
Red Hat OpenStack Platform 17.1

Configuring network functions virtualization

Planning and configuring network functions virtualization (NFV) in Red Hat
Openstack Platform

Last Updated: 2024-03-15

Red Hat OpenStack Platform 17.1 Configuring network functions
virtualization

Planning and configuring network functions virtualization (NFV) in Red Hat Openstack Platform

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide contains important planning information and describes the configuration procedures for
single root input/output virtualization (SR-IOV) and dataplane development kit (DPDK) for network
functions virtualization infrastructure (NFVi) in your Red Hat OpenStack Platform deployment.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. UNDERSTANDING RED HAT NETWORK FUNCTIONS VIRTUALIZATION (NFV)
1.1. ADVANTAGES OF NFV
1.2. SUPPORTED CONFIGURATIONS FOR NFV DEPLOYMENTS
1.3. NFV DATA PLANE CONNECTIVITY
1.4. ETSI NFV ARCHITECTURE
1.5. NFV ETSI ARCHITECTURE AND COMPONENTS
1.6. RED HAT NFV COMPONENTS
1.7. NFV INSTALLATION SUMMARY

CHAPTER 2. NFV PERFORMANCE CONSIDERATIONS
2.1. CPUS AND NUMA NODES

2.1.1. NUMA node example
2.1.2. NUMA aware instances

2.2. CPU PINNING
2.3. HUGE PAGES
2.4. PORT SECURITY

CHAPTER 3. HARDWARE REQUIREMENTS FOR NFV
3.1. TESTED NICS FOR NFV
3.2. TROUBLESHOOTING HARDWARE OFFLOAD
3.3. DISCOVERING YOUR NUMA NODE TOPOLOGY
3.4. RETRIEVING HARDWARE INTROSPECTION DETAILS
3.5. NFV BIOS SETTINGS

CHAPTER 4. SOFTWARE REQUIREMENTS FOR NFV
4.1. REGISTERING AND ENABLING REPOSITORIES
4.2. SUPPORTED CONFIGURATIONS FOR NFV DEPLOYMENTS
4.3. SUPPORTED DRIVERS FOR NFV
4.4. COMPATIBILITY WITH THIRD-PARTY SOFTWARE

CHAPTER 5. NETWORK CONSIDERATIONS FOR NFV

CHAPTER 6. PLANNING AN SR-IOV DEPLOYMENT
6.1. HARDWARE PARTITIONING FOR AN SR-IOV DEPLOYMENT
6.2. TOPOLOGY OF AN NFV SR-IOV DEPLOYMENT
6.3. TOPOLOGY FOR NFV SR-IOV WITHOUT HCI

CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT
7.1. GENERATING ROLES AND IMAGE FILES FOR SR-IOV
7.2. CONFIGURING PCI PASSTHROUGH DEVICES FOR SR-IOV
7.3. ADDING ROLE-SPECIFIC PARAMETERS AND CONFIGURATION OVERRIDES
7.4. CREATING A BARE METAL NODES DEFINITION FILE FOR SR-IOV
7.5. CREATING A NIC CONFIGURATION TEMPLATE FOR SR-IOV
7.6. CONFIGURING NIC PARTITIONING
7.7. EXAMPLE CONFIGURATIONS FOR NIC PARTITIONS
7.8. DEPLOYING AN SR-IOV OVERCLOUD
7.9. CREATING HOST AGGREGATES IN AN SR-IOV OR AN OVS TC-FLOWER HARDWARE OFFLOAD
ENVIRONMENT
7.10. CREATING AN INSTANCE IN AN SR-IOV OR AN OVS TC-FLOWER HARDWARE OFFLOAD
ENVIRONMENT

5

6

7
7
7
8

10
10
12
12

14
14
14
15
15
16
16

17
17
17
18
18
22

24
24
25
25
25

27

28
28
28
29

31
32
33
35
37
38
40
43
45

52

52

Table of Contents

1

. .

. .

. .

. .

CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE OFFLOAD
8.1. GENERATING ROLES AND IMAGE FILES FOR OVS TC-FLOWER HARDWARE OFFLOAD
8.2. CONFIGURING PCI PASSTHROUGH DEVICES FOR OVS TC-FLOWER HARDWARE OFFLOAD
8.3. ADDING ROLE-SPECIFIC PARAMETERS AND CONFIGURATION OVERRIDES FOR OVS TC-FLOWER
HARDWARE OFFLOAD
8.4. CREATING A BARE METAL NODES DEFINITION FILE FOR OVS TC-FLOWER HARDWARE OFFLOAD
8.5. CREATING A NIC CONFIGURATION TEMPLATE FOR OVS TC-FLOWER HARDWARE OFFLOAD
8.6. DEPLOYING AN OVS TC-FLOWER HARDWARE OFFLOAD OVERCLOUD
8.7. CREATING HOST AGGREGATES IN AN SR-IOV OR AN OVS TC-FLOWER HARDWARE OFFLOAD
ENVIRONMENT
8.8. CREATING AN INSTANCE IN AN SR-IOV OR AN OVS TC-FLOWER HARDWARE OFFLOAD ENVIRONMENT

8.9. TROUBLESHOOTING OVS TC-FLOWER HARDWARE OFFLOAD
8.10. DEBUGGING TC-FLOWER HARDWARE OFFLOAD FLOW

CHAPTER 9. PLANNING YOUR OVS-DPDK DEPLOYMENT
9.1. OVS-DPDK WITH CPU PARTITIONING AND NUMA TOPOLOGY
9.2. OVS-DPDK PARAMETERS

9.2.1. CPU parameters
9.2.2. Memory parameters
9.2.3. Networking parameters
9.2.4. Other parameters
9.2.5. VM instance flavor specifications

9.3. TWO NUMA NODE EXAMPLE OVS-DPDK DEPLOYMENT
9.4. TOPOLOGY OF AN NFV OVS-DPDK DEPLOYMENT

CHAPTER 10. CONFIGURING AN OVS-DPDK DEPLOYMENT
10.1. KNOWN LIMITATIONS FOR OVS-DPDK
10.2. GENERATING ROLES AND IMAGE FILES
10.3. CREATING AN ENVIRONMENT FILE FOR YOUR OVS-DPDK CUSTOMIZATIONS
10.4. CONFIGURING A FIREWALL FOR SECURITY GROUPS
10.5. CREATING A BARE METAL NODES DEFINITION FILE
10.6. CREATING A NIC CONFIGURATION TEMPLATE
10.7. SETTING THE MTU VALUE FOR OVS-DPDK INTERFACES
10.8. SETTING MULTIQUEUE FOR OVS-DPDK INTERFACES
10.9. CONFIGURING DPDK PARAMETERS FOR NODE PROVISIONING
10.10. DEPLOYING AN OVS-DPDK OVERCLOUD
10.11. CREATING A FLAVOR AND DEPLOYING AN INSTANCE FOR OVS-DPDK
10.12. TROUBLESHOOTING THE OVS-DPDK CONFIGURATION

CHAPTER 11. TUNING A RED HAT OPENSTACK PLATFORM ENVIRONMENT
11.1. PINNING EMULATOR THREADS
11.2. CONFIGURING TRUST BETWEEN VIRTUAL AND PHYSICAL FUNCTIONS
11.3. UTILIZING TRUSTED VF NETWORKS
11.4. PREVENTING PACKET LOSS BY MANAGING RX-TX QUEUE SIZE
11.5. CONFIGURING A NUMA-AWARE VSWITCH
11.6. KNOWN LIMITATIONS FOR NUMA-AWARE VSWITCHES
11.7. QUALITY OF SERVICE (QOS) IN NFVI ENVIRONMENTS
11.8. CREATING AN HCI OVERCLOUD THAT USES DPDK

11.8.1. Example NUMA node configuration
CPU allocation:
Example of CPU allocation:

11.8.2. Example Ceph configuration file
11.8.3. Example DPDK configuration file

55
56
58

60
62
63
66

70

71
73
77

79
79
80
80
81

83
84
85
85
87

89
91
91

92
94
95
96
98

100
101

104
107
108

110
110
111
111

112
114
116
117
117
117
117
118
118
119

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

2

. .

. .

. .

. .

11.8.4. Example nova configuration file
11.8.5. Recommended configuration for HCI-DPDK deployments
11.8.6. Deploying the HCI-DPDK overcloud

11.9. SYNCHRONIZE YOUR COMPUTE NODES WITH TIMEMASTER
11.9.1. Timemaster hardware requirements
11.9.2. Configuring Timemaster
11.9.3. Example timemaster configuration
11.9.4. Example timemaster operation

CHAPTER 12. ENABLING RT-KVM FOR NFV WORKLOADS
12.1. PLANNING FOR YOUR RT-KVM COMPUTE NODES
12.2. CONFIGURING OVS-DPDK WITH RT-KVM

12.2.1. Designating nodes for Real-time Compute
12.2.2. Configuring OVS-DPDK parameters

12.3. LAUNCHING AN RT-KVM INSTANCE

CHAPTER 13. EXAMPLE: CONFIGURING OVS-DPDK AND SR-IOV WITH VXLAN TUNNELLING
13.1. CONFIGURING ROLES DATA
13.2. CONFIGURING OVS-DPDK PARAMETERS
13.3. CONFIGURING THE CONTROLLER NODE
13.4. CONFIGURING THE COMPUTE NODE FOR DPDK AND SR-IOV
13.5. DEPLOYING THE OVERCLOUD

CHAPTER 14. UPGRADING RED HAT OPENSTACK PLATFORM WITH NFV

CHAPTER 15. SAMPLE DPDK SR-IOV YAML AND JINJA2 FILES
15.1. ROLES_DATA.YAML
15.2. NETWORK-ENVIRONMENT-OVERRIDES.YAML
15.3. CONTROLLER.J2
15.4. COMPUTE-OVS-DPDK.J2
15.5. OVERCLOUD_DEPLOY.SH

119
120
121
122
123
124
125
126

127
127
130
130
134
135

137
137
137
138
140
141

142

143
143
148
149
151

153

Table of Contents

3

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue

3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

4. Click Create.

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

6

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. UNDERSTANDING RED HAT NETWORK
FUNCTIONS VIRTUALIZATION (NFV)

Network Functions Virtualization (NFV) is a software-based solution that helps the Communication
Service Providers (CSPs) to move beyond the traditional, proprietary hardware to achieve greater
efficiency and agility while reducing the operational costs.

An NFV environment allows for IT and network convergence by providing a virtualized infrastructure
using the standard virtualization technologies that run on standard hardware devices such as switches,
routers, and storage to virtualize network functions (VNFs). The management and orchestration logic
deploys and sustains these services. NFV also includes a Systems Administration, Automation and Life-
Cycle Management thereby reducing the manual work necessary.

1.1. ADVANTAGES OF NFV

The main advantages of implementing network functions virtualization (NFV) are as follows:

Accelerates the time-to-market by allowing you to to quickly deploy and scale new networking
services to address changing demands.

Supports innovation by enabling service developers to self-manage their resources and
prototype using the same platform that will be used in production.

Addresses customer demands in hours or minutes instead of weeks or days, without sacrificing
security or performance.

Reduces capital expenditure because it uses commodity-off-the-shelf hardware instead of
expensive tailor-made equipment.

Uses streamlined operations and automation that optimize day-to-day tasks to improve
employee productivity and reduce operational costs.

1.2. SUPPORTED CONFIGURATIONS FOR NFV DEPLOYMENTS

You can use the Red Hat OpenStack Platform director toolkit to isolate specific network types, for
example, external, project, internal API, and so on. You can deploy a network on a single network
interface, or distributed over a multiple-host network interface. With Open vSwitch you can create
bonds by assigning multiple interfaces to a single bridge. Configure network isolation in a Red Hat
OpenStack Platform installation with template files. If you do not provide template files, the service
networks deploy on the provisioning network.

There are two types of template configuration files:

network-environment.yaml
This file contains network details, such as subnets and IP address ranges, for the overcloud
nodes. This file also contains the different settings that override the default parameter values
for various scenarios.

Host network templates, for example, compute.yaml and controller.yaml
These templates define the network interface configuration for the overcloud nodes. The values
of the network details are provided by the network-environment.yaml file.

These heat template files are located at /usr/share/openstack-tripleo-heat-templates/ on the
undercloud node. For samples of these heat template files for NFV, see Sample DPDK SR-IOV YAML
files.

CHAPTER 1. UNDERSTANDING RED HAT NETWORK FUNCTIONS VIRTUALIZATION (NFV)

7

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/sample-ovsdpdk-sriov-files_rhosp-nfv

The Hardware requirements and Software requirements sections provide more details on how to plan
and configure the heat template files for NFV using the Red Hat OpenStack Platform director.

You can edit YAML files to configure NFV. For an introduction to the YAML file format, see YAML in a
Nutshell.

Data Plane Development Kit (DPDK) and Single Root I/O Virtualization (SR-IOV)

Red Hat OpenStack Platform (RHOSP) supports NFV deployments with the inclusion of automated
OVS-DPDK and SR-IOV configuration.

IMPORTANT

Red Hat does not support the use of OVS-DPDK for non-NFV workloads. If you need
OVS-DPDK functionality for non-NFV workloads, contact your Technical Account
Manager (TAM) or open a customer service request case to discuss a Support
Exception and other options. To open a customer service request case, go to Create a
case and choose Account > Customer Service Request.

Hyper-converged Infrastructure (HCI)

You can colocate the Compute sub-system with the Red Hat Ceph Storage nodes. This hyper-
converged model delivers lower cost of entry, smaller initial deployment footprints, maximized
capacity utilization, and more efficient management in NFV use cases. For more information about
HCI, see Deploying a hyperconverged infrastructure .

Composable roles

You can use composable roles to create custom deployments. Composable roles allow you to add or
remove services from each role. For more information about the Composable Roles, see
Composable services and custom roles in Customizing your Red Hat OpenStack Platform
deployment.

Open vSwitch (OVS) with LACP

As of OVS 2.9, LACP with OVS is fully supported. This is not recommended for Openstack control
plane traffic, as OVS or Openstack Networking interruptions might interfere with management. For
more information, see Open vSwitch (OVS) bonding options in Installing and managing Red Hat
OpenStack Platform with director.

OVS Hardware offload

Red Hat OpenStack Platform supports, with limitations, the deployment of OVS hardware offload.
For information about deploying OVS with hardware offload, see Configuring OVS hardware offload .

Open Virtual Network (OVN)

The following NFV OVN configurations are available in RHOSP 16.1.4:

Deploying OVN with OVS-DPDK and SR-IOV

Deploying OVN with OVS TC Flower offload

1.3. NFV DATA PLANE CONNECTIVITY

With the introduction of NFV, more networking vendors are starting to implement their traditional
devices as VNFs. While the majority of networking vendors are considering virtual machines, some are
also investigating a container-based approach as a design choice. An OpenStack-based solution should
be rich and flexible due to two primary reasons:

Application readiness - Network vendors are currently in the process of transforming their

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

8

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/getting_started_with_kubernetes/yaml_in_a_nutshell
https://access.redhat.com/support/cases/new
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_a_hyperconverged_infrastructure/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#ref_open-vswitch-ovs-bonding-options_network-interface-bonding
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/config-ovs-hwol_rhosp-nfv#config-ovs-hwol_ovshwol-nfv
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/software-req-nfv_rhosp-nfv#deploy-ovn-ovs-dpdk-sriov_suppcfg-nfvsub
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/software-req-nfv_rhosp-nfv#deploy-ovn-ovs-tcflower-offload_suppcfg-nfvsub

Application readiness - Network vendors are currently in the process of transforming their
devices into VNFs. Different VNFs in the market have different maturity levels; common
barriers to this readiness include enabling RESTful interfaces in their APIs, evolving their data
models to become stateless, and providing automated management operations. OpenStack
should provide a common platform for all.

Broad use-cases - NFV includes a broad range of applications that serve different use-cases.
For example, Virtual Customer Premise Equipment (vCPE) aims at providing a number of
network functions such as routing, firewall, virtual private network (VPN), and network address
translation (NAT) at customer premises. Virtual Evolved Packet Core (vEPC), is a cloud
architecture that provides a cost-effective platform for the core components of Long-Term
Evolution (LTE) network, allowing dynamic provisioning of gateways and mobile endpoints to
sustain the increased volumes of data traffic from smartphones and other devices.
These use cases are implemented using different network applications and protocols, and
require different connectivity, isolation, and performance characteristics from the
infrastructure. It is also common to separate between control plane interfaces and protocols and
the actual forwarding plane. OpenStack must be flexible enough to offer different datapath
connectivity options.

In principle, there are two common approaches for providing data plane connectivity to virtual machines:

Direct hardware access bypasses the linux kernel and provides secure direct memory access
(DMA) to the physical NIC using technologies such as PCI Passthrough or single root I/O
virtualization (SR-IOV) for both Virtual Function (VF) and Physical Function (PF) pass-through.

Using a virtual switch (vswitch), implemented as a software service of the hypervisor. Virtual
machines are connected to the vSwitch using virtual interfaces (vNICs), and the vSwitch is
capable of forwarding traffic between virtual machines, as well as between virtual machines and
the physical network.

Some of the fast data path options are as follows:

Single Root I/O Virtualization (SR-IOV) is a standard that makes a single PCI hardware device
appear as multiple virtual PCI devices. It works by introducing Physical Functions (PFs), which
are the fully featured PCIe functions that represent the physical hardware ports, and Virtual
Functions (VFs), which are lightweight functions that are assigned to the virtual machines. To
the VM, the VF resembles a regular NIC that communicates directly with the hardware. NICs
support multiple VFs.

Open vSwitch (OVS) is an open source software switch that is designed to be used as a virtual
switch within a virtualized server environment. OVS supports the capabilities of a regular L2-L3
switch and also offers support to the SDN protocols such as OpenFlow to create user-defined
overlay networks (for example, VXLAN). OVS uses Linux kernel networking to switch packets
between virtual machines and across hosts using physical NIC. OVS now supports connection
tracking (Conntrack) with built-in firewall capability to avoid the overhead of Linux bridges that
use iptables/ebtables. Open vSwitch for Red Hat OpenStack Platform environments offers
default OpenStack Networking (neutron) integration with OVS.

Data Plane Development Kit (DPDK) consists of a set of libraries and poll mode drivers (PMD)
for fast packet processing. It is designed to run mostly in the user-space, enabling applications
to perform their own packet processing directly from or to the NIC. DPDK reduces latency and
allows more packets to be processed. DPDK Poll Mode Drivers (PMDs) run in busy loop,
constantly scanning the NIC ports on host and vNIC ports in guest for arrival of packets.

DPDK accelerated Open vSwitch (OVS-DPDK) is Open vSwitch bundled with DPDK for a high
performance user-space solution with Linux kernel bypass and direct memory access (DMA) to
physical NICs. The idea is to replace the standard OVS kernel data path with a DPDK-based

CHAPTER 1. UNDERSTANDING RED HAT NETWORK FUNCTIONS VIRTUALIZATION (NFV)

9

data path, creating a user-space vSwitch on the host that uses DPDK internally for its packet
forwarding. The advantage of this architecture is that it is mostly transparent to users. The
interfaces it exposes, such as OpenFlow, OVSDB, the command line, remain mostly the same.

1.4. ETSI NFV ARCHITECTURE

The European Telecommunications Standards Institute (ETSI) is an independent standardization group
that develops standards for information and communications technologies (ICT) in Europe.

Network functions virtualization (NFV) focuses on addressing problems involved in using proprietary
hardware devices. With NFV, the necessity to install network-specific equipment is reduced, depending
upon the use case requirements and economic benefits. The ETSI Industry Specification Group for
Network Functions Virtualization (ETSI ISG NFV) sets the requirements, reference architecture, and the
infrastructure specifications necessary to ensure virtualized functions are supported.

Red Hat is offering an open-source based cloud-optimized solution to help the Communication Service
Providers (CSP) to achieve IT and network convergence. Red Hat adds NFV features such as single root
I/O virtualization (SR-IOV) and Open vSwitch with Data Plane Development Kit (OVS-DPDK) to Red
Hat OpenStack.

1.5. NFV ETSI ARCHITECTURE AND COMPONENTS

In general, a network functions virtualization (NFV) platform has the following components:

Figure 1.1. NFV ETSI architecture and components

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

10

Figure 1.1. NFV ETSI architecture and components

Virtualized Network Functions (VNFs) - the software implementation of routers, firewalls,
load balancers, broadband gateways, mobile packet processors, servicing nodes, signalling,
location services, and other network functions.

NFV Infrastructure (NFVi) - the physical resources (compute, storage, network) and the
virtualization layer that make up the infrastructure. The network includes the datapath for
forwarding packets between virtual machines and across hosts. This allows you to install VNFs
without being concerned about the details of the underlying hardware. NFVi forms the
foundation of the NFV stack. NFVi supports multi-tenancy and is managed by the Virtual
Infrastructure Manager (VIM). Enhanced Platform Awareness (EPA) improves the virtual
machine packet forwarding performance (throughput, latency, jitter) by exposing low-level CPU
and NIC acceleration components to the VNF.

CHAPTER 1. UNDERSTANDING RED HAT NETWORK FUNCTIONS VIRTUALIZATION (NFV)

11

NFV Management and Orchestration (MANO) - the management and orchestration layer
focuses on all the service management tasks required throughout the life cycle of the VNF. The
main goals of MANO is to allow service definition, automation, error-correlation, monitoring, and
life-cycle management of the network functions offered by the operator to its customers,
decoupled from the physical infrastructure. This decoupling requires additional layers of
management, provided by the Virtual Network Function Manager (VNFM). VNFM manages the
life cycle of the virtual machines and VNFs by either interacting directly with them or through
the Element Management System (EMS) provided by the VNF vendor. The other important
component defined by MANO is the Orchestrator, also known as NFVO. NFVO interfaces with
various databases and systems including Operations/Business Support Systems (OSS/BSS) on
the top and the VNFM on the bottom. If the NFVO wants to create a new service for a customer,
it asks the VNFM to trigger the instantiation of a VNF, which may result in multiple virtual
machines.

Operations and Business Support Systems (OSS/BSS) - provides the essential business
function applications, for example, operations support and billing. The OSS/BSS needs to be
adapted to NFV, integrating with both legacy systems and the new MANO components. The
BSS systems set policies based on service subscriptions and manage reporting and billing.

Systems Administration, Automation and Life-Cycle Management - manages system
administration, automation of the infrastructure components and life cycle of the NFVi
platform.

1.6. RED HAT NFV COMPONENTS

Red Hat’s solution for NFV includes a range of products that can act as the different components of the
NFV framework in the ETSI model. The following products from the Red Hat portfolio integrate into an
NFV solution:

Red Hat OpenStack Platform - Supports IT and NFV workloads. The Enhanced Platform
Awareness (EPA) features deliver deterministic performance improvements through CPU
Pinning, Huge pages, Non-Uniform Memory Access (NUMA) affinity and network adaptors
(NICs) that support SR-IOV and OVS-DPDK.

Red Hat Enterprise Linux and Red Hat Enterprise Linux Atomic Host - Create virtual machines
and containers as VNFs.

Red Hat Ceph Storage - Provides the the unified elastic and high-performance storage layer
for all the needs of the service provider workloads.

Red Hat JBoss Middleware and OpenShift Enterprise by Red Hat - Optionally provide the
ability to modernize the OSS/BSS components.

Red Hat CloudForms - Provides a VNF manager and presents data from multiple sources, such
as the VIM and the NFVi in a unified display.

Red Hat Satellite and Ansible by Red Hat - Optionally provide enhanced systems
administration, automation and life-cycle management.

1.7. NFV INSTALLATION SUMMARY

The Red Hat OpenStack Platform director installs and manages a complete OpenStack environment.
The director is based on the upstream OpenStack TripleO project, which is an abbreviation for
"OpenStack-On-OpenStack". This project takes advantage of the OpenStack components to install a
fully operational OpenStack environment; this includes a minimal OpenStack node called the

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

12

undercloud. The undercloud provisions and controls the overcloud (a series of bare metal systems used
as the production OpenStack nodes). The director provides a simple method for installing a complete
Red Hat OpenStack Platform environment that is both lean and robust.

For more information on installing the undercloud and overcloud, see Red Hat OpenStack Platform
Installing and managing Red Hat OpenStack Platform with director.

To install the NFV features, complete the following additional steps:

Include SR-IOV and PCI Passthrough parameters in your network-environment.yaml file,
update the post-install.yaml file for CPU tuning, modify the compute.yaml file, and run the
overcloud_deploy.sh script to deploy the overcloud.

Install the DPDK libraries and drivers for fast packets processing by polling data directly from
the NICs. Include the DPDK parameters in your network-environment.yaml file, update the
post-install.yaml files for CPU tuning, update the compute.yaml file to set the bridge with
DPDK port, update the controller.yaml file to set the bridge and an interface with VLAN
configured, and run the overcloud_deploy.sh script to deploy the overcloud.

CHAPTER 1. UNDERSTANDING RED HAT NETWORK FUNCTIONS VIRTUALIZATION (NFV)

13

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/index

CHAPTER 2. NFV PERFORMANCE CONSIDERATIONS
For a network functions virtualization (NFV) solution to be useful, its virtualized functions must meet or
exceed the performance of physical implementations. Red Hat’s virtualization technologies are based on
the high-performance Kernel-based Virtual Machine (KVM) hypervisor, common in OpenStack and
cloud deployments.

Red Hat OpenStack Platform director configures the Compute nodes to enforce resource partitioning
and fine tuning to achieve line rate performance for the guest virtual network functions (VNFs). The key
performance factors in the NFV use case are throughput, latency, and jitter.

You can enable high-performance packet switching between physical NICs and virtual machines using
data plane development kit (DPDK) accelerated virtual machines. OVS 2.10 embeds support for DPDK
17 and includes support for vhost-user multiqueue, allowing scalable performance. OVS-DPDK provides
line-rate performance for guest VNFs.

Single root I/O virtualization (SR-IOV) networking provides enhanced performance, including improved
throughput for specific networks and virtual machines.

Other important features for performance tuning include huge pages, NUMA alignment, host isolation,
and CPU pinning. VNF flavors require huge pages and emulator thread isolation for better performance.
Host isolation and CPU pinning improve NFV performance and prevent spurious packet loss.

2.1. CPUS AND NUMA NODES

Previously, all memory on x86 systems was equally accessible to all CPUs in the system. This resulted in
memory access times that were the same regardless of which CPU in the system was performing the
operation and was referred to as Uniform Memory Access (UMA).

In Non-Uniform Memory Access (NUMA), system memory is divided into zones called nodes, which are
allocated to particular CPUs or sockets. Access to memory that is local to a CPU is faster than memory
connected to remote CPUs on that system. Normally, each socket on a NUMA system has a local
memory node whose contents can be accessed faster than the memory in the node local to another
CPU or the memory on a bus shared by all CPUs.

Similarly, physical NICs are placed in PCI slots on the Compute node hardware. These slots connect to
specific CPU sockets that are associated to a particular NUMA node. For optimum performance,
connect your datapath NICs to the same NUMA nodes in your CPU configuration (SR-IOV or OVS-
DPDK).

The performance impact of NUMA misses are significant, generally starting at a 10% performance hit or
higher. Each CPU socket can have multiple CPU cores which are treated as individual CPUs for
virtualization purposes.

TIP

For more information about NUMA, see What is NUMA and how does it work on Linux?

2.1.1. NUMA node example

The following diagram provides an example of a two-node NUMA system and the way the CPU cores
and memory pages are made available:

Figure 2.1. Example: two-node NUMA system

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

14

https://access.redhat.com/solutions/700683

Figure 2.1. Example: two-node NUMA system

NOTE

Remote memory available via Interconnect is accessed only if VM1 from NUMA node 0
has a CPU core in NUMA node 1. In this case, the memory of NUMA node 1 acts as local
for the third CPU core of VM1 (for example, if VM1 is allocated with CPU 4 in the diagram
above), but at the same time, it acts as remote memory for the other CPU cores of the
same VM.

2.1.2. NUMA aware instances

You can configure an OpenStack environment to use NUMA topology awareness on systems with a
NUMA architecture. When running a guest operating system in a virtual machine (VM) there are two
NUMA topologies involved:

the NUMA topology of the physical hardware of the host

the NUMA topology of the virtual hardware exposed to the guest operating system

You can optimize the performance of guest operating systems by aligning the virtual hardware with the
physical hardware NUMA topology.

2.2. CPU PINNING

CPU pinning is the ability to run a specific virtual machine’s virtual CPU on a specific physical CPU, in a
given host. vCPU pinning provides similar advantages to task pinning on bare-metal systems. Since

CHAPTER 2. NFV PERFORMANCE CONSIDERATIONS

15

virtual machines run as user space tasks on the host operating system, pinning increases cache
efficiency.

For details on how to configure CPU pinning, see link:https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/17.1/html/configuring_the_compute_service_for_instance_creation/assembly_configuring-
cpus-on-compute-nodes#assembly_configuring-cpu-pinning-on-compute-nodes_cpu-pinning
[Configuring CPU pinning on Compute nodes] in the Configuring the Compute service for instance
creation guide.

2.3. HUGE PAGES

Physical memory is segmented into contiguous regions called pages. For efficiency, the system
retrieves memory by accessing entire pages instead of individual bytes of memory. To perform this
translation, the system looks in the Translation Lookaside Buffers (TLB) that contain the physical to
virtual address mappings for the most recently or frequently used pages. When the system cannot find a
mapping in the TLB, the processor must iterate through all of the page tables to determine the address
mappings. Optimize the TLB to minimize the performance penalty that occurs during these TLB misses.

The typical page size in an x86 system is 4KB, with other larger page sizes available. Larger page sizes
mean that there are fewer pages overall, and therefore increases the amount of system memory that
can have its virtual to physical address translation stored in the TLB. Consequently, this reduces TLB
misses, which increases performance. With larger page sizes, there is an increased potential for memory
to be under-utilized as processes must allocate in pages, but not all of the memory is likely required. As a
result, choosing a page size is a compromise between providing faster access times with larger pages,
and ensuring maximum memory utilization with smaller pages.

2.4. PORT SECURITY

Port security is an anti-spoofing measure that blocks any egress traffic that does not match the source
IP and source MAC address of the originating network port. You cannot view or modify this behavior
using security group rules.

By default, the port_security_enabled parameter is set to enabled on newly created Neutron networks
in OpenStack. Newly created ports copy the value of the port_security_enabled parameter from the
network they are created on.

For some NFV use cases, such as building a firewall or router, you must disable port security.

To disable port security on a single port, run the following command:

openstack port set --disable-port-security <port-id>

To prevent port security from being enabled on any newly created port on a network, run the following
command:

openstack network set --disable-port-security <network-id>

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

16

CHAPTER 3. HARDWARE REQUIREMENTS FOR NFV
This section describes the hardware requirements for NFV.

Red Hat certifies hardware for use with Red Hat OpenStack Platform. For more information, see
Certified hardware .

3.1. TESTED NICS FOR NFV

For a list of tested NICs for NFV, see the Red Hat Knowledgebase solution Network Adapter Fast
Datapath Feature Support Matrix.

Use the default driver for the supported NIC, unless you are configuring OVS-DPDK on NVIDIA
(Mellanox) network interfaces. For NVIDIA network interfaces, you must set the corresponding kernel
driver in the j2 network configuration template.

Example

In this example, the mlx5_core driver is set for the Mellanox ConnectX-5 network interface:

members
 - type: ovs_dpdk_port
 name: dpdk0
 driver: mlx5_core
 members:
 - type: interface
 name: enp3s0f0

3.2. TROUBLESHOOTING HARDWARE OFFLOAD

In a Red Hat OpenStack Platform(RHOSP) 17.1 deployment, OVS Hardware Offload might not offload
flows for VMs with switchdev-capable ports and Mellanox ConnectX5 NICs. To troubleshoot and
configure offload flows in this scenario, disable the ESWITCH_IPV4_TTL_MODIFY_ENABLE Mellanox
firmware parameter. For more troubleshooting information about OVS Hardware Offload in RHOSP 17.1,
see the Red Hat Knowledgebase solution OVS Hardware Offload with Mellanox NIC in OpenStack
Platform 16.2.

Procedure

1. Log in to the Compute nodes in your RHOSP deployment that have Mellanox NICs that you
want to configure.

2. Use the mstflint utility to query the ESWITCH_IPV4_TTL_MODIFY_ENABLE Mellanox
firmware parameter .

[root@compute-1 ~]# yum install -y mstflint
[root@compute-1 ~]# mstconfig -d <PF PCI BDF> q
ESWITCH_IPV4_TTL_MODIFY_ENABLE

3. If the ESWITCH_IPV4_TTL_MODIFY_ENABLE parameter is enabled and set to 1, then set the
value to 0 to disable it.

[root@compute-1 ~]# mstconfig -d <PF PCI BDF> s
ESWITCH_IPV4_TTL_MODIFY_ENABLE=0`

CHAPTER 3. HARDWARE REQUIREMENTS FOR NFV

17

https://catalog.redhat.com/platform/red-hat-openstack#hardware
https://access.redhat.com/articles/3538141#network-adapter-support-2
https://access.redhat.com/solutions/6407831

4. Reboot the node.

3.3. DISCOVERING YOUR NUMA NODE TOPOLOGY

When you plan your deployment, you must understand the NUMA topology of your Compute node to
partition the CPU and memory resources for optimum performance. To determine the NUMA
information, perform one of the following tasks:

Enable hardware introspection to retrieve this information from bare-metal nodes.

Log on to each bare-metal node to manually collect the information.

NOTE

You must install and configure the undercloud before you can retrieve NUMA information
through hardware introspection. For more information about undercloud configuration,
see Installing and managing Red Hat OpenStack Platform with director Guide .

