Red Hat OpenStack Platform 16.1

Undercloud and Control Plane Back Up and Restore

Procedures for backing up and restoring the undercloud and the overcloud control plane during updates and upgrades
Procedures for backing up and restoring the undercloud and the overcloud control plane during updates and upgrades
Abstract

This guide explains how to install and configure Relax-and-Recover (ReaR) on the undercloud and overcloud control plane nodes; how to back up the undercloud and Control Plane nodes before updates and upgrades; and, how to restore the undercloud and Control Plane nodes if an error occurs while performing updates or upgrades.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... 3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION .. 4

CHAPTER 1. INTRODUCTION TO UNDERCLOUD AND CONTROL PLANE BACK UP AND RESTORE 5
 1.1. ABOUT THE REAR DISASTER RECOVERY SOLUTION 5
 1.2. REAR BACKUP MANAGEMENT OPTIONS 5

CHAPTER 2. CONFIGURING THE BACKUP NODE ... 7

CHAPTER 3. INSTALLING REAR ON THE UNDERCLOUD AND CONTROL PLANE NODES 8
 3.1. INSTALLING REAR ON THE UNDERCLOUD NODE 8
 3.2. INSTALLING REAR ON THE CONTROL PLANE NODES 9

CHAPTER 4. CREATING A BACKUP OF THE UNDERCLOUD AND CONTROL PLANE NODES 10
 4.1. CREATING A BACKUP OF THE UNDERCLOUD NODE 10
 4.2. CREATING A BACKUP OF THE CONTROL PLANE NODES 10
 4.3. TROUBLESHOOTING THE GALERA CLUSTER 12

CHAPTER 5. RESTORING THE UNDERCLOUD AND CONTROL PLANE NODES 16
 5.1. RESTORING THE UNDERCLOUD NODE ... 16
 5.2. RESTORING THE CONTROL PLANE NODES 17
 5.3. RESTORING THE UNDERCLOUD AND CONTROL PLANE NODES WITH COLOCATED CEPH MONITORS ... 18

CHAPTER 6. SCHEDULING CONTROL PLANE NODE BACKUPS WITH CRON 21
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Tell us how we can make it better.

Using the Direct Documentation Feedback (DDF) function

Use the Add Feedback DDF function for direct comments on specific sentences, paragraphs, or code blocks.

1. View the documentation in the Multi-page HTML format.
2. Ensure that you see the Feedback button in the upper right corner of the document.
3. Highlight the part of text that you want to comment on.
4. Click Add Feedback.
5. Complete the Add Feedback field with your comments.
6. Optional: Add your email address so that the documentation team can contact you for clarification on your issue.
7. Click Submit.
CHAPTER 1. INTRODUCTION TO UNDERCLOUD AND CONTROL PLANE BACK UP AND RESTORE

Undercloud and Control Plane Back Up and Restore describes the tasks that are required to back up the state of the Red Hat OpenStack Platform 16.1 undercloud and overcloud controller nodes, also known as control plane nodes, before updates and upgrades. You can use the created backups to restore the undercloud and overcloud control plane nodes to their previous state if an error occurs during an update or upgrade.

1.1. ABOUT THE REAR DISASTER RECOVERY SOLUTION

The tasks described in the Undercloud and Control Plane Back Up and Restore guide use the open source Relax and Recover (ReaR) disaster recovery solution that is written in Bash. You can use ReaR to create bootable images of the latest state of the undercloud or control plane nodes, or to back up specific files.

ReaR supports the following boot media formats:

- ISO
- USB
- eSATA
- PXE

The examples in this document were tested using the ISO bootable files format.

ReaR can use the following protocols to transport files:

- HTTP/HTTPS
- SSH/SCP
- FTP/SFTP
- NFS
- CIFS (SMB)

For the purposes of backing up and restoring the Red Hat OpenStack Platform 16.1 undercloud and overcloud control plane nodes, the examples in this document were tested using NFS.

1.2. REAR BACKUP MANAGEMENT OPTIONS

You can use ReaR with internal and external backup management options.

