c88b04a |
| Name | testSecret |

| Created | None |

| Status | None |

| Content types | None |

| Algorithm | aes |

| Bit length | 256 |

| Secret type | opaque |

| Mode | cbc |

| Expiration | None |

+ + +

3. Confirm that the test secret is created:

(overcloud) [stack@undercloud-0 ~]$ openstack secret list

15

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

| Secret href | Name | Created | Status |
Content types | Algorithm | Bit length | Secret type | Mode | Expiration |

+- + + --

-+ + +---- + + + +--mm--

| http://10.0.0.104:9311/v1/secrets/93f62cfd-e008-401f-be74-bf057c88b04a | testSecret |
2018-06-19T18:25:25+00:00 | ACTIVE | {u'default’: u'text/plain'} | aes | 256 |
opaque | cbc | None |

| http://10.0.0.104:9311/v1/secrets/f664b5cf-5221-47e5-9887-608972a5fefb | swift_key |
2018-06-19T18:24:40+00:00 | ACTIVE | {u'default’: u'application/octet-stream'} | aes |
256 | symmetric | ctr | None |

+- + + --

4. Copy the barbican.conf file that contains the main KEK to a security hardened location.

5. Login to the controller-0 node and retrieve barbican user password:

[tripleo-admin@controller-0 ~]$ sudo grep -r "barbican::db::mysql::password"
/etc/puppet/hieradata

/etc/puppet/hieradata/service_configs.json: "barbican::db::mysql::password":
"seDJRsMNRrBdFryCmNUEFPPev",

NOTE

Only the user barbican has access to the barbican database. So the barbican user
password is required to backup or restore the database.

6. Back up the barbican database:

[tripleo-admin@controller-0 ~]$ mysqgldump -u barbican -
p"seDJRsMNRrBdFryCmNUEFPPev" barbican > barbican_db_backup.sql

7. Check that the database backup is stored in /home/tripleo-admin:

[tripleo-admin@controller-0 ~]$ Il
total 36
-rw-rw-r--. 1 tripleo-admin tripleo-admin 36715 Jun 19 18:31 barbican_db_backup.sql

8. On the overcloud, delete the secrets you created previously and verify that they no longer exist:

(overcloud) [stack@undercloud-0 ~]$ openstack secret delete
http://10.0.0.104:9311/v1/secrets/93f62cfd-e008-401f-be74-bf057c88b04a
(overcloud) [stack@undercloud-0 ~]$ openstack secret delete
http://10.0.0.104:9311/v1/secrets/f664b5cf-5221-47e5-9887-608972a5fefb
(overcloud) [stack@undercloud-0 ~]$ openstack secret list

(overcloud) [stack@undercloud-0 ~]$

2.7. RESTORING SIMPLE CRYPTO ENCRYPTION KEYS FROM A
BACKUP

16

CHAPTER 2. MANAGING SECRETS AND KEYS WITH OPENSTACK KEY MANAGER (BARBICAN;

To restore the barbican database from a backup, log in to the Controller node with barbican permissions
and restore the barbican database. To restore the KEK from a backup, override the barbican.conf file
with the backup file.

Prerequisites

® OpenStack Key Manager is installed and running

® You have an existing backup of the barbican.conf file and the barbican database

Procedure

1. Login to the controller-0 node and check that you have the barbican database on the
controller that grants access to the barbican user to restore the database:

[tripleo-admin@controller-0 ~]$ mysq|l -u barbican -p"seDJRsMNRrBdFryCmNUEFPPev"
Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 3799

Server version: 10.1.20-MariaDB MariaDB Server

Copyright (c) 2000, 2016, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or "\h' for help. Type "\c' to clear the current input statement.

MariaDB [(none)]> SHOW DATABASES;

e +
| Database |
e +
| barbican |
| information_schema |
e +

2 rows in set (0.00 sec)
MariaDB [(none)]> exit

Bye
[tripleo-admin@controller-0 ~]$

2. Restore the backup file to the barbican database:

[tripleo-admin@controller-0 ~]$ sudo mysql -u barbican -
p"seDJRsMNRrBdFryCmNUEFPPev" barbican < barbican_db_backup.sql
[tripleo-admin@controller-0 ~]$

3. Override the barbican.conf file with the file that you previously backed up.

Verification

® On the overcloud, verify that the test secrets were restored successfully:

(overcloud) [stack@undercloud-0 ~]$ openstack secret list

+ + +

-+ + + + + + +

------ +

| Secret href | Name | Created | Status |
Content types | Algorithm | Bit length | Secret type | Mode | Expiration |

17

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

18

+ + +

-+ + + + + + +

------ +

| http://10.0.0.104:9311/v1/secrets/93f62cfd-e008-401f-be74-bf057c88b04a | testSecret |
2018-06-19T18:25:25+00:00 | ACTIVE | {u'default’: u'text/plain'} | aes | 256 |

opaque | cbc | None |

| http://10.0.0.104:9311/v1/secrets/f664b5cf-5221-47e5-9887-608972a5fefb | swift_key |
2018-06-19T18:24:40+00:00 | ACTIVE | {u'default’: u'application/octet-stream'} | aes |
256 | symmetric | ctr | None |

(overcloud) [stack@undercloud-0 ~]$

5RATING OPENSTACK KEY MANAGER (BARBICAN) WITH HARDWARE SECURITY MODULE (HSM) APPLIANCES

CHAPTER 3. INTEGRATING OPENSTACK KEY MANAGER
(BARBICAN) WITH HARDWARE SECURITY MODULE (HSM)
APPLIANCES

Integrate your Red Hat OpenStack Platform deployment with hardware security module (HSM)
appliances to increase your security posture by using hardware based cryptographic processing. When
you plan your OpenStack Key Manager integration with an HSM appliance, you must choose a supported
encryption type and HSM appliance, set up regular backups, and review any other information or
limitations that might affect your deployment.

3.1.INTEGRATING OPENSTACK KEY MANAGER (BARBICAN) WITH AN
ATOS HSM

To integrate the PKCS#11 back end with your Trustway Proteccio Net HSM appliance, create a
configuration file with the parameters to connect barbican with the HSM. You can enable HA by listing
two or more HSMs below the atos_hsms parameter.

Planning

By default, the HSM can have a maximum of 32 concurrent connections. If you exceed this number, you
might experience a memory error from the PKCS#11 client. You can calculate the number of connections
as follows:

® Each Controller has one barbican-api and one barbican-worker process.