3.4. RETRIEVING HARDWARE INTROSPECTION DETAILS

The Bare Metal service hardware-inspection-extras feature is enabled by default, and you can use it to
retrieve hardware details for overcloud configuration. For more information about the
inspection_extras parameter in the undercloud.conf file, see Director configuration parameters.

For example, the numa_topology collector is part of the hardware-inspection extras and includes the
following information for each NUMA node:

RAM (in kilobytes)

Physical CPU cores and their sibling threads

NICs associated with the NUMA node

Procedure

To retrieve the information listed above, substitute <UUID> with the UUID of the bare-metal
node to complete the following command:

openstack baremetal introspection data save <UUID> | jq .numa_topology

The following example shows the retrieved NUMA information for a bare-metal node:

{
 "cpus": [
 {
 "cpu": 1,
 "thread_siblings": [
 1,
 17
],
 "numa_node": 0
 },
 {
 "cpu": 2,

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

18

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_installing-director-on-the-undercloud#ref_director-configuration-parameters_installing-director-on-the-undercloud

 "thread_siblings": [
 10,
 26
],
 "numa_node": 1
 },
 {
 "cpu": 0,
 "thread_siblings": [
 0,
 16
],
 "numa_node": 0
 },
 {
 "cpu": 5,
 "thread_siblings": [
 13,
 29
],
 "numa_node": 1
 },
 {
 "cpu": 7,
 "thread_siblings": [
 15,
 31
],
 "numa_node": 1
 },
 {
 "cpu": 7,
 "thread_siblings": [
 7,
 23
],
 "numa_node": 0
 },
 {
 "cpu": 1,
 "thread_siblings": [
 9,
 25
],
 "numa_node": 1
 },
 {
 "cpu": 6,
 "thread_siblings": [
 6,
 22
],
 "numa_node": 0
 },
 {
 "cpu": 3,

CHAPTER 3. HARDWARE REQUIREMENTS FOR NFV

19

 "thread_siblings": [
 11,
 27
],
 "numa_node": 1
 },
 {
 "cpu": 5,
 "thread_siblings": [
 5,
 21
],
 "numa_node": 0
 },
 {
 "cpu": 4,
 "thread_siblings": [
 12,
 28
],
 "numa_node": 1
 },
 {
 "cpu": 4,
 "thread_siblings": [
 4,
 20
],
 "numa_node": 0
 },
 {
 "cpu": 0,
 "thread_siblings": [
 8,
 24
],
 "numa_node": 1
 },
 {
 "cpu": 6,
 "thread_siblings": [
 14,
 30
],
 "numa_node": 1
 },
 {
 "cpu": 3,
 "thread_siblings": [
 3,
 19
],
 "numa_node": 0
 },
 {
 "cpu": 2,

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

20

 "thread_siblings": [
 2,
 18
],
 "numa_node": 0
 }
],
 "ram": [
 {
 "size_kb": 66980172,
 "numa_node": 0
 },
 {
 "size_kb": 67108864,
 "numa_node": 1
 }
],
 "nics": [
 {
 "name": "ens3f1",
 "numa_node": 1
 },
 {
 "name": "ens3f0",
 "numa_node": 1
 },
 {
 "name": "ens2f0",
 "numa_node": 0
 },
 {
 "name": "ens2f1",
 "numa_node": 0
 },
 {
 "name": "ens1f1",
 "numa_node": 0
 },
 {
 "name": "ens1f0",
 "numa_node": 0
 },
 {
 "name": "eno4",
 "numa_node": 0
 },
 {
 "name": "eno1",
 "numa_node": 0
 },
 {
 "name": "eno3",
 "numa_node": 0
 },
 {
 "name": "eno2",

CHAPTER 3. HARDWARE REQUIREMENTS FOR NFV

21

 "numa_node": 0
 }
]
}

3.5. NFV BIOS SETTINGS

The following table describes the required BIOS settings for NFV:

NOTE

You must enable SR-IOV global and NIC settings in the BIOS, or your Red Hat
OpenStack Platform (RHOSP) deployment with SR-IOV Compute nodes will fail.

Table 3.1. BIOS Settings

Parameter Setting

C3 Power State Disabled.

C6 Power State Disabled.

MLC Streamer Enabled.

MLC Spatial Prefetcher Enabled.

DCU Data Prefetcher Enabled.

DCA Enabled.

CPU Power and Performance Performance.

Memory RAS and Performance Config →
NUMA Optimized

Enabled.

Turbo Boost Disabled in NFV deployments that require
deterministic performance.
Enabled in all other scenarios.

VT-d Enabled for Intel cards if VFIO functionality is
needed.

NUMA memory interleave Disabled.

On processors that use the intel_idle driver, Red Hat Enterprise Linux can ignore BIOS settings and re-
enable the processor C-state.

You can disable intel_idle and instead use the acpi_idle driver by specifying the key-value pair
intel_idle.max_cstate=0 on the kernel boot command line.

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

22

Confirm that the processor is using the acpi_idle driver by checking the contents of current_driver:

cat /sys/devices/system/cpu/cpuidle/current_driver
acpi_idle

NOTE

You will experience some latency after changing drivers, because it takes time for the
Tuned daemon to start. However, after Tuned loads, the processor does not use the
deeper C-state.

CHAPTER 3. HARDWARE REQUIREMENTS FOR NFV

23

CHAPTER 4. SOFTWARE REQUIREMENTS FOR NFV
This section describes the supported configurations and drivers, and subscription details necessary for
NFV.

4.1. REGISTERING AND ENABLING REPOSITORIES

To install Red Hat OpenStack Platform, you must register Red Hat OpenStack Platform director using
the Red Hat Subscription Manager, and subscribe to the required channels. For more information about
registering and updating your undercloud, see Registering the undercloud and attaching subscriptions in
Installing and managing Red Hat OpenStack Platform with director .

Procedure

1. Register your system with the Content Delivery Network, entering your Customer Portal user
name and password when prompted.

[stack@director ~]$ sudo subscription-manager register

2. Determine the entitlement pool ID for Red Hat OpenStack Platform director, for example {Pool
ID} from the following command and output:

[stack@director ~]$ sudo subscription-manager list --available --all --matches="Red Hat
OpenStack"
Subscription Name: Name of SKU
Provides: Red Hat Single Sign-On
 Red Hat Enterprise Linux Workstation
 Red Hat CloudForms
 Red Hat OpenStack
 Red Hat Software Collections (for RHEL Workstation)
SKU: SKU-Number
Contract: Contract-Number
Pool ID: {Pool-ID}-123456
Provides Management: Yes
Available: 1
Suggested: 1
Service Level: Support-level
Service Type: Service-Type
Subscription Type: Sub-type
Ends: End-date
System Type: Physical

3. Include the Pool ID value in the following command to attach the Red Hat OpenStack Platform
17.1 entitlement.

[stack@director ~]$ sudo subscription-manager attach --pool={Pool-ID}-123456

4. Disable the default repositories.

subscription-manager repos --disable=*

5. Enable the required repositories for Red Hat OpenStack Platform with NFV.

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

24

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_preparing-for-director-installation#proc_registering-the-undercloud-and-attaching-subscriptions_preparing-for-director-installation

$ sudo subscription-manager repos --enable=rhel-9-for-x86_64-baseos-eus-rpms \
--enable=rhel-9-for-x86_64-appstream-eus-rpms \
--enable=rhel-9-for-x86_64-highavailability-eus-rpms \
--enable=ansible-2.9-for-rhel-9-x86_64-rpms \
--enable=openstack-17.1-for-rhel-9-x86_64-rpms \
--enable=rhel-9-for-x86_64-nfv-rpms \
--enable=fast-datapath-for-rhel-9-x86_64-rpms

6. Update your system so you have the latest base system packages.

[stack@director ~]$ sudo dnf update -y
[stack@director ~]$ sudo reboot

4.2. SUPPORTED CONFIGURATIONS FOR NFV DEPLOYMENTS

Red Hat OpenStack Platform (RHOSP) supports the following NFV deployments using director:

Single root I/O virtualization (SR-IOV)
For more information, see Configuring SR-IOV.

Open vSwitch hardware offload
For more information, see Configuring OVS hardware offload .

Open vSwitch with Data Plane Development Kit (OVS-DPDK)
For more information, see Configuring an OVS-DPDK deployment .

Additionally, you can deploy RHOSP with any of the following features:

Implementing composable services and custom roles.
For more information, see Composable services and custom roles in the Customizing your Red
Hat OpenStack Platform deployment guide.

Colocating Compute and Ceph Storage service on the same host.
For more information, see Deploying a hyperconverged infrastructure .

Configuring Red Hat Enterprise Linux Real Time KVM (RT-KVM).
For more information, see Enabling RT-KVM for NFV Workloads.

4.3. SUPPORTED DRIVERS FOR NFV

For a complete list of supported drivers, see Component, Plug-In, and Driver Support in Red Hat
OpenStack Platform .

For a list of NICs tested for Red Hat OpenStack Platform deployments with NFV, see Tested NICs for
NFV.

4.4. COMPATIBILITY WITH THIRD-PARTY SOFTWARE

For a complete list of products and services tested, supported, and certified to perform with Red Hat
OpenStack Platform, see Third Party Software compatible with Red Hat OpenStack Platform . You can
filter the list by product version and software category.

For a complete list of products and services tested, supported, and certified to perform with Red Hat

CHAPTER 4. SOFTWARE REQUIREMENTS FOR NFV

25

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/config-sriov-deploy_rhosp-nfv
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/config-ovs-hwol_rhosp-nfv
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/config-dpdk-deploy_rhosp-nfv
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_a_hyperconverged_infrastructure/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/enable-rtkvm-nfv-workload_rhosp-nfv
https://access.redhat.com/articles/1535373
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/hardware-req-nfv_rhosp-nfv#tested-nics-nfv_hw-req-nfv
https://access.redhat.com/ecosystem/search/#/category/Software?page=3&sort=sortTitle asc&ecosystem=Red Hat OpenStack Platform

For a complete list of products and services tested, supported, and certified to perform with Red Hat
Enterprise Linux, see Third Party Software compatible with Red Hat Enterprise Linux . You can filter the
list by product version and software category.

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

26

https://access.redhat.com/ecosystem/search/#/category/Software?sort=sortTitle asc&certifications=Red Hat Enterprise Linux 7&ecosystem=Red Hat Enterprise Linux

CHAPTER 5. NETWORK CONSIDERATIONS FOR NFV
The undercloud host requires at least the following networks:

Provisioning network - Provides DHCP and PXE-boot functions to help discover bare-metal
systems for use in the overcloud.

External network - A separate network for remote connectivity to all nodes. The interface
connecting to this network requires a routable IP address, either defined statically, or generated
dynamically from an external DHCP service.

The minimal overcloud network configuration includes the following NIC configurations:

Single NIC configuration - One NIC for the provisioning network on the native VLAN and
tagged VLANs that use subnets for the different overcloud network types.

Dual NIC configuration - One NIC for the provisioning network and the other NIC for the
external network.

Dual NIC configuration - One NIC for the provisioning network on the native VLAN, and the
other NIC for tagged VLANs that use subnets for different overcloud network types.

Multiple NIC configuration - Each NIC uses a subnet for a different overcloud network type.

For more information on the networking requirements, see Preparing your undercloud networking in
Installing and managing Red Hat OpenStack Platform with director .

CHAPTER 5. NETWORK CONSIDERATIONS FOR NFV

27

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_planning-your-undercloud#con_preparing-your-undercloud-networking_planning-your-undercloud

CHAPTER 6. PLANNING AN SR-IOV DEPLOYMENT
Optimize single root I/O virtualization (SR-IOV) deployments for NFV by setting individual parameters
based on your Compute node hardware.

To evaluate your hardware impact on the SR-IOV parameters, see Discovering your NUMA node
topology.

6.1. HARDWARE PARTITIONING FOR AN SR-IOV DEPLOYMENT

To achieve high performance with SR-IOV, partition the resources between the host and the guest.

Figure 6.1. NUMA node topology

A typical topology includes 14 cores per NUMA node on dual socket Compute nodes. Both hyper-
threading (HT) and non-HT cores are supported. Each core has two sibling threads. One core is
dedicated to the host on each NUMA node. The virtual network function (VNF) handles the SR-IOV
interface bonding. All the interrupt requests (IRQs) are routed on the host cores. The VNF cores are
dedicated to the VNFs. They provide isolation from other VNFs and isolation from the host. Each VNF
must use resources on a single NUMA node. The SR-IOV NICs used by the VNF must also be associated
with that same NUMA node. This topology does not have a virtualization overhead. The host, OpenStack
Networking (neutron), and Compute (nova) configuration parameters are exposed in a single file for
ease, consistency, and to avoid incoherence that is fatal to proper isolation, causing preemption, and
packet loss. The host and virtual machine isolation depend on a tuned profile, which defines the boot
parameters and any Red Hat OpenStack Platform modifications based on the list of isolated CPUs.

6.2. TOPOLOGY OF AN NFV SR-IOV DEPLOYMENT

The following image has two VNFs each with the management interface represented by mgt and the
data plane interfaces. The management interface manages the ssh access, and so on. The data plane
interfaces bond the VNFs to DPDK to ensure high availability, as VNFs bond the data plane interfaces
using the DPDK library. The image also has two provider networks for redundancy. The Compute node
has two regular NICs bonded together and shared between the VNF management and the Red Hat
OpenStack Platform API management.

Figure 6.2. NFV SR-IOV topology

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

28

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/hardware-req-nfv_rhosp-nfv#discover-numa-node-topo_hw-req-nfv

Figure 6.2. NFV SR-IOV topology

The image shows a VNF that uses DPDK at an application level, and has access to SR-IOV virtual
functions (VFs) and physical functions (PFs), for better availability or performance, depending on the
fabric configuration. DPDK improves performance, while the VF/PF DPDK bonds provide support for
failover, and high availability. The VNF vendor must ensure that the DPDK poll mode driver (PMD)
supports the SR-IOV card that is being exposed as a VF/PF. The management network uses OVS,
therefore the VNF sees a mgmt network device using the standard virtIO drivers. You can use that
device to initially connect to the VNF, and ensure that the DPDK application bonds the two VF/PFs.

6.3. TOPOLOGY FOR NFV SR-IOV WITHOUT HCI

Observe the topology for SR-IOV without hyper-converged infrastructure (HCI) for NFV in the image
below. It consists of compute and controller nodes with 1 Gbps NICs, and the director node.

Figure 6.3. NFV SR-IOV topology without HCI

CHAPTER 6. PLANNING AN SR-IOV DEPLOYMENT

29

Figure 6.3. NFV SR-IOV topology without HCI

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

30

CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT
In your Red Hat OpenStack Platform NFV deployment, you can achieve higher performance with single
root I/O virtualization (SR-IOV), when you configure direct access from your instances to a shared PCIe
resource through virtual resources.

IMPORTANT

This section includes examples that you must modify for your topology and use case. For
more information, see Hardware requirements for NFV.

Prerequisites

A RHOSP undercloud.
You must install and configure the undercloud before you can deploy the overcloud. For more
information, see Installing and managing Red Hat OpenStack Platform with director .

NOTE

RHOSP director modifies SR-IOV configuration files through the key-value pairs
that you specify in templates and custom environment files. You must not modify
the SR-IOV files directly.

Access to the undercloud host and credentials for the stack user.

Access to the hosts that contain the NICs.

Ensure that you keep the NIC firmware updated.
Yum or dnf updates might not complete the firmware update. For more information, see your
vendor documentation.

Procedure

Use Red Hat OpenStack Platform (RHOSP) director to install and configure RHOSP in an SR-IOV
environment. The high-level steps are:

1. Create a network configuration file, network_data.yaml, to configure the physical network for
your overcloud, by following the instructions in Configuring overcloud networking in Installing
and managing Red Hat OpenStack Platform with director.

2. Generate roles and image files .

3. Configure PCI passthrough devices for SR-IOV .

4. Add role-specific parameters and configuration overrides .

5. Create a bare metal nodes definition file .

6. Create a NIC configuration template for SR-IOV .

7. (Optional) Partition NICs.

8. Provision overcloud networks and VIPs.
For more information, see:

CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT

31

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/hardware-req-nfv_rhosp-nfv
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud

Configuring and provisioning overcloud network definitions in the Installing and managing
Red Hat OpenStack Platform with director guide.

Configuring and provisioning network VIPs for the overcloud in the Installing and managing
Red Hat OpenStack Platform with director guide.

9. Provision overcloud bare metal nodes.
For more information, see Provisioning bare metal nodes for the overcloud in the Installing and
managing Red Hat OpenStack Platform with director guide.

10. Deploy an SR-IOV overcloud .

Additional resources

Section 7.7, “Example configurations for NIC partitions”

Section 7.9, “Creating host aggregates in an SR-IOV or an OVS TC-flower hardware offload
environment”

Section 7.10, “Creating an instance in an SR-IOV or an OVS TC-flower hardware offload
environment”

7.1. GENERATING ROLES AND IMAGE FILES FOR SR-IOV

Red Hat OpenStack Platform (RHOSP) director uses roles to assign services to nodes. When deploying
RHOSP in an SR-IOV environment, ComputeSriov is a default role provided with your RHOSP
installation that includes the NeutronSriovAgent service, in addition to the default compute services.

The undercloud installation requires an environment file to determine where to obtain container images
and how to store them.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Generate a new roles data file named roles_data_compute_sriov.yaml, that includes the
Controller and ComputeSriov roles:

$ openstack overcloud roles \
 generate -o /home/stack/templates/roles_data_compute_sriov.yaml \
 Controller ComputeSriov

NOTE

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

32

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-overcloud-network-definitions_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-network-vips-for-the-overcloud_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

NOTE

If you are using multiple technologies in your RHOSP environment, OVS-DPDK,
SR-IOV, and OVS hardware offload, you generate just one roles data file to
include all the roles:

$ openstack overcloud roles generate -o /home/stack/templates/\
roles_data.yaml Controller ComputeOvsDpdk ComputeOvsDpdkSriov \
Compute:ComputeOvsHwOffload

4. To generate an images file, you run the openstack tripleo container image prepare command.
The following inputs are needed:

The roles data file that you generated in an earlier step, for example,
roles_data_compute_sriov.yaml.

The SR-IOV environment file appropriate for your Networking service mechanism driver:

ML2/OVN environments
/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-
sriov.yaml

ML2/OVS environments
/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
sriov.yaml

Example

In this example, the overcloud_images.yaml file is being generated for an ML2/OVN
environment:

$ sudo openstack tripleo container image prepare \
 --roles-file ~/templates/roles_data_compute_sriov.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-
sriov.yaml \
 -e ~/containers-prepare-parameter.yaml \
 --output-env-file=/home/stack/templates/overcloud_images.yaml

5. Note the path and file name of the roles data file and the images file that you have created. You
use these files later when you deploy your overcloud.

Next steps

Proceed to Section 7.2, “Configuring PCI passthrough devices for SR-IOV” .

Additional resources

For more information, see Composable services and custom roles in Installing and managing Red
Hat OpenStack Platform with director.

Preparing container images in Installing and managing Red Hat OpenStack Platform with
director.

7.2. CONFIGURING PCI PASSTHROUGH DEVICES FOR SR-IOV

CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT

33

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_preparing-for-director-installation#proc_preparing-container-images_preparing-for-director-installation

When deploying Red Hat OpenStack Platform for an SR-IOV environment, you must configure the PCI
passthrough devices for the SR-IOV compute nodes in a custom environment file.

Prerequisites

Access to the one or more physical servers that contains the PCI cards.

Access to the undercloud host and credentials for the stack user.

Procedure

1. Use one of the following commands on the physical server that has the PCI cards:

If your overcloud is deployed:

$ lspci -nn -s <pci_device_address>

Sample output

3b:00.0 Ethernet controller [0200]: Intel Corporation Ethernet
Controller X710 for 10GbE SFP+ [<vendor_id>: <product_id>] (rev 02)

If your overcloud has not been deployed:

$ openstack baremetal introspection data save <baremetal_node_name> | jq
'.inventory.interfaces[] | .name, .vendor, .product'

2. Retain the vendor and product IDs for PCI passthrough devices on the SR-IOV compute nodes.
You will need these IDs in a later step.

3. Log in to the undercloud as the stack user.

4. Source the stackrc file:

$ source ~/stackrc

5. Create a custom environment YAML file, for example, sriov-overrides.yaml. Configure the PCI
passthrough devices for the SR-IOV compute nodes by adding the following content to the file:

parameter_defaults:
 ComputeSriovParameters:
 ...
 NovaPCIPassthrough:
 - vendor_id: "<vendor_id>"
 product_id: "<product_id>"
 address: <NIC_address>
 physical_network: "<physical_network>"
 ...

Replace <vendor_id> with the vendor ID of the PCI device.

Replace <product_id> with the product ID of the PCI device.

Replace <NIC_address> with the address of the PCI device.

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

34

Replace <physical_network> with the name of the physical network the PCI device is
located on.

NOTE

Do not use the devname parameter when you configure PCI passthrough
because the device name of a NIC can change. To create a Networking
service (neutron) port on a PF, specify the vendor_id, the product_id, and
the PCI device address in NovaPCIPassthrough, and create the port with
the --vnic-type direct-physical option. To create a Networking service port
on a virtual function (VF), specify the vendor_id and product_id in
NovaPCIPassthrough, and create the port with the --vnic-type direct
option. The values of the vendor_id and product_id parameters might be
different between physical function (PF) and VF contexts.

6. Also in the custom environment file, ensure that PciPassthroughFilter and
AggregateInstanceExtraSpecsFilter are in the list of filters for the
NovaSchedulerEnabledFilters parameter, that the Compute service (nova) uses to filter a
node:

parameter_defaults:
 ComputeSriovParameters:
 ...
 NovaPCIPassthrough:
 - vendor_id: "<vendor_id>"
 product_id: "<product_id>"
 address: <NIC_address>
 physical_network: "<physical_network>"
 ...
 NovaSchedulerEnabledFilters:
 - AvailabilityZoneFilter
 - ComputeFilter
 - ComputeCapabilitiesFilter
 - ImagePropertiesFilter
 - ServerGroupAntiAffinityFilter
 - ServerGroupAffinityFilter
 - PciPassthroughFilter
 - AggregateInstanceExtraSpecsFilter

7. Note the path and file name of the custom environment file that you have created. You use this
file later when you deploy your overcloud.

Next steps

Proceed to Section 7.3, “Adding role-specific parameters and configuration overrides” .

Additional resources

Guidelines for configuring NovaPCIPassthrough in Configuring the Compute service for
instance creation

7.3. ADDING ROLE-SPECIFIC PARAMETERS AND CONFIGURATION
OVERRIDES

CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT

35

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_the_compute_service_for_instance_creation/index#ref_guidelines-for-configuring-novapcipassthrough_pci-passthrough

You can add role-specific parameters for the SR-IOV Compute nodes and override default
configuration values in a custom environment YAML file that Red Hat OpenStack Platform (RHOSP)
director uses when deploying your SR-IOV environment.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Open the custom environment YAML file that you created in Section 7.2, “Configuring PCI
passthrough devices for SR-IOV”, or create a new one.

4. Add role-specific parameters for the SR-IOV Compute nodes to the custom environment file.

Example

 ComputeSriovParameters:
 IsolCpusList: 9-63,73-127
 KernelArgs: default_hugepagesz=1GB hugepagesz=1G hugepages=100 amd_iommu=on
iommu=pt numa_balancing=disable processor.max_cstate=0 isolcpus=9-63,73-127
 NovaReservedHostMemory: 4096
 NovaComputeCpuSharedSet: 0-8,64-72
 NovaComputeCpuDedicatedSet: 9-63,73-127

5. Review the configuration defaults that RHOSP director uses to configure SR-IOV. These
defaults are provided in the file and they vary based on your mechanism driver:

ML2/OVN
/usr/share/openstack-tripleo-heat-templates/environment/services/neutron-ovn-
sriov.yaml

ML2/OVS
/usr/share/openstack-tripleo-heat-templates/environment/services/neutron-sriov.yaml

6. If you need to override any of the configuration defaults, add your overrides to the custom
environment file.
This custom environment file, for example, is where you can add Nova PCI whitelist values or set
the network type.

Example

In this example, the Networking service (neutron) network type is set to VLAN and ranges are
added for the tenants:

parameter_defaults:
 NeutronNetworkType: 'vlan'
 NeutronNetworkVLANRanges:

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

36

 - tenant:22:22
 - tenant:25:25
 NeutronTunnelTypes: ''

7. If you created a new custom environment file, note its path and file name. You use this file later
when you deploy your overcloud.

Next steps

Proceed to Section 7.4, “Creating a bare metal nodes definition file for SR-IOV”

Additional resources

Supported custom roles in the Customizing your Red Hat OpenStack Platform deployment guide

7.4. CREATING A BARE METAL NODES DEFINITION FILE FOR SR-IOV

Use Red Hat OpenStack Platform (RHOSP) director and a definition file to provision your bare metal
nodes for your SR-IOV environment. In the bare metal nodes definition file, define the quantity and
attributes of the bare metal nodes that you want to deploy and assign overcloud roles to these nodes.
Also define the network layout of the nodes.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Create a bare metal nodes definition file, such as overcloud-baremetal-deploy.yaml, as
instructed in Provisioning bare metal nodes for the overcloud in the Installing and managing Red
Hat OpenStack Platform with director guide.

4. In the bare metal nodes definition file, add a declaration to the Ansible playbook, cli-overcloud-
node-kernelargs.yaml.
The playbook contains kernel arguments to use when you provision bare metal nodes.

- name: ComputeSriov
...
 ansible_playbooks:
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-node-kernelargs.yaml
...

5. If you want to set any extra Ansible variables when running the playbook, use the extra_vars
property to set them.

NOTE

CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT

37

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_composable-services-and-custom-roles#ref_supported-custom-roles_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

NOTE

The variables that you add to extra_vars should be the same role-specific
parameters for the SR-IOV Compute nodes that you added to the custom
environment file earlier in Section 7.3, “Adding role-specific parameters and
configuration overrides”.

Example

- name: ComputeSriov
...
 ansible_playbooks:
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-node-kernelargs.yaml
 extra_vars:
 kernel_args: 'default_hugepagesz=1GB hugepagesz=1G hugepages=100
amd_iommu=on iommu=pt isolcpus=9-63,73-127'
 tuned_isolated_cores: '9-63,73-127'
 tuned_profile: 'cpu-partitioning'
 reboot_wait_timeout: 1800

6. Note the path and file name of the bare metal nodes definition file that you have created. You
use this file later when you configure your NICs and as the input file for the overcloud node
provision command when you provision your nodes.

Next steps

Proceed to Section 7.5, “Creating a NIC configuration template for SR-IOV” .

Additional resources

Composable services and custom roles in Installing and managing Red Hat OpenStack Platform
with director

Tested NICs for NFV

Bare-metal node provisioning attributes in the Installing and managing Red Hat OpenStack
Platform with director guide

7.5. CREATING A NIC CONFIGURATION TEMPLATE FOR SR-IOV

Define your NIC configuration templates by modifying copies of the sample Jinja2 templates that ship
with Red Hat OpenStack Platform (RHOSP).

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

38

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/hardware-req-nfv_rhosp-nfv#tested-nics-nfv_hw-req-nfv
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#ref_bare-metal-node-provisioning-attributes_ironic_provisioning

3. Copy a sample network configuration template.
Copy a NIC configuration Jinja2 template from the examples in the
/usr/share/ansible/roles/tripleo_network_config/templates/ directory. Choose the one that
most closely matches your NIC requirements. Modify it as needed.

4. In your NIC configuration template, for example, single_nic_vlans.j2, add your PF and VF
interfaces. To create SR-IOV VFs, configure the interfaces as standalone NICs.

Example

...
- type: sriov_pf
 name: enp196s0f0np0
 mtu: 9000
 numvfs: 16
 use_dhcp: false
 defroute: false
 nm_controlled: true
 hotplug: true
 promisc: false
...

NOTE

The numvfs parameter replaces the NeutronSriovNumVFs parameter in the
network configuration templates. Red Hat does not support modification of the
NeutronSriovNumVFs parameter or the numvfs parameter after deployment. If
you modify either parameter after deployment, the modification might cause a
disruption for the running instances that have an SR-IOV port on that PF. In this
case, you must hard reboot these instances to make the SR-IOV PCI device
available again.

5. Add the custom network configuration template to the bare metal nodes definition file that you
created in Section 7.4, “Creating a bare metal nodes definition file for SR-IOV” .

Example

- name: ComputeSriov
 count: 2
 hostname_format: compute-%index%
 defaults:
 networks:
 - network: internal_api
 subnet: internal_api_subnet
 - network: tenant
 subnet: tenant_subnet
 - network: storage
 subnet: storage_subnet
 network_config:
 template: /home/stack/templates/single_nic_vlans.j2
...

6. Note the path and file name of the NIC configuration template that you have created. You use
this file later if you want to partition your NICs.

CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT

39

Next steps

1. If you want to partition your NICs, proceed to Section 7.6, “Configuring NIC partitioning” .

2. Otherwise, perform these steps:

a. Configuring and provisioning overcloud network definitions in the Installing and managing
Red Hat OpenStack Platform with director guide

b. Configuring and provisioning network VIPs for the overcloud in the Installing and managing
Red Hat OpenStack Platform with director guide

c. Provisioning bare metal nodes for the overcloud in the Installing and managing Red Hat
OpenStack Platform with director guide

d. Section 7.8, “Deploying an SR-IOV overcloud”

7.6. CONFIGURING NIC PARTITIONING

You can reduce the number of NICs that you need for each host by configuring single root I/O
virtualization (SR-IOV) virtual functions (VFs) for Red Hat OpenStack Platform (RHOSP) management
networks and provider networks. When you partition a single, high-speed NIC into multiple VFs, you can
use the NIC for both control and data plane traffic. This feature has been validated on Intel Fortville
NICs, and Mellanox CX-5 NICs.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Ensure that NICs, their applications, the VF guest, and OVS reside on the same NUMA
Compute node.
Doing so helps to prevent performance degradation from cross-NUMA operations.

Ensure that you keep the NIC firmware updated.
Yum or dnf updates might not complete the firmware update. For more information, see your
vendor documentation.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Open the NIC configuration template, for example single_nic_vlans.j2, that you created earlier
in Section 7.5, “Creating a NIC configuration template for SR-IOV” .

TIP

As you complete the steps in this section, you can refer to Section 7.7, “Example configurations
for NIC partitions”.

4. Add an entry for the interface type sriov_pf to configure a physical function that the host can
use:

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

40

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-overcloud-network-definitions_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-network-vips-for-the-overcloud_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

 - type: sriov_pf
 name: <interface_name>
 use_dhcp: false
 numvfs: <number_of_vfs>
 promisc: <true/false>

Replace <interface_name> with the name of the interface.

Replace <number_of_vfs> with the number of VFs.

Optional: Replace <true/false> with true to set promiscuous mode, or false to disable
promiscuous mode. The default value is true.

NOTE

The numvfs parameter replaces the NeutronSriovNumVFs parameter in the
network configuration templates. Red Hat does not support modification of the
NeutronSriovNumVFs parameter or the numvfs parameter after deployment. If
you modify either parameter after deployment, it might cause a disruption for
the running instances that have an SR-IOV port on that physical function (PF). In
this case, you must hard reboot these instances to make the SR-IOV PCI device
available again.

5. Add an entry for the interface type sriov_vf to configure virtual functions that the host can use:

 - type: <bond_type>
 name: internal_bond
 bonding_options: mode=<bonding_option>
 use_dhcp: false
 members:
 - type: sriov_vf
 device: <pf_device_name>
 vfid: <vf_id>
 - type: sriov_vf
 device: <pf_device_name>
 vfid: <vf_id>

 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 spoofcheck: false
 device: internal_bond
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet
 routes:
 list_concat_unique:
 - get_param: InternalApiInterfaceRoutes

Replace <bond_type> with the required bond type, for example, linux_bond. You can
apply VLAN tags on the bond for other bonds, such as ovs_bond.

Replace <bonding_option> with one of the following supported bond modes:

active-backup

CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT

41

Balance-slb

NOTE

LACP bonds are not supported.

Specify the sriov_vf as the interface type to bond in the members section.

NOTE

If you are using an OVS bridge as the interface type, you can configure only
one OVS bridge on the sriov_vf of a sriov_pf device. More than one OVS
bridge on a single sriov_pf device can result in packet duplication across
VFs, and decreased performance.

Replace <pf_device_name> with the name of the PF device.

If you use a linux_bond, you must assign VLAN tags. If you set a VLAN tag, ensure that you
set a unique tag for each VF associated with a single sriov_pf device. You cannot have two
VFs from the same PF on the same VLAN.

Replace <vf_id> with the ID of the VF. The applicable VF ID range starts at zero, and ends
at the maximum number of VFs minus one.

Disable spoof checking.

Apply VLAN tags on the sriov_vf for linux_bond over VFs.

6. To reserve VFs for instances, include the NovaPCIPassthrough parameter in an environment
file.

Example

NovaPCIPassthrough:
 - address: "0000:19:0e.3"
 trusted: "true"
 physical_network: "sriov1"
 - address: "0000:19:0e.0"
 trusted: "true"
 physical_network: "sriov2"

RHOSP director identifies the host VFs, and derives the PCI addresses of the VFs that are
available to the instance.

7. Enable IOMMU on all nodes that require NIC partitioning.

Example

For example, if you want NIC partitioning for Compute nodes, enable IOMMU using the
KernelArgs parameter for that role:

parameter_defaults:
 ComputeParameters:
 KernelArgs: "intel_iommu=on iommu=pt"

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

42

NOTE

When you first add the KernelArgs parameter to the configuration of a role, the
overcloud nodes are automatically rebooted. If required, you can disable the
automatic rebooting of nodes and instead perform node reboots manually after
each overcloud deployment.

