Red Hat OpenStack Platform 16.2 Fujitsu ETERNUS Back End Guide

A guide to using a Fujitsu ETERNUS back end in a Red Hat OpenStack Platform environment

OpenStack Team
rhos-docs@redhat.com
Abstract

This document describes how to configure Red Hat OpenStack Platform 16.1 to use a Fujitsu ETERNUS Disk Storage System as a back end.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE .. 3

CHAPTER 1. INTRODUCTION ... 4

CHAPTER 2. CONFIGURING THE FUJITSU ETERNUS DEVICE 5

CHAPTER 3. PREPARING THE FUJITSU ETERNUS HEAT TEMPLATE 7
 3.1. CREATING DRIVER DEFINITIONS FOR EACH FUJITSU ETERNUS BACK END 8
 3.2. EXAMPLE FUJITSU ETERNUS HEAT TEMPLATE .. 9

CHAPTER 4. CREATING THE FUJITSU ETERNUS ENVIRONMENT FILE 11

CHAPTER 5. DEPLOYING THE CONFIGURED FUJITSU ETERNUS BACK ENDS 14

CHAPTER 6. TESTING YOUR FUJITSU ETERNUS CONFIGURATION 15
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
CHAPTER 1. INTRODUCTION

This document describes how to configure Red Hat OpenStack Platform to use a Fujitsu ETERNUS Disk Storage System as a back end for the Block Storage service. The document covers how to define a Fibre Channel and iSCSI back end provided by an ETERNUS device on an overcloud deployment. This process involves defining both back ends as a **custom back end** for the Block Storage service. By default, Controller nodes contain the Block Storage service.

Prerequisites

- You intend to use only Fujitsu ETERNUS Disk Storage System devices and drivers for Block Storage back ends.

- You can use the *director installation user*, that you create with the overcloud deployment. For more information about creating the stack user, see *Preparing the undercloud* in the *Director Installation and Usage* guide.

- You have access to an *Admin* account on the ETERNUS device through the ETERNUS Web GUI or CLI.

Red Hat supports using Fibre Channel or iSCSI interfaces, and the respective drivers and settings, with a Fujitsu ETERNUS device.

NOTE

For more information about defining a custom back end, see the *Custom Block Storage Back End Deployment Guide*.
CHAPTER 2. CONFIGURING THE FUJITSU ETERNUS DEVICE

Configure storage pools and ports on the device before you define the Fujitsu ETERNUS device as a Block Storage back end. Consult your device documentation for details on each step:

Procedure

1. Configure a LAN connection between the Controller nodes that host the Block Storage service and the MNT ports of the ETERNUS device.

2. Configure a SAN connection between the Compute nodes and CA ports of the ETERNUS device.

3. Log in to the ETERNUS device using an account with the Admin role.

4. Enable the SMI-S of ETERNUS DX.

5. Set the SSH key.

6. Add a user account with software role.

7. Register an Advanced Copy Feature license and configure the copy table size.

8. Create a storage pool for volumes. You use this pool later in the EternusPool setting in Section 3.1, “Creating driver definitions for each Fujitsu ETERNUS back end”.

9. Optional: Create a separate storage pool for volume snapshots. This pool represents the EternusSnapPool setting in Section 3.1, “Creating driver definitions for each Fujitsu ETERNUS back end”.

10. Optional: Create a Snap Data Pool Volume (SDPV) to enable Snap Data Pool (SDP) for the create a snapshot function.

 TIP

 Skip this step if you use a Thin Provision Pool for EternusSnapPool.

11. Configure storage ports to be used by the Block Storage service.

12. Set the storage ports ports to CA mode.

13. To enable host-affinity for the storage ports, enter the following command from the ETERNUS CLI for each port:

    ```
    set <PROTO>-parameters -host-affinity enable -port <CM#> <CA#> <PORT>
    ```

 - Replace <PROTO> with the storage protocol, such as fc or iscsi.

 - Replace <CM#> and <CA#> with the name of the controller enclosure where the port is located.

