Red Hat OpenStack Platform 16.2-Beta

Keeping Red Hat OpenStack Platform Updated

Performing minor updates of Red Hat OpenStack Platform

Last Updated: 2021-07-30
Performing minor updates of Red Hat OpenStack Platform

OpenStack Team
rhos-docs@redhat.com
Abstract

This document provides procedures to perform a minor update of your Red Hat OpenStack Platform environment.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... 3

DIRECT DOCUMENTATION FEEDBACK (DDF) FUNCTION NOT AVAILABLE IN THIS BETA RELEASE 4

CHAPTER 1. INTRODUCTION .. 5
1.1. HIGH LEVEL WORKFLOW ... 5
1.2. KNOWN ISSUES THAT MIGHT BLOCK AN UPDATE 5

CHAPTER 2. PREPARING FOR A MINOR UPDATE .. 7
2.1. LOCKING THE ENVIRONMENT TO A RED HAT ENTERPRISE LINUX RELEASE 7
2.2. CHANGING TO EXTENDED UPDATE SUPPORT (EUS) REPOSITORIES 8
2.3. UPDATING RED HAT OPENSTACK PLATFORM AND ANSIBLE REPOSITORIES 10
2.4. SETTING THE CONTAINER-TOOLS AND VIRT MODULE VERSIONS 11
2.5. UPDATING YOUR CONTAINER IMAGE PREPARATION FILE 12
2.6. UPDATING YOUR SSL/TLS CONFIGURATION 13
2.7. DISABLING FENCING IN THE OVERCLOUD .. 13

CHAPTER 3. UPDATING THE UNDERCLOUD ... 15
3.1. PERFORMING A MINOR UPDATE OF A CONTAINERIZED UNDERCLOUD 15
3.2. UPDATING THE OVERCLOUD IMAGES .. 15
3.3. UNDERCLOUD POST-UPGRADE NOTES ... 16
3.4. NEXT STEPS .. 16

CHAPTER 4. UPDATING THE OVERCLOUD .. 17
4.1. RUNNING THE OVERCLOUD UPDATE PREPARATION 17
4.2. RUNNING THE CONTAINER IMAGE PREPARATION 18
4.3. UPDATING ALL CONTROLLER NODES .. 18
4.4. UPDATING ALL COMPUTE NODES .. 19
4.5. UPDATING ALL HCI COMPUTE NODES .. 19
4.6. UPDATING ALL CEPH STORAGE NODES .. 20
4.7. PERFORMING ONLINE DATABASE UPDATES 21
4.8. FINALIZING THE UPDATE ... 21

CHAPTER 5. REBOOTING THE OVERCLOUD ... 23
5.1. REBOOTING CONTROLLER AND COMPOSABLE NODES 23
5.2. REBOOTING A CEPH STORAGE (OSD) CLUSTER 23
5.3. REBOOTING COMPUTE NODES ... 24
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
DIRECT DOCUMENTATION FEEDBACK (DDF) FUNCTION NOT AVAILABLE IN THIS BETA RELEASE

The Direct Documentation Feedback (DDF) function allows users to enter feedback directly on documentation pages on fully supported Red Hat documentation products. The DDF function is not available in this Red Hat OpenStack platform 16.2 beta documentation set.
CHAPTER 1. INTRODUCTION

This document provides a workflow to help keep your Red Hat OpenStack Platform 16.2-beta environment updated with the latest packages and containers.

This guide provides an upgrade path through the following versions:

<table>
<thead>
<tr>
<th>Old OpenStack Version</th>
<th>New OpenStack Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat OpenStack Platform 16.1</td>
<td>Red Hat OpenStack Platform 16.2-beta.z</td>
</tr>
<tr>
<td>Red Hat OpenStack Platform 16.2-beta</td>
<td>Red Hat OpenStack Platform 16.2-beta.z</td>
</tr>
</tbody>
</table>

1.1. HIGH LEVEL WORKFLOW

The following table provides an outline of the steps required for the upgrade process:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updating the undercloud</td>
<td>Update the undercloud to the latest OpenStack Platform 16.2-beta.z version.</td>
</tr>
<tr>
<td>Updating the overcloud</td>
<td>Update the overcloud to the latest OpenStack Platform 16.2-beta.z version.</td>
</tr>
<tr>
<td>Updating the Ceph Storage nodes</td>
<td>Upgrade all Ceph Storage services.</td>
</tr>
<tr>
<td>Finalize the upgrade</td>
<td>Run the convergence command to refresh your overcloud stack.</td>
</tr>
</tbody>
</table>

1.2. KNOWN ISSUES THAT MIGHT BLOCK AN UPDATE

Review the following known issues that might affect a successful minor version update.

