
Red Hat OpenStack Platform 17.1

Hardening Red Hat OpenStack Platform

Good Practices, Compliance, and Security Hardening

Last Updated: 2024-03-01

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

Good Practices, Compliance, and Security Hardening

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides good practice advice and conceptual information about hardening the security
of a Red Hat OpenStack Platform environment.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCTION TO SECURITY
1.1. RED HAT OPENSTACK PLATFORM SECURITY
1.2. UNDERSTANDING THE RED HAT OPENSTACK PLATFORM ADMIN ROLE
1.3. IDENTIFYING SECURITY ZONES IN RED HAT OPENSTACK PLATFORM
1.4. LOCATING SECURITY ZONES IN RED HAT OPENSTACK PLATFORM
1.5. CONNECTING SECURITY ZONES
1.6. THREAT MITIGATION

CHAPTER 2. SECURITY ENHANCEMENTS
2.1. USING SECURE ROOT USER ACCESS
2.2. ADDING SERVICES TO THE OVERCLOUD FIREWALL
2.3. REMOVING SERVICES FROM THE OVERCLOUD FIREWALL
2.4. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) STRINGS
2.5. USING THE OPEN VSWITCH FIREWALL

CHAPTER 3. DOCUMENTING YOUR RHOSP ENVIRONMENT
3.1. DOCUMENTING THE SYSTEM ROLES
3.2. CREATING A HARDWARE INVENTORY
3.3. CREATING A SOFTWARE INVENTORY

CHAPTER 4. IDENTITY AND ACCESS MANAGEMENT
4.1. RED HAT OPENSTACK PLATFORM FERNET TOKENS
4.2. OPENSTACK IDENTITY SERVICE ENTITIES
4.3. AUTHENTICATING WITH KEYSTONE
4.4. USING IDENTITY SERVICE HEAT PARAMETERS TO STOP INVALID LOGIN ATTEMPTS
4.5. AUTHENTICATING WITH EXTERNAL IDENTITY PROVIDERS

4.5.1. How LDAP integration works

CHAPTER 5. SECURING RED HAT OPENSTACK DEPLOYMENTS WITH TLS AND PKI
5.1. COMPONENTS OF PUBLIC KEY INFRASTRUCTURE (PKI)
5.2. CERTIFICATE AUTHORITY REQUIREMENTS AND RECOMMENDATIONS
5.3. IDENTIFYING TLS VERSIONS IN YOUR ENVIRONMENT
5.4. IDENTITY MANAGEMENT (IDM) SERVER RECOMMENDATIONS FOR OPENSTACK
5.5. IMPLEMENTING TLS-E WITH ANSIBLE
5.6. PARAMETERS FOR TRIPLEO-IPA
5.7. ENCRYPTING MEMCACHED TRAFFIC UNDER TLS EVERYWHERE (TLS-E)
5.8. INCREASING THE SIZE OF PRIVATE KEYS
5.9. REPLACING THE IDM SERVER FOR RED HAT OPENSTACK PLATFORM WITH ITS REPLICA

CHAPTER 6. CONFIGURING CUSTOM SSL/TLS CERTIFICATES
6.1. INITIALIZING THE SIGNING HOST
6.2. CREATING A CERTIFICATE AUTHORITY
6.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
6.4. CREATING AN SSL/TLS KEY
6.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
6.6. CREATING THE SSL/TLS CERTIFICATE
6.7. ADDING THE CERTIFICATE TO THE UNDERCLOUD

CHAPTER 7. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

7

8

9
9
9

10
11
11

12

13
13
13
14
15
16

18
18
19

20

22
22
22
22
23
24
24

26
26
27
27
29
30
33
34
34
35

36
36
36
37
37
37
38
39

41

Table of Contents

1

. .

. .

. .

. .

. .

. .

7.1. ENABLING SSL/TLS
7.2. INJECTING A ROOT CERTIFICATE
7.3. CONFIGURING DNS ENDPOINTS
7.4. ADDING ENVIRONMENT FILES DURING OVERCLOUD CREATION
7.5. MANUALLY UPDATING SSL/TLS CERTIFICATES

CHAPTER 8. USING FERNET KEYS FOR ENCRYPTION IN THE OVERCLOUD
8.1. REVIEWING THE FERNET DEPLOYMENT

CHAPTER 9. FEDERAL INFORMATION PROCESSING STANDARD ON RED HAT OPENSTACK PLATFORM

9.1. ENABLING FIPS

CHAPTER 10. IMPROVING USER ACCESS SECURITY
10.1. SRBAC PERSONAS

10.1.1. Red Hat OpenStack Platform SRBAC roles
10.1.2. Red Hat OpenStack Platform SRBAC scope
10.1.3. Red Hat OpenStack Platform SRBAC personas

10.2. ACTIVATING SECURE ROLE-BASED ACCESS CONTROL
10.3. ASSIGNING ROLES IN AN SRBAC ENVIRONMENT

CHAPTER 11. POLICIES
11.1. REVIEWING EXISTING POLICIES
11.2. UNDERSTANDING SERVICE POLICIES
11.3. POLICY SYNTAX
11.4. USING POLICY FILES FOR ACCESS CONTROL
11.5. EXAMPLE: LIMITING ACCESS BASED ON ATTRIBUTES
11.6. MODIFYING POLICIES WITH HEAT
11.7. AUDITING YOUR USERS AND ROLES
11.8. AUDITING API ACCESS

CHAPTER 12. NETWORK TIME PROTOCOL
12.1. WHY CONSISTENT TIME IS IMPORTANT
12.2. NTP DESIGN

CHAPTER 13. HARDENING INFRASTRUCTURE AND VIRTUALIZATION
13.1. HARWARE FOR RED HAT OPENSTACK PLATFORM
13.2. SOFTWARE UPDATES IN A CLOUD ENVIRONMENT
13.3. UPDATING SSH KEYS IN YOUR OPENSTACK ENVIRONMENT
13.4. LIMITING HARDWARE AND SOFTWARE FEATURES
13.5. SELINUX ON RED HAT OPENSTACK PLATFORM
13.6. INVESTIGATING CONTAINERIZED SERVICES
13.7. MAKING TEMPORARY CHANGES TO CONTAINERIZED SERVICES
13.8. MAKING PERMANENT CHANGES TO CONTAINERIZED SERVICES
13.9. FIRMWARE UPDATES
13.10. USE SSH BANNER TEXT
13.11. AUDIT FOR SYSTEM EVENTS
13.12. MANAGE FIREWALL RULES
13.13. INTRUSION DETECTION WITH AIDE

13.13.1. Using complex AIDE rules
13.13.2. Additional AIDE values
13.13.3. Cron configuration for AIDE
13.13.4. Considering the effect of system upgrades

13.14. REVIEW SECURETTY
13.15. CADF AUDITING FOR IDENTITY SERVICE

41
42
43
44
44

46
46

48
48

51
51
51
51
51
52
52

54
54
54
55
55
57
58
59
60

62
62
62

63
63
63
63
64
65
65
66
67
67
67
68
68
70
71
71
72
72
72
72

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

2

. .

. .

. .

. .

. .

13.16. REVIEW THE LOGIN.DEFS VALUES

CHAPTER 14. HARDENING THE DASHBOARD SERVICE
14.1. DEBUGGING THE DASHBOARD SERVICE
14.2. SELECTING A DOMAIN NAME
14.3. CONFIGURE ALLOWED_HOSTS
14.4. CROSS SITE SCRIPTING (XSS)
14.5. CROSS SITE REQUEST FORGERY (CSRF)
14.6. ALLOW IFRAME EMBEDDING
14.7. USING HTTPS ENCRYPTION FOR DASHBOARD TRAFFIC
14.8. HTTP STRICT TRANSPORT SECURITY (HSTS)
14.9. FRONT-END CACHING
14.10. SESSION BACKEND
14.11. REVIEWING THE SECRET KEY
14.12. CONFIGURING SESSION COOKIES
14.13. STATIC MEDIA
14.14. VALIDATING PASSWORD COMPLEXITY
14.15. ENFORCE THE ADMINISTRATOR PASSWORD CHECK
14.16. DISABLE PASSWORD REVEAL
14.17. DISPLAYING A LOGON BANNER FOR THE DASHBOARD
14.18. LIMITING THE SIZE OF FILE UPLOADS

CHAPTER 15. HARDENING THE NETWORKING SERVICE
15.1. PROJECT NETWORK SERVICES WORKFLOW
15.2. NETWORKING RESOURCE POLICY ENGINE
15.3. SECURITY GROUPS
15.4. MITIGATE ARP SPOOFING
15.5. USE A SECURE PROTOCOL FOR AUTHENTICATION

CHAPTER 16. HARDENING BLOCK STORAGE ON RED HAT OPENSTACK PLATFORM
16.1. SET THE MAX SIZE FOR THE BODY OF A REQUEST
16.2. ENABLE VOLUME ENCRYPTION
16.3. VOLUME WIPING

CHAPTER 17. HARDENING THE SHARED FILE SYSTEM (MANILA)
17.1. SECURITY CONSIDERATIONS FOR MANILA
17.2. NETWORK AND SECURITY MODELS FOR MANILA
17.3. SHARE BACKEND MODES
17.4. NETWORKING REQUIREMENTS FOR MANILA
17.5. SECURITY SERVICES WITH MANILA
17.6. INTRODUCTION TO SECURITY SERVICES
17.7. SECURITY SERVICES MANAGEMENT
17.8. SHARE ACCESS CONTROL
17.9. SHARE TYPE ACCESS CONTROL
17.10. POLICIES

CHAPTER 18. OBJECT STORAGE
18.1. NETWORK SECURITY
18.2. RUN SERVICES AS NON-ROOT USER
18.3. FILE PERMISSIONS
18.4. SECURING STORAGE SERVICES
18.5. OBJECT STORAGE ACCOUNT TERMINOLOGY
18.6. SECURING PROXY SERVICES
18.7. HTTP LISTENING PORT

73

74
74
74
74
75
75
75
75
76
76
76
77
77
77
77
78
78
79
80

82
82
82
82
82
83

84
84
84
84

85
85
86
86
87
88
88
88
90
91

93

94
95
96
96
96
97
97
97

Table of Contents

3

. .

. .

. .

. .

. .

18.8. LOAD BALANCER
18.9. OBJECT STORAGE AUTHENTICATION
18.10. ENCRYPT AT-REST SWIFT OBJECTS
18.11. ADDITIONAL ITEMS

CHAPTER 19. MONITORING AND LOGGING
19.1. HARDEN THE MONITORING INFRASTRUCTURE
19.2. EXAMPLE EVENTS TO MONITOR

CHAPTER 20. DATA PRIVACY FOR PROJECTS
20.1. DATA RESIDENCY
20.2. DATA DISPOSAL

20.2.1. Data not securely erased
20.2.2. Instance memory scrubbing

20.3. ENCRYPTING CINDER VOLUME DATA
20.4. IMAGE SERVICE DELAY DELETE FEATURES
20.5. COMPUTE SOFT DELETE FEATURES
20.6. SECURITY HARDENING FOR BARE METAL PROVISIONING
20.7. HARDWARE IDENTIFICATION
20.8. DATA ENCRYPTION

20.8.1. Volume encryption
20.8.2. Object Storage objects
20.8.3. Block Storage performance and back ends
20.8.4. Network data

20.9. KEY MANAGEMENT

CHAPTER 21. MANAGING INSTANCE SECURITY
21.1. SUPPLYING ENTROPY TO INSTANCES
21.2. SCHEDULING INSTANCES TO NODES
21.3. USING TRUSTED IMAGES
21.4. CREATING IMAGES
21.5. VERIFYING IMAGE SIGNATURES
21.6. MIGRATING INSTANCES

21.6.1. Live migration risks
21.6.2. Disable live migration
21.6.3. Encrypted live migration

21.7. MONITORING, ALERTING, AND REPORTING
21.8. UPDATES AND PATCHES
21.9. FIREWALLS AND INSTANCE PROFILES
21.10. SECURITY GROUPS
21.11. ACCESSING THE INSTANCE CONSOLE
21.12. CERTIFICATE INJECTION

CHAPTER 22. MESSAGE QUEUING
22.1. MESSAGING TRANSPORT SECURITY

22.1.1. RabbitMQ server SSL configuration
22.2. QUEUE AUTHENTICATION AND ACCESS CONTROL
22.3. OPENSTACK SERVICE CONFIGURATION FOR RABBITMQ
22.4. OPENSTACK SERVICE CONFIGURATION FOR QPID
22.5. MESSAGE QUEUE PROCESS ISOLATION AND POLICY
22.6. NAMESPACES

CHAPTER 23. SECURING ENDPOINTS IN RED HAT OPENSTACK PLATFORM
23.1. INTERNAL API COMMUNICATIONS

97
98
98
98

99
99
99

101
101
101
102
102
102
103
103
103
103
103
104
104
105
105
105

106
106
106
107
108
108
109
109
109
110
110
110
110
111
111
111

113
113
113
114
114
114
115
115

116
116

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

4

. .

23.2. CONFIGURE INTERNAL URLS IN THE IDENTITY SERVICE CATALOG
23.3. CONFIGURE APPLICATIONS FOR INTERNAL URLS
23.4. PASTE AND MIDDLEWARE
23.5. SECURE METADEF APIS
23.6. ENABLING METADEF API ACCESS FOR CLOUD USERS
23.7. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY
23.8. NETWORK POLICY
23.9. MANDATORY ACCESS CONTROLS
23.10. API ENDPOINT RATE-LIMITING

CHAPTER 24. IMPLEMENTING FEDERATION
24.1. FEDERATE WITH IDM USING RED HAT SINGLE SIGN-ON
24.2. THE FEDERATION WORKFLOW

116
116
116
117
117
118
119
119
119

121
121
121

Table of Contents

5

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

6

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

7

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue

3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

4. Click Create.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

8

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. INTRODUCTION TO SECURITY
Use the tools provided with Red Hat Openstack Platform (RHOSP) to prioritize security in planning, and
in operations, to meet users' expectations of privacy and the security of their data. Failure to implement
security standards can lead to downtime or data breaches. Your use case might be subject to laws that
require passing audits and compliance processes.

For information about hardening Ceph, see Data security and hardening guide .

NOTE

Follow the instructions in this guide to harden the security of your environment. However,
these recommendations do not guarantee security or compliance. You must assess
security from the unique requirements of your environment.

1.1. RED HAT OPENSTACK PLATFORM SECURITY

By default, Red Hat OpenStack Platform (RHOSP) director creates the overcloud with the following
tools and access controls for security:

SElinux

SELinux provides security enhancement for RHOSP by providing access controls that require each
process to have explicit permissions for every action.

Podman

Podman as a container tool is a secure option for RHOSP as it does not use a client/server model
that requires processes with root access to function.

System access restriction

You can only log into overcloud nodes using either the SSH key that director creates for tripleo-
admin during the overcloud deployment, or a SSH key that you have created on the overcloud. You
cannot use SSH with a password to log into overcloud nodes, or log into overcloud nodes using root.

You can configure director with the following additional security features based on the needs and trust
level of your organization:

Public TLS and TLS-everywhere

Hardware security module integration with OpenStack Key Manager (barbican)

Signed images and encrypted volumes

Password and fernet key rotation using workflow executions

1.2. UNDERSTANDING THE RED HAT OPENSTACK PLATFORM ADMIN
ROLE

When you assign a user the role of admin, this user has permissions to view, change, create, or delete
any resource on any project. This user can create shared resources that are accessible across projects,
such as publicly available glance images, or provider networks. Additionally, a user with the admin role
can create or delete users and manage roles.

The project to which you assign a user the admin role is the default project in which openstack
commands are executed. For example, if an admin user in a project named development runs the
following command, a network called internal-network is created in the development project:

CHAPTER 1. INTRODUCTION TO SECURITY

9

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/5/html-single/data_security_and_hardening_guide/index

openstack network create internal-network

The admin user can create an internal-network in any project by using the --project parameter:

openstack network create internal-network --project testing

1.3. IDENTIFYING SECURITY ZONES IN RED HAT OPENSTACK
PLATFORM

Security zones are resources, applications, networks and servers that share common security concerns.
Design security zones so to have common authentication and authorization requirements, and users.
You can define your own security zones to be as granular as needed based on the architecture of your
cloud, the level of acceptable trust in your environment, and your organization’s standardized
requirements. The zones and their trust requirements can vary depending upon whether the cloud
instance is public, private, or hybrid.

For example, a you can segment a default installation of Red Hat OpenStack Platform into the following
zones:

Table 1.1. Security zones

Zone Networks Details

Public external The public zone hosts the external
networks, public APIs, and
floating IP addresses for the
external connectivity of instances.
This zone allows access from
networks outside of your
administrative control and is an
untrusted area of the cloud
infrastructure.

Guest tenant The guest zone hosts project
networks. It is untrusted for public
and private cloud providers that
allow unrestricted access to
instances.

Storage access storage, storage_mgmt The storage access zone is for
storage management, monitoring
and clustering, and storage
traffic.

Control ctlplane, internal_api, ipmi The control zone also includes the
undercloud, host operating
system, server hardware, physical
networking, and the Red Hat
OpenStack Platform director
control plane.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

10

1.4. LOCATING SECURITY ZONES IN RED HAT OPENSTACK
PLATFORM

Run the following commands to collect information on the physical configuration of your Red Hat
OpenStack Platform deployment:

Prerequisites

You have an installed Red Hat OpenStack Platform environment.

You are logged into the director as stack.

Procedure

1. Source stackrc:

$ source /home/stack/stackrc

2. Run openstack subnet list to match the assigned ip networks to their associated zones:

openstack subnet list -c Name -c Subnet
+---------------------+------------------+
| Name | Subnet |
+---------------------+------------------+
ctlplane-subnet	192.168.101.0/24
storage_mgmt_subnet	172.16.105.0/24
tenant_subnet	172.16.102.0/24
external_subnet	10.94.81.0/24
internal_api_subnet	172.16.103.0/24
storage_subnet	172.16.104.0/24
+---------------------+------------------+

3. Run openstack server list to list the physical servers in your infrastructure:

openstack server list -c Name -c Networks
+-------------------------+-------------------------+
| Name | Networks |
+-------------------------+-------------------------+
overcloud-controller-0	ctlplane=192.168.101.15
overcloud-controller-1	ctlplane=192.168.101.19
overcloud-controller-2	ctlplane=192.168.101.14
overcloud-novacompute-0	ctlplane=192.168.101.18
overcloud-novacompute-2	ctlplane=192.168.101.17
overcloud-novacompute-1	ctlplane=192.168.101.11
+-------------------------+-------------------------+

4. Use the ctlplane address from the openstack server list command to query the configuration
of a physical node:

ssh tripleo-admin@192.168.101.15 ip addr

1.5. CONNECTING SECURITY ZONES

CHAPTER 1. INTRODUCTION TO SECURITY

11

You must carefully configure any component that spans multiple security zones with varying trust levels
or authentication requirements. These connections are often the weak points in network architecture.
Ensure that you configure these connections to meet the security requirements of the highest trust
level of any of the zones being connected. In many cases, the security controls of the connected zones
are a primary concern due to the likelihood of attack. The points where zones meet present an additional
potential point of attack and adds opportunities for attackers to migrate their attack to more sensitive
parts of the deployment.

In some cases, OpenStack operators might want to consider securing the integration point at a higher
standard than any of the zones in which it resides. Given the above example of an API endpoint, an
adversary could potentially target the Public API endpoint from the public zone, leveraging this foothold
in the hopes of compromising or gaining access to the internal or admin API within the management
zone if these zones were not completely isolated.

The design of OpenStack is such that separation of security zones is difficult. Because core services will
usually span at least two zones, special consideration must be given when applying security controls to
them.

1.6. THREAT MITIGATION

Most types of cloud deployment, public, private, or hybrid, are exposed to some form of security threat.
The following practices help mitigate security threats:

Apply the principle of least privilege.

Use encryption on internal and external interfaces.

Use centralized identity management.

Keep Red Hat OpenStack Platform updated.

Compute services can provide malicious actors with a tool for DDoS and brute force attacks. Methods
of prevention include egress security groups, traffic inspection, intrusion detection systems, and
customer education and awareness. For deployments accessible by public networks or with access to
public networks, such as the Internet, ensure that processes and infrastructure are in place to detect and
address outbound abuse.

Additional resources

Implementing TLS-e with Ansible

Integrating OpenStack Identity (keystone) with Red Hat Identity Manager (IdM)

Performing a minor update of Red Hat OpenStack Platform

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

12

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/integrating_openstack_identity_with_external_user_management_services/assembly-integrating-identity-with-idm_identity-providers#sect-tripleo-ipa
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/integrating_openstack_identity_with_external_user_management_services/assembly-integrating-identity-with-idm_identity-providers
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/performing_a_minor_update_of_red_hat_openstack_platform/index

CHAPTER 2. SECURITY ENHANCEMENTS
The following sections provide some suggestions to harden the security of your overcloud.

2.1. USING SECURE ROOT USER ACCESS

The overcloud image automatically contains hardened security for the root user. For example, each
deployed overcloud node automatically disables direct SSH access to the root user. You can still access
the root user on overcloud nodes. Each overcloud node has a tripleo-admin user account. This user
account contains the undercloud public SSH key, which provides SSH access without a password from
the undercloud to the overcloud node.

Prerequisites

You have an installed Red Hat OpenStack Platform director environment.

You are logged into the director as stack.

Procedure

1. On the undercloud node, log in to the an overcloud node through SSH as the tripleo-admin
user.

2. Switch to the root user with sudo -i.

2.2. ADDING SERVICES TO THE OVERCLOUD FIREWALL

When you deploy Red Hat OpenStack Platform, each core service is deployed with a default set of
firewall rules on each overcloud node. You can use the ExtraFirewallRules parameter to create rules to
open ports for additional services, or create rules to restrict services.

Each rule name becomes the comment for the respective iptables rule. Each rule name starts with a
three-digit prefix to help Puppet order the rules in the final iptables file. The default Red Hat
OpenStack Platform rules use prefixes in the 000 to 200 range. When you create rules for new services,
prefix the name with a three-digit number higher than 200.

Procedure

1. Use a string to define each rule name under the ExtraFireWallRules parameter. You can use
the following parameters under the rule name to define the rule:

dport:: The destination port associated to the rule.

proto:: The protocol associated to the rule. Defaults to tcp.

action:: The action policy associated to the rule. Defaults to accept.

source:: The source IP address associated to the rule.
The following example shows how to use rules to open additional ports for custom
applications:

cat > ~/templates/firewall.yaml <<EOF
parameter_defaults:
 ExtraFirewallRules:

CHAPTER 2. SECURITY ENHANCEMENTS

13

 '300 allow custom application 1':
 dport: 999
 proto: udp
 '301 allow custom application 2':
 dport: 8081
 proto: tcp
EOF

NOTE

When you do not set the action parameter, the result is accept. You can only
set the action parameter to drop, insert, or append.

2. Include the ~/templates/firewall.yaml file in the openstack overcloud deloy command.
Include all templates that are necessary for your deployment:

openstack overcloud deploy --templates /
...
-e /home/stack/templates/firewall.yaml /
....

2.3. REMOVING SERVICES FROM THE OVERCLOUD FIREWALL

You can use rules to restrict services. The number that you use in the rule name determines where in
iptables the rule will be inserted. The following procedure shows how to restrict the rabbitmq service to
the InternalAPI network.

Procedure

1. On a Controller node, find the number of the default iptables rule for rabbitmq:

[tripleo-admin@overcloud-controller-2 ~]$ sudo iptables -L | grep rabbitmq
ACCEPT tcp -- anywhere anywhere multiport dports vtr-
emulator,epmd,amqp,25672,25673:25683 state NEW /* 109 rabbitmq-bundle ipv4 */

2. In an environment file uder parameter_defaults, use the ExtraFirewallRules parameter to
restrict rabbitmq to the InternalApi network. The rule is given a lower number thant the default
rabbitmq rule number or 109:

cat > ~/templates/firewall.yaml <<EOF
parameter_defaults:
 ExtraFirewallRules:
 '098 allow rabbit from internalapi network':
 dport:
 - 4369
 - 5672
 - 25672
 proto: tcp
 source: 10.0.0.0/24
 '099 drop other rabbit access':
 dport:
 - 4369
 - 5672

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

14

 - 25672
 proto: tcp
 action: drop
EOF

NOTE

When you do not set the action parameter, the result is accept. You can only set
the action parameter to drop, insert, or append.

3. Include the ~/templates/firewall.yaml file in the openstack overcloud deloy command.
Include all templates that are necessary for your deployment:

openstack overcloud deploy --templates /
...
-e /home/stack/templates/firewall.yaml /
....

2.4. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL
(SNMP) STRINGS

Director provides a default read-only SNMP configuration for your overcloud. It is advisable to change
the SNMP strings to mitigate the risk of unauthorized users learning about your network devices.

NOTE

When you configure the ExtraConfig interface with a string parameter, you must use the
following syntax to ensure that heat and Hiera do not interpret the string as a Boolean
value: '"<VALUE>"'.

Set the following hieradata using the ExtraConfig hook in an environment file for your overcloud:

SNMP traditional access control settings

snmp::ro_community

IPv4 read-only SNMP community string. The default value is public.

snmp::ro_community6

IPv6 read-only SNMP community string. The default value is public.

snmp::ro_network

Network that is allowed to RO query the daemon. This value can be a string or an array. Default value
is 127.0.0.1.

snmp::ro_network6

Network that is allowed to RO query the daemon with IPv6. This value can be a string or an array.
The default value is ::1/128.

tripleo::profile::base::snmp::snmpd_config

Array of lines to add to the snmpd.conf file as a safety valve. The default value is []. See the SNMP
Configuration File web page for all available options.

For example:

CHAPTER 2. SECURITY ENHANCEMENTS

15

http://www.net-snmp.org/docs/man/snmpd.conf.html

parameter_defaults:
 ExtraConfig:
 snmp::ro_community: mysecurestring
 snmp::ro_community6: myv6securestring

This changes the read-only SNMP community string on all nodes.

SNMP view-based access control settings (VACM)

snmp::com2sec

An array of VACM com2sec mappings. Must provide SECNAME, SOURCE and COMMUNITY.

snmp::com2sec6

An array of VACM com2sec6 mappings. Must provide SECNAME, SOURCE and COMMUNITY.

For example:

parameter_defaults:
 ExtraConfig:
 snmp::com2sec: ["notConfigUser default mysecurestring"]
 snmp::com2sec6: ["notConfigUser default myv6securestring"]

This changes the read-only SNMP community string on all nodes.

For more information, see the snmpd.conf man page.

2.5. USING THE OPEN VSWITCH FIREWALL

You can configure security groups to use the Open vSwitch (OVS) firewall driver in Red Hat OpenStack
Platform director. Use the NeutronOVSFirewallDriver parameter to specify firewall driver that you
want to use:

iptables_hybrid - Configures the Networking service (neutron) to use the iptables/hybrid
based implementation.

openvswitch - Configures the Networking service to use the OVS firewall flow-based driver.

The openvswitch firewall driver includes higher performance and reduces the number of interfaces and
bridges used to connect guests to the project network.

IMPORTANT

Multicast traffic is handled differently by the Open vSwitch (OVS) firewall driver than by
the iptables firewall driver. With iptables, by default, VRRP traffic is denied, and you must
enable VRRP in the security group rules for any VRRP traffic to reach an endpoint. With
OVS, all ports share the same OpenFlow context, and multicast traffic cannot be
processed individually per port. Because security groups do not apply to all ports (for
example, the ports on a router), OVS uses the NORMAL action and forwards multicast
traffic to all ports as specified by RFC 4541.