® FEach Barbican API process is executed with N Apache workers - (where N defaults to the
number of CPUs).

® FEach worker has one connection to the HSM.

Each barbican-worker process has one connection to the database. You can use the BarbicanWorkers
heat parameter to define the number of Apache workers for each API process. By default, the number of
Apache workers matches the CPU count.

For example, if you have three Controllers, each with 32 cores, then the Barbican APl on each Controller
uses 32 Apache workers. Consequently, one Controller consumes all 32 HSM connections available. To
avoid this contention, limit the number of Barbican Apache workers configured for each node. In this
example, set BarbicanWorkers to 10 so that all three Controllers can make ten concurrent connections
each to the HSM.

Prerequisites

® A password-protected HTTPS server that provides vendor software for the Atos HSM

Table 3.1. Files provided by the HTTPS server

File Example Provided by
Proteccio Client Software ISO Protecciol.09.05.iso HSM Vendor
image file

SSL server certificate proteccio.CRT HSM administrator

19

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

File Example Provided by

SSL client certificate client.CRT HSM administrator

SSL Client key client.KEY HSM administrator
Procedure

1. Create a configure-barbican.yaml environment file for Barbican and add the following
parameters:

parameter_defaults
BarbicanSimpleCryptoGlobalDefault: false
BarbicanPkcs11CryptoGlobalDefault: true
BarbicanPkcs11CryptoLogin: ********
BarbicanPkcs11CryptoSlotid: 1
ATOSVars:
atos_client_iso_name: Proteccio1.09.05.iso
atos_client_iso_location: https://user@PASSWORD:example.com/Proteccio1.09.05.iso
atos_client_cert_location: https://user@PASSWORD:example.com/client. CRT
atos_client_key_location: https://user@PASSWORD:example.com/client. KEY
atos_hsms:
- name: myHsm1
server_cert_location: https://user@PASSWORD:example.com/myHsm1.CRT
ip: 192.168.1.101
- name: myHsm2
server_cert_location: https://user@PASSWORD:example.com/myHsm2.CRT
ip:ip: 192.168.1.102

NOTE
The atos_hsms parameter supersedes the parameters atos_hsm_ip_address

and atos_server_cert_location which have been deprecated and will be
removed in a future release.

Table 3.2. Heat parameters

Parameter Value

BarbicanSimpleCryptoGlobalDefault This is a Boolean that determines if
simplecrypto is the global default.

BarbicanPkcs11GlobalDefault This is a Boolean that determines if PKCS#11 is
the global default.

BarbicanPkcs11CryptoSlotld Slot ID for the Virtual HSM to be used by
Barbican.

ATOSVars

20

5RATING OPENSTACK KEY MANAGER (BARBICAN) WITH HARDWARE SECURITY MODULE (HSM) APPLIANCES

Parameter Value

atos_client_iso_name The filename for the Atos client software 1SO.

This value must match the filename in the URL
for the atos_client_iso_location parameter.

atos_client_iso_location The URL, including the username and password,

that specifies the HTTPS server location of the
Proteccio Client Software ISO image.

atos_client_cert_location The URL, including the username and password,

that specifies the HTTPS server location of the
SSL client certificate.

atos_client_key_location The URL, including the username and password,

that specifies the HTTPS server location of the
SSL client key. This must be the matching key
for the client certificate above.

atos_hsms A list of one or more HSMs that specifies the

name, certificate location and IP address of the
HSM. When you include more than one HSM in
this list, Barbican configures the HSMs for load
balancing and high availability.

2. Include the custom configure-barbican.yaml, barbican.yaml and ATOS specific barbican-
backend-pkcs11-atos.yaml environment files in the deployment command, as well as any other
environment files relevant to your deployment:

$ openstack overcloud deploy \

--timeout 100 \

--templates /usr/share/openstack-tripleo-heat-templates \

--stack overcloud \

--libvirt-type kvm \

--ntp-server clock.redhat.com \

-e /home/stack/containers-prepare-parameter.yaml \

-e /home/stack/templates/config_Ilvm.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
-e /home/stack/templates/network/network-environment.yaml \

-e /home/stack/templates/hostnames.yml \

-e /home/stack/templates/nodes_data.yaml \

-e /home/stack/templates/extra_templates.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/services/barbican.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/barbican-backend-pkcs11-

atos.yaml \

Verification

-e /home/stack/templates/configure-barbican.yaml \
--log-file overcloud_deployment_with_atos.log

1. Create a test secret:

21

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

$ openstack secret store --name testSecret --payload 'TestPayload'

+- + +

| Field | Value |

+- + +

| Secret href | https://192.168.123.163/key-manager/v1/secrets/4cc5ffe0-eea2-449d-9e64-
b664d574be53 |

| Name | testSecret |

| Created | None |

| Status | None |

| Content types | None |

| Algorithm | aes |

| Bit length | 256 |

| Secret type | opaque |

| Mode | cbc |

| Expiration | None |

+- + +

2. Retrieve the payload for the secret that you just created:

openstack secret get https://192.168.123.163/key-manager/v1/secrets/4cchffe0-eea2-449d-
9e64-b664d574be53 --payload

+- + +
| Field | Value |
+- + +
| Payload | TestPayload |
+- + +

3.2. INTEGRATING OPENSTACK KEY MANAGER (BARBICAN) WITH A
THALES LUNA NETWORK HSM

To integrate the PKCS#11 back end with your Thales Luna Network HSM appliance for hardware based
cryptographic processing, use an Ansible role to download and install the Thales Luna client software on

the Controller, and create a Key Manager configuration file to include the predefined HSM IP and
credentials.

Prerequisites

® A password-protected HTTPS server that provides vendor software for the Thales Luna
Network HSM.

