Integrate OpenStack Identity with external user management services

Use Active Directory or Red Hat Identity Management as an external authentication back end
Integrate OpenStack Identity with external user management services

Use Active Directory or Red Hat Identity Management as an external authentication back end

OpenStack Team
rhos-docs@redhat.com
Abstract

Integrate the OpenStack Identity (keystone) service with Microsoft Active Directory Domain Service (AD DS), Red Hat Identity Management (IdM), and LDAP.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... 3

DIRECT DOCUMENTATION FEEDBACK (DDF) FUNCTION NOT AVAILABLE IN THIS BETA RELEASE 4

CHAPTER 1. INTEGRATING OPENSTACK IDENTITY (KEYSTONE) WITH ACTIVE DIRECTORY 5
 1.1. CONFIGURING ACTIVE DIRECTORY CREDENTIALS 5
 1.2. INSTALLING THE ACTIVE DIRECTORY LDAPS CERTIFICATE 6
 1.3. CONFIGURING DIRECTOR TO USE DOMAIN-SPECIFIC LDAP BACKENDS 7
 1.4. CONFIGURING OPENSTACK IDENTITY DOMAINS ON CONTROLLER NODES 8
 1.5. GRANTING THE ADMIN USER ACCESS TO THE OPENSTACK IDENTITY DOMAIN 14
 1.6. GRANTING EXTERNAL GROUPS ACCESS TO RED HAT OPENSTACK PLATFORM PROJECTS 16
 1.7. GRANTING EXTERNAL USERS ACCESS TO RED HAT OPENSTACK PLATFORM PROJECTS 18
 1.8. VIEWING THE LIST OF OPENSTACK IDENTITY DOMAINS AND USERS 21
 1.9. CREATING A CREDENTIALS FILE FOR A NON-ADMIN USER 21
 1.10. TESTING OPENSTACK IDENTITY INTEGRATION WITH AN EXTERNAL USER MANAGEMENT SERVICE 22
 1.11. TROUBLESHOOTING ACTIVE DIRECTORY INTEGRATION 23

CHAPTER 2. INTEGRATING OPENSTACK IDENTITY (KEYSTONE) WITH RED HAT IDENTITY MANAGER (IDM) ..25
 2.1. PLANNING THE RED HAT IDENTITY MANAGER (IDM) INTEGRATION 25
 2.2. ENROLLING NODES IN RED HAT IDENTITY MANAGER (IDM) WITH NOVAJOIN 26
 2.2.1. Adding the undercloud node to the certificate authority 27
 2.2.2. Adding the undercloud node to Red Hat Identity Manager (IdM) 27
 2.2.3. Setting Red Hat Identity Manager (IdM) as the DNS server for the overcloud 28
 2.2.4. Preparing environment files and deploying the overcloud with novajoin enrollment 29
 2.2.5. Testing overcloud enrollment in Red Hat Identity Manager (IdM) 30
 2.2.6. Adding DNS entries for novajoin in Red Hat Identity Manager (IdM) 30
 2.3. IMPLEMENTING TLS-E WITH ANSIBLE 31
 2.3.1. Configuring TLS-e on the undercloud 32
 2.3.2. Configuring TLS-e on the overcloud 33
 2.4. CONFIGURING RED HAT IDENTITY MANAGER (IDM) SERVER CREDENTIALS 34
 2.5. INSTALLING THE RED HAT IDENTITY MANAGER (IDM) LDAPS CERTIFICATE 35
 2.6. CONFIGURING DIRECTOR TO USE DOMAIN-SPECIFIC LDAP BACKENDS 36
 2.7. CONFIGURING OPENSTACK IDENTITY DOMAINS ON CONTROLLER NODES 37
 2.8. GRANTING THE ADMIN USER ACCESS TO THE OPENSTACK IDENTITY DOMAIN 43
 2.9. GRANTING EXTERNAL GROUPS ACCESS TO RED HAT OPENSTACK PLATFORM PROJECTS 45
 2.10. GRANTING EXTERNAL USERS ACCESS TO RED HAT OPENSTACK PLATFORM PROJECTS 47
 2.11. VIEWING THE LIST OF OPENSTACK IDENTITY DOMAINS AND USERS 50
 2.12. CREATING A CREDENTIALS FILE FOR A NON-ADMIN USER 50
 2.13. TESTING OPENSTACK IDENTITY INTEGRATION WITH AN EXTERNAL USER MANAGEMENT SERVICE 51
 2.14. TROUBLESHOOTING RED HAT IDENTITY MANAGER (IDM) INTEGRATION 52
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
DIRECT DOCUMENTATION FEEDBACK (DDF) FUNCTION NOT AVAILABLE IN THIS BETA RELEASE

The Direct Documentation Feedback (DDF) function allows users to enter feedback directly on documentation pages on fully supported Red Hat documentation products. The DDF function is not available in this Red Hat OpenStack platform 16.2 beta documentation set.
CHAPTER 1. INTEGRATING OPENSTACK IDENTITY (KEYSTONE) WITH ACTIVE DIRECTORY

You can integrate OpenStack Identity (keystone) with Microsoft Active Directory Domain Service (AD DS). Identity Service authenticates certain Active Directory Domain Services (AD DS) users but retains authorization settings and critical service accounts in the Identity Service database. As a result, Identity Service has read-only access to AD DS for user account authentication and continues to manage privileges assigned to authenticated accounts.

By integrating the Identity service with AD DS, you allow AD DS users to authenticate to Red Hat OpenStack Platform (RHOSP) to access resources. RHOSP service accounts, such as the Identity Service and the Image service, and authorization management remain in the Identity Service database. Permissions and roles are assigned to the AD DS accounts using Identity Service management tools.

The process to integrate OpenStack Identity with Active Directory includes the following stages:

1. Configure Active Directory credentials and export the LDAPS certificate
2. Install and configure the LDAPS certificate in OpenStack
3. Configure director to use one or more LDAP backends
4. Configure Controller nodes to access the Active Directory backend
5. Configure Active Directory user or group access to OpenStack projects
6. Verify that the domain and user lists are created correctly
7. Optional: Create credential files for non-admin users.

1.1. CONFIGURING ACTIVE DIRECTORY CREDENTIALS

To configure Active Directory Domain Service (AD DS) to integrate with OpenStack Identity, set up an LDAP account for Identity service to use, create a user group for Red Hat OpenStack users, and export the LDAPS certificate public key to use in the Red Hat OpenStack Platform deployment.

Prerequisites

- Active Directory Domain Services is configured and operational.
- Red Hat OpenStack Platform is configured and operational.
- DNS name resolution is fully functional and all hosts are registered appropriately.
- AD DS authentication traffic is encrypted with LDAPS, using port 636.
- Recommended: Implement AD DS with a high availability or load balancing solution to avoid a single point of failure.

Procedure

Perform these steps on the Active Directory server.

1. Create the LDAP lookup account. This account is used by Identity Service to query the AD DS LDAP service:
PS C:\> New-ADUser -SamAccountName svc-ldap -Name "svc-ldap" -GivenName LDAP -Surname Lookups -UserPrincipalName svc-ldap@lab.local -Enabled $false -PasswordNeverExpires $true -Path 'OU=labUsers,DC=lab,DC=local'

2. Set a password for this account, and then enable it. You will be prompted to specify a password that complies with your AD domain’s complexity requirements:

PS C:\> Set-ADAccountPassword svc-ldap -PassThru | Enable-ADAccount

3. Create a group for RHOSP users, called **grp-openstack**. Only members of this group can have permissions assigned in OpenStack Identity.

PS C:\> NEW-ADGroup -name "grp-openstack" -groupscope Global -path "OU=labUsers,DC=lab,DC=local"

4. Create the Project groups:

PS C:\> NEW-ADGroup -name "grp-openstack-demo" -groupscope Global -path "OU=labUsers,DC=lab,DC=local"
PS C:\> NEW-ADGroup -name "grp-openstack-admin" -groupscope Global -path "OU=labUsers,DC=lab,DC=local"

5. Add the **svc-ldap** user to the **grp-openstack** group:

PS C:\> ADD-ADGroupMember "grp-openstack" -members "svc-ldap"

6. From an AD Domain Controller, use a **Certificates MMC** to export your LDAPS certificate’s public key (not the private key) as a DER-encoded **x509 .cer** file. Send this file to the RHOSP administrators.

7. Retrieve the NetBIOS name of your AD DS domain.

PS C:\> Get-ADDomain | select NetBIOSName
NetBIOSName

LAB

Send this value to the RHOSP administrators.

1.2. INSTALLING THE ACTIVE DIRECTORY LDAPS CERTIFICATE

OpenStack Identity (keystone) uses LDAPS queries to validate user accounts. To encrypt this traffic, keystone uses the certificate file defined by **keystone.conf**. To configure the LDAPS certificate, convert the public key received from Active Directory into the **.crt** format and copy the certificate to a location where keystone will be able to reference it.

NOTE

When using multiple domains for LDAP authentication, you might receive various errors, such as **Unable to retrieve authorized projects**, or **Peer’s Certificate issuer is not recognized**. This can arise if keystone uses the incorrect certificate for a certain domain. As a workaround, merge all of the LDAPS public keys into a single **.crt** bundle, and configure all of your keystone domains to use this file.
Prerequisites

- Active Directory credentials are configured.
- LDAPS certificate is exported from Active Directory.

Procedure

1. Copy the LDAPS public key to the node running OpenStack Identity and convert the .cer to .crt. This example uses a source certificate file named `addc.lab.local.cer`:

   ```
   # openssl x509 -inform der -in addc.lab.local.cer -out addc.lab.local.crt
   # cp addc.lab.local.crt /etc/pki/ca-trust/source/anchors
   ```

2. Optional: If you need to run diagnostic commands, such as `ldapsearch`, you also need to add the certificate to the RHEL certificate store:

 a. Convert the .cer to .pem. This example uses a source certificate file named `addc.lab.local.cer`:

      ```
      # openssl x509 -inform der -in addc.lab.local.cer -out addc.lab.local.pem
      ```

 b. Install the .pem on the Controller node. For example, in Red Hat Enterprise Linux:

      ```
      # cp addc.lab.local.pem /etc/pki/ca-trust/source/anchors/
      # update-ca-trust
      ```

1.3. CONFIGURING DIRECTOR TO USE DOMAIN-SPECIFIC LDAP BACKENDS

To configure director to use one or more LDAP backends, set the `KeystoneLDAPDomainEnable` flag to `true` in your heat templates, and set up environment files with the information about each LDAP backend. Director then uses a separate LDAP backend for each keystone domain.

NOTE

The default directory for domain configuration files is set to `/etc/keystone/domains/`. You can override this by setting the required path with the `keystone::domain_config_directory` hiera key and adding it as an `ExtraConfig` parameter within an environment file.

Procedure

1. In the heat template for your deployment, set the `KeystoneLDAPDomainEnable` flag to `true`. This configures the `domain_specific_drivers_enabled` option in keystone within the `identity` configuration group.

2. Add a specification of the LDAP backend configuration by setting the `KeystoneLDAPBackendConfigs` parameter in `tripleo-heat-templates`, where you can then specify your required LDAP options.