 - Replace <PORT> with the port number.

14. Use the following commands to generate the SSH key on the undercloud, and upload the eternus.ietf file to the ETERNUS device.

    ```
NOTE

Save the **eternus** file for later use. For security reasons, do not copy or move it from the undercloud or overcloud.

```bash
ssh-keygen -t rsa -N "" -f ./eternus -m PEM
ssh-keygen -e -f ./eternus.pub > ./eternus.ietf
```
CHAPTER 3. PREPARING THE FUJITSU ETERNUS HEAT TEMPLATE

To ensure that your settings persist throughout future updates to the Red Hat OpenStack Platform overcloud, perform all service configuration during deployment through director.

Include the following configuration on the Controller node of the ETERNUS back end that hosts the Block Storage service:

- You include an XML configuration file for the driver settings of each back end.
- You include an SSH server key to communicate with ETERNUS device.

You can orchestrate both tasks with director using a heat template. For more information about the syntax of director heat templates, see Understanding Heat Templates in the Advanced Overcloud Guide.

The following template, eternus-temp.yaml, outlines the basic syntax for the required heat template.

eternus-temp.yaml

heat_template_version: 2014-10-16
description: >
  Add XML configuration file for the driver settings of each back end

parameters:
  server:
    type: string

resources:
  EternusSetup: # 1
    type: OS::Heat::SoftwareConfig
    properties:
      group: script
      config: | # 2
        #!/bin/bash
        #

  ExtraPreDeployment:
    type: OS::Heat::SoftwareDeployment
    properties:
      config: {get_resource: EternusSetup}
      server: {get_param: server}
      actions: ['CREATE','UPDATE']

1 The EternusSetup section contains the resource that orchestrates the tasks on the Controller node.
2 The config section contains the commands to run on the Controller node.
3 Copy the private key information to each Controller node where the Block Storage service is hosted, and add commands to create the XML configuration files for the driver settings of each back end in Section 3.1, “Creating driver definitions for each Fujitsu ETERNUS back end”.
3.1. CREATING DRIVER DEFINITIONS FOR EACH FUJITSU ETERNUS BACK END

Define driver settings for each ETERNUS back end on separate XML files, not the Block Storage configuration file /etc/cinder/cinder.conf. Ensure that each back end has an XML file, with the following settings:

**EternusIP**
- IP address of the SMI-S connection of the ETERNUS device. Use the IP address of the MNT port of the device.

**EternusPort**
- Port number for the SMI-S connection port of the ETERNUS device.

**EternusUser**
- User name of software role for the connection EternusIP.

**EternusPassword**
- Corresponding password of EternusUser on EternusIP.

**EternusPool**
- Name of the storage pool for the volumes from Chapter 2, Configuring the Fujitsu ETERNUS device. Use the pool RAID Group name or TPP name in the ETERNUS device.

**EternusSnapPool**
- Name of the storage pool for the volume snapshots from Chapter 2, Configuring the Fujitsu ETERNUS device. Use the pool RAID Group name in the ETERNUS device. If you did not create a different pool for snapshots, use the same value as EternusPool.

Define a Fibre Channel configuration with the following xml example:

**eternus-fc.xml**

```xml
<?xml version='1.0' encoding='UTF-8'?>
<FUJITSU>
<EternusIP>0.0.0.0</EternusIP>
<EternusPort>5988</EternusPort>
<EternusUser>smisuser</EternusUser>
<EternusPassword>smispassword</EternusPassword>
<EternusPool>raid5_0001</EternusPool>
<EternusSnapPool>raid5_0001</EternusSnapPool>
</FUJITSU>
```

Define an iSCSI configuration with the following xml example:

**eternus-iscsi.xml**

```xml
<?xml version='1.0' encoding='UTF-8'?>
<FUJITSU>
<EternusIP>0.0.0.0</EternusIP>
<EternusPort>5988</EternusPort>
<EternusUser>smisuser</EternusUser>
<EternusPassword>smispassword</EternusPassword>
```

