Red Hat OpenStack Platform 16.2

Framework for Upgrades (13 to 16.2)

In-place upgrades from Red Hat OpenStack Platform 13 to 16.2
Red Hat OpenStack Platform 16.2 Framework for Upgrades (13 to 16.2)

In-place upgrades from Red Hat OpenStack Platform 13 to 16.2

OpenStack Team
rhos-docs@redhat.com
Abstract

This guide contains information on the framework for the in-place upgrades across long-life versions. This framework includes tools to upgrade your OpenStack Platform environment from one long life version to the next long life version. In this case, the guide focuses on upgrading from Red Hat OpenStack Platform 13 (Queens) to 16.2 (Train).
# Table of Contents

## MAKING OPEN SOURCE MORE INCLUSIVE  ............................................................... 6

## PROVIDING FEEDBACK ON RED HAT DOCUMENTATION  ........................................ 7

### CHAPTER 1. ABOUT THE RED HAT OPENSTACK PLATFORM FRAMEWORK FOR UPGRADES  .......... 8

1.1. UPGRADE FRAMEWORK FOR LONG LIFE VERSIONS  ........................................ 8
1.2. LIFECYCLE SUPPORT FOR LONG LIFE VERSIONS  ........................................ 8
1.3. UPGRADE PATHS FOR LONG LIFE RELEASES  ........................................ 8

### CHAPTER 2. PLANNING AND PREPARATION FOR AN IN-PLACE UPGRADE  ....................... 11

2.1. FAMILIARIZE YOURSELF WITH RED HAT OPENSTACK PLATFORM 16.2  ................. 11
2.2. HIGH LEVEL CHANGES IN RED HAT OPENSTACK PLATFORM 16.2  ......................... 11
2.3. CHANGES IN RED HAT ENTERPRISE LINUX 8  ............................................ 12
2.4. LEAPP UPGRADE USAGE IN RED HAT OPENSTACK PLATFORM .......................... 13
2.5. SUPPORTED UPGRADE SCENARIOS  ..................................................... 14
2.6. CONSIDERATIONS FOR UPGRADING WITH EXTERNAL CEPH DEPLOYMENTS .............. 15
2.7. KNOWN ISSUES THAT MIGHT BLOCK AN UPGRADE  ....................................... 15
2.8. BACKUP AND RESTORE  ............................................................................. 18
2.9. MINOR VERSION UPDATE  ............................................................................ 18
2.10. PROXY CONFIGURATION  ........................................................................... 18
2.11. VALIDATING RED HAT OPENSTACK PLATFORM 13 BEFORE THE UPGRADE .......... 19

### CHAPTER 3. REPOSITORIES  ............................................................................. 21

3.1. UNDERCLOUD REPOSITORIES  .............................................................. 21
3.2. OVERCLOUD REPOSITORIES  ..................................................................... 23
3.3. RED HAT SATELLITE SERVER 6 CONSIDERATIONS ........................................ 27

### PART I. UPGRADING THE UNDERCLOUD  ................................................................ 29

### CHAPTER 4. PREPARING FOR THE UNDERCLOUD UPGRADE  ................................. 30

4.1. UPGRAADING WITH EXTERNAL CEPH PREREQUISITE  ..................................... 30
4.2. NEW MEMORY REQUIREMENTS  .................................................................... 30
4.3. USING PREDICTABLE NIC NAMES FOR THE UNDERCLOUD NODE ................. 30
4.4. SETTING THE SSH ROOT PERMISSION PARAMETER ON THE UNDERCLOUD ....... 34
4.5. CONVERTING TO NEXT GENERATION POWER MANAGEMENT DRIVERS .......... 34

### CHAPTER 5. UPGRADING THE UNDERCLOUD OPERATING SYSTEM  ....................... 36

5.1. REMOVING RED HAT OPENSTACK PLATFORM DIRECTOR PACKAGES ............. 36
5.2. PERFORMING A LEAPP UPGRADE ON THE UNDERCLOUD  ............................ 36

### CHAPTER 6. UPGRADING DIRECTOR  .................................................................. 40

6.1. LOCKING THE ENVIRONMENT TO A RED HAT ENTERPRISE LINUX RELEASE ...... 40
6.2. ENABLING REPOSITORIES FOR THE UNDERCLOUD ....................................... 40
6.3. INSTALLING DIRECTOR PACKAGES  ................................................................ 41
6.4. PREPARING CONTAINER IMAGES  .................................................................... 41
6.5. CONTAINER IMAGE PREPARATION PARAMETERS .......................................... 42
6.6. GUIDELINES FOR CONTAINER IMAGE TAGGING ......................................... 45
6.7. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES ................... 46
6.8. OBTAINING TRANSITIONAL CONTAINERS FOR UPGRADES ....................... 48
6.9. UPDATING THE UNDERCLOUD.CONF FILE  ............................................... 50
6.10. DIRECTOR CONFIGURATION PARAMETERS  .............................................. 50
6.11. RUNNING THE DIRECTOR UPGRADE  ...................................................... 56

### PART II. PREPARING FOR OVERCLOUD UPGRADE  .......................................... 58
CHAPTER 7. INITIAL STEPS FOR OVERCLOUD PREPARATION ........................................ 59
  7.1. PREPARING FOR OVERCLOUD SERVICE DOWNTIME ...................................... 59
  7.2. SELECTING COMPUTE NODES FOR UPGRADE TESTING .................................. 59
  7.3. VALIDATING THE PRE-UPGRADE REQUIREMENTS ........................................... 59
  7.4. DISABLING FENCING IN THE OVERCLOUD ................................................ 60
  7.5. CREATING AN OVERCLOUD INVENTORY FILE ............................................. 61

CHAPTER 8. CONFIGURING THE OVERCLOUD FOR A LEAPP UPGRADE ....................... 62
  8.1. CREATING AN UPGRDES ENVIRONMENT FILE .............................................. 62
  8.2. UPGRADE PARAMETERS .............................................................................. 63
  8.3. USING PREDICTABLE NIC NAMES FOR OVERCLOUD NODES .......................... 64

CHAPTER 9. UPDATING COMPOSABLE SERVICES AND PARAMETERS ................................. 66
  9.1. UPDATING COMPOSABLE SERVICES IN CUSTOM ROLES_DATA FILES .............. 66
  9.2. UPDATING COMPOSABLE SERVICES IN CUSTOM ENVIRONMENT FILES .......... 70
  9.3. CONFIGURING ACCESS TO THE UNDERCLOUD REGISTRY ............................. 71
  9.4. DEPRECATED AND REMOVED FILTERS FOR THE NOVASCHEDULERDEFAULTFILTERS PARAMETER ................................................................................................................................. 72
  9.5. SETTING THE COMPUTE NAME FORMAT ...................................................... 72
  9.6. UPDATING THE SSL/TLS CONFIGURATION .................................................. 73
  9.7. UPDATING POST CONFIGURATION TEMPLATES ......................................... 74
  9.8. CONSIDERATIONS WHEN RETAINING LEGACY TELEMETRY SERVICES ....... 74

CHAPTER 10. UPDATING OVERCLOUD REGISTRATION TO THE RED HAT CUSTOMER PORTAL ................................. 75
  10.1. RED HAT SUBSCRIPTION MANAGER (RHSM) COMPOSABLE SERVICE ........... 75
  10.2. RHSMVARS SUB-PARAMETERS .................................................................... 75
  10.3. SWITCHING TO THE RHSM COMPOSABLE SERVICE .................................... 76
  10.4. RHEL-REGISTRATION TO RHSM MAPPINGS ............................................. 77
  10.5. REGISTERING THE OVERCLOUD WITH THE RHSM COMPOSABLE SERVICE ... 78
  10.6. APPLYING THE RHSM COMPOSABLE SERVICE TO DIFFERENT ROLES ......... 79

CHAPTER 11. UPDATING OVERCLOUD REGISTRATION TO RED HAT SATELLITE SERVER .................. 81
  11.1. RED HAT SUBSCRIPTION MANAGER (RHSM) COMPOSABLE SERVICE .......... 81
  11.2. RHSMVARS SUB-PARAMETERS .................................................................... 81
  11.3. SWITCHING TO THE RHSM COMPOSABLE SERVICE .................................... 82
  11.4. RHEL-REGISTRATION TO RHSM MAPPINGS ............................................. 83
  11.5. REGISTERING THE OVERCLOUD TO RED HAT SATELLITE SERVER .......... 84
  11.6. PREPARING LEAPP TO USE SATELLITE SERVER ....................................... 85

CHAPTER 12. PREPARING FOR A DIRECTOR-DEPLOYED CEPH STORAGE UPGRADE .................. 87
  12.1. UNDERSTANDING THE CEPH STORAGE NODE UPGRADE PROCESS AT A HIGH LEVEL 87
  12.2. CHECKING YOUR CEPH-ANSIBLE VERSION ............................................. 88
  12.3. SETTING THE CEPH-ANSIBLE REPOSITORY ............................................ 89
  12.4. CHECKING CEPH CLUSTER STATUS BEFORE AN UPGRADE ...................... 89

CHAPTER 13. PREPARING FOR UPGRADING WITH EXTERNAL CEPH DEPLOYMENTS .................. 91
  13.1. INSTALLING CEPH-ANSIBLE ................................................................. 91
  13.2. SETTING THE CEPH-ANSIBLE REPOSITORY ............................................ 91

CHAPTER 14. UPDATING NETWORK CONFIGURATION .................................................. 93
  14.1. UPDATING NETWORK INTERFACE TEMPLATES ....................................... 93
  14.2. MAINTAINING OPEN VSWITCH COMPATIBILITY DURING THE UPGRADE .... 94
  14.3. MAINTAINING COMPOSABLE NETWORK COMPATIBILITY DURING THE UPGRADE 95

CHAPTER 15. PREPARING NETWORK FUNCTIONS VIRTUALIZATION (NFV) ....................... 96
15.1. NETWORK FUNCTIONS VIRTUALIZATION (NFV) ENVIRONMENT FILES .................................................. 96

CHAPTER 16. FINAL REVIEW BEFORE UPGRADE ............................................................................. 98
  16.1. CUSTOM FILES TO INCLUDE IN YOUR DEPLOYMENT ............................................................ 98
  16.2. NEW ENVIRONMENT FILES TO INCLUDE WITH YOUR DEPLOYMENT ................................. 98
  16.3. ENVIRONMENT FILES TO REMOVE FROM YOUR DEPLOYMENT ........................................ 98
  16.4. UPGRADE CHECKLIST  ........................................................................................................... 99

PART III. UPGRADING THE OVERCLOUD .................................................................................. 101

CHAPTER 17. UPGRADE COMMAND OVERVIEW ........................................................................... 102
  17.1. OPENSTACK OVERCLOUD UPGRADE PREPARE .............................................................. 102
  17.2. OPENSTACK OVERCLOUD UPGRADE RUN ...................................................................... 102
  17.3. OPENSTACK OVERCLOUD EXTERNAL-UPGRADE RUN ..................................................... 102
  17.4. OPENSTACK OVERCLOUD UPGRADE CONVERGE .......................................................... 103
  17.5. OVERCLOUD NODE UPGRADE WORKFLOW ................................................................. 103

CHAPTER 18. UPGRADING A STANDARD OVERCLOUD ............................................................... 105
  18.1. RUNNING THE OVERCLOUD UPGRADE PREPARATION .................................................... 105
  18.2. UPGRAдинG CONTROLLER NODES WITH DIRECTOR-DEPLOYED CEPH STORAGЕ .............. 106
  18.3. UPGRAдинG THE OPERATING SYSTEM FOR CEPH STORAGE NODES ................................. 110
  18.4. UPGRAдинG COMPUTE NODES ......................................................................................... 112
  18.5. SYNCHRONIZING THE OVERCLOUD STACK ................................................................. 113

CHAPTER 19. UPGRADING AN OVERCLOUD WITH EXTERNAL CEPH DEPLOYMENTS .................. 115
  19.1. RUNNING THE OVERCLOUD UPGRADE PREPARATION .................................................... 115
  19.2. UPGRAдинG CONTROLLER NODES WITH EXTERNAL CEPH DEPLOYMENTS ..................... 116
  19.3. UPGRAдинG COMPUTE NODES ......................................................................................... 119
  19.4. SYNCHRONIZING THE OVERCLOUD STACK ....................................................................... 120

CHAPTER 20. SPEEDING UP AN OVERCLOUD UPGRADE ............................................................... 122
  20.1. RUNNING THE OVERCLOUD UPGRADE PREPARATION .................................................... 122
  20.2. UPGRAдинG THE CONTROL PLANE NODES ........................................................................ 123
  20.3. UPGRAдинG COMPUTE NODES IN PARALLEL ................................................................... 128
  20.4. SYNCHRONIZING THE OVERCLOUD STACK ....................................................................... 129

CHAPTER 21. UPGRADING A SPLIT CONTROLLER OVERCLOUD .................................................. 131
  21.1. RUNNING THE OVERCLOUD UPGRADE PREPARATION .................................................... 131
  21.2. UPGRAдинG PACEMAKER-BASED NODES .......................................................................... 132
  21.3. UPGRAдинG NON-PACEMAKER CONTROLLER NODES .................................................... 134
  21.4. UPGRAдинG THE OPERATING SYSTEM FOR CEPH MON NODES ................................... 135
  21.5. UPGRAдинG THE OPERATING SYSTEM FOR CEPH STORAGE NODES ............................... 137
  21.6. UPGRAдинG COMPUTE NODES ......................................................................................... 140
  21.7. SYNCHRONIZING THE OVERCLOUD STACK ....................................................................... 141

CHAPTER 22. UPGRADING AN OVERCLOUD WITH HYPER-CONVERGED INFRASTRUCTURE ............... 143
  22.1. RUNNING THE OVERCLOUD UPGRADE PREPARATION .................................................... 143
  22.2. UPGRAдинG CONTROLLER NODES WITH DIRECTOR-DEPLOYED CEPH STORAGЕ ................ 144
  22.3. UPGRAдинG COMPUTE NODES WITH HYPER-CONVERGED INFRASTRUCTURE (HCI) ........... 148
  22.4. SYNCHRONIZING THE OVERCLOUD STACK ....................................................................... 149

PART IV. CONCLUDING THE OVERCLOUD UPGRADE ................................................................... 151

CHAPTER 23. UPGRADING A DIRECTOR-DEPLOYED CEPH STORAGE CLUSTER TO RED HAT CEPH STORAGE 4 ................................................................................................................. 152
  23.1. INSTALLING CEPH-ANSIBLE ......................................................................................... 152
23.2. UPGRADING TO CEPH STORAGE

CHAPTER 24. OSD MIGRATION FROM FILESTORE TO BLUESTORE
24.1. CHECKING THAT YOUR CLUSTER RUNS FILESTORE AND THEREFORE REQUIRES MIGRATION
24.2. MIGRATING OSDS FROM FILESTORE TO BLUESTORE
24.3. VERIFYING YOUR FILESTORE TO BLUESTORE MIGRATION

CHAPTER 25. PERFORMING POST-UPGRADE ACTIONS
25.1. REMOVING UNNECESSARY PACKAGES AND DIRECTORIES FROM THE UNDERCLOUD
25.2. VALIDATING THE POST-UPGRADE FUNCTIONALITY
25.3. UPGRADING THE OVERCLOUD IMAGES
25.4. UPDATING CPU PINNING PARAMETERS
25.5. MIGRATING TO OPEN VIRTUAL NETWORK (OVN)
25.6. MIGRATING USERS TO THE MEMBER ROLE

PART V. TROUBLESHOOTING

CHAPTER 26. TROUBLESHOOTING UPGRADE ISSUES
26.1. CORRECTING ENVIRONMENT FILES
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Tell us how we can make it better.

Using the Direct Documentation Feedback (DDF) function

Use the Add Feedback DDF function for direct comments on specific sentences, paragraphs, or code blocks.

1. View the documentation in the Multi-page HTML format.
2. Ensure that you see the Feedback button in the upper right corner of the document.
3. Highlight the part of text that you want to comment on.
4. Click Add Feedback.
5. Complete the Add Feedback field with your comments.
6. Optional: Add your email address so that the documentation team can contact you for clarification on your issue.
7. Click Submit.
CHAPTER 1. ABOUT THE RED HAT OPENSTACK PLATFORM FRAMEWORK FOR UPGRADES

The Red Hat OpenStack Platform (RHOSP) framework for upgrades is a workflow to upgrade your RHOSP environment from one long life version to the next long life version. This workflow is an in-place solution and the upgrade occurs within your existing environment.

1.1. UPGRADE FRAMEWORK FOR LONG LIFE VERSIONS

You can use the Red Hat OpenStack Platform (RHOSP) upgrade framework to perform an in-place upgrade path through multiple versions of the overcloud. The goal is to provide you with an opportunity to remain on certain OpenStack versions that are considered long life versions and upgrade when the next long life version is available.

The Red Hat OpenStack Platform upgrade process also upgrades the version of Red Hat Enterprise Linux (RHEL) on your nodes.

This guide provides an upgrade framework through the following versions:

<table>
<thead>
<tr>
<th>Current Version</th>
<th>Target Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat OpenStack Platform 13 latest</td>
<td>Red Hat OpenStack Platform 16.2 latest</td>
</tr>
</tbody>
</table>

1.2. LIFECYCLE SUPPORT FOR LONG LIFE VERSIONS

For detailed support dates and information on the lifecycle support for Red Hat OpenStack Platform, see Red Hat OpenStack Platform Life Cycle.

1.3. UPGRADE PATHS FOR LONG LIFE RELEASES

Familiarize yourself with the possible update and upgrade paths before you begin an update or an upgrade. Before you perform an upgrade from major version to major version, you must first update your existing environment to the latest minor release.

For example, if your current deployment is Red Hat OpenStack Platform (RHOSP) 13.0.6 on Red Hat Enterprise Linux (RHEL) 7.9, you must perform a minor update to the latest RHOSP 13.0 version before you upgrade to RHOSP 16.2.

NOTE

You can view your current RHOSP and RHEL versions in the /etc/rhosp-release and /etc/redhat-release files.

Table 1.1. Updates version path

<table>
<thead>
<tr>
<th>Current version</th>
<th>Target version</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHOSP 10.0.x on RHEL 7.x</td>
<td>RHOSP 10.0 latest on RHEL 7.7 latest</td>
</tr>
<tr>
<td>RHOSP 13.0.x on RHEL 7.x</td>
<td>RHOSP 13.0 latest on RHEL 7.9 latest</td>
</tr>
</tbody>
</table>
Red Hat provides two options for upgrading your environment to the next long life release:

**In-place upgrade**
Perform an upgrade of the services in your existing environment. This guide primarily focuses on this option.

**Parallel migration**
Create a new Red Hat OpenStack Platform 16.2 environment and migrate your workloads from your current environment to the new environment. For more information about Red Hat OpenStack Platform parallel migration, contact Red Hat Global Professional Services.

**IMPORTANT**
The durations in this table are minimal estimates based on internal testing and might not apply to all productions environments. For example, if your hardware has low specifications or an extended boot period, allow for more time with these durations. To accurately gauge the upgrade duration for each task, perform these procedures in a test environment with hardware similar to your production environment.

### Table 1.2. Upgrades version path

<table>
<thead>
<tr>
<th>Current version</th>
<th>Target version</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHOSP 16.1.x on RHEL 8.2</td>
<td>RHOSP 16.1 latest on RHEL 8.2 latest</td>
</tr>
<tr>
<td>RHOSP 16.1.x on RHEL 8.2</td>
<td>RHOSP 16.2 latest on RHEL 8.4 latest</td>
</tr>
<tr>
<td>RHOSP 16.2.x on RHEL 8.4</td>
<td>RHOSP 16.2 latest on RHEL 8.4 latest</td>
</tr>
</tbody>
</table>

### Table 1.3. Impact and duration of upgrade paths

<table>
<thead>
<tr>
<th></th>
<th>In-place upgrade</th>
<th>Parallel migration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In-place upgrade</td>
<td>Parallel migration</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>----------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Upgrade duration for undercloud</strong></td>
<td>Estimated duration for each major action includes the following:</td>
<td>None. You are creating a new undercloud in addition to your existing undercloud.</td>
</tr>
<tr>
<td></td>
<td>● 30 minutes for Leapp upgrade command</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● 30 minutes for Leapp reboot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● 40 minutes for director upgrade</td>
<td></td>
</tr>
<tr>
<td><strong>Upgrade duration for overcloud control plane</strong></td>
<td>Estimates for each Controller node:</td>
<td>None. You are creating a new control plane in addition to your existing control plane.</td>
</tr>
<tr>
<td></td>
<td>● 60 minutes for Leapp upgrade and reboot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● 60 minutes for service upgrade</td>
<td></td>
</tr>
<tr>
<td><strong>Outage duration for control plane</strong></td>
<td>The duration of the service upgrade of the bootstrap Controller node, which is approximately 60 minutes.</td>
<td>None. Both overclouds are operational during the workload migration.</td>
</tr>
<tr>
<td><strong>Consequences of control plane outage</strong></td>
<td>You cannot perform OpenStack operations during the outage.</td>
<td>No outage.</td>
</tr>
<tr>
<td><strong>Upgrade duration for overcloud data plane</strong></td>
<td>Estimates for each Compute node and Ceph Storage node:</td>
<td>None. You are creating a new data plane in addition to your existing data plane.</td>
</tr>
<tr>
<td></td>
<td>● 60 minutes for Leapp upgrade and reboot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● 30 minutes for service upgrade</td>
<td></td>
</tr>
<tr>
<td><strong>Outage duration for data plane</strong></td>
<td>The outage is minimal due to workload migration from node to node.</td>
<td>The outage is minimal due to workload migration from overcloud to overcloud.</td>
</tr>
<tr>
<td><strong>Additional hardware requirements</strong></td>
<td>No additional hardware is required.</td>
<td>Additional hardware is required to create a new undercloud and overcloud.</td>
</tr>
</tbody>
</table>
CHAPTER 2. PLANNING AND PREPARATION FOR AN IN-PLACE UPGRADE

Before you conduct an in-place upgrade of your OpenStack Platform environment, create a plan for the upgrade and accommodate any potential obstacles that might block a successful upgrade.

2.1. FAMILIARIZE YOURSELF WITH RED HAT OPENSTACK PLATFORM 16.2

Before you perform an upgrade, familiarize yourself with Red Hat OpenStack Platform 16.2 to help you understand the resulting environment and any potential version-to-version changes that might affect your upgrade. To familiarize yourself with Red Hat OpenStack Platform 16.2, follow these suggestions:

- Read the release notes for all versions across the upgrade path and identify any potential aspects that require planning:
  - Components that contain new features
  - Known issues

Open the release notes for each version using these links:

- Red Hat OpenStack Platform 13, which is your current version
- Red Hat OpenStack Platform 14
- Red Hat OpenStack Platform 15
- Red Hat OpenStack Platform 16.0
- Red Hat OpenStack Platform 16.1
- Red Hat OpenStack Platform 16.2, which is your target version

- Read the Director Installation and Usage guide for version 16.2 and familiarize yourself with any new requirements and processes in this guide.

- Install a proof-of-concept Red Hat OpenStack Platform 16.2 undercloud and overcloud. Develop hands-on experience of the target OpenStack Platform version and investigate potential differences between the target version and your current version.

2.2. HIGH LEVEL CHANGES IN RED HAT OPENSTACK PLATFORM 16.2

The following high-level changes occur during the upgrade to Red Hat OpenStack Platform 16.2:

- OpenStack Platform director 16.2 configures the overcloud using an Ansible-driven method called config-download. This replaces the standard heat-based configuration method. Director still uses heat to orchestrate provisioning operations.

- The director installation uses the same method as the overcloud deployment. Therefore, the undercloud also uses openstack-tripleo-heat-templates as a blueprint for installing and configuring each service.

- The undercloud runs OpenStack services in containers.
- The undercloud pulls and stores container images through a new method. Instead of pulling container images before deploying the overcloud, the undercloud pulls all relevant container images during the deployment process.

- The overcloud deployment process includes an Advanced Subscription Management method to register nodes. This method incorporates an Ansible role to register OpenStack Platform nodes. The new method also applies different subscriptions to different node roles if necessary.

- The overcloud now uses Open Virtual Network (OVN) as the default ML2 mechanism driver. It is possible to migrate your Open vSwitch (OVS) service to OVN, which you perform after the completion of a successful upgrade.

- The undercloud and overcloud both run on Red Hat Enterprise Linux 8.

- `openstack-tripleo-heat-templates` includes a unified composable service template collection in the `deployment` directory. This directory now includes templates with merged content from both the containerized service and Puppet-based composable service templates.

- The OpenStack Data Processing service (sahara) is no longer supported.

  **IMPORTANT**

  If you have sahara enabled in your Red Hat OpenStack Platform 13 environment, do not continue with this upgrade and contact Red Hat Global Support Services.

- The OpenStack Telemetry components are deprecated in favor of the Service Telemetry Framework (STF).

- Starting with Red Hat Enterprise Linux (RHEL) version 8.3, support for the Intel Transactional Synchronization Extensions (TSX) feature is disabled by default. This causes issues with instance live migration between hosts when migrating from hosts that run Red Hat OpenStack Platform 13 with RHEL version 8.2, to hosts that run Red Hat OpenStack Platform 16.2 with RHEL version 8.4. Instance live migration fails after you reboot the Compute nodes. To ensure that the upgraded nodes are booted with the TSX feature enabled and that you can successfully live migrate your instances, add `tsx=off` to your `KernelArgs` role parameter for the Compute node and reboot the node.

  For more information, see the Red Hat Knowledgebase solution [Guidance on Intel TSX impact on OpenStack guests (applies for RHEL 8.3 and above)].

### 2.3. CHANGES IN RED HAT ENTERPRISE LINUX 8

The undercloud and overcloud both run on Red Hat Enterprise Linux 8. This includes new tools and functions relevant to the undercloud and overcloud:

- The undercloud and overcloud use the Red Hat Container Toolkit. Instead of `docker` to build and control the container lifecycle, Red Hat Enterprise Linux 8 includes `buildah` to build new container images and `podman` for container management.

- Red Hat Enterprise Linux 8 does not include the `docker-distribution` package. The undercloud now includes a private HTTP registry to provide container images to overcloud nodes.

- The upgrade process from Red Hat Enterprise Linux 7 to 8 uses the `leapp` tool.
- Red Hat Enterprise Linux 8 does not use the `ntp` service. Instead, Red Hat Enterprise Linux 8 uses `chronyd`.

- Red Hat Enterprise Linux 8 includes new versions of high availability tools.

The Red Hat OpenStack Platform 16.2 uses Red Hat Enterprise Linux 8.4 as the base operating system. As a part of the upgrade process, you will upgrade the base operating system of nodes to Red Hat Enterprise Linux 8.4.

For more information about the key differences between Red Hat Enterprise Linux 7 and 8, see Considerations in adopting RHEL 8. For general information about Red Hat Enterprise Linux 8, see Product Documentation for Red Hat Enterprise Linux 8.

## 2.4. LEAPP UPGRADE USAGE IN RED HAT OPENSTACK PLATFORM

The long-life Red Hat OpenStack Platform upgrade requires a base operating system upgrade from Red Hat Enterprise Linux 7 to Red Hat Enterprise Linux 8. Red Hat Enterprise Linux 7 uses the Leapp utility to perform the upgrade to Red Hat Enterprise Linux 8. To ensure that Leapp and its dependencies are available, verify that the following Red Hat Enterprise Linux 7 repositories are enabled:

- Red Hat Enterprise Linux 7 Server RPMs x86_64 7Server or Red Hat Enterprise Linux 7 Server RPMs x86_64 7.9
  - `rhel-7-server-rpms x86_64 7Server`
  - or:
    - `rhel-7-server-rpms x86_64 7.9`

- Red Hat Enterprise Linux 7 Server - Extras RPMs x86_64
  - `rhel-7-server-extras-rpms x86_64`

For more information, see Preparing a RHEL 7 system for the upgrade.

The undercloud and overcloud use a separate process for performing the operating system upgrade.

**Undercloud process**

Run the `leapp` upgrade manually before you run the `openstack undercloud upgrade` command. The undercloud upgrade includes instructions for performing the `leapp` upgrade.

**Overcloud process**

The overcloud upgrade framework automatically runs the `leapp` upgrade.

**Limitations**

For information of potential limitations that might affect your upgrade, see the following sections from the Upgrading from RHEL 7 to RHEL 8 guide:

- "Planning an upgrade"
- "Known issues"
In particular, you cannot perform a Leapp upgrade on nodes that use encryption of the whole disk or a partition, such as LUKS encryption, or file-system encryption. This limitation affects Ceph OSD nodes that you have configured with the `dmcrypt: true` parameter.

If any known limitations affect your environment, seek advice from the Red Hat Technical Support Team.

**Troubleshooting**

For information about troubleshooting potential Leapp issues, see Troubleshooting in Upgrading from RHEL 7 to RHEL 8.

### 2.5. SUPPORTED UPGRADE SCENARIOS

Before proceeding with the upgrade, check that your overcloud is supported.

**NOTE**

If you are uncertain whether a particular scenario not mentioned in these lists is supported, seek advice from the Red Hat Technical Support Team.

**Supported scenarios**

The following in-place upgrade scenarios are tested and supported.

- Standard environments with default role types: Controller, Compute, and Ceph Storage OSD
- Split-Controller composable roles
- Ceph Storage composable roles
- Hyper-Converged Infrastructure: Compute and Ceph Storage OSD services on the same node
- Environments with Network Functions Virtualization (NFV) technologies: Single-root input/output virtualization (SR-IOV) and Data Plane Development Kit (DPDK)
- Environments with Instance HA enabled

**NOTE**

During an upgrade procedure, nova live migrations are supported. However, evacuations initiated by Instance HA are not supported. When you upgrade a Compute node, the node is shut down cleanly and any workload running on the node is not evacuated by Instance HA automatically. Instead, you must perform live migration manually.

**Technology preview scenarios**

The framework for upgrades is considered a Technology Preview when you use it in conjunction with these features, and therefore is not fully supported by Red Hat. You should only test this scenario in a proof-of-concept environment and not upgrade in a production environment. For more information about Technology Preview features, see Scope of Coverage Details.

- Edge and Distributed Compute Node (DCN) scenarios
2.6. CONSIDERATIONS FOR UPGRADING WITH EXTERNAL CEPH DEPLOYMENTS

If you have deployed a Red Hat Ceph Storage system separately and then used director to deploy and configure OpenStack, you can use the Red Hat OpenStack Platform framework for upgrades to perform an in-place upgrade with external Ceph deployments. This scenario is different from upgrading a Ceph cluster that was deployed using director.

The differences that you must take into account when planning and preparing for an in-place upgrade with external Ceph deployments are the following:

1. Before you can upgrade your Red Hat OpenStack Platform deployment from version 13 to version 16.2, you must upgrade your Red Hat Ceph Storage cluster from version 3 to version 4. For more information, see Upgrading a Red Hat Ceph Storage cluster in the Red Hat Ceph Storage 4 Installation Guide.

2. After you upgrade your Red Hat Ceph Storage cluster from version 3 to version 4, Red Hat OpenStack Platform 13 might still run RHCSv3 client components, however these are compatible against the RHCSv4 cluster.

3. You can follow the upgrade path described in the Framework For Upgrades (13 to 16.2) document, and where applicable, you must complete the conditional steps that support this particular scenario. A conditional step starts with the following statement: "If you are upgrading with external Ceph deployments".

4. When you upgrade with external Ceph deployments, you install RHCSv4 ceph-ansible as part of the overcloud upgrade process. When you upgrade a Ceph cluster that was deployed using director, you install RHCSv4 ceph-ansible after the overcloud upgrade process is complete.

**IMPORTANT**

When you upgrade a Red Hat Ceph Storage cluster from a previous supported version to version 4.2z2, the upgrade completes with the storage cluster in a HEALTH_WARN state with a warning message that states monitors are allowing insecure global_id reclaim. This is due to the patched CVE (CVE-2021-20288), see Ceph HEALTH_WARN with 'mons are allowing insecure global_id reclaim' after install/upgrade to RHCS 4.2z2 (or newer).

Because the HEALTH_WARN state is displayed due to the CVE, it is possible to mute health warnings temporarily. However, there is a risk that if you mute warnings you do not have visibility about potential older and unpatched clients connected to your cluster. For more information about muting health warnings, see Upgrading a Red Hat Ceph Storage cluster in the Red Hat Ceph Storage documentation.

2.7. KNOWN ISSUES THAT MIGHT BLOCK AN UPGRADE

Review the following known issues that might affect a successful upgrade.

**BZ#1902849 - osp13-osp16.1 ffu fails on clusters previously upgraded from osp8, osp10**

Red Hat OpenStack Platform (RHOSP) environments that have been previously upgraded from version RHOSP 10, require the python-docker package to avoid BZ#1902849. For more information, see the Red Hat Knowledgebase solution osp13-osp16.1 ffu fails on older environments missing python-docker package.
**BZ#1925078 - RHOSP13-16.1 FFU: Overcloud upgrade hangs in controller after failed attempt with reference to wrong ceph image**

Systems that use UEFI boot and a UEFI bootloader in OSPI13 might run into an UEFI issue that results in:

- `/etc/fstab` not being updated
- `grub-install` is incorrectly used on UEFI system

For more information, see the Red Hat Knowledgebase solution FFU 13 to 16.1: Leapp fails to update the kernel on UEFI based systems and `/etc/fstab` does not contain the EFI partition.

If your systems use UEFI, contact Red Hat Technical Support.

**BZ#1895887 - ovs+dpdk fail to attach device OvsDpdkHCI**

After upgrading with the Leapp utility, the Compute node with OVS-DPDK workload does not function properly. To resolve this issue, perform one of the following steps:

Remove the `/etc/modules-load.d/vfio-pci.conf` file before you upgrade the Compute node.

or

Restart `ovs-vswitchd` service on the Compute node after you upgrade the Compute node.

This issue affects RHOSP 16.1.3. For more information, see the Red Hat Knowledgebase solution OVS-DPDK errors after Framework Upgrade from OSP 13 to 16.1 on HCI compute node.

**BZ#1965350 - OSP13→16.2 leapp fails with: Detected loaded kernel drivers which have been removed in RHEL 8**

To avoid bug BZ#1965350, during the Leapp upgrade process of your undercloud and overcloud nodes, you must unload the `floppy` and `pata_acpi` kernel modules that are no longer supported in RHEL 8. This guide includes a workaround to avoid this issue.