8. Ensure that you add this NIC configuration template, for example single_nic_vlans.j2, to the
bare metal nodes definition file that you created in Section 7.4, “Creating a bare metal nodes
definition file for SR-IOV”.

Next steps

1. Configuring and provisioning overcloud network definitions in the Installing and managing Red
Hat OpenStack Platform with director guide

2. Configuring and provisioning network VIPs for the overcloud in the Installing and managing Red
Hat OpenStack Platform with director guide

3. Provisioning bare metal nodes for the overcloud in the Installing and managing Red Hat
OpenStack Platform with director guide

4. Section 7.8, “Deploying an SR-IOV overcloud”

Additional resources

Section 7.7, “Example configurations for NIC partitions”

7.7. EXAMPLE CONFIGURATIONS FOR NIC PARTITIONS

Refer to these example configurations when you want to partition NICs in a Red Hat OpenStack
Platform SR-IOV environment.

Linux bond over VFs

The following example configures a Linux bond over VFs, disables spoofcheck, and applies VLAN tags
to sriov_vf:

- type: linux_bond
 name: bond_api
 bonding_options: "mode=active-backup"
 members:
 - type: sriov_vf
 device: eno2
 vfid: 1
 vlan_id:
 get_param: InternalApiNetworkVlanID
 spoofcheck: false
 - type: sriov_vf
 device: eno3
 vfid: 1
 vlan_id:
 get_param: InternalApiNetworkVlanID
 spoofcheck: false
 addresses:

CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT

43

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-overcloud-network-definitions_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-network-vips-for-the-overcloud_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

 - ip_netmask:
 get_param: InternalApiIpSubnet
 routes:
 list_concat_unique:
 - get_param: InternalApiInterfaceRoutes

OVS bridge on VFs

The following example configures an OVS bridge on VFs:

- type: ovs_bridge
 name: br-bond
 use_dhcp: true
 members:
 - type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet
 routes:
 list_concat_unique:
 - get_param: ControlPlaneStaticRoutes
 - type: ovs_bond
 name: bond_vf
 ovs_options: "bond_mode=active-backup"
 members:
 - type: sriov_vf
 device: p2p1
 vfid: 2
 - type: sriov_vf
 device: p2p2
 vfid: 2

OVS user bridge on VFs

The following example configures an OVS user bridge on VFs and applies VLAN tags to
ovs_user_bridge:

- type: ovs_user_bridge
 name: br-link0
 use_dhcp: false
 mtu: 9000
 ovs_extra:
 - str_replace:
 template: set port br-link0 tag=_VLAN_TAG_
 params:
 _VLAN_TAG_:
 get_param: TenantNetworkVlanID
 addresses:
 - ip_netmask:
 list_concat_unique:
 - get_param: TenantInterfaceRoutes
 members:
 - type: ovs_dpdk_bond
 name: dpdkbond0

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

44

 mtu: 9000
 ovs_extra:
 - set port dpdkbond0 bond_mode=balance-slb
 members:
 - type: ovs_dpdk_port
 name: dpdk0
 members:
 - type: sriov_vf
 device: eno2
 vfid: 3
 - type: ovs_dpdk_port
 name: dpdk1
 members:
 - type: sriov_vf
 device: eno3
 vfid: 3

Additional resources

Section 7.6, “Configuring NIC partitioning”

7.8. DEPLOYING AN SR-IOV OVERCLOUD

The last step in configuring your Red Hat OpenStack Platform (RHOSP) overcloud in an SR-IOV
environment is to run the openstack overcloud deploy command. Inputs to the command include all of
the various overcloud templates and environment files that you constructed.

Prerequisites

Access to the undercloud host and credentials for the stack user.

You have performed all of the steps listed in the earlier procedures in this section and have
assembled all of the various heat templates and environment files to use as inputs for the
overcloud deploy command.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Collate the custom environment files and custom templates that you need for your overcloud
environment. This list includes the default heat template files provided with your director
installation and the custom files you created. Ensure that you have the paths to the following
files:

Your custom network definition file that contains the specifications for your SR-IOV
network on the overcloud, for example, network-data.yaml.
For more information, see Network definition file configuration options in the Installing and
managing Red Hat OpenStack Platform with director guide.

A roles file that contains the Controller and ComputeSriov roles that RHOSP director uses

CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT

45

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#ref_network-definition-file-configuration-options_overcloud_networking

A roles file that contains the Controller and ComputeSriov roles that RHOSP director uses
to deploy your SR-IOV environment, and the images file that director uses to determine
where to obtain container images and how to store them.
Examples: roles_data_compute_sriov.yaml and overcloud_images.yaml.

For more information, see Section 7.1, “Generating roles and image files for SR-IOV” .

One or more custom environment files that contain your configuration for:

PCI passthrough devices for the SR-IOV compute nodes.

role-specific parameters for the SR-IOV Compute nodes

overrides of default configuration values for the SR-IOV environment.
Example: sriov-overrides.yaml.

For more information, see:

Section 7.2, “Configuring PCI passthrough devices for SR-IOV” .

Section 7.3, “Adding role-specific parameters and configuration overrides” .

The output file from provisioning your overcloud networks.
Example: overcloud-networks-deployed.yaml.

For more information, see Configuring and provisioning overcloud network definitions in the
Installing and managing Red Hat OpenStack Platform with director guide.

The output file from provisioning your overcloud VIPs.
Example: overcloud-vip-deployed.yaml.

For more information, see Configuring and provisioning network VIPs for the overcloud in
the Installing and managing Red Hat OpenStack Platform with director guide.

The output file from provisioning bare-metal nodes.
Example: overcloud-baremetal-deployed.yaml.

For more information, see Provisioning bare metal nodes for the overcloud in the Installing
and managing Red Hat OpenStack Platform with director guide.

Any other custom environment files.

4. Enter the openstack overcloud deploy command by carefully ordering the custom
environment files and custom templates that are inputs to the command.
The general rule is to specify any default heat template files first, followed by your custom
environment files and custom templates that contain custom configurations, such as overrides
to the default properties.

Follow this order for listing the inputs to the openstack overcloud deploy command:

a. Include your custom environment file that contains your custom NIC templates mapped to
each role after your network definition file.
Example: overcloud-baremetal-deployed.yaml, after network-data.yaml.

b. If you have an OVS-DPDK environment, and want to locate SR-IOV instances on the same
node, include the following environment files in your deployment script:

ML2/OVN

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

46

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-overcloud-network-definitions_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-network-vips-for-the-overcloud_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
ovn-dpdk.yaml

/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
ovn-sriov.yaml

ML2/OVS

/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
ovs-dpdk.yaml

/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
sriov.yaml

NOTE

Open Virtual Networking (OVN) is the default networking
mechanism driver in RHOSP. If you want to use OVN with distributed
virtual routing (DVR), you must include the /usr/share/openstack-
tripleo-heat-templates/environments/services/neutron-ovn-dvr-
ha.yaml file in the openstack overcloud deploy command. If you
want to use OVN without DVR, you must include the neutron-ovn-
ha.yaml file in the openstack overcloud deploy command, and set
the NeutronEnableDVR parameter to false. If you want to use OVN
with SR-IOV, you must include the environments/services/neutron-
ovn-sriov.yaml file as the last of the OVN environment files in the
openstack overcloud deploy command.

c. If you created any other custom environment files, such as the custom configuration values
for SR-IOV, for example, sriov-overrides.yaml, include these environment files after the
roles data file.

Example

This excerpt from a sample openstack overcloud deploy command demonstrates the
proper ordering of the command’s inputs:

$ openstack overcloud deploy \
--log-file overcloud_deployment.log \
--templates /usr/share/openstack-tripleo-heat-templates/ \
--stack overcloud \
-n /home/stack/templates/network_data.yaml \
-r /home/stack/templates/roles_data_compute_sriov.yaml \
-e /home/stack/templates/overcloud-networks-deployed.yaml \
-e /home/stack/templates/overcloud-vip-deployed.yaml \
-e /home/stack/templates/overcloud-baremetal-deployed.yaml \
-e /home/stack/templates/overcloud-images.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/\
neutron-ovn-sriov.yaml \
-e /home/stack/templates/sriov-overrides.yaml \
 ...

5. Run the openstack overcloud deploy command.
When the overcloud creation is finished, the RHOSP director provides details to help you access
your overcloud.

CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT

47

Verification

1. Perform the steps in Validating your overcloud deployment in the Installing and managing Red
Hat OpenStack Platform with director guide.

2. To verify that your NICs are partitioned properly, do the following:

a. Log in to the overcloud Compute node as tripleo-admin and check the number of VFs:

Example

In this example, the number of VFs for both p4p1 and p4p2 is 10:

$ sudo cat /sys/class/net/p4p1/device/sriov_numvfs

10

$ sudo cat /sys/class/net/p4p2/device/sriov_numvfs

10

b. Show the OVS connections:

$ sudo ovs-vsctl show

Sample output

You should see output similar to the following:

b6567fa8-c9ec-4247-9a08-cbf34f04c85f
 Manager "ptcp:6640:127.0.0.1"
 is_connected: true
 Bridge br-sriov2
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 datapath_type: netdev
 Port phy-br-sriov2
 Interface phy-br-sriov2
 type: patch
 options: {peer=int-br-sriov2}
 Port br-sriov2
 Interface br-sriov2
 type: internal
 Bridge br-sriov1
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 datapath_type: netdev
 Port phy-br-sriov1
 Interface phy-br-sriov1
 type: patch
 options: {peer=int-br-sriov1}
 Port br-sriov1
 Interface br-sriov1
 type: internal

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

48

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_validating-your-overcloud-deployment_ironic_provisioning

 Bridge br-ex
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 datapath_type: netdev
 Port br-ex
 Interface br-ex
 type: internal
 Port phy-br-ex
 Interface phy-br-ex
 type: patch
 options: {peer=int-br-ex}
 Bridge br-tenant
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 datapath_type: netdev
 Port br-tenant
 tag: 305
 Interface br-tenant
 type: internal
 Port phy-br-tenant
 Interface phy-br-tenant
 type: patch
 options: {peer=int-br-tenant}
 Port dpdkbond0
 Interface dpdk0
 type: dpdk
 options: {dpdk-devargs="0000:18:0e.0"}
 Interface dpdk1
 type: dpdk
 options: {dpdk-devargs="0000:18:0a.0"}
 Bridge br-tun
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 datapath_type: netdev
 Port vxlan-98140025
 Interface vxlan-98140025
 type: vxlan
 options: {df_default="true", egress_pkt_mark="0", in_key=flow,
local_ip="152.20.0.229", out_key=flow, remote_ip="152.20.0.37"}
 Port br-tun
 Interface br-tun
 type: internal
 Port patch-int
 Interface patch-int
 type: patch
 options: {peer=patch-tun}
 Port vxlan-98140015
 Interface vxlan-98140015
 type: vxlan
 options: {df_default="true", egress_pkt_mark="0", in_key=flow,
local_ip="152.20.0.229", out_key=flow, remote_ip="152.20.0.21"}
 Port vxlan-9814009f
 Interface vxlan-9814009f

CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT

49

 type: vxlan
 options: {df_default="true", egress_pkt_mark="0", in_key=flow,
local_ip="152.20.0.229", out_key=flow, remote_ip="152.20.0.159"}
 Port vxlan-981400cc
 Interface vxlan-981400cc
 type: vxlan
 options: {df_default="true", egress_pkt_mark="0", in_key=flow,
local_ip="152.20.0.229", out_key=flow, remote_ip="152.20.0.204"}
 Bridge br-int
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 datapath_type: netdev
 Port int-br-tenant
 Interface int-br-tenant
 type: patch
 options: {peer=phy-br-tenant}
 Port int-br-ex
 Interface int-br-ex
 type: patch
 options: {peer=phy-br-ex}
 Port int-br-sriov1
 Interface int-br-sriov1
 type: patch
 options: {peer=phy-br-sriov1}
 Port patch-tun
 Interface patch-tun
 type: patch
 options: {peer=patch-int}
 Port br-int
 Interface br-int
 type: internal
 Port int-br-sriov2
 Interface int-br-sriov2
 type: patch
 options: {peer=phy-br-sriov2}
 Port vhu4142a221-93
 tag: 1
 Interface vhu4142a221-93
 type: dpdkvhostuserclient
 options: {vhost-server-path="/var/lib/vhost_sockets/vhu4142a221-93"}
 ovs_version: "2.13.2"

c. Log in to your SR-IOV Compute node as tripleo-admin and check the Linux bonds:

$ cat /proc/net/bonding/<bond_name>

Sample output

You should see output similar to the following:

Ethernet Channel Bonding Driver: v3.7.1 (April 27, 2011)

Bonding Mode: fault-tolerance (active-backup)
Primary Slave: None
Currently Active Slave: eno3v1

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

50

MII Status: up
MII Polling Interval (ms): 0
Up Delay (ms): 0
Down Delay (ms): 0
Peer Notification Delay (ms): 0

Slave Interface: eno3v1
MII Status: up
Speed: 10000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: 4e:77:94:bd:38:d2
Slave queue ID: 0

Slave Interface: eno4v1
MII Status: up
Speed: 10000 Mbps
Duplex: full
Link Failure Count: 0
Permanent HW addr: 4a:74:52:a7:aa:7c
Slave queue ID: 0

3. List the OVS bonds:

$ sudo ovs-appctl bond/show

Sample output

You should see output similar to the following:

---- dpdkbond0 ----
bond_mode: balance-slb
bond may use recirculation: no, Recirc-ID : -1
bond-hash-basis: 0
updelay: 0 ms
downdelay: 0 ms
next rebalance: 9491 ms
lacp_status: off
lacp_fallback_ab: false
active slave mac: ce:ee:c7:58:8e:b2(dpdk1)

slave dpdk0: enabled
 may_enable: true

slave dpdk1: enabled
 active slave
 may_enable: true

4. If you used NovaPCIPassthrough to pass VFs to instances, test by deploying an SR-IOV
instance.

Additional resources

Creating your overcloud in the Installing and managing Red Hat OpenStack Platform with
director guide

CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT

51

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_creating-your-overcloud_ironic_provisioning

overcloud deploy in the Command line interface reference

Section 7.10, “Creating an instance in an SR-IOV or an OVS TC-flower hardware offload
environment”

7.9. CREATING HOST AGGREGATES IN AN SR-IOV OR AN OVS TC-
FLOWER HARDWARE OFFLOAD ENVIRONMENT

For better performance in your Red Hat OpenStack Platform (RHOSP) SR-IOV or OVS TC-flower
hardware offload environment, deploy guests that have CPU pinning and huge pages. You can schedule
high performance instances on a subset of hosts by matching aggregate metadata with flavor metadata.

Prerequisites

A RHOSP overcloud configured for an SR-IOV or an OVS hardware offload environment.

Your RHOSP overcloud must be configured for the AggregateInstanceExtraSpecsFilter.
For more information, see Section 7.2, “Configuring PCI passthrough devices for SR-IOV” .

Procedure

1. Create an aggregate group, and add relevant hosts.
Define metadata, for example, sriov=true, that matches defined flavor metadata.

$ openstack aggregate create sriov_group
$ openstack aggregate add host sriov_group compute-sriov-0.localdomain
$ openstack aggregate set --property sriov=true sriov_group

2. Create a flavor.

$ openstack flavor create <flavor> --ram <size_mb> --disk <size_gb> \
--vcpus <number>

3. Set additional flavor properties.
Note that the defined metadata, sriov=true, matches the defined metadata on the SR-IOV
aggregate.

$ openstack flavor set --property sriov=true \
--property hw:cpu_policy=dedicated \
--property hw:mem_page_size=1GB <flavor>

Additional resources

aggregate in the Command line interface reference

flavor in the Command line interface reference

7.10. CREATING AN INSTANCE IN AN SR-IOV OR AN OVS TC-FLOWER
HARDWARE OFFLOAD ENVIRONMENT

You use several commands to create an instance in a Red Hat OpenStack Platform (RHOSP) SR-IOV or
an OVS TC-flower hardware offload environment.

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

52

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/overcloud#overcloud_deploy
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/aggregate
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/flavor

Use host aggregates to separate high performance Compute hosts. For more information, see
Section 7.9, “Creating host aggregates in an SR-IOV or an OVS TC-flower hardware offload
environment”.

NOTE

Pinned CPU instances can be located on the same Compute node as unpinned instances.
For more information, see Configuring CPU pinning on Compute nodes in the
Configuring the Compute service for instance creation guide.

Prerequisites

A RHOSP overcloud configured for an SR-IOV or an OVS hardware offload environment.

Procedure

1. Create a flavor.

$ openstack flavor create <flavor_name> --ram <size_mb> \
--disk <size_gb> --vcpus <number>

TIP

You can specify the NUMA affinity policy for PCI passthrough devices and SR-IOV interfaces
by adding the extra spec hw:pci_numa_affinity_policy to your flavor. For more information,
see Flavor metadata in Configuring the Compute service for instance creation .

2. Create the network and the subnet:

$ openstack network create <network_name> \
--provider-physical-network tenant \
--provider-network-type vlan --provider-segment <vlan_id>

$ openstack subnet create <name> --network <network_name> \
--subnet-range <ip_address_cidr> --dhcp

3. Create a virtual function (VF) port or physical function (PF) port:

VF port:

$ openstack port create --network <network_name> \
--vnic-type direct <port_name>

PF port that is dedicated to a single instance:
This PF port is a Networking service (neutron) port but is not controlled by the Networking
service, and is not visible as a network adapter because it is a PCI device that is passed
through to the instance.

$ openstack port create --network <network_name> \
--vnic-type direct-physical <port_name>

4. Create an instance.

CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT

53

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_the_compute_service_for_instance_creation/assembly_configuring-cpus-on-compute-nodes#assembly_configuring-cpu-pinning-on-compute-nodes_cpu-pinning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_the_compute_service_for_instance_creation/assembly_creating-flavors-for-launching-instances_instance-flavors#ref_flavor-metadata_instance-flavors

$ openstack server create --flavor <flavor> --image <image_name> \
--nic port-id=<id> <instance_name>

Additional resources

flavor create in the Command line interface reference

network create in the Command line interface reference

subnet create in the Command line interface reference

port create in the Command line interface reference

server create in the Command line interface reference

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

54

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/#flavor_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/subnet#subnet_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/port#port_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/server#server_create

CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE
OFFLOAD

In your Red Hat OpenStack Platform (RHOSP) network functions virtualization (NFV) deployment, you
can achieve higher performance with Open vSwitch (OVS) TC-flower hardware offload. Hardware
offloading diverts networking tasks from the CPU to a dedicated processor on a network interface
controller (NIC). These specialized hardware resources provide additional computing power that frees
the CPU to perform more valuable computational tasks.

Configuring RHOSP for OVS hardware offload is similar to configuring RHOSP for SR-IOV.

IMPORTANT

This section includes examples that you must modify for your topology and functional
requirements. For more information, see Hardware requirements for NFV.

Prerequisites

A RHOSP undercloud.
You must install and configure the undercloud before you can deploy the overcloud. For more
information, see Installing and managing Red Hat OpenStack Platform with director .

NOTE

RHOSP director modifies OVS hardware offload configuration files through the
key-value pairs that you specify in director templates and custom environment
files. You must not modify the OVS hardware offload configuration files directly.

Access to the undercloud host and credentials for the stack user.

Ensure that the NICs, their applications, the VF guest, and OVS reside on the same NUMA
Compute node.
Doing so helps to prevent performance degradation from cross-NUMA operations.

Access to sudo on the hosts that contain NICs.

Ensure that you keep the NIC firmware updated.
Yum or dnf updates might not complete the firmware update. For more information, see your
vendor documentation.

Enable security groups and port security on switchdev ports for the connection tracking
(conntrack) module to offload OpenFlow flows to hardware.

Procedure

Use RHOSP director to install and configure RHOSP in an OVS hardware offload environment. The
high-level steps are:

1. Create a network configuration file, network_data.yaml, to configure the physical network for
your overcloud, by following the instructions in Configuring overcloud networking in Installing
and managing Red Hat OpenStack Platform with director.

2. Generate roles and image files .

3. Configure PCI passthrough devices for OVS hardware offload .

CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE OFFLOAD

55

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/hardware-req-nfv_rhosp-nfv
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud

4. Add role-specific parameters and other configuration overrides .

5. Create a bare metal nodes definition file .

6. Create a NIC configuration template for OVS hardware offload .

7. Provision overcloud networks and VIPs.
For more information, see:

Configuring and provisioning overcloud network definitions in the Installing and managing
Red Hat OpenStack Platform with director guide.

Configuring and provisioning network VIPs for the overcloud in the Installing and managing
Red Hat OpenStack Platform with director guide.

8. Provision overcloud bare metal nodes.
For more information, see Provisioning bare metal nodes for the overcloud in the Installing and
managing Red Hat OpenStack Platform with director guide.

9. Deploy an OVS hardware offload overcloud .

Additional resources

Section 8.7, “Creating host aggregates in an SR-IOV or an OVS TC-flower hardware offload
environment”

Section 8.8, “Creating an instance in an SR-IOV or an OVS TC-flower hardware offload
environment”

Section 8.9, “Troubleshooting OVS TC-flower hardware offload”

Section 8.10, “Debugging TC-flower hardware offload flow”

8.1. GENERATING ROLES AND IMAGE FILES FOR OVS TC-FLOWER
HARDWARE OFFLOAD

Red Hat OpenStack Platform (RHOSP) director uses roles to assign services to nodes. When
configuring RHOSP in an OVS TC-flower hardware offload environment, you create a new role that is
based on the default role, Compute, that is provided with your RHOSP installation.

The undercloud installation requires an environment file to determine where to obtain container images
and how to store them.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

56

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-overcloud-network-definitions_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-network-vips-for-the-overcloud_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

3. Generate an overcloud role for OVS hardware offload that is based on the Compute role:

Example

In this example, a role is created, ComputeOvsHwOffload, based on the Compute role. The roles
file that the command generates is named, roles_data_compute_ovshwol.yaml:

$ openstack overcloud roles generate -o \
roles_data_compute_ovshwol.yaml Controller Compute:ComputeOvsHwOffload

NOTE

If your RHOSP environment includes a mix of OVS-DPDK, SR-IOV, and OVS TC-
flower hardware offload technologies, you generate just one roles data file, such
as roles_data.yaml to include all the roles:

$ openstack overcloud roles generate -o /home/stack/templates/\
roles_data.yaml Controller ComputeOvsDpdk ComputeOvsDpdkSriov \
Compute:ComputeOvsHwOffload

4. (Optional) change the HostnameFormatDefault: '%stackname%-compute-%index%' name
for the ComputeOvsHwOffload role.

5. To generate an images file, you run the openstack tripleo container image prepare command.
The following inputs are needed:

The roles data file that you generated in an earlier step, for example,
roles_data_compute_ovshwol.yaml.

The SR-IOV environment file appropriate for your Networking service mechanism driver:

ML2/OVN environments
/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-
sriov.yaml

ML2/OVS environments
/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
sriov.yaml

Example

In this example, the overcloud_images.yaml file is being generated for an ML2/OVN
environment:

$ sudo openstack tripleo container image prepare \
 --roles-file ~/templates/roles_data_compute_ovshwol.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-
sriov.yaml \
 -e ~/containers-prepare-parameter.yaml \
 --output-env-file=/home/stack/templates/overcloud_images.yaml

6. Note the path and file name of the roles data file and the images file that you have created. You
use these files later when you deploy your overcloud.

Next steps

CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE OFFLOAD

57

Next steps

Proceed to Section 8.2, “Configuring PCI passthrough devices for OVS TC-flower hardware
offload”.

Additional resources

For more information, see Composable services and custom roles in Installing and managing Red
Hat OpenStack Platform with director.

Preparing container images in Installing and managing Red Hat OpenStack Platform with
director.

8.2. CONFIGURING PCI PASSTHROUGH DEVICES FOR OVS TC-
FLOWER HARDWARE OFFLOAD

When deploying Red Hat OpenStack Platform for an OVS TC-flower hardware offload environment, you
must configure the PCI passthrough devices for the compute nodes in a custom environment file.

Prerequisites

Access to the one or more physical servers that contain the PCI cards.

Access to the undercloud host and credentials for the stack user.

Procedure

1. Use one of the following commands on the physical server that contains the PCI cards:

If your overcloud is deployed:

$ lspci -nn -s <pci_device_address>

Sample output

3b:00.0 Ethernet controller [0200]: Intel Corporation Ethernet
Controller X710 for 10GbE SFP+ [<vendor_id>: <product_id>] (rev 02)

If your overcloud has not been deployed:

$ openstack baremetal introspection data save <baremetal_node_name> | jq
'.inventory.interfaces[] | .name, .vendor, .product'

2. Note the vendor and product IDs for PCI passthrough devices on the ComputeOvsHwOffload
nodes. You will need these IDs in a later step.

3. Log in to the undercloud as the stack user.

4. Source the stackrc file:

$ source ~/stackrc

5. Create a custom environment YAML file, for example, ovshwol-overrides.yaml. Configure the
PCI passthrough devices for the compute nodes by adding the following content to the file:

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

58

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_preparing-for-director-installation#proc_preparing-container-images_preparing-for-director-installation

parameter_defaults:
 NeutronOVSFirewallDriver: iptables_hybrid
 ComputeOvsHwOffloadParameters:
 IsolCpusList: 2-9,21-29,11-19,31-39
 KernelArgs: "default_hugepagesz=1GB hugepagesz=1G hugepages=128 intel_iommu=on
iommu=pt"
 OvsHwOffload: true
 TunedProfileName: "cpu-partitioning"
 NeutronBridgeMappings:
 - tenant:br-tenant
 NovaPCIPassthrough:
 - vendor_id: <vendor-id>
 product_id: <product-id>
 address: <address>
 physical_network: "tenant"
 - vendor_id: <vendor-id>
 product_id: <product-id>
 address: <address>
 physical_network: "null"
 NovaReservedHostMemory: 4096
 NovaComputeCpuDedicatedSet: 1-9,21-29,11-19,31-39
 ...

NOTE

If you are using Mellanox smart NICs, add DerivePciWhitelistEnabled: true
under the ComputeOvsHwOffloadParameters parameter. When using OVS
hardware offload, the Compute service (nova) scheduler operates similarly to
SR-IOV passthrough for instance spawning.

Replace <vendor_id> with the vendor ID of the PCI device.

Replace <product_id> with the product ID of the PCI device.

Replace <NIC_address> with the address of the PCI device.

Replace <physical_network> with the name of the physical network the PCI device is
located on.

For VLAN, set the physical_network parameter to the name of the network you create in
neutron after deployment. This value should also be in NeutronBridgeMappings.

For VXLAN, set the physical_network parameter to null.

NOTE

Do not use the devname parameter when you configure PCI passthrough
because the device name of a NIC can change. To create a Networking
service (neutron) port on a PF, specify the vendor_id, the product_id, and
the PCI device address in NovaPCIPassthrough, and create the port with
the --vnic-type direct-physical option. To create a Networking service port
on a virtual function (VF), specify the vendor_id and product_id in
NovaPCIPassthrough, and create the port with the --vnic-type direct
option. The values of the vendor_id and product_id parameters might be
different between physical function (PF) and VF contexts.

CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE OFFLOAD

59

6. In the custom environment file, ensure that PciPassthroughFilter and NUMATopologyFilter
are in the list of filters for the NovaSchedulerEnabledFilters parameter. The Compute service
(nova) uses this parameter to filter a node:

parameter_defaults:
 ...
 NovaSchedulerEnabledFilters:
 - AvailabilityZoneFilter
 - ComputeFilter
 - ComputeCapabilitiesFilter
 - ImagePropertiesFilter
 - ServerGroupAntiAffinityFilter
 - ServerGroupAffinityFilter
 - PciPassthroughFilter
 - NUMATopologyFilter
 - AggregateInstanceExtraSpecsFilter

NOTE

Optional: For details on how to troubleshoot and configure OVS Hardware
Offload issues in RHOSP 17.1 with Mellanox ConnectX5 NICs, see
Troubleshooting Hardware Offload .

7. Note the path and file name of the custom environment file that you have created. You use this
file later when you deploy your overcloud.

Next steps

Proceed to Section 8.3, “Adding role-specific parameters and configuration overrides for OVS
TC-flower hardware offload”.

Additional resources

Guidelines for configuring NovaPCIPassthrough in Configuring the Compute service for
instance creation

8.3. ADDING ROLE-SPECIFIC PARAMETERS AND CONFIGURATION
OVERRIDES FOR OVS TC-FLOWER HARDWARE OFFLOAD

You can add role-specific parameters for the ComputeOvsHwOffload nodes and override default
configuration values in a custom environment YAML file that Red Hat OpenStack Platform (RHOSP)
director uses when deploying your OVS TC-flower hardware offload environment.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

60

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_the_compute_service_for_instance_creation/index#ref_guidelines-for-configuring-novapcipassthrough_pci-passthrough

$ source ~/stackrc

3. Open the custom environment YAML file that you created in Section 8.2, “Configuring PCI
passthrough devices for OVS TC-flower hardware offload”, or create a new one.

4. Add role-specific parameters for the ComputeOvsHwOffload nodes to the custom
environment file.

Example

 ComputeOvsHwOffloadParameters:
 IsolCpusList: 9-63,73-127
 KernelArgs: default_hugepagesz=1GB hugepagesz=1G hugepages=100 amd_iommu=on
iommu=pt numa_balancing=disable processor.max_cstate=0 isolcpus=9-63,73-127
 NovaReservedHostMemory: 4096
 NovaComputeCpuSharedSet: 0-8,64-72
 NovaComputeCpuDedicatedSet: 9-63,73-127
 TunedProfileName: "cpu-partitioning"

5. Add the OvsHwOffload parameter under role-specific parameters with a value of true.

 ComputeOvsHwOffloadParameters:
 IsolCpusList: 9-63,73-127
 KernelArgs: default_hugepagesz=1GB hugepagesz=1G hugepages=100 amd_iommu=on
iommu=pt numa_balancing=disable processor.max_cstate=0 isolcpus=9-63,73-127
 NovaReservedHostMemory: 4096
 NovaComputeCpuSharedSet: 0-8,64-72
 NovaComputeCpuDedicatedSet: 9-63,73-127
 TunedProfileName: "cpu-partitioning"
 OvsHwOffload: true
 ...

6. Review the configuration defaults that RHOSP director uses to configure OVS hardware
offload. These defaults are provided in the file, and they vary based on your mechanism driver:

ML2/OVN
/usr/share/openstack-tripleo-heat-templates/environment/services/neutron-ovn-
sriov.yaml

ML2/OVS
/usr/share/openstack-tripleo-heat-templates/environment/services/neutron-sriov.yaml

7. If you need to override any of the configuration defaults, add your overrides to the custom
environment file.
This custom environment file, for example, is where you can add Nova PCI whitelist values or set
the network type.

Example

In this example, the Networking service (neutron) network type is set to VLAN and ranges are
added for the tenants:

parameter_defaults:
 NeutronNetworkType: vlan
 NeutronNetworkVLANRanges:

CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE OFFLOAD

61

 - tenant:22:22
 - tenant:25:25
 NeutronTunnelTypes: ''

8. If you created a new custom environment file, note its path and file name. You use this file later
when you deploy your overcloud.

Next steps

Proceed to Section 8.4, “Creating a bare metal nodes definition file for OVS TC-flower
hardware offload”

Additional resources

Supported custom roles in the Customizing your Red Hat OpenStack Platform deployment guide

8.4. CREATING A BARE METAL NODES DEFINITION FILE FOR OVS TC-
FLOWER HARDWARE OFFLOAD

Use Red Hat OpenStack Platform (RHOSP) director and a definition file to provision your bare metal
nodes for your OVS TC-flower hardware offload environment. In the bare metal nodes definition file,
define the quantity and attributes of the bare metal nodes that you want to deploy and assign overcloud
roles to these nodes. Also define the network layout of the nodes.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Create a bare metal nodes definition file, such as overcloud-baremetal-deploy.yaml, as
instructed in Provisioning bare metal nodes for the overcloud in the Installing and managing Red
Hat OpenStack Platform with director guide.

4. In the bare metal nodes definition file, add a declaration to the Ansible playbook, cli-overcloud-
node-kernelargs.yaml.
The playbook contains kernel arguments to use when you provision bare metal nodes.

- name: ComputeOvsHwOffload
...
 ansible_playbooks:
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-node-kernelargs.yaml
...

5. If you want to set any extra Ansible variables when running the playbook, use the extra_vars
property to set them.

NOTE

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

62

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_composable-services-and-custom-roles#ref_supported-custom-roles_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

NOTE

The variables that you add to extra_vars should be the same role-specific
parameters for the ComputeOvsHwOffload nodes that you added to the custom
environment file earlier in Section 8.3, “Adding role-specific parameters and
configuration overrides for OVS TC-flower hardware offload”.

Example

- name: ComputeOvsHwOffload
...
 ansible_playbooks:
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-node-kernelargs.yaml
 extra_vars:
 kernel_args: 'default_hugepagesz=1GB hugepagesz=1G hugepages=100
amd_iommu=on iommu=pt isolcpus=9-63,73-127'
 tuned_isolated_cores: '9-63,73-127'
 tuned_profile: 'cpu-partitioning'
 reboot_wait_timeout: 1800

6. Note the path and file name of the bare metal nodes definition file that you have created. You
use this file later when you configure your NICs and as the input file for the overcloud node
provision command when you provision your nodes.

Next steps

Proceed to Section 8.5, “Creating a NIC configuration template for OVS TC-flower hardware
offload”.

Additional resources

Composable services and custom roles in Installing and managing Red Hat OpenStack Platform
with director

Tested NICs for NFV

Bare-metal node provisioning attributes in the Installing and managing Red Hat OpenStack
Platform with director guide

8.5. CREATING A NIC CONFIGURATION TEMPLATE FOR OVS TC-
FLOWER HARDWARE OFFLOAD

Define your NIC configuration templates for an OVS TC-flower hardware offload environment by
modifying copies of the sample Jinja2 templates that ship with Red Hat OpenStack Platform (RHOSP).

