Red Hat OpenStack Platform 16.1

Release Notes

Release details for Red Hat OpenStack Platform 16.1
Red Hat OpenStack Platform 16.1 Release Notes

Release details for Red Hat OpenStack Platform 16.1

OpenStack Documentation Team
Red Hat Customer Content Services
rhos-docs@redhat.com
Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document outlines the major features, enhancements, and known issues in this release of Red Hat OpenStack Platform.
Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE .. 4

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION 5

CHAPTER 1. INTRODUCTION ... 6
 1.1. ABOUT THIS RELEASE .. 6
 1.2. REQUIREMENTS ... 6
 1.