Internal backup management

You can use ReaR with the following internal backup options:

- tar
- rsync

External backup management
External backup management options include open source and proprietary solutions. You can use ReaR with the following open source solutions:

- Bacula
- Bareos

You can use ReaR with the following proprietary solutions:

- EMC NetWorker (Legato)
- HP DataProtector
- IBM Tivoli Storage Manager (TSM)
- Symantec NetBackup
CHAPTER 2. CONFIGURING THE BACKUP NODE

Before you can create a backup of the undercloud or control plane nodes, you must configure the backup node. You can install and configure an NFS server on the backup node using the `backup-and-restore` Ansible role.

NOTE

If you previously installed and configured your NFS server, you do not need to complete this procedure. By default, the Rest and Recover (ReaR) configuration assumes that the IP address of the NFS server is 192.168.24.1. If your NFS server has a different IP address, you must add the parameter `tripleo_backup_and_restore_nfs_server` to the ansible command when you install ReaR on the control plane nodes. For more information, see [Installing ReaR on the control plane nodes](#).

Procedure

1. On the undercloud node, source the undercloud credentials:

   ```bash
   [stack@undercloud-0 ~]$ source stackrc
   (undercloud) [stack@undercloud ~]$
   ```

2. On the undercloud node, create an inventory file for the backup node and replace the `<IP_ADDRESS>` and `<USER>` with the values that apply to your environment:

   ```bash
   (undercloud) [stack@undercloud ~]$ cat <<'EOF'> ~/nfs-inventory.yaml
   [BACKUP_NODE]
   serverX ansible_host=<IP_ADDRESS> ansible_user=<USER>
   EOF
   ```

3. On the undercloud node, create the following Ansible playbook and replace `<BACKUP_NODE>` with the host name of the backup node:

   ```bash
   (undercloud) [stack@undercloud ~]$ cat <<'EOF'> ~/bar_nfs_setup.yaml
   # Playbook
   # Substitute <BACKUP_NODE> with the host name of your backup node.
   - become: true
     hosts: <BACKUP_NODE>
     name: Setup NFS server for ReaR
     roles:
       - role: backup-and-restore
   EOF
   ```

4. On the undercloud node, enter the following `ansible-playbook` commands to configure the backup node:

   ```bash
   (undercloud) [stack@undercloud ~]$ ansible-playbook \  
   -v -i ~/nfs-inventory.yaml \  
   --extra="ansible_ssh_common_args=-o StrictHostKeyChecking=no" \  
   --become \  
   --become-user root \  
   --tags bar_setup_nfs_server \  
   ~/bar_nfs_setup.yaml
   ```
CHAPTER 3. INSTALLING REAR ON THE UNDERCLOUD AND CONTROL PLANE NODES

Before creating a backup of the undercloud and control plane nodes, you must install the Relax and Recover (ReaR) packages on the undercloud node and on each of the controller nodes.

To install ReaR using the `backup-and-restore` Ansible role, complete the following procedures:

1. Section 3.1, “Installing ReaR on the undercloud node”
2. Section 3.2, “Installing ReaR on the control plane nodes”

3.1. INSTALLING REAR ON THE UNDERCLOUD NODE

To create a backup of the undercloud node, you must install and configure Relax and Recover (ReaR) on the undercloud.

Prerequisites

- You have configured the backup node. For more information, see Configuring the backup node.

Procedure

1. On the undercloud node, source the undercloud credentials and use the `tripleo-ansible-inventory` command to generate a static inventory file that contains hosts and variables for all the overcloud nodes:

   ```bash
   [stack@undercloud-0 ~]$ source stackrc
   (undercloud) [stack@undercloud ~]$ tripleo-ansible-inventory --ansible_ssh_user heat-admin --static-yaml-inventory /home/stack/tripleo-inventory.yaml
   ```

2. On the undercloud node, create the following Ansible playbook:

   ```yaml
   (undercloud) [stack@undercloud ~]$ cat <<'EOF' > ~/bar_rear_setup-undercloud.yaml
   # Playbook
   # Installing and configuring ReaR on the undercloud node
   - become: true
     hosts: undercloud
     name: Install ReaR
   roles:
     - role: backup-and-restore
   EOF
   ```

3. On the undercloud node, enter the following `ansible-playbook` command to install ReaR and replace `<your-nfs-ip>` with the IP address of your NFS server:

   ```bash
   (undercloud) [stack@undercloud ~]$ ansible-playbook -v -i ~/tripleo-inventory.yaml --extra="ansible_ssh_common_args='-o StrictHostKeyChecking=no'" --become --become-user root
   ```
3.2. INSTALLING REAR ON THE CONTROL PLANE NODES

To create a backup of the overcloud control plane, you must install and configure Relax and Recover (ReaR) on each of the control plane nodes.

