Migrating to the OVN mechanism driver

Migrate the Red Hat OpenStack Platform Networking service (neutron) from the ML2/OVS mechanism driver to the ML2/OVN mechanism driver
Migrate the Red Hat OpenStack Platform Networking service (neutron) from the ML2/OVS mechanism driver to the ML2/OVN mechanism driver

OpenStack Team
rhos-docs@redhat.com
Abstract

Instructions for migrating the Red Hat OpenStack Platform Networking service (neutron) from the Modular Layer 2 plug-in with Open vSwitch mechanism driver (ML2/OVS) to Modular Layer 2 plug-in with Open Virtual Networking (ML2/OVN).
Table of Contents

PREFACE .. 3
MAKING OPEN SOURCE MORE INCLUSIVE .. 4
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION 5

CHAPTER 1. PLANNING YOUR MIGRATION OF THE ML2 MECHANISM DRIVER FROM OVS TO OVN 6
1.1. LIMITATIONS OF THE ML2/OVN MECHANISM DRIVER 7
 1.1.1. ML2/OVS features not yet supported by ML2/OVN 7
 1.1.2. Core OVN limitations ... 7
1.2. ML2/OVS TO ML2/OVN IN-PLACE MIGRATION: VALIDATED AND PROHIBITED SCENARIOS 7
 1.2.1. Validated ML2/OVS to ML2/OVN migration scenarios 7
 1.2.2. ML2/OVS to ML2/OVN in-place migration scenarios that have not been verified 8
 1.2.3. ML2/OVS to ML2/OVN in-place migration and security group rules 8

CHAPTER 2. MIGRATING THE ML2 MECHANISM DRIVER FROM OVS TO OVN 9
2.1. PREPARING THE ENVIRONMENT FOR MIGRATION TO THE OVN MECHANISM DRIVER 9
2.2. ADJUSTING MTU FOR MIGRATION OF THE ML2 MECHANISM DRIVER FROM OVS TO OVN 13
2.3. PREPARING CONTAINER IMAGES FOR MIGRATION OF THE ML2 MECHANISM DRIVER FROM OVS TO OVN 14
2.4. MIGRATING THE ML2 MECHANISM DRIVER FROM OVS TO OVN 16
PREFACE

IMPORTANT

This content in this guide is available in this release as Technology Preview, and therefore is not fully supported by Red Hat. It should only be used for testing, and should not be deployed in a production environment. For more information, see Technology Preview.
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Tell us how we can make it better.

You are viewing a beta version of documentation, and feedback is temporarily suspended. If you see any inaccuracies that are published, check back after the general availability (GA) of Red Hat OpenStack Platform and documentation release. If the issue persists, tell us how we can make it better. You can use the following steps after GA to provide feedback:

Using the Direct Documentation Feedback (DDF) function

Use the Add Feedback DDF function for direct comments on specific sentences, paragraphs, or code blocks.

1. View the documentation in the Multi-page HTML format.
2. Ensure that you see the Feedback button in the upper right corner of the document.
3. Highlight the part of text that you want to comment on.
4. Click Add Feedback.
5. Complete the Add Feedback field with your comments.
6. Optional: Add your email address so that the documentation team can contact you for clarification on your issue.
7. Click Submit.
CHAPTER 1. PLANNING YOUR MIGRATION OF THE ML2 MECHANISM DRIVER FROM OVS TO OVN

IMPORTANT

This content in this section is available in this release as a Technology Preview, and therefore is not fully supported by Red Hat. It should only be used for testing, and should not be deployed in a production environment. For more information, see Technology Preview.

Red Hat chose ML2/OVN as the default mechanism driver for all new deployments starting with RHOSP 15.0 because it offers immediate advantages over the ML2/OVS mechanism driver for most customers today. Those advantages multiply with each release while we continue to enhance and improve the ML2/OVN feature set.

The ML2/OVS mechanism driver was deprecated in RHOSP 17.0. Over several releases, Red Hat is replacing ML2/OVS with ML2/OVN.

Support is available for the deprecated ML2/OVS mechanism driver through the RHOSP 17 releases. During this time, the ML2/OVS driver remains in maintenance mode, receiving bug fixes and normal support. Most new feature development happens in the ML2/OVN mechanism driver.

In RHOSP 18.0, Red Hat plans to completely remove the ML2/OVS mechanism driver and stop supporting it.