**BZ#1923165 - OSP-16.2 (Upgrades)(TripleO) Add a config to disable Intel "TSX" on RHEL-8.3 kernel**

Starting with Red Hat Enterprise Linux (RHEL) version 8.3, support for the Intel Transactional Synchronization Extensions (TSX) feature is disabled by default. This causes issues with instance live migration between hosts in the following migration scenario:

- Migrating from hosts where the TSX kernel argument is enabled to hosts where the TSX kernel argument is disabled.

Live migration can be unsuccessful in Intel hosts that support the TSX feature. For more information about the CPUs that are affected by this issue, see Affected Configurations.

For more information, review the following Red Hat Knowledgebase solution Guidance on Intel TSX impact on OpenStack guests.

**BZ#2016144 - FFU 13-16.1: During Leapp upgrade reboot, openvswitch failed to start with error Starting ovsdb-server ovsdb-server: /var/run/openvswitch/ovsdb-server.pid.tmp: create failed (Permission denied)**

Red Hat OpenStack Platform (RHOSP) environments that have been upgraded from previous versions might contain unnecessary files in `/etc/systemd/system/ovs*`. You must remove these files before you begin the overcloud upgrade process from RHOSP 13 to RHOSP 16.2.

**BZ#2021525 - openstack overcloud upgrade run times out / HAProxy container fails to start**
An upgrade from Red Hat OpenStack Platform (RHOSP) 13 to RHOSP 16.2 might fail during the deployment step because of invalid SELinux labels. For a resolution and more information, see the Red Hat Knowledgebase solution Pacemaker managed services might not restart during an OSP13 - OSP16.x FFU.

BZ#2008976 - Python2 packages cleaning up after Leapp upgrade failing in Leapp dependencies

With Leapp version 5.0.8-100.202109241452Z.1332835, the automatic removal of python2 Leapp packages is unsuccessful because of a DNF exclude option that retains Leapp packages. Include the UpgradeInitCommand parameter in an environment file and remove the DNF exclude statements:

```
parameter defaults:
UpgradeInitCommand: "sudo dnf config-manager --save --setopt exclude=""
```

For more information, see Creating an upgrades environment file.

BZ#1978228 - OSP13→16.2 Leapp upgrade failed with TLSEverywhere

If you use TLS-Everywhere in your environment and want to migrate from authconfig to authselect, set the authselect_check.confirm parameter to True. Otherwise, set this value to False. For more information, see Creating an upgrades environment file.

BZ#2015325 - FFU: upgrade failed during "Upgrade Mysql database from a temporary container" step

Red Hat Enterprise Linux includes an upgradable RPM for mariadb-server that interferes with the upgrade of containerized mariadb in Red Hat OpenStack Platform (RHOSP). Before you perform a RHOSP upgrade, remove the mariadb-server package from your Controller hosts. For more information, see Creating an upgrades environment file.

BZ#2027787 - FFU: undercloud upgrade to 16.2 fails because of missing dependencies of swtpm

There is a known issue with the advanced-virt-for-rhel-8-x86_64-rpms and advanced-virt-for-rhel-8-x86_64-eus-rpms repositories that prevents a successful upgrade.

1. Disable these repositories:

   ```
   $ sudo subscription-manager repos \
   --disable=advanced-virt-for-rhel-8-x86_64-rpms \
   --disable=advanced-virt-for-rhel-8-x86_64-eus-rpms
   ```

2. Remove all packages from these repositories that are installed on the undercloud or overcloud.

3. Add the UpgradeLeappCommandOptions parameter in your upgrades environment file and enable the necessary repositories. For more information, see Creating an upgrades environment file.

BZ#2024447 - Identity service (keystone) password for the placement user was overridden by NovaPassword during FFU RHOSP 13 to 16

During an upgrade from Red Hat OpenStack Platform 13 to 16.2, if you define a value for the NovaPassword parameter but not the PlacementPassword parameter, the NovaPassword parameter overrides the OpenStack Identity service (keystone) password for the placement user. To preserve the Identity service password, do not set the NovaPassword or the PlacementPassword in the parameter_defaults section.

If you set both passwords in the parameter_defaults section, the Compute nodes might not be able to communicate with the control plane until they are upgraded. For more information about upgrading Compute nodes, see Upgrading Compute nodes.
Additionally, if you deployed the overcloud on RHOSP 13 by using the **NovaPassword**, **PlacementPassword**, or both, you must remove those passwords from the template and run the `openstack overcloud deploy` command on RHOSP 13 before upgrading to RHOSP 16.2.

### Red Hat Ceph Storage Issues

**BZ#1855813 - Ceph tools repository should be switched from RHCS3 to RHCS4 only after converge, before running external-upgrade**

The `ceph-ansible` playbook collection on the undercloud deploys Red Hat Ceph Storage containers on the overcloud. To upgrade your environment, you must have Red Hat Ceph Storage 3 version of `ceph-ansible` to maintain Ceph Storage 3 containers through the upgrade. This guide includes instructions on how to retain `ceph-ansible` version 3 over the course of the upgrade until you are ready to upgrade to Ceph Storage 4. Before performing the 13 to 16.2 upgrade, you must perform a minor version update of your Red Hat OpenStack Platform 13 environment and ensure you have `ceph-ansible` version 3.2.46 or later.

### 2.8. BACKUP AND RESTORE

Before you upgrade your Red Hat OpenStack Platform 13 environment, back up the undercloud and overcloud control plane. For more information about backing up nodes with the Relax-and-recover (ReaR) utility, see the [Undercloud and Control Plane Back Up and Restore](#) guide.

- Back up your nodes before you perform an upgrade. For more information about backing up nodes before you upgrade, see [Red Hat OpenStack Platform 13 Undercloud and Control Plane Back Up and Restore](#).

- You can back up each up node after it has been upgraded. For more information about backing up upgraded nodes, see [Red Hat OpenStack Platform 16.2 Backing up and restoring the undercloud and control plane nodes](#).

- You can back up the database that runs on the undercloud node after you perform the undercloud upgrade and before you perform the overcloud upgrade. For more information about backing up the undercloud database, see [Creating a database backup of the undercloud node](#) in the [Red Hat OpenStack Platform 16.2 Backing up and restoring the undercloud and control plane nodes](#) guide.

### 2.9. MINOR VERSION UPDATE

Before you upgrade your Red Hat OpenStack Platform environment, update the environment to the latest minor version of your current release. For example, perform an update of your Red Hat OpenStack Platform 13 environment to the latest 13 before running the upgrade to Red Hat OpenStack Platform 16.2.

For instructions on performing a minor version update for Red Hat OpenStack Platform 13, see [Keeping Red Hat OpenStack Platform Updated](#).

### 2.10. PROXY CONFIGURATION

If you use a proxy with your Red Hat OpenStack Platform 13 environment, the proxy configuration in the `/etc/environment` file will persist past the operating system upgrade and the Red Hat OpenStack Platform 16.2 upgrade.
For more information about proxy configuration for Red Hat OpenStack Platform 13, see Considerations when running the undercloud with a proxy.

For more information about proxy configuration for Red Hat OpenStack Platform 16.2, see Considerations when running the undercloud with a proxy.

2.11. VALIDATING RED HAT OPENSTACK PLATFORM 13 BEFORE THE UPGRADE

Before you upgrade to Red Hat OpenStack Platform 16.2, validate your undercloud and overcloud with the tripleo-validations playbooks. In Red Hat OpenStack Platform 13, you run these playbooks through the OpenStack Workflow Service (mistral).

NOTE

If you use CDN or Satellite as repository sources, the validation fails. To resolve this issue, see the Red Hat Knowledgebase solution, repos validation fails because of SSL certificate error.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

   ```$ source ~/stackrc```

3. Create a bash script called `pre-upgrade-validations.sh` and include the following content in the script:

   ```#!/bin/bash
   for VALIDATION in $(openstack action execution run tripleo.validations.list_validations '{"groups": ["pre-upgrade"]}' | jq ".result[].id")
   do
     echo "=== Running validation: $VALIDATION ==="
     STACK_NAME=$(openstack stack list -f value -c 'Stack Name')
     ID=$(openstack workflow execution create -f value -c ID tripleo.validations.v1.run_validation "{"validation_name": "$VALIDATION", "plan": "$STACK_NAME"}"
     while [ $(openstack workflow execution show $ID -f value -c State) == "RUNNING" ]
     do
       sleep 1
     done
     echo ""
     openstack workflow execution output show $ID | jq ".stdout"
   done
   ```

4. Add permission to run the script:

   ```$ chmod +x pre-upgrade-validations.sh```

5. Run the script:
$ ./pre-upgrade-validations.sh

Review the script output to determine which validations succeed and fail:

=== Running validation: "check-ftype" ===

Success! The validation passed for all hosts:

* undercloud
CHAPTER 3. REPOSITORIES

This section contains the repositories for the undercloud and overcloud. Refer to this section when you need to enable repositories in certain situations:

- Enabling repositories when registering to the Red Hat Customer Portal.
- Enabling and synchronizing repositories to your Red Hat Satellite Server.
- Enabling repositories when registering to your Red Hat Satellite Server.

3.1. UNDERCLOUD REPOSITORIES

Red Hat OpenStack Platform 16.2 runs on Red Hat Enterprise Linux 8.4. As a result, you must lock the content from these repositories to the respective Red Hat Enterprise Linux version.

**NOTE**

If you synchronize repositories with Red Hat Satellite, you can enable specific versions of the Red Hat Enterprise Linux repositories. However, the repository remains the same despite the version you choose. For example, you can enable the 8.4 version of the BaseOS repository, but the repository name is still `rhel-8-for-x86_64-baseos-eus-rpms` despite the specific version you choose.

**WARNING**

Any repositories outside the ones specified here are not supported. Unless recommended, do not enable any other products or repositories outside the ones listed in the following tables or else you might encounter package dependency issues. Do not enable Extra Packages for Enterprise Linux (EPEL).

Core repositories

The following table lists core repositories for installing the undercloud.

<table>
<thead>
<tr>
<th>Name</th>
<th>Repository</th>
<th>Description of requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - BaseOS (RPMs) Extended Update Support (EUS)</td>
<td><code>rhel-8-for-x86_64-baseos-eus-rpms</code></td>
<td>Base operating system repository for x86_64 systems.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs)</td>
<td><code>rhel-8-for-x86_64-appstream-eus-rpms</code></td>
<td>Contains Red Hat OpenStack Platform dependencies.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - High Availability (RPMs) Extended Update Support (EUS)</td>
<td><code>rhel-8-for-x86_64-highavailability-eus-rpms</code></td>
<td>High availability tools for Red Hat Enterprise Linux. Used for Controller node high availability.</td>
</tr>
<tr>
<td>Name</td>
<td>Repository</td>
<td>Description of requirement</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Red Hat Ansible Engine 2.9 for RHEL 8 x86_64 (RPMs)</td>
<td>ansible-2.9-for-rhel-8-x86_64-rpms</td>
<td>Ansible Engine for Red Hat Enterprise Linux. Used to provide the latest version of Ansible.</td>
</tr>
<tr>
<td>Red Hat Satellite Tools for RHEL 8 Server RPMs x86_64</td>
<td>satellite-tools-&lt;satellite_version&gt;-for-rhel-8-x86_64-rpms</td>
<td>Tools for managing hosts with Red Hat Satellite 6, where <code>&lt;satellite_version&gt;</code> is the version of Red Hat Satellite Server that you use.</td>
</tr>
<tr>
<td>Red Hat OpenStack Platform 16.2 for RHEL 8 (RPMS)</td>
<td>openstack-16.2-for-rhel-8-x86_64-rpms</td>
<td>Core Red Hat OpenStack Platform repository, which contains packages for Red Hat OpenStack Platform director.</td>
</tr>
<tr>
<td>Red Hat Fast Datapath for RHEL 8 (RPMS)</td>
<td>fast-datapath-for-rhel-8-x86_64-rpms</td>
<td>Provides Open vSwitch (OVS) packages for OpenStack Platform.</td>
</tr>
</tbody>
</table>

**Ceph repositories**

The following table lists Ceph Storage related repositories for the undercloud.

<table>
<thead>
<tr>
<th>Name</th>
<th>Repository</th>
<th>Description of Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Ceph Storage Tools 4 for RHEL 8 x86_64 (RPMs)</td>
<td>rhceph-4-tools-for-rhel-8-x86_64-rpms</td>
<td>Provides tools for nodes to communicate with the Ceph Storage cluster. The undercloud requires the <strong>ceph-ansible</strong> package from this repository if you plan to use Ceph Storage in your overcloud or if you want to integrate with an existing Ceph Storage cluster.</td>
</tr>
</tbody>
</table>

**IBM POWER repositories**

The following table contains a list of repositories for Red Hat Openstack Platform on POWER PC architecture. Use these repositories in place of equivalents in the Core repositories.

<table>
<thead>
<tr>
<th>Name</th>
<th>Repository</th>
<th>Description of requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux for IBM Power, little endian – BaseOS (RPMs)</td>
<td>rhel-8-for-ppc64le-baseos-rpms</td>
<td>Base operating system repository for ppc64le systems.</td>
</tr>
<tr>
<td>Name</td>
<td>Repository</td>
<td>Description of requirement</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for IBM Power, little endian - AppStream (RPMs)</td>
<td>rhel-8-for-ppc64le-appstream-rpms</td>
<td>Contains Red Hat OpenStack Platform dependencies.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for IBM Power, little endian - High Availability (RPMs)</td>
<td>rhel-8-for-ppc64le-highavailability-rpms</td>
<td>High availability tools for Red Hat Enterprise Linux. Used for Controller node high availability.</td>
</tr>
<tr>
<td>Red Hat Fast Datapath for RHEL 8 IBM Power, little endian (RPMS)</td>
<td>fast-datapath-for-rhel-8-ppc64le-rpms</td>
<td>Provides Open vSwitch (OVS) packages for OpenStack Platform.</td>
</tr>
<tr>
<td>Red Hat Ansible Engine 2.9 for RHEL 8 IBM Power, little endian (RPMS)</td>
<td>ansible-2.9-for-rhel-8-ppc64le-rpms</td>
<td>Ansible Engine for Red Hat Enterprise Linux. Provides the latest version of Ansible.</td>
</tr>
<tr>
<td>Red Hat OpenStack Platform 16.2 for RHEL 8 (RPMS)</td>
<td>openstack-16.2-for-rhel-8-ppc64le-rpms</td>
<td>Core Red Hat OpenStack Platform repository for ppc64le systems.</td>
</tr>
</tbody>
</table>

### 3.2. OVERCLOUD REPOSITORIES

Red Hat OpenStack Platform 16.2 runs on Red Hat Enterprise Linux 8.4. As a result, you must lock the content from these repositories to the respective Red Hat Enterprise Linux version.

**NOTE**

If you synchronize repositories with Red Hat Satellite, you can enable specific versions of the Red Hat Enterprise Linux repositories. However, the repository remains the same despite the version you choose. For example, you can enable the 8.4 version of the BaseOS repository, but the repository name is still **rhel-8-for-x86_64-baseos-eus-rpms** despite the specific version you choose.

**WARNING**

Any repositories outside the ones specified here are not supported. Unless recommended, do not enable any other products or repositories outside the ones listed in the following tables or else you might encounter package dependency issues. Do not enable Extra Packages for Enterprise Linux (EPEL).

**Controller node repositories**

The following table lists core repositories for Controller nodes in the overcloud.
<table>
<thead>
<tr>
<th>Name</th>
<th>Repository</th>
<th>Description of requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - BaseOS (RPMs)</td>
<td>rhel-8-for-x86_64-baseos-eus-rpms</td>
<td>Base operating system repository for x86_64 systems.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs)</td>
<td>rhel-8-for-x86_64-appstream-eus-rpms</td>
<td>Contains Red Hat OpenStack Platform dependencies.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - High Availability (RPMs)</td>
<td>rhel-8-for-x86_64-highavailability-eus-rpms</td>
<td>High availability tools for Red Hat Enterprise Linux.</td>
</tr>
<tr>
<td>Red Hat Ansible Engine 2.9 for RHEL 8 x86_64 (RPMs)</td>
<td>ansible-2.9-for-rhel-8-x86_64-rpms</td>
<td>Ansible Engine for Red Hat Enterprise Linux. Used to provide the latest version of Ansible.</td>
</tr>
<tr>
<td>Red Hat OpenStack Platform 16.2 for RHEL 8 (RPMs)</td>
<td>openstack-16.2-for-rhel-8-x86_64-rpms</td>
<td>Core Red Hat OpenStack Platform repository.</td>
</tr>
<tr>
<td>Red Hat Fast Datapath for RHEL 8 (RPMS)</td>
<td>fast-datapath-for-rhel-8-x86_64-rpms</td>
<td>Provides Open vSwitch (OVS) packages for OpenStack Platform.</td>
</tr>
<tr>
<td>Red Hat Ceph Storage Tools 4 for RHEL 8 x86_64 (RPMs)</td>
<td>rceph-4-tools-for-rhel-8-x86_64-rpms</td>
<td>Tools for Red Hat Ceph Storage 4 for Red Hat Enterprise Linux 8.</td>
</tr>
<tr>
<td>Red Hat Satellite Tools for RHEL 8 Server RPMs x86_64</td>
<td>satellite-tools-&lt;satellite_version&gt;-for-rhel-8-x86_64-rpms</td>
<td>Tools for managing hosts with Red Hat Satellite 6, where &lt;satellite_version&gt; is the version of Red Hat Satellite Server that you use.</td>
</tr>
</tbody>
</table>

**Compute node repositories**

The following table lists core repositories for Compute nodes in the overcloud.

<table>
<thead>
<tr>
<th>Name</th>
<th>Repository</th>
<th>Description of requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - BaseOS (RPMs)</td>
<td>rhel-8-for-x86_64-baseos-eus-rpms</td>
<td>Base operating system repository for x86_64 systems.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs)</td>
<td>rhel-8-for-x86_64-appstream-eus-rpms</td>
<td>Contains Red Hat OpenStack Platform dependencies.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - High Availability (RPMs)</td>
<td>rhel-8-for-x86_64-highavailability-eus-rpms</td>
<td>High availability tools for Red Hat Enterprise Linux.</td>
</tr>
</tbody>
</table>
## Real Time Compute repositories

The following table lists repositories for Real Time Compute (RTC) functionality.

<table>
<thead>
<tr>
<th>Name</th>
<th>Repository</th>
<th>Description of requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - Real Time (RPMs)</td>
<td>rhel-8-for-x86_64-rt-rpms</td>
<td>Repository for Real Time KVM (RT-KVM). Contains packages to enable the real time kernel. Enable this repository for all Compute nodes targeted for RT-KVM. NOTE: You need a separate subscription to a <strong>Red Hat OpenStack Platform for Real Time</strong> SKU to access this repository.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - Real Time for NFV (RPMs)</td>
<td>rhel-8-for-x86_64-nfv-rpms</td>
<td>Repository for Real Time KVM (RT-KVM) for NFV. Contains packages to enable the real time kernel. Enable this repository for all NFV Compute nodes targeted for RT-KVM. NOTE: You need a separate subscription to a <strong>Red Hat OpenStack Platform for Real Time</strong> SKU to access this repository.</td>
</tr>
</tbody>
</table>
## Ceph Storage node repositories

The following table lists Ceph Storage related repositories for the overcloud.

<table>
<thead>
<tr>
<th>Name</th>
<th>Repository</th>
<th>Description of requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - BaseOS (RPMs)</td>
<td>rhel-8-for-x86_64-baseos-rpms</td>
<td>Base operating system repository for x86_64 systems.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs)</td>
<td>rhel-8-for-x86_64-appstream-rpms</td>
<td>Contains Red Hat OpenStack Platform dependencies.</td>
</tr>
<tr>
<td>Red Hat Ansible Engine 2.9 for RHEL 8 x86_64 (RPMs)</td>
<td>ansible-2.9-for-rhel-8-x86_64-rpms</td>
<td>Ansible Engine for Red Hat Enterprise Linux. Used to provide the latest version of Ansible.</td>
</tr>
<tr>
<td>Red Hat OpenStack Platform 16.2 Director Deployment Tools for RHEL 8 x86_64 (RPMs)</td>
<td>openstack-16.2-deployment-tools-for-rhel-8-x86_64-rpms</td>
<td>Packages to help director configure Ceph Storage nodes. This repository is included with standalone Ceph Storage subscriptions. If you use a combined OpenStack Platform and Ceph Storage subscription, use the openstack-16.2-for-rhel-8-x86_64-rpms repository.</td>
</tr>
<tr>
<td>Red Hat OpenStack Platform 16.2 for RHEL 8 (RPMs)</td>
<td>openstack-16.2-for-rhel-8-x86_64-rpms</td>
<td>Packages to help director configure Ceph Storage nodes. This repository is included with combined OpenStack Platform and Ceph Storage subscriptions. If you use a standalone Ceph Storage subscription, use the openstack-16.2-deployment-tools-for-rhel-8-x86_64-rpms repository.</td>
</tr>
<tr>
<td>Red Hat Ceph Storage Tools 4 for RHEL 8 x86_64 (RPMs)</td>
<td>rhceph-4-tools-for-rhel-8-x86_64-rpms</td>
<td>Provides tools for nodes to communicate with the Ceph Storage cluster.</td>
</tr>
</tbody>
</table>

## IBM POWER repositories

The following table lists repositories for Openstack Platform on POWER PC architecture. Use these repositories in place of equivalents in the Core repositories.

<table>
<thead>
<tr>
<th>Name</th>
<th>Repository</th>
<th>Description of requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux for IBM Power, little endian - BaseOS (RPMs)</td>
<td>rhl-8-for-ppc64le-baseos-rpms</td>
<td>Base operating system repository for ppc64le systems.</td>
</tr>
</tbody>
</table>
### Name
- Red Hat Enterprise Linux 8 for IBM Power, little endian - AppStream (RPMs)
- Red Hat Enterprise Linux 8 for IBM Power, little endian - High Availability (RPMs)
- Red Hat Fast Datapath for RHEL 8 IBM Power, little endian (RPMS)
- Red Hat Ansible Engine 2.9 for RHEL 8 IBM Power, little endian (RPMS)
- Red Hat OpenStack Platform 16.2 for RHEL 8 (RPMS)

### Repository
- `rhel-8-for-ppc64le-appstream-rpms`
- `rhel-8-for-ppc64le-highavailability-rpms`
- `fast-datapath-for-rhel-8-ppc64le-rpms`
- `ansible-2.9-for-rhel-8-ppc64le-rpms`
- `openstack-16.2-for-rhel-8-ppc64le-rpms`

### Description of requirement
- Contains Red Hat OpenStack Platform dependencies.
- High availability tools for Red Hat Enterprise Linux. Used for Controller node high availability.
- Provides Open vSwitch (OVS) packages for OpenStack Platform.
- Ansible Engine for Red Hat Enterprise Linux. Used to provide the latest version of Ansible.
- Core Red Hat OpenStack Platform repository for ppc64le systems.

---

### 3.3. RED HAT SATELLITE SERVER 6 CONSIDERATIONS

If you use Red Hat Satellite Server 6 to host RPMs and container images for your Red Hat OpenStack Platform environment, you must account for certain considerations when you use Satellite Server 6 to deliver content during the Red Hat OpenStack Platform 16.2 upgrade.

#### Assumptions about your current environment

- Your Satellite Server already hosts Red Hat OpenStack Platform 13 RPMs and container images.
- You have already registered all nodes in your Red Hat OpenStack Platform 13 environment to your Satellite Server. For example, you previously used an activation key linked to an Red Hat OpenStack Platform 13 content view to register nodes to OpenStack Platform 13 content.

#### Recommendations for Red Hat OpenStack Platform upgrades

- Enable and synchronize the necessary RPM repositories for both the Red Hat OpenStack Platform 13 undercloud and overcloud. This includes the necessary Red Hat Enterprise Linux 8.4 repositories.
- Create custom products on your Satellite Server to host container images for the following Red Hat OpenStack Platform versions:
  - Red Hat OpenStack Platform 16.2
  - Red Hat OpenStack Platform 15
- Create and promote a content view for Red Hat OpenStack Platform 16.2 upgrade and include the following content in the content view:
The following Red Hat Enterprise Linux 7 repositories:

- Red Hat Enterprise Linux 7 Server RPMs x86_64 7Server or Red Hat Enterprise Linux 7 Server RPMs x86_64 7.9
  - rhel-7-server-rpms
    - x86_64 7Server
    - or:
      - rhel-7-server-rpms
        - x86_64 7.9

- Red Hat Enterprise Linux 7 Server - Extras RPMs x86_64
  - rhel-7-server-extras-rpms
    - x86_64

All undercloud and overcloud RPM repositories, including Red Hat Enterprise Linux 8.4 repositories. Ensure that you include the correct version of the Red Hat Enterprise Linux repositories, which is 8.4. If you don’t include the correct version, you might run into issues with enabling RHEL 8 repositories. For more information, see the Red Hat Knowledgebase solution RHEL 7 to RHEL 8 LEAPP Upgrade Failing When Using Red Hat Satellite.

- Red Hat OpenStack Platform 16.2 container images.
- Red Hat OpenStack Platform 15 container images.

- Associate an activation key with the Red Hat OpenStack Platform 16.2 content view that you have created for the Red Hat OpenStack Platform 16.2 upgrade.

- Check that no node has the katello-host-tools-fact-plugin package installed. The Leapp upgrade does not upgrade this package and leaving this package on a Red Hat Enterprise Linux 8.4 system causes subscription-manager to report errors.

- You can configure Satellite Server to host Red Hat OpenStack Platform 16.2 container images. For more information, see Preparing a Satellite server for container images in Director Installation and Usage.

- If you use a Ceph subscription and have configured director to use the overcloud-minimal image for Ceph storage nodes, on your Satellite Server you must create a Content View and add the following Red Hat Enterprise Linux (RHEL) 8.4 repositories to it:
  - Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs)
    - rhel-8-for-x86_64-appstream-rpms
      - x86_64 8.4
  - Red Hat Enterprise Linux 8 for x86_64 - BaseOS (RPMs)
    - rhel-8-for-x86_64-baseos-rpms
      - x86_64 8.4

For more information, see Importing Red Hat Content and Managing Content Views in the Red Hat Satellite Content Management Guide.
PART I. UPGRADING THE UNDERCLOUD
CHAPTER 4. PREPARING FOR THE UNDERCLOUD UPGRADE

Before you perform the undercloud upgrade, you must complete some preparation steps so that the undercloud upgrade runs successfully.

4.1. UPGRAADING WITH EXTERNAL CEPH PREREQUISITE

If you are upgrading with external Ceph deployments, before you can upgrade your Red Hat OpenStack Platform deployment, you must upgrade your Red Hat Ceph Storage cluster from version 3 to version 4. For more information, see Upgrading a Red Hat Ceph Storage cluster in the Red Hat Ceph Storage 4 Installation Guide.

4.2. NEW MEMORY REQUIREMENTS

In Red Hat OpenStack Platform 16.2, the undercloud has new memory requirements:

<table>
<thead>
<tr>
<th>Red Hat OpenStack Platform 13</th>
<th>Red Hat OpenStack Platform 16.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 GB RAM</td>
<td>24 GB RAM</td>
</tr>
</tbody>
</table>

Ensure that your undercloud meets these new requirements before you proceed with the upgrade.

4.3. USING PREDICTABLE NIC NAMES FOR THE UNDERCLOUD NODE

Before you run the Leapp upgrade on the undercloud node, you must check for kernel-based NIC names, which usually contain an `eth` prefix. These NIC names are usually unpredictable in terms of NIC assignments.

You can run the `playbook-nics.yaml` playbook to rename NIC names to use the `em` NIC prefix. You can also set a different NIC prefix, by modifying the `prefix` variable when running the playbook. However, the NIC changes are only applied after the Leapp upgrade process completes and the node is rebooted.

Procedure

1. Log in to the undercloud as the `stack` user.

2. Create an Ansible playbook named `playbook-nics.yaml` and copy the following content into the playbook:

```yaml
---
- name: Rename eth devices
  hosts: all
  become: yes
  vars:
    prefix: "em"
    undercloud_conf: "/home/stack/undercloud.conf"
    osnet_conf: "/etc/os-net-config/config.json"
  tasks:
  - set_fact:
      eth_interfaces: "{{ ansible_interfaces | select('match','eth.*') | list }}"
  - debug:
      msg: "{{ eth_interfaces }}"
```

30
- name: Update udev rules
  lineinfile:
    line: "SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="\n    \{{ ansible_facts[item]['perm_macaddress'] | default(ansible_facts[item]['macaddress']) \}",
    NAME="\{{ item|replace('eth',prefix) \}}""
    path: /etc/udev/rules.d/70-rhosp-persistent-net.rules
    create: True
    with_items: "{{ eth_interfaces }}"

- name: Rename eth files
  block:
    - name: Check that eth files exists
      stat:
        path: /etc/sysconfig/network-scripts/ifcfg-{{ item }}
        register: nic_result
    with_items: "{{ eth_interfaces }}"

    - name: Copy nic files using the new prefix
      copy:
        remote_src: True
        src: "{{ item.stat.path }}"
        dest: "{{ item.stat.path|replace('eth',prefix) }}"
        with_items: "{{ nic_result.results }}"
        when: item.stat.exists

    - name: Edit NAME in new network-script files
      lineinfile:
        regexp: "^NAME=.*"
        line: "NAME={{ item.item|replace('eth',prefix) }}"
        path: "{{ item.stat.path|replace('eth',prefix) }}"
        with_items: "{{ nic_result.results }}"
        when: item.stat.exists

    - name: Edit DEVICE in new network-script files
      lineinfile:
        regexp: "^DEVICE=.*"
        line: "DEVICE={{ item.item|replace('eth',prefix) }}"
        path: "{{ item.stat.path|replace('eth',prefix) }}"
        with_items: "{{ nic_result.results }}"
        when: item.stat.exists

    - name: Backup old eth network-script files
      copy:
        remote_src: True
        src: "{{ item.stat.path }}"
        dest: "{{ item.stat.path|replace('eth',prefix) }}.bak"
        with_items: "{{ nic_result.results }}"
        when: item.stat.exists

    - name: Remove old eth network-script files
      file:
        path: "{{ item.stat.path }}"
        state: absent
        with_items: "{{ nic_result.results }}"
        when: item.stat.exists

    - name: Rename route files
      block:
        - name: Check that route files exists
          stat:
            path: /etc/sysconfig/network-scripts/route-{{ item }}
            register: route_result
        with_items: "{{ eth_interfaces }}"
- name: Copy route files using the new prefix
  copy:
    remote_src: True
    src: "{{ item.stat.path }}"
    dest: "{{ item.stat.path|replace('eth',prefix) }}"
    with_items: "{{ route_result.results }}"
    when: item.stat.exists
- name: Update prefix in route files that use IP command arguments format
  replace:
    regexp: "eth"
    replace: "{{ prefix }}"
    path: "{{ item.stat.path|replace('eth',prefix) }}"
    with_items: "{{ route_result.results }}"
    when: item.stat.exists
- name: Backup old route files
  copy:
    remote_src: True
    src: "{{ item.stat.path }}"
    dest: "{{ item.stat.path }}.bak"
    with_items: "{{ route_result.results }}"
    when: item.stat.exists
- name: Remove old route files
  file:
    path: "{{ item.stat.path }}"
    state: absent
    with_items: "{{ route_result.results }}"
    when: item.stat.exists
- name: Perform a final regex for any remaining eth prefixes in ifcfg files
  block:
    - name: Get a list of all ifcfg files
      find:
        paths: /etc/sysconfig/network-scripts/
        patterns: 'ifcfg-*'
        excludes: '*.bak'
        register: ifcfg_files
    - name: Perform final regex on ifcfg files
      replace:
        path: "{{ item[0].path }}"
        regexp: "{{ item[1] }}"
        replace: "{{ item[1]|replace('eth',prefix) }}"
        with_nested:
          - "{{ ifcfg_files.files }}"
          - "{{ eth_interfaces }}"
- name: Replace interface name in files referencing old eth interface
  block:
    - name: Check if undercloud.conf exists
      stat:
        path: "{{ undercloud_conf }}"
      register: undercloud_conf_stat
    - name: Replace interface name in undercloud.conf
      replace:
        path: "{{ undercloud_conf }}"
        regexp: 'eth\(\d+\)'
        replace: "{{ prefix }}\1"
        when: undercloud_conf_stat.stat.exists
- name: Check if os-net-config's config.json exists
stat:
  path: "{{ osnet_conf }}"
register: osnet_conf_stat
- name: Replace interface name in config.json
  replace:
    path: "{{ osnet_conf }}"
    regexp: 'eth\d+'
    replace: "{{ prefix }}\1"
    when: osnet_conf_stat.stat.exists
- name: Patch vlan devices
  block:
    - name: Check that vlan files exists
      stat:
        path: /etc/sysconfig/network-scripts/ifcfg-{{ item }}
        register: nic_result
      when: item.startswith("vlan")
      with_items: "{{ ansible_interfaces }}"
    - name: Backup old vlan network-script files
      copy:
        remote_src: True
        src: "{{ item.stat.path }}"
        dest: "{{ item.stat.path }}.bak"
      when: item.item.startswith("vlan") and item.stat.exists
      with_items: "{{ nic_result.results }}"
    - name: Edit PHYSDEV in new network-script files
      replace:
        path: "{{ item.stat.path }}"
        regexp: "^PHYSDEV=eth"
        replace: "PHYSDEV={{ prefix }}"
      when: item.item.startswith("vlan") and item.stat.exists
      with_items: "{{ nic_result.results }}"

NOTE
You will use this playbook to rename the overcloud NICs at a later stage in the upgrade process.

3. Run the playbook-nics.yaml playbook on the undercloud:

```bash
$ ansible-playbook -c local -i localhost, playbook-nics.yaml
```

The playbook sets the new NIC prefix to `em`. To set a different NIC prefix, set the `prefix` variable when running the playbook:

```bash
$ ansible-playbook -c local -i localhost, -e prefix="mynic" ~/playbook-nics.yaml
```

The NIC changes are only applied after the Leapp upgrade process completes and the node is rebooted.

Resources

- How to perform an in-place upgrade to RHEL 8 when using kernel NIC names on RHEL 7
- Consistent Network Device Naming
4.4. SETTING THE SSH ROOT PERMISSION PARAMETER ON THE UNDERCLOUD

The Leapp upgrade checks whether the PermitRootLogin parameter exists in the /etc/ssh/sshd_config file. You must explicitly set this parameter to either yes or no.

For security purposes, set this parameter to no to disable SSH access to the root user on the undercloud.