NOTE

The iptables_hybrid option is not compatible with OVS-DPDK. The openvswitch option
is not compatible with OVS Hardware Offload.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

16

Configure the NeutronOVSFirewallDriver parameter in the network-environment.yaml file:

NeutronOVSFirewallDriver : Configures the name of the firewall driver that you want to use
when you implement security groups. Possible values depend on your system configuration.
Some examples are noop, openvswitch, and iptables_hybrid. The default value of an empty
string results in a supported configuration.

NeutronOVSFirewallDriver: openvswitch

CHAPTER 2. SECURITY ENHANCEMENTS

17

CHAPTER 3. DOCUMENTING YOUR RHOSP ENVIRONMENT
Documenting the system components, networks, services, and software is important in identifying
security concerns, attack vectors, and possible security zone bridging points. The documentation for
your Red Hat OpenStack Platform (RHOSP) deployment should include the following information:

A description of the system components, networks, services, and software in your RHOSP
production, development, and test environments.

An inventory of any ephemeral resources, such as virtual machines or virtual disk volumes.

3.1. DOCUMENTING THE SYSTEM ROLES

Each node in your Red Hat OpenStack Platform (RHOSP) deployment serves a specific role, either
contributing to the infrastructure of the cloud, or providing cloud resources.

Nodes that contribute to the infrastructure run the cloud-related services, such as the message queuing
service, storage management, monitoring, networking, and other services required to support the
operation and provisioning of the cloud. Examples of infrastructure roles include the following:

Controller

Networker

Database

Telemetry

Nodes that provide cloud resources offer compute or storage capacity for instances running on your
cloud. Examples of resource roles include the following:

CephStorage

Compute

ComputeOvsDpdk

ObjectStorage

Document the system roles that are used in your environment. These roles can be identified within the
templates used to deploy RHOSP. For example, there is a NIC configuration file for each role in use in
your environment.

Procedure

1. Check the existing templates for your deployment for files that specify the roles currently in use.
There is a NIC configuration file for each role in use in your environment. In the following
example, the RHOSP environment includes the ComputeHCI role, the Compute role, and the
Controller role:

$ cd ~/templates
$ tree
.
├── environments
│ └── network-environment.yaml
├── hci.yaml

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

18

├── network
│ └── config
│ └── multiple-nics
│ ├── computehci.yaml
│ ├── compute.yaml
│ └── controller.yaml
├── network_data.yaml
├── plan-environment.yaml
└── roles_data_hci.yaml

2. Each role for your RHOSP environment performs many interrelated services. You can document
the services used by each role by inspecting a roles file.

a. If a roles file was generated for your templates, you can find it in the ~/templates directory:

$ cd ~/templates
$ find . -name *role*
> ./templates/roles_data_hci.yaml

b. If a roles file was not generated for your templtes, you can generate one for the roles you
currently use to inspect for documentation purposes:

$ openstack overcloud roles generate \
> --roles-path /usr/share/openstack-tripleo-heat-templates/roles \
> -o roles_data.yaml Controller Compute

3.2. CREATING A HARDWARE INVENTORY

You can retrieve hardware information aobut your Red Hat OpenStack Platform deployment by viewing
data that is collected during introspection. Introspection gathers hardware information from the nodes
about the CPU, memory, disks, and so on.

Prerequisites

You have an installed Red Hat OpenStack Platform director environment.

You have introspected nodes for your Red Hat OpenStack Platform deployment.

You are logged into the director as stack.

Procedure

1. From the undercloud, source the stackrc file:

$ source ~/stackrc

2. List the nodes in your environment:

$ openstack baremetal node list -c Name
+--------------+
| Name |
+--------------+
| controller-0 |
| controller-1 |

CHAPTER 3. DOCUMENTING YOUR RHOSP ENVIRONMENT

19

| controller-2 |
| compute-0 |
| compute-1 |
| compute-2 |
+--------------+

3. For each baremetal node from which to gather information, and run the following command to
retrieve the introspection data:

$ openstack baremetal introspection data save <node> | jq

Replace <node> with the name of the node from the list you retrieved in step 1.

4. Optional: To limit the output to a specific type of hardware, you can retrieve a list of the
inventory keys and view introspection data for a specific key:

a. Run the following command to get a list of top level keys from introspection data:

$ openstack baremetal introspection data save controller-0 | jq '.inventory | keys'

[
 "bmc_address",
 "bmc_v6address",
 "boot",
 "cpu",
 "disks",
 "hostname",
 "interfaces",
 "memory",
 "system_vendor"
]

b. Select a key, for example disks, and run the following to get more information:

$ openstack baremetal introspection data save controller-1 | jq '.inventory.disks'
[
 {
 "name": "/dev/sda",
 "model": "QEMU HARDDISK",
 "size": 85899345920,
 "rotational": true,
 "wwn": null,
 "serial": "QM00001",
 "vendor": "ATA",
 "wwn_with_extension": null,
 "wwn_vendor_extension": null,
 "hctl": "0:0:0:0",
 "by_path": "/dev/disk/by-path/pci-0000:00:01.1-ata-1"
 }
]

3.3. CREATING A SOFTWARE INVENTORY

Document the software components in use on nodes deployed in your Red Hat OpenStack Platform

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

20

(RHOSP) infrastructure. System databases, RHOSP software services and supporting components such
as load balancers, DNS, or DHCP services, are critical when assessing the impact of a compromise or
vulnerability in a library, application, or class of software.

You have an installed Red Hat OpenStack Platform environment.

You are logged into the director as stack.

Procedure

1. Ensure that you know the entry points for systems and services that can be subject to malicious
activity. Run the following commands on the undercloud:

$ cat /etc/hosts
$ source stackrc ; openstack endpoint list
$ source overcloudrc ; openstack endpoint list

2. RHOSP is deployed in containerized services, therefore you can view the software components
on an overcloud node by checking the running containers on that node. Use ssh to connect to
an overcloud node and list the running containers. For example, to view the overcloud services
on compute-0, run a command similar to the following:

$ ssh tripleo-admin@compute-0 podman ps

CHAPTER 3. DOCUMENTING YOUR RHOSP ENVIRONMENT

21

CHAPTER 4. IDENTITY AND ACCESS MANAGEMENT
The Identity service (keystone) provides authentication and authorization for cloud users in a Red Hat
OpenStack Platform environment. You can use the Identity service for direct end-user authentication,
or configure it to use external authentication methods to meet your security requirements or to match
your current authentication infrastructure.

4.1. RED HAT OPENSTACK PLATFORM FERNET TOKENS

Fernet is the default token provider that replaces the UUID token provider. Each fernet token remains
valid for up to an hour, by default. This allows a user to perform a series of tasks without needing to
reauthenticate.

After you authenticate, the Identity service (keystone):

Issues an encrypted bearer token known as a fernet token. This token represents your identity.

Authorizes you you to perform operations based on your role.

Additional resources

Using Fernet keys for encryption in the overcloud

4.2. OPENSTACK IDENTITY SERVICE ENTITIES

The Red Hat OpenStack Identity service (keystone) recognizes the following entities:

Users

OpenStack Identity service (keystone) users are the atomic unit of authentication. A user must be
assigned a role on a project in order to authenticate.

Groups

OpenStack Identity service groups are a logical grouping of users. A group can be provided access to
projects under specific roles. Managing groups instead of users can simplify the management of
roles.

Roles

OpenStack Identity service roles define the OpenStack APIs that are accessible to users or groups
who are assigned those roles.

Projects

OpenStack Identity service projects are isolated groups of users who have common access to a
shared quota of physical resources and the virtual infrastructure built from those physical resources.

Domains

OpenStack Identity service domains are high-level security boundaries for projects, users, and
groups. You can use OpenStack Identity domains to centrally manage all keystone-based identity
components. Red Hat OpenStack Platform supports multiple domains. You can represent users of
different domains by using separate authentication backends.

4.3. AUTHENTICATING WITH KEYSTONE

You can adjust the authentication security requirements required by OpenStack Identity service
(keystone).

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

22

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/hardening_red_hat_openstack_platform/assembly-using-fernet-keys-for-encryption-in-the-overcloud_security_and_hardening

Table 4.1. Identity service authentication parameters

Parameter Description

KeystoneChangePasswordUponFirstUse Enabling this option requires users to change their
password when the user is created, or upon
administrative reset.

KeystoneDisableUserAccountDaysInactive The maximum number of days a user can go without
authenticating before being considered "inactive"
and automatically disabled (locked).

KeystoneLockoutDuration The number of seconds a user account is locked
when the maximum number of failed authentication
attempts (as specified by
KeystoneLockoutFailureAttempts) is exceeded.

KeystoneLockoutFailureAttempts The maximum number of times that a user can fail to
authenticate before the user account is locked for
the number of seconds specified by
KeystoneLockoutDuration.

KeystoneMinimumPasswordAge The number of days that a password must be used
before the user can change it. This prevents users
from changing their passwords immediately in order
to wipe out their password history and reuse an old
password.

KeystonePasswordExpiresDays The number of days for which a password is
considered valid before requiring users to change it.

KeystoneUniqueLastPasswordCount This controls the number of previous user password
iterations to keep in history, in order to enforce that
newly created passwords are unique.

Additional resources

Identity (keystone) parameters.

4.4. USING IDENTITY SERVICE HEAT PARAMETERS TO STOP INVALID
LOGIN ATTEMPTS

Repetitive failed login attempts can be a sign of an attempted brute-force attack. You can use the
Identity Service to limit access to accounts after repeated unsuccessful login attempts.

Prerequisites

You have an installed Red Hat OpenStack Platform director environment.

You are logged into the director as stack.

Procedure

CHAPTER 4. IDENTITY AND ACCESS MANAGEMENT

23

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/overcloud_parameters/ref_identity-keystone-parameters_overcloud_parameters

Procedure

1. To configure the maximum number of times that a user can fail to authenticate before the user
account is locked, set the value of the KeystoneLockoutFailureAttempts and
KeystoneLockoutDuration heat parameters in an environment file. In the following example,
the KeystoneLockoutDuration is set to one hour:

parameter_defaults
 KeystoneLockoutDuration: 3600
 KeystoneLockoutFailureAttempts: 3

2. Include the environment file in your deploy script. When you run your deploy script on a
previously deployed environment, it is updated with the additional parameters:

openstack overcloud deploy --templates \
...
-e keystone_config.yaml
...

4.5. AUTHENTICATING WITH EXTERNAL IDENTITY PROVIDERS

You can use an external identity provider (IdP) to authenticate to OpenStack service providers (SP).
SPs are the services provided by an OpenStack cloud.

When you use a separate IdP, external authentication credentials are separate from the databases used
by other OpenStack services. This separation reduces the risk of a compromise of stored credentials.

Each external IdP has a one-to-one mapping to an OpenStack Identity service (keystone) domain. You
can have multiple coexisting domains with Red Hat OpenStack Platform.

External authentication provides a way to use existing credentials to access resources in Red Hat
OpenStack Platform without creating additional identities. The credential is maintained by the user’s
IdP.

You can use IdPs such as Red Hat Identity Management (IdM), and Microsoft Active Directory Domain
Services (AD DS) for identity management. In this configuration, the OpenStack Identity service has
read-only access to the LDAP user database. The management of API access based on user or group
role is performed by keystone. Roles are assigned to the LDAP accounts by using the OpenStack
Identity service.

4.5.1. How LDAP integration works

In the diagram below, keystone uses an encrypted LDAPS connection to connect to an Active Directory
Domain Controller. When a user logs in to horizon, keystone receives the supplied user credentials and
passes them to Active Directory.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

24

Additional resources

Integrating OpenStack Identity (keystone) with Active Directory

Integrating OpenStack Identity (keystone) with Red Hat Identity Manager (IdM)

Configuring director to use domain specific LDAP backends

CHAPTER 4. IDENTITY AND ACCESS MANAGEMENT

25

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/integrating_openstack_identity_with_external_user_management_services/assembly-integrating-identity-with-active-directory_identity-providers
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/integrating_openstack_identity_with_external_user_management_services/assembly-integrating-identity-with-idm_identity-providers
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/integrating_openstack_identity_with_external_user_management_services/assembly-integrating-identity-with-active-directory_identity-providers#proc-configuring-director-domain-specific-ldap-backend_identity-active-directory

CHAPTER 5. SECURING RED HAT OPENSTACK
DEPLOYMENTS WITH TLS AND PKI

Red Hat OpenStack Platform consists of many networks and endpoints that handle sensitive or
confidential data that you can secure. When you use Transport Layer Security (TLS), you secure traffic
with symmetric key encryption. The key and cipher are negotiated in the TLS handshake, which requires
validation of the server’s identity through a shared trust in an intermediary called a Certificate Authority
(CA).

Public Key Infrastructure (PKI) is a framework for validating an entity through a certificate authority.

5.1. COMPONENTS OF PUBLIC KEY INFRASTRUCTURE (PKI)

The core components of PKI are shown in the folling table:

Table 5.1. Key Terms

Term Definition

End entity The user, process, or system that validates itself
through the use of a digital certificate.

Certificate Authority (CA) The CA is an entity that is trusted by both the end
entity, and the relying party that validates the end
entity.

Relying party The relying party receives the digital certificate as
validation of the end entity, and has the capability of
verifying the digital certificate.

Digital certificates Signed public key certificates have a verifiable entity
and a public key, and are issued by a CA. When a CA
signs a certificate, it creates a message digest from
the certificate encrypted with its private key. You can
verify the signature using the public key associated
with CA. The X.509 standard is used to define the
certificates.

Registration Authority (RA) An RA is an optional dedicated authority that can
perform management functions such as
authenticating end entities before they are issued a
certificate by a CA. The CA authenticates end
entities if there is no RA.

Certificate Revocation List (CRL) A CRL is a list of certificate serial numbers that have
been revoked. End entities presenting certificates
with revoked serial numbers are not trusted in a PKI
model.

CRL issuer An optional system to which a CA delegates the
publication of certificate revocation lists.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

26

Certificate Repository The location where the end entity certificates and
certificate revocation lists are stored and queried.

Term Definition

5.2. CERTIFICATE AUTHORITY REQUIREMENTS AND
RECOMMENDATIONS

You must get certificates signed by a widely recognized certificate authority (CA) for publicly available
Red Hat OpenStack Platform Dashboards or publicly accessible APIs.

You must give a DNS domain or subdomain to each endpoint that you secure with TLS. The domains
you provide are used to create the certificates issued by a CA. Customers access the dashboard or the
API using the DNS name so that the CA can validate the endpoint.

Red Hat recommends using a separate and internally managed CA to secure internal traffic. This allows
the cloud deployer to maintain control of their Private Key Infrastructure (PKI) implementation and
makes requesting, signing and deploying certificates for internal systems easier.

You can enable SSL/TLS on your overcloud endpoints. Due to the number of certificates required to
configure TLS everywhere (TLS-e), director integrates with a Red Hat Identity Management (IdM)
server to act as a certificate authority and manage the overcloud certificates. For more information on
configuring TLS-e, see Implementing TLS-e with Ansible .

To check the status of TLS support across the OpenStack components, refer to the TLS Enablement
status matrix.

If want to you use a SSL certificate with your own certificate authority, see Enabling SSL/TLS on
overcloud public endpoints.

NOTE

This will configure Red Hat OpenStack Platform with SSL/TLS on publicly accessible
endpoints only.

5.3. IDENTIFYING TLS VERSIONS IN YOUR ENVIRONMENT

IMPORTANT

TLS version 1.0 is is deprecated for Red Hat OpenStack platform. Additionally, you must
at minimum use TLS 1.2 for NIST-approval. For more information, see Guidelines for the
Selection, Configuration, and Use of Transport Layer Security (TLS) Implementations.

You can use cipherscan to determine the versions of TLS being presented by your deployment.
Cipherscan can be cloned from https://github.com/mozilla/cipherscan. This example output
demonstrates results received from horizon:

NOTE

Run cipherscan from a non-production system, as it might install additional
dependencies when you first run it.

CHAPTER 5. SECURING RED HAT OPENSTACK DEPLOYMENTS WITH TLS AND PKI

27

https://access.redhat.com/articles/4039501
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://github.com/mozilla/cipherscan

Procedure

Run cipher scan against the accessible URL of the Dashboard service:

$./cipherscan https://openstack.lab.local
..............................
Target: openstack.lab.local:443

prio ciphersuite protocols pfs curves
1 ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 ECDH,P-256,256bits prime256v1
2 ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 ECDH,P-256,256bits prime256v1
3 DHE-RSA-AES128-GCM-SHA256 TLSv1.2 DH,1024bits None
4 DHE-RSA-AES256-GCM-SHA384 TLSv1.2 DH,1024bits None
5 ECDHE-RSA-AES128-SHA256 TLSv1.2 ECDH,P-256,256bits prime256v1
6 ECDHE-RSA-AES256-SHA384 TLSv1.2 ECDH,P-256,256bits prime256v1
7 ECDHE-RSA-AES128-SHA TLSv1.2 ECDH,P-256,256bits prime256v1
8 ECDHE-RSA-AES256-SHA TLSv1.2 ECDH,P-256,256bits prime256v1
9 DHE-RSA-AES128-SHA256 TLSv1.2 DH,1024bits None
10 DHE-RSA-AES128-SHA TLSv1.2 DH,1024bits None
11 DHE-RSA-AES256-SHA256 TLSv1.2 DH,1024bits None
12 DHE-RSA-AES256-SHA TLSv1.2 DH,1024bits None
13 ECDHE-RSA-DES-CBC3-SHA TLSv1.2 ECDH,P-256,256bits prime256v1
14 EDH-RSA-DES-CBC3-SHA TLSv1.2 DH,1024bits None
15 AES128-GCM-SHA256 TLSv1.2 None None
16 AES256-GCM-SHA384 TLSv1.2 None None
17 AES128-SHA256 TLSv1.2 None None
18 AES256-SHA256 TLSv1.2 None None
19 AES128-SHA TLSv1.2 None None
20 AES256-SHA TLSv1.2 None None
21 DES-CBC3-SHA TLSv1.2 None None

Certificate: trusted, 2048 bits, sha256WithRSAEncryption signature
TLS ticket lifetime hint: None
NPN protocols: None
OCSP stapling: not supported
Cipher ordering: server
Curves ordering: server - fallback: no
Server supports secure renegotiation
Server supported compression methods: NONE
TLS Tolerance: yes

Intolerance to:
 SSL 3.254 : absent
 TLS 1.0 : PRESENT
 TLS 1.1 : PRESENT
 TLS 1.2 : absent
 TLS 1.3 : absent
 TLS 1.4 : absent

When scanning a server, Cipherscan advertises support for a specific TLS version, which is the highest
TLS version it is willing to negotiate. If the target server correctly follows TLS protocol, it will respond
with the highest version that is mutually supported, which may be lower than what Cipherscan initially
advertised. If the server does proceed to establish a connection with the client using that specific
version, it is not considered to be intolerant to that protocol version. If it does not establish the
connection (with the specified version, or any lower version), then intolerance for that version of
protocol is considered to be present. For example:

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

28

Intolerance to:
 SSL 3.254 : absent
 TLS 1.0 : PRESENT
 TLS 1.1 : PRESENT
 TLS 1.2 : absent
 TLS 1.3 : absent
 TLS 1.4 : absent

In this output, intolerance of TLS 1.0 and TLS 1.1 is reported as PRESENT, meaning that the
connection could not be established, and that Cipherscan was unable to connect while advertising
support for those TLS versions. As a result, it is reasonable to conclude that those (and any lower)
versions of the protocol are not enabled on the scanned server.

5.4. IDENTITY MANAGEMENT (IDM) SERVER RECOMMENDATIONS
FOR OPENSTACK

Red Hat provides the following information to help you integrate your IdM server and OpenStack
environment.

For information on preparing Red Hat Enterprise Linux for an IdM installation, see Installing Identity
Management.

Run the ipa-server-install command to install and configure IdM. You can use command parameters to
skip interactive prompts. Use the following recommendations so that your IdM server can integrate with
your Red Hat OpenStack Platform environment:

Table 5.2. Parameter recommendations

Option Recommendation

--admin-password Note the value you provide. You will need this
password when configuring Red Hat OpenStack
Platform to work with IdM.

--ip-address Note the value you provide. The undercloud and
overcloud nodes require network access to this ip
address.

--setup-dns Use this option to install an integrated DNS service
on the IdM server. The undercloud and overcloud
nodes use the IdM server for domain name resolution.

--auto-forwarders Use this option to use the addresses in
/etc/resolv.conf as DNS forwarders.

--auto-reverse Use this option to resolve reverse records and zones
for the IdM server IP addresses. If neither reverse
records or zones are resolvable, IdM creates the
reverse zones. This simplifies the IdM deployment.

CHAPTER 5. SECURING RED HAT OPENSTACK DEPLOYMENTS WITH TLS AND PKI

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-idm

--ntp-server, --ntp-pool You can use both or either of these options to
configure your NTP source. Both the IdM server and
your OpenStack environment must have correct and
synchronized time.

Option Recommendation

You must open the firewall ports required by IdM to enable communication with Red Hat OpenStack
Platform nodes. For more information, see Opening the ports required by IdM .

Additional resources

Configuring and Managing Identity Management

Red Hat Identity Management Documentation

5.5. IMPLEMENTING TLS-E WITH ANSIBLE

You can use the new tripleo-ipa method to enable SSL/TLS on overcloud endpoints, called TLS
everywhere (TLS-e). Due to the number of certificates required, Red Hat OpenStack Platform
integrates with Red Hat Identity management (IdM). When you use tripleo-ipa to configure TLS-e, IdM
is the certificate authority.

Prerequisites

Ensure that all configuration steps for the undercloud, such as the creation of the stack user, are
complete. For more details, see Installing and managing Red Hat OpenStack Platform with
director for more details

The IP address of your DNS server is configured on the undercloud to the IP address of the IdM
server. One of the following parameters must be configured in your undercloud.conf file:

DEFAULT/undercloud_nameservers

%SUBNET_SECTION%/dns_nameservers

Procedure

Use the following procedure to implement TLS-e on a new installation of Red Hat OpenStack Platform,
or an existing deployment that you want to configure with TLS-e. You must use this method if you
deploy Red Hat OpenStack Platform with TLS-e on pre-provisioned nodes.

NOTE

If you are implementing TLS-e for an existing environment, you are required to run
commands such as openstack undercloud install, and openstack overcloud deploy.
These procedures are idempotent and only adjust your existing deployment configuration
to match updated templates and configuration files.

1. Configure the /etc/resolv.conf file:
Set the appropriate search domains and the nameserver on the undercloud in /etc/resolv.conf.
For example, if the deployment domain is example.com, and the domain of the FreeIPA server
is bigcorp.com, then add the following lines to /etc/resolv.conf:

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

30

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/preparing-the-system-for-ipa-server-installation_installing-identity-management#opening-the-ports-required-by-idm_preparing-the-system-for-ipa-server-installation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/index
https://access.redhat.com/articles/1586893
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/index

1 2

3

search example.com bigcorp.com
nameserver $IDM_SERVER_IP_ADDR

2. Install required software:

sudo dnf install -y python3-ipalib python3-ipaclient krb5-devel

3. Export environmental variables with values specific to your environment.:

export IPA_DOMAIN=bigcorp.com
export IPA_REALM=BIGCORP.COM
export IPA_ADMIN_USER=$IPA_USER 1
export IPA_ADMIN_PASSWORD=$IPA_PASSWORD 2
export IPA_SERVER_HOSTNAME=ipa.bigcorp.com
export UNDERCLOUD_FQDN=undercloud.example.com 3
export USER=stack
export CLOUD_DOMAIN=example.com

The IdM user credentials are an administrative user that can add new hosts and services.

The value of the UNDERCLOUD_FQDN parameter matches the first hostname-to-IP
address mapping in /etc/hosts.

4. Run the undercloud-ipa-install.yaml ansible playbook on the undercloud:

ansible-playbook \
--ssh-extra-args "-o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null" \
/usr/share/ansible/tripleo-playbooks/undercloud-ipa-install.yaml

5. Add the following parameters to undercloud.conf

undercloud_nameservers = $IDM_SERVER_IP_ADDR
overcloud_domain_name = example.com

6. [Optional] If your IPA realm does not match your IPA domain, set the value of the
certmonger_krb_realm parameter:

a. Set the value of the certmonger_krb_realm in /home/stack/hiera_override.yaml:

parameter_defaults:
 certmonger_krb_realm = EXAMPLE.COMPANY.COM

b. Set the value of the custom_env_files parameter in undercloud.conf to
/home/stack/hiera_override.yaml:

custom_env_files = /home/stack/hiera_override.yaml

7. Deploy the undercloud:

openstack undercloud install

Verification

CHAPTER 5. SECURING RED HAT OPENSTACK DEPLOYMENTS WITH TLS AND PKI

31

Verify that the undercloud was enrolled correctly by completing the following steps:

1. List the hosts in IdM:

$ kinit admin
$ ipa host-find

2. Confirm that /etc/novajoin/krb5.keytab exists on the undercloud.

ls /etc/novajoin/krb5.keytab

NOTE

The novajoin directory name is for legacy naming purposes only.

Configuring TLS-e on the overcloud

When you deploy the overcloud with TLS everywhere (TLS-e), IP addresses from the Undercloud and
Overcloud will automatically be registered with IdM.

1. Before deploying the overcloud, create a YAML file tls-parameters.yaml with contents similar
to the following. The values you select will be specific for your environment:

parameter_defaults:
 DnsSearchDomains: ["example.com"]
 CloudDomain: example.com
 CloudName: overcloud.example.com
 CloudNameInternal: overcloud.internalapi.example.com
 CloudNameStorage: overcloud.storage.example.com
 CloudNameStorageManagement: overcloud.storagemgmt.example.com
 CloudNameCtlplane: overcloud.ctlplane.example.com
 IdMServer: freeipa-0.redhat.local
 IdMDomain: redhat.local
 IdMInstallClientPackages: False

resource_registry:
 OS::TripleO::Services::IpaClient: /usr/share/openstack-tripleo-heat-
templates/deployment/ipa/ipaservices-baremetal-ansible.yaml

The shown value of the OS::TripleO::Services::IpaClient parameter overrides the default
setting in the enable-internal-tls.yaml file. You must ensure the tls-parameters.yaml file
follows enable-internal-tls.yaml in the openstack overcloud deploy command.

For more information about the parameters that you use to implement TLS-e, see
Parameters for tripleo-ipa.

2. [Optional] If your IPA realm does not match your IPA domain, you must also include value of the
CertmongerKerberosRealm parameter in the tls-parameters.yaml file:

 CertmongerKerberosRealm: EXAMPLE.COMPANY.COM

3. Deploy the overcloud. You will need to include the tls-parameters.yaml in the deployment
command:

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

32

DEFAULT_TEMPLATES=/usr/share/openstack-tripleo-heat-templates/
CUSTOM_TEMPLATES=/home/stack/templates

openstack overcloud deploy \
-e ${DEFAULT_TEMPLATES}/environments/ssl/tls-everywhere-endpoints-dns.yaml \
-e ${DEFAULT_TEMPLATES}/environments/services/haproxy-public-tls-certmonger.yaml \
-e ${DEFAULT_TEMPLATES}/environments/ssl/enable-internal-tls.yaml \
-e ${CUSTOM_TEMPLATES}/tls-parameters.yaml \
...