BZ#1975240 - update from 16.1 to 16.2, when enabling tsx flag, compute node get restarted during update and ping loss occurs

Starting with Red Hat Enterprise Linux (RHEL) version 8.3, support for the Intel Transactional Synchronization Extensions (TSX) feature is disabled by default. This causes issues with instance live migration between hosts in the following migration scenario:

- Migrating from hosts that run Red Hat OpenStack Platform 16.1 with RHEL version 8.2 to hosts that run Red Hat OpenStack Platform 16.2-Beta with RHEL version 8.4.

Instance live migration fails after the Compute nodes are rebooted.

To ensure that the updated nodes are booted with the TSX feature enabled and that you can successfully live migrate your instances, review the following Red Hat Knowledgebase solution Guidance on Intel TSX impact on OpenStack guests (applies for RHEL 8.3 and above) and set the KernelArgs role parameter accordingly.
BZ#1973660 - (update) from 16.1 to 16.2 breaks trying to configure the rabbitmq service.

Overcloud nodes that run Pacemaker version 2.0.3-5.el8_2.4 might fail to update successfully because of a race condition that occurs when shutting down the cluster on a node. If Pacemaker version 2.0.3-5.el8_2.4 is currently installed on any of the overcloud nodes, to avoid BZ#1973660, you must upgrade Pacemaker before you can update the overcloud nodes. For more information, see the following Red Hat Knowledgebase solution Update from OSP16.2 to OSP16.2 might fail to update certain HA containers.

BZ#1872404 - restarting nodes in parallel while maintaining quorum creates an unexpected node shutdown

Until this issue is resolved, for nodes based on composable roles, you must update the Database role first, before you can update Controller, Messaging, Compute, Ceph, and other roles.
CHAPTER 2. PREPARING FOR A MINOR UPDATE

You must follow some preparation steps on the undercloud and overcloud before you begin the process to update Red Hat OpenStack Platform 16.2-beta to the latest minor release.

2.1. LOCKING THE ENVIRONMENT TO A RED HAT ENTERPRISE LINUX RELEASE

Red Hat OpenStack Platform 16.2-beta is supported on Red Hat Enterprise Linux 8.4. Prior to performing the update, lock the undercloud and overcloud repositories to the Red Hat Enterprise Linux 8.4 release to avoid upgrading the operating system to a newer minor release.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

 $ source ~/stackrc

3. Edit your overcloud subscription management environment file, which is the file that contains the RhsmVars parameter. The default name for this file is usually rhsm.yml.

4. Check your subscription management configuration for the rhsm_release parameter. If this parameter is not set, add this parameter and set the parameter to 8.4:


   ```yaml
   parameter_defaults:
   RhsmVars:
   ...
   rhsm_username: "myusername"
   rhsm_password: "p@55w0rd!"
   rhsm_org_id: "1234567"
   rhsm_pool_ids: "1a85f9223e3d5e43013e3d6e8ff506fd"
   rhsm_method: "portal"
   rhsm_release: "8.4"
   ```

5. Save the overcloud subscription management environment file.

6. Create a static inventory file of your overcloud:

 $ tripleo-ansible-inventory --ansible_ssh_user heat-admin --static-yaml-inventory ~/inventory.yaml

 If you use an overcloud name different to the default overcloud name of overcloud, set the name of your overcloud with the --plan option.

7. Create a playbook that contains a task to lock the operating system version to Red Hat Enterprise Linux 8.4 on all nodes:

 $ cat > ~/set_release.yaml <<'EOF'
 - hosts: all
 gather_facts: false
 tasks:
 - name: set release to 8.4
 EOF
command: subscription-manager release --set=8.4
become: true
EOF

8. Run the `set_release.yaml` playbook:

```
$ ansible-playbook -i ~/inventory.yaml -f 25 ~/set_release.yaml --limit undercloud,Controller,Compute
```

Use the `--limit` option to apply the content to all Red Hat OpenStack Platform nodes. Do not run this playbook against Ceph Storage nodes because you are most likely using a different subscription for these nodes.

NOTE

To manually lock a node to a version, log in to the node and run the `subscription-manager release` command:

```
$ sudo subscription-manager release --set=8.4
```

2.2. CHANGING TO EXTENDED UPDATE SUPPORT (EUS) REPOSITORIES

Your Red Hat OpenStack Platform subscription includes repositories for Red Hat Enterprise Linux 8.4 Extended Update Support (EUS). The EUS repositories include the latest security patches and bug fixes for Red Hat Enterprise Linux 8.4. Switch to the following repositories before performing an update.