Procedure

1. Log in to the undercloud as the stack user.
2. Check the /etc/ssh/sshd_config file for the PermitRootLogin parameter:

   $ sudo grep PermitRootLogin /etc/ssh/sshd_config

3. If the parameter is not in the /etc/ssh/sshd_config file, edit the file and set the PermitRootLogin parameter:

   PermitRootLogin no

4. Save the file.

4.5. CONVERTING TO NEXT GENERATION POWER MANAGEMENT DRIVERS

Red Hat OpenStack Platform now uses next generation drivers, also known as hardware types, that replace older drivers.

The following table shows an analogous comparison between older drivers with their next generation hardware type equivalent:

<table>
<thead>
<tr>
<th>Old Driver</th>
<th>New Hardware Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>pxe_ipmitool</td>
<td>ipmi</td>
</tr>
<tr>
<td>pxe_drac</td>
<td>idrac</td>
</tr>
<tr>
<td>pxe_ilo</td>
<td>ilo</td>
</tr>
<tr>
<td>pxe_irmc</td>
<td>irmc</td>
</tr>
<tr>
<td>VBMC (pxe_ipmitool)</td>
<td>ipmi</td>
</tr>
<tr>
<td>fake_pxe</td>
<td>fake-hardware</td>
</tr>
</tbody>
</table>
In OpenStack Platform 15, these older drivers have been removed and are no longer accessible. You must change to hardware types **before** upgrading to OpenStack Platform 15.

**Procedure**

1. Check the current list of hardware types enabled:
   
   ```
   $ source ~/stackrc  
   $ openstack baremetal driver list --type dynamic
   ```

2. If you use a hardware type driver that is not enabled, enable the driver using the `enabled_hardware_types` parameter in the `undercloud.conf` file:

   ```
   enabled_hardware_types = ipmi,redfish,idrac
   ```

3. Save the file and refresh the undercloud:

   ```
   $ openstack undercloud install
   ```

4. Run the following commands, substituting the `OLDDRIVER` and `NEWDRIVER` variables for your power management type:

   ```
   $ source ~/stackrc  
   $ OLDDRIVER="pxe_ipmitool"  
   $ NEWDRIVER="ipmi"  
   $ for NODE in $(openstack baremetal node list --driver $OLDDRIVER -c UUID -f value) ; do  
     openstack baremetal node set $NODE --driver $NEWDRIVER; done
   ```
CHAPTER 5. UPGRADING THE UNDERCLOUD OPERATING SYSTEM

Before you upgrade director, you must upgrade the undercloud operating system from Red Hat Enterprise Linux 7 to Red Hat Enterprise Linux 8. As a part of this operating system upgrade, you must remove the Red Hat OpenStack Platform 13 packages and then run the Leapp utility to upgrade the system packages. This package removal and operating system upgrade does not affect the undercloud database. After you complete the operating system upgrade, reinstall the Red Hat OpenStack Platform 16.2 versions of the director packages.

5.1. REMOVING RED HAT OPENSTACK PLATFORM DIRECTOR PACKAGES

Before you run the Leapp utility, remove the Red Hat OpenStack Platform 13 packages tied to Red Hat Enterprise Linux 7. These package names use a release suffix of \texttt{el7ost}. Some \texttt{el7ost} remain on the system as dependencies for \texttt{subscription-manager} and the Leapp utility.

Procedure

1. Log in to the undercloud as the \texttt{stack} user.

2. Disable the main OpenStack services on the undercloud:

   \begin{verbatim}
   $ sudo systemctl stop 'openstack-*' httpd haproxy mariadb 'rabbitmq*' docker xinetd
   \end{verbatim}

3. Remove the main OpenStack services from the undercloud, except OpenvSwitch and certain Python 2 packages that are required for the upgrade:

   \begin{verbatim}
   $ sudo yum -y remove "*el7ost*" 'galera*' 'haproxy*' httpd 'mysql*' 'pacemaker*' xinetd python-jsonpointer qemu-kvm-common-rhev qemu-img-rhev 'rabbit*' 'redis*' python-docker -python-PyMySQL python-pysocks -python2-asn1crypto python2-babel python2-cffi -python2-cryptography python2-dateutil python2-idna -python2-ipaddress python2-jinja2 python2-jsonpatch -python2-markupsafe python2-pyOpenSSL python2-requests python2-six python2-urllib3 python-httplib2 -python2-passlib python2-netaddr -ceph-ansible
   \end{verbatim}

4. Remove the content from the /etc/httpd and /var/lib/docker directories:

   \begin{verbatim}
   $ sudo rm -rf /etc/httpd /var/lib/docker
   \end{verbatim}

5.2. PERFORMING A LEAPP UPGRADE ON THE UNDERCLOUD

Install and run the Leapp utility to upgrade the operating system to Red Hat Enterprise Linux (RHEL) 8.

Prerequisites
Before you install and run Leapp, ensure that you have familiarized yourself with the Leapp upgrade usage in Red Hat OpenStack Platform section.

Before you perform the Leapp upgrade, ensure that you complete the Using predictable NIC names for the undercloud node section. If you do not rename the network interface names before you perform the Leapp upgrade process, the interface names might change after the upgrade to RHEL 8.2 is complete.

Procedure

1. Log in to the undercloud as the stack user.

2. Install the Leapp utility:

   $ sudo yum install leapp

3. Download the additional required data files (RPM package changes and RPM repository mapping) attached to the Knowledge Base article Data required by the Leapp utility for an in-place upgrade from RHEL 7 to RHEL 8 and place these files in the /etc/leapp/files/ directory.

4. Update your Red Hat subscription:

   - If your undercloud uses the Red Hat Customer Portal for registration, refresh your current subscription to obtain access to the Red Hat Enterprise Linux 8.4 content:

     $ sudo subscription-manager refresh

   - If your undercloud uses Red Hat Satellite Server for registration, re-register the undercloud to a content view associated with your Red Hat OpenStack Platform (RHOSP)16.2 activation key.

     $ sudo subscription-manager register --force --org ORG --activationkey ACTIVATION_KEY

     **NOTE**

     The content view that you create for Red Hat OpenStack Platform 16.2 must contain content for Red Hat Enterprise Linux 8.4.

5. Red Hat OpenStack Platform 16.2 uses a newer version of Open vSwitch. Substitute the Open vSwitch version through the to_remove and to_install transaction files:

   $ echo 'openvswitch2.11' | sudo tee -a /etc/leapp/transaction/to_remove
   $ echo 'openvswitch2.15' | sudo tee -a /etc/leapp/transaction/to_install

6. Retain the Red Hat Ceph Storage 3 version of ceph-ansible through the upgrade with the to_keep transaction file:

   $ echo 'ceph-ansible' | sudo tee -a /etc/leapp/transaction/to_keep

7. Adjust the kernel modules that are no longer supported in RHEL 8:
8. Remove the `pam_pkcs11` module:

   $ sudo leapp answer --add --section remove_pam_pkcs11_module_check.confirm=True

9. Optional: If your environment is deployed with a TLS-Everywhere architecture and it uses the deprecated `authconfig` utility to configure authentication on your system, configure your RHEL 8 system with the `authselect` utility:

   $ sudo leapp answer --add --section authselect_check.confirm=True

   For more information about authentication configuration during the Leapp upgrade process, see Known issues in *Upgrading from RHEL 7 to RHEL 8*.

10. Set the `LEAPP_DEVEL_TARGET_RELEASE` and `LEAPP_UNSUPPORTED` environment variables to specify the RHEL 8 minor version that you want to upgrade to. For RHOSP 16.2, you must set the RHEL 8 minor version to *8.4*.

   $ export LEAPP_UNSUPPORTED=1
   $ export LEAPP_DEVEL_TARGET_RELEASE=8.4

   You must use the `LEAPP_UNSUPPORTED` environment variable every time you use a environment variable with the `LEAPP_DEVEL` prefix.

11. Remove the persistent network names actor from the Leapp process:

    **NOTE**

    If you do not rename the network interface names before you perform the Leapp upgrade process, the interface names might change after the upgrade to RHEL 8.2 is complete. For more information about renaming the network interface names, see *Using predictable NIC names for the undercloud node*.

   $ sudo rm -f /usr/share/leapp-repository/repositories/system_upgrade/el7toel8/actors/persistentnetnamesdisable/actor.py

12. Start the Leapp upgrade process:

   $ sudo -E leapp upgrade --debug --enablerepo rhel-8-for-x86_64-baseos-eus-rpms --enablerepo rhel-8-for-x86_64-appstream-eus-rpms --enablerepo fast-datapath-for-rhel-8-x86_64-rpms --enablerepo ansible-2.9-for-rhel-8-x86_64-rpms

   Use the `--enablerepo` option to set the repositories that you want to enable during the Leapp upgrade process. You must include these repositories to facilitate the Red Hat OpenStack Platform 16.2 transition, especially with the newer version of Open vSwitch.

13. Wait for the `leapp upgrade` command to successfully complete.

14. Create an empty `.autorelabel` file in your root directory:
$ sudo touch /.autorelabel

After a reboot, SELinux detects this file and automatically relabels the file system.

15. Reboot the undercloud:

$ sudo reboot

16. Remove the Leapp packages from the transaction exclusion that is defined in the DNF configuration:

$ sudo dnf config-manager --save --setopt exclude=

Additional resources

- Data required by the Leapp utility for an in-place upgrade from RHEL 7 to RHEL 8
- How to perform an in-place upgrade to RHEL 8 when using kernel NIC names on RHEL 7
- Upgrading to RHEL 8
CHAPTER 6. UPGRADING DIRECTOR

After you complete the undercloud operating system upgrade, upgrade director. The database from the previous Red Hat OpenStack Platform 13 undercloud remains on host after the operating system upgrade. Install the new Red Hat OpenStack Platform 16.2 packages and configure the new source for Red Hat OpenStack Platform 16.2 container images before you run the `openstack undercloud upgrade` command.

6.1. LOCKING THE ENVIRONMENT TO A RED HAT ENTERPRISE LINUX RELEASE

Red Hat OpenStack Platform 16.2 is supported on Red Hat Enterprise Linux 8.4. Before you perform the update, you must lock the undercloud repositories to the Red Hat Enterprise Linux 8.4 release to avoid upgrading the operating system to a newer minor release.

Procedure

1. Log in to the undercloud as the `stack` user.

2. Lock the undercloud to a specific version with the `subscription-manager release` command:

   ```
   $ sudo subscription-manager release --set=8.4
   ```

6.2. ENABLING REPOSITORIES FOR THE UNDERCLOUD

Enable the repositories that are required for the undercloud, and update the system packages to the latest versions.

Procedure

1. Log in to your undercloud as the `stack` user.

2. Disable all default repositories, and enable the required Red Hat Enterprise Linux repositories:

   ```
   [stack@director ~]$ sudo subscription-manager repos --disable=*  
   [stack@director ~]$ sudo subscription-manager repos \  
   --enable=rhel-8-for-x86_64-baseos-eus-rpms \  
   --enable=rhel-8-for-x86_64-appstream-eus-rpms \  
   --enable=rhel-8-for-x86_64-highavailability-eus-rpms \  
   --enable=ansible-2.9-for-rhel-8-x86_64-rpms \  
   --enable=openstack-16.2-for-rhel-8-x86_64-rpms \  
   --enable=fast-datapath-for-rhel-8-x86_64-rpms
   ```

   These repositories contain packages that the director installation requires.

3. Set the `container-tools` repository module to version **3.0**:

   ```
   [stack@director ~]$ sudo dnf module disable -y container-tools:rhel8  
   [stack@director ~]$ sudo dnf module enable -y container-tools:3.0
   ```

4. Synchronize the operating system to ensure that your system packages match the operating system version:
[stack@director ~]$ sudo dnf distro-sync -y
[stack@director ~]$ sudo reboot

### 6.3. INSTALLING DIRECTOR PACKAGES

Install packages relevant to Red Hat OpenStack Platform director.

**Procedure**

1. Install the command line tools for director installation and configuration:

   [stack@director ~]$ sudo dnf install -y python3-tripleoclient

### 6.4. PREPARING CONTAINER IMAGES

The undercloud installation requires an environment file to determine where to obtain container images and how to store them. Generate and customize this environment file that you can use to prepare your container images.

**NOTE**

If you need to configure specific container image versions for your undercloud, you must pin the images to a specific version. For more information, see Pinning container images for the undercloud.

**Procedure**

1. Log in to your undercloud host as the `stack` user.

2. Generate the default container image preparation file:

   $ sudo openstack tripleo container image prepare default
   --local-push-destination
   --output-env-file containers-prepare-parameter.yaml

This command includes the following additional options:

- **--local-push-destination** sets the registry on the undercloud as the location for container images. This means that director pulls the necessary images from the Red Hat Container Catalog and pushes them to the registry on the undercloud. Director uses this registry as the container image source. To pull directly from the Red Hat Container Catalog, omit this option.

- **--output-env-file** is an environment file name. The contents of this file include the parameters for preparing your container images. In this case, the name of the file is `containers-prepare-parameter.yaml`.

**NOTE**

You can use the same `containers-prepare-parameter.yaml` file to define a container image source for both the undercloud and the overcloud.
3. Modify the **containers-prepare-parameter.yaml** to suit your requirements.

## 6.5. CONTAINER IMAGE PREPARATION PARAMETERS

The default file for preparing your containers (**containers-prepare-parameter.yaml**) contains the **ContainerImagePrepare** heat parameter. This parameter defines a list of strategies for preparing a set of images:

```
parameter_defaults:
  ContainerImagePrepare:
  - (strategy one)
  - (strategy two)
  - (strategy three)
  ...
```

Each strategy accepts a set of sub-parameters that defines which images to use and what to do with the images. The following table contains information about the sub-parameters that you can use with each **ContainerImagePrepare** strategy:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>excludes</strong></td>
<td>List of regular expressions to exclude image names from a strategy.</td>
</tr>
<tr>
<td><strong>includes</strong></td>
<td>List of regular expressions to include in a strategy. At least one image name must match an existing image. All <strong>excludes</strong> are ignored if <strong>includes</strong> is specified.</td>
</tr>
<tr>
<td><strong>modify_append_tag</strong></td>
<td>String to append to the tag for the destination image. For example, if you pull an image with the tag 16.2.3-5.161 and set the <strong>modify_append_tag</strong> to <strong>-hotfix</strong>, the director tags the final image as 16.2.3-5.161-hotfix.</td>
</tr>
<tr>
<td><strong>modify_only_with_labels</strong></td>
<td>A dictionary of image labels that filter the images that you want to modify. If an image matches the labels defined, the director includes the image in the modification process.</td>
</tr>
<tr>
<td><strong>modify_role</strong></td>
<td>String of ansible role names to run during upload but before pushing the image to the destination registry.</td>
</tr>
<tr>
<td><strong>modify_vars</strong></td>
<td>Dictionary of variables to pass to <strong>modify_role</strong>.</td>
</tr>
</tbody>
</table>
### Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>push_destination</td>
<td>Defines the namespace of the registry that you want to push images to during the upload process.</td>
</tr>
<tr>
<td></td>
<td>- If set to <code>true</code>, the <code>push_destination</code> is set to the undercloud registry namespace using the hostname, which is the recommended method.</td>
</tr>
<tr>
<td></td>
<td>- If set to <code>false</code>, the push to a local registry does not occur and nodes pull images directly from the source.</td>
</tr>
<tr>
<td></td>
<td>- If set to a custom value, director pushes images to an external local registry.</td>
</tr>
<tr>
<td></td>
<td>If you set this parameter to <code>false</code> in production environments while pulling images directly from Red Hat Container Catalog, all overcloud nodes will simultaneously pull the images from the Red Hat Container Catalog over your external connection, which can cause bandwidth issues. Only use <code>false</code> to pull directly from a Red Hat Satellite Server hosting the container images.</td>
</tr>
<tr>
<td></td>
<td>If the <code>push_destination</code> parameter is set to <code>false</code> or is not defined and the remote registry requires authentication, set the <code>ContainerImageRegistryLogin</code> parameter to <code>true</code> and include the credentials with the <code>ContainerImageRegistryCredentials</code> parameter.</td>
</tr>
<tr>
<td>pull_source</td>
<td>The source registry from where to pull the original container images.</td>
</tr>
<tr>
<td>set</td>
<td>A dictionary of <code>key: value</code> definitions that define where to obtain the initial images.</td>
</tr>
<tr>
<td>tag_from_label</td>
<td>Use the value of specified container image metadata labels to create a tag for every image and pull that tagged image. For example, if you set <code>tag_from_label: {version}-{release}</code>, director uses the <code>version</code> and <code>release</code> labels to construct a new tag. For one container, <code>version</code> might be set to 16.2.3 and <code>release</code> might be set to 5.161, which results in the tag 16.2.3-5.161. Director uses this parameter only if you have not defined <code>tag</code> in the <code>set</code> dictionary.</td>
</tr>
</tbody>
</table>
IMPORTANT

When you push images to the undercloud, use `push_destination: true` instead of `push_destination: UNDERCLOUD_IP:PORT`. The `push_destination: true` method provides a level of consistency across both IPv4 and IPv6 addresses.

The `set` parameter accepts a set of **key**: **value** definitions:

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ceph_image</code></td>
<td>The name of the Ceph Storage container image.</td>
</tr>
<tr>
<td><code>ceph_namespace</code></td>
<td>The namespace of the Ceph Storage container image.</td>
</tr>
<tr>
<td><code>ceph_tag</code></td>
<td>The tag of the Ceph Storage container image.</td>
</tr>
<tr>
<td><code>ceph_alertmanager_image</code></td>
<td>The name, namespace, and tag of the Ceph Storage Alert Manager container image.</td>
</tr>
<tr>
<td><code>ceph_alertmanager_namespace</code></td>
<td></td>
</tr>
<tr>
<td><code>ceph_alertmanager_tag</code></td>
<td></td>
</tr>
<tr>
<td><code>ceph_grafana_image</code></td>
<td>The name, namespace, and tag of the Ceph Storage Grafana container image.</td>
</tr>
<tr>
<td><code>ceph_grafana_namespace</code></td>
<td></td>
</tr>
<tr>
<td><code>ceph_grafana_tag</code></td>
<td></td>
</tr>
<tr>
<td><code>ceph_node_exporter_image</code></td>
<td>The name, namespace, and tag of the Ceph Storage Node Exporter container image.</td>
</tr>
<tr>
<td><code>ceph_node_exporter_namespace</code></td>
<td></td>
</tr>
<tr>
<td><code>ceph_node_exporter_tag</code></td>
<td></td>
</tr>
<tr>
<td><code>ceph_prometheus_image</code></td>
<td>The name, namespace, and tag of the Ceph Storage Prometheus container image.</td>
</tr>
<tr>
<td><code>ceph_prometheus_namespace</code></td>
<td></td>
</tr>
<tr>
<td><code>ceph_prometheus_tag</code></td>
<td></td>
</tr>
<tr>
<td><code>name_prefix</code></td>
<td>A prefix for each OpenStack service image.</td>
</tr>
<tr>
<td><code>name_suffix</code></td>
<td>A suffix for each OpenStack service image.</td>
</tr>
<tr>
<td><code>namespace</code></td>
<td>The namespace for each OpenStack service image.</td>
</tr>
<tr>
<td><code>neutron_driver</code></td>
<td>The driver to use to determine which OpenStack Networking (neutron) container to use. Use a null value to set to the standard <code>neutron-server</code> container. Set to <code>ovn</code> to use OVN-based containers.</td>
</tr>
</tbody>
</table>
### 6.6. GUIDELINES FOR CONTAINER IMAGE TAGGING

The Red Hat Container Registry uses a specific version format to tag all Red Hat OpenStack Platform container images. This format follows the label metadata for each container, which is `version-release`.

#### version

Corresponds to a major and minor version of Red Hat OpenStack Platform. These versions act as streams that contain one or more releases.

#### release

Corresponds to a release of a specific container image version within a version stream.

For example, if the latest version of Red Hat OpenStack Platform is 16.2.3 and the release for the container image is `5.161`, then the resulting tag for the container image is `16.2.3-5.161`.

The Red Hat Container Registry also uses a set of major and minor `version` tags that link to the latest release for that container image version. For example, both 16.2 and 16.2.3 link to the latest `release` in the 16.2.3 container stream. If a new minor release of 16.2 occurs, the 16.2 tag links to the latest `release` for the new minor release stream while the 16.2.3 tag continues to link to the latest `release` within the 16.2.3 stream.

The `ContainerImagePrepare` parameter contains two sub-parameters that you can use to determine which container image to download. These sub-parameters are the `tag` parameter within the `set` dictionary, and the `tag_from_label` parameter. Use the following guidelines to determine whether to use `tag` or `tag_from_label`:

- The default value for `tag` is the major version for your OpenStack Platform version. For this version it is 16.2. This always corresponds to the latest minor version and release.

```python
parameter_defaults:
    ContainerImagePrepare:
    - set:
        ...
        tag: 16.2
        ...
```

- To change to a specific minor version for OpenStack Platform container images, set the tag to a minor version. For example, to change to 16.2.2, set `tag` to 16.2.2.

```python
parameter_defaults:
```
When you set `tag`, director always downloads the latest container image release for the version set in `tag` during installation and updates.

If you do not set `tag`, director uses the value of `tag_from_label` in conjunction with the latest major version.

The `tag_from_label` parameter generates the tag from the label metadata of the latest container image release it inspects from the Red Hat Container Registry. For example, the labels for a certain container might use the following `version` and `release` metadata:

```
"Labels": {
  "release": "5.161",
  "version": "16.2.3",
  ...
}
```

The default value for `tag_from_label` is `{version}-{release}`, which corresponds to the version and release metadata labels for each container image. For example, if a container image has 16.2.3 set for `version` and 5.161 set for `release`, the resulting tag for the container image is 16.2.3-5.161.

The `tag` parameter always takes precedence over the `tag_from_label` parameter. To use `tag_from_label`, omit the `tag` parameter from your container preparation configuration.

A key difference between `tag` and `tag_from_label` is that director uses `tag` to pull an image only based on major or minor version tags, which the Red Hat Container Registry links to the latest image release within a version stream, while director uses `tag_from_label` to perform a metadata inspection of each container image so that director generates a tag and pulls the corresponding image.

### 6.7. obtaining container images from private registries

The `registry.redhat.io` registry requires authentication to access and pull images. To authenticate with `registry.redhat.io` and other private registries, include the `ContainerImageRegistryCredentials` and `ContainerImageRegistryLogin` parameters in your `containers-prepare-parameter.yaml` file.

**ContainerImageRegistryCredentials**

Some container image registries require authentication to access images. In this situation, use the `ContainerImageRegistryCredentials` parameter in your `containers-prepare-parameter.yaml` environment file. The `ContainerImageRegistryCredentials` parameter uses a set of keys based on the
private registry URL. Each private registry URL uses its own key and value pair to define the username (key) and password (value). This provides a method to specify credentials for multiple private registries.

```yaml
parameter_defaults:
  ContainerImagePrepare:
    - push_destination: true
      set:
        namespace: registry.redhat.io/...
  ContainerImageRegistryCredentials:
    registry.redhat.io:
      my_username: my_password
```

In the example, replace `my_username` and `my_password` with your authentication credentials. Instead of using your individual user credentials, Red Hat recommends creating a registry service account and using those credentials to access `registry.redhat.io` content.

To specify authentication details for multiple registries, set multiple key-pair values for each registry in `ContainerImageRegistryCredentials`:

```yaml
parameter_defaults:
  ContainerImagePrepare:
    - push_destination: true
      set:
        namespace: registry.redhat.io/...
    - push_destination: true
      set:
        namespace: registry.internalsite.com/...
  ContainerImageRegistryCredentials:
    registry.redhat.io:
      myuser: 'p@55w0rd!'
    registry.internalsite.com:
      myuser2: '0th3rp@55w0rd!'
      '192.0.2.1:8787':
      myuser3: '@n0th3rp@55w0rd!'
```

### IMPORTANT

The default `ContainerImagePrepare` parameter pulls container images from `registry.redhat.io`, which requires authentication.

For more information, see Red Hat Container Registry Authentication.

**ContainerImageRegistryLogin**

The `ContainerImageRegistryLogin` parameter is used to control whether an overcloud node system needs to log in to the remote registry to fetch the container images. This situation occurs when you want the overcloud nodes to pull images directly, rather than use the undercloud to host images.

You must set `ContainerImageRegistryLogin` to `true` if `push_destination` is set to false or not used for a given strategy.
However, if the overcloud nodes do not have network connectivity to the registry hosts defined in `ContainerImageRegistryCredentials` and you set `ContainerImageRegistryLogin` to `true`, the deployment might fail when trying to perform a login. If the overcloud nodes do not have network connectivity to the registry hosts defined in the `ContainerImageRegistryCredentials`, set `push_destination` to `true` and `ContainerImageRegistryLogin` to `false` so that the overcloud nodes pull images from the undercloud.

### 6.8. OBTAINING TRANSITIONAL CONTAINERS FOR UPGRADES

The upgrade requires containers from previous versions of Red Hat OpenStack Platform and Red Hat Ceph Storage. These containers help transition to Red Hat OpenStack Platform 16.2.

**Procedure**

1. Log in to your undercloud host as the `stack` user.
2. Edit the `containers-prepare-parameter.yaml` file.
3. Add the transitional container parameters to `set` in the `ContainerImagePrepare` parameter. Set the parameters in one of the following ways depending on your type of deployment.

   - If your deployment uses a Red Hat Ceph Storage cluster that was deployed using director, add the following parameters:

     ```yaml
     parameter_defaults:
     ContainerImagePrepare:
       - push_destination: true
     set:
       namespace: registry.redhat.io/...
       ...
     ...
     ContainerImageRegistryCredentials:
       registry.redhat.io:
         myuser: 'p@55w0rd!'  # Protected password
     ContainerImageRegistryLogin: false
     ```
The \texttt{*stein} parameters define the container images for Red Hat OpenStack Platform 15, which the upgrade process uses for database migration.

The \texttt{ceph3_*} parameters define the current Red Hat Ceph Storage container images that the overcloud uses. The overcloud requires both the \texttt{ceph3_*} and \texttt{ceph_*} parameters for the transition from Red Hat Ceph Storage 3 to 4.

If you use Red Hat Satellite Server for container image storage, set the namespaces to the image locations on your Red Hat Satellite Server.

If your deployment uses an external Ceph Storage cluster, add the following parameters:

number

4. Change the \texttt{neutron\_driver} parameter to \texttt{openvswitch}:

The upgrade retains Open vSwitch compatibility throughout the process. After you complete the upgrade to Red Hat OpenStack Platform 16.2, you migrate the overcloud from Open vSwitch to Open Virtual Network (OVN).
5. Save the `containers-prepare-parameter.yaml` file.

### 6.9. UPDATING THE UNDERCLOUD.CONF FILE

You can continue using the original `undercloud.conf` file from your Red Hat OpenStack Platform 13 environment, but you must modify the file to retain compatibility with Red Hat OpenStack Platform 16.2.

**Procedure**

1. Log in to your undercloud host as the stack user.
2. Edit the `undercloud.conf` file.
3. Add the following parameter to the `DEFAULT` section in the file:
   ```
   container_images_file = /home/stack/containers-prepare-parameter.yaml
   ```
   This parameter defines the location of the `containers-prepare-parameter.yaml` environment file so that director pulls container images for the undercloud from the correct location.
4. Check the `generate_service_certificate` parameter. The default for this parameter changes from `false` to `true`, which enables SSL/TLS on your undercloud, during the upgrade.
5. Check the `local_interface` parameter if you have migrated to a predictable NIC naming convention.
6. If you set the `masquerade_network` parameter in Red Hat OpenStack Platform 13, remove this parameter and set `masquerade = true` for each subnet.
7. Check all other parameters in the file for any changes.
8. Save the file.

### 6.10. DIRECTOR CONFIGURATION PARAMETERS

The following list contains information about parameters for configuring the `undercloud.conf` file. Keep all parameters within their relevant sections to avoid errors.

**IMPORTANT**

At minimum, you must set the `container_images_file` parameter to the environment file that contains your container image configuration. Without this parameter properly set to the appropriate file, director cannot obtain your container image rule set from the `ContainerImagePrepare` parameter nor your container registry authentication details from the `ContainerImageRegistryCredentials` parameter.

**Defaults**

The following parameters are defined in the `[DEFAULT]` section of the `undercloud.conf` file:

- `additional_architectures`
  A list of additional (kernel) architectures that an overcloud supports. Currently the overcloud supports `ppc64le` architecture in addition to the default `x86_64` architecture.
NOTE

When you enable support for ppc64le, you must also set `ipxe_enabled` to `False`. For more information on configuring your undercloud with multiple CPU architectures, see Configuring a multiple CPU architecture overcloud.

certificate_generation_ca

The `certmonger` nickname of the CA that signs the requested certificate. Use this option only if you have set the `generate_service_certificate` parameter. If you select the `local` CA, certmonger extracts the local CA certificate to `/etc/pki/ca-trust/source/anchors/cm-local-ca.pem` and adds the certificate to the trust chain.

clean_nodes

Defines whether to wipe the hard drive between deployments and after introspection.

cleanup

Cleanup temporary files. Set this to `False` to leave the temporary files used during deployment in place after you run the deployment command. This is useful for debugging the generated files or if errors occur.

container_cli

The CLI tool for container management. Leave this parameter set to `podman`. Red Hat Enterprise Linux 8.4 only supports `podman`.

container_healthcheck_disabled

Disables containerized service health checks. Red Hat recommends that you enable health checks and leave this option set to `false`.

container_images_file

Heat environment file with container image information. This file can contain the following entries:

- Parameters for all required container images

- The `ContainerImagePrepare` parameter to drive the required image preparation. Usually the file that contains this parameter is named `containers-prepare-parameter.yaml`.

container_insecure_registries

A list of insecure registries for `podman` to use. Use this parameter if you want to pull images from another source, such as a private container registry. In most cases, `podman` has the certificates to pull container images from either the Red Hat Container Catalog or from your Satellite Server if the undercloud is registered to Satellite.

container_registry_mirror

An optional `registry-mirror` configured that `podman` uses.

custom_env_files

Additional environment files that you want to add to the undercloud installation.

deployment_user

The user who installs the undercloud. Leave this parameter unset to use the current default user `stack`.

discovery_default_driver

Sets the default driver for automatically enrolled nodes. Requires the `enable_node_discovery` parameter to be enabled and you must include the driver in the `enabled_hardware_types` list.

enable_ironic; enable_ironic_inspector; enable_mistral; enable_nova; enable_tempest; enable_validations; enable_zaqar
Defines the core services that you want to enable for director. Leave these parameters set to true.

**enable_node_discovery**

Automatically enroll any unknown node that PXE-boots the introspection ramdisk. New nodes use the fake driver as a default but you can set discovery_default_driver to override. You can also use introspection rules to specify driver information for newly enrolled nodes.

**enable_novajoin**

Defines whether to install the novajoin metadata service in the undercloud.

**enable_routed_networks**

Defines whether to enable support for routed control plane networks.

**enable_swift_encryption**

Defines whether to enable Swift encryption at-rest.

**enable_telemetry**

Defines whether to install OpenStack Telemetry services (gnocchi, aodh, panko) in the undercloud. Set the enable_telemetry parameter to true if you want to install and configure telemetry services automatically. The default value is false, which disables telemetry on the undercloud. This parameter is required if you use other products that consume metrics data, such as Red Hat CloudForms.

**enabled_hardware_types**

A list of hardware types that you want to enable for the undercloud.

**generate_service_certificate**

Defines whether to generate an SSL/TLS certificate during the undercloud installation, which is used for the undercloud_service_certificate parameter. The undercloud installation saves the resulting certificate /etc/pki/tls/certs/undercloud-[undercloud_public_vip].pem. The CA defined in the certificate_generation_ca parameter signs this certificate.

**heat_container_image**

URL for the heat container image to use. Leave unset.

**heat_native**

Run host-based undercloud configuration using heat-all. Leave as true.

**hieradata_override**

Path to hieradata override file that configures Puppet hieradata on the director, providing custom configuration to services beyond the undercloud.conf parameters. If set, the undercloud installation copies this file to the /etc/puppet/hieradata directory and sets it as the first file in the hierarchy. For more information about using this feature, see Configuring hieradata on the undercloud.

**inspection_extras**

Defines whether to enable extra hardware collection during the inspection process. This parameter requires the python-hardware or python-hardware-detect packages on the introspection image.

**inspection_interface**

The bridge that director uses for node introspection. This is a custom bridge that the director

---

**WARNING**

RBAC is not supported by every component. The Alarming service (aodh) and Gnocchi do not take secure RBAC rules into account.
The bridge that director uses for node introspection. This is a custom bridge that the director configuration creates. The LOCAL_INTERFACE attaches to this bridge. Leave this as the default br-ctlplane.

**inspection_runbench**

Runs a set of benchmarks during node introspection. Set this parameter to true to enable the benchmarks. This option is necessary if you intend to perform benchmark analysis when inspecting the hardware of registered nodes.

**ipa_otp**

Defines the one-time password to register the undercloud node to an IPA server. This is required when enable_novajoin is enabled.

**ipv6_address_mode**

IPv6 address configuration mode for the undercloud provisioning network. The following list contains the possible values for this parameter:

- dhcpv6-stateless - Address configuration using router advertisement (RA) and optional information using DHCPv6.
- dhcpv6-stateful - Address configuration and optional information using DHCPv6.

**ipxe_enabled**

Defines whether to use iPXE or standard PXE. The default is true, which enables iPXE. Set this parameter to false to use standard PXE. For PowerPC deployments, or for hybrid PowerPC and x86 deployments, set this value to false.

**local_interface**

The chosen interface for the director Provisioning NIC. This is also the device that director uses for DHCP and PXE boot services. Change this value to your chosen device. To see which device is connected, use the ip addr command. For example, this is the result of an ip addr command:

```
2: em0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
    link/ether 52:54:00:75:24:09 brd ff:ff:ff:ff:ff:ff
    inet 192.168.122.178/24 brd 192.168.122.255 scope global dynamic em0
      valid_lft 3462sec preferred_lft 3462sec
    inet6 fe80::5054:ff:fe75:2409/64 scope link
      valid_lft forever preferred_lft forever
3: em1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noop state DOWN
    link/ether 42:0b:c2:a5:c1:26 brd ff:ff:ff:ff:ff:ff
```

In this example, the External NIC uses em0 and the Provisioning NIC uses em1, which is currently not configured. In this case, set the local_interface to em1. The configuration script attaches this interface to a custom bridge defined with the inspection_interface parameter.

**local_ip**

The IP address defined for the director Provisioning NIC. This is also the IP address that director uses for DHCP and PXE boot services. Leave this value as the default 192.168.24.1/24 unless you use a different subnet for the Provisioning network, for example, if this IP address conflicts with an existing IP address or subnet in your environment.