4. Confirm each endpoint is using HTTPS by querying keystone for a list of endpoints:

openstack endpoint list

5.6. PARAMETERS FOR TRIPLEO-IPA

Use the fully qualified domain name (FQDN) of your cloud to define the cloud name and cloud domain
parameters required for tripleo-ipa. For example, with an FQDN of overcloud.example.com, use the
following values:

CloudDomain: example.com

CloudName: overcloud.example.com

CloudNameCtlplane: overcloud.ctlplane.example.com

CloudNameInternal: overcloud.internalapi.example.com

CloudNameStorage: overcloud.storage.example.com

CloudNameStorageManagement: overcloud.storagemgmt.example.com

Set the following additional parameters based on the requirements of your environment:

CertmongerKerberosRealm

Set CertmongerKerberosRealm parameter to the value of the IPA realm. This is required if the IPA
realm does not match the IPA domain.

DnsSearchDomains

The DnsSearchDomains parameter is a comma-separated list. If the domain of the IdM server is
different than the cloud domain, include the domain of the IdM server in the DnsSearchDomains
parameter.

EnableEtcdInternalTLS

If you deploy TLSe on a distributed compute node (DCN) architecture, you must add the
EnableEtcdInternalTLS parameter with the value of True.

IDMInstallClientPackages

If you have preprovisioned your compute nodes, set the IDMInstallClientPackages parameter to a
value of True. Otherwise, set the value to False.

IDMModifyDNS

Set the IDMModifyDNS parameter to false to disable automatic IP registration of the overcloud
nodes on Red Hat Identity Server.

IdmDomain

Set the IdmDomain parameter to the domain portion of the FQDN of your Red Hat Identity server.

CHAPTER 5. SECURING RED HAT OPENSTACK DEPLOYMENTS WITH TLS AND PKI

33

Set the IdmDomain parameter to the domain portion of the FQDN of your Red Hat Identity server.
The value that you specify is also used as the value of the IdM realm. If the IdM domain and IdM realm
differ, set the realm explicitly using the CertmongerKerberosRealm parameter.

IdmServer

Set the IdmServer parameter to the FQDN of your Red Hat Identity server. If you use a replicated
IdM environment, then set multiple values using a comma delimited list. For more information on IdM
replicas, see Installing an IdM replica .

5.7. ENCRYPTING MEMCACHED TRAFFIC UNDER TLS EVERYWHERE
(TLS-E)

You can now encrypt memcached traffic with TLS-e. This feature works with both novajoin and tripleo-
ipa:

1. Create an environment file called memcached.yaml with the following contents to add TLS
support for memcached:

parameter_defaults:
 MemcachedTLS: true
 MemcachedPort: 11212

2. Include the memcached.yaml environment file in the overcloud deployment process:

openstack overcloud deploy --templates \
-e /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-internal-tls.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-everywhere-endpoints-
dns.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/haproxy-public-tls-
certmonger.yaml \
-e /home/stack/memcached.yaml
...

Additional Resources

For more information about deploying TLSe with tripleo-ipa, see Implementing TLS-e with
Ansible.

5.8. INCREASING THE SIZE OF PRIVATE KEYS

You can improve security by increasing the size of private keys used to create certificates for encrypted
service traffic. The default RHOSP private key size of 2048 bits matches the National Institute of
Standards and Technology (NIST) recommended minimum.

Use the CertificateKeySize parameter to change the size of private keys globally.

Use a service specific parameter such as RedisCertificateKeySize, to modify a specific private
key, or to override the global CertificateKeySize parameter.

Use these parameters in an environment heat template, and include the template in your overcloud
deployment command. If you have already deployed the overcloud, you must rerun the same openstack
overcloud deploy command with the same templates you originally used, and include the new
parameters for the changes to take effect.

In the following example, the global value for private keys is 4096. The private key for redis is 2048

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

34

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/installing-an-ipa-replica_installing-identity-management

In the following example, the global value for private keys is 4096. The private key for redis is 2048
because the RedisCertificateKeySize overrides the global parameter:

Example

parameter_defaults:
 CertificateKeySize: '4096'
 RedisCertificateKeySize: '2048'

5.9. REPLACING THE IDM SERVER FOR RED HAT OPENSTACK
PLATFORM WITH ITS REPLICA

When you replace an existing IPA server with its replica, you must update the necessary parameters.
Failure to do so results in failed overcloud deployments when you update your cluster’s configuration.

Procedure

1. On each overcloud node, edit the /etc/ipa/default.conf configuration file to ensure that the
server and xmlrpc_uri parameters include the fully qualified domain name (FQDN) of the IdM
server:

#File modified by ipa-client-install

[global]
basedn = dc=redhat,dc=local
realm = REDHAT.LOCAL
domain = redhat.local
server = freeipa-0.redhat.local
host = undercloud-0.redhat.local
xmlrpc_uri = https://freeipa-0.redhat.local/ipa/xml
enable_ra = True

2. On the undercloud, edit the /home/stack/templates/tls-parameters.yaml environment file and
ensure that the IPA_SERVER_HOSTNAME parameter matches the FQDN that is shown in the
xmlrpc_uri and server parameters in /etc/ipa/default.conf. Ensure that all parameters match
your environment:

export IPA_DOMAIN=bigcorp.com
export IPA_REALM=BIGCORP.COM
export IPA_ADMIN_USER=$IPA_USER
export IPA_ADMIN_PASSWORD=$IPA_PASSWORD
export IPA_SERVER_HOSTNAME=ipa.bigcorp.com
export UNDERCLOUD_FQDN=undercloud.example.com
export USER=stack
export CLOUD_DOMAIN=example.com

CHAPTER 5. SECURING RED HAT OPENSTACK DEPLOYMENTS WITH TLS AND PKI

35

CHAPTER 6. CONFIGURING CUSTOM SSL/TLS CERTIFICATES
You can manually configure the undercloud to use SSL/TLS for communication over public endpoints.
When you manually configure undercloud endpoints with SSL/TLS, you are creating secure endpoints as
a proof-of-concept. Red Hat recommends using a certificate authority solution.

When you use a certificate authority (CA) solution, you have production ready solutions such as a
certificate renewals, certificate revocation lists (CRLs), and industry accepted cryptography. For
information on using Red Hat Identity Manager (IdM) as a CA, see Implementing TLS-e with Ansible .

If you want to use a SSL certificate with your own certificate authority, you must complete the following
configuration steps.

6.1. INITIALIZING THE SIGNING HOST

The signing host is the host that generates and signs new certificates with a certificate authority. If you
have never created SSL certificates on the chosen signing host, you might need to initialize the host so
that it can sign new certificates.

Procedure

1. The /etc/pki/CA/index.txt file contains records of all signed certificates. Ensure that the
filesystem path and index.txt file are present:

$ sudo mkdir -p /etc/pki/CA
$ sudo touch /etc/pki/CA/index.txt

2. The /etc/pki/CA/serial file identifies the next serial number to use for the next certificate to
sign. Check if this file exists. If the file does not exist, create a new file with a new starting value:

$ echo '1000' | sudo tee /etc/pki/CA/serial

6.2. CREATING A CERTIFICATE AUTHORITY

Normally you sign your SSL/TLS certificates with an external certificate authority. In some situations, you
might want to use your own certificate authority. For example, you might want to have an internal-only
certificate authority.

Procedure

1. Generate a key and certificate pair to act as the certificate authority:

$ openssl genrsa -out ca.key.pem 4096
$ openssl req -key ca.key.pem -new -x509 -days 7300 -extensions v3_ca -out ca.crt.pem

2. The openssl req command requests certain details about your authority. Enter these details at
the prompt. These commands create a certificate authority file called ca.crt.pem.

3. Set the certificate location as the value for the PublicTLSCAFile parameter in the enable-
tls.yaml file. When you set the certificate location as the value for the PublicTLSCAFile
parameter, you ensure that the CA certificate path is added to the clouds.yaml authentication
file.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

36

parameter_defaults:
 PublicTLSCAFile: /etc/pki/ca-trust/source/anchors/cacert.pem

6.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS

For any external clients aiming to communicate using SSL/TLS, copy the certificate authority file to
each client that requires access to your Red Hat OpenStack Platform environment.

Procedure

1. Copy the certificate authority to the client system:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/

2. After you copy the certificate authority file to each client, run the following command on each
client to add the certificate to the certificate authority trust bundle:

$ sudo update-ca-trust extract

6.4. CREATING AN SSL/TLS KEY

Enabling SSL/TLS on an OpenStack environment requires an SSL/TLS key to generate your
certificates.

Procedure

1. Run the following command to generate the SSL/TLS key (server.key.pem):

$ openssl genrsa -out server.key.pem 2048

6.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST

Complete the following steps to create a certificate signing request.

Procedure

1. Copy the default OpenSSL configuration file:

$ cp /etc/pki/tls/openssl.cnf .

2. Edit the new openssl.cnf file and configure the SSL parameters that you want to use for
director. An example of the types of parameters to modify include:

[req]
distinguished_name = req_distinguished_name
req_extensions = v3_req

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = AU
stateOrProvinceName = State or Province Name (full name)

CHAPTER 6. CONFIGURING CUSTOM SSL/TLS CERTIFICATES

37

stateOrProvinceName_default = Queensland
localityName = Locality Name (eg, city)
localityName_default = Brisbane
organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Red Hat
commonName = Common Name
commonName_default = 192.168.0.1
commonName_max = 64

[v3_req]
Extensions to add to a certificate request
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]
IP.1 = 192.168.0.1
DNS.1 = instack.localdomain
DNS.2 = vip.localdomain
DNS.3 = 192.168.0.1

Set the commonName_default to one of the following entries:

If you are using an IP address to access director over SSL/TLS, use the
undercloud_public_host parameter in the undercloud.conf file.

If you are using a fully qualified domain name to access director over SSL/TLS, use the
domain name.

Edit the alt_names section to include the following entries:

IP - A list of IP addresses that clients use to access director over SSL.

DNS - A list of domain names that clients use to access director over SSL. Also include the
Public API IP address as a DNS entry at the end of the alt_names section.

NOTE

For more information about openssl.cnf, run the man openssl.cnf command.

3. Run the following command to generate a certificate signing request (server.csr.pem):

$ openssl req -config openssl.cnf -key server.key.pem -new -out server.csr.pem

Ensure that you include your OpenStack SSL/TLS key with the -key option.

This command generates a server.csr.pem file, which is the certificate signing request. Use this file to
create your OpenStack SSL/TLS certificate.

6.6. CREATING THE SSL/TLS CERTIFICATE

To generate the SSL/TLS certificate for your OpenStack environment, the following files must be
present:

openssl.cnf

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

38

The customized configuration file that specifies the v3 extensions.

server.csr.pem

The certificate signing request to generate and sign the certificate with a certificate authority.

ca.crt.pem

The certificate authority, which signs the certificate.

ca.key.pem

The certificate authority private key.

Procedure

1. Create the newcerts directory if it does not already exist:

sudo mkdir -p /etc/pki/CA/newcerts

2. Run the following command to create a certificate for your undercloud or overcloud:

$ sudo openssl ca -config openssl.cnf -extensions v3_req -days 3650 -in server.csr.pem -out
server.crt.pem -cert ca.crt.pem -keyfile ca.key.pem

This command uses the following options:

-config

Use a custom configuration file, which is the openssl.cnf file with v3 extensions.

-extensions v3_req

Enabled v3 extensions.

-days

Defines how long in days until the certificate expires.

-in

The certificate signing request.

-out

The resulting signed certificate.

-cert

The certificate authority file.

-keyfile

The certificate authority private key.

This command creates a new certificate named server.crt.pem. Use this certificate in conjunction with
your OpenStack SSL/TLS key

6.7. ADDING THE CERTIFICATE TO THE UNDERCLOUD

Complete the following steps to add your OpenStack SSL/TLS certificate to the undercloud trust
bundle.

Procedure

1. Run the following command to combine the certificate and key:

CHAPTER 6. CONFIGURING CUSTOM SSL/TLS CERTIFICATES

39

$ cat server.crt.pem server.key.pem > undercloud.pem

This command creates a undercloud.pem file.

2. Copy the undercloud.pem file to a location within your /etc/pki directory and set the necessary
SELinux context so that HAProxy can read it:

$ sudo mkdir /etc/pki/undercloud-certs
$ sudo cp ~/undercloud.pem /etc/pki/undercloud-certs/.
$ sudo semanage fcontext -a -t etc_t "/etc/pki/undercloud-certs(/.*)?"
$ sudo restorecon -R /etc/pki/undercloud-certs

3. Add the undercloud.pem file location to the undercloud_service_certificate option in the
undercloud.conf file:

undercloud_service_certificate = /etc/pki/undercloud-certs/undercloud.pem

Do not set or enable the generate_service_certificate and certificate_generation_ca
parameters. Director uses these parameters to automatically generate a certificate instead of
using the undercloud.pem certificate you created manually.

4. Add the certificate authority that signed the certificate to the list of trusted Certificate
Authorities on the undercloud so that different services within the undercloud have access to
the certificate authority:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

To verify the certificate authority was added to the undercloud, use openssl to check the trust
bundle:

$ openssl crl2pkcs7 -nocrl -certfile /etc/pki/tls/certs/ca-bundle.crt | openssl pkcs7 -print_certs
-text | grep <CN of the CA issuer> -A 10 -B 10

Replace <CN of the CA issuer> with the common name of the issuer of the CA. This command
outputs the main certificate details, including the validity dates.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

40

CHAPTER 7. ENABLING SSL/TLS ON OVERCLOUD PUBLIC
ENDPOINTS

By default, the overcloud uses unencrypted endpoints for the overcloud services. To enable SSL/TLS in
your overcloud, Red Hat recommends that you use a certificate authority (CA) solution.

When you use a CA solution, you have production ready solutions such as a certificate renewals,
certificate revocation lists (CRLs), and industry accepted cryptography. For information on using Red
Hat Identity Manager (IdM) as a CA, see Implementing TLS-e with Ansible .

You can use the following manual process to enable SSL/TLS for Public API endpoints only, the Internal
and Admin APIs remain unencrypted. You must also manually update SSL/TLS certificates if you do not
use a CA. For more information, see Manually updating SSL/TLS certificates .

Prerequisites

Network isolation to define the endpoints for the Public API.

The openssl-perl package is installed.

You have an SSL/TLS certificate. For more information see Configuring custom SSL/TLS
certificates.

7.1. ENABLING SSL/TLS

To enable SSL/TLS in your overcloud, you must create an environment file that contains parameters for
your SSL/TLS certiciates and private key.

Procedure

1. Copy the enable-tls.yaml environment file from the heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-tls.yaml
~/templates/.

2. Edit this file and make the following changes for these parameters:

SSLCertificate

Copy the contents of the certificate file (server.crt.pem) into the SSLCertificate
parameter:

parameter_defaults:
 SSLCertificate: |
 -----BEGIN CERTIFICATE-----
 MIIDgzCCAmugAwIBAgIJAKk46qw6ncJaMA0GCSqGS
 ...
 sFW3S2roS4X0Af/kSSD8mlBBTFTCMBAj6rtLBKLaQ
 -----END CERTIFICATE-----

IMPORTANT

The certificate contents require the same indentation level for all new lines.

CHAPTER 7. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

41

SSLIntermediateCertificate

If you have an intermediate certificate, copy the contents of the intermediate certificate into
the SSLIntermediateCertificate parameter:

parameter_defaults:
 SSLIntermediateCertificate: |
 -----BEGIN CERTIFICATE-----
 sFW3S2roS4X0Af/kSSD8mlBBTFTCMBAj6rtLBKLaQbIxEpIzrgvpBCwUAMFgxCzAJB
 ...
 MIIDgzCCAmugAwIBAgIJAKk46qw6ncJaMA0GCSqGSIb3DQE
 -----END CERTIFICATE-----

IMPORTANT

The certificate contents require the same indentation level for all new lines.

SSLKey

Copy the contents of the private key (server.key.pem) into the SSLKey parameter:

parameter_defaults:
 ...
 SSLKey: |
 -----BEGIN RSA PRIVATE KEY-----
 MIIEowIBAAKCAQEAqVw8lnQ9RbeI1EdLN5PJP0lVO
 ...
 ctlKn3rAAdyumi4JDjESAXHIKFjJNOLrBmpQyES4X
 -----END RSA PRIVATE KEY-----

IMPORTANT

The private key contents require the same indentation level for all new
lines.

7.2. INJECTING A ROOT CERTIFICATE

If the certificate signer is not in the default trust store on the overcloud image, you must inject the
certificate authority into the overcloud image.

Procedure

1. Copy the inject-trust-anchor-hiera.yaml environment file from the heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-templates/environments/ssl/inject-trust-anchor-
hiera.yaml ~/templates/.

Edit this file and make the following changes for these parameters:

CAMap

Lists each certificate authority content (CA) to inject into the overcloud. The overcloud requires the

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

42

CA files used to sign the certificates for both the undercloud and the overcloud. Copy the contents
of the root certificate authority file (ca.crt.pem) into an entry. For example, your CAMap parameter
might look like the following:

parameter_defaults:
 CAMap:
 ...
 undercloud-ca:
 content: |
 -----BEGIN CERTIFICATE-----
 MIIDlTCCAn2gAwIBAgIJAOnPtx2hHEhrMA0GCS
 BAYTAlVTMQswCQYDVQQIDAJOQzEQMA4GA1UEBw
 UmVkIEhhdDELMAkGA1UECwwCUUUxFDASBgNVBA
 -----END CERTIFICATE-----
 overcloud-ca:
 content: |
 -----BEGIN CERTIFICATE-----
 MIIDBzCCAe+gAwIBAgIJAIc75A7FD++DMA0GCS
 BAMMD3d3dy5leGFtcGxlLmNvbTAeFw0xOTAxMz
 Um54yGCARyp3LpkxvyfMXX1DokpS1uKi7s6CkF
 -----END CERTIFICATE-----

IMPORTANT

The certificate authority contents require the same indentation level for all new lines.

You can also inject additional CAs with the CAMap parameter.

7.3. CONFIGURING DNS ENDPOINTS

If you use a DNS hostname to access the overcloud through SSL/TLS, copy the /usr/share/openstack-
tripleo-heat-templates/environments/predictable-placement/custom-domain.yaml file into the
/home/stack/templates directory.

NOTE

It is not possible to redeploy with a TLS-everywhere architecture if this environment file
is not included in the initial deployment.

Configure the host and domain names for all fields, adding parameters for custom networks if needed:

CloudDomain

the DNS domain for hosts.

CloudName

The DNS hostname of the overcloud endpoints.

CloudNameCtlplane

The DNS name of the provisioning network endpoint.

CloudNameInternal

The DNS name of the Internal API endpoint.

CloudNameStorage

CHAPTER 7. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

43

The DNS name of the storage endpoint.

CloudNameStorageManagement

The DNS name of the storage management endpoint.

Procedure

Use one of the following parameters to add the DNS servers to use:

DEFAULT/undercloud_nameservers

%SUBNET_SECTION%/dns_nameservers

TIP

You can use the CloudName{network.name} definition to set the DNS name for an API endpoint on a
composable network that uses a virtual IP.

For more information, see Adding a composable network in Installing and managing Red Hat OpenStack
Platform with director.

7.4. ADDING ENVIRONMENT FILES DURING OVERCLOUD CREATION

Use the -e option with the deployment command openstack overcloud deploy to include environment
files in the deployment process. Add the environment files from this section in the following order:

The environment file to enable SSL/TLS (enable-tls.yaml)

The environment file to set the DNS hostname (custom-domain.yaml)

The environment file to inject the root certificate authority (inject-trust-anchor-hiera.yaml)

The environment file to set the public endpoint mapping:

If you use a DNS name for accessing the public endpoints, use /usr/share/openstack-
tripleo-heat-templates/environments/ssl/tls-endpoints-public-dns.yaml

If you use a IP address for accessing the public endpoints, use /usr/share/openstack-
tripleo-heat-templates/environments/ssl/tls-endpoints-public-ip.yaml

Procedure

Use the following deployment command snippet as an example of how to include your SSL/TLS
environment files:

$ openstack overcloud deploy --templates \
[...]
-e /home/stack/templates/enable-tls.yaml \
-e ~/templates/custom-domain.yaml \
-e ~/templates/inject-trust-anchor-hiera.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-endpoints-public-dns.yaml

7.5. MANUALLY UPDATING SSL/TLS CERTIFICATES

Complete the following steps if you are using your own SSL/TLS certificates that are not auto-

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

44

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#proc_adding-a-composable-network_overcloud_networking

Complete the following steps if you are using your own SSL/TLS certificates that are not auto-
generated from the TLS everywhere (TLS-e) process.

Procedure

1. Edit your heat templates with the following content:

Edit the enable-tls.yaml file and update the SSLCertificate, SSLKey, and
SSLIntermediateCertificate parameters.

If your certificate authority has changed, edit the inject-trust-anchor-hiera.yaml file and
update the CAMap parameter.

2. Rerun the deployment command:

$ openstack overcloud deploy --templates \
[...]
-e /home/stack/templates/enable-tls.yaml \
-e ~/templates/custom-domain.yaml \
-e ~/templates/inject-trust-anchor-hiera.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-endpoints-public-
dns.yaml

3. On the director, run the following command for each Controller:

ssh tripleo-admin@<controller> sudo podman \
restart $(podman ps --format="{{.Names}}" | grep -w -E 'haproxy(-bundle-.*-[0-9]+)?')

CHAPTER 7. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

45

CHAPTER 8. USING FERNET KEYS FOR ENCRYPTION IN THE
OVERCLOUD

Fernet is the default token provider, that replaces uuid. You can review your Fernet deployment and
test that tokens are working correctly. Fernet uses three types of keys, which are stored in
/var/lib/config-data/puppet-generated/keystone/etc/keystone/fernet-keys. The highest-numbered
directory contains the primary key, which generates new tokens and decrypts existing tokens.

8.1. REVIEWING THE FERNET DEPLOYMENT

To test that Fernet tokens are working correctly, retrieve the IP address of the Controller node, SSH
into the Controller node, and review the settings of the token driver and provider.

Procedure

1. Retrieve the IP address of the Controller node:

[stack@director ~]$ source ~/stackrc
[stack@director ~]$ openstack server list
--+
| ID | Name | Status | Networks |
--+
| 756fbd73-e47b-46e6-959c-e24d7fb71328 | overcloud-controller-0 | ACTIVE |
ctlplane=192.0.2.16 |
| 62b869df-1203-4d58-8e45-fac6cd4cfbee | overcloud-novacompute-0 | ACTIVE |
ctlplane=192.0.2.8 |
--+

2. SSH into the Controller node:

[tripleo-admin@overcloud-controller-0 ~]$ ssh tripleo-admin@192.0.2.16

3. Retrieve the values of the token driver and provider settings:

[tripleo-admin@overcloud-controller-0 ~]$ sudo crudini --get /var/lib/config-data/puppet-
generated/keystone/etc/keystone/keystone.conf token driver
sql
[tripleo-admin@overcloud-controller-0 ~]$ sudo crudini --get /var/lib/config-data/puppet-
generated/keystone/etc/keystone/keystone.conf token provider
fernet

4. Test the Fernet provider:

[tripleo-admin@overcloud-controller-0 ~]$ exit
[stack@director ~]$ source ~/overcloudrc
[stack@director ~]$ openstack token issue

--+
| Field | Value |

--+
| expires | 2016-09-20 05:26:17+00:00 |
| id | gAAAAABX4LppE8vaiFZ992eah2i3edpO1aDFxlKZq6a_RJzxUx56QVKORrmW0-oZK3-

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

46

Xuu2wcnpYq_eek2SGLz250eLpZOzxKBR0GsoMfxJU8mEFF8NzfLNcbuS-iz7SV-
N1re3XEywSDG90JcgwjQfXW-8jtCm-n3LL5IaZexAYIw059T_-cd8 |
| project_id | 26156621d0d54fc39bf3adb98e63b63d |
| user_id | 397daf32cadd490a8f3ac23a626ac06c |

--+

The result includes the long Fernet token.

CHAPTER 8. USING FERNET KEYS FOR ENCRYPTION IN THE OVERCLOUD

47

CHAPTER 9. FEDERAL INFORMATION PROCESSING
STANDARD ON RED HAT OPENSTACK PLATFORM

The Federal Information Processing Standards (FIPS) is a set of security requirements developed by the
National Institute of Standards and Technology (NIST). In Red Hat Enterprise Linux 9, the supported
standard is FIPS publication 140-3: Security Requirements for Cryptographic Modules . For details about
the supported standard, see the Federal Information Processing Standards Publication 140-3.

These security requirements define acceptable cryptographic algorithms and the use of those
cryptographic algorithms, including security modules.

FIPS 140-3 validation is achieved by using only those cryptographic algorithms approved
through FIPS, in the manner prescribed, and through validated modules.

FIPS 140-3 compatibility is achieved by using only those cryptographic algorithms approved
through FIPS.

Red Hat OpenStack Platform 17 is FIPS 140-3 compatible. You can take advantage of FIPS
compatibility by using images provided by Red Hat to deploy your overcloud.

NOTE

OpenStack 17.1 is based on Red Hat Enterprise Linux (RHEL) 9.2. RHEL 9.2 has not yet
been submitted for FIPS validation. Red Hat expects, though cannot commit to a specific
timeframe, to obtain FIPS validation for RHEL 9.0 and RHEL 9.2 modules, and later even
minor releases of RHEL 9.x. Updates will be available in Compliance Activities and
Government Standards.

9.1. ENABLING FIPS

When you enable FIPS, you must complete a series of steps during the installation of the undercloud and
overcloud.

Prerequisites

You have installed Red Hat Enterprise Linux and are prepared to begin the installation of Red
Hat OpenStack Platform director.

Red Hat Ceph Storage 6 or later deployed, if you are using Red Hat Ceph Storage as the
storage backend.

Procedure

1. Enable FIPS on the undercloud:

a. Enable FIPS on the system on which you plan to install the undercloud:

fips-mode-setup --enable

NOTE

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

48

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://access.redhat.com/articles/2918071

NOTE

This step will add the fips=1 kernel parameter to your GRUB configuration
file. As a result, only cryptographic algorithms modules used by Red Hat
Enterprise Linux are in FIPS mode and only cryptographic algorithms
approved by the standard are used.

b. Reboot the system.

c. Verify that FIPS is enabled:

fips-mode-setup --check

d. Install and configure Red Hat OpenStack Platform director. For more information see:
Installing director on the undercloud .

2. Prepare FIPS-enabled images for the overcloud.

a. Install images for the overcloud:

sudo dnf -y install rhosp-director-images-uefi-fips-x86_64

b. Create the images directory in the home directory of the stack user:

$ mkdir /home/stack/images
$ cd /home/stack/images

c. Extract the images to your home directory:

for i in /usr/share/rhosp-director-images/*fips*.tar; do tar -xvf $i; done

d. You must create symlinks before uploading the images:

ln -s ironic-python-agent-fips.initramfs ironic-python-agent.initramfs
ln -s ironic-python-agent-fips.kernel ironic-python-agent.kernel
ln -s overcloud-hardened-uefi-full-fips.qcow2 overcloud-hardened-uefi-full.qcow2

e. Upload the FIPS-enabled overcloud images to the Image service:

 openstack overcloud image upload --update-existing --whole-disk

NOTE

You must use the --update-existing flag even if there are no images
currently in the OpenStack Image service.