® The vendor provided Luna Network HSM client software in a compressed zip archive.
Procedure
1. Install the ansible-role-lunasa-hsm role on the director:

I sudo dnf install ansible-role-lunasa-hsm

2. Create a configure-barbican.yaml environment file for Key Manager (barbican) and add
parameters specific to your environment.

parameter_defaults:
BarbicanPkcs11CryptoMKEKLabel: "barbican_mkek_0"

22

5RATING OPENSTACK KEY MANAGER (BARBICAN) WITH HARDWARE SECURITY MODULE (HSM) APPLIANCES

BarbicanPkcs11CryptoHMACLabel: "barbican_hmac_0"
BarbicanPkcs11CryptoLogin: "$PKCS_11_USER_PIN"
BarbicanPkcs11CryptoGlobalDefault: true
LunasaVars:
lunasa_client_tarball_name: 610-012382-014_SW_Client_ HSM_6.2_RevA.tar.zip
lunasa_client_tarball_location: https://user:$PASSWORD@http-
server.example.com/luna_software/610-012382-014_SW_Client HSM_6.2_RevA.tar.zip
lunasa_client_installer_path: 610-012382-
014 _SW _Client. HSM_6.2_RevA/linux/64/install.sh
lunasa_hsms:
- hostname: luna-hsm.example.com
admin_password: "$HSM_ADMIN_PASSWORD"
partition: myPartition1
partition_serial: 123456789

Table 3.3. Heat parameters

Parameter Value

BarbicanSimpleCryptoGlobalDefault This is a Boolean that determines if simplecrypto
is the global default.

BarbicanPkcsl1GlobalDefault This is a Boolean that determines if PKCS#11is
the global default.

BarbicanPkcs11CryptoTokenLabel If you have one HSM, then the value of the
parameter is the partition Label. If you are using
HA between two or more partitions, then this is
the label that you want to give to the HA group.

BarbicanPkcs11CryptoLogin The PKCS#11 password used to log into the
HSM, provided by the HSM administrator.

LunasaVar
lunasa_client_tarball_name The name of the Luna software tarball.
lunasa_client_tarball_location The URL that specifies the HTTPS server

location of the Luna Software tarball.

lunasa_client_installer_path Path to the install.sh script in the zipped tarball.

lunasa_client_rotate_cert (Optional) When set to true, new client
certificates will be generated to replace any
existing certificates. Default: false

lunasa_client_working_dir (Optional) Working directory in the Controller
nodes. Default: /tmp/lunasa_client_install

23

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

Parameter Value

lunasa_hsms A list of one or more HSMs that specifies the
name, hostname, admin_password, partition, and
partition serial number. When you include more
than one HSM in this list, Barbican configures the
HSMs for high availability.

3. Include the custom configure-barbican.yaml and Thales specific barbican-backend-pkcs11-
llunasa.yaml environment files in the deployment command, as well as any other templates
relevant for your deployment:

$ openstack overcloud deploy --templates \

-e /usr/share/openstack-tripleo-heat-templates/environments/services/barbican.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/barbican-backend-pkcs11-
lunasa.yaml\

-e /home/stack/templates/configure-barbican.yaml \

--log-file overcloud_deployment_with_luna.log

3.3. INTEGRATING OPENSTACK KEY MANAGER (BARBICAN) WITH AN
ENTRUST NSHIELD CONNECT XC HSM

To integrate the PKCS#11 back end with your Entrust nShield Connect XC HSM, use an Ansible role to
download and install the Entrust client software on the Controller, and create a Barbican configuration
file to include the predefined HSM IP and credentials.

Prerequisites

® A password-protected HTTPS server that provides vendor software for the Entrust nShield
Connect XC.

Procedure

1. Create a configure-barbican.yaml environment file for Barbican and add parameters specific
to your environment. Use the following snippet as an example:

parameter_defaults:

VerifyGlanceSignatures: true

SwiftEncryptionEnabled: true

BarbicanPkcs11CryptoLogin: 'sample string'

BarbicanPkcs11CryptoSlotld: '492971158"

BarbicanPkcs11CryptoGlobalDefault: true

BarbicanPkcs11CryptoLibraryPath: /opt/nfast/toolkits/pkcs11/libcknfast.so’

BarbicanPkcs11CryptoEncryptionMechanism: 'CKM_AES_CBC'

BarbicanPkcs11CryptoHMACKeyType: 'CKK_SHA256_HMAC'

BarbicanPkcs11CryptoHMACKeygenMechanism:
'CKM_NC_SHA256_HMAC_KEY_GEN'

BarbicanPkcs11CryptoMKEKLabel: 'barbican_mkek_10'

BarbicanPkcs11CryptoMKEKLength: '32'

BarbicanPkcs11CryptoHMACLabel: 'barbican_hmac_10'

24

5RATING OPENSTACK KEY MANAGER (BARBICAN) WITH HARDWARE SECURITY MODULE (HSM) APPLIANCES

BarbicanPkcs11CryptoThalesEnabled: true

BarbicanPkcs11CryptoEnabled: true

ThalesVars:

thales_client_working_dir: /tmp/thales_client_install

thales_client_tarball_location: https://your server/CipherTools-linux64-dev-12.40.2.t1gz
thales_client_tarball_name: CipherTools-linux64-dev-12.40.2.tgz

thales_client_path: linux/libc6_11/amd64/nfast

thales_client_uid: 42481
thales_client_gid: 42481

thales_km_data_location: https://your server/kmdata_post_card_creation.tar.gz
thales_km_data_tarball_name: kmdata_post_card_creation.tar.gz
thales_rfs_server_ip_address: 192.168.10.12

thales_hsm_config_location: hsm-C90E-02E0-D947

nShield _hsms:

- name: hsm-name.example.com

ip: 192.168.10.10
thales_rfs_user: root
thales_rfs_key: |

resource_registry:

OS::TripleO::Services::BarbicanBackendPkcs11Crypto: /home/stack/tripleo-heat-
templates/puppet/services/barbican-backend-pkcs11-crypto.yaml

Table 3.4. Heat parameters

Parameter Value

BarbicanSimpleCryptoGlobalDefault

BarbicanPkcs11GlobalDefault

BarbicanPkcs11CryptoSlotid

BarbicanPkcs11CryptoMKEKLabel

BarbicanPkcs11CryptoHMACLabel

thales_client_working_dir

This is a Boolean that determines if
simplecrypto is the global default.

This is a Boolean that determines if PKCS#11 is
the global default.

Slot ID for the Virtual HSM to be used by
Barbican.

This parameter defines the name of the mKEK
generated in the HSM. Director creates this key
in the HSM using this name.

This parameter defines the name of the HMAC
key generated in the HSM. Director creates this
key in the HSM using this name.

ThalesVars

A user-defined temporary working directory.