<table>
<thead>
<tr>
<th>Standard Repository</th>
<th>EUS Repository</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rhel-8-for-x86_64-baseos-rpms</code></td>
<td><code>rhel-8-for-x86_64-baseos-eus-rpms</code></td>
</tr>
<tr>
<td><code>rhel-8-for-x86_64-appstream-eus-rpms</code></td>
<td><code>rhel-8-for-x86_64-appstream-eus-rpms</code></td>
</tr>
<tr>
<td><code>rhel-8-for-x86_64-highavailability-rpms</code></td>
<td><code>rhel-8-for-x86_64-highavailability-eus-rpms</code></td>
</tr>
</tbody>
</table>

IMPORTANT

You must use EUS repositories to retain compatibility with a specific version of Podman. Later versions of Podman are untested for this Red Hat OpenStack Platform release and can cause unexpected results.

Procedure

1. Log in to the undercloud as the `stack` user.

2. Source the `stackrc` file:

```
$ source ~/stackrc
```
3. Edit your overcloud subscription management environment file, which is the file that contains the `RhsmVars` parameter. The default name for this file is usually `rhsm.yml`.

4. Check the `rhsm_repos` parameter in your subscription management configuration. If this parameter does not include the EUS repositories, change the relevant repositories to the EUS versions:

```
| parameter_defaults: |
| RhsmVars: |
| rhsm_repos: |
| - rhel-8-for-x86_64-baseos-eus-rpms |
| - rhel-8-for-x86_64-appstream-eus-rpms |
| - rhel-8-for-x86_64-highavailability-eus-rpms |
| - ansible-2.9-for-rhel-8-x86_64-rpms |
| - advanced-virt-for-rhel-8-x86_64-rpms |
| - openstack-16.2-for-rhel-8-x86_64-rpms |
| - rhceph-4-tools-for-rhel-8-x86_64-rpms |
| - fast-datapath-for-rhel-8-x86_64-rpms |
```

5. Save the overcloud subscription management environment file.

6. Create a static inventory file of your overcloud:

```
$ tripleo-ansible-inventory --ansible_ssh_user heat-admin --static-yaml-inventory ~/inventory.yaml
```

If you use an overcloud name different to the default overcloud name of `overcloud`, set the name of your overcloud with the `--plan` option.

7. Create a playbook that contains a task to set the repositories to Red Hat Enterprise Linux 8.4 EUS on all nodes:

```
$ cat > ~/change_eus.yaml <<'EOF'
- hosts: all
  gather_facts: false
  tasks:
    - name: change to eus repos
      command: subscription-manager repos --disable=rhel-8-for-x86_64-baseos-rpms --disable=rhel-8-for-x86_64-appstream-rpms --disable=rhel-8-for-x86_64-highavailability-rpms --enable=rhel-8-for-x86_64-baseos-eus-rpms --enable=rhel-8-for-x86_64-appstream-eus-rpms --enable=rhel-8-for-x86_64-baseos-eus-rpms --enable=rhel-8-for-x86_64-appstream-eus-rpms --enable=rhel-8-for-x86_64-highavailability-eus-rpms
        become: true
EOF
```

8. Run the `change_eus.yaml` playbook:

```
$ ansible-playbook -i ~/inventory.yaml -f 25 ~/change_eus.yaml --limit undercloud,Controller,Compute
```

Use the `--limit` option to apply the content to all Red Hat OpenStack Platform nodes. Do not run this playbook against Ceph Storage nodes because you are most likely using a different subscription for these nodes.
2.3. UPDATING RED HAT OPENSTACK PLATFORM AND ANSIBLE REPOSITORIES

Update your repositories to use Red Hat OpenStack Platform 16.2-beta and Ansible 2.9 packages.

Procedure

1. Log in to the undercloud as the `stack` user.

2. Source the `stackrc` file:

   ```bash
   $ source ~/stackrc
   ```

3. Edit your overcloud subscription management environment file, which is the file that contains the `RhsmVars` parameter. The default name for this file is usually `rhsm.yml`.

4. Check the `rhsm_repos` parameter in your subscription management configuration. If the `rhsm_repos` parameter is using the Red Hat OpenStack Platform 16.1 and Ansible 2.9 repositories, change the repository to the correct versions:

   ```yaml
   parameter_defaults:
   RhsmVars:
     rhsm_repos:
       - rhel-8-for-x86_64-baseos-eus-rpms
       - rhel-8-for-x86_64-appstream-eus-rpms
       - rhel-8-for-x86_64-highavailability-eus-rpms
       - ansible-2.9-for-rhel-8-x86_64-rpms
       - advanced-virt-for-rhel-8-x86_64-rpms
       - openstack-16.2-for-rhel-8-x86_64-rpms
       - rhceph-4-osd-for-rhel-8-x86_64-rpms
       - rhceph-4-mon-for-rhel-8-x86_64-rpms
       - rhceph-4-tools-for-rhel-8-x86_64-rpms
       - fast-datapath-for-rhel-8-x86_64-rpms
   ```

5. Save the overcloud subscription management environment file.

6. Create a static inventory file of your overcloud:

   ```bash
   $ tripleo-ansible-inventory --ansible_ssh_user heat-admin --static-yaml-inventory ~/inventory.yaml
   ```

 If you use an overcloud name different to the default overcloud name of `overcloud`, set the name of your overcloud with the `--plan` option.