3. Enable FIPS on the overcloud.
Configure templates for an overcloud deployment specific to your environment. Include all
configuration templates in the deployment command, including fips.yaml:

CHAPTER 9. FEDERAL INFORMATION PROCESSING STANDARD ON RED HAT OPENSTACK PLATFORM

49

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-the-undercloud

openstack overcloud deploy
...
-e /usr/share/openstack-tripleo-heat-templates/environments/fips.yaml

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

50

CHAPTER 10. IMPROVING USER ACCESS SECURITY
You can enable secure role-based access control (SRBAC) in Red Hat OpenStack Platform 17. The
SRBAC model has three personas, based on three roles existing within the project scope.

10.1. SRBAC PERSONAS

Personas are a combination of roles and the scope to which they belong. When you deploy Red Hat
OpenStack Platform 17, you can assign any of the personas from the project scope.

10.1.1. Red Hat OpenStack Platform SRBAC roles

Currently, three different roles are available within the project scope.

admin

The admin role includes all create, read, update, or delete operations on a resource or API.

member

The member role is allowed to create, read, update, and delete resources that are owned by the
scope in which they are a member.

reader

The reader role is for read-only operations, regardless of the scope it is applied to. This role can view
resources across the entirety of the scope to which it is applied.

10.1.2. Red Hat OpenStack Platform SRBAC scope

The scope is the context in which operations are performed. Only the project scope is available in Red
Hat OpenStack Platform 17. The project scope is a contained subset of APIs for isolated self-service
resources within OpenStack.

10.1.3. Red Hat OpenStack Platform SRBAC personas

Project admin

Because the project admin persona is the only administrative persona available, Red Hat OpenStack
Platform 17 includes modified policies that grant the project admin persona the highest level of
authorization. This persona includes create, read, update and delete operations on resources across
projects, which includes adding and removing users and other projects.

NOTE

This persona is expected to change in scope with future development. This role
implies all permissions granted to project members and project readers.

Project member

The project member persona is for users who are granted permission to consume resources within
the project scope. This persona can create, list, update, and delete resources within the project to
which they are assigned. This persona implies all permissions granted to project readers.

Project reader

The project reader persona is for users who are granted permission to view non-sensitive resources
in the project. On projects, assign the reader role to end users who need to inspect or view resources,
or to auditors, who only need to view project-specific resources within a single project for the

CHAPTER 10. IMPROVING USER ACCESS SECURITY

51

purposes of an audit The project-reader persona will not address all auditing use cases.

Additional personas based on the system or domain scopes are in development and are not available
for use.

NOTE

The Image service (glance) does not support SRBAC permissions for metadef APIs. The
default policies in RHOSP 17.1 for Image service metadef APIs are for the admin only.

10.2. ACTIVATING SECURE ROLE-BASED ACCESS CONTROL

When you activate secure role-based Authentication, you are activating a new set of policy files that
define the scope of permissions assigned to users in your Red Hat OpenStack Platform environment.

Prerequisites

You have an installed Red Hat OpenStack Platform director environment.

Procedure

Include the enable-secure-rbac.yaml environment file in the deployment script when deploying
Red Hat OpenStack Platform:

openstack overcloud deploy --templates
…
-e /usr/share/openstack-tripleo-heat-templates/environments/enable-secure-rbac.yaml

10.3. ASSIGNING ROLES IN AN SRBAC ENVIRONMENT

With SRBAC on Red Hat OpenStack Platform, you can assign users to the role of project-admin,
project-member, or project-reader.

Prerequisites

You have deployed Red Hat OpenStack Platform with secure role based authentication
(SRBAC).

Procedure

Use the openstack role add command using the following syntax:

Assign the admin role:

$ openstack role add --user <user> --user-domain <domain> --project <project> --
project-domain <project-domain> admin

Assign the member role:

$ openstack role add --user <user> --user-domain <domain> --project <project> --
project-domain <project-domain> member

Assign the reader role:

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

52

$ openstack role add --user <user> --user-domain <domain> --project <project> --
project-domain <project-domain> reader

Replace <user> with an existing user to apply the role.

Replace <domain> with the domain to which the role applies.

Replace <project> with the project for which the user is being granted the role.

Replace <project-domain> with the domain that the project is in.

CHAPTER 10. IMPROVING USER ACCESS SECURITY

53

CHAPTER 11. POLICIES
Each OpenStack service contains resources that are managed by access policies. For example, a
resource might include the following functions:

Permission to create and start instances

The ability to attach a volume to an instance

If you are a Red Hat OpenStack Platform (RHOSP) administrator, you can create custom policies to
introduce new roles with varying levels of access, or to change the default behavior of existing roles.

IMPORTANT

Red Hat does not support customized roles or policies. Syntax errors or misapplied
authorization can negatively impact security or usability. If you need customized roles or
policies in your production environment, contact Red Hat support for a support
exception.

11.1. REVIEWING EXISTING POLICIES

Policy files for services traditionally existed in the /etc/$service directory. For example, the full path of
the policy.json file for Compute (nova) was /etc/nova/policy.json.

There are two important architectural changes that affect how you can find existing policies:

Red Hat OpenStack Platform is now containerized.

Policy files, if present, are in the traditional path if you view them from inside the service
container:
/etc/$service/policy.json

Policy files, if present, are in the following path if you view them from outside the service
container:
/var/lib/config-data/puppet-generated/$service/etc/$service/policy.json

Each service has default policies that are provided in code, with files that are available only if you
created them manually, or if they are generated with oslopolicy tooling. To generate a policy
file, use the oslopolicy-policy-generator from within a container, as in the following example:

podman exec -it keystone oslopolicy-policy-generator --namespace keystone

By default, generated policies are pushed to stdout by oslo.policy CLI tools.

11.2. UNDERSTANDING SERVICE POLICIES

Service policy file statements are either alias definitions or rules. Alias definitions exist at the top of the
file. The following list contains an explanation of the alias definitions from the generated policy.json file
for Compute (nova):

"context_is_admin": "role:admin"
When rule:context_is_admin appears after a target, the policy checks that the user is
operating with an administrative context before it allows that action.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

54

"admin_or_owner": "is_admin:True or project_id:%(project_id)s"
When admin_or_owner appears after a target, the policy checks that the user is either an
admin, or that their project ID matches the owning project ID of the target object before it
allows that action.

"admin_api": "is_admin:True
When admin_api appears after a target, the policy checks that the user is an admin before it
allows that action.

11.3. POLICY SYNTAX

Policy.json files support certain operators so that you can control the target scope of these settings. For
example, the following keystone setting contains the rule that only admin users can create users:

"identity:create_user": "rule:admin_required"

The section to the left of the : character describes the privilege, and the section to the right defines who
can use the privilege. You can also use operators to the right side to further control the scope:

! - No user (including admin) can perform this action.

@ and "" - Any user can perform this action.

not, and, or - Standard operator functions are available.

For example, the following setting means that no users have permission to create new users:

"identity:create_user": "!"

11.4. USING POLICY FILES FOR ACCESS CONTROL

IMPORTANT

Red Hat does not support customized roles or policies. Syntax errors or misapplied
authorization can negatively impact security or usability. If you need customized roles or
policies in your production environment, contact Red Hat support for a support
exception.

To override the default rules, edit the policy.json file for the appropriate OpenStack service. For
example, the Compute service has a policy.json in the nova directory, which is the correct location of
the file for containerized services when you view it from inside the container.

NOTE

You must thoroughly test changes to policy files in a staging environment before
implementing them in production.

You must check that any changes to the access control policies do not
unintentionally weaken the security of any resource. In addition, any changes to a
policy.json file are effective immediately and do not require a service restart.

Example: Creating a power user role

CHAPTER 11. POLICIES

55

To customize the permissions of a keystone role, update the policy.json file of a service. This means
that you can more granularly define the permissions that you assign to a class of users. This example
creates a power user role for your deployment with the following privileges:

Start an instance.

Stop an instance.

Manage the volumes that are attached to instances.

The intention of this role is to grant additional permissions to certain users, without the need to then
grant admin access. To use these privileges, you must grant the following permissions to a custom role:

Start an instance: "os_compute_api:servers:start": "role:PowerUsers"

Stop an instance: "os_compute_api:servers:stop": "role:PowerUsers"

Configure an instance to use a particular volume:
"os_compute_api:servers:create:attach_volume": "role:PowerUsers"

List the volumes that are attached to an instance: "os_compute_api:os-volumes-
attachments:index": "role:PowerUsers"

Attach a volume: "os_compute_api:os-volumes-attachments:create": "role:PowerUsers"

View the details of an attached volume: "os_compute_api:os-volumes-attachments:show":
"role:PowerUsers"

Change the volume that is attached to an instance: "os_compute_api:os-volumes-
attachments:update": "role:PowerUsers"

Delete a volume that is attached to an instance: "os_compute_api:os-volumes-
attachments:delete": "role:PowerUsers"

NOTE

When you modify the policy.json file, you override the default policy. As a result,
members of PowerUsers are the only users that can perform these actions. To allow
admin users to retain these permissions, you can create rules for admin_or_power_user.
You can also use some basic conditional logic to define role:PowerUsers or role:Admin.

1. Create the custom keystone role:

$ openstack role create PowerUsers
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	None
id	7061a395af43455e9057ab631ad49449
name	PowerUsers
+-----------+----------------------------------+

2. Add an existing user to the role, and assign the role to a project:

$ openstack role add --project [PROJECT_NAME] --user [USER_ID] [PowerUsers-ROLE_ID]

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

56

NOTE

A role assignment is paired exclusively with one project. This means that when
you assign a role to a user, you also define the target project at the same time. If
you want the user to receive the same role but for a different project, you must
assign the role to them again separately but target the different project.

3. View the default nova policy settings:

$ oslopolicy-policy-generator --namespace nova

4. Create custom permissions for the new PowerUsers role by adding the following entries to
/var/lib/config-data/puppet-generated/nova/etc/nova/policy.json:

NOTE

Test your policy changes before deployment to verify that they work as you
expect.

{
"os_compute_api:servers:start": "role:PowerUsers",
"os_compute_api:servers:stop": "role:PowerUsers",
"os_compute_api:servers:create:attach_volume": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:index": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:create": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:show": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:update": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:delete": "role:PowerUsers"
}

You implement the changes when you save this file and restart the nova container. Users that
are added to the PowerUsers keystone role receive these privileges.

11.5. EXAMPLE: LIMITING ACCESS BASED ON ATTRIBUTES

IMPORTANT

Red Hat does not support customized roles or policies. Syntax errors or misapplied
authorization can negatively impact security or usability. If you need customized roles or
policies in your production environment, contact Red Hat support for a support
exception.

You can create policies that will restrict access to API calls based on the attributes of the user making
that API call. For example, the following default rule states that keypair deletion is allowed if run from an
administrative context, or if the user ID of the token matches the user ID associated with the target.

"os_compute_api:os-keypairs:delete": "rule:admin_api or user_id:%(user_id)s"

NOTE: * Newly implemented features are not guaranteed to be in every service with each release.
Therefore, it is important to write rules using the conventions of the target service’s existing policies. For
details on viewing these policies, see Reviewing existing policies. * All policies should be rigorously tested

CHAPTER 11. POLICIES

57

in a non-production environment for every version on which they will be deployed, as policies are not
guaranteed for compatibility across releases.

Based on the above example, you can craft API rules to expand or restrict access to users based on
whether or not they own a resource. Additionally, attributes can be combined with other restrictions to
form rules as seen in the example below:

"admin_or_owner": "is_admin:True or project_id:%(project_id)s"

Considering the examples above, you can create a unique rule limited to administrators and users, and
then use that rule to further restrict actions:

"admin_or_user": "is_admin:True or user_id:%(user_id)s"
"os_compute_api:os-instance-actions": "rule:admin_or_user"

Additional resources

Policy syntax .

11.6. MODIFYING POLICIES WITH HEAT

IMPORTANT

Red Hat does not support customized roles or policies. Syntax errors or misapplied
authorization can negatively impact security or usability. If you need customized roles or
policies in your production environment, contact Red Hat support for a support
exception.

You can use heat to configure access policies for certain services in the overcloud. Use the following
parameters to set policies on the respective services:

Table 11.1. Policy Parameters

Parameter Description

KeystonePolicies A hash of policies to configure for OpenStack
Identity (keystone).

IronicApiPolicies A hash of policies to configure for OpenStack Bare
Metal (ironic) API.

BarbicanPolicies A hash of policies to configure for OpenStack Key
Manager (barbican).

NeutronApiPolicies A hash of policies to configure for OpenStack
Networking (neutron) API.

SaharaApiPolicies A hash of policies to configure for OpenStack
Clustering (sahara) API.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

58

NovaApiPolicies A hash of policies to configure for OpenStack
Compute (nova) API.

CinderApiPolicies A hash of policies to configure for OpenStack Block
Storage (cinder) API.

GlanceApiPolicies A hash of policies to configure for OpenStack Image
Storage (glance) API.

HeatApiPolicies A hash of policies to configure for OpenStack
Orchestration (heat) API.

Parameter Description

To configure policies for a service, give the policy parameter a hash value that contains the service’s
policies For example:

OpenStack Identity (keystone) uses the KeystonePolicies parameter. Set this parameter in the
parameter_defaults section of an environment file:

parameter_defaults:
 KeystonePolicies: { keystone-context_is_admin: { key: context_is_admin, value: 'role:admin'
} }

OpenStack Compute (nova) uses the NovaApiPolicies parameter. Set this parameter in the
parameter_defaults section of an environment file:

parameter_defaults:
 NovaApiPolicies: { nova-context_is_admin: { key: 'compute:get_all', value: '@' } }

11.7. AUDITING YOUR USERS AND ROLES

You can use tools available in Red Hat OpenStack Platform to build a report of role assignments per
user and associated privileges.

Prerequisites

You have an installed Red Hat OpenStack Platform environment.

You are logged into the director as stack.

Procedure

1. Run the openstack role list command to see the roles currently in your environment:

openstack role list -c Name -f value

swiftoperator
ResellerAdmin

CHAPTER 11. POLICIES

59

admin
member
heat_stack_user

2. Run the openstack role assignment list command to list all users that are members of a
particular role. For example, to see all users that have the admin role, run the following:

$ openstack role assignment list --names --role admin
+-------+------------------------------------+-------+-----------------+------------+--------+-----------+
| Role | User | Group | Project | Domain | System | Inherited |
+-------+------------------------------------+-------+-----------------+------------+--------+-----------+
admin	heat-cfn@Default		service@Default			False
admin	placement@Default		service@Default			False
admin	neutron@Default		service@Default			False
admin	zaqar@Default		service@Default			False
admin	swift@Default		service@Default			False
admin	admin@Default		admin@Default			False
admin	zaqar-websocket@Default		service@Default			False
admin	heat@Default		service@Default			False
admin	ironic-inspector@Default		service@Default			False
admin	nova@Default		service@Default			False
admin	ironic@Default		service@Default			False
admin	glance@Default		service@Default			False
admin	mistral@Default		service@Default			False
admin	heat_stack_domain_admin@heat_stack			heat_stack		False
admin	admin@Default				all	False
+-------+------------------------------------+-------+-----------------+------------+--------+-----------+

NOTE

You can use the -f {csv,json,table,value,yaml} parameter to export these
results.

11.8. AUDITING API ACCESS

You can audit the API calls a given role can access. Repeating this process for each role will result in a
comprehensive report on the accessible APIs for each role.

Prerequisites

An authentication file to source as a user in the target role.

An access token in JSON format.

A policy file for each service’s API you wish to audit.

Procedure

1. Start by sourcing an authentication file of a user in the desired role.

2. Capture a Keystone generated token and save it to a file. You can do this by running any
openstack-cli command and using the --debug option, which prints the provided token to
stdout. You can copy this token and save it to an access file. Use the following command to do

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

60

this as a single step:

openstack token issue --debug 2>&1 | egrep ^'{\"token\":' > access.file.json

3. Create a policy file. This can be done on an overcloud node that hosts the containerized service
of interest. The following example creates a policy file for the cinder service:

ssh tripleo-admin@CONTROLLER-1 sudo podman exec cinder_api \
oslopolicy-policy-generator \
--config-file /etc/cinder/cinder.conf \
--namespace cinder > cinderpolicy.json

4. Using these files, you can now audit the role in question for access to cinder’s APIs:

oslopolicy-checker --policy cinderpolicy.json --access access.file.json

CHAPTER 11. POLICIES

61

CHAPTER 12. NETWORK TIME PROTOCOL
You need to ensure that systems within your Red Hat OpenStack Platform cluster have accurate and
consistent timestamps between systems.

Red Hat OpenStack Platform on Red Hat Enterprise Linux 9 supports Chrony for time management.
For more information, see Using the Chrony suite to configure NTP .

12.1. WHY CONSISTENT TIME IS IMPORTANT

Consistent time throughout your organization is important for both operational and security needs:

Identifying a security event

Consistent timekeeping helps you correlate timestamps for events on affected systems so that you
can understand the sequence of events.

Authentication and security systems

Security systems can be sensitive to time skew, for example:

A kerberos-based authentication system might refuse to authenticate clients that are
affected by seconds of clock skew.

Transport layer security (TLS) certificates depend on a valid source of time. A client to
server TLS connection fails if the difference between client and server system times exceeds
the Valid From date range.

Red Hat OpenStack Platform services

Some core OpenStack services are especially dependent on accurate timekeeping, including High
Availability (HA) and Ceph.

12.2. NTP DESIGN

Network time protocol (NTP) is organized in a hierarchical design. Each layer is called a stratum. At the
top of the hierarchy are stratum 0 devices such as atomic clocks. In the NTP hierarchy, stratum 0
devices provide reference for publicly available stratum 1 and stratum 2 NTP time servers.

Do not connect your data center clients directly to publicly available NTP stratum 1 or 2 servers. The
number of direct connections would put unnecessary strain on the public NTP resources. Instead,
allocate a dedicated time server in your data center, and connect the clients to that dedicated server.

Configure instances to receive time from your dedicated time servers, not the host on which they reside.

NOTE

Service containers running within the Red Hat OpenStack Platform environment still
receive time from the host on which they reside.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

62

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_basic_system_settings/index#using-chrony-to-configure-ntp_configuring-time-synchronization

CHAPTER 13. HARDENING INFRASTRUCTURE AND
VIRTUALIZATION

You can harden your physical and virtual environment to better protect against internal and external
threats.

13.1. HARWARE FOR RED HAT OPENSTACK PLATFORM

When you add hardware for use in your cloud environment, ensure that it is supported that hardware
virtualization is supported. Disable hardware features that you do not use.

Procedure

1. Check Certified hardware for Red Hat OpenStack to ensure your hardware is supported.

2. Check that hardware virtualization is available and enabled:

cat /proc/cpuinfo | egrep "vmx|svm"

3. Ensure that all firmware is up-to-date on your hardware platform. See hardware vendor
documentation for details.

13.2. SOFTWARE UPDATES IN A CLOUD ENVIRONMENT

Keep Red Hat OpenStack Platform (RHOSP) updated for security, performance and supportability.

If there are kernel updates included when you update, you must reboot the physical system or
instance that you updated.

Update OpenStack Image (glance) images to ensure that newly created instances have the
latest updates.

If you selectively update packages on RHOSP, ensure that all security updates are included. For
more information about the latest vulnerabilities and security updates, see:

RHSA-announce

Errata notifications

Security Advisories

13.3. UPDATING SSH KEYS IN YOUR OPENSTACK ENVIRONMENT

Additionally, you must update your SSH keys if they are less than 2048 bits in the following scenarios:

You are upgrading your Red Hat OpenStack Platform (RHOSP) cluster to RHEL 9.2 during an
upgrade from RHOSP 16.2 to 17.1

You are updating from a RHOSP 17.0 or 17.1 minor release to the latest RHOSP 17.1 minor
release

Run the ssh_key_rotation.yaml Ansible Playbook to safely automate the process of rotating your SSH
keys. On the overcloud, backup keys are stored in the following directory:

CHAPTER 13. HARDENING INFRASTRUCTURE AND VIRTUALIZATION

63

https://catalog.redhat.com/platform/red-hat-openstack/hardware/search
https://www.redhat.com/mailman/listinfo/rhsa-announce
https://www.redhat.com/wapps/ugc/protected/notif.html
https://access.redhat.com/security/security-updates/#/?q=openstack&p=1&sort=portal_publication_date desc&rows=10&portal_advisory_type=Security Advisory&documentKind=PortalProduct

1

2

1

2

3

/home/{{ ansible_user_id }}/backup_keys/{{ ansible_date_time.epoch }}/authorized_keys"

Prerequisites

You have a fully installed RHOSP environment.

Procedure

1. Log in to RHOSP director:

ssh stack@director

2. Run the ansible-playbook ssh_key_rotation.yaml:

$ ansible-playbook \
-i /home/stack/overcloud-deploy/<stack_name>/tripleo-ansible-inventory.yaml \ 1
-e undercloud_backup_folder=/home/stack/overcloud_backup_keys \ 2
/usr/share/ansible/tripleo-playbooks/ssh_key_rotation.yaml

Replace <stack_name> with the name of your overcloud stack.

Specify the backup directory of your choice in the stack home directory.

NOTE

If you have a single-celled deployment, you have completed this procedure. If you
have more than one cell, you must continue.

3. Rerun the playbook for each additional cell that you have:

ansible-playbook \
-i /home/stack/overcloud-deploy/<stack_name>/tripleo-ansible-inventory.yaml \ 1
-e rotate_undercloud_key=false \ 2
-e ansible_ssh_private_key_file=/home/stack/overcloud_backup_keys/id_rsa 3
tripleo-ansible/playbooks/ssh_key_rotation.yaml

Replace <stack_name> with the stack name of the cell. Each cell has a different name.

You must ensure that the undercloud key is not rotated by setting the
rotate_undercloud_key parameter to false.

Point to your SSH backup key so that you can authenticate into the Compute hosts in
other cells after the old SSH key is rotated out.

13.4. LIMITING HARDWARE AND SOFTWARE FEATURES

Enable only the hardware and software features that you use, so that less code is exposed to the
possibility of attack. There are some features that you should only enable in trusted environments.

PCI passthrough

PCI passthrough allows an instance to have direct access to a PCI device on a node. An instance with

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

64

PCI device access may allow a malicious actor to make modifications to the firmware. Additionally,
some PCI devices have direct memory access (DMA). When you give an instance control over a
device with DMA, it can gain arbitrary physical memory access.

You must enable PCI passthrough for specific use cases, such as Network Functions Virtualization
(NFV). Do not enable PCI passthrough unless it is necessary for your deployment.

Kernel same-page merging

Kernel same-page merging (KSM) is a feature that reduces the use of memory through the
deduplication and sharing of memory pages. When two or more virtual machines have identical
pages in memory, those pages can be shared allowing for higher density. Memory deduplication
strategies are vulnerable to side-channel attacks and should only be used in trusted environments. In
Red Hat OpenStack Platform, KSM is disabled by default.

13.5. SELINUX ON RED HAT OPENSTACK PLATFORM

Security-Enhanced Linux (SELinux) is an implementation of mandatory access control (MAC). MAC
limits the impact of an attack by restricting what a process or application is permitted to do on a system.
For more information on SELinux, see What is SELinux?.

SELinux policies have been pre-configured for Red Hat OpenStack Platform (RHOSP) services. On
RHOSP, SELinux is configured to run each QEMU process under a separate security context. In RHOSP,
SELinux policies help protect hypervisor hosts and instances against the following threats:

Hypervisor threats

A compromised application running within an instance attacks the hypervisor to access underlying
resources. If an instance is able to access the hypervisor OS, physical devices and other applications
can become targets. This threat represents considerable risk. A compromise on a hypervisor can also
compromise firmware, other instances, and network resources.

Instance threats

A compromised application running within an instance attacks the hypervisor to access or control
another instance and its resources, or instance file images. The administrative strategies for
protecting real networks do not apply directly to virtual environments. Because every instance is a
process labeled by SELinux, there is a security boundary around each instance, enforced by the Linux
kernel.

In RHOSP, instance image files on disk are labeled with SELinux data type svirt_image_t. When the
instance is powered on, SELinux appends a random numerical identifier to the image. A random
numerical identifier can prevent a compromised OpenStack instance from gaining unauthorized access
to other containers. SELinux is capable of assigning up to 524,288 numeric identifiers on each
hypervisor node.

13.6. INVESTIGATING CONTAINERIZED SERVICES

The OpenStack services that come with Red Hat OpenStack Platform run within containers.
Containerization allows for the development and upgrade of services without dependency related
conflicts. When a service runs within a container, potential vulnerabilities to that service are also
contained.

You can get information about the service that are running in your environment by using the following
steps:

Procedure

CHAPTER 13. HARDENING INFRASTRUCTURE AND VIRTUALIZATION

65

https://www.redhat.com/en/topics/linux/what-is-selinux

Use `podman inspect to get information, such as bind mounted host directories:
Example:

$ sudo podman inspect <container_name> | less

Replace <container_name> with the name of your container. For example, nova compute.

Check the logs for the service located in /var/log/containers:
Example:

sudo less /var/log/containers/nova/nova-compute.log

Run an interactive CLI session within the container:
Example:

podman exec -it nova_compute /bin/bash

NOTE

You can make changes to the service for testing purposes directly within the
container. All changes are lost when the container is restarted.

13.7. MAKING TEMPORARY CHANGES TO CONTAINERIZED SERVICES

You can make changes to containerized services that persist when the container is restarted, but that do
not affect the permanent configuration of your Red Hat OpenStack Platform (RHOSP) cluster. This is
useful for testing configuration changes, or enabling debug-level logs when troubleshooting. You can
revert changes manually. Alternatively, running a redeploy on your RHOSP cluster resets all parameters
to their permanent configurations.

Use configuration files that are located in /var/lib/config-data/puppet-generated/[service] to make
temporary changes to a service. The following example enables debugging on the nova service:

Procedure

1. Edit the nova.conf configuration file that is bind mounted to the nova_compute container. Set
the value of the debug parameter to True:

$ sudo sed -i 's/^debug=.*/debug=True' \
/var/lib/config-data/puppet-generated/nova/etc/nova/nova.conf

WARNING

Configuration files for OpenStack files are ini files with multiple sections,
such as [DEFAULT] and [database]. Parameters that are unique to each
section might not be unique across the entire file. Use sed with caution. You
can check to see if a parameter appears more than once in a configuration
file by running egrep -v "^$|^#" [configuration_file] | grep [parameter].

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

66

2. Restart the nova container:

sudo podman restart nova_compute

13.8. MAKING PERMANENT CHANGES TO CONTAINERIZED SERVICES

You can make permanent changes to containerized services in Red Hat OpenStack Platform (RHOSP)
services with heat. Use an existing template that you used when you first deployed RHOSP, or create a
new template to add to your deployment script. In the following example, the private key size for libvirt is
increased to 4096.

Procedure

1. Create a new yaml template called libvirt-keysize.yaml, and use the LibvirtCertificateKeySize
parameter to increase the default value from 2048 to 4096.

cat > /home/stack/templates/libvirt-keysize.yaml
parameter_defaults:
 LibvirtCertificateKeySize: 4096
EOF

2. Add the libvirt-keysize.yaml configuration file to your deployment script:

openstack overcloud deploy --templates \
...
-e /home/stack/templates/libvirt-keysize.yaml
...