If your existing Red Hat OpenStack Platform (RHOSP) deployment uses the ML2/OVS mechanism driver, start now to evaluate the benefits and feasibility of replacing the ML2/OVS mechanism driver with the ML2/OVN mechanism driver. Migration is supported in RHOSP 16.2 and RHOSP 17.1.

NOTE

Red Hat requires that you file a proactive support case before attempting a migration from ML2/OVS to ML2/OVN. Red Hat does not support migrations without the proactive support case. See How to submit a Proactive Case.

Engage your Red Hat Technical Account Manager or Red Hat Global Professional Services early in this evaluation. In addition to helping you file the required proactive support case if you decide to migrate, Red Hat can help you plan and prepare, starting with the following basic questions.

When should you migrate?

Timing depends on many factors, including your business needs and the status of our continuing improvements to the ML2/OVN offering. See Limitations of the ML2/OVN mechanism driver and ML2/OVS to ML2/OVN in-place migration: validated and prohibited scenarios.

In-place migration or parallel migration?

Depending on a variety of factors, you can choose between the following basic approaches to migration.

- Parallel migration. Create a new, parallel deployment that uses ML2/OVN and then move your operations to that deployment.

- In-place migration. Use the ovn_migration.sh script as described in this document. Note that Red Hat supports the ovn_migration.sh script only in deployments that are managed by RHOSP director.
WARNING

An ML2/OVS to ML2/OVN migration alters the environment in ways that might not be completely reversible. A failed or interrupted migration can be reverted if you follow the proper backup steps and revert instructions, but the reverted OVS environment might be altered from the original. Before migrating in a production environment, file a proactive support case. Then work with your Red Hat Technical Account Manager or Red Hat Global Professional Services to create a backup and migration plan and test the migration in a stage environment that closely resembles your production environment.

1.1. LIMITATIONS OF THE ML2/OVN MECHANISM DRIVER

Some features available with the ML2/OVS mechanism driver are not yet supported with the ML2/OVN mechanism driver.

1.1.1. ML2/OVS features not yet supported by ML2/OVN

<table>
<thead>
<tr>
<th>Feature</th>
<th>Notes</th>
<th>Track this Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provisioning Baremetal Machines with OVN DHCP</td>
<td>The built-in DHCP server on OVN presently can not provision baremetal nodes. It cannot serve DHCP for the provisioning networks. Chainbooting iPXE requires tagging (<code>--dhcpp-match</code> in dnsmasq), which is not supported in the OVN DHCP server.</td>
<td>https://bugzilla.redhat.com/show_bug.cgi?id=1622154</td>
</tr>
</tbody>
</table>

1.1.2. Core OVN limitations

North/south routing on VF(direct) ports on VLAN tenant networks does not work with SR-IOV because the external ports are not colocated with the logical router’s gateway ports. See https://bugs.launchpad.net/neutron/+bug/1875852.

1.2. ML2/OVS TO ML2/OVN IN-PLACE MIGRATION: VALIDATED AND PROHIBITED SCENARIOS

Red Hat continues to test and refine in-place migration scenarios. Work with your Red Hat Technical Account Manager or Global Professional Services to determine whether your OVS deployment meets the criteria for a valid in-place migration scenario.

1.2.1. Validated ML2/OVS to ML2/OVN migration scenarios

DVR to DVR

Start: RHOSP 16.2 or later with OVS with DVR.
End: Same RHOSP version and release with OVN with DVR.

SR-IOV was not present in the starting environment or added during or after the migration.
1.2.2. ML2/OVS to ML2/OVN in-place migration scenarios that have not been verified

You cannot perform an in-place ML2/OVS to ML2/OVN migration in the following scenarios until Red Hat announces that the underlying issues are resolved.

OVS uses trunk ports

If your ML2/OVS deployment uses trunk ports, do not perform an ML2/OVS to ML2/OVN migration. The migration does not properly set up the trunked ports in the OVN environment. To track progress on this issue, see https://bugzilla.redhat.com/show_bug.cgi?id=1857652.

DVR with VLAN project (tenant) networks

Do not migrate to ML2/OVN with DVR and VLAN project networks. You can migrate to ML2/OVN with centralized routing. To track progress on this issue, see https://bugzilla.redhat.com/show_bug.cgi?id=1766930.

OVS uses SR-IOV with VF

Do not migrate to ML2/OVN with SR-IOV and VM instances that use virtual functions (VF). If you migrate from ML2/OVS with SR-IOV to ML2/OVN, and then attempt to create a VM instance with virtual functions (VF), the instance creation fails. The problem does not affect instances with physical functions (PF).