7. Create a playbook that contains a task to set the repositories to Red Hat Enterprise Linux 16.2-beta on all nodes:

   ```bash
   $ cat > ~/update_rhosp_repos.yaml <<'EOF'
   - hosts: all
     gather_facts: false
     tasks:
       - name: change osp repos
         command: subscription-manager repos --disable=openstack-16-for-rhel-8-x86_64-rpms --enable=openstack-16.2-for-rhel-8-x86_64-rpms --disable=ansible-2.8-for-rhel-8-x86_64-rpms
   EOF
   ```
--enable=ansible-2.9-for-rhel-8-x86_64-rpms
become: true
EOF

8. Run the **update_rhosp_repos.yaml** playbook:

```
$ ansible-playbook -i ~/inventory.yaml -f 25 ~/update_rhosp_repos.yaml --limit undercloud,Controller,Compute
```

Use the `--limit` option to apply the content to all Red Hat OpenStack Platform nodes. Do not run this playbook against Ceph Storage nodes because you are most likely using a different subscription for these nodes.

9. Create a playbook that contains a task to set the repositories to Red Hat Enterprise Linux 16.2-beta on all nodes:

```
$ cat > ~/update_ceph_repos.yaml <<'EOF'
- hosts: all
gather_facts: false
tasks:
  - name: change ceph repos
    command: subscription-manager repos --disable=openstack-16-deployment-tools-for-rhel-8-x86_64-rpms --enable=openstack-16.2-deployment-tools-for-rhel-8-x86_64-rpms --disable=ansible-2.8-for-rhel-8-x86_64-rpms --enable=ansible-2.9-for-rhel-8-x86_64-rpms
    become: true
EOF
```

10. Run the **update_ceph_repos.yaml** playbook:

```
$ ansible-playbook -i ~/inventory.yaml -f 25 ~/update_rhosp_repos.yaml --limit CephStorage
```

Use the `--limit` option to apply the content to Ceph Storage nodes.

2.4. SETTING THE CONTAINER-TOOLS AND VIRT MODULE VERSIONS

Set the **container-tools** module to version **3.0** and the **virt** module to **av** to ensure you use the correct package versions on all nodes.

Procedure

1. Log in to the undercloud as the **stack** user.

2. Source the **stackrc** file:

```
$ source ~/stackrc
```

3. Create a static inventory file of your overcloud:

```
$ tripleo-ansible-inventory --ansible_ssh_user heat-admin --static-yaml-inventory ~/inventory.yaml
```

If you use an overcloud name different to the default overcloud name of **overcloud**, set the name of your overcloud with the `--plan` option.
4. Create a playbook that contains a task to set the `container-tools` module to version **3.0** on all nodes:

```bash
$ cat > ~/container-tools.yaml <<'EOF'
- hosts: all
gather_facts: false
tasks:
  - name: disable default dnf module for container-tools
    command: dnf module disable -y container-tools:rhel8
    become: true
  - name: set dnf module for container-tools:3.0
    command: dnf module enable -y container-tools:3.0
    become: true

- hosts: undercloud,Compute,Controller
gather_facts: false
tasks:
  - name: disable default dnf module for virt
    command: dnf module disable -y virt:rhel
    become: true
  - name: disable 8.1 dnf module for virt
    command: dnf module disable -y virt:8.1
    become: true
  - name: set dnf module for virt:av
    command: dnf module enable -y virt:av
    become: true
EOF
```

5. Run the `container-tools.yaml` playbook against all nodes:

```bash
$ ansible-playbook -i ~/inventory.yaml -f 25 ~/container-tools.yaml
```

2.5. Updating Your Container Image Preparation File

Your container preparation file is the file that contains the `ContainerImagePrepare` parameter. You use this file to define the rules for obtaining container images for the undercloud and overcloud. Before you update your environment, check the file to ensure you obtain the correct image versions.

Procedure

1. Edit the container preparation file. The default name for this file is usually `containers-prepare-parameter.yaml`.

2. Check the **tag** parameter is set to **16.2** for each rule set:

```yaml
parameter_defaults:
  ContainerImagePrepare:
    - push_destination: true
      set:
        ...  
        tag: '16.2'
        tag_from_label: '{version}-{release}'
```
NOTE

If you do not want to use a specific tag for the update, such as **16.2** or **16.2.2**, remove the `tag` key-value pair and specify `tag_from_label` only. This will use the installed Red Hat OpenStack Platform version when determining the value for the tag to use as part of the update process.

