Red Hat OpenStack Platform 16.2-Beta

Configuring the Compute Service for Instance Creation

A guide to configuring and managing the Red Hat OpenStack Platform Compute (nova) service for creating instances
Red Hat OpenStack Platform 16.2-Beta Configuring the Compute Service for Instance Creation

A guide to configuring and managing the Red Hat OpenStack Platform Compute (nova) service for creating instances

OpenStack Team
rhos-docs@redhat.com
Abstract

This guide provides concepts and procedures for cloud administrators to configure and manage the Red Hat OpenStack Platform Compute (nova) service using the OpenStack Client CLI.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.4.</td>
<td>Filtering by availability zone using the Placement service</td>
</tr>
<tr>
<td>7.2.</td>
<td>CONFIGURING FILTERS AND WEIGHTS FOR THE COMPUTE SCHEDULER SERVICE</td>
</tr>
<tr>
<td>7.3.</td>
<td>COMPUTE SCHEDULER FILTERS</td>
</tr>
<tr>
<td>7.4.</td>
<td>COMPUTE SCHEDULER WEIGHTS</td>
</tr>
<tr>
<td>8.</td>
<td>CREATING FLAVORS FOR LAUNCHING INSTANCES</td>
</tr>
<tr>
<td>8.1.</td>
<td>CREATING A FLAVOR</td>
</tr>
<tr>
<td>8.2.</td>
<td>FLAVOR ARGUMENTS</td>
</tr>
<tr>
<td>8.3.</td>
<td>FLAVOR METADATA</td>
</tr>
<tr>
<td>9.</td>
<td>ADDING METADATA TO INSTANCES</td>
</tr>
<tr>
<td>9.1.</td>
<td>TYPES OF INSTANCE METADATA</td>
</tr>
<tr>
<td>9.2.</td>
<td>ADDING A CONFIG DRIVE TO ALL INSTANCES</td>
</tr>
<tr>
<td>9.3.</td>
<td>ADDING STATIC METADATA TO INSTANCES</td>
</tr>
<tr>
<td>9.4.</td>
<td>ADDING DYNAMIC METADATA TO INSTANCES</td>
</tr>
<tr>
<td>10.</td>
<td>CONFIGURING CPU FEATURE FLAGS FOR INSTANCES</td>
</tr>
<tr>
<td>10.1.</td>
<td>PREREQUISITES</td>
</tr>
<tr>
<td>10.2.</td>
<td>CONFIGURING CPU FEATURE FLAGS FOR INSTANCES</td>
</tr>
<tr>
<td>11.</td>
<td>CONFIGURING AMD SEV COMPUTE NODES TO PROVIDE MEMORY ENCRYPTION FOR INSTANCES</td>
</tr>
<tr>
<td>11.1.</td>
<td>SECURE ENCRYPTED VIRTUALIZATION (SEV)</td>
</tr>
<tr>
<td>11.2.</td>
<td>DESIGNATING AMD SEV COMPUTE NODES FOR MEMORY ENCRYPTION</td>
</tr>
<tr>
<td>11.3.</td>
<td>CONFIGURING AMD SEV COMPUTE NODES FOR MEMORY ENCRYPTION</td>
</tr>
<tr>
<td>11.4.</td>
<td>CREATING AN IMAGE FOR MEMORY ENCRYPTION</td>
</tr>
<tr>
<td>11.5.</td>
<td>CREATING A FLAVOR FOR MEMORY ENCRYPTION</td>
</tr>
<tr>
<td>11.6.</td>
<td>LAUNCHING AN INSTANCE WITH MEMORY ENCRYPTION</td>
</tr>
<tr>
<td>12.</td>
<td>CONFIGURING NVDIMM COMPUTE NODES TO PROVIDE PERSISTENT MEMORY FOR INSTANCES</td>
</tr>
<tr>
<td>12.1.</td>
<td>DESIGNATING COMPUTE NODES FOR PMEM</td>
</tr>
<tr>
<td>12.2.</td>
<td>CONFIGURING A PMEM COMPUTE NODE</td>
</tr>
<tr>
<td>13.</td>
<td>CONFIGURING VIRTUAL GPUs FOR INSTANCES</td>
</tr>
<tr>
<td>13.1.</td>
<td>SUPPORTED CONFIGURATIONS AND LIMITATIONS</td>
</tr>
<tr>
<td>13.2.</td>
<td>CONFIGURING VGPU ON THE COMPUTE NODE</td>
</tr>
<tr>
<td>13.2.1.</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>13.2.2.</td>
<td>Designating Compute nodes for vGPU</td>
</tr>
<tr>
<td>13.2.3.</td>
<td>Configuring the Compute node for vGPU and deploying the overcloud</td>
</tr>
<tr>
<td>13.3.</td>
<td>CREATING A CUSTOM GPU INSTANCE IMAGE</td>
</tr>
<tr>
<td>13.4.</td>
<td>CREATING A VGPU FLAVOR FOR INSTANCES</td>
</tr>
<tr>
<td>13.5.</td>
<td>LAUNCHING A VGPU INSTANCE</td>
</tr>
<tr>
<td>13.6.</td>
<td>ENABLING PCI PASSTHROUGH FOR A GPU DEVICE</td>
</tr>
<tr>
<td>14.</td>
<td>CONFIGURING REAL-TIME COMPUTE</td>
</tr>
<tr>
<td>14.1.</td>
<td>PREPARING COMPUTE NODES FOR REAL-TIME</td>
</tr>
<tr>
<td>14.2.</td>
<td>DEPLOYING THE REAL-TIME COMPUTE ROLE</td>
</tr>
<tr>
<td>14.3.</td>
<td>SAMPLE DEPLOYMENT AND TESTING SCENARIO</td>
</tr>
<tr>
<td>14.4.</td>
<td>LAUNCHING AND TUNING REAL-TIME INSTANCES</td>
</tr>
<tr>
<td>15.</td>
<td>SCALING DEPLOYMENTS WITH COMPUTE CELLS</td>
</tr>
<tr>
<td>15.1.</td>
<td>GLOBAL COMPONENTS AND SERVICES</td>
</tr>
<tr>
<td>15.2.</td>
<td>CELL-SPECIFIC COMPONENTS AND SERVICES</td>
</tr>
<tr>
<td>15.3.</td>
<td>CELL DEPLOYMENTS ARCHITECTURE</td>
</tr>
</tbody>
</table>
15.4. CONSIDERATIONS FOR MULTI-CELL DEPLOYMENTS 125
15.5. DEPLOYING A MULTI-CELL OVERCLOUD 126
15.6. CREATING AND PROVISIONING A CELL 131
15.7. ADDING COMPUTE NODES TO A CELL 133
15.8. CONFIGURING THE CELL AVAILABILITY ZONE 133
15.9. DELETING A COMPUTE NODE FROM A CELL 134
15.10. DELETING A CELL 135
15.11. TEMPLATE URLs IN CELL MAPPINGS 135

CHAPTER 16. MANAGING INSTANCES .. 137
16.1. SECURING CONNECTIONS TO THE VNC CONSOLE OF AN INSTANCE 137
16.2. DATABASE CLEANING 137
 16.2.1. Configuring database management 138
 16.2.2. Configuration options for the Compute service automated database management 138
16.3. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES 141
 16.3.1. Migration types 142
 16.3.2. Migration constraints 143
 16.3.3. Preparing to migrate 145
 16.3.4. Cold migrating an instance 145
 16.3.5. Live migrating an instance 146
 16.3.6. Checking migration status 147
 16.3.7. Evacuating an instance 149
 16.3.7.1. Evacuating one instance 149
 16.3.7.2. Evacuating all instances on a host 150
 16.3.8. Troubleshooting migration 150
 16.3.8.1. Errors during migration 150
 16.3.8.2. Never-ending live migration 151
 16.3.8.3. Instance performance degrades after migration 152
Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
DIRECT DOCUMENTATION FEEDBACK (DDF) FUNCTION NOT AVAILABLE IN THIS BETA RELEASE

The Direct Documentation Feedback (DDF) function allows users to enter feedback directly on documentation pages on fully supported Red Hat documentation products. The DDF function is not available in this Red Hat OpenStack platform 16.2 beta documentation set.
CHAPTER 1. COMPUTE (NOVA) SERVICE FUNCTIONALITY

You use the Compute (nova) service to create, provision, and manage virtual machine instances and bare metal servers in a Red Hat OpenStack Platform (RHOSP) environment. The Compute service abstracts the underlying hardware that it runs on, rather than exposing specifics about the underlying host platforms. For example, rather than exposing the types and topologies of CPUs running on hosts, the Compute service exposes a number of virtual CPUs (vCPUs) and allows for overcommitting of these vCPUs.

The Compute service uses the KVM hypervisor to execute Compute service workloads. The libvirt driver interacts with QEMU to handle all interactions with KVM, and enables the creation of virtual machine instances. To create and provision instances, the Compute service interacts with the following RHOSP services:

- Identity (keystone) service for authentication.
- Placement service for resource inventory tracking and selection.
- Image Service (glance) for disk and instance images.
- Networking (neutron) service for provisioning the virtual or physical networks that instances connect to on boot.

The Compute service consists of daemon processes and services, named nova-*. The following are the core Compute services:

Compute service (nova-compute)
This service creates, manages and terminates instances by using the libvirt for KVM or QEMU hypervisor APIs, and updates the database with instance states.

Compute conductor (nova-conductor)
This service mediates interactions between the Compute service and the database, which insulates Compute nodes from direct database access. Do not deploy this service on nodes where the nova-compute service runs.

Compute scheduler (nova-scheduler)
This service takes an instance request from the queue and determines on which Compute node to host the instance.

Compute API (nova-api)
This service provides the external REST API to users.

API database
This database tracks instance location information, and provides a temporary location for instances that are built but not scheduled. In multi-cell deployments, this database also contains cell mappings that specify the database connection for each cell.

Cell database
This database contains most of the information about instances. It is used by the API database, the conductor, and the Compute services.

Message queue
This messaging service is used by all services to communicate with each other within the cell and with the global services.

Compute metadata
This service stores data specific to instances. Instances access the metadata service at http://169.254.169.254 or over IPv6 at the link-local address fe80::a9fe:a9fe. The Networking
(neutron) service is responsible for forwarding requests to the metadata API server. You must use
the **NeutronMetadataProxySharedSecret** parameter to set a secret keyword in the configuration of
both the Networking service and the Compute service to allow the services to communicate. The
Compute metadata service can be run globally, as part of the Compute API, or in each cell.

You can deploy more than one Compute node. The hypervisor that operates instances runs on each
Compute node. Each Compute node requires a minimum of two network interfaces. The Compute node
also runs a Networking service agent that connects instances to virtual networks and provides
firewalling services to instances through security groups.

By default, director installs the overcloud with a single cell for all Compute nodes. This cell contains all
the Compute services and databases that control and manage the virtual machine instances, and all the
instances and instance metadata. For larger deployments, you can deploy the overcloud with multiple
cells to accommodate a larger number of Compute nodes. You can add cells to your environment when
you install a new overcloud or at any time afterwards. For more information, see Scaling deployments
with Compute cells.
CHAPTER 2. CONFIGURING THE COMPUTE (NOVA) SERVICE

As a cloud administrator, you use environment files to customize the Compute (nova) service. Puppet generates and stores this configuration in the /var/lib/config-data/puppet-generated/<nova_container>/etc/nova/nova.conf file. Use the following configuration methods to customize the Compute service configuration, in the following order of precedence:

1. **Heat parameters** - as detailed in the Compute (nova) Parameters section in the Overcloud Parameters guide. The following example uses heat parameters to set the default scheduler filters, and configure an NFS backend for the Compute service:

   ```
   parameter_defaults:
   NovaSchedulerDefaultFilters:
   AggregateInstanceExtraSpecsFilter,ComputeFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter
   NovaNfsEnabled: true
   NovaNfsShare: '192.0.2.254:/export/nova'
   NovaNfsOptions: 'context=system_u:object_r:nfs_t:s0'
   NovaNfsVersion: '4.2'
   ```

2. **Puppet parameters** - as defined in /etc/puppet/modules/nova/manifests/*.:

   ```
   parameter_defaults:
   ComputeExtraConfig:
   nova::compute::force_raw_images: True
   ```

 NOTE

 Only use this method if an equivalent heat parameter does not exist.

3. **Manual hieradata overrides** - for customizing parameters when no heat or Puppet parameter exists. For example, the following sets the `timeout_nbd` in the [DEFAULT] section on the Compute role:

   ```
   parameter_defaults:
   ComputeExtraConfig:
   nova::config::nova_config:
   DEFAULT/timeout_nbd:
   value: '20'
   ```

 WARNING

 If a heat parameter exists, use it instead of the Puppet parameter. If a Puppet parameter exists, but not a heat parameter, use the Puppet parameter instead of the manual override method. Use the manual override method only if there is no equivalent heat or Puppet parameter.
TIP

Follow the guidance in Identifying parameters that you want to modify to determine if a heat or Puppet parameter is available for customizing a particular configuration.

For more information about how to configure overcloud services, see Heat parameters in the Advanced Overcloud Customization guide.

2.1. CONFIGURING MEMORY FOR OVERALLOCATION

When you use memory overcommit (NovaRAMAllocationRatio >= 1.0), you need to deploy your overcloud with enough swap space to support the allocation ratio.

NOTE

If your NovaRAMAllocationRatio parameter is set to < 1, follow the RHEL recommendations for swap size. For more information, see Recommended system swap space in the RHEL Managing Storage Devices guide.

Prerequisites

- You have calculated the swap size your node requires. For more information, see Calculating swap size.

Procedure

1. Copy the /usr/share/openstack-tripleo-heat-templates/environments/enable-swap.yaml file to your environment file directory:

 $ cp /usr/share/openstack-tripleo-heat-templates/environments/enable-swap.yaml /home/stack/templates/enable-swap.yaml

2. Configure the swap size by adding the following parameters to your enable-swap.yaml file:

 parameter_defaults:
 swap_size_megabytes: <swap size in MB>
 swap_path: <full path to location of swap, default: /swap>

3. Add the enable_swap.yaml environment file to the stack with your other environment files and deploy the overcloud:

 (undercloud)$ openstack overcloud deploy --templates
 -e [your environment files] \
 -e /home/stack/templates/enable-swap.yaml

2.2. CALCULATING RESERVED HOST MEMORY ON COMPUTE NODES

To determine the total amount of RAM to reserve for host processes, you need to allocate enough memory for each of the following:

- The resources that run on the host, for example, OSD consumes 3 GB of memory.
- The emulator overhead required to host instances.
After you calculate the additional demands on memory, use the following formula to help you determine the amount of memory to reserve for host processes on each node:

\[
\text{NovaReservedHostMemory} = \text{total_RAM} - (\text{vm_no} \times (\text{avg_instance_size} + \text{overhead})) + (\text{resource1} \times \text{resource_ram}) + (\text{resourcen} \times \text{resource_ram})
\]

- Replace \text{vm_no} with the number of instances.
- Replace \text{avg_instance_size} with the average amount of memory each instance can use.
- Replace \text{overhead} with the hypervisor overhead required for each instance.
- Replace \text{resource1} and all resources up to \text{resourcen} with the number of a resource type on the node.
- Replace \text{resource_ram} with the amount of RAM each resource of this type requires.

2.3. Calculating Swap Size

The allocated swap size must be large enough to handle any memory overcommit. You can use the following formulas to calculate the swap size your node requires:

- \text{overcommit_ratio} = \text{NovaRAMAllocationRatio} - 1
- Minimum swap size (MB) = \text{total_RAM} \times \text{overcommit_ratio} + \text{RHEL_min_swap}
- Recommended (maximum) swap size (MB) = \text{total_RAM} \times (\text{overcommit_ratio} + \text{percentage_of_RAM_to_use_for_swap})

The \text{percentage_of_RAM_to_use_for_swap} variable creates a buffer to account for QEMU overhead and any other resources consumed by the operating system or host services.

For instance, to use 25% of the available RAM for swap, with 64GB total RAM, and \text{NovaRAMAllocationRatio} set to 1:

- Recommended (maximum) swap size = 64000 MB \times (0 + 0.25) = 16000 MB

For information about how to calculate the \text{NovaReservedHostMemory} value, see "Calculating reserved host memory on Compute nodes."

For information about how to determine the \text{RHEL_min_swap} value, see "Recommended system swap space in the RHEL Managing Storage Devices guide."
CHAPTER 3. CONFIGURING COMPUTE NODES FOR PERFORMANCE

As a cloud administrator, you can configure the scheduling and placement of instances for optimal performance by creating customized flavors to target specialized workloads, including NFV and High Performance Computing (HPC).

Use the following features to tune your instances for optimal performance:

- **CPU pinning**: Pin virtual CPUs to physical CPUs.
- **Emulator threads**: Pin emulator threads associated with the instance to physical CPUs.
- **Huge pages**: Tune instance memory allocation policies both for normal memory (4k pages) and huge pages (2 MB or 1 GB pages).

NOTE

Configuring any of these features creates an implicit NUMA topology on the instance if there is no NUMA topology already present.

3.1. CONFIGURING CPU PINNING ON THE COMPUTE NODES

You can configure each instance CPU process to run on a dedicated host CPU by enabling CPU pinning on the Compute nodes. When an instance uses CPU pinning, each instance vCPU process is allocated its own host pCPU that no other instance vCPU process can use. Instances that run on Compute nodes with CPU pinning enabled have a NUMA topology. Each NUMA node of the instance NUMA topology maps to a NUMA node on the host Compute node.

You can configure the Compute scheduler to schedule instances with dedicated (pinned) CPUs and instances with shared (floating) CPUs on the same Compute node. To configure CPU pinning on Compute nodes that have a NUMA topology, you must complete the following:

1. Designate Compute nodes for CPU pinning.
2. Configure the Compute nodes to reserve host cores for pinned instance vCPU processes, floating instance vCPU processes, and host processes.
3. Deploy the overcloud.
4. Create a flavor for launching instances that require CPU pinning.
5. Create a flavor for launching instances that use shared, or floating, CPUs.

3.1. Prerequisites

- You know the NUMA topology of your Compute node.

3.1.2. Designating Compute nodes for CPU pinning

To designate Compute nodes for instances with pinned CPUs, you must:

- create a new role file to configure the CPU pinning role
configure a new overcloud flavor for CPU pinning to use to tag the Compute nodes for CPU pinning

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file to enable the director command line tools:

 ![Code snippet]

3. Generate a new roles data file named roles_data_cpu_pinning.yaml that includes the Controller, Compute, and ComputeCPUPinning roles:

 ![Code snippet]

4. Open roles_data_cpu_pinning.yaml and edit or add the following parameters and sections:

<table>
<thead>
<tr>
<th>Section/Parameter</th>
<th>Current value</th>
<th>New value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role comment</td>
<td>Role: Compute</td>
<td>Role: ComputeCPUPinning</td>
</tr>
<tr>
<td>Role name</td>
<td>name: Compute</td>
<td>name: ComputeCPUPinning</td>
</tr>
<tr>
<td>description</td>
<td>Basic Compute Node role</td>
<td>CPU Pinning Compute Node role</td>
</tr>
<tr>
<td>HostnameFormatDefault</td>
<td>%stackname%-%novacompute-%index%</td>
<td>%stackname%-%novacompute pinning-%index%</td>
</tr>
<tr>
<td>deprecated_nic_config_name</td>
<td>compute.yaml</td>
<td>compute-cpu-pinning.yaml</td>
</tr>
</tbody>
</table>

5. Register the CPU pinning Compute nodes for the overcloud by adding them to your node definition template, node.json or node.yaml. For more information, see Registering nodes for the overcloud in the Director Installation and Usage guide.

6. Inspect the node hardware:

 ![Code snippet]

 For more information, see the relevant section in the Director Installation and Usage guide:

 - Inspecting the hardware of nodes for IPv4 provisioning
 - Inspecting the hardware of nodes for IPv6 provisioning
7. Create the `compute-cpu-pinning` bare metal flavor to use to tag nodes that you want to designate for CPU pinning:

```
(undercloud)$ openstack flavor create --id auto \
--ram <ram_size_mb> --disk <disk_size_gb> \
--vcpus <no_vcpus> compute-cpu-pinning
```

- Replace `<ram_size_mb>` with the RAM of the bare metal node, in MB.
- Replace `<disk_size_gb>` with the size of the disk on the bare metal node, in GB.
- Replace `<no_vcpus>` with the number of CPUs on the bare metal node.

NOTE

These properties are not used for scheduling instances. However, the Compute scheduler does use the disk size to determine the root partition size.

8. Tag each bare metal node that you want to designate for CPU pinning with a custom CPU pinning resource class:

```
(undercloud)$ openstack baremetal node set \
--resource-class baremetal.CPU-PINNING <node>
```

Replace `<node>` with the ID of the bare metal node.

9. Associate the `compute-cpu-pinning` flavor with the custom CPU pinning resource class:

```
(undercloud)$ openstack flavor set \
--property resources:CUSTOM_BAREMETAL_CPU_PINNING=1 \
compute-cpu-pinning
```

To determine the name of a custom resource class that corresponds to a resource class of a Bare Metal service node, convert the resource class to uppercase, replace each punctuation mark with an underscore, and prefix with `CUSTOM_`.

NOTE

A flavor can request only one instance of a bare metal resource class.

10. Set the following flavor properties to prevent the Compute scheduler from using the bare metal flavor properties to schedule instances:

```
(undercloud)$ openstack flavor set \
--property resources:VCPU=0 --property resources:MEMORY_MB=0 \
--property resources:DISK_GB=0 compute-cpu-pinning
```

11. Optional: If the network topology of the `ComputeCPUPinning` role is different from the network topology of your `Compute` role, then create a custom network interface template. For more information, see Custom network interface templates in the Advanced Overcloud Customization guide.
If the network topology of the ComputeCPUPinning role is the same as the Compute role, then you can use the default network topology defined in compute.yaml.

12. Register the Net::SoftwareConfig of the ComputeCPUPinning role in your network-environment.yaml file:

```yaml
resource_registry:
  OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-configs/compute.yaml
  OS::TripleO::ComputeCPUPinning::Net::SoftwareConfig: /home/stack/templates/nic-configs/<cpu_pinning_net_top>.yaml
  OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-configs/controller.yaml
```

Replace `<cpu_pinning_net_top>` with the name of the file that contains the network topology of the ComputeCPUPinning role, for example, compute.yaml to use the default network topology.

13. Add the following parameters to the node-info.yaml file to specify the number of CPU pinning Compute nodes, and the flavor to use for the CPU pinning designated Compute nodes:

```yaml
parameter_defaults:
  OvercloudComputeCPUPinningFlavor: compute-cpu-pinning
  ComputeCPUPinningCount: 3
```

14. To verify that the role was created, enter the following command:

```
(undercloud)$ openstack baremetal node list --long -c "UUID" -c "Instance UUID" -c "Resource Class" -c "Provisioning State" -c "Power State" -c "Last Error" -c "Fault" -c "Name" -f json
```

Example output:

```
[
  {
    "Name": "compute-0",
    "Power State": "power on",
    "Provisioning State": "active",
    "Resource Class": "compute",
    "UUID": "b5a9ac58-63a7-49ba-b4ad-33d84000ccb4"
  },
  {
    "Name": "compute-1",
    "Power State": "power on",
    "Provisioning State": "active",
    "Resource Class": "compute",
    "UUID": "432e7f86-8da2-44a6-9b14-dfacdf611366"
  }
]
```
3.1.3. Configuring Compute nodes for CPU pinning

Configure CPU pinning on your Compute nodes based on the NUMA topology of the nodes. Reserve some CPU cores across all the NUMA nodes for the host processes for efficiency. Assign the remaining CPU cores to managing your instances.

This procedure uses the following NUMA topology, with eight CPU cores spread across two NUMA nodes, to illustrate how to configure CPU pinning:

<table>
<thead>
<tr>
<th>NUMA Node 0</th>
<th>NUMA Node 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core 0</td>
<td>Core 1</td>
</tr>
<tr>
<td>Core 4</td>
<td>Core 5</td>
</tr>
<tr>
<td>Core 2</td>
<td>Core 6</td>
</tr>
<tr>
<td>Core 3</td>
<td>Core 7</td>
</tr>
</tbody>
</table>

The procedure reserves cores 0 and 4 for host processes, cores 1, 3, 5 and 7 for instances that require CPU pinning, and cores 2 and 6 for floating instances that do not require CPU pinning.

Procedure

1. Create an environment file to configure Compute nodes to reserve cores for pinned instances, floating instances, and host processes, for example, `cpu_pinning.yaml`.

2. To schedule instances with a NUMA topology on NUMA-capable Compute nodes, add `NUMATopologyFilter` to the `NovaSchedulerDefaultFilters` parameter in your Compute environment file, if not already present:

   ```
   parameter_defaults: |
   NovaSchedulerDefaultFilters:
   ```

 For more information on `NUMATopologyFilter`, see Compute scheduler filters.

3. To reserve physical CPU cores for the dedicated instances, add the following configuration to `cpu_pinning.yaml`:

   ```
   parameter_defaults:
   ComputeCPUPinningParameters:
   NovaComputeCpuDedicatedSet: 1,3,5,7
   ```
4. To reserve physical CPU cores for the shared instances, add the following configuration to `cpu_pinning.yaml`:

```yaml
parameter_defaults:
  ComputeCPUPinningParameters:
    NovaComputeCpuSharedSet: 2,6
```

5. To specify the amount of RAM to reserve for host processes, add the following configuration to `cpu_pinning.yaml`:

```yaml
parameter_defaults:
  ComputeCPUPinningParameters:
    NovaReservedHostMemory: <ram>
```

Replace `<ram>` with the amount of RAM to reserve in MB.

6. To ensure that host processes do not run on the CPU cores reserved for instances, set the parameter `IsolCpusList` to the CPU cores you have reserved for instances:

```yaml
parameter_defaults:
  ComputeCPUPinningParameters:
    IsolCpusList: 1-3,5-7
```

Specify the value of the `IsolCpusList` parameter using a list, or ranges, of CPU indices separated by a comma.

7. Add your new role and environment files to the stack with your other environment files and deploy the overcloud:

```bash
(undercloud)$ openstack overcloud deploy --templates
-e [your environment files]
-r /home/stack/templates/roles_data_cpu_pinning.yaml
-e /home/stack/templates/network-environment.yaml
-e /home/stack/templates/cpu_pinning.yaml
-e /home/stack/templates/node-info.yaml
```

3.1.4. Creating a dedicated CPU flavor for instances

To enable your cloud users to create instances that have dedicated CPUs, you can create a flavor with a dedicated CPU policy for launching instances.

Prerequisites

- Simultaneous multithreading (SMT) is enabled on the host.
- The Compute node is configured to allow CPU pinning. For more information, see Configuring CPU pinning on the Compute nodes.

Procedure

1. Source the `overcloudrc` file:
(undercloud)$ source ~/overcloudrc

2. Create a flavor for instances that require CPU pinning:

(overcloud)$ openstack flavor create --ram <size_mb> \
--disk <size_gb> --vcpus <no_reserved_vcpus> pinned_cpus

3. To request pinned CPUs, set the `hw:cpu_policy` property of the flavor to `dedicated`:

(overcloud)$ openstack flavor set \
--property hw:cpu_policy=dedicated pinned_cpus

4. To place each vCPU on thread siblings, set the `hw:cpu_thread_policy` property of the flavor to `require`:

(overcloud)$ openstack flavor set \
--property hw:cpu_thread_policy=require pinned_cpus

NOTE

- If the host does not have an SMT architecture or enough CPU cores with available thread siblings, scheduling fails. To prevent this, set `hw:cpu_thread_policy` to `prefer` instead of `require`. The `prefer` policy is the default policy that ensures that thread siblings are used when available.

- If you use `hw:cpu_thread_policy=isolat`, you must have SMT disabled or use a platform that does not support SMT.

Verification

1. To verify the flavor creates an instance with dedicated CPUs, use your new flavor to launch an instance:

(overcloud)$ openstack server create --flavor pinned_cpus \
--image <image> pinned_cpu_instance

2. To verify correct placement of the new instance, enter the following command and check for `OS-EXT-SRV-ATTR:hypervisor_hostname` in the output:

(overcloud)$ openstack server show pinned_cpu_instance

3.1.5. Creating a shared CPU flavor for instances

To enable your cloud users to create instances that use shared, or floating, CPUs, you can create a flavor with a shared CPU policy for launching instances.

Prerequisites

- The Compute node is configured to reserve physical CPU cores for the shared CPUs. For more information, see Configuring CPU pinning on the Compute nodes.

Procedure
1. Source the `overcloudrc` file:

 (undercloud)$ source ~/overcloudrc

2. Create a flavor for instances that do not require CPU pinning:

 (overcloud)$ openstack flavor create --ram <size_mb> \
 --disk <size_gb> --vcpus <no_reserved_vcpus> floating_CPUs

3. To request floating CPUs, set the `hw:cpu_policy` property of the flavor to `shared`:

 (overcloud)$ openstack flavor set \
 --property hw:cpu_policy=shared floating_CPUs

Verification

1. To verify the flavor creates an instance that uses the shared CPUs, use your new flavor to launch an instance:

 (overcloud)$ openstack server create --flavor floating_CPUs \
 --image <image> floating_cpu_instance

2. To verify correct placement of the new instance, enter the following command and check for `OS-EXT-SRV-ATTR:hypervisor_hostname` in the output:

 (overcloud)$ openstack server show floating_cpu_instance

3.1.6. Configuring CPU pinning on Compute nodes with simultaneous multithreading (SMT)

If a Compute node supports simultaneous multithreading (SMT), group thread siblings together in either the dedicated or the shared set. Thread siblings share some common hardware which means it is possible for a process running on one thread sibling to impact the performance of the other thread sibling.

For example, the host identifies four logical CPU cores in a dual core CPU with SMT: 0, 1, 2, and 3. Of these four, there are two pairs of thread siblings:

- Thread sibling 1: logical CPU cores 0 and 2
- Thread sibling 2: logical CPU cores 1 and 3

In this scenario, do not assign logical CPU cores 0 and 1 as dedicated and 2 and 3 as shared. Instead, assign 0 and 2 as dedicated and 1 and 3 as shared.

The files `/sys/devices/system/cpu/cpuN/topology/thread_siblings_list`, where N is the logical CPU number, contain the thread pairs. You can use the following command to identify which logical CPU cores are thread siblings:

```
# grep -H . /sys/devices/system/cpu/cpu*/topology/thread_siblings_list | sort -n -t ':' -k 2 -u
```

The following output indicates that logical CPU core 0 and logical CPU core 2 are threads on the same core:
3.1.7. Additional resources

- Discovering your NUMA node topology in the Network Functions Virtualization Planning and Configuration Guide.
- CPUs and NUMA nodes in the Network Functions Virtualization Product Guide.

3.2. CONFIGURING EMULATOR THREADS

Compute nodes have overhead tasks associated with the hypervisor for each instance, known as emulator threads. By default, emulator threads run on the same CPUs as the instance, which impacts the performance of the instance.

You can configure the emulator thread policy to run emulator threads on separate CPUs to those the instance uses.

NOTE

To avoid packet loss, you must never preempt the vCPUs in an NFV deployment.