Prerequisites

Access to the undercloud host and credentials for the stack user.

Ensure that the NICs, their applications, the VF guest, and OVS reside on the same NUMA
Compute node.
Doing so helps to prevent performance degradation from cross-NUMA operations.

CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE OFFLOAD

63

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/hardware-req-nfv_rhosp-nfv#tested-nics-nfv_hw-req-nfv
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#ref_bare-metal-node-provisioning-attributes_ironic_provisioning

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Copy a sample network configuration template.
Copy a NIC configuration Jinja2 template from the examples in the
/usr/share/ansible/roles/tripleo_network_config/templates/ directory. Choose the one that
most closely matches your NIC requirements. Modify it as needed.

4. In your NIC configuration template, for example, single_nic_vlans.j2, add your PF and VF
interfaces. To create VFs, configure the interfaces as standalone NICs.

Example

...
- type: sriov_pf
 name: enp196s0f0np0
 mtu: 9000
 numvfs: 16
 use_dhcp: false
 defroute: false
 nm_controlled: true
 hotplug: true
 promisc: false
 link_mode: switchdev
...

NOTE

The numvfs parameter replaces the NeutronSriovNumVFs parameter in the
network configuration templates. Red Hat does not support modification of the
NeutronSriovNumVFs parameter or the numvfs parameter after deployment. If
you modify either parameter after deployment, the modification might cause a
disruption for the running instances that have an SR-IOV port on that PF. In this
case, you must hard reboot these instances to make the SR-IOV PCI device
available again.

5. Add the custom network configuration template to the bare metal nodes definition file that you
created in Section 8.4, “Creating a bare metal nodes definition file for OVS TC-flower hardware
offload”.

Example

- name: ComputeOvsHwOffload
 count: 2
 hostname_format: compute-%index%
 defaults:
 networks:
 - network: internal_api
 subnet: internal_api_subnet

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

64

 - network: tenant
 subnet: tenant_subnet
 - network: storage
 subnet: storage_subnet
 network_config:
 template: /home/stack/templates/single_nic_vlans.j2
...

6. Configure one or more network interfaces intended for hardware offload in the compute-
sriov.yaml configuration file:

 - type: ovs_bridge
 name: br-tenant
 mtu: 9000
 members:
 - type: sriov_pf
 name: p7p1
 numvfs: 5
 mtu: 9000
 primary: true
 promisc: true
 use_dhcp: false
 link_mode: switchdev

NOTE

Do not use the NeutronSriovNumVFs parameter when configuring OVS
hardware offload. The number of virtual functions is specified using the
numvfs parameter in a network configuration file used by os-net-config. Red
Hat does not support modifying the numvfs setting during update or
redeployment.

Do not configure Mellanox network interfaces as nic-config interface type
ovs-vlan because this prevents tunnel endpoints such as VXLAN from
passing traffic due to driver limitations.

7. Note the path and file name of the NIC configuration template that you have created. You use
this file later if you want to partition your NICs.

Next steps

1. Provision your overcloud networks.
For more information, see Configuring and provisioning overcloud network definitions in the
Installing and managing Red Hat OpenStack Platform with director guide

2. Provision your overcloud VIPs.
For more information, see Configuring and provisioning network VIPs for the overcloud in the
Installing and managing Red Hat OpenStack Platform with director guide

3. Provision your bare metal nodes.
For more information, see Provisioning bare metal nodes for the overcloud in the Installing and
managing Red Hat OpenStack Platform with director guide

4. Deploy your overcloud.

CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE OFFLOAD

65

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-overcloud-network-definitions_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-network-vips-for-the-overcloud_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

For more information, see Section 8.6, “Deploying an OVS TC-flower hardware offload
overcloud”.

8.6. DEPLOYING AN OVS TC-FLOWER HARDWARE OFFLOAD
OVERCLOUD

The last step in deploying your Red Hat OpenStack Platform (RHOSP) overcloud in an OVS TC-flower
hardware offload environment is to run the openstack overcloud deploy command. Inputs to the
command include all of the various overcloud templates and environment files that you constructed.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Access to sudo on hosts that contain NICs.

You have performed all of the steps listed in the earlier procedures in this section and have
assembled all of the various heat templates and environment files to use as inputs for the
overcloud deploy command.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Collate the custom environment files and custom templates that you need for your overcloud
environment. This list includes the default heat template files provided with your director
installation and the custom files you created. Ensure that you have the paths to the following
files:

Your custom network definition file that contains the specifications for your network on the
overcloud, for example, network-data.yaml.
For more information, see Network definition file configuration options in the Installing and
managing Red Hat OpenStack Platform with director guide.

A roles file that contains the Controller and ComputeOvsHwOffload roles that RHOSP
director uses to deploy your OVS hardware offload environment, and the images file that
director uses to determine where to obtain container images and how to store them.
Examples: roles_data_compute_ovshwol.yaml and overcloud_images.yaml.

For more information, see Section 8.1, “Generating roles and image files for OVS TC-flower
hardware offload”.

One or more custom environment files that contain your configuration for:

PCI passthrough devices for the ComputeOvsHwOffload nodes.

role-specific parameters for the ComputeOvsHwOffload nodes

overrides of default configuration values for the OVS hardware offload environment.
Example: ovshwol-overrides.yaml.

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

66

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#ref_network-definition-file-configuration-options_overcloud_networking

For more information, see:

Section 8.2, “Configuring PCI passthrough devices for OVS TC-flower hardware
offload”.

Section 8.3, “Adding role-specific parameters and configuration overrides for OVS TC-
flower hardware offload”.

The output file from provisioning your overcloud networks.
Example: overcloud-networks-deployed.yaml.

For more information, see Configuring and provisioning overcloud network definitions in the
Installing and managing Red Hat OpenStack Platform with director guide.

The output file from provisioning your overcloud VIPs.
Example: overcloud-vip-deployed.yaml.

For more information, see Configuring and provisioning network VIPs for the overcloud in
the Installing and managing Red Hat OpenStack Platform with director guide.

The output file from provisioning bare-metal nodes.
Example: overcloud-baremetal-deployed.yaml.

For more information, see Provisioning bare metal nodes for the overcloud in the Installing
and managing Red Hat OpenStack Platform with director guide.

Any other custom environment files.

4. Enter the openstack overcloud deploy command by carefully ordering the custom
environment files and custom templates that are inputs to the command.
The general rule is to specify any default heat template files first, followed by your custom
environment files and custom templates that contain custom configurations, such as overrides
to the default properties.

Follow this order for listing the inputs to the openstack overcloud deploy command:

a. Include your custom environment file that contains your custom NIC templates mapped to
each role after your network definition file.
Example: overcloud-baremetal-deployed.yaml, after network-data.yaml.

b. If you have an OVS-DPDK environment, and want to locate SR-IOV instances on the same
node, include the following environment files in your deployment script:

ML2/OVN

/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
ovn-dpdk.yaml

/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
ovn-sriov.yaml

ML2/OVS

/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
ovs-dpdk.yaml

/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
sriov.yaml

NOTE

CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE OFFLOAD

67

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-overcloud-network-definitions_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-network-vips-for-the-overcloud_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

NOTE

Open Virtual Networking (OVN) is the default networking
mechanism driver in RHOSP. If you want to use OVN with distributed
virtual routing (DVR), you must include the /usr/share/openstack-
tripleo-heat-templates/environments/services/neutron-ovn-dvr-
ha.yaml file in the openstack overcloud deploy command. If you
want to use OVN without DVR, you must include the neutron-ovn-
ha.yaml file in the openstack overcloud deploy command, and set
the NeutronEnableDVR parameter to false. If you want to use OVN
with SR-IOV, you must include the environments/services/neutron-
ovn-sriov.yaml file as the last of the OVN environment files in the
openstack overcloud deploy command.

c. If you created any other custom environment files, such as the custom configuration values
for OVS hardware offload, for example, ovshwol-overrides.yaml, include these
environment files after the roles data file.

Example

This excerpt from a sample openstack overcloud deploy command demonstrates the
proper ordering of the command’s inputs:

$ openstack overcloud deploy \
--log-file overcloud_deployment.log \
--templates /usr/share/openstack-tripleo-heat-templates/ \
--stack overcloud \
-n /home/stack/templates/network_data.yaml \
-r /home/stack/templates/roles_data_compute_ovshwol.yaml \
-e /home/stack/templates/overcloud-networks-deployed.yaml \
-e /home/stack/templates/overcloud-vip-deployed.yaml \
-e /home/stack/templates/overcloud-baremetal-deployed.yaml \
-e /home/stack/templates/overcloud-images.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/\
neutron-ovn-sriov.yaml \
-e /home/stack/templates/ovshwol-overrides.yaml \
 ...

5. Run the openstack overcloud deploy command.
When the overcloud creation is finished, the RHOSP director provides details to help you access
your overcloud.

Verification

Perform the steps in Validating your overcloud deployment in the Installing and managing Red
Hat OpenStack Platform with director guide.

Next steps

1. Ensure that the e-switch mode for the NICs is set to switchdev.
The switchdev mode establishes representor ports on the NIC that are mapped to the VFs.

IMPORTANT

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

68

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_validating-your-overcloud-deployment_ironic_provisioning

IMPORTANT

You must enable security groups and port security on switchdev ports for the
connection tracking (conntrack) module to offload OpenFlow flows to hardware.

a. Check the NIC by running this command:

Example

In this example, the NIC pci/0000:03:00.0 is queried:

$ sudo devlink dev eswitch show pci/0000:03:00.0

Sample output

You should see output similar to the following:

pci/0000:03:00.0: mode switchdev inline-mode none encap enable

b. To set the NIC to switchdev mode, run this command:

Example

In this example, the e-switch mode for the NIC pci/0000:03:00.0 is set to switchdev:

$ sudo devlink dev eswitch set pci/0000:03:00.0 mode switchdev

2. To allocate a port from a switchdev-enabled NIC, do the following:

a. Log in as a RHOSP user with the admin role, and create a neutron port with a binding-
profile value of capabilities, and disable port security:

IMPORTANT

You must enable security groups and port security on switchdev ports for
the connection tracking (conntrack) module to offload OpenFlow flows to
hardware.

$ openstack port create --network private --vnic-type=direct --binding-profile
'{"capabilities": ["switchdev"]}' direct_port1 --disable-port-security

b. Pass this port information when you create the instance.
You associate the representor port with the instance VF interface and connect the
representor port to OVS bridge br-int for one-time OVS data path processing. A VF port
representor functions like a software version of a physical “patch panel” front-end.

For more information about new instance creation, see Section 8.8, “Creating an instance in
an SR-IOV or an OVS TC-flower hardware offload environment”.

3. Apply the following configuration on the interfaces, and the representor ports, to ensure that
TC Flower pushes the flow programming at the port level:

 $ sudo ethtool -K <device-name> hw-tc-offload on

CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE OFFLOAD

69

4. Adjust the number of channels for each network interface to improve performance.
A channel includes an interrupt request (IRQ) and the set of queues that trigger the IRQ. When
you set the mlx5_core driver to switchdev mode, the mlx5_core driver defaults to one
combined channel, which might not deliver optimal performance.

On the physical function (PF) representors, enter the following command to adjust the number
of CPUs available to the host.

Example

In this example, the number of multi-purpose channels is set to 3 on the network interface,
eno3s0f0:

$ sudo ethtool -L enp3s0f0 combined 3

Additional resources

Creating your overcloud in the Installing and managing Red Hat OpenStack Platform with
director guide

overcloud deploy in the Command line interface reference

Section 8.8, “Creating an instance in an SR-IOV or an OVS TC-flower hardware offload
environment”

man page for ethtool

man page for devlink

Configuring CPU pinning on Compute nodes in Configuring the Compute service for instance
creation

8.7. CREATING HOST AGGREGATES IN AN SR-IOV OR AN OVS TC-
FLOWER HARDWARE OFFLOAD ENVIRONMENT

For better performance in your Red Hat OpenStack Platform (RHOSP) SR-IOV or OVS TC-flower
hardware offload environment, deploy guests that have CPU pinning and huge pages. You can schedule
high performance instances on a subset of hosts by matching aggregate metadata with flavor metadata.

Prerequisites

A RHOSP overcloud configured for an SR-IOV or an OVS hardware offload environment.

Your RHOSP overcloud must be configured for the AggregateInstanceExtraSpecsFilter.
For more information, see Section 8.2, “Configuring PCI passthrough devices for OVS TC-
flower hardware offload”.

Procedure

1. Create an aggregate group, and add relevant hosts.
Define metadata, for example, sriov=true, that matches defined flavor metadata.

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

70

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_creating-your-overcloud_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/overcloud#overcloud_deploy
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_the_compute_service_for_instance_creation/assembly_configuring-cpus-on-compute-nodes#assembly_configuring-cpu-pinning-on-compute-nodes_cpu-pinning

$ openstack aggregate create sriov_group
$ openstack aggregate add host sriov_group compute-sriov-0.localdomain
$ openstack aggregate set --property sriov=true sriov_group

2. Create a flavor.

$ openstack flavor create <flavor> --ram <size_mb> --disk <size_gb> \
--vcpus <number>

3. Set additional flavor properties.
Note that the defined metadata, sriov=true, matches the defined metadata on the SR-IOV
aggregate.

$ openstack flavor set --property sriov=true \
--property hw:cpu_policy=dedicated \
--property hw:mem_page_size=1GB <flavor>

Additional resources

aggregate in the Command line interface reference

flavor in the Command line interface reference

8.8. CREATING AN INSTANCE IN AN SR-IOV OR AN OVS TC-FLOWER
HARDWARE OFFLOAD ENVIRONMENT

You use several commands to create an instance in a Red Hat OpenStack Platform (RHOSP) SR-IOV or
an OVS TC-flower hardware offload environment.

Use host aggregates to separate high performance Compute hosts. For more information, see
Section 8.7, “Creating host aggregates in an SR-IOV or an OVS TC-flower hardware offload
environment”.

NOTE

Pinned CPU instances can be located on the same Compute node as unpinned instances.
For more information, see Configuring CPU pinning on Compute nodes in the
Configuring the Compute service for instance creation guide.

Prerequisites

A RHOSP overcloud configured for an SR-IOV or an OVS hardware offload environment.

For OVS hardware offload environments, you must have a virtual function (VF) port or a physical
function (PF) port from a RHOSP administrator to be able to create an instance.
OVS hardware offload requires a binding profile to create VFs or PFs. Only RHOSP users with
the admin role can use a binding profile.

Procedure

1. Create a flavor.

CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE OFFLOAD

71

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/aggregate
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/flavor
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_the_compute_service_for_instance_creation/assembly_configuring-cpus-on-compute-nodes#assembly_configuring-cpu-pinning-on-compute-nodes_cpu-pinning

$ openstack flavor create <flavor_name> --ram <size_mb> \
--disk <size_gb> --vcpus <number>

TIP

You can specify the NUMA affinity policy for PCI passthrough devices and SR-IOV interfaces
by adding the extra spec hw:pci_numa_affinity_policy to your flavor. For more information,
see Flavor metadata in Configuring the Compute service for instance creation .

2. Create the network and the subnet:

$ openstack network create <network_name> \
--provider-physical-network tenant \
--provider-network-type vlan --provider-segment <vlan_id>

$ openstack subnet create <name> --network <network_name> \
--subnet-range <ip_address_cidr> --dhcp

3. If you are not a RHOSP user with the admin role, your RHOSP administrator can provide you
with the necessary VF or PF to create an instance. Proceed to step 5.

4. If you are a RHOSP user with the admin role, you can create VF or PF ports:

VF port:

$ openstack port create --network <network_name> --vnic-type direct \
--binding-profile '{"capabilities": ["switchdev"]} <port_name>

PF port that is dedicated to a single instance:
This PF port is a Networking service (neutron) port but is not controlled by the Networking
service, and is not visible as a network adapter because it is a PCI device that is passed
through to the instance.

$ openstack port create --network <network_name> \
--vnic-type direct-physical <port_name>

5. Create an instance.

$ openstack server create --flavor <flavor> --image <image_name> \
--nic port-id=<id> <instance_name>

Additional resources

flavor create in the Command line interface reference

network create in the Command line interface reference

subnet create in the Command line interface reference

port create in the Command line interface reference

server create in the Command line interface reference

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

72

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_the_compute_service_for_instance_creation/assembly_creating-flavors-for-launching-instances_instance-flavors#ref_flavor-metadata_instance-flavors
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/#flavor_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/subnet#subnet_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/port#port_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/server#server_create

8.9. TROUBLESHOOTING OVS TC-FLOWER HARDWARE OFFLOAD

When troubleshooting a Red Hat OpenStack Platform (RHOSP) environment that uses OVS TC-flower
hardware offload, review the prerequisites and configurations for the network and the interfaces.

Prerequisites

Linux Kernel 4.13 or newer

OVS 2.8 or newer

RHOSP 12 or newer

Iproute 4.12 or newer

Mellanox NIC firmware, for example FW ConnectX-5 16.21.0338 or newer

For more information about supported prerequisites, see see the Red Hat Knowledgebase solution
Network Adapter Fast Datapath Feature Support Matrix .

Network configuration

In a HW offload deployment, you can choose one of the following scenarios for your network
configuration according to your requirements:

You can base guest VMs on VXLAN and VLAN by using either the same set of interfaces
attached to a bond, or a different set of NICs for each type.

You can bond two ports of a Mellanox NIC by using Linux bond.

You can host tenant VXLAN networks on VLAN interfaces on top of a Mellanox Linux bond.

Ensure that individual NICs and bonds are members of an ovs-bridge.

Refer to the following network configuration example:

...
- type: ovs_bridge
 name: br-offload
 mtu: 9000
 use_dhcp: false
 members:
 - type: linux_bond
 name: bond-pf
 bonding_options: "mode=active-backup miimon=100"
 members:
 - type: sriov_pf
 name: p5p1
 numvfs: 3
 primary: true
 promisc: true
 use_dhcp: false
 defroute: false
 link_mode: switchdev
 - type: sriov_pf
 name: p5p2
 numvfs: 3

CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE OFFLOAD

73

https://access.redhat.com/articles/3538141#network-adapter-support-2

 promisc: true
 use_dhcp: false
 defroute: false
 link_mode: switchdev
...
 - type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 device: bond-pf
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet
...

The following bonding configurations are supported:

active-backup - mode=1

active-active or balance-xor - mode=2

802.3ad (LACP) - mode=4

The following bonding configuration is not supported:

xmit_hash_policy=layer3+4

Interface configuration

Use the following procedure to verify the interface configuration.

Procedure

1. During deployment, use the host network configuration tool os-net-config to enable hw-tc-
offload.

2. Enable hw-tc-offload on the sriov_config service any time you reboot the Compute node.

3. Set the hw-tc-offload parameter to on for the NICs that are attached to the bond:.

Example

$ ethtool -k ens1f0 | grep tc-offload

hw-tc-offload: on

Interface mode

Verify the interface mode by using the following procedure.

Procedure

1. Set the eswitch mode to switchdev for the interfaces you use for HW offload.

2. Use the host network configuration tool os-net-config to enable eswitch during deployment.

3. Enable eswitch on the sriov_config service any time you reboot the Compute node.

Example

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

74

Example

$ devlink dev eswitch show pci/$(ethtool -i ens1f0 | grep bus-info \
| cut -d ':' -f 2,3,4 | awk '{$1=$1};1')

NOTE

The driver of the PF interface is set to "mlx5e_rep", to show that it is a representor of
the e-switch uplink port. This does not affect the functionality.

OVS offload state

Use the following procedure to verify the OVS offload state.

Enable hardware offload in OVS in the Compute node.

$ ovs-vsctl get Open_vSwitch . other_config:hw-offload

"true"

VF representor port name

To ensure consistent naming of VF representor ports, os-net-config uses udev rules to rename the
ports in the <PF-name>_<VF_id> format.

Procedure

After deployment, verify that the VF representor ports are named correctly.

Example

$ cat /etc/udev/rules.d/80-persistent-os-net-config.rules

Sample output

This file is autogenerated by os-net-config

SUBSYSTEM=="net", ACTION=="add", ATTR{phys_switch_id}!="",
ATTR{phys_port_name}=="pf*vf*", ENV{NM_UNMANAGED}="1"
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", KERNELS=="0000:65:00.0",
NAME="ens1f0"
SUBSYSTEM=="net", ACTION=="add", ATTR{phys_switch_id}=="98039b7f9e48",
ATTR{phys_port_name}=="pf0vf*", IMPORT{program}="/etc/udev/rep-link-name.sh
$attr{phys_port_name}", NAME="ens1f0_$env{NUMBER}"
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", KERNELS=="0000:65:00.1",
NAME="ens1f1"
SUBSYSTEM=="net", ACTION=="add", ATTR{phys_switch_id}=="98039b7f9e49",
ATTR{phys_port_name}=="pf1vf*", IMPORT{program}="/etc/udev/rep-link-name.sh
$attr{phys_port_name}", NAME="ens1f1_$env{NUMBER}"

Network traffic flow

HW offloaded network flow functions in a similar way to physical switches or routers with application-
specific integrated circuit (ASIC) chips.

CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE OFFLOAD

75

You can access the ASIC shell of a switch or router to examine the routing table and for other
debugging. The following procedure uses a Broadcom chipset from a Cumulus Linux switch as an
example. Replace the values that are appropriate to your environment.

Procedure

1. To get Broadcom chip table content, use the bcmcmd command.

$ cl-bcmcmd l2 show

Sample output

mac=00:02:00:00:00:08 vlan=2000 GPORT=0x2 modid=0 port=2/xe1
mac=00:02:00:00:00:09 vlan=2000 GPORT=0x2 modid=0 port=2/xe1 Hit

2. Inspect the Traffic Control (TC) Layer.

$ tc -s filter show dev p5p1_1 ingress

Sample output

…
filter block 94 protocol ip pref 3 flower chain 5
filter block 94 protocol ip pref 3 flower chain 5 handle 0x2
 eth_type ipv4
 src_ip 172.0.0.1
 ip_flags nofrag
 in_hw in_hw_count 1
 action order 1: mirred (Egress Redirect to device eth4) stolen
 index 3 ref 1 bind 1 installed 364 sec used 0 sec
 Action statistics:
 Sent 253991716224 bytes 169534118 pkt (dropped 0, overlimits 0 requeues 0)
 Sent software 43711874200 bytes 30161170 pkt
 Sent hardware 210279842024 bytes 139372948 pkt
 backlog 0b 0p requeues 0
 cookie 8beddad9a0430f0457e7e78db6e0af48
 no_percpu

3. Examine the in_hw flags and the statistics in this output. The word hardware indicates that the
hardware processes the network traffic. If you use tc-policy=none, you can check this output or
a tcpdump to investigate when hardware or software handles the packets. You can see a
corresponding log message in dmesg or in ovs-vswitch.log when the driver is unable to offload
packets.

4. For Mellanox, as an example, the log entries resemble syndrome messages in dmesg.

Sample output

[13232.860484] mlx5_core 0000:3b:00.0: mlx5_cmd_check:756:(pid 131368):
SET_FLOW_TABLE_ENTRY(0x936) op_mod(0x0) failed, status bad parameter(0x3),
syndrome (0x6b1266)

In this example, the error code (0x6b1266) represents the following behavior:

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

76

Sample output

0x6B1266 | set_flow_table_entry: pop vlan and forward to uplink is not allowed

Systems

Validate your system with the following procedure.

Procedure

1. Ensure SR-IOV and VT-d are enabled on the system.

2. Enable IOMMU in Linux by adding intel_iommu=on to kernel parameters, for example, using
GRUB.

8.10. DEBUGGING TC-FLOWER HARDWARE OFFLOAD FLOW

You can use the following procedure if you encounter the following message in the ovs-vswitch.log file:

2020-01-31T06:22:11.257Z|00473|dpif_netlink(handler402)|ERR|failed to offload flow: Operation not
supported: p6p1_5

Procedure

1. To enable logging on the offload modules and to get additional log information for this failure,
use the following commands on the Compute node:

ovs-appctl vlog/set dpif_netlink:file:dbg
Module name changed recently (check based on the version used
ovs-appctl vlog/set netdev_tc_offloads:file:dbg [OR] ovs-appctl vlog/set
netdev_offload_tc:file:dbg
ovs-appctl vlog/set tc:file:dbg

2. Inspect the ovs-vswitchd logs again to see additional details about the issue.
In the following example logs, the offload failed because of an unsupported attribute mark.

 2020-01-31T06:22:11.218Z|00471|dpif_netlink(handler402)|DBG|system@ovs-system:
put[create] ufid:61bd016e-eb89-44fc-a17e-958bc8e45fda
recirc_id(0),dp_hash(0/0),skb_priority(0/0),in_port(7),skb_mark(0),ct_state(0/0),ct_zone(0/0),ct
_mark(0/0),ct_label(0/0),eth(src=fa:16:3e:d2:f5:f3,dst=fa:16:3e:c4:a3:eb),eth_type(0x0800),ipv
4(src=10.1.1.8/0.0.0.0,dst=10.1.1.31/0.0.0.0,proto=1/0,tos=0/0x3,ttl=64/0,frag=no),icmp(type=0/
0,code=0/0),
actions:set(tunnel(tun_id=0x3d,src=10.10.141.107,dst=10.10.141.124,ttl=64,tp_dst=4789,flags(
df|key))),6

2020-01-31T06:22:11.253Z|00472|netdev_tc_offloads(handler402)|DBG|offloading attribute
pkt_mark isn't supported

2020-01-31T06:22:11.257Z|00473|dpif_netlink(handler402)|ERR|failed to offload flow:
Operation not supported: p6p1_5

Debugging Mellanox NICs

Mellanox has provided a system information script, similar to a Red Hat SOS report.

CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE OFFLOAD

77

https://github.com/Mellanox/linux-sysinfo-snapshot/blob/master/sysinfo-snapshot.py

When you run this command, you create a zip file of the relevant log information, which is useful for
support cases.

Procedure

You can run this system information script with the following command:

./sysinfo-snapshot.py --asap --asap_tc --ibdiagnet --openstack

You can also install Mellanox Firmware Tools (MFT), mlxconfig, mlxlink and the OpenFabrics Enterprise
Distribution (OFED) drivers.

Useful CLI commands

Use the ethtool utility with the following options to gather diagnostic information:

ethtool -l <uplink representor> : View the number of channels

ethtool -I <uplink/VFs> : Check statistics

ethtool -i <uplink rep> : View driver information

ethtool -g <uplink rep> : Check ring sizes

ethtool -k <uplink/VFs> : View enabled features

Use the tcpdump utility at the representor and PF ports to similarly check traffic flow.

Any changes you make to the link state of the representor port, affect the VF link state also.

Representor port statistics present VF statistics also.

Use the below commands to get useful diagnostic information:

$ ovs-appctl dpctl/dump-flows -m type=offloaded

$ ovs-appctl dpctl/dump-flows -m

$ tc filter show dev ens1_0 ingress

$ tc -s filter show dev ens1_0 ingress

$ tc monitor

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

78

https://github.com/Mellanox/linux-sysinfo-snapshot/blob/master/sysinfo-snapshot.py

CHAPTER 9. PLANNING YOUR OVS-DPDK DEPLOYMENT
To optimize your Open vSwitch with Data Plane Development Kit (OVS-DPDK) deployment for NFV,
you should understand how OVS-DPDK uses the Compute node hardware (CPU, NUMA nodes,
memory, NICs) and the considerations for determining the individual OVS-DPDK parameters based on
your Compute node.

IMPORTANT

When using OVS-DPDK and the OVS native firewall (a stateful firewall based on
conntrack), you can track only packets that use ICMPv4, ICMPv6, TCP, and UDP
protocols. OVS marks all other types of network traffic as invalid.

IMPORTANT

Red Hat does not support the use of OVS-DPDK for non-NFV workloads. If you need
OVS-DPDK functionality for non-NFV workloads, contact your Technical Account
Manager (TAM) or open a customer service request case to discuss a Support Exception
and other options. To open a customer service request case, go to Create a case and
choose Account > Customer Service Request.

9.1. OVS-DPDK WITH CPU PARTITIONING AND NUMA TOPOLOGY

OVS-DPDK partitions the hardware resources for host, guests, and itself. The OVS-DPDK Poll Mode
Drivers (PMDs) run DPDK active loops, which require dedicated CPU cores. Therefore you must allocate
some CPUs, and huge pages, to OVS-DPDK.

A sample partitioning includes 16 cores per NUMA node on dual-socket Compute nodes. The traffic
requires additional NICs because you cannot share NICs between the host and OVS-DPDK.

Figure 9.1. NUMA topology: OVS-DPDK with CPU partitioning

NOTE

You must reserve DPDK PMD threads on both NUMA nodes, even if a NUMA node does
not have an associated DPDK NIC.

CHAPTER 9. PLANNING YOUR OVS-DPDK DEPLOYMENT

79

https://access.redhat.com/support/cases/new

For optimum OVS-DPDK performance, reserve a block of memory local to the NUMA node. Choose
NICs associated with the same NUMA node that you use for memory and CPU pinning. Ensure that both
bonded interfaces are from NICs on the same NUMA node.

9.2. OVS-DPDK PARAMETERS

This section describes how OVS-DPDK uses parameters within the director
network_environment.yaml heat templates to configure the CPU and memory for optimum
performance. Use this information to evaluate the hardware support on your Compute nodes and how
to partition the hardware to optimize your OVS-DPDK deployment.

NOTE

Always pair CPU sibling threads, or logical CPUs, together in the physical core when
allocating CPU cores.

For details on how to determine the CPU and NUMA nodes on your Compute nodes, see Discovering
your NUMA node topology. Use this information to map CPU and other parameters to support the host,
guest instance, and OVS-DPDK process needs.

9.2.1. CPU parameters

OVS-DPDK uses the following parameters for CPU partitioning:

OvsPmdCoreList

Provides the CPU cores that are used for the DPDK poll mode drivers (PMD). Choose CPU cores
that are associated with the local NUMA nodes of the DPDK interfaces. Use OvsPmdCoreList for
the pmd-cpu-mask value in OVS. Use the following recommendations for OvsPmdCoreList:

Pair the sibling threads together.

Performance depends on the number of physical cores allocated for this PMD Core list. On
the NUMA node which is associated with DPDK NIC, allocate the required cores.

For NUMA nodes with a DPDK NIC, determine the number of physical cores required based
on the performance requirement, and include all the sibling threads or logical CPUs for each
physical core.

For NUMA nodes without DPDK NICs, allocate the sibling threads or logical CPUs of any
physical core except the first physical core of the NUMA node.

NOTE

You must reserve DPDK PMD threads on both NUMA nodes, even if a NUMA node does
not have an associated DPDK NIC.

NovaComputeCpuDedicatedSet

A comma-separated list or range of physical host CPU numbers to which processes for pinned
instance CPUs can be scheduled. For example, NovaComputeCpuDedicatedSet: [4-12,^8,15]
reserves cores from 4-12 and 15, excluding 8.

Exclude all cores from the OvsPmdCoreList.

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

80

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/hardware-req-nfv_rhosp-nfv#discover-numa-node-topo_hw-req-nfv

Include all remaining cores.

Pair the sibling threads together.

NovaComputeCpuSharedSet

A comma-separated list or range of physical host CPU numbers used to determine the host CPUs
for instance emulator threads.

IsolCpusList

A set of CPU cores isolated from the host processes. IsolCpusList is the isolated_cores value in
the cpu-partitioning-variable.conf file for the tuned-profiles-cpu-partitioning component. Use the
following recommendations for IsolCpusList:

Match the list of cores in OvsPmdCoreList and NovaComputeCpuDedicatedSet.

Pair the sibling threads together.

DerivePciWhitelistEnabled

To reserve virtual functions (VF) for VMs, use the NovaPCIPassthrough parameter to create a list
of VFs passed through to Nova. VFs excluded from the list remain available for the host.
For each VF in the list, populate the address parameter with a regular expression that resolves to the
address value.

The following is an example of the manual list creation process. If NIC partitioning is enabled in a
device named eno2, list the PCI addresses of the VFs with the following command:

[tripleo-admin@compute-0 ~]$ ls -lh /sys/class/net/eno2/device/ | grep virtfn
lrwxrwxrwx. 1 root root 0 Apr 16 09:58 virtfn0 -> ../0000:18:06.0
lrwxrwxrwx. 1 root root 0 Apr 16 09:58 virtfn1 -> ../0000:18:06.1
lrwxrwxrwx. 1 root root 0 Apr 16 09:58 virtfn2 -> ../0000:18:06.2
lrwxrwxrwx. 1 root root 0 Apr 16 09:58 virtfn3 -> ../0000:18:06.3
lrwxrwxrwx. 1 root root 0 Apr 16 09:58 virtfn4 -> ../0000:18:06.4
lrwxrwxrwx. 1 root root 0 Apr 16 09:58 virtfn5 -> ../0000:18:06.5
lrwxrwxrwx. 1 root root 0 Apr 16 09:58 virtfn6 -> ../0000:18:06.6
lrwxrwxrwx. 1 root root 0 Apr 16 09:58 virtfn7 -> ../0000:18:06.7

In this case, the VFs 0, 4, and 6 are used by eno2 for NIC Partitioning. Manually configure
NovaPCIPassthrough to include VFs 1-3, 5, and 7, and consequently exclude VFs 0,4, and 6, as in
the following example:

NovaPCIPassthrough:
 - physical_network: "sriovnet2"
 address: {"domain": ".*", "bus": "18", "slot": "06", "function": "[1-3]"}
 - physical_network: "sriovnet2"
 address: {"domain": ".*", "bus": "18", "slot": "06", "function": "[5]"}
 - physical_network: "sriovnet2"
 address: {"domain": ".*", "bus": "18", "slot": "06", "function": "[7]"}

9.2.2. Memory parameters

OVS-DPDK uses the following memory parameters:

OvsDpdkMemoryChannels

CHAPTER 9. PLANNING YOUR OVS-DPDK DEPLOYMENT

81

Maps memory channels in the CPU per NUMA node. OvsDpdkMemoryChannels is the
other_config:dpdk-extra="-n <value>" value in OVS. Observe the following recommendations for
OvsDpdkMemoryChannels:

Use dmidecode -t memory or your hardware manual to determine the number of memory
channels available.