1. Save this file.

2.6. UPDATING YOUR SSL/TLS CONFIGURATION

Remove the **NodeTLSData** resource from the `resource_registry` to update your SSL/TLS configuration.

Procedure

1. Log in to the undercloud as the **stack** user.

2. Source the **stackrc** file:

   ```bash
   $ source ~/stackrc
   ```

3. Edit your custom overcloud SSL/TLS public endpoint file, which is usually named ```~/templates/enable-tls.yaml```.

4. Remove the **NodeTLSData** resource from the `resource_registry`:

   ```yaml
   resource_registry:
     OS::TripleO::NodeTLSData: /usr/share/openstack-tripleo-heat-templates/puppet/extraconfig/tls/tls-cert-inject.yaml
     ...
   ```

 The overcloud deployment uses a new service in HAProxy to determine if SSL/TLS is enabled.

 NOTE

 If this is the only resource in the `resource_registry` section of the **enable-tls.yaml** file, remove the complete `resource_registry` section.

5. Save the SSL/TLS public endpoint file.

2.7. DISABLING FENCING IN THE OVERCLOUD

Before you update the overcloud, ensure that fencing is disabled.

If fencing is deployed in your environment during the Controller nodes update process, the overcloud might detect certain nodes as disabled and attempt fencing operations, which can cause unintended results.

If you have enabled fencing in the overcloud, you must temporarily disable fencing for the duration of the update to avoid any unintended results.
NOTE

To re-enable fencing in your overcloud, include the `fencing.yaml` environment file when you run the `openstack overcloud update prepare` command. Director enables fencing in your overcloud when you create the new Controller node cluster.

Procedure

1. Log in to the undercloud as the `stack` user.
2. Source the `stackrc` file.
   ```bash
   $ source ~/stackrc
   ```
3. Log in to a Controller node and run the Pacemaker command to disable fencing:
   ```bash
   $ ssh heat-admin@CONTROLLER_IP "sudo pcs property set stonith-enabled=false"
   ```

Additional Resources

- "Fencing Controller nodes with STONITH"
CHAPTER 3. UPDATING THE UNDERCLOUD

This process updates the undercloud and its overcloud images to the latest Red Hat OpenStack Platform 16.2-beta version.

3.1. PERFORMING A MINOR UPDATE OF A CONTAINERIZED UNDERCLOUD

Director provides commands to update the main packages on the undercloud node. This allows you to perform a minor update within the current version of your OpenStack Platform environment.

Procedure

1. Log in to the director as the stack user.

2. Run dnf to upgrade the director main packages:

 $ sudo dnf update -y python3-tripleoclient* openstack-tripleo-common openstack-tripleo-heat-templates tripleo-ansible ansible

3. The director uses the openstack undercloud upgrade command to update the undercloud environment. Run the command:

 $ openstack undercloud upgrade

4. Wait until the undercloud upgrade process completes.

5. Reboot the undercloud to update the operating system’s kernel and other system packages:

 $ sudo reboot

6. Wait until the node boots.

3.2. UPDATING THE OVERCLOUD IMAGES

You need to replace your current overcloud images with new versions. The new images ensure the director can introspect and provision your nodes using the latest version of OpenStack Platform software.

Prerequisites

- You have updated the undercloud to the latest version.

Procedure

1. Source the stackrc file:

 $ source ~/.stackrc

2. Remove any existing images from the images directory on the stack user’s home (/home/stack/images):
$ rm -rf ~/images/*

3. Extract the archives:

$ cd ~/images
$ for i in /usr/share/rhosp-director-images/overcloud-full/latest-16.2.tar /usr/share/rhosp-director-images/ironic-python-agent/latest-16.2.tar; do tar -xvf $i; done
$ cd ~

4. Import the latest images into the director:

$ openstack overcloud image upload --update-existing --image-path /home/stack/images/

5. Configure your nodes to use the new images:

$ openstack overcloud node configure $(openstack baremetal node list -c UUID -f value)

6. Verify the existence of the new images:

$ openstack image list
$ ls -l /var/lib/ironic/httpboot

IMPORTANT

When deploying overcloud nodes, ensure the overcloud image version corresponds to the respective heat template version. For example, only use the OpenStack Platform 16.2 images with the OpenStack Platform 16.2 heat templates.

IMPORTANT

The new overcloud-full image replaces the old overcloud-full image. If you made changes to the old image, you must repeat the changes in the new image, especially if you want to deploy new nodes in the future.