3. Create a copy of the `keystone_domain_specific_ldap_backend.yaml` environment file:
$ cp /usr/share/openstack-tripleo-heat-templates/environments/services/keystone_domain_specific_ldap_backend.yaml /home/stack/templates/

4. Edit the `/home/stack/templates/keystone_domain_specific_ldap_backend.yaml` environment file and set the values to suit your deployment. For example, this parameter create a LDAP configuration for a keystone domain named `testdomain`:

```yaml
parameter_defaults:
  KeystoneLDAPDomainEnable: true
  KeystoneLDAPBackendConfigs:
    testdomain:
      url: ldaps://192.0.2.250
      user: cn=openstack,ou=Users,dc=director,dc=example,dc=com
      password: RedactedComplexPassword
      suffix: dc=director,dc=example,dc=com
      user_tree_dn: ou=Users,dc=director,dc=example,dc=com
      user_filter: "(memberOf=cn=OSuser,ou=Groups,dc=director,dc=example,dc=com)"
      user_objectclass: person
      user_id_attribute: cn
```

5. Optional: Add more domains to the environment file. For example:

```yaml
KeystoneLDAPBackendConfigs:
  domain1:
    url: ldaps://domain1.example.com
    user: cn=openstack,ou=Users,dc=director,dc=example,dc=com
    password: RedactedComplexPassword
    ...
  domain2:
    url: ldaps://domain2.example.com
    user: cn=openstack,ou=Users,dc=director,dc=example,dc=com
    password: RedactedComplexPassword
    ...
```

This results in two domains named `domain1` and `domain2`; each will have a different LDAP domain with its own configuration.

1.4. CONFIGURING OPENSTACK IDENTITY DOMAINS ON CONTROLLER NODES

To configure Controller nodes that run OpenStack Identity (keystone) to integrate with an external user management service, first configure SELinux to use LDAP authentication and create the `domains` directory on the Controller node. Then configure OpenStack Identity to use multiple back ends and the Dashboard to use multiple domains.

NOTE

If you are using director, note that the configuration files referenced in this procedure are managed by Puppet. Therefore, any custom configuration you add might be overwritten whenever you run the `openstack overcloud deploy` command.

Planning
If you intend to update any configuration files, you need to be aware that certain OpenStack services now run within containers; this applies to keystone, nova, and cinder, among others. As a result, there are certain administration practices to consider:

- Do not update any configuration file you might find on the physical node's host operating system, for example, `/etc/cinder/cinder.conf`. This is because the containerized service does not reference this file.

- Do not update the configuration file running within the container. This is because any changes are lost once you restart the container. Instead, if you need to add any changes to containerized services, you will need to update the configuration file that is used to generate the container. These are stored within `/var/lib/config-data/puppet-generated/`

For example:

- **keystone**: `/var/lib/config-data/puppet-generated/keystone/etc/keystone/keystone.conf`
- **cinder**: `/var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf`
- **nova**: `/var/lib/config-data/puppet-generated/nova/etc/nova/nova.conf`

Any changes will then be applied once you restart the service. For example: `sudo systemctl restart tripleo_keystone`

Procedure

Perform this procedure on each Controller node that runs the OpenStack Identity (keystone) service.

1. Configure SELinux:

   ```bash
   # setsebool -P authlogin_nsswitch_use_ldap=on
   
   The output might include messages similar to this. They can be ignored:

   ```

   ```bash
   Full path required for exclude: net:[4026532245].
   ```

2. Create the **domains** directory:

   ```bash
   # mkdir /var/lib/config-data/puppet-generated/keystone/etc/keystone/domains/
   # chown 42425:42425 /var/lib/config-data/puppet-generated/keystone/etc/keystone/domains/
   ```

3. Configure keystone to use multiple back ends:

 NOTE

 You might need to install `crudini` using `dnf install crudini`.

   ```bash
   # crudini --set /var/lib/config-data/puppet-generated/keystone/etc/keystone/keystone.conf
   identity domain_specific_drivers_enabled true
   # crudini --set /var/lib/config-data/puppet-generated/keystone/etc/keystone/keystone.conf
   identity domain_config_dir /etc/keystone/domains
   # crudini --set /var/lib/config-data/puppet-generated/keystone/etc/keystone/keystone.conf
   assignment driver sql
   ```
4. Enable multiple domains in dashboard. Add these lines to /var/lib/config-data/puppet-generated/horizon/etc/openstack-dashboard/local_settings:

```
OPENSTACK_API_VERSIONS = {
    "identity": 3
}
OPENSTACK_KEYSTONE_MULTIDOMAIN_SUPPORT = True
OPENSTACK_KEYSTONE_DEFAULT_DOMAIN = 'Default'
```

NOTE

If you are using director, note that /var/lib/config-data/puppet-generated/horizon/etc/openstack-dashboard/local_settings is managed by Puppet. Consequently, any custom configuration you add might be overwritten whenever you run the openstack overcloud deploy process. As a result, you might need to re-add this configuration manually each time.

Restart the horizon container to apply the settings:

```
$ sudo systemctl restart tripleo_horizon
```

5. Create the keystone domain for the external service integration with the NetBIOS name value retrieved previously as the domain name. This approach allows you to present a consistent domain name to users during the login process. In this example, LAB is the NetBIOS name to use as the Identity Service domain.

```
$ openstack domain create LAB
```

NOTE

If this command is not available, check that you have enabled keystone v3 for your command line session by running `# source overcloudrc-v3`.

6. Create the configuration file for the external service that you are integrating:

- Active Directory Domain Service (AD DS): Enter the LDAP settings in a new file called /var/lib/config-data/puppet-generated/keystone/etc/keystone/domains/keystone.LAB.conf (where LAB is the NetBIOS name retrieved previously). You will need to edit the sample settings below to suit your AD DS deployment:

```ini
[ldap]
url                  = ldaps://addc.lab.local:636
user                  = CN=svc-ldap,OU=labUsers,DC=lab,DC=local
password                 = RedactedComplexPassword
suffix                   = DC=lab,DC=local
user_tree_dn             = OU=labUsers,DC=lab,DC=local
user_objectclass         = person
user_filter                  = (|(memberOf=cn=grp-openstack,OU=labUsers,DC=lab,DC=local)
(memberOf=cn=grp-openstack-admin,OU=labUsers,DC=lab,DC=local)
(memberOf=memberOf=cn=grp-openstack-demo,OU=labUsers,DC=lab,DC=local))
user_id_attribute        = sAMAccountName
user_name_attribute      = sAMAccountName
```

Red Hat OpenStack Platform 16.2-Beta Integrate OpenStack Identity with external user management services
user_mail_attribute = mail
user_pass_attribute =
user_enabled_attribute = userAccountControl
user_enabled_mask = 2
user_enabled_default = 512
user_attribute_ignore = password,tenant_id,tenants
group_objectclass = group
group_tree_dn = OU=labUsers,DC=lab,DC=local
group_filter = (CN=grp-openstack*)
group_id_attribute = cn
group_name_attribute = name
use_tls = False
tls_cacertfile = /etc/pki/ca-trust/source/anchors/anchorsaddc.lab.local.pem

query_scope = sub
chase_referrals = false

[identity]
driver = ldap

Explanation of each setting:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>url</td>
<td>The AD Domain Controller to use for authentication. Uses LDAPS port 636.</td>
</tr>
<tr>
<td>user</td>
<td>The Distinguished Name of an AD account to use for LDAP queries. For example, you can locate the Distinguished Name value of the svc-ldap account in AD using Get-ADUser svc-ldap</td>
</tr>
<tr>
<td>password</td>
<td>The plaintext password of the AD account used above.</td>
</tr>
<tr>
<td>suffix</td>
<td>The Distinguished Name of your AD domain. You can locate this value using Get-ADDomain</td>
</tr>
<tr>
<td>user_tree_dn</td>
<td>The Organizational Unit (OU) that contains the OpenStack accounts.</td>
</tr>
<tr>
<td>user_objectclass</td>
<td>Defines the type of LDAP user. For AD, use the person type.</td>
</tr>
<tr>
<td>Setting</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>user_filter</td>
<td>Filters the users presented to Identity Service. As a result, only members of the grp-openstack group can have permissions defined in Identity Service. This value requires the full Distinguished Name of the group: `Get-ADGroup grp-openstack</td>
</tr>
<tr>
<td>user_id_attribute</td>
<td>Maps the AD value to use for user IDs.</td>
</tr>
<tr>
<td>user_name_attribute</td>
<td>Maps the AD value to use for names.</td>
</tr>
<tr>
<td>user_mail_attribute</td>
<td>Maps the AD value to use for user email addresses.</td>
</tr>
<tr>
<td>user_pass_attribute</td>
<td>Leave this value blank.</td>
</tr>
<tr>
<td>user_enabled_attribute</td>
<td>The AD setting that validates whether the account is enabled.</td>
</tr>
<tr>
<td>user_enabled_mask</td>
<td>Defines the value to check to determine whether an account is enabled. Used when booleans are not returned.</td>
</tr>
<tr>
<td>user_enabled_default</td>
<td>The AD value that indicates that an account is enabled.</td>
</tr>
<tr>
<td>user_attribute_ignore</td>
<td>Defines user attributes that Identity Service should disregard.</td>
</tr>
<tr>
<td>group_objectclass</td>
<td>Maps the AD value to use for groups.</td>
</tr>
<tr>
<td>group_tree_dn</td>
<td>The Organizational Unit (OU) that contains the user groups.</td>
</tr>
<tr>
<td>group_filter</td>
<td>Filters the groups presented to Identity Service.</td>
</tr>
<tr>
<td>group_id_attribute</td>
<td>Maps the AD value to use for group IDs.</td>
</tr>
<tr>
<td>group_name_attribute</td>
<td>Maps the AD value to use for group names.</td>
</tr>
<tr>
<td>use_tls</td>
<td>Defines whether TLS is to be used. This needs to be disabled if you are encrypting with LDAPS rather than STARTTLS.</td>
</tr>
<tr>
<td>tls_cacertfile</td>
<td>Specifies the path to the .crt certificate file.</td>
</tr>
</tbody>
</table>
Configures Identity Service to also search within nested child OUs, when locating users that are members of the `grp-openstack` group.

Set to `false`, this setting prevents `python-ldap` from chasing all referrals with anonymous access.

Red Hat Identity Manager (IdM): Enter the LDAP settings in a new file called `/var/lib/config-data/puppet-generated/keystone/etc/keystone/domains/keystone.LAB.conf` (where LAB is the domain name created previously). You will need to edit the sample settings below to suit your IdM deployment:

```ini
[ldap]
url = ldaps://idm.lab.local
user = uid=svc-ldap,cn=users,cn=accounts,dc=lab,dc=local
user_filter = (memberOf=cn=grp-openstack,cn=groups,cn=accounts,dc=lab,dc=local)
password = RedactedComplexPassword
user_tree_dn = cn=users,cn=accounts,dc=lab,dc=local
user_objectclass = inetUser
user_id_attribute = uid
user_name_attribute = uid
user_mail_attribute = mail
user_pass_attribute =
group_tree_dn               = cn=groups,cn=accounts,dc=lab,dc=local
group_objectclass              = groupOfNames
group_id_attribute            = cn
group_name_attribute       = cn
group_member_attribute  = member
group_desc_attribute        = description
use_tls                  = False
query_scope                  = sub
chase_referrals                  = false
tls_cacertfile =/etc/pki/ca-trust/source/anchors/anchorsca.crt

[identity]
driver = ldap
```

Explanation of each setting:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>url</code></td>
<td>The IdM server to use for authentication. Uses LDAPS port 636.</td>
</tr>
<tr>
<td><code>user</code></td>
<td>The account in IdM to use for LDAP queries.</td>
</tr>
<tr>
<td>Setting</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>password</td>
<td>The plaintext password of the IdM account used above.</td>
</tr>
<tr>
<td>user_filter</td>
<td>Filters the users presented to Identity Service. As a result, only members of the grp-openstack group can have permissions defined in Identity Service.</td>
</tr>
<tr>
<td>user_tree_dn</td>
<td>The path to the OpenStack accounts in IdM.</td>
</tr>
<tr>
<td>user_objectclass</td>
<td>Defines the type of LDAP user. For IdM, use the inetUser type.</td>
</tr>
<tr>
<td>user_id_attribute</td>
<td>Maps the IdM value to use for user IDs.</td>
</tr>
<tr>
<td>user_name_attribute</td>
<td>Maps the IdM value to use for names.</td>
</tr>
<tr>
<td>user_mail_attribute</td>
<td>Maps the IdM value to use for user email addresses.</td>
</tr>
<tr>
<td>user_pass_attribute</td>
<td>Leave this value blank.</td>
</tr>
</tbody>
</table>

NOTE

Integration with an IdM group will only return direct members, and not nested groups. As a result, queries that rely on **LDAP_MATCHING_RULE_IN_CHAIN** or **memberof:1.2.840.113556.1.4.1941** will not currently work with IdM.