For IPv6, the local IP address prefix length must be /64 to support both stateful and stateless connections.

**local_mtu**
The maximum transmission unit (MTU) that you want to use for the local_interface. Do not exceed 1500 for the undercloud.

**local_subnet**

The local subnet that you want to use for PXE boot and DHCP interfaces. The local_ip address should reside in this subnet. The default is ctlplane-subnet.

**net_config_override**

Path to network configuration override template. If you set this parameter, the undercloud uses a JSON or YAML format template to configure the networking with os-net-config and ignores the network parameters set in undercloud.conf. Use this parameter when you want to configure bonding or add an option to the interface. For more information about customizing undercloud network interfaces, see Configuring undercloud network interfaces.

**networks_file**

Networks file to override for heat.

**output_dir**

Directory to output state, processed heat templates, and Ansible deployment files.

**overcloud_domain_name**

The DNS domain name that you want to use when you deploy the overcloud.

**NOTE**

When you configure the overcloud, you must set the CloudDomain parameter to a matching value. Set this parameter in an environment file when you configure your overcloud.

**roles_file**

The roles file that you want to use to override the default roles file for undercloud installation. It is highly recommended to leave this parameter unset so that the director installation uses the default roles file.

**scheduler_max_attempts**

The maximum number of times that the scheduler attempts to deploy an instance. This value must be greater or equal to the number of bare metal nodes that you expect to deploy at once to avoid potential race conditions when scheduling.

**service_principal**

The Kerberos principal for the service using the certificate. Use this parameter only if your CA requires a Kerberos principal, such as in FreeIPA.

**subnets**

List of routed network subnets for provisioning and introspection. The default value includes only the ctlplane-subnet subnet. For more information, see Subnets.

**templates**

Heat templates file to override.

**undercloud_admin_host**

The IP address or hostname defined for director Admin API endpoints over SSL/TLS. The director configuration attaches the IP address to the director software bridge as a routed IP address, which uses the /32 netmask.

If the undercloud_admin_host is not in the same IP network as the local_ip, you must set the ControlVirtualInterface parameter to the interface on which you want the admin APIs on the undercloud to listen. By default, the admin APIs listen on the br-ctlplane interface. Set the
ControlVirtualInterface parameter in a custom environment file, and include the custom environment file in the undercloud.conf file by configuring the custom_env_files parameter.

For information about customizing undercloud network interfaces, see Configuring undercloud network interfaces.

undercloud_debug
Sets the log level of undercloud services to DEBUG. Set this value to true to enable DEBUG log level.

undercloud_enable_selinux
Enable or disable SELinux during the deployment. It is highly recommended to leave this value set to true unless you are debugging an issue.

undercloud_hostname
Defines the fully qualified host name for the undercloud. If set, the undercloud installation configures all system host name settings. If left unset, the undercloud uses the current host name, but you must configure all system host name settings appropriately.

undercloud_log_file
The path to a log file to store the undercloud install and upgrade logs. By default, the log file is install-undercloud.log in the home directory. For example, /home/stack/install-undercloud.log.

undercloud_nameservers
A list of DNS nameservers to use for the undercloud hostname resolution.

undercloud_ntp_servers
A list of network time protocol servers to help synchronize the undercloud date and time.

undercloud_public_host
The IP address or hostname defined for director Public API endpoints over SSL/TLS. The director configuration attaches the IP address to the director software bridge as a routed IP address, which uses the /32 netmask.

If the undercloud_public_host is not in the same IP network as the local_ip, you must set the PublicVirtualInterface parameter to the public-facing interface on which you want the public APIs on the undercloud to listen. By default, the public APIs listen on the br-ctlplane interface. Set the PublicVirtualInterface parameter in a custom environment file, and include the custom environment file in the undercloud.conf file by configuring the custom_env_files parameter.

For information about customizing undercloud network interfaces, see Configuring undercloud network interfaces.

undercloud_service_certificate
The location and filename of the certificate for OpenStack SSL/TLS communication. Ideally, you obtain this certificate from a trusted certificate authority. Otherwise, generate your own self-signed certificate.

undercloud_timezone
Host timezone for the undercloud. If you do not specify a timezone, director uses the existing timezone configuration.

undercloud_update_packages
Defines whether to update packages during the undercloud installation.

Subnets
Each provisioning subnet is a named section in the undercloud.conf file. For example, to create a subnet called ctlplane-subnet, use the following sample in your undercloud.conf file:
[ctlplane-subnet]
cidr = 192.168.24.0/24
dhcp_start = 192.168.24.5
dhcp_end = 192.168.24.24
inspection_iprange = 192.168.24.100,192.168.24.120
gateway = 192.168.24.1
masquerade = true

You can specify as many provisioning networks as necessary to suit your environment.

**IMPORTANT**
Director cannot change the IP addresses for a subnet after director creates the subnet.

cidr
The network that director uses to manage overcloud instances. This is the Provisioning network, which the undercloud **neutron** service manages. Leave this as the default *192.168.24.0/24* unless you use a different subnet for the Provisioning network.

masquerade
Defines whether to masquerade the network defined in the **cidr** for external access. This provides the Provisioning network with a degree of network address translation (NAT) so that the Provisioning network has external access through director.

**NOTE**
The director configuration also enables IP forwarding automatically using the relevant **sysctl** kernel parameter.

dhcp_start; dhcp_end
The start and end of the DHCP allocation range for overcloud nodes. Ensure that this range contains enough IP addresses to allocate your nodes.

dhcp_exclude
IP addresses to exclude in the DHCP allocation range.

dns_nameservers
DNS nameservers specific to the subnet. If no nameservers are defined for the subnet, the subnet uses nameservers defined in the **undercloud_nameservers** parameter.

gateway
The gateway for the overcloud instances. This is the undercloud host, which forwards traffic to the External network. Leave this as the default *192.168.24.1* unless you use a different IP address for director or want to use an external gateway directly.

host_routes
Host routes for the Neutron-managed subnet for the overcloud instances on this network. This also configures the host routes for the **local_subnet** on the undercloud.

inspection_iprange
Temporary IP range for nodes on this network to use during the inspection process. This range must not overlap with the range defined by **dhcp_start** and **dhcp_end** but must be in the same IP subnet.

6.11. RUNNING THE DIRECTOR UPGRADE
Complete the following steps to upgrade the director.

Procedure

1. Run the following command to upgrade the director on the undercloud:

   $ openstack undercloud upgrade

   This command launches the director configuration script. The director upgrades its packages and configures its services to suit the settings in the `undercloud.conf`. This script takes several minutes to complete.

   **NOTE**

   The director configuration script prompts for confirmation before proceeding. Bypass this confirmation using the `-y` option:

   $ openstack undercloud upgrade -y

2. The script also starts all OpenStack Platform service containers on the undercloud automatically. You manage each service through a `systemd` resource. Check the `systemd` resources:

   $ sudo systemctl list-units "tripleo_*"

   Each `systemd` service controls a container. Check the enabled containers using the following command:

   $ sudo podman ps

3. The script adds the `stack` user to the `docker` group to ensure that the `stack` user has access to container management commands. Refresh the `stack` user permissions with the following command:

   $ exec su -l stack

   The command prompts you to log in again. Enter the stack user password.

4. To initialize the `stack` user to use the command line tools, run the following command:

   $ source ~/stackrc

   The prompt now indicates OpenStack commands authenticate and execute against the undercloud:

   (undercloud) $

   The director upgrade is complete.
PART II. PREPARING FOR OVERCLOUD UPGRADE
CHAPTER 7. INITIAL STEPS FOR OVERCLOUD PREPARATION

You must complete some initial steps to prepare for the overcloud upgrade.

7.1. PREPARING FOR OVERCLOUD SERVICE DOWNTIME

The overcloud upgrade process disables the main services at key points. This means you cannot use any overcloud services to create new resources during the upgrade duration. Workloads running in the overcloud remain active during this period, which means instances continue to run through the upgrade duration.

It is important to plan a maintenance window to ensure no users can access the overcloud services during the upgrade duration.

**Affected by overcloud upgrade**
- OpenStack Platform services

**Unaffected by overcloud upgrade**
- Instances running during the upgrade
- Ceph Storage OSDs (backend storage for instances)
- Linux networking
- Open vSwitch networking
- Undercloud

7.2. SELECTING COMPUTE NODES FOR UPGRADE TESTING

The overcloud upgrade process allows you to either:
- Upgrade all nodes in a role
- Individual nodes separately

To ensure a smooth overcloud upgrade process, it is useful to test the upgrade on a few individual Compute nodes in your environment before upgrading all Compute nodes. This ensures no major issues occur during the upgrade while maintaining minimal downtime to your workloads.

Use the following recommendations to help choose test nodes for the upgrade:
- Select two or three Compute nodes for upgrade testing
- Select nodes without any critical instances running
- If necessary, migrate critical instances from the selected test Compute nodes to other Compute nodes

7.3. VALIDATING THE PRE-UPGRADE REQUIREMENTS

Run the `pre-upgrade` validation group to check the pre-upgrade requirements.
Procedure

1. Source the `stackrc` file.

   ```bash
   $ source ~/stackrc
   ```

2. Run the `openstack tripleo validator run` command with the `--group pre-upgrade` option and include the `/usr/libexec/platform-python` python runtime environment:

   ```bash
   $ openstack tripleo validator run --group pre-upgrade --python-interpreter /usr/libexec/platform-python
   ```

3. Review the results of the validation report. To view detailed output from a specific validation, run the `openstack tripleo validator show run --full` command against the UUID of the specific validation from the report:

   ```bash
   $ openstack tripleo validator show run --full <UUID>
   ```

**IMPORTANT**

A FAILED validation does not prevent you from deploying or running Red Hat OpenStack Platform. However, a FAILED validation can indicate a potential issue with a production environment.

### 7.4. DISABLING FENCING IN THE OVERCLOUD

Before you upgrade the overcloud, ensure that fencing is disabled.

When you upgrade the overcloud, you upgrade each Controller node individually to retain high availability functionality. If fencing is deployed in your environment, the overcloud might detect certain nodes as disabled and attempt fencing operations, which can cause unintended results.

If you have enabled fencing in the overcloud, you must temporarily disable fencing for the duration of the upgrade to avoid any unintended results.

**NOTE**

To re-enable fencing in your overcloud, set the `EnableFencing` parameter to `true` in the `fencing.yaml` environment file before you run the `openstack overcloud update converge` command. Director enables fencing in your overcloud during the deployment.

Procedure

1. Log in to the undercloud as the `stack` user.

2. Source the `stackrc` file.

   ```bash
   $ source ~/stackrc
   ```

3. Log in to a Controller node and run the Pacemaker command to disable fencing:

   ```bash
   $ ssh heat-admin@<controller_ip> "sudo pcs property set stonith-enabled=false"
   ```
Replace `<controller_ip>` with the IP address of a Controller node. You can find the IP addresses of your Controller nodes with the `openstack server list` command.

4. In the `fencing.yaml` environment file, set the `EnableFencing` parameter to `false` to ensure that fencing stays disabled during the upgrade process.

Additional Resources

- Fencing Controller nodes with STONITH

### 7.5. CREATING AN OVERCLOUD INVENTORY FILE

Generate an Ansible inventory file of all nodes in your environment with the `tripleo-ansible-inventory` command.

**Procedure**

1. Log in to the undercloud as the `stack` user.

2. Source the `stackrc` file.

   ```
   $ source ~/stackrc
   ```

3. Create a static inventory file of all nodes:

   ```
   $ tripleo-ansible-inventory --static-yaml-inventory ~/inventory.yaml --stack STACK_NAME
   ```

   If you are not using the default `overcloud` stack name, set your stack name with the `--stack STACK_NAME` option replacing `STACK_NAME` with the name of your stack.

4. To execute Ansible playbooks on your environment, run the `ansible-playbook` command and include the full path of the dynamic inventory tool using the `-i` option. For example:

   ```
   (undercloud) $ ansible-playbook -i ~/inventory.yaml PLAYBOOK
   ```
CHAPTER 8. CONFIGURING THE OVERCLOUD FOR A LEAPP UPGRADE

The long-life Red Hat OpenStack Platform (RHOSP) upgrade requires a base operating system upgrade from Red Hat Enterprise Linux 7 to Red Hat Enterprise Linux 8. Red Hat Enterprise Linux 7 uses the Leapp utility to perform the upgrade to Red Hat Enterprise Linux 8. For more information about Leapp and its dependencies, see Preparing a RHEL 7 system for the upgrade.

The overcloud upgrade framework automatically runs the leapp upgrade. To ensure a successful RHOSP upgrade, it is recommended that you manually run a pre-upgrade report to identify and resolve any potential problems. Run pre-upgrade reports for at least one host of each of the Compute, Controller, and Ceph Storage roles. For more information about Leapp pre-upgrade reports, see Reviewing the pre-upgrade report.

8.1. CREATING AN UPGRADES ENVIRONMENT FILE

The upgrade process uses an environment file to enable the upgrade process and configure specific upgrade parameters.

Procedure

1. Log in to the undercloud as the stack user.

2. Create an environment file called upgrades-environment.yaml in your templates directory:

   ```
   $ touch templates/upgrades-environment.yaml
   ```

3. Edit the file and add the following mandatory content:

   ```yaml
   parameter_defaults:
     UpgradeLeappDevelSkip: "LEAPP_UNSUPPORTED=1 LEAPP_DEVEL_TARGET_RELEASE=8.4"
     LeappInitCommand: |
       for module in pata_acpi floppy; do sudo sed -i "/^${module}$/d" /usr/share/leapp-repository/repositories/system_upgrade/el7toel8/actors/kernel/checkkerneldrivers/files/removed_drivers.txt; done
       sudo rm -f /usr/share/leapp-repository/repositories/system_upgrade/el7toel8/actors/persistentnetnamesdisable/actor.py
       sudo yum -y remove mariadb-server* || true
     UpgradeInitCommand: "sudo dnf config-manager --save --setopt exclude=""
     UpgradeLeappCommandOptions: " --enablerepo rhel-8-for-x86_64-baseos-eus-rpms --enablerepo rhel-8-for-x86_64-appstream-eus-rpms --enablerepo rhel-8-for-x86_64-highavailability-eus-rpms --enablerepo ansible-2.9-for-rhel-8-x86_64-rpms --enablerepo fast-datapath-for-rhel-8-x86_64-rpms"
   ```

   - **UpgradeLeappDevelSkip** skips Leapp checks and sets environment variables when Leapp runs.

   - **LeappInitCommand** passes commands or script snippets that run on each of the overcloud nodes, and prepares the nodes for the Leapp upgrade.

     - To avoid bug BZ#1965350 - OSP13→16.2 leapp fails with: Detected loaded kernel drivers which have been removed in RHEL 8, you must adjust the **floppy** and **pata_acpi** kernel modules that are no longer supported in RHEL 8.
- **UpgradeInitCommand** passes commands or script snippets that run on each of the overcloud nodes. The `dnf config-manager --save --setopt exclude=''` command removes Leapp packages from DNF exclusion so that automatic removal of `python2` packages is successful.

- **UpgradeLeappCommandOptions** passes commands or script snippets to the Leapp upgrade process. Use this parameter to enable the necessary repositories for the upgrade.

4. Optional: If you use TLS-Everywhere in your environment and want to migrate from `authconfig` to `authselect`, set the `authselect_check.confirm` parameter to `True` to avoid bug [BZ#1978228](https://bugs.redhat.com/1978228) - OSP13→16.2 Leapp upgrade failed with TLSEverywhere:

   ```yaml
   parameter_defaults:
       LeappInitCommand: |
       sudo leapp answer --section authselect_check.confirm=True --add
   ```

   Otherwise, set the value to `False`.

   **NOTE**

   Use the `|` syntax to pass multiple commands to the `LeappInitCommand` parameter:

   ```yaml
   parameter_defaults:
       LeappInitCommand: |
       <command_1>
       <command_2>
   ```

5. Save the `upgrades-environment.yaml` file.

### 8.2. UPGRADE PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UpgradeInitCommand</td>
<td>Command or script snippet to run on all overcloud nodes to initialize the upgrade process. For example, a repository switch.</td>
</tr>
<tr>
<td>UpgradeInitCommonCommand</td>
<td>Common commands required by the upgrades process. This should not normally be modified by the operator and is set and unset in the <code>major-upgrade-composable-steps.yaml</code> and <code>major-upgrade-converge.yaml</code> environment files.</td>
</tr>
<tr>
<td>UpgradeLeappCommandOptions</td>
<td>Additional command line options to append to the Leapp command.</td>
</tr>
<tr>
<td>UpgradeLeappDebug</td>
<td>Print debugging output when running Leapp. The default value is <code>True</code>.</td>
</tr>
</tbody>
</table>
### UpgradeLeappDevelSkip
Skip Leapp checks by setting env variables when running Leapp in development/testing. For example, LEAPP_DEVEL_SKIP_RHSM=1.

### UpgradeLeappEnabled
Use Leapp for operating system upgrade. The default value is **False**.

### UpgradeLeappPostRebootDelay
Maximum (seconds) to wait for machine to reboot and respond to a test command. The default value is **120**.

### UpgradeLeappRebootTimeout
Timeout (seconds) for the OS upgrade phase via Leapp. The default value is **3600**.

### UpgradeLeappToInstall
List of packages to install after Leapp upgrade.

### UpgradeLeappToRemove
List of packages to remove during Leapp upgrade.

---

### 8.3. USING PREDICTABLE NIC NAMES FOR OVERCLOUD NODES

Before you run the Leapp upgrade on overcloud nodes, you must check for kernel-based NIC names, which usually contain an **eth** prefix. These NIC names are usually unpredictable in terms of NIC assignments.

You can run the **playbook-nics.yaml** playbook to rename NIC names to use the **em** NIC prefix. You can also set a different NIC prefix, by modifying the **prefix** variable when running the playbook. However, the NIC changes are only applied after the Leapp upgrade process completes and the node is rebooted.

#### Prerequisites

- The **playbook-nics.yaml** playbook created during the undercloud preparation process. The **playbook-nics.yaml** playbook accommodates most overcloud networking scenarios that use Ethernet devices, bridges, and Linux bonds. If your environment requires additional configuration beyond these device types, follow these recommendations before proceeding:
  - Test the playbook on a separate system with a similar networking configuration to your overcloud nodes
  - Modify the playbook to accommodate renaming the **eth** prefix within the configuration of other device types
  - Check the networking configuration of your overcloud nodes after you complete this procedure

#### Procedure

1. Log in to the undercloud as the **stack** user.
2. Run the `playbook-nics.yaml` playbook on all overcloud nodes:

```
$ ansible-playbook -i ~/inventory.yaml playbook-nics.yaml
```

The playbook sets the new NIC prefix to `em`. To set a different NIC prefix, set the `prefix` variable when running the playbook:

```
$ ansible-playbook -i ~/inventory.yaml -e prefix="mynic" playbook-nics.yaml
```

The NIC changes are only applied after the Leapp upgrade process completes and the node is rebooted.

Resources

- How to perform an in-place upgrade to RHEL 8 when using kernel NIC names on RHEL 7
- Consistent Network Device Naming
- Understanding the Predictable Network Interface Device Names
CHAPTER 9. UPDATING COMPOSABLE SERVICES AND PARAMETERS

You must complete some composable service configuration to prepare for the overcloud upgrade.

9.1. UPDATING COMPOSABLE SERVICES IN CUSTOM roles_data FILES

This section contains information about new and deprecated composable services.

- If you use the default roles_data file, these services are included automatically.
- If you use a custom roles_data file, add the new services and remove the deprecated services for each relevant role.

IMPORTANT

If any overcloud nodes in your deployment are dedicated Object Storage (swift) nodes, you must copy the default roles_data.yaml file and edit ObjectStorage to remove the following line: deprecated_server_resource_name: 'SwiftStorage'

Controller nodes

The following services have been deprecated for Controller nodes. Remove them from your Controller role.

<table>
<thead>
<tr>
<th>Service</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS::TripleO::Services::AodhApi</td>
<td>The OpenStack Telemetry services are deprecated in favour of Service Telemetry Framework (STF) for metrics and monitoring. The legacy telemetry services are only available in RHOSP 16.2 to help facilitate the transition to STF and will be removed in a future version of RHOSP.</td>
</tr>
<tr>
<td>OS::TripleO::Services::AodhEvaluator</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::AodhListener</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::AodhNotifier</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

If you use auto scaling, do not remove these services from your Controller nodes.
<table>
<thead>
<tr>
<th>Service</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS::TripleO::Services::PankoApi</td>
<td>The OpenStack Telemetry services are deprecated in favour of Service Telemetry Framework (STF) for metrics and monitoring. The legacy telemetry services are only available in RHOSP 16.2 to help facilitate the transition to STF and will be removed in a future version of RHOSP.</td>
</tr>
<tr>
<td><strong>NOTE</strong></td>
<td>If you use CloudForms, do not remove these services from your Controller nodes.</td>
</tr>
<tr>
<td>OS::TripleO::Services::CeilometerApi</td>
<td>These services are no longer supported. Remove these services from your Controller nodes.</td>
</tr>
<tr>
<td>OS::TripleO::Services::CeilometerCollector</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::CeilometerExpirer</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::MongoDb</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::Congress</td>
<td>Congress is no longer supported.</td>
</tr>
<tr>
<td>OS::TripleO::Services::GlanceRegistry</td>
<td>This service is no longer supported due to OpenStack Platform Image Service (glance) API v2.</td>
</tr>
<tr>
<td>OS::TripleO::Services::NeutronCorePluginPlumgrid</td>
<td>Deprecated plug-ins for OpenStack Networking (neutron).</td>
</tr>
<tr>
<td>OS::TripleO::Services::NeutronCorePluginMidonet</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::NeutronLbaasv2Agent</td>
<td>OpenStack Networking (neutron) Load Balancing as a Service deprecated in favour of Octavia.</td>
</tr>
<tr>
<td>OS::TripleO::Services::NeutronLbaasv2Api</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::NovaConsoleauth</td>
<td>This service is now deprecated.</td>
</tr>
<tr>
<td>OS::TripleO::Services::NovaPlacement</td>
<td>Deprecated in favor of OS::TripleO::Services::PlacementApi.</td>
</tr>
<tr>
<td>OS::TripleO::Services::OpenDaylightApi</td>
<td>OpenDaylight is no longer supported.</td>
</tr>
<tr>
<td>OS::TripleO::Services::OpenDaylightOvs</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>Reason</td>
</tr>
<tr>
<td>------------------------------------------------------</td>
<td>------------------------------------------------------------------------</td>
</tr>
<tr>
<td>OS::TripleO::Services::RabbitMQ</td>
<td>This service has been substituted for two new services:</td>
</tr>
<tr>
<td></td>
<td>OS::TripleO::Services::OsloMessagingRpc</td>
</tr>
<tr>
<td></td>
<td>OS::TripleO::Services::OsloMessagingNotify</td>
</tr>
<tr>
<td>OS::TripleO::Services::SkydiveAgent</td>
<td>Skydive is no longer supported.</td>
</tr>
<tr>
<td>OS::TripleO::Services::SkydiveAnalyzer</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::Tacker</td>
<td>Tacker is no longer supported.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>The following services are new for Controller nodes. Add them to your Controller role.</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>Reason</td>
</tr>
<tr>
<td>------------------------------------------------------</td>
<td>------------------------------------------------------------------------</td>
</tr>
<tr>
<td>OS::TripleO::Services::CephGrafana</td>
<td>Tasks to enable Ceph Dashboard service.</td>
</tr>
<tr>
<td>OS::TripleO::Services::CinderBackendDellEMCPowermax</td>
<td>New backends for Block Storage (cinder).</td>
</tr>
<tr>
<td>OS::TripleO::Services::CinderBackendDellEMCSc</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::CinderBackendNVMeOF</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::ContainerImagePrepare</td>
<td>Run the commands to automatically pull and prepare container images relevant to the services in your overcloud.</td>
</tr>
<tr>
<td>OS::TripleO::Services::DesignateApi</td>
<td>Services for DNS-as-a-Service (designate).</td>
</tr>
<tr>
<td>OS::TripleO::Services::DesignateCentral</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::DesignateProducer</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::DesignateWorker</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::DesignateMDNS</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::DesignateSink</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::IronicInspector</td>
<td>Service for Bare Metal Introspection for the overcloud.</td>
</tr>
<tr>
<td>OS::TripleO::Services::IronicNeutronAgent</td>
<td>The networking agent for OpenStack Bare Metal (ironic).</td>
</tr>
</tbody>
</table>
### CHAPTER 9. UPDATING COMPOSABLE SERVICES AND PARAMETERS

<table>
<thead>
<tr>
<th>Service</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS::TripleO::Services::NeutronAgentsIBConfig</td>
<td>Service for OpenStack Networking (neutron) agent for Mellanox InfiniBand.</td>
</tr>
<tr>
<td>OS::TripleO::Services::OpenStackClients</td>
<td>Service for installing the Red Hat OpenStack Platform command line tools.</td>
</tr>
<tr>
<td>OS::TripleO::Services::OsloMessagingRpc</td>
<td>Replacement services for the OS::TripleO::Services::RabbitMQ service.</td>
</tr>
<tr>
<td>OS::TripleO::Services::OsloMessagingNotify</td>
<td></td>
</tr>
<tr>
<td>OS::TripleO::Services::PlacementApi</td>
<td>Service for the Placement API.</td>
</tr>
</tbody>
</table>

#### Compute Nodes

The following services have been deprecated for Compute nodes. Remove them from your Compute role.

<table>
<thead>
<tr>
<th>Service</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS::TripleO::Services::OpenDaylightOvs</td>
<td>OpenDaylight is no longer supported.</td>
</tr>
<tr>
<td>OS::TripleO::Services::SkydiveAgent</td>
<td>Skydive is no longer supported.</td>
</tr>
</tbody>
</table>

The following services are new for Compute nodes. Add them to your Compute role.

<table>
<thead>
<tr>
<th>Service</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS::TripleO::Services::NovaAZConfig</td>
<td>Service to configure host aggregate and availability zone in OpenStack Compute (nova).</td>
</tr>
</tbody>
</table>

#### All Nodes

The following services have been deprecated for all nodes. Remove them from all roles.

<table>
<thead>
<tr>
<th>Service</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS::TripleO::Services::Docker</td>
<td>Replaced with Podman.</td>
</tr>
<tr>
<td>OS::TripleO::Services::Fluentd</td>
<td>Deprecated in favour of OS::TripleO::Services::Rsyslog.</td>
</tr>
<tr>
<td>OS::TripleO::Services::Ntp</td>
<td>Deprecated in favour of OS::TripleO::Services::Timesync.</td>
</tr>
<tr>
<td>OS::TripleO::Services::SensuClient</td>
<td>Deprecated service.</td>
</tr>
</tbody>
</table>
## OS::TripleO::Services::Ptp

Deprecated in favour of OS::TripleO::Services::Timesync.

The following services are new for all nodes. Add them to all roles.

<table>
<thead>
<tr>
<th>Service</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>OS::TripleO::Services::BootParams</strong></td>
<td>Service to set Kernel arguments, Tuned profiles, and CPU isolation.</td>
</tr>
<tr>
<td><strong>OS::TripleO::Services::Collectd</strong></td>
<td>Service to configure Collectd.</td>
</tr>
<tr>
<td><strong>OS::TripleO::Services::Multipathd</strong></td>
<td>Provides a Multipathd service, which is disabled by default.</td>
</tr>
<tr>
<td><strong>OS::TripleO::Services::Podman</strong></td>
<td>Service to install and enable Podman.</td>
</tr>
<tr>
<td><strong>OS::TripleO::Services::Rear</strong></td>
<td>Service to install and enable Relax-and-Recover (ReaR) backup and restore tools.</td>
</tr>
<tr>
<td><strong>OS::TripleO::Services::Rsyslog</strong></td>
<td>Service to configure centralized log collection.</td>
</tr>
<tr>
<td><strong>OS::TripleO::Services::Timesync</strong></td>
<td>Service to enable time synchronization method, which is Chronyd by default.</td>
</tr>
</tbody>
</table>

### 9.2. UPDATING COMPOSABLE SERVICES IN CUSTOM ENVIRONMENT FILES

If you have any custom environment files with resource_registry sections, check the resource_registry sections for changes in composable service template mappings. The composable service files for Red Hat OpenStack Platform 16.2 reside in a new location within /usr/share/openstack-tripleo-heat-templates/:

<table>
<thead>
<tr>
<th>Red Hat OpenStack Platform 13</th>
<th>Red Hat OpenStack Platform 16.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>docker/services/</td>
<td>deployment</td>
</tr>
</tbody>
</table>

The deployment directory contains a set of sub-directories to group composable services. For example, the keystone sub-directory contains composable service templates for OpenStack Identity (keystone).

To remap composable services in custom environment files, check the template location for the current service mapping and edit the mapping to the new location. This procedure uses ceph-mgr.yaml as an example.
IMPORTANT

This procedure acts as guidance only for remapping composable services. If you are unsure of any mapping, contact Red Hat and request advice on the correct mapping.

Procedure

1. Search for custom environment files that use composable services. You usually store custom environment files in the `/home/stack/templates` directory:

```
$ cd ~/templates/
$ grep "OS::TripleO::Services" *
```

In this scenario, one of the files shows an outdated mapping:

```
OS::TripleO::Services::CephMgr: /usr/share/openstack-tripleo-heat-templates/docker/services/ceph-ansible/ceph-mgr.yaml
```

2. Identify the new `ceph-mgr.yaml` location in `/usr/share/openstack-tripleo-heat-templates/`. This file is now located in the `deployment/ceph-ansible` directory:

```
$ find /usr/share/openstack-tripleo-heat-templates/ -name ceph-mgr.yaml
/usr/share/openstack-tripleo-heat-templates/deployment/ceph-ansible/ceph-mgr.yaml
```

3. Edit the service in the custom environment file:

```
resource_registry:
  OS::TripleO::Services::CephMgr: /usr/share/openstack-tripleo-heat-templates/deployment/ceph-ansible/ceph-mgr.yaml
```

Save the file.

9.3. CONFIGURING ACCESS TO THE UNDERCLOUD REGISTRY

To configure access to the undercloud registry, add the control plane host name of the undercloud and the IP address of the undercloud on the provisioning network to the `DockerInsecureRegistryAddress` parameter. Place this parameter in the `containers-prepare-parameter.yaml` file to ensure that the parameter is included in future overcloud deployments.

Procedure

1. Log in to the undercloud as the `stack` user.

2. Obtain the control plane host name on the undercloud:

```
$ sudo hiera container_image_prepare_node_names
["undercloud.ctlplane.localdomain"]
```

3. Edit the `containers-prepare-parameter.yaml` file and add the `DockerInsecureRegistryAddress` parameter with a YAML list that contains the control plane host name of the undercloud and the IP address of the undercloud on the provisioning network:

```
parameter_defaults:
```
DockerInsecureRegistryAddress:
- undercloud.ctlplane.localdomain:8787
- 192.168.24.1:8787
...

You must also append the port number of the overcloud registry to the host name and IP address values. The port number is 8787.

### 9.4. DEPRECATED AND REMOVED FILTERS FOR THE NOVASCHEDULERDEFAULTFILTERS PARAMETER

If your environment uses a custom **NovaSchedulerDefaultFilters** parameter, edit the parameter to remove the following deprecated and removed filters:

<table>
<thead>
<tr>
<th>Filter</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AggregateCoreFilter</td>
<td>Deprecated</td>
</tr>
<tr>
<td>AggregateRamFilter</td>
<td>Deprecated</td>
</tr>
<tr>
<td>AggregateDiskFilter</td>
<td>Deprecated</td>
</tr>
<tr>
<td>ExactCoreFilter</td>
<td>Removed</td>
</tr>
<tr>
<td>ExactRamFilter</td>
<td>Removed</td>
</tr>
<tr>
<td>ExactDiskFilter</td>
<td>Removed</td>
</tr>
<tr>
<td>CoreFilter</td>
<td>Removed</td>
</tr>
<tr>
<td>RamFilter</td>
<td>Removed</td>
</tr>
<tr>
<td>DiskFilter</td>
<td>Removed</td>
</tr>
<tr>
<td>RetryFilter</td>
<td>Deprecated</td>
</tr>
</tbody>
</table>

**IMPORTANT**

Avoid using filters marked **Deprecated**. Red Hat OpenStack Platform 16.2 still includes deprecated filters but future versions of Red Hat OpenStack Platform will not include these filters.

### 9.5. SETTING THE COMPUTE NAME FORMAT

Red Hat OpenStack Platform 13 uses `%stackname%-compute-%index%` as the default naming format for Compute nodes. Red Hat OpenStack Platform 16.2 uses `%stackname%-novacompute-%index%` as the default naming format for Compute nodes. Change the default naming format to retain the
original Red Hat OpenStack Platform 13 naming format. If you do not use the original naming format, director configures new OpenStack Compute (nova) agents with the new naming format and keeps the existing OpenStack Compute (nova) agents with the old naming format as orphaned services.

Procedure

1. Log in to the undercloud as the stack user.
2. Set the Compute naming format:
   - If you use a custom roles_data file, edit the custom roles_data file and set the HostnameFormatDefault parameter for the Compute role:
     ```yaml
     - name: Compute
       ...
       HostnameFormatDefault: '%stackname%-compute-%index%'
       ...
     ```
     Save the custom roles_data file.
   - If you use the default roles_data file in openstack-tripleo-heat-templates, set the naming format in an environment file. Edit the environment file with your node counts and flavors, which is usually named node-info.yaml. Add the ComputeHostnameFormat parameter to the parameter_defaults section:
     ```yaml
     parameter_defaults:
       ...
       ComputeHostnameFormat: '%stackname%-compute-%index%'
       ...
     ```
     Save the node-info.yaml file.

9.6. UPDATING THE SSL/TLS CONFIGURATION

Remove the NodeTLSData resource from the resource_registry to update your SSL/TLS configuration.

Procedure

1. Log in to the undercloud as the stack user.
2. Source the stackrc file:
   ```bash
   $ source ~/stackrc
   ```
3. Edit your custom overcloud SSL/TLS public endpoint file, which is usually named ~/templates/enable-tls.yaml.
4. Remove the NodeTLSData resource from the resource_registry:
   ```yaml
   resource_registry:
   *OS::TripleO::NodeTLSData: /usr/share/openstack-tripleo-heat-templates/puppet/extraconfig/tls/tls-cert-inject.yaml*
   ```
The overcloud deployment uses a new service in HAProxy to determine if SSL/TLS is enabled.

NOTE

If this is the only resource in the resource_registry section of the enable-tls.yaml file, remove the complete resource_registry section.