See https://bugzilla.redhat.com/show_bug.cgi?id=2215936.

1.2.3. ML2/OVS to ML2/OVN in-place migration and security group rules

Ensure that any custom security group rules in your originating ML2/OVS deployment are compatible with the target ML2/OVN deployment.

For example, the default security group includes rules that allow egress to the DHCP server. If you deleted those rules in your ML2/OVS deployment, ML2/OVS automatically adds implicit rules that allow egress to the DHCP server. Those implicit rules are not supported by ML2/OVN, so in your target ML2/OVN environment, DHCP and metadata traffic would not reach the DHCP server and the instance would not boot. In this case, to restore DHCP access, you could add the following rules:

```
# Allow VM to contact dhcp server (ipv4)
openstack security group rule create --egress --ethertype IPv4 --protocol udp --dst-port 67 ${SEC_GROUP_ID}

# Allow VM to contact metadata server (ipv4)
openstack security group rule create --egress --ethertype IPv4 --protocol tcp --remote-ip 169.254.169.254 ${SEC_GROUP_ID}

# Allow VM to contact dhcp server (ipv6, non-slaac). Be aware that the remote-ip may vary depending on your use case!
openstack security group rule create --egress --ethertype IPv6 --protocol udp --dst-port 547 --remote-ip ff02::1:2 ${SEC_GROUP_ID}

# Allow VM to contact metadata server (ipv6)
openstack security group rule create --egress --ethertype IPv6 --protocol tcp --remote-ip fe80::a9fe:a9fe ${SEC_GROUP_ID}
```
CHAPTER 2. MIGRATING THE ML2 MECHANISM DRIVER FROM OVS TO OVN

IMPORTANT

This content in this section is available in this release as Technology Preview, and therefore is not fully supported by Red Hat. It should only be used for testing, and should not be deployed in a production environment. For more information, see Technology Preview.

2.1. PREPARING THE ENVIRONMENT FOR MIGRATION TO THE OVN MECHANISM DRIVER

Environment assessment and preparation is critical to a successful migration. Your Red Hat Technical Account Manager or Global Professional Services will guide you through these steps.

Prerequisites

- Your pre-migration deployment is Red Hat OpenStack Platform (RHOSP) 17.1 or later.
- Your RHOSP deployment is up to date. In other words, if you need to upgrade or update your OpenStack version, perform the upgrade or update first, and then perform the ML2/OVS to ML2/OVN migration.
- You have worked with your Red Hat Technical Account Manager or Global Professional Services to plan the migration and have filed a proactive support case. See How to submit a Proactive Case.

Procedure

1. Create an ML2/OVN stage deployment to obtain the baseline configuration of your target ML2/OVN deployment and test the feasibility of the target deployment.

 Design the stage deployment with the same basic roles, routing, and topology as the planned post-migration production deployment. Save the overcloud-deploy.sh file and any files referenced by the deployment, such as environment files. You need these files later in this procedure to configure the migration target environment.

 NOTE

 Use these files only for creation of the stage deployment and in the migration. Do not re-use them after the migration.

2. If your ML2/OVS deployment uses VXLAN or GRE project networks, schedule for a waiting period of up to 24 hours after the reduce-dhcp-t1 step.

 - This waiting period allows the VM instances to renew their DHCP leases and receive the new MTU value. During this time you might need to manually set MTUs on some instances and reboot some instances.
 - 24 hours is the time based on default configuration of 86400 seconds. The actual time depends on /var/lib/config-data/puppet-generated/neutron/etc/neutron/dhcp_agent.ini dhcp_renewal_time and /var/lib/config-data/puppet-generated/neutron/etc/neutron/neutron.conf dhcp_lease_duration parameters.
3. Install python3-networking-ovn-migration-tool.

   ```bash
   sudo dnf install python3-networking-ovn-migration-tool
   ```

4. Create a directory on the undercloud, and copy the Ansible playbooks:

   ```bash
   mkdir ~/ovn_migration
cd ~/ovn_migration
   ```

5. Copy your ML2/OVN stage deployment files to the migration home directory, such as `~/ovn_migration`.
 The stage migration deployment files include `overcloud-deploy.sh` and any files referenced by the deployment, such as environment files. Rename the copy of `overcloud-deploy.sh` to `overcloud-migrate-ovn.sh`. Use this script for migration only. Do not use it for other purposes.