7. Change ownership of the configuration file to the keystone user:

 # chown 42425:42425 /var/lib/config-data/puppet-generated/keystone/etc/keystone/domains/keystone.LAB.conf

8. Restart the keystone service to apply the changes:

 # sudo systemctl restart tripleo_keystone

Additional resources

- Section 1.5, "Granting the admin user access to the OpenStack Identity domain"
- Section 1.3, "Configuring director to use domain-specific LDAP backends"

1.5. GRANTING THE ADMIN USER ACCESS TO THE OPENSTACK IDENTITY DOMAIN
To allow the admin user to access the OpenStack Identity (keystone) domain and see the Domain tab, get the ID of the domain and the admin user, and then assign the admin role to the user in the domain.

NOTE

This does not grant the OpenStack admin account any permissions on the external service domain. In this case, the term domain refers to OpenStack’s usage of the keystone domain.

Procedure

This procedure uses the LAB domain. Replace the domain name with the actual name of the domain that you are configuring.

1. Get the ID of the LAB domain:

   ```
   $ openstack domain show LAB
   +---------+----------------------------------+
   | Field   | Value                            |
   +---------+----------------------------------+
   | enabled | True                             |
   | id      | 6800b0496429431ab1c4efbb3fe810d4 |
   | name    | LAB                              |
   +---------+----------------------------------+
   ```

2. Get the ID of the admin user from the default domain:

   ```
   $ openstack user list --domain default | grep admin
   | 3d75388d351846c6a880e53b2508172a | admin      |
   ```

3. Get the ID of the admin role:

   ```
   $ openstack role list
   The output depends on the external service you are integrating with:
   ```

 - Active Directory Domain Service (AD DS):
     ```
     +---------+-----------------+
     | ID       | Name            |
     +---------+-----------------+
     | 01d92614cd224a589bdf3b171afc5488 | admin           |
     | 034e4620ed3d45969dfe8992af001514 | member          |
     | 0aa377a807df45969b0a8c69b9560b106 | ResellerAdmin   |
     | 9369f2bf754443f199c6d6b96479b1fa | heat_stack_user |
     | cfe5760d9c948e7b362abc1d06e557f | reader          |
     | d5cb45459e44b47aaa8821df4e11af1 | swiftoperator   |
     | ef3d3f510a474d6c860b4098ad658a29 | service         |
     +---------+-----------------+
     ```

 - Red Hat Identity Manager (IdM):
     ```
     +---------+-----------------+
     | ID       | Name            |
     +---------+-----------------+
     ```

   ```
   ```
4. Use the domain and admin IDs to construct the command that adds the admin user to the admin role of the keystone LAB domain:

```
# openstack role add --domain 6800b0496429431ab1c4efbb3fe810d4 --user
3d75388d351846c6a880e53b2508172a 785c70b150ee4c778fe4de088070b4cf
```

1.6. GRANTING EXTERNAL GROUPS ACCESS TO RED HAT OPENSTACK PLATFORM PROJECTS

To grant multiple authenticated users access to Red Hat OpenStack Platform (RHOSP) resources, you can authorize certain groups from the external user management service to grant access to RHOSP projects, instead of requiring OpenStack administrators to manually allocate each user to a role in a project. As a result, all members of these groups can access pre-determined projects.

Prerequisites

- Ensure that the external service administrator completed the following steps:
 - Creating a group named grp-openstack-admin.
 - Creating a group named grp-openstack-demo.
 - Adding your RHOSP users to one of these groups as needed.
 - Adding your users to the grp-openstack group.
- Create the OpenStack Identity domain. This procedure uses the LAB domain.
- Create or choose a RHOSP project. This procedure uses a project called demo that was created with the openstack project create --domain default --description "Demo Project" demo command.

Procedure

1. Retrieve a list of user groups from the OpenStack Identity domain:

```
# openstack group list --domain LAB
```

The command output depends on the external user management service that you are integrating with:

- Active Directory Domain Service (AD DS):

```
+-------------------------------+-------------------+
| ID          | Name              |
|-------------------------------+-------------------+
| 185277be62ae17e498a69f98a59b66934fb1d6b7f745f14f5f68953a665b8851 | grp-
```
openstack | a8d17f19f464c4548c18b97e4aa331820f9d3be52654aa8094e698a9182cbb88 | grp-openstack |
| | d971bb3bd5e64a454cbd0cc7af4c0773e78d61b5f81321809f8323216938cae8 | grp-openstack-admin |
| | d971bb3bd5e64a454cbd0cc7af4c0773e78d61b5f81321809f8323216938cae8 | grp-openstack-demo |

- Red Hat Identity Manager (IdM):

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>185277b62ae17e498a69f98a59b66934fb1d6b7f745f14f5f68953a665b8851</td>
<td>grp-openstack</td>
</tr>
<tr>
<td>a8d17f19f464c4548c18b97e4aa331820f9d3be52654aa8094e698a9182cbb88</td>
<td>grp-openstack-admin</td>
</tr>
<tr>
<td>d971bb3bd5e64a454cbd0cc7af4c0773e78d61b5f81321809f8323216938cae8</td>
<td>grp-openstack-demo</td>
</tr>
</tbody>
</table>

2. Retrieve a list of roles:

```
# openstack role list
```

The command output depends on the external user management service that you are integrating with:

- Active Directory Domain Service (AD DS):

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>01d92614cd22a589bd3f1b71af5c488</td>
<td>admin</td>
</tr>
<tr>
<td>034e4620ed3d45969dfe8992af001514</td>
<td>member</td>
</tr>
<tr>
<td>0aa3777a807df4149b0a8c69b9560b106</td>
<td>ResellerAdmin</td>
</tr>
<tr>
<td>9369f2bf754443f199c6d6b96479b1fa</td>
<td>heat_stack_user</td>
</tr>
<tr>
<td>cfea5760d9c948e7b362abc1d06e557f</td>
<td>reader</td>
</tr>
<tr>
<td>d5cb4559e44b47aaa8821df4e11af1</td>
<td>swiftoperator</td>
</tr>
<tr>
<td>ef3d3f10a474d6c8604b409840658a29</td>
<td>service</td>
</tr>
</tbody>
</table>

- Red Hat Identity Manager (IdM):

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0969957bce5e4f678aca6cef00e1abf8a</td>
<td>ResellerAdmin</td>
</tr>
<tr>
<td>1fcb3c9b50a46ee8196aaecc2b76b7</td>
<td>admin</td>
</tr>
<tr>
<td>9fe2ff9ee4384b1894a90878d3e92bab</td>
<td>member</td>
</tr>
<tr>
<td>d3570730eb4b4780a7fed9e197e1b</td>
<td>SwiftOperator</td>
</tr>
</tbody>
</table>

3. Grant the user groups access to RHOSP projects by adding them to one or more of these roles. For example, if you want users in the `grp-openstack-demo` group to be general users of the
demo project, you must add the group to the **member** or **_member_* role, depending on the external service that you are integrating with:

- **Active Directory Domain Service (AD DS):**

  ```bash
  # openstack role add --project demo --group
d971bb3bd5e64a454c6d0cc7af4c0773e78d61b5f81321809f8323216938ca8e8 member
  ```

- **Red Hat Identity Manager (IdM):**

  ```bash
  $ openstack role add --project demo --group
d971bb3bd5e64a454c6d0cc7af4c0773e78d61b5f81321809f8323216938ca8e8 _member_
  ```

Result

Members of **grp-openstack-demo** can log in to the dashboard by entering their username and password and entering **LAB** in the **Domain** field:

![Login Screen](image)

NOTE

If users receive the error **Error: Unable to retrieve container list.**, and expect to be able to manage containers, then they must be added to the **SwiftOperator** role.

Additional resources

- Section 1.7, “Granting external users access to Red Hat OpenStack Platform projects”

1.7. GRANTING EXTERNAL USERS ACCESS TO RED HAT OPENSTACK PLATFORM PROJECTS

To grant specific authenticated users from the **grp-openstack** group access to OpenStack resources, you can grant these users direct access to Red Hat OpenStack Platform (RHOSP) projects. Use this process in cases where you want to grant access to individual users instead of granting access to groups.
Prerequisites

- Ensure that the external service administrator completed the following steps:
 - Adding your RHOSP users to the grp-openstack group.
 - Creating the OpenStack Identity domain. This procedure uses the LAB domain.
- Create or choose a RHOSP project. This procedure uses a project called demo that was created with the openstack project create --domain default --description "Demo Project" demo command.

Procedure

1. Retrieve a list of users from the OpenStack Identity domain:

   ```
   # openstack user list --domain LAB
   +------------------------------------------------------------------+----------------+
   | ID                                                               | Name           |
   +------------------------------------------------------------------+----------------+
1f24ec1f11aeab90520079c29f70a8a06022e2ce292b2eba7784c841ac418091e	user1
12c062fadd53f8b065434d9f6f03eb9259537c93b41124586869a332f1	user2
afaf4831eb543c44e4cb0353f5b120843ff7063c22873d1811dae2e73c	user3
e47fc21dcf0d9716d2663766023e2d8d15a6d9b0145385a898cabb2396826e	user4
   +------------------------------------------------------------------+----------------+
   ```

2. Retrieve a list of roles:

   ```
   # openstack role list
   ```

 The command output depends on the external user management service that you are integrating with:

 - **Active Directory Domain Service (AD DS):**

 +--+-----------------
 | ID | Name |
 +--+-----------------+
 | 01d92614cd22a589bdf3b171af54e8 | admin |
 | 034e620ed345969defe892af001514 | member |
 | 0ac377a807df4149b0a869b956b0106 | ResellerAdmin |
 | 9369f2bf754443199c6d6b96479b11f | heat_stack_user |
 | cfee5760d9c948e7b362abc1d06e55f | reader |
 | d56455b9e44b47aaa8821df4e11af1 | swiftoperator |
 | ef3d3f510a474d6c860b4098add56a29 | service |
 +--+-----------------+

 - **Red Hat Identity Manager (IdM):**

 +--+-----------------
 | ID | Name |
 +--+-----------------
 | 0969957bce5e4f678ca6ce00e1abf8a | ResellerAdmin |
 | 1fc3c9b50aa46ee8196aae0c2b76b7 | admin |
 +--+-----------------
3. Grant users access to RHOSP projects by adding them to one or more of these roles. For example, if you want user1 to be a general user of the demo project, you add them to the member or _member_ role, depending on the external service that you are integrating with:

 - Active Directory Domain Service (AD DS):

     ```
     # openstack role add --project demo --user 1f24ec1f11aeb90520079c29f70afa060d22e2ce92b2eba7784c841ac418091e member
     ```

 - Red Hat Identity Manager (IdM):

     ```
     # openstack role add --project demo --user 1f24ec1f11aeb90520079c29f70afa060d22e2ce92b2eba7784c841ac418091e _member_
     ```

4. If you want user1 to be an administrative user of the demo project, add the user to the admin role:

   ```
   # openstack role add --project demo --user 1f24ec1f11aeb90520079c29f70afa060d22e2ce92b2eba7784c841ac418091e admin
   ```

Result

The user1 user is able to log in to the dashboard by entering their external username and password and entering LAB in the Domain field:

![Dashboard login screen](image)

NOTE

If users receive the error Error: Unable to retrieve container list., and expect to be able to manage containers, then they must be added to the SwiftOperator role.