Store this file in the custom heat template directory on the director node, /home/stack/templates/.
To orchestrate the creation of these XML files, include bash commands in the `config` section of the `EternusSetup` resource in the `/home/stack/templates/eternus-temp.yaml` file from Chapter 3, *Preparing the Fujitsu ETERNUS heat template*. Orchestrate the creation of `eternus-fc.xml` and `eternus-iscsi.xml` with the following example command:

```
sudo cat > /etc/cinder/eternus-fc.xml <<EOF
<?xml version='1.0' encoding='UTF-8'?>
<FUJITSU>
<EternusIP>0.0.0.0</EternusIP>
<EternusPort>5988</EternusPort>
<EternusUser>smisuser</EternusUser>
<EternusPassword>smispassword</EternusPassword>
<EternusPool>raid5_0001</EternusPool>
<EternusSnapPool>raid5_0001</EternusSnapPool>
</FUJITSU>
EOF
```

```
sudo cat > /etc/cinder/eternus-iscsi.xml <<EOF
<?xml version='1.0' encoding='UTF-8'?>
<FUJITSU>
<EternusIP>0.0.0.0</EternusIP>
<EternusPort>5988</EternusPort>
<EternusUser>smisuser</EternusUser>
<EternusPassword>smispassword</EternusPassword>
<EternusPool>raid5_0001</EternusPool>
<EternusSnapPool>raid5_0001</EternusSnapPool>
</FUJITSU>
EOF
```

Use the `sudo cat` command to create the required amount of XML configuration files.

Set the ownership and permissions of these XML files for the `cinder` user and group.

```
sudo chown cinder:cinder /etc/cinder/eternus-* .xml
sudo chmod 0600 /etc/cinder/eternus-* .xml
```

For an example of a completed heat template, see Section 3.2, “Example Fujitsu ETERNUS heat template”.  

### 3.2. EXAMPLE FUJITSU ETERNUS HEAT TEMPLATE

The following `/home/stack/templates/eternus-temp.yaml` file contains the necessary parameters for declaring the example XML configuration files, such as `eternus-fc.xml` and `eternus-iscsi.xml`:

```yaml
/home/stack/templates/eternus-temp.yaml

heat_template_version: 2014-10-16

description: >
 Add XML configuration file for the driver settings of each back end
```
parameters:
  server:
    type: string

resources:
EternusSetup:
  type: OS::Heat::SoftwareConfig
  properties:
    group: script
    config: |
      #!/bin/bash
      sudo mkdir -p /etc/cinder/
      sudo cat > /etc/cinder/eternus-fc.xml <<EOF
        <?xml version='1.0' encoding='UTF-8'?>
        <FUJITSU>
          <EternusIP>0.0.0.0</EternusIP>
          <EternusPort>5988</EternusPort>
          <EternusUser>smisuser</EternusUser>
          <EternusPassword>smispassword</EternusPassword>
          <EternusPool>raid5_0001</EternusPool>
          <EternusSnapPool>raid5_0001</EternusSnapPool>
        </FUJITSU>
      EOF
      sudo cat > /etc/cinder/eternus-iscsi.xml <<EOF
        <?xml version='1.0' encoding='UTF-8'?>
        <FUJITSU>
          <EternusIP>0.0.0.0</EternusIP>
          <EternusPort>5988</EternusPort>
          <EternusUser>smisuser</EternusUser>
          <EternusPassword>smispassword</EternusPassword>
          <EternusPool>raid5_0001</EternusPool>
          <EternusSnapPool>raid5_0001</EternusSnapPool>
        </FUJITSU>
      EOF
      sudo cat > /etc/cinder/eternus <<EOF
        -----BEGIN RSA PRIVATE KEY-----
        MIIEpAIBAAKCAQEAv5yMgonpfniu+1PJ8qdWZpcf0d4UcHj2uyE7ou7vcZUQ1Cq
        s5Q5pjCgYAxIkTlpoYA8ylGc7vMEa/ZbhUgAPIYlixbfNmRsBWyJS19gwHpcW
        hwaWo6VD/iUKZ3bOcMK0buUwBdFUt5s9BoSmXbYsX6bWovlVkyu8DzQfpDiPnV6C8
        ...
        IB+46IdmCU00DaciuEz5/KQdAXBNdTOss2od6OzihDJXKjBwPyP1g==
        -----END RSA PRIVATE KEY-----
      EOF