25

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

Parameter Value

thales_client_tarball_location The URL that specifies the HTTPS server
location of the Entrust software.

thales_km_data_tarball_name The name of the Entrust software tarball.

thales_rfs_key A private key used to obtain an SSH connection
to the RFS server. You must add this as an
authorized key to the RFS server.

2. Include the custom configure-barbican.yaml environment file, along with the barbican.yaml
and Thales specific barbican-backend-pkcs11-thales.yaml environment files, and any other
templates needed for you deployment when running the openstack overcloud deploy
command:

$ openstack overcloud deploy \

--timeout 100 \

--templates /usr/share/openstack-tripleo-heat-templates \

--stack overcloud \

--libvirt-type kvm \

--ntp-server clock.redhat.com \

-e /home/stack/containers-prepare-parameter.yaml \

-e /home/stack/templates/config_Ilvm.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \

-e /home/stack/templates/network/network-environment.yaml \

-e /home/stack/templates/hostnames.yml \

-e /home/stack/templates/nodes_data.yaml \

-e /home/stack/templates/extra_templates.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/services/barbican.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/barbican-backend-pkcs11-
thales.yaml \

-e /home/stack/templates/configure-barbican.yaml \

--log-file overcloud_deployment_with_atos.log

Verification

1. Create a test secret:

$ openstack secret store --name testSecret --payload 'TestPayload'

+ + +

| Field | Value |

+ + +

| Secret href | https://192.168.123.163/key-manager/v1/secrets/4cc5ffe0-eea2-449d-9e64-
b664d574be53 |

| Name | testSecret |

| Created | None |

| Status | None |

Content types	None
Algorithm	aes
Bit length	256
Secret type	opaque

26

5RATING OPENSTACK KEY MANAGER (BARBICAN) WITH HARDWARE SECURITY MODULE (HSM) APPLIANCES

| Mode | cbc |
| Expiration | None |
+ + +

2. Retrieve the payload for the secret that you just created:

openstack secret get https://192.168.123.163/key-manager/v1/secrets/4cc5ffe0-eea2-449d-
9e64-b664d574be53 --payload

+ + +
| Field | Value |
+ + +
| Payload | TestPayload |
+ + +

3.3.1. Load Balancing with Entrust nShield Connect

You can now enable load sharing on Entrust nShield Connect HSMs by specifying an array of valid
HSMs. When more than one HSMs are listed, load sharing is enabled.

This feature is available in this release as a Technology Preview, and therefore is not fully supported by
Red Hat. It should only be used for testing, and should not be deployed in a production environment.

For more information about Technology Preview features, see Scope of Coverage Details.

Procedure

® When configuring the name and ip parameters for your Entrust nShield Connect HSMs,
specifying more than one will enable load sharing:

parameter_defaults:
ThalesVars:
nshield_hsms:
- name: hsm-name1.example.com
ip: 192.168.10.10

- name: hsm-namz2.example.com
ip: 192.168.10.11

3.4.ROTATING MKEK AND HMAC KEYS

You can rotate the MKEK and HMAC keys using a director update.

NOTE

Due to a limitation in Barbican, the MKEK and HMAC have the same key type.

Procedure

1. Add the following parameter to your deployment environment files:

I BarbicanPkcs11CryptoRewrapKeys: true

27

https://access.redhat.com/support/offerings/production/scope_moredetail

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

2. Change the labels on the MKEK and HMAC keys For example, if your labels are similar to these:

BarbicanPkcs11CryptoMKEKLabel: 'barbican_mkek_10'
BarbicanPkcs11CryptoHMACLabel: 'barbican_hmac_10'

You can change the labels by incrementing the values:

BarbicanPkcs11CryptoMKEKLabel: 'barbican_mkek_11'
BarbicanPkcs11CryptoHMACLabel: 'barbican_hmac_11'

NOTE

Do not change the HMAC key type.

3. Re-deploy using director to apply the update. Director checks whether the keys that are labelled
for the MKEK and HMAC exist, and then creates them. In addition, with the
BarbicanPkcs11CryptoRewrapKeys parameter set to True, director calls barbican-manage
hsm pkek_rewrap to rewrap all existing pKEKSs.

28

CHAPTER 4. ENCRYPTING AND VALIDATING OPENSTACK SERVICES

CHAPTER 4. ENCRYPTING AND VALIDATING OPENSTACK
SERVICES

You can use barbican to encrypt and validate several Red Hat OpenStack Platform services, such as
Block Storage (cinder) encryption keys, Block Storage volume images, Object Storage (swift) objects,
and Image Service (glance) images.

IMPORTANT

Nova formats encrypted volumes during their first use if they are unencrypted. The
resulting block device is then presented to the Compute node.

Guidelines for containerized services

® Do not update any configuration file you might find on the physical node’s host operating
system, for example, /etc/cinder/cinder.conf. The containerized service does not reference this
file.

® Do not update the configuration file running within the container. Changes are lost once you
restart the container.

Instead, if you must change containerized services, update the configuration file in
/var/lib/config-data/puppet-generated/, which is used to generate the container.

For example:
o keystone: /var/lib/config-data/puppet-generated/keystone/etc/keystone/keystone.conf
o cinder: /var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf
o nova: /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf

Changes are applied after you restart the container.

4.1. ENCRYPTING OBJECT STORAGE (SWIFT) AT-REST OBJECTS

By default, objects uploaded to Object Storage (swift) are stored unencrypted. Because of this, it is
possible to access objects directly from the file system. This can present a security risk if disks are not
properly erased before they are discarded. When you have barbican enabled, the Object Storage service
(swift) can transparently encrypt and decrypt your stored (at-rest) objects. At-rest encryption is distinct
from in-transit encryption in that it refers to the objects being encrypted while being stored on disk.

Swift performs these encryption tasks transparently, with the objects being automatically encrypted
when uploaded to swift, then automatically decrypted when served to a user. This encryption and
decryption is done using the same (symmetric) key, which is stored in barbican.

NOTE

You cannot disable encryption after you have enabled encryption and added data to the
swift cluster, because the data is now stored in an encrypted state. Consequently, the
data will not be readable if encryption is disabled, until you re-enable encryption with the
same key.

Prerequisites

29

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

Procedure

® OpenStack Key Manager is installed and enabled

1. Include the SwiftEncryptionEnabled: True parameter in your environment file, then re-running
openstack overcloud deploy using /home/stack/overcloud_deploy.sh.