Additional resources
1.8. VIEWING THE LIST OF OPENSTACK IDENTITY DOMAINS AND USERS

Use the `openstack domain list` command to list the available entries. Configuring multiple domains in Identity Service enables a new Domain field in the dashboard login page. Users are expected to enter the domain that matches their login credentials.

IMPORTANT

After you complete the integration, you need to decide whether to create new projects in the Default domain or in newly created keystone domains. You must consider your workflow and how you administer user accounts. If possible, use the Default domain as an internal domain to manage service accounts and the admin project, and keep your external users in a separate domain.

In this example, external accounts need to specify the LAB domain. The built-in keystone accounts, such as admin, must specify Default as their domain.

Procedure

1. Show the list of domains:

```bash
# openstack domain list
```

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Enabled</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6800b0496429431ab1c4ebbb3fe810d4</td>
<td>LAB</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>default</td>
<td>Default</td>
<td>True</td>
<td>Owns users and projects available on Identity API v2.</td>
</tr>
</tbody>
</table>

2. Show the list of users in a specific domain. This command example specifies the `--domain LAB` and returns users in the LAB domain that are members of the `grp-openstack` group:

```bash
# openstack user list --domain LAB
```

You can also append `--domain Default` to show the built-in keystone accounts:

```bash
# openstack user list --domain Default
```

1.9. CREATING A CREDENTIALS FILE FOR A NON-ADMIN USER

After you configure users and domains for OpenStack Identity, you might need to create a credentials file for a non-admin user.

Procedure
Create a credentials (RC) file for a non-admin user. This example uses the user1 user in the file.

```bash
$ cat overcloudrc-v3-user1
# Clear any old environment that may conflict.
for key in $( set | awk '{FS="="} /^OS_/ {print $1}' ); do unset $key ; done
export OS_USERNAME=user1
export NOVA_VERSION=1.1
export OS_PROJECT_NAME=demo
export OS_PASSWORD=RedactedComplexPassword
export OS_NO_CACHE=True
export COMPUTE_API_VERSION=1.1
export no_proxy=,10.0.0.5,192.168.2.11
export OS_CLOUDNAME=overcloud
export OS_AUTH_URL=https://10.0.0.5:5000/v3
export OS_AUTH_TYPE=password
export PYTHONWARNINGS="ignore:Certificate has no,
A true SSLContext object is not available"
export OS_IDENTITY_API_VERSION=3
export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=LAB
```

1.10. TESTING OPENSTACK IDENTITY INTEGRATION WITH AN EXTERNAL USER MANAGEMENT SERVICE

To test that OpenStack Identity (keystone) successfully integrated with Active Directory Domain Service (AD DS), test user access to dashboard features.

Prerequisites

- Integration with an external user management service, such as Active Directory (AD) or Red Hat Identity Manager (IdM)

Procedure

1. Create a test user in the external user management service, and add the user to the `grp-openstack` group.

2. In Red Hat OpenStack Platform, add the user to the `member` role of the demo project.

3. Log in to the dashboard with the credentials of the AD test user.

4. Click on each of the tabs to confirm that they are presented successfully without error messages.

5. Use the dashboard to build a test instance.

NOTE

If you experience issues with these steps, log in to the dashboard with the admin account and perform the subsequent steps as that user. If the test is successful, it means that OpenStack is still working as expected and that an issue exists somewhere in the integration settings between OpenStack Identity and Active Directory.

Additional resources
1.11. TROUBLESHOOTING ACTIVE DIRECTORY INTEGRATION

If you encounter errors when using the Active Directory integration with OpenStack Identity, you might need to test the LDAP connection or test the certificate trust configuration. You might also need to check that the LDAPS port is accessible.

NOTE

Depending on the error type and location, perform only the relevant steps in this procedure.

Procedure

1. Test the LDAP connection by using the `ldapsearch` command to remotely perform test queries against the Active Directory Domain Controller. A successful result here indicates that network connectivity is working, and the AD DS services are up. In this example, a test query is performed against the server `addc.lab.local` on port 636:

   ```
   # ldapsearch -Z -x -H ldaps://addc.lab.local:636 -D "svc-ldap@lab.local" -W -b "OU=labUsers,DC=lab,DC=local" -s sub "(cn=*)" cn
   ```

 NOTE

 - `ldapsearch` is a part of the `openldap-clients` package. You can install this using `# dnf install openldap-clients`
 - This command expects to find the necessary certificate in your host operating system.

2. If you receive the error *Peer's Certificate issuer is not recognized.* while testing the `ldapsearch` command, confirm that your `TLS_CACERTDIR` path is correctly set. For example:

   ```
   TLS_CACERTDIR /etc/openldap/certs
   ```

3. As a temporary workaround, consider disabling certificate validation.

 IMPORTANT

 This setting must not be permanently configured.

 In the `/etc/openldap/ldap.conf`, set the `TLS_REQCERT` parameter to `allow`:

   ```
   TLS_REQCERT allow
   ```

 If the `ldapsearch` query works after setting this value, you might need to review whether your certificate trusts are correctly configured.

4. Use the `nc` command to check that LDAPS port **636** is remotely accessible. In this example, a probe is performed against the server `addc.lab.local`. Press `ctrl-c` to exit the prompt.
nc -v addc.lab.local 636
^C

Failure to establish a connection might indicate a firewall configuration issue.
CHAPTER 2. INTEGRATING OPENSTACK IDENTITY (KEYSTONE) WITH RED HAT IDENTITY MANAGER (IDM)

When you integrate OpenStack Identity (keystone) with Red Hat Identity Manager (IdM), OpenStack Identity authenticates certain Red Hat Identity Management (IdM) users but retains authorization settings and critical service accounts in the Identity Service database. As a result, Identity Service has read-only access to IdM for user account authentication, while retaining management over the privileges assigned to authenticated accounts. You can also use `novajoin` to enroll your nodes with IdM.

NOTE

The configuration files for this integration are managed by Puppet. Therefore, any custom configuration that you add might be overwritten the next time you run the `openstack overcloud deploy` command. You can use director to configure LDAP authentication instead of manually editing the configuration files.

Review the following key terms before you plan and configure the IdM integration:

- **Authentication** - The process of using a password to verify that the user is who they claim to be.
- **Authorization** - Validating that authenticated users have proper permissions to the systems they’re attempting to access.
- **Domain** - Refers to the additional back ends configured in Identity Service. For example, Identity Service can be configured to authenticate users from external IdM environments. The resulting collection of users can be thought of as a domain.

The process to integrate OpenStack Identity with IdM includes the following stages:

1. Enroll the undercloud and overcloud in IdM with novajoin
2. Implement TLS-e on the undercloud and overcloud with Ansible
3. Configure IdM server credentials and export the LDAPS certificate
4. Install and configure the LDAPS certificate in OpenStack
5. Configure director to use one or more LDAP backends
6. Configure Controller nodes to access the IdM backend
7. Configure IdM user or group access to OpenStack projects
8. Verify that the domain and user lists are created correctly
9. Optional: Create credential files for non-admin users

2.1. PLANNING THE RED HAT IDENTITY MANAGER (IDM) INTEGRATION

When you plan your OpenStack Identity integration with Red Hat Identity Manager (IdM), ensure that both services are configured and operational and review the impact of the integration on user management, high availability, and firewall settings.
Prerequisites

- Red Hat Identity Management is configured and operational.
- Red Hat OpenStack Platform is configured and operational.
- DNS name resolution is fully functional and all hosts are registered appropriately.

Permissions and roles

This integration allows IdM users to authenticate to OpenStack and access resources. OpenStack service accounts (such as keystone and glance), and authorization management (permissions and roles) will remain in the Identity Service database. Permissions and roles are assigned to the IdM accounts using Identity Service management tools.

High availability options

This configuration creates a dependency on the availability of a single IdM server: Project users will be affected if Identity Service is unable to authenticate to the IdM Server. There are a number of options available to manage this risk, for example: you might configure keystone to query a DNS alias or a load balancing appliance, rather than an individual IdM server. You can also configure keystone to query a different IdM server, should one become unavailable.

Outage requirements

- The Identity Service will need to be restarted in order to add the IdM back end.
- Users will be unable to access the dashboard until their accounts have been created in IdM. To reduce downtime, consider pre-staging the IdM accounts well in advance of this change.

Firewall configuration

If firewalls are filtering traffic between IdM and OpenStack, you will need to allow access through the following port:

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Type</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenStack Controller</td>
<td>Red Hat Identity</td>
<td>LDAPS</td>
<td>TCP 636</td>
</tr>
<tr>
<td>Node</td>
<td>Management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2. ENROLLING NODES IN RED HAT IDENTITY MANAGER (IDM) WITH NOVAJOIN

Novajoin is the default tool that you use to enroll your nodes with Red Hat Identity Manager (IdM) as part of the deployment process. As a result, you can integrate IdM features with your Red Hat OpenStack Platform deployment, including identities, kerberos credentials, and access controls. You must perform the enrollment process before you proceed with the rest of the IdM integration.

The enrollment process includes the following steps:

1. Adding the undercloud node to the certificate authority (CA)
2. Adding the undercloud node to IdM
3. Optional: Setting the IdM server as the DNS server for the overcloud
4. Preparing the environment files and deploying the overcloud
5. Testing the overcloud enrollment in IdM and in RHOSP

6. Optional: Adding DNS entries for novajoin in IdM

NOTE
IdM enrollment with novajoin is currently only available for the undercloud and overcloud nodes. Novajoin integration for overcloud instances is expected to be supported in a later release.

2.2.1. Adding the undercloud node to the certificate authority

Before you deploy the overcloud, add the undercloud to the certificate authority (CA) by installing the python3-novajoin package on the undercloud node and running the novajoin-ipa-setup script.

Procedure

1. On the undercloud node, install the python3-novajoin package:

```bash
$ sudo dnf install python3-novajoin
```

2. On the undercloud node, run the novajoin-ipa-setup script, and adjust the values to suit your deployment:

```bash
$ sudo /usr/libexec/novajoin-ipa-setup \
--principal admin \
--password <IdM admin password> \
--server <IdM server hostname> \
--realm <overcloud cloud domain (in upper case)> \
--domain <overcloud cloud domain> \
--hostname <undercloud hostname> \
--precreate
```

Use the resulting One-Time Password (OTP) to enroll the undercloud.

2.2.2. Adding the undercloud node to Red Hat Identity Manager (IdM)

After you add the undercloud node to the certificate authority (CA), register the undercloud with IdM and configure novajoin. Configure the following settings in the [DEFAULT] section of the undercloud.conf file.