3. Rerun the deployment script:

./deploy.sh

13.9. FIRMWARE UPDATES

Physical servers use complex firmware to enable and operate server hardware and lights-out
management cards, which can have their own security vulnerabilities, potentially allowing system access
and interruption. To address these, hardware vendors will issue firmware updates, which are installed
separately from operating system updates. You will need an operational security process that retrieves,
tests, and implements these updates on a regular schedule, noting that firmware updates often require a
reboot of physical hosts to become effective.

13.10. USE SSH BANNER TEXT

You can set a banner that displays a console message to all users that connect over SSH. You can add
banner text to /etc/issue using the following parameters in an environment file. Consider customizing
this sample text to suit your requirements.

resource_registry:
 OS::TripleO::Services::Sshd:
 /usr/share/openstack-tripleo-heat-templates/deployment/sshd/sshd-baremetal-puppet.yaml

parameter_defaults:

CHAPTER 13. HARDENING INFRASTRUCTURE AND VIRTUALIZATION

67

 BannerText: |
 **
 * This system is for the use of authorized users only. Usage of *
 * this system may be monitored and recorded by system personnel. *
 * Anyone using this system expressly consents to such monitoring *
 * and is advised that if such monitoring reveals possible *
 * evidence of criminal activity, system personnel may provide *
 * the evidence from such monitoring to law enforcement officials.*
 **

To apply this change to your deployment, save the settings as a file called ssh_banner.yaml, and then
pass it to the overcloud deploy command as follows. The <full environment> indicates that you must
still include all of your original deployment parameters. For example:

 openstack overcloud deploy --templates \
 -e <full environment> -e ssh_banner.yaml

13.11. AUDIT FOR SYSTEM EVENTS

Maintaining a record of all audit events helps you establish a system baseline, perform troubleshooting,
or analyze the sequence of events that led to a certain outcome. The audit system is capable of logging
many types of events, such as changes to the system time, changes to Mandatory/Discretionary Access
Control, and creating/deleting users or groups.

Rules can be created using an environment file, which are then injected by director into
/etc/audit/audit.rules. For example:

 resource_registry:
 OS::TripleO::Services::AuditD: /usr/share/openstack-tripleo-heat-
templates/deployment/auditd/auditd-baremetal-puppet.yaml
 parameter_defaults:
 AuditdRules:
 'Record Events that Modify User/Group Information':
 content: '-w /etc/group -p wa -k audit_rules_usergroup_modification'
 order : 1
 'Collects System Administrator Actions':
 content: '-w /etc/sudoers -p wa -k actions'
 order : 2
 'Record Events that Modify the Systems Mandatory Access Controls':
 content: '-w /etc/selinux/ -p wa -k MAC-policy'
 order : 3

13.12. MANAGE FIREWALL RULES

Firewall rules are automatically applied on overcloud nodes during deployment, and are intended to only
expose the ports required to get OpenStack working. You can specify additional firewall rules as needed.
For example, to add rules for a Zabbix monitoring system:

parameter_defaults:
 ControllerExtraConfig:
 ExtraFirewallRules:
 '301 allow zabbix':

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

68

 dport: 10050
 proto: tcp
 source: 10.0.0.8

NOTE

When you do not set the action parameter, the result is accept. You can only set the
action parameter to drop, insert, or append.

You can also add rules that restrict access. The number used during rule definition will determine the
rule’s precedence. For example, RabbitMQ’s rule number is 109 by default. If you want to restrain it, you
switch it to use a lower value:

parameter_defaults:
 ControllerParameters
 ExtraFirewallRules:
 '098 allow rabbit from internalapi network':
 dport: [4369,5672,25672]
 proto: tcp
 source: 10.0.0.0/24
 '099 drop other rabbit access:
 dport: [4369,5672,25672]
 proto: tcp
 action: drop

In this example, 098 and 099 are arbitrarily chosen numbers that are lower than RabbitMQ’s rule number
109. To determine a rule’s number, you can inspect the iptables rule on the appropriate node; for
RabbitMQ, you would check the controller:

iptables-save
[...]
-A INPUT -p tcp -m multiport --dports 4369,5672,25672 -m comment --comment "109 rabbitmq" -m
state --state NEW -j ACCEPT

Alternatively, you can extract the port requirements from the puppet definition. For example,
RabbitMQ’s rules are stored in puppet/services/rabbitmq.yaml:

 ExtraFirewallRules:
 '109 rabbitmq':
 dport:
 - 4369
 - 5672
 - 25672

The following parameters can be set for a rule:

dport: The destination port associated to the rule.

sport: The source port associated to the rule.

proto: The protocol associated to the rule. Defaults to tcp

action: The action policy associated to the rule. Defaults to INSERT and sets the jump to
ACCEPTS.

CHAPTER 13. HARDENING INFRASTRUCTURE AND VIRTUALIZATION

69

state: Array of states associated to the rule. Default to [NEW]

source: The source IP address associated to the rule.

interface: The network interface associated to the rule.

chain: The chain associated to the rule. Default to INPUT

destination: The destination cidr associated to the rule.

13.13. INTRUSION DETECTION WITH AIDE

AIDE (Advanced Intrusion Detection Environment) is a file and directory integrity checker. It is used to
detect incidents of unauthorized file tampering or changes. For example, AIDE can alert you if system
password files are changed.

AIDE works by analyzing system files and then compiling an integrity database of file hashes. The
database then serves as a comparison point to verify the integrity of the files and directories and detect
changes.

The director includes the AIDE service, allowing you to add entries into an AIDE configuration, which is
then used by the AIDE service to create an integrity database. For example:

 resource_registry:
 OS::TripleO::Services::Aide:
 /usr/share/openstack-tripleo-heat-templates/deployment/aide/aide-baremetal-ansible.yaml

 parameter_defaults:
 AideRules:
 'TripleORules':
 content: 'TripleORules = p+sha256'
 order: 1
 'etc':
 content: '/etc/ TripleORules'
 order: 2
 'boot':
 content: '/boot/ TripleORules'
 order: 3
 'sbin':
 content: '/sbin/ TripleORules'
 order: 4
 'var':
 content: '/var/ TripleORules'
 order: 5
 'not var/log':
 content: '!/var/log.*'
 order: 6
 'not var/spool':
 content: '!/var/spool.*'
 order: 7
 'not nova instances':
 content: '!/var/lib/nova/instances.*'
 order: 8

NOTE

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

70

NOTE

The above example is not actively maintained or benchmarked, so you should select the
AIDE values that suit your requirements.

1. An alias named TripleORules is declared to avoid having to repeatedly out the same attributes
each time.

2. The alias receives the attributes of p+sha256. In AIDE terms, this reads as the following
instruction: monitor all file permissions p with an integrity checksum of sha256.

For a complete list of attributes available for AIDE’s config files, see the AIDE MAN page at
https://aide.github.io/.

Complete the following to apply changes to your deployment:

1. Save the settings as a file called aide.yaml in the /home/stack/templates/ directory.

2. Edit the aide.yaml environment file to have the parameters and values suitable for your
environment.

3. Include the /home/stack/templates/aide.yaml environment file in the openstack overcloud
deploy command, along with all other necessary heat templates and environment files specific
to your environment:

openstack overcloud deploy --templates
...
-e /home/stack/templates/aide.yaml

13.13.1. Using complex AIDE rules

Complex rules can be created using the format described previously. For example:

 MyAlias = p+i+n+u+g+s+b+m+c+sha512

The above would translate as the following instruction: monitor permissions, inodes, number of links,
user, group, size, block count, mtime, ctime, using sha256 for checksum generation.

Note, the alias should always have an order position of 1, which means that it is positioned at the top of
the AIDE rules and is applied recursively to all values below.

Following after the alias are the directories to monitor. Note that regular expressions can be used. For
example we set monitoring for the var directory, but overwrite with a not clause using ! with '!/var/log.*'
and '!/var/spool.*'.

13.13.2. Additional AIDE values

The following AIDE values are also available:

AideConfPath: The full POSIX path to the aide configuration file, this defaults to /etc/aide.conf. If no
requirement is in place to change the file location, it is recommended to stick with the default path.

AideDBPath: The full POSIX path to the AIDE integrity database. This value is configurable to allow
operators to declare their own full path, as often AIDE database files are stored off node perhaps on a
read only file mount.

CHAPTER 13. HARDENING INFRASTRUCTURE AND VIRTUALIZATION

71

https://aide.github.io/

AideDBTempPath: The full POSIX path to the AIDE integrity temporary database. This temporary files
is created when AIDE initializes a new database.

AideHour: This value is to set the hour attribute as part of AIDE cron configuration.

AideMinute: This value is to set the minute attribute as part of AIDE cron configuration.

AideCronUser: This value is to set the linux user as part of AIDE cron configuration.

AideEmail: This value sets the email address that receives AIDE reports each time a cron run is made.

AideMuaPath: This value sets the path to the Mail User Agent that is used to send AIDE reports to the
email address set within AideEmail.

13.13.3. Cron configuration for AIDE

The AIDE director service allows you to configure a cron job. By default, it will send reports to
/var/log/audit/; if you want to use email alerts, then enable the AideEmail parameter to send the alerts
to the configured email address. Note that a reliance on email for critical alerts can be vulnerable to
system outages and unintentional message filtering.

13.13.4. Considering the effect of system upgrades

When an upgrade is performed, the AIDE service will automatically regenerate a new integrity database
to ensure all upgraded files are correctly recomputed to possess an updated checksum.

If openstack overcloud deploy is called as a subsequent run to an initial deployment, and the AIDE
configuration rules are changed, the director AIDE service will rebuild the database to ensure the new
config attributes are encapsulated in the integrity database.

13.14. REVIEW SECURETTY

SecureTTY allows you to disable root access for any console device (tty). This behavior is managed by
entries in the /etc/securetty file. For example:

 resource_registry:
 OS::TripleO::Services::Securetty: ../puppet/services/securetty.yaml

 parameter_defaults:
 TtyValues:
 - console
 - tty1
 - tty2
 - tty3
 - tty4
 - tty5
 - tty6

13.15. CADF AUDITING FOR IDENTITY SERVICE

A thorough auditing process can help you review the ongoing security posture of your OpenStack
deployment. This is especially important for keystone, due to its role in the security model.

Red Hat OpenStack Platform has adopted Cloud Auditing Data Federation (CADF) as the data format

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

72

Red Hat OpenStack Platform has adopted Cloud Auditing Data Federation (CADF) as the data format
for audit events, with the keystone service generating CADF events for Identity and Token operations.
You can enable CADF auditing for keystone using KeystoneNotificationFormat:

 parameter_defaults:
 KeystoneNotificationFormat: cadf

13.16. REVIEW THE LOGIN.DEFS VALUES

To enforce password requirements for new system users (non-keystone), director can add entries to
/etc/login.defs by following these example parameters:

 resource_registry:
 OS::TripleO::Services::LoginDefs: ../puppet/services/login-defs.yaml

 parameter_defaults:
 PasswordMaxDays: 60
 PasswordMinDays: 1
 PasswordMinLen: 5
 PasswordWarnAge: 7
 FailDelay: 4

CHAPTER 13. HARDENING INFRASTRUCTURE AND VIRTUALIZATION

73

CHAPTER 14. HARDENING THE DASHBOARD SERVICE
The Dashboard service (horizon) gives users a self-service portal for provisioning their own resources
within the limits set by administrators. Manage the security of the Dashboard service with the same
sensitivity as the OpenStack APIs.

14.1. DEBUGGING THE DASHBOARD SERVICE

The default value for the DEBUG parameter is False. Keep the default value in your production
environment. Change this setting only during investigation. When you change the value of the DEBUG
parameter to True, Django can output stack straces to browser users that contain sensitive web server
state information.

When the value of the DEBUG parameter is True, the ALLOWED_HOSTS settings are also disabled.
For more information on configuring ALLOWED_HOSTS, see Configure ALLOWED_HOSTS.

14.2. SELECTING A DOMAIN NAME

It is a best practice to deploy the Dashboard service (horizon) to a second level domain, as opposed to a
shared domain on any level. Examples of each are provided below:

Second level domain: https://example.com

Shared subdomain: https://example.public-url.com

Deploying the Dashboard service to a dedicated second level domain isolates cookies and security
tokens from other domains, based on browsers' same-origin policy. When deployed on a subdomain,
the security of the Dashboard service is equivalent to the least secure application deployed on the same
second-level domain.

You can further mitigate this risk by avoiding a cookie-backed session store, and configuring HTTP Strict
Transport Security (HSTS) (described in this guide).

NOTE

Deploying the Dashboard service on a bare domain, like https://example/, is unsupported.

14.3. CONFIGURE ALLOWED_HOSTS

Horizon is built on the python Django web framework, which requires protection against security threats
associated with misleading HTTP Host headers. To apply this protection, configure the
ALLOWED_HOSTS setting to use the FQDN that is served by the OpenStack dashboard.

When you configure the ALLOWED_HOSTS setting, any HTTP request with a Host header that does
not match the values in this list is denied, and an error is raised.

Procedure

1. Under parameter_defaults in your templates, set the value of the HorizonAllowedHosts
parameter:

parameter_defaults:
 HorizonAllowedHosts: <value>

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

74

Replace <value> with the FQDN that is served by the OpenStack dashboard.

2. Deploy the overcloud with the modified template, and all other templates required for your
environment.

14.4. CROSS SITE SCRIPTING (XSS)

The OpenStack Dashboard accepts the entire Unicode character set in most fields. Malicious actors can
attempt to use this extensibility to test for cross-site scripting (XSS) vulnerabilities. The OpenStack
Dashboard service (horizon) has tools that harden against XSS vulnerabilites. It is important to ensure
the correct use of these tools in custom dashboards. When you perform an audit against custom
dashboards, pay attention to the following:

The mark_safe function.

is_safe - when used with custom template tags.

The safe template tag.

Anywhere auto escape is turned off, and any JavaScript which might evaluate improperly
escaped data.

14.5. CROSS SITE REQUEST FORGERY (CSRF)

Dashboards that use multiple JavaScript instances should be audited for vulnerabilities such as
inappropriate use of the @csrf_exempt decorator. Evaluate any dashboard that does not follow
recommended security settings before lowering CORS (Cross Origin Resource Sharing) restrictions.
Configure your web server to send a restrictive CORS header with each response. Allow only the
dashboard domain and protocol, for example:Access-Control-Allow-Origin: https://example.com/.
You should never allow the wild card origin.

14.6. ALLOW IFRAME EMBEDDING

The DISALLOW_IFRAME_EMBED setting disallows Dashboard from being embedded within an iframe.
Legacy browsers can still be vulnerable to Cross-Frame Scripting (XFS) vulnerabilities, so this option
adds extra security hardening for deployments that do not require iframes. The setting is set to True by
default, however it can be disabled using an environment file, if needed.

Procedure

You can allow iframe embedding using the following parameter:

 parameter_defaults:
 ControllerExtraConfig:
 horizon::disallow_iframe_embed: false

NOTE

These settings should only be set to False once the potential security impacts are fully
understood.

14.7. USING HTTPS ENCRYPTION FOR DASHBOARD TRAFFIC

CHAPTER 14. HARDENING THE DASHBOARD SERVICE

75

It is recommended you use HTTPS to encrypt Dashboard traffic. You can do this by configuring it to use
a valid, trusted certificate from a recognized certificate authority (CA). Private organization-issued
certificates are only appropriate when the root of trust is pre-installed in all user browsers.

Configure HTTP requests to the dashboard domain to redirect to the fully qualified HTTPS URL.

See Chapter 7, Enabling SSL/TLS on overcloud public endpoints . for more information.

14.8. HTTP STRICT TRANSPORT SECURITY (HSTS)

HTTP Strict Transport Security (HSTS) prevents browsers from making subsequent insecure
connections after they have initially made a secure connection. If you have deployed your HTTP services
on a public or an untrusted zone, HSTS is especially important.

For director-based deployments, this setting is enabled by default in the /usr/share/openstack-tripleo-
heat-templates/deployment/horizon/horizon-container-puppet.yaml file:

horizon::enable_secure_proxy_ssl_header: true

Verification

After the overcloud is deployed, check the local_settings file for Red Hat OpenStack Dashboard
(horizon) for verification.

1. Use ssh to connect to a controller:

$ ssh tripleo-admin@controller-0

2. Check that the SECURE_PROXY_SSL_HEADER parameter has a value of
('HTTP_X_FORWARDED_PROTO', 'https'):

sudo egrep ^SECURE_PROXY_SSL_HEADER /var/lib/config-data/puppet-
generated/horizon/etc/openstack-dashboard/local_settings
SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https')

14.9. FRONT-END CACHING

It is not recommended to use front-end caching tools with the Dashboard, as it renders dynamic content
resulting directly from OpenStack API requests. As a result, front-end caching layers such as varnish
can prevent the correct content from being displayed. The Dashboard uses Django, which serves static
media directly served from the web service and already benefits from web host caching.

14.10. SESSION BACKEND

For director-based deployments, the default session backend for horizon is
django.contrib.sessions.backends.cache, which is combined with memcached. This approach is
preferred to local-memory cache for performance reasons, is safer for highly-available and load
balanced installs, and has the ability to share cache over multiple servers, while still treating it as a single
cache.

You can review these settings in director’s horizon.yaml file:

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

76

 horizon::cache_backend: django.core.cache.backends.memcached.MemcachedCache
 horizon::django_session_engine: 'django.contrib.sessions.backends.cache'

14.11. REVIEWING THE SECRET KEY

The Dashboard depends on a shared SECRET_KEY setting for some security functions. The secret key
should be a randomly generated string at least 64 characters long, which must be shared across all active
dashboard instances. Compromise of this key might allow a remote attacker to execute arbitrary code.
Rotating this key invalidates existing user sessions and caching. Do not commit this key to public
repositories.

For director deployments, this setting is managed as the HorizonSecret value.

14.12. CONFIGURING SESSION COOKIES

The Dashboard session cookies can be open to interaction by browser technologies, such as JavaScript.
For director deployments with TLS everywhere, you can harden this behavior using the
HorizonSecureCookies setting.

NOTE

Never configure CSRF or session cookies to use a wildcard domain with a leading dot.

14.13. STATIC MEDIA

The dashboard’s static media should be deployed to a subdomain of the dashboard domain and served
by the web server. The use of an external content delivery network (CDN) is also acceptable. This
subdomain should not set cookies or serve user-provided content. The media should also be served
with HTTPS.

Dashboard’s default configuration uses django_compressor to compress and minify CSS and
JavaScript content before serving it. This process should be statically done before deploying the
dashboard, rather than using the default in-request dynamic compression and copying the resulting files
along with deployed code or to the CDN server. Compression should be done in a non-production build
environment. If this is not practical, consider disabling resource compression entirely. Online
compression dependencies (less, Node.js) should not be installed on production machines.

14.14. VALIDATING PASSWORD COMPLEXITY

The OpenStack Dashboard (horizon) can use a password validation check to enforce password
complexity.

Procedure

1. Specify a regular expression for password validation, as well as help text to be displayed for
failed tests. The following example requires users to create a password of between 8 to 18
characters in length:

 parameter_defaults:
 HorizonPasswordValidator: '^.{8,18}$'
 HorizonPasswordValidatorHelp: 'Password must be between 8 and 18 characters.'

1. Apply this change to your deployment. Save the settings as a file called

CHAPTER 14. HARDENING THE DASHBOARD SERVICE

77

1. Apply this change to your deployment. Save the settings as a file called
horizon_password.yaml, and then pass it to the overcloud deploy command as follows. The
<full environment> indicates that you must still include all of your original deployment
parameters. For example:

 openstack overcloud deploy --templates \
 -e <full environment> -e horizon_password.yaml

14.15. ENFORCE THE ADMINISTRATOR PASSWORD CHECK

The following setting is set to True by default, however it can be disabled using an environment file, if
needed.

NOTE

These settings should only be set to False once the potential security impacts are fully
understood.

Procedure

The ENFORCE_PASSWORD_CHECK setting in Dashboard’s local_settings.py file displays an Admin
Password field on the Change Password form, which helps verify that an administrator is initiating the
password change.

You can disable ENFORCE_PASSWORD_CHECK using an environment file:

 parameter_defaults:
 ControllerExtraConfig:
 horizon::enforce_password_check: false

14.16. DISABLE PASSWORD REVEAL

The disable_password_reveal parameter is set to True by default, however it can be disabled using an
environment file, if needed. The password reveal button allows a user at the Dashboard to view the
password they are about to enter.

Procedure

Under the ControllerExtraConfig parameter, include horizon::disable_password_reveal:
false. Save this to a heat environment file and include it with your deployment command.

Example

parameter_defaults:
 ControllerExtraConfig:
 horizon::disable_password_reveal: false

NOTE

These settings should only be set to False once the potential security impacts are fully
understood.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

78

14.17. DISPLAYING A LOGON BANNER FOR THE DASHBOARD

Regulated industries such as HIPAA, PCI-DSS, and the US Government require you to display a user
logon banner. The Red Hat OpenStack Platform (RHOSP) dashboard (horizon) uses a default theme
(RCUE), which is stored inside the horizon container.

Within the custom Dashboard container, you can create a logon banner by manually editing the
/usr/share/openstack-dashboard/openstack_dashboard/themes/rcue/templates/auth/login.html
file:

Procedure

1. Enter the required logon banner just before the {% include 'auth/_login.html' %} section.
HTML tags are allowed:

<snip>
<div class="container">
 <div class="row-fluid">
 <div class="span12">
 <div id="brand">

 </div><!--/#brand-->
 </div><!--/.span*-->

 <!-- Start of Logon Banner -->
 <p>Authentication to this information system reflects acceptance of user monitoring
agreement.</p>
 <!-- End of Logon Banner -->

 {% include 'auth/_login.html' %}
 </div><!--/.row-fluid→
</div><!--/.container-->

{% block js %}
 {% include "horizon/_scripts.html" %}
{% endblock %}

 </body>
</html>

The above example produces a dashboard similar to the following:

CHAPTER 14. HARDENING THE DASHBOARD SERVICE

79

Additional resources

Customizing the dashboard

14.18. LIMITING THE SIZE OF FILE UPLOADS

You can optionally configure the dashboard to limit the size of file uploads; this setting might be a
requirement for various security hardening policies.

LimitRequestBody - This value (in bytes) limits the maximum size of a file that you can transfer using
the Dashboard, such as images and other large files.

IMPORTANT

This setting has not been formally tested by Red Hat. It is recommended that you
thoroughly test the effect of this setting before deploying it to your production
environment.

NOTE

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

80

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/managing_cloud_resources_with_the_openstack_dashboard/customizing-the-dashboard_osp

NOTE

File uploads will fail if the value is too small.

For example, this setting limits each file upload to a maximum size of 10 GB (10737418240). You will
need to adjust this value to suit your deployment.

/var/lib/config-data/puppet-generated/horizon/etc/httpd/conf/httpd.conf

<Directory />
 LimitRequestBody 10737418240
</Directory>

/var/lib/config-data/puppet-generated/horizon/etc/httpd/conf.d/10-horizon_vhost.conf

<Directory "/var/www">
 LimitRequestBody 10737418240
</Directory>

/var/lib/config-data/puppet-generated/horizon/etc/httpd/conf.d/15-horizon_ssl_vhost.conf

<Directory "/var/www">
 LimitRequestBody 10737418240
</Directory>

NOTE

These configuration files are managed by Puppet, so any unmanaged changes are
overwritten whenever you run the openstack overcloud deploy process.

CHAPTER 14. HARDENING THE DASHBOARD SERVICE

81

CHAPTER 15. HARDENING THE NETWORKING SERVICE
The Networking service (neutron) is the software-defined networking (SDN) component of Red Hat
OpenStack Platform (RHOSP). The RHOSP Networking service manages internal and external traffic to
and from virtual machine instances and provides core services such as routing, segmentation, DHCP,
and metadata. It provides the API for virtual networking capabilities and management of switches,
routers, ports, and firewalls.

For more information about the Red Hat OpenStack Platfrom Networking service, see the Configuring
Red Hat OpenStack Platform networking.

This section discusses OpenStack Networking configuration good practices as they apply to project
network security within your OpenStack deployment.

15.1. PROJECT NETWORK SERVICES WORKFLOW

OpenStack Networking provides users self-service configuration of network resources. It is important
that cloud architects and operators evaluate their design use cases in providing users the ability to
create, update, and destroy available network resources.

15.2. NETWORKING RESOURCE POLICY ENGINE

A policy engine and its configuration file (policy.json) within OpenStack Networking provides a method
to provide finer grained authorization of users on project networking methods and objects. The
OpenStack Networking policy definitions affect network availability, network security and overall
OpenStack security. Cloud architects and operators should carefully evaluate their policy towards user
and project access to administration of network resources.

NOTE

It is important to review the default networking resource policy, as this policy can be
modified to suit your security posture.

If your deployment of OpenStack provides multiple external access points into different security zones
it is important that you limit the project’s ability to attach multiple vNICs to multiple external access
points — this would bridge these security zones and could lead to unforeseen security compromise. You
can help mitigate this risk by using the host aggregates functionality provided by Compute, or by
splitting the project instances into multiple projects with different virtual network configurations. For
more information on host aggregates, see Creating and managing host aggregates .

15.3. SECURITY GROUPS

A security group is a collection of security group rules. Security groups and their rules allow
administrators and projects the ability to specify the type of traffic and direction (ingress/egress) that
is allow ed to pass through a virtual interface port. When a virtual interface port is created in OpenStack
Networking it is associated with a security group. Rules can be added to the default security group in
order to change the behavior on a per-deployment basis.

When using the Compute API to modify security groups, the updated security group applies to all virtual
interface ports on an instance. This is due to the Compute security group APIs being instance-based
rather than port-based, as found in neutron.

15.4. MITIGATE ARP SPOOFING

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

82

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_the_compute_service_for_instance_creation/assembly_configuring-instance-scheduling-and-placement_memory#assembly_creating-and-managing-host-aggregates_host-aggregates

OpenStack Networking has a built-in feature to help mitigate the threat of ARP spoofing for instances.
This should not be disabled unless careful consideration is given to the resulting risks.

15.5. USE A SECURE PROTOCOL FOR AUTHENTICATION

In /var/lib/config-data/puppet-generated/neutron/etc/neutron/neutron.conf check that the value of
auth_uri under the [keystone_authtoken] section is set to an Identity API endpoint that starts with
`https:

CHAPTER 15. HARDENING THE NETWORKING SERVICE

83

CHAPTER 16. HARDENING BLOCK STORAGE ON RED HAT
OPENSTACK PLATFORM

OpenStack Block Storage (cinder) is a service that provides software (services and libraries) to self-
service manage persistent block-level storage devices. This creates on-demand access to Block
Storage resources for use with Compute (nova) instances. This creates software-defined storage
through abstraction by virtualizing pools of block storage to a variety of back-end storage devices which
can be either software implementations or traditional hardware storage products. The primary functions
of this is to manage the creation, attachment, and detachment of the block devices. The consumer
requires no knowledge of the type of back-end storage equipment or where it is located.

Compute instances store and retrieve block storage using industry-standard storage protocols such as
iSCSI, ATA over Ethernet, or Fibre-Channel. These resources are managed and configured using
OpenStack native standard HTTP RESTful API.