2. Confirm that swift is configured to use at-rest encryption:

$ crudini --get /var/lib/config-data/puppet-generated/swift/etc/swift/proxy-server.conf pipeline-
main pipeline

pipeline = catch_errors healthcheck proxy-logging cache ratelimit bulk tempurl formpost
authtoken keystone staticweb copy container_quotas account_quotas slo dlo
versioned_writes kms_keymaster encryption proxy-logging proxy-server

The result should include an entry for encryption.

4.2. ENCRYPTING BLOCK STORAGE (CINDER) VOLUMES

You can use barbican to manage your Block Storage (cinder) encryption keys. This configuration uses
LUKS to encrypt the disks attached to your instances, including boot disks. Key management is
transparent to the user; when you create a new volume using luks as the encryption type, cinder
generates a symmetric key secret for the volume and stores it in barbican. When booting the instance
(or attaching an encrypted volume), nova retrieves the key from barbican and stores the secret locally
as a Libvirt secret on the Compute node.

Procedure

30

1. On nodes running the cinder-volume and nova-compute services, confirm that nova and
cinder are both configured to use barbican for key management:

$ crudini --get /var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf
key_manager backend
castellan.key_manager.barbican_key_manager.BarbicanKeyManager

$ crudini --get /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf
key_manager backend
castellan.key_manager.barbican_key_manager.BarbicanKeyManager

2. Create a volume template that uses encryption. When you create new volumes they can be
modeled off the settings you define here:

$ openstack volume type create --encryption-provider
nova.volume.encryptors.luks.LuksEncryptor --encryption-cipher aes-xts-plain64 --encryption-
key-size 256 --encryption-control-location front-end LuksEncryptor-Template-256

+- -+

+
| Field | Value

+- -4

| description | None

CHAPTER 4. ENCRYPTING AND VALIDATING OPENSTACK SERVICES

| encryption | cipher='aes-xts-plain64', control_location="front-end', encryption_id='9df604d0-
8584-4ce8-b450-e13e6316c4d3', key_size='256',
provider='nova.volume.encryptors.luks.LuksEncryptor' |

|id | 78898a82-8f4c-44b2-a460-40a5da9e4d59

|

| is_public | True

|

| name | LuksEncryptor-Template-256

+ +

3. Create a new volume and specify that it uses the LuksEncryptor-Template-256 settings:

$ openstack volume create --size 1 --type LuksEncryptor-Template-256 'Encrypted-Test-

Volume'

+ + +

| Field | Value |

+ + +

| attachments [] |

| availability_zone | nova |

| bootable | false |

| consistencygroup_id | None |

| created_at | 2018-01-22T00:19:06.000000 |
| description | None |

| encrypted | True |

|id | a361fd0b-882a-46cc-a669-c633630b5¢93 |
| migration_status | None |

| multiattach | False |

| name | Encrypted-Test-Volume |

| properties | |

| replication_status | None |

| size | 1 |

| snapshot_id | None |

| source_volid | None |

| status | creating |

| type | LuksEncryptor-Template-256 |

| updated_at | None |

| user_id | 0e73cb3111614365a144e7f8f1a972af |
+ + +

The resulting secret is automatically uploaded to the barbican back end.

NOTE

Ensure that the user creating the encrypted volume has the creator barbican role
on the project. For more information, see the Grant user access to the creator
role section.

4. Obtain the barbican secret UUID. This value is displayed in the encryption_key_id field.

$ cinder --os-volume-api-version 3.64 volume show Encrypted-Test-Volume

+ + +
|Property |Value |
+ + +

31

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

32

|attached_servers I] |
|attachment_ids I] |
|availability_zone [nova |

|bootable [false |

|cluster_name [INone |
|consistencygroup_id [None |
|created_at |2022-07-28T17:35:26.000000 |
|description [INone |

encrypted	True
encryption_key_id	0944b8a8-de09-4413-b2ed-38f6¢c4591dd4
group_id	None

lid |a0b51b97-0392-460a-abfa-093022a120f13 |
|metadata | |
|migration_status [INone |
|multiattach |False |

[name |vol |
|os-vol-host-attr:host |[hostgroup@tripleo_iscsi#tripleo_iscsil

os-vol-mig-status-attr:migstat	None
os-vol-mig-status-attr:name_id	None
os-vol-tenant-attr:tenant_id	a2071ece39b3440aa82395ff7707996f

|provider_id [None |
[replication_status [INone |
service_uuid	471f0805-072e-4256-b447-c7dd10ceb807
shared_targets	False
size	1
snapshot_id [None	
source_volid [INone	
status	available
lupdated_at |2022-07-28T17:35:26.000000 |
luser_id |ba311b5¢c2b8e438c951d1137333669d4 |
[volume_type |[LUKS |
[volume_type_id |cc188ace-f73d-4af5-bf5a-d70ccc5a401c |
+ + +

NOTE

You must use the --os-volume-api-version 3.64 parameter with the Cinder CLI
to display the encryption_key_id value. There is no equivalent OpenStack CLI
command.

5. Use barbican to confirm that the disk encryption key is present. In this example, the timestamp
matches the LUKS volume creation time:

$ openstack secret list

+ +--mm-- et
+ + + + + +
Fommmmmmmees +
| Secret href | Name | Created | Status
| Content types | Algorithm | Bit length | Secret type | Mode | Expiration |
+ +--mm-- et
+ + + + + +
Fommmmmmmees +

| https://192.168.123.169:9311/v1/secrets/0944b8a8-de09-4413-b2ed-38f6¢c4591dd4 | None |
2018-01-22T02:23:15+00:00 | ACTIVE | {u'default’: u'application/octet-stream'} | aes |
256 | symmetric | None | None |

CHAPTER 4. ENCRYPTING AND VALIDATING OPENSTACK SERVICES

6. Attach the new volume to an existing instance. For example:
I $ openstack server add volume testinstance Encrypted-Test-Volume

The volume is then presented to the guest operating system and can be mounted using the
built-in tools.

4.2.1. Migrating Block Storage volumes to OpenStack Key Manager

If you previously used ConfKeyManager to manage disk encryption keys, you can migrate the volumes
to OpenStack Key Manager by scanning the databases for encryption_key _id entries within scope for
migration to barbican. Each entry gets a new barbican key ID and the existing ConfKeyManager secret
is retained.