Procedure

1. Enable the novajoin service:

```
[DEFAULT]
enable_novajoin = true
```

2. Set a One-Time Password (OTP) so that you can register the undercloud node with IdM:

```
ipa_otp = <otp>
```
3. Ensure that the overcloud domain name that the neutron DHCP server serves matches the IdM domain. For example, your kerberos realm in lowercase:

 overcloud_domain_name = <domain>

4. Set the hostname for the undercloud:

 undercloud_hostname = <undercloud FQDN>

5. Set IdM as the nameserver for the undercloud:

 undercloud_nameservers = <IdM IP>

6. For larger environments, review the novajoin connection timeout values. In the \texttt{undercloud.conf} file, add a reference to a new file called \texttt{undercloud-timeout.yaml}:

 \begin{verbatim}
 hieradata_override = /home/stack/undercloud-timeout.yaml
 \end{verbatim}

 Add the following options to \texttt{undercloud-timeout.yaml}. You can specify the timeout value in seconds, for example, 5:

 \begin{verbatim}
 nova::api::vendordata_dynamic_connect_timeout: <timeout value>
 nova::api::vendordata_dynamic_read_timeout: <timeout value>
 \end{verbatim}

7. Save the \texttt{undercloud.conf} file.

8. Run the undercloud deployment command to apply the changes to your existing undercloud:

 \begin{verbatim}
 $ openstack undercloud install
 \end{verbatim}

2.2.3. Setting Red Hat Identity Manager (IdM) as the DNS server for the overcloud

To enable automatic detection of your IdM environment and easier enrollment, set IdM as your DNS server. This procedure is optional but recommended.

Procedure

1. Connect to your undercloud:

 \begin{verbatim}
 $ source ~/stackrc
 \end{verbatim}

2. Configure the control plane subnet to use IdM as the DNS name server:

 \begin{verbatim}
 $ openstack subnet set ctlplane-subnet --dns-nameserver <idm_server_address>
 \end{verbatim}

3. Set the DnsServers parameter in an environment file to use your IdM server:

 \begin{verbatim}
 parameter_defaults:
 DnsServers: ["<idm_server_address>"]
 \end{verbatim}

 This parameter is usually defined in a custom \texttt{network-environment.yaml} file.
2.2.4. Preparing environment files and deploying the overcloud with novajoin enrollment

To deploy the overcloud with IdM integration, you create and edit environment files to configure the overcloud to use the custom domain parameters `CloudDomain` and `CloudName` based on the domains that you define in the overcloud. You then deploy the overcloud with all the environment files and any additional environment files that you need for the deployment.

Procedure

1. Create a copy of the `/usr/share/openstack-tripleo-heat-templates/environments/predictable-placement/custom-domain.yaml` environment file:

   ```bash
   $ cp /usr/share/openstack-tripleo-heat-templates/environments/predictable-placement/custom-domain.yaml \
   /home/stack/templates/custom-domain.yaml
   ```

2. Edit the `/home/stack/templates/custom-domain.yaml` environment file and set the `CloudDomain` and `CloudName*` values to suit your deployment:

   ```yaml
   parameter_defaults:
   CloudDomain: lab.local
   CloudName: overcloud.lab.local
   CloudNameInternal: overcloud.internalapi.lab.local
   CloudNameStorage: overcloud.storage.lab.local
   CloudNameStorageManagement: overcloud.storagemgmt.lab.local
   CloudNameCtlplane: overcloud.ctlplane.lab.local
   ```

3. Include the following environment files in the overcloud deployment process:

 - `/usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-internal-tls.yaml`
 - `/usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-everywhere-endpoints-dns.yaml`
 - `/home/stack/templates/custom-domain.yaml`

 For example:

   ```bash
   openstack overcloud deploy \
   --templates \
   -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-internal-tls.yaml \
   -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-everywhere-endpoints-dns.yaml \
   -e /home/stack/templates/custom-domain.yaml
   ```

 The deployed overcloud nodes will be enrolled with IdM automatically.

4. This sets TLS only for the internal endpoints. For the external endpoints you can use the normal means of adding TLS with the `/usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-tls.yaml` environment file (which you must modify to add your custom certificate and key):

   ```bash
   openstack overcloud deploy \
   --templates \
   ```
5. Alternatively, you can also use IdM to issue your public certificates. In that case, you must use the `/usr/share/openstack-tripleo-heat-templates/environments/services/haproxy-public-tls-certmonger.yaml` environment file:

```bash
openstack overcloud deploy \
  --templates \
  -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-internal-tls.yaml \
  -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-everywhere-endpoints-dns.yaml \
  -e /home/stack/templates/custom-domain.yaml \
  -e /usr/share/openstack-tripleo-heat-templates/environments/services/haproxy-public-tls-certmonger.yaml
```

NOTE

You cannot use novajoin to implement TLS everywhere (TLS-e) on a pre-existing deployment.

Additional resources

- Section 2.3, "Implementing TLS-e with Ansible"

2.2.5. Testing overcloud enrollment in Red Hat Identity Manager (IdM)

After you complete the undercloud and overcloud enrollment in IdM with novajoin, you can test that the enrollment is successful by searching for an overcloud node in IdM and checking that the host entry includes Keytab:True. You can also log in to the overcloud node and confirm that the sssd command can query IdM users.

1. Locate an overcloud node in IdM and confirm that the host entry includes Keytab:True:

   ```bash
   $ ipa host-show overcloud-node-01
   Host name: overcloud-node-01.lab.local
   Principal name: host/overcloud-node-01.lab.local@LAB.LOCAL
   Principal alias: host/overcloud-node-01.lab.local@LAB.LOCAL
   SSH public key fingerprint: <snip>
   Password: False
   Keytab: True
   Managed by: overcloud-node-01.lab.local
   ```

2. Log in to the overcloud node and confirm that sssd can query IdM users. For example, to query an IdM user named susan:

   ```bash
   $ getent passwd susan
   uid=1108400007(susan) gid=1108400007(bob) groups=1108400007(susan)
   ```

2.2.6. Adding DNS entries for novajoin in Red Hat Identity Manager (IdM)
If you use the `haproxy-public-tls-certmonger.yaml` template to issue public certificates for endpoints, you must manually create DNS entries for the VIP endpoints used by Novajoin.

Procedure

1. Identify the overcloud networks. You can locate these in `/home/stack/virt/network/network-environment.yaml`:

   ```yaml
   parameter_defaults:
     ControlPlaneDefaultRoute: 192.168.24.1
     ExternalAllocationPools:
       - end: 10.0.0.149
         start: 10.0.0.101
     InternalApiAllocationPools:
       - end: 172.17.1.149
         start: 172.17.1.10
     StorageAllocationPools:
       - end: 172.17.3.149
         start: 172.17.3.10
     StorageMgmtAllocationPools:
       - end: 172.17.4.149
         start: 172.17.4.10
   ```

2. Create a list of virtual IP addresses (VIP) for each overcloud network. For example: `/home/stack/virt/public_vip.yaml`

   ```yaml
   parameter_defaults:
     ControlFixedIPs: [{'ip_address':'192.168.24.101'}]
     PublicVirtualFixedIPs: [{'ip_address':'10.0.0.101'}]
     InternalApiVirtualFixedIPs: [{'ip_address':'172.17.1.101'}]
     StorageVirtualFixedIPs: [{'ip_address':'172.17.3.101'}]
     StorageMgmtVirtualFixedIPs: [{'ip_address':'172.17.4.101'}]
     RedisVirtualFixedIPs: [{'ip_address':'172.17.1.102'}]
   ```

3. Add DNS entries to IdM for each of the VIPs. You might also need to create new zones. The following example demonstrates DNS record and zone creation for IdM:

   ```shell
   ipa dnsrecord-add lab.local overcloud --a-rec 10.0.0.101
   ipa dnszone-add ctlplane.lab.local
   ipa dnsrecord-add ctlplane.lab.local overcloud --a-rec 192.168.24.101
   ipa dnszone-add internalapi.lab.local
   ipa dnsrecord-add internalapi.lab.local overcloud --a-rec 172.17.1.101
   ipa dnszone-add storage.lab.local
   ipa dnsrecord-add storage.lab.local overcloud --a-rec 172.17.3.101
   ipa dnszone-add storagemgmt.lab.local
   ipa dnsrecord-add storagemgmt.lab.local overcloud --a-rec 172.17.4.101
   ```

2.3. IMPLEMENTING TLS-E WITH ANSIBLE

Red Hat recommends the new ansible-based `tripleo-IPA` method over the default `novajoin` method to configure your undercloud and overcloud with TLS-e. You can use the following procedure to implement TLS-e on either a new installation of Red Hat OpenStack Platform, or an existing deployment you wish to configure with TLS-e. You must use this method if you deploy Red Hat OpenStack Platform with TLS-e on pre-provisioned nodes.
NOTE

If you are implementing TLS-e for an existing environment, you are still required to run commands such as the openstack undercloud install, and the openstack overcloud deploy commands. These are procedures are idempotent and will only adjust your existing deployment configuration to match updated templates and configuration files.

2.3.1. Configuring TLS-e on the undercloud

Prerequisites

Ensure that all configuration steps for the undercloud, such as the creation of the stack user, are complete. For more details, see Director Installation and Usage for more details

Procedure

1. Configure the hosts file
 Set the appropriate search domains and the nameserver on the undercloud in /etc/resolv.conf. For example, if the deployment domain is example.com, and the domain of the FreeIPA server is bigcorp.com, then add the following lines to /etc/resolv.conf:

   ```
   search example.com bigcorp.com
   nameserver $IDM_SERVER_IP_ADDR
   ```

2. Install required software:

   ```
   sudo yum install -y python3-ipalib python3-ipaclient krb5-devel
   ```

3. Export environmental variables with values specific to your environment:

   ```
   export IPA_DOMAIN=bigcorp.com
   export IPA_REALM=BIGCORP.COM
   export IPA_ADMIN_USER=$IPA_USER
   export IPA_ADMIN_PASSWORD=$IPA_PASSWORD
   export IPA_SERVER_HOSTNAME=ipa.bigcorp.com
   export UNDERCLOUD_FQDN=undercloud.example.com
   export USER=stack
   export CLOUD_DOMAIN=example.com
   ```

 NOTE

 The IdM user credentials must be an administrative user that can add new hosts and services.

4. Run the undercloud-IPA-install.yaml ansible playbook on the undercloud:

   ```
   ansible-playbook \
   --ssh-extra-args "-o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null" \
   /usr/share/ansible/tripleo-playbooks/undercloud-IPA-install.yaml
   ```

5. Add the following parameters to undercloud.conf
undercloud_nameservers = $IDM_SERVER_IP_ADDR
overcloud_domain_name = example.com

6. Deploy the undercloud:

openstack undercloud install

Verification

Verify that the undercloud was enrolled correctly by completing the following steps:

1. List the hosts in IdM:

 $ kinit admin
 $ ipa host-find

2. Confirm that /etc/novajoin/krb5.keytab exists on the undercloud.

 ls /etc/novajoin/krb5.keytab

 NOTE

 The novajoin directory name is for legacy naming purposes only.

2.3.2. Configuring TLS-e on the overcloud

When you deploy the overcloud with TLS everywhere (TLS-e), IP addresses from the Undercloud and Overcloud will automatically be registered with IdM.

 NOTE

 To disable automatic IP address registration, set the IDMModifyDNS heat parameter to false:

   ```yaml
   parameter_defaults:
     ...
     IDMModifyDNS: false
   ```

1. Before deploying the overcloud, create a YAML file `tls-parameters.yaml` with contents similar to the following. The values you select will be specific for your environment:

 - The DnsServers parameter should have a value that reflects the IP address of the IdM server.
 - If the domain of the IdM server is different than the cloud domain, include it in the DnsSearchDomains parameter. For example: `DnsSearchDomains: ["example.com", "bigcorp.com"]`
 - If you have preprovisioned nodes, set the value of the IDMInstallClientPackages parameter to `true` to install required packages on overcloud nodes.
- The shown value of the OS::TripleO::Services::IpaClient parameter overrides the default setting in the enable-internal-tls.yaml file. You must ensure the tls-parameters.yaml file follows enable-internal-tls.yaml in the openstack overcloud deploy command.