3.3. UNDERCLOUD POST-UPGRADE NOTES

- If using a local set of core templates in your stack users home directory, ensure you update the templates using the recommended workflow in Using Customized Core Heat Templates in the Advanced Overcloud Customization guide. You must update the local copy before upgrading the overcloud.

3.4. NEXT STEPS

The undercloud upgrade is complete. You can now update the overcloud.
CHAPTER 4. UPDATING THE OVERCLOUD

This process updates the overcloud.

Prerequisites

- You have updated the undercloud to the latest version.

4.1. RUNNING THE OVERCLOUD UPDATE PREPARATION

To prepare the overcloud for the update process, run the `openstack overcloud update prepare` command, which performs the following tasks:

- Updates the overcloud plan to OpenStack Platform 16.2-beta
- Prepares the nodes for the update

Prerequisites

- If you use a Ceph subscription and have configured director to use the `overcloud-minimal` image for Ceph storage nodes, you must ensure that in the `roles_data.yaml` role definition file, the `rhsm_enforce` parameter is set to `False`.

Procedure

1. Source the `stackrc` file:

   ```
   $ source ~/stackrc
   ```

2. Run the update preparation command:

   ```
   $ openstack overcloud update prepare \
   --templates \
   --stack <stack_name> \
   -r <roles_data_file> \
   -n <network_data_file> \
   -e <environment_file> \
   ...
   ```

 Include the following options relevant to your environment:

 - If the name of your overcloud stack is different to the default name `overcloud`, include the `--stack` option in the update preparation command and replace `<stack_name>` with the name of your stack.

 - If using your own custom roles, include your custom roles (`<roles_data>`) file (-r)

 - If using custom networks, include your composable network (`<network_data>`) file (-n)

 - Any custom configuration environment files (-e)

3. Wait until the update preparation completes.
4.2. RUNNING THE CONTAINER IMAGE PREPARATION

The overcloud requires the latest OpenStack Platform 16.2-beta container images before performing the update. This involves executing the `container_image_prepare` external update process. To execute this process, you must run the `openstack overcloud external-update run` command against tasks tagged with the `container_image_prepare` tag. These tasks perform the following actions:

- Automatically prepare all container image configuration relevant to your environment.
- Pull the relevant container images to your undercloud, unless you have previously disabled this option.

NOTE

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack <stack_name>` option replacing `<stack_name>` with the name of your stack.

Procedure

1. Source the `stackrc` file:

   ```
   $ source ~/stackrc
   ```

2. Run the `openstack overcloud external-update run` command against tasks tagged with the `container_image_prepare` tag:

   ```
   $ openstack overcloud external-update run --stack <stack_name> --tags container_image_prepare
   ```

4.3. UPDATING ALL CONTROLLER NODES

This process updates all the Controller nodes to the latest OpenStack Platform 16.2-beta version. The process involves running the `openstack overcloud update run` command and including the `--limit Controller` option to restrict operations to the Controller nodes only.

IMPORTANT

Until BZ#1872404 is resolved, for nodes based on composable roles, you must update the Database role first, before you can update Controller, Messaging, Compute, Ceph, and other roles.

NOTE

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack <stack_name>` option replacing `<stack_name>` with the name of your stack.

Procedure

1. Source the `stackrc` file:

   ```
   $ source ~/stackrc
   ```

2. Run the update command:
3. Wait until the Controller node update completes.

4.4. UPDATING ALL COMPUTE NODES

This process updates all Compute nodes to the latest OpenStack Platform 16.2-beta version. The process involves running the `openstack overcloud update run` command and including the `--limit Compute` option to restrict operations to the Compute nodes only.

Parallelization considerations

When you update a large number of Compute nodes, to improve performance, you can run the `openstack overcloud update run` command with the `--limit Compute` option in parallel on batches of 20 nodes. For example, if you have 80 Compute nodes in your deployment, you can run the following commands to update the Compute nodes in parallel:

```
$ openstack overcloud update run --limit 'Compute[0:19]' > update-compute-0-19.log 2>&1 &
$ openstack overcloud update run --limit 'Compute[40:59]' > update-compute-40-59.log 2>&1 &
$ openstack overcloud update run --limit 'Compute[60:79]' > update-compute-60-79.log 2>&1 &
```

The `Compute[0:19]`, `Compute[20:39]`, `Compute[40:59]`, and `Compute[60:79]` way of partitioning the nodes space is random and you don’t have control over which nodes are updated.

To update specific Compute nodes, list the nodes that you want to update in a batch separated by a comma:

```
$ openstack overcloud update run --limit <Compute0>,<Compute1>,<Compute2>,<Compute3>
```

NOTE

If you are not using the default stack name (`overcloud`), set your stack name with the `--stack <stack_name>` option replacing `<stack_name>` with the name of your stack.