NOTE

® Previously, you could reassign ownership for volumes encrypted using
ConfKeyManager. This is not possible for volumes that have their keys managed
by barbican.

® Activating barbican will not break your existing keymgr volumes.

Prerequisites

Before you migrate, review the following differences between Barbican-managed encrypted volumes
and volumes that use ConfKeyManager:

® You cannot transfer ownership of encrypted volumes, because it is not currently possible to
transfer ownership of the barbican secret.

® Barbican is more restrictive about who is allowed to read and delete secrets, which can affect

some cinder volume operations. For example, a user cannot attach, detach, or delete a different
user’s volumes.

Procedure

1. Deploy the barbican service.

2. Add the creator role to the cinder service. For example:

#openstack role create creator
#openstack role add --user cinder creator --project service

3. Restart the cinder-volume and cinder-backup services. The cinder-volume and cinder-
backup services automatically begin the migration process. You can check the log files to view
status information about the migration:

e cinder-volume - migrates keys stored in cinder’s Volumes and Snapshots tables.

e cinder-backup - migrates keys in the Backups table.

33

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

4. Monitor the logs for the message indicating migration has finished and check that no more
volumes are using the ConfKeyManager all-zeros encryption key ID.

5. Remove the fixed_key option from cinder.conf and nova.conf. You must determine which
nodes have this setting configured.

6. Remove the creator role from the cinder service.

Verification

® After you start the process, one of these entries appears in the log files. This indicates whether
the migration started correctly, or it identifies the issue it encountered:

o Not migrating encryption keys because the ConfKeyManager is still in use.
o Not migrating encryption keys because the ConfKeyManager's fixed_key is not in use.

o Not migrating encryption keys because migration to the 'XXX' key_manager backend
is not supported. - This message is unlikely to appear; it is a safety check to handle the
code ever encountering another Key Manager back end other than barbican. This is
because the code only supports one migration scenario: From ConfKeyManager to
barbican.

o Not migrating encryption keys because there are no volumes associated with this
host. - This can occur when cinder-volume is running on multiple hosts, and a particular
host has no volumes associated with it. This arises because every host is responsible for
handling its own volumes.

o Starting migration of ConfKeyManager keys.

o Migrating volume <UUID> encryption key to Barbican - During migration, all of the host's
volumes are examined, and if a volume is still using the ConfKeyManager's key ID (identified
by the fact that it's all zeros (00000000-0000-0000-0000-000000000000)), then this
message appears.

®m For cinder-backup, this message uses slightly different capitalization: Migrating
Volume [...] or Migrating Backup [...]

® After each host examines all of its volumes, the host displays a summary status message:

"No volumes are using the ConfKeyManager's encryption_key_id."
"No backups are known to be using the ConfKeyManager's encryption_key_id."

® You may also see the following entries:

o There are still %d volume(s) using the ConfKeyManager's all-zeros encryption key ID.

o There are still %d backup(s) using the ConfKeyManager’s all-zeros encryption key ID.
Both of these messages can appear in the cinder-volume and cinder-backup logs.
Whereas each service only handles the migration of its own entries, the service is aware of
the other’s status. As a result, cinder-volume knows if cinder-backup still has backups to
migrate, and cinder-backup knows if the cinder-volume service has volumes to migrate.

Although each host migrates only its own volumes, the summary message is based on a global

assessment of whether any volume still requires migration This allows you to confirm that migration for
all volumes is complete.

34

CHAPTER 4. ENCRYPTING AND VALIDATING OPENSTACK SERVICES

Cleanup

After migrating your key IDs into barbican, the fixed key remains in the configuration files. This can
present a security concern to some users, because the fixed_key value is not encrypted in the .conf
files.

To address this, you can manually remove the fixed_key values from your nova and cinder
configurations. However, first complete testing and review the output of the log file before you
proceed, because disks that are still dependent on this value are not accessible.

IMPORTANT

The encryption_key_id was only recently added to the Backup table, as part of the
Queens release. As a result, pre-existing backups of encrypted volumes are likely to exist.
The all-zeros encryption_key _idis stored on the backup itself, but it does not appear in
the Backup database. As such, it is impossible for the migration process to know for
certain whether a backup of an encrypted volume exists that still relies on the all-zeros
ConfKeyMgr key ID.

1. Review the existing fixed_key values. The values must match for both services.

crudini --get /var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf keymgr
fixed_key

crudini --get /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf keymgr
fixed_key

IMPORTANT

Make a backup of the existing fixed_key values. This allows you to restore the
value if something goes wrong, or if you need to restore a backup that uses the
old encryption key.

2. Delete the fixed_key values:

crudini --del /var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf keymgr
fixed_key

crudini --del /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf keymgr
fixed_key

Troubleshooting

The barbican secret can only be created when the requestor has the creator role. This means that the
cinder service itself requires the creator role, otherwise a log sequence similar to this will occur:

1. Starting migration of ConfKeyManager keys.
2. Migrating volume <UUID> encryption key to Barbican

3. Error migrating encryption key: Forbidden: Secret creation attempt not allowed - please
review your user/project privileges

4. There are still %d volume(s) using the ConfKeyManager's all-zeros encryption key ID.

The key message is the third one: Secret creation attempt not allowed. To fix the problem, update the
cinder account's privileges:

35

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

1. Run openstack role add --project service --user cinder creator
2. Restart the cinder-volume and cinder-backup services.

As a result, the next attempt at migration should succeed.

4.3. VALIDATING BLOCK STORAGE (CINDER) VOLUME IMAGES

The Block Storage Service (cinder) automatically validates the signature of any downloaded, signed
image during volume from image creation. The signature is validated before the image is written to the
volume. To improve performance, you can use the Block Storage Image-Volume cache to store
validated images for creating new volumes.

NOTE

Cinder image signature validation is not supported with Red Hat Ceph Storage or RBD
volumes.

Procedure
1. Login to a Controller node.
2. Choose one of the following options:

® \View cinder’s image validation activities in the Volume log,
/var/log/containers/cinder/cinder-volume.log.
For example, you can expect the following entry when the instance is booted:

2018-05-24 12:48:35.256 1 INFO cinder.image.image_ utils [req-7¢c271904-4975-4771-
9d26-cbeabcOade31 b464b2fd2a2140e9a88bbdacf67bdd8c
a3db2f2beaee454182c95b646fa7331f - default default] Image signature verification
succeeded for image d3396fa0-2ea2-4832-8a77-d36fa3f2ab27

® Use the openstack volume list and cinder volume show commands:

a. Use the openstack volume list command to locate the volume ID.

b. Run the cinder volume show command on a compute node:
I cinder volume show <VOLUME_ID>
3. Locate the volume_image_metadata section with the line signature verified : True.