ExtraPreDeployment:
  type: OS::Heat::SoftwareDeployment
  properties:
    config: {get_resource: EternusSetup}
    server: {get_param: server}
    actions: [CREATE,UPDATE]

1 Private Key information in eternus file generated on the undercloud in Chapter 2, Configuring the Fujitsu ETERNUS device.
CHAPTER 4. CREATING THE FUJITSU ETERNUS ENVIRONMENT FILE

The environment file that you create to configure custom back ends contains the settings for each back end that you want to define. It also contains other settings that are relevant to the deployment of a custom back end. For more information about environment files, see Environment Files in the Advanced Overcloud Customization guide.

In addition, the environment file registers the heat template that you created earlier in Chapter 3, Preparing the Fujitsu ETERNUS heat template. The installation and echo commands defined in the heat template run on the appropriate nodes during deployment.

The following example environment file contains the necessary sections for defining an ETERNUS device as a Block Storage back end. It also creates the back end definitions for each corresponding XML file orchestrated in Section 3.1, “Creating driver definitions for each Fujitsu ETERNUS back end”, and Section 3.2, “Example Fujitsu ETERNUS heat template”.

eternusbackend-env.yaml

```yaml
resource_registry:
 OS::TripleO::NodeExtraConfig: /home/stack/templates/eternus-temp.yaml # 1

parameter_defaults: # 2
 CinderEnableIscsiBackend: false
 CinderEnableRbdBackend: false
 CinderEnableNfsBackend: false
 NovaEnableRbdBackend: false
 GlanceBackend: file # 3

controllerExtraConfig: # 4
 cinder::config::cinder_config:
 FJFC/volume_driver: # 5
 value: cinder.volume.drivers.fujitsu.eternus_dx.eternus_dx_fc.FJDXFCDriver
 FJFC/cinder_eternus_config_file: # 6
 value: /etc/cinder/eternus-fc.xml
 FJFC/volume_backend_name: # 7
 value: FJFC
 FJFC/fujitsu_private_key_path:
 value: /etc/cinder/eternus
 FJISCSI/volume_driver: # 8
 value: cinder.volume.drivers.fujitsu.eternus_dx.eternus_dx_iscsi.FJDXISCSIDriver
 FJISCSI/cinder_eternus_config_file:
 value: /etc/cinder/eternus-iscsi.xml
 FJISCSI/volume_backend_name:
 value: FJISCSI
 FJISCSI/fujitsu_private_key_path:
 value: /etc/cinder/eternus
 cinder_user_enabled_backends: ['FJFC','FJISCSI'] # 9

CinderVolumeOptVolumes: # 10
 - /etc/cinder/eternus-iscsi.xml:/etc/cinder/eternus-iscsi.xml:ro
 - /etc/cinder/eternus-fc.xml:/etc/cinder/eternus-fc.xml:ro
 - /etc/cinder/eternus:/etc/cinder/eternus:ro

ContainerCinderVolumeImage: registry.connect.redhat.com/fujitsu/rhosp161-fujitsu-cinder-volume-16 # 11
```
ContainerImageRegistryLogin: True
ContainerImageRegistryCredentials:
  registry.connect.redhat.com:
    my-username: my-password
  registry.redhat.io:
    my-username: my-password

1 Define custom settings for all nodes before the core Puppet configuration with NodeExtraConfig. This ensures the following configuration when the Block Storage service deploys on the overcloud:

   - The XML configuration files for each back end are present.
   - The private key is generated.