Use ls /sys/devices/system/node/node* -d to determine the number of NUMA nodes.

Divide the number of memory channels available by the number of NUMA nodes.

NovaReservedHostMemory

Reserves memory in MB for tasks on the host. NovaReservedHostMemory is the
reserved_host_memory_mb value for the Compute node in nova.conf. Observe the following
recommendation for NovaReservedHostMemory:

Use the static recommended value of 4096 MB.

OvsDpdkSocketMemory

Specifies the amount of memory in MB to pre-allocate from the hugepage pool, per NUMA node.
OvsDpdkSocketMemory is the other_config:dpdk-socket-mem value in OVS. Observe the
following recommendations for OvsDpdkSocketMemory:

Provide as a comma-separated list.

For a NUMA node without a DPDK NIC, use the static recommendation of 1024 MB (1GB)

Calculate the OvsDpdkSocketMemory value from the MTU value of each NIC on the NUMA
node.

The following equation approximates the value for OvsDpdkSocketMemory:

MEMORY_REQD_PER_MTU = (ROUNDUP_PER_MTU + 800) * (4096 * 64) Bytes

800 is the overhead value.

4096 * 64 is the number of packets in the mempool.

Add the MEMORY_REQD_PER_MTU for each of the MTU values set on the NUMA node and
add another 512 MB as buffer. Round the value up to a multiple of 1024.

Sample Calculation - MTU 2000 and MTU 9000

DPDK NICs dpdk0 and dpdk1 are on the same NUMA node 0, and configured with MTUs 9000, and
2000 respectively. The sample calculation to derive the memory required is as follows:

1. Round off the MTU values to the nearest multiple of 1024 bytes.

The MTU value of 9000 becomes 9216 bytes.
The MTU value of 2000 becomes 2048 bytes.

2. Calculate the required memory for each MTU value based on these rounded byte values.

Memory required for 9000 MTU = (9216 + 800) * (4096*64) = 2625634304
Memory required for 2000 MTU = (2048 + 800) * (4096*64) = 746586112

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

82

3. Calculate the combined total memory required, in bytes.

2625634304 + 746586112 + 536870912 = 3909091328 bytes.

This calculation represents (Memory required for MTU of 9000) + (Memory required for MTU
of 2000) + (512 MB buffer).

4. Convert the total memory required into MB.

3909091328 / (1024*1024) = 3728 MB.

5. Round this value up to the nearest 1024.

3724 MB rounds up to 4096 MB.

6. Use this value to set OvsDpdkSocketMemory.

Sample Calculation - MTU 2000

DPDK NICs dpdk0 and dpdk1 are on the same NUMA node 0, and each are configured with MTUs of
2000. The sample calculation to derive the memory required is as follows:

1. Round off the MTU values to the nearest multiple of 1024 bytes.

The MTU value of 2000 becomes 2048 bytes.

2. Calculate the required memory for each MTU value based on these rounded byte values.

Memory required for 2000 MTU = (2048 + 800) * (4096*64) = 746586112

3. Calculate the combined total memory required, in bytes.

746586112 + 536870912 = 1283457024 bytes.

This calculation represents (Memory required for MTU of 2000) + (512 MB buffer).

4. Convert the total memory required into MB.

1283457024 / (1024*1024) = 1224 MB.

5. Round this value up to the nearest multiple of 1024.

1224 MB rounds up to 2048 MB.

6. Use this value to set OvsDpdkSocketMemory.

9.2.3. Networking parameters

 OvsDpdkSocketMemory: "4096,1024"

 OvsDpdkSocketMemory: "2048,1024"

CHAPTER 9. PLANNING YOUR OVS-DPDK DEPLOYMENT

83

OvsDpdkDriverType

Sets the driver type used by DPDK. Use the default value of vfio-pci.

NeutronDatapathType

Datapath type for OVS bridges. DPDK uses the default value of netdev.

NeutronVhostuserSocketDir

Sets the vhost-user socket directory for OVS. Use /var/lib/vhost_sockets for vhost client mode.

9.2.4. Other parameters

NovaSchedulerEnabledFilters

Provides an ordered list of filters that the Compute node uses to find a matching Compute node for
a requested guest instance.

VhostuserSocketGroup

Sets the vhost-user socket directory group. The default value is qemu. Set VhostuserSocketGroup
to hugetlbfs so that the ovs-vswitchd and qemu processes can access the shared huge pages and
unix socket that configures the virtio-net device. This value is role-specific and should be applied to
any role leveraging OVS-DPDK.

IMPORTANT

To use the parameter VhostuserSocketGroup you must also set
NeutronVhostuserSocketDir. For more information, see Section 9.2.3, “Networking
parameters”.

KernelArgs

Provides multiple kernel arguments to /etc/default/grub for the Compute node at boot time. Add
the following values based on your configuration:

hugepagesz: Sets the size of the huge pages on a CPU. This value can vary depending on
the CPU hardware. Set to 1G for OVS-DPDK deployments (default_hugepagesz=1GB
hugepagesz=1G). Use this command to check for the pdpe1gb CPU flag that confirms your
CPU supports 1G.

lshw -class processor | grep pdpe1gb

hugepages count: Sets the number of huge pages available based on available host
memory. Use most of your available memory, except NovaReservedHostMemory. You must
also configure the huge pages count value within the flavor of your Compute nodes.

iommu: For Intel CPUs, add "intel_iommu=on iommu=pt"

isolcpus: Sets the CPU cores for tuning. This value matches IsolCpusList.

For more information about CPU isolation, see the Red Hat Knowledgebase solution OpenStack
CPU isolation guidance for RHEL 8 and RHEL 9.

DdpPackage

Configures Dynamic Device Personalization (DDP), to apply a profile package to a device at
deployment to change the packet processing pipeline of the device. Add the following lines to your
network_environment.yaml template to include the DDP package:

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

84

https://access.redhat.com/articles/6126451

parameter_defaults:
 ComputeOvsDpdkSriovParameters:
 DdpPackage: "ddp-comms"

9.2.5. VM instance flavor specifications

Before deploying VM instances in an NFV environment, create a flavor that utilizes CPU pinning, huge
pages, and emulator thread pinning.

hw:cpu_policy

When this parameter is set to dedicated, the guest uses pinned CPUs. Instances created from a
flavor with this parameter set have an effective overcommit ratio of 1:1. The default value is shared.

hw:mem_page_size

Set this parameter to a valid string of a specific value with standard suffix (For example, 4KB, 8MB, or
1GB). Use 1GB to match the hugepagesz boot parameter. Calculate the number of huge pages
available for the virtual machines by subtracting OvsDpdkSocketMemory from the boot parameter.
The following values are also valid:

small (default) - The smallest page size is used

large - Only use large page sizes. (2MB or 1GB on x86 architectures)

any - The compute driver can attempt to use large pages, but defaults to small if none
available.

hw:emulator_threads_policy

Set the value of this parameter to share so that emulator threads are locked to CPUs that you’ve
identified in the heat parameter, NovaComputeCpuSharedSet. If an emulator thread is running on a
vCPU with the poll mode driver (PMD) or real-time processing, you can experience negative effects,
such as packet loss.

9.3. TWO NUMA NODE EXAMPLE OVS-DPDK DEPLOYMENT

The Compute node in the following example includes two NUMA nodes:

NUMA 0 has cores 0-7. The sibling thread pairs are (0,1), (2,3), (4,5), and (6,7)

NUMA 1 has cores 8-15. The sibling thread pairs are (8,9), (10,11), (12,13), and (14,15).

Each NUMA node connects to a physical NIC, namely NIC1 on NUMA 0, and NIC2 on NUMA 1.

Figure 9.2. OVS-DPDK: two NUMA nodes example

CHAPTER 9. PLANNING YOUR OVS-DPDK DEPLOYMENT

85

NOTE

Reserve the first physical cores or both thread pairs on each NUMA node (0,1 and 8,9)
for non-datapath DPDK processes.

This example also assumes a 1500 MTU configuration, so the OvsDpdkSocketMemory is the same for
all use cases:

NIC 1 for DPDK, with one physical core for PMD

In this use case, you allocate one physical core on NUMA 0 for PMD. You must also allocate one physical
core on NUMA 1, even though DPDK is not enabled on the NIC for that NUMA node. The remaining
cores are allocated for guest instances. The resulting parameter settings are:

NIC 1 for DPDK, with two physical cores for PMD

In this use case, you allocate two physical cores on NUMA 0 for PMD. You must also allocate one
physical core on NUMA 1, even though DPDK is not enabled on the NIC for that NUMA node. The
remaining cores are allocated for guest instances. The resulting parameter settings are:

NIC 2 for DPDK, with one physical core for PMD

In this use case, you allocate one physical core on NUMA 1 for PMD. You must also allocate one physical
core on NUMA 0, even though DPDK is not enabled on the NIC for that NUMA node. The remaining
cores are allocated for guest instances. The resulting parameter settings are:

NIC 2 for DPDK, with two physical cores for PMD

In this use case, you allocate two physical cores on NUMA 1 for PMD. You must also allocate one physical
core on NUMA 0, even though DPDK is not enabled on the NIC for that NUMA node. The remaining
cores are allocated for guest instances. The resulting parameter settings are:

NIC 1 and NIC2 for DPDK, with two physical cores for PMD

In this use case, you allocate two physical cores on each NUMA node for PMD. The remaining cores are
allocated for guest instances. The resulting parameter settings are:

OvsDpdkSocketMemory: "1024,1024"

OvsPmdCoreList: "2,3,10,11"
NovaComputeCpuDedicatedSet: "4,5,6,7,12,13,14,15"

OvsPmdCoreList: "2,3,4,5,10,11"
NovaComputeCpuDedicatedSet: "6,7,12,13,14,15"

OvsPmdCoreList: "2,3,10,11"
NovaComputeCpuDedicatedSet: "4,5,6,7,12,13,14,15"

OvsPmdCoreList: "2,3,10,11,12,13"
NovaComputeCpuDedicatedSet: "4,5,6,7,14,15"

OvsPmdCoreList: "2,3,4,5,10,11,12,13"
NovaComputeCpuDedicatedSet: "6,7,14,15"

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

86

9.4. TOPOLOGY OF AN NFV OVS-DPDK DEPLOYMENT

This example deployment shows an OVS-DPDK configuration and consists of two virtual network
functions (VNFs) with two interfaces each:

The management interface, represented by mgt.

The data plane interface.

In the OVS-DPDK deployment, the VNFs operate with inbuilt DPDK that supports the physical
interface. OVS-DPDK enables bonding at the vSwitch level. For improved performance in your OVS-
DPDK deployment, it is recommended that you separate kernel and OVS-DPDK NICs. To separate the
management (mgt) network, connected to the Base provider network for the virtual machine, ensure
you have additional NICs. The Compute node consists of two regular NICs for the Red Hat OpenStack
Platform API management that can be reused by the Ceph API but cannot be shared with any
OpenStack project.

Figure 9.3. Compute node: NFV OVS-DPDK

NFV OVS-DPDK topology

The following image shows the topology for OVS-DPDK for NFV. It consists of Compute and Controller
nodes with 1 or 10 Gbps NICs, and the director node.

Figure 9.4. NFV topology: OVS-DPDK

CHAPTER 9. PLANNING YOUR OVS-DPDK DEPLOYMENT

87

Figure 9.4. NFV topology: OVS-DPDK

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

88

CHAPTER 10. CONFIGURING AN OVS-DPDK DEPLOYMENT
This section describes how to deploy, use, and troubleshoot Open vSwitch Data Plane Development Kit
(OVS-DPDK) for a Red Hat OpenStack Platform (RHOSP) environment. RHOSP operates in OVS client
mode for OVS-DPDK deployments.

The following figure shows an OVS-DPDK topology with two bonded ports for the control plane and
data plane:

Figure 10.1. Sample OVS-DPDK topology

IMPORTANT

This section includes examples that you must modify for your topology and use case. For
more information, see Hardware requirements for NFV.

Prerequisites

CHAPTER 10. CONFIGURING AN OVS-DPDK DEPLOYMENT

89

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/hardware-req-nfv_rhosp-nfv

A RHOSP undercloud.
You must install and configure the undercloud before you can deploy the overcloud. For more
information, see Installing and managing Red Hat OpenStack Platform with director .

NOTE

RHOSP director modifies OVS-DPDK configuration files through the key-value
pairs that you specify in templates and custom environment files. You must not
modify the OVS-DPDK files directly.

Access to the undercloud host and credentials for the stack user.

Procedure

Use Red Hat OpenStack Platform (RHOSP) director to install and configure OVS-DPDK in a RHOSP
environment. The high-level steps are:

1. Review the known limitations for OVS-DPDK .

2. Generate roles and image files .

3. Create an environment file for your OVS-DPDK customizations .

4. Configure a firewall for security groups .

5. Create a bare metal nodes definition file .

6. Create a NIC configuration template .

7. Set the MTU value for OVS-DPDK interfaces .

8. Set multiqueue for OVS-DPDK interfaces.

9. Configure DPDK parameters for node provisioning.

10. Provision overcloud networks and VIPs.
For more information, see:

Configuring and provisioning overcloud network definitions in the Installing and managing
Red Hat OpenStack Platform with director guide.

Configuring and provisioning network VIPs for the overcloud in the Installing and managing
Red Hat OpenStack Platform with director guide.

11. Provision bare metal nodes.
Provisioning bare metal nodes for the overcloud in the Installing and managing Red Hat
OpenStack Platform with director guide

12. Deploy an OVS-DPDK overcloud .

Additional resources

Section 10.11, “Creating a flavor and deploying an instance for OVS-DPDK”

Section 10.12, “Troubleshooting the OVS-DPDK configuration”

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

90

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-overcloud-network-definitions_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-network-vips-for-the-overcloud_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

10.1. KNOWN LIMITATIONS FOR OVS-DPDK

Observe the following limitations when configuring Red Hat OpenStack Platform in a Open vSwitch
Data Plane Development Kit (OVS-DPDK) environment:

Use Linux bonds for non-DPDK traffic, and control plane networks, such as Internal,
Management, Storage, Storage Management, and Tenant. Ensure that both the PCI devices
used in the bond are on the same NUMA node for optimum performance. Neutron Linux bridge
configuration is not supported by Red Hat.

You require huge pages for every instance running on the hosts with OVS-DPDK. If huge pages
are not present in the guest, the interface appears but does not function.

With OVS-DPDK, there is a performance degradation of services that use tap devices, such as
Distributed Virtual Routing (DVR). The resulting performance is not suitable for a production
environment.

When using OVS-DPDK, all bridges on the same Compute node must be of type
ovs_user_bridge. The director may accept the configuration, but Red Hat OpenStack Platform
does not support mixing ovs_bridge and ovs_user_bridge on the same node.

Next steps

Proceed to Section 10.2, “Generating roles and image files” .

10.2. GENERATING ROLES AND IMAGE FILES

Red Hat OpenStack Platform (RHOSP) director uses roles to assign services to nodes. When deploying
RHOSP in an OVS-DPDK environment, ComputeOvsDpdk is a custom role provided with your RHOSP
installation that includes the ComputeNeutronOvsDpdk service, in addition to the default compute
services.

The undercloud installation requires an environment file to determine where to obtain container images
and how to store them.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Generate a new roles data file, for example, roles_data_compute_ovsdpdk.yaml, that includes
the Controller and ComputeOvsDpdk roles:

$ openstack overcloud roles generate \
-o /home/stack/templates/roles_data_compute_ovsdpdk.yaml \
Controller ComputeOvsDpdk

NOTE

CHAPTER 10. CONFIGURING AN OVS-DPDK DEPLOYMENT

91

NOTE

If you are using multiple technologies in your RHOSP environment, OVS-DPDK,
SR-IOV, and OVS hardware offload, you generate just one roles data file to
include all the roles:

$ openstack overcloud roles generate -o /home/stack/templates/\
roles_data.yaml Controller ComputeOvsDpdk ComputeOvsDpdkSriov \
Compute:ComputeOvsHwOffload

4. To generate an images file, you run the openstack tripleo container image prepare command.
The following inputs are needed:

The roles data file that you generated in an earlier step, for example,
roles_data_compute_ovsdpdk.yaml.

The DPDK environment file appropriate for your Networking service mechanism driver:

neutron-ovn-dpdk.yaml file for ML2/OVN environments.

neutron-ovs-dpdk.yaml file for ML2/OVS environments.

Example

In this example, the overcloud_images.yaml file is being generated for an ML2/OVN
environment:

$ sudo openstack tripleo container image prepare \
 --roles-file ~/templates/roles_data_compute_ovsdpdk.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-
dpdk.yaml \
 -e ~/containers-prepare-parameter.yaml \
 --output-env-file=/home/stack/templates/overcloud_images.yaml

5. Note the path and file name of the roles data file and the images file that you have created. You
use these files later when you deploy your overcloud.

Next steps

Proceed to Section 10.3, “Creating an environment file for your OVS-DPDK customizations” .

Additional resources

For more information, see Composable services and custom roles in Installing and managing Red
Hat OpenStack Platform with director.

Preparing container images in Installing and managing Red Hat OpenStack Platform with
director.

10.3. CREATING AN ENVIRONMENT FILE FOR YOUR OVS-DPDK
CUSTOMIZATIONS

You can use particular Red Hat OpenStack Platform configuration values in a custom environment
YAML file to configure your OVS-DPDK deployment.

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

92

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_preparing-for-director-installation#proc_preparing-container-images_preparing-for-director-installation

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Create a custom environment YAML file, for example, ovs-dpdk-overrides.yaml.

4. In the custom environment file, ensure that AggregateInstanceExtraSpecsFilter is in the list
of filters for the NovaSchedulerEnabledFilters parameter that the Compute service (nova)
uses to filter a node:

parameter_defaults:
 NovaSchedulerEnabledFilters:
 - AvailabilityZoneFilter
 - ComputeFilter
 - ComputeCapabilitiesFilter
 - ImagePropertiesFilter
 - ServerGroupAntiAffinityFilter
 - ServerGroupAffinityFilter
 - PciPassthroughFilter
 - AggregateInstanceExtraSpecsFilter

5. Add role-specific parameters for the OVS-DPDK Compute nodes to the custom environment
file.

Example

parameter_defaults:
 ComputeOvsDpdkParameters:
 NeutronBridgeMappings: "dpdk:br-dpdk"
 KernelArgs: "default_hugepagesz=1GB hugepagesz=1GB hugepages=64 iommu=pt
intel_iommu=on
isolcpus=2,4,6,8,10,12,14,16,18,22,24,26,28,30,32,34,36,38,3,5,7,9,11,13,15,17,19,23,25,27,2
9,31,33,35,37,39"
 TunedProfileName: "cpu-partitioning"
 IsolCpusList:
"2,4,6,8,10,12,14,16,18,22,24,26,28,30,32,34,36,38,3,5,7,9,11,13,15,17,19,23,25,27,29,31,33,
35,37,39"
 NovaReservedHostMemory: 4096
 OvsDpdkSocketMemory: "4096,4096"
 OvsDpdkMemoryChannels: "4"
 OvsDpdkCoreList: "0,20,1,21"
 NovaComputeCpuDedicatedSet:
"4,6,8,10,12,14,16,18,24,26,28,30,32,34,36,38,5,7,9,11,13,15,17,19,27,29,31,33,35,37,39"
 NovaComputeCpuSharedSet: "0,20,1,21"
 OvsPmdCoreList: "2,22,3,23"
 OvsEnableDpdk: true

CHAPTER 10. CONFIGURING AN OVS-DPDK DEPLOYMENT

93

6. If you need to override any of the configuration defaults in those files, add your overrides to the
custom environment file that you created in step 3.
RHOSP director uses the following files to configure OVS-DPDK:

ML2/OVN deployments
/usr/share/openstack-tripleo-heat-templates/environment/services/neutron-ovn-
dpdk.yaml

ML2/OVS deployments
/usr/share/openstack-tripleo-heat-templates/environment/services/neutron-ovs-
dpdk.yaml

7. Note the path and file name of the custom environment file that you have created. You use this
file later when you deploy your overcloud.

Next steps

Proceed to Section 10.4, “Configuring a firewall for security groups” .

10.4. CONFIGURING A FIREWALL FOR SECURITY GROUPS

Data plane interfaces require high performance in a stateful firewall. To protect these interfaces,
consider deploying a telco-grade firewall as a virtual network function (VNF) in your Red Hat OpenStack
Platform (RHOSP) OVS-DPDK environment.

To configure control plane interfaces in an ML2/OVS deployment, set the NeutronOVSFirewallDriver
parameter to openvswitch in your custom environment file under parameter_defaults. In an OVN
deployment, you can implement security groups with Access Control Lists (ACL).

You cannot use the OVS firewall driver with hardware offload because the connection tracking
properties of the flows are unsupported in the offload path.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Open the custom environment YAML file that you created in Section 10.3, “Creating an
environment file for your OVS-DPDK customizations”, or create a new one.

4. Under parameter_defaults, add the following key-value pair:

parameter_defaults:
...

 NeutronOVSFirewallDriver: openvswitch

5. If you created a new custom environment file, note its path and file name. You use this file later

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

94

5. If you created a new custom environment file, note its path and file name. You use this file later
when you deploy your overcloud.

6. After you deploy the overcloud, run the openstack port set command to disable the OVS
firewall driver for data plane interfaces:

$ openstack port set --no-security-group --disable-port-security ${PORT}

Next steps

Proceed to Section 10.5, “Creating a bare metal nodes definition file” .

Additional resources

Composable services and custom roles in Installing and managing Red Hat OpenStack Platform
with director

Tested NICs for NFV

10.5. CREATING A BARE METAL NODES DEFINITION FILE

Using Red Hat OpenStack Platform (RHOSP) director you provision your bare metal nodes for your
OVS-DPDK environment by using a definition file. In the bare metal nodes definition file, define the
quantity and attributes of the bare metal nodes that you want to deploy and assign overcloud roles to
these nodes. Also define the network layout of the nodes.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Create a bare metal nodes definition file, such as overcloud-baremetal-deploy.yaml, as
instructed in Provisioning bare metal nodes for the overcloud in the Installing and managing Red
Hat OpenStack Platform with director guide.

4. In overcloud-baremetal-deploy.yaml add a declaration to the Ansible playbook, cli-
overcloud-node-kernelargs.yaml. The playbook contains kernel arguments to use when you
are provisioning bare metal nodes.

- name: ComputeOvsDpdk
...
 ansible_playbooks:
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-node-kernelargs.yaml
...

5. If you want to set any extra Ansible variables when running the playbook, use the extra_vars
property to set them.

For more information, see Bare-metal node provisioning attributes in the Installing and

CHAPTER 10. CONFIGURING AN OVS-DPDK DEPLOYMENT

95

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/hardware-req-nfv_rhosp-nfv#tested-nics-nfv_hw-req-nfv
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

For more information, see Bare-metal node provisioning attributes in the Installing and
managing Red Hat OpenStack Platform with director guide.

NOTE

The variables that you add to extra_vars should be the same role-specific
parameters for the OVS-DPDK Compute nodes that you added to the custom
environment file earlier in Create an environment file for your OVS-DPDK
customizations.

Example

6. Note the path and file name of the bare metal nodes definition file that you have created. You
use this file later when you configure your NICs and as the input file for the overcloud node
provision command when you provision your nodes.

Next steps

Proceed to Section 10.6, “Creating a NIC configuration template” .

Additional resources

Composable services and custom roles in Installing and managing Red Hat OpenStack Platform
with director

Tested NICs for NFV

10.6. CREATING A NIC CONFIGURATION TEMPLATE

Define your NIC configuration templates by modifying copies of the sample Jinja2 templates that ship

- name: ComputeOvsDpdk
 ...
 ansible_playbooks:
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-node-kernelargs.yaml
 extra_vars:
 kernel_args: 'default_hugepagesz=1GB hugepagesz=1GB hugepages=64 iommu=pt
intel_iommu=on
isolcpus=2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,3,5,7,9,11,13,15,17,19,21,23,2
5,27,29,31,33,35,37,39'
 tuned_isolated_cores:
'2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,3,5,7,9,11,13,15,17,19,21,23,25,27,29,
31,33,35,37,39'
 tuned_profile: 'cpu-partitioning'
 reboot_wait_timeout: 1800
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-openvswitch-dpdk.yaml
 extra_vars:
 pmd: '2,22,3,23'
 memory_channels: '4'
 socket_mem: '4096,4096'
 pmd_auto_lb: true
 pmd_load_threshold: "70"
 pmd_improvement_threshold: "25"
 pmd_rebal_interval: "2"

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

96

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#ref_bare-metal-node-provisioning-attributes_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/hardware-req-nfv_rhosp-nfv#tested-nics-nfv_hw-req-nfv

Define your NIC configuration templates by modifying copies of the sample Jinja2 templates that ship
with Red Hat OpenStack Platform (RHOSP).

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Copy a sample network configuration template.
Copy a NIC configuration Jinja2 template from the examples in the
/usr/share/ansible/roles/tripleo_network_config/templates/ directory. Choose the one that
most closely matches your NIC requirements. Modify it as needed.

4. In your NIC configuration template, for example, single_nic_vlans.j2, add your DPDK
interfaces.

NOTE

In the sample NIC configuration template, single_nic_vlans.j2, the nodes only
use one single network interface as a trunk with VLANs. The native VLAN, the
untagged traffic, is the control plane, and each VLAN corresponds to one of the
RHOSP networks: internal API, storage, and so on.

Example

...
 - type: ovs_dpdk_bond
 name: dpdkbond0
 mtu: 9000
 rx_queue: 1
 ovs_extra:
 - set Interface dpdk0 options:n_rxq_desc=4096
 - set Interface dpdk0 options:n_txq_desc=4096
 - set Interface dpdk1 options:n_rxq_desc=4096
 - set Interface dpdk1 options:n_txq_desc=4096
 members:
 - type: ovs_dpdk_port
 name: dpdk0
 driver: vfio-pci
 members:
 - type: interface
 name: nic5
 - type: ovs_dpdk_port
 name: dpdk1
 driver: vfio-pci
 members:

CHAPTER 10. CONFIGURING AN OVS-DPDK DEPLOYMENT

97

 - type: interface
 name: nic6
...

5. Add the custom network configuration template, for example, single_nic_vlans.j2, to the bare
metal nodes definition file, for example, overcloud-baremetal-deploy.yaml that you created in
Section 10.5, “Creating a bare metal nodes definition file” .

Example

- name: ComputeOvsDpdk
 count: 2
 hostname_format: compute-%index%
 defaults:
 networks:
 - network: internal_api
 subnet: internal_api_subnet
 - network: tenant
 subnet: tenant_subnet
 - network: storage
 subnet: storage_subnet
 network_config:
 template: /home/stack/templates/single_nic_vlans.j2
...

6. Note the path and file name of the NIC configuration template that you have created. You use
this file later when you deploy your overcloud.

Next steps

Proceed to Section 10.7, “Setting the MTU value for OVS-DPDK interfaces” .

10.7. SETTING THE MTU VALUE FOR OVS-DPDK INTERFACES

Red Hat OpenStack Platform (RHOSP) supports jumbo frames for OVS-DPDK. To set the maximum
transmission unit (MTU) value for jumbo frames you must:

Set the global MTU value for networking in a custom environment file.

Set the physical DPDK port MTU value in your NIC configuration template.
This value is also used by the vhost user interface.

Set the MTU value within any guest instances on the Compute node to ensure that you have a
comparable MTU value from end to end in your configuration.

You do not need any special configuration for the physical NIC because the NIC is controlled by the
DPDK PMD, and has the same MTU value set by your NIC configuration template. You cannot set an
MTU value larger than the maximum value supported by the physical NIC.

NOTE

VXLAN packets include an extra 50 bytes in the header. Calculate your MTU
requirements based on these additional header bytes. For example, an MTU value of
9000 means the VXLAN tunnel MTU value is 8950 to account for these extra bytes.

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

98

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Open the custom environment YAML file that you created in Section 10.3, “Creating an
environment file for your OVS-DPDK customizations”, or create a new one.

4. Under parameter_defaults set the NeutronGlobalPhysnetMtu parameter.

Example

In this example, NeutronGlobalPhysnetMtu is set to 9000:

NOTE

Ensure that the OvsDpdkSocketMemory value in the network-
environment.yaml file is large enough to support jumbo frames. For more
information, see Memory parameters.

5. Open your NIC configuration template, for example, single_nic_vlans.j2, that you created in
Section 10.6, “Creating a NIC configuration template” .

6. Set the MTU value on the bridge to the Compute node.

 -
 type: ovs_bridge
 name: br-link0
 use_dhcp: false
 members:
 -
 type: interface
 name: nic3
 mtu: 9000

7. Set the MTU values for an OVS-DPDK bond:

- type: ovs_user_bridge
 name: br-link0
 use_dhcp: false
 members:
 - type: ovs_dpdk_bond
 name: dpdkbond0

parameter_defaults:
 # MTU global configuration
 NeutronGlobalPhysnetMtu: 9000

CHAPTER 10. CONFIGURING AN OVS-DPDK DEPLOYMENT

99

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/plan-ovs-dpdk-deploy_rhosp-nfv#ovsdpdk-memory-parms_dpdkparm-nfvsub

 mtu: 9000
 rx_queue: 2
 members:
 - type: ovs_dpdk_port
 name: dpdk0
 mtu: 9000
 members:
 - type: interface
 name: nic4
 - type: ovs_dpdk_port
 name: dpdk1
 mtu: 9000
 members:
 - type: interface
 name: nic5

8. Note the paths and file names of your NIC configuration template and your custom
environment file. You use these files later when you deploy your overcloud.

Next steps

Proceed to Section 10.8, “Setting multiqueue for OVS-DPDK interfaces”.

10.8. SETTING MULTIQUEUE FOR OVS-DPDK INTERFACES

You can configure your OVS-DPDK deployment to automatically load balance queues to non-isolated
Poll Mode Drivers (PMD)s, based on load, and queue usage. Open vSwitch can trigger automatic queue
rebalancing in the following scenarios:

You enabled cycle-based assignment of RX queues by setting the value of pmd-auto-lb to true.

Two or more non-isolated PMDs are present.

More than one queue polls for at least one non-isolated PMD.

The load value for aggregated PMDs exceeds 95% for a duration of one minute.

IMPORTANT

Multiqueue is experimental, and only supported with manual queue pinning.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Open the NIC configuration template, such as single_nic_vlans.j2, that you created in

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

100

3. Open the NIC configuration template, such as single_nic_vlans.j2, that you created in
Section 10.6, “Creating a NIC configuration template” .

4. Set the number of queues for interfaces in OVS-DPDK on the Compute node:

- type: ovs_user_bridge
 name: br-link0
 use_dhcp: false
 members:
 - type: ovs_dpdk_bond
 name: dpdkbond0
 mtu: 9000
 rx_queue: 2
 members:
 - type: ovs_dpdk_port
 name: dpdk0
 mtu: 9000
 members:
 - type: interface
 name: nic4
 - type: ovs_dpdk_port
 name: dpdk1
 mtu: 9000
 members:
 - type: interface
 name: nic5

5. Note the path and file name of the NIC configuration template. You use this file later when you
deploy your overcloud.

Next steps

Proceed to Section 10.9, “Configuring DPDK parameters for node provisioning” .

10.9. CONFIGURING DPDK PARAMETERS FOR NODE PROVISIONING

You can configure your Red Hat OpenStack Platform (RHOSP) OVS-DPDK environment to
automatically load balance the Open vSwitch (OVS) Poll Mode Driver (PMD) threads. You do this by
editing parameters that RHOSP director uses during bare metal node provisioning and during overcloud
deployment.

The OVS PMD threads perform the following tasks for user space context switching:

Continuous polling of input ports for packets.

Classifying received packets.

Executing actions on the packets after classification.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

CHAPTER 10. CONFIGURING AN OVS-DPDK DEPLOYMENT

101

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Set parameters in the bare metal nodes definition file that you created in Section 10.5,
“Creating a bare metal nodes definition file”, for example overcloud-baremetal-deploy.yaml:

pmd_auto_lb

Set to true to enable PMD automatic load balancing.

pmd_load_threshold

Percentage of processing cycles that one of the PMD threads must use consistently before
triggering the PMD load balance. Integer, range 0-100.

pmd_improvement_threshold

Minimum percentage of evaluated improvement across the non-isolated PMD threads that
triggers a PMD auto load balance. Integer, range 0-100.
To calculate the estimated improvement, a dry run of the reassignment is done and the
estimated load variance is compared with the current variance. The default is 25%.

pmd_rebal_interval

Minimum time in minutes between two consecutive PMD Auto Load Balance operations.
Range 0-20,000 minutes.
Configure this value to prevent triggering frequent reassignments where traffic patterns are
changeable. For example, you might trigger a reassignment once every 10 minutes or once
every few hours.

Example

4. Open the custom environment YAML file that you created in Section 10.3, “Creating an
environment file for your OVS-DPDK customizations”, or create a new one.

5. In the custom environment file, add the same bare metal node pre-provisioning values that you
set in step 3. Use these equivalent parameters:

OvsPmdAutoLb

Heat equivalent of pmd_auto_lb.
Set to true to enable PMD automatic load balancing.

OvsPmdLoadThreshold

Heat equivalent of pmd_load_threshold.