$ cinder show d0db26bb-449d-4111-a59a-6fbb080bb483

+- + +

| Property | Value |

+- + +

| attached_servers [] |

| attachment_ids [] |

| availability_zone | nova |

| bootable | true |

| consistencygroup_id | None |

| created_at | 2018-10-12T719:04:41.000000 |
| description | None |

36

CHAPTER 4. ENCRYPTING AND VALIDATING OPENSTACK SERVICES

| encrypted | True |

|id | d0db26bb-449d-4111-a59a-6fbb080bb483

| metadata | |

| migration_status | None |

| multiattach | False |

| name | None |

| os-vol-host-attr:host | centstack.localdomain@nfs#nfs |

| os-vol-mig-status-attr:migstat | None |
| os-vol-mig-status-attr:name_id | None |
| os-vol-tenant-attr:tenant_id | 1a081dd2505547f5a8bb1a230f2295f4

| replication_status | None |

| size | 1 |

| snapshot_id | None |

| source_volid | None |

| status | available |

| updated_at | 2018-10-12T19:05:13.000000 |

| user_id | ad9fe430b3a6416f908c79e4de3bfa98 |

| volume_image_metadata | checksum : f8ab98ff5e73ebab884d80c9dc9c7290 |

| | container_format : bare |

| | disk_format : gcow2 |

| | image_id : 154d4d4b-12bf-41dc-b7c4-35e5a6a3482a |
| | image_name : cirros-0.3.5-x86_64-disk |

| | min_disk : 0 |

| | min_ram : 0 |

| | signature_verified : False |

| | size : 13267968 |

| volume_type | nfs |

+ + +

NOTE

Snapshots are saved as Image service (glance) images. If you configure the Compute
service (nova) to check for signed images, then you must manually download the image
from glance, sign the image, and then re-upload the image. This is true whether the
snapshot is from an instance created with signed images, or an instance booted from a
volume created from a signed image.

NOTE

A volume can be uploaded as an Image service (glance) image. If the original volume was
bootable, the image can be used to create a bootable volume in the Block Storage
service (cinder). If you have configured the Block Storage service to check for signed
images then you must manually download the image from glance, compute the image
signature and update all appropriate image signature properties before using the image.
For more information, see Section 4.5, “Validating snapshots”.

Additional resources

® Configuring the Block Storage service (cinder)

4.3.1. Automatic deletion of volume image encryption key

The Block Storage service (cinder) creates an encryption key in the Key Management service (barbican)
when it uploads an encrypted volume to the Image service (glance). This creates a 1:1 relationship
between an encryption key and a stored image.

37

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_persistent_storage/assembly_configuring-the-block-storage-service_osp-storage-guide

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

Encryption key deletion prevents unlimited resource consumption of the Key Management service. The
Block Storage, Key Management, and Image services automatically manage the key for an encrypted
volume, including the deletion of the key.

The Block Storage service automatically adds two properties to a volume image:

e cinder_encryption_key_id - The identifier of the encryption key that the Key Management
service stores for a specific image.

e cinder_encryption_key deletion_policy - The policy that tells the Image service to tell the
Key Management service whether to delete the key associated with this image.

IMPORTANT

The values of these properties are automatically assigned. To avoid unintentional data
loss, do not adjust these values.

When you create a volume image, the Block Storage service sets the
cinder_encryption_key_deletion_policy property to on_image_deletion. When you delete a volume
image, the Image service deletes the corresponding encryption key if the
cinder_encryption_key_deletion_policy equals on_image_deletion.

IMPORTANT

Red Hat does not recommend manual manipulation of the cinder_encryption_key _id or
cinder_encryption_key_deletion_policy properties. If you use the encryption key that
is identified by the value of cinder_encryption_key_id for any other purpose, you risk
data loss.

4.4. SIGNING IMAGE SERVICE (GLANCE) IMAGES

When you configure the Image Service (glance) to verify that an uploaded image has not been
tampered with, you must sign images before you can start an instance using those images. Use the
openssl command to sign an image with a key that is stored in barbican, then upload the image to
glance with the accompanying signing information. As a result, the image's signature is verified before
each use, with the instance build process failing if the signature does not match.

Prerequisites

® OpenStack Key Manager is installed and enabled

Procedure

1. In your environment file, enable image verification with the VerifyGlanceSignatures: True
setting. You must re-run the openstack overcloud deploy command for this setting to take
effect.

2. To verify that glance image validation is enabled, run the following command on an overcloud
Compute node:

$ sudo crudini --get /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf
glance verify_glance_signatures

38

CHAPTER 4. ENCRYPTING AND VALIDATING OPENSTACK SERVICES

NOTE

If you use Ceph as the back end for the Image and Compute services, a CoW
clone is created. Therefore, Image signing verification cannot be performed.

3. Confirm that glance is configured to use barbican:

$ sudo crudini --get /var/lib/config-data/puppet-generated/glance_api/etc/glance/glance-
api.conf key_manager backend
castellan.key_manager.barbican_key_manager.BarbicanKeyManager

4. Generate a certificate:

openssl genrsa -out private_key.pem 1024

openssl rsa -pubout -in private_key.pem -out public_key.pem

openssl req -new -key private_key.pem -out cert_request.csr

openssl x509 -req -days 14 -in cert_request.csr -signkey private_key.pem -out
x509_signing_cert.crt

5. Add the certificate to the barbican secret store:
$ source ~/overcloudrc
$ openstack secret store --name signing-cert --algorithm RSA --secret-type certificate --
payload-content-type "application/octet-stream" --payload-content-encoding base64 --

payload "$(base64 x509_signing_cert.crt)" -c 'Secret href' -f value
https://192.168.123.170:9311/v1/secrets/5df14c2b-f221-4a02-948e-48a61edd3f5b

NOTE

Record the resulting UUID for use in a later step. In this example, the certificate's
UUID is 5df14c2b-f221-4a02-948e-48a61edd3f5b.