Procedure

1. Log in to the undercloud as the **stack** user.

2. Open your Compute environment file.

3. To reserve physical CPU cores for instances that require CPU pinning, configure the `NovaComputeCpuDedicatedSet` parameter in the Compute environment file. For example, the following configuration sets the dedicated CPUs on a Compute node with a 32-core CPU:

   ```
   parameter_defaults:
   ...
   NovaComputeCpuDedicatedSet: 2-15,18-31
   ...
   ```

 For more information, see Configuring CPU pinning on the Compute nodes.

4. To reserve physical CPU cores for the emulator threads, configure the `NovaComputeCpuSharedSet` parameter in the Compute environment file. For example, the following configuration sets the shared CPUs on a Compute node with a 32-core CPU:

   ```
   parameter_defaults:
   ...
   NovaComputeCpuSharedSet: 0,1,16,17
   ...
   ```
5. Add the Compute scheduler filter **NUMATopologyFilter** to the **NovaSchedulerDefaultFilters** parameter, if not already present.

6. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:

   ```
   (undercloud)$ openstack overcloud deploy --templates \
   -e [your environment files] \ 
   -e /home/stack/templates/<compute_environment_file>.yaml
   ```

7. Configure a flavor that runs emulator threads for the instance on a dedicated CPU, which is selected from the shared CPUs configured using **NovaComputeCpuSharedSet**:

   ```
   (overcloud)$ openstack flavor set --property hw:cpu_policy=dedicated \ 
   --property hw:emulator_threads_policy=share \ 
   dedicated_emulator_threads
   ```

 For more information about configuration options for **hw:emulator_threads_policy**, see **Emulator threads policy** in **Flavor metadata**.

3.3. CONFIGURING HUGE PAGES ON COMPUTE NODES

As a cloud administrator, you can configure Compute nodes to enable instances to request huge pages.

Procedure

1. Open your Compute environment file.

2. Configure the amount of huge page memory to reserve on each NUMA node for processes that are not instances:

   ```
   parameter_defaults:
   NovaReserved Huge Pages: ["node:0,size:2048,count:64","node:1,size:1GB,count:1"]
   ```

 - Replace the **size** value for each node with the size of the allocated huge page. Set to one of the following valid values:
 - 2048 (for 2MB)
 - 1GB

 - Replace the **count** value for each node with the number of huge pages used by OVS per NUMA node. For example, for 4096 of socket memory used by Open vSwitch, set this to 2.

3. Optional: To allow instances to allocate 1GB huge pages, configure the CPU feature flags, **NovaLibvirtCPUModelExtraFlags**, to include **pdpe1gb**:

   ```
   parameter_defaults:
   ```
NOTE

- CPU feature flags do not need to be configured to allow instances to only request 2 MB huge pages.

- You can only allocate 1G huge pages to an instance if the host supports 1G huge page allocation.

- You only need to set `NovaLibvirtCPUModelExtraFlags` to `pdpe1gb` when `NovaLibvirtCPUMode` is set to `host-model` or `custom`.

- If the host supports `pdpe1gb`, and `host-passthrough` is used as the `NovaLibvirtCPUMode`, then you do not need to set `pdpe1gb` as a `NovaLibvirtCPUModelExtraFlags`. The `pdpe1gb` flag is only included in Opteron_G4 and Opteron_G5 CPU models, it is not included in any of the Intel CPU models supported by QEMU.

- To mitigate for CPU hardware issues, such as Microarchitectural Data Sampling (MDS), you might need to configure other CPU flags. For more information, see RHOS Mitigation for MDS (“Microarchitectural Data Sampling”) Security Flaws.

4. To avoid loss of performance after applying Meltdown protection, configure the CPU feature flags, `NovaLibvirtCPUModelExtraFlags`, to include `+pcid`:

```
parameter_defaults:
  ComputeParameters:
    NovaLibvirtCPUMode: 'custom'
    NovaLibvirtCPUModels: 'Haswell-noTSX'
    NovaLibvirtCPUModelExtraFlags: 'vmx, pdpe1gb, +pcid'
```

TIP

For more information, see Reducing the performance impact of Meltdown CVE fixes for OpenStack guests with "PCID" CPU feature flag.

5. Add `NUMATopologyFilter` to the `NovaSchedulerDefaultFilters` parameter, if not already present.

6. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:

```
(undercloud)$ openstack overcloud deploy --templates \
  -e [your environment files] \
  -e /home/stack/templates/<compute_environment_file>.yaml
```

3.3.1. Creating a huge pages flavor for instances
To enable your cloud users to create instances that use huge pages, you can create a flavor with the **hw:mem_page_size** extra spec key for launching instances.

Prerequisites
- The Compute node is configured for huge pages. For more information, see Configuring huge pages on Compute nodes.

Procedure
1. Create a flavor for instances that require huge pages:
   ```
   $ openstack flavor create --ram <size_mb> --disk <size_gb> \
   --vcpus <no_reserved_vcpus> huge_pages
   ```

2. To request huge pages, set the **hw:mem_page_size** property of the flavor to the required size:
   ```
   $ openstack flavor set huge_pages --property hw:mem_page_size=1GB
   ```

 Set **hw:mem_page_size** to one of the following valid values:
 - **large** - Selects the largest page size supported on the host, which may be 2 MB or 1 GB on x86_64 systems.
 - **small** - (Default) Selects the smallest page size supported on the host. On x86_64 systems this is 4 kB (normal pages).
 - **any** - Selects the largest available huge page size, as determined by the libvirt driver.
 - `<pagesize>`: (String) Set an explicit page size if the workload has specific requirements. Use an integer value for the page size in KB, or any standard suffix. For example: 4KB, 2MB, 2048, 1GB.

3. To verify the flavor creates an instance with huge pages, use your new flavor to launch an instance:
   ```
   $ openstack server create --flavor huge_pages \
   --image <image> huge_pages_instance
   ```

 The Compute scheduler identifies a host with enough free huge pages of the required size to back the memory of the instance. If the scheduler is unable to find a host and NUMA node with enough pages, then the request will fail with a **NoValidHost** error.

3.4. CONFIGURING COMPUTE NODES TO USE FILE-BACKED MEMORY FOR INSTANCES

You can use file-backed memory to expand your Compute node memory capacity, by allocating files within the libvirt memory backing directory as instance memory. You can configure the amount of host disk that is available for instance memory, and the location on the disk of the instance memory files.

The Compute service reports the capacity configured for file-backed memory to the Placement service as the total system memory capacity. This allows the Compute node to host more instances than would normally fit within the system memory.
To use file-backed memory for instances, you must enable file-backed memory on the Compute node.

Limitations

- You cannot live migrate instances between Compute nodes that have file-backed memory enabled and Compute nodes that do not have file-backed memory enabled.

- File-backed memory is not compatible with huge pages. Instances that use huge pages cannot start on a Compute node with file-backed memory enabled. Use host aggregates to ensure that instances that use huge pages are not placed on Compute nodes with file-backed memory enabled.

- File-backed memory is not compatible with memory overcommit.

- You cannot reserve memory for host processes using `NovaReservedHostMemory`. When file-backed memory is in use, reserved memory corresponds to disk space not set aside for file-backed memory. File-backed memory is reported to the Placement service as the total system memory, with RAM used as cache memory.

Prerequisites

- `NovaRAMAllocationRatio` must be set to "1.0" on the node and any host aggregate the node is added to.

- `NovaReservedHostMemory` must be set to "0".

Procedure

1. Open your Compute environment file.

2. Configure the amount of host disk space, in MiB, to make available for instance RAM, by adding the following parameter to your Compute environment file:

   ```
   parameter_defaults:
   NovaLibvirtFileBackedMemory: 102400
   ```

3. Optional: To configure the directory to store the memory backing files, set the `QemuMemoryBackingDir` parameter in your Compute environment file. If not set, the memory backing directory defaults to `/var/lib/libvirt/qemu/ram/`.

 NOTE

 You must locate your backing store in a directory at or above the default directory location, `/var/lib/libvirt/qemu/ram/`. You can also change the host disk for the backing store. For more information, see Changing the memory backing directory host disk.

4. Save the updates to your Compute environment file.

5. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:
3.4.1. Changing the memory backing directory host disk

You can move the memory backing directory from the default primary disk location to an alternative disk.

Procedure

1. Create a file system on the alternative backing device. For example, enter the following command to create an ext4 filesystem on /dev/sdb:

```bash
# mkfs.ext4 /dev/sdb
```

2. Mount the backing device. For example, enter the following command to mount /dev/sdb on the default libvirt memory backing directory:

```bash
# mount /dev/sdb /var/lib/libvirt/qemu/ram
```

NOTE

The mount point must match the value of the `QemuMemoryBackingDir` parameter.
CHAPTER 4. CONFIGURING COMPUTE SERVICE STORAGE

You create an instance from a base image, which the Compute service copies from the Image (glance) service, and caches locally on the Compute nodes. The instance disk, which is the back end for the instance, is also based on the base image.

You can configure the Compute service to store ephemeral instance disk data locally on the host Compute node or remotely on either a NFS share or Ceph cluster. Alternatively, you can also configure the Compute service to store instance disk data in persistent storage provided by the Block Storage (Cinder) service.

You can configure image caching for your environment, and configure the performance and security of the instance disks. You can also configure the Compute service to download images directly from the RBD image repository without using the Image service API, when the Image service (glance) uses Red Hat Ceph RADOS Block Device (RBD) as the back end.

4.1. CONFIGURATION OPTIONS FOR IMAGE CACHING

Use the parameters detailed in the following table to configure how the Compute service implements and manages an image cache on Compute nodes.

<table>
<thead>
<tr>
<th>Configuration method</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puppet</td>
<td>nova::compute::image_cache::manager_interval</td>
<td>Specifies the number of seconds to wait between runs of the image cache manager, which manages base image caching on Compute nodes. The Compute service uses this period to perform automatic removal of unused cached images when nova::compute::image_cache::remove_unused_base_images is set to True. Set to 0 to run at the default metrics interval of 60 seconds (not recommended). Set to -1 to disable the image cache manager. Default: 2400</td>
</tr>
<tr>
<td>Configuration method</td>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Puppet | nova::compute::image_cache::precache_concurrency | Specifies the maximum number of Compute nodes that can pre-cache images in parallel.

NOTE
- Setting this parameter to a high number can cause slower pre-cache performance and might result in a DDoS on the Image service.
- Setting this parameter to a low number reduces the load on the Image service, but can cause longer runtime to completion as the pre-cache is performed as a more sequential operation.

Default: 1

| Puppet | nova::compute::image_cache::remove_unused_base_images | Set to **True** to automatically remove unused base images from the cache at intervals configured by using `manager_interval`. Images are defined as unused if they have not been accessed during the time specified by using `NovaimageCacheTTL`.

Default: **True**

| Puppet | nova::compute::image_cache::remove_unused_resized_minimum_age_seconds | Specifies the minimum age that an unused resized base image must be to be removed from the cache, in seconds. Unused resized base images younger than this will not be removed. Set to **undef** to disable.

Default: **3600**
4.2. CONFIGURATION OPTIONS FOR INSTANCE EPHEMERAL STORAGE PROPERTIES

Use the parameters detailed in the following table to configure the performance and security of ephemeral storage used by instances.

Table 4.2. Compute (nova) service instance ephemeral storage parameters

<table>
<thead>
<tr>
<th>Configuration method</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puppet</td>
<td>nova::compute::image_cache::subdirectory_name</td>
<td>Specifies the name of the folder where cached images are stored, relative to $instances_path. Default: _base</td>
</tr>
<tr>
<td>Heat</td>
<td>NovaImageCacheTTL</td>
<td>Specifies the length of time in seconds that the Compute service should continue caching an image when it is no longer used by any instances on the Compute node. The Compute service deletes images cached on the Compute node that are older than this configured lifetime from the cache directory until they are needed again. Default: 86400 (24 hours)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Configuration method</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Puppet | nova::compute::default_ephemeral_format | Specifies the default format that is used for a new ephemeral volume. Set to one of the following valid values:
 - ext2
 - ext3
 - ext4

The ext4 format provides much faster initialization times than ext3 for new, large disks. Default: ext4 |
Configuration method

<table>
<thead>
<tr>
<th>Puppet</th>
<th>nova::compute::force_raw_images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Set to True to convert non-raw cached base images to raw format. The raw image format uses more space than other image formats, such as qcow2. Non-raw image formats use more CPU for compression. When set to False, the Compute service removes any compression from the base image during compression to avoid CPU bottlenecks. Set to False if you have a system with slow I/O or low available space to reduce input bandwidth.</td>
</tr>
<tr>
<td></td>
<td>NOTE</td>
</tr>
<tr>
<td></td>
<td>- Images converted to raw format cannot have backing files, which might be a security issue.</td>
</tr>
<tr>
<td></td>
<td>- Raw base images are always used with [libvirt]/images_type=lvm.</td>
</tr>
<tr>
<td></td>
<td>Default: True</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Puppet</th>
<th>nova::compute::use_cow_images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Set to True to use CoW (Copy on Write) images in qcow2 format for instance disks. With CoW, depending on the backing store and host caching, there might be better concurrency achieved by having each instance operate on its own copy.</td>
</tr>
<tr>
<td></td>
<td>Set to False to use the raw format. Raw format uses more space for common parts of the disk image.</td>
</tr>
<tr>
<td></td>
<td>Default: True</td>
</tr>
<tr>
<td>Configuration method</td>
<td>Parameter</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| Puppet | `nova::compute::libvirt::preallocate_images` | Specifies the preallocation mode for instance disks. Set to one of the following valid values:
 - **none** - No storage is provisioned at instance start.
 - **space** - The Compute service fully allocates storage at instance start by running `fallocate(1)` on the instance disk images. This reduces CPU overhead and file fragmentation, improves I/O performance, and helps guarantee the required disk space.
 Default: **none** |
| Hieradata override | `DEFAULT/resize_fs_using_block_device` | Set to **True** to enable direct resizing of the base image by accessing the image over a block device. This is only necessary for images with older versions of cloud-init that cannot resize themselves.
 This parameter is not enabled by default because it enables the direct mounting of images which might otherwise be disabled for security reasons.
 Default: **False** |
4.3. CONFIGURING SHARED INSTANCE STORAGE

By default, when you launch an instance, the instance disk is stored as a file in the instance directory, `/var/lib/nova/instances`. You can configure a NFS storage backend for the Compute service to store these instance files on shared NFS storage.

Procedure

1. Log in to the undercloud as the `stack` user.

2. Source the `stackrc` file:

   ```bash
   [stack@director ~]$ source ~/stackrc
   ```

3. Create an environment file to configure shared instance storage, for example, `nfs_instance_disk_backend.yaml`.

<table>
<thead>
<tr>
<th>Configuration method</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hieradata override</td>
<td>[libvirt]/images_type</td>
<td>Specifies the image type to use for instance disks. Set to one of the following valid values:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- raw</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- qcow2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- lvm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- rbd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- default</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When set to a valid value other than <code>default</code> the image type supersedes the configuration of <code>use_cow_images</code>. If <code>default</code> is specified, the configuration of <code>use_cow_images</code> determines the image type:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- If <code>use_cow_images</code> is set to <code>True</code> (default) then the image type is <code>qcow2</code>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- If <code>use_cow_images</code> is set to <code>False</code> then the image type is <code>Flat</code>.</td>
</tr>
</tbody>
</table>

The default value is determined by the configuration of `NovaEnableRbdBackend`:

- `NovaEnableRbdBackend: False`
 Default: `default`

- `NovaEnableRbdBackend: True`
 Default: `rbd`
4. To configure an NFS backend for instance files, add the following configuration to `nfs_instance_disk_backend.yaml`:

```yaml
parameter_defaults:
  ...  
  NovaNfsEnabled: True
  NovaNfsShare: <nfs_share>
```

Replace `<nfs_share>` with the NFS share directory to mount for instance file storage, for example, `'192.168.122.1:/export/nova'` or `'192.168.24.1:/var/nfs'`. If using IPv6, use both double and single-quotes, e.g. `'"[fdd0::1]:/export/nova'"`.

5. Optional: The default mount SELinux context for NFS storage when NFS backend storage is enabled is `'context=system_u:object_r:nova_var_lib_t:s0'`. Add the following parameter to amend the mount options for the NFS instance file storage mount point:

```yaml
parameter_defaults:
  ...  
  NovaNfsOptions: 'context=system_u:object_r:nova_var_lib_t:s0, <additional_nfs_mount_options>'
```

Replace `<additional_nfs_mount_options>` with a comma-separated list of the mount options you want to use for NFS instance file storage. For more information on the available mount options, see the `mount` man page:

```
$ man 8 mount.
```

6. Save the updates to your environment file.

7. Add your new environment file to the stack with your other environment files and deploy the overcloud:

```
(undercloud)$ openstack overcloud deploy --templates \
-e [your environment files] \
-e /home/stack/templates/nfs_instance_disk_backend.yaml
```

4.4. CONFIGURING IMAGE DOWNLOADS DIRECTLY FROM RED HAT CEPH RADOS BLOCK DEVICE (RBD)

When the Image service (glance) uses Red Hat Ceph RADOS Block Device (RBD) as the back end, and the Compute service uses local file-based ephemeral storage, you can configure the Compute service to download images directly from the RBD image repository without using the Image service API. This reduces the time it takes to download an image to the Compute node image cache at instance boot time, which improves instance launch time.

Prerequisites

- The Image service back end is a Red Hat Ceph RADOS Block Device (RBD).
- The Compute service is using a local file-based ephemeral store for the image cache and instance disks.

Procedure
1. Log in to the undercloud as the **stack** user.

2. Open your Compute environment file.

3. To download images directly from the RBD back end, add the following configuration to your Compute environment file:

   ```
   parameter_defaults:
   ComputeParameters:
   NovaGlanceEnableRbdDownload: True
   NovaEnableRbdBackend: False
   ...
   ```

4. Optional: If the Image service is configured to use multiple Red Hat Ceph Storage back ends, add the following configuration to your Compute environment file to identify the RBD back end to download images from:

   ```
   parameter_defaults:
   ComputeParameters:
   NovaGlanceEnableRbdDownload: True
   NovaEnableRbdBackend: False
   NovaGlanceRbdDownloadMultistoreID: <rbd_backend_id>
   ...
   ```

 Replace `<rbd_backend_id>` with the ID used to specify the back end in the `GlanceMultistoreConfig` configuration, for example `rbd2_store`.

5. Add the following configuration to your Compute environment file to specify the Image service RBD back end, and the maximum length of time that the Compute service waits to connect to the Image service RBD back end, in seconds:

   ```
   parameter_defaults:
   ComputeExtraConfig:
   nova::config::nova_config:
   glance/rbd_user:
   value: 'glance'
   glance/rbd_pool:
   value: 'images'
   glance/rbd_ceph_conf:
   value: '/etc/ceph/ceph.conf'
   glance/rbd_connect_timeout:
   value: '5'
   ```

6. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:

   ```
   (undercloud) $ openstack overcloud deploy --templates \
   -e [your environment files] \
   -e /home/stack/templates/<compute_environment_file>.yaml
   ```

7. To verify that the Compute service downloads images directly from RBD, create an instance then check the instance debug log for the entry "Attempting to export RBD image:.

4.5. ADDITIONAL RESOURCES
- Configuring the Compute (nova) service
CHAPTER 5. CONFIGURING PCI PASSTHROUGH

You can use PCI passthrough to attach a physical PCI device, such as a graphics card or a network device, to an instance. If you use PCI passthrough for a device, the instance reserves exclusive access to the device for performing tasks, and the device is not available to the host.

IMPORTANT

Using PCI passthrough with routed provider networks

The Compute service does not support single networks that span multiple provider networks. When a network contains multiple physical networks, the Compute service only uses the first physical network. Therefore, if you are using routed provider networks you must use the same physical_network name across all the Compute nodes.

If you use routed provider networks with VLAN or flat networks, you must use the same physical_network name for all segments. You then create multiple segments for the network and map the segments to the appropriate subnets.

To enable your cloud users to create instances with PCI devices attached, you must complete the following:

1. Designate Compute nodes for PCI passthrough.
2. Configure the Compute nodes for PCI passthrough that have the required PCI devices.
3. Deploy the overcloud.
4. Create a flavor for launching instances with PCI devices attached.

Prerequisites

- The Compute nodes have the required PCI devices.

5.1. DESIGNATING COMPUTE NODES FOR PCI PASSTHROUGH

To designate Compute nodes for instances with physical PCI devices attached, you must:

- create a new role file to configure the PCI passthrough role
- configure a new overcloud flavor for PCI passthrough to use to tag the Compute nodes for PCI passthrough

Procedure

1. Generate a new roles data file named roles_data_pci_passthrough.yaml that includes the Controller, Compute, and ComputePCI roles:

 (undercloud)$ openstack overcloud roles \generate -o /home/stack/templates/roles_data_pci_passthrough.yaml \Compute:ComputePCI Compute Controller

2. Open roles_data_pci_passthrough.yaml and edit or add the following parameters and sections:
Configuring the Compute Service for Instance Creation

<table>
<thead>
<tr>
<th>Section/Parameter</th>
<th>Current value</th>
<th>New value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role comment</td>
<td>Role: Compute</td>
<td>Role: ComputePCI</td>
</tr>
<tr>
<td>Role name</td>
<td>name: Compute</td>
<td>name: ComputePCI</td>
</tr>
<tr>
<td>description</td>
<td>Basic Compute Node role</td>
<td>PCI Passthrough Compute Node role</td>
</tr>
<tr>
<td>HostnameFormatDefault</td>
<td>%stackname%-novacompute-%index%</td>
<td>%stackname%-novacomputePCI-%index%</td>
</tr>
<tr>
<td>deprecated_nic_config_name</td>
<td>compute.yaml</td>
<td>compute-pci-passthrough.yaml</td>
</tr>
</tbody>
</table>

3. Register the PCI passthrough Compute nodes for the overcloud by adding them to your node definition template, node.json or node.yaml. For more information, see Registering nodes for the overcloud in the Director Installation and Usage guide.

4. Inspect the node hardware:

```
(undercloud)$ openstack overcloud node introspect \
   --all-manageable --provide
```

For more information, see Inspecting the hardware of nodes in the Director Installation and Usage guide.

5. Create the `compute-pci-passthrough` bare metal flavor to use to tag nodes that you want to designate for PCI passthrough:

```
(undercloud)$ openstack flavor create --id auto \
   --ram <ram_size_mb> --disk <disk_size_gb> \
   --vcpus <no_vcpus> compute-pci-passthrough
```

- Replace `<ram_size_mb>` with the RAM of the bare metal node, in MB.
- Replace `<disk_size_gb>` with the size of the disk on the bare metal node, in GB.
- Replace `<no_vcpus>` with the number of CPUs on the bare metal node.

NOTE

These properties are not used for scheduling instances. However, the Compute scheduler does use the disk size to determine the root partition size.

6. Tag each bare metal node that you want to designate for PCI passthrough with a custom PCI passthrough resource class:

```
(undercloud)$ openstack baremetal node set \
   --resource-class baremetal.PCI-PASSTHROUGH <node>
```

Red Hat OpenStack Platform 16.2-Beta Configuring the Compute Service for Instance Creation

36
7. Associate the `compute-pci-passthrough` flavor with the custom PCI passthrough resource class:

```
(undercloud)$ openstack flavor set \
  --property resources:CUSTOM_BAREMETAL_PCI_PASSTHROUGH=1 \
  compute-pci-passthrough
```

To determine the name of a custom resource class that corresponds to a resource class of a Bare Metal service node, convert the resource class to uppercase, replace all punctuation with an underscore, and prefix with `CUSTOM_`.

NOTE

A flavor can request only one instance of a bare metal resource class.

8. Set the following flavor properties to prevent the Compute scheduler from using the bare metal flavor properties to schedule instances:

```
(undercloud)$ openstack flavor set \
  --property resources:VDISK_GB=0 compute-pci-passthrough
```

9. Add the following parameters to the `node-info.yaml` file to specify the number of PCI passthrough Compute nodes, and the flavor to use for the PCI passthrough designated Compute nodes:

```
parameter_defaults:
  OvercloudComputePCIFlavor: compute-pci-passthrough
  ComputePCICount: 3
```

10. To verify that the role was created, enter the following command:

```
(undercloud)$ openstack overcloud profiles list
```

5.2. CONFIGURING A PCI PASSTHROUGH COMPUTE NODE

To enable your cloud users to create instances with PCI devices attached, you must configure both the Compute nodes that have the PCI devices and the Controller nodes.

Procedure

1. Create an environment file to configure the Controller node on the overcloud for PCI passthrough, for example, `pci_passthrough_controller.yaml`.

2. Add `PciPassthroughFilter` to the `NovaSchedulerDefaultFilters` parameter in `pci_passthrough_controller.yaml`:

```
parameter_defaults:
  NovaSchedulerDefaultFilters:
```
3. To specify the PCI alias for the devices on the Controller node, add the following configuration to `pci_passthrough_controller.yaml`:

```yaml
parameter_defaults:
  ...
  ControllerExtraConfig:
    nova::pci::aliases:
      - name: "a1"
        product_id: "1572"
        vendor_id: "8086"
        device_type: "type-PF"
```

For more information about configuring the `device_type` field, see [PCI passthrough device type field](#).

NOTE

If the `nova-api` service is running in a role different from the Controller role, replace `ControllerExtraConfig` with the user role in the format `<Role>ExtraConfig`.

4. Optional: To set a default NUMA affinity policy for PCI passthrough devices, add `numa_policy` to the `nova::pci::aliases:` configuration from step 3:

```yaml
parameter_defaults:
  ...
  ControllerExtraConfig:
    nova::pci::aliases:
      - name: "a1"
        product_id: "1572"
        vendor_id: "8086"
        device_type: "type-PF"
        numa_policy: "preferred"
```

5. To configure the Compute node on the overcloud for PCI passthrough, create an environment file, for example, `pci_passthrough_compute.yaml`.

6. To specify the available PCIs for the devices on the Compute node, use the `vendor_id` and `product_id` options to add all matching PCI devices to the pool of PCI devices available for passthrough to instances. For example, to add all Intel® Ethernet Controller X710 devices to the pool of PCI devices available for passthrough to instances, add the following configuration to `pci_passthrough_compute.yaml`:

```yaml
parameter_defaults:
  ...
  ComputePCIParameters:
    NovaPCIPassthrough:
      - vendor_id: "8086"
        product_id: "1572"
```

For more information about how to configure `NovaPCIPassthrough`, see [Guidelines for configuring NovaPCIPassthrough](#).
7. You must create a copy of the PCI alias on the Compute node for instance migration and resize operations. To specify the PCI alias for the devices on the PCI passthrough Compute node, add the following to `pci_passthrough_compute.yaml`:

```yaml
parameter_defaults:
  ...
  ComputePCIExtraConfig:
    nova::pci::aliases:
      - name: "a1"
        product_id: "1572"
        vendor_id: "8086"
        device_type": "type-PF"
```

NOTE
The Compute node aliases must be identical to the aliases on the Controller node. Therefore, if you added `numa_affinity` to `nova::pci::aliases` in `pci_passthrough_controller.yaml`, then you must also add it to `nova::pci::aliases` in `pci_passthrough_compute.yaml`.

8. To enable IOMMU in the server BIOS of the Compute nodes to support PCI passthrough, add the `KernelArgs` parameter to `pci_passthrough_compute.yaml`. For example, use the following `KernelArgs` settings to enable an Intel IOMMU:

```yaml
parameter_defaults:
  ...
  ComputePCIParameters:
    KernelArgs: "intel_iommu=on iommu=pt"
```

To enable an AMD IOMMU, set `KernelArgs` to "amd_iommu=on iommu=pt".

9. Add your custom environment files to the stack with your other environment files and deploy the overcloud:

```
(undercloud)$ openstack overcloud deploy --templates \
-e [your environment files] \
-e /home/stack/templates/pci_passthrough_controller.yaml \
-e /home/stack/templates/pci_passthrough_compute.yaml \
```

10. Create and configure the flavors that your cloud users can use to request the PCI devices. The following example requests two devices, each with a vendor ID of 8086 and a product ID of 1572, using the alias defined in step 7:

```
(overcloud)# openstack flavor set \
   --property "pci_passthrough:alias"="a1:2" device_passthrough
```

11. Optional: To override the default NUMA affinity policy for PCI passthrough devices, you can add the NUMA affinity policy property key to the flavor or the image:

 - To override the default NUMA affinity policy by using the flavor, add the `hw:pci_numa_affinity_policy` property key:
(overcloud)# openstack flavor set \
 --property "hw:pci_numa_affinity_policy"="required" \
 device_passthrough

For more information about the valid values for `hw:pci_numa_affinity_policy`, see Flavor metadata.

- To override the default NUMA affinity policy by using the image, add the `hw_pci_numa_affinity_policy` property key:

(overcloud)# openstack image set \
 --property hw_pci_numa_affinity_policy=required \
 device_passthrough_image

NOTE
If you set the NUMA affinity policy on both the image and the flavor then the property values must match. The flavor setting takes precedence over the image and default settings. Therefore, the configuration of the NUMA affinity policy on the image only takes effect if the property is not set on the flavor.

Verification

1. Create an instance with a PCI passthrough device:

 # openstack server create --flavor device_passthrough \
 --image <image> --wait test-pci

2. Log in to the instance as a cloud user.

3. To verify that the PCI device is accessible from the instance, enter the following command from the instance:

 $ lspci -nn | grep <device_name>

5.3. PCI PASSTHROUGH DEVICE TYPE FIELD

The Compute service categorizes PCI devices into one of three types, depending on the capabilities the devices report. The following lists the valid values that you can set the `device_type` field to:

- **type-PF**
 The device supports SR-IOV and is the parent or root device. Specify this device type to passthrough a device that supports SR-IOV in its entirety.

- **type-VF**
 The device is a child device of a device that supports SR-IOV.

- **type-PCI**
 The device does not support SR-IOV. This is the default device type if the `device_type` field is not set.
NOTE
You must configure the Compute and Controller nodes with the same \texttt{device}_\texttt{type}.

5.4. GUIDELINES FOR CONFIGURING NOVAPCIPASSTHROUGH

- Do not use the \texttt{devname} parameter when configuring PCI passthrough, as the device name of a NIC can change. Instead, use \texttt{vendor}_\texttt{id} and \texttt{product}_\texttt{id} because they are more stable, or use the \texttt{address} of the NIC.

- To pass through a specific Physical Function (PF), you can use the \texttt{address} parameter because the PCI address is unique to each device. Alternatively, you can use the \texttt{product}_\texttt{id} parameter to pass through a PF, but you must also specify the \texttt{address} of the PF if you have multiple PFs of the same type.

- To pass through all the Virtual Functions (VFs) specify only the \texttt{product}_\texttt{id} and \texttt{vendor}_\texttt{id} of the VFs that you want to use for PCI passthrough. You must also specify the \texttt{address} of the VF if you are using SRIOV for NIC partitioning and you are running OVS on a VF.

- To pass through only the VFs for a PF but not the PF itself, you can use the \texttt{address} parameter to specify the PCI address of the PF and \texttt{product}_\texttt{id} to specify the product ID of the VF.
CHAPTER 6. CREATING AND MANAGING HOST AGGREGATES

As a cloud administrator, you can partition a Compute deployment into logical groups for performance or administrative purposes. Red Hat OpenStack Platform (RHOSP) provides the following mechanisms for partitioning logical groups:

Host aggregate

A host aggregate is a grouping of Compute nodes into a logical unit based on attributes such as the hardware or performance characteristics. You can assign a Compute node to one or more host aggregates.