Percentage of processing cycles that one of the PMD threads must use consistently before

ansible_playbooks:
…
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-openvswitch-dpdk.yaml
 extra_vars:
 …
 pmd_auto_lb: true
 pmd_load_threshold: "70"
 pmd_improvement_threshold: "25"
 pmd_rebal_interval: "2"

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

102

Percentage of processing cycles that one of the PMD threads must use consistently before
triggering the PMD load balance. Integer, range 0-100.

OvsPmdImprovementThreshold

Heat equivalent of pmd_improvement_threshold.
Minimum percentage of evaluated improvement across the non-isolated PMD threads that
triggers a PMD auto load balance. Integer, range 0-100.

To calculate the estimated improvement, a dry run of the reassignment is done and the
estimated load variance is compared with the current variance. The default is 25%.

OvsPmdRebalInterval

Heat equivalent of pmd_rebal_interval.
Minimum time in minutes between two consecutive PMD Auto Load Balance operations.
Range 0-20,000 minutes.

Configure this value to prevent triggering frequent reassignments where traffic patterns are
changeable. For example, you might trigger a reassignment once every 10 minutes or once
every few hours.

Example

6. Note the paths and file names of your NIC configuration template and your custom
environment file. You use these files later when you provision your bare metal nodes and deploy
your overcloud.

Next steps

1. Provision your networks and VIPs.

2. Provision your bare metal nodes.
Ensure that you use your bare metal nodes definition file, such as overcloud-baremetal-
deploy.yaml, as the input for running the provision command.

3. Proceed to Section 10.10, “Deploying an OVS-DPDK overcloud” .

Additional resources

Configuring and provisioning overcloud network definitions in the Installing and managing Red
Hat OpenStack Platform with director guide.

Configuring and provisioning network VIPs for the overcloud in the Installing and managing Red

parameter_merge_strategies:
 ComputeOvsDpdkSriovParameters:merge
…
parameter_defaults:
 ComputeOvsDpdkSriovParameters:
 …
 OvsPmdAutoLb: true
 OvsPmdLoadThreshold: 70
 OvsPmdImprovementThreshold: 25
 OvsPmdRebalInterval: 2

CHAPTER 10. CONFIGURING AN OVS-DPDK DEPLOYMENT

103

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-overcloud-network-definitions_network_provisioning

Configuring and provisioning network VIPs for the overcloud in the Installing and managing Red
Hat OpenStack Platform with director guide

Provisioning bare metal nodes for the overcloud in the Installing and managing Red Hat
OpenStack Platform with director guide.

10.10. DEPLOYING AN OVS-DPDK OVERCLOUD

The last step in deploying your Red Hat OpenStack Platform (RHOSP) overcloud in an OVS-DPDK
environment is to run the openstack overcloud deploy command. Inputs to the command include all of
the various overcloud templates and environment files that you constructed.

Prerequisites

Access to the undercloud host and credentials for the stack user.

You have performed all of the steps listed in the earlier procedures in this section and have
assembled all of the various heat templates and environment files to use as inputs for the
overcloud deploy command.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Collate the custom environment files and custom templates that you need for your overcloud
environment. This list includes the default heat template files provided with your director
installation and the custom files you created. Ensure that you have the paths to the following
files:

Your custom network definition file that contains the specifications for your OVS-DPDK
network on the overcloud, for example, network-data.yaml.
For more information, see Network definition file configuration options in the Installing and
managing Red Hat OpenStack Platform with director guide.

A roles file that contains the Controller and ComputeOvsDpdk roles that RHOSP director
uses to deploy your OVS-DPDK environment, and the images file that director uses to
determine where to obtain container images and how to store them.
Examples: roles_data_compute_ovsdpdk.yaml and overcloud_images.yaml.

For more information, see Section 10.2, “Generating roles and image files” .

One or more custom environment files that contain your customizations for the OVS-DPDK
environment. This also includes any firewall and MTU configurations.
Example: ovs-dpdk-overrides.yaml.

For more information, see:

Section 10.3, “Creating an environment file for your OVS-DPDK customizations” .

Section 10.4, “Configuring a firewall for security groups” .

Section 10.7, “Setting the MTU value for OVS-DPDK interfaces” .

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

104

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-network-vips-for-the-overcloud_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#ref_network-definition-file-configuration-options_overcloud_networking

The output file from provisioning your overcloud networks.
Example: overcloud-networks-deployed.yaml.

For more information, see Configuring and provisioning overcloud network definitions in the
Installing and managing Red Hat OpenStack Platform with director guide.

The output file from provisioning your overcloud VIPs.
Example: overcloud-vip-deployed.yaml.

For more information, see Configuring and provisioning network VIPs for the overcloud in
the Installing and managing Red Hat OpenStack Platform with director guide.

The output file from provisioning bare-metal nodes. This includes DPDK parameters for
node provisioning, such as OVS PMD parameters.
Example: overcloud-baremetal-deployed.yaml.

For more information, see:

Section 10.9, “Configuring DPDK parameters for node provisioning” .

Provisioning bare metal nodes for the overcloud in the Installing and managing Red Hat
OpenStack Platform with director guide.

Any other custom environment files.

4. Enter the openstack overcloud deploy command by carefully ordering the custom
environment files and custom templates that are inputs to the command.
The general rule is to specify any default heat template files first, followed by your custom
environment files and custom templates that contain custom configurations, such as overrides
to the default properties.

Follow this order for listing the inputs to the openstack overcloud deploy command:

a. Include your custom environment file that contains your custom NIC templates mapped to
each role after your network definition file.
Example: overcloud-baremetal-deployed.yaml, after network-data.yaml.

b. If you have an SR-IOV environment, and want to locate OVS-DPDK instances on the same
node, include the following environment files in your deployment script:

ML2/OVN

/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
ovn-dpdk.yaml

/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
ovn-sriov.yaml

ML2/OVS

/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
ovs-dpdk.yaml

/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-
sriov.yaml

NOTE

CHAPTER 10. CONFIGURING AN OVS-DPDK DEPLOYMENT

105

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-overcloud-network-definitions_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_configuring-and-provisioning-network-vips-for-the-overcloud_network_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

NOTE

Open Virtual Networking (OVN) is the default networking
mechanism driver in RHOSP. If you want to use OVN with distributed
virtual routing (DVR), you must include the /usr/share/openstack-
tripleo-heat-templates/environments/services/neutron-ovn-dvr-
ha.yaml file in the openstack overcloud deploy command. If you
want to use OVN without DVR, you must include the neutron-ovn-
ha.yaml file in the openstack overcloud deploy command, and set
the NeutronEnableDVR parameter to false. If you want to use OVN
with SR-IOV, you must include the environments/services/neutron-
ovn-sriov.yaml file as the last of the OVN environment files in the
openstack overcloud deploy command.

c. If you created any other custom environment files, such as the custom configuration values
for OVS-DPDK, for example, ovs-dpdk-overrides.yaml, include these environment files
after the roles data file.

Example

This excerpt from a sample openstack overcloud deploy command demonstrates the
proper ordering of the command’s inputs:

$ openstack overcloud deploy \
--log-file overcloud_deployment.log \
--templates /usr/share/openstack-tripleo-heat-templates/ \
--stack overcloud \
-n /home/stack/templates/network_data.yaml \
-r /home/stack/templates/roles_data_compute_ovsdpdk.yaml \
-e /home/stack/templates/overcloud-networks-deployed.yaml \
-e /home/stack/templates/overcloud-vip-deployed.yaml \
-e /home/stack/templates/overcloud-baremetal-deployed.yaml \
-e /home/stack/templates/overcloud-images.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/\
neutron-ovn-dpdk.yaml \
-e /home/stack/templates/ovs-dpdk-overrides.yaml \
 ...

5. Run the openstack overcloud deploy command.
When the overcloud creation is finished, the RHOSP director provides details to help you access
your overcloud.

Verification

Perform the steps in Validating your overcloud deployment in the Installing and managing Red
Hat OpenStack Platform with director guide.

Next steps

If you have configured a firewall, run the openstack port set command to disable the OVS
firewall driver for data plane interfaces:

$ openstack port set --no-security-group --disable-port-security ${PORT}

Additional resources

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

106

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_validating-your-overcloud-deployment_ironic_provisioning

Additional resources

Creating your overcloud in the Installing and managing Red Hat OpenStack Platform with
director guide

overcloud deploy in the Command line interface reference

10.11. CREATING A FLAVOR AND DEPLOYING AN INSTANCE FOR OVS-
DPDK

After you configure OVS-DPDK for your Red Hat OpenStack Platform deployment with NFV, you can
create a flavor, and deploy an instance using the following steps:

1. Create an aggregate group, and add relevant hosts for OVS-DPDK. Define metadata, for
example dpdk=true, that matches defined flavor metadata.

 # openstack aggregate create dpdk_group
 # openstack aggregate add host dpdk_group [compute-host]
 # openstack aggregate set --property dpdk=true dpdk_group

NOTE

Pinned CPU instances can be located on the same Compute node as unpinned
instances. For more information, see Configuring CPU pinning on Compute
nodes in Configuring the Compute service for instance creation .

2. Create a flavor.

openstack flavor create <flavor> --ram <MB> --disk <GB> --vcpus <#>

3. Set flavor properties. Note that the defined metadata, dpdk=true, matches the defined
metadata in the DPDK aggregate.

openstack flavor set <flavor> --property dpdk=true --property hw:cpu_policy=dedicated --
property hw:mem_page_size=1GB --property hw:emulator_threads_policy=isolate

For details about the emulator threads policy for performance improvements, see Configuring
emulator threads in Configuring the Compute service for instance creation .

4. Create the network.

openstack network create net1 --provider-physical-network tenant --provider-network-type
vlan --provider-segment <VLAN-ID>
openstack subnet create subnet1 --network net1 --subnet-range 192.0.2.0/24 --dhcp

5. Optional: If you use multiqueue with OVS-DPDK, set the hw_vif_multiqueue_enabled
property on the image that you want to use to create a instance:

openstack image set --property hw_vif_multiqueue_enabled=true <image>

6. Deploy an instance.

CHAPTER 10. CONFIGURING AN OVS-DPDK DEPLOYMENT

107

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_creating-your-overcloud_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/overcloud#overcloud_deploy
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_the_compute_service_for_instance_creation/assembly_configuring-compute-nodes-for-performance_compute-performance#assembly_configuring-cpu-pinning-on-compute-nodes_cpu-pinning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_the_compute_service_for_instance_creation/assembly_configuring-compute-nodes-for-performance_compute-performance#proc_configuring-emulator-threads_compute-performance

openstack server create --flavor <flavor> --image <glance image> --nic net-id=<network
ID> <server_name>

10.12. TROUBLESHOOTING THE OVS-DPDK CONFIGURATION

This section describes the steps to troubleshoot the OVS-DPDK configuration.

1. Review the bridge configuration, and confirm that the bridge has datapath_type=netdev.

ovs-vsctl list bridge br0
_uuid : bdce0825-e263-4d15-b256-f01222df96f3
auto_attach : []
controller : []
datapath_id : "00002608cebd154d"
datapath_type : netdev
datapath_version : "<built-in>"
external_ids : {}
fail_mode : []
flood_vlans : []
flow_tables : {}
ipfix : []
mcast_snooping_enable: false
mirrors : []
name : "br0"
netflow : []
other_config : {}
ports : [52725b91-de7f-41e7-bb49-3b7e50354138]
protocols : []
rstp_enable : false
rstp_status : {}
sflow : []
status : {}
stp_enable : false

2. Optionally, you can view logs for errors, such as if the container fails to start.

less /var/log/containers/neutron/openvswitch-agent.log

3. Confirm that the Poll Mode Driver CPU mask of the ovs-dpdk is pinned to the CPUs. In case of
hyper threading, use sibling CPUs.
For example, to check the sibling of CPU4, run the following command:

cat /sys/devices/system/cpu/cpu4/topology/thread_siblings_list
4,20

The sibling of CPU4 is CPU20, therefore proceed with the following command:

ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=0x100010

Display the status:

tuna -t ovs-vswitchd -CP
thread ctxt_switches pid SCHED_ rtpri affinity voluntary nonvoluntary cmd

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

108

3161 OTHER 0 6 765023 614 ovs-vswitchd
3219 OTHER 0 6 1 0 handler24
3220 OTHER 0 6 1 0 handler21
3221 OTHER 0 6 1 0 handler22
3222 OTHER 0 6 1 0 handler23
3223 OTHER 0 6 1 0 handler25
3224 OTHER 0 6 1 0 handler26
3225 OTHER 0 6 1 0 handler27
3226 OTHER 0 6 1 0 handler28
3227 OTHER 0 6 2 0 handler31
3228 OTHER 0 6 2 4 handler30
3229 OTHER 0 6 2 5 handler32
3230 OTHER 0 6 953538 431 revalidator29
3231 OTHER 0 6 1424258 976 revalidator33
3232 OTHER 0 6 1424693 836 revalidator34
3233 OTHER 0 6 951678 503 revalidator36
3234 OTHER 0 6 1425128 498 revalidator35
3235 OTHER 0 4 151123 51 pmd37
3236 OTHER 0 20 298967 48 pmd38
3164 OTHER 0 6 47575 0 dpdk_watchdog3
3165 OTHER 0 6 237634 0 vhost_thread1
3166 OTHER 0 6 3665 0 urcu2

CHAPTER 10. CONFIGURING AN OVS-DPDK DEPLOYMENT

109

CHAPTER 11. TUNING A RED HAT OPENSTACK PLATFORM
ENVIRONMENT

11.1. PINNING EMULATOR THREADS

Emulator threads handle interrupt requests and non-blocking processes for virtual machine hardware
emulation. These threads float across the CPUs that the guest uses for processing. If threads used for
the poll mode driver (PMD) or real-time processing run on these guest CPUs, you can experience
packet loss or missed deadlines.

You can separate emulator threads from VM processing tasks by pinning the threads to their own guest
CPUs, increasing performance as a result.

To improve performance, reserve a subset of host CPUs for hosting emulator threads.

Procedure

1. Deploy an overcloud with NovaComputeCpuSharedSet defined for a given role. The value of
NovaComputeCpuSharedSet applies to the cpu_shared_set parameter in the nova.conf file
for hosts within that role.

parameter_defaults:
 ComputeOvsDpdkParameters:
 NovaComputeCpuSharedSet: "0-1,16-17"
 NovaComputeCpuDedicatedSet: "2-15,18-31"

2. Create a flavor to build instances with emulator threads separated into a shared pool.

openstack flavor create --ram <size_mb> --disk <size_gb> --vcpus <vcpus> <flavor>

3. Add the hw:emulator_threads_policy extra specification, and set the value to share. Instances
created with this flavor will use the instance CPUs defined in the cpu_share_set parameter in
the nova.conf file.

openstack flavor set <flavor> --property hw:emulator_threads_policy=share

NOTE

You must set the cpu_share_set parameter in the nova.conf file to enable the share
policy for this extra specification. You should use heat for this preferably, as editing
nova.conf manually might not persist across redeployments.

Verification

1. Identify the host and name for a given instance.

openstack server show <instance_id>

2. Use SSH to log on to the identified host as tripleo-admin.

ssh tripleo-admin@compute-1
[compute-1]$ sudo virsh dumpxml instance-00001 | grep `'emulatorpin cpuset'`

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

110

11.2. CONFIGURING TRUST BETWEEN VIRTUAL AND PHYSICAL
FUNCTIONS

You can configure trust between physical functions (PFs) and virtual functions (VFs), so that VFs can
perform privileged actions, such as enabling promiscuous mode, or modifying a hardware address.

Prerequisites

An operational installation of Red Hat OpenStack Platform including director

Procedure

Complete the following steps to configure and deploy the overcloud with trust between physical and
virtual functions:

1. Add the NeutronPhysicalDevMappings parameter in the parameter_defaults section to link
between the logical network name and the physical interface.

parameter_defaults:
 NeutronPhysicalDevMappings:
 - sriov2:p5p2

2. Add the new property, trusted, to the SR-IOV parameters.

parameter_defaults:
 NeutronPhysicalDevMappings:
 - sriov2:p5p2
 NovaPCIPassthrough:
 - vendor_id: "8086"
 product_id: "1572"
 physical_network: "sriov2"
 trusted: "true"

NOTE

You must include double quotation marks around the value "true".

11.3. UTILIZING TRUSTED VF NETWORKS

1. Create a network of type vlan.

openstack network create trusted_vf_network --provider-network-type vlan \
 --provider-segment 111 --provider-physical-network sriov2 \
 --external --disable-port-security

2. Create a subnet.

openstack subnet create --network trusted_vf_network \
 --ip-version 4 --subnet-range 192.168.111.0/24 --no-dhcp \
 subnet-trusted_vf_network

3. Create a port. Set the vnic-type option to direct, and the binding-profile option to true.

CHAPTER 11. TUNING A RED HAT OPENSTACK PLATFORM ENVIRONMENT

111

openstack port create --network sriov111 \
--vnic-type direct --binding-profile trusted=true \
sriov111_port_trusted

4. Create an instance, and bind it to the previously-created trusted port.

openstack server create --image rhel --flavor dpdk --network internal --port
trusted_vf_network_port_trusted --config-drive True --wait rhel-dpdk-sriov_trusted

Verification

Confirm the trusted VF configuration on the hypervisor:

1. On the compute node that you created the instance, enter the following command:

ip link
7: p5p2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP mode
DEFAULT group default qlen 1000
 link/ether b4:96:91:1c:40:fa brd ff:ff:ff:ff:ff:ff
 vf 6 MAC fa:16:3e:b8:91:c2, vlan 111, spoof checking off, link-state auto, trust on,
query_rss off
 vf 7 MAC fa:16:3e:84:cf:c8, vlan 111, spoof checking off, link-state auto, trust off, query_rss
off

2. Verify that the trust status of the VF is trust on. The example output contains details of an
environment that contains two ports. Note that vf 6 contains the text trust on.

3. You can disable spoof checking if you set port_security_enabled: false in the Networking
service (neutron) network, or if you include the argument --disable-port-security when you run
the openstack port create command.

11.4. PREVENTING PACKET LOSS BY MANAGING RX-TX QUEUE SIZE

You can experience packet loss at high packet rates above 3.5 million packets per second (mpps) for
many reasons, such as:

a network interrupt

a SMI

packet processing latency in the Virtual Network Function

To prevent packet loss, increase the queue size from the default of 512 to a maximum of 1024.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

112

$ source ~/stackrc

3. Create a custom environment YAML file and under parameter_defaults add the following
definitions to increase the RX and TX queue size:

parameter_defaults:
 NovaLibvirtRxQueueSize: 1024
 NovaLibvirtTxQueueSize: 1024

4. Run the deployment command and include the core heat templates, other environment files,
the environment file that contains your RX and TX queue size changes:

Example

$ openstack overcloud deploy --templates \
-e <other_environment_files> \
-e /home/stack/my_tx-rx_queue_sizes.yaml

Verification

1. Observe the values for RX queue size and TX queue size in the nova.conf file.

$ egrep "^[rt]x_queue_size" /var/lib/config-data/puppet-generated/\
nova_libvirt/etc/nova/nova.conf

You should see the following:

rx_queue_size=1024
tx_queue_size=1024

2. Check the values for RX queue size and TX queue size in the VM instance XML file generated by
libvirt on the Compute host:

a. Create a new instance.

b. Obtain the Compute host and and instance name:

$ openstack server show testvm-queue-sizes -c OS-EXT-SRV-ATTR:\
hypervisor_hostname -c OS-EXT-SRV-ATTR:instance_name

Sample output

You should see output similar to the following:

+-------------------------------------+------------------------------------+
| Field | Value |
+-------------------------------------+------------------------------------+
| OS-EXT-SRV-ATTR:hypervisor_hostname | overcloud-novacompute-1.sales |
| OS-EXT-SRV-ATTR:instance_name | instance-00000059 |
+-------------------------------------+------------------------------------+

c. Log into the Compute host and dump the instance definition.

CHAPTER 11. TUNING A RED HAT OPENSTACK PLATFORM ENVIRONMENT

113

Example

$ podman exec nova_libvirt virsh dumpxml instance-00000059

Sample output

You should see output similar to the following:

...
 <interface type='vhostuser'>
 <mac address='56:48:4f:4d:5e:6f'/>
 <source type='unix' path='/tmp/vhost-user1' mode='server'/>
 <model type='virtio'/>
 <driver name='vhost' rx_queue_size='1024' tx_queue_size='1024' />
 <address type='pci' domain='0x0000' bus='0x00' slot='0x10' function='0x0'/>
 </interface>
...

11.5. CONFIGURING A NUMA-AWARE VSWITCH

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

Before you implement a NUMA-aware vSwitch, examine the following components of your hardware
configuration:

The number of physical networks.

The placement of PCI cards.

The physical architecture of the servers.

Memory-mapped I/O (MMIO) devices, such as PCIe NICs, are associated with specific NUMA nodes.
When a VM and the NIC are on different NUMA nodes, there is a significant decrease in performance. To
increase performance, align PCIe NIC placement and instance processing on the same NUMA node.

Use this feature to ensure that instances that share a physical network are located on the same NUMA
node. To optimize utilization of datacenter hardware, you must use multiple physnets.

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

114

https://access.redhat.com/support/offerings/production/scope_moredetail

WARNING

To configure NUMA-aware networks for optimal server utilization, you must
understand the mapping of the PCIe slot and the NUMA node. For detailed
information on your specific hardware, refer to your vendor’s documentation. If you
fail to plan or implement your NUMA-aware vSwitch correctly, you can cause the
servers to use only a single NUMA node.

To prevent a cross-NUMA configuration, place the VM on the correct NUMA node, by providing the
location of the NIC to Nova.

Prerequisites

You have enabled the filter NUMATopologyFilter.

Procedure

1. Set a new NeutronPhysnetNUMANodesMapping parameter to map the physical network to
the NUMA node that you associate with the physical network.

2. If you use tunnels, such as VxLAN or GRE, you must also set the NeutronTunnelNUMANodes
parameter.

parameter_defaults:
 NeutronPhysnetNUMANodesMapping: {<physnet_name>: [<NUMA_NODE>]}
 NeutronTunnelNUMANodes: <NUMA_NODE>,<NUMA_NODE>

Example

Here is an example with two physical networks tunneled to NUMA node 0:

one project network associated with NUMA node 0

one management network without any affinity

parameter_defaults:
 NeutronBridgeMappings:
 - tenant:br-link0
 NeutronPhysnetNUMANodesMapping: {tenant: [1], mgmt: [0,1]}
 NeutronTunnelNUMANodes: 0

In this example, assign the physnet of the device named eno2 to NUMA number 0.

ethtool -i eno2
bus-info: 0000:18:00.1

cat /sys/devices/pci0000:16/0000:16:02.0/0000:18:00.1/numa_node
0

Observe the physnet settings in the example heat template:

CHAPTER 11. TUNING A RED HAT OPENSTACK PLATFORM ENVIRONMENT

115

NeutronBridgeMappings: 'physnet1:br-physnet1'
NeutronPhysnetNUMANodesMapping: {physnet1: [0] }

- type: ovs_user_bridge
 name: br-physnet1
 mtu: 9000
 members:
 - type: ovs_dpdk_port
 name: dpdk2
 members:
 - type: interface
 name: eno2

Verification

Follow these steps to test your NUMA-aware vSwitch:

1. Observe the configuration in the file /var/lib/config-data/puppet-
generated/nova_libvirt/etc/nova/nova.conf:

[neutron_physnet_tenant]
numa_nodes=1
[neutron_tunnel]
numa_nodes=1

2. Confirm the new configuration with the lscpu command:

$ lscpu

3. Launch a VM with the NIC attached to the appropriate network.

Additional resources

Discovering your NUMA node topology

Section 11.6, “Known limitations for NUMA-aware vSwitches”

11.6. KNOWN LIMITATIONS FOR NUMA-AWARE VSWITCHES

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

This section lists the constraints for implementing a NUMA-aware vSwitch in a Red Hat OpenStack
Platform (RHOSP) network functions virtualization infrastructure (NFVi).

You cannot start a VM that has two NICs connected to physnets on different NUMA nodes, if
you did not specify a two-node guest NUMA topology.

You cannot start a VM that has one NIC connected to a physnet and another NIC connected to

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

116

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/hardware-req-nfv_rhosp-nfv#discover-numa-node-topo_hw-req-nfv
https://access.redhat.com/support/offerings/production/scope_moredetail

You cannot start a VM that has one NIC connected to a physnet and another NIC connected to
a tunneled network on different NUMA nodes, if you did not specify a two-node guest NUMA
topology.

You cannot start a VM that has one vhost port and one VF on different NUMA nodes, if you did
not specify a two-node guest NUMA topology.

NUMA-aware vSwitch parameters are specific to overcloud roles. For example, Compute node 1
and Compute node 2 can have different NUMA topologies.

If the interfaces of a VM have NUMA affinity, ensure that the affinity is for a single NUMA node
only. You can locate any interface without NUMA affinity on any NUMA node.

Configure NUMA affinity for data plane networks, not management networks.

NUMA affinity for tunneled networks is a global setting that applies to all VMs.

11.7. QUALITY OF SERVICE (QOS) IN NFVI ENVIRONMENTS

You can offer varying service levels for VM instances by using quality of service (QoS) policies to apply
rate limits to egress and ingress traffic on Red Hat OpenStack Platform (RHOSP) networks in a network
functions virtualization infrastructure (NFVi).

In NFVi environments, QoS support is limited to the following rule types:

minimum bandwidth on SR-IOV, if supported by vendor.

bandwidth limit on SR-IOV and OVS-DPDK egress interfaces.

Additional resources

Configuring Quality of Service (QoS) policies

11.8. CREATING AN HCI OVERCLOUD THAT USES DPDK

You can deploy your NFV infrastructure with hyperconverged nodes, by co-locating and configuring
Compute and Ceph Storage services for optimized resource usage.

For more information about hyper-converged infrastructure (HCI), see Deploying a hyperconverged
infrastructure.

The sections that follow provide examples of various configurations.

11.8.1. Example NUMA node configuration

For increased performance, place the tenant network and Ceph object service daemon (OSD)s in one
NUMA node, such as NUMA-0, and the VNF and any non-NFV VMs in another NUMA node, such as
NUMA-1.

CPU allocation:

NUMA-0 NUMA-1

Number of Ceph OSDs * 4 HT Guest vCPU for the VNF and non-NFV VMs

CHAPTER 11. TUNING A RED HAT OPENSTACK PLATFORM ENVIRONMENT

117

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/config-qos-policies_rhosp-network
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_a_hyperconverged_infrastructure/index

1

2

DPDK lcore - 2 HT DPDK lcore - 2 HT

DPDK PMD - 2 HT DPDK PMD - 2 HT

NUMA-0 NUMA-1

Example of CPU allocation:

 NUMA-0 NUMA-1

Ceph OSD 32,34,36,38,40,42,76,78,80,82,84
,86

DPDK-lcore 0,44 1,45

DPDK-pmd 2,46 3,47

nova 5,7,9,11,13,15,17,19,21,23,25,27,29,31,
33,35,37,39,41,43,49,51,53,55,57,
59,61,63,65,67,69,71,73,75,77,79,
81,83,85,87

11.8.2. Example Ceph configuration file

This section describes a sample Red Hat Ceph Storage configuration file. You can model your
configuration file on this one, by substituting values that are appropriate for your Red Hat OpenStack
Platform environment.

Assign CPU resources for Ceph Object Storage Daemons (OSDs) processes with the following
parameters. The values shown here are examples. Adjust the values as appropriate based on your
workload and hardware.

osd_numa_node: sets the affinity of Ceph processes to a NUMA node, for example, 0 for NUMA-
0, 1 for NUMA-1, and so on. -1 sets the affinity to no NUMA node.

In this example, osd_numa_node is set to NUMA-0. As shown in Section 11.8.3, “Example DPDK
configuration file”, IsolCpusList contains odd numbered CPUs on NUMA-1, after elements of
OvsPmdCoreList are removed. Because the latency-sensitive Compute service (nova) workload is
hosted on NUMA-1, you must isolate the Ceph workload on NUMA-0. This example assumes that
both the disk controllers and network interfaces for the stroage network are on NUMA-0.

osd_memory_target_autotune: when set to true, the OSD daemons adjust their memory
consumption based on the osd_memory_target configuration option.

[osd]
osd_numa_node = 0 # 1
osd_memory_target_autotune = true # 2

[mgr]
mgr/cephadm/autotune_memory_target_ratio = 0.2 # 3

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

118

3

1

2

3

4

autotune_memory_target_ratio: used to allocate memory for OSDs. The default is 0.7.

70% of the total RAM in the system is the starting point, from which any memory consumed by non-
autotuned Ceph daemons are subtracted. When osd_memory_target_autotune is true for all
OSDs, the remaining memory is divided by the OSDs. For HCI deployments the
mgr/cephadm/autotune_memory_target_ratio can be set to 0.2 so that more memory is available
for the Compute service. Adjust as needed to ensure each OSD has at least 5 GB of memory.

Additional resources

Section 11.8.6, “Deploying the HCI-DPDK overcloud”

11.8.3. Example DPDK configuration file

KernelArgs: To calculate hugepages, subtract the value of the NovaReservedHostMemory
parameter from total memory.

IsolCpusList: Assign a set of CPU cores that you want to isolate from the host processes with this
parameter. Add the value of the OvsPmdCoreList parameter to the value of the
NovaComputeCpuDedicatedSet parameter to calculate the value for the IsolCpusList
parameter.

OvsDpdkSocketMemory: Specify the amount of memory in MB to pre-allocate from the hugepage
pool per NUMA node with the OvsDpdkSocketMemory parameter. For more information about
calculating OVS-DPDK parameters, see OVS-DPDK parameters.

OvsPmdCoreList: Specify the CPU cores that are used for the DPDK poll mode drivers (PMD) with
this parameter. Choose CPU cores that are associated with the local NUMA nodes of the DPDK
interfaces. Allocate 2 HT sibling threads for each NUMA node to calculate the value for the
OvsPmdCoreList parameter.

11.8.4. Example nova configuration file

parameter_defaults:
 ComputeHCIParameters:
 KernelArgs: "default_hugepagesz=1GB hugepagesz=1G hugepages=240 intel_iommu=on
iommu=pt # 1

isolcpus=2,46,3,47,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,49,51,53,55,57,59,61,63,
65,67,69,71,73,75,77,79,81,83,85,87"
 TunedProfileName: "cpu-partitioning"
 IsolCpusList: # 2
 ”2,46,3,47,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,49,51,
 53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87"
 VhostuserSocketGroup: hugetlbfs
 OvsDpdkSocketMemory: "4096,4096" # 3
 OvsDpdkMemoryChannels: "4"

 OvsPmdCoreList: "2,46,3,47" # 4

parameter_defaults:
 ComputeHCIExtraConfig:

CHAPTER 11. TUNING A RED HAT OPENSTACK PLATFORM ENVIRONMENT

119

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/plan-ovs-dpdk-deploy_rhosp-nfv#ovsdpdk-parms_plndpdk-nfv

1

2

3

NovaReservedHugePages: Pre-allocate memory in MB from the hugepage pool with the
NovaReservedHugePages parameter. It is the same memory total as the value for the
OvsDpdkSocketMemory parameter.

NovaReservedHostMemory: Reserve memory in MB for tasks on the host with the
NovaReservedHostMemory parameter. Use the following guidelines to calculate the amount of
memory that you must reserve:

5 GB for each OSD.

0.5 GB overhead for each VM.

4GB for general host processing. Ensure that you allocate sufficient memory to prevent
potential performance degradation caused by cross-NUMA OSD operation.

NovaComputeCpuDedicatedSet: List the CPUs not found in OvsPmdCoreList, or
Ceph_osd_docker_cpuset_cpus with the NovaComputeCpuDedicatedSet parameter. The
CPUs must be in the same NUMA node as the DPDK NICs.

11.8.5. Recommended configuration for HCI-DPDK deployments

Table 11.1. Tunable parameters for HCI deployments

Block Device Type OSDs, Memory, vCPUs per device

NVMe Memory : 5GB per OSD
OSDs per device: 4
vCPUs per device: 3

SSD Memory : 5GB per OSD
OSDs per device: 1
vCPUs per device: 4

HDD Memory : 5GB per OSD
OSDs per device: 1
vCPUs per device: 1

Use the same NUMA node for the following functions:

Disk controller

Storage networks

 nova::cpu_allocation_ratio: 16 # 2
 NovaReservedHugePages: # 1
 - node:0,size:1GB,count:4
 - node:1,size:1GB,count:4
 NovaReservedHostMemory: 123904 # 2
 # All left over cpus from NUMA-1
 NovaComputeCpuDedicatedSet: # 3
 ['5','7','9','11','13','15','17','19','21','23','25','27','29','31','33','35','37','39','41','43','49','51','|
 53','55','57','59','61','63','65','67','69','71','73','75','77','79','81','83','85','87

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

120

Storage CPU and memory

Allocate another NUMA node for the following functions of the DPDK provider network:

NIC

PMD CPUs

Socket memory

11.8.6. Deploying the HCI-DPDK overcloud

Follow these steps to deploy a hyperconverged overcloud that uses DPDK.

Prerequisites

Red Hat OpenStack Platform (RHOSP) 17.1 or later.

The latest version of Red Hat Ceph Storage 6.1.