16.1. SET THE MAX SIZE FOR THE BODY OF A REQUEST

If the maximum body size per request is not defined, the attacker can craft an arbitrary OSAPI request
of large size, causing the service to crash and finally resulting in a Denial Of Service attack. Assigning t
he maximum value ensures that any malicious oversized request gets blocked ensuring continued
availability of the service.

Review whether max_request_body_size under the [oslo_middleware] section in cinder.conf is set to
114688.

16.2. ENABLE VOLUME ENCRYPTION

Unencrypted volume data makes volume-hosting platforms especially high-value targets for attackers,
as it allows the attacker to read the data for many different VMs. In addition, the physical storage
medium could be stolen, remounted, and accessed from a different machine. Encrypting volume data
and volume backups can help mitgate these risks and provides defense-in-depth to volume-hosting
platforms. Block Storage (cinder) is able to encrypt volume data before it is written to disk, so consider
enabling volume encryption, and using Barbican for private key storage.

16.3. VOLUME WIPING

There are multiple ways to wipe a block storage device. The traditional approach is to set the lvm_type
to thin, and then use the volume_clear parameter. Alternatively, if the volume encryption feature is
used, then volume wiping is not necessary if the volume encryption key is deleted.

NOTE

Previously, lvm_type=default was used to signify a wipe. While this method still works,
lvm_type=default is not recommended for setting secure delete.

The volume_clear parameter can accept either zero or shred as arguments. zero will write a single
pass of zeroes to the device. The shred operation will write three passes of predetermined bit patterns.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

84

CHAPTER 17. HARDENING THE SHARED FILE SYSTEM
(MANILA)

The Shared File Systems service (manila) provides a set of services for managing shared file systems in
a multi-project cloud environment. With manila, you can create a shared file system and manage its
properties, such as visibility, accessibility, and quotas.

For more information on the Shared File Systems service (manila), see the Configuring persistent
storage guide.

17.1. SECURITY CONSIDERATIONS FOR MANILA

Manila is registered with keystone, allowing you to the locate the API using the manila endpoints
command. For example:

 $ manila endpoints
 +-------------+---+
 | manila | Value |
 +-------------+---+
adminURL	http://172.18.198.55:8786/v1/20787a7b...
region	RegionOne
publicURL	http://172.18.198.55:8786/v1/20787a7b...
internalURL	http://172.18.198.55:8786/v1/20787a7b...
id	82cc5535aa444632b64585f138cb9b61
 +-------------+---+

 +-------------+---+
 | manilav2 | Value |
 +-------------+---+
adminURL	http://172.18.198.55:8786/v2/20787a7b...
region	RegionOne
publicURL	http://172.18.198.55:8786/v2/20787a7b...
internalURL	http://172.18.198.55:8786/v2/20787a7b...
id	2e8591bfcac4405fa7e5dc3fd61a2b85
 +-------------+---+

By default, the manila API service only listens on port 8786 with tcp6, which supports both IPv4 and
IPv6.

Manila uses multiple configurations files; these are stored in /var/lib/config-data/puppet-
generated/manila/:

 api-paste.ini
 manila.conf
 policy.json
 rootwrap.conf
 rootwrap.d

 ./rootwrap.d:
 share.filters

It is recommended that you configure manila to run under a non-root service account, and change file
permissions so that only the system administrator can modify them. Manila expects that only
administrators can write to configuration files, and services can only read them through their group

CHAPTER 17. HARDENING THE SHARED FILE SYSTEM (MANILA)

85

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_persistent_storage/index

membership in the manila group. Other users must not be able to read these files, as they contain
service account passwords.

NOTE

Only the root user should own be able to write to the configuration for manila-rootwrap
in rootwrap.conf, and the manila-rootwrap command filters for share nodes in
rootwrap.d/share.filters.

17.2. NETWORK AND SECURITY MODELS FOR MANILA

A share driver in manila is a Python class that can be set for the back end to manage share operations,
some of which are vendor-specific. The back end is an instance of the manila-share service. Manila has
share drivers for many different storage systems, supporting both commercial vendors and open source
solutions. Each share driver supports one or more back end modes: share servers and no share
servers. An administrator selects a mode by specifying it in manila.conf, using
driver_handles_share_servers.

A share server is a logical Network Attached Storage (NAS) server that exports shared file systems.
Back-end storage systems today are sophisticated and can isolate data paths and network paths
between different OpenStack projects.

A share server provisioned by a manila share driver would be created on an isolated network that belongs
to the project user creating it. The share servers mode can be configured with either a flat network, or
a segmented network, depending on the network provider.

It is possible to have separate drivers for different modes use the same hardware. Depending on the
chosen mode, you might need to provide more configuration details through the configuration file.

17.3. SHARE BACKEND MODES

Each share driver supports at least one of the available driver modes:

Share servers - driver_handles_share_servers = True - The share driver creates share servers
and manages the share server life cycle.

No share servers - driver_handles_share_servers = False - An administrator (rather than a
share driver) manages the bare metal storage with a network interface, instead of relying on the
presence of the share servers.

No share servers mode - In this mode, drivers will not set up share servers, and consequently will not
need to set up any new network interfaces. It is assumed that storage controller being managed by the
driver has all of the network interfaces it is going to need. Drivers create shares directly without
previously creating a share server. To create shares using drivers operating in this mode, manila does not
require users to create any private share networks either.

NOTE

In no share servers mode, manila will assume that the network interfaces through which
any shares are exported are already reachable by all projects.

In the no share servers mode a share driver does not handle share server life cycle. An administrator is
expected to handle the storage, networking, and other host-side configuration that might be necessary
to provide project isolation. In this mode an administrator can set storage as a host which exports shares.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

86

All projects within the OpenStack cloud share a common network pipe. Lack of isolation can impact
security and quality of service. When using share drivers that do not handle share servers, cloud users
cannot be sure that their shares cannot be accessed by untrusted users by a tree walk over the top
directory of their file systems. In public clouds it is possible that all network bandwidth is used by one
client, so an administrator should care for this not to happen. Network balancing can be done by any
means, and not necessarily just with OpenStack tools.

Share servers mode - In this mode, a driver is able to create share servers and plug them to existing
OpenStack networks. Manila determines if a new share server is required, and provides all the
networking information necessary for the share drivers to create the requisite share server.

When creating shares in the driver mode that handles share servers, users must provide a share network
that they expect their shares to be exported upon. Manila uses this network to create network ports for
the share server on this network.

Users can configure security services in both share servers and no share servers back end modes.
But with the no share servers back end mode, an administrator must set the required authentication
services manually on the host. And in share servers mode manila can configure security services
identified by the users on the share servers it spawns.

17.4. NETWORKING REQUIREMENTS FOR MANILA

Manila can integrate with different network types: flat, GRE, VLAN, VXLAN.

NOTE

Manila is only storing the network information in the database, with the real networks
being supplied by the network provider. Manila supports using the OpenStack Networking
service (neutron) and also "standalone" pre-configured networking.

In the share servers back end mode, a share driver creates and manages a share server for each share
network. This mode can be divided in two variations:

Flat network in share servers backend mode

Segmented network in share servers backend mode

Users can use a network and subnet from the OpenStack Networking (neutron) service to create share
networks. If the administrator decides to use the StandAloneNetworkPlugin, users need not provide
any networking information since the administrator pre-configures this in the configuration file.

NOTE

Share servers spawned by some share drivers are Compute servers created with the
Compute service. A few of these drivers do not support network plugins.

After a share network is created, manila retrieves network information determined by a network provider:
network type, segmentation identifier (if the network uses segmentation) and the IP block in CIDR
notation from which to allocate the network.

Users can create security services that specify security requirements such as AD or LDAP domains or a
Kerberos realm. Manila assumes that any hosts referred to in security service are reachable from a
subnet where a share server is created, which limits the number of cases where this mode could be used.

NOTE

CHAPTER 17. HARDENING THE SHARED FILE SYSTEM (MANILA)

87

NOTE

Some share drivers might not support all types of segmentation, for more details see the
specification for the driver you are using.

17.5. SECURITY SERVICES WITH MANILA

Manila can restrict access to file shares by integrating with network authentication protocols. Each
project can have its own authentication domain that functions separately from the cloud’s keystone
authentication domain. This project domain can be used to provide authorization (AuthZ) services to
applications that run within the OpenStack cloud, including manila. Available authentication protocols
include LDAP, Kerberos, and Microsoft Active Directory authentication service.

17.6. INTRODUCTION TO SECURITY SERVICES

After creating a share and getting its export location, users have no permissions to mount it and operate
with files. Users need to explicitly grant access to the new share.

The client authentication and authorization (authN/authZ) can be performed in conjunction with
security services. Manila can use LDAP, Kerberos, or Microsoft Active directory if they are supported by
the share drivers and back ends.

NOTE

In some cases, it is required to explicitly specify one of the security services, for example,
NetApp, EMC and Windows drivers require Active Directory for the creation of shares
with the CIFS protocol.

17.7. SECURITY SERVICES MANAGEMENT

A security service is a manila entity that abstracts a set of options that define a security zone for a
particular shared file system protocol, such as an Active Directory domain or a Kerberos domain. The
security service contains all of the information necessary for manila to create a server that joins a given
domain.

Using the API, users can create, update, view, and delete a security service. Security Services are
designed on the following assumptions:

Projects provide details for the security service.

Administrators care about security services: they configure the server side of such security
services.

Inside the manila API, a security_service is associated with the share_networks.

Share drivers use data in the security service to configure newly created share servers.

When creating a security service, you can select one of these authentication services:

LDAP - The Lightweight Directory Access Protocol. An application protocol for accessing and
maintaining distributed directory information services over an IP network.

Kerberos - The network authentication protocol which works on the basis of tickets to allow
nodes communicating over a non-secure network to prove their identity to one another in a
secure manner.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

88

Active Directory - A directory service that Microsoft developed for Windows domain networks.
Uses LDAP, Microsoft’s version of Kerberos, and DNS.

Manila allows you to configure a security service with these options:

A DNS IP address that is used inside the project network.

An IP address or hostname of a security service.

A domain of a security service.

A user or group name that is used by a project.

A password for a user, if you specify a username.

An existing security service entity can be associated with share network entities that inform manila about
security and network configuration for a group of shares. You can also see the list of all security services
for a specified share network and disassociate them from a share network.

An administrator and users as share owners can manage access to the shares by creating access rules
with authentication through an IP address, user, group, or TLS certificates. Authentication methods
depend on which share driver and security service you configure and use. You can then configure a back
end to use a specific authentication service, which can operate with clients without manila and keystone.

NOTE

Different authentication services are supported by different share drivers. For details of
supporting of features by different drivers, see
https://docs.openstack.org/manila/latest/admin/share_back_ends_feature_support_mapping.html

Support for a specific authentication service by a driver does not mean that it can be configured with
any shared file system protocol. Supported shared file systems protocols are NFS, CEPHFS, CIFS,
GlusterFS, and HDFS. See the driver vendor’s documentation for information on a specific driver and its
configuration for security services.

Some drivers support security services and other drivers do not support any of the security services
mentioned above. For example, Generic Driver with the NFS or the CIFS shared file system protocol
supports only authentication method through the IP address.

NOTE

In most cases, drivers that support the CIFS shared file system protocol can be
configured to use Active Directory and manage access through the user authentication.

Drivers that support the GlusterFS protocol can be used with authentication using TLS
certificates.

With drivers that support NFS protocol authentication using an IP address is the only supported
option.

Since the HDFS shared file system protocol uses NFS access it also can be configured to
authenticate using an IP address.

The recommended configuration for production manila deployments is to create a share with the CIFS

CHAPTER 17. HARDENING THE SHARED FILE SYSTEM (MANILA)

89

https://docs.openstack.org/manila/latest/admin/share_back_ends_feature_support_mapping.html

The recommended configuration for production manila deployments is to create a share with the CIFS
share protocol and add to it the Microsoft Active Directory directory service. With this configuration you
will get the centralized database and the service that integrates the Kerberos and LDAP approaches.

17.8. SHARE ACCESS CONTROL

Users can specify which specific clients have access to the shares they create. Due to the keystone
service, shares created by individual users are only visible to themselves and other users within the same
project. Manila allows users to create shares that are "publicly" visible. These shares are visible in
dashboards of users that belong to other OpenStack projects if the owners grant them access, they
might even be able to mount these shares if they are made accessible on the network.

While creating a share, use key --public to make your share public for other projects to see it in a list of
shares and see its detailed information.

According to the policy.json file, an administrator and the users as share owners can manage access to
shares by means of creating access rules. Using the manila access-allow, manila access-deny, and
manila access-list commands, you can grant, deny and list access to a specified share correspondingly.

NOTE

Manila does not provide end-to-end management of the storage system. You will still
need to separately protect the backend system from unauthorized access. As a result,
the protection offered by the manila API can still be circumvented if someone
compromises the backend storage device, thereby gaining out of band access.

When a share is just created there are no default access rules associated with it and permission to
mount it. This could be seen in mounting config for export protocol in use. For example, there is an NFS
command exportfs or /etc/exports file on the storage which controls each remote share and defines
hosts that can access it. It is empty if nobody can mount a share. For a remote CIFS server there is net
conf list command which shows the configuration. The hosts deny parameter should be set by the
share driver to 0.0.0.0/0 which means that any host is denied to mount the share.

Using manila, you can grant or deny access to a share by specifying one of these supported share access
levels:

rw - Read and write (RW) access. This is the default value.

ro- Read-only (RO) access.

NOTE

The RO access level can be helpful in public shares when the administrator gives read and
write (RW) access for some certain editors or contributors and gives read-only (RO)
access for the rest of users (viewers).

You must also specify one of these supported authentication methods:

ip - Uses an IP address to authenticate an instance. IP access can be provided to clients
addressable by well-formed IPv4 or IPv6 addresses or subnets denoted in CIDR notation.

cert - Uses a TLS certificate to authenticate an instance. Specify the TLS identity as the
IDENTKEY. A valid value is any string up to 64 characters long in the common name (CN) of the
certificate.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

90

user - Authenticates by a specified user or group name. A valid value is an alphanumeric string
that can contain some special characters and is from 4 to 32 characters long.

NOTE

Supported authentication methods depend on which share driver, security service and
shared file system protocol you use. Supported shared file system protocols are MapRFS,
CEPHFS, NFS, CIFS, GlusterFS, and HDFS. Supported security services are LDAP,
Kerberos protocols, or Microsoft Active Directory service.

To verify that access rules (ACL) were configured correctly for a share, you can list its permissions.

NOTE

When selecting a security service for your share, you will need to consider whether the
share driver is able to create access rules using the available authentication methods.
Supported security services are LDAP, Kerberos, and Microsoft Active Directory.

17.9. SHARE TYPE ACCESS CONTROL

A share type is an administrator-defined type of service , comprised of a project visible description, and a
list of non-project-visible key-value pairs called extra specifications. The manila-scheduler uses extra
specifications to make scheduling decisions, and drivers control the share creation.

An administrator can create and delete share types, and can also manage extra specifications that give
them meaning inside manila. Projects can list the share types and can use them to create new shares.
Share types can be created as public and private. This is the level of visibility for the share type that
defines whether other projects can or cannot see it in a share types list and use it to create a new share.

By default, share types are created as public. While creating a share type, use --is_public parameter set
to False to make your share type private which will prevent other projects from seeing it in a list of share
types and creating new shares with it. On the other hand, public share types are available to every
project in a cloud.

Manila allows an administrator to grant or deny access to the private share types for projects. You can
also get information about the access for a specified private share type.

NOTE

Since share types due to their extra specifications help to filter or choose back ends
before users create a share, using access to the share types you can limit clients in choice
of specific back ends.

For example, an administrator user in the admin project can create a private share type named my_type
and see it in the list. In the console examples below, the logging in and out is omitted, and environment
variables are provided to show the currently logged in user.

 $ env | grep OS_
 ...
 OS_USERNAME=admin
 OS_TENANT_NAME=admin
 ...
 $ manila type-list --all
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+

CHAPTER 17. HARDENING THE SHARED FILE SYSTEM (MANILA)

91

 | ID | Name | Visibility| is_default| required_extra_specs | optional_extra_specs |
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+
 | 4..| my_type| private | - | driver_handles_share_servers:False| snapshot_support:True |
 | 5..| default| public | YES | driver_handles_share_servers:True | snapshot_support:True |
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+

The demo user in the demo project can list the types and the private share type named my_type is not
visible for him.

 $ env | grep OS_
 ...
 OS_USERNAME=demo
 OS_TENANT_NAME=demo
 ...
 $ manila type-list --all
 +----+--------+-----------+-----------+----------------------------------+----------------------+
 | ID | Name | Visibility| is_default| required_extra_specs | optional_extra_specs |
 +----+--------+-----------+-----------+----------------------------------+----------------------+
 | 5..| default| public | YES | driver_handles_share_servers:True| snapshot_support:True|
 +----+--------+-----------+-----------+----------------------------------+----------------------+

The administrator can grant access to the private share type for the demo project with the project ID
equal to df29a37db5ae48d19b349fe947fada46:

 $ env | grep OS_
 ...
 OS_USERNAME=admin
 OS_TENANT_NAME=admin
 ...
 $ openstack project list
 +----------------------------------+--------------------+
 | ID | Name |
 +----------------------------------+--------------------+
 | ... | ... |
 | df29a37db5ae48d19b349fe947fada46 | demo |
 +----------------------------------+--------------------+
 $ manila type-access-add my_type df29a37db5ae48d19b349fe947fada46

As a result, users in the demo project can see the private share type and use it in the share creation:

 $ env | grep OS_
 ...
 OS_USERNAME=demo
 OS_TENANT_NAME=demo
 ...
 $ manila type-list --all
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+
 | ID | Name | Visibility| is_default| required_extra_specs | optional_extra_specs |
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+
 | 4..| my_type| private | - | driver_handles_share_servers:False| snapshot_support:True |
 | 5..| default| public | YES | driver_handles_share_servers:True | snapshot_support:True |
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+

To deny access for a specified project, use manila type-access-remove <share_type> <project_id>.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

92

NOTE

For an example that demonstrates the purpose of the share types, consider a situation
where you have two back ends: LVM as a public storage and Ceph as a private storage. In
this case you can grant access to certain projects and control access with user/group
authentication method.

17.10. POLICIES

The Shared File Systems service API is gated with role-based access control policies. These policies
determine which user can access certain APIs in a certain way, and are defined in the service’s
policy.json file.

NOTE

The configuration file policy.json may be placed anywhere. The path /var/lib/config-
data/puppet-generated/manila/etc/manila/policy.json is expected by default.

Whenever an API call is made to manila, the policy engine uses the appropriate policy definitions to
determine if the call can be accepted. A policy rule determines under which circumstances the API call is
permitted. The /var/lib/config-data/puppet-generated/manila/etc/manila/policy.json file has rules
where an action is always permitted, when the rule is an empty string: ""; the rules based on the user role
or rules; rules with boolean expressions. Below is a snippet of the policy.json file for manila. It can be
expected to change between OpenStack releases.

 {
 "context_is_admin": "role:admin",
 "admin_or_owner": "is_admin:True or project_id:%(project_id)s",
 "default": "rule:admin_or_owner",
 "share_extension:quotas:show": "",
 "share_extension:quotas:update": "rule:admin_api",
 "share_extension:quotas:delete": "rule:admin_api",
 "share_extension:quota_classes": "",
 }

Users must be assigned to groups and roles that you refer to in your policies. This is done automatically
by the service when user management commands are used.

NOTE

Any changes to /var/lib/config-data/puppet-generated/manila/etc/manila/policy.json
are effective immediately, which allows new policies to be implemented while manila is
running. Manual modification of the policy can have unexpected side effects and is not
encouraged. Manila does not provide a default policy file; all the default policies are within
the code base. You can generate the default policies from the manila code by executing:
oslopolicy-sample-generator --config-file=var/lib/config-data/puppet-
generated/manila/etc/manila/manila-policy-generator.conf

CHAPTER 17. HARDENING THE SHARED FILE SYSTEM (MANILA)

93

CHAPTER 18. OBJECT STORAGE
The Object Storage (swift) service stores and retrieves data over HTTP. Objects (blobs of data) are
stored in an organizational hierarchy that can be configured to offer anonymous read-only access, ACL
defined access, or even temporary access. Swift supports multiple token-based authentication
mechanisms implemented through middleware.

Applications store and retrieve data in Object Storage using an industry-standard HTTP RESTful API.
The back end swift components follow the same RESTful model, although some APIs (such as those
managing durability) are kept private to the cluster.

The components of swift fall into the following primary groups:

Proxy services

Auth services

Storage services

Account service

Container service

Object service

NOTE

An Object Storage installation does not have to be internet-facing and could also be a
private cloud with the public switch a part of the organization’s internal network
infrastructure.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

94

18.1. NETWORK SECURITY

Security hardening for swift begins with securing the networking component. See the networking
chapter for more information.

For high availability, the rsync protocol is used to replicate data between storage service nodes. In
addition, the proxy service communicates with the storage service when relaying data between the client
end-point and the cloud environment.

NOTE

Swift does not use encryption or authentication with inter-node communications. This is
because swift uses the native rsync protocol for performance reasons, and does not use
SSH for rsync communications.This is why you see a private switch or private network
([V]LAN) in the architecture diagrams. This data zone should be separate from other
OpenStack data networks as well.

NOTE

Use a private (V)LAN network segment for your storage nodes in the data zone.

This requires that the proxy nodes have dual interfaces (physical or virtual):

One interface as a public interface for consumers to reach.

Another interface as a private interface with access to the storage nodes.

The following figure demonstrates one possible network architecture, using the Object Storage network
architecture with a management node (OSAM):

CHAPTER 18. OBJECT STORAGE

95

18.2. RUN SERVICES AS NON-ROOT USER

It is recommend that you configure swift to run under a non-root (UID 0) service account. One
recommendation is the username swift with the primary group swift, as deployed by director. Object
Storage services include, for example, proxy-server, container-server, account-server.

18.3. FILE PERMISSIONS

The /var/lib/config-data/puppet-generated/swift/etc/swift/ directory contains information about the
ring topology and environment configuration. The following permissions are recommended:

chown -R root:swift /var/lib/config-data/puppet-generated/swift/etc/swift/*
find /var/lib/config-data/puppet-generated/swift/etc/swift/ -type f -exec chmod 640 {} \;
find /var/lib/config-data/puppet-generated/swift/etc/swift/ -type d -exec chmod 750 {} \;

This restriction only allows root to modify configuration files, while still allowing the services to read
them, due to their membership in the swift group.

18.4. SECURING STORAGE SERVICES

The following are the default listening ports for the various storage services:

Account service - TCP/6002

Container service - TCP/6001

Object Service - TCP/6000

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

96

Rsync - TCP/873

NOTE

If ssync is used instead of rsync, the object service port is used for maintaining durability.

NOTE

Authentication does not occur at the storage nodes. If you are able to connect to a
storage node on one of these ports, you can access or modify data without
authentication. To help mitigate this issue, you should follow the recommendations given
previously about using a private storage network.

18.5. OBJECT STORAGE ACCOUNT TERMINOLOGY

A swift account is not a user account or credential. The following distinctions exist:

Swift account - A collection of containers (not user accounts or authentication). The
authentication system you use will determine which users are associated with the account and
how they might access it.

Swift containers - A collection of objects. Metadata on the container is available for ACLs. The
usage of ACLs is dependent on the authentication system used.

Swift objects - The actual data objects. ACLs at the object level are also available with
metadata, and are dependent on the authentication system used.

At each level, you have ACLs that control user access; ACLs are interpreted based on the authentication
system in use. The most common type of authentication provider is the Identity Service (keystone);
custom authentication providers are also available.

18.6. SECURING PROXY SERVICES

A proxy node should have at least two interfaces (physical or virtual): one public and one private. You
can use firewalls or service binding to help protect the public interface. The public-facing service is an
HTTP web server that processes end-point client requests, authenticates them, and performs the
appropriate action. The private interface does not require any listening services, but is instead used to
establish outgoing connections to storage nodes on the private storage network.

18.7. HTTP LISTENING PORT

Director configures the web services to run under a non-root (no UID 0) user. Using port numbers higher
than 1024 help avoid running any part of the web container as root. Normally, clients that use the HTTP
REST API (and perform automatic authentication) will retrieve the full REST API URL they require from
the authentication response. The OpenStack REST API allows a client to authenticate to one URL and
then be redirected to use a completely different URL for the actual service. For example, a client can
authenticate to https://identity.cloud.example.org:55443/v1/auth and get a response with their
authentication key and storage URL (the URL of the proxy nodes or load balancer) of
https://swift.cloud.example.org:44443/v1/AUTH_8980.

18.8. LOAD BALANCER

If the option of using Apache is not feasible, or for performance you wish to offload your TLS work, you

CHAPTER 18. OBJECT STORAGE

97

If the option of using Apache is not feasible, or for performance you wish to offload your TLS work, you
might employ a dedicated network device load balancer. This is a common way to provide redundancy
and load balancing when using multiple proxy nodes.

If you choose to offload your TLS, ensure that the network link between the load balancer and your
proxy nodes are on a private (V)LAN segment such that other nodes on the network (possibly
compromised) cannot wiretap (sniff) the unencrypted traffic. If such a breach was to occur, the attacker
could gain access to endpoint client or cloud administrator credentials and access the cloud data.

The authentication service you use will determine how you configure a different URL in the responses to
endpoint clients, allowing them to use your load balancer instead of an individual proxy node.

18.9. OBJECT STORAGE AUTHENTICATION

Object Storage (swift) uses a WSGI model to provide for a middleware capability that not only provides
general extensibility, but is also used for authentication of endpoint clients. The authentication provider
defines what roles and user types exist. Some use traditional username and password credentials, while
others might leverage API key tokens or even client-side x.509 certificates. Custom providers can be
integrated using custom middleware.

Object Storage comes with two authentication middleware modules by default, either of which can be
used as sample code for developing a custom authentication middleware.

18.10. ENCRYPT AT-REST SWIFT OBJECTS

Swift can integrate with Barbican to transparently encrypt and decrypt your stored (at-rest) objects. At-
rest encryption is distinct from in-transit encryption, and refers to the objects being encrypted while
being stored on disk.

Swift performs these encryption tasks transparently, with the objects being automatically encrypted
when uploaded to swift, then automatically decrypted when served to a user. This encryption and
decryption is done using the same (symmetric) key, which is stored in Barbican.

Additional resources

Manage secrets with OpenStack Key Manager

18.11. ADDITIONAL ITEMS

In /var/lib/config-data/puppet-generated/swift/etc/swift/swift.conf on every node, there is a
swift_hash_path_prefix setting and a swift_hash_path_suffix setting. These are provided to reduce
the chance of hash collisions for objects being stored and avert one user overwriting the data of another
user.

This value should be initially set with a cryptographically secure random number generator and
consistent across all nodes. Ensure that it is protected with proper ACLs and that you have a backup
copy to avoid data loss.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

98

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/managing_secrets_with_the_key_manager_service/

CHAPTER 19. MONITORING AND LOGGING
Log management is an important component of monitoring the security status of your OpenStack
deployment. Logs provide insight into the BAU actions of administrators, projects, and instances, in
addition to the component activities that comprise your OpenStack deployment.

Logs are not only valuable for proactive security and continuous compliance activities, but they are also
a valuable information source for investigation and incident response. For example, analyzing the
keystone access logs could alert you to failed logins, their frequency, origin IP, and whether the events
are restricted to select accounts, among other pertinent information.