Procedure

1. Source the `stackrc` file:

   ```
   $ source ~/stackrc
   ```

2. Run the update command:

   ```
   $ openstack overcloud update run --stack <stack_name> --limit Compute --playbook all
   ```

3. Wait until the Compute node update completes.

4.5. UPDATING ALL HCI COMPUTE NODES

This process updates the Hyperconverged Infrastructure (HCI) Compute nodes. The process involves:
Running the `openstack overcloud update run` command and including the **--nodes ComputeHCI** option to restrict operations to the HCI nodes only.

- Running the `openstack overcloud external-update run --tags ceph` command to perform an update to a containerized Red Hat Ceph Storage 4 cluster.

NOTE

If you are not using the default stack name (`overcloud`), set your stack name with the **--stack <stack_name>** option replacing `<stack_name>` with the name of your stack.

Procedure

1. Source the `stackrc` file:

   ```
   $ source ~/stackrc
   ```

2. Run the update command:

   ```
   $ openstack overcloud update run --stack <stack_name> --limit ComputeHCI --playbook all
   ```

3. Wait until the node update completes.

4. Run the Ceph Storage update command. For example:

   ```
   $ openstack overcloud external-update run --stack <stack_name> --tags ceph
   ```

5. Wait until the Compute HCI node update completes.

4.6. UPDATING ALL CEPH STORAGE NODES

This process updates the Ceph Storage nodes. The process involves:

- Running the `openstack overcloud update run` command and including the **--limit CephStorage** option to restrict operations to the Ceph Storage nodes only.

- Running the `openstack overcloud external-update run` command to run `ceph-ansible` as an external process and update the Red Hat Ceph Storage 3 containers.

NOTE

If you are not using the default stack name (`overcloud`), set your stack name with the **--stack <stack_name>** option replacing `<stack_name>` with the name of your stack.

Procedure

1. Source the `stackrc` file:

   ```
   $ source ~/stackrc
   ```

2. Run the update command:

   ```
   $ openstack overcloud update run --stack <stack_name> --limit CephStorage --playbook all
   ```
3. Wait until the node update completes.

4. Run the Ceph Storage container update command:

 $ openstack overcloud external-update run --tags ceph

5. Wait until the Ceph Storage container update completes.

4.7. PERFORMING ONLINE DATABASE UPDATES

Some overcloud components require an online upgrade (or migration) of their databases tables. This involves executing the online_upgrade external update process. To execute this process, run the openstack overcloud external-update run command against tasks tagged with the online_upgrade tag. This performs online database updates to the following components:

- OpenStack Block Storage (cinder)
- OpenStack Compute (nova)

Procedure

1. Source the stackrc file:

 $ source ~/stackrc

2. Run the openstack overcloud external-update run command against tasks that use the online_upgrade tag:

 $ openstack overcloud external-update run --tags online_upgrade

4.8. FINALIZING THE UPDATE

The update requires a final step to update the overcloud stack. This ensures the stack’s resource structure aligns with a regular deployment of OpenStack Platform 16.2-beta and allows you to perform standard openstack overcloud deploy functions in the future.

Procedure

1. Source the stackrc file:

 $ source ~/stackrc

2. Run the update finalization command:

 $ openstack overcloud update converge \
 --templates \
 --stack <stack_name> \
 -r <roles_data_file> \
 -n <network_data_file> \
 -e <environment_file> \
 -e <environment_file> \
 ...
 ...

...
Include the following options relevant to your environment:

- If the name of your overcloud stack is different to the default name `overcloud`, include the `--stack` option in the update preparation command and replace `<stack_name>` with the name of your stack.

- If using your own custom roles, include your custom roles `<roles_data>` file `-r`.

- If using custom networks, include your composable network `<network_data>` file `-n`.

- Any custom configuration environment files `-e`.

3. Wait until the update finalization completes.
CHAPTER 5. REBOOTING THE OVERCLOUD

After a minor Red Hat OpenStack version update, reboot your overcloud. The reboot refreshes the nodes with any associated kernel, system-level, and container component updates. These updates may provide performance and security benefits.

Plan downtime to perform the following reboot procedures.

5.1. REBOOTING CONTROLLER AND COMPOSABLE NODES

Complete the following steps to reboot Controller nodes and standalone nodes based on composable roles, excluding Compute nodes and Ceph Storage nodes.