6. Find your migration scenario in the following list and perform the appropriate steps to customize the `openstack deploy` command in `overcloud-migrate-ovn.sh`.

 Scenario 1: DVR to DVR, compute nodes have connectivity to the external network

 - Add the following environment files to the `openstack deploy` command in `overcloud-migrate-ovn.sh`. Add them in the order shown. This command example uses the default `neutron-ovn-dvr-ha.yaml` file. If you use a different file, replace the file name in the command.

     ```bash
     -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-dvr-ha.yaml
     -e /usr/share/openstack-tripleo-heat-templates/environments/disable-container-manage-clean-orphans.yaml
     -e $HOME/ovn-extras.yaml
     ```

 Scenario 2: Centralized routing to centralized routing (no DVR)

 - If your deployment uses SR-IOV, add the service definition `OS::TripleO::Services::OVNMetadataAgent` to the Controller role in the file `roles_data.yaml`.
 - Preserve the pre-migration custom bridge mappings.

 - Run this command on a networker or combined networker/controller node to get the current bridge mappings:

       ```bash
       sudo podman exec -it neutron_ovs_agent crudini --get /etc/neutron/plugins/ml2/openvswitch_agent.ini ovs bridge_mappings
       ```

 Example output

     ```text
     datacentre:br-ex,tenant:br-isolated
     ```

 - On the undercloud, create an environment file for the bridge mappings:
       ```bash
       /home/stack/neutron_bridge_mappings.yaml
       ```

 - Set the defaults in the environment file. For example:
parameter_defaults:
ComputeParameters:
NeutronBridgeMappings: "datacentre:br-ex,tenant:br-isolated"

- Add the following environment files to the `openstack deploy` command in `overcloud-migrate-ovn.sh`. Add them in the order shown. If your environment does not use SR-IOV, omit the `neutron-ovn-sriov.yaml` file. The file `ovn-extras.yaml` does not exist yet but it is created by the script `ovn_migration.sh` before the `openstack deploy` command is run.

```
-e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-ha.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-sriov.yaml \
-e /home/stack/ovn-extras.yaml \
-e /home/stack/neutron_bridge_mappings.yaml
```

- Leave any custom network modifications the same as they were before migration.

Scenario 3: Centralized routing to DVR, with Geneve type driver, and compute nodes connected to external networks through `br-ex`

WARNING

If your ML2/OVS deployment uses centralized routing and VLAN project (tenant) networks, do not migrate to ML2/OVN with DVR. You can migrate to ML2/OVN with centralized routing. To track progress on this limitation, see https://bugzilla.redhat.com/show_bug.cgi?id=1766930.

- Ensure that compute nodes are connected to the external network through the `br-ex` bridge. For example, in an environment file such as `compute-dvr.yaml`, set the following:

```
type: ovs_bridge
  # Defaults to br-ex, anything else requires specific # bridge mapping entries for it to be used.
  name: bridge_name
  use_dhcp: false
  members:
  -
    type: interface
    name: nic3
    # force the MAC address of the bridge to this interface
    primary: true
```

7. Add the following argument at the end of the `overcloud deploy` command in `overcloud-migrate-ovn.sh`:
8. Ensure that all users have execution privileges on the file `overcloud-migrate-ovn.sh`. The script requires execution privileges during the migration process.

   ```bash
   $ chmod a+x ~/overcloud-migrate-ovn.sh
   ```

9. Use `export` commands to set the following migration-related environment variables. For example:

   ```bash
   $ export ANSIBLE_DIR=$HOME/ovn_migration
   $$ export STACKRC_FILE=~/stackrc
   $$ export OVERCLOUDRC_FILE=~/overcloudrc
   $$ export OVERCLOUD_OVN_DEPLOY_SCRIPT=~/overcloud-migrate-ovn.sh
   $$ export DHCP_RENEWAL_TIME=30
   ```

10. Ensure you are in the ovn-migration directory and run the command `ovn_migration.sh generate-inventory` to generate the inventory file `hosts_for_migration` and the `ansible.cfg` file.

    ```bash
    $ ovn_migration.sh generate-inventory   | sudo tee -a /var/log/ovn_migration_output.txt
    ```

11. Review the `hosts_for_migration` file for accuracy.

 a. Ensure the lists match your environment.

 b. Ensure there are ovn controllers on each node.

 c. Ensure there are no list headings (such as `[ovn-controllers]`) that do not have list items under them.

 d. From the ovn migration directory, run the command `ansible -i hosts_for_migration -m ping all`

12. If your original deployment uses VXLAN or GRE, you need to adjust maximum transmission unit (MTU) values. Proceed to Adjusting MTU for migration from the OVS mechanism driver to the OVN mechanism driver.