The director includes intrusion detection capabilities using AIDE, and CADF auditing for keystone. For
more information, see Hardening infrastructure and virtualization .

19.1. HARDEN THE MONITORING INFRASTRUCTURE

Centralized logging systems are a high value target for intruders, as a successful breach could allow them
to erase or tamper with the record of events. It is recommended you harden the monitoring platform
with this in mind. In addition, consider making regular backups of these systems, with failover planning in
the event of an outage or DoS.

19.2. EXAMPLE EVENTS TO MONITOR

Event monitoring is a more proactive approach to securing an environment, providing real-time
detection and response. Multiple tools exist which can aid in monitoring. For an OpenStack deployment,
you will need to monitor the hardware, the OpenStack services, and the cloud resource usage.

This section describes some example events you might need to be aware of.

IMPORTANT

This list is not exhaustive. You will need to consider additional use cases that might apply
to your specific network, and that you might consider anomalous behavior.

Detecting the absence of log generation is an event of high value. Such a gap might indicate a
service failure, or even an intruder who has temporarily switched off logging or modified the log
level to hide their tracks.

Application events, such as start or stop events, that were unscheduled might have possible
security implications.

Operating system events on the OpenStack nodes, such as user logins or restarts. These can
provide valuable insight into distinguishing between proper and improper usage of systems.

Networking bridges going down. This would be an actionable event due to the risk of service
outage.

IPtables flushing events on Compute nodes, and the resulting loss of access to instances.

To reduce security risks from orphaned instances on a user, project, or domain deletion in the Identity
service there is discussion to generate notifications in the system and have OpenStack components
respond to these events as appropriate such as terminating instances, disconnecting attached volumes,
reclaiming CPU and storage resources and so on.

Security monitoring controls such as intrusion detection software, antivirus software, and spyware

CHAPTER 19. MONITORING AND LOGGING

99

Security monitoring controls such as intrusion detection software, antivirus software, and spyware
detection and removal utilities can generate logs that show when and how an attack or intrusion took
place. These tools can provide a layer of protection when deployed on the OpenStack nodes. Project
users might also want to run such tools on their instances.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

100

CHAPTER 20. DATA PRIVACY FOR PROJECTS
OpenStack is designed to support multi-tenancy between projects with different data requirements. A
cloud operator will need to consider their applicable data privacy concerns and regulations. This chapter
addresses aspects of data residency and disposal for OpenStack deployments.

20.1. DATA RESIDENCY

The privacy and isolation of data has consistently been cited as the primary barrier to cloud adoption
over the past few years. Concerns over who owns data in the cloud and whether the cloud operator can
be ultimately trusted as a custodian of this data have been significant issues in the past.

Certain OpenStack services have access to data and metadata belonging to projects or reference
project information. For example, project data stored in an OpenStack cloud might include the following
items:

Object Storage objects.

Compute instance ephemeral filesystem storage.

Compute instance memory.

Block Storage volume data.

Public keys for Compute access.

Virtual machine images in the Image service.

Instance snapshots.

Data passed to Compute’s configuration-drive extension.

Metadata stored by an OpenStack cloud includes the following items (this list is non-exhaustive):

Organization name.

User’s “Real Name”.

Number or size of running instances, buckets, objects, volumes, and other quota-related items.

Number of hours running instances or storing data.

IP addresses of users.

Internally generated private keys for compute image bundling.

20.2. DATA DISPOSAL

Good practices suggest that the operator must sanitize cloud system media (digital and non-digital)
prior to disposal, prior to release out of organization control, or prior to release for reuse. Sanitization
methods should implement an appropriate level of strength and integrity given the specific security
domain and sensitivity of the information.

NOTE

CHAPTER 20. DATA PRIVACY FOR PROJECTS

101

NOTE

The NIST Special Publication 800-53 Revision 4 takes a particular view on this topic:

The sanitization process removes information from the media such that the information cannot be
retrieved or reconstructed. Sanitization techniques, including clearing, purging, cryptographic erase,
and destruction, prevent the disclosure of information to unauthorized individuals when such media is
reused or released for disposal.

Cloud operators should consider the following when developing general data disposal and sanitization
guidelines (as per the NIST recommended security controls):

Track, document and verify media sanitization and disposal actions.

Test sanitation equipment and procedures to verify proper performance.

Sanitize portable, removable storage devices prior to connecting such devices to the cloud
infrastructure.

Destroy cloud system media that cannot be sanitized.

As a result, an OpenStack deployment will need to address the following practices (among others):

Secure data erasure

Instance memory scrubbing

Block Storage volume data

Compute instance ephemeral storage

Bare metal server sanitization

20.2.1. Data not securely erased

Within OpenStack some data might be deleted, but not securely erased in the context of the NIST
standards outlined above. This is generally applicable to most or all of the above-defined metadata and
information stored in the database. This might be remediated with database and/or system
configuration for auto vacuuming and periodic free-space wiping.

20.2.2. Instance memory scrubbing

Specific to various hypervisors is the treatment of instance memory. This behavior is not defined in
Compute, although it is generally expected of hypervisors that they will make a best effort to scrub
memory either upon deletion of an instance, upon creation of an instance, or both.

20.3. ENCRYPTING CINDER VOLUME DATA

Use of the OpenStack volume encryption feature is highly encouraged. This is discussed below in the
Data Encryption section under Volume Encryption. When this feature is used, destruction of data is
accomplished by securely deleting the encryption key. The end user can select this feature while
creating a volume, but note that an admin must perform a one-time set up of the volume encryption
feature first.

If the OpenStack volume encryption feature is not used, then other approaches generally would be

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

102

more difficult to enable. If a back-end plug-in is being used, there might be independent ways of doing
encryption or non-standard overwrite solutions. Plug-ins to OpenStack Block Storage store data in a
variety of ways. Many plug-ins are specific to a vendor or technology, whereas others are more DIY
solutions around file systems (such as LVM or ZFS). Methods for securely destroying data varies
between plug-ins, vendors, and file systems.

Some back ends (such as ZFS) support copy-on-write to prevent data exposure. In these cases, reads
from unwritten blocks always return zero. Other back ends (such as LVM) might not natively support
this, so the cinder plug-in takes the responsibility to override previously written blocks before handing
them to users. It is important to review what assurances your chosen volume back end provides and to
see what remediation might be available for those assurances not provided.

20.4. IMAGE SERVICE DELAY DELETE FEATURES

Image Service has a delayed delete feature, which will pend the deletion of an image for a defined time
period. Consider disabling this feature if this behavior is a security concern; you can do this by editing
glance-api.conf file and setting the delayed_delete option to False.

20.5. COMPUTE SOFT DELETE FEATURES

Compute has a soft-delete feature, which enables an instance that is deleted to be in a soft-delete state
for a defined time period. The instance can be restored during this time period. To disable the soft-
delete feature, edit the /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf file
and leave the reclaim_instance_interval option empty.

20.6. SECURITY HARDENING FOR BARE METAL PROVISIONING

For your bare metal provisioning infrastructure, you should consider security hardening the baseboard
management controllers (BMC) in general, and IPMI in particular. For example, you might isolate these
systems within a provisioning network, configure non-default and strong passwords, and disable
unwanted management functions. For more information, you can refer to the vendor’s guidance on
security hardening these components.

NOTE

If possible, consider evaluating Redfish-based BMCs over legacy ones.

20.7. HARDWARE IDENTIFICATION

When deploying a server, there might not always have a reliable way to distinguish it from an attacker’s
server. This capability might be dependent on the hardware/BMC to some extent, but generally it seems
that there is no verifiable means of identification built into servers.

20.8. DATA ENCRYPTION

The option exists for implementers to encrypt project data wherever it is stored on disk or transported
over a network, such as the OpenStack volume encryption feature described below. This is above and
beyond the general recommendation that users encrypt their own data before sending it to their
provider.

The importance of encrypting data on behalf of projects is largely related to the risk assumed by a
provider that an attacker could access project data. There might be requirements here in government,
as well as requirements per-policy, in private contract, or even in case law in regard to private contracts

CHAPTER 20. DATA PRIVACY FOR PROJECTS

103

for public cloud providers. Consider getting a risk assessment and legal advice before choosing project
encryption policies.

Per-instance or per-object encryption is preferable over, in descending order, per-project, per-host, and
per-cloud aggregations. This recommendation is inverse to the complexity and difficulty of
implementation. Presently, in some projects it is difficult or impossible to implement encryption as
loosely granular as even per-project. Implementers should give serious consideration to encrypting
project data.

Often, data encryption relates positively to the ability to reliably destroy project and per-instance data,
simply by throwing away the keys. It should be noted that in doing so, it becomes of great importance to
destroy those keys in a reliable and secure manner.

Opportunities to encrypt data for users are present:

Object Storage objects

Network data

20.8.1. Volume encryption

A volume encryption feature in OpenStack supports privacy on a per-project basis. The following
features are supported:

Creation and usage of encrypted volume types, initiated through the dashboard or a command
line interface

Enable encryption and select parameters such as encryption algorithm and key size

Volume data contained within iSCSI packets is encrypted

Supports encrypted backups if the original volume is encrypted

Dashboard indication of volume encryption status. Includes indication that a volume is
encrypted, and includes the encryption parameters such as algorithm and key size

Interface with the Key management service

20.8.2. Object Storage objects

Object Storage (swift) supports the optional encryption of object data at rest on storage nodes. The
encryption of object data is intended to mitigate the risk of user’s data being read if an unauthorized
party were to gain physical access to a disk.

Encryption of data at rest is implemented by middleware that may be included in the proxy server WSGI
pipeline. The feature is internal to a swift cluster and not exposed through the API. Clients are unaware
that data is encrypted by this feature internally to the swift service; internally encrypted data should
never be returned to clients through the swift API.

The following data are encrypted while at rest in swift:

Object content, for example, the content of an object PUT request’s body.

The entity tag (ETag) of objects that have non-zero content.

All custom user object metadata values. For example, metadata sent using X-Object-Meta-
prefixed headers with PUT or POST requests.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

104

Any data or metadata not included in the list above is not encrypted, including:

Account, container, and object names

Account and container custom user metadata values

All custom user metadata names

Object Content-Type values

Object size

System metadata

20.8.3. Block Storage performance and back ends

When enabling the operating system, you can enhance the OpenStack Volume Encryption performance
by using the hardware acceleration features available in both Intel and AMD processors.

The OpenStack volume encryption feature uses either dm-crypt on the host or native QEMU
encryption support to secure volume data. Red Hat recommends that you use the LUKS volume
encryption type when creating encrypted volumes.

20.8.4. Network data

Project data for Compute nodes could be encrypted over IPsec or other tunnels. This practice is not
common or standard in OpenStack, but is an option available to motivated and interested implementers.
Likewise, encrypted data remains encrypted as it is transferred over the network.

20.9. KEY MANAGEMENT

To address the often mentioned concern of project data privacy, there is significant interest within the
OpenStack community to make data encryption more ubiquitous. It is relatively easy for an end-user to
encrypt their data prior to saving it to the cloud, and this is a viable path for project objects such as
media files, database archives among others. In some instances, client-side encryption is used to encrypt
data held by the virtualization technologies which requires client interaction, such as presenting keys, to
decrypt data for future use.

Barbican can help projects more seamlessly encrypt the data and have it accessible without burdening
the user with key management. Providing encryption and key management services as part of
OpenStack eases data-at-rest security adoption and can help address customer concerns about privacy
or misuse of data.

The volume encryption feature relies on a key management service, such as the Key Manager service
(barbican), for the creation and security-hardened storage of keys.

CHAPTER 20. DATA PRIVACY FOR PROJECTS

105

CHAPTER 21. MANAGING INSTANCE SECURITY
One of the benefits of running instances in a virtualized environment is the new opportunities for
security controls that are not typically available when deploying onto bare metal. Certain technologies
can be applied to the virtualization stack that bring improved information assurance for OpenStack
deployments. Operators with strong security requirements might want to consider deploying these
technologies, however, not all are applicable in every situation. In some cases, technologies might be
ruled out for use in a cloud because of prescriptive business requirements. Similarly some technologies
inspect instance data such as run state which might be undesirable to the users of the system.

This chapter describes these technologies and the situations where they can be used to help improve
security for instances or the underlying nodes. Possible privacy concerns are also highlighted, which can
include data passthrough, introspection, or entropy sources.

21.1. SUPPLYING ENTROPY TO INSTANCES

Entropy refers to the quality and source of random data that is available to an instance. Cryptographic
technologies typically rely on randomness, which requires drawing from a pool of entropy. Entropy
starvation occurs when an instance cannot get enough entropy to support the randomness required by
cryptographic technologies. Entropy starvation can manifest in instances as something seemingly
unrelated. For example, slow boot time might be caused by the instance waiting for SSH key generation.
The potential for entropy starvation can also motivate cloud users to use poor quality entropy sources
from within the instance, which makes applications running in the cloud less secure.

To provide a high quality source of entropy to the instances you need enough hardware random number
generators (HRNG) in the cloud to support the instances. For everyday operations, a modern HRNG can
produce enough entropy to support 50-100 Compute nodes. High bandwidth HRNGs can handle more
nodes. You must identify the application requirements for a cloud to ensure that sufficient entropy is
available.

The VirtIO RNG is a random number generator that uses /dev/urandom as the source of entropy by
default, to ensure instances are not starved of entropy at boot time. It can also can be configured to use
a HRNG, or a tool such as the entropy gathering daemon (EGD) to provide a way to distribute entropy
through a deployment. Virtio RNG devices are enabled by default for instances. To disable Virtio RNG
devices for instances you must set hw_rng:allowed to False on the instance flavor.

21.2. SCHEDULING INSTANCES TO NODES

Before an instance is created, a host for the image instantiation must be selected. This selection is
performed by the nova-scheduler which determines how to dispatch compute and volume requests.

The FilterScheduler is the default scheduler for Compute, although other schedulers exist. This
capability works in collaboration with filter hints to determine where an instance should be started. This
process of host selection allows administrators to fulfill many different security and compliance
requirements. If data isolation is a primary concern, you could choose to have project instances reside on
the same hosts whenever possible. Conversely, you could attempt to have instances reside on as many
different hosts as possible for availability or fault tolerance reasons.

Filter schedulers fall under the following main categories:

Resource based filters - Determines the placement of an instance, based on the system
resource usage of the hypervisor host sets, and can trigger on free or used properties such as
RAM, IO, or CPU utilization.

Image based filters - Delegates instance creation based on the image metadata used, such as

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

106

Image based filters - Delegates instance creation based on the image metadata used, such as
the operating system of the VM or type of image used.

Environment based filters - Determines the placement of an instance based on external details,
such as within a specific IP range, across availability zones, or on the same host as another
instance.

Custom criteria - Delegates instance creation based on user or administrator-provided criteria
such as trusts or metadata parsing.

Multiple filters can be applied at once. For example, the ServerGroupAffinity filter checks that an
instance is created on a member of a specific set of hosts, and the ServerGroupAntiAffinity filter
checks that same instance is not created on another specific set of hosts. Note that these two filters
would usually be both enabled at the same time, and can never conflict with each other as they each
check for the value of a given property, and cannot both be true at the same time.

IMPORTANT

Consider disabling filters that parse objects that are provided by users, or could be
manipulated (such as metadata).

21.3. USING TRUSTED IMAGES

In a cloud environment, users work with either pre-installed images or images they upload themselves. In
both cases, users should be able to ensure the image they are using has not been tampered with. The
ability to verify images is a fundamental imperative for security. A chain of trust is needed from the
source of the image to the destination where it is used. This can be accomplished by signing images

CHAPTER 21. MANAGING INSTANCE SECURITY

107

obtained from trusted sources and by verifying the signature prior to use. Various ways to obtain and
create verified images will be discussed below, followed by a description of the image signature
verification feature.

21.4. CREATING IMAGES

For guidance on how to create and upload images to Red Hat OpenStack Image service (glance), see
Creating and managing images. Use trusted images for your environment for increased security, and
use the hardening guidelines of your organization for further protection. You can get images for your
environment in one of several ways:

Download instance media

To obtain boot media from a trusted source, download images from the official Red Hat source and
use the SHA256SUM for validation.

Create an image from an ISO

For details on creating an image from an installation process, see Creating a Red Hat Enterprise
Linux 9 image.

Use an image builder

You can use disk-image-builder to produce minimal systems that have just the required
components for their purpose within OpenStack. For information on creating a custom image with
disk-image-builder, see Composing a customized RHEL system image .

21.5. VERIFYING IMAGE SIGNATURES

You can enable image signature verification to ensure that your Image service (glance) images do not
contain unauthorized changes before the Compute service (nova) starts the instance. With this feature
enabled, you prevent a new instance from starting that may include malware or security vulnerabilities.

Prerequisites

You have an installed Red Hat OpenStack Platform director environment.

You are logged into the director as stack.

Procedure

1. In your heat templates, enable instance signature verfication by setting the value of True to the
VerifyGlanceSignatures parameter:

parameter_defaults:
 VerifyGlanceSignatures: True

2. Ensure that the template that you use to modify the VerifyGlanceSignatures parameter is
included in your openstack overcloud deploy script, and rerun the deploy script.

NOTE

If you create an instance with an image that you have not signed, the image fails
verification and the instance does not start. For more information on signing your images,
see Signing Image service images .

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

108

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_images
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_images/assembly_glance-creating-images_osp#proc_create-rhel9-image_glance-creating-custom-images
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/composing_a_customized_rhel_system_image/index#composer-description_composing-a-customized-rhel-system-image
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/managing_secrets_with_the_key_manager_service/index#proc-validating-image-service-images_key-manager-services

21.6. MIGRATING INSTANCES

OpenStack and the underlying virtualization layers provide for the live migration of images between
OpenStack nodes, allowing you to seamlessly perform rolling upgrades of your Compute nodes without
instance downtime. However, live migrations also carry significant risk. To understand the risks involved,
the following are the high-level steps performed during a live migration:

1. Start instance on destination host

2. Transfer memory

3. Stop the guest and sync disks

4. Transfer the state

5. Start the guest

NOTE

Certain operations, such as cold migration, resize, and shelve can all result in some
amount of transferring the instance’s data to other services, across the network, among
others.

21.6.1. Live migration risks

At various stages of the live migration process, the contents of an instance’s run time memory and disk
are transmitted over the network in plain text. Consequently there are multiple risks that need to be
addressed when using live migration. The following non-exhaustive list details some of these risks:

Denial of Service (DoS): If something fails during the migration process, the instance could be
lost.

Data exposure: Memory or disk transfers must be handled securely.

Data manipulation: If memory or disk transfers are not handled securely, then an attacker could
manipulate user data during the migration.

Code injection: If memory or disk transfers are not handled securely, then an attacker could
manipulate executables, either on disk or in memory, during the migration.

21.6.2. Disable live migration

Currently, live migration is enabled in OpenStack by default. Live migrations are admin-only tasks by
default, so a user cannot initiate this operation, only administrators (which are presumably trusted). Live
migrations can be disabled by adding the following lines to the nova policy.json file:

"compute_extension:admin_actions:migrate": "!",
"compute_extension:admin_actions:migrateLive": "!",

Alternatively, live migration can be expected to fail when blocking TCP ports 49152 through 49261, or
ensuring that the nova user does not have passwordless SSH access between compute hosts.

Note that SSH configuration for live migration is significantly locked down: A new user is created
(nova_migration) and the SSH keys are restricted to that user, and only for use on the allowed networks.
A wrapper script then restricts the commands that can be run (for example, netcat on the libvirt socket).

CHAPTER 21. MANAGING INSTANCE SECURITY

109

21.6.3. Encrypted live migration

Live migration traffic transfers the contents of disk and memory of a running instance in plain text, and
is currently hosted on the Internal API network by default.

If there is a sufficient requirement (such as upgrades) for keeping live migration enabled, then libvirtd
can provide encrypted tunnels for the live migrations. However, this feature is not exposed in either the
OpenStack Dashboard or nova-client commands, and can only be accessed through manual
configuration of libvirtd. The live migration process then changes to the following high-level steps:

1. Instance data is copied from the hypervisor to libvirtd.

2. An encrypted tunnel is created between libvirtd processes on both source and destination
hosts.

3. The destination libvirtd host copies the instances back to an underlying hypervisor.

NOTE

For Red Hat OpenStack Platform 13, the recommended approach is to use tunnelled
migration, which is enabled by default when using Ceph as the back end. For more
information, see
https://docs.openstack.org/nova/queens/configuration/config.html#libvirt.live_migration_tunnelled

21.7. MONITORING, ALERTING, AND REPORTING

Instances are a server image capable of being replicated across hosts. Consequently, it would be a good
practice to apply logging similarly between physical and virtual hosts. Operating system and application
events should be logged, including access events to hosts and data, user additions and removals,
privilege changes, and others as dictated by your requirements. Consider exporting the results to a log
aggregator that collects log events, correlates them for analysis, and stores them for reference or
further action. One common tool to do this is an ELK stack, or Elasticsearch, Logstash, and Kibana.

NOTE

These logs should be reviewed regularly, or even monitored within a live view performed
by a network operations center (NOC).

You will need to further determine which events will trigger an alert that is subsequently sent to a
responder for action.

21.8. UPDATES AND PATCHES

A hypervisor runs independent virtual machines. This hypervisor can run in an operating system or
directly on the hardware (called bare metal). Updates to the hypervisor are not propagated down to the
virtual machines. For example, if a deployment is using KVM and has a set of CentOS virtual machines, an
update to KVM will not update anything running on the CentOS virtual machines.

Consider assigning clear ownership of virtual machines to owners, who are then responsible for the
hardening, deployment, and continued functionality of the virtual machines. You should also have a plan
to regularly deploy updates, while first testing them in an environment that resembles production.

21.9. FIREWALLS AND INSTANCE PROFILES

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

110

https://docs.openstack.org/nova/queens/configuration/config.html#libvirt.live_migration_tunnelled

Most common operating systems include host-based firewalls for an additional layer of security. While
instances should run as few applications as possible (to the point of being single-purpose instances, if
possible), all applications running on an instance should be profiled to determine which system
resources the application needs access to, the lowest level of privilege required for it to run, and what
the expected network traffic is that will be going into and coming from the virtual machine. This
expected traffic should be added to the host-based firewall as allowed traffic, along with any necessary
logging and management communication such as SSH or RDP. All other traffic should be explicitly
denied in the firewall configuration.

On Linux instances, the application profile above can be used in conjunction with a tool like audit2allow
to build an SELinux policy that will further protect sensitive system information on most Linux
distributions. SELinux uses a combination of users, policies and security contexts to compartmentalize
the resources needed for an application to run, and segmenting it from other system resources that are
not needed.

NOTE

Red Hat OpenStack Platform has SELinux enabled by default, with policies that are
customized for OpenStack services. Consider reviewing these polices regularly, as
required.

21.10. SECURITY GROUPS

OpenStack provides security groups for both hosts and the network to add defense-in-depth to the
instances in a given project. These are similar to host-based firewalls as they allow or deny incoming
traffic based on port, protocol, and address. However, security group rules are applied to incoming
traffic only, while host-based firewall rules can be applied to both incoming and outgoing traffic. It is also
possible for host and network security group rules to conflict and deny legitimate traffic. Consider
checking that security groups are configured correctly for the networking being used. See Security
groups in this guide for more detail.

NOTE

You should keep security groups and port security enabled unless you specifically need
them to be disabled. To build on the defense-in-depth approach, it is recommended that
you apply granular rules to instances.

21.11. ACCESSING THE INSTANCE CONSOLE

By default, an instance’s console is remotely accessible through a virtual console. This can be useful for
troubleshooting purposes. Red Hat OpenStack Platform uses VNC for remote console access.

Consider locking down the VNC port using firewall rules. By default, nova_vnc_proxy uses 6080
and 13080.

Confirm that the VNC traffic is encrypted by TLS. For director-based deployments, start with
UseTLSTransportForVnc.

21.12. CERTIFICATE INJECTION

If you need to SSH into your instances, you can configure Compute to automatically inject the required
SSH key into the instance upon creation.

CHAPTER 21. MANAGING INSTANCE SECURITY

111

Additional resources

Using a KVM guest image with Red Hat OpenStack Platform .

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

112

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_images/assembly_glance-creating-images_osp#proc_using-a-kvm-guest-image_glance-creating-images

CHAPTER 22. MESSAGE QUEUING
Message queuing services facilitate inter-process communication in OpenStack. This is done using
these message queuing service back ends:

RabbitMQ - Red Hat OpenStack Platform uses RabbitMQ by default.

Qpid

Both RabbitMQ and Qpid are Advanced Message Queuing Protocol (AMQP) frameworks, which provide
message queues for peer-to-peer communication. Queue implementations are typically deployed as a
centralized or decentralized pool of queue servers.

Message queues effectively facilitate command and control functions across OpenStack deployments.
Once access to the queue is permitted, no further authorization checks are performed. Services
accessible through the queue do validate the contexts and tokens within the actual message payload.
However, you must note the expiration date of the token because tokens are potentially re-playable and
can authorize other services in the infrastructure.

OpenStack does not support message-level confidence, such as message signing. Consequently, you
must secure and authenticate the message transport itself. For high-availability (HA) configurations,
you must perform queue-to-queue authentication and encryption.

22.1. MESSAGING TRANSPORT SECURITY

AMQP based solutions (Qpid and RabbitMQ) support transport-level security using TLS.

Consider enabling transport-level cryptography for your message queue. Using TLS for the messaging
client connections provides protection of the communications from tampering and eavesdropping in-
transit to the messaging server. Guidance is included below on how TLS is typically configured for the
two popular messaging servers: Qpid and RabbitMQ. When configuring the trusted certificate authority
(CA) bundle that your messaging server uses to verify client connections, it is recommended that this be
limited to only the CA used for your nodes, preferably an internally managed CA. The bundle of trusted
CAs will determine which client certificates will be authorized and pass the client-server verification step
of the setting up the TLS connection.

NOTE

When installing the certificate and key files, ensure that the file permissions are
restricted, for example using chmod 0600, and the ownership is restricted to the
messaging server daemon user to prevent unauthorized access by other processes and
users on the messaging server.

22.1.1. RabbitMQ server SSL configuration

The following lines should be added to the system-wide RabbitMQ configuration file, typically
/etc/rabbitmq/rabbitmq.config:

[
 {rabbit, [
 {tcp_listeners, [] },
 {ssl_listeners, [{"<IP address or hostname of management network interface>", 5671}] },
 {ssl_options, [{cacertfile,"/etc/ssl/cacert.pem"},
 {certfile,"/etc/ssl/rabbit-server-cert.pem"},
 {keyfile,"/etc/ssl/rabbit-server-key.pem"},

CHAPTER 22. MESSAGE QUEUING

113

 {verify,verify_peer},
 {fail_if_no_peer_cert,true}]}
]}
].

NOTE

The tcp_listeners option is set to [] to prevent it from listening on a non-SSL port. The
ssl_listeners option should be restricted to only listen on the management network for
the services.

22.2. QUEUE AUTHENTICATION AND ACCESS CONTROL

RabbitMQ and Qpid offer authentication and access control mechanisms for controlling access to
queues.