- If you are running a distributed compute node (DCN) architecture with cinder configured as active-active, you must add and set the EnableEtcdInternalTLS parameter to true.

```yaml
parameter_defaults:
  DnsSearchDomains: ["example.com"]
  DnsServers: ["192.168.1.13"]
  CloudDomain: example.com
  CloudName: overcloud.example.com
  CloudNameInternal: overcloud.internalapi.example.com
  CloudNameStorage: overcloud.storage.example.com
  CloudNameStorageManagement: overcloud.storagemgmt.example.com
  CloudNameCtlplane: overcloud.ctlplane.example.com
  IdMServer: freeipa-0.redhat.local
  IdMDomain: redhat.local
  IdMInstallClientPackages: False

resource_registry:
  OS::TripleO::Services::IpaClient: /usr/share/openstack-tripleo-heat-templates/deployment/ipa/ipaservices-baremetal-ansible.yaml
```

2. Deploy the overcloud. You will need to include the tls-parameters.yaml in the deployment command:

```bash
 DEFAULT_TEMPLATES=/usr/share/openstack-tripleo-heat-templates/
 CUSTOM_TEMPLATES=/home/stack/templates

openstack overcloud deploy \
-e $DEFAULT_TEMPLATES/environments/ssl/enable-internal-tls.yaml \
-e $CUSTOM_TEMPLATES/tls-parameters.yaml \
...
```

3. Confirm each endpoint is using HTTPS by querying keystone for a list of endpoints:

```bash
openstack overcloud endpoint list
```

2.4. CONFIGURING RED HAT IDENTITY MANAGER (IDM) SERVER CREDENTIALS

To configure the Red Hat Identity Manager (IdM) to integrate with OpenStack Identity, set up an LDAP account for Identity service to use, create a user group for Red Hat OpenStack users, and set up the password for the lookup account.

Prerequisites

- Red Hat Identity Manager (IdM) is configured and operational.
- Red Hat OpenStack Platform (RHOSP) is configured and operational.
DNS name resolution is fully functional and all hosts are registered appropriately.

IdM authentication traffic is encrypted with LDAPS, using port 636.

Recommended: Implement IdM with a high availability or load balancing solution to avoid a single point of failure.

Procedure

Perform this procedure on the IdM server.

1. Create the LDAP lookup account to use in OpenStack Identity Service to query the IdM LDAP service:

   ```
   # kinit admin
   # ipa user-add
   First name: OpenStack
   Last name: LDAP
   User [radministrator]: svc-ldap
   ```

 NOTE
 Review the password expiration settings of this account, once created.

2. Create a group for RHOSP users, called `grp-openstack`. Only members of this group can have permissions assigned in OpenStack Identity.

   ```
   # ipa group-add --desc="OpenStack Users" grp-openstack
   ```

3. Set the `svc-ldap` account password and add it to the `grp-openstack` group:

   ```
   # ipa passwd svc-ldap
   # ipa group-add-member --users=svc-ldap grp-openstack
   ```

4. Login as `svc-ldap` user and change the password when prompted:

   ```
   # kinit svc-ldap
   ```

2.5. INSTALLING THE RED HAT IDENTITY MANAGER (IDM) LDAPS CERTIFICATE

OpenStack Identity (keystone) uses LDAPS queries to validate user accounts. To encrypt this traffic, keystone uses the certificate file defined by `keystone.conf`. To install the LDAPS certificate, copy the certificate from the Red Hat Identity Manager (IdM) server to a location where keystone will be able to reference it, and convert the certificate from `.crt` to `.pem` format.

NOTE

When using multiple domains for LDAP authentication, you might receive various errors, such as `Unable to retrieve authorized projects`, or `Peer's Certificate issuer is not recognized`. This can arise if keystone uses the incorrect certificate for a certain domain. As a workaround, merge all of the LDAPS public keys into a single `.crt` bundle, and configure all of your keystone domains to use this file.
Prerequisites

- IdM server credentials are configured.

Procedure

1. In your IdM environment, locate the LDAPS certificate. This file can be located using /etc/openldap/ldap.conf:

 TLS_CACERT /etc/ipa/ca.crt

2. Copy the file to the Controller node that runs the keystone service. For example, the scp command copies the ca.crt file to the node node.lab.local:

 # scp /etc/ipa/ca.crt root@node.lab.local:/root/

3. Copy the ca.crt file to the certificate directory. This is the location that the keystone service will use to access the certificate:

 # cp ca.crt /etc/pki/ca-trust/source/anchors

4. Optional: If you need to run diagnostic commands, such as ldapsearch, you also need to add the certificate to the RHEL certificate store:

 a. On the Controller node, convert the .crt to .pem format:

 # openssl x509 -in ca.crt -out ca.pem -outform PEM

 b. Install the .pem on the Controller node. For example, in Red Hat Enterprise Linux:

 # cp ca.pem /etc/pki/ca-trust/source/anchors/
 # update-ca-trust

2.6. CONFIGURING DIRECTOR TO USE DOMAIN-SPECIFIC LDAP BACKENDS

To configure director to use one or more LDAP backends, set the KeystoneLDAPDomainEnable flag to true in your heat templates, and set up environment files with the information about each LDAP backend. Director then uses a separate LDAP backend for each keystone domain.

NOTE

The default directory for domain configuration files is set to /etc/keystone/domains/. You can override this by setting the required path with the keystone::domain_config_directory hiera key and adding it as an ExtraConfig parameter within an environment file.

Procedure

1. In the heat template for your deployment, set the KeystoneLDAPDomainEnable flag to true. This configures the domain_specific_drivers_enabled option in keystore within the identity configuration group.
2. Add a specification of the LDAP backend configuration by setting the `KeystoneLDAPBackendConfigs` parameter in `tripleo-heat-templates`, where you can then specify your required LDAP options.

3. Create a copy of the `keystone_domain_specific_ldap_backend.yaml` environment file:

   ```bash
   $ cp /usr/share/openstack-tripleo-heat-templates/environments/services/keystone_domain_specific_ldap_backend.yaml /home/stack/templates/
   ```

4. Edit the `/home/stack/templates/keystone_domain_specific_ldap_backend.yaml` environment file and set the values to suit your deployment. For example, this parameter create a LDAP configuration for a keystone domain named `testdomain`:

   ```yaml
   parameter_defaults:
   KeystoneLDAPDomainEnable: true
   KeystoneLDAPBackendConfigs:
     testdomain:
       url: ldaps://192.0.2.250
       user: cn=openstack,ou=Users,dc=director,dc=example,dc=com
       password: RedactedComplexPassword
       suffix: dc=director,dc=example,dc=com
       user_tree_dn: ou=Users,dc=director,dc=example,dc=com
       user_filter: "(memberOf=cn=OSuser,ou=Groups,dc=director,dc=example,dc=com)"
       user_objectclass: person
       user_id_attribute: cn
   ```

5. Optional: Add more domains to the environment file. For example:

   ```yaml
   KeystoneLDAPBackendConfigs:
   domain1:
     url: ldaps://domain1.example.com
     user: cn=openstack,ou=Users,dc=director,dc=example,dc=com
     password: RedactedComplexPassword
   ...
   domain2:
     url: ldaps://domain2.example.com
     user: cn=openstack,ou=Users,dc=director,dc=example,dc=com
     password: RedactedComplexPassword
   ...
   ```

 This results in two domains named `domain1` and `domain2`; each will have a different LDAP domain with its own configuration.

2.7. CONFIGURING OPENSTACK IDENTITY DOMAINS ON CONTROLLER NODES

To configure Controller nodes that run OpenStack Identity (keystone) to integrate with an external user management service, first configure SELinux to use LDAP authentication and create the `domains` directory on the Controller node. Then configure OpenStack Identity to use multiple back ends and the Dashboard to use multiple domains.
NOTE

If you are using director, note that the configuration files referenced in this procedure are managed by Puppet. Therefore, any custom configuration you add might be overwritten whenever you run the `openstack overcloud deploy` command.

Planning

If you intend to update any configuration files, you need to be aware that certain OpenStack services now run within containers; this applies to keystone, nova, and cinder, among others. As a result, there are certain administration practices to consider:

- Do not update any configuration file you might find on the physical node’s host operating system, for example, `/etc/cinder/cinder.conf`. This is because the containerized service does not reference this file.

- Do not update the configuration file running within the container. This is because any changes are lost once you restart the container.

Instead, if you need to add any changes to containerized services, you will need to update the configuration file that is used to generate the container. These are stored within `/var/lib/config-data/puppet-generated/`

For example:

- keystone: `/var/lib/config-data/puppet-generated/keystone/etc/keystone/keystone.conf`
- cinder: `/var/lib/config-data/puppet-generated/cinder/etc/cinder/cinder.conf`
- nova: `/var/lib/config-data/puppet-generated/nova/etc/nova/nova.conf`

Any changes will then be applied once you restart the service. For example: `sudo systemctl restart tripleo_keystone`

Procedure

Perform this procedure on each Controller node that runs the OpenStack Identity (keystone) service.

1. Configure SELinux:

   ```bash
   # setsebool -P authlogin_nsswitch_use_ldap=on
   ```

 The output might include messages similar to this. They can be ignored:

   ```bash
   Full path required for exclude: net:[4026532245].
   ```

2. Create the `domains` directory:

   ```bash
   # mkdir /var/lib/config-data/puppet-generated/keystone/etc/keystone/domains/
   # chown 42425:42425 /var/lib/config-data/puppet-generated/keystone/etc/keystone/domains/
   ```

3. Configure keystone to use multiple back ends:

 NOTE

 You might need to install `crudini` using `dnf install crudini`.

4. Enable multiple domains in dashboard. Add these lines to /var/lib/config-data/puppet-generated/horizon/etc/openstack-dashboard/local_settings:

```python
OPENSTACK_API_VERSIONS = {
    "identity": 3
}
OPENSTACK_KEYSTONE_MULTIDOMAIN_SUPPORT = True
OPENSTACK_KEYSTONE_DEFAULT_DOMAIN = 'Default'
```

NOTE

If you are using director, note that /var/lib/config-data/puppet-generated/horizon/etc/openstack-dashboard/local_settings is managed by Puppet. Consequently, any custom configuration you add might be overwritten whenever you run the openstack overcloud deploy process. As a result, you might need to re-add this configuration manually each time.

Restart the horizon container to apply the settings:

```
$ sudo systemctl restart tripleo_horizon
```

5. Create the keystone domain for the external service integration with the NetBIOS name value retrieved previously as the domain name. This approach allows you to present a consistent domain name to users during the login process. In this example, **LAB** is the NetBIOS name to use as the Identity Service domain.

```
$ openstack domain create LAB
```

NOTE

If this command is not available, check that you have enabled keystone v3 for your command line session by running `# source overcloudrc-v3`.