Prerequisites

- You have configured the backup node. For more information, see Configuring the backup node.

Procedure

1. On the undercloud node, create the following Ansible playbook:

   ```
   (undercloud) [stack@undercloud ~]$ cat <<'EOF' > ~/bar_rear_setup-controller.yaml
   # Playbook
   # Install and configuring ReaR on the control plane nodes
   - become: true
     hosts: Controller
     name: Install ReaR
     roles:
       - role: backup-and-restore
   EOF
   ```

2. If the IP address of the NFS server is the default value `192.168.24.1`, on the undercloud node, enter the following Ansible command to install ReaR on the control plane nodes:

   ```
   (undercloud) [stack@undercloud ~]$ ansible-playbook \
   -v -i ~/tripleo-inventory.yaml \
   -e tripleo_backup_and_restore_exclude_paths_controller_non_bootrapnode=false \
   --extra="ansible_ssh_common_args=-o StrictHostKeyChecking=no" \n   --become \n   --become-user root \n   --tags bar_setup_rear \n   ~/bar_rear_setup-controller.yaml
   ```

3. If the IP address of the NFS server is not the default value `192.168.24.1`, enter the following Ansible command to install ReaR on the control plane nodes:

   ```
   ansible-playbook \
   -v -i ~/tripleo-inventory.yaml \
   --extra="ansible_ssh_common_args=-o StrictHostKeyChecking=no" \n   --become \n   --become-user root \n   -e tripleo_backup_and_restore_nfs_server=<your-nfs-ip> \n   --tags bar_setup_rear \n   ~/bar_rear_setup-controller.yaml
   ```

 Replace `<your-nfs-ip>` with the IP address of your NFS server.
CHAPTER 4. CREATING A BACKUP OF THE UNDERCLOUD AND CONTROL PLANE NODES

To create a backup of the undercloud and control plane nodes using the `backup-and-restore` Ansible role, complete the following procedures:

1. Section 4.1, “Creating a backup of the undercloud node”
2. Section 4.2, “Creating a backup of the control plane nodes”

4.1. CREATING A BACKUP OF THE UNDERCLOUD NODE

You can use the `backup-and-restore` Ansible role to create a backup of the undercloud node.

Prerequisites

- You have configured the backup node. For more information, see Configuring the backup node.
- You have installed ReaR on the undercloud node. For more information, see Installing ReaR on the undercloud node.

Procedure

1. On the undercloud node, create the following Ansible playbook:

   ```bash
   (undercloud) [stack@undercloud ~]$ cat <<'EOF' > ~/bar_rear_create_restore_images-undercloud.yaml
   # Playbook
   # Using ReaR on the undercloud node.
   - become: true
     hosts: undercloud
     name: Create the recovery images for the undercloud
     roles:
       - role: backup-and-restore
   EOF
   ```

2. To create a backup of the undercloud node, enter the following `ansible-playbook` command:

   ```bash
   (undercloud) [stack@undercloud ~]$ ansible-playbook \
   -v -i ~/tripleo-inventory.yaml \
   --extra="ansible_ssh_common_args=-o StrictHostKeyChecking=no" \
   --become \
   --become-user root \
   --tags bar_create_recover_image \
   ~/bar_rear_create_restore_images-undercloud.yaml
   ```

4.2. CREATING A BACKUP OF THE CONTROL PLANE NODES

You can use the `backup-and-restore` Ansible role to create a backup of the control plane nodes.

As a precaution, you must back up the database to ensure that you can restore the database after you restart the pacemaker cluster and containers.
Prerequisites

- You have configured the backup node. For more information, see Configuring the backup node.
- You have installed ReaR on the control plane nodes. For more information, see Installing ReaR on the control plane nodes.