 If your original deployment uses VLAN networks, you can skip the MTU adjustments and proceed to Preparing container images for migration from the OVS mechanism driver to the OVN mechanism driver.
2.2. ADJUSTING MTU FOR MIGRATION OF THE ML2 MECHANISM DRIVER FROM OVS TO OVN

If you are migrating from RHOSP 17.1-Beta with the OVS mechanism driver with VXLAN or GRE to the OVN mechanism driver with Geneve, you must ensure that the maximum transmission unit (MTU) settings are smaller than or equal to the smallest MTU in the network.

If your current deployment uses VLAN instead of VXLAN or GRE, skip this procedure and proceed to Preparing container images for migration from the OVS mechanism driver to the OVN mechanism driver.

Prerequisites

- You have completed the steps in Preparing the environment for migration from the OVS mechanism driver to the OVN mechanism driver.
- Your pre-migration deployment is Red Hat OpenStack Platform (RHOSP) 17.1 or later with VXLAN or GRE.

Procedure

1. Run `ovn_migration.sh reduce-dhcp-t1`. This lowers the T1 parameter of the internal neutron DHCP servers that configure the `dhcp_renewal_time` in `/var/lib/config-data/puppet-generated/neutron/etc/neutron/dhcp_agent.ini` in all the nodes where DHCP agent is running.