6. Create the configuration file for the external service that you are integrating:

- Active Directory Domain Service (AD DS): Enter the LDAP settings in a new file called /var/lib/config-data/puppet-generated/keystone/etc/keystone/domains/keystone.LAB.conf (where **LAB** is the NetBIOS name retrieved previously). You will need to edit the sample settings below to suit your AD DS deployment:

```ini
[ldap]
url                  = ldaps://addc.lab.local:636
user                  = CN=svc-ldap,OU=labUsers,DC=lab,DC=local
password                 = RedactedComplexPassword
```
suffix = DC=lab,DC=local
user_tree_dn = OU=labUsers,DC=lab,DC=local
user_objectclass = person
user_filter = ((memberOf=cn=grp-openstack,OU=labUsers,DC=lab,DC=local)
 (memberOf=cn=grp-openstack-admin,OU=labUsers,DC=lab,DC=local)
 (memberOf=cn=grp-openstack-demo,OU=labUsers,DC=lab,DC=local))
user_id_attribute = sAMAccountName
user_name_attribute = sAMAccountName
user_mail_attribute = mail
user_pass_attribute =
user_enabled_attribute = userAccountControl
user_enabled_mask = 2
user_enabled_default = 512
user_attribute_ignore = password,tenant_id,tenants
group_objectclass = group
group_tree_dn = OU=labUsers,DC=lab,DC=local
group_filter = (CN=grp-openstack*)
group_id_attribute = cn
group_name_attribute = name
use_tls = False
tls_cacertfile = /etc/pki/ca-trust/source/anchors/anchorsaddc.lab.local.pem
query_scope = sub
chase_referrals = false

[identity]

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>url</td>
<td>The AD Domain Controller to use for authentication. Uses LDAPS port 636.</td>
</tr>
<tr>
<td>user</td>
<td>The Distinguished Name of an AD account to use for LDAP queries. For example, you can locate the Distinguished Name value of the svc-ldap account in AD using Get-ADUser svc-ldap</td>
</tr>
<tr>
<td>password</td>
<td>The plaintext password of the AD account used above.</td>
</tr>
<tr>
<td>suffix</td>
<td>The Distinguished Name of your AD domain. You can locate this value using Get-ADDomain</td>
</tr>
<tr>
<td>user_tree_dn</td>
<td>The Organizational Unit (OU) that contains the OpenStack accounts.</td>
</tr>
<tr>
<td>user_objectclass</td>
<td>Defines the type of LDAP user. For AD, use the person type.</td>
</tr>
<tr>
<td>Setting</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>user_filter</td>
<td>Filters the users presented to Identity Service. As a result, only members of the <code>grp-openstack</code> group can have permissions defined in Identity Service. This value requires the full <code>Distinguished Name</code> of the group: `Get-ADGroup grp-openstack</td>
</tr>
<tr>
<td>user_id_attribute</td>
<td>Maps the AD value to use for user IDs.</td>
</tr>
<tr>
<td>user_name_attribute</td>
<td>Maps the AD value to use for names.</td>
</tr>
<tr>
<td>user_mail_attribute</td>
<td>Maps the AD value to use for user email addresses.</td>
</tr>
<tr>
<td>user_pass_attribute</td>
<td>Leave this value blank.</td>
</tr>
<tr>
<td>user_enabled_attribute</td>
<td>The AD setting that validates whether the account is enabled.</td>
</tr>
<tr>
<td>user_enabled_mask</td>
<td>Defines the value to check to determine whether an account is enabled. Used when booleans are not returned.</td>
</tr>
<tr>
<td>user_enabled_default</td>
<td>The AD value that indicates that an account is enabled.</td>
</tr>
<tr>
<td>user_attribute_ignore</td>
<td>Defines user attributes that Identity Service should disregard.</td>
</tr>
<tr>
<td>group_objectclass</td>
<td>Maps the AD value to use for groups.</td>
</tr>
<tr>
<td>group_tree_dn</td>
<td>The <code>Organizational Unit</code> (OU) that contains the user groups.</td>
</tr>
<tr>
<td>group_filter</td>
<td>Filters the groups presented to Identity Service.</td>
</tr>
<tr>
<td>group_id_attribute</td>
<td>Maps the AD value to use for group IDs.</td>
</tr>
<tr>
<td>group_name_attribute</td>
<td>Maps the AD value to use for group names.</td>
</tr>
<tr>
<td>use_tls</td>
<td>Defines whether TLS is to be used. This needs to be disabled if you are encrypting with LDAPS rather than STARTTLS.</td>
</tr>
<tr>
<td>tls_cacertfile</td>
<td>Specifies the path to the <code>.crt</code> certificate file.</td>
</tr>
</tbody>
</table>
Configures Identity Service to also search within nested child OUs, when locating users that are members of the `grp-openstack` group.

Set to `false`, this setting prevents `python-ldap` from chasing all referrals with anonymous access.

- **Red Hat Identity Manager (IdM):** Enter the LDAP settings in a new file called `/var/lib/config-data/puppet-generated/keystone/etc/keystone/domains/keystone.LAB.conf` (where LAB is the domain name created previously). You will need to edit the sample settings below to suit your IdM deployment:

```plaintext
[ldap]
url = ldaps://idm.lab.local
user = uid=svc-ldap,cn=users,cn=accounts,dc=lab,dc=local
user_filter = (memberOf=cn=grp-openstack,cn=groups,cn=accounts,dc=lab,dc=local)
password = RedactedComplexPassword
user_tree_dn = cn=users,cn=accounts,dc=lab,dc=local
user_objectclass = inetUser
user_id_attribute = uid
user_name_attribute = uid
user_mail_attribute = mail
user_pass_attribute =
group_tree_dn = cn=groups,cn=accounts,dc=lab,dc=local
group_objectclass = groupOfNames
group_id_attribute = cn
group_name_attribute = cn
group_member_attribute = member
group_desc_attribute = description
use_tls = False
query_scope = sub
chase_referrals = false
tls_cacertfile = /etc/pki/ca-trust/source/anchors/anchorsca.crt

[identity]
driver = ldap
```

Explanation of each setting:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>url</td>
<td>The IdM server to use for authentication. Uses LDAPS port 636.</td>
</tr>
<tr>
<td>user</td>
<td>The account in IdM to use for LDAP queries.</td>
</tr>
</tbody>
</table>
Setting | Description
--- | ---
password | The plaintext password of the IdM account used above.

user_filter | Filters the users presented to Identity Service. As a result, only members of the `grp-openstack` group can have permissions defined in Identity Service.

user_tree_dn | The path to the OpenStack accounts in IdM.

user_objectclass | Defines the type of LDAP user. For IdM, use the `inetUser` type.

user_id_attribute | Maps the IdM value to use for user IDs.

user_name_attribute | Maps the IdM value to use for names.

user_mail_attribute | Maps the IdM value to use for user email addresses.

user_pass_attribute | Leave this value blank.

NOTE

Integration with an IdM group will only return direct members, and not nested groups. As a result, queries that rely on `LDAP_MATCHING_RULE_IN_CHAIN` or `memberof:1.2.840.113556.1.4.1941:` will not currently work with IdM.

7. Change ownership of the configuration file to the keystone user:

```
# chown 42425:42425 /var/lib/config-data/puppet-generated/keystone/etc/keystone/domains/keystone.LAB.conf
```

8. Restart the keystone service to apply the changes:

```
# sudo systemctl restart tripleo_keystone
```

Additional resources

- Section 2.8, “Granting the admin user access to the OpenStack Identity domain”
- Section 2.6, “Configuring director to use domain-specific LDAP backends”

2.8. GRANTING THE ADMIN USER ACCESS TO THE OPENSTACK IDENTITY DOMAIN
To allow the **admin** user to access the OpenStack Identity (keystone) domain and see the **Domain** tab, get the ID of the domain and the **admin** user, and then assign the **admin** role to the user in the domain.

NOTE

This does not grant the OpenStack admin account any permissions on the external service domain. In this case, the term *domain* refers to OpenStack's usage of the keystone domain.

Procedure

This procedure uses the **LAB** domain. Replace the domain name with the actual name of the domain that you are configuring.

1. Get the ID of the **LAB** domain:

   ```bash
   $ openstack domain show LAB
   +---------+----------------------------------+
   | Field   | Value                            |
   +---------+----------------------------------+
   | enabled | True                             |
   | id      | 6800b0496429431ab1c4efbb3fe810d4 |
   | name    | LAB                              |
   +---------+----------------------------------+
   ```

2. Get the ID of the **admin** user from the **default** domain:

   ```bash
   $ openstack user list --domain default | grep admin
   | 3d75388d351846c6a880e53b2508172a | admin      |
   ```

3. Get the ID of the **admin** role:

   ```bash
   $ openstack role list
   The output depends on the external service you are integrating with:
   ```

 - **Active Directory Domain Service (AD DS):**

     ```text
     +---------+---------+
     | ID       | Name    |
     | 01d92614cd224a589bdf3b171af5488 | admin    |
     | 034e4620ed3d45969de8992af001514 | member   |
     | 0aa377a807df4149b0a8c69b9560b106 | ResellerAdmin |
     | 9369f2bf1754443f199c6d6b96479b1fa | heat_stack_user |
     | cfe5760d9c948e7b362abc1d06e557f | reader   |
     | d5cb454559e44b47aaa8821df4e11af1 | swiftoperator |
     | ef3d3f10a474d6c860b4098ad658a29 | service  |
     +---------+---------+
     ```

 - **Red Hat Identity Manager (IdM):**

     ```text
     +---------+---------+
     | ID       | Name    |
     +---------+---------+
     ```
4. Use the domain and admin IDs to construct the command that adds the `admin` user to the `admin` role of the keystone `LAB` domain:

   ```
   # openstack role add --domain 6800b0496429431ab1c4efbb3fe810d4 --user
   3d75388d351846c6a880e53b2508172a 785c70b150ee4c778fe4de088070b4cf
   ```

2.9. GRANTING EXTERNAL GROUPS ACCESS TO RED HAT OPENSTACK PLATFORM PROJECTS

To grant multiple authenticated users access to Red Hat OpenStack Platform (RHOSP) resources, you can authorize certain groups from the external user management service to grant access to RHOSP projects, instead of requiring OpenStack administrators to manually allocate each user to a role in a project. As a result, all members of these groups can access pre-determined projects.

Prerequisites

- Ensure that the external service administrator completed the following steps:
 - Creating a group named `grp-openstack-admin`.
 - Creating a group named `grp-openstack-demo`.
 - Adding your RHOSP users to one of these groups as needed.
 - Adding your users to the `grp-openstack` group.

- Create the OpenStack Identity domain. This procedure uses the Lab domain.

- Create or choose a RHOSP project. This procedure uses a project called `demo` that was created with the `openstack project create --domain default --description "Demo Project" demo` command.