6. Use private_key.pem to sign the image and generate the .signature file. For example:

$ openssl dgst -sha256 -sign private_key.pem -sigopt rsa_padding_mode:pss -out cirros-
0.4.0.signature cirros-0.4.0-x86_64-disk.img

7. Convert the resulting .signature file into base64 format:

I $ base64 -w 0 cirros-0.4.0.signature > cirros-0.4.0.signature.b64

8. Load the base64 value into a variable to use it in the subsequent command:

I $ cirros_signature_b64=$(cat cirros-0.4.0.signature.b64)

9. Upload the signed image to glance. For img_signature_certificate_uuid, you must specify the
UUID of the signing key you previously uploaded to barbican:

openstack image create \

--container-format bare --disk-format gcow2 \

--property img_signature="$cirros_signature_b64" \

--property img_signature_certificate_uuid="5df14c2b-f221-4a02-948e-48a61edd3f5b"\

39

Red Hat OpenStack Platform 17.1 Managing secrets with the Key Manager service

--property img_signature_hash_method="SHA-256" \
--property img_signature_key_type="RSA-PSS" cirros_0_4 0_signed \
--file cirros-0.4.0-x86_64-disk.img

+ +

-+

| Property | Value |

+ +

-+

| checksum | None |

| container_format | bare |

| created_at | 2018-01-23T05:37:31Z |

| disk_format | gcow?2 |

|id | d3396fa0-2ea2-4832-8a77-d36fa3f2ab27 |

| img_signature |
Icl7nGgoKxnCyOcsJ4abbEZEpzXByFPIgiPeiT+0tjz0yvWOOKNN3fIOAAGtN9EXrp7fo2xBDE4Ua
O3v |

| |
IFquV/s3mU4LcCiGdBAI3pGsMImZZIQFVNcUPOaayS1kQYKY7kxYmU9ig/AZYyPw37KQI52s
mC/zo054 |

| | zZ+JpnfwisM= |

| img_signature_certificate_uuid | ba3641c2-6a3d-445a-8543-851a68110eab

|
| img_signature_hash_method | SHA-256 |

| img_signature_key_type | RSA-PSS |
| min_disk |0 |

| min_ram |0 |

| name | cirros_0_4 0_signed |
| owner | 9f812310df904e6eal1ei1bacb84c9f1a

|

| protected | False |

| size | None |

| status | queued |

| tags I |

| updated_at | 2018-01-23T05:37:31Z

| virtual_size | None |

| visibility | shared |

+ +

-+

10. You can view glance’s image validation activities in the Compute log:
/var/log/containers/nova/nova-compute.log. For example, you can expect the following entry
when the instance is booted:

2018-05-24 12:48:35.256 1 INFO nova.image.glance [req-7c271904-4975-4771-9d26-
cbeabcOade31 b464b2fd2a2140e9a88bbdacf67bdd8c a3db2f2beace454182c95b646fa7331f
- default default] Image signature verification succeeded for image d3396fa0-2ea2-4832-
8a77-d36fa3f2ab27

4.5. VALIDATING SNAPSHOTS

Snapshots are saved as Image service (glance) images. If you configure the Compute service (nova) to
check for signed images, then snapshots must by signed, even if they were created from an instance with
a signed image.

40

CHAPTER 4. ENCRYPTING AND VALIDATING OPENSTACK SERVICES

Procedure

1. Download the snapshot from glance

I openstack image save --file <local-file-name> <image-name>

2. Generate to signature to validate the snapshot. This is the same process you use when you
generate a signature to validate any image. For more information, see Validating Image Service
(glance) images.

3. Update the image properties:

openstack image set \
--property img_signature="$cirros_signature_b64" \
--property img_signature_certificate_uuid="5df14c2b-f221-4a02-948e-48a61edd3f5b" \
--property img_signature_hash_method="SHA-256" \
--property img_signature_key_type="RSA-PSS"\
<image_id_of_the_snapshot>

4. Optional: Remove the downloaded glance image from the filesystem:

I rm <local-file-name>

41

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. DEPLOYING AND CONFIGURING OPENSTACK KEY MANAGER (BARBICAN)
	1.1. OPENSTACK KEY MANAGER WORKFLOW
	1.2. OPENSTACK KEY MANAGER ENCRYPTION TYPES
	1.2.1. Configuring multiple encryption mechanisms

	1.3. DEPLOYING KEY MANAGER
	1.4. VIEWING KEY MANAGER POLICIES

	CHAPTER 2. MANAGING SECRETS AND KEYS WITH OPENSTACK KEY MANAGER (BARBICAN)
	2.1. VIEWING SECRETS
	2.2. CREATING A SECRET
	2.3. ADDING A PAYLOAD TO A SECRET
	2.4. DELETING A SECRET
	2.5. GENERATING A SYMMETRIC KEY
	2.6. BACKING UP SIMPLE CRYPTO ENCRYPTION KEYS
	2.7. RESTORING SIMPLE CRYPTO ENCRYPTION KEYS FROM A BACKUP

	CHAPTER 3. INTEGRATING OPENSTACK KEY MANAGER (BARBICAN) WITH HARDWARE SECURITY MODULE (HSM) APPLIANCES
	3.1. INTEGRATING OPENSTACK KEY MANAGER (BARBICAN) WITH AN ATOS HSM
	3.2. INTEGRATING OPENSTACK KEY MANAGER (BARBICAN) WITH A THALES LUNA NETWORK HSM
	3.3. INTEGRATING OPENSTACK KEY MANAGER (BARBICAN) WITH AN ENTRUST NSHIELD CONNECT XC HSM
	3.3.1. Load Balancing with Entrust nShield Connect

	3.4. ROTATING MKEK AND HMAC KEYS

	CHAPTER 4. ENCRYPTING AND VALIDATING OPENSTACK SERVICES
	4.1. ENCRYPTING OBJECT STORAGE (SWIFT) AT-REST OBJECTS
	4.2. ENCRYPTING BLOCK STORAGE (CINDER) VOLUMES
	4.2.1. Migrating Block Storage volumes to OpenStack Key Manager

	4.3. VALIDATING BLOCK STORAGE (CINDER) VOLUME IMAGES
	4.3.1. Automatic deletion of volume image encryption key

	4.4. SIGNING IMAGE SERVICE (GLANCE) IMAGES
	4.5. VALIDATING SNAPSHOTS