Procedure

1. Generate the roles_data.yaml file for the Controller and the ComputeHCIOvsDpdk roles.

$ openstack overcloud roles generate -o ~/<templates>/roles_data.yaml \
Controller ComputeHCIOvsDpdk

2. Create and configure a new flavor with the openstack flavor create and openstack flavor set
commands.

3. Deploy Ceph by using RHOSP director and the Ceph configuration file.

Example

$ openstack overcloud ceph deploy --config initial-ceph.conf

4. Deploy the overcloud with the custom roles_data.yaml file that you generated.

Example

$ openstack overcloud deploy --templates \
 --timeout 360 \
 -r ~/<templates>/roles_data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/\
 cephadm/cephadm-rbd-only.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/neutron-ovs-
dpdk.yaml \
 -e ~/<templates>/<custom environment file>

IMPORTANT

CHAPTER 11. TUNING A RED HAT OPENSTACK PLATFORM ENVIRONMENT

121

IMPORTANT

This example deploys Ceph RBD (block storage) without Ceph RGW (object
storage). To include RGW in the deployment, use cephadm.yaml instead of
cephadm-rbd-only.yaml.

Additional resources

Composable services and custom roles in Customizing your Red Hat OpenStack Platform
deployment

Section 11.8.2, “Example Ceph configuration file”

Configuring the Red Hat Ceph Storage cluster in Deploying Red Hat Ceph Storage and Red Hat
OpenStack Platform together with director.

11.9. SYNCHRONIZE YOUR COMPUTE NODES WITH TIMEMASTER

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

Use time protocols to maintain a consistent timestamp between systems.

Red Hat OpenStack Platform (RHOSP) includes support for Precision Time Protocol (PTP) and
Network Time Protocol (NTP).

You can use NTP to synchronize clocks in your network in the millisecond range, and you can use PTP to
synchronize clocks to a higher, sub-microsecond, accuracy. An example use case for PTP is a virtual
radio access network (vRAN) that contains multiple antennas which provide higher throughput with
more risk of interference.

Timemaster is a program that uses ptp4l and phc2sys in combination with chronyd or ntpd to
synchronize the system clock to NTP and PTP time sources. The phc2sys and ptp4l programs use
Shared Memory Driver (SHM) reference clocks to send PTP time to chronyd or ntpd, which compares
the time sources to synchronize the system clock.

The implementation of the PTPv2 protocol in the Red Hat Enterprise Linux (RHEL) kernel is linuxptp.

The linuxptp package includes the ptp4l program for PTP boundary clock and ordinary clock
synchronization, and the phc2sys program for hardware time stamping. For more information about
PTP, see: Introduction to PTP in the Red Hat Enterprise Linux System Administrator’s Guide .

Chrony is an implementation of the NTP protocol. The two main components of Chrony are chronyd,
which is the Chrony daemon, and chronyc which is the Chrony command line interface.

For more information about Chrony, see Using the Chrony suite to configure NTP in the Red Hat
Enterprise Linux System Administrator’s Guide.

The following image is an overview of a packet journey in a PTP configuration.

Figure 11.1. PTP packet journey overview

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

122

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_red_hat_ceph_storage_and_red_hat_openstack_platform_together_with_director/assembly_deployed_ceph_storage_cluster_deployingcontainerizedrhcs
https://access.redhat.com/support/offerings/production/scope_moredetail
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#sec-Introduction_to_PTP
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/configuring-time-synchronization_configuring-basic-system-settings#using-chrony-to-configure-ntp_configuring-time-synchronization

Figure 11.1. PTP packet journey overview

The following image is a overview of a packet journey in the Compute node in a PTP configuration.

Figure 11.2. PTP packet journey detail

11.9.1. Timemaster hardware requirements

Ensure that you have the following hardware functionality:

You have configured the NICs with hardware timestamping capability.

You have configured the switch to allow multicast packets.

You have configured the switch to also function as a boundary or transparent clock.

You can verify the hardware timestamping with the command ethtool -T <device>.

$ ethtool -T p5p1
Time stamping parameters for p5p1:

CHAPTER 11. TUNING A RED HAT OPENSTACK PLATFORM ENVIRONMENT

123

Capabilities:
 hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
 software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
 hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
 software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)
 software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
 hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 6
Hardware Transmit Timestamp Modes:
 off (HWTSTAMP_TX_OFF)
 on (HWTSTAMP_TX_ON)
Hardware Receive Filter Modes:
 none (HWTSTAMP_FILTER_NONE)
 ptpv1-l4-sync (HWTSTAMP_FILTER_PTP_V1_L4_SYNC)
 ptpv1-l4-delay-req (HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ)
 ptpv2-event (HWTSTAMP_FILTER_PTP_V2_EVENT)

You can use either a transparent or boundary clock switch for better accuracy and less latency. You can
use an uplink switch for the boundary clock. The boundary clock switch uses an 8-bit correctionField on
the PTPv2 header to correct delay variations, and ensure greater accuracy on the end clock. In a
transparent clock switch, the end clock calculates the delay variation, not the correctionField.

11.9.2. Configuring Timemaster

The default Red Hat OpenStack Platform (RHOSP) service for time synchronization in overcloud nodes
is OS::TripleO::Services::Timesync.

Known limitations

Enable NTP for virtualized controllers, and enable PTP for bare metal nodes.

Virtio interfaces are incompatible, because ptp4l requires a compatible PTP device.

Use a physical function (PF) for a VM with SR-IOV. A virtual function (VF) does not expose the
registers necessary for PTP, and a VM uses kvm_ptp to calculate time.

High Availability (HA) interfaces with multiple sources and multiple network paths are
incompatible.

Procedure

1. To enable the Timemaster service on the nodes that belong to a role that you choose, replace
the line that contains OS::TripleO::Services::Timesync with the line
OS::TripleO::Services::TimeMaster in the roles_data.yaml file section for that role.

2. Configure the heat parameters for the compute role that you use.

3. Include the new environment file in the openstack overcloud deploy command with any other

#- OS::TripleO::Services::Timesync
- OS::TripleO::Services::TimeMaster

#Example
ComputeSriovParameters:
 PTPInterfaces: ‘0:eno1,1:eno2’
 PTPMessageTransport: ‘UDPv4’

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

124

3. Include the new environment file in the openstack overcloud deploy command with any other
environment files that are relevant to your environment:

$ openstack overcloud deploy \
--templates \

…
-e <existing_overcloud_environment_files> \
-e <new_environment_file1> \
-e <new_environment_file2> \
…

Replace <existing_overcloud_environment_files> with the list of environment files that are
part of your existing deployment.

Replace <new_environment_file> with the new environment file or files that you want to
include in the overcloud deployment process.

Verification

Use the command phc_ctl, installed with ptp4linux, to query the NIC hardware clock.

phc_ctl <clock_name> get
phc_ctl <clock_name> cmp

11.9.3. Example timemaster configuration

$ cat /etc/timemaster.conf
Configuration file for timemaster

#[ntp_server ntp-server.local]
#minpoll 4
#maxpoll 4

[ptp_domain 0]
interfaces eno1
#ptp4l_setting network_transport l2
#delay 10e-6

[timemaster]
ntp_program chronyd

[chrony.conf]
#include /etc/chrony.conf
server clock.redhat.com iburst minpoll 6 maxpoll 10

[ntp.conf]
includefile /etc/ntp.conf

[ptp4l.conf]
#includefile /etc/ptp4l.conf
network_transport L2

[chronyd]
path /usr/sbin/chronyd

CHAPTER 11. TUNING A RED HAT OPENSTACK PLATFORM ENVIRONMENT

125

[ntpd]
path /usr/sbin/ntpd
options -u ntp:ntp -g

[phc2sys]
path /usr/sbin/phc2sys
#options -w

[ptp4l]
path /usr/sbin/ptp4l
#options -2 -i eno1

11.9.4. Example timemaster operation

$ systemctl status timemaster
● timemaster.service - Synchronize system clock to NTP and PTP time sources
 Loaded: loaded (/usr/lib/systemd/system/timemaster.service; enabled; vendor preset: disabled)
 Active: active (running) since Tue 2020-08-25 19:10:18 UTC; 2min 6s ago
 Main PID: 2573 (timemaster)
 Tasks: 6 (limit: 357097)
 Memory: 5.1M
 CGroup: /system.slice/timemaster.service
 ├─2573 /usr/sbin/timemaster -f /etc/timemaster.conf
 ├─2577 /usr/sbin/chronyd -n -f /var/run/timemaster/chrony.conf
 ├─2582 /usr/sbin/ptp4l -l 5 -f /var/run/timemaster/ptp4l.0.conf -H -i eno1
 ├─2583 /usr/sbin/phc2sys -l 5 -a -r -R 1.00 -z /var/run/timemaster/ptp4l.0.socket -t [0:eno1] -n
0 -E ntpshm -M 0
 ├─2587 /usr/sbin/ptp4l -l 5 -f /var/run/timemaster/ptp4l.1.conf -H -i eno2
 └─2588 /usr/sbin/phc2sys -l 5 -a -r -R 1.00 -z /var/run/timemaster/ptp4l.1.socket -t [0:eno2] -n
0 -E ntpshm -M 1

Aug 25 19:11:53 computesriov-0 ptp4l[2587]: [152.562] [0:eno2] selected local clock
e4434b.fffe.4a0c24 as best master

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

126

CHAPTER 12. ENABLING RT-KVM FOR NFV WORKLOADS
To facilitate installing and configuring Red Hat Enterprise Linux Real Time KVM (RT-KVM), Red Hat
OpenStack Platform provides the following features:

A real-time Compute node role that provisions Red Hat Enterprise Linux for real-time.

The additional RT-KVM kernel module.

Automatic configuration of the Compute node.

12.1. PLANNING FOR YOUR RT-KVM COMPUTE NODES

When planning for RT-KVM Compute nodes, ensure that the following tasks are completed:

You must use Red Hat certified servers for your RT-KVM Compute nodes.
For more information, see Red Hat Enterprise Linux for Real Time certified servers .

Register your undercloud and attach a valid Red Hat OpenStack Platform subscription.
For more information, see: Registering the undercloud and attaching subscriptions in Installing
and managing Red Hat OpenStack Platform with director.

Enable the repositories that are required for the undercloud, such as the rhel-9-server-nfv-
rpms repository for RT-KVM, and update the system packages to the latest versions.

NOTE

You need a separate subscription to a Red Hat OpenStack Platform for Real
Time SKU before you can access this repository.

For more information, see Enabling repositories for the undercloud in Installing and managing
Red Hat OpenStack Platform with director.

Building the real-time image

1. Install the libguestfs-tools package on the undercloud to get the virt-customize tool:

(undercloud) [stack@undercloud-0 ~]$ sudo dnf install libguestfs-tools

IMPORTANT

If you install the libguestfs-tools package on the undercloud, disable
iscsid.socket to avoid port conflicts with the tripleo_iscsid service on the
undercloud:

$ sudo systemctl disable --now iscsid.socket

2. Extract the images:

(undercloud) [stack@undercloud-0 ~]$ tar -xf /usr/share/rhosp-director-images/overcloud-
hardened-uefi-full-17.1.x86_64.tar
(undercloud) [stack@undercloud-0 ~]$ tar -xf /usr/share/rhosp-director-images/ironic-python-

CHAPTER 12. ENABLING RT-KVM FOR NFV WORKLOADS

127

https://access.redhat.com/ecosystem/search/#/ecosystem/Red Hat Enterprise Linux?sort=sortTitle asc&certifications=Red Hat Enterprise Linux for Real Time 7&category=Server
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_preparing-for-director-installation#proc_registering-the-undercloud-and-attaching-subscriptions_preparing-for-director-installation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_preparing-for-director-installation#proc_enabling-repositories-for-the-undercloud_preparing-for-director-installation

agent-17.1.x86_64.tar

3. Copy the default image:

(undercloud) [stack@undercloud-0 ~]$ cp overcloud-hardened-uefi-full.qcow2 overcloud-
realtime-compute.qcow2

4. Register your image to enable Red Hat repositories relevant to your customizations. Replace
[username] and [password] with valid credentials in the following example.

virt-customize -a overcloud-realtime-compute.qcow2 --run-command \
'subscription-manager register --username=[username] --password=[password]' \
subscription-manager release --set 9.0

NOTE

For security, you can remove credentials from the history file if they are used on
the command prompt. You can delete individual lines in history using the history
-d command followed by the line number.

5. Find a list of pool IDs from your account’s subscriptions, and attach the appropriate pool ID to
your image.

sudo subscription-manager list --all --available | less
...
virt-customize -a overcloud-realtime-compute.qcow2 --run-command \
'subscription-manager attach --pool [pool-ID]'

6. Add the repositories necessary for Red Hat OpenStack Platform with NFV.

virt-customize -a overcloud-realtime-compute.qcow2 --run-command \
'sudo subscription-manager repos --enable=rhel-9-for-x86_64-baseos-eus-rpms \
--enable=rhel-9-for-x86_64-appstream-eus-rpms \
--enable=rhel-9-for-x86_64-highavailability-eus-rpms \
--enable=ansible-2.9-for-rhel-9-x86_64-rpms \
--enable=rhel-9-for-x86_64-nfv-rpms
--enable=fast-datapath-for-rhel-9-x86_64-rpms'

7. Create a script to configure real-time capabilities on the image.

(undercloud) [stack@undercloud-0 ~]$ cat <<'EOF' > rt.sh
 #!/bin/bash

 set -eux

 dnf -v -y --setopt=protected_packages= erase kernel.$(uname -m)
 dnf -v -y install kernel-rt kernel-rt-kvm tuned-profiles-nfv-host
 grubby --set-default /boot/vmlinuz*rt*
 EOF

8. Run the script to configure the real-time image:

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

128

(undercloud) [stack@undercloud-0 ~]$ virt-customize -a overcloud-realtime-compute.qcow2 -
v --run rt.sh 2>&1 | tee virt-customize.log

NOTE

If you see the following line in the rt.sh script output, "grubby fatal error:
unable to find a suitable template", you can ignore this error.

9. Examine the virt-customize.log file that resulted from the previous command, to check that
the packages installed correctly using the rt.sh script .

(undercloud) [stack@undercloud-0 ~]$ cat virt-customize.log | grep Verifying

 Verifying : kernel-3.10.0-957.el7.x86_64 1/1
 Verifying : 10:qemu-kvm-tools-rhev-2.12.0-18.el7_6.1.x86_64 1/8
 Verifying : tuned-profiles-realtime-2.10.0-6.el7_6.3.noarch 2/8
 Verifying : linux-firmware-20180911-69.git85c5d90.el7.noarch 3/8
 Verifying : tuned-profiles-nfv-host-2.10.0-6.el7_6.3.noarch 4/8
 Verifying : kernel-rt-kvm-3.10.0-957.10.1.rt56.921.el7.x86_64 5/8
 Verifying : tuna-0.13-6.el7.noarch 6/8
 Verifying : kernel-rt-3.10.0-957.10.1.rt56.921.el7.x86_64 7/8
 Verifying : rt-setup-2.0-6.el7.x86_64 8/8

10. Relabel SELinux:

(undercloud) [stack@undercloud-0 ~]$ virt-customize -a overcloud-realtime-compute.qcow2 -
-selinux-relabel

11. Extract vmlinuz and initrd:

(undercloud) [stack@undercloud-0 ~]$ mkdir image
(undercloud) [stack@undercloud-0 ~]$ guestmount -a overcloud-realtime-compute.qcow2 -i -
-ro image
(undercloud) [stack@undercloud-0 ~]$ cp image/boot/vmlinuz-3.10.0-
862.rt56.804.el7.x86_64 ./overcloud-realtime-compute.vmlinuz
(undercloud) [stack@undercloud-0 ~]$ cp image/boot/initramfs-3.10.0-
862.rt56.804.el7.x86_64.img ./overcloud-realtime-compute.initrd
(undercloud) [stack@undercloud-0 ~]$ guestunmount image

NOTE

The software version in the vmlinuz and initramfs filenames vary with the kernel
version.

12. Upload the image:

(undercloud) [stack@undercloud-0 ~]$ openstack overcloud image upload --update-existing -
-os-image-name overcloud-realtime-compute.qcow2

You now have a real-time image you can use with the ComputeOvsDpdkRT composable role on your
selected Compute nodes.

CHAPTER 12. ENABLING RT-KVM FOR NFV WORKLOADS

129

Modifying BIOS settings on RT-KVM Compute nodes

To reduce latency on your RT-KVM Compute nodes, disable all options for the following parameters in
your Compute node BIOS settings:

Power Management

Hyper-Threading

CPU sleep states

Logical processors

12.2. CONFIGURING OVS-DPDK WITH RT-KVM

12.2.1. Designating nodes for Real-time Compute

To designate nodes for Real-time Compute, create a new role file to configure the Real-time Compute
role, and configure the bare-metal nodes with a Real-time Compute resource class to tag the Compute
nodes for real-time.

NOTE

The following procedure applies to new overcloud nodes that you have not yet
provisioned. To assign a resource class to an existing overcloud node that has already
been provisioned, scale down the overcloud to unprovision the node, then scale up the
overcloud to reprovision the node with the new resource class assignment. For more
information, see Scaling overcloud nodes in Installing and managing Red Hat OpenStack
Platform with director.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

[stack@director ~]$ source ~/stackrc

3. Based on the /usr/share/openstack-tripleo-heat-templates/environments/compute-real-
time-example.yaml file, create a compute-real-time.yaml environment file that sets the
parameters for the ComputeRealTime role.

4. Generate a new roles data file named roles_data_rt.yaml that includes the ComputeRealTime
role, along with any other roles that you need for the overcloud. The following example
generates the roles data file roles_data_rt.yaml, which includes the roles Controller, Compute,
and ComputeRealTime:

(undercloud)$ openstack overcloud roles generate \
-o /home/stack/templates/roles_data_rt.yaml \
ComputeRealTime Compute Controller

5. Update the roles_data_rt.yaml file for the ComputeRealTime role:

###

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

130

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_scaling-overcloud-nodes

Role: ComputeRealTime
###
- name: ComputeRealTime
 description: |
 Real Time Compute Node role
 CountDefault: 1
 # Create external Neutron bridge
 tags:
 - compute
 - external_bridge
 networks:
 InternalApi:
 subnet: internal_api_subnet
 Tenant:
 subnet: tenant_subnet
 Storage:
 subnet: storage_subnet
 HostnameFormatDefault: '%stackname%-computert-%index%'
 deprecated_nic_config_name: compute-rt.yaml

6. Register the ComputeRealTime nodes for the overcloud by adding them to your node definition
template: node.json or node.yaml.
For more information, see Registering nodes for the overcloud in Installing and managing Red
Hat OpenStack Platform with director.

7. Inspect the node hardware:

(undercloud)$ openstack overcloud node introspect --all-manageable --provide

For more information, see Creating an inventory of the bare-metal node hardware in Installing
and managing Red Hat OpenStack Platform with director.

8. Tag each bare-metal node that you want to designate for ComputeRealTime with a custom
ComputeRealTime resource class:

(undercloud)$ openstack baremetal node set \
 --resource-class baremetal.RTCOMPUTE <node>

Replace <node> with the name or UUID of the bare-metal node.

9. Add the ComputeRealTime role to your node definition file, overcloud-baremetal-
deploy.yaml, and define any predictive node placements, resource classes, network topologies,
or other attributes that you want to assign to your nodes:

- name: Controller
 count: 3
 ...
- name: Compute
 count: 3
 ...
- name: ComputeRealTime
 count: 1
 defaults:

CHAPTER 12. ENABLING RT-KVM FOR NFV WORKLOADS

131

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_registering-nodes-for-the-overcloud_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#assembly_creating-an-inventory-of-the-bare-metal-node-hardware_ironic_provisioning

 resource_class: baremetal.RTCOMPUTE
 network_config:
 template: /home/stack/templates/nic-config/<role_topology_file>

Replace <role_topology_file> with the name of the topology file to use for the
ComputeRealTime role, for example, myRoleTopology.j2. You can reuse an existing
network topology or create a new custom network interface template for the role.
For more information, see Defining custom network interface templates in Installing and
managing Red Hat OpenStack Platform with director. To use the default network definition
settings, do not include network_config in the role definition.

For more information about the properties you can use to configure node attributes in your
node definition file, see Bare-metal node provisioning attributes in Installing and managing
Red Hat OpenStack Platform with director.

For an example node definition file, see Example node definition file in Installing and
managing Red Hat OpenStack Platform with director.

10. Create the following Ansible playbook to configure the kernel during the node provisioning, and
save the playbook as /home/stack/templates/fix_rt_kernel.yaml:

RealTime KVM fix until BZ #2122949 is closed-
- name: Fix RT Kernel
 hosts: allovercloud
 any_errors_fatal: true
 gather_facts: false
 vars:
 reboot_wait_timeout: 900
 pre_tasks:
 - name: Wait for provisioned nodes to boot
 wait_for_connection:
 timeout: 600
 delay: 10
 tasks:
 - name: Fix bootloader entry
 become: true
 shell: |-
 set -eux
 new_entry=$(grep saved_entry= /boot/grub2/grubenv | sed -e s/saved_entry=//)
 source /etc/default/grub
 sed -i "s/options.*/options root=$GRUB_DEVICE ro $GRUB_CMDLINE_LINUX
$GRUB_CMDLINE_LINUX_DEFAULT/" /boot/loader/entries/$(</etc/machine-
id)$new_entry.conf
 cp -f /boot/grub2/grubenv /boot/efi/EFI/redhat/grubenv
 post_tasks:
 - name: Configure reboot after new kernel
 become: true
 reboot:
 reboot_timeout: "{{ reboot_wait_timeout }}"
 when: reboot_wait_timeout is defined

11. Include /home/stack/templates/fix_rt_kernel.yaml as a playbook in the
ComputeOvsDpdkSriovRT role definition in your node provisioning file:

- name: ComputeOvsDpdkSriovRT
 ...

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

132

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#assembly_defining-custom-network-interface-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#ref_bare-metal-node-provisioning-attributes_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#ref_example-node-definition-file_ironic_provisioning

 ansible_playbooks:
 - playbook: /usr/share/ansible/tripleo-playbooks/cli-overcloud-node-kernelargs.yaml
 extra_vars:
 kernel_args: "default_hugepagesz=1GB hugepagesz=1G hugepages=64 iommu=pt
intel_iommu=on tsx=off isolcpus=2-19,22-39"
 reboot_wait_timeout: 900
 tuned_profile: "cpu-partitioning"
 tuned_isolated_cores: "2-19,22-39"
 defer_reboot: true
 - playbook: /home/stack/templates/fix_rt_kernel.yaml
 extra_vars:
 reboot_wait_timeout: 1800

For more information about the properties you can use to configure node attributes in your
node definition file, see Bare-metal node provisioning attributes in Installing and managing Red
Hat OpenStack Platform with director.

For an example node definition file, see Example node definition file in Installing and managing
Red Hat OpenStack Platform with director.

12. Provision the new nodes for your role:

(undercloud)$ openstack overcloud node provision \
[--stack <stack> \]
[--network-config \]
--output <deployment_file> \
/home/stack/templates/overcloud-baremetal-deploy.yaml

Optional: Replace <stack> with the name of the stack for which the bare-metal nodes are
provisioned. The default is overcloud.

Optional: Include the --network-config optional argument to provide the network
definitions to the cli-overcloud-node-network-config.yaml Ansible playbook. If you do not
define the network definitions by using the network_config property, then the default
network definitions are used.

Replace <deployment_file> with the name of the heat environment file to generate for
inclusion in the deployment command, for example /home/stack/templates/overcloud-
baremetal-deployed.yaml.

13. Monitor the provisioning progress in a separate terminal. When provisioning is successful, the
node state changes from available to active:

(undercloud)$ watch openstack baremetal node list

14. If you ran the provisioning command without the --network-config option, then configure the
<Role>NetworkConfigTemplate parameters in your network-environment.yaml file to point
to your NIC template files:

parameter_defaults:
 ComputeNetworkConfigTemplate: /home/stack/templates/nic-configs/compute.j2
 ComputeAMDSEVNetworkConfigTemplate: /home/stack/templates/nic-
configs/<rt_compute>.j2
 ControllerNetworkConfigTemplate: /home/stack/templates/nic-configs/controller.j2

CHAPTER 12. ENABLING RT-KVM FOR NFV WORKLOADS

133

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#ref_bare-metal-node-provisioning-attributes_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#ref_example-node-definition-file_ironic_provisioning

Replace <rt_compute> with the name of the file that contains the network topology of the
ComputeRealTime role, for example, computert.yaml to use the default network topology.

15. Add your environment file to the stack with your other environment files and deploy the
overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 -r /home/stack/templates/roles_data_rt.yaml \
 -e /home/stack/templates/overcloud-baremetal-deployed.yaml
 -e /home/stack/templates/node-info.yaml \
 -e [your environment files] \
 -e /home/stack/templates/compute-real-time.yaml

12.2.2. Configuring OVS-DPDK parameters

1. Under parameter_defaults, set the tunnel type to vxlan, and the network type to vxlan,vlan:

2. Under parameters_defaults, set the bridge mapping:

3. Under parameter_defaults, set the role-specific parameters for the ComputeOvsDpdkSriov
role:

NOTE

To prevent failures during guest creation, assign at least one CPU with sibling
thread on each NUMA node. In the example, the values for the OvsPmdCoreList
parameter denote cores 2 and 22 from NUMA 0, and cores 3 and 23 from NUMA
1.

NOTE

NeutronTunnelTypes: 'vxlan'
NeutronNetworkType: 'vxlan,vlan'

The OVS logical->physical bridge mappings to use.
NeutronBridgeMappings:
 - dpdk-mgmt:br-link0

 ##########################
 # OVS DPDK configuration #
 ##########################
 ComputeOvsDpdkSriovParameters:
 KernelArgs: "default_hugepagesz=1GB hugepagesz=1G hugepages=32 iommu=pt
intel_iommu=on isolcpus=2-19,22-39"
 TunedProfileName: "cpu-partitioning"
 IsolCpusList: "2-19,22-39"
 NovaComputeCpuDedicatedSet: ['4-19,24-39']
 NovaReservedHostMemory: 4096
 OvsDpdkSocketMemory: "3072,1024"
 OvsDpdkMemoryChannels: "4"
 OvsPmdCoreList: "2,22,3,23"
 NovaComputeCpuSharedSet: [0,20,1,21]
 NovaLibvirtRxQueueSize: 1024
 NovaLibvirtTxQueueSize: 1024

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

134

NOTE

These huge pages are consumed by the virtual machines, and also by OVS-DPDK
using the OvsDpdkSocketMemory parameter as shown in this procedure. The
number of huge pages available for the virtual machines is the boot parameter
minus the OvsDpdkSocketMemory.

You must also add hw:mem_page_size=1GB to the flavor you associate with
the DPDK instance.

NOTE

OvsDpdkMemoryChannels is a required setting for this procedure. For
optimum operation, ensure you deploy DPDK with appropriate parameters and
values.

4. Configure the role-specific parameters for SR-IOV:

12.3. LAUNCHING AN RT-KVM INSTANCE

Perform the following steps to launch an RT-KVM instance on a real-time enabled Compute node:

1. Create an RT-KVM flavor on the overcloud:

$ openstack flavor create r1.small --id 99 --ram 4096 --disk 20 --vcpus 4
$ openstack flavor set --property hw:cpu_policy=dedicated 99
$ openstack flavor set --property hw:cpu_realtime=yes 99
$ openstack flavor set --property hw:mem_page_size=1GB 99
$ openstack flavor set --property hw:cpu_realtime_mask="^0-1" 99
$ openstack flavor set --property hw:cpu_emulator_threads=isolate 99

2. Launch an RT-KVM instance:

$ openstack server create --image <rhel> --flavor r1.small --nic net-id=<dpdk-net> test-rt

3. To verify that the instance uses the assigned emulator threads, run the following command:

$ virsh dumpxml <instance-id> | grep vcpu -A1
<vcpu placement='static'>4</vcpu>
<cputune>
 <vcpupin vcpu='0' cpuset='1'/>
 <vcpupin vcpu='1' cpuset='3'/>

 NovaPCIPassthrough:
 - vendor_id: "8086"
 product_id: "1528"
 address: "0000:06:00.0"
 trusted: "true"
 physical_network: "sriov-1"
 - vendor_id: "8086"
 product_id: "1528"
 address: "0000:06:00.1"
 trusted: "true"
 physical_network: "sriov-2"

CHAPTER 12. ENABLING RT-KVM FOR NFV WORKLOADS

135

 <vcpupin vcpu='2' cpuset='5'/>
 <vcpupin vcpu='3' cpuset='7'/>
 <emulatorpin cpuset='0-1'/>
 <vcpusched vcpus='2-3' scheduler='fifo'
 priority='1'/>
</cputune>

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

136

CHAPTER 13. EXAMPLE: CONFIGURING OVS-DPDK AND SR-
IOV WITH VXLAN TUNNELLING

You can deploy Compute nodes with both OVS-DPDK and SR-IOV interfaces. The cluster includes
ML2/OVS and VXLAN tunnelling.

IMPORTANT

In your roles configuration file, for example roles_data.yaml, comment out or remove the
line that contains OS::TripleO::Services::Tuned, when you generate the overcloud roles.

When you have commented out or removed OS::TripleO::Services::Tuned, you can set
the TunedProfileName parameter to suit your requirements, for example "cpu-
partitioning". If you do not comment out or remove the line
OS::TripleO::Services::Tuned and redeploy, the TunedProfileName parameter gets
the default value of "throughput-performance", instead of any other value that you set.

13.1. CONFIGURING ROLES DATA

Red Hat OpenStack Platform provides a set of default roles in the roles_data.yaml file. You can create
your own roles_data.yaml file to support the roles you require.

For the purposes of this example, the ComputeOvsDpdkSriov role is created.

Additional resources

Creating a new role in Customizing your Red Hat OpenStack Platform deployment

roles-data.yaml

13.2. CONFIGURING OVS-DPDK PARAMETERS

1. Under parameter_defaults, set the tunnel type to vxlan, and the network type to vxlan,vlan:

2. Under parameters_defaults, set the bridge mapping:

3. Under parameter_defaults, set the role-specific parameters for the ComputeOvsDpdkSriov
role:

ServicesDefault:
- OS::TripleO::Services::Tuned

NeutronTunnelTypes: 'vxlan'
NeutronNetworkType: 'vxlan,vlan'

The OVS logical->physical bridge mappings to use.
NeutronBridgeMappings:
 - dpdk-mgmt:br-link0

 ##########################
 # OVS DPDK configuration #
 ##########################

CHAPTER 13. EXAMPLE: CONFIGURING OVS-DPDK AND SR-IOV WITH VXLAN TUNNELLING

137

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_composable-services-and-custom-roles#proc_creating-a-new-role_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_network_functions_virtualization/sample-ovsdpdk-sriov-files_rhosp-nfv#sample-roles-data-yaml_smpldpdksr-nfv

NOTE

To prevent failures during guest creation, assign at least one CPU with sibling
thread on each NUMA node. In the example, the values for the OvsPmdCoreList
parameter denote cores 2 and 22 from NUMA 0, and cores 3 and 23 from NUMA
1.

NOTE

These huge pages are consumed by the virtual machines, and also by OVS-DPDK
using the OvsDpdkSocketMemory parameter as shown in this procedure. The
number of huge pages available for the virtual machines is the boot parameter
minus the OvsDpdkSocketMemory.

You must also add hw:mem_page_size=1GB to the flavor you associate with
the DPDK instance.

NOTE

OvsDpdkMemoryChannels is a required setting for this procedure. For
optimum operation, ensure you deploy DPDK with appropriate parameters and
values.

4. Configure the role-specific parameters for SR-IOV:

13.3. CONFIGURING THE CONTROLLER NODE

 ComputeOvsDpdkSriovParameters:
 KernelArgs: "default_hugepagesz=1GB hugepagesz=1G hugepages=32 iommu=pt
intel_iommu=on isolcpus=2-19,22-39"
 TunedProfileName: "cpu-partitioning"
 IsolCpusList: "2-19,22-39"
 NovaComputeCpuDedicatedSet: ['4-19,24-39']
 NovaReservedHostMemory: 4096
 OvsDpdkSocketMemory: "3072,1024"
 OvsDpdkMemoryChannels: "4"
 OvsPmdCoreList: "2,22,3,23"
 NovaComputeCpuSharedSet: [0,20,1,21]
 NovaLibvirtRxQueueSize: 1024
 NovaLibvirtTxQueueSize: 1024

 NovaPCIPassthrough:
 - vendor_id: "8086"
 product_id: "1528"
 address: "0000:06:00.0"
 trusted: "true"
 physical_network: "sriov-1"
 - vendor_id: "8086"
 product_id: "1528"
 address: "0000:06:00.1"
 trusted: "true"
 physical_network: "sriov-2"

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

138

1. Create the control-plane Linux bond for an isolated network.

2. Assign VLANs to this Linux bond.

3. Create the OVS bridge to access neutron-dhcp-agent and neutron-metadata-agent services.

 - type: linux_bond
 name: bond_api
 bonding_options: "mode=active-backup"
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 members:
 - type: interface
 name: nic2
 primary: true

 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet

 - type: vlan
 vlan_id:
 get_param: StorageNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: StorageIpSubnet

 - type: vlan
 vlan_id:
 get_param: StorageMgmtNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: StorageMgmtIpSubnet

 - type: vlan
 vlan_id:
 get_param: ExternalNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: ExternalIpSubnet
 routes:
 - default: true
 next_hop:
 get_param: ExternalInterfaceDefaultRoute

 - type: ovs_bridge
 name: br-link0

CHAPTER 13. EXAMPLE: CONFIGURING OVS-DPDK AND SR-IOV WITH VXLAN TUNNELLING

139

13.4. CONFIGURING THE COMPUTE NODE FOR DPDK AND SR-IOV

Create the computeovsdpdksriov.yaml file from the default compute.yaml file, and make the
following changes:

1. Create the control-plane Linux bond for an isolated network.

2. Assign VLANs to this Linux bond.

3. Set a bridge with a DPDK port to link to the controller.

 use_dhcp: false
 mtu: 9000
 members:
 - type: interface
 name: nic3
 mtu: 9000
 - type: vlan
 vlan_id:
 get_param: TenantNetworkVlanID
 mtu: 9000
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet

 - type: linux_bond
 name: bond_api
 bonding_options: "mode=active-backup"
 use_dhcp: false
 dns_servers:
 get_param: DnsServers
 members:
 - type: interface
 name: nic3
 primary: true
 - type: interface
 name: nic4

 - type: vlan
 vlan_id:
 get_param: InternalApiNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: InternalApiIpSubnet

 - type: vlan
 vlan_id:
 get_param: StorageNetworkVlanID
 device: bond_api
 addresses:
 - ip_netmask:
 get_param: StorageIpSubnet

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

140

NOTE

To include multiple DPDK devices, repeat the type code section for each DPDK
device that you want to add.