You can map flavors and images to host aggregates by setting metadata on the host aggregate, and then matching flavor extra specs or image metadata properties to the host aggregate metadata. The Compute scheduler can use this metadata to schedule instances when the required filters are enabled. Metadata that you specify in a host aggregate limits the use of that host to any instance that has the same metadata specified in its flavor or image.

You can configure weight multipliers for each host aggregate by setting the `xxx_weight_multiplier` configuration option in the host aggregate metadata.

You can use host aggregates to handle load balancing, enforce physical isolation or redundancy, group servers with common attributes, or separate classes of hardware.

When you create a host aggregate, you can specify a zone name. This name is presented to cloud users as an availability zone that they can select.

Availability zones

An availability zone is the cloud user view of a host aggregate. A cloud user cannot view the Compute nodes in the availability zone, or view the metadata of the availability zone. The cloud user can only see the name of the availability zone.

You can assign each Compute node to only one availability zone. You can configure a default availability zone where instances will be scheduled when the cloud user does not specify a zone. You can direct cloud users to use availability zones that have specific capabilities.

6.1. ENABLING SCHEDULING ON HOST AGGREGATES

To schedule instances on host aggregates that have specific attributes, update the configuration of the Compute scheduler to enable filtering based on the host aggregate metadata.

Procedure

1. Open your Compute environment file.

2. Add the following values to the `NovaSchedulerDefaultFilters` parameter, if they are not already present:

 - `AggregateInstanceExtraSpecsFilter`: Add this value to filter Compute nodes by host aggregate metadata that match flavor extra specs.

NOTE

For this filter to perform as expected, you must scope the flavor extra specs by prefixing the `extra_specs` key with the `aggregate_instance_extra_specs: namespace`.
• **AggregateImagePropertiesIsolation**: Add this value to filter Compute nodes by host aggregate metadata that match image metadata properties.

 NOTE

 To filter host aggregate metadata by using image metadata properties, the host aggregate metadata key must match a valid image metadata property. For information about valid image metadata properties, see [Image metadata](#).

 • **AvailabilityZoneFilter**: Add this value to filter by availability zone when launching an instance.

 NOTE

 Instead of using the `AvailabilityZoneFilter` Compute scheduler service filter, you can use the Placement service to process availability zone requests. For more information, see [Filtering by availability zone using the Placement service](#).

3. Save the updates to your Compute environment file.

4. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:

   ```bash
   (undercloud)$ openstack overcloud deploy --templates
   -e [your environment files]
   -e /home/stack/templates/<compute_environment_file>.yaml
   ```

6.2. CREATING A HOST AGGREGATE

As a cloud administrator, you can create as many host aggregates as you require.

Procedure

1. To create a host aggregate, enter the following command:

   ```bash
   (overcloud)# openstack aggregate create <aggregate_name>
   ```

 Replace `<aggregate_name>` with the name you want to assign to the host aggregate.

2. Add metadata to the host aggregate:

   ```bash
   (overcloud)# openstack aggregate set \
   --property <key=value> \
   --property <key=value> \
   <aggregate_name>
   ```

 • Replace `<key=value>` with the metadata key-value pair. If you are using the `AggregateInstanceExtraSpecsFilter` filter, the key can be any arbitrary string, for example, `ssd=true`. If you are using the `AggregateImagePropertiesIsolation` filter, the key must match a valid image metadata property. For more information about valid image metadata properties, see [Image metadata](#).
3. Add the Compute nodes to the host aggregate:

(overcloud)# openstack aggregate add host
<aggregate_name>
<host_name>

Replace `<aggregate_name>` with the name of the host aggregate to add the Compute node to.

Replace `<host_name>` with the name of the Compute node to add to the host aggregate.

4. Create a flavor or image for the host aggregate:

- Create a flavor:

(overcloud)$ openstack flavor create
--ram <size_mb>
--disk <size_gb>
--vcpus <no_reserved_vcpus>
host-agg-flavor

- Create an image:

(overcloud)$ openstack image create host-agg-image

5. Set one or more key-value pairs on the flavor or image that match the key-value pairs on the host aggregate.

- To set the key-value pairs on a flavor, use the scope `aggregate_instance_extra_specs`:

(overcloud)# openstack flavor set
--property aggregate_instance_extra_specs:ssd=true
host-agg-flavor

- To set the key-value pairs on an image, use valid image metadata properties as the key:

(overcloud)# openstack image set
--property os_type=linux
host-agg-image

6.3. CREATING AN AVAILABILITY ZONE

As a cloud administrator, you can create an availability zone that cloud users can select when they create an instance.

Procedure

1. To create an availability zone, you can create a new availability zone host aggregate, or make an existing host aggregate an availability zone:

 a. To create a new availability zone host aggregate, enter the following command:
To create an availability zone, enter the following command:

```
(overcloud)# openstack aggregate create --zone <availability_zone> <aggregate_name>
```

- Replace `<availability_zone>` with the name you want to assign to the availability zone.
- Replace `<aggregate_name>` with the name you want to assign to the host aggregate.

b. To make an existing host aggregate an availability zone, enter the following command:

```
(overcloud)# openstack aggregate set --zone <availability_zone> <aggregate_name>
```

- Replace `<availability_zone>` with the name you want to assign to the availability zone.
- Replace `<aggregate_name>` with the name of the host aggregate.

2. Optional: Add metadata to the availability zone:

```
(overcloud)# openstack aggregate set --property <key=value> <aggregate_name>
```

- Replace `<key=value>` with your metadata key-value pair. You can add as many key-value properties as required.
- Replace `<aggregate_name>` with the name of the availability zone host aggregate.

3. Add Compute nodes to the availability zone host aggregate:

```
(overcloud)# openstack aggregate add host <aggregate_name> <host_name>
```

- Replace `<aggregate_name>` with the name of the availability zone host aggregate to add the Compute node to.
- Replace `<host_name>` with the name of the Compute node to add to the availability zone.

6.4. DELETING A HOST AGGREGATE

To delete a host aggregate, you first remove all the Compute nodes from the host aggregate.

Procedure

1. To view a list of all the Compute nodes assigned to the host aggregate, enter the following command:

```
(overcloud)# openstack aggregate show <aggregate_name>
```

2. To remove all assigned Compute nodes from the host aggregate, enter the following command for each Compute node:

```
(overcloud)# openstack aggregate remove host <aggregate_name> <host_name>
```
- Replace `<aggregate_name>` with the name of the host aggregate to remove the Compute node from.

- Replace `<host_name>` with the name of the Compute node to remove from the host aggregate.

3. After you remove all the Compute nodes from the host aggregate, enter the following command to delete the host aggregate:

   ```
   (overcloud)# openstack aggregate delete <aggregate_name>
   ```

6.5. CREATING A PROJECT-ISOLATED HOST AGGREGATE

You can create a host aggregate that is available only to specific projects. Only the projects that you assign to the host aggregate can launch instances on the host aggregate.

NOTE

Project isolation uses the Placement service to filter host aggregates for each project. This process supersedes the functionality of the `AggregateMultiTenancyIsolation` filter. You therefore do not need to use the `AggregateMultiTenancyIsolation` filter.

Procedure

1. Open your Compute environment file.

2. To schedule project instances on the project-isolated host aggregate, set the `NovaSchedulerLimitTenantsToPlacementAggregate` parameter to `True` in the Compute environment file.

3. Optional: To ensure that only the projects that you assign to a host aggregate can create instances on your cloud, set the `NovaSchedulerPlacementAggregateRequiredForTenants` parameter to `True`.

 NOTE

 `NovaSchedulerPlacementAggregateRequiredForTenants` is `False` by default. When this parameter is `False`, projects that are not assigned to a host aggregate can create instances on any host aggregate.

4. Save the updates to your Compute environment file.

5. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:

   ```
   (undercloud)$ openstack overcloud deploy --templates \ 
   -e [your environment files] \ 
   -e /home/stack/templates/<compute_environment_file>.yaml \ 
   ```

6. Create the host aggregate.

7. Retrieve the list of project IDs:

   ```
   (overcloud)# openstack project list
   ```
8. Use the `filter_tenant_id<suffix>` metadata key to assign projects to the host aggregate:

```
(overcloud)# openstack aggregate set \
--property filter_tenant_id<ID0>=<project_id0> \
--property filter_tenant_id<ID1>=<project_id1> \
... \
--property filter_tenant_id<IDn>=<project_idn> \
<aggregate_name>
```

- Replace `<ID0>`, `<ID1>`, and all IDs up to `<IDn>` with unique values for each project filter that you want to create.
- Replace `<project_id0>`, `<project_id1>`, and all project IDs up to `<project_idn>` with the ID of each project that you want to assign to the host aggregate.
- Replace `<aggregate_name>` with the name of the project-isolated host aggregate. For example, use the following syntax to assign projects 78f1, 9d3t, and aa29 to the host aggregate `project-isolated-aggregate`:

```
(overcloud)# openstack aggregate set \
--property filter_tenant_id0=78f1 \
--property filter_tenant_id1=9d3t \
--property filter_tenant_id2=aa29 \
project-isolated-aggregate
```

TIP

You can create a host aggregate that is available only to a single specific project by omitting the suffix from the `filter_tenant_id` metadata key:

```
(overcloud)# openstack aggregate set \
--property filter_tenant_id=78f1 \
single-project-isolated-aggregate
```

Additional resources

- For more information on creating a host aggregate, see [Creating and managing host aggregates](#).
CHAPTER 7. CONFIGURING INSTANCE SCHEDULING AND PLACEMENT

The Compute scheduler service determines on which Compute node or host aggregate to place an instance. When the Compute (nova) service receives a request to launch or move an instance, it uses the specifications provided in the request, the flavor, and the image to find a suitable host. For example, a flavor can specify the traits an instance requires a host to have, such as the type of storage disk, or the Intel CPU instruction set extension.

The Compute scheduler service uses the configuration of the following components, in the following order, to determine on which Compute node to launch or move an instance:

1. **Placement service prefilters**: The Compute scheduler service uses the Placement service to filter the set of candidate Compute nodes based on specific attributes. For example, the Placement service automatically excludes disabled Compute nodes.

2. **Filters**: Used by the Compute scheduler service to determine the initial set of Compute nodes on which to launch an instance.

3. **Weights**: The Compute scheduler service prioritizes the filtered Compute nodes using a weighting system. The highest weight has the highest priority.

In the following diagram, host 1 and 3 are eligible after filtering. Host 1 has the highest weight and therefore has the highest priority for scheduling.

7.1. PREFILTERING USING THE PLACEMENT SERVICE

The Compute (nova) service interacts with the Placement service when it creates and manages instances. The Placement service tracks the inventory and usage of resource providers, such as a Compute node, a shared storage pool, or an IP allocation pool, and their available quantitative resources, such as the available vCPUs. Any service that needs to manage the selection and consumption of resources can use the Placement service.

The Placement service also tracks the mapping of available qualitative resources to resource providers, such as the type of storage disk trait a resource provider has.
The Placement service applies prefilters to the set of candidate Compute nodes based on Placement service resource provider inventories and traits. You can create prefilters based on the following criteria:

- Supported image types
- Traits
- Projects or tenants
- Availability zone

7.1.1. Filtering by requested image type support

You can exclude Compute nodes that do not support the disk format of the image used to launch an instance. This is useful when your environment uses Red Hat Ceph Storage as an ephemeral backend, which does not support QCOW2 images. Enabling this feature ensures that the scheduler does not send requests to launch instances using a QCOW2 image to Compute nodes backed by Red Hat Ceph Storage.

Procedure

1. Open your Compute environment file.
2. To exclude Compute nodes that do not support the disk format of the image used to launch an instance, set the `NovaSchedulerQueryImageType` parameter to `True` in the Compute environment file.
3. Save the updates to your Compute environment file.
4. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:

   ```bash
   (undercloud)$ openstack overcloud deploy --templates \
   -e [your environment files] \
   -e /home/stack/templates/<compute_environment_file>.yaml
   ```

7.1.2. Filtering by resource provider traits

Each resource provider has a set of traits. Traits are the qualitative aspects of a resource provider, for example, the type of storage disk, or the Intel CPU instruction set extension.

The Compute node reports its capabilities to the Placement service as traits. An instance can specify which of these traits it requires, or which traits the resource provider must not have. The Compute scheduler can use these traits to identify a suitable Compute node or host aggregate to host an instance.

To enable your cloud users to create instances on hosts that have particular traits, you can define a flavor that requires or forbids a particular trait, and you can create an image that requires or forbids a particular trait.

For a list of the available traits, see the `os-traits` library. You can also create custom traits, as required.

7.1.2.1. Creating an image that requires or forbids a resource provider trait
You can create an instance image that your cloud users can use to launch instances on hosts that have particular traits.

Procedure

1. Create a new image:
   ```
   (overcloud)$ openstack image create ... trait-image
   ```

2. Identify the trait you require a host or host aggregate to have. You can select an existing trait, or create a new trait:
 - To use an existing trait, list the existing traits to retrieve the trait name:
     ```
     (overcloud)$ openstack --os-placement-api-version 1.6 trait list
     ```
 - To create a new trait, enter the following command:
     ```
     (overcloud)$ openstack --os-placement-api-version 1.6 trait \
     create CUSTOM_TRAIT_NAME
     ```
 Custom traits must begin with the prefix `CUSTOM_` and contain only the letters A through Z, the numbers 0 through 9 and the underscore `_` character.

3. To schedule instances on a host or host aggregate that has a required trait, add the trait to the image extra specs. For example, to schedule instances on a host or host aggregate that supports AVX-512, add the following trait to the image extra specs:
   ```
   (overcloud)$ openstack image set \
   --property trait:HW_CPU_X86_AVX512BW=required \n   trait-image
   ```

4. To filter out hosts or host aggregates that have a forbidden trait, add the trait to the image extra specs. For example, to prevent instances from being scheduled on a host or host aggregate that supports multi-attach volumes, add the following trait to the image extra specs:
   ```
   (overcloud)$ openstack image set \
   --property trait:COMPUTE_VOLUME_MULTI_ATTACHMENT=forbidden \n   trait-image
   ```

7.1.2.2. Creating a flavor that requires or forbids a resource provider trait

You can create flavors that your cloud users can use to launch instances on hosts that have particular traits.

Procedure

1. Create a flavor:
   ```
   (overcloud)$ openstack flavor create --vcpus 1 --ram 512 \n   --disk 2 trait-flavor
   ```
2. Identify the trait you require a host or host aggregate to have. You can select an existing trait, or create a new trait:

- To use an existing trait, list the existing traits to retrieve the trait name:

 (overcloud)$ openstack --os-placement-api-version 1.6 trait list

- To create a new trait, enter the following command:

 (overcloud)$ openstack --os-placement-api-version 1.6 trait \
 create CUSTOM_TRAIT_NAME

Custom traits must begin with the prefix CUSTOM_ and contain only the letters A through Z, the numbers 0 through 9 and the underscore "_" character.

3. To schedule instances on a host or host aggregate that has a required trait, add the trait to the flavor extra specs. For example, to schedule instances on a host or host aggregate that supports AVX-512, add the following trait to the flavor extra specs:

 (overcloud)$ openstack flavor set \
 --property trait:HW_CPU_X86_AVX512BW=required \
 trait-flavor

4. To filter out hosts or host aggregates that have a forbidden trait, add the trait to the flavor extra specs. For example, to prevent instances from being scheduled on a host or host aggregate that supports multi-attach volumes, add the following trait to the flavor extra specs:

 (overcloud)$ openstack flavor set \
 --property trait:COMPUTE_VOLUME_MULTI_ATTACH=forbidden \
 trait-flavor

7.1.3. Filtering by isolating host aggregates

You can restrict scheduling on a host aggregate to only those instances whose flavor and image traits match the metadata of the host aggregate. The combination of flavor and image metadata must require all the host aggregate traits to be eligible for scheduling on Compute nodes in that host aggregate.

Procedure

1. Open your Compute environment file.

2. To isolate host aggregates to host only instances whose flavor and image traits match the aggregate metadata, set the **NovaSchedulerEnableIsolatedAggregateFiltering** parameter to **True** in the Compute environment file.

3. Save the updates to your Compute environment file.

4. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:

 (undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml
5. Identify the traits you want to isolate the host aggregate for. You can select an existing trait, or create a new trait:

- To use an existing trait, list the existing traits to retrieve the trait name:

 (overcloud)$ openstack --os-placement-api-version 1.6 trait list

- To create a new trait, enter the following command:

 (overcloud)$ openstack --os-placement-api-version 1.6 trait \create CUSTOM_TRAIT_NAME

 Custom traits must begin with the prefix CUSTOM_ and contain only the letters A through Z, the numbers 0 through 9 and the underscore "_" character.

6. Collect the existing traits of each Compute node:

 (overcloud)$ traits=$(openstack --os-placement-api-version 1.6 resource provider trait list -f value <host_uuid> | sed 's/^/--trait /')

7. Add the traits to the resource providers for each Compute node in the host aggregate:

 (overcloud)$ openstack --os-placement-api-version 1.6 \resource provider trait set --trait $traits \--trait CUSTOM_TRAIT_NAME \<host_uuid>

8. Repeat steps 6 and 7 for each Compute node in the host aggregate.

9. Add the metadata property for the trait to the host aggregate:

 (overcloud)$ openstack --os-compute-api-version 2.53 aggregate set \--property trait:TRAIT_NAME=required <aggregate_name>

10. Add the trait to a flavor or an image:

 (overcloud)$ openstack flavor set \--property trait:<TRAIT_NAME>=required <flavor>
 (overcloud)$ openstack image set \--property trait:<TRAIT_NAME>=required <image>

7.1.4. Filtering by availability zone using the Placement service

You can use the Placement service to honor availability zone requests. To use the Placement service to filter by availability zone, placement aggregates must exist that match the membership and UUID of the availability zone host aggregates.

When using the Placement service to filter by availability zone, you can remove the AvailabilityZoneFilter filter from NovaSchedulerDefaultFilters.

Procedure

1. Open your Compute environment file.
2. To use the Placement service to filter by availability zone, set the `NovaSchedulerQueryPlacementForAvailabilityZone` parameter to `True` in the Compute environment file.

3. Save the updates to your Compute environment file.

4. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:

   ```
   (undercloud)$ openstack overcloud deploy --templates \\
   -e [your environment files] \\
   -e /home/stack/templates/<compute_environment_file>.yaml
   ```

5. Create the host aggregate to use as an availability zone.

6. Add the availability zone host aggregate as a resource provider to the placement aggregate:

   ```
   $ openstack --os-placement-api-version=1.2 resource provider \\
   aggregate set --aggregate <az_agg_uuid> <resource_provider_uuid>
   ```

Additional resources

- For more information on creating a host aggregate to use as an availability zone, see Creating an availability zone.

7.2. CONFIGURING FILTERS AND WEIGHTS FOR THE COMPUTE SCHEDULER SERVICE

You need to configure the filters and weights for the Compute scheduler service to determine the initial set of Compute nodes on which to launch an instance.

Procedure

1. Open your Compute environment file.

2. Add the filters you want the scheduler to use to the `NovaSchedulerDefaultFilters` parameter, for example:

   ```
   parameter_defaults:
   NovaSchedulerDefaultFilters:
   AggregateInstanceExtraSpecsFilter,ComputeFilter,ComputeCapabilitiesFilter,ImagePropertiesFilter
   ```

3. Specify which attribute to use to calculate the weight of each Compute node, for example:

   ```
   parameter_defaults:
   ComputeExtraConfig:
   nova::config::nova_config: 
   DEFAULT/scheduler_weight_classes: 
   value: nova.scheduler.weights.all_weighers
   ```

4. Save the updates to your Compute environment file.
5. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:

```
(undercloud)$ openstack overcloud deploy --templates \
-e [your environment files] \
-e /home/stack/templates/<compute_environment_file>.yaml
```

Additional resources

- For a list of the available Compute scheduler service filters, see Compute scheduler filters.
- For a list of the available weight configuration options, see Compute scheduler weights.

7.3. COMPUTE SCHEDULER FILTERS

You configure the `NovaSchedulerDefaultFilters` parameter in your Compute environment file to specify the filters the Compute scheduler must apply when selecting an appropriate Compute node to host an instance. The default configuration applies the following filters:

- **AvailabilityZoneFilter**: The Compute node must be in the requested availability zone.
- **ComputeFilter**: The Compute node can service the request.
- **ComputeCapabilitiesFilter**: The Compute node satisfies the flavor extra specs.
- **ImagePropertiesFilter**: The Compute node satisfies the requested image properties.
- **ServerGroupAntiAffinityFilter**: The Compute node is not already hosting an instance in a specified group.
- **ServerGroupAffinityFilter**: The Compute node is already hosting instances in a specified group.

You can add and remove filters. The following table describes all the available filters.

<table>
<thead>
<tr>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>AggregateImagePropertiesIsolation</code></td>
<td>Use this filter to match the image metadata of an instance with host aggregate metadata. If any of the host aggregate metadata matches the metadata of the image, then the Compute nodes that belong to that host aggregate are candidates for launching instances from that image. The scheduler only recognises valid image metadata properties. For details on valid image metadata properties, see Image metadata properties.</td>
</tr>
<tr>
<td><code>AggregateInstanceExtraSpecsFilter</code></td>
<td>Use this filter to match namespaced properties defined in the flavor extra specs of an instance with host aggregate metadata. You must scope your flavor <code>extra_specs</code> keys by prefixing them with the <code>aggregate_instance_extra_specs:</code> namespace. If any of the host aggregate metadata matches the metadata of the flavor extra spec, then the Compute nodes that belong to that host aggregate are candidates for launching instances from that image.</td>
</tr>
<tr>
<td>Filter</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>AggregateIoOpsFilter</td>
<td>Use this filter to filter hosts by I/O operations with a per-aggregate <code>filter_scheduler/max_io_ops_per_host</code> value. If the per-aggregate value is not found, the value falls back to the global setting. If the host is in more than one aggregate and more than one value is found, the scheduler uses the minimum value.</td>
</tr>
<tr>
<td>AggregateMultiTenancyIsolation</td>
<td>Use this filter to limit the availability of Compute nodes in project-isolated host aggregates to a specified set of projects. Only projects specified using the <code>filter_tenant_id</code> metadata key can launch instances on Compute nodes in the host aggregate. For more information, see Creating a project-isolated host aggregate.</td>
</tr>
<tr>
<td></td>
<td>NOTE</td>
</tr>
<tr>
<td></td>
<td>The project can still place instances on other hosts. To restrict this, use the <code>NovaSchedulerPlacementAggregateRequiredForTenants</code> parameter.</td>
</tr>
<tr>
<td>AggregateNumInstancesFilter</td>
<td>Use this filter to limit the number of instances each Compute node in an aggregate can host. You can configure the maximum number of instances per-aggregate by using the <code>filter_scheduler/max_instances_per_host</code> parameter. If the per-aggregate value is not found, the value falls back to the global setting. If the Compute node is in more than one aggregate, the scheduler uses the lowest <code>max_instances_per_host</code> value.</td>
</tr>
<tr>
<td>AggregateTypeAffinityFilter</td>
<td>Use this filter to pass hosts if no flavor metadata key is set, or the flavor aggregate metadata value contains the name of the requested flavor. The value of the flavor metadata entry is a string that may contain either a single flavor name or a comma-separated list of flavor names, such as <code>m1.nano</code> or <code>m1.nano,m1.small</code>.</td>
</tr>
<tr>
<td>AllHostsFilter</td>
<td>Use this filter to consider all available Compute nodes for instance scheduling.</td>
</tr>
<tr>
<td></td>
<td>NOTE</td>
</tr>
<tr>
<td></td>
<td>Using this filter does not disable other filters.</td>
</tr>
<tr>
<td>AvailabilityZoneFilter</td>
<td>Use this filter to launch instances on a Compute node in the availability zone specified by the instance.</td>
</tr>
<tr>
<td>Filter</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| **ComputeCapabilitiesFilter** | Use this filter to match namespaced properties defined in the flavor extra specs of an instance against the Compute node capabilities. You must prefix the flavor extra specs with the `capabilities:` namespace.

A more efficient alternative to using the **ComputeCapabilitiesFilter** filter is to use CPU traits in your flavors, which are reported to the Placement service. Traits provide consistent naming for CPU features. For more information, see Filtering by using resource provider traits. |
| **ComputeFilter** | Use this filter to pass all Compute nodes that are operational and enabled. This filter should always be present. |
| **DifferentHostFilter** | Use this filter to enable scheduling of an instance on a different Compute node from a set of specific instances. To specify these instances when launching an instance, use the `--hint` argument with `different_host` as the key and the instance UUID as the value:

```sh  
$ openstack server create --image cedef40a-ed67-4d10-800e-17455edce175  
  --flavor 1 --hint different_host=a0cf03a5-d921-4877-bb5c-86d26cf818e1  
  --hint different_host=8c19174f-4220-44f0-824a-cd1eeef10287 server-1  
``` |
| **ImagePropertiesFilter** | Use this filter to filter Compute nodes based on the following properties defined on the instance image:

- **hw_architecture** - Corresponds to the architecture of the host, for example, x86, ARM, and Power.
- **img_hv_type** - Corresponds to the hypervisor type, for example, KVM, QEMU, Xen, and LXC.
- **img_hv_requested_version** - Corresponds to the hypervisor version the Compute service reports.
- **hw_vm_mode** - Corresponds to the hypervisor type, for example hvm, xen, uml, or exe.

Compute nodes that can support the specified image properties contained in the instance are passed to the scheduler. For more information on image properties, see Image metadata properties. |
<table>
<thead>
<tr>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IsolatedHostsFilter</td>
<td>Use this filter to only schedule instances with isolated images on isolated Compute nodes. You can also prevent non-isolated images from being used to build instances on isolated Compute nodes by configuring <code>filter_scheduler/restrict_isolated_hosts_to_isolated_images</code>. To specify the isolated set of images and hosts use the <code>filter_scheduler/isolated_hosts</code> and <code>filter_scheduler/isolated_images</code> configuration options, for example:</td>
</tr>
<tr>
<td></td>
<td>parameter_defaults:</td>
</tr>
<tr>
<td></td>
<td>ComputeExtraConfig:</td>
</tr>
<tr>
<td></td>
<td>nova::config::nova_config:</td>
</tr>
<tr>
<td></td>
<td>filter_scheduler/isolated_hosts:</td>
</tr>
<tr>
<td></td>
<td>value: server1, server2</td>
</tr>
<tr>
<td></td>
<td>filter_scheduler/isolated_images:</td>
</tr>
<tr>
<td></td>
<td>value: 342b492c-128f-4a42-8d3a-c5088cf27d13, ebd267a6-ka86-4d6c-9a0e-bd132d6b7d09</td>
</tr>
<tr>
<td>IoOpsFilter</td>
<td>Use this filter to filter out hosts that have concurrent I/O operations that exceed the configured <code>filter_scheduler/max_io_ops_per_host</code>, which specifies the maximum number of I/O intensive instances allowed to run on the host.</td>
</tr>
<tr>
<td>MetricsFilter</td>
<td>Use this filter to limit scheduling to Compute nodes that report the metrics configured by using <code>metrics/weight_setting</code>. To use this filter, add the following configuration to your Compute environment file:</td>
</tr>
<tr>
<td></td>
<td>parameter_defaults:</td>
</tr>
<tr>
<td></td>
<td>ComputeExtraConfig:</td>
</tr>
<tr>
<td></td>
<td>nova::config::nova_config:</td>
</tr>
<tr>
<td></td>
<td>DEFAULT/compute_monitors:</td>
</tr>
<tr>
<td></td>
<td>value: ‘cpu.virt_driver’</td>
</tr>
<tr>
<td></td>
<td>By default, the Compute scheduler service updates the metrics every 60 seconds. To ensure the metrics are up-to-date, you can increase the frequency at which the metrics data is refreshed using the <code>update_resources_interval</code> configuration option. For example, use the following configuration to refresh the metrics data every 2 seconds:</td>
</tr>
<tr>
<td></td>
<td>parameter_defaults:</td>
</tr>
<tr>
<td></td>
<td>ComputeExtraConfig:</td>
</tr>
<tr>
<td></td>
<td>nova::config::nova_config:</td>
</tr>
<tr>
<td></td>
<td>DEFAULT/update_resources_interval:</td>
</tr>
<tr>
<td></td>
<td>value: ‘2’</td>
</tr>
<tr>
<td>Filter</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>NUMATopologyFilter</td>
<td>Use this filter to schedule instances with a NUMA topology on NUMA-capable Compute nodes. Use flavor <code>extraspecs</code> and image properties to specify the NUMA topology for an instance. The filter tries to match the instance NUMA topology to the Compute node topology, taking into consideration the over-subscription limits for each host NUMA cell.</td>
</tr>
<tr>
<td>NumInstancesFilter</td>
<td>Use this filter to filter out Compute nodes that have more instances running than specified by the <code>max_instances_per_host</code> option.</td>
</tr>
<tr>
<td>PciPassthroughFilter</td>
<td>Use this filter to schedule instances on Compute nodes that have the devices that the instance requests by using the flavor <code>extra_specs</code>. Use this filter if you want to reserve nodes with PCI devices, which are typically expensive and limited, for instances that request them.</td>
</tr>
<tr>
<td>SameHostFilter</td>
<td>Use this filter to enable scheduling of an instance on the same Compute node as a set of specific instances. To specify these instances when launching an instance, use the <code>--hint</code> argument with <code>same_host</code> as the key and the instance UUID as the value:</td>
</tr>
<tr>
<td></td>
<td>```</td>
</tr>
<tr>
<td></td>
<td>$ openstack server create --image cedef40a-ed67-4d10-800e-17455edce175 \</td>
</tr>
<tr>
<td></td>
<td>--flavor 1 --hint same_host=a0cf03a5-d921-4877-bb5c-86d26cf818e1 \</td>
</tr>
<tr>
<td></td>
<td>--hint same_host=8c19174f-4220-44f0-824a-cd1eeef10287 server-1</td>
</tr>
<tr>
<td>ServerGroupAffinityFilter</td>
<td>Use this filter to schedule instances in an affinity server group on the same Compute node. To create the server group, enter the following command:</td>
</tr>
<tr>
<td></td>
<td>```</td>
</tr>
<tr>
<td></td>
<td>$ openstack server group create --policy affinity <group_name></td>
</tr>
<tr>
<td></td>
<td>To launch an instance in this group, use the <code>--hint</code> argument with <code>group</code> as the key and the group UUID as the value:</td>
</tr>
<tr>
<td></td>
<td>```</td>
</tr>
<tr>
<td></td>
<td>$ openstack server create --image <image> \</td>
</tr>
<tr>
<td></td>
<td>--flavor <flavor> \</td>
</tr>
<tr>
<td></td>
<td>--hint group=<group_uuid> <instance_name></td>
</tr>
</tbody>
</table>
ServerGroupAntiAffinity Filter

Use this filter to schedule instances that belong to an anti-affinity server group on different Compute nodes. To create the server group, enter the following command:

```
$ openstack server group create --policy anti-affinity <group_name>
```

To launch an instance in this group, use the `--hint` argument with `group` as the key and the group UUID as the value:

```
$ openstack server create --image <image> \
--flavor <flavor> \ 
--hint group=<group_uuid> <instance_name>
```

SimpleCIDRAffinityFilter

Use this filter to schedule instances on Compute nodes that have a specific IP subnet range. To specify the required range, use the `--hint` argument to pass the keys `build_near_host_ip` and `cidr` when launching an instance:

```
$ openstack server create --image <image> \
--flavor <flavor> \ 
--hint build_near_host_ip=<ip_address> \ 
--hint cidr=<subnet_mask> <instance_name>
```

7.4. COMPUTE SCHEDULER WEIGHTS

Each Compute node has a weight that the scheduler can use to prioritize instance scheduling. After the scheduler applies the filters, it selects the Compute node with the largest weight from the remaining candidate Compute nodes.