2 Set the following parameters to false to disable the other back end types:

   - CinderEnableIscsiBackend: other iSCSI back ends.
   - CinderEnableRbdBackend: Red Hat Ceph Storage.
   - CinderEnableNfsBackend: NFS.

3 Define the Image service image storage settings with the GlanceBackend parameter. The following values are supported:

   - file stores images on /var/lib/glance/images on each Controller node.
   - swift uses the Object Storage service for image storage.
   - cinder uses the Block Storage service for image storage.

4 Define custom settings for all Controller nodes with controllerExtraConfig. The cinder::config::cinder_config class is for the Block Storage service. Director stores these back end settings in the /etc/cinder/cinder.conf file of each node.

5 Configure a back end definition named FJFC with the FJFC/ string, and declare the volume_driver parameter under that back end definition. Set the Fibre Channel ETERNUS driver for the back end with the volume_driver parameter, for example cinder.volume.drivers.fujitsu.eternus_dx.eternus_dx_fc.FJDXFCDriver.

6 Set the path to the XML configuration file that the driver uses for the back end with cinder_eternus_config_file. Orchestrate the creation of /etc/cinder/eternus-fc.xml through the heat template, such as, /home/stack/templates/eternus-temp.yaml.

7 The volume_backend_name is the name that the Block Storage service uses to enable the back end.

8 Configure a new back end definition with the FJISCSI/ string. Set the iSCSI ETERNUS driver for the back end with the volume_driver parameter, for example cinder.volume.drivers.fujitsu.eternus_dx.eternus_dx_iscsi.FJDXISCSDriver.

9 Set and enable custom back ends with the cinder_user_enabled_backends class. Use this class for user-enabled back ends only, such as those defined in the cinder::config::cinder_config class.
Make custom configuration files on the host available to a cinder-volume service running in a container with `CinderVolumeOptVolumes`.

Define container image location with the `ContainerCinderVolumeImage` parameter. This value varies depending on the container image registry in your environment. That is, depending on if you download it from the internet or by using Red Hat OpenStack Platform (RHOSP) director or Red Hat Satellite as a local registry.

After you create the environment file, you can deploy your configuration. For more information about the environment file `/home/stack/templates/eternusbackend-env.yaml`, see Chapter 5, *Deploying the configured Fujitsu ETERNUS back ends.*
CHAPTER 5. DEPLOYING THE CONFIGURED FUJITSU ETERNUS BACK ENDS

After you create the eternusbackend-env.yaml file in /home/stack/templates/, complete the following steps:

Procedure

1. Log in as the stack user.
2. Deploy the back end configuration with the following command:

   $ openstack overcloud deploy --templates
   -e [your environment files]
   -e /home/stack/templates/eternusbackend-env.yaml

IMPORTANT

If you passed any extra environment files when you created the overcloud, pass them again here using the -e option to avoid making undesired changes to the overcloud. For more information, see Modifying the Overcloud Environment in the Director Installation and Usage guide.

Test the back end after director orchestration is complete. See Chapter 6, Testing your Fujitsu ETERNUS configuration.
CHAPTER 6. TESTING YOUR FUJITSU ETERNUS CONFIGURATION

After you configure the Block Storage service to use the new ETERNUS back ends, declare a **volume type** for each back end. Use volume types to specify which back end to use when you create new volumes.

- Create a Fibre Channel back end and map it to the respective back end with the following commands:

  ```
 # cinder type-create FJFC
 # cinder type-key FJFC set volume_backend_name=FJFC
  ```

- Create an iSCSI back end and map it to the respective back end with the following commands:

  ```
 # cinder type-create FJISCSI
 # cinder type-key FJISCSI volume_backend_name=FJISCSI
  ```

For more information about volume types, see [Chapter 4, Creating the Fujitsu ETERNUS environment file](#):

- Create a 1GB iSCSI volume named **test_iscsi** to verify your configuration:

  ```
 # cinder create --volume_type FJISCSI --display_name test_iscsi 1
  ```

- Test the Fibre Channel back end:

  ```
 # cinder create --volume_type FJFC --display_name test_fc 1
  ```