Procedure

1. Log in to the node that you want to reboot.
2. Optional: If the node uses Pacemaker resources, stop the cluster:

   ```
   [heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster stop
   ```
3. Reboot the node:

   ```
   [heat-admin@overcloud-controller-0 ~]$ sudo reboot
   ```
4. Wait until the node boots.
5. Check the services. For example:
 a. If the node uses Pacemaker services, check that the node has rejoined the cluster:

      ```
      [heat-admin@overcloud-controller-0 ~]$ sudo pcs status
      ```
 b. If the node uses Systemd services, check that all services are enabled:

      ```
      [heat-admin@overcloud-controller-0 ~]$ sudo systemctl status
      ```
 c. If the node uses containerized services, check that all containers on the node are active:

      ```
      [heat-admin@overcloud-controller-0 ~]$ sudo podman ps
      ```

5.2. REBOOTING A CEPH STORAGE (OSD) CLUSTER

Complete the following steps to reboot a cluster of Ceph Storage (OSD) nodes.

Procedure

1. Log into a Ceph MON or Controller node and disable Ceph Storage cluster rebalancing temporarily:

   ```
   $ sudo podman exec -it ceph-mon-controller-0 ceph osd set noout
   $ sudo podman exec -it ceph-mon-controller-0 ceph osd set norebalance
   ```
2. Select the first Ceph Storage node that you want to reboot and log in to the node.

3. Reboot the node:

 $ sudo reboot

4. Wait until the node boots.

5. Log into the node and check the cluster status:

 $ sudo podman exec -it ceph-mon-controller-0 ceph status

 Check that the pgmap reports all pgs as normal (active+clean).

6. Log out of the node, reboot the next node, and check its status. Repeat this process until you have rebooted all Ceph storage nodes.

7. When complete, log into a Ceph MON or Controller node and re-enable cluster rebalancing:

 $ sudo podman exec -it ceph-mon-controller-0 ceph osd unset noout
 $ sudo podman exec -it ceph-mon-controller-0 ceph osd unset norebalance

8. Perform a final status check to verify that the cluster reports HEALTH_OK:

 $ sudo podman exec -it ceph-mon-controller-0 ceph status

5.3. REBOOTING COMPUTE NODES

Complete the following steps to reboot Compute nodes. To ensure minimal downtime of instances in your Red Hat OpenStack Platform environment, this procedure also includes instructions about migrating instances from the Compute node that you want to reboot. This involves the following workflow:

- Decide whether to migrate instances to another Compute node before rebooting the node.
- Select and disable the Compute node you want to reboot so that it does not provision new instances.
- Migrate the instances to another Compute node.
- Reboot the empty Compute node.
- Enable the empty Compute node.

Prerequisites

Before you reboot the Compute node, you must decide whether to migrate instances to another Compute node while the node is rebooting.

Review the list of migration constraints that you might run into when migrating virtual machine instances between Compute nodes. For more information, see Migration constraints in Configuring the Compute Service for Instance Creation.

If you cannot migrate the instances, you can set the following core template parameters to control the state of the instances after the Compute node reboots:
NovaResumeGuestsStateOnHostBoot
Determines whether to return instances to the same state on the Compute node after reboot. When set to False, the instances remain down and you must start them manually. Default value is: False

NovaResumeGuestsShutdownTimeout
Number of seconds to wait for an instance to shut down before rebooting. It is not recommended to set this value to 0. Default value is: 300

For more information about overcloud parameters and their usage, see Overcloud Parameters.

Procedure

1. Log in to the undercloud as the stack user.

2. List all Compute nodes and their UUIDs:

 $ source ~/stackrc
 (undercloud) $ openstack server list --name compute

 Identify the UUID of the Compute node that you want to reboot.

3. From the undercloud, select a Compute node. Disable the node:

 $ source ~/overcloudrc
 (overcloud) $ openstack compute service list
 (overcloud) $ openstack compute service set <hostname> nova-compute --disable

4. List all instances on the Compute node:

 (overcloud) $ openstack server list --host <hostname> --all-projects

5. If you decide not to migrate instances, skip to this step.

6. If you decide to migrate the instances to another Compute node, use one of the following commands:

 - Migrate the instance to a different host:

 (overcloud) $ openstack server migrate <instance_id> --live <target_host> --wait

 - Let nova-scheduler automatically select the target host:

 (overcloud) $ nova live-migration <instance_id>

 - Live migrate all instances at once:

 $ nova host-evacuate-live <hostname>

 NOTE

 The nova command might cause some deprecation warnings, which are safe to ignore.
7. Wait until migration completes.

8. Confirm that the migration was successful:

 (overcloud) $ openstack server list --host <hostname> --all-projects

9. Continue to migrate instances until none remain on the chosen Compute node.

10. Log in to the Compute node and reboot the node:

 [heat-admin@overcloud-compute-0 ~]$ sudo reboot

11. Wait until the node boots.

12. Re-enable the Compute node:

 $ source ~/overcloudrc
 (overcloud) $ openstack compute service set <hostname> nova-compute --enable

13. Check that the Compute node is enabled:

 (overcloud) $ openstack compute service list