Simple Authentication and Security Layer (SASL) is a framework for authentication and data security in
Internet protocols. Both RabbitMQ and Qpid offer SASL and other pluggable authentication
mechanisms beyond simple usernames and passwords that allow for increased authentication security.
While RabbitMQ supports SASL, support in OpenStack does not currently allow for requesting a specific
SASL authentication mechanism. RabbitMQ support in OpenStack allows for either username and
password authentication over an unencrypted connection or user name and password in conjunction
with X.509 client certificates to establish the secure TLS connection.

Consider configuring X.509 client certificates on all the OpenStack service nodes for client connections
to the messaging queue and where possible (currently only Qpid) perform authentication with X.509
client certificates. When using usernames and passwords, accounts should be created per-service and
node for finer grained auditability of access to the queue.

Before deployment, consider the TLS libraries that the queuing servers use. Qpid uses Mozilla’s NSS
library, whereas RabbitMQ uses Erlang’s TLS module which uses OpenSSL.

22.3. OPENSTACK SERVICE CONFIGURATION FOR RABBITMQ

This section describes the typical RabbitMQ configuration for OpenStack services:

[DEFAULT]
rpc_backend = nova.openstack.common.rpc.impl_kombu
rabbit_use_ssl = True
rabbit_host = RABBIT_HOST
rabbit_port = 5671
rabbit_user = compute01
rabbit_password = RABBIT_PASS
kombu_ssl_keyfile = /etc/ssl/node-key.pem
kombu_ssl_certfile = /etc/ssl/node-cert.pem
kombu_ssl_ca_certs = /etc/ssl/cacert.pem

NOTE

Replace RABBIT_PASS with a suitable password.

22.4. OPENSTACK SERVICE CONFIGURATION FOR QPID

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

114

This section describes the typical Qpid configuration for OpenStack services:

[DEFAULT]
rpc_backend = nova.openstack.common.rpc.impl_qpid
qpid_protocol = ssl
qpid_hostname = <IP or hostname of management network interface of messaging server>
qpid_port = 5671
qpid_username = compute01
qpid_password = QPID_PASS

NOTE

Replace QPID_PASS with a suitable password.

Optionally, if using SASL with Qpid specify the SASL mechanisms in use by adding:

qpid_sasl_mechanisms = <space separated list of SASL mechanisms to use for auth>

22.5. MESSAGE QUEUE PROCESS ISOLATION AND POLICY

Each project provides a number of services which send and consume messages. Each binary which sends
a message is expected to consume messages, if only replies, from the queue.

Message queue service processes should be isolated from each other and other processes on a machine.

22.6. NAMESPACES

Linux uses namespaces to assign processes into independent domains. Other parts of this guide cover
system compartmentalization in more detail.

CHAPTER 22. MESSAGE QUEUING

115

CHAPTER 23. SECURING ENDPOINTS IN RED HAT
OPENSTACK PLATFORM

The process of engaging with an OpenStack cloud begins by querying an API endpoint. While there are
different challenges for public and private endpoints, these are high value assets that can pose a
significant risk if compromised.

This chapter recommends security enhancements for both public and private-facing API endpoints.

23.1. INTERNAL API COMMUNICATIONS

OpenStack provides both public-facing, internal admin, and private API endpoints. By default,
OpenStack components use the publicly defined endpoints. The recommendation is to configure these
components to use the API endpoint within the proper security domain. The internal admin endpoint
allows further elevated access to keystone, so it might be desirable to further isolate this.

Services select their respective API endpoints based on the OpenStack service catalog. These services
might not obey the listed public or internal API endpoint values. This can lead to internal management
traffic being routed to external API endpoints.

23.2. CONFIGURE INTERNAL URLS IN THE IDENTITY SERVICE
CATALOG

The Identity service catalog should be aware of your internal URLs. While this feature is not used by
default, it may be available through configuration. In addition, it should be forward-compatible with
expectant changes once this behavior becomes the default.

Consider isolating the configured endpoints from a network level, given that they have different levels
of access. The Admin endpoint is intended for access by cloud administrators, as it provides elevated
access to keystone operations not available on the internal or public endpoints. The internal endpoints
are intended for uses internal to the cloud (for example, by OpenStack services), and usually would not
be accessible outside of the deployment network. The public endpoints should be TLS-enabled, and the
only API endpoints accessible outside of the deployment for cloud users to operate on.

Registration of an internal URL for an endpoint is automated by director. For more information, see
https://github.com/openstack/tripleo-heat-
templates/blob/a7857d6dfcc875eb2bc611dd9334104c18fe8ac6/network/endpoints/build_endpoint_map.py

23.3. CONFIGURE APPLICATIONS FOR INTERNAL URLS

You can force some services to use specific API endpoints. As a result, it is recommended that any
OpenStack service that contacts the API of another service must be explicitly configured to access the
proper internal API endpoint.

Each project might present an inconsistent way of defining target API endpoints. Future releases of
OpenStack seek to resolve these inconsistencies through consistent use of the Identity service catalog.

23.4. PASTE AND MIDDLEWARE

Most API endpoints and other HTTP services in OpenStack use the Python Paste Deploy library. From a
security perspective, this library enables manipulation of the request filter pipeline through the
application’s configuration. Each element in this chain is referred to as middleware. Changing the order
of filters in the pipeline or adding additional middleware might have unpredictable security impact.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

116

https://github.com/openstack/tripleo-heat-templates/blob/a7857d6dfcc875eb2bc611dd9334104c18fe8ac6/network/endpoints/build_endpoint_map.py

Commonly, implementers add middleware to extend OpenStack’s base functionality. Consider giving
careful consideration to the potential exposure introduced by the addition of non-standard software
components to the HTTP request pipeline.

23.5. SECURE METADEF APIS

In Red Hat OpenStack Platform (RHOSP), cloud administrators can define key value pairs and tag
metadata with metadata definition (metadef) APIs. There is no limit on the number of metadef
namespaces, objects, properties, resources, or tags that cloud administrators can create.

Image service policies control metadef APIs. By default, only cloud administrators can create, update, or
delete (CUD) metadef APIs. This limitation prevents metadef APIs from exposing information to
unauthorized users and mitigates the risk of a malicious user filling the Image service (glance) database
with unlimited resources, which can create a Denial of Service (DoS) style attack. However, cloud
administrators can override the default policy.

23.6. ENABLING METADEF API ACCESS FOR CLOUD USERS

Cloud administrators with users who depend on write access to metadata definition (metadef) APIs can
make those APIs accessible to all users by overriding the default admin-only policy. In this type of
configuration, however, there is the potential to unintentionally leak sensitive resource names, such as
customer names and internal projects. Administrators must audit their systems to identify previously
created resources that might be vulnerable even if only read-access is enabled for all users.

Procedure

1. As a cloud administrator, log in to the undercloud and create a file for policy overrides. For
example:

$ cat open-up-glance-api-metadef.yaml

2. Configure the policy override file to allow metadef API read-write access to all users:

GlanceApiPolicies: {
 glance-metadef_default: { key: 'metadef_default', value: '' },
 glance-get_metadef_namespace: { key: 'get_metadef_namespace', value:
'rule:metadef_default' },
 glance-get_metadef_namespaces: { key: 'get_metadef_namespaces', value:
'rule:metadef_default' },
 glance-modify_metadef_namespace: { key: 'modify_metadef_namespace', value:
'rule:metadef_default' },
 glance-add_metadef_namespace: { key: 'add_metadef_namespace', value:
'rule:metadef_default' },
 glance-delete_metadef_namespace: { key: 'delete_metadef_namespace', value:
'rule:metadef_default' },
 glance-get_metadef_object: { key: 'get_metadef_object', value: 'rule:metadef_default' },
 glance-get_metadef_objects: { key: 'get_metadef_objects', value: 'rule:metadef_default' },
 glance-modify_metadef_object: { key: 'modify_metadef_object', value:
'rule:metadef_default' },
 glance-add_metadef_object: { key: 'add_metadef_object', value: 'rule:metadef_default' },
 glance-delete_metadef_object: { key: 'delete_metadef_object', value: 'rule:metadef_default'
},
 glance-list_metadef_resource_types: { key: 'list_metadef_resource_types', value:
'rule:metadef_default' },

CHAPTER 23. SECURING ENDPOINTS IN RED HAT OPENSTACK PLATFORM

117

 glance-get_metadef_resource_type: { key: 'get_metadef_resource_type', value:
'rule:metadef_default' },
 glance-add_metadef_resource_type_association: { key:
'add_metadef_resource_type_association', value: 'rule:metadef_default' },
 glance-remove_metadef_resource_type_association: { key:
'remove_metadef_resource_type_association', value: 'rule:metadef_default' },
 glance-get_metadef_property: { key: 'get_metadef_property', value: 'rule:metadef_default'
},
 glance-get_metadef_properties: { key: 'get_metadef_properties', value:
'rule:metadef_default' },
 glance-modify_metadef_property: { key: 'modify_metadef_property', value:
'rule:metadef_default' },
 glance-add_metadef_property: { key: 'add_metadef_property', value: 'rule:metadef_default'
},
 glance-remove_metadef_property: { key: 'remove_metadef_property', value:
'rule:metadef_default' },
 glance-get_metadef_tag: { key: 'get_metadef_tag', value: 'rule:metadef_default' },
 glance-get_metadef_tags: { key: 'get_metadef_tags', value: 'rule:metadef_default' },
 glance-modify_metadef_tag: { key: 'modify_metadef_tag', value: 'rule:metadef_default' },
 glance-add_metadef_tag: { key: 'add_metadef_tag', value: 'rule:metadef_default' },
 glance-add_metadef_tags: { key: 'add_metadef_tags', value: 'rule:metadef_default' },
 glance-delete_metadef_tag: { key: 'delete_metadef_tag', value: 'rule:metadef_default' },
 glance-delete_metadef_tags: { key: 'delete_metadef_tags', value: 'rule:metadef_default' }
 }

NOTE

You must configure all metadef policies to use rule:metadeta_default.

3. Include the new policy file in the deployment command with the -e option when you deploy the
overcloud:

$ openstack overcloud deploy -e open-up-glance-api-metadef.yaml

23.7. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

If you enabled SSL/TLS in the overcloud, consider hardening the SSL/TLS ciphers and rules that are
used with the HAProxy configuration. By hardening the SSL/TLS ciphers, you help avoid SSL/TLS
vulnerabilities, such as the POODLE vulnerability.

1. Create a heat template environment file called tls-ciphers.yaml:

touch ~/templates/tls-ciphers.yaml

2. Use the ExtraConfig hook in the environment file to apply values to the
tripleo::haproxy::ssl_cipher_suite and tripleo::haproxy::ssl_options hieradata:

parameter_defaults:
 ExtraConfig:
 tripleo::haproxy::ssl_cipher_suite:: `DHE-RSA-AES128-CCM:DHE-RSA-AES256-
CCM:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-
AES128-CCM:ECDHE-ECDSA-AES256-CCM:ECDHE-ECDSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

118

https://access.redhat.com/solutions/1291123

POLY1305:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-CHACHA20-POLY1305`

 tripleo::haproxy::ssl_options:: no-sslv3 no-tls-tickets

NOTE

The cipher collection is one continuous line.

3. Include the tls-ciphers.yaml environment file with the overcloud deploy command when
deploying the overcloud:

openstack overcloud deploy --templates \
...
-e /home/stack/templates/tls-ciphers.yaml
...

23.8. NETWORK POLICY

API endpoints will typically span multiple security zones, so you must pay particular attention to the
separation of the API processes. For example, at the network design level, you can consider restricting
access to specified systems only. See the guidance on security zones for more information.

With careful modeling, you can use network ACLs and IDS technologies to enforce explicit point-to-
point communication between network services. As a critical cross domain service, this type of explicit
enforcement works well for OpenStack’s message queue service.

To enforce policies, you can configure services, host-based firewalls (such as iptables), local policy
(SELinux), and optionally global network policy.

23.9. MANDATORY ACCESS CONTROLS

You should isolate API endpoint processes from each other and other processes on a machine. The
configuration for those processes should be restricted to those processes by Discretionary Access
Controls (DAC) and Mandatory Access Controls (MAC). The goal of these enhanced access controls is
to aid in the containment of API endpoint security breaches.

23.10. API ENDPOINT RATE-LIMITING

Rate Limiting is a means to control the frequency of events received by a network based application.
When robust rate limiting is not present, it can result in an application being susceptible to various denial
of service attacks. This is especially true for APIs, which by their nature are designed to accept a high
frequency of similar request types and operations.

It is recommended that all endpoints (especially public) are give an extra layer of protection, for
example, using physical network design, a rate-limiting proxy, or web application firewall.

It is key that the operator carefully plans and considers the individual performance needs of users and
services within their OpenStack cloud when configuring and implementing any rate limiting functionality.

NOTE

CHAPTER 23. SECURING ENDPOINTS IN RED HAT OPENSTACK PLATFORM

119

NOTE

For Red Hat OpenStack Platform deployments, all services are placed behind load
balancing proxies.

Red Hat OpenStack Platform 17.1 Hardening Red Hat OpenStack Platform

120

CHAPTER 24. IMPLEMENTING FEDERATION
Red Hat supports federation using Red Hat Single Sign-on (RH-SSO) or Microsoft Active Directory
Federation Services (AD FS) in combination with Red Hat OpenStack Platform (RHOSP).

24.1. FEDERATE WITH IDM USING RED HAT SINGLE SIGN-ON

You can use Red Hat Single Sign-On (RH-SSO) to federate your IdM users for OpenStack
authentication (authN). Federation allows your IdM users to login to the OpenStack Dashboard without
revealing their credentials to any OpenStack services. Instead, when Dashboard needs a user’s
credentials, it will forward the user to RH-SSO and allow them to enter their IdM credentials there. As a
result, RH-SSO asserts back to Dashboard that the user has successfully authenticated, and Dashboard
then allows the user to access the project.

24.2. THE FEDERATION WORKFLOW

This section describes how the Identity service (keystone), RH-SSO and IdM interact with each other.
Federation in OpenStack uses the concept of Identity Providers and Service Providers:

Identity Provider (IdP) - the service that stores the user accounts. In this case, the user accounts held
in IdM, are presented to Keystone using RH-SSO.

Service Provider (SP) - the service that requires authentication from the users in the IdP. In this case,
keystone is the service provider that grants Dashboard access to IdM users.

You can configure the Identity service (the SP) to communicate with RH-SSO (the IdP), which is also
able to serve as a universal adapter for other IdPs. In this configuration, you can point keystone at RH-
SSO, and RH-SSO will forward requests on to the Identity Providers that it supports (known as
authentication modules), these currently include IdM and Active Directory. This is done by having the
Service Provider (SP) and Identity Provider (IdP) exchange metadata, which each sysadmin then makes
a decision to trust. The result is that the IdP can confidently make assertions, and the SP can then
receive these assertions.

Additional resources

Federation using Red Hat OpenStack Platform and Red Hat Single Sign-On

CHAPTER 24. IMPLEMENTING FEDERATION

121

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/integrating_openstack_identity_with_external_user_management_services/assembly_federation-using-rhosp-and-keycloak

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO SECURITY
	1.1. RED HAT OPENSTACK PLATFORM SECURITY
	1.2. UNDERSTANDING THE RED HAT OPENSTACK PLATFORM ADMIN ROLE
	1.3. IDENTIFYING SECURITY ZONES IN RED HAT OPENSTACK PLATFORM
	1.4. LOCATING SECURITY ZONES IN RED HAT OPENSTACK PLATFORM
	1.5. CONNECTING SECURITY ZONES
	1.6. THREAT MITIGATION

	CHAPTER 2. SECURITY ENHANCEMENTS
	2.1. USING SECURE ROOT USER ACCESS
	2.2. ADDING SERVICES TO THE OVERCLOUD FIREWALL
	2.3. REMOVING SERVICES FROM THE OVERCLOUD FIREWALL
	2.4. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) STRINGS
	2.5. USING THE OPEN VSWITCH FIREWALL

	CHAPTER 3. DOCUMENTING YOUR RHOSP ENVIRONMENT
	3.1. DOCUMENTING THE SYSTEM ROLES
	3.2. CREATING A HARDWARE INVENTORY
	3.3. CREATING A SOFTWARE INVENTORY

	CHAPTER 4. IDENTITY AND ACCESS MANAGEMENT
	4.1. RED HAT OPENSTACK PLATFORM FERNET TOKENS
	4.2. OPENSTACK IDENTITY SERVICE ENTITIES
	4.3. AUTHENTICATING WITH KEYSTONE
	4.4. USING IDENTITY SERVICE HEAT PARAMETERS TO STOP INVALID LOGIN ATTEMPTS
	4.5. AUTHENTICATING WITH EXTERNAL IDENTITY PROVIDERS
	4.5.1. How LDAP integration works

	CHAPTER 5. SECURING RED HAT OPENSTACK DEPLOYMENTS WITH TLS AND PKI
	5.1. COMPONENTS OF PUBLIC KEY INFRASTRUCTURE (PKI)
	5.2. CERTIFICATE AUTHORITY REQUIREMENTS AND RECOMMENDATIONS
	5.3. IDENTIFYING TLS VERSIONS IN YOUR ENVIRONMENT
	5.4. IDENTITY MANAGEMENT (IDM) SERVER RECOMMENDATIONS FOR OPENSTACK
	5.5. IMPLEMENTING TLS-E WITH ANSIBLE
	5.6. PARAMETERS FOR TRIPLEO-IPA
	5.7. ENCRYPTING MEMCACHED TRAFFIC UNDER TLS EVERYWHERE (TLS-E)
	5.8. INCREASING THE SIZE OF PRIVATE KEYS
	5.9. REPLACING THE IDM SERVER FOR RED HAT OPENSTACK PLATFORM WITH ITS REPLICA

	CHAPTER 6. CONFIGURING CUSTOM SSL/TLS CERTIFICATES
	6.1. INITIALIZING THE SIGNING HOST
	6.2. CREATING A CERTIFICATE AUTHORITY
	6.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
	6.4. CREATING AN SSL/TLS KEY
	6.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
	6.6. CREATING THE SSL/TLS CERTIFICATE
	6.7. ADDING THE CERTIFICATE TO THE UNDERCLOUD

	CHAPTER 7. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS
	7.1. ENABLING SSL/TLS
	7.2. INJECTING A ROOT CERTIFICATE
	7.3. CONFIGURING DNS ENDPOINTS
	7.4. ADDING ENVIRONMENT FILES DURING OVERCLOUD CREATION
	7.5. MANUALLY UPDATING SSL/TLS CERTIFICATES

	CHAPTER 8. USING FERNET KEYS FOR ENCRYPTION IN THE OVERCLOUD
	8.1. REVIEWING THE FERNET DEPLOYMENT

	CHAPTER 9. FEDERAL INFORMATION PROCESSING STANDARD ON RED HAT OPENSTACK PLATFORM
	9.1. ENABLING FIPS

	CHAPTER 10. IMPROVING USER ACCESS SECURITY
	10.1. SRBAC PERSONAS
	10.1.1. Red Hat OpenStack Platform SRBAC roles
	10.1.2. Red Hat OpenStack Platform SRBAC scope
	10.1.3. Red Hat OpenStack Platform SRBAC personas

	10.2. ACTIVATING SECURE ROLE-BASED ACCESS CONTROL
	10.3. ASSIGNING ROLES IN AN SRBAC ENVIRONMENT

	CHAPTER 11. POLICIES
	11.1. REVIEWING EXISTING POLICIES
	11.2. UNDERSTANDING SERVICE POLICIES
	11.3. POLICY SYNTAX
	11.4. USING POLICY FILES FOR ACCESS CONTROL
	11.5. EXAMPLE: LIMITING ACCESS BASED ON ATTRIBUTES
	11.6. MODIFYING POLICIES WITH HEAT
	11.7. AUDITING YOUR USERS AND ROLES
	11.8. AUDITING API ACCESS

	CHAPTER 12. NETWORK TIME PROTOCOL
	12.1. WHY CONSISTENT TIME IS IMPORTANT
	12.2. NTP DESIGN

	CHAPTER 13. HARDENING INFRASTRUCTURE AND VIRTUALIZATION
	13.1. HARWARE FOR RED HAT OPENSTACK PLATFORM
	13.2. SOFTWARE UPDATES IN A CLOUD ENVIRONMENT
	13.3. UPDATING SSH KEYS IN YOUR OPENSTACK ENVIRONMENT
	13.4. LIMITING HARDWARE AND SOFTWARE FEATURES
	13.5. SELINUX ON RED HAT OPENSTACK PLATFORM
	13.6. INVESTIGATING CONTAINERIZED SERVICES
	13.7. MAKING TEMPORARY CHANGES TO CONTAINERIZED SERVICES
	13.8. MAKING PERMANENT CHANGES TO CONTAINERIZED SERVICES
	13.9. FIRMWARE UPDATES
	13.10. USE SSH BANNER TEXT
	13.11. AUDIT FOR SYSTEM EVENTS
	13.12. MANAGE FIREWALL RULES
	13.13. INTRUSION DETECTION WITH AIDE
	13.13.1. Using complex AIDE rules
	13.13.2. Additional AIDE values
	13.13.3. Cron configuration for AIDE
	13.13.4. Considering the effect of system upgrades

	13.14. REVIEW SECURETTY
	13.15. CADF AUDITING FOR IDENTITY SERVICE
	13.16. REVIEW THE LOGIN.DEFS VALUES

	CHAPTER 14. HARDENING THE DASHBOARD SERVICE
	14.1. DEBUGGING THE DASHBOARD SERVICE
	14.2. SELECTING A DOMAIN NAME
	14.3. CONFIGURE ALLOWED_HOSTS
	14.4. CROSS SITE SCRIPTING (XSS)
	14.5. CROSS SITE REQUEST FORGERY (CSRF)
	14.6. ALLOW IFRAME EMBEDDING
	14.7. USING HTTPS ENCRYPTION FOR DASHBOARD TRAFFIC
	14.8. HTTP STRICT TRANSPORT SECURITY (HSTS)
	14.9. FRONT-END CACHING
	14.10. SESSION BACKEND
	14.11. REVIEWING THE SECRET KEY
	14.12. CONFIGURING SESSION COOKIES
	14.13. STATIC MEDIA
	14.14. VALIDATING PASSWORD COMPLEXITY
	14.15. ENFORCE THE ADMINISTRATOR PASSWORD CHECK
	14.16. DISABLE PASSWORD REVEAL
	14.17. DISPLAYING A LOGON BANNER FOR THE DASHBOARD
	14.18. LIMITING THE SIZE OF FILE UPLOADS

	CHAPTER 15. HARDENING THE NETWORKING SERVICE
	15.1. PROJECT NETWORK SERVICES WORKFLOW
	15.2. NETWORKING RESOURCE POLICY ENGINE
	15.3. SECURITY GROUPS
	15.4. MITIGATE ARP SPOOFING
	15.5. USE A SECURE PROTOCOL FOR AUTHENTICATION

	CHAPTER 16. HARDENING BLOCK STORAGE ON RED HAT OPENSTACK PLATFORM
	16.1. SET THE MAX SIZE FOR THE BODY OF A REQUEST
	16.2. ENABLE VOLUME ENCRYPTION
	16.3. VOLUME WIPING

	CHAPTER 17. HARDENING THE SHARED FILE SYSTEM (MANILA)
	17.1. SECURITY CONSIDERATIONS FOR MANILA
	17.2. NETWORK AND SECURITY MODELS FOR MANILA
	17.3. SHARE BACKEND MODES
	17.4. NETWORKING REQUIREMENTS FOR MANILA
	17.5. SECURITY SERVICES WITH MANILA
	17.6. INTRODUCTION TO SECURITY SERVICES
	17.7. SECURITY SERVICES MANAGEMENT
	17.8. SHARE ACCESS CONTROL
	17.9. SHARE TYPE ACCESS CONTROL
	17.10. POLICIES

	CHAPTER 18. OBJECT STORAGE
	18.1. NETWORK SECURITY
	18.2. RUN SERVICES AS NON-ROOT USER
	18.3. FILE PERMISSIONS
	18.4. SECURING STORAGE SERVICES
	18.5. OBJECT STORAGE ACCOUNT TERMINOLOGY
	18.6. SECURING PROXY SERVICES
	18.7. HTTP LISTENING PORT
	18.8. LOAD BALANCER
	18.9. OBJECT STORAGE AUTHENTICATION
	18.10. ENCRYPT AT-REST SWIFT OBJECTS
	18.11. ADDITIONAL ITEMS

	CHAPTER 19. MONITORING AND LOGGING
	19.1. HARDEN THE MONITORING INFRASTRUCTURE
	19.2. EXAMPLE EVENTS TO MONITOR

	CHAPTER 20. DATA PRIVACY FOR PROJECTS
	20.1. DATA RESIDENCY
	20.2. DATA DISPOSAL
	20.2.1. Data not securely erased
	20.2.2. Instance memory scrubbing

	20.3. ENCRYPTING CINDER VOLUME DATA
	20.4. IMAGE SERVICE DELAY DELETE FEATURES
	20.5. COMPUTE SOFT DELETE FEATURES
	20.6. SECURITY HARDENING FOR BARE METAL PROVISIONING
	20.7. HARDWARE IDENTIFICATION
	20.8. DATA ENCRYPTION
	20.8.1. Volume encryption
	20.8.2. Object Storage objects
	20.8.3. Block Storage performance and back ends
	20.8.4. Network data

	20.9. KEY MANAGEMENT

	CHAPTER 21. MANAGING INSTANCE SECURITY
	21.1. SUPPLYING ENTROPY TO INSTANCES
	21.2. SCHEDULING INSTANCES TO NODES
	21.3. USING TRUSTED IMAGES
	21.4. CREATING IMAGES
	21.5. VERIFYING IMAGE SIGNATURES
	21.6. MIGRATING INSTANCES
	21.6.1. Live migration risks
	21.6.2. Disable live migration
	21.6.3. Encrypted live migration

	21.7. MONITORING, ALERTING, AND REPORTING
	21.8. UPDATES AND PATCHES
	21.9. FIREWALLS AND INSTANCE PROFILES
	21.10. SECURITY GROUPS
	21.11. ACCESSING THE INSTANCE CONSOLE
	21.12. CERTIFICATE INJECTION

	CHAPTER 22. MESSAGE QUEUING
	22.1. MESSAGING TRANSPORT SECURITY
	22.1.1. RabbitMQ server SSL configuration

	22.2. QUEUE AUTHENTICATION AND ACCESS CONTROL
	22.3. OPENSTACK SERVICE CONFIGURATION FOR RABBITMQ
	22.4. OPENSTACK SERVICE CONFIGURATION FOR QPID
	22.5. MESSAGE QUEUE PROCESS ISOLATION AND POLICY
	22.6. NAMESPACES

	CHAPTER 23. SECURING ENDPOINTS IN RED HAT OPENSTACK PLATFORM
	23.1. INTERNAL API COMMUNICATIONS
	23.2. CONFIGURE INTERNAL URLS IN THE IDENTITY SERVICE CATALOG
	23.3. CONFIGURE APPLICATIONS FOR INTERNAL URLS
	23.4. PASTE AND MIDDLEWARE
	23.5. SECURE METADEF APIS
	23.6. ENABLING METADEF API ACCESS FOR CLOUD USERS
	23.7. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY
	23.8. NETWORK POLICY
	23.9. MANDATORY ACCESS CONTROLS
	23.10. API ENDPOINT RATE-LIMITING

	CHAPTER 24. IMPLEMENTING FEDERATION
	24.1. FEDERATE WITH IDM USING RED HAT SINGLE SIGN-ON
	24.2. THE FEDERATION WORKFLOW