   ```sh
   $ ovn_migration.sh reduce-dhcp-t1 | sudo tee -a /var/log/ovn_migration_output.txt
   
   2. If your original OVS deployment uses VXLAN or GRE project networking, wait until the DHCP leases have been renewed on all VM instances. This can take up to 24 hours depending on lease renewal settings and the number of instances.

   3. Verify that the T1 parameter has propagated to existing VMs.

      - Connect to one of the compute nodes.
      - Run `tcpdump` over one of the VM taps attached to a project network.
        If T1 propagation is successful, expect to see requests occur approximately every 30 seconds:

        ```sh
 [heat-admin@overcloud-novacompute-0 ~]$ sudo tcpdump -i tap52e872c2-e6 port 67 or port 68 -n
 tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
 listening on tap52e872c2-e6, link-type EN10MB (Ethernet), capture size 262144 bytes
 [heat-admin@overcloud-novacompute-0 ~]$
        ```
This verification is not possible with cirros VMs. The cirros `udhcpc` implementation does not respond to DHCP option 58 (T1). Try this verification on a port that belongs to a full Linux VM. Red Hat recommends that you check all the different operating systems represented in your workloads, such as variants of Windows and Linux distributions.

4. If any VM instances were not updated to reflect the change to the T1 parameter of DHCP, reboot them.

5. Lower the MTU of the pre-migration VXLAN and GRE networks:

   $ ovn_migration.sh reduce-mtu | sudo tee -a /var/log/ovn_migration_output.txt

   This step reduces the MTU network by network and tags the completed network with adapted_mtu. The tool acts only on VXLAN and GRE networks. This step will not change any values if your deployment has only VLAN project networks.

6. If you have any instances with static IP assignment on VXLAN or GRE project networks, manually modify the configuration of those instances to configure the new Geneve MTU, which is the current VXLAN MTU minus 8 bytes. For example, if the VXLAN-based MTU was 1450, change it to 1442.

   **NOTE**

   Perform this step only if you have manually provided static IP assignments and MTU settings on VXLAN or GRE project networks. By default, DHCP provides the IP assignment and MTU settings.

7. Proceed to Preparing container images for migration from the OVS mechanism driver to the OVN mechanism driver.

### 2.3. PREPARING CONTAINER IMAGES FOR MIGRATION OF THE ML2 MECHANISM DRIVER FROM OVS TO OVN

Environment assessment and preparation is critical to a successful migration. Your Red Hat Technical Account Manager or Global Professional Services will guide you through these steps.

**Prerequisites**

- You have completed the steps in Preparing the environment for migration of the ML2 mechanism driver from OVS to OVN
- If your original deployment uses VXLAN or GRE, you also completed the steps in Adjusting MTU for migration from the OVS mechanism driver to the OVN mechanism driver.

**Procedure**

1. Prepare the new container images for use after the migration to ML2/OVN.
   a. Create `containers-prepare-parameter.yaml` file in the home directory if it is not present.
b. Verify that **containers-prepare-parameter.yaml** is present at the end of your $HOME/overcloud-migrate-ovn.sh and $HOME/overcloud-deploy.sh files.

c. Change the neutron_driver in the **containers-prepare-parameter.yaml** file to ovn:

   ```
 $ sed -i -E 's/neutron_driver:(\)\w+/neutron_driver: ovn/' $HOME/containers-prepare-parameter.yaml
   ```

d. Verify the changes to the neutron_driver:

   ```
 $ grep neutron_driver $HOME/containers-prepare-parameter.yaml
 neutron_driver: ovn
   ```

e. Update the images:

   ```
 $ sudo openstack tripleo container image prepare \
 --environment-file /home/stack/containers-prepare-parameter.yaml
   ```

   **NOTE**
   Provide the full path to your **containers-prepare-parameter.yaml** file. Otherwise, the command completes very quickly without updating the image list or providing an error message.

2. On the undercloud, validate the updated images.

   . Log in to the undercloud as the user `stack` and source the stackrc file.

   ```
 $ source ~/stackrc
 $ openstack tripleo container image list | grep -i ovn
   ```

   Your list should resemble the following example. It includes containers for the OVN databases, OVN controller, the metadata agent, and the neutron server agent.

   ```
 docker://undercloud-0.ctlplane.redhat.local:8787/rh-osbs/rhosp16-openstack-ovn-northd:16.2_20211110.2
 docker://undercloud-0.ctlplane.redhat.local:8787/rh-osbs/rhosp16-openstack-ovn-sb-db-server:16.2_20211110.2
 docker://undercloud-0.ctlplane.redhat.local:8787/rh-osbs/rhosp16-openstack-ovn-controller:16.2_20211110.2
 docker://undercloud-0.ctlplane.redhat.local:8787/rh-osbs/rhosp16-openstack-neutron-server-ovn:16.2_20211110.2
 docker://undercloud-0.ctlplane.redhat.local:8787/rh-osbs/rhosp16-openstack-ovn-nb-db-server:16.2_20211110.2
   ```

3. Proceed to Migrating from ML2/OVS to ML2/OVN.
2.4. MIGRATING THE ML2 MECHANISM DRIVER FROM OVS TO OVN

IMPORTANT

This content in this section is available in this release as Technology Preview, and therefore is not fully supported by Red Hat. It should only be used for testing, and should not be deployed in a production environment. For more information, see Technology Preview.

The ovn-migration script performs environmental setup, migration, and cleanup tasks related to the in-place migration of the ML2 mechanism driver from OVS to OVN.

Prerequisites

- You have completed the steps in Preparing the environment for migration of the ML2 mechanism driver from OVS to OVN
- If your original deployment uses VXLAN or GRE, you also completed the steps in Adjusting MTU for migration from the OVS mechanism driver to the OVN mechanism driver.
- You also completed all required migration steps throughPreparing container images for migration from the OVS mechanism driver to the OVN mechanism driver.

Procedure

1. Stop all operations that interact with the Networking Service (neutron) API, such as creating new networks, subnets, or routers, or migrating virtual machine instances between compute nodes. Interaction with Networking API during migration can cause undefined behavior. You can restart the API operations after completing the migration.

2. Run ovn_migration.sh start-migration to begin the migration process. The tee command creates a copy of the script output for troubleshooting purposes.

   $ ovn_migration.sh start-migration  | sudo tee -a /var/log/ovn_migration_output.txt

Result

The script performs the following actions.

- Updates the overcloud stack to deploy OVN alongside reference implementation services using the temporary bridge br-migration instead of br-int. The temporary bridge helps to limit downtime during migration.
- Generates the OVN northbound database by running neutron-ovn-db-sync-util. The utility examines the Neutron database to create equivalent resources in the OVN northbound database.
- Re-assigns ovn-controller to br-int instead of br-migration.
- Removes node resources that are not used by ML2/OVN, including the following.
  - Cleans up network namespaces (fip, snat, qrouter, qdhcp).
  - Removes any unnecessary patch ports on br-int.
• Removes **br-tun** and **br-migration** ovs bridges.

• Deletes ports from **br-int** that begin with **qr-**, **ha-**, and **qg-** (using neutron-netns-cleanup).

• Deletes Networking Service (neutron) agents and Networking Service HA internal networks from the database through the Networking Service API.