NOTE

When using OVS-DPDK, all bridges on the same Compute node must be of type
ovs_user_bridge. Red Hat OpenStack Platform does not support both
ovs_bridge and ovs_user_bridge located on the same node.

13.5. DEPLOYING THE OVERCLOUD

Run the overcloud_deploy.sh script:

 - type: ovs_user_bridge
 name: br-link0
 use_dhcp: false
 ovs_extra:
 - str_replace:
 template: set port br-link0 tag=_VLAN_TAG_
 params:
 _VLAN_TAG_:
 get_param: TenantNetworkVlanID
 addresses:
 - ip_netmask:
 get_param: TenantIpSubnet
 members:
 - type: ovs_dpdk_bond
 name: dpdkbond0
 mtu: 9000
 rx_queue: 2
 members:
 - type: ovs_dpdk_port
 name: dpdk0
 members:
 - type: interface
 name: nic7
 - type: ovs_dpdk_port
 name: dpdk1
 members:
 - type: interface
 name: nic8

CHAPTER 13. EXAMPLE: CONFIGURING OVS-DPDK AND SR-IOV WITH VXLAN TUNNELLING

141

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_network_functions_virtualization/index.html#ap-vxlan-dpdk-sriov-hybrid-overcloud-deploy

CHAPTER 14. UPGRADING RED HAT OPENSTACK PLATFORM
WITH NFV

For more information about upgrading Red Hat OpenStack Platform (RHOSP) with OVS-DPDK
configured, see Preparing network functions virtualization (NFV) in the Framework for upgrades (16.2 to
17.1) guide.

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

142

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/framework_for_upgrades_16.2_to_17.1/preparing-network-functions-virtualization-nfv#network_functions_virtualization_nfv_environment_files

CHAPTER 15. SAMPLE DPDK SR-IOV YAML AND JINJA2 FILES
This section provides sample yaml files as a reference to add single root I/O virtualization (SR-IOV) and
Data Plane Development Kit (DPDK) interfaces on the same compute node.

NOTE

These templates are from a fully-configured environment, and include parameters
unrelated to NFV, that might not apply to your deployment. For a list of component
support levels, see the Red Hat Knowledgebase solution Component Support
Graduation.

15.1. ROLES_DATA.YAML

Run the openstack overcloud roles generate command to generate the roles_data.yaml file.
Include role names in the command according to the roles that you want to deploy in your
environment, such as Controller, ComputeSriov, ComputeOvsDpdkRT,
ComputeOvsDpdkSriov, or other roles.

Example

For example, to generate a roles_data.yaml file that contains the roles Controller and
ComputeHCIOvsDpdkSriov, run the following command:

$ openstack overcloud roles generate -o roles_data.yaml \
Controller ComputeHCIOvsDpdkSriov

###
####
File generated by TripleO
###
####
###
####
Role: Controller
###
####
- name: Controller
 description: |
 Controller role that has all the controller services loaded and handles
 Database, Messaging and Network functions.
 CountDefault: 1
 tags:
 - primary
 - controller
 networks:
 External:
 subnet: external_subnet
 InternalApi:
 subnet: internal_api_subnet
 Storage:
 subnet: storage_subnet
 StorageMgmt:
 subnet: storage_mgmt_subnet

CHAPTER 15. SAMPLE DPDK SR-IOV YAML AND JINJA2 FILES

143

https://access.redhat.com/articles/5817771#component-support-graduation-5

 Tenant:
 subnet: tenant_subnet
 # For systems with both IPv4 and IPv6, you may specify a gateway network for
 # each, such as ['ControlPlane', 'External']
 default_route_networks: ['External']
 HostnameFormatDefault: '%stackname%-controller-%index%'
 # Deprecated & backward-compatible values (FIXME: Make parameters consistent)
 # Set uses_deprecated_params to True if any deprecated params are used.
 uses_deprecated_params: True
 deprecated_param_extraconfig: 'controllerExtraConfig'
 deprecated_param_flavor: 'OvercloudControlFlavor'
 deprecated_param_image: 'controllerImage'
 deprecated_nic_config_name: 'controller.yaml'
 update_serial: 1
 ServicesDefault:
 - OS::TripleO::Services::Aide
 - OS::TripleO::Services::AodhApi
 - OS::TripleO::Services::AodhEvaluator
 - OS::TripleO::Services::AodhListener
 - OS::TripleO::Services::AodhNotifier
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::BarbicanApi
 - OS::TripleO::Services::BarbicanBackendSimpleCrypto
 - OS::TripleO::Services::BarbicanBackendDogtag
 - OS::TripleO::Services::BarbicanBackendKmip
 - OS::TripleO::Services::BarbicanBackendPkcs11Crypto
 - OS::TripleO::Services::BootParams
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CeilometerAgentCentral
 - OS::TripleO::Services::CeilometerAgentNotification
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CephGrafana
 - OS::TripleO::Services::CephMds
 - OS::TripleO::Services::CephMgr
 - OS::TripleO::Services::CephMon
 - OS::TripleO::Services::CephRbdMirror
 - OS::TripleO::Services::CephRgw
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::CinderApi
 - OS::TripleO::Services::CinderBackendDellPs
 - OS::TripleO::Services::CinderBackendDellSc
 - OS::TripleO::Services::CinderBackendDellEMCPowermax
 - OS::TripleO::Services::CinderBackendDellEMCPowerStore
 - OS::TripleO::Services::CinderBackendDellEMCSc
 - OS::TripleO::Services::CinderBackendDellEMCUnity
 - OS::TripleO::Services::CinderBackendDellEMCVMAXISCSI
 - OS::TripleO::Services::CinderBackendDellEMCVNX
 - OS::TripleO::Services::CinderBackendDellEMCVxFlexOS
 - OS::TripleO::Services::CinderBackendDellEMCXtremio
 - OS::TripleO::Services::CinderBackendDellEMCXTREMIOISCSI
 - OS::TripleO::Services::CinderBackendNetApp
 - OS::TripleO::Services::CinderBackendPure
 - OS::TripleO::Services::CinderBackendScaleIO
 - OS::TripleO::Services::CinderBackendVRTSHyperScale
 - OS::TripleO::Services::CinderBackendNVMeOF
 - OS::TripleO::Services::CinderBackup

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

144

 - OS::TripleO::Services::CinderHPELeftHandISCSI
 - OS::TripleO::Services::CinderScheduler
 - OS::TripleO::Services::CinderVolume
 - OS::TripleO::Services::Clustercheck
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::ContainerImagePrepare
 - OS::TripleO::Services::DesignateApi
 - OS::TripleO::Services::DesignateCentral
 - OS::TripleO::Services::DesignateProducer
 - OS::TripleO::Services::DesignateWorker
 - OS::TripleO::Services::DesignateMDNS
 - OS::TripleO::Services::DesignateSink
 - OS::TripleO::Services::Docker
 - OS::TripleO::Services::Ec2Api
 - OS::TripleO::Services::Etcd
 - OS::TripleO::Services::ExternalSwiftProxy
 - OS::TripleO::Services::GlanceApi
 - OS::TripleO::Services::GnocchiApi
 - OS::TripleO::Services::GnocchiMetricd
 - OS::TripleO::Services::GnocchiStatsd
 - OS::TripleO::Services::HAproxy
 - OS::TripleO::Services::HeatApi
 - OS::TripleO::Services::HeatApiCloudwatch
 - OS::TripleO::Services::HeatApiCfn
 - OS::TripleO::Services::HeatEngine
 - OS::TripleO::Services::Horizon
 - OS::TripleO::Services::IpaClient
 - OS::TripleO::Services::Ipsec
 - OS::TripleO::Services::IronicApi
 - OS::TripleO::Services::IronicConductor
 - OS::TripleO::Services::IronicInspector
 - OS::TripleO::Services::IronicPxe
 - OS::TripleO::Services::IronicNeutronAgent
 - OS::TripleO::Services::Iscsid
 - OS::TripleO::Services::Keepalived
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::Keystone
 - OS::TripleO::Services::LoginDefs
 - OS::TripleO::Services::ManilaApi
 - OS::TripleO::Services::ManilaBackendCephFs
 - OS::TripleO::Services::ManilaBackendIsilon
 - OS::TripleO::Services::ManilaBackendNetapp
 - OS::TripleO::Services::ManilaBackendUnity
 - OS::TripleO::Services::ManilaBackendVNX
 - OS::TripleO::Services::ManilaBackendVMAX
 - OS::TripleO::Services::ManilaScheduler
 - OS::TripleO::Services::ManilaShare
 - OS::TripleO::Services::Memcached
 - OS::TripleO::Services::MetricsQdr
 - OS::TripleO::Services::MistralApi
 - OS::TripleO::Services::MistralEngine
 - OS::TripleO::Services::MistralExecutor
 - OS::TripleO::Services::MistralEventEngine
 - OS::TripleO::Services::Multipathd
 - OS::TripleO::Services::MySQL
 - OS::TripleO::Services::MySQLClient

CHAPTER 15. SAMPLE DPDK SR-IOV YAML AND JINJA2 FILES

145

 - OS::TripleO::Services::NeutronApi
 - OS::TripleO::Services::NeutronBgpVpnApi
 - OS::TripleO::Services::NeutronSfcApi
 - OS::TripleO::Services::NeutronCorePlugin
 - OS::TripleO::Services::NeutronDhcpAgent
 - OS::TripleO::Services::NeutronL2gwAgent
 - OS::TripleO::Services::NeutronL2gwApi
 - OS::TripleO::Services::NeutronL3Agent
 - OS::TripleO::Services::NeutronLinuxbridgeAgent
 - OS::TripleO::Services::NeutronMetadataAgent
 - OS::TripleO::Services::NeutronML2FujitsuCfab
 - OS::TripleO::Services::NeutronML2FujitsuFossw
 - OS::TripleO::Services::NeutronOvsAgent
 - OS::TripleO::Services::NeutronVppAgent
 - OS::TripleO::Services::NeutronAgentsIBConfig
 - OS::TripleO::Services::NovaApi
 - OS::TripleO::Services::NovaConductor
 - OS::TripleO::Services::NovaIronic
 - OS::TripleO::Services::NovaMetadata
 - OS::TripleO::Services::NovaScheduler
 - OS::TripleO::Services::NovaVncProxy
 - OS::TripleO::Services::ContainersLogrotateCrond
 - OS::TripleO::Services::OctaviaApi
 - OS::TripleO::Services::OctaviaDeploymentConfig
 - OS::TripleO::Services::OctaviaHealthManager
 - OS::TripleO::Services::OctaviaHousekeeping
 - OS::TripleO::Services::OctaviaWorker
 - OS::TripleO::Services::OpenStackClients
 - OS::TripleO::Services::OVNDBs
 - OS::TripleO::Services::OVNController
 - OS::TripleO::Services::Pacemaker
 - OS::TripleO::Services::PankoApi
 - OS::TripleO::Services::PlacementApi
 - OS::TripleO::Services::OsloMessagingRpc
 - OS::TripleO::Services::OsloMessagingNotify
 - OS::TripleO::Services::Podman
 - OS::TripleO::Services::Rear
 - OS::TripleO::Services::Redis
 - OS::TripleO::Services::Rhsm
 - OS::TripleO::Services::Rsyslog
 - OS::TripleO::Services::RsyslogSidecar
 - OS::TripleO::Services::SaharaApi
 - OS::TripleO::Services::SaharaEngine
 - OS::TripleO::Services::Securetty
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Sshd
 - OS::TripleO::Services::SwiftProxy
 - OS::TripleO::Services::SwiftDispersion
 - OS::TripleO::Services::SwiftRingBuilder
 - OS::TripleO::Services::SwiftStorage
 - OS::TripleO::Services::Timesync
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::Tuned
 - OS::TripleO::Services::Vpp

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

146

 - OS::TripleO::Services::Zaqar
###
####
Role: ComputeHCIOvsDpdkSriov
###
####
- name: ComputeHCIOvsDpdkSriov
 description: |
 ComputeOvsDpdkSriov Node role hosting Ceph OSD too
 networks:
 InternalApi:
 subnet: internal_api_subnet
 Tenant:
 subnet: tenant_subnet
 Storage:
 subnet: storage_subnet
 StorageMgmt:
 subnet: storage_mgmt_subnet
 # CephOSD present so serial has to be 1
 update_serial: 1
 RoleParametersDefault:
 TunedProfileName: "cpu-partitioning"
 VhostuserSocketGroup: "hugetlbfs"
 NovaLibvirtRxQueueSize: 1024
 NovaLibvirtTxQueueSize: 1024
 ServicesDefault:
 - OS::TripleO::Services::Aide
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::BootParams
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CephOSD
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::ComputeCeilometerAgent
 - OS::TripleO::Services::ComputeNeutronCorePlugin
 - OS::TripleO::Services::ComputeNeutronL3Agent
 - OS::TripleO::Services::ComputeNeutronMetadataAgent
 - OS::TripleO::Services::ComputeNeutronOvsDpdk
 - OS::TripleO::Services::Docker
 - OS::TripleO::Services::IpaClient
 - OS::TripleO::Services::Ipsec
 - OS::TripleO::Services::Iscsid
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::LoginDefs
 - OS::TripleO::Services::MetricsQdr
 - OS::TripleO::Services::Multipathd
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::NeutronBgpVpnBagpipe
 - OS::TripleO::Services::NeutronSriovAgent
 - OS::TripleO::Services::NeutronSriovHostConfig
 - OS::TripleO::Services::NovaAZConfig
 - OS::TripleO::Services::NovaCompute
 - OS::TripleO::Services::NovaLibvirt
 - OS::TripleO::Services::NovaLibvirtGuests

CHAPTER 15. SAMPLE DPDK SR-IOV YAML AND JINJA2 FILES

147

15.2. NETWORK-ENVIRONMENT-OVERRIDES.YAML

 - OS::TripleO::Services::NovaMigrationTarget
 - OS::TripleO::Services::OvsDpdkNetcontrold
 - OS::TripleO::Services::ContainersLogrotateCrond
 - OS::TripleO::Services::Podman
 - OS::TripleO::Services::Rear
 - OS::TripleO::Services::Rhsm
 - OS::TripleO::Services::Rsyslog
 - OS::TripleO::Services::RsyslogSidecar
 - OS::TripleO::Services::Securetty
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Sshd
 - OS::TripleO::Services::Timesync
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::OVNController
 - OS::TripleO::Services::OVNMetadataAgent
 - OS::TripleO::Services::Ptp

parameter_defaults:
 # The tunnel type for the tenant network (geneve or vlan). Set to '' to disable tunneling.
 NeutronTunnelTypes: "geneve"
 # The tenant network type for Neutron (vlan or geneve).
 NeutronNetworkType: ["geneve", "vlan"]
 NeutronExternalNetworkBridge: "'br-access'"
 # NTP server configuration.
 # NtpServer: ["clock.redhat.com"]
 # MTU global configuration
 NeutronGlobalPhysnetMtu: 9000
 # Configure the classname of the firewall driver to use for implementing security groups.
 NeutronOVSFirewallDriver: openvswitch
 SshServerOptionsOverrides:
 UseDns: "no"
 # Enable log level DEBUG for supported components
 Debug: true

 # From Rocky live migration with NumaTopologyFilter disabled by default
 # https://bugs.launchpad.net/nova/+bug/1289064
 NovaEnableNUMALiveMigration: true
 NeutronPluginExtensions: "port_security,qos,segments,trunk,placement"
 # RFE https://bugzilla.redhat.com/show_bug.cgi?id=1669584
 NeutronServicePlugins: "ovn-router,trunk,qos,placement"
 NeutronSriovAgentExtensions: "qos"

 ############################
 # Scheduler configuration #
 ############################
 NovaSchedulerEnabledFilters:
 - AvailabilityZoneFilter
 - ComputeFilter
 - ComputeCapabilitiesFilter
 - ImagePropertiesFilter

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

148

15.3. CONTROLLER.J2

 - ServerGroupAntiAffinityFilter
 - ServerGroupAffinityFilter
 - PciPassthroughFilter
 - NUMATopologyFilter
 - AggregateInstanceExtraSpecsFilter
 ComputeOvsDpdkSriovNetworkConfigTemplate: "/home/stack/ospd-17.0-geneve-ovn-dpdk-sriov-
ctlplane-dataplane-bonding-hybrid/nic-configs/computeovsdpdksriov.yaml"
 ControllerSriovNetworkConfigTemplate: "/home/stack/ospd-17.0-geneve-ovn-dpdk-sriov-ctlplane-
dataplane-bonding-hybrid/nic-configs/controller.yaml"

{% set mtu_list = [ctlplane_mtu] %}
{% for network in role_networks if network not in 'Tenant,External' %}
{{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
{%- endfor %}
{% set min_viable_mtu = mtu_list | max %}
network_config:
- type: interface
 name: nic1
 use_dhcp: false
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 routes:
 - ip_netmask: 169.254.169.254/32
 next_hop: {{ ctlplane_ip }}

- type: linux_bond
 name: bond_api
 mtu: {{ min_viable_mtu }}
 bonding_options: mode=active-backup
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 members:
 - type: interface
 name: nic2
 primary: true

{% for network in role_networks if network not in 'Tenant,External' %}
- type: vlan
 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 device: bond_api
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask: {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
{% endfor %}

- type: ovs_bridge
 name: br-link0
 use_dhcp: false
 mtu: 9000
 members:
 - type: interface

CHAPTER 15. SAMPLE DPDK SR-IOV YAML AND JINJA2 FILES

149

 name: nic3
 mtu: 9000
 - type: vlan
 vlan_id: {{ lookup('vars', networks_lower['Tenant'] ~ '_vlan_id') }}
 mtu: 9000
 addresses:
 - ip_netmask: {{ lookup('vars', networks_lower['Tenant'] ~ '_ip') }}/{{ lookup('vars',
networks_lower['Tenant'] ~ '_cidr') }}

- type: ovs_bridge
 name: br-dpdk0
 use_dhcp: false
 mtu: 9000
 members:
 - type: interface
 name: nic4
 mtu: 9000

- type: ovs_bridge
 name: br-dpdk1
 use_dhcp: false
 mtu: 9000
 members:
 - type: interface
 name: nic5
 mtu: 9000

- type: ovs_bridge
 name: br-sriov1
 use_dhcp: false
 mtu: 9000
 members:
 - type: interface
 name: nic6
 mtu: 9000

- type: ovs_bridge
 name: br-sriov2
 use_dhcp: false
 mtu: 9000
 members:
 - type: interface
 name: nic7
 mtu: 9000

- type: interface
 name: nic8
 use_dhcp: false
 defroute: false

- type: interface
 name: nic9
 use_dhcp: false
 defroute: false

- type: ovs_bridge

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

150

15.4. COMPUTE-OVS-DPDK.J2

 name: br-access
 use_dhcp: false
 mtu: 9000
 members:
 - type: interface
 name: nic10
 mtu: 9000
 - type: vlan
 vlan_id: {{ lookup('vars', networks_lower['External'] ~ '_vlan_id') }}
 mtu: 9000
 addresses:
 - ip_netmask: {{ lookup('vars', networks_lower['External'] ~ '_ip') }}/{{ lookup('vars',
networks_lower['External'] ~ '_cidr') }}
 routes:
 - default: true
 next_hop: {{ lookup('vars', networks_lower['External'] ~ '_gateway_ip') }}

{% set mtu_list = [ctlplane_mtu] %}
{% for network in role_networks if network not in 'Tenant,External' %}
{{ mtu_list.append(lookup('vars', networks_lower[network] ~ '_mtu')) }}
{%- endfor %}
{% set min_viable_mtu = mtu_list | max %}
network_config:
- type: interface
 name: nic1
 use_dhcp: false
 default: no

- type: interface
 name: nic2
 use_dhcp: false
 addresses:
 - ip_netmask: {{ ctlplane_ip }}/{{ ctlplane_subnet_cidr }}
 routes:
 - ip_netmask: 169.254.169.254/32
 next_hop: {{ ctlplane_ip }}
 - default: true
 next_hop: {{ ctlplane_gateway_ip }}

- type: linux_bond
 name: bond_api
 mtu: {{ min_viable_mtu }}
 bonding_options: mode=active-backup
 use_dhcp: false
 dns_servers: {{ ctlplane_dns_nameservers }}
 members:
 - type: interface
 name: nic2
 primary: true

{% for network in role_networks if network not in 'Tenant,External' %}
- type: vlan

CHAPTER 15. SAMPLE DPDK SR-IOV YAML AND JINJA2 FILES

151

 mtu: {{ lookup('vars', networks_lower[network] ~ '_mtu') }}
 device: bond_api
 vlan_id: {{ lookup('vars', networks_lower[network] ~ '_vlan_id') }}
 addresses:
 - ip_netmask: {{ lookup('vars', networks_lower[network] ~ '_ip') }}/{{ lookup('vars',
networks_lower[network] ~ '_cidr') }}
{% endfor %}

- type: ovs_user_bridge
 name: br-link0
 use_dhcp: false
 ovs_extra: "set port br-link0 tag={{ lookup('vars', networks_lower['Tenant'] ~ '_vlan_id') }}"
 addresses:
 - ip_netmask: {{ lookup('vars', networks_lower['Tenant'] ~ '_ip') }}/{{ lookup('vars',
networks_lower['Tenant'] ~ '_cidr')}}
 members:
 - type: ovs_dpdk_bond
 name: dpdkbond0
 rx_queue: 1
 ovs_extra: "set port dpdkbond0 bond_mode=balance-slb"
 members:
 - type: ovs_dpdk_port
 name: dpdk0
 members:
 - type: interface
 name: nic7
 - type: ovs_dpdk_port
 name: dpdk1
 members:
 - type: interface
 name: nic8

- type: ovs_user_bridge
 name: br-dpdk0
 use_dhcp: false
 mtu: 9000
 rx_queue: 1
 members:
 - type: ovs_dpdk_port
 name: dpdk2
 members:
 - type: interface
 name: nic5

- type: ovs_user_bridge
 name: br-dpdk1
 use_dhcp: false
 mtu: 9000
 rx_queue: 1
 members:
 - type: ovs_dpdk_port
 name: dpdk3
 members:
 - type: interface
 name: nic6

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

152

15.5. OVERCLOUD_DEPLOY.SH

- type: sriov_pf
 name: nic9
 mtu: 9000
 numvfs: 10
 use_dhcp: false
 defroute: false
 nm_controlled: true
 hotplug: true
 promisc: false

- type: sriov_pf
 name: nic10
 mtu: 9000
 numvfs: 10
 use_dhcp: false
 defroute: false
 nm_controlled: true
 hotplug: true
 promisc: false

#!/bin/bash

tht_path='/home/stack/ospd-17.0-geneve-ovn-dpdk-sriov-ctlplane-dataplane-bonding-hybrid'
[[! -d "$tht_path/roles"]] && mkdir $tht_path/roles
openstack overcloud roles generate -o $tht_path/roles/roles_data.yaml ControllerSriov
ComputeOvsDpdkSriov

openstack overcloud deploy \
 --templates /usr/share/openstack-tripleo-heat-templates \
 --ntp-server
clock.redhat.com,time1.google.com,time2.google.com,time3.google.com,time4.google.com \
 --stack overcloud \
 --roles-file $tht_path/roles/roles_data.yaml \
 -n $tht_path/network/network_data_v2.yaml \
 --deployed-server \
 -e /home/stack/templates/overcloud-baremetal-deployed.yaml \
 -e /home/stack/templates/overcloud-networks-deployed.yaml \
 -e /home/stack/templates/overcloud-vip-deployed.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-ha.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-dpdk.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-sriov.yaml \
 -e /home/stack/containers-prepare-parameter.yaml \
 -e $tht_path/network-environment-overrides.yaml \
 -e $tht_path/api-policies.yaml \
 -e $tht_path/bridge-mappings.yaml \
 -e $tht_path/neutron-vlan-ranges.yaml \
 -e $tht_path/dpdk-config.yaml \
 -e $tht_path/sriov-config.yaml \
 --log-file overcloud_deployment.log

CHAPTER 15. SAMPLE DPDK SR-IOV YAML AND JINJA2 FILES

153

Red Hat OpenStack Platform 17.1 Configuring network functions virtualization

154

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. UNDERSTANDING RED HAT NETWORK FUNCTIONS VIRTUALIZATION (NFV)
	1.1. ADVANTAGES OF NFV
	1.2. SUPPORTED CONFIGURATIONS FOR NFV DEPLOYMENTS
	1.3. NFV DATA PLANE CONNECTIVITY
	1.4. ETSI NFV ARCHITECTURE
	1.5. NFV ETSI ARCHITECTURE AND COMPONENTS
	1.6. RED HAT NFV COMPONENTS
	1.7. NFV INSTALLATION SUMMARY

	CHAPTER 2. NFV PERFORMANCE CONSIDERATIONS
	2.1. CPUS AND NUMA NODES
	2.1.1. NUMA node example
	2.1.2. NUMA aware instances

	2.2. CPU PINNING
	2.3. HUGE PAGES
	2.4. PORT SECURITY

	CHAPTER 3. HARDWARE REQUIREMENTS FOR NFV
	3.1. TESTED NICS FOR NFV
	3.2. TROUBLESHOOTING HARDWARE OFFLOAD
	3.3. DISCOVERING YOUR NUMA NODE TOPOLOGY
	3.4. RETRIEVING HARDWARE INTROSPECTION DETAILS
	3.5. NFV BIOS SETTINGS

	CHAPTER 4. SOFTWARE REQUIREMENTS FOR NFV
	4.1. REGISTERING AND ENABLING REPOSITORIES
	4.2. SUPPORTED CONFIGURATIONS FOR NFV DEPLOYMENTS
	4.3. SUPPORTED DRIVERS FOR NFV
	4.4. COMPATIBILITY WITH THIRD-PARTY SOFTWARE

	CHAPTER 5. NETWORK CONSIDERATIONS FOR NFV
	CHAPTER 6. PLANNING AN SR-IOV DEPLOYMENT
	6.1. HARDWARE PARTITIONING FOR AN SR-IOV DEPLOYMENT
	6.2. TOPOLOGY OF AN NFV SR-IOV DEPLOYMENT
	6.3. TOPOLOGY FOR NFV SR-IOV WITHOUT HCI

	CHAPTER 7. CONFIGURING AN SR-IOV DEPLOYMENT
	7.1. GENERATING ROLES AND IMAGE FILES FOR SR-IOV
	7.2. CONFIGURING PCI PASSTHROUGH DEVICES FOR SR-IOV
	7.3. ADDING ROLE-SPECIFIC PARAMETERS AND CONFIGURATION OVERRIDES
	7.4. CREATING A BARE METAL NODES DEFINITION FILE FOR SR-IOV
	7.5. CREATING A NIC CONFIGURATION TEMPLATE FOR SR-IOV
	7.6. CONFIGURING NIC PARTITIONING
	7.7. EXAMPLE CONFIGURATIONS FOR NIC PARTITIONS
	7.8. DEPLOYING AN SR-IOV OVERCLOUD
	7.9. CREATING HOST AGGREGATES IN AN SR-IOV OR AN OVS TC-FLOWER HARDWARE OFFLOAD ENVIRONMENT
	7.10. CREATING AN INSTANCE IN AN SR-IOV OR AN OVS TC-FLOWER HARDWARE OFFLOAD ENVIRONMENT

	CHAPTER 8. CONFIGURING OVS TC-FLOWER HARDWARE OFFLOAD
	8.1. GENERATING ROLES AND IMAGE FILES FOR OVS TC-FLOWER HARDWARE OFFLOAD
	8.2. CONFIGURING PCI PASSTHROUGH DEVICES FOR OVS TC-FLOWER HARDWARE OFFLOAD
	8.3. ADDING ROLE-SPECIFIC PARAMETERS AND CONFIGURATION OVERRIDES FOR OVS TC-FLOWER HARDWARE OFFLOAD
	8.4. CREATING A BARE METAL NODES DEFINITION FILE FOR OVS TC-FLOWER HARDWARE OFFLOAD
	8.5. CREATING A NIC CONFIGURATION TEMPLATE FOR OVS TC-FLOWER HARDWARE OFFLOAD
	8.6. DEPLOYING AN OVS TC-FLOWER HARDWARE OFFLOAD OVERCLOUD
	8.7. CREATING HOST AGGREGATES IN AN SR-IOV OR AN OVS TC-FLOWER HARDWARE OFFLOAD ENVIRONMENT
	8.8. CREATING AN INSTANCE IN AN SR-IOV OR AN OVS TC-FLOWER HARDWARE OFFLOAD ENVIRONMENT
	8.9. TROUBLESHOOTING OVS TC-FLOWER HARDWARE OFFLOAD
	8.10. DEBUGGING TC-FLOWER HARDWARE OFFLOAD FLOW

	CHAPTER 9. PLANNING YOUR OVS-DPDK DEPLOYMENT
	9.1. OVS-DPDK WITH CPU PARTITIONING AND NUMA TOPOLOGY
	9.2. OVS-DPDK PARAMETERS
	9.2.1. CPU parameters
	9.2.2. Memory parameters
	9.2.3. Networking parameters
	9.2.4. Other parameters
	9.2.5. VM instance flavor specifications

	9.3. TWO NUMA NODE EXAMPLE OVS-DPDK DEPLOYMENT
	9.4. TOPOLOGY OF AN NFV OVS-DPDK DEPLOYMENT

	CHAPTER 10. CONFIGURING AN OVS-DPDK DEPLOYMENT
	10.1. KNOWN LIMITATIONS FOR OVS-DPDK
	10.2. GENERATING ROLES AND IMAGE FILES
	10.3. CREATING AN ENVIRONMENT FILE FOR YOUR OVS-DPDK CUSTOMIZATIONS
	10.4. CONFIGURING A FIREWALL FOR SECURITY GROUPS
	10.5. CREATING A BARE METAL NODES DEFINITION FILE
	10.6. CREATING A NIC CONFIGURATION TEMPLATE
	10.7. SETTING THE MTU VALUE FOR OVS-DPDK INTERFACES
	10.8. SETTING MULTIQUEUE FOR OVS-DPDK INTERFACES
	10.9. CONFIGURING DPDK PARAMETERS FOR NODE PROVISIONING
	10.10. DEPLOYING AN OVS-DPDK OVERCLOUD
	10.11. CREATING A FLAVOR AND DEPLOYING AN INSTANCE FOR OVS-DPDK
	10.12. TROUBLESHOOTING THE OVS-DPDK CONFIGURATION

	CHAPTER 11. TUNING A RED HAT OPENSTACK PLATFORM ENVIRONMENT
	11.1. PINNING EMULATOR THREADS
	11.2. CONFIGURING TRUST BETWEEN VIRTUAL AND PHYSICAL FUNCTIONS
	11.3. UTILIZING TRUSTED VF NETWORKS
	11.4. PREVENTING PACKET LOSS BY MANAGING RX-TX QUEUE SIZE
	11.5. CONFIGURING A NUMA-AWARE VSWITCH
	11.6. KNOWN LIMITATIONS FOR NUMA-AWARE VSWITCHES
	11.7. QUALITY OF SERVICE (QOS) IN NFVI ENVIRONMENTS
	11.8. CREATING AN HCI OVERCLOUD THAT USES DPDK
	11.8.1. Example NUMA node configuration
	CPU allocation:
	Example of CPU allocation:

	11.8.2. Example Ceph configuration file
	11.8.3. Example DPDK configuration file
	11.8.4. Example nova configuration file
	11.8.5. Recommended configuration for HCI-DPDK deployments
	11.8.6. Deploying the HCI-DPDK overcloud

	11.9. SYNCHRONIZE YOUR COMPUTE NODES WITH TIMEMASTER
	11.9.1. Timemaster hardware requirements
	11.9.2. Configuring Timemaster
	11.9.3. Example timemaster configuration
	11.9.4. Example timemaster operation

	CHAPTER 12. ENABLING RT-KVM FOR NFV WORKLOADS
	12.1. PLANNING FOR YOUR RT-KVM COMPUTE NODES
	12.2. CONFIGURING OVS-DPDK WITH RT-KVM
	12.2.1. Designating nodes for Real-time Compute
	12.2.2. Configuring OVS-DPDK parameters

	12.3. LAUNCHING AN RT-KVM INSTANCE

	CHAPTER 13. EXAMPLE: CONFIGURING OVS-DPDK AND SR-IOV WITH VXLAN TUNNELLING
	13.1. CONFIGURING ROLES DATA
	13.2. CONFIGURING OVS-DPDK PARAMETERS
	13.3. CONFIGURING THE CONTROLLER NODE
	13.4. CONFIGURING THE COMPUTE NODE FOR DPDK AND SR-IOV
	13.5. DEPLOYING THE OVERCLOUD

	CHAPTER 14. UPGRADING RED HAT OPENSTACK PLATFORM WITH NFV
	CHAPTER 15. SAMPLE DPDK SR-IOV YAML AND JINJA2 FILES
	15.1. ROLES_DATA.YAML
	15.2. NETWORK-ENVIRONMENT-OVERRIDES.YAML
	15.3. CONTROLLER.J2
	15.4. COMPUTE-OVS-DPDK.J2
	15.5. OVERCLOUD_DEPLOY.SH