5. Save the SSL/TLS public endpoint file file.

9.7. UPDATING POST CONFIGURATION TEMPLATES

If you use the OS::TripleO::NodeExtraConfigPost resource to register and run a post-configuration template, you must add the EndpointMap parameter to the template.

Procedure

1. Edit the post-configuration template.

2. Under the parameters section, add the EndpointMap parameter and its sub-parameters:

   parameters:
   servers:
     type: json
   nameserver_ip:
     type: string
   DeployIdentifier:
     type: string
   EndpointMap:
     default: {}
     type: json

3. Save the template.

9.8. CONSIDERATIONS WHEN RETAINING LEGACY TELEMETRY SERVICES

In Red Hat OpenStack Platform (RHOSP) 16.2, the OpenStack Telemetry components are deprecated in favor of the Service Telemetry Framework (STF), therefore the legacy telemetry components are not enabled after the upgrade.

If you use auto scaling or CloudForms services, you must retain the legacy telemetry services.

To retain legacy RHOSP 13 telemetry services, include the /usr/share/openstack-tripleo-heat-templates/environments/enable-legacy-telemetry.yaml environment file when you run the openstack overcloud upgrade prepare and openstack overcloud upgrade converge commands.

You must also include the enable-legacy-telemetry.yaml environment file every time you update the overcloud after the upgrade.

The legacy telemetry services are only available to help facilitate the transition to STF and will be removed in a future version of RHOSP.
CHAPTER 10. UPDATING OVERCLOUD REGISTRATION TO THE RED HAT CUSTOMER PORTAL

Red Hat OpenStack Platform 16.2 uses Ansible-based methods to register overcloud nodes to the Red Hat Customer Portal.

10.1. RED HAT SUBSCRIPTION MANAGER (RHSM) COMPOSABLE SERVICE

You can use the `rhsm` composable service to register overcloud nodes through Ansible. Each role in the default `roles_data` file contains a `OS::TripleO::Services::Rhsm` resource, which is disabled by default. To enable the service, register the resource to the `rhsm` composable service file:

```
resource_registry:
  OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
```

The `rhsm` composable service accepts a `RhsmVars` parameter, which you can use to define multiple sub-parameters relevant to your registration:

```
parameter_defaults:
  RhsmVars:
    rhsm_repos:
      - rhel-8-for-x86_64-baseos-eus-rpms
      - rhel-8-for-x86_64-appstream-eus-rpms
      - rhel-8-for-x86_64-highavailability-eus-rpms
    rhsm_username: "myusername"
    rhsm_password: "p@55w0rd!"
    rhsm_org_id: "1234567"
    rhsm_release: 8.4
```

You can also use the `RhsmVars` parameter in combination with role-specific parameters, for example, `ControllerParameters`, to provide flexibility when enabling specific repositories for different nodes types.

10.2. RHSMVARS SUB-PARAMETERS

Use the following sub-parameters as part of the `RhsmVars` parameter when you configure the `rhsm` composable service. For more information about the Ansible parameters that are available, see the role documentation.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rhsm_method</td>
<td>Choose the registration method. Either portal, satellite, or disable.</td>
</tr>
<tr>
<td>rhsm_org_id</td>
<td>The organization that you want to use for registration. To locate this ID, run <code>sudo subscription-manager orgs</code> from the undercloud node. Enter your Red Hat credentials at the prompt, and use the resulting Key value. For more information on your organization ID, see Understanding the Red Hat Subscription Management Organization ID.</td>
</tr>
<tr>
<td><strong>rhsm</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>rhsm_pool_ids</strong></td>
<td>The subscription pool ID that you want to use. Use this parameter if you do not want to auto-attach subscriptions. To locate this ID, run <code>sudo subscription-manager list --available --all --matches=&quot;Red Hat OpenStack&quot;</code> from the undercloud node, and use the resulting pool ID value.</td>
</tr>
<tr>
<td><strong>rhsm_activation_key</strong></td>
<td>The activation key that you want to use for registration.</td>
</tr>
<tr>
<td><strong>rhsm_autosubscribe</strong></td>
<td>Use this parameter to attach compatible subscriptions to this system automatically. Set the value to <code>true</code> to enable this feature.</td>
</tr>
<tr>
<td><strong>rhsm_baseurl</strong></td>
<td>The base URL for obtaining content. The default URL is the Red Hat Content Delivery Network. If you use a Satellite server, change this value to the base URL of your Satellite server content repositories.</td>
</tr>
<tr>
<td><strong>rhsm_server_hostname</strong></td>
<td>The hostname of the subscription management service for registration. The default is the Red Hat Subscription Management hostname. If you use a Satellite server, change this value to your Satellite server hostname.</td>
</tr>
<tr>
<td><strong>rhsm_repos</strong></td>
<td>A list of repositories that you want to enable.</td>
</tr>
<tr>
<td><strong>rhsm_username</strong></td>
<td>The username for registration. If possible, use activation keys for registration.</td>
</tr>
<tr>
<td><strong>rhsm_password</strong></td>
<td>The password for registration. If possible, use activation keys for registration.</td>
</tr>
<tr>
<td><strong>rhsm_release</strong></td>
<td>Red Hat Enterprise Linux release for pinning the repositories. This is set to 8.4 for Red Hat OpenStack Platform</td>
</tr>
<tr>
<td><strong>rhsm_rhsm_proxy_hostname</strong></td>
<td>The hostname for the HTTP proxy. For example: <code>proxy.example.com</code>.</td>
</tr>
<tr>
<td><strong>rhsm_rhsm_proxy_port</strong></td>
<td>The port for HTTP proxy communication. For example: <code>8080</code>.</td>
</tr>
<tr>
<td><strong>rhsm_rhsm_proxy_user</strong></td>
<td>The username to access the HTTP proxy.</td>
</tr>
<tr>
<td><strong>rhsm_rhsm_proxy_password</strong></td>
<td>The password to access the HTTP proxy.</td>
</tr>
</tbody>
</table>

**IMPORTANT**

You can use `rhsm_activation_key` and `rhsm_repos` together only if `rhsm_method` is set to `portal`. If `rhsm_method` is set to ‘satellite’, you can only use either `rhsm_activation_key` or `rhsm_repos`.

### 10.3. SWITCHING TO THE RHSM COMPOSABLE SERVICE
The previous **rhel-registration** method runs a bash script to handle the overcloud registration. The scripts and environment files for this method are located in the core heat template collection at `/usr/share/openstack-tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/`.

Complete the following steps to switch from the **rhel-registration** method to the **rhsm** composable service.

### Procedure

1. Exclude the **rhel-registration** environment files from future deployments operations. In most cases, exclude the following files:
   - **rhel-registration/environment-rhel-registration.yaml**
   - **rhel-registration/rhel-registration-resource-registry.yaml**

2. If you use a custom **roles_data** file, ensure that each role in your **roles_data** file contains the **OS::TripleO::Services::Rhsm** composable service. For example:

   ```yaml
   - name: Controller
description: |
      Controller role that has all the controller services loaded and handles
      Database, Messaging and Network functions.
      CountDefault: 1
      ...
      ServicesDefault:
      ...
      - OS::TripleO::Services::Rhsm
      ...
   ```

3. Add the environment file for **rhsm** composable service parameters to future deployment operations.

This method replaces the **rhel-registration** parameters with the **rhsm** service parameters and changes the heat resource that enables the service from:

```yaml
resource_registry:
  OS::TripleO::NodeExtraConfig: rhel-registration.yaml
```

To:

```yaml
resource_registry:
  OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
```

You can also include the `/usr/share/openstack-tripleo-heat-templates/environments/rhsm.yaml` environment file with your deployment to enable the service.

### 10.4. RHEL-REGISTRATION TO RHSM MAPPINGS

To help transition your details from the **rhel-registration** method to the **rhsm** method, use the following table to map your parameters and values.
<table>
<thead>
<tr>
<th>rhel-registration</th>
<th>rhsm / RhsmVars</th>
</tr>
</thead>
<tbody>
<tr>
<td>rhel_reg_method</td>
<td>rhsm_method</td>
</tr>
<tr>
<td>rhel_reg_org</td>
<td>rhsm_org_id</td>
</tr>
<tr>
<td>rhel_reg_pool_id</td>
<td>rhsm_pool_ids</td>
</tr>
<tr>
<td>rhel_reg_activation_key</td>
<td>rhsm_activation_key</td>
</tr>
<tr>
<td>rhel_reg_auto_attach</td>
<td>rhsm_autosubscribe</td>
</tr>
<tr>
<td>rhel_reg_sat_url</td>
<td>rhsm_satellite_url</td>
</tr>
<tr>
<td>rhel_reg_repos</td>
<td>rhsm_repos</td>
</tr>
<tr>
<td>rhel_reg_user</td>
<td>rhsm_username</td>
</tr>
<tr>
<td>rhel_reg_password</td>
<td>rhsm_password</td>
</tr>
<tr>
<td>rhel_reg_release</td>
<td>rhsm_release</td>
</tr>
<tr>
<td>rhel_reg_http_proxy_host</td>
<td>rhsm_rhsm_proxy_hostname</td>
</tr>
<tr>
<td>rhel_reg_http_proxy_port</td>
<td>rhsm_rhsm_proxy_port</td>
</tr>
<tr>
<td>rhel_reg_http_proxy_username</td>
<td>rhsm_rhsm_proxy_user</td>
</tr>
<tr>
<td>rhel_reg_http_proxy_password</td>
<td>rhsm_rhsm_proxy_password</td>
</tr>
</tbody>
</table>

10.5. REGISTERING THE OVERCLOUD WITH THE RHSM COMPOSABLE SERVICE

Create an environment file that enables and configures the rhsm composable service. Director uses this environment file to register and subscribe your nodes.

Procedure

1. Create an environment file named `templates/rhsm.yml` to store the configuration.

2. Include your configuration in the environment file. For example:

```yaml
resource_registry:
  OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
parameter_defaults:
  RhsmVars:
    rhsm_repos:
      - rhel-8-for-x86_64-baseos-eus-rpms
```
- rhel-8-for-x86_64-appstream-eus-rpms
- rhel-8-for-x86_64-highavailability-eus-rpms

...  
rhsm_username: "myusername"
rhsm_password: "p@55w0rd!"
rhsm_org_id: "1234567"
rhsm_pool_ids: "1a85f9223e3d5e43013e3d6e8ff506fd"
rhsm_method: "portal"
rhsm_release: 8.4

- The **resource_registry** section associates the **rhsm** composable service with the **OS::TripleO::Services::Rhsm** resource, which is available on each role.

- The **RhsmVars** variable passes parameters to Ansible for configuring your Red Hat registration.

3. Save the environment file.

### 10.6. APPLYING THE RHSM COMPOSABLE SERVICE TO DIFFERENT ROLES

You can apply the **rhsm** composable service on a per-role basis. For example, you can apply different sets of configurations to Controller nodes, Compute nodes, and Ceph Storage nodes.

**Procedure**

1. Create an environment file named **templates/rhsm.yml** to store the configuration.

2. Include your configuration in the environment file. For example:

```yaml
resource_registry:
  OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
parameter_defaults:
  ControllerParameters:
    RhsmVars:
      rhsm_repos:
        - rhel-8-for-x86_64-baseos-eus-rpms
        - rhel-8-for-x86_64-appstream-eus-rpms
        - rhel-8-for-x86_64-highavailability-eus-rpms
        - ansible-2.9-for-rhel-8-x86_64-rpms
        - openstack-16.2-for-rhel-8-x86_64-rpms
        - fast-datapath-for-rhel-8-x86_64-rpms
      rhsm_username: "myusername"
      rhsm_password: "p@55w0rd!"
      rhsm_org_id: "1234567"
      rhsm_pool_ids: "55d251f11490556f3e75aa37e89e10ce5"
      rhsm_method: "portal"
      rhsm_release: 8.4
  ComputeParameters:
    RhsmVars:
      rhsm_repos:
        - rhel-8-for-x86_64-baseos-eus-rpms
        - rhel-8-for-x86_64-appstream-eus-rpms
        - rhel-8-for-x86_64-highavailability-eus-rpms
```
The resource_registry associates the rhsm composable service with the OS::TripleO::Services::Rhsm resource, which is available on each role.

The ControllerParameters, ComputeParameters, and CephStorageParameters parameters each use a separate RhsmVars parameter to pass subscription details to their respective roles.

**NOTE**

Set the RhsmVars parameter within the CephStorageParameters parameter to use a Red Hat Ceph Storage subscription and repositories specific to Ceph Storage. Ensure the rhsm_repos parameter contains the standard Red Hat Enterprise Linux repositories instead of the Extended Update Support (EUS) repositories that Controller and Compute nodes require.

3. Save the environment file.
CHAPTER 11. UPDATING OVERCLOUD REGISTRATION TO RED HAT SATELLITE SERVER


11.1. RED HAT SUBSCRIPTION MANAGER (RHSM) COMPOSABLE SERVICE

You can use the `rhsm` composable service to register overcloud nodes through Ansible. Each role in the default `roles_data` file contains a `OS::TripleO::Services::Rhsm` resource, which is disabled by default. To enable the service, register the resource to the `rhsm` composable service file:

```yaml
resource_registry:
  OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
```

The `rhsm` composable service accepts a `RhsmVars` parameter, which you can use to define multiple sub-parameters relevant to your registration:

```yaml
parameter_defaults:
  RhsmVars:
    rhsm_repos:
      - rhel-8-for-x86_64-baseos-eus-rpms
      - rhel-8-for-x86_64-appstream-eus-rpms
      - rhel-8-for-x86_64-highavailability-eus-rpms
    rhsm_username: "myusername"
    rhsm_password: "p@55w0rd!"
    rhsm_org_id: "1234567"
    rhsm_release: 8.4
```

You can also use the `RhsmVars` parameter in combination with role-specific parameters, for example, `ControllerParameters`, to provide flexibility when enabling specific repositories for different nodes types.

11.2. RHSMVARS SUB-PARAMETERS

Use the following sub-parameters as part of the `RhsmVars` parameter when you configure the `rhsm` composable service. For more information about the Ansible parameters that are available, see the role documentation.

<table>
<thead>
<tr>
<th><code>rhsm</code></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rhsm_method</code></td>
<td>Choose the registration method. Either <code>portal</code>, <code>satellite</code>, or <code>disable</code>.</td>
</tr>
<tr>
<td><code>rhsm_org_id</code></td>
<td>The organization that you want to use for registration. To locate this ID, run <code>sudo subscription-manager orgs</code> from the undercloud node. Enter your Red Hat credentials at the prompt, and use the resulting <code>Key</code> value. For more information on your organization ID, see Understanding the Red Hat Subscription Management Organization ID.</td>
</tr>
<tr>
<td><strong>rhsm</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>rhsm_pool_ids</strong></td>
<td>The subscription pool ID that you want to use. Use this parameter if you do not want to auto-attach subscriptions. To locate this ID, run <code>sudo subscription-manager list --available --all --matches=&quot;Red Hat OpenStack&quot;</code> from the undercloud node, and use the resulting Pool ID value.</td>
</tr>
<tr>
<td><strong>rhsm_activation_key</strong></td>
<td>The activation key that you want to use for registration.</td>
</tr>
<tr>
<td><strong>rhsm_autosubscribe</strong></td>
<td>Use this parameter to attach compatible subscriptions to this system automatically. Set the value to <strong>true</strong> to enable this feature.</td>
</tr>
<tr>
<td><strong>rhsm_baseurl</strong></td>
<td>The base URL for obtaining content. The default URL is the Red Hat Content Delivery Network. If you use a Satellite server, change this value to the base URL of your Satellite server content repositories.</td>
</tr>
<tr>
<td><strong>rhsm_server_hostname</strong></td>
<td>The hostname of the subscription management service for registration. The default is the Red Hat Subscription Management hostname. If you use a Satellite server, change this value to your Satellite server hostname.</td>
</tr>
<tr>
<td><strong>rhsm_repos</strong></td>
<td>A list of repositories that you want to enable.</td>
</tr>
<tr>
<td><strong>rhsm_username</strong></td>
<td>The username for registration. If possible, use activation keys for registration.</td>
</tr>
<tr>
<td><strong>rhsm_password</strong></td>
<td>The password for registration. If possible, use activation keys for registration.</td>
</tr>
<tr>
<td><strong>rhsm_release</strong></td>
<td>Red Hat Enterprise Linux release for pinning the repositories. This is set to 8.4 for Red Hat OpenStack Platform</td>
</tr>
<tr>
<td><strong>rhsm_rhsm_proxy_host_name</strong></td>
<td>The hostname for the HTTP proxy. For example: <code>proxy.example.com</code>.</td>
</tr>
<tr>
<td><strong>rhsm_rhsm_proxy_port</strong></td>
<td>The port for HTTP proxy communication. For example: <code>8080</code>.</td>
</tr>
<tr>
<td><strong>rhsm_rhsm_proxy_user</strong></td>
<td>The username to access the HTTP proxy.</td>
</tr>
<tr>
<td><strong>rhsm_rhsm_proxy_password</strong></td>
<td>The password to access the HTTP proxy.</td>
</tr>
</tbody>
</table>

**IMPORTANT**

You can use **rhsm_activation_key** and **rhsm_repos** together only if **rhsm_method** is set to **portal**. If **rhsm_method** is set to ‘satellite’, you can only use either **rhsm_activation_key** or **rhsm_repos**.

### 11.3. SWITCHING TO THE RHSM COMPOSABLE SERVICE
The previous **rhel-registration** method runs a bash script to handle the overcloud registration. The scripts and environment files for this method are located in the core heat template collection at 

/usr/share/openstack-tripleo-heat-templates.extraconfig/pre_deploy/rhel-registration/.

Complete the following steps to switch from the **rhel-registration** method to the **rhsm** composable service.

**Procedure**

1. Exclude the **rhel-registration** environment files from future deployments operations. In most cases, exclude the following files:

   - **rhel-registration/environment-rhel-registration.yaml**
   - **rhel-registration/rhel-registration-resource-registry.yaml**

2. If you use a custom **roles_data** file, ensure that each role in your **roles_data** file contains the **OS::TripleO::Services::Rhsm** composable service. For example:

   ```yaml
   - name: Controller
description: |
    Controller role that has all the controller services loaded and handles
    Database, Messaging and Network functions.
CountDefault: 1
... ServicesDefault:
... - OS::TripleO::Services::Rhsm
...```

3. Add the environment file for **rhsm** composable service parameters to future deployment operations.

This method replaces the **rhel-registration** parameters with the **rhsm** service parameters and changes the heat resource that enables the service from:

```yaml
resource_registry:
OS::TripleO::NodeExtraConfig: rhel-registration.yaml
```

To:

```yaml
resource_registry:
OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
```

You can also include the **/usr/share/openstack-tripleo-heat-templates/environments/rhsm.yaml** environment file with your deployment to enable the service.

### 11.4. RHEL-REGISTRATION TO RHSM MAPPINGS

To help transition your details from the **rhel-registration** method to the **rhsm** method, use the following table to map your parameters and values.
11.5. REGISTERING THE OVERCLOUD TO RED HAT SATELLITE SERVER

Create an environment file that enables and configures the rhsm composable service to register nodes to Red Hat Satellite instead of the Red Hat Customer Portal.

Procedure

1. Create an environment file named `templates/rhsm.yml` to store the configuration.

2. Include your configuration in the environment file. For example:

```yaml
resource_registry:
  OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-templates/deployment/rhsm/rhsm-baremetal-ansible.yaml
parameter_defaults:
  RhsmVars:
    rhsm_activation_key: "myactivationkey"
    rhsm_method: "satellite"
    rhsm_org_id: "ACME"
```

---

<table>
<thead>
<tr>
<th>rhel-registration</th>
<th>rhsm / RhsmVars</th>
</tr>
</thead>
<tbody>
<tr>
<td>rhel_reg_method</td>
<td>rhsm_method</td>
</tr>
<tr>
<td>rhel_reg_org</td>
<td>rhsm_org_id</td>
</tr>
<tr>
<td>rhel_reg_pool_id</td>
<td>rhsm_pool_ids</td>
</tr>
<tr>
<td>rhel_reg_activation_key</td>
<td>rhsm_activation_key</td>
</tr>
<tr>
<td>rhel_reg_auto_attach</td>
<td>rhsm_autosubscribe</td>
</tr>
<tr>
<td>rhel_reg_sat_url</td>
<td>rhsm_satellite_url</td>
</tr>
<tr>
<td>rhel_reg_repos</td>
<td>rhsm_repos</td>
</tr>
<tr>
<td>rhel_reg_user</td>
<td>rhsm_username</td>
</tr>
<tr>
<td>rhel_reg_password</td>
<td>rhsm_password</td>
</tr>
<tr>
<td>rhel_reg_release</td>
<td>rhsm_release</td>
</tr>
<tr>
<td>rhel_reg_http_proxy_host</td>
<td>rhsm_rhsm_proxy_hostname</td>
</tr>
<tr>
<td>rhel_reg_http_proxy_port</td>
<td>rhsm_rhsm_proxy_port</td>
</tr>
<tr>
<td>rhel_reg_http_proxy_username</td>
<td>rhsm_rhsm_proxy_user</td>
</tr>
<tr>
<td>rhel_reg_http_proxy_password</td>
<td>rhsm_rhsm_proxy_password</td>
</tr>
</tbody>
</table>
rhsm_server_hostname: "satellite.example.com"
rhsm_baseurl: "https://satellite.example.com/pulp/repos"
rhsm_release: 8.4

The resource_registry associates the rhsm composable service with the OS::TripleO::Services::Rhsm resource, which is available on each role.

The RhsmVars variable passes parameters to Ansible for configuring your Red Hat registration.

3. Save the environment file.

11.6. PREPARING LEAPP TO USE SATELLITE SERVER

If you use Satellite Server 6 to host RPM content, complete these preparation steps to ensure a successful Leapp upgrade with Satellite.

Prerequisites

- Create a Satellite Server activation key that is linked to repositories for Red Hat OpenStack Platform 16.2 and Red Hat Enterprise Linux 8.4.
- Generate an Ansible inventory file for your overcloud nodes.
- On your Satellite Server, create and promote a content view for Red Hat OpenStack Platform 16.2 upgrade and include the repositories that required for the upgrade. For more information, see Red Hat Satellite Server 6 considerations.
- If you use a Ceph subscription and have configured director to use the overcloud-minimal image for Ceph storage nodes, on your Satellite Server you must create a Content View and add the following Red Hat Enterprise Linux (RHEL) 8.4 repositories to it:
  - Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs)
    - rhel-8-for-x86_64-appstream-rpms
      - x86_64 8.4
  - Red Hat Enterprise Linux 8 for x86_64 - BaseOS (RPMs)
    - rhel-8-for-x86_64-baseos-rpms
      - x86_64 8.4

  For more information, see Importing Red Hat Content and Managing Content Views in the Red Hat Satellite Content Management Guide.

Procedure

1. Log in to the undercloud as the stack user.

2. Create a file called playbook-satellite.yaml and paste the following content in the file:

```yaml
- name: Pre-install leapp
  hosts: overcloud
  become: yes
  tasks:
    - name: Pre-install leapp
```

85
yum:
  name:
    - leapp
    - leapp-repository
    state: installed
  - name: Remove katello-host-tools-fact-plugin
    yum:
      name:
        - katello-host-tools-fact-plugin
        state: removed
  - name: Register system
    redhat_subscription:
      activationkey: "osp16-key"
      org_id: "ACME"
      server_hostname: "satellite.example.com"
      rhsm_baseurl: "https://satellite.example.com/pulp/repos"
      force_register: True

Modify the **redhat_subscription** variables to suit your Satellite Server.

3. Run the playbook:

```bash
$ ansible-playbook -i ~/inventory.yaml playbook-satellite.yaml
```
CHAPTER 12. PREPARING FOR A DIRECTOR-DEPLOYED CEPH STORAGE UPGRADE

If your deployment uses a director-deployed Red Hat Ceph Storage cluster, you must complete the procedures included in this section.

NOTE

If you are upgrading with external Ceph deployments, you must skip the procedures included in this section and continue to Chapter 13, Preparing for upgrading with external Ceph deployments.

The upgrade process maintains the use of Red Hat Ceph Storage 3 containerized services during the upgrade to Red Hat OpenStack Platform 16.2. After you complete the Red Hat OpenStack Platform 16.2 upgrade, you upgrade the Ceph Storage services to Red Hat Ceph Storage 4.

You cannot provision new shares with the Shared File Systems service (manila) until you complete both the Red Hat OpenStack Platform 16.2 upgrade and the Ceph Storage services upgrade to Red Hat Ceph Storage 4.

12.1. UNDERSTANDING THE CEPH STORAGE NODE UPGRADE PROCESS AT A HIGH LEVEL

The director-deployed Ceph Storage nodes continue to use Red Hat Ceph Storage 3 containers during the overcloud upgrade process. To understand how Ceph Storage nodes and services are impacted during the upgrade process, read the following summaries for each aspect of the Ceph Storage upgrade process.

ceph-ansible

ceph-ansible is a collection of roles and playbooks that director uses to install, maintain, and upgrade Ceph Storage services. When you upgraded the undercloud, you ran certain commands that ensured ceph-ansible remained at the latest version 3 collection after the transition to Red Hat Enterprise Linux 8.4. Version 3 of ceph-ansible keeps the containerized Ceph Storage services on version 3 through the duration of the overcloud upgrade. After you complete the upgrade, you enable the Red Hat Ceph Storage update the Red Hat Ceph Storage Tools 4 for RHEL repository and update ceph-ansible to version 4.

Migration to Podman

During the overcloud upgrade, you must run the openstack overcloud external-upgrade run --tags ceph_systemd command to change the systemd services that control Ceph Storage containerized services to use Podman instead of Docker. You run this command before performing the operating system upgrade on any node that contains Ceph Storage containerized services.

After you change the systemd services to use Podman on a node, you perform the operating system upgrade and the OpenStack Platform service upgrade. The Ceph Storage containers on that node will run again after the OpenStack Platform service upgrade.

Ceph Storage operating system upgrade

You follow the same workflow on Ceph Storage nodes as you do on overcloud nodes in general. When you run the openstack overcloud upgrade run --tags system_upgrade command against a Ceph Storage node, director runs Leapp on Ceph Storage node and upgrades the operating system to Red
Hat Enterprise Linux 8.4. You then run the untagged `openstack overcloud upgrade run` command against the Ceph Storage node, which runs the following containers:

- Red Hat Ceph Storage 3 containerized services
- Red Hat OpenStack Platform 16.2 containerized services

**Upgrading to Red Hat Ceph Storage 4**

After you complete the Leapp upgrade and Red Hat OpenStack Platform upgrade, the Ceph Storage containerized services will still use version 3 containers. At this point, you must upgrade `ceph-ansible` to version 4 and then run the `openstack overcloud external-upgrade run --tags ceph` command that performs an upgrade of all Red Hat Ceph Storage services on all nodes to version 4.

**Summary of the Ceph Storage workflow**

The following list is a high level workflow for the Red Hat Ceph Storage upgrade. This workflow is integrated into the general Red Hat OpenStack Platform workflow and you run upgrade framework commands on the undercloud to perform the operations in this workflow.

1. Upgrade the undercloud but retain version 3 of `ceph-ansible`
2. Start the overcloud upgrade
3. Perform the following tasks for each node that hosts Ceph Storage containerized services:
   a. Migrate the Ceph Storage containerized services to Podman
   b. Upgrade the operating system
   c. Upgrade the OpenStack Platform services, which relaunches Ceph Storage version 3 containerized services
4. Complete the overcloud upgrade
5. Upgrade `ceph-ansible` to version 4 on the undercloud
6. Upgrade to Red Hat Ceph Storage 4 on the overcloud

**NOTE**

This list does not capture all steps in the complete Red Hat OpenStack Platform 16.2 upgrade process but focuses only on the aspects relevant to Red Hat Ceph Storage to describe what occurs to Ceph Storage services during the upgrade process.

**12.2. CHECKING YOUR CEPH-ANSIBLE VERSION**

During the undercloud upgrade, you retained the Ceph Storage 3 version of the `ceph-ansible` package. This helps maintain the compatibility of the Ceph Storage 3 containers on your Ceph Storage nodes. Verify that this package remains on your undercloud.

**Procedure**

1. Log in to the undercloud as the `stack` user.
2. Run the `dnf` command to check the version of the `ceph-ansible` package:
$ sudo dnf info ceph-ansible

The command output shows version 3 of the **ceph-ansible** package:

**Installed Packages**

Name : ceph-ansible
Version : 3.xx.xx.xx
...

**IMPORTANT**

If the **ceph-ansible** package is missing or not a version 3 package, download the latest version 3 package from the Red Hat Package Browser and manually install the package on your undercloud. Note that the **ceph-ansible** version 3 package is only available from Red Hat Enterprise Linux 7 repositories and is not available in Red Hat Enterprise Linux 8 repositories. **ceph-ansible** version 3 is not supported on Red Hat Enterprise Linux 8 outside the context of the Red Hat OpenStack Platform framework for upgrades.

### 12.3. SETTING THE CEPH-ANSIBLE REPOSITORY

The Red Hat OpenStack Platform 16.2 validation framework tests that **ceph-ansible** is installed correctly before director upgrades the overcloud to Red Hat Ceph Storage 4. The framework uses the **CephAnsibleRepo** parameter to check that you installed **ceph-ansible** from the correct repository. Director disables the test after you run the `openstack overcloud upgrade prepare` command and this test remains disabled through the duration of the Red Hat OpenStack Platform 16.2 overcloud upgrade. Director re-enables this test after running the `openstack overcloud upgrade converge` command. However, to prepare for this validation, you must set the **CephAnsibleRepo** parameter to the Red Hat Ceph Storage Tools 4 for RHEL 8 repository.

**Procedure**

1. Log in to the undercloud as the **stack** user.

2. Edit the environment file that contains your overcloud Ceph Storage configuration. This file is usually named **ceph-config.yaml** and you can find it in your **templates** directory:

   ```
   $ vi /home/stack/templates/ceph-config.yaml
   ```

3. Add the **CephAnsibleRepo** parameter to the **parameter_defaults** section:

   ```
   parameter_defaults:
   ...
   CephAnsibleRepo: rhceph-4-tools-for-rhel-8-x86_64-rpms
   ```

   **CephAnsibleRepo** sets the repository that includes **ceph-ansible**. The validation framework uses this parameter to check that you have installed **ceph-ansible** on the undercloud.

4. Save the **ceph-config.yaml** file.

### 12.4. CHECKING CEPH CLUSTER STATUS BEFORE AN UPGRADE

Before you can proceed with the overcloud upgrade, you must verify that the Ceph cluster is functioning...
Before you can proceed with the overcloud upgrade, you must verify that the Ceph cluster is functioning as expected.

Procedure

1. Log in to the node that is running the `ceph-mon` service. This node is usually a Controller node or a standalone Ceph Monitor node.

2. Enter the following command to view the status of the Ceph cluster:

   ```bash
   $ docker exec ceph-mon-$HOSTNAME ceph -s
   ```

3. Confirm that the health status of the cluster is `HEALTH_OK` and that all of the OSDs are `up`. 
CHAPTER 13. PREPARING FOR UPGRADING WITH EXTERNAL CEPH DEPLOYMENTS

If you are upgrading with external Ceph deployments, you must complete the procedures included in this section.

**NOTE**

If your deployment does not use an external Ceph Storage cluster, you must skip the procedures included in this section and continue to the next section.

13.1. INSTALLING CEPH-ANSIBLE

If you are upgrading with external Ceph deployments, you must complete this procedure.

The *ceph-ansible* package is required when you use Ceph Storage with Red Hat OpenStack Platform.

**Procedure**

1. Enable the Ceph Tools repository:

   ```bash
   [stack@director ~]$ sudo subscription-manager repos --enable=rhceph-4-tools-for-rhel-8-x86_64-rpms
   ```

2. Install the *ceph-ansible* package:

   ```bash
   [stack@director ~]$ sudo dnf install -y ceph-ansible
   ```

13.2. SETTING THE CEPH-ANSIBLE REPOSITORY

The Red Hat OpenStack Platform 16.2 validation framework tests that *ceph-ansible* is installed correctly before director upgrades the overcloud to Red Hat Ceph Storage 4. The framework uses the *CephAnsibleRepo* parameter to check that you installed *ceph-ansible* from the correct repository. Director disables the test after you run the *openstack overcloud upgrade prepare* command and this test remains disabled through the duration of the Red Hat OpenStack Platform 16.2 overcloud upgrade. Director re-enables this test after running the *openstack overcloud upgrade converge* command. However, to prepare for this validation, you must set the *CephAnsibleRepo* parameter to the Red Hat Ceph Storage Tools 4 for RHEL 8 repository.

**Procedure**

1. Log in to the undercloud as the *stack* user.

2. Edit the environment file that contains your overcloud Ceph Storage configuration. This file is usually named *ceph-config.yaml* and you can find it in your *templates* directory:

   ```bash
   $ vi /home/stack/templates/ceph-config.yaml
   ```

3. Add the *CephAnsibleRepo* parameter to the *parameter_defaults* section:

   ```yaml
   parameter_defaults:
     ...
   ```
CephAnsibleRepo: rhceph-4-tools-for-rhel-8-x86_64-rpms

CephAnsibleRepo sets the repository that includes ceph-ansible. The validation framework uses this parameter to check that you have installed ceph-ansible on the undercloud.

4. Save the ceph-config.yaml file.
CHAPTER 14. UPDATING NETWORK CONFIGURATION

You must complete some network configuration to prepare for the overcloud upgrade.

14.1. UPDATING NETWORK INTERFACE TEMPLATES

Red Hat OpenStack Platform includes a script to automatically add the missing parameters to your NIC template files.

**Procedure**

1. Log in to the undercloud as the `stack` user.

2. Source the `stackrc` file.

   ```bash
   $ source ~/stackrc
   ```

3. On the undercloud, create a file called `update-nic-templates.sh` and include the following content in the file:

   ```bash
   #!/bin/bash
   STACK_NAME="overcloud"
   ROLES_DATA="/usr/share/openstack-tripleo-heat-templates/roles_data.yaml"
   NETWORK_DATA="/usr/share/openstack-tripleo-heat-templates/network_data.yaml"
   NIC_CONFIG_LINES=$(openstack stack environment show $STACK_NAME | grep "::Net::SoftwareConfig" | sed -E 's/ *OS::TripleO::// ; s/::Net::SoftwareConfig:// ; s/ http.*user-files/ /')
   echo "$NIC_CONFIG_LINES" | while read LINE; do
     ROLE=$(echo "$LINE" | awk '{print $1;}')
     NIC_CONFIG=$(echo "$LINE" | awk '{print $2;}')
     if [ -f "$NIC_CONFIG" ]; then
       echo "Updating template for $ROLE role."
       python3 /usr/share/openstack-tripleo-heat-templates/tools/merge-new-params-nic-config-script.py \
         --tht-dir /usr/share/openstack-tripleo-heat-templates \
         --roles-data "$ROLES_DATA" \
         --network-data "$NETWORK_DATA" \
         --role-name "$ROLE" \
         --discard-comments yes \
         --template "$NIC_CONFIG"
     else
       echo "No NIC template detected for $ROLE role. Skipping $ROLE role."
     fi
   done
   ```

   - If you use a custom overcloud name, set the `STACK_NAME` variable to the name of your overcloud. The default name for an overcloud stack is `overcloud`.

   - If you use a custom `roles_data` file, set the `ROLES_DATA` variable to the location of the custom file. If you use the default `roles_data` file, leave the variable as `/usr/share/openstack-tripleo-heat-templates/roles_data.yaml`.
If you use a custom `network_data` file, set the `NETWORK_DATA` variable to the location of the custom file. If you use the default `network_data` file, leave the variable as `/usr/share/openstack-tripleo-heat-templates/network_data.yaml`.

- Run `/usr/share/openstack-tripleo-heat-templates/tools/merge-new-params-nic-config-script.py -h` to see a list of options to add to the script.

4. Add executable permissions to the script:

   ```bash
   $ chmod +x update-nic-templates.sh
   ```

5. Optional: If you use a spine-leaf network topology for your RHOSP environment, check the `roles_data.yaml` file and ensure that it uses the correct role names for the NIC templates for your deployment. The script uses the value of the `deprecated_nic_config_name` parameter in the `roles_data.yaml` file.

6. Run the script:

   ```bash
   $ ./update-nic-templates.sh
   ```

The script saves a copy of each custom NIC template and updates each template with the missing parameters. The script also skips any roles that do not have a custom template:

```
No NIC template detected for BlockStorage role. Skipping BlockStorage role.
Updating template for CephStorage role.
The original template was saved as: /home/stack/templates/custom-nics/ceph-storage.yaml.20200903144835
The update template was saved as: /home/stack/templates/custom-nics/ceph-storage.yaml
Updating template for Compute role.
The original template was saved as: /home/stack/templates/custom-nics/compute.yaml.20200903144838
The update template was saved as: /home/stack/templates/custom-nics/compute.yaml
Updating template for Controller role.
The original template was saved as: /home/stack/templates/custom-nics/controller.yaml.20200903144841
The update template was saved as: /home/stack/templates/custom-nics/controller.yaml
No NIC template detected for ObjectStorage role. Skipping ObjectStorage role.
```

14.2. MAINTAINING OPEN VSWITCH COMPATIBILITY DURING THE UPGRADE

Red Hat OpenStack Platform 13 uses Open vSwitch (OVS) as the default ML2 back end for OpenStack Networking (neutron). Newer versions of Red Hat OpenStack Platform use Open Virtual Network (OVN), which expands upon OVS capabilities. However, to ensure a stable upgrade, you must maintain OVS functionality during the duration of the upgrade and then migrate to OVN after you complete the upgrade.

To maintain OVS compatibility during the upgrade, include the following environment file as part of your environment file collection:

- `#/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovs.yaml`
NOTE

When you include the `neutron-ovs.yaml` environment file, check if the `neutron-ovs-dvr.yaml` environment file is included in your environment file collection. You must include the `neutron-ovs.yaml` environment file before the `neutron-ovs-dvr.yaml` file, to avoid failures during the upgrade.

Treat this file as part of your deployment until you have completed the migration to OVN. Include the file with all overcloud upgrade and deployment commands:

- `openstack overcloud upgrade prepare`
- `openstack overcloud upgrade converge`
- `openstack overcloud deploy`
- `openstack overcloud update prepare`
- `openstack overcloud update converge`
- Any other command that uses environment files.

Troubleshooting OVS compatibility

If the upgrade process fails because the parameters defined in the `neutron-ovs.yaml` file are overwriting the parameters defined in the `neutron-ovs-dvr.yaml`, change the order in which you include these files and run the `openstack overcloud upgrade prepare` and `openstack overcloud upgrade run` again on the affected nodes. If one of the affected nodes is a Compute node, remove the `openstack-neutron*` packages from that node.

14.3. MAINTAINING COMPOSABLE NETWORK COMPATIBILITY DURING THE UPGRADE

The `network_data` file format for Red Hat OpenStack Platform 16.2 includes new sections that you can use to define additional subnets and routes within a network. However, if you use a custom `network_data` file, you can still use the `network_data` file format from Red Hat OpenStack Platform 13.

- When you upgrade from Red Hat OpenStack Platform 13 to 16.2, use the Red Hat OpenStack Platform 13 `network_data` file format during and after the upgrade. For more information about Red Hat OpenStack Platform 13 composable network syntax, see Custom composable networks.

- When you create new overclouds on Red Hat OpenStack Platform 16.2, use the Red Hat OpenStack Platform 16.2 `network_data` file format. For more information about Red Hat OpenStack Platform 16.2 composable network syntax, see Custom composable networks.
CHAPTER 15. PREPARING NETWORK FUNCTIONS VIRTUALIZATION (NFV)

If you use network functions virtualization (NFV), you must complete some preparation for the overcloud upgrade.

15.1. NETWORK FUNCTIONS VIRTUALIZATION (NFV) ENVIRONMENT FILES

In a typical NFV-based environment, you can enable services such as the following:

- Single-root input/output virtualization (SR-IOV)
- Data Plane Development Kit (DPDK)

You do not require any specific reconfiguration to these services to accommodate the upgrade to Red Hat OpenStack Platform 16.2. However, ensure that the environment files that enable your NFV functionality meet the following requirements:

- The default environment files to enable NFV features are located in the `environments/services` directory of the Red Hat OpenStack Platform 16.2 `openstack-tripleo-heat-templates` collection. If you include the default NFV environment files from `openstack-tripleo-heat-templates` with your Red Hat OpenStack Platform 13 deployment, verify the correct environment file location for the respective feature in Red Hat OpenStack Platform 16.2:

  - Open vSwitch (OVS) networking and SR-IOV: `/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-sriov.yaml`
  - Open vSwitch (OVS) networking and DPDK: `/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovs-dpdk.yaml`

- To maintain OVS compatibility during the upgrade from Red Hat OpenStack Platform 13 to Red Hat OpenStack Platform 16.2, you must include the `/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovs.yaml` environment file. When running deployment and upgrade commands that involve environment files, you must include any NFV-related environment files after the `neutron-ovs.yaml` file. For example, when running `openstack overcloud upgrade prepare` with OVS and NFV environment files, include the files in the following order:

  - The OVS environment file
  - The SR-IOV environment file
  - The DPDK environment file

```
$ openstack overcloud upgrade prepare \
  ...
  -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovs.yaml \
  -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-sriov.yaml \
  -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovs-dpdk.yaml \
  ...
```

NOTE
Red Hat OpenStack Platform 16.2 Framework for Upgrades (13 to 16.2)
NOTE

During an upgrade, you can migrate instances between RHOSP 13 and RHOSP 16.2 Compute nodes only when the RHOSP 13 Compute nodes are in the hybrid state. For more information, see Migration constraints in the Configuring the Compute Service for Instance Creation guide.

There is an additional migration constraint for NFV workloads: you cannot live migrate instances from OVS-DPDK Compute nodes during an upgrade. Alternatively, you can cold migrate instances from OVS-DPDK Compute nodes during an upgrade.
CHAPTER 16. FINAL REVIEW BEFORE UPGRADE

Complete a final check of all preparation steps before you begin the upgrade.

16.1. CUSTOM FILES TO INCLUDE IN YOUR DEPLOYMENT

If any overcloud nodes in your deployment are dedicated Object Storage (swift) nodes, you must copy the default `roles_data.yaml` file and edit `ObjectStorage` to remove `deprecated_server_resource_name: 'SwiftStorage'`. Then use the `--roles-file` option to pass the file to the `openstack overcloud upgrade prepare` or the `openstack overcloud upgrade converge` command.

16.2. NEW ENVIRONMENT FILES TO INCLUDE WITH YOUR DEPLOYMENT

In addition to your regular overcloud environment files, you must include new environment files to facilitate the upgrade to Red Hat OpenStack Platform (RHOSP) 16.2.

<table>
<thead>
<tr>
<th>File</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>/home/stack/templates/upgrades-environment.yaml</td>
<td>This file contains the parameters specific to the upgrade. This file is necessary only for the duration of the upgrade. Discard this file after you run <code>openstack overcloud upgrade converge</code>.</td>
</tr>
<tr>
<td>/home/stack/templates/rhsm.yaml</td>
<td>This file contains registration and subscription information for the overcloud. This file registers your systems either to the Red Hat Customer Portal or Red Hat Satellite Server.</td>
</tr>
<tr>
<td>/home/stack/containers-prepare-parameter.yaml</td>
<td>The file that contains the source and preparation steps. This is the same file that you use with the undercloud upgrade.</td>
</tr>
<tr>
<td>/usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovs.yaml</td>
<td>OpenStack Platform 16.2 uses Open Virtual Network (OVN) as the default networking backend. However, OpenStack Platform 13 used Open vSwitch (OVS). Include this file to retain OVS compatibility during the upgrade. The OpenStack Platform 16.2 documentation includes instructions on migrating from OVS to OVN after the upgrade.</td>
</tr>
</tbody>
</table>

Add these files to the end of your environment file listing when you run the following commands:

- `openstack overcloud upgrade prepare`
- `openstack overcloud upgrade converge`
- `openstack overcloud deploy`

16.3. ENVIRONMENT FILES TO REMOVE FROM YOUR DEPLOYMENT
Remove any environment files specific to your OpenStack Platform Red Hat OpenStack Platform 13:

- Red Hat OpenStack Platform 13 container image list
- Red Hat OpenStack Platform 13 Customer Portal or Satellite `rhel-registration` scripts

Remove these files from the list of environment files you include when you run the following commands:

- `openstack overcloud upgrade prepare`
- `openstack overcloud upgrade converge`
- `openstack overcloud deploy`

### 16.4. UPGRADE CHECKLIST

Use the following checklist to determine your readiness to upgrade the overcloud:

<table>
<thead>
<tr>
<th>Item</th>
<th>Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validated a working overcloud.</td>
<td>Y / N</td>
</tr>
<tr>
<td>Performed a Relax-and-Recover (ReaR) backup of the overcloud control plane. For more information, see Red Hat OpenStack Platform 13 Undercloud and Control Plane Back Up and Restore.</td>
<td>Y / N</td>
</tr>
<tr>
<td>Created a backup of the database that runs on the undercloud node. For more information, see Creating a database backup of the undercloud node in the Red Hat OpenStack Platform 16.2 Backing up and restoring the undercloud and control plane nodes guide.</td>
<td>Y / N</td>
</tr>
<tr>
<td>Implemented all preparation for Leapp, including:</td>
<td>Y / N</td>
</tr>
<tr>
<td>- Leapp environment file</td>
<td></td>
</tr>
<tr>
<td>- All overcloud nodes are now using predictable NIC names.</td>
<td></td>
</tr>
<tr>
<td>Updated your registration details to Red Hat OpenStack Platform 16.2 repositories and converted your environment file to use the Ansible-based method.</td>
<td>Y / N</td>
</tr>
<tr>
<td>Updated your network configuration templates.</td>
<td>Y / N</td>
</tr>
<tr>
<td>Updated your environment file list with new environment files for Red Hat OpenStack Platform 16.2.</td>
<td>Y / N</td>
</tr>
<tr>
<td>Optional: If your deployment includes dedicated Object Storage (swift) nodes:</td>
<td>Y / N</td>
</tr>
<tr>
<td>Copied the <code>roles_data.yaml</code> file, removed <code>deprecated_server_resource_name: 'SwiftStorage'</code>, and passed the file to the <code>openstack overcloud upgrade prepare</code> or the <code>openstack overcloud upgrade converge</code> command.</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Complete</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Removed old environment files only relevant to Red Hat OpenStack Platform 13, such as old Red Hat registration and container image location files.</td>
<td>Y / N</td>
</tr>
</tbody>
</table>
CHAPTER 17. UPGRADE COMMAND OVERVIEW

The upgrade process involves different commands that you run at certain stages of process.

**IMPORTANT**

This section only contains information about each command. You must run these commands in a specific order and provide options specific to your overcloud. Wait until you receive instructions to run these commands at the appropriate step.

17.1. OPENSTACK OVERCLOUD UPGRADE PREPARE

This command performs the initial preparation steps for the overcloud upgrade, which includes replacing the current overcloud plan on the undercloud with the new OpenStack Platform 16.2 overcloud plan and your updated environment files. This command functions similar to the `openstack overcloud deploy` command and uses many of the same options.

17.2. OPENSTACK OVERCLOUD UPGRADE RUN

This command performs the upgrade process. Director creates a set of Ansible playbooks based on the new OpenStack Platform 16.2 overcloud plan and runs the fast forward tasks on the entire overcloud. This includes running the upgrade process through each OpenStack Platform version from 13 to 16.2.

In addition to the standard upgrade process, this command can perform a Leapp upgrade of the operating system on overcloud nodes. Run these tasks using the `--tags` option.

**Upgrade task tags for Leapp**

- **system_upgrade**
  - Task that combines tasks from `system_upgrade_prepare`, `system_upgrade_run`, and `system_upgrade_reboot`.

- **system_upgrade_prepare**
  - Tasks to prepare for the operating system upgrade with Leapp.

- **system_upgrade_run**
  - Tasks to run Leapp and upgrade the operating system.

- **system_upgrade_reboot**
  - Tasks to reboot a system and complete the operating system upgrade.

**Upgrade task tags for workload migration**

- **nova_hybrid_state**
  - Task that sets up temporary OpenStack Platform 16.2 containers on Compute nodes to facilitate workload migration during the upgrade.

17.3. OPENSTACK OVERCLOUD EXTERNAL-UPGRADE RUN

This command performs upgrade tasks outside the standard upgrade process. Director creates a set of Ansible playbooks based on the new OpenStack Platform 16.2 overcloud plan and you run specific tasks using the `--tags` option.
External task tags for container management

**container_image_prepare**
Tasks for pulling container images to the undercloud registry and preparing the images for the overcloud to use.

External task tags for Ceph Storage upgrades

- If your deployment uses a Red Hat Ceph Storage cluster that was deployed using director, you can use the following tags:
  
  **ceph**
  Tasks to install Red Hat Ceph Storage using **ceph-ansible** playbooks.
  
  **ceph_systemd**
  Tasks to convert Red Hat Ceph Storage systemd unit files to use **podman** management.

- If you are upgrading with external Ceph deployments, you can skip the tasks that use the **ceph** and **ceph_systemd** tags.

External task tags for database transfer

**system_upgrade_cleanup**
Tasks to clean storage directories related to **system_upgrade_transfer_data** tasks.

**system_upgrade_stop_services**
Tasks to shut down all services.

**system_upgrade_transfer_data**
Tasks to shut down all services and perform a database transfer to the bootstrap node.

17.4. OPENSTACK OVERCLOUD UPGRADE CONVERGE

This command performs the final step in the overcloud upgrade. This final step synchronizes the overcloud heat stack with the OpenStack Platform 16.2 overcloud plan and your updated environment files. This process ensures that the resulting overcloud matches the configuration of a new OpenStack Platform 16.2 overcloud. This command is similar to the **openstack overcloud deploy** command and uses many of the same options.

17.5. OVERCLOUD NODE UPGRADE WORKFLOW

When you perform an upgrade on each overcloud node, you must consider the following aspects to determine the correct commands to run at the relevant stage in the upgrade:

**Controller Services**

- **Does the node contain Pacemaker services?** You must first upgrade the bootstrap node in order to start a database transfer and launch temporary containers that facilitate migration during the transition from Red Hat OpenStack 13 to 16.2. During the bootstrap Controller node upgrade process, a new Pacemaker cluster is created and new Red Hat OpenStack 16.2 containers are started on the node, while the remaining Controller nodes are still running on Red Hat OpenStack 13. After upgrading the bootstrap node, you must upgrade each additional node with Pacemaker services and ensure that each node joins the new Pacemaker cluster started with the bootstrap node. The process for upgrading split-service Controller nodes without Pacemaker does not require these additional steps.
Compute Services

- **Is the node a Compute node?** If the node does contain Compute services, you must migrate virtual machines from the node to ensure maximum availability. A Compute node in this situation includes any node designed to host virtual machines. This definition includes the follow Compute nodes types:
  - Regular Compute nodes
  - Compute nodes with Hyper-Converged Infrastructure (HCI)
  - Compute nodes with Network Function Virtualization technologies such as Data Plane Development Kit (DPDK) or Single Root Input/Output Virtualization (SR-IOV)
  - Real Time Compute nodes

Ceph Storage Services

- **Does the node contain any Ceph Storage services?** You must convert the `systemd` unit files for any containerized Ceph Storage services on the node to use `podman` instead of `docker`. This applies to the following node types:
  - Ceph Storage OSD nodes
  - Controller nodes with Ceph MON services
  - Split-Controller Ceph MON nodes
  - Compute nodes with Hyper-Converged Infrastructure (HCI)

Workflow

Use the following workflow diagram to identify the correct update path for specific nodes:
CHAPTER 18. UPGRADING A STANDARD OVERCLOUD

This scenario contains an example upgrade process for a standard overcloud environment, which includes the following node types:

- Three Controller nodes
- Three Ceph Storage nodes
- Multiple Compute nodes

18.1. RUNNING THE OVERCLOUD UPGRADE PREPARATION

The upgrade requires running `openstack overcloud upgrade prepare` command, which performs the following tasks:

- Updates the overcloud plan to OpenStack Platform 16.2
- Prepares the nodes for the upgrade

**NOTE**

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack STACK NAME` option replacing `STACK NAME` with the name of your stack.

**Procedure**

1. Source the `stackrc` file:

   ```bash
   $ source ~/stackrc
   ```

2. Run the upgrade preparation command:

   ```bash
   $ openstack overcloud upgrade prepare \n     --stack STACK NAME \n     --templates \n     -e ENVIRONMENT FILE
     ... 
     -e /home/stack/templates/upgrades-environment.yaml \n     -e /home/stack/templates/rhsm.yaml \n     -e /home/stack/containers-prepare-parameter.yaml \n     -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovs.yaml \n     ...
   ```

   Include the following options relevant to your environment:

   - The environment file (`upgrades-environment.yaml`) with the upgrade-specific parameters (`-e`).
   - The environment file (`rhsm.yaml`) with the registration and subscription parameters (`-e`).
   - The environment file (`containers-prepare-parameter.yaml`) with your new container image locations (`-e`). In most cases, this is the same environment file that the undercloud uses.
   - The environment file (`neutron-ovs.yaml`) to maintain OVS compatibility.
- Any custom configuration environment files (--e) relevant to your deployment.
- If applicable, your custom roles (roles_data) file using --roles-file.
- If applicable, your composable network (network_data) file using --networks-file.
- If you use a custom stack name, pass the name with the --stack option.

3. Wait until the upgrade preparation completes.

4. Download the container images:

   ```
   $ openstack overcloud external-upgrade run --stack STACK NAME --tags container_image_prepare
   ```

18.2. UPGRADING CONTROLLER NODES WITH DIRECTOR-DEPLOYED CEPH STORAGE

If your deployment uses a Red Hat Ceph Storage cluster that was deployed using director, you must complete this procedure.

To upgrade all the Controller nodes to OpenStack Platform 16.2, you must upgrade each Controller node starting with the bootstrap Controller node.

During the bootstrap Controller node upgrade process, a new Pacemaker cluster is created and new Red Hat OpenStack 16.2 containers are started on the node, while the remaining Controller nodes are still running on Red Hat OpenStack 13.

After upgrading the bootstrap node, you must upgrade each additional node with Pacemaker services and ensure that each node joins the new Pacemaker cluster started with the bootstrap node. For more information, see Overcloud node upgrade workflow.

In this example, the controller nodes are named using the default overcloud-controller-NODEID convention. This includes the following three controller nodes:

- overcloud-controller-0
- overcloud-controller-1
- overcloud-controller-2

Substitute these values for your own node names where applicable.

**NOTE**

If you are not using the overcloud default stack name, set your stack name with the --stack STACK NAME option replacing STACK NAME with the name of your stack.

**Procedure**

1. Source the stackrc file:

   ```
   $ source ~/stackrc
   ```

2. Identify the bootstrap Controller node by running the following command on a Controller node:
3. Upgrade the bootstrap Controller node:
   a. Run the external upgrade command with the `ceph_systemd` tag:

   ```bash
   $ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-controller-0
   ```

   This command performs the following functions:
   
   - Changes the systemd units that control the Ceph Storage containers to use Podman management.
   - Limits actions to the selected Controller node using the `ceph_ansible_limit` variable.

   This step is a preliminary measure to prepare the Ceph Storage services for The leapp upgrade.

   b. Run the upgrade command with the `system_upgrade` tag:

   ```bash
   $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-controller-0
   ```

   This command performs the following actions:
   
   - Performs a Leapp upgrade of the operating system.
   - Performs a reboot as a part of the Leapp upgrade.

   **IMPORTANT**

   The next command causes an outage on the control plane. You cannot perform any standard operations on the overcloud during the next few steps.

   c. Run the external upgrade command with the `system_upgrade_transfer_data` tag:

   ```bash
   $ openstack overcloud external-upgrade run --stack STACK NAME --tags system_upgrade_transfer_data
   ```

   This command copies the latest version of the database from an existing node to the bootstrap node.
d. Run the upgrade command with the `nova_hybrid_state` tag and run only the 
   `upgrade_steps_playbook.yaml` playbook:

   ```
   $ openstack overcloud upgrade run --stack STACK_NAME --playbook upgrade_steps_playbook.yaml --tags nova_hybrid_state --limit all
   ```

   This command launches temporary 16.2 containers on Compute nodes to help facilitate 
   workload migration when you upgrade Compute nodes at a later step.

e. Run the upgrade command with no tags:

   ```
   $ openstack overcloud upgrade run --stack STACK_NAME --limit overcloud-controller-0
   ```

   This command performs the Red Hat OpenStack Platform upgrade.

   **IMPORTANT**

   The control plane becomes active when this command finishes. You can 
   perform standard operations on the overcloud again.

f. Verify that after the upgrade, the new Pacemaker cluster is started and that the control 
   plane services such as galera, rabbit, haproxy, and redis are running:

   ```
   $ sudo pcs status
   ```

4. Upgrade the next Controller node:

   a. Verify that the old cluster is no longer running:

   ```
   $ sudo pcs status
   ```

   An error similar to the following is displayed when the cluster is not running:

   ```
   Error: cluster is not currently running on this node
   ```

   b. Run the external upgrade command with the `ceph_systemd` tag:

   ```
   $ openstack overcloud external-upgrade run --stack STACK_NAME --tags ceph_systemd 
   -e ceph_ansible_limit=overcloud-controller-1
   ```

   This command performs the following functions:

   - Changes the systemd units that control the Ceph Storage containers to use Podman 
     management.

   - Limits actions to the selected Controller node using the `ceph_ansible_limit` variable.

   This step is a preliminary measure to prepare the Ceph Storage services for The `leapp` 
   upgrade.

   c. Run the upgrade command with the `system_upgrade` tag on the next Controller node:

   ```
   $ openstack overcloud upgrade run --stack STACK_NAME --tags system_upgrade --limit 
   overcloud-controller-1
   ```
This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
- Performs a reboot as a part of the Leapp upgrade.

Run the upgrade command with no tags:

```
$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-controller-0,overcloud-controller-1
```

This command performs the Red Hat OpenStack Platform upgrade. In addition to this node, include the previously upgraded bootstrap node in the `--limit` option.

5. Upgrade the final Controller node:

a. Verify that the old cluster is no longer running:

```
$ sudo pcs status
```

An error similar to the following is displayed when the cluster is not running:

```
Error: cluster is not currently running on this node
```

b. Run the external upgrade command with the `ceph_systemd` tag:

```
$ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-controller-2
```

This command performs the following functions:

- Changes the systemd units that control the Ceph Storage containers to use Podman management.
- Limits actions to the selected Controller node using the `ceph_ansible_limit` variable.

This step is a preliminary measure to prepare the Ceph Storage services for the `leapp` upgrade.

c. Run the upgrade command with the `system_upgrade` tag:

```
$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-controller-2
```

This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
- Performs a reboot as a part of the Leapp upgrade.

d. Run the upgrade command with no tags:

```
$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-controller-0,overcloud-controller-1,overcloud-controller-2
```
This command performs the Red Hat OpenStack Platform upgrade. Include all Controller nodes in the `--limit` option.

### 18.3. UPGRADING THE OPERATING SYSTEM FOR CEPH STORAGE NODES

If your deployment uses a Red Hat Ceph Storage cluster that was deployed using director, you must upgrade the operating system for each Ceph Storage nodes.

**NOTE**

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack STACK NAME` option replacing `STACK NAME` with the name of your stack.

**Procedure**

1. Source the `stackrc` file:

   ```bash
   $ source ~/stackrc
   ```

2. Select a Ceph Storage node and upgrade the operating system:

   a. Run the external upgrade command with the `ceph_systemd` tag:

   ```bash
   $ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-cephstorage-0
   ```

   This command performs the following functions:

   - Changes the systemd units that control the Ceph Storage containers to use Podman management.
   - Limits actions to the selected node using the `ceph_ansible_limit` variable.

   This step is a preliminary measure to prepare the Ceph Storage services for The `leapp` upgrade.

   b. Run the upgrade command with the `system_upgrade` tag:

   ```bash
   $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-cephstorage-0
   ```

   This command performs the following actions:

   - Performs a Leapp upgrade of the operating system.
   - Performs a reboot as a part of the Leapp upgrade.

   c. Run the upgrade command with no tags:

   ```bash
   $ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-cephstorage-0
   ```
This command runs the config-download playbooks and configures the composable services on the Ceph Storage node. This step does not upgrade the Ceph Storage nodes to Red Hat Ceph Storage 4. The Red Hat Ceph Storage 4 upgrade occurs in a later procedure.

3. Select the next Ceph Storage node and upgrade the operating system:
   a. Run the external upgrade command with the ceph_systemd tag:
      
      $ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-cephstorage-1
      
      This command performs the following functions:
      
      - Changes the systemd units that control the Ceph Storage containers to use Podman management.
      - Limits actions to the selected node using the ceph_ansible_limit variable.
      
      This step is a preliminary measure to prepare the Ceph Storage services for the leapp upgrade.
   
   b. Run the upgrade command with the system_upgrade tag:
      
      $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-cephstorage-1
      
      This command performs the following actions:
      
      - Performs a Leapp upgrade of the operating system.
      - Performs a reboot as a part of the Leapp upgrade.

   c. Run the upgrade command with no tags:
      
      $ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-cephstorage-1
      
      This command runs the config-download playbooks and configures the composable services on the Ceph Storage node. This step does not upgrade the Ceph Storage nodes to Red Hat Ceph Storage 4. The Red Hat Ceph Storage 4 upgrade occurs in a later procedure.

4. Select the final Ceph Storage node and upgrade the operating system:
   a. Run the external upgrade command with the ceph_systemd tag:
      
      $ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-cephstorage-2
      
      This command performs the following functions:
      
      - Changes the systemd units that control the Ceph Storage containers to use Podman management.
      - Limits actions to the selected node using the ceph_ansible_limit variable.
This step is a preliminary measure to prepare the Ceph Storage services for the leapp upgrade.

b. Run the upgrade command with the system_upgrade tag:

```
$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-cephstorage-2
```

This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
- Performs a reboot as a part of the Leapp upgrade.

c. Run the upgrade command with no tags:

```
$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-cephstorage-2
```

This command runs the config-download playbooks and configures the composable services on the Ceph Storage node. This step does not upgrade the Ceph Storage nodes to Red Hat Ceph Storage 4. The Red Hat Ceph Storage 4 upgrade occurs in a later procedure.

18.4. UPGRADING COMPUTE NODES

Upgrade all the Compute nodes to OpenStack Platform 16.2.

### NOTE

If you are not using the default stack name (overcloud), set your stack name with the --stack STACK NAME option replacing STACK NAME with the name of your stack.

Procedure

1. Source the stackrc file:

```
$ source ~/stackrc
```

2. Migrate your instances. For more information on migration strategies, see Migrating virtual machines between Compute nodes.

3. Run the upgrade command with the system_upgrade tag:

```
$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-compute-0
```

This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
- Performs a reboot as a part of the Leapp upgrade.

4. Run the upgrade command with no tags:
$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-compute-0

This command performs the Red Hat OpenStack Platform upgrade.

5. To upgrade multiple Compute nodes in parallel, set the --limit option to a comma-separated list of nodes that you want to upgrade. First perform the system upgrade task:

$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-compute-0,overcloud-compute-1,overcloud-compute-2

Then perform the standard OpenStack service upgrade:

$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-compute-0,overcloud-compute-1,overcloud-compute-2

18.5. SYNCHRONIZING THE OVERCLOUD STACK

The upgrade requires an update the overcloud stack to ensure that the stack resource structure and parameters align with a fresh deployment of OpenStack Platform 16.2.

NOTE

If you are not using the default stack name (overcloud), set your stack name with the --stack STACK NAME option replacing STACK NAME with the name of your stack.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Edit the containers-prepare-parameter.yaml file and remove the following parameters and their values:

   • ceph3_namespace
   • ceph3_tag
   • ceph3_image
   • name_prefix_stein
   • name_suffix_stein
   • namespace_stein
   • tag_stein

3. Run the upgrade finalization command:

$ openstack overcloud upgrade converge
   --stack STACK NAME
   --templates
   -e ENVIRONMENT_FILE
Include the following options relevant to your environment:

- The environment file (upgrades-environment.yaml) with the upgrade-specific parameters (-e).
- The environment file (rhsm.yaml) with the registration and subscription parameters (-e).
- The environment file (containers-prepare-parameter.yaml) with your new container image locations (-e). In most cases, this is the same environment file that the undercloud uses.
- The environment file (neutron-ovs.yaml) to maintain OVS compatibility.
- Any custom configuration environment files (-e) relevant to your deployment.
- If applicable, your custom roles (roles_data) file using --roles-file.
- If applicable, your composable network (network_data) file using --networks-file.
- If you use a custom stack name, pass the name with the --stack option.

4. Wait until the stack synchronization completes.

**IMPORTANT**

You do not need the upgrades-environment.yaml file for any further deployment operations.
CHAPTER 19. UPGRADING AN OVERCLOUD WITH EXTERNAL CEPH DEPLOYMENTS

This scenario contains an example upgrade process for an overcloud environment with external Ceph deployments, which includes the following node types:

- Three Controller nodes
- External Ceph Storage cluster
- Multiple Compute nodes

19.1. RUNNING THE OVERCLOUD UPGRADE PREPARATION

The upgrade requires running `openstack overcloud upgrade prepare` command, which performs the following tasks:

- Updates the overcloud plan to OpenStack Platform 16.2
- Prepares the nodes for the upgrade

**NOTE**

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack STACK NAME` option replacing `STACK NAME` with the name of your stack.

**Procedure**

1. Source the `stackrc` file:
   
   ```bash
   $ source ~/stackrc
   ```

2. Run the upgrade preparation command:
   
   ```bash
   $ openstack overcloud upgrade prepare \
   --stack STACK NAME \
   --templates \ 
   -e ENVIRONMENT FILE \ 
   ... \ 
   -e /home/stack/templates/upgrades-environment.yaml \ 
   -e /home/stack/templates/rhsm.yaml \ 
   -e /home/stack/containers-prepare-parameter.yaml \ 
   -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovs.yaml \ 
   ...
   ```

   Include the following options relevant to your environment:

   - The environment file (`upgrades-environment.yaml`) with the upgrade-specific parameters (`-e`).
   - The environment file (`rhsm.yaml`) with the registration and subscription parameters (`-e`).
   - The environment file (`containers-prepare-parameter.yaml`) with your new container image locations (`-e`). In most cases, this is the same environment file that the undercloud uses.
- The environment file (neutron-ovs.yaml) to maintain OVS compatibility.
- Any custom configuration environment files (-e) relevant to your deployment.
- If applicable, your custom roles (roles_data) file using --roles-file.
- If applicable, your composable network (network_data) file using --networks-file.
- If you use a custom stack name, pass the name with the --stack option.

3. Wait until the upgrade preparation completes.

4. Download the container images:

```
$ openstack overcloud external-upgrade run --stack STACK_NAME --tags container_image_prepare
```

19.2. UPGRADING CONTROLLER NODES WITH EXTERNAL CEPH DEPLOYMENTS

If you are upgrading with external Ceph deployments, you must complete this procedure.

To upgrade all the Controller nodes to OpenStack Platform 16.2, you must upgrade each Controller node starting with the bootstrap Controller node.

During the bootstrap Controller node upgrade process, a new Pacemaker cluster is created and new Red Hat OpenStack 16.2 containers are started on the node, while the remaining Controller nodes are still running on Red Hat OpenStack 13.

After upgrading the bootstrap node, you must upgrade each additional node with Pacemaker services and ensure that each node joins the new Pacemaker cluster started with the bootstrap node. For more information, see Overcloud node upgrade workflow.

In this example, the controller nodes are named using the default overcloud-controller-NODEID convention. This includes the following three controller nodes:

- overcloud-controller-0
- overcloud-controller-1
- overcloud-controller-2

Substitute these values for your own node names where applicable.

NOTE

If you are not using the overcloud default stack name, set your stack name with the --stack STACK_NAME option replacing STACK_NAME with the name of your stack.

Procedure

1. Source the stackrc file:

```
$ source ~/stackrc
```
2. Identify the bootstrap Controller node by running the following command on a Controller node:

```bash
$ sudo hiera -c /etc/puppet/hiera.yaml pacemaker_short_bootstrap_node_name
```

To run this command from the undercloud, run the following SSH command and substitute `CONTROLLER_IP` with the IP address of any Controller node in your environment:

```bash
$ ssh heat-admin@CONTROLLER_IP "sudo hiera -c /etc/puppet/hiera.yaml pacemaker_short_bootstrap_node_name"
```

This example uses `overcloud-controller-0` as the value of the bootstrap node. Substitute this value for your own bootstrap node.

3. Upgrade the bootstrap Controller node:

   a. Run the upgrade command with the `system_upgrade` tag:

   ```bash
   $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-controller-0
   ```

   This command performs the following actions:
   - Performs a Leapp upgrade of the operating system.
   - Performs a reboot as a part of the Leapp upgrade.

   **IMPORTANT**
   
   The next command causes an outage on the control plane. You cannot perform any standard operations on the overcloud during the next few steps.

   b. Run the external upgrade command with the `system_upgrade_transfer_data` tag:

   ```bash
   $ openstack overcloud external-upgrade run --stack STACK NAME --tags system_upgrade_transfer_data
   ```

   This command copies the latest version of the database from an existing node to the bootstrap node.

   c. Run the upgrade command with the `nova_hybrid_state` tag and run only the `upgrade_steps_playbook.yaml` playbook:

   ```bash
   $ openstack overcloud upgrade run --stack STACK NAME --playbook upgrade_steps_playbook.yaml --tags nova_hybrid_state --limit all
   ```

   This command launches temporary 16.2 containers on Compute nodes to help facilitate workload migration when you upgrade Compute nodes at a later step.

   d. Run the upgrade command with no tags:

   ```bash
   $ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-controller-0
   ```

   This command performs the Red Hat OpenStack Platform upgrade.
IMPORTANT

The control plane becomes active when this command finishes. You can perform standard operations on the overcloud again.

e. Verify that after the upgrade, the new Pacemaker cluster is started and that the control plane services such as galera, rabbit, haproxy, and redis are running:

   $ sudo pcs status

4. Upgrade the next Controller node:

   a. Verify that the old cluster is no longer running:

      $ sudo pcs status

      An error similar to the following is displayed when the cluster is not running:

      Error: cluster is not currently running on this node

   b. Run the upgrade command with the `system_upgrade` tag on the next Controller node:

      $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-controller-1

      This command performs the following actions:

      - Performs a Leapp upgrade of the operating system.
      - Performs a reboot as a part of the Leapp upgrade.

   c. Run the upgrade command with no tags:

      $ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-controller-0,overcloud-controller-1

      This command performs the Red Hat OpenStack Platform upgrade. In addition to this node, include the previously upgraded bootstrap node in the `--limit` option.

5. Upgrade the final Controller node:

   a. Verify that the old cluster is no longer running:

      $ sudo pcs status

      An error similar to the following is displayed when the cluster is not running:

      Error: cluster is not currently running on this node

   b. Run the upgrade command with the `system_upgrade` tag:

      $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-controller-2
This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
- Performs a reboot as a part of the Leapp upgrade.

c. Run the upgrade command with no tags:

```bash
$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-controller-0,overcloud-controller-1,overcloud-controller-2
```

This command performs the Red Hat OpenStack Platform upgrade. Include all Controller nodes in the `--limit` option.

19.3. UPGRADING COMPUTE NODES

Upgrade all the Compute nodes to OpenStack Platform 16.2.

NOTE

If you are not using the default stack name (overcloud), set your stack name with the `--stack STACK NAME` option replacing `STACK NAME` with the name of your stack.

Procedure

1. Source the `stackrc` file:

   ```bash
   $ source ~/stackrc
   ```

2. Migrate your instances. For more information on migration strategies, see Migrating virtual machines between Compute nodes.

3. Run the upgrade command with the `system_upgrade` tag:

   ```bash
   $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-compute-0
   ```

   This command performs the following actions:
   - Performs a Leapp upgrade of the operating system.
   - Performs a reboot as a part of the Leapp upgrade.

4. Run the upgrade command with no tags:

   ```bash
   $ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-compute-0
   ```

   This command performs the Red Hat OpenStack Platform upgrade.

5. To upgrade multiple Compute nodes in parallel, set the `--limit` option to a comma-separated list of nodes that you want to upgrade. First perform the `system_upgrade` task:

   ```bash
   $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-compute-0,overcloud-compute-1,overcloud-compute-2
   ```
Then perform the standard OpenStack service upgrade:

```bash
$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-compute-0,overcloud-compute-1,overcloud-compute-2
```

### 19.4. SYNCHRONIZING THE OVERCLOUD STACK

The upgrade requires an update the overcloud stack to ensure that the stack resource structure and parameters align with a fresh deployment of OpenStack Platform 16.2.

**NOTE**

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack STACK NAME` option replacing `STACK NAME` with the name of your stack.

**Procedure**

1. Source the `stackrc` file:

   ```bash
   $ source ~/stackrc
   ```

2. Edit the `containers-prepare-parameter.yaml` file and remove the following parameters and their values:

   - `ceph3_namespace`
   - `ceph3_tag`
   - `ceph3_image`
   - `name_prefix_stein`
   - `name_suffix_stein`
   - `namespace_stein`
   - `tag_stein`

3. Run the upgrade finalization command:

   ```bash
   $ openstack overcloud upgrade converge \ 
     --stack STACK NAME \ 
     --templates \ 
     -e ENVIRONMENT FILE \ 
     ... \ 
     -e /home/stack/templates/upgrades-environment.yaml \ 
     -e /home/stack/templates/rhsm.yaml \ 
     -e /home/stack/containers-prepare-parameter.yaml \ 
     -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovs.yaml \ 
     ...
   ```

Include the following options relevant to your environment:
The environment file (`upgrades-environment.yaml`) with the upgrade-specific parameters (`-e`).

- The environment file (`rhsm.yaml`) with the registration and subscription parameters (`-e`).

- The environment file (`containers-prepare-parameter.yaml`) with your new container image locations (`-e`). In most cases, this is the same environment file that the undercloud uses.

- The environment file (`neutron-ovs.yaml`) to maintain OVS compatibility.

- Any custom configuration environment files (`-e`) relevant to your deployment.

- If applicable, your custom roles (`roles_data`) file using `--roles-file`.

- If applicable, your composable network (`network_data`) file using `--networks-file`.

- If you use a custom stack name, pass the name with the `--stack` option.

4. Wait until the stack synchronization completes.

**IMPORTANT**

You do not need the `upgrades-environment.yaml` file for any further deployment operations.
CHAPTER 20. SPEEDING UP AN OVERCLOUD UPGRADE

To speed up the overcloud upgrade process, you can upgrade 1/3 of the control plane at a time, starting with the bootstrap nodes.

After the upgrade of first 1/3 of the control plane is complete, you can move your environment into mixed-mode where the control plane APIs are running and the cloud is operational. High availability operational performance can be resumed only after the entire control plane has been upgraded.

When you upgrade a large number of Compute nodes, to improve performance, you can run the `openstack overcloud upgrade run` command with the `--limit Compute` option in parallel on groups of 20 nodes. You can run multiple upgrade tasks in the background, where each task upgrades a separate group of 20 nodes.

This scenario contains an example upgrade process for an overcloud environment that includes the following node types with composable roles:

- Three Controller nodes
- Three Database nodes
- Three Networker nodes
- Three Ceph Storage nodes
- Multiple Compute nodes

20.1. RUNNING THE OVERCLOUD UPGRADE PREPARATION

The upgrade requires running `openstack overcloud upgrade prepare` command, which performs the following tasks:

- Updates the overcloud plan to OpenStack Platform 16.2
- Prepares the nodes for the upgrade

**NOTE**

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack STACK NAME` option replacing `STACK NAME` with the name of your stack.

Procedure

1. Source the `stackrc` file:

   ```
   $ source ~/stackrc
   ```

2. Run the upgrade preparation command:

   ```
   $ openstack overcloud upgrade prepare \  
   --stack STACK NAME \  
   --templates \  
   -e ENVIRONMENT FILE \  
   "..." \  
   -e /home/stack/templates/upgrades-environment.yaml \  
   ```
-e /home/stack/templates/rhsm.yaml \
-e /home/stack/containers-prepare-parameter.yaml \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovs.yaml \
…

Include the following options relevant to your environment:

- The environment file (`upgrades-environment.yaml`) with the upgrade-specific parameters (-e).
- The environment file (`rhsm.yaml`) with the registration and subscription parameters (-e).
- The environment file (`containers-prepare-parameter.yaml`) with your new container image locations (-e). In most cases, this is the same environment file that the undercloud uses.
- The environment file (`neutron-ovs.yaml`) to maintain OVS compatibility.
- Any custom configuration environment files (-e) relevant to your deployment.
- If applicable, your custom roles (`roles_data`) file using `--roles-file`.
- If applicable, your composable network (`network_data`) file using `--networks-file`.
- If you use a custom stack name, pass the name with the `--stack` option.

3. Wait until the upgrade preparation completes.

4. Download the container images:

```bash
$ openstack overcloud external-upgrade run --stack STACK NAME --tags container_image_prepare
```

## 20.2. UPGRADED THE CONTROL PLANE NODES

To upgrade the control plane nodes in your environment to OpenStack Platform 16.2, you must upgrade 1/3 of your control plane nodes at a time, starting with the bootstrap nodes.

During the bootstrap Controller node upgrade process, a new Pacemaker cluster is created and new Red Hat OpenStack 16.2 containers are started on the node, while the remaining Controller nodes continue to run on Red Hat OpenStack 13.

In this example, the control plane nodes are named using the default `overcloud-ROLE-NODEID` convention. This includes the following node types with composable roles:

- `overcloud-controller-0`
- `overcloud-controller-1`
- `overcloud-controller-2`
- `overcloud-database-0`
- `overcloud-database-1`
- `overcloud-database-2`
- overcloud-networker-0
- overcloud-networker-1
- overcloud-networker-2
- overcloud-ceph-0
- overcloud-ceph-1
- overcloud-ceph-2

Substitute these values for your own node names where applicable.

After you upgrade the overcloud-controller-0, overcloud-database-0, overcloud-networker-0, and overcloud-ceph-0 bootstrap nodes, which comprise the first 1/3 of your control plane nodes, you must upgrade each additional 1/3 of the nodes with Pacemaker services and ensure that each node joins the new Pacemaker cluster started with the bootstrap node. Therefore, you must upgrade overcloud-controller-1, overcloud-database-1, overcloud-networker-1, and overcloud-ceph-1 before you upgrade overcloud-controller-2, overcloud-database-2, overcloud-networker-2, and overcloud-ceph-2.

NOTE
If you are not using the default stack name overcloud, use the --stack STACK_NAME option to set your stack name and replace STACK_NAME with the name of your stack.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc file:

   ```bash
   $ source ~/stackrc
   ```

3. On any Controller node, run the following command to identify the bootstrap Controller node:

   ```bash
   $ sudo hiera -c /etc/puppet/hiera.yaml pacemaker_short_bootstrap_node_name
   ```

   You can also identify the bootstrap Controller node from the undercloud node. Substitute CONTROLLER_IP with the IP address of any Controller node in your environment:

   ```bash
   $ ssh heat-admin@CONTROLLER_IP "sudo hiera -c /etc/puppet/hiera.yaml pacemaker_short_bootstrap_node_name"
   ```

   This example uses overcloud-controller-0 as the value of the bootstrap node. Substitute this value for your own bootstrap node.

4. Upgrade the overcloud-controller-0, overcloud-database-0, overcloud-networker-0, and overcloud-ceph-0 control plane nodes:

   a. Run the external upgrade command with the ceph_systemd tag:
$ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-controller-0,overcloud-database-0,overcloud-networker-0,overcloud-ceph-0

This command performs the following actions:

- Changes the systemd units that control the Ceph Storage containers to use Podman management.
- Limits actions to the selected nodes using the \texttt{ceph_ansible_limit} variable.

This step is a preliminary measure to prepare the Ceph Storage services for the leapp upgrade.

b. Run the upgrade command with the \texttt{system\_upgrade} tag:

$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-controller-0 &
$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-database-0 &
$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-networker-0 &
$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-ceph-0 &

This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
- Performs a reboot as a part of the Leapp upgrade.

\begin{usebox}{important}
\textbf{IMPORTANT}

The next command causes an outage on the control plane. You cannot perform any standard operations on the overcloud during the next few steps.
\end{usebox}

c. Run the external upgrade command with the \texttt{system\_upgrade\_transfer\_data} tag:

$ openstack overcloud external-upgrade run --stack STACK NAME --tags system_upgrade_transfer_data

This command copies the latest version of the database from an existing node to the bootstrap node.

d. Run the upgrade command with the \texttt{nova\_hybrid\_state} tag and run only the \texttt{upgrade\_steps\_playbook.yaml} playbook:

$ openstack overcloud upgrade run --stack STACK NAME --playbook upgrade_steps_playbook.yaml --tags nova_hybrid_state --limit all

This command launches temporary 16.2 containers on Compute nodes to help facilitate workload migration when you upgrade Compute nodes at a later step.

e. Run the upgrade command with no tags:
$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-controller-0,overcloud-database-0,overcloud-networker-0,overcloud-ceph-0 --playbook all

This command performs the Red Hat OpenStack Platform upgrade.

**IMPORTANT**

The control plane becomes active when this command finishes. You can perform standard operations on the overcloud again.

f. Optional: On the bootstrap Controller node, verify that after the upgrade, the new Pacemaker cluster is started and that the control plane services such as galera, rabbit, haproxy, and redis are running:

$ sudo pcs status

5. Upgrade the overcloud-controller-1, overcloud-database-1, overcloud-networker-1, and overcloud-ceph-1 control plane nodes:

a. Log in to the overcloud-controller-1 node and verify that the old cluster is no longer running:

$ sudo pcs status

An error similar to the following is displayed when the cluster is not running:

Error: cluster is not currently running on this node

b. Run the external upgrade command with the ceph_systemd tag:

$ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-controller-1,overcloud-database-1,overcloud-networker-1,overcloud-ceph-1

This command performs the following functions:

- Changes the systemd units that control the Ceph Storage containers to use Podman management.
- Limits actions to the selected nodes using the ceph_ansible_limit variable.

This step is a preliminary measure to prepare the Ceph Storage services for the leapp upgrade.

c. Run the upgrade command with the system_upgrade tag:

$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-controller-1,overcloud-database-1,overcloud-networker-1,overcloud-ceph-1

This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
- Performs a reboot as a part of the Leapp upgrade.
d. Run the upgrade command with no tags:

```
$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-controller-0,overcloud-controller-1,overcloud-database-0,overcloud-database-1,overcloud-networker-0,overcloud-networker-1,overcloud-ceph-0,overcloud-ceph-1
```

This command performs the Red Hat OpenStack Platform upgrade. In addition to this node, include the previously upgraded bootstrap nodes in the `--limit` option.

6. Upgrade the `overcloud-controller-2`, `overcloud-database-2`, `overcloud-networker-2`, and `overcloud-ceph-2` control plane nodes:

a. Log in to the `overcloud-controller-2` node and verify that the old cluster is no longer running:

```
$ sudo pcs status
```

An error similar to the following is displayed when the cluster is not running:

```
Error: cluster is not currently running on this node
```

b. Run the external upgrade command with the `ceph_systemd` tag:

```
```

This command performs the following functions:

- Changes the systemd units that control the Ceph Storage containers to use Podman management.
- Limits actions to the selected nodes using the `ceph_ansible_limit` variable.

This step is a preliminary measure to prepare the Ceph Storage services for The `leapp` upgrade.

c. Run the upgrade command with the `system_upgrade` tag:

```
$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-controller-2,overcloud-database-2,overcloud-networker-2,overcloud-ceph-2
```

This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
- Performs a reboot as a part of the Leapp upgrade.

d. Run the upgrade command with no tags:

```
```
This command performs the Red Hat OpenStack Platform upgrade. Include all control plane nodes in the --limit option.

### 20.3. UPGRADING COMPUTE NODES IN PARALLEL

To upgrade a large number of Compute nodes to OpenStack Platform 16.2, you can run the `openstack overcloud upgrade run` command with the --limit `Compute` option in parallel on groups of 20 nodes.

You can run multiple upgrade tasks in the background, where each task upgrades a separate group of 20 nodes. When you use this method to upgrade Compute nodes in parallel, you cannot select which nodes you upgrade. The selection of nodes is based on the inventory file that you generate when you run the `tripleo-ansible-inventory` command. For example, if you have 80 Compute nodes in your deployment, you can run the following commands to update the Compute nodes in parallel:

```
$ openstack overcloud upgrade run -y --limit 'Compute[0:19]' > upgrade-compute-00-19.log 2>&1 &
$ openstack overcloud upgrade run -y --limit 'Compute[20:29]' > upgrade-compute-20-29.log 2>&1 &
$ openstack overcloud upgrade run -y --limit 'Compute[40:59]' > upgrade-compute-40-59.log 2>&1 &
$ openstack overcloud upgrade run -y --limit 'Compute[60:79]' > upgrade-compute-60-79.log 2>&1 &
```

To upgrade specific Compute nodes, use a comma-separated list of nodes:

```
$ openstack overcloud upgrade run --limit <Compute0>,<Compute1>,<Compute2>,<Compute3>
```

**NOTE**

If you are not using the default stack name `overcloud`, use the --stack `STACK_NAME` option and replace `STACK_NAME` with name of your stack.

**Procedure**

1. Log in to the undercloud host as the stack user.

2. Source the `stackrc` file:

   ```
   $ source ~/stackrc
   ```

3. Migrate your instances. For more information on migration strategies, see Migrating virtual machines between Compute nodes.

4. Run the upgrade command with the `system_upgrade` tag:

   ```
   $ openstack overcloud upgrade run -y --stack STACK_NAME --tags system_upgrade --limit 'Compute[0:19]' > upgrade-compute-00-19.log 2>&1 &
   $ openstack overcloud upgrade run -y --stack STACK_NAME --tags system_upgrade --limit 'Compute[20:29]' > upgrade-compute-20-29.log 2>&1 &
   $ openstack overcloud upgrade run -y --stack STACK_NAME --tags system_upgrade --limit 'Compute[40:59]' > upgrade-compute-40-59.log 2>&1 &
   $ openstack overcloud upgrade run -y --stack STACK_NAME --tags system_upgrade --limit 'Compute[60:79]' > upgrade-compute-60-79.log 2>&1 &
   ```

This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
Performs a reboot as a part of the Leapp upgrade.

5. Run the upgrade command with no tags:

```bash
$ openstack overcloud upgrade run -y --stack STACK NAME --limit 'Compute[0:19]' > upgrade-compute-00-19.log 2>&1 &
$ openstack overcloud upgrade run -y --stack STACK NAME --limit 'Compute[20:29]' > upgrade-compute-20-29.log 2>&1 &
$ openstack overcloud upgrade run -y --stack STACK NAME --limit 'Compute[40:59]' > update-compute-40-59.log 2>&1 &
$ openstack overcloud upgrade run -y --stack STACK NAME --limit 'Compute[60:79]' > update-compute-60-79.log 2>&1 &
```

This command performs the Red Hat OpenStack Platform upgrade.

6. Optional: To upgrade selected Compute nodes, use the `--limit` option with a comma-separated list of nodes that you want to upgrade. The following example upgrades the `overcloud-compute-0, overcloud-compute-1, overcloud-compute-2` nodes in parallel.

a. Run the upgrade command with the `system_upgrade` tag:

```bash
$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-compute-0,overcloud-compute-1,overcloud-compute-2
```

b. Run the upgrade command with no tags:

```bash
$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-compute-0,overcloud-compute-1,overcloud-compute-2
```

### 20.4. SYNCHRONIZING THE OVERCLOUD STACK

The upgrade requires an update the overcloud stack to ensure that the stack resource structure and parameters align with a fresh deployment of OpenStack Platform 16.2.

**NOTE**

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack STACK NAME` option replacing `STACK NAME` with the name of your stack.

Procedure

1. Source the `stackrc` file:

```bash
$ source ~/stackrc
```

2. Edit the `containers-prepare-parameter.yaml` file and remove the following parameters and their values:

   - `ceph3_namespace`
   - `ceph3_tag`
   - `ceph3_image`
3. Run the upgrade finalization command:

```
$ openstack overcloud upgrade converge \
   --stack STACK NAME \ 
   --templates \ 
   -e ENVIRONMENT FILE \ 
   ... \ 
   -e /home/stack/templates/upgrades-environment.yaml \ 
   -e /home/stack/templates/rhsm.yaml \ 
   -e /home/stack/containers-prepare-parameter.yaml \ 
   -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovs.yaml \ 
   ... 
```

Include the following options relevant to your environment:

- The environment file (**upgrades-environment.yaml**) with the upgrade-specific parameters (**-e**).
- The environment file (**rhsm.yaml**) with the registration and subscription parameters (**-e**).
- The environment file (**containers-prepare-parameter.yaml**) with your new container image locations (**-e**). In most cases, this is the same environment file that the undercloud uses.
- The environment file (**neutron-ovs.yaml**) to maintain OVS compatibility.
- Any custom configuration environment files (**-e**) relevant to your deployment.
- If applicable, your custom roles (**roles_data**) file using **--roles-file**.
- If applicable, your composable network (**network_data**) file using **--networks-file**.
- If you use a custom stack name, pass the name with the **--stack** option.

4. Wait until the stack synchronization completes.

**IMPORTANT**

You do not need the **upgrades-environment.yaml** file for any further deployment operations.
CHAPTER 21. UPGRADING A SPLIT CONTROLLER OVERCLOUD

This scenario contains an example upgrade process for an overcloud with Controller node services split on to multiple nodes. This includes the following node types:

- Multiple split high availability services using Pacemaker
- Multiple split Controller services
- Three Ceph MON nodes
- Three Ceph Storage nodes
- Multiple Compute nodes

21.1. RUNNING THE OVERCLOUD UPGRADE PREPARATION

The upgrade requires running `openstack overcloud upgrade prepare` command, which performs the following tasks:

- Updates the overcloud plan to OpenStack Platform 16.2
- Prepares the nodes for the upgrade

**NOTE**

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack STACK NAME` option replacing `STACK NAME` with the name of your stack.

**Procedure**

1. Source the `stackrc` file:

   ```
   $ source ~/stackrc
   ```

2. Run the upgrade preparation command:

   ```
   $ openstack overcloud upgrade prepare \
      --stack STACK NAME \
      --templates \
      -e ENVIRONMENT FILE \
      …
   ```

   Include the following options relevant to your environment:

   - The environment file (`upgrades-environment.yaml`) with the upgrade-specific parameters (`-e`).
The environment file (`rhsm.yaml`) with the registration and subscription parameters (`-e`).

- The environment file (`containers-prepare-parameter.yaml`) with your new container image locations (`-e`). In most cases, this is the same environment file that the undercloud uses.

- The environment file (`neutron-ovs.yaml`) to maintain OVS compatibility.

- Any custom configuration environment files (`-e`) relevant to your deployment.

- If applicable, your custom roles (`roles_data`) file using `--roles-file`.

- If applicable, your composable network (`network_data`) file using `--networks-file`.

- If you use a custom stack name, pass the name with the `--stack` option.

3. Wait until the upgrade preparation completes.

4. Download the container images:

   
   ```
   $ openstack overcloud external-upgrade run --stack STACK_NAME --tags container_image_prepare
   ```

### 21.2. UPGRADING PACEMAKER-BASED NODES

Upgrade all nodes that host Pacemaker services to OpenStack Platform 16.2. The following roles include Pacemaker-based services:

- Controller

- Database (MySQL, Galera)

- Messaging (RabbitMQ)

- Load Balancing (HAProxy)

- Any other role that contains the following services:
  - `OS::TripleO::Services::Pacemaker`
  - `OS::TripleO::Services::PacemakerRemote`

This process involves upgrading each node starting with the bootstrap node.

**NOTE**

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack STACK_NAME` option replacing `STACK_NAME` with the name of your stack.

**Procedure**

1. Source the `stackrc` file:

   ```
   $ source ~/stackrc
   ```

2. Identify the bootstrap node by running the following command on a Controller-based node:

   ```
   ```

Red Hat OpenStack Platform 16.2 Framework for Upgrades (13 to 16.2)
3. Upgrade the bootstrap node:
   a. If the node any contains Ceph Storage containers, run the external upgrade command with the `ceph_systemd` tag:
      
      ```bash
      $ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-controller-0
      ```
      
      This command performs the following functions:
      
      - Changes the systemd units that control the Ceph Storage containers to use Podman management.
      - Limits actions to the selected node using the `ceph_ansible_limit` variable.
      
      This step is a preliminary measure to prepare the Ceph Storage services for the `leapp` upgrade.
   
   b. Run the upgrade command with the `system_upgrade` tag:
      
      ```bash
      $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-controller-0
      ```
      
      This command performs the following actions:
      
      - Performs a Leapp upgrade of the operating system.
      - Performs a reboot as a part of the Leapp upgrade.
   
   c. Run the external upgrade command with the `system_upgrade_transfer_data` tag:
      
      ```bash
      $ openstack overcloud external-upgrade run --stack STACK NAME --tags system_upgrade_transfer_data
      ```
      
      This command copies the latest version of the database from an existing node to the bootstrap node.
   
   d. Run the upgrade command with the `nova_hybrid_state` tag and run only the `upgrade_steps_playbook.yaml` playbook:
      
      ```bash
      $ openstack overcloud upgrade run --stack STACK NAME --playbook upgrade_steps_playbook.yaml --tags nova_hybrid_state --limit all
      ```
      
      This command launches temporary 16.2 containers on Compute nodes to help facilitate workload migration when you upgrade Compute nodes at a later step.
   
   e. Run the upgrade command with no tags:
      
      ```bash
      $ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-controller-0
      ```
      
      This command performs the Red Hat OpenStack Platform upgrade.
4. Upgrade each Pacemaker-based node:
   a. If the node any contains Ceph Storage containers, run the external upgrade command with the `ceph_systemd` tag:

   ```
   $ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-database-0
   ```

   This command performs the following functions:
   - Changes the systemd units that control the Ceph Storage containers to use Podman management.
   - Limits actions to the selected node using the `ceph_ansible_limit` variable.

   This step is a preliminary measure to prepare the Ceph Storage services for the `leapp` upgrade.

   b. Run the upgrade command with the `system_upgrade` tag on the next node:

   ```
   $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-database-0
   ```

   This command performs the following actions:
   - Performs a Leapp upgrade of the operating system.
   - Performs a reboot as a part of the Leapp upgrade.

   c. Run the upgrade command with no tags:

   ```
   $ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-controller-0,overcloud-database-0
   ```

   This command performs the Red Hat OpenStack Platform upgrade. In addition to this node, include any previously upgraded node in the `--limit` option.

5. Repeat the upgrade process on each Pacemaker-based node until you have upgraded all Pacemaker-based node.

### 21.3. UPGRADING NON-PACEMAKER CONTROLLER NODES

Upgrade all nodes without Pacemaker-based services to OpenStack Platform 16.2. These nodes usually contain a specific OpenStack service. Examples of roles without Pacemaker-based services include the following:

- Networker
- Ironic Conductor
- Object Storage
- Any custom roles with services split or scaled from standard Controller nodes

Do not include the following nodes in this grouping:
- Any Compute nodes
- Any Ceph Storage nodes

This process involves upgrading each node.

**NOTE**

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack STACK_NAME` option replacing `STACK_NAME` with the name of your stack.

**Procedure**

1. Source the `stackrc` file:
   ```
   $ source ~/stackrc
   ```
2. Run the upgrade command with the `system_upgrade` tag:
   ```
   $ openstack overcloud upgrade run --stack STACK_NAME --tags system_upgrade --limit overcloud-networker-0
   ```
   This command performs the following actions:
   - Performs a Leapp upgrade of the operating system.
   - Performs a reboot as a part of the Leapp upgrade.
3. Run the upgrade command with no tags:
   ```
   $ openstack overcloud upgrade run --stack STACK_NAME --limit overcloud-networker-0
   ```
   This command performs the Red Hat OpenStack Platform upgrade.
4. Repeat the upgrade process on each node until you have upgraded all Controller-based node.

### 21.4. UPGRADING THE OPERATING SYSTEM FOR CEPH MON NODES

Upgrade the operating system for each Ceph MON node. It is recommended to upgrade each Ceph MON node individually to maintain a quorum among the nodes.

**NOTE**

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack STACK_NAME` option replacing `STACK_NAME` with the name of your stack.

**Procedure**

1. Source the `stackrc` file:
   ```
   $ source ~/stackrc
   ```
2. Select a Ceph MON node and upgrade the operating system:
a. Run the external upgrade command with the `ceph_systemd` tag:

   ```bash
   $ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-cephmon-0
   ```

   This command performs the following functions:
   - Changes the systemd units that control the Ceph Storage containers to use Podman management.
   - Limits actions to the selected node using the `ceph_ansible_limit` variable.

   This step is a preliminary measure to prepare the Ceph Storage services for the leapp upgrade.

b. Run the upgrade command with the `system_upgrade` tag:

   ```bash
   $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-cephmon-0
   ```

   This command performs the following actions:
   - Performs a Leapp upgrade of the operating system.
   - Performs a reboot as a part of the Leapp upgrade.

c. Run the upgrade command with no tags:

   ```bash
   $ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-cephmon-0
   ```

   This command runs the `config-download` playbooks and configures the composable services on the Ceph MON node. This step does not upgrade the Ceph MON nodes to Red Hat Ceph Storage 4. The Red Hat Ceph Storage 4 upgrade occurs in a later procedure.

3. Select the next Ceph MON node and upgrade the operating system:
   a. Run the external upgrade command with the `ceph_systemd` tag:

      ```bash
      $ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-cephmon-1
      ```

      This command performs the following functions:
      - Changes the systemd units that control the Ceph Storage containers to use Podman management.
      - Limits actions to the selected node using the `ceph_ansible_limit` variable.

      This step is a preliminary measure to prepare the Ceph Storage services for the leapp upgrade.

   b. Run the upgrade command with the `system_upgrade` tag:

      ```bash
      $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-cephmon-1
      ```
This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
- Performs a reboot as a part of the Leapp upgrade.

c. Run the upgrade command with no tags:

```
$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-cephmon-1
```

This command runs the `config-download` playbooks and configures the composable services on the Ceph MON node. This step does not upgrade the Ceph MON nodes to Red Hat Ceph Storage 4. The Red Hat Ceph Storage 4 upgrade occurs in a later procedure.

4. Select the final Ceph MON node and upgrade the operating system:

a. Run the external upgrade command with the `ceph_systemd` tag:

```
$ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-cephmon-2
```

This command performs the following functions:

- Changes the systemd units that control the Ceph Storage containers to use Podman management.
- Limits actions to the selected node using the `ceph_ansible_limit` variable.

This step is a preliminary measure to prepare the Ceph Storage services for the `leapp` upgrade.

b. Run the upgrade command with the `system_upgrade` tag:

```
$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-cephmon-2
```

This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
- Performs a reboot as a part of the Leapp upgrade.

c. Run the upgrade command with no tags:

```
$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-cephmon-2
```

This command runs the `config-download` playbooks and configures the composable services on the Ceph MON node. This step does not upgrade the Ceph MON nodes to Red Hat Ceph Storage 4. The Red Hat Ceph Storage 4 upgrade occurs in a later procedure.

21.5. UPGRADING THE OPERATING SYSTEM FOR CEPH STORAGE NODES

If your deployment uses a Red Hat Ceph Storage cluster that was deployed using director, you must upgrade the operating system for each Ceph Storage nodes.
NOTE

If you are not using the default stack name (overcloud), set your stack name with the --stack STACK NAME option replacing STACK NAME with the name of your stack.

Procedure

1. Source the stackrc file:

   $ source ~/stackrc

2. Select a Ceph Storage node and upgrade the operating system:

   a. Run the external upgrade command with the ceph_systemd tag:

      $ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-cephstorage-0

      This command performs the following functions:

      - Changes the systemd units that control the Ceph Storage containers to use Podman management.
      - Limits actions to the selected node using the ceph_ansible_limit variable.

      This step is a preliminary measure to prepare the Ceph Storage services for the leapp upgrade.

   b. Run the upgrade command with the system_upgrade tag:

      $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-cephstorage-0

      This command performs the following actions:

      - Performs a Leapp upgrade of the operating system.
      - Performs a reboot as a part of the Leapp upgrade.

   c. Run the upgrade command with no tags:

      $ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-cephstorage-0

      This command runs the config-download playbooks and configures the composable services on the Ceph Storage node. This step does not upgrade the Ceph Storage nodes to Red Hat Ceph Storage 4. The Red Hat Ceph Storage 4 upgrade occurs in a later procedure.

3. Select the next Ceph Storage node and upgrade the operating system:

   a. Run the external upgrade command with the ceph_systemd tag:

      $ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-cephstorage-1
This command performs the following functions:

- Changes the systemd units that control the Ceph Storage containers to use Podman management.
- Limits actions to the selected node using the `ceph_ansible_limit` variable.

This step is a preliminary measure to prepare the Ceph Storage services for the `leapp` upgrade.

b. Run the upgrade command with the `system_upgrade` tag:

```
$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-cephstorage-1
```

This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
- Performs a reboot as a part of the Leapp upgrade.

c. Run the upgrade command with no tags:

```
$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-cephstorage-1
```

This command runs the `config-download` playbooks and configures the composable services on the Ceph Storage node. This step does not upgrade the Ceph Storage nodes to Red Hat Ceph Storage 4. The Red Hat Ceph Storage 4 upgrade occurs in a later procedure.

4. Select the final Ceph Storage node and upgrade the operating system:

a. Run the external upgrade command with the `ceph_systemd` tag:

```
$ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-cephstorage-2
```

This command performs the following functions:

- Changes the systemd units that control the Ceph Storage containers to use Podman management.
- Limits actions to the selected node using the `ceph_ansible_limit` variable.

This step is a preliminary measure to prepare the Ceph Storage services for the `leapp` upgrade.

b. Run the upgrade command with the `system_upgrade` tag:

```
$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-cephstorage-2
```

This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
Performs a reboot as a part of the Leapp upgrade.

c. Run the upgrade command with no tags:

```
$ openstack overcloud upgrade run --stack STACK_NAME --limit overcloud-cephstorage-2
```

This command runs the `config-download` playbooks and configures the composable services on the Ceph Storage node. This step does not upgrade the Ceph Storage nodes to Red Hat Ceph Storage 4. The Red Hat Ceph Storage 4 upgrade occurs in a later procedure.

### 21.6. UPGRADING COMPUTE NODES

Upgrade all the Compute nodes to OpenStack Platform 16.2.

**NOTE**

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack STACK_NAME` option replacing `STACK_NAME` with the name of your stack.

**Procedure**

1. Source the `stackrc` file:

   ```
   $ source ~/stackrc
   ```

2. Migrate your instances. For more information on migration strategies, see [Migrating virtual machines between Compute nodes](#).

3. Run the upgrade command with the `system_upgrade` tag:

   ```
   $ openstack overcloud upgrade run --stack STACK_NAME --tags system_upgrade --limit overcloud-compute-0
   ```

   This command performs the following actions:
   - Performs a Leapp upgrade of the operating system.
   - Performs a reboot as a part of the Leapp upgrade.

4. Run the upgrade command with no tags:

   ```
   $ openstack overcloud upgrade run --stack STACK_NAME --limit overcloud-compute-0
   ```

   This command performs the Red Hat OpenStack Platform upgrade.

5. To upgrade multiple Compute nodes in parallel, set the `--limit` option to a comma-separated list of nodes that you want to upgrade. First perform the `system_upgrade` task:

   ```
   $ openstack overcloud upgrade run --stack STACK_NAME --tags system_upgrade --limit overcloud-compute-0,overcloud-compute-1,overcloud-compute-2
   ```

   Then perform the standard OpenStack service upgrade:
21.7. SYNCHRONIZING THE OVERCLOUD STACK

The upgrade requires an update the overcloud stack to ensure that the stack resource structure and parameters align with a fresh deployment of OpenStack Platform 16.2.

NOTE

If you are not using the default stack name (overcloud), set your stack name with the --stack STACK NAME option replacing STACK NAME with the name of your stack.

Procedure

1. Source the stackrc file:

   $ source ~/stackrc

2. Edit the containers-prepare-parameter.yaml file and remove the following parameters and their values:
   - ceph3_namespace
   - ceph3_tag
   - ceph3_image
   - name_prefix_stein
   - name_suffix_stein
   - namespace_stein
   - tag_stein

3. Run the upgrade finalization command:

   $ openstack overcloud upgrade converge \
      --stack STACK NAME \ 
      --templates \ 
      -e ENVIRONMENT FILE \ 
      ... 
      -e /home/stack/templates/upgrades-environment.yaml \ 
      -e /home/stack/templates/rhsm.yaml \ 
      -e /home/stack/containers-prepare-parameter.yaml \ 
      -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovs.yaml \ 
      ... 

Include the following options relevant to your environment:

- The environment file (upgrades-environment.yaml) with the upgrade-specific parameters (-e).
• The environment file `rhsm.yaml` with the registration and subscription parameters (-e).

• The environment file `containers-prepare-parameter.yaml` with your new container image locations (-e). In most cases, this is the same environment file that the undercloud uses.

• The environment file `neutron-ovs.yaml` to maintain OVS compatibility.

• Any custom configuration environment files (-e) relevant to your deployment.

• If applicable, your custom roles (`roles_data`) file using `--roles-file`.

• If applicable, your composable network (`network_data`) file using `--networks-file`.

• If you use a custom stack name, pass the name with the `--stack` option.

4. Wait until the stack synchronization completes.

   **IMPORTANT**

   You do not need the `upgrades-environment.yaml` file for any further deployment operations.
CHAPTER 22. UPGRADING AN OVERCLOUD WITH HYPER-CONVERGED INFRASTRUCTURE

This scenario contains an example upgrade process for an overcloud with hyper-converged infrastructure (HCI), which includes the following node types:

- Three Controller nodes
- Multiple HCI Compute nodes, which contain combined Compute and Ceph OSD services

22.1. RUNNING THE OVERCLOUD UPGRADE PREPARATION

The upgrade requires running `openstack overcloud upgrade prepare` command, which performs the following tasks:

- Updates the overcloud plan to OpenStack Platform 16.2
- Prepares the nodes for the upgrade

**NOTE**

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack STACK_NAME` option replacing `STACK_NAME` with the name of your stack.

Procedure

1. Source the `stackrc` file:

   ```bash
   $ source ~/stackrc
   ```

2. Run the upgrade preparation command:

   ```bash
   $ openstack overcloud upgrade prepare \
       --stack STACK_NAME \ 
       --templates \ 
       -e ENVIRONMENT_FILE \ 
       ... \ 
       -e /home/stack/templates/upgrades-environment.yaml \ 
       -e /home/stack/templates/rhsm.yaml \ 
       -e /home/stack/templates/containers-prepare-parameter.yaml \ 
       -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovs.yaml \ 
       ...
   ```

Include the following options relevant to your environment:

- The environment file (`upgrades-environment.yaml`) with the upgrade-specific parameters (`-e`).
- The environment file (`rhsm.yaml`) with the registration and subscription parameters (`-e`).
- The environment file (`containers-prepare-parameter.yaml`) with your new container image locations (`-e`). In most cases, this is the same environment file that the undercloud uses.
- The environment file (`neutron-ovs.yaml`) to maintain OVS compatibility.
- Any custom configuration environment files (-e) relevant to your deployment.
- If applicable, your custom roles (roles_data) file using --roles-file.
- If applicable, your composable network (network_data) file using --networks-file.
- If you use a custom stack name, pass the name with the --stack option.

3. Wait until the upgrade preparation completes.

4. Download the container images:

   ```shell
   $ openstack overcloud external-upgrade run --stack STACK_NAME --tags container_image_prepare
   ```

22.2. UPGRAding Controller Nodes with Director-Deployed Ceph Storage

If your deployment uses a Red Hat Ceph Storage cluster that was deployed using director, you must complete this procedure.

To upgrade all the Controller nodes to OpenStack Platform 16.2, you must upgrade each Controller node starting with the bootstrap Controller node.

During the bootstrap Controller node upgrade process, a new Pacemaker cluster is created and new Red Hat OpenStack 16.2 containers are started on the node, while the remaining Controller nodes are still running on Red Hat OpenStack 13.

After upgrading the bootstrap node, you must upgrade each additional node with Pacemaker services and ensure that each node joins the new Pacemaker cluster started with the bootstrap node. For more information, see Overcloud node upgrade workflow.

In this example, the controller nodes are named using the default overcloud-controller-NODEID convention. This includes the following three controller nodes:

- overcloud-controller-0
- overcloud-controller-1
- overcloud-controller-2

Substitute these values for your own node names where applicable.

NOTE

If you are not using the overcloud default stack name, set your stack name with the --stack STACK_NAME option replacing STACK_NAME with the name of your stack.

Procedure

1. Source the stackrc file:

   ```shell
   $ source ~/stackrc
   ```

2. Identify the bootstrap Controller node by running the following command on a Controller node:
$ sudo hiera -c /etc/puppet/hiera.yaml pacemaker_short_bootstrap_node_name

To run this command from the undercloud, run the following SSH command and substitute 
CONTROLLER_IP with the IP address of any Controller node in your environment:

$ ssh heat-admin@CONTROLLER_IP "sudo hiera -c /etc/puppet/hiera.yaml 
pacemaker_short_bootstrap_node_name"

This example uses overcloud-controller-0 as the value of the bootstrap node. Substitute this 
value for your own bootstrap node.

3. Upgrade the bootstrap Controller node:
   a. Run the external upgrade command with the ceph_systemd tag:

   $ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd 
   -e ceph_ansible_limit=overcloud-controller-0

   This command performs the following functions:
   - Changes the systemd units that control the Ceph Storage containers to use Podman management.
   - Limits actions to the selected Controller node using the ceph_ansible_limit variable.

   This step is a preliminary measure to prepare the Ceph Storage services for The leapp upgrade.

   b. Run the upgrade command with the system_upgrade tag:

   $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit 
   overcloud-controller-0

   This command performs the following actions:
   - Performs a Leapp upgrade of the operating system.
   - Performs a reboot as a part of the Leapp upgrade.

   **IMPORTANT**

   The next command causes an outage on the control plane. You cannot perform any standard operations on the overcloud during the next few steps.

   c. Run the external upgrade command with the system_upgrade_transfer_data tag:

   $ openstack overcloud external-upgrade run --stack STACK NAME --tags 
   system_upgrade_transfer_data

   This command copies the latest version of the database from an existing node to the 
bootstrap node.
d. Run the upgrade command with the `nova_hybrid_state` tag and run only the `upgrade_steps_playbook.yaml` playbook:

```
$ openstack overcloud upgrade run --stack STACK NAME --playbook upgrade_steps_playbook.yaml --tags nova_hybrid_state --limit all
```

This command launches temporary 16.2 containers on Compute nodes to help facilitate workload migration when you upgrade Compute nodes at a later step.

e. Run the upgrade command with no tags:

```
$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-controller-0
```

This command performs the Red Hat OpenStack Platform upgrade.

**IMPORTANT**

The control plane becomes active when this command finishes. You can perform standard operations on the overcloud again.

f. Verify that after the upgrade, the new Pacemaker cluster is started and that the control plane services such as galera, rabbit, haproxy, and redis are running:

```
$ sudo pcs status
```

4. Upgrade the next Controller node:

a. Verify that the old cluster is no longer running:

```
$ sudo pcs status
```

An error similar to the following is displayed when the cluster is not running:

```
Error: cluster is not currently running on this node
```

b. Run the external upgrade command with the `ceph_systemd` tag:

```
$ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-controller-1
```

This command performs the following functions:

- Changes the systemd units that control the Ceph Storage containers to use Podman management.
- Limits actions to the selected Controller node using the `ceph_ansible_limit` variable.

This step is a preliminary measure to prepare the Ceph Storage services for the `leapp` upgrade.

c. Run the upgrade command with the `system_upgrade` tag on the next Controller node:

```
$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-controller-1
```
This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
- Performs a reboot as a part of the Leapp upgrade.

d. Run the upgrade command with no tags:

```bash
$ openstack overcloud upgrade run --stack STACK_NAME --limit overcloud-controller-0,overcloud-controller-1
```

This command performs the Red Hat OpenStack Platform upgrade. In addition to this node, include the previously upgraded bootstrap node in the `--limit` option.

5. Upgrade the final Controller node:

a. Verify that the old cluster is no longer running:

```bash
$ sudo pcs status
```

An error similar to the following is displayed when the cluster is not running:

```
Error: cluster is not currently running on this node
```

b. Run the external upgrade command with the `ceph_systemd` tag:

```bash
$ openstack overcloud external-upgrade run --stack STACK_NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-controller-2
```

This command performs the following functions:

- Changes the systemd units that control the Ceph Storage containers to use Podman management.
- Limits actions to the selected Controller node using the `ceph_ansible_limit` variable.

This step is a preliminary measure to prepare the Ceph Storage services for the `leapp` upgrade.

c. Run the upgrade command with the `system_upgrade` tag:

```bash
$ openstack overcloud upgrade run --stack STACK_NAME --tags system_upgrade --limit overcloud-controller-2
```

This command performs the following actions:

- Performs a Leapp upgrade of the operating system.
- Performs a reboot as a part of the Leapp upgrade.

d. Run the upgrade command with no tags:

```bash
$ openstack overcloud upgrade run --stack STACK_NAME --limit overcloud-controller-0,overcloud-controller-1,overcloud-controller-2
```
This command performs the Red Hat OpenStack Platform upgrade. Include all Controller nodes in the \texttt{--limit} option.

### 22.3. UPGRADING COMPUTE NODES WITH HYPER-CONVERGED INFRASTRUCTURE (HCI)

Upgrade HCI Compute nodes to OpenStack Platform 16.2.

**NOTE**

If you are not using the default stack name (overcloud), set your stack name with the \texttt{--stack STACK NAME} option replacing \texttt{STACK NAME} with the name of your stack.

**Procedure**

1. Source the \texttt{stackrc} file:

   ```bash
   $ source ~/stackrc
   ```

2. Migrate your instances. For more information on migration strategies, see Migrating virtual machines between Compute nodes.

3. Run the external upgrade command with the \texttt{ceph_systemd} tag:

   ```bash
   $ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-computehci-0
   ```

   This command performs the following functions:
   
   - Changes the systemd units that control the Ceph Storage containers to use Podman management.
   - Limits actions to the selected Ceph Storage node using the \texttt{ceph_ansible_limit} variable.

   This step is a preliminary measure to prepare the Ceph Storage services for the \texttt{leapp} upgrade.

4. Run the upgrade command with the \texttt{system_upgrade} tag:

   ```bash
   $ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-computehci-0
   ```

   This command performs the following actions:
   
   - Performs a Leapp upgrade of the operating system.
   - Performs a reboot as a part of the Leapp upgrade.

5. Run the upgrade command with no tags:

   ```bash
   $ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-computehci-0
   ```

   This command performs the Red Hat OpenStack Platform upgrade.
6. To upgrade multiple Compute nodes in parallel, set the `--limit` option to a comma-separated list of nodes that you want to upgrade. First run the external upgrade command with the `ceph_systemd` tag:

```
$ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph_systemd -e ceph_ansible_limit=overcloud-computehci-0,overcloud-computehci-1,overcloud-computehci-2
```

Then perform the `system_upgrade` task:

```
$ openstack overcloud upgrade run --stack STACK NAME --tags system_upgrade --limit overcloud-computehci-0,overcloud-computehci-1,overcloud-computehci-2
```

Then perform the standard OpenStack service upgrade:

```
$ openstack overcloud upgrade run --stack STACK NAME --limit overcloud-computehci-0,overcloud-computehci-1,overcloud-computehci-2
```

### 22.4. SYNCHRONIZING THE OVERCLOUD STACK

The upgrade requires an update the overcloud stack to ensure that the stack resource structure and parameters align with a fresh deployment of OpenStack Platform 16.2.

**NOTE**

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack STACK NAME` option replacing `STACK NAME` with the name of your stack.

**Procedure**

1. Source the `stackrc` file:

   ```
   $ source ~/stackrc
   ```

2. Edit the `containers-prepare-parameter.yaml` file and remove the following parameters and their values:

   - `ceph3_namespace`
   - `ceph3_tag`
   - `ceph3_image`
   - `name_prefix_stein`
   - `name_suffix_stein`
   - `namespace_stein`
   - `tag_stein`

3. Run the upgrade finalization command:

   ```
   $ openstack overcloud upgrade converge \
   ```
Include the following options relevant to your environment:

- The environment file (`upgrades-environment.yaml`) with the upgrade-specific parameters (`-e`).
- The environment file (`rhsm.yaml`) with the registration and subscription parameters (`-e`).
- The environment file (`containers-prepare-parameter.yaml`) with your new container image locations (`-e`). In most cases, this is the same environment file that the undercloud uses.
- The environment file (`neutron-ovs.yaml`) to maintain OVS compatibility.
- Any custom configuration environment files (`-e`) relevant to your deployment.
- If applicable, your custom roles (`roles_data`) file using `--roles-file`.
- If applicable, your composable network (`network_data`) file using `--networks-file`.
- If you use a custom stack name, pass the name with the `--stack` option.

4. Wait until the stack synchronization completes.

**IMPORTANT**

You do not need the `upgrades-environment.yaml` file for any further deployment operations.
PART IV. CONCLUDING THE OVERCLOUD UPGRADE
CHAPTER 23. UPGRAADING A DIRECTOR-DEPLOYED CEPH STORAGE CLUSTER TO RED HAT CEPH STORAGE 4

If your deployment uses a Red Hat Ceph Storage cluster that was deployed using director, you must complete the procedures included in this section.

**IMPORTANT**

When you upgrade a Red Hat Ceph Storage cluster from a previous supported version to version 4.2z2, the upgrade completes with the storage cluster in a **HEALTH_WARN** state with a warning message that states **monitors are allowing insecure global_id reclaim**. This is due to the patched CVE (CVE-2021-20288), see Ceph **HEALTH_WARN with 'mons are allowing insecure global_id reclaim' after install/upgrade to RHCS 4.2z2 (or newer).

Because the **HEALTH_WARN** state is displayed due to the CVE, it is possible to mute health warnings temporarily. However, there is a risk that if you mute warnings you do not have visibility about potential older and unpatched clients connected to your cluster. For more information about muting health warnings, see Upgrading a Red Hat Ceph Storage cluster in the Red Hat Ceph Storage documentation.

**NOTE**

If you are upgrading with external Ceph deployments, you must skip the procedures included in this section and continue to the next section.

After you upgrade the overcloud, upgrade your director-deployed Ceph Storage cluster to Red Hat Ceph Storage cluster to version 4.

23.1. INSTALLING CEPH-ANSIBLE

If your deployment uses a Red Hat Ceph Storage cluster that was deployed using director, you must complete this procedure.

The **ceph-ansible** package is required when you use Ceph Storage with Red Hat OpenStack Platform.

**Procedure**

1. Enable the Ceph Tools repository:

   ```bash
   [stack@director ~]$ sudo subscription-manager repos --enable=rhceph-4-tools-for-rhel-8-x86_64-rpms
   ```

2. Install the **ceph-ansible** package:

   ```bash
   [stack@director ~]$ sudo dnf install -y ceph-ansible
   ```

23.2. UPGRAADING TO CEPH STORAGE 4

Upgrade the Ceph Storage nodes from version 3 to version 4.
NOTE

If you are not using the default stack name (overcloud), set your stack name with the `--stack STACK NAME` option replacing `STACK NAME` with the name of your stack.

Procedure

1. Source the `stackrc` file:
   
   ```bash
   $ source ~/stackrc
   ```

2. Run the Ceph Storage external upgrade process with the `ceph` tag:
   
   ```bash
   $ openstack overcloud external-upgrade run --stack STACK NAME --tags ceph
   ```

3. Wait until the Ceph Storage upgrade completes.
CHAPTER 24. OSD MIGRATION FROM FILESTORE TO BLUESTORE

After you complete and verify the upgrade process, you must migrate your FileStore OSDs to BlueStore. You must complete the migration one node at a time. The following procedure uses ceph-ansible to complete the migration. This procedure only applies if the Ceph cluster is deployed by director.

24.1. CHECKING THAT YOUR CLUSTER RUNS FILESTORE AND THEREFORE REQUIRES MIGRATION

Procedure

1. Log in as the heat-admin user on a node with Ceph MON containers, such as Controller nodes or standalone Ceph MON nodes. For example, in a standard overcloud deployment, overcloud-controller-1 uses Ceph MON containers.

2. Query the Ceph cluster to see what driver is in use by the OSDs:

   ```
   [heat-admin@overcloud-controller-1 ~]$ sudo -i
   [root@overcloud-controller-1 ~]# podman exec -it ceph-mon-overcloud-controller-1 sh -c
   "ceph -f json osd metadata" | jq -c 'sort_by(.hostname) | .[].[] | ["host", .hostname, "osd_id", .id, "objectstore", .osd_objectstore]'
   [root@overcloud-controller-1 ~]#
   ```

3. If any line returns "objectstore": "filestore", that node requires OSD migration.

   **WARNING**

   The migration time can vary depending on the size of your cluster. If you have a very large cluster, the migration time is proportional to the number of OSDs in that cluster and the amount of data stored. Ensure that you complete the migration as soon as possible so that your environment is not in a mixed architecture scenario, which can impact performance.

   **WARNING**

   Because managing FileStore-based OSDs with Red Hat Ceph Storage (RHCS) 4 versions of ceph-ansible is not supported, complete the migration before you run any stack updates.

24.2. MIGRATING OSDS FROM FILESTORE TO BLUESTORE
To migrate from FileStore to BlueStore, director uses Ansible to delete and recreate all OSDs on the node. Director performs a capacity check before the migration process. Finally, director red deploys the OSDs with the BlueStore back end.

Prerequisites

- A healthy and running Red Hat Ceph Storage (RHCS) 4 cluster. You can check the cluster by entering the following command in a ceph MON container on a Controller or Standalone Ceph MON node:

```
[root@overcloud-controller-1 ~]# podman exec -it ceph-mon-overcloud-controller-1 sh -c "ceph -s"
```

Procedure

1. Ensure that `osd_objectstore` in the `CephAnsibleDisksConfig` parameter does not default to `filestore`. If the `osd_objectstore` parameter is present in any of your custom heat environment files, you must define the value `bluestore` explicitly or remove it:

```
parameter_defaults:
  CephAnsibleDisksConfig:
    devices:
      - /dev/sdb
      - /dev/sdc
      - /dev/sdd
    osd_scenario: lvm
    osd_objectstore: bluestore
```

   **NOTE**
   If you have any specific FileStore configuration with, for example, journals, ensure that you update the configuration accordingly. For more information about advanced configurations, see Mapping the Ceph Storage Node Disk Layout in the Deploying an overcloud with containerized Red Hat Ceph guide.

2. Log in to the undercloud as the `stack` user.

3. Enter the `openstack overcloud external-upgrade run` command with the `ceph_fstobs` tag. Replace `<NODE_NAME>` with the name of the Ceph OSD node you want to upgrade. You can use the `openstack server list` command to find the node name.

   ```
   [stack@undercloud ~]$ openstack overcloud external-upgrade run --tags ceph_fstobs -e ceph_ansible_limit=<NODE_NAME> | tee oc-fstobs.log
   ```

4. Log in to a node that has Ceph MON services and query the Ceph cluster to check the status of the OSDs of the node you have upgraded. Before you can start the migration of the next OSD node, you must ensure that the one you have upgraded is successfully migrated:

   ```
   [heat-admin@overcloud-controller-1 ~]# sudo -i
   [root@overcloud-controller-1 ~]# podman exec -it ceph-mon-overcloud-controller-1 sh -c "ceph -f json osd metadata" | jq -c '.[] | select(.hostname == "<NODE_NAME>") | [."host", .hostname, .osd_id, .id, ."objectstore", .osd_objectstore]'
   ```
Replace `<NODE_NAME>` with the name of the node that was migrated. If the result shows that the OSDs use BlueStore, its migration is successful.

5. Optional: To view additional details about a specific OSD, enter the following command:

```
[root@overcloud-controller-1 ~]# podman exec -it ceph-mon-overcloud-controller-1 sh -c
"ceph osd metadata <ID>"
```

Replace `<ID>` with the ID of the OSD you want to query.

6. Before you can start the migration process on the next node, you must wait for the cluster to synchronize.

```
[root@overcloud-controller-1 ~]# podman exec -it ceph-mon-overcloud-controller-1 sh -c
"ceph -s"
```

Review the command output and ensure that the health of the cluster is `HEALTH_OK` and the PGs are in the `active+clean` state.

7. Before you can start the migration process on the next node, you must wait for the cluster rebalancing process to complete. To follow the status, run the following command:

```
[heat-admin@overcloud-controller-0 ~]# sudo podman exec ceph-mon-<NODE_NAME>
ceph -w
```

Replace `<NODE_NAME>` with the name of the node that was migrated.

8. Repeat the migration process for each node in the storage cluster.

For more information about migration from FileStore to BlueStore, see BlueStore in the Red Hat Ceph Storage Administration Guide.

### 24.3. VERIFYING YOUR FILESTORE TO BLUESTORE MIGRATION

You can check the status of an OSD to ensure that you have successfully completed the migration.

**Procedure**

1. Log in as the `heat-admin` user to a ceph-mon container that is hosted on one of the Controller nodes.

2. Query the Ceph cluster:

```
[heat-admin@overcloud-controller-1 ~]# sudo -i
[root@overcloud-controller-1 ~]# podman exec -it ceph-mon-overcloud-controller-1 sh -c
"ceph -f json osd metadata" | jq -c 'sort_by(.hostname) | .[] | ["host", .hostname, "osd_id", .id, "objectstore", .osd_objectstore]"
```

If the configuration shows that all the OSDs across the cluster use BlueStore, the migration is successful.
IMPORTANT

A recommended best practice is to run an idempotent stack update to ensure that the configuration definition and the actual configuration match. The stack update duration varies depending on the size of your system, so to reduce downtime you can plan to complete the migration during a maintenance window.
CHAPTER 25. PERFORMING POST-UPGRADE ACTIONS

After you have completed the overcloud upgrade, you must perform some post-upgrade configuration to ensure that your environment is fully supported and ready for future operations.

25.1. REMOVING UNNECESSARY PACKAGES AND DIRECTORIES FROM THE UNDERCLOUD

After the Leapp upgrade, remove the unnecessary packages and directories that remain on the undercloud.

**Procedure**

1. Remove the unnecessary packages

   ```
   $ sudo dnf -y remove --exclude=python-pycadf-common python2*
   ```

2. Remove the content from the `/httpboot` and `/tftpboot` directories that includes old images used in Red Hat OpenStack 13:

   ```
   $ sudo rm -rf /httpboot /tftpboot
   ```

25.2. VALIDATING THE POST-UPGRADE FUNCTIONALITY

Run the *post-upgrade* validation group to check the post-upgrade functionality.

**Procedure**

1. Source the `stackrc` file.

   ```
   $ source ~/stackrc
   ```

2. Run the `openstack tripleo validator run` command with the `--group post-upgrade` option:

   ```
   $ openstack tripleo validator run --group post-upgrade
   ```

3. Review the results of the validation report. To view detailed output from a specific validation, run the `openstack tripleo validator show run --full` command against the UUID of the specific validation from the report:

   ```
   $ openstack tripleo validator show run --full <UUID>
   ```

**IMPORTANT**

A *FAILED* validation does not prevent you from deploying or running Red Hat OpenStack Platform. However, a *FAILED* validation can indicate a potential issue with a production environment.

25.3. UPGRADING THE OVERCLOUD IMAGES
You must replace your current overcloud images with new versions. The new images ensure that the director can introspect and provision your nodes using the latest version of OpenStack Platform software.

**Prerequisites**

- You have upgraded the undercloud to the latest version.

**Procedure**

1. Log in to the undercloud as the **stack** user.

2. Source the **stackrc** file.

   ```
   $ source ~/stackrc
   ```

3. Install the packages containing the overcloud QCOW2 archives:

   ```
   $ sudo dnf install rhosp-director-images rhosp-director-images-ipa-x86_64
   ```

4. Remove any existing images from the **images** directory on the **stack** user's home (`/home/stack/images`):

   ```
   $ rm -rf ~/images/*
   ```

5. Extract the archives:

   ```
   $ cd ~/images
   $ for i in /usr/share/rhosp-director-images/overcloud-full-latest-16.2.tar /usr/share/rhosp-director-images/ironic-python-agent-latest-16.2.tar; do tar -xvf $i; done
   $ cd ~
   ```

6. Import the latest images into the director:

   ```
   $ openstack overcloud image upload --update-existing --image-path /home/stack/images/
   ```

7. Configure your nodes to use the new images:

   ```
   $ openstack overcloud node configure $(openstack baremetal node list -c UUID -f value)
   ```

**IMPORTANT**

When you deploy overcloud nodes, ensure that the overcloud image version corresponds to the respective heat template version. For example, use the OpenStack Platform 16.2 images only with the OpenStack Platform 16.2 heat templates.

**IMPORTANT**

The new **overcloud-full** image replaces the old **overcloud-full** image. If you made changes to the old image, you must repeat the changes in the new image, especially if you want to deploy new nodes in the future.
25.4. UPDATING CPU PINNING PARAMETERS

Red Hat OpenStack Platform 16.2 uses new parameters for CPU pinning:

**NovaComputeCpuDedicatedSet**
Sets the dedicated (pinned) CPUs.

**NovaComputeCpuSharedSet**
Sets the shared (unpinned) CPUs.

You must migrate the CPU pinning configuration from the **NovaVcpuPinSet** parameter to the **NovaComputeCpuDedicatedSet** and **NovaComputeCpuSharedSet** parameters after completing the upgrade to Red Hat OpenStack Platform 16.2.

**Procedure**

1. Log in to the undercloud as the **stack** user.

2. If your Compute nodes support simultaneous multithreading (SMT) but you created instances with the **hw:cpu_thread_policy=isolated** policy, you must perform one of the following options:
   - Unset the **hw:cpu_thread_policy** thread policy and resize the instances:
     - Source your overcloud authentication file:
       ```bash
       $ source ~/overcloudrc
       ```
     - Unset the **hw:cpu_thread_policy** property of the flavor:
       ```bash
       (overcloud) $ openstack flavor unset --property hw:cpu_thread_policy <flavor>
       ```
   - Convert the instances to use the new thread policy:
     ```bash
     (overcloud) $ openstack server resize --flavor <flavor> <server>
     (overcloud) $ openstack server resize confirm <server>
     ```

**NOTE**

- Unsetting the **hw:cpu_thread_policy** attribute sets the policy to the default **prefer** policy, which sets the instance to use an SMT-enabled Compute node if available. You can also set the **hw:cpu_thread_policy** attribute to **require**, which sets a hard requirements for an SMT-enabled Compute node.

- If the Compute node does not have an SMT architecture or enough CPU cores with available thread siblings, scheduling will fail. To prevent this, set **hw:cpu_thread_policy** to **prefer** instead of **require**. The default **prefer** policy ensures that thread siblings are used when available.

- If you use **hw:cpu_thread_policy=isolate**, you must have SMT disabled or use a platform that does not support SMT.
Repeat this step for all pinned instances using the `hw:cpu_thread_policy=isolated` policy.

- Migrate instances from the Compute node and disable SMT on the Compute node:
  
  i. Source your overcloud authentication file:

```
$ source ~/overcloudrc
```

  ii. Disable the Compute node from accepting new virtual machines:

```
(overcloud) $ openstack compute service list
(overcloud) $ openstack compute service set <hostname> nova-compute --disable
```

  iii. Migrate all instances from the Compute node. For more information on instance migration, see Migrating virtual machine instances between Compute nodes.

  iv. Reboot the Compute node and disable SMT in the BIOS of the Compute node.

  v. Boot the Compute node.

  vi. Re-enable the Compute node:

```
(overcloud) $ openstack compute service set <hostname> nova-compute --enable
```

3. Source the `stackrc` file:

```
$ source ~/stackrc
```

4. Edit the environment file that contains the `NovaVcpuPinSet` parameter.

5. Migrate the CPU pinning configuration from the `NovaVcpuPinSet` parameter to `NovaComputeCpuDedicatedSet` and `NovaComputeCpuSharedSet`:

- Migrate the value of `NovaVcpuPinSet` to `NovaComputeCpuDedicatedSet` for hosts that were previously used for pinned instances.

- Migrate the value of `NovaVcpuPinSet` to `NovaComputeCpuSharedSet` for hosts that were previously used for unpinned instances.

- If there is no value set for NovaVcpuPinSet, then all Compute node cores should be assigned to either `NovaComputeCpuDedicatedSet` or `NovaComputeCpuSharedSet`, depending on the type of instances you intend to host on the nodes.

For example, your previous environment file might contain the following pinning configuration:

```
parameter_defaults:
...  
NovaVcpuPinSet: 1,2,3,5,6,7
...
```

To migrate the configuration to a pinned configuration, set the `NovaComputeCpuDedicatedSet` parameter and unset the `NovaVcpuPinSet` parameter:

```
parameter_defaults:
```
NovaComputeCpuDedicatedSet: 1,2,3,5,6,7
NovaVcpuPinSet: ""

To migrate the configuration to an unpinned configuration, set the **NovaComputeCpuSharedSet** parameter and unset the **NovaVcpuPinSet** parameter:

```
parameter_defaults:
    ...
    NovaComputeCpuSharedSet: 1,2,3,5,6,7
    NovaVcpuPinSet: ""
    ...
```

**IMPORTANT**

Ensure the configuration of either **NovaComputeCpuDedicatedSet** or **NovaComputeCpuSharedSet** matches the configuration defined in **NovaVcpuPinSet**. To change the configuration for either of these, or to configure both **NovaComputeCpuDedicatedSet** or **NovaComputeCpuSharedSet**, ensure the Compute nodes with the pinning configuration are not running any instances before updating the configuration.

6. Save the file.

7. Run the deployment command to update the overcloud with the new CPU pinning parameters.

```
(undercloud) $ openstack overcloud deploy \
    --stack _STACK NAME_ \
    --templates \
    ... \
    -e /home/stack/templates/<compute_environment_file>.yaml \
    ...
```

Additional resources
- Configuring CPU pinning on Compute nodes

### 25.5. MIGRATING TO OPEN VIRTUAL NETWORK (OVN)

Open Virtual Network (OVN) is an Open vSwitch-based software-defined networking (SDN) solution for supplying network services to instances. OVN provides platform-neutral support for the full OpenStack Networking API. You can use OVN to connect groups of guest instances programmatically into private L2 and L3 networks. OVN uses a standard approach to virtual networking that can extend to other Red Hat platforms and solutions.

After you upgrade to Red Hat OpenStack Platform 16.2, migrate the OpenStack Networking (neutron) service on your overcloud from the ML2/OVS driver to the ML2/OVN driver. For more information on migrating to ML2/OVN, see [Migrating from ML2/OVS to ML2/OVN](#).

### 25.6. MIGRATING USERS TO THE MEMBER ROLE

In Red Hat OpenStack Platform 13, the default member role is called **_member_**.
In Red Hat OpenStack Platform 13, the default member role is called `_member_`. In Red Hat OpenStack Platform 16.2, the default member role is called `member`.

When you complete the upgrade from Red Hat OpenStack Platform 13 to Red Hat OpenStack Platform 16.2, users that you assigned to the `_member_` role still have that role. You can migrate all of the users to the `member` role by using the following steps.

**Prerequisites**

- You have upgraded the overcloud to the latest version.

**Procedure**

1. List all of the users on your cloud that have the `_member_` role:
   ```bash
   openstack role assignment list --names --role _member_ --sort-column project
   ```

2. For each user, remove the `_member_` role, and apply the `member` role:
   ```bash
   openstack role remove --user <user> --project <project> _member_
   openstack role add --user <user> --project <project> member
   ```
PART V. TROUBLESHOOTING
CHAPTER 26. TROUBLESHOOTING UPGRADE ISSUES

If you experience any issues with during the upgrade process, refer to the advice in this section.

26.1. CORRECTING ENVIRONMENT FILES

If you have made a mistake with any parameters in any custom environment files, you can correct the environment file and run the `openstack overcloud upgrade prepare` command at any time during the upgrade. This command uploads a new version of your overcloud plan to director, which will generate a new set of `config-download` playbooks.

This example contains a repository name mistake in the `upgrades-environment.yaml` file:

```yaml
parameter_defaults:
  UpgradeLeappEnabled: true
  UpgradeLeappCommandOptions: "--enablerepo rhel-8-for-x86_64-baseos-eus-rpms --enablerepo rhel-8-for-x86_64-appstream-eus-rpms --enablerepo fast-datapath-for-rhel-8-x86_64-rpms"
  CephAnsibleRepo: rhceph-4-tools-for-rhel-8-x86_64-rpms
```

This mistake causes an issue during the Leapp upgrade for the Controller node. To rectify this issue, correct the mistake and run the `openstack overcloud upgrade prepare` command.

Procedure

1. Correct the mistake in the file:

   ```yaml
   parameter_defaults:
     UpgradeLeappEnabled: true
     UpgradeLeappCommandOptions: "--enablerepo rhel-8-for-x86_64-baseos-eus-rpms --enablerepo rhel-8-for-x86_64-appstream-eus-rpms --enablerepo fast-datapath-for-rhel-8-x86_64-rpms"
     CephAnsibleRepo: rhceph-4-tools-for-rhel-8-x86_64-rpms
   ```

2. Run the upgrade preparation command with the corrected file:

   ```bash
   $ openstack overcloud upgrade prepare \
   --stack STACK NAME \n   --templates \n   -e ENVIRONMENT FILE \n   ... \n   -e /home/stack/templates/upgrades-environment.yaml \n   ...
   ```

   Wait until the overcloud stack update completes.

3. Continue with the upgrade operation step that failed.