Each weigher has a multiplier that the scheduler applies after normalising the weight of the Compute node. The Compute scheduler uses the following formula to calculate the weight of a Compute node:

```
w1_multiplier * norm(w1) + w2_multiplier * norm(w2) + ...
```

The following table describes the available configuration options for weights.

NOTE

Weights can be set on host aggregates using the aggregate metadata key with the same name as the options detailed in the following table. If set on the host aggregate, the host aggregate value takes precedence.

<table>
<thead>
<tr>
<th>Configuration option</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Configuration option</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>filter_scheduler/weight_classes</td>
<td>String</td>
<td>Use this parameter to configure which of the following attributes to use for calculating the weight of each Compute node:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- nova.scheduler.weights.ram.RAMWeigher - Weighs the available RAM on the Compute node.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- nova.scheduler.weights.cpu.CPUWeigher - Weighs the available CPUs on the Compute node.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- nova.scheduler.weights.disk.DiskWeigher - Weighs the available disks on the Compute node.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- nova.scheduler.weights.metrics.MetricsWeigher - Weighs the metrics of the Compute node.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- nova.scheduler.weights.affinity.ServerGroupSoftAffinityWeigher - Weighs the proximity of the Compute node to other nodes in the given instance group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- nova.scheduler.weights.affinity.ServerGroupSoftAntiAffinityWeigher - Weighs the proximity of the Compute node to other nodes in the given instance group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- nova.scheduler.weights.compute.BuildFailureWeigher - Weighs Compute nodes by the number of recent failed boot attempts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- nova.scheduler.weights.io_ops.IoOpsWeigher - Weighs Compute nodes by their workload.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- nova.scheduler.weights.pci.PCIWeigher - Weighs Compute nodes by their PCI availability.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- nova.scheduler.weights.cross_cell.CrossCellWeigher - Weighs Compute nodes based on which cell they are in, giving preference to Compute nodes in the source cell when moving an instance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- nova.scheduler.weights.all_weighers - (Default) Uses all the above weighers.</td>
</tr>
<tr>
<td>Configuration option</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>filter_scheduler/ram_weight_multiplier</td>
<td>Floating point</td>
<td>Use this parameter to specify the multiplier to use to weigh hosts based on the available RAM.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set to a positive value to prefer hosts with more available RAM, which spreads instances across many hosts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set to a negative value to prefer hosts with less available RAM, which fills up (stacks) hosts as much as possible before scheduling to a less-used host.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The absolute value, whether positive or negative, controls how strong the RAM weigher is relative to other weighers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default: 1.0 - The scheduler spreads instances across all hosts evenly.</td>
</tr>
<tr>
<td>filter_scheduler/disk_weight_multiplier</td>
<td>Floating point</td>
<td>Use this parameter to specify the multiplier to use to weigh hosts based on the available disk space.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set to a positive value to prefer hosts with more available disk space, which spreads instances across many hosts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set to a negative value to prefer hosts with less available disk space, which fills up (stacks) hosts as much as possible before scheduling to a less-used host.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The absolute value, whether positive or negative, controls how strong the disk weigher is relative to other weighers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default: 1.0 - The scheduler spreads instances across all hosts evenly.</td>
</tr>
<tr>
<td>filter_scheduler/cpu_weight_multiplier</td>
<td>Floating point</td>
<td>Use this parameter to specify the multiplier to use to weigh hosts based on the available vCPUs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set to a positive value to prefer hosts with more available vCPUs, which spreads instances across many hosts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set to a negative value to prefer hosts with less available vCPUs, which fills up (stacks) hosts as much as possible before scheduling to a less-used host.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The absolute value, whether positive or negative, controls how strong the vCPU weigher is relative to other weighers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default: 1.0 - The scheduler spreads instances across all hosts evenly.</td>
</tr>
<tr>
<td>Configuration option</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>filter_scheduler/io_ops_weight_multiplier</td>
<td>Floating point</td>
<td>Use this parameter to specify the multiplier to use to weigh hosts based on the host workload.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set to a negative value to prefer hosts with lighter workloads, which distributes the workload across more hosts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set to a positive value to prefer hosts with heavier workloads, which schedules instances onto hosts that are already busy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The absolute value, whether positive or negative, controls how strong the I/O operations weigher is relative to other weighers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default: -1.0 - The scheduler distributes the workload across more hosts.</td>
</tr>
<tr>
<td>filter_scheduler/build_failure_weight_multiplier</td>
<td>Floating point</td>
<td>Use this parameter to specify the multiplier to use to weigh hosts based on recent build failures.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set to a positive value to increase the significance of build failures recently reported by the host. Hosts with recent build failures are then less likely to be chosen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set to 0 to disable weighing compute hosts by the number of recent failures.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default: 1000000.0</td>
</tr>
<tr>
<td>filter_scheduler/cross_cell_move_weight_multiplier</td>
<td>Floating point</td>
<td>Use this parameter to specify the multiplier to use to weigh hosts during a cross-cell move. This option determines how much weight is placed on a host which is within the same source cell when moving an instance. By default, the scheduler prefers hosts within the same source cell when migrating an instance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set to a positive value to prefer hosts within the same cell the instance is currently running. Set to a negative value to prefer hosts located in a different cell from that where the instance is currently running.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default: 1000000.0</td>
</tr>
<tr>
<td>Configuration option</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>filter_scheduler/pci_weight_multiplier</td>
<td>Positive floating point</td>
<td>Use this parameter to specify the multiplier to use to weigh hosts based on the number of PCI devices on the host and the number of PCI devices requested by an instance. If an instance requests PCI devices, then the more PCI devices a Compute node has the higher the weight allocated to the Compute node. For example, if there are three hosts available, one with a single PCI device, one with multiple PCI devices and one without any PCI devices, then the Compute scheduler prioritizes these hosts based on the demands of the instance. The scheduler should prefer the first host if the instance requests one PCI device, the second host if the instance requires multiple PCI devices and the third host if the instance does not request a PCI device. Configure this option to prevent non-PCI instances from occupying resources on hosts with PCI devices. Default: 1.0</td>
</tr>
<tr>
<td>filter_scheduler/host_subset_size</td>
<td>Integer</td>
<td>Use this parameter to specify the size of the subset of filtered hosts from which to select the host. You must set this option to at least 1. A value of 1 selects the first host returned by the weighing functions. The scheduler ignores any value less than 1 and uses 1 instead. Set to a value greater than 1 to prevent multiple scheduler processes handling similar requests selecting the same host, creating a potential race condition. By selecting a host randomly from the N hosts that best fit the request, the chance of a conflict is reduced. However, the higher you set this value, the less optimal the chosen host may be for a given request. Default: 1</td>
</tr>
<tr>
<td>Configuration option</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| `filter_scheduler/soft_affinity_weight_multiplier` | Positive floating point | Use this parameter to specify the multiplier to use to weigh hosts for group soft-affinity.

NOTE
You need to specify the microversion when creating a group with this policy:

```bash  
$ openstack --os-compute-api-version 2.15 server group create --policy soft-affinity <group_name>  
```

Default: 1.0

| `filter_scheduler/soft_anti_affinity_weight_multiplier` | Positive floating point | Use this parameter to specify the multiplier to use to weigh hosts for group soft-anti-affinity.

NOTE
You need to specify the microversion when creating a group with this policy:

```bash  
$ openstack --os-compute-api-version 2.15 server group create --policy soft-affinity <group_name>  
```

Default: 1.0

| `metrics/weight_multiplier` | Floating point | Use this parameter to specify the multiplier to use for weighting metrics. By default, `weight_multiplier=1.0`, which spreads instances across possible hosts.

Set to a number greater than 1.0 to increase the effect of the metric on the overall weight.

Set to a number between 0.0 and 1.0 to reduce the effect of the metric on the overall weight.

Set to 0.0 to ignore the metric value and return the value of the `weight_of_unavailable` option.

Set to a negative number to prioritize the host with lower metrics, and stack instances in hosts.

Default: 1.0 |
<table>
<thead>
<tr>
<th>Configuration option</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| metrics/weight_setting | Comma-separated list of `metric=ratio` pairs | Use this parameter to specify the metrics to use for weighting, and the ratio to use to calculate the weight of each metric. Valid metric names:
 - `cpu.frequency` - CPU frequency
 - `cpu.user.time` - CPU user mode time
 - `cpu.kernel.time` - CPU kernel time
 - `cpu.idle.time` - CPU idle time
 - `cpu.iowait.time` - CPU I/O wait time
 - `cpu.user.percent` - CPU user mode percentage
 - `cpu.kernel.percent` - CPU kernel percentage
 - `cpu.idle.percent` - CPU idle percentage
 - `cpu.iowait.percent` - CPU I/O wait percentage
 - `cpu.percent` - Generic CPU use
Example: `weight_setting=cpu.user.time=1.0` |
| metrics/required | Boolean | Use this parameter to specify how to handle configured metrics/weight_setting metrics that are unavailable:
 - `True` - Metrics are required. If the metric is unavailable, an exception is raised. To avoid the exception, use the MetricsFilter filter in NovaSchedulerDefaultFilters.
 - `False` - The unavailable metric is treated as a negative factor in the weighing process. Set the returned value by using the `weight_of_unavailable` configuration option. |
| metrics/weight_of_unavailable | Floating point | Use this parameter to specify the weight to use if any metrics/weight_setting metric is unavailable, and metrics/required=False.
Default: -10000.0 |
CHAPTER 8. CREATING FLAVORS FOR LAUNCHING INSTANCES

An instance flavor is a resource template that specifies the virtual hardware profile for the instance. Cloud users must specify a flavor when they launch an instance.

A flavor can specify the quantity of the following resources the Compute service must allocate to an instance:

- The number of vCPUs.
- The RAM, in MB.
- The root disk, in GB.
- The virtual storage, including secondary ephemeral storage and swap disk.

You can specify who can use flavors by making the flavor public to all projects, or private to specific projects or domains.

Flavors can use metadata, also referred to as "extra specs", to specify instance hardware support and quotas. The flavor metadata influences the instance placement, resource usage limits, and performance. For a complete list of available metadata properties, see Flavor metadata.

You can also use the flavor metadata keys to find a suitable host aggregate to host the instance, by matching the extra_specs metadata set on the host aggregate. To schedule an instance on a host aggregate, you must scope the flavor metadata by prefixing the extra_specs key with the aggregate_instance_extra_specs: namespace. For more information, see Creating and managing host aggregates.

A Red Hat OpenStack Platform (RHOSP) deployment includes the following set of default public flavors that your cloud users can use.

Table 8.1. Default Flavors

<table>
<thead>
<tr>
<th>Name</th>
<th>vCPUs</th>
<th>RAM</th>
<th>Root Disk Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1.nano</td>
<td>1</td>
<td>128 MB</td>
<td>1 GB</td>
</tr>
<tr>
<td>m1.micro</td>
<td>1</td>
<td>192 MB</td>
<td>1 GB</td>
</tr>
</tbody>
</table>

NOTE

Behavior set using flavor properties override behavior set using images. When a cloud user launches an instance, the properties of the flavor they specify override the properties of the image they specify.

8.1. CREATING A FLAVOR

You can create and manage specialized flavors for specific functionality or behaviors, for example:

- Change default memory and capacity to suit the underlying hardware needs.
Add metadata to force a specific I/O rate for the instance or to match a host aggregate.

Procedure

1. Create a flavor that specifies the basic resources to make available to an instance:


   ```bash
   (overcloud)$ openstack flavor create --ram <size_mb> \
   --disk <size_gb> --vcpus <no_vcpus> \
   [--private --project <project_id>] <flavor_name>
   ```

 - Replace `<size_mb>` with the size of RAM to allocate to an instance created with this flavor.
 - Replace `<size_gb>` with the size of root disk to allocate to an instance created with this flavor.
 - Replace `<no_vcpus>` with the number of vCPUs to reserve for an instance created with this flavor.
 - Optional: Specify the `--private` and `--project` options to make the flavor accessible only by a particular project or group of users. Replace `<project_id>` with the ID of the project that can use this flavor to create instances. If you do not specify the accessibility, the flavor defaults to public, which means that it is available to all projects.

 NOTE

 You cannot make a public flavor private after it has been created.

 - Replace `<flavor_name>` with a unique name for your flavor.
 For more information about flavor arguments, see Flavor arguments.

2. Optional: To specify flavor metadata, set the required properties by using key-value pairs:


   ```bash
   (overcloud)$ openstack flavor set \
   --property <key=value> --property <key=value> ... <flavor_name>
   ```

 - Replace `<key>` with the metadata key of the property you want to allocate to an instance that is created with this flavor. For a list of available metadata keys, see Flavor metadata.
 - Replace `<value>` with the value of the metadata key you want to allocate to an instance that is created with this flavor.
 - Replace `<flavor_name>` with the name of your flavor.
 For example, an instance that is launched by using the following flavor has two CPU sockets, each with two CPUs:

   ```bash
   (overcloud)$ openstack flavor set \
   --property hw:cpu_sockets=2 \
   --property hw:cpu_cores=2 processor_topology_flavor
   ```

8.2. FLAVOR ARGUMENTS

The `openstack flavor create` command has one positional argument, `<flavor_name>`, to specify the name of your new flavor.
The following table details the optional arguments that you can specify as required when you create a new flavor.

Table 8.2. Optional flavor arguments

<table>
<thead>
<tr>
<th>Optional argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--id</td>
<td>Unique ID for the flavor. The default value, auto, generates a UUID4 value. You can use this argument to manually specify an integer or UUID4 value.</td>
</tr>
<tr>
<td>--ram</td>
<td>(Mandatory) Size of memory to make available to the instance, in MB. Default: 256 MB</td>
</tr>
<tr>
<td>--disk</td>
<td>(Mandatory) Amount of disk space to use for the root (/) partition, in GB. The root disk is an ephemeral disk that the base image is copied into. When an instance boots from a persistent volume, the root disk is not used. Default: 0 GB</td>
</tr>
<tr>
<td>--ephemeral</td>
<td>Amount of disk space to use for the ephemeral disks, in GB. Defaults to 0 GB, which means that no secondary ephemeral disk is created. Ephemeral disks offer machine local disk storage linked to the lifecycle of the instance. Ephemeral disks are not included in any snapshots. This disk is destroyed and all data is lost when the instance is deleted. Default: 0 GB</td>
</tr>
<tr>
<td>--swap</td>
<td>Swap disk size in MB. Default: 0 GB</td>
</tr>
<tr>
<td>--vcpus</td>
<td>(Mandatory) Number of virtual CPUs for the instance. Default: 1</td>
</tr>
<tr>
<td>--public</td>
<td>The flavor is available to all projects. By default, a flavor is public and available to all projects.</td>
</tr>
<tr>
<td>--private</td>
<td>The flavor is only available to the projects specified by using the --project option. If you create a private flavor but add no projects to it then the flavor is only available to the cloud administrator.</td>
</tr>
</tbody>
</table>
Optional argument | Description
--- | ---
--property | Metadata, or "extra specs", specified by using key-value pairs in the following format:
--property <key=value>
Repeat this option to set multiple properties.

--project | Specifies the project that can use the private flavor. You must use this argument with the --private option. If you do not specify any projects, the flavor is visible only to the admin user.
Repeat this option to allow access to multiple projects.

--project-domain | Specifies the project domain that can use the private flavor. You must use this argument with the --private option.
Repeat this option to allow access to multiple project domains.

--description | Description of the flavor. Limited to 65535 characters in length. You can use only printable characters.

8.3. FLAVOR METADATA

Use the --property option to specify flavor metadata when you create a flavor. Flavor metadata is also referred to as extra specs. Flavor metadata determines instance hardware support and quotas, which influence instance placement, instance limits, and performance.

Instance resource usage

Use the property keys in the following table to configure limits on CPU, memory and disk I/O usage by instances.

Table 8.3. Flavor metadata for resource usage

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
</table>
| quota:cpu_shares | Specifies the proportional weighted share of CPU time for the domain. Defaults to the OS provided defaults. The Compute scheduler weighs this value relative to the setting of this property on other instances in the same domain. For example, an instance that is configured with `quota:cpu_shares=2048` is allocated double the CPU time as an instance that is configured with `quota:cpu_shares=1024`.
| quota:cpu_period | Specifies the period of time within which to enforce the `cpu_quota`, in microseconds. Within the `cpu_period`, each vCPU cannot consume more than `cpu_quota` of runtime. Set to a value in the range 1000 – 1000000. Set to 0 to disable. |
quota:cpu_quota

Specifies the maximum allowed bandwidth for the vCPU in each `cpu_period`, in microseconds:

- Set to a value in the range 1000 – 18446744073709551.
- Set to 0 to disable.
- Set to a negative value to allow infinite bandwidth.

You can use `cpu_quota` and `cpu_period` to ensure that all vCPUs run at the same speed. For example, you can use the following flavor to launch an instance that can consume a maximum of only 50% CPU of a physical CPU computing capability:

```
$ openstack flavor set cpu_limits_flavor --property quota:cpu_quota=10000 --property quota:cpu_period=20000
```

Instance disk tuning

Use the property keys in the following table to tune the instance disk performance.

Table 8.4. Flavor metadata for disk tuning

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>quota:disk_read_bytes_sec</code></td>
<td>Specifies the maximum disk reads available to an instance, in bytes per second.</td>
</tr>
<tr>
<td><code>quota:disk_read_iops_sec</code></td>
<td>Specifies the maximum disk reads available to an instance, in IOPS.</td>
</tr>
<tr>
<td><code>quota:disk_write_bytes_sec</code></td>
<td>Specifies the maximum disk writes available to an instance, in bytes per second.</td>
</tr>
<tr>
<td><code>quota:disk_write_iops_sec</code></td>
<td>Specifies the maximum disk writes available to an instance, in IOPS.</td>
</tr>
<tr>
<td><code>quota:disk_total_bytes_sec</code></td>
<td>Specifies the maximum I/O operations available to an instance, in bytes per second.</td>
</tr>
<tr>
<td><code>quota:disk_total_iops_sec</code></td>
<td>Specifies the maximum I/O operations available to an instance, in IOPS.</td>
</tr>
</tbody>
</table>

Instance network traffic bandwidth

Use the property keys in the following table to configure bandwidth limits on the instance network traffic by configuring the VIF I/O options.
NOTE

The `quota:vif_*` properties are deprecated. Instead, you should use the Networking (neutron) service Quality of Service (QoS) policies. For more information about QoS policies, see Configuring Quality of Service (QoS) policies in the Networking Guide. The `quota:vif_*` properties are only supported when you use the ML2/OVS mechanism driver with `NeutronOVSFirewallDriver` set to `iptables_hybrid`.

Table 8.5. Flavor metadata for bandwidth limits

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>quota:vif_inbound_average</code></td>
<td>(Deprecated) Specifies the required average bit rate on the traffic incoming to the instance, in kbps.</td>
</tr>
<tr>
<td><code>quota:vif_inbound_burst</code></td>
<td>(Deprecated) Specifies the maximum amount of incoming traffic that can be burst at peak speed, in KB.</td>
</tr>
<tr>
<td><code>quota:vif_inbound_peak</code></td>
<td>(Deprecated) Specifies the maximum rate at which the instance can receive incoming traffic, in kbps.</td>
</tr>
<tr>
<td><code>quota:vif_outbound_average</code></td>
<td>(Deprecated) Specifies the required average bit rate on the traffic outgoing from the instance, in kbps.</td>
</tr>
<tr>
<td><code>quota:vif_outbound_burst</code></td>
<td>(Deprecated) Specifies the maximum amount of outgoing traffic that can be burst at peak speed, in KB.</td>
</tr>
<tr>
<td><code>quota:vif_outbound_peak</code></td>
<td>(Deprecated) Specifies the maximum rate at which the instance can send outgoing traffic, in kbps.</td>
</tr>
</tbody>
</table>

Hardware video RAM

Use the property key in the following table to configure limits on the instance RAM to use for video devices.

Table 8.6. Flavor metadata for video devices

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hw_video:ram_max_mb</code></td>
<td>Specifies the maximum RAM to use for video devices, in MB. Use with the <code>hw_video_ram</code> image property. <code>hw_video_ram</code> must be less than or equal to <code>hw_video:ram_max_mb</code>.</td>
</tr>
</tbody>
</table>

Watchdog behavior

Use the property key in the following table to enable the virtual hardware watchdog device on the instance.

Table 8.7. Flavor metadata for watchdog behavior
Key Description

hw:watchdog_action
Specify to enable the virtual hardware watchdog device and set its behavior. Watchdog devices perform the configured action if the instance hangs or fails. The watchdog uses the i6300esb device, which emulates a PCI Intel 6300ESB. If **hw:watchdog_action** is not specified, the watchdog is disabled.

Set to one of the following valid values:
- **disabled**: (Default) The device is not attached.
- **reset**: Force instance reset.
- **poweroff**: Force instance shut down.
- **pause**: Pause the instance.
- **none**: Enable the watchdog, but do nothing if the instance hangs or fails.

NOTE
Watchdog behavior that you set by using the properties of a specific image override behavior that you set by using flavors.

Random number generator (RNG)
Use the property keys in the following table to enable the RNG device on the instance.

Table 8.8. Flavor metadata for RNG

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hw_rng:allowed</td>
<td>Set to False to disable the RNG device that is added to the instance through its image properties. Default: True</td>
</tr>
<tr>
<td>hw_rng:rate_bytes</td>
<td>Specifies the maximum number of bytes that the instance can read from the entropy of the host, per period.</td>
</tr>
<tr>
<td>hw_rng:rate_period</td>
<td>Specifies the duration of the read period in milliseconds.</td>
</tr>
</tbody>
</table>

Virtual Performance Monitoring Unit (vPMU)
Use the property key in the following table to enable the vPMU for the instance.

Table 8.9. Flavor metadata for vPMU
hw:pmu

Set to `True` to enable a vPMU for the instance. Tools such as `perf` use the vPMU on the instance to provide more accurate information to profile and monitor instance performance. For realtime workloads, the emulation of a vPMU can introduce additional latency which might be undesirable. If the telemetry it provides is not required, set `hw:pmu=False`.

Instance CPU topology

Use the property keys in the following table to define the topology of the processors in the instance.

Table 8.10. Flavor metadata for CPU topology

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hw:cpu_sockets</td>
<td>Specifies the preferred number of sockets for the instance.</td>
</tr>
<tr>
<td></td>
<td>Default: the number of vCPUs requested</td>
</tr>
<tr>
<td>hw:cpu_cores</td>
<td>Specifies the preferred number of cores per socket for the instance.</td>
</tr>
<tr>
<td></td>
<td>Default: 1</td>
</tr>
<tr>
<td>hw:cpu_threads</td>
<td>Specifies the preferred number of threads per core for the instance.</td>
</tr>
<tr>
<td></td>
<td>Default: 1</td>
</tr>
<tr>
<td>hw:cpu_max_sockets</td>
<td>Specifies the maximum number of sockets that users can select for their instances by using image properties.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>hw:cpu_max_sockets=2</code></td>
</tr>
<tr>
<td>hw:cpu_max_cores</td>
<td>Specifies the maximum number of cores per socket that users can select for their instances by using image properties.</td>
</tr>
<tr>
<td>hw:cpu_max_threads</td>
<td>Specifies the maximum number of threads per core that users can select for their instances by using image properties.</td>
</tr>
</tbody>
</table>

Serial ports

Use the property key in the following table to configure the number of serial ports per instance.

Table 8.11. Flavor metadata for serial ports

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
</table>
CPU pinning policy

By default, instance virtual CPUs (vCPUs) are sockets with one core and one thread. You can use properties to create flavors that pin the vCPUs of instances to the physical CPU cores (pCPUs) of the host. You can also configure the behavior of hardware CPU threads in a simultaneous multithreading (SMT) architecture where one or more cores have thread siblings.

Use the property keys in the following table to define the CPU pinning policy of the instance.

Table 8.12. Flavor metadata for CPU pinning

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hw:cpu_policy</td>
<td>Specifies the CPU policy to use. Set to one of the following valid values:</td>
</tr>
<tr>
<td></td>
<td>- shared: (Default) The instance vCPUs float across host pCPUs.</td>
</tr>
<tr>
<td></td>
<td>- dedicated: Pin the instance vCPUs to a set of host pCPUs. This creates an instance CPU topology that matches the topology of the CPUs to which the instance is pinned. This option implies an overcommit ratio of 1.0.</td>
</tr>
</tbody>
</table>
Specifies the CPU thread policy to use when `hw:cpu_policy=dedicated`. Set to one of the following valid values:

- **prefer**: (Default) The host might or might not have an SMT architecture. If an SMT architecture is present, the Compute scheduler gives preference to thread siblings.

- **isolate**: The host must not have an SMT architecture or must emulate a non-SMT architecture. This policy ensures that the Compute scheduler places the instance on a host without SMT by requesting hosts that do not report the `HW_CPU_HYPERTHREADING` trait. It is also possible to request this trait explicitly by using the following property:

  ```
  --property
  trait:HW_CPU_HYPERTHREADING=forbidden
  ```

 If the host does not have an SMT architecture, the Compute service places each vCPU on a different core as expected. If the host does have an SMT architecture, then the behaviour is determined by the configuration of the `[workarounds]/disable_fallback_pcpu_query` parameter:

 - **True**: The host with an SMT architecture is not used and scheduling fails.

 - **False**: The Compute service places each vCPU on a different physical core. The Compute service does not place vCPUs from other instances on the same core. All but one thread sibling on each used core is therefore guaranteed to be unusable.

- **require**: The host must have an SMT architecture. This policy ensures that the Compute scheduler places the instance on a host with SMT by requesting hosts that report the `HW_CPU_HYPERTHREADING` trait. It is also possible to request this trait explicitly by using the following property:

  ```
  --property
  trait:HW_CPU_HYPERTHREADING=required
  ```

 The Compute service allocates each vCPU on thread siblings. If the host does not have an SMT architecture, then it is not used. If the host has an SMT architecture, but not enough cores with free thread siblings are available, then scheduling fails.

Instance PCI NUMA affinity policy

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hw:cpu_thread_policy</code></td>
<td>Specifies the CPU thread policy to use when <code>hw:cpu_policy=dedicated</code>. Set to one of the following valid values:</td>
</tr>
</tbody>
</table>

- **prefer**: (Default) The host might or might not have an SMT architecture. If an SMT architecture is present, the Compute scheduler gives preference to thread siblings.

- **isolate**: The host must not have an SMT architecture or must emulate a non-SMT architecture. This policy ensures that the Compute scheduler places the instance on a host without SMT by requesting hosts that do not report the `HW_CPU_HYPERTHREADING` trait. It is also possible to request this trait explicitly by using the following property:

  ```
  --property
  trait:HW_CPU_HYPERTHREADING=forbidden
  ```

 If the host does not have an SMT architecture, the Compute service places each vCPU on a different core as expected. If the host does have an SMT architecture, then the behaviour is determined by the configuration of the `[workarounds]/disable_fallback_pcpu_query` parameter:

 - **True**: The host with an SMT architecture is not used and scheduling fails.

 - **False**: The Compute service places each vCPU on a different physical core. The Compute service does not place vCPUs from other instances on the same core. All but one thread sibling on each used core is therefore guaranteed to be unusable.

- **require**: The host must have an SMT architecture. This policy ensures that the Compute scheduler places the instance on a host with SMT by requesting hosts that report the `HW_CPU_HYPERTHREADING` trait. It is also possible to request this trait explicitly by using the following property:

  ```
  --property
  trait:HW_CPU_HYPERTHREADING=required
  ```

 The Compute service allocates each vCPU on thread siblings. If the host does not have an SMT architecture, then it is not used. If the host has an SMT architecture, but not enough cores with free thread siblings are available, then scheduling fails.
Use the property key in the following table to create flavors that specify the NUMA affinity policy for PCI passthrough devices and SR-IOV interfaces.

Table 8.13. Flavor metadata for PCI NUMA affinity policy

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hw:pci_numa_affinity_policy</td>
<td>Specifies the NUMA affinity policy for PCI passthrough devices and SR-IOV interfaces. Set to one of the following valid values:</td>
</tr>
<tr>
<td></td>
<td>• required: The Compute service creates an instance that requests a PCI device only when at least one of the NUMA nodes of the instance has affinity with the PCI device. This option provides the best performance.</td>
</tr>
<tr>
<td></td>
<td>• preferred: The Compute service attempts a best effort selection of PCI devices based on NUMA affinity. If this is not possible, then the Compute service schedules the instance on a NUMA node that has no affinity with the PCI device.</td>
</tr>
<tr>
<td></td>
<td>• legacy: (Default) The Compute service creates instances that request a PCI device in one of the following cases:</td>
</tr>
<tr>
<td></td>
<td>• The PCI device has affinity with at least one of the NUMA nodes.</td>
</tr>
<tr>
<td></td>
<td>• The PCI devices do not provide information about their NUMA affinities.</td>
</tr>
</tbody>
</table>

Instance NUMA topology

You can use properties to create flavors that define the host NUMA placement for the instance vCPU threads, and the allocation of instance vCPUs and memory from the host NUMA nodes.

Defining a NUMA topology for the instance improves the performance of the instance OS for flavors whose memory and vCPU allocations are larger than the size of NUMA nodes in the Compute hosts.

The Compute scheduler uses these properties to determine a suitable host for the instance. For example, a cloud user launches an instance by using the following flavor:

```
$ openstack flavor set numa_top_flavor
   --property hw:numa_nodes=2
   --property hw:numa_cpus.0=0,1,2,3,4,5
   --property hw:numa_cpus.1=6,7
   --property hw:numa_mem.0=3072
   --property hw:numa_mem.1=1024
```

The Compute scheduler searches for a host that has two NUMA nodes, one with 3GB of RAM and the ability to run six CPUs, and the other with 1GB of RAM and two CPUs. If a host has a single NUMA node with capability to run eight CPUs and 4GB of RAM, the Compute scheduler does not consider it a valid match.
NOTE

NUMA topologies defined by a flavor cannot be overridden by NUMA topologies defined by the image. The Compute service raises an ImageNUMATopologyForbidden error if the image NUMA topology conflicts with the flavor NUMA topology.

CAUTION

You cannot use this feature to constrain instances to specific host CPUs or NUMA nodes. Use this feature only after you complete extensive testing and performance measurements. You can use the hw:pci_numa_affinity_policy property instead.

Use the property keys in the following table to define the instance NUMA topology.