Procedure

1. Retrieve a list of user groups from the OpenStack Identity domain:

   ```
   # openstack group list --domain LAB
   ```

 The command output depends on the external user management service that you are integrating with:

 - Active Directory Domain Service (AD DS):

     ```
     +----------------------------------+---------------+
     | ID                                 | Name          |
     +----------------------------------+---------------+
     | 185277be62ae17e498a69f98a59b66934fb1d6b7f745f14f5f68953a665b8851 | grp-
     ```
openstack | a8d17f19f464c4548c18b97e4aa331820f9d3be52654aa8094e698a9182cbb88 | grp-openstack-admin | d971bb3bd5e64a454cb0cc7af4c0773e78d61b5f61321809f8323216938cae8 | grp-openstack-admin | d971bb3bd5e64a454cb0cc7af4c0773e78d61b5f61321809f8323216938cae8 | grp-openstack-admin | d971bb3bd5e64a454cb0cc7af4c0773e78d61b5f61321809f8323216938cae8 | grp-openstack-admin | d971bb3bd5e64a454cb0cc7af4c0773e78d61b5f61321809f8323216938cae8 | grp-openstack-admin
| a8d17f19f464c4548c18b97e4aa331820f9d3be52654aa8094e698a9182cbb88 | grp-openstack-admin | d971bb3bd5e64a454cb0cc7af4c0773e78d61b5f61321809f8323216938cae8 | grp-openstack-admin | d971bb3bd5e64a454cb0cc7af4c0773e78d61b5f61321809f8323216938cae8 | grp-openstack-admin | d971bb3bd5e64a454cb0cc7af4c0773e78d61b5f61321809f8323216938cae8 | grp-openstack-admin | d971bb3bd5e64a454cb0cc7af4c0773e78d61b5f61321809f8323216938cae8 | grp-openstack-admin

• Red Hat Identity Manager (IdM):

2. Retrieve a list of roles:

 # openstack role list

 The command output depends on the external user management service that you are integrating with:

 • Active Directory Domain Service (AD DS):

 +----------------------------------+-----------------+
 | ID | Name |
 +----------------------------------+-----------------+
 | 01d92614cd224a589bd3b171afc5488 | admin |
 | 034e4620ed3d45969de8992af001514 | member |
 | 0aa377e807df4149b0a8c69b9560b106 | ResellerAdmin |
 | 9369f2bf754443f199c6d6b96479b1f | heat_stack_user |
 | cfe6760d9c48e7b362abc1d06e557f | reader |
 | d5cb454559e44b47aaa821df411af1 | swiftoperator |
 | e5f3f510a474d6cc860b4098ad658a29 | service |
 +----------------------------------+-----------------+

 • Red Hat Identity Manager (IdM):

 +----------------------------------+---------------+
 | ID | Name |
 +----------------------------------+---------------+
 | 0969957bce5e4f678ca6ce00e1abf8a | ResellerAdmin |
 | 1fcb3c9b5bba6ee8196aaaacc2b76b7 | admin |
 | 9fe2ff9e4384b1994a90878d3e92bab | _member_ |
 | d3570730e4b4700a7fed91e97e1b | SwiftOperator |
 +----------------------------------+---------------+

3. Grant the user groups access to RHOSP projects by adding them to one or more of these roles. For example, if you want users in the `grp-openstack-demo` group to be general users of the
demo project, you must add the group to the member or _member_ role, depending on the external service that you are integrating with:

- Active Directory Domain Service (AD DS):

  ```
  # openstack role add --project demo --group
d971bb3bd5e64a454cbd0cc7af4c0773e78d61b5f81321809f8323216938cae8  member
  ```

- Red Hat Identity Manager (IdM):

  ```
  $ openstack role add --project demo --group
d971bb3bd5e64a454cbd0cc7af4c0773e78d61b5f81321809f8323216938cae8
  _member_
  ```

Result

Members of grp-openstack-demo can log in to the dashboard by entering their username and password and entering LAB in the Domain field:

![Dashboard login screen](image)

NOTE

If users receive the error *Error: Unable to retrieve container list.*, and expect to be able to manage containers, then they must be added to the SwiftOperator role.

Additional resources

- Section 2.10, "Granting external users access to Red Hat OpenStack Platform projects"

2.10. GRANTING EXTERNAL USERS ACCESS TO RED HAT OPENSTACK PLATFORM PROJECTS

To grant specific authenticated users from the grp-openstack group access to OpenStack resources, you can grant these users direct access to Red Hat OpenStack Platform (RHOSP) projects. Use this process in cases where you want to grant access to individual users instead of granting access to groups.
Prerequisites

- Ensure that the external service administrator completed the following steps:
 - Adding your RHOSP users to the `grp-openstack` group.
 - Creating the OpenStack Identity domain. This procedure uses the LAB domain.
- Create or choose a RHOSP project. This procedure uses a project called `demo` that was created with the `openstack project create --domain default --description "Demo Project" demo` command.

Procedure

1. Retrieve a list of users from the OpenStack Identity domain:

   ```bash
   # openstack user list --domain LAB
   +-----------------+----------------+
   | ID              | Name           |
   +-----------------+----------------+
   | 1f24ec1f11aeb90520079c29f70afa060d22e2ce92b2eba7784c841ac418091e | user1          |
   | 12c062faddc5f8b065434d9ff6fcee03eb9259537c93b411224588686e9a338bf1 | user2          |
   | afaf48031eb54c3e44e4cb0353f5b612084033ff70f63c22873d181fdae2e73c | user3          |
   | e47fc21dcf0d9716d2663766023e2d8dc15a6d9b01453854a898cabb2396826e | user4          |
   +-----------------+----------------+
   ```

2. Retrieve a list of roles:

   ```bash
   # openstack role list
   ```

 The command output depends on the external user management service that you are integrating with:

 - **Active Directory Domain Service (AD DS):**
     ```bash
     +-----------------+-----------------+
     | ID              | Name            |
     +-----------------+-----------------+
     | 01d92614cd224a589bdf3b171afc5488 | admin           |
     | 034e4620ed3d45969dfe8992af001514 | member          |
     | 0aa377a807df4149b0a8c69b9560b106 | ResellerAdmin   |
     | 9369f2bf754443f199c6d6b96479b11a | heat_stack_user |
     | cfe5a760d9c94e87b362abc1d06e557f | reader          |
     | d5cb454559e44b47aa8821df4e11af1 | swiftoperator   |
     | ef3d3f510a4746c860b4098ad658a29 | service         |
     +-----------------+-----------------+
   ```

 - **Red Hat Identity Manager (IdM):**
     ```bash
     +-----------------+-----------------+
     | ID              | Name            |
     +-----------------+-----------------+
     | 0969957bec5e4f678ca6ce00e1abf8a | ResellerAdmin   |
     | 1fcb3c9b50aa46ee8196aace2b76b7 | admin           |
     +-----------------+-----------------+
   ```
3. Grant users access to RHOSP projects by adding them to one or more of these roles. For example, if you want user1 to be a general user of the demo project, you add them to the member or _member_ role, depending on the external service that you are integrating with:

- Active Directory Domain Service (AD DS):

  ```
  # openstack role add --project demo --user 1f24ec1f11aeb90520079c29f70afa060d22e2ce92b2eba7784c841ac418091e member
  ```

- Red Hat Identity Manager (IdM):

  ```
  # openstack role add --project demo --user 1f24ec1f11aeb90520079c29f70afa060d22e2ce92b2eba7784c841ac418091e _member_
  ```

4. If you want user1 to be an administrative user of the demo project, add the user to the admin role:

   ```
   # openstack role add --project demo --user 1f24ec1f11aeb90520079c29f70afa060d22e2ce92b2eba7784c841ac418091e admin
   ```

Result

The user1 user is able to log in to the dashboard by entering their external username and password and entering LAB in the Domain field:

![Dashboard Login](image)

NOTE

If users receive the error Error: Unable to retrieve container list., and expect to be able to manage containers, then they must be added to the SwiftOperator role.

Additional resources
2.11. VIEWING THE LIST OF OPENSTACK IDENTITY DOMAINS AND USERS

Use the `openstack domain list` command to list the available entries. Configuring multiple domains in Identity Service enables a new Domain field in the dashboard login page. Users are expected to enter the domain that matches their login credentials.

IMPORTANT

After you complete the integration, you need to decide whether to create new projects in the Default domain or in newly created keystone domains. You must consider your workflow and how you administer user accounts. If possible, use the Default domain as an internal domain to manage service accounts and the admin project, and keep your external users in a separate domain.

In this example, external accounts need to specify the LAB domain. The built-in keystone accounts, such as admin, must specify Default as their domain.

Procedure

1. Show the list of domains:

   ```
   # openstack domain list
   +----------------------------------+---------+---------+-------------------------------------------------------
   | ID                               | Name    | Enabled | Description                                                          |
   +----------------------------------+---------+---------+-------------------------------------------------------
   | 6800b0496429431ab1c4efbb3fe810d4 | LAB     | True    |                                                     |
   | default                          | Default | True    | Owns users and projects available on Identity API v2. |
   +----------------------------------+---------+---------+-------------------------------------------------------
   
   # openstack user list --domain LAB
   
   You can also append `--domain Default` to show the built-in keystone accounts:
   ```
 # openstack user list --domain Default

 # openstack user list --domain Default

 2.12. CREATING A CREDENTIALS FILE FOR A NON-ADMIN USER

After you configure users and domains for OpenStack Identity, you might need to create a credentials file for a non-admin user.

Procedure
Create a credentials (RC) file for a non-admin user. This example uses the user1 user in the file.

```
$ cat overcloudrc-v3-user1
# Clear any old environment that may conflict.
for key in $( set | awk '{FS="="} /^OS_/ {print $1}' ); do unset $key ; done
export OS_USERNAME=user1
export NOVA_VERSION=1.1
export OS_PROJECT_NAME=demo
export OS_PASSWORD=RedactedComplexPassword
export OS_NO_CACHE=True
export COMPUTE_API_VERSION=1.1
export no_proxy=10.0.0.5,192.168.2.11
export OS_CLOUDNAME=overcloud
export OS_AUTH_URL=https://10.0.0.5:5000/v3
export OS_AUTH_TYPE=password
export PYTHONWARNINGS="ignore:Certificate has no, ignore:A true SSLContext object is not available"
export OS_IDENTITY_API_VERSION=3
export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=LAB
```

2.13. TESTING OPENSTACK IDENTITY INTEGRATION WITH AN EXTERNAL USER MANAGEMENT SERVICE

To test that OpenStack Identity (keystone) successfully integrated with Active Directory Domain Service (AD DS), test user access to dashboard features.

Prerequisites

- Integration with an external user management service, such as Active Directory (AD) or Red Hat Identity Manager (IdM)

Procedure

1. Create a test user in the external user management service, and add the user to the **grp-openstack** group.

2. In Red Hat OpenStack Platform, add the user to the **_member_** role of the **demo** project.

3. Log in to the dashboard with the credentials of the AD test user.

4. Click on each of the tabs to confirm that they are presented successfully without error messages.

5. Use the dashboard to build a test instance.

NOTE

If you experience issues with these steps, log in to the dashboard with the **admin** account and perform the subsequent steps as that user. If the test is successful, it means that OpenStack is still working as expected and that an issue exists somewhere in the integration settings between OpenStack Identity and Active Directory.

Additional resources
Section 1.11, “Troubleshooting Active Directory integration”

2.14. TROUBLESHOOTING RED HAT IDENTITY MANAGER (IDM) INTEGRATION

If you encounter errors when using the Red Hat Identity Manager (IdM) integration with OpenStack Identity, you might need to test the LDAP connection or test the certificate trust configuration. You might also need to check that the LDAPS port is accessible.

NOTE

Depending on the error type and location, perform only the relevant steps in this procedure.

Procedure

1. Test the LDAP connection by using the `ldapsearch` command to remotely perform test queries against the IdM server. A successful result here indicates that network connectivity is working, and the IdM services are up. In this example, a test query is performed against the server `idm.lab.local` on port `636`:

   ```bash
   # ldapsearch -D "cn=directory manager" -H ldaps://idm.lab.local:636 -b "dc=lab,dc=local" -s sub "(objectclass=*)" -w RedactedComplexPassword
   ```

 NOTE

 `ldapsearch` is a part of the `openldap-clients` package. You can install this using

   ```bash
   # dnf install openldap-clients
   ```

2. Use the `nc` command to check that LDAPS port `636` is remotely accessible. In this example, a probe is performed against the server `idm.lab.local`. Press `ctrl-c` to exit the prompt.

   ```bash
   # nc -v idm.lab.local 636
   ^C
   ```

 Failure to establish a connection could indicate a firewall configuration issue.