Procedure

1. On the undercloud node, create the following Ansible playbook:

 (undercloud) [stack@undercloud ~]$ cat <<'EOF' > ~/bar_rear_create_restore_images-controller.yaml
 # Playbook
 # Using ReaR on the control plane nodes.
 - become: true
 hosts: ceph_mon
 name: Backup ceph authentication
 tasks:
 - name: Backup ceph authentication role
 include_role:
 name: backup-and-restore
 tasks_from: ceph_authentication
 tags:
 - bar_create_recover_image
 - become: true
 hosts: Controller
 name: Create the recovery images for the control plane
 roles:
 - role: backup-and-restore
 EOF

2. On the undercloud node, enter the following `ansible-playbook` command, to create a backup of the control plane nodes:

 IMPORTANT

 Do not operate the stack. When you stop the pacemaker cluster and the containers, this results in the temporary interruption of control plane services to Compute nodes. There is also disruption to network connectivity, Ceph, and the NFS data plane service. You cannot create instances, migrate instances, authenticate requests, or monitor the health of the cluster until the pacemaker cluster and the containers return to service following the final step of this procedure.

 (undercloud) [stack@undercloud ~]$ ansible-playbook \
 -v -i ~/tripleo-inventory.yaml \
 --extras="ansible_ssh_common_args='-o StrictHostKeyChecking=no'" \
 --become \
 --become-user root \
 --tags bar_create_recover_image \
 ~/bar_rear_create_restore_images-controller.yaml
NOTE

Backing up the databases is a precautionary measure. This step ensures that you can manually restore the Galera cluster if it does not restore automatically as part of the restoration procedure. For more information about restoring the Galera cluster, see Troubleshooting the Galera cluster.

4.3. TROUBLESHOOTING THE GALERA CLUSTER

If the Galera cluster does not restore as part of the restoration procedure, you must restore Galera manually.

NOTE

In this procedure, you must perform some steps on one Controller node. Ensure that you perform these steps on the same Controller node as you go through the procedure.

Procedure

1. On Controller-0, retrieve the Galera cluster virtual IP:

   ```
   $ sudo hiera -c /etc/puppet/hiera.yaml mysql_vip
   ```

2. Disable the database connections through the virtual IP on all Controller nodes:

   ```
   $ sudo iptables -I INPUT -p tcp --destination-port 3306 -d $MYSQL_VIP -j DROP
   ```

3. On Controller-0, retrieve the MySQL root password:

   ```
   $ sudo hiera -c /etc/puppet/hiera.yaml mysql::server::root_password
   ```

4. On Controller-0, set the Galera resource to unmanaged mode:

   ```
   $ sudo pcs resource unmanage galera-bundle
   ```

5. Stop the MySQL containers on all Controller nodes:

   ```
   $ sudo podman container stop $(sudo podman container ls --all --format "{{.Names}}" --filter=name=galera-bundle)
   ```

6. Move the current directory on all Controller nodes:

   ```
   $ sudo mv /var/lib/mysql /var/lib/mysql-save
   ```

7. Create the new directory /var/lib/mysql on all Controller nodes:

   ```
   $ sudo mkdir /var/lib/mysql
   $ sudo chown 42434:42434 /var/lib/mysql
   $ sudo chcon -t container_file_t /var/lib/mysql
   $ sudo chmod 0755 /var/lib/mysql
   $ sudo chcon -r object_r /var/lib/mysql
   $ sudo chcon -u system_u /var/lib/mysql
   ```
8. Start the MySQL containers on all Controller nodes:

```
$ sudo podman container start $(sudo podman container ls --all --format "{{ .Names }}") --filter=name=galera-bundle
```

9. Create the MySQL database on all Controller nodes:

```
$ sudo podman exec -i $(sudo podman container ls --all --format "{{ .Names }}") --filter=name=galera-bundle bash -c "mysql_install_db --datadir=/var/lib/mysql --user=mysql"
```

10. Start the database on all Controller nodes:

```
$ sudo podman exec $(sudo podman container ls --all --format "{{ .Names }}") --filter=name=galera-bundle bash -c "mysqld_safe --skip-networking --wsrep-on=OFF" &
```

11. Move the `.my.cnf` Galera configuration file on all Controller nodes:

```
$ sudo podman exec $(sudo podman container ls --all --format "{{ .Names }}") --filter=name=galera-bundle bash -c "mv /root/.my.cnf /root/.my.cnf.bck"
```

12. Reset the Galera root password on all Controller nodes:

```
$ sudo podman exec $(sudo podman container ls --all --format "{{ .Names }}") --filter=name=galera-bundle bash -c "mysql -uroot -e'use mysql;update user set password=PASSWORD("$ROOTPASSWORD")where User="root";flush privileges;''"
```

13. Restore the `.my.cnf` Galera configuration file inside the Galera container on all Controller nodes:

```
$ sudo podman exec $(sudo podman container ls --all --format "{{ .Names }}") --filter=name=galera-bundle bash -c "mv /root/.my.cnf.bck /root/.my.cnf"
```

14. On Controller-0, copy the backup database files to `/var/lib/MySQL`:

```
$ sudo cp $BACKUP_FILE /var/lib/mysql
$ sudo cp $BACKUP_GRANT_FILE /var/lib/mysql
```

NOTE

The path to these files is `/home/heat-admin/`.

15. On Controller-0, restore the MySQL database:

```
$ sudo podman exec $(podman container ls --all --format "{{ .Names }}") --filter=name=galera-bundle bash -c "mysql -u root -p$ROOT_PASSWORD < /var/lib/mysql/$BACKUP_FILE"
```

```
$ sudo podman exec $(sudo podman container ls --all --format "{{ .Names }}") --filter=name=galera-bundle bash -c "mysql -u root -p$ROOT_PASSWORD < /var/lib/mysql/$BACKUP_GRANT_FILE"
```

16. Shut down the databases on all Controller nodes:
17. On Controller-0, start the bootstrap node:

```bash
$ sudo podman exec $(sudo podman container ls --all --format "{{ .Names }}") \
   --filter=name=galera-bundle) bash -c "mysqladmin shutdown"
```

18. Verification: On Controller-0, check the status of the cluster:

```bash
$ sudo podman exec $(sudo podman container ls --all --format "{{ .Names }}") \
   --filter=name=galera-bundle) bash -c "clustercheck"
```

Ensure that the following message is displayed: “Galera cluster node is synced”, otherwise you must recreate the node.

19. On Controller-0, retrieve the cluster address from the configuration:

```bash
$ sudo podman exec $(sudo podman container ls --all --format "{{ .Names }}") \
   --filter=name=galera-bundle) bash -c "grep wsrep_cluster_address /etc/my.cnf.d/galera.cnf" | \
   awk '{print $3}'
```

20. On each of the remaining Controller nodes, start the database and validate the cluster:

a. Start the database:

```bash
$ sudo podman exec $(sudo podman container ls --all --format "{{ .Names }}") \
   --filter=name=galera-bundle) /usr/bin/mysqld_safe --pid-file=/var/run/mysql/mysqld.pid -- \
   --socket=/var/lib/mysql/mysql.sock --datadir=/var/lib/mysql --log-error=/var/log/mysql_cluster.log --user=mysql --open-files-limit=16384 \
   --wsrep-cluster-address=gcomm:// &
```

b. Check the status of the MYSQL cluster:

```bash
$ sudo podman exec $(sudo podman container ls --all --format "{{ .Names }}") \
   --filter=name=galera-bundle) bash -c "clustercheck"
```

Ensure that the following message is displayed: “Galera cluster node is synced”, otherwise you must recreate the node.

21. Stop the MySQL container on all Controller nodes:

```bash
$ sudo podman exec $(sudo podman container ls --all --format "{{ .Names }}") \
   --filter=name=galera-bundle) /usr/bin/mysqladmin -u root shutdown
```

22. On all Controller nodes, remove the following firewall rule to allow database connections through the virtual IP address:

```bash
$ sudo podman exec $(sudo podman container ls --all --format "{{ .Names }}") \
   --filter=name=galera-bundle) bash -c "clustercheck"
```

$ sudo podman exec $(sudo podman container ls --all --format "{{ .Names }}") \
 --filter=name=galera-bundle) /usr/bin/mysqladmin -u root shutdown
```
23. Restart the MySQL container on all Controller nodes:

```bash
$ sudo iptables -D INPUT -p tcp --destination-port 3306 -d $MYSQL_VIP -j DROP
```

24. Restart the `clustercheck` container on all Controller nodes:

```bash
$ sudo podman container restart $(sudo podman container ls --all --format "{{ .Names }}" --filter=name=galera-bundle)
$ sudo podman container restart $(sudo podman container ls --all --format "{{ .Names }}" --filter=name=clustercheck)
```

25. On Controller-0, set the Galera resource to `managed` mode:

```bash
$ sudo pcs resource manage galera-bundle
```
CHAPTER 5. RESTORING THE UNDERCLOUD AND CONTROL PLANE NODES

If an error occurs during an update or upgrade, you can restore either the undercloud or overcloud control plane nodes, or both to their previous state using backups.

To restore the undercloud and control plane nodes using backups, complete the following procedures that are applicable to your deployment:

1. Section 5.1, “Restoring the undercloud node”
2. Section 5.2, “Restoring the control plane nodes”
3. Section 5.3, “Restoring the undercloud and control plane nodes with colocated Ceph monitors”

5.1. RESTORING THE UNDERCLOUD NODE

If an error occurs during an update or upgrade, you can restore the undercloud node to its previous state using the backup ISO image that you created using ReaR. You can find the backup ISO images on the backup node. Burn the bootable ISO image to a DVD or download it to the undercloud node through Integrated Lights-Out (iLO) remote access.

Prerequisites

- You have created a backup of the undercloud node using ReaR. For more information, see Creating a backup of the undercloud node.
- You have access to the backup node.

Procedure

1. Power off the undercloud node. Ensure that the undercloud node is powered off completely before you proceed.

2. Boot the undercloud node with the backup ISO image.

3. When the Relax-and-Recover boot menu displays, select Recover <UNDERCLOUD_NODE> where <UNDERCLOUD_NODE> is the name of your undercloud node.

4. Log in as the root user and restore the node:
   The following message displays:
   
   Welcome to Relax-and-Recover. Run "rear recover" to restore your system!
   RESCUE <UNDERCLOUD_NODE>:~ # rear recover

   When the undercloud node restoration process completes, the console displays the following message:
   
   Finished recovering your system
   Exiting rear recover
   Running exit tasks

5. When the command line interface is available, power off the node:
5.2. RESTORING THE CONTROL PLANE NODES

If an error occurs during an update or upgrade, you can restore the control plane nodes to their previous state using the backup ISO image that you have created using ReaR.

To restore the control plane, you must restore all control plane nodes to ensure state consistency.

You can find the backup ISO images on the backup node. Burn the bootable ISO image to a DVD or download it to the undercloud node through Integrated Lights-Out (iLO) remote access.

**NOTE**

Red Hat supports backups of Red Hat OpenStack Platform with native SDNs, such as Open vSwitch (OVS) and the default Open Virtual Network (OVN). For information about third-party SDNs, refer to the third-party SDN documentation.

**Prerequisites**

- You have created a backup of the control plane nodes using ReaR. For more information, see [Creating a backup of the control plane nodes](#).
- You have access to the backup node.

**Procedure**

1. Power off each control plane node. Ensure that the control plane nodes are powered off completely before you proceed.

2. Boot each control plane node with the corresponding backup ISO image.

3. When the Relax-and-Recover boot menu displays, on each control plane node, select **Recover <CONTROL PLANE NODE>**. Replace `<CONTROL PLANE NODE>` with the name of the corresponding control plane node.

4. On each control plane node, log in as the root user and restore the node:
   
   The following message displays:

   ```
 Welcome to Relax-and-Recover. Run "rear recover" to restore your system!
 RESCUE <CONTROL PLANE NODE>:{~} # rear recover
   ```

   When the control plane node restoration process completes, the console displays the following message:

   ```
 Finished recovering your system
 Exiting rear recover
 Running exit tasks
   ```

5. When the command line interface is available on each control plane node, power off the node:

   ```
 RESCUE <CONTROL PLANE NODE>:{~} # poweroff
   ```
6. Set the boot sequence to the normal boot device. On boot up, the node resumes its previous state.

7. To ensure that the services are running correctly, check the status of pacemaker. Log in to a Controller node as the root user and enter the following command:

```
pcs status
```

8. To view the status of the overcloud, use Tempest. For more information about Tempest, see Chapter 4 of the OpenStack Integration Test Suite Guide.

### 5.3. RESTORING THE UNDERCLOUD AND CONTROL PLANE NODES WITH COLOCATED CEPH MONITORS

If an error occurs during an update or upgrade, you can use ReaR backups to restore the undercloud or overcloud control plane nodes with colocated Ceph monitors to their previous state.

#### Prerequisites

- Install ReaR on the undercloud and control plane nodes. For more information, see Installing ReaR on the undercloud and control plane nodes.

- Configure the backup node. For more information, see Configuring the backup node.

- Create a backup of the undercloud and control plane nodes. For more information, see Creating a backup of the undercloud and control plane nodes.

#### Procedure

1. On the backup node, export the NFS directory to host the Ceph backups. Replace `<IP_ADDRESS/24>` with the IP address and subnet mask of the network:

```
[root@backup ~]# cat >> /etc/exports << EOF
/ceph_backups <IP_ADDRESS/24>(rw,sync,no_root_squash,no_subtree_check)
EOF
```

2. On the undercloud node, source the undercloud credentials and run the following script:

```
#! /bin/bash
for i in `openstack server list -c Name -c Networks -f value | grep controller | awk -F '=' '{print $2}' | awk -F' ' '{print $1}'`; do ssh -q heat-admin@$i 'sudo systemctl stop ceph-mon@$(hostname -s) ceph-mgr@$(hostname -s)'; done
```

To verify that the `ceph-mgr@controller.service` container has stopped, enter the following command:

```
[heat-admin@overcloud-controller-x ~]# sudo podman ps | grep ceph
```

3. On the undercloud node, source the undercloud credentials and run the following script. Replace `<BACKUP_NODE_IP_ADDRESS>` with the IP address of the backup node:
# source stackrc

#!/bin/bash
for i in `openstack server list -c Name -c Networks -f value | grep controller | awk -F=' ' '{print $2}' | awk -F=' ' '{print $1}'`; do ssh -q heat-admin@$i 'sudo mkdir /ceph_backups'; done

#!/bin/bash
for i in `openstack server list -c Name -c Networks -f value | grep controller | awk -F=' ' '{print $2}' | awk -F=' ' '{print $1}'`; do ssh -q heat-admin@$i 'sudo mount -t nfs <BACKUP_NODE_IP_ADDRESS>:/ceph_backups /ceph_backups'; done

#!/bin/bash
for i in `openstack server list -c Name -c Networks -f value | grep controller | awk -F=' ' '{print $2}' | awk -F=' ' '{print $1}'`; do ssh -q heat-admin@$i 'sudo mkdir /ceph_backups/$(hostname -s)'; done

#!/bin/bash
for i in `openstack server list -c Name -c Networks -f value | grep controller | awk -F=' ' '{print $2}' | awk -F=' ' '{print $1}'`; do ssh -q heat-admin@$i 'sudo tar -zcv --xattrs-include=*.* --xattrs-include=security.capability --xattrs-include=security.selinux --acls -f /ceph_backups/$(hostname -s)/$(hostname -s).tar.gz  /var/lib/ceph'; done

4. On the node that you want to restore, complete the following tasks:

   a. Power off the node before you proceed.

   b. Restore the node with the ReaR backup file that you have created during the backup process. The file is located in the /ceph_backups directory of the backup node.

   c. From the Relax-and-Recover boot menu, select Recover <CONTROL_PLANE_NODE>, where <CONTROL_PLANE_NODE> is the name of the control plane node.

   d. At the prompt, enter the following command:

```
 RESCUE <CONTROL_PLANE_NODE> ::~ # rear recover
```

   When the image restoration process completes, the console displays the following message:

```
 Finished recovering your system
 Exiting rear recover
 Running exit tasks
```

5. For the node that you want to restore, copy the Ceph backup from the /ceph_backups directory into the /var/lib/ceph directory:

   a. Identify the system mount points:

```
 RESCUE <CONTROL_PLANE_NODE> ::~# df -h
 Filesystem Size Used Avail Use% Mounted on
devtmpfs 16G 0 16G 0% /dev
 tmpfs 16G 0 16G 0% /dev/shm
 tmpfs 16G 8.4M 16G 1% /run
tmpfs 16G 0 16G 0% /sys/fs/cgroup
 /dev/vda2 30G 13G 18G 41% /mnt/local
```
b. Create a temporary directory:

```
RESCUE <CONTROL_PLANE_NODE>:~ # mkdir /tmp/restore
RESCUE <CONTROL_PLANE_NODE>:~ # mount -v -t nfs -o rw,noatime <BACKUP_NODE_IP_ADDRESS>:/ceph_backups /tmp/restore/
```

c. On the control plane node, remove the existing /var/lib/ceph directory:

```
RESCUE <CONTROL_PLANE_NODE>:~ # rm -rf /mnt/local/var/lib/ceph/*
```

d. Restore the previous Ceph maps. Replace <CONTROL_PLANE_NODE> with the name of your control plane node:

```
RESCUE <CONTROL_PLANE_NODE>:~ # tar -xvC /mnt/local/ -f /tmp/restore/<CONTROL_PLANE_NODE>/<CONTROL_PLANE_NODE>.tar.gz --xattrs -xattrs-include="*.*" var/lib/ceph
```

e. Verify that the files are restored:

```
RESCUE <CONTROL_PLANE_NODE>:~ # ls -l
```

```
total 0
 drwxr-xr-x 2 root 107 26 Jun 18 18:52 bootstrap-mds
 drwxr-xr-x 2 root 107 26 Jun 18 18:52 bootstrap-osd
 drwxr-xr-x 2 root 107 26 Jun 18 18:52 bootstrap-rbd
 drwxr-xr-x 2 root 107 26 Jun 18 18:52 bootstrap-rgw
 drwxr-xr-x 3 root 107 31 Jun 18 18:52 mds
 drwxr-xr-x 3 root 107 31 Jun 18 18:52 mgr
 drwxr-xr-x 3 root 107 31 Jun 18 18:52 mon
 drwxr-xr-x 2 root 107 6 Jun 18 18:52 osd
 drwxr-xr-x 3 root 107 35 Jun 18 18:52 radosgw
 drwxr-xr-x 2 root 107 6 Jun 18 18:52 tmp
```

6. Power off the node:

```
RESCUE <CONTROL_PLANE_NODE> :~ # poweroff
```

7. Power on the node. The node resumes its previous state.
CHAPTER 6. SCHEDULING CONTROL PLANE NODE BACKUPS WITH CRON

IMPORTANT

This feature is available in this release as a Technology Preview, and therefore is not fully supported by Red Hat. It should only be used for testing, and should not be deployed in a production environment. For more information about Technology Preview features, see Scope of Coverage Details.

You can configure a cron job to create backups of the control plane nodes with ReaR using the Ansible `backup-and-restore` role. You can view the logs in the `/var/log/rear-cron` directory.

Prerequisites

- You have installed ReaR on the undercloud and control plane nodes. For more information, see Installing ReaR on the undercloud and control plane nodes.
- You have configured the backup node. For more information, see Configuring the backup node.
- You have sufficient available disk space at your backup location to store the backup.

Procedure

1. On the undercloud node, enter the following command to create the backup script:

   ```bash
 [stack@undercloud ~]$ cat <<'EOF' > /home/stack/execute-rear-cron.sh
 #!/bin/bash
 OWNER="stack"
 TODAY=`date +%Y%m%d`
 FILE="/var/log/rear-cron.${TODAY}"
 sudo touch ${FILE}
 sudo chown ${OWNER}:${OWNER} ${FILE}
 CURRENTTIME=`date`
 echo "[$CURRENTTIME] rear start" >> ${FILE}
 /usr/bin/ansible-playbook -v -i /home/stack/tripleo-inventory.yaml --
 extra="ansible_ssh_common_args='-o StrictHostKeyChecking=no'" --become --become-user
 root --tags bar_create_recover_image --
 extra="tripleo_backup_and_restore_service_manager=false"
 /home/stack/bar_rear_create_restore_images.yaml 2>&1 >> ${FILE}
 CURRENTTIME=`date`
 echo "[$CURRENTTIME] rear end" >> ${FILE}
 EOF
   ```

2. Set executable privileges for the `/home/stack/execute-rear-cron.sh` script:

   ```bash
 [stack@undercloud ~]$ chmod 755 /home/stack/execute-rear-cron.sh
   ```

3. Edit the crontab file with the `crontab -e` command and use an editor of your choice to add the following cron job. Ensure you save the changes to the file:

   ```bash
 [stack@undercloud ~]$ crontab -e
   ```
[stack@undercloud ~]# $ crontab -e
#adding the following line
0 0 * * * /home/stack/execute-rear-cron.sh

The /home/stack/execute-rear-cron.sh script is scheduled to be executed by the stack user at midnight.

4. To verify that the cron job is scheduled, enter the following command:

[stack@undercloud ~]$ crontab -l

The command output displays the scheduled cron jobs:

0 0 * * * /home/stack/execute-rear-cron.sh