Table 8.14. Flavor metadata for NUMA topology

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hw:numa_nodes</td>
<td>Specifies the number of host NUMA nodes to restrict execution of instance vCPU threads to. If not specified, the vCPU threads can run on any number of the available host NUMA nodes.</td>
</tr>
<tr>
<td>hw:numa_cpus.N</td>
<td>A comma-separated list of instance vCPUs to map to instance NUMA node N. If this key is not specified, vCPUs are evenly divided among available NUMA nodes.</td>
</tr>
<tr>
<td></td>
<td>N starts from 0. Use *.N values with caution, and only if you have at least two NUMA nodes.</td>
</tr>
<tr>
<td></td>
<td>This property is valid only if you have set hw:numa_nodes, and is required only if the NUMA nodes of the instance have an asymmetrical allocation of CPUs and RAM, which is important for some NFV workloads.</td>
</tr>
<tr>
<td>hw:numa_mem.N</td>
<td>The number of MB of instance memory to map to instance NUMA node N. If this key is not specified, memory is evenly divided among available NUMA nodes.</td>
</tr>
<tr>
<td></td>
<td>N starts from 0. Use *.N values with caution, and only if you have at least two NUMA nodes.</td>
</tr>
<tr>
<td></td>
<td>This property is valid only if you have set hw:numa_nodes, and is required only if the NUMA nodes of the instance have an asymmetrical allocation of CPUs and RAM, which is important for some NFV workloads.</td>
</tr>
</tbody>
</table>
WARNING

If the combined values of `hw:numa_cpus.N` or `hw:numa_mem.N` are greater than the available number of CPUs or memory respectively, the Compute service raises an exception.

Instance memory encryption

Use the property key in the following table to enable encryption of instance memory.

<table>
<thead>
<tr>
<th>Table 8.15. Flavor metadata for memory encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td><code>hw:mem_encryption</code></td>
</tr>
</tbody>
</table>

CPU real-time policy

Use the property keys in the following table to define the real-time policy of the processors in the instance.

NOTE

- Although most of your instance vCPUs can run with a real-time policy, you must mark at least one vCPU as non-real-time to use for both non-real-time guest processes and emulator overhead processes.
- To use this extra spec, you must enable pinned CPUs.

<table>
<thead>
<tr>
<th>Table 8.16. Flavor metadata for CPU real-time policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td><code>hw:cpu_realtime</code></td>
</tr>
</tbody>
</table>
hw:cpu_realtime_mask

Specifies the vCPUs to not assign a real-time policy to. You must prepend the mask value with a caret symbol (^). The following example indicates that all vCPUs except vCPUs 0 and 1 have a real-time policy:

```bash
$ openstack flavor set <flavor> \
  --property hw:cpu_realtime="yes" \
  --property hw:cpu_realtime_mask=^0-1
```

NOTE

If the `hw_cpu_realtime_mask` property is set on the image then it takes precedence over the `hw:cpu_realtime_mask` property set on the flavor.

Emulator threads policy

You can assign a pCPU to an instance to use for emulator threads. Emulator threads are emulator processes that are not directly related to the instance. A dedicated emulator thread pCPU is required for real-time workloads. To use the emulator threads policy, you must enable pinned CPUs by setting the following property:

```bash
--property hw:cpu_policy=dedicated
```

Use the property key in the following table to define the emulator threads policy of the instance.

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hw:emulator_threads_policy</td>
<td>Specifies the emulator threads policy to use for instances. Set to one of the following valid values:</td>
</tr>
<tr>
<td></td>
<td>• share: The emulator thread floats across the pCPUs defined in the <code>NovaComputeCpuSharedSet</code> heat parameter. If <code>NovaComputeCpuSharedSet</code> is not configured, then the emulator thread floats across the pinned CPUs that are associated with the instance.</td>
</tr>
<tr>
<td></td>
<td>• isolate: Reserves an additional dedicated pCPU per instance for the emulator thread. Use this policy with caution, as it is prohibitively resource intensive.</td>
</tr>
<tr>
<td></td>
<td>• unset: (Default) The emulator thread policy is not enabled, and the emulator thread floats across the pinned CPUs associated with the instance.</td>
</tr>
</tbody>
</table>

Instance memory page size

Use the property keys in the following table to create an instance with an explicit memory page size.
Table 8.18. Flavor metadata for memory page size

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hw:mem_page_size</td>
<td>Specifies the size of large pages to use to back the instances. Use of this option creates an implicit NUMA topology of 1 NUMA node unless otherwise specified by <code>hw:numa_nodes</code>. Set to one of the following valid values:</td>
</tr>
<tr>
<td></td>
<td>- large: Selects a page size larger than the smallest page size supported on the host, which can be 2 MB or 1 GB on x86_64 systems.</td>
</tr>
<tr>
<td></td>
<td>- small: Selects the smallest page size supported on the host. On x86_64 systems this is 4 KB (normal pages).</td>
</tr>
<tr>
<td></td>
<td>- any: Selects the largest available huge page size, as determined by the libvirt driver.</td>
</tr>
<tr>
<td></td>
<td>- <code><pagesize></code>: (String) Sets an explicit page size if the workload has specific requirements. Use an integer value for the page size in KB, or any standard suffix. For example: <code>4KB</code>, <code>2MB</code>, <code>2048</code>, <code>1GB</code>.</td>
</tr>
<tr>
<td></td>
<td>- unset: (Default) Large pages are not used to back instances and no implicit NUMA topology is generated.</td>
</tr>
</tbody>
</table>

PCI passthrough

Use the property key in the following table to attach a physical PCI device, such as a graphics card or a network device, to an instance. For more information about using PCI passthrough, see [Configuring PCI passthrough](#).

Table 8.19. Flavor metadata for PCI passthrough

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcipassthrough:alias</td>
<td>Specifies the PCI device to assign to an instance by using the following format:</td>
</tr>
<tr>
<td></td>
<td>- <code><alias>:<count></code></td>
</tr>
<tr>
<td></td>
<td>- Replace <code><alias></code> with the alias that corresponds to a particular PCI device class.</td>
</tr>
<tr>
<td></td>
<td>- Replace <code><count></code> with the number of PCI devices of type <code><alias></code> to assign to the instance.</td>
</tr>
</tbody>
</table>

Hypervisor signature

Use the property key in the following table to hide the hypervisor signature from the instance.

Table 8.20. Flavor metadata for hiding hypervisor signature
Instance resource traits

Each resource provider has a set of traits. Traits are the qualitative aspects of a resource provider, for example, the type of storage disk, or the Intel CPU instruction set extension. An instance can specify which of these traits it requires.

The traits that you can specify are defined in the `os-traits` library. Example traits include the following:

- `COMPUTE_TRUSTED_CERTS`
- `COMPUTE_NET_AttACH_INTERFACE_WITH_TAG`
- `COMPUTE_IMAGE_TYPE_RAW`
- `HW_CPU_X86_AVX`
- `HW_CPU_X86_AVX512VL`
- `HW_CPU_X86_AVX512CD`

For details about how to use the `os-traits` library, see https://docs.openstack.org/os-traits/latest/user/index.html.

Use the property key in the following table to define the resource traits of the instance.

Table 8.21. Flavor metadata for resource traits

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>trait:<trait_name></code></td>
<td>Specifies Compute node traits. Set the trait to one of the following valid values:</td>
</tr>
<tr>
<td></td>
<td>* required: The Compute node selected to host the instance must have the trait.</td>
</tr>
<tr>
<td></td>
<td>* forbidden: The Compute node selected to host the instance must not have the trait.</td>
</tr>
</tbody>
</table>

Example:

```
$ openstack flavor set --property trait:HW_CPU_X86_AVX512BW=required avx512-flavor
```

Instance bare-metal resource class

Use the property key in the following table to request a bare-metal resource class for an instance.

Table 8.22. Flavor metadata for bare-metal resource class

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hide_hypervisor_id</code></td>
<td>Set to True to hide the hypervisor signature from the instance, to allow all drivers to load and work on the instance.</td>
</tr>
<tr>
<td>Key</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>resources:<resource_class_name></td>
<td>Use this property to specify standard bare-metal resource classes to override the values of, or to specify custom bare-metal resource classes that the instance requires.</td>
</tr>
</tbody>
</table>

The standard resource classes that you can override are **VCPU**, **MEMORY_MB** and **DISK_GB**. To prevent the Compute scheduler from using the bare-metal flavor properties for scheduling instance, set the value of the standard resource classes to **0**.

The name of custom resource classes must start with **CUSTOM_**. To determine the name of a custom resource class that corresponds to a resource class of a Bare Metal service node, convert the resource class to uppercase, replace all punctuation with an underscore, and prefix with **CUSTOM_**.

For example, to schedule instances on a node that has **resource-class baremetal.SMALL**, create the following flavor:

```bash
$ openstack flavor set
  --property resources:CUSTOM_BAREMETAL_SMALL=1
  --property resources:VCPU=0 --property resources:MEMORY_MB=0
  --property resources:DISK_GB=0 compute-small
```
CHAPTER 9. ADDING METADATA TO INSTANCES

The Compute (nova) service uses metadata to pass configuration information to instances on launch. The instance can access the metadata by using a config drive or the metadata service.

Config drive

Config drives are special drives that you can attach to an instance when it boots. The config drive is presented to the instance as a read-only drive. The instance can mount this drive and read files from it to get information that is normally available through the metadata service.

Metadata service

The Compute service provides the metadata service as a REST API, which can be used to retrieve data specific to an instance. Instances access this service at 169.254.169.254 or at fe80::a9fe:a9fe.

9.1. TYPES OF INSTANCE METADATA

Cloud users, cloud administrators, and the Compute service can pass metadata to instances:

Cloud user provided data

Cloud users can specify additional data to use when they launch an instance, such as a shell script that the instance runs on boot. The cloud user can pass data to instances by using the user data feature, and by passing key-value pairs as required properties when creating or updating an instance.

Cloud administrator provided data

The RHOSP administrator uses the vendordata feature to pass data to instances. The Compute service provides the vendordata modules StaticJSON and DynamicJSON to allow administrators to pass metadata to instances:

- **StaticJSON**: (Default) Use for metadata that is the same for all instances.
- **DynamicJSON**: Use for metadata that is different for each instance. This module makes a request to an external REST service to determine what metadata to add to an instance.

Vendordata configuration is located in one of the following read-only files on the instance:

- `/openstack/{version}/vendor_data.json`
- `/openstack/{version}/vendor_data2.json`

Compute service provided data

The Compute service uses its internal implementation of the metadata service to pass information to the instance, such as the requested hostname for the instance, and the availability zone the instance is in. This happens by default and requires no configuration by the cloud user or administrator.

9.2. ADDING A CONFIG DRIVE TO ALL INSTANCES

As an administrator, you can configure the Compute service to always create a config drive for instances, and populate the config drive with metadata that is specific to your deployment. For example, you might use a config drive for the following reasons:

- To pass a networking configuration when your deployment does not use DHCP to assign IP addresses to instances. You can pass the IP address configuration for the instance through the config drive, which the instance can mount and access before you configure the network settings for the instance.
To pass data to an instance that is not known to the user starting the instance, for example, a
 cryptographic token to be used to register the instance with Active Directory post boot.

To create a local cached disk read to manage the load of instance requests, which reduces the
 impact of instances accessing the metadata servers regularly to check in and build facts.

Any instance operating system that is capable of mounting an ISO 9660 or VFAT file system can use
the config drive.

Procedure

1. Open your Compute environment file.

2. To always attach a config drive when launching an instance, set the following parameter to True:

 parameter_defaults:
 ComputeExtraConfig:
 nova::compute::force_config_drive: 'true'

3. Optional: To change the format of the config drive from the default value of iso9660 to vfat,
 add the config_drive_format parameter to your configuration:

 parameter_defaults:
 ComputeExtraConfig:
 nova::compute::force_config_drive: 'true'
 nova::compute::config_drive_format: vfat

4. Save the updates to your Compute environment file.

5. Add your Compute environment file to the stack with your other environment files and deploy
 the overcloud:

 (undercloud)$ openstack overcloud deploy --templates
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml \

Verification

1. Create an instance:

 (overcloud)$ openstack server create --flavor m1.tiny \
 --image cirros test-config-drive-instance

2. Log in to the instance.

3. Mount the config drive:

 • If the instance OS uses udev:

 # mkdir -p /mnt/config
 # mount /dev/disk/by-label/config-2 /mnt/config

 • If the instance OS does not use udev, you need to first identify the block device that
 corresponds to the config drive:
4. Inspect the files in the mounted config drive directory, `mnt/config/openstack/{version}/`, for your metadata.

9.3. ADDING STATIC METADATA TO INSTANCES

You can make static metadata available to all instances in your deployment.

Procedure

1. Create the JSON file for the metadata.
2. Open your Compute environment file.
3. Add the path to the JSON file to your environment file:
   ```yaml
   parameter_defaults:
   ComputeExtraConfig:
     nova::config::nova_config:
       ...
     api/vendordata_jsonfile_path:
       value: <path_to_the_JSON_file>
   ```
4. Save the updates to your Compute environment file.
5. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:
   ```bash
   (undercloud)$ openstack overcloud deploy --templates \
   --environment-files [your environment files] \
   -e /home/stack/templates/<compute_environment_file>.yaml
   ```

9.4. ADDING DYNAMIC METADATA TO INSTANCES

You can configure your deployment to create instance-specific metadata, and make the metadata available to that instance through a JSON file.

TIP

You can use dynamic metadata on the undercloud to integrate director with a Red Hat Identity Management (IdM) server. An IdM server can be used as a certificate authority and manage the overcloud certificates when SSL/TLS is enabled on the overcloud. For more information, see Add the undercloud to IdM.

Procedure

1. Open your Compute environment file.
2. Add `DynamicJSON` to the vendordata provider module:
parameter_defaults:
ComputeExtraConfig:
nova::config::nova_config:
 ...
 api/vendordata_providers:
 value: StaticJSON,DynamicJSON

3. Specify the REST services to contact to generate the metadata. You can specify as many target REST services as required, for example:

parameter_defaults:
ComputeExtraConfig:
nova::config::nova_config:
 ...
 api/vendordata_providers:
 value: StaticJSON,DynamicJSON
 api/vendordata_dynamic_targets:
 value: target1@http://127.0.0.1:125
 api/vendordata_dynamic_targets:
 value: target2@http://127.0.0.1:126

The Compute service generates the JSON file, vendordata2.json, to contain the metadata retrieved from the configured target services, and stores it in the config drive directory.

NOTE

Do not use the same name for a target service more than once.

4. Save the updates to your Compute environment file.

5. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:

(undercloud)${ openstack overcloud deploy --templates \
- e [your environment files] \n- e /home/stack/templates/<compute_environment_file>.yaml}
CHAPTER 10. CONFIGURING CPU FEATURE FLAGS FOR INSTANCES

You can enable or disable CPU feature flags for an instance without changing the settings on the host Compute node and rebooting the Compute node. By configuring the standard set of CPU feature flags that are applied to instances, you are helping to achieve live migration compatibility across Compute nodes. You are also helping to manage the performance and security of the instances, by disabling flags that have a negative impact on the security or performance of the instances with a particular CPU model, or enabling flags that provide mitigation from a security problem or alleviates performance problems.

10.1. PREREQUISITES

- The CPU model and feature flags must be supported by the hardware and software of the host Compute node:
 - To check the hardware your host supports, enter the following command on the Compute node:
    ```bash
    $ cat /proc/cpuinfo
    ```
 - To check the CPU models supported on your host, enter the following command on the Compute node:
    ```bash
    $ sudo podman exec -it nova_libvirt virsh cpu-models <arch>
    ```
 Replace `<arch>` with the name of the architecture, for example, `x86_64`.

10.2. CONFIGURING CPU FEATURE FLAGS FOR INSTANCES

Configure the Compute service to apply CPU feature flags to instances with specific vCPU models.

Procedure

1. Log in to the undercloud as the stack user.
2. Source the stackrc file:
   ```bash
   [stack@director ~]$ source ~/stackrc
   ```
3. Open your Compute environment file.
4. Configure the instance CPU mode:
   ```yaml
   parameter_defaults:
   ComputeParameters:
   NovaLibvirtCPUMode: <cpu_mode>
   ```
 Replace `<cpu_mode>` with the CPU mode of each instance on the Compute node. Set to one of the following valid values:
- **host-model**: (Default) Use the CPU model of the host Compute node. Use this CPU mode to automatically add critical CPU flags to the instance to provide mitigation from security flaws.

- **custom**: Use to configure the specific CPU models each instance should use.

NOTE

You can also set the CPU mode to **host-passthrough** to use the same CPU model and feature flags as the Compute node for the instances hosted on that Compute node.

5. Optional: If you set `NovaLibvirtCPUMode` to **custom**, configure the instance CPU models that you want to customise:

   ```yaml
   parameter_defaults:
   ComputeParameters:
   NovaLibvirtCPUMode: 'custom'
   NovaLibvirtCPUModels: <cpu_model>
   ```

 Replace `<cpu_model>` with a comma-separated list of the CPU models that the host supports. List the CPU models in order, placing the more common and less advanced CPU models first in the list, and the more feature-rich CPU models last, for example, **SandyBridge**, **IvyBridge**, **Haswell**, **Broadwell**. For a list of model names, see `/usr/share/libvirt/cpu_map.xml`, or enter the following command on the host Compute node:

   ```bash
   $ sudo podman exec -it nova_libvirt virsh cpu-models <arch>
   ```

 Replace `<arch>` with the name of the architecture of the Compute node, for example, **x86_64**.

6. Configure the CPU feature flags for instances with the specified CPU models:

   ```yaml
   parameter_defaults:
   ComputeParameters:
   ... 
   NovaLibvirtCPUModelExtraFlags: <cpu_feature_flags>
   ```

 Replace `<cpu_feature_flags>` with a comma-separated list of feature flags to enable or disable. Prefix each flag with `+` to enable the flag, or `-` to disable it. If a prefix is not specified, the flag is enabled. For a list of the available feature flags for a given CPU model, see `/usr/share/libvirt/cpu_map/*.xml`.

 The following example enables the CPU feature flags **pcid** and **ssbd** for the **IvyBridge** and **Cascadelake-Server** models, and disables the feature flag **mtrr**:

   ```yaml
   parameter_defaults:
   ComputeParameters:
   NovaLibvirtCPUMode: 'custom'
   NovaLibvirtCPUModels: 'IvyBridge','Cascadelake-Server'
   NovaLibvirtCPUModelExtraFlags: 'pcid,+ssbd,-mtrr'
   ```

7. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:
(undercloud)$ openstack overcloud deploy --templates \
- e [your environment files] \
- e /home/stack/templates/<compute_environment_file>.yaml
CHAPTER 11. CONFIGURING AMD SEV COMPUTE NODES TO PROVIDE MEMORY ENCRYPTION FOR INSTANCES

As a cloud administrator, you can provide cloud users the ability to create instances that run on SEV-capable Compute nodes with memory encryption enabled.

This feature is available to use from the 2nd Gen AMD EPYC™ 7002 Series ("Rome").

To enable your cloud users to create instances that use memory encryption, you must perform the following tasks:

1. Designate the AMD SEV Compute nodes for memory encryption.
2. Configure the Compute nodes for memory encryption.
3. Deploy the overcloud.
4. Create a flavor or image for launching instances with memory encryption.

11.1. SECURE ENCRYPTED VIRTUALIZATION (SEV)

Secure Encrypted Virtualization (SEV), provided by AMD, protects the data in DRAM that a running virtual machine instance is using. SEV encrypts the memory of each instance with a unique key.

SEV increases security when you use non-volatile memory technology (NVDIMM), because an NVDIMM chip can be physically removed from a system with the data intact, similar to a hard drive. Without encryption, any stored information such as sensitive data, passwords, or secret keys can be compromised.

For more information, see the AMD Secure Encrypted Virtualization (SEV) documentation.

Limitations of instances with memory encryption

- You cannot live migrate, or suspend and resume instances with memory encryption.
- You cannot use PCI passthrough to directly access devices on instances with memory encryption.
- You cannot use virtio-blk as the boot disk of instances with memory encryption with Red Hat Enterprise Linux (RHEL) kernels earlier than kernel-4.18.0-115.el8 (RHEL-8.1.0).

NOTE

You can use virtio-scsi or SATA as the boot disk, or virtio-blk for non-boot disks.

- The operating system that runs in an encrypted instance must provide SEV support. For more information, see the Red Hat Knowledgebase solution Enabling AMD Secure Encrypted Virtualization in RHEL 8.
- Machines that support SEV have a limited number of slots in their memory controller for storing encryption keys. Each running instance with encrypted memory consumes one of these slots. Therefore, the number of instances with memory encryption that can run concurrently is limited.
to the number of slots in the memory controller. For example, on 1st Gen AMD EPYC™ 7001 Series ("Naples") the limit is 16, and on 2nd Gen AMD EPYC™ 7002 Series ("Rome") the limit is 255.

- Instances with memory encryption pin pages in RAM. The Compute service cannot swap these pages, therefore you cannot overcommit memory on a Compute node that hosts instances with memory encryption.

- You cannot use memory encryption with instances that have multiple NUMA nodes.

11.2. DESIGNATING AMD SEV COMPUTE NODES FOR MEMORY ENCRYPTION

To designate AMD SEV Compute nodes for instances that use memory encryption, you must create a new role file to configure the AMD SEV role, and configure a new overcloud flavor for AMD SEV to use to tag the Compute nodes for memory encryption.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file to enable the director command line tools:

   ```bash
   [stack@director ~]$ source ~/stackrc
   ```

3. Generate a new roles data file that includes the ComputeAMDSEV role, along with any other roles that you need for the overcloud. The following example generates the roles data file `roles_data_amd_sev.yaml`, which includes the roles Controller and ComputeAMDSEV:

   ```bash
   (undercloud)$ openstack overcloud roles \
   generate -o /home/stack/templates/roles_data_amd_sev.yaml \
   Compute:ComputeAMDSEV Controller
   ```

4. Open `roles_data_amd_sev.yaml` and edit or add the following parameters and sections:

<table>
<thead>
<tr>
<th>Section/Parameter</th>
<th>Current value</th>
<th>New value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role comment</td>
<td>Role: Compute</td>
<td>Role: ComputeAMDSEV</td>
</tr>
<tr>
<td>Role name</td>
<td>name: Compute</td>
<td>name: ComputeAMDSEV</td>
</tr>
<tr>
<td>description</td>
<td>Basic Compute Node role</td>
<td>AMD SEV Compute Node role</td>
</tr>
<tr>
<td>HostnameFormatDefault</td>
<td>%stackname%-novacompute-%index%</td>
<td>%stackname%-novacomputeamdsev-%index%</td>
</tr>
<tr>
<td>deprecated_nic_config_name</td>
<td>compute.yaml</td>
<td>compute-amd-sev.yaml</td>
</tr>
</tbody>
</table>
5. Register the AMD SEV Compute nodes for the overcloud by adding them to your node definition template, `node.json` or `node.yaml`. For more information, see Registering nodes for the overcloud in the Director Installation and Usage guide.

6. Inspect the node hardware:

 (undercloud)$ openstack overcloud node introspect \
 --all-manageable --provide

 For more information, see the relevant section in the Director Installation and Usage guide:

 - Inspecting the hardware of nodes for IPv4 provisioning
 - Inspecting the hardware of nodes for IPv6 provisioning

7. Create the `compute-amd-sev` bare metal flavor to use to tag nodes that you want to designate for instances that use memory encryption:

 (undercloud)$ openstack flavor create --id auto \
 --ram <ram_size_mb> --disk <disk_size_gb> \
 --vcpus <no_vcpus> compute-amd-sev

 - Replace `<ram_size_mb>` with the RAM of the bare metal node, in MB.
 - Replace `<disk_size_gb>` with the size of the disk on the bare metal node, in GB.
 - Replace `<no_vcpus>` with the number of CPUs on the bare metal node.

 NOTE

 These properties are not used for scheduling instances. However, the Compute scheduler does use the disk size to determine the root partition size.

8. Tag each bare metal node that you want to designate for memory encryption with a custom AMD SEV resource class:

 (undercloud)$ openstack baremetal node set \
 --resource-class baremetal.AMD-SEV <node>

 Replace `<node>` with the ID of the bare metal node.

9. Associate the `compute-amd-sev` flavor with the custom AMD SEV resource class:

 (undercloud)$ openstack flavor set \
 --property resources:CUSTOM_BAREMETAL_AMD_SEV=1 \
 compute-amd-sev

 To determine the name of a custom resource class that corresponds to a resource class of a Bare Metal service node, convert the resource class to uppercase, replace each punctuation mark with an underscore, and prefix with `CUSTOM_`.

 NOTE

 A flavor can request only one instance of a bare metal resource class.
10. Set the following flavor properties to prevent the Compute scheduler from using the bare metal flavor properties to schedule instances:

```
(undercloud)$ openstack flavor set \
    --property resources:VCPU=0 \n    --property resources:MEMORY_MB=0 \n    --property resources:DISK_GB=0 compute-amd-sev
```

11. Optional: If the network topology of the **ComputeAMDSEV** role is different from the network topology of your **Compute** role, then create a custom network interface template. For more information, see [Custom network interface templates](#) in the *Advanced Overcloud Customization* guide.

 If the network topology of the **ComputeAMDSEV** role is the same as the **Compute** role, then you can use the default network topology defined in **compute.yaml**.

12. Register the **Net::SoftwareConfig** of the **ComputeAMDSEV** role in your **network-environment.yaml** file:

```
resource_registry:
    OS::TripleO::Compute::Net::SoftwareConfig:
    /home/stack/templates/nic-configs/compute.yaml
    OS::TripleO::ComputeCPUPinning::Net::SoftwareConfig:
    /home/stack/templates/nic-configs/<amd_sev_net_top>.yaml
    OS::TripleO::Controller::Net::SoftwareConfig:
    /home/stack/templates/nic-configs/controller.yaml
```

Replace `<amd_sev_net_top>` with the name of the file that contains the network topology of the **ComputeAMDSEV** role, for example, **compute.yaml** to use the default network topology.

13. Add the following parameters to the **node-info.yaml** file to specify the number of AMD SEV Compute nodes, and the flavor that you want to use for the AMD SEV designated Compute nodes:

```
parameter_defaults:
    OvercloudComputeAMDSEVFlavor: compute-amd-sev
    ComputeAMDSEVCount: 3
```

14. To verify that the role was created, enter the following command:

```
(undercloud)$ openstack baremetal node list --long \
    -c "UUID" -c "Instance UUID" -c "Resource Class" -c "Provisioning State" \n    -c "Power State" -c "Last Error" -c "Fault" -c "Name" -f json
```

Example output:

```
[
    {
        "Fault": null,
        "Instance UUID": "e8e60d37-d7c7-4210-acf7-f04b245582ea",
        "Last Error": null,
        "Name": "compute-0",
        "Power State": "power on",
        "Provisioning State": "active",
        "Resource Class": "baremetal.AMD-SEV",
        "UUID": "b5a9ac58-63a7-49ba-b4ad-33d84000cc4"
    }
]`
11.3. CONFIGURING AMD SEV COMPUTE NODES FOR MEMORY ENCRYPTION

To enable your cloud users to create instances that use memory encryption, you must configure the Compute nodes that have the AMD SEV hardware.

Prerequisites

- Your deployment must include a Compute node that runs on AMD hardware capable of supporting SEV, such as an AMD EPYC CPU. You can use the following command to determine if your deployment is SEV-capable:
  
  ```bash
 $ lscpu | grep sev
  ```

Procedure

1. Open your Compute environment file.

2. Optional: Add the following configuration to your Compute environment file to specify the maximum number of memory-encrypted instances that the AMD SEV Compute nodes can host concurrently:

   ```yaml
 parameter_defaults:
 ComputeAMDSEVExtraConfig:
 nova::config::nova_config:
 libvirt/num_memory_encrypted_guests:
 value: 15
   ```
NOTE

The default value of the `libvirt/num_memory_encrypted_guests` parameter is `none`. If you do not set a custom value, the AMD SEV Compute nodes do not impose a limit on the number of memory-encrypted instances that the nodes can host concurrently. Instead, the hardware determines the maximum number of memory-encrypted instances that the AMD SEV Compute nodes can host concurrently, which might cause some memory-encrypted instances to fail to launch.

3. Optional: To specify that all x86_64 images use the q35 machine type by default, add the following configuration to your Compute environment file:

```
parameter_defaults:
 ComputeAMDSEVParameters:
 NovaHWMachineType: x86_64=q35
```

If you specify this parameter value, you do not need to set the `hw_machine_type` property to `q35` on every AMD SEV instance image.

4. To ensure that the AMD SEV Compute nodes reserve enough memory for host-level services to function, add 16MB for each potential AMD SEV instance:

```
parameter_defaults:
 ComputeAMDSEVParameters:
 NovaReservedHostMemory: <libvirt/num_memory_encrypted_guests * 16>
```

5. Configure the kernel parameters for the AMD SEV Compute nodes:

```
parameter_defaults:
 ComputeAMDSEVParameters:
 ...'
 KernelArgs: "hugepagesz=1GB hugepages=32 default_hugepagesz=1GB mem_encrypt=on kvm_amd.sev=1"
```

6. Add the following configuration to your Compute environment file to schedule memory-encrypted instances on an AMD SEV Compute node:

```
parameter_defaults:
 ControllerParameters:
 NovaSchedulerEnableIsolatedAggregateFiltering: True
```

7. Save the updates to your Compute environment file.

8. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:

```
(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml
```

9. Create a host aggregate for AMD SEV Compute nodes to ensure that instances that do not request memory encryption are not created on AMD SEV Compute nodes:
### 11.4. CREATING AN IMAGE FOR MEMORY ENCRYPTION

When the overcloud contains AMD SEV Compute nodes, you can create an AMD SEV instance image that your cloud users can use to launch instances that have memory encryption.

**Procedure**

1. Create a new image for memory encryption:

   ```bash
 (overcloud)$ openstack image create ... \
 --property hw_firmware_type=uefi amd-sev-image
   ```

   **NOTE**
   
   If you use an existing image, the image must have the `hw_firmware_type` property set to `uefi`.

2. Optional: Add the property `hw_mem_encryption=True` to the image to enable AMD SEV memory encryption on the image:

   ```bash
 (overcloud)$ openstack image set \
 --property hw_mem_encryption=True amd-sev-image
   ```

   **TIP**
   
   You can enable memory encryption on the flavor. For more information, see [Creating a flavor for memory encryption](#).

3. Optional: Set the machine type to `q35`, if not already set in the Compute node configuration:

   ```bash
 (overcloud)$ openstack image set \
 --property hw_machine_type=q35 amd-sev-image
   ```

4. Optional: To schedule memory-encrypted instances on a SEV-capable host aggregate, add the following trait to the image extra specs:

   ```bash
 (overcloud)$ openstack image set \
 --property trait:HW_CPU_X86_AMD_SEV=required amd-sev-image
   ```

   **TIP**
   
   You can also specify this trait on the flavor. For more information, see [Creating a flavor for memory encryption](#).
11.5. CREATING A FLAVOR FOR MEMORY ENCRYPTION

When the overcloud contains AMD SEV Compute nodes, you can create one or more AMD SEV flavors that your cloud users can use to launch instances that have memory encryption.

**NOTE**

An AMD SEV flavor is necessary only when the `hw_mem_encryption` property is not set on an image.

**Procedure**

1. Create a flavor for memory encryption:

   ```
 (overcloud)$ openstack flavor create --vcpus 1 --ram 512 --disk 2 \
 --property hw:mem_encryption=True m1.small-amd-sev
   ```

2. To schedule memory-encrypted instances on a SEV-capable host aggregate, add the following trait to the flavor extra specs:

   ```
 (overcloud)$ openstack flavor set \
 --property trait:HW_CPU_X86_AMD_SEV=required m1.small-amd-sev
   ```

11.6. LAUNCHING AN INSTANCE WITH MEMORY ENCRYPTION

To verify that you can launch instances on an AMD SEV Compute node with memory encryption enabled, use a memory encryption flavor or image to create an instance.

**Procedure**

1. Create an instance by using an AMD SEV flavor or image. The following example creates an instance by using the flavor created in Creating a flavor for memory encryption and the image created in Creating an image for memory encryption:

   ```
 (overcloud)$ openstack server create --flavor m1.small-amd-sev \
 --image amd-sev-image amd-sev-instance
   ```

2. Log in to the instance as a cloud user.

3. To verify that the instance uses memory encryption, enter the following command from the instance:

   ```
 $ dmesg | grep -i sev
 AMD Secure Encrypted Virtualization (SEV) active
   ```
CHAPTER 12. CONFIGURING NVDIMM COMPUTE NODES TO PROVIDE PERSISTENT MEMORY FOR INSTANCES

A non-volatile dual in-line memory module (NVDIMM) is a technology that provides DRAM with persistent memory (PMEM). Standard computer memory loses its data after a loss of electrical power. The NVDIMM maintains its data even after a loss of electrical power. Instances that use PMEM can provide applications with the ability to load large contiguous segments of memory that persist the application data across power cycles. This is useful for high performance computing (HPC), which requests huge amounts of memory.

As a cloud administrator, you can make the PMEM available to instances as virtual PMEM (vPMEM) by creating and configuring PMEM namespaces on Compute nodes that have NVDIMM hardware. Cloud users can then create instances that request vPMEM when they need the instance content to be retained after it is shut down.

To enable your cloud users to create instances that use PMEM, you must complete the following procedures:

1. Designate Compute nodes for PMEM.
2. Configure the Compute nodes for PMEM that have the NVDIMM hardware.
3. Deploy the overcloud.
4. Create PMEM flavors for launching instances that have vPMEM.

Prerequisites

- Your Compute node has persistent memory hardware, such as Intel® Optane™ DC Persistent Memory.
- You have configured backend NVDIMM regions on the PMEM hardware device to create PMEM namespaces. You can use the ipmct1 tool provided by Intel to configure the PMEM hardware.

Limitations when using PMEM devices

- You cannot cold migrate, live migrate, resize or suspend and resume instances that use vPMEM.
- Only instances running RHEL8 can use vPMEM.
- When rebuilding a vPMEM instance, the persistent memory namespaces are removed to restore the initial state of the instance.
- When resizing an instance using a new flavor, the content of the original virtual persistent memory will not be copied to the new virtual persistent memory.
- Virtual persistent memory hotplugging is not supported.
- When creating a snapshot of a vPMEM instance, the virtual persistent images are not included.

12.1. DESIGNATING COMPUTE NODES FOR PMEM

To designate Compute nodes for PMEM workloads, you must create a new role file to configure the PMEM role, and configure a new bare metal flavor for PMEM to use to tag the NVDIMM Compute nodes.
Procedure

1. Log in to the undercloud as the **stack** user.

2. Generate a new roles data file named `roles_data_pmem.yaml` that includes the **Controller**, **Compute**, and **ComputePMEM** roles:

   ```bash
 (undercloud)$ openstack overcloud roles generate -o /home/stack/templates/roles_data_pmem.yaml Compute:ComputePMEM Compute Controller
   ```

3. Open `roles_data_pmem.yaml` and edit or add the following parameters and sections:

<table>
<thead>
<tr>
<th>Section/Parameter</th>
<th>Current value</th>
<th>New value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role comment</td>
<td>Role: Compute</td>
<td>Role: ComputePMEM</td>
</tr>
<tr>
<td>Role name</td>
<td>name: Compute</td>
<td>name: ComputePMEM</td>
</tr>
<tr>
<td>description</td>
<td>Basic Compute Node role</td>
<td>PMEM Compute Node role</td>
</tr>
<tr>
<td>HostnameFormatDefault</td>
<td>%stackname%-novacompute-%index%</td>
<td>%stackname%-novacompute-pmem-%index%</td>
</tr>
<tr>
<td>deprecated_nic_config_name</td>
<td>compute.yaml</td>
<td>compute-pmem.yaml</td>
</tr>
</tbody>
</table>

4. Register the NVDIMM Compute nodes for the overcloud by adding them to your node definition template, `node.json` or `node.yaml`. For more information, see [Registering nodes for the overcloud](../DirectorInstallationAndUsageGuide) in the *Director Installation and Usage* guide.

5. Inspect the node hardware:

   ```bash
 (undercloud)$ openstack overcloud node introspect --all-manageable --provide
   ```

   For more information, see [Inspecting the hardware of nodes](../DirectorInstallationAndUsageGuide) in the *Director Installation and Usage* guide.

6. Create the **compute-pmem** bare metal flavor to use to tag nodes that you want to designate for PMEM workloads:

   ```bash
 (undercloud)$ openstack flavor create --id auto --ram <ram_size_mb> --disk <disk_size_gb> --vcpus <no_vcpus> compute-pmem
   ```

   - Replace `<ram_size_mb>` with the RAM of the bare metal node, in MB.
   - Replace `<disk_size_gb>` with the size of the disk on the bare metal node, in GB.
   - Replace `<no_vcpus>` with the number of CPUs on the bare metal node.
NOTE

These properties are not used for scheduling instances. However, the Compute scheduler does use the disk size to determine the root partition size.

7. Tag each bare metal node that you want to designate for PMEM workloads with a custom PMEM resource class:

```bash
(undercloud)$ openstack baremetal node set \
 --resource-class baremetal.PMEM <node>
```

Replace `<node>` with the ID of the bare metal node.

8. Associate the `compute-pmem` flavor with the custom PMEM resource class:

```bash
(undercloud)$ openstack flavor set \
 --property resources:CUSTOM_BAREMETAL_PMEM=1 \
 compute-pmem
```

To determine the name of a custom resource class that corresponds to a resource class of a Bare Metal service node, convert the resource class to uppercase, replace all punctuation with an underscore, and prefix with `CUSTOM_`.

NOTE

A flavor can request only one instance of a bare metal resource class.

9. Set the following flavor properties to prevent the Compute scheduler from using the bare metal flavor properties to schedule instances:

```bash
(undercloud)$ openstack flavor set \
 --property resources:VCPU=0 --property resources:MEMORY_MB=0 \
 --property resources:DISK_GB=0 compute-pmem
```

10. Add the following parameters to the `node-info.yaml` file to specify the number of PMEM Compute nodes, and the flavor to use for the PMEM-designated Compute nodes:

```yaml
parameter_defaults:
 OvercloudComputePMEMFlavor: compute-pmem
 ComputePMEMCount: 3 #set to the no of NVDIMM devices you have
```

11. To verify that the role was created, enter the following command:

```bash
(undercloud)$ openstack overcloud profiles list
```

### 12.2. CONFIGURING A PMEM COMPUTE NODE

To enable your cloud users to create instances that use vPMEM, you must configure the Compute nodes that have the NVDIMM hardware.

Procedure
1. Create a new Compute environment file for configuring NVDIMM Compute nodes, for example, `env_pmem.yaml`.

2. To partition the NVDIMM regions into PMEM namespaces that the instances can use, add the `NovaPMEMNamespaces` role-specific parameter to the PMEM role in your Compute environment file, and set the value using the following format:

   `<size>:<namespace_name>[,<size>:<namespace_name>]`

   Use the following suffixes to represent the size:

   - "k" or "K" for KiB
   - "m" or "M" for MiB
   - "G" or "G" for GiB
   - "t" or "T" for TiB

   For example, the following configuration creates four namespaces, three of size 6 GiB, and one of size 100 GiB:

   ```
 parameter_defaults:
 ComputePMEMParameters:
 NovaPMEMNamespaces: "6G:ns0,6G:ns1,6G:ns2,100G:ns3"
   ```

3. To map the PMEM namespaces to labels that can be used in a flavor, add the `NovaPMEMMappings` role-specific parameter to the PMEM role in your Compute environment file, and set the value using the following format:

   `<label>:<namespace_name>[|<namespace_name>],<label>:<namespace_name>[|<namespace_name>]`

   For example, the following configuration maps the three 6 GiB namespaces to the label "6GB", and the 100 GiB namespace to the label "LARGE":

   ```
 parameter_defaults:
 ComputePMEMParameters:
 NovaPMEMNamespaces: "6G:ns0,6G:ns1,6G:ns2,100G:ns3"
 NovaPMEMMappings: "6GB:ns0|ns1|ns2,LARGE:ns3"
   ```

4. Save the updates to your Compute environment file.

5. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:

   ```bash
 (undercloud)$ openstack overcloud deploy --templates \
 -r /home/stack/templates/roles_data_pmem.yaml \
 -e /home/stack/templates/node-info.yaml \
 -e [your environment files] \
 -e /home/stack/templates/env_pmem.yaml
   ```

6. Create and configure the flavors that your cloud users can use to launch instances that have vPMEM. The following example creates a flavor that requests a small PMEM device, 6GB, as mapped in Step 3:
(overcloud)$ openstack flavor create --vcpus 1 --ram 512 --disk 2 \  
--property hw:pmem='6GB' small_pmem_flavor

Verification

1. Create an instance using one of the PMEM flavors:

(overcloud)$ openstack flavor list
(overcloud)$ openstack server create --flavor small_pmem_flavor \ 
--image rhel8 pmem_instance

2. Log in to the instance as a cloud-user.

3. List all the disk devices attached to the instance:

$ sudo fdisk -l /dev/pmem0

The instance has vPMEM if one of the devices listed is NVDIMM.
CHAPTER 13. CONFIGURING VIRTUAL GPUS FOR INSTANCES

To support GPU-based rendering on your instances, you can define and manage virtual GPU (vGPU) resources according to your available physical GPU devices and your hypervisor type. You can use this configuration to divide the rendering workloads between all your physical GPU devices more effectively, and to have more control over scheduling your vGPU-enabled instances.

To enable vGPU in the Compute (nova) service, create flavors that your cloud users can use to create Red Hat Enterprise Linux (RHEL) instances with vGPU devices. Each instance can then support GPU workloads with virtual GPU devices that correspond to the physical GPU devices.

The Compute service tracks the number of vGPU devices that are available for each GPU profile you define on each host. The Compute service schedules instances to these hosts based on the flavor, attaches the devices, and monitors usage on an ongoing basis. When an instance is deleted, the Compute service adds the vGPU devices back to the available pool.

13.1. SUPPORTED CONFIGURATIONS AND LIMITATIONS

Supported GPU cards

For a list of supported NVIDIA GPU cards, see Virtual GPU Software Supported Products on the NVIDIA website.

Limitations when using vGPU devices

- You can enable only one vGPU type on each Compute node.
- Each instance can use only one vGPU resource.
- Live migration of vGPU between hosts is not supported.
- Suspend operations on a vGPU-enabled instance is not supported due to a libvirt limitation. Instead, you can snapshot or shelve the instance.
- By default, vGPU types on Compute hosts are not exposed to API users. To grant access, add the hosts to a host aggregate. For more information, see Creating and managing host aggregates.
- If you use NVIDIA accelerator hardware, you must comply with the NVIDIA licensing requirements. For example, NVIDIA vGPU GRID requires a licensing server. For more information about the NVIDIA licensing requirements, see NVIDIA License Server Release Notes on the NVIDIA website.

13.2. CONFIGURING VGPU ON THE COMPUTE NODES

To enable your cloud users to create instances that use a virtual GPU (vGPU), you must configure the Compute nodes that have the physical GPUs:

1. Prepare the GPU role, profile, and flavor for designating Compute nodes for vGPU.
2. Configure the Compute node for vGPU.
3. Deploy the overcloud.
NOTE

To use an NVIDIA GRID vGPU, you must comply with the NVIDIA GRID licensing requirements and you must have the URL of your self-hosted license server. For more information, see the NVIDIA License Server Release Notes web page.

13.2.1. Prerequisites

- You have downloaded the NVIDIA GRID host driver RPM package that corresponds to your GPU device from the NVIDIA website. To determine which driver you need, see the NVIDIA Driver Downloads Portal. You must be a registered NVIDIA customer to download the drivers from the portal.

- You have built a custom overcloud image that has the NVIDIA GRID host driver installed. For more information about building a custom overcloud image, see Working with overcloud images.

13.2.2. Designating Compute nodes for vGPU

To designate Compute nodes for vGPU workloads, you must create a new role file to configure the vGPU role, and configure a new flavor to use to tag the GPU-enabled Compute nodes.

Procedure

1. Generate a new roles data file named `roles_data_gpu.yaml` that includes the Controller, Compute, and ComputeGpu roles:

   ```bash
 (undercloud)$ openstack overcloud roles \
 generate -o /home/stack/templates/roles_data_gpu.yaml \n Compute:ComputeGpu Compute Controller
   ```

2. Open `roles_data_gpu.yaml` and edit or add the following parameters and sections:

<table>
<thead>
<tr>
<th>Section/Parameter</th>
<th>Current value</th>
<th>New value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role comment</td>
<td>Role: Compute</td>
<td>Role: ComputeGpu</td>
</tr>
<tr>
<td>Role name</td>
<td>name: Compute</td>
<td>name: ComputeGpu</td>
</tr>
<tr>
<td>description</td>
<td>Basic Compute Node role</td>
<td>GPU Compute Node role</td>
</tr>
<tr>
<td>ImageDefault</td>
<td>n/a</td>
<td>overcloud-full-gpu</td>
</tr>
<tr>
<td>HostnameFormatDefault</td>
<td>-compute-</td>
<td>-computegpu-</td>
</tr>
<tr>
<td>deprecated_nic_config_name</td>
<td>compute.yaml</td>
<td>compute-gpu.yaml</td>
</tr>
</tbody>
</table>

3. Register the GPU-enabled Compute nodes for the overcloud by adding them to your node definition template, `node.json` or `node.yaml`. For more information, see Registering nodes for the overcloud in the Director Installation and Usage guide.

4. Inspect the node hardware:
5. Create the `compute-vgpu-nvidia` bare metal flavor to use to tag nodes that you want to designate for vGPU workloads:

```
(undercloud)$ openstack flavor create --id auto --ram <ram_size_mb> --disk <disk_size_gb> --vcpus <no_vcpus> compute-vgpu-nvidia
```

- Replace `<ram_size_mb>` with the RAM of the bare metal node, in MB.
- Replace `<disk_size_gb>` with the size of the disk on the bare metal node, in GB.
- Replace `<no_vcpus>` with the number of CPUs on the bare metal node.

**NOTE**

These properties are not used for scheduling instances. However, the Compute scheduler does use the disk size to determine the root partition size.

6. Tag each bare metal node that you want to designate for GPU workloads with a custom GPU resource class:

```
(undercloud)$ openstack baremetal node set --resource-class baremetal.GPU <node>
```

Replace `<node>` with the ID of the baremetal node.

7. Associate the `compute-vgpu-nvidia` flavor with the custom GPU resource class:

```
(undercloud)$ openstack flavor set --property resources:CUSTOM_BAREMETAL_GPU=1 compute-vgpu-nvidia
```

To determine the name of a custom resource class that corresponds to a resource class of a Bare Metal service node, convert the resource class to uppercase, replace all punctuation with an underscore, and prefix with `CUSTOM_`.

**NOTE**

A flavor can request only one instance of a bare metal resource class.

8. Set the following flavor properties to prevent the Compute scheduler from using the bare metal flavor properties to schedule instances:

```
(undercloud)$ openstack flavor set --property resources:VCPU=0 --property resources:MEMORY_MB=0 --property resources:DISK_GB=0 compute-vgpu-nvidia
```
9. To verify that the role was created, enter the following command:

   (undercloud)$ openstack overcloud profiles list

13.2.3. Configuring the Compute node for vGPU and deploying the overcloud

You need to retrieve and assign the vGPU type that corresponds to the physical GPU device in your environment, and prepare the environment files to configure the Compute node for vGPU.

Procedure

1. Install Red Hat Enterprise Linux and the NVIDIA GRID driver on a temporary Compute node and launch the node.

2. On the Compute node, locate the vGPU type of the physical GPU device that you want to enable. For libvirt, virtual GPUs are mediated devices, or mdev type devices. To discover the supported mdev devices, enter the following command:

   [root@overcloud-computegpu-0 ~]# ls
   /sys/class/mdev_bus/0000:06:00.0/mdev_supported_types/
   nvidia-11 nvidia-12 nvidia-13 nvidia-14 nvidia-15 nvidia-16 nvidia-17 nvidia-18 nvidia-19
   nvidia-20 nvidia-21 nvidia-210 nvidia-22

   [root@overcloud-computegpu-0 ~]# cat
   /sys/class/mdev_bus/0000:06:00.0/mdev_supported_types/nvidia-18/description
   num_heads=4, frl_config=60, framebuffer=2048M, max_resolution=4096x2160,
   max_instance=4

3. Register the Net::SoftwareConfig of the ComputeGpu role in your network-environment.yaml file:

   resource_registry:
   OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-configs/compute.yaml
   OS::TripleO::ComputeGpu::Net::SoftwareConfig: /home/stack/templates/nic-configs/compute-gpu.yaml
   OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-configs/controller.yaml

4. Add the following parameters to the node-info.yaml file to specify the number of GPU Compute nodes, and the flavor to use for the GPU-designated Compute nodes:

   parameter_defaults:
   OvercloudControllerFlavor: control
   OvercloudComputeFlavor: compute
   OvercloudComputeGpuFlavor: compute-vgpu-nvidia
   ControllerCount: 1
   ComputeCount: 0
   ComputeGpuCount: 1

5. Create a gpu.yaml file to specify the vGPU type of your GPU device:

   parameter_defaults:
   ComputeGpuExtraConfig:
nova::compute::vgpu::enabled_vgpu_types:
- nvidia-18

**NOTE**

Each physical GPU supports only one virtual GPU type. If you specify multiple vGPU types in this property, only the first type is used.

6. Add your new role and environment files to the stack with your other environment files and deploy the overcloud:

(undercloud)$ openstack overcloud deploy --templates \\
- e [your environment files] \\
- r /home/stack/templates/roles_data_gpu.yaml \\
- e /home/stack/templates/network-environment.yaml \\
- e /home/stack/templates/gpu.yaml \\
- e /home/stack/templates/node-info.yaml

### 13.3. CREATING A CUSTOM GPU INSTANCE IMAGE

To enable your cloud users to create instances that use a virtual GPU (vGPU), you can create a custom vGPU-enabled image for launching instances. Use the following procedure to create a custom vGPU-enabled instance image with the NVIDIA GRID guest driver and license file.

**Prerequisites**

- You have configured and deployed the overcloud with GPU-enabled Compute nodes.

**Procedure**

1. Log in to the undercloud as the **stack** user.

2. Source the **overcloudrc** credential file:

   $ source ~/overcloudrc

3. Create an instance with the hardware and software profile that your vGPU instances require:

   (overcloud)$ openstack server create --flavor <flavor> \\
   --image <image> temp_vgpu_instance

   - Replace `<flavor>` with the name or ID of the flavor that has the hardware profile that your vGPU instances require. For information about creating a vGPU flavor, see [Creating a vGPU flavor for instances](#).

   - Replace `<image>` with the name or ID of the image that has the software profile that your vGPU instances require. For information about downloading RHEL cloud images, see [Image service](#).

4. Log in to the instance as a cloud-user.

5. Create the **gridd.conf** NVIDIA GRID license file on the instance, following the NVIDIA guidance: [Licensing an NVIDIA vGPU on Linux by Using a Configuration File](#).
6. Install the GPU driver on the instance. For more information about installing an NVIDIA driver, see [Installing the NVIDIA vGPU Software Graphics Driver on Linux](#).

**NOTE**

Use the `hw_video_model` image property to define the GPU driver type. You can choose `none` if you want to disable the emulated GPUs for your vGPU instances. For more information about supported drivers, see [Image metadata](#).

7. Create an image snapshot of the instance:

```
(overcloud)$ openstack server image create \
 --name vgpu_image temp_vgpu_instance
```

8. Optional: Delete the instance.

### 13.4. CREATING A VGPU FLAVOR FOR INSTANCES

To enable your cloud users to create instances for GPU workloads, you can create a GPU flavor that can be used to launch vGPU instances, and assign the vGPU resource to that flavor.

**Prerequisites**

- You have configured and deployed the overcloud with GPU-designated Compute nodes.

**Procedure**

1. Create an NVIDIA GPU flavor, for example:

```
(overcloud)$ openstack flavor create --vcpus 6 \
 --ram 8192 --disk 100 m1.small-gpu
```

+----------------------------+--------------------------------------+
| Field                      | Value                                |
+----------------------------+--------------------------------------+
OS-FLV-DISABLED:disabled	False
OS-FLV-EXT-DATA:ephemeral	0
disk	100
id	a27b14dd-c42d-4084-9b6a-22555876f68
name	m1.small-gpu
os-flavor-access:is_public	True
properties	
ram	8192
rxtx_factor	1.0
swap	
vcpus	6
+----------------------------+--------------------------------------+

2. Assign a vGPU resource to the flavor that you created. You can assign only one vGPU for each instance.

```
(overcloud)$ openstack flavor set m1.small-gpu \
 --property "resources:VGPU=1"
```
13.5. LAUNCHING A VGPU INSTANCE

You can create a GPU-enabled instance for GPU workloads.

Procedure

1. Create an instance using a GPU flavor and image, for example:

   (overcloud)$ openstack server create --flavor m1.small-gpu --image vgpu_image --security-group web --nic net-id=internal0 --key-name lambda vgpu-instance

2. Log in to the instance as a cloud-user.

3. To verify that the GPU is accessible from the instance, enter the following command from the instance:

   $ lspci -nn | grep <gpu_name>

13.6. ENABLING PCI PASSTHROUGH FOR A GPU DEVICE

You can use PCI passthrough to attach a physical PCI device, such as a graphics card, to an instance. If you use PCI passthrough for a device, the instance reserves exclusive access to the device for performing tasks, and the device is not available to the host.

Prerequisites

- The `pciutils` package is installed on the physical servers that have the PCI cards.

- The driver for the GPU device must be installed on the instance that the device is passed through to. Therefore, you need to have created a custom instance image that has the required GPU driver installed. For more information about how to create a custom instance image with the GPU driver installed, see Creating a custom GPU instance image.

Procedure
1. To determine the vendor ID and product ID for each passthrough device type, enter the following command on the physical server that has the PCI cards:

```
lspci -nn | grep -i <gpu_name>
```

For example, to determine the vendor and product ID for an NVIDIA GPU, enter the following command:

```
lspci -nn | grep -i nvidia
```

```
3b:00.0 3D controller [0302]: NVIDIA Corporation TU104GL [Tesla T4] [10de:1eb8] (rev a1)
d8:00.0 3D controller [0302]: NVIDIA Corporation TU104GL [Tesla T4] [10de:1db4] (rev a1)
```

2. To determine if each PCI device has Single Root I/O Virtualization (SR-IOV) capabilities, enter the following command on the physical server that has the PCI cards:

```
lspci -v -s 3b:00.0
```

```
3b:00.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)

Capabilities: [bcc] Single Root I/O Virtualization (SR-IOV)
```

3. To configure the Controller node on the overcloud for PCI passthrough, create an environment file, for example, `pci_passthru_controller.yaml`.

4. Add `PciPassthroughFilter` to the `NovaSchedulerDefaultFilters` parameter in `pci_passthru_controller.yaml`:

```
parameter_defaults:
 NovaSchedulerDefaultFilters:
```

5. To specify the PCI alias for the devices on the Controller node, add the following configuration to `pci_passthru_controller.yaml`:

- If the PCI device has SR-IOV capabilities:

```
ControllerExtraConfig:
 nova::pci::aliases:
 - name: "t4"
 product_id: "1eb8"
 vendor_id: "10de"
 device_type: "type-PF"
 - name: "v100"
 product_id: "1db4"
 vendor_id: "10de"
 device_type: "type-PF"
```

- If the PCI device does not have SR-IOV capabilities:

```
ControllerExtraConfig:
 nova::pci::aliases:
 - name: "t4"
 product_id: "1eb8"
```
For more information on configuring the `device_type` field, see PCI passthrough device type field.

**NOTE**

If the `nova-api` service is running in a role other than the Controller, then replace `ControllerExtraConfig` with the user role, in the format `<Role>ExtraConfig`.

6. To configure the Compute node on the overcloud for PCI passthrough, create an environment file, for example, `pci_passthru_compute.yaml`.

7. To specify the available PCIs for the devices on the Compute node, add the following to `pci_passthru_compute.yaml`:

```yaml
parameter_defaults:
 NovaPCIPassthrough:
 - vendor_id: "10de"
 product_id: "1eb8"
```

8. You must create a copy of the PCI alias on the Compute node for instance migration and resize operations. To specify the PCI alias for the devices on the Compute node, add the following to `pci_passthru_compute.yaml`:

- If the PCI device has SR-IOV capabilities:

  ```yaml
 ComputeExtraConfig:
 nova::pci::aliases:
 - name: "t4"
 product_id: "1eb8"
 vendor_id: "10de"
 device_type: "type-PF"
 - name: "v100"
 product_id: "1db4"
 vendor_id: "10de"
```

- If the PCI device does not have SR-IOV capabilities:

  ```yaml
 ComputeExtraConfig:
 nova::pci::aliases:
 - name: "t4"
 product_id: "1eb8"
 vendor_id: "10de"
 - name: "v100"
 product_id: "1db4"
 vendor_id: "10de"
```
NOTE

The Compute node aliases must be identical to the aliases on the Controller node.

9. To enable IOMMU in the server BIOS of the Compute nodes to support PCI passthrough, add the **KernelArgs** parameter to **pci_passthru_compute.yaml**:

```
parameter_defaults:
 ...
ComputeParameters:
 KernelArgs: "intel_iommu=on iommu=pt"
```

10. Add your custom environment files to the stack with your other environment files and deploy the overcloud:

```
(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/pci_passthru_controller.yaml \
 -e /home/stack/templates/pci_passthru_compute.yaml
```

11. Configure a flavor to request the PCI devices. The following example requests two devices, each with a vendor ID of **10de** and a product ID of **13f2**:

```
openstack flavor set m1.large \
 --property "pci_passthrough:alias"="14:2"
```

**Verification**

1. Create an instance with a PCI passthrough device:

```
openstack server create --flavor m1.large \
 --image <custom_gpu> --wait test-pci
```

   Replace `<custom_gpu>` with the name of your custom instance image that has the required GPU driver installed.

2. Log in to the instance as a cloud user.

3. To verify that the GPU is accessible from the instance, enter the following command from the instance:

```
$ lspci -nn | grep <gpu_name>
```

4. To check the NVIDIA System Management Interface status, enter the following command from the instance:

```
$ nvidia-smi
```

Example output:

```
| NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 10.2 |
```
<table>
<thead>
<tr>
<th>GPU Name</th>
<th>Persistence-M</th>
<th>Bus-Id</th>
<th>Disp.A</th>
<th>Volatile Uncorr. ECC</th>
<th>Fan</th>
<th>Temp</th>
<th>Perf</th>
<th>Pwr:Usage/Cap</th>
<th>Memory-Usage</th>
<th>GPU-Util</th>
<th>Compute M.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0 Tesla T4</td>
<td>Off</td>
<td>00000000:01:00.0</td>
<td>Off</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>43C</td>
<td>P0</td>
<td>20W / 70W</td>
<td>0MiB / 15109MiB</td>
<td>0%</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Processes:	GPU Memory				
	GPU	PID	Type	Process name	Usage
No running processes found					

---

CHAPTER 13. CONFIGURING VIRTUAL GPUS FOR INSTANCES
CHAPTER 14. CONFIGURING REAL-TIME COMPUTE

As a cloud administrator, you might need instances on your Compute nodes to adhere to low-latency policies and perform real-time processing. Real-time Compute nodes include a real-time capable kernel, specific virtualization modules, and optimized deployment parameters, to facilitate real-time processing requirements and minimize latency.

The process to enable Real-time Compute includes:

- configuring the BIOS settings of the Compute nodes
- building a real-time image with real-time kernel and Real-Time KVM (RT-KVM) kernel module
- assigning the `ComputeRealTime` role to the Compute nodes

For a use-case example of real-time Compute deployment for NFV workloads, see the Example: Configuring OVS-DPDK with ODL and VXLAN tunnelling section in the Network Functions Virtualization Planning and Configuration Guide.

NOTE

Real-time Compute nodes are supported only with Red Hat Enterprise Linux version 7.5 or later.

14.1. PREPARING COMPUTE NODES FOR REAL-TIME

Before you can deploy Real-time Compute in your overcloud, you must enable Red Hat Enterprise Linux Real-Time KVM (RT-KVM), configure your BIOS to support real-time, and build the real-time overcloud image.

Prerequisites

- You must use Red Hat certified servers for your RT-KVM Compute nodes. See Red Hat Enterprise Linux for Real Time certified servers for details.
- You need a separate subscription to Red Hat OpenStack Platform for Real Time to access the `rhel-8-for-x86_64-nfv-rpms` repository. For details on managing repositories and subscriptions for your undercloud, see Registering the undercloud and attaching subscriptions in the Director Installation and Usage guide.

Procedure

1. To build the real-time overcloud image, you must enable the `rhel-8-for-x86_64-nfv-rpms` repository for RT-KVM. To check which packages will be installed from the repository, enter the following command:

```bash
$ dnf repo-pkgs rhel-8-for-x86_64-nfv-rpms list
```

Loaded plugins: product-id, search-disabled-repos, subscription-manager

Available Packages

- `kernel-rt.x86_64 4.18.0-80.7.1.rt9.153.el8_0  rhel-8-for-x86_64-nfv-rpms`
- `kernel-rt-debug.x86_64 4.18.0-80.7.1.rt9.153.el8_0  rhel-8-for-x86_64-nfv-rpms`
- `kernel-rt-debug-devel.x86_64 4.18.0-80.7.1.rt9.153.el8_0  rhel-8-for-x86_64-nfv-rpms`
- `kernel-rt-debug-kvm.x86_64 4.18.0-80.7.1.rt9.153.el8_0  rhel-8-for-x86_64-nfv-rpms`
2. To build the overcloud image for Real-time Compute nodes, install the `libguestfs-tools` package on the undercloud to get the `virt-customize` tool:

   `(undercloud)$ sudo dnf install libguestfs-tools`

   **IMPORTANT**

   If you install the `libguestfs-tools` package on the undercloud, disable `iscsid.socket` to avoid port conflicts with the `tripleo_iscsid` service on the undercloud:

   `$ sudo systemctl disable --now iscsid.socket`

3. Extract the images:

   `(undercloud)$ tar -xf /usr/share/rhosp-director-images/overcloud-full.tar
   (undercloud)$ tar -xf /usr/share/rhosp-director-images/ironic-python-agent.tar`

4. Copy the default image:

   `(undercloud)$ cp overcloud-full.qcow2 overcloud-realtime-compute.qcow2`

5. Register the image and configure the required subscriptions:

   `(undercloud)$ virt-customize -a overcloud-realtime-compute.qcow2 --run-command
   'subscription-manager register --username=<username> --password=<password>'
   [ 0.0] Examining the guest ...
   [10.0] Setting a random seed
   [10.0] Running: subscription-manager register --username=<username> --password=
   <password>
   [24.0] Finishing off`

   Replace the `username` and `password` values with your Red Hat customer account details.

   For general information about building a Real-time overcloud image, see the knowledgebase article [Modifying the Red Hat Enterprise Linux OpenStack Platform Overcloud Image with virt-customize](#).

6. Find the SKU of the `Red Hat OpenStack Platform for Real Time` subscription. The SKU might be located on a system that is already registered to the Red Hat Subscription Manager with the same account and credentials:

   `$ sudo subscription-manager list`

7. Attach the `Red Hat OpenStack Platform for Real Time` subscription to the image:

   `$ sudo subscription-manager list`
8. Create a script to configure rt on the image:

(undercloud)$ cat rt.sh

#!/bin/bash

set -eux

subscription-manager repos --enable=[REPO_ID]

dnf -v -y --setopt=protected_packages= erase kernel.$(uname -m)
dnf -v -y install kernel-rt kernel-rt-kvm tuned-profiles-nfv-host

# END OF SCRIPT

9. Run the script to configure the real-time image:

(undercloud)$ virt-customize -a overcloud-realtime-compute.qcow2 -v --run rt.sh 2>&1 | tee virt-customize.log

10. Re-label SELinux:

(undercloud)$ virt-customize -a overcloud-realtime-compute.qcow2 --selinux-relabel

11. Extract vmlinuz and initrd. For example:

(undercloud)$ mkdir image
(undercloud)$ guestmount -a overcloud-realtime-compute.qcow2 -i --ro image
(undercloud)$ cp image/boot/vmlinuz-4.18.0-80.7.1.rt9.153.el8_0.x86_64 ./overcloud-realtime-compute.vmlinuz
(undercloud)$ cp image/boot/initramfs-4.18.0-80.7.1.rt9.153.el8_0.x86_64.img ./overcloud-realtime-compute.initrd
(undercloud)$ guestunmount image

NOTE

The software version in the vmlinuz and initramfs filenames vary with the kernel version.

12. Upload the image:

(undercloud)$ openstack overcloud image upload \
   --update-existing --os-image-name overcloud-realtime-compute.qcow2

You now have a real-time image you can use with the ComputeRealTime composable role on select Compute nodes.

13. To reduce latency on your Real-time Compute nodes, you must modify the BIOS settings in the Compute nodes. You should disable all options for the following components in your Compute node BIOS settings:

   - Power Management
14.2. DEPLOYING THE REAL-TIME COMPUTE ROLE

Red Hat OpenStack Platform (RHOSP) director provides the template for the ComputeRealTime role, which you can use to deploy real-time Compute nodes. You must perform additional steps to designate Compute nodes for real-time.

Procedure

1. Based on the /usr/share/openstack-tripleo-heat-templates/environments/compute-real-time-example.yaml file, create a compute-real-time.yaml environment file that sets the parameters for the ComputeRealTime role.

   cp /usr/share/openstack-tripleo-heat-templates/environments/compute-real-time-example.yaml /home/stack/templates/compute-real-time.yaml

   The file must include values for the following parameters:

   - **IsolCpusList** and **NovaComputeCpuDedicatedSet**: List of isolated CPU cores and virtual CPU pins to reserve for real-time workloads. This value depends on the CPU hardware of your real-time Compute nodes.

   - **NovaComputeCpuSharedSet**: List of host CPUs to reserve for emulator threads.

   - **KernelArgs**: Arguments to pass to the kernel of the Real-time Compute nodes. For example, you can use `default_hugepagesz=1G hugepagesz=1G hugepages=\<number_of_1G_pages_to_reserve\> hugepagesz=2M hugepages=\<number_of_2M_pages\>` to define the memory requirements of guests that have huge pages with multiple sizes. In this example, the default size is 1GB but you can also reserve 2M huge pages.

   - **NovaComputeDisableIrqBalance**: Ensure that this parameter is set to `true` for Real-time Compute nodes, because the tuned service manages IRQ balancing for real-time deployments instead of the irqbalance service.

2. Add the ComputeRealTime role to your roles data file and regenerate the file. For example:

   $ openstack overcloud roles generate -o /home/stack/templates/rt_roles_data.yaml Controller Compute ComputeRealTime

   This command generates a ComputeRealTime role with contents similar to the following example, and also sets the ImageDefault option to overcloud-realtime-compute.

   - name: ComputeRealTime
description: |
    Compute role that is optimized for real-time behaviour. When using this role
it is mandatory that an overcloud-realtime-compute image is available and
the role specific parameters IsolCpusList, NovaComputeCpuDedicatedSet and
NovaComputeCpuSharedSet are set accordingly to the hardware of the real-time compute
nodes.

CountDefault: 1

networks:
   InternalApi:
      subnet: internal_api_subnet
   Tenant:
      subnet: tenant_subnet
   Storage:
      subnet: storage_subnet

HostnameFormatDefault: "%stackname%-computerealtime-%index%"

ImageDefault: overcloud-realtime-compute

RoleParametersDefault:
   TunedProfileName: "realtime-virtual-host"
   KernelArgs: ""  # these must be set in an environment file
   IsolCpusList: ""  # or similar according to the hardware
   NovaComputeCpuDedicatedSet: ""  # of real-time nodes
   NovaComputeCpuSharedSet: ""  #
   NovaLibvirtMemStatsPeriodSeconds: 0

ServicesDefault:
   - OS::TripleO::Services::Aide
   - OS::TripleO::Services::AuditD
   - OS::TripleO::Services::BootParams
   - OS::TripleO::Services::CACerts
   - OS::TripleO::Services::CephClient
   - OS::TripleO::Services::CephExternal
   - OS::TripleO::Services::CertmongerUser
   - OS::TripleO::Services::Collectd
   - OS::TripleO::Services::ComputeCeilometerAgent
   - OS::TripleO::Services::ComputeNeutronCorePlugin
   - OS::TripleO::Services::ComputeNeutronL3Agent
   - OS::TripleO::Services::ComputeNeutronMetadataAgent
   - OS::TripleO::Services::ComputeNeutronOvsAgent
   - OS::TripleO::Services::Docker
   - OS::TripleO::Services::Fluentd
   - OS::TripleO::Services::Ipsec
   - OS::TripleO::Services::Iscsid
   - OS::TripleO::Services::Kernel
   - OS::TripleO::Services::LoginDefs
   - OS::TripleO::Services::MetricsQdr
   - OS::TripleO::Services::MySQLClient
   - OS::TripleO::Services::NeutronBgpVpnBagpipe
   - OS::TripleO::Services::NeutronLinuxbridgeAgent
   - OS::TripleO::Services::NeutronVppAgent
   - OS::TripleO::Services::NovaCompute
   - OS::TripleO::Services::NovaLibvirt
   - OS::TripleO::Services::NovaLibvirtGuests
   - OS::TripleO::Services::NovaMigrationTarget
   - OS::TripleO::Services::ContainersLogrotateCrond
   - OS::TripleO::Services::OpenDaylightOvs
   - OS::TripleO::Services::Podman
   - OS::TripleO::Services::Rhsm
   - OS::TripleO::Services::RsyslogSidecar
3. Create the `compute-realtime` flavor to tag nodes that you want to designate for real-time workloads. For example:

```
$ source ~/stackrc
$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4 compute-realtime
$ openstack flavor set --property "cpu_arch"="x86_64" --property "capabilities:boot_option"="local" --property "capabilities:profile"="compute-realtime" compute-realtime
```

4. Tag each node that you want to designate for real-time workloads with the `compute-realtime` profile.

```
$ openstack baremetal node set --property capabilities='profile:compute-realtime,boot_option:local' <node_uuid>
```

5. Map the `ComputeRealTime` role to the `compute-realtime` flavor by creating an environment file with the following content:

```
parameter_defaults:
 OvercloudComputeRealTimeFlavor: compute-realtime
```

6. Add your environment files and the new roles file to the stack with your other environment files and deploy the overcloud:

```
(undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -r /home/stack/templates/rt~/my_roles_data.yaml \
 -e home/stack/templates/compute-real-time.yaml
```

### 14.3. SAMPLE DEPLOYMENT AND TESTING SCENARIO

The following example procedure uses a simple single-node deployment to test that the environment variables and other supporting configuration is set up correctly. Actual performance results might vary, depending on the number of nodes and instances that you deploy in your cloud.

**Procedure**

1. Create the `compute-real-time.yaml` file with the following parameters:
parameter_defaults:
  ComputeRealTimeParameters:
    IsolCpusList: "1"
    NovaComputeCpuDedicatedSet: "1"
    NovaComputeCpuSharedSet: "0"
    KernelArgs: "default_hugepagesz=1G hugepagesz=1G hugepages=16"
    NovaComputeDisableIrqBalance: true

2. Create a new `rt_roles_data.yaml` file with the `ComputeRealTime` role:

   ```bash
 $ openstack overcloud roles generate \
 -o ~/rt_roles_data.yaml Controller ComputeRealTime
   ```

3. Add `compute-real-time.yaml` and `rt_roles_data.yaml` to the stack with your other environment files and deploy the overcloud:

   ```bash
 (undercloud)$ openstack overcloud deploy --templates \
 -r /home/stack/rt_roles_data.yaml \n -e [your environment files] \n -e /home/stack/templates/compute-real-time.yaml
   ```

   This command deploys one Controller node and one Real-time Compute node.

4. Log into the Real-time Compute node and check the following parameters:

   ```bash
 [root@overcloud-computerealtime-0 ~]# uname -a
 Linux overcloud-computerealtime-0 4.18.0-80.7.1.rt9.153.el8_0.x86_64 #1 SMP PREEMPT
 RT Wed Dec 13 13:37:53 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux
 [root@overcloud-computerealtime-0 ~]# cat /proc/cmdline
 BOOT_IMAGE=/boot/vmlinuz-4.18.0-80.7.1.rt9.153.el8_0.x86_64 root=UUID=45ae42d0-58e7-44fe-b5b1-993fe97b760f ro console=tty0 crashkernel=auto console=ttyS0,115200
 default_hugepagesz=1G hugepagesz=1G hugepages=16
 [root@overcloud-computerealtime-0 ~]# tuned-adm active
 Current active profile: realtime-virtual-host
 [root@overcloud-computerealtime-0 ~]# grep ^isolated_cores /etc/tuned/realtime-virtual-host-variables.conf
 isolated_cores=1
 [root@overcloud-computerealtime-0 ~]# cat /usr/lib/tuned/realtime-virtual-host/lapic_timer_adv_ns
 4000 # The returned value must not be 0
 [root@overcloud-computerealtime-0 ~]# cat /sys/module/kvm/parameters/lapic_timer_advance_ns
 4000 # The returned value must not be 0
 # To validate hugepages at a host level:
 [root@overcloud-computerealtime-0 ~]# cat /proc/meminfo | grep -E HugePages_Total/Hugepagesize
 HugePages_Total: 64
 Hugepagesize: 1048576 kB
 # To validate hugepages on a per NUMA level (below example is a two NUMA compute host):
 [root@overcloud-computerealtime-0 ~]# cat /sys/devices/system/node/node0/hugepages/hugepages-1048576kB/nr_hugepages
 32
 [root@overcloud-computerealtime-0 ~]# cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
   ```
14.4. LAUNCHING AND TUNING REAL-TIME INSTANCES

After you deploy and configure Real-time Compute nodes, you can launch real-time instances on those nodes. You can further configure these real-time instances with CPU pinning, NUMA topology filters, and huge pages.

Prerequisites

- The `compute-realtime` flavor exists on the overcloud, as described in Deploying the Real-time Compute role.

Procedure

1. Launch the real-time instance:

   ```bash
 # openstack server create --image <rhel> \
 --flavor r1.small --nic net-id=<dpdk_net> test-rt
   ```

2. Optional: Verify that the instance uses the assigned emulator threads:

   ```bash
 # virsh dumpxml <instance_id> | grep vcpu -A1
 <vcpu placement='static'>4</vcpu>
 <cputune>
 <vcpupin vcpu='0' cpuset='1'/>
 <vcpupin vcpu='1' cpuset='3'/>
 <vcpupin vcpu='2' cpuset='5'/>
 <vcpupin vcpu='3' cpuset='7'/>
 <emulatorpin cpuset='0-1'/>
 <vcpusched vcpus='2-3' scheduler='fifo'
 priority='1'/>
 </cputune>
   ```

Pinning CPUs and setting emulator thread policy

To ensure that there are enough CPUs on each Real-time Compute node for real-time workloads, you need to pin at least one virtual CPU (vCPU) for an instance to a physical CPU (pCPUs) on the host. The emulator threads for that vCPU then remain dedicated to that pCPU.

Configure your flavor to use a dedicated CPU policy. To do so, set the `hw:cpu_policy` parameter to `dedicated` on the flavor. For example:
# openstack flavor set --property hw:cpu_policy=dedicated 99

## NOTE

Make sure that your resources quota has enough pCPUs for the Real-time Compute nodes to consume.

### Optimizing your network configuration

Depending on the needs of your deployment, you might need to set parameters in the `network-environment.yaml` file to tune your network for certain real-time workloads.

To review an example configuration optimized for OVS-DPDK, see the Configuring the OVS-DPDK parameters section of the Network Functions Virtualization Planning and Configuration Guide.

### Configuring huge pages

It is recommended to set the default huge pages size to 1GB. Otherwise, TLB flushes might create jitter in the vCPU execution. For general information about using huge pages, see the Running DPDK applications web page.

### Disabling Performance Monitoring Unit (PMU) emulation

Instances can provide PMU metrics by specifying an image or flavor with a vPMU. Providing PMU metrics introduces latency.

## NOTE

The vPMU defaults to enabled when `NovaLibvirtCPUMode` is set to `host-passthrough`.

If you do not need PMU metrics, then disable the vPMU to reduce latency by setting the PMU property to "False" in the image or flavor used to create the instance:

- **Image**: `hw_pmu=False`
- **Flavor**: `hw:pmu=False`
CHAPTER 15. SCALING DEPLOYMENTS WITH COMPUTE CELLS

You can use cells to divide Compute nodes in large deployments into groups, each with a message queue and dedicated database that contains instance information.

By default, director installs the overcloud with a single cell for all Compute nodes. This cell contains all the Compute services and databases, and all the instances and instance metadata. For larger deployments, you can deploy the overcloud with multiple cells to accommodate a larger number of Compute nodes. You can add cells to your environment when you install a new overcloud or at any time afterwards.

In multi-cell deployments, each cell runs standalone copies of the cell-specific Compute services and databases, and stores instance metadata only for instances in that cell. Global information and cell mappings are stored in the global Controller cell, which helps with security and recovery in case one of the cells fails.

CAUTION

If you add cells to an existing overcloud, the conductor in the default cell also performs the role of the super conductor. This has a negative effect on conductor communication with the cells in the deployment, and on the performance of the overcloud. Also, if you take the default cell offline, you take the super conductor offline as well, which stops the entire overcloud deployment. Therefore, to scale an existing overcloud, do not add any Compute nodes to the default cell. Instead, add Compute nodes to the new cells you create, allowing the default cell to act as the super conductor.

To deploy a multi-cell overcloud you must complete the following stages:

1. Configure your RHOSP deployment to handle multiple cells.
2. Create and provision the new cells that you require within your deployment.
3. Add Compute nodes to each cell.

15.1. GLOBAL COMPONENTS AND SERVICES

The following components are deployed in a Controller cell once for each overcloud, regardless of the number of Compute cells.

**Compute API**

Provides the external REST API to users.

**Compute scheduler**

Determines on which Compute node to assign the instances.

**Placement service**

Monitors and allocates Compute resources to the instances.

**API database**

Used by the Compute API and the Compute scheduler services to track location information about instances, and provides a temporary location for instances that are built but not scheduled. In multi-cell deployments, this database also contains cell mappings that specify the database connection for each cell.
**cell0 database**
Dedicated database for information about instances that failed to be scheduled.

**Super conductor**
This service exists only in multi-cell deployments to coordinate between the global services and each Compute cell. This service also sends failed instance information to the cell0 database.

### 15.2. CELL-SPECIFIC COMPONENTS AND SERVICES

The following components are deployed in each Compute cell.

**Cell database**
Contains most of the information about instances. Used by the global API, the conductor, and the Compute services.

**Conductor**
Coordinates database queries and long-running tasks from the global services, and insulates Compute nodes from direct database access.

**Message queue**
Messaging service used by all services to communicate with each other within the cell and with the global services.

### 15.3. CELL DEPLOYMENTS ARCHITECTURE

The default overcloud that director installs has a single cell for all Compute nodes. You can scale your overcloud by adding more cells, as illustrated by the following architecture diagrams.

**Single-cell deployment architecture**
The following diagram shows an example of the basic structure and interaction in a default single-cell overcloud.

![Single-cell deployment architecture diagram]

In this deployment, all services are configured to use a single conductor to communicate between the Compute API and the Compute nodes, and a single database stores all live instance data.

In smaller deployments this configuration might be sufficient, but if any global API service or database fails, the entire Compute deployment cannot send or receive information, regardless of high availability configurations.

**Multi-cell deployment architecture**
The following diagram shows an example of the basic structure and interaction in a custom multi-cell overcloud.

In this deployment, the Compute nodes are divided to multiple cells, each with their own conductor, database, and message queue. The global services use the super conductor to communicate with each cell, and the global database contains only information required for the whole overcloud.

The cell-level services cannot access global services directly. This isolation provides additional security and fail-safe capabilities in case of cell failure.

**IMPORTANT**

In Edge deployments, you must deploy the first cell on the central site, therefore, do not deploy the first cell on any of the edge sites. Do not run any Compute services on the first cell. Instead, deploy each new cell containing the Compute nodes separately on the edge sites.

### 15.4. CONSIDERATIONS FOR MULTI-CELL DEPLOYMENTS

**Maximum number of Compute nodes in a multi-cell deployment**

The maximum number of Compute nodes is 500 across all cells.

**Cross-cell instance migrations**

Migrating an instance from a host in one cell to a host in another cell is not supported. This limitation affects the following operations:

- cold migration
- live migration
- unshelve
- resize
Service quotas

Compute service quotas are calculated dynamically at each resource consumption point, instead of statically in the database. In multi-cell deployments, unreachable cells cannot provide usage information in real-time, which might cause the quotas to be exceeded when the cell is reachable again.

You can use the Placement service and API database to configure the quota calculation to withstand failed or unreachable cells.

API database

The Compute API database is always global for all cells and cannot be duplicated for each cell.

Console proxies

You must configure console proxies for each cell, because console token authorizations are stored in cell databases. Each console proxy server needs to access the `database.connection` information of the corresponding cell database.

Compute metadata API

You can run the Compute metadata API globally or in each cell. Choose one of the following:

- If you have networks that cover multiple cells, you need to run the metadata API globally so that it can bridge between the cells. In this case, the metadata API needs to access the `api_database.connection` information.

- If you have networks in separate segments for each cell, you can run the metadata API separately in each cell. This configuration can improve performance and data isolation. In this case, `neutron-metadata-agent` service point to the corresponding `nova-api-metadata` service.

You use the `api.local_metadata_per_cell` configuration option to set which method to implement. For details on configuring this option, see the `Create environment files with cell parameters` section in Deploying a multi-cell overcloud.

15.5. DEPLOYING A MULTI-CELL OVERCLOUD

To configure your RHOSP deployment to handle multiple cells, you must complete the following stages:

1. Extract parameter information from the default first cell in the basic overcloud. This cell becomes the global Controller after you redeploy the overcloud.

2. Configure a custom role and flavor for each cell.

3. Create environment files to configure cell-specific parameters.

4. Deploy the overcloud with the new cell stack.

NOTE

- This process adds one cell to the overcloud. Repeat these steps for each additional cell you want to deploy in the overcloud.

- In this procedure, the name of the new cell is `cell1`. Replace the name in all commands with the actual cell name.
Prerequisites

- You have deployed a basic overcloud with the required number of Controller and Compute nodes.

Procedure: Extract parameter information from the overcloud

1. Create a new directory for the new cell, and export the directory to the DIR environment variable. The example used throughout this procedure is cell1:

```bash
$ source ~/stackrc
(undercloud)$ mkdir cell1
(undercloud)$ export DIR=cell1
```

2. Export the default cell configuration and password information from the overcloud to a new environment file for the cell:

```bash
(undercloud)$ openstack overcloud cell export \
--output-file cell1/cell1-ctrl-input.yaml cell1
```

**NOTE**

If the environment file already exists, enter the command with the `--force-overwrite` or `-f` option.

This command exports the EndpointMap, HostsEntry, AllNodesConfig, GlobalConfig parameters, and the password information, to the new environment file for the cell, `cell1/cell1-ctrl-input.yaml`.

Procedure: Configure a custom role for a cell

1. Generate a new roles data file named `cell_roles_data.yaml` that includes the Compute and CellController roles:

```bash
(undercloud)$ openstack overcloud roles generate \n--roles-path /usr/share/openstack-tripleo-heat-templates/roles \n-o $DIR/cell_roles_data.yaml Compute CellController
```

2. Optional: To divide your network between the global Controller and the cells, configure network access in the roles file that you created using segmented network role parameters:

```yaml
name: Compute
description: |
 Basic Compute Node role
CountDefault: 1
Create external Neutron bridge (unset if using ML2/OVS without DVR)
tags:
 - external_bridge
networks:
 InternalApi:
 subnet: internal_api_cell1
Tenant:
 subnet: tenant_subnet
Storage:
```
subnet: storage_cell1

- name: CellController
description: |
   CellController role for the nova cell_v2 controller services
CountDefault: 1
tags:
- primary
- controller

networks:
  External:
    subnet: external_cell1
  InternalApi:
    subnet: internal_api_cell1
  Storage:
    subnet: storage_cell1
  StorageMgmt:
    subnet: storage_mgmt_cell1
  Tenant:
    subnet: tenant_subnet

Procedure: Configure the cell flavor and tag nodes to a cell

1. Create the `cellcontroller` flavor to use to tag nodes that you want to allocate to the cell. For example:

   (undercloud)$ openstack flavor create --id auto --ram 4096 \
   --disk 40 --vcpus 1 cellcontroller
   (undercloud)$ openstack flavor set --property "cpu_arch"="x86_64" \
   --property "capabilities:boot_option"="local" \
   --property "capabilities:profile"="cellcontroller" \
   --property "resources:CUSTOM_BAREMETAL=1" \
   --property "resources:DISK_GB=0" \
   --property "resources:MEMORY_MB=0" \
   --property "resources:VCPU=0" \
   cellcontroller

2. Tag each node that you want to assign to the cell with the `cellcontroller` profile.

   (undercloud)$ openstack baremetal node set --property \
   capabilities='profile:cellcontroller,boot_option:local' <node_uuid>

Replace `<node_uuid>` with the ID of the Compute node that you want to assign to the cell.

Procedure: Create environment files with cell parameters

1. Create a new environment file in the cell directory `cell` for cell-specific parameters, for example, `/cell1/cell1.yaml`.

2. Add the following parameters, updating the parameter values for your deployment:

   resource_registry:
   # since the same networks are used in this example, the
   # creation of the different networks is omitted
   OS::TripleO::Network::External: OS::Heat::None
parameter_defaults:
  # CELL Parameter to reflect that this is an additional CELL
  NovaAdditionalCell: True

  # mapping of the CellController flavor to the CellController role
  CellControllerFlavor: cellcontroller

  # The DNS names for the VIPs for the cell
  CloudName: cell1.ooo.test
  CloudNameInternal: cell1.internalapi.ooo.test
  CloudNameStorage: cell1.storage.ooo.test
  CloudNameStorageManagement: cell1.storagemgmt.ooo.test
  CloudNameCtlplane: cell1.ctlplane.ooo.test

  # Flavors used for the cell controller and computes
  OvercloudCellControllerFlavor: cellcontroller
  OvercloudComputeFlavor: compute

  # Number of controllers/computes in the cell
  CellControllerCount: 1
  ComputeCount: 1

  # Compute node name (must be unique across all cells)
  ComputeHostnameFormat: 'cell1-compute-%index%'

  # default gateway
  ControlPlaneStaticRoutes:
    - ip_netmask: 0.0.0.0/0
      next_hop: 192.168.24.1
      default: true
  DnsServers:
    - x.x.x.x

3. Optional: To allocate a network resource to the cell and register cells to the network, add the following parameter to your environment file:

    resource_registry:
      OS::TripleO::CellController::Net::SoftwareConfig: single-nic-vlans/controller.yaml
      OS::TripleO::Compute::Net::SoftwareConfig: single-nic-vlans/compute.yaml

4. Optional: If you divide your network between the global Controller and the cells and want to run the Compute metadata API in each cell instead of in the global Controller, add the following parameter:
parameter_defaults:
NovaLocalMetadataPerCell: True

NOTE
- The parameters in this file restrict the overcloud to use a single network for all cells.
- The Compute host names must be unique across all cells.

5. Make a copy of the `network_data.yaml` file and rename the copy to include the cell name, for example:

   (undercloud)$ cp /usr/share/openstack-tripleo-heat-templates/network_data.yaml cell1/network_data-ctrl.yaml

6. Retrieve the UUIDs of the network components that you want to reuse for the cells:

   (undercloud)$ openstack network show <network>
   (undercloud)$ openstack subnet show <subnet>
   (undercloud)$ openstack network segment show <network_segment>
   (undercloud)$ openstack port show <port>

   - Replace `<network>` with the name of the network whose UUID you want to retrieve.
   - Replace `<subnet>` with the name of the subnet whose UUID you want to retrieve.
   - Replace `<network_segment>` with the name of the segment whose UUID you want to retrieve.
   - Replace `<port>` with the name of the port whose UUID you want to retrieve.

7. To reuse the network components for the cells, add the following configuration to your new cell `network_data.yaml` file:

   external_resource_network_id: <network_uuid>
   external_resource_subnet_id: <subnet_uuid>
   external_resource_segment_id: <segment_uuid>
   external_resource_vip_id: <port_uuid>

   - Replace `<network_uuid>` with the UUID of the network you retrieved in the previous step.
   - Replace `<subnet_uuid>` with the UUID of the subnet you retrieved in the previous step.
   - Replace `<segment_uuid>` with the UUID of the segment you retrieved in the previous step.
   - Replace `<port_uuid>` with the UUID of the port you retrieved in the previous step.

8. Optional: To configure segmented networks for the global Controller cell and the Compute cells, create an environment file and add the routing information and virtual IP address (VIP) information for the cell. For example, you can add the following configuration for `cell1` to the file `cell1_routes.yaml`:

   parameter_defaults:
InternalApiInterfaceRoutes:
- destination: 172.17.2.0/24
  nexthop: 172.16.2.254
StorageInterfaceRoutes:
- destination: 172.17.1.0/24
  nexthop: 172.16.1.254
StorageMgmtInterfaceRoutes:
- destination: 172.17.3.0/24
  nexthop: 172.16.3.254

parameter_defaults:
VipSubnetMap:
  InternalApi: internal_api_cell1
  Storage: storage_cell1
  StorageMgmt: storage_mgmt_cell1
  External: external_cell1

9. Add the environment files to the stack with your other environment files and deploy the overcloud, for example:

```
(undercloud)$ openstack overcloud deploy --templates
 --stack cell1
 -e [your environment files]
 -r $HOME/$DIR/cell_roles_data.yaml
 -e $HOME/$DIR/cell1_routes.yaml
 -e $HOME/$DIR/network_data-ctrl.yaml
 -e $HOME/$DIR/cell1-ctrl-input.yaml
 -e $HOME/$DIR/cell1.yaml
```

NOTE
If you deploy Compute cells in Edge sites, enter the `overcloud deploy` command in each site with the environment files and configuration for each Compute cell in that site.

(Optional) Configure networking for Edge sites

To distribute Compute nodes across Edge sites, create one environment file for the main Controller cell and separate environment files for each Compute cell in that Edge site.

- In the primary environment file, set the `ComputeCount` parameter to 0 in the Controller cell. This cell is separate from the Edge site Compute cells, which will contain the actual Compute nodes.

- In the Compute cell environment files, add the following parameter to disable external VIP ports:

```
resource_registry:
 # Since the compute stack deploys only compute nodes ExternalVIPPorts are not required.
 OS::TripleO::Network::Ports::ExternalVipPort: /usr/share/openstack-tripleo-heat-templates/network/ports/noop.yaml
```

15.6. CREATING AND PROVISIONING A CELL
After you deploy the overcloud with a new cell stack, you create and provision the Compute cells.

NOTE

You must repeat this process for each cell that you create and launch. You can automate the steps in an Ansible playbook. For an example of an Ansible playbook, see the Create the cell and discover Compute nodes section of the OpenStack community documentation. Community documentation is provided as-is and is not officially supported.

Procedure

1. Get the IP addresses of the control plane and cell controller.

   ```
 $ CTRL_IP=$(openstack server list -f value -c Networks --name overcloud-controller-0 | sed 's/ctlplane=//')
 $ CELL_CTRL_IP=$(openstack server list -f value -c Networks --name cellcontroller-0 | sed 's/ctlplane=//')
   ```

2. Add the cell information to all Controller nodes. This information is used to connect to the cell endpoint from the undercloud. The following example uses the prefix `cell1` to specify only the cell systems and exclude the controller systems:

   ```
 (undercloud)$ CELL_INTERNALAPI_INFO=$(ssh heat-admin@$CELL_CTRL_IP \ egrep cell1.*\.internalapi /etc/hosts)
 (undercloud)$ ansible -i /usr/bin/tripleo-ansible-inventory \ Controller -b -m lineinfile -a "dest=/etc/hosts line="$CELL_INTERNALAPI_INFO""
   ```

3. Get the message queue endpoint for the controller cell from the `transport_url` parameter, and the database connection for the controller cell from the `database.connection` parameter:

   ```
 (undercloud)$ CELL_TRANSPORT_URL=$(ssh heat-admin@$CELL_CTRL_IP \ sudo crudini --get /var/lib/config-data/nova/etc/nova/nova.conf \ DEFAULT transport_url)
 (undercloud)$ CELL_MYSQL_VIP=$(ssh heat-admin@$CELL_CTRL_IP \ sudo crudini --get /var/lib/config-data/nova/etc/nova/nova.conf \ database connection | awk -F[@/] '{print $4}')
   ```

4. Log in to one of the global Controller nodes to create the cell:

   ```
 $ export CONTAINERCLI='podman'
 $ ssh heat-admin@$CTRL_IP sudo $CONTAINERCLI \ exec -i -u root nova_api \ nova-manage cell_v2 create_cell --name computecell1 \ --database_connection "$CELL_MYSQL_VIP/nova?{scheme}://{username}:{password}@$CELL_MYSQL_VIP/nova?{query}" \ --transport-url "$CELL_TRANSPORT_URL"
   ```

5. Check that the cell is created and appears in the cell list.

   ```
 $ ssh heat-admin@$CTRL_IP sudo $CONTAINERCLI \ exec -i -u root nova_api \ nova-manage cell_v2 list_cells --verbose
   ```
6. Restart the Compute services on the Controller nodes.

$ ansible -i /usr/bin/tripleo-ansible-inventory Controller -b -a "systemctl restart tripleo_nova_api tripleo_nova_conductor tripleo_nova_scheduler"

7. Check that the cell controller services are provisioned.

(overcloud)$ nova service-list

15.7. ADDING COMPUTE NODES TO A CELL

Procedure

1. Log into one of the Controller nodes.

2. Get the IP address of the control plane for the cell and enter the host discovery command to expose and assign Compute hosts to the cell.

   $ CTRL=overcloud-controller-0
   $ CTRL_IP=$(openstack server list -f value -c Networks --name $CTRL | sed 's/ctlplane=//')
   $ export CONTAINERCLI='podman'
   $ ssh heat-admin@$CTRL_IP sudo $CONTAINERCLI exec -i -u root nova_api
      nova-manage cell_v2 discover_hosts --by-service --verbose

3. Verify that the Compute hosts were assigned to the cell.

   $ ssh heat-admin@$CTRL_IP sudo $CONTAINERCLI exec -i -u root nova_api
      nova-manage cell_v2 list_hosts

15.8. CONFIGURING THE CELL AVAILABILITY ZONE

You must assign each cell to an availability zone to ensure that instances created on the Compute nodes in that cell are only migrated to other Compute nodes in the same cell. Migrating instances between cells is not supported.

The Controller cell must be in a different availability zone from the Compute cells.

You can use host aggregates to configure the availability zone for the Compute cell. The following example shows the command to create a host aggregate for the cell cell1, define the availability zone for the host aggregate, and add the Compute nodes within the cell to the availability zone:

(undercloud)$ source ~/overcloudrc
(overcloud)$ openstack aggregate create --zone cell1 cell1
(overcloud)$ openstack aggregate add host cell1 hostA
(overcloud)$ openstack aggregate add host cell1 hostB
NOTE

- You cannot use the `OS::TripleO::Services::NovaAZConfig` parameter to automatically create the AZ during deployment, because the cell is not created at this stage.

- Migrating instances between cells is not supported. To move an instance to a different cell, you must delete it from the old cell and re-create it in the new cell.

For more information on host aggregates and availability zones, see [Creating and managing host aggregates](#).

15.9. DELETING A COMPUTE NODE FROM A CELL

To delete a Compute node from a cell, you must delete all instances from the cell and delete the host names from the Placement database.

**Procedure**

1. Delete all instances from the Compute nodes in the cell.

   **NOTE**
   
   Migrating instances between cells is not supported. You must delete the instances and re-create them in another cell.

2. On one of the global Controllers, delete all Compute nodes from the cell.

   ```
 $ CTRL=overcloud-controller-0
 $ CTRL_IP=$(openstack server list -f value -c Networks --name $CTRL | sed 's/ctlplane=//')
 $ export CONTAINERCLI='podman'
 $ ssh heat-admin@$CTRL_IP sudo $CONTAINERCLI \
 exec -i -u root nova_api \
 nova-manage cell_v2 list_hosts
 $ ssh heat-admin@$CTRL_IP sudo $CONTAINERCLI \
 exec -i -u root nova_api \
 nova-manage cell_v2 delete_host --cell_uuid <uuid> --host <compute>
   ```

3. Delete the resource providers for the cell from the Placement service, to ensure that the host name is available in case you want to add Compute nodes with the same host name to another cell later. For example:

   ```
 (undercloud)$ source ~/overcloudrc
 (overcloud)$ openstack resource provider list
<table>
<thead>
<tr>
<th>uuid</th>
<th>name</th>
<th>generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9cd04a8b-5e6c-428e-a643-397c9bebcc16</td>
<td>computecell1-novacompute-0.site1.test</td>
<td>11</td>
</tr>
</tbody>
</table>
   ```
15.10. DELETING A CELL

To delete a cell, you must first delete all instances and Compute nodes from the cell, as described in Deleting a Compute node from a cell. Then, you delete the cell itself and the cell stack.

Procedure

1. On one of the global Controllers, delete the cell.

   $ CTRL=overcloud-controller-0
   $ CTRL_IP=$(openstack server list -f value -c Networks --name $CTRL | sed 's/ctlplane=//')
   $ export CONTAINERCLI='podman'
   $ ssh heat-admin@$CTRL_IP sudo $CONTAINERCLI exec -i -u root nova_api
      nova-manage cell_v2 list_cells
   $ ssh heat-admin@$CTRL_IP sudo $CONTAINERCLI exec -i -u root nova_api
      nova-manage cell_v2 delete_cell --cell_uuid <uuid>

2. Delete the cell stack from the overcloud.

   $ openstack stack delete <stack_name> --wait --yes && openstack
   overcloud plan delete <stack_name>

NOTE

If you deployed separate cell stacks for a Controller and Compute cell, delete the Compute cell stack first and then the Controller cell stack.

15.11. TEMPLATE URLS IN CELL MAPPINGS

You can create templates for the --database_connection and --transport-url in cell mappings with variables that are dynamically updated each time you query the global database. The values are taken from the configuration files of the Compute nodes.

The format of a template URL is as follows:

```
{scheme}:://{username}:{password}@{hostname}/{path}
```

The following table shows the variables that you can use in cell mapping URLs:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scheme</td>
<td>Prefix before ://</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------------------------------------</td>
</tr>
<tr>
<td>username</td>
<td>User name</td>
</tr>
<tr>
<td>password</td>
<td>Password</td>
</tr>
<tr>
<td>hostname</td>
<td>Host name or IP address</td>
</tr>
<tr>
<td>port</td>
<td>Port number (must be specified)</td>
</tr>
<tr>
<td>path</td>
<td>Path to the directory in the host (without leading slash)</td>
</tr>
<tr>
<td>query</td>
<td>Full query with string arguments (without leading question mark)</td>
</tr>
<tr>
<td>fragment</td>
<td>Path after the first hash # sign</td>
</tr>
</tbody>
</table>
CHAPTER 16. MANAGING INSTANCES

As a cloud administrator, you can monitor and manage the instances running on your cloud.

16.1. SECURING CONNECTIONS TO THE VNC CONSOLE OF AN INSTANCE

You can secure connections to the VNC console for an instance by configuring the allowed TLS ciphers and the minimum protocol version to enforce for incoming client connections to the VNC proxy service.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

   [stack@director ~]$ source ~/stackrc

3. Open your Compute environment file.

4. Configure the SSL/TLS ciphers to use for VNC console connections to instances:

   parameter_defaults:
   NovaVNCProxySSLCiphers: <ciphers>

   Replace <ciphers> with a colon-delimited list of the cipher suites to allow. Retrieve the list of available ciphers from openssl.

5. Configure the minimum protocol version to use for VNC console connections to instances:

   parameter_defaults:
   NovaVNCProxySSLMinimumVersion: <version>

   Replace <version> with the minimum allowed SSL/TLS protocol version. Set to one of the following valid values:
   - default - Uses the underlying system OpenSSL defaults.
   - tlsv1_1
   - tlsv1_2
   - tlsv1_3

6. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:

   (undercloud)$ openstack overcloud deploy --templates \
   -e [your environment files] \
   -e /home/stack/templates/<compute_environment_file>.yaml

16.2. DATABASE CLEANING
The Compute service includes an administrative tool, `nova-manage`, that you can use to perform deployment, upgrade, clean-up, and maintenance-related tasks, such as applying database schemas, performing online data migrations during an upgrade, and managing and cleaning up the database.

Director automates the following database management tasks on the overcloud by using cron:

- Archives deleted instance records by moving the deleted rows from the production tables to shadow tables.
- Purges deleted rows from the shadow tables after archiving is complete.

### 16.2.1. Configuring database management

The cron jobs use default settings to perform database management tasks. By default, the database archiving cron jobs run daily at 00:01, and the database purging cron jobs run daily at 05:00, both with a jitter between 0 and 3600 seconds. You can modify these settings as required by using heat parameters.

#### Procedure

1. Open your Compute environment file.

2. Add the heat parameter that controls the cron job that you want to add or modify. For example, to purge the shadow tables immediately after they are archived, set the following parameter to "True":

   ```yaml
 parameter_defaults:
 ...
 NovaCronArchiveDeleteRowsPurge: True
   ```

   For a complete list of the heat parameters to manage database cron jobs, see Configuration options for the Compute service automated database management.

3. Save the updates to your Compute environment file.

4. Add your Compute environment file to the stack with your other environment files and deploy the overcloud:

   ```bash
 (undercloud)$ openstack overcloud deploy --templates \
 -e [your environment files] \
 -e /home/stack/templates/<compute_environment_file>.yaml
   ```

### 16.2.2. Configuration options for the Compute service automated database management

Use the following heat parameters to enable and modify the automated cron jobs that manage the database.

#### Table 16.1. Compute (nova) service cron parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>NovaCronArchiveDeleteAllCells</td>
<td>Set this parameter to “True” to archive deleted instance records from all cells.</td>
</tr>
<tr>
<td>NovaCronArchiveDeleteRowsAge</td>
<td>Use this parameter to archive deleted instance records based on their age in days.</td>
</tr>
<tr>
<td></td>
<td>Set to 0 to archive data older than today in shadow tables.</td>
</tr>
<tr>
<td></td>
<td>Default: 90</td>
</tr>
<tr>
<td>NovaCronArchiveDeleteRowsDestination</td>
<td>Use this parameter to configure the file for logging deleted instance records.</td>
</tr>
<tr>
<td>NovaCronArchiveDeleteRowsHour</td>
<td>Use this parameter to configure the hour at which to run the cron command to move deleted instance records to another table.</td>
</tr>
<tr>
<td></td>
<td>Default: 0</td>
</tr>
<tr>
<td>NovaCronArchiveDeleteRowsMaxDelay</td>
<td>Use this parameter to configure the maximum delay, in seconds, before moving deleted instance records to another table.</td>
</tr>
<tr>
<td></td>
<td>Default: 3600</td>
</tr>
<tr>
<td>NovaCronArchiveDeleteRowsMaxRows</td>
<td>Use this parameter to configure the maximum number of deleted instance records that can be moved to another table.</td>
</tr>
<tr>
<td></td>
<td>Default: 1000</td>
</tr>
<tr>
<td>NovaCronArchiveDeleteRowsMinute</td>
<td>Use this parameter to configure the minute past the hour at which to run the cron command to move deleted instance records to another table.</td>
</tr>
<tr>
<td></td>
<td>Default: 1</td>
</tr>
<tr>
<td>NovaCronArchiveDeleteRowsMonthday</td>
<td>Use this parameter to configure on which day of the month to run the cron command to move deleted instance records to another table.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>NovaCronArchiveDeleteRowsMonth</strong></td>
<td>Use this parameter to configure in which month to run the cron command to move deleted instance records to another table.</td>
</tr>
<tr>
<td></td>
<td>Default: * (every month)</td>
</tr>
<tr>
<td><strong>NovaCronArchiveDeleteRowsPurge</strong></td>
<td>Set this parameter to “True” to purge shadow tables immediately after scheduled archiving.</td>
</tr>
<tr>
<td></td>
<td>Default: False</td>
</tr>
<tr>
<td><strong>NovaCronArchiveDeleteRowsUntilComplete</strong></td>
<td>Set this parameter to “True” to continue to move deleted instance records to another table until all records are moved.</td>
</tr>
<tr>
<td></td>
<td>Default: True</td>
</tr>
<tr>
<td><strong>NovaCronArchiveDeleteRowsUser</strong></td>
<td>Use this parameter to configure the user that owns the crontab that archives deleted instance records and that has access to the log file the crontab uses.</td>
</tr>
<tr>
<td></td>
<td>Default: nova</td>
</tr>
<tr>
<td><strong>NovaCronArchiveDeleteRowsWeekday</strong></td>
<td>Use this parameter to configure on which day of the week to run the cron command to move deleted instance records to another table.</td>
</tr>
<tr>
<td></td>
<td>Default: * (every day)</td>
</tr>
<tr>
<td><strong>NovaCronPurgeShadowTablesAge</strong></td>
<td>Use this parameter to purge shadow tables based on their age in days.</td>
</tr>
<tr>
<td></td>
<td>Set to 0 to purge shadow tables older than today.</td>
</tr>
<tr>
<td></td>
<td>Default: 14</td>
</tr>
<tr>
<td><strong>NovaCronPurgeShadowTablesAllCells</strong></td>
<td>Set this parameter to “True” to purge shadow tables from all cells.</td>
</tr>
<tr>
<td></td>
<td>Default: True</td>
</tr>
<tr>
<td><strong>NovaCronPurgeShadowTablesDestination</strong></td>
<td>Use this parameter to configure the file for logging purged shadow tables.</td>
</tr>
<tr>
<td></td>
<td>Default: /var/log/nova/nova-rowspurge.log</td>
</tr>
<tr>
<td><strong>NovaCronPurgeShadowTablesHour</strong></td>
<td>Use this parameter to configure the hour at which to run the cron command to purge shadow tables.</td>
</tr>
<tr>
<td></td>
<td>Default: 5</td>
</tr>
</tbody>
</table>
### NovaCronPurgeShadowTablesMaxDelay
Use this parameter to configure the maximum delay, in seconds, before purging shadow tables.

Default: 3600

### NovaCronPurgeShadowTablesMinute
Use this parameter to configure the minute past the hour at which to run the cron command to purge shadow tables.

Default: 0

### NovaCronPurgeShadowTablesMonth
Use this parameter to configure in which month to run the cron command to purge the shadow tables.

Default: * (every month)

### NovaCronPurgeShadowTablesMonthday
Use this parameter to configure on which day of the month to run the cron command to purge the shadow tables.

Default: * (every day)

### NovaCronPurgeShadowTablesUser
Use this parameter to configure the user that owns the crontab that purges the shadow tables and that has access to the log file the crontab uses.

Default: nova

### NovaCronPurgeShadowTablesVerbose
Use this parameter to enable verbose logging in the log file for purged shadow tables.

Default: False

### NovaCronPurgeShadowTablesWeekday
Use this parameter to configure on which day of the week to run the cron command to purge the shadow tables.

Default: * (every day)

### 16.3. MIGRATING VIRTUAL MACHINE INSTANCES BETWEEN COMPUTE NODES

You sometimes need to migrate instances from one Compute node to another Compute node in the overcloud, to perform maintenance, rebalance the workload, or replace a failed or failing node.

#### Compute node maintenance

If you need to temporarily take a Compute node out of service, for instance, to perform hardware maintenance or repair, kernel upgrades and software updates, you can migrate instances running on the Compute node to another Compute node.

#### Failing Compute node
If a Compute node is about to fail and you need to service it or replace it, you can migrate instances from the failing Compute node to a healthy Compute node.

Failed Compute nodes

If a Compute node has already failed, you can evacuate the instances. You can rebuild instances from the original image on another Compute node, using the same name, UUID, network addresses, and any other allocated resources the instance had before the Compute node failed.

Workload rebalancing

You can migrate one or more instances to another Compute node to rebalance the workload. For example, you can consolidate instances on a Compute node to conserve power, migrate instances to a Compute node that is physically closer to other networked resources to reduce latency, or distribute instances across Compute nodes to avoid hot spots and increase resiliency.

Director configures all Compute nodes to provide secure migration. All Compute nodes also require a shared SSH key to provide the users of each host with access to other Compute nodes during the migration process. Director creates this key using the `OS::TripleO::Services::NovaCompute` composable service. This composable service is one of the main services included on all Compute roles by default. For more information, see Composable Services and Custom Roles in the Advanced Overcloud Customization guide.

NOTE

If you have a functioning Compute node, and you want to make a copy of an instance for backup purposes, or to copy the instance to a different environment, follow the procedure in Importing virtual machines into the overcloud in the Director Installation and Usage guide.

16.3.1. Migration types

Red Hat OpenStack Platform (RHOSP) supports the following types of migration.

Cold migration

Cold migration, or non-live migration, involves shutting down a running instance before migrating it from the source Compute node to the destination Compute node.

Cold migration involves some downtime for the instance. The migrated instance maintains access to the same volumes and IP addresses.
NOTE
Cold migration requires that both the source and destination Compute nodes are running.

Live migration
Live migration involves moving the instance from the source Compute node to the destination Compute node without shutting it down, and while maintaining state consistency.

Live migrating an instance involves little or no perceptible downtime. However, live migration does impact performance for the duration of the migration operation. Therefore, instances should be taken out of the critical path while being migrated.

NOTE
Live migration requires that both the source and destination Compute nodes are running.

In some cases, instances cannot use live migration. For more information, see Migration constraints.

Evacuation
If you need to migrate instances because the source Compute node has already failed, you can evacuate the instances.

16.3.2. Migration constraints
Migration constraints typically arise with block migration, configuration disks, or when one or more instances access physical hardware on the Compute node.

CPU constraints
The source and destination Compute nodes must have the same CPU architecture. For example, Red Hat does not support migrating an instance from an x86_64 CPU to a ppc64le CPU. In some cases, the CPU of the source and destination Compute node must match exactly, such as instances that use CPU host passthrough. In all cases, the CPU features of the destination node must be a superset of the CPU features on the source node.

Memory constraints
The destination Compute node must have sufficient available RAM. Memory oversubscription can cause migration to fail.

Block migration constraints

Migrating instances that use disks that are stored locally on a Compute node takes significantly longer than migrating volume-backed instances that use shared storage, such as Red Hat Ceph Storage. This latency arises because OpenStack Compute (nova) migrates local disks block-by-block between the Compute nodes over the control plane network by default. By contrast, volume-backed instances that use shared storage, such as Red Hat Ceph Storage, do not have to migrate the volumes, because each Compute node already has access to the shared storage.

NOTE

Network congestion in the control plane network caused by migrating local disks or instances that consume large amounts of RAM might impact the performance of other systems that use the control plane network, such as RabbitMQ.

Read-only drive migration constraints

Migrating a drive is supported only if the drive has both read and write capabilities. For example, OpenStack Compute (nova) cannot migrate a CD-ROM drive or a read-only config drive. However, OpenStack Compute (nova) can migrate a drive with both read and write capabilities, including a config drive with a drive format such as vfat.

Live migration constraints

In some cases, live migrating instances involves additional constraints.

No new operations during migration

To achieve state consistency between the copies of the instance on the source and destination nodes, RHOSP must prevent new operations during live migration. Otherwise, live migration might take a long time or potentially never end if writes to memory occur faster than live migration can replicate the state of the memory.

CPU pinning with NUMA

The NovaSchedulerDefaultFilters parameter in the Compute configuration must include the values AggregatInstanceExtraSpecsFilter and NUMATopologyFilter.

Multi-cell clouds

In a multi-cell cloud, instances can be live migrated to a different host in the same cell, but not across cells.

Floating instances

When live migrating floating instances, if the configuration of NovaComputeCpuSharedSet on the destination Compute node is different from the configuration of NovaComputeCpuSharedSet on the source Compute node, the instances will not be allocated to the CPUs configured for shared (unpinned) instances on the destination Compute node. Therefore, if you need to live migrate floating instances, you must configure all the Compute nodes with the same CPU mappings for dedicated (pinned) and shared (unpinned) instances, or use a host aggregate for the shared instances.

Destination Compute node capacity

The destination Compute node must have sufficient capacity to host the instance that you want to migrate.

SR-IOV live migration
Instances with SR-IOV-based network interfaces can be live migrated. Live migrating instances with direct mode SR-IOV network interfaces incurs network downtime. This is because the direct mode interfaces need to be detached and re-attached during the migration.

**Constraints that preclude live migration**

You cannot live migrate an instance that uses the following features.

**PCI passthrough**

QEMU/KVM hypervisors support attaching PCI devices on the Compute node to an instance. Use PCI passthrough to give an instance exclusive access to PCI devices, which appear and behave as if they are physically attached to the operating system of the instance. However, because PCI passthrough involves physical addresses, OpenStack Compute does not support live migration of instances using PCI passthrough.

**Port resource requests**

You cannot live migrate an instance that uses a port that has resource requests, such as a guaranteed minimum bandwidth QoS policy. Use the following command to check if a port has resource requests:

```
$ openstack port show <port_name/port_id>
```

### 16.3.3. Preparing to migrate

Before you migrate one or more instances, you need to determine the Compute node names and the IDs of the instances to migrate.

**Procedure**

1. Identify the source Compute node host name and the destination Compute node host name:

   (undercloud)$ source ~/overcloudrc
   (overcloud)$ openstack compute service list

2. List the instances on the source Compute node and locate the ID of the instance or instances that you want to migrate:

   (overcloud)$ openstack server list --host <source> --all-projects

   Replace `<source>` with the name or ID of the source Compute node.

3. Optional: If you are migrating instances from a source Compute node to perform maintenance on the node, you must disable the node to prevent the scheduler from assigning new instances to the node during maintenance:

   (overcloud)$ source ~/stackrc
   (undercloud)$ openstack compute service set <source> nova-compute --disable

   Replace `<source>` with the name or ID of the source Compute node.

You are now ready to perform the migration. Follow the required procedure detailed in Cold migrating an instance or Live migrating an instance.

### 16.3.4. Cold migrating an instance
Cold migrating an instance involves stopping the instance and moving it to another Compute node. Cold migration facilitates migration scenarios that live migrating cannot facilitate, such as migrating instances that use PCI passthrough. The scheduler automatically selects the destination Compute node. For more information, see Migration constraints.

Procedure

1. To cold migrate an instance, enter the following command to power off and move the instance:

   ```bash
 (overcloud)$ openstack server migrate <instance> --wait
   ```

   - Replace `<instance>` with the name or ID of the instance to migrate.
   - Specify the `--block-migration` flag if migrating a locally stored volume.

2. Wait for migration to complete. While you wait for the instance migration to complete, you can check the migration status. For more information, see Checking migration status.

3. Check the status of the instance:

   ```bash
 (overcloud)$ openstack server list --all-projects
   ```

   A status of "VERIFY_RESIZE" indicates you need to confirm or revert the migration:

   - If the migration worked as expected, confirm it:
     ```bash
 (overcloud)$ openstack server resize --confirm <instance>
     ```

     Replace `<instance>` with the name or ID of the instance to migrate. A status of "ACTIVE" indicates that the instance is ready to use.

   - If the migration did not work as expected, revert it:
     ```bash
 (overcloud)$ openstack server resize --revert <instance>
     ```

     Replace `<instance>` with the name or ID of the instance.

4. Restart the instance:

   ```bash
 (overcloud)$ openstack server start <instance>
   ```

   Replace `<instance>` with the name or ID of the instance.

5. Optional: If you disabled the source Compute node for maintenance, you must re-enable the node so that new instances can be assigned to it:

   ```bash
 (overcloud)$ source ~/stackrc
 (undercloud)$ openstack compute service set <source> nova-compute --enable
   ```

   Replace `<source>` with the host name of the source Compute node.

16.3.5. Live migrating an instance
Live migration moves an instance from a source Compute node to a destination Compute node with a minimal amount of downtime. Live migration might not be appropriate for all instances. For more information, see Migration constraints.

**Procedure**

1. To live migrate an instance, specify the instance and the destination Compute node:

   ```
 (overcloud)$ openstack server migrate <instance> --live-migration [--host <dest>] --wait
   ```

   - Replace `<instance>` with the name or ID of the instance.
   - Replace `<dest>` with the name or ID of the destination Compute node.

   **NOTE**
   
   The `openstack server migrate` command covers migrating instances with shared storage, which is the default. Specify the `--block-migration` flag to migrate a locally stored volume:

   ```
 (overcloud)$ openstack server migrate <instance> --live-migration [--host <dest>] --wait --block-migration
   ```

2. Confirm that the instance is migrating:

   ```
 (overcloud)$ openstack server show <instance>
 +----------------------+--------------------------------------+
 | Field | Value |
 |----------------------+--------------------------------------+
 | ... | ... |
 | status | MIGRATING |
 | ... | ... |
 +----------------------+--------------------------------------+
   ```

3. Wait for migration to complete. While you wait for the instance migration to complete, you can check the migration status. For more information, see Checking migration status.

4. Check the status of the instance to confirm if the migration was successful:

   ```
 (overcloud)$ openstack server list --host <dest> --all-projects
   ```

   Replace `<dest>` with the name or ID of the destination Compute node.

5. Optional: If you disabled the source Compute node for maintenance, you must re-enable the node so that new instances can be assigned to it:

   ```
 (overcloud)$ source ~/stackrc
 (undercloud)$ openstack compute service set <source> nova-compute --enable
   ```

   Replace `<source>` with the host name of the source Compute node.

### 16.3.6. Checking migration status
Migration involves several state transitions before migration is complete. During a healthy migration, the migration state typically transitions as follows:

1. **Queued:** The Compute service has accepted the request to migrate an instance, and migration is pending.

2. **Preparing:** The Compute service is preparing to migrate the instance.

3. **Running:** The Compute service is migrating the instance.

4. **Post-migrating:** The Compute service has built the instance on the destination Compute node and is releasing resources on the source Compute node.

5. **Completed:** The Compute service has completed migrating the instance and finished releasing resources on the source Compute node.

**Procedure**

1. Retrieve the list of migration IDs for the instance:

   ```bash
 $ nova server-migration-list <instance>
 +----+-------------+----------- (...)
 | Id | Source Node | Dest Node | (...)
 +----+-------------+-----------+ (...)
 | 2 | - | - | (...)
 +----+-------------+-----------+ (...)
 ``

 Replace `<instance>` with the name or ID of the instance.

2. Show the status of the migration:

   ```bash
   $ nova server-migration-show <instance> <migration_id>
   ``

   - Replace `<instance>` with the name or ID of the instance.

   - Replace `<migration_id>` with the ID of the migration.

   Running the `nova server-migration-show` command returns the following example output:

   ```plaintext
 +------------------------+--------------------------------------+
 | Property | Value |
 +------------------------+--------------------------------------+
 | created_at | 2017-03-08T02:53:06.000000 |
 | dest_compute | controller |
 | dest_host | - |
 | dest_node | - |
 | disk_processed_bytes | 0 |
 | disk_remaining_bytes | 0 |
 | disk_total_bytes | 0 |
 | id | 2 |
 | memory_processed_bytes | 65502513 |
 | memory_remaining_bytes | 786427904 |
 | memory_total_bytes | 1091379200 |
 | server_uuid | d1df1b5a-70c4-4fed-98b7-423362f2c47c |
 | source_compute | compute2 |
   ```
TIP

The OpenStack Compute service measures progress of the migration by the number of remaining memory bytes to copy. If this number does not decrease over time, the migration might be unable to complete, and the Compute service might abort it.

Sometimes instance migration can take a long time or encounter errors. For more information, see Troubleshooting migration.

16.3.7. Evacuating an instance

If you want to move an instance from a dead or shut-down Compute node to a new host in the same environment, you can evacuate it.

The evacuate process destroys the original instance and rebuilds it on another Compute node using the original image, instance name, UUID, network addresses, and any other resources the original instance had allocated to it.

If the instance uses shared storage, the instance root disk is not rebuilt during the evacuate process, as the disk remains accessible by the destination Compute node. If the instance does not use shared storage, then the instance root disk is also rebuilt on the destination Compute node.

NOTE

- You can only perform an evacuation when the Compute node is fenced, and the API reports that the state of the Compute node is "down" or "forced-down". If the Compute node is not reported as "down" or "forced-down", the evacuate command fails.
- To perform an evacuation, you must be a cloud administrator.

16.3.7.1. Evacuating one instance

You can evacuate instances one at a time.

Procedure

1. Log onto the failed Compute node as an administrator.

2. Disable the Compute node:

   ```
 (overcloud)[stack@director ~]$ openstack compute service set <host> <service> --disable
   ```

   - Replace `<host>` with the name of the Compute node to evacuate the instance from.
   - Replace `<service>` with the name of the service to disable, for example `nova-compute`.

3. To evacuate an instance, enter the following command:
(overcloud)[stack@d]novac[stack@d]$ nova evacuate [-password <pass>] <instance> [<dest>]

- Replace <pass> with the admin password to set for the evacuated instance. If a password is not specified, a random password is generated and output when the evacuation is complete.
- Replace <instance> with the name or ID of the instance to evacuate.
- Replace <dest> with the name of the Compute node to evacuate the instance to. If you do not specify the destination Compute node, the Compute scheduler selects one for you. You can find possible Compute nodes by using the following command:

(overcloud)[stack@d]$ openstack hypervisor list

16.3.7.2. Evacuating all instances on a host

You can evacuate all instances on a specified Compute node.

Procedure

1. Log onto the failed Compute node as an administrator.

2. Disable the Compute node:

(overcloud)[stack@d]$ openstack compute service set
<host> <service> --disable

- Replace <host> with the name of the Compute node to evacuate the instances from.
- Replace <service> with the name of the service to disable, for example nova-compute.

3. Evacuate all instances on a specified Compute node:

(overcloud)[stack@d]$ nova host-evacuate [-target_host <dest>] [-force] <host>

- Replace <dest> with the name of the destination Compute node to evacuate the instances to. If you do not specify the destination, the Compute scheduler selects one for you. You can find possible Compute nodes by using the following command:

(overcloud)[stack@d]$ openstack hypervisor list

- Replace <host> with the name of the Compute node to evacuate the instances from.

16.3.8. Troubleshooting migration

The following issues can arise during instance migration:

- The migration process encounters errors.
- The migration process never ends.
- Performance of the instance degrades after migration.

16.3.8.1. Errors during migration
The following issues can send the migration operation into an **error** state:

- Running a cluster with different versions of Red Hat OpenStack Platform (RHOSP).
- Specifying an instance ID that cannot be found.
- The instance you are trying to migrate is in an **error** state.
- The Compute service is shutting down.
- A race condition occurs.
- Live migration enters a **failed** state.

When live migration enters a **failed** state, it is typically followed by an **error** state. The following common issues can cause a **failed** state:

- A destination Compute host is not available.
- A scheduler exception occurs.
- The rebuild process fails due to insufficient computing resources.
- A server group check fails.
- The instance on the source Compute node gets deleted before migration to the destination Compute node is complete.

### 16.3.8.2. Never-ending live migration

Live migration can fail to complete, which leaves migration in a perpetual **running** state. A common reason for a live migration that never completes is that client requests to the instance running on the source Compute node create changes that occur faster than the Compute service can replicate them to the destination Compute node.

Use one of the following methods to address this situation:

- Abort the live migration.
- Force the live migration to complete.

#### Aborting live migration

If the instance state changes faster than the migration procedure can copy it to the destination node, and you do not want to temporarily suspend the instance operations, you can abort the live migration.

**Procedure**

1. Retrieve the list of migrations for the instance:

   ```
 $ nova server-migration-list <instance>

 Replace `<instance>` with the name or ID of the instance.
   ```

2. Abort the live migration:

   ```
 $ nova live-migration-abort <instance> <migration_id>
   ```
Forcing live migration to complete

If the instance state changes faster than the migration procedure can copy it to the destination node, and you want to temporarily suspend the instance operations to force migration to complete, you can force the live migration procedure to complete.

**IMPORTANT**

Forcing live migration to complete might lead to perceptible downtime.

Procedure

1. Retrieve the list of migrations for the instance:

   ```bash
 $ nova server-migration-list <instance>
   ```
   
   Replace `<instance>` with the name or ID of the instance.

2. Force the live migration to complete:

   ```bash
 $ nova live-migration-force-complete <instance> <migration_id>
   ```
   
   Replace `<instance>` with the name or ID of the instance.
   
   Replace `<migration_id>` with the ID of the migration.

16.3.8.3. Instance performance degrades after migration

For instances that use a NUMA topology, the source and destination Compute nodes must have the same NUMA topology and configuration. The NUMA topology of the destination Compute node must have sufficient resources available. If the NUMA configuration between the source and destination Compute nodes is not the same, it is possible that live migration succeeds while the instance performance degrades. For example, if the source Compute node maps NIC 1 to NUMA node 0, but the destination Compute node maps NIC 1 to NUMA node 5, after migration the instance might route network traffic from a first CPU across the bus to a second CPU with NUMA node 5 to route traffic to NIC 1. This can result in expected behavior, but degraded performance. Similarly, if NUMA node 0 on the source Compute node has sufficient available CPU and RAM, but NUMA node 0 on the destination Compute node already has instances using some of the resources, the instance might run correctly but suffer performance degradation. For more information, see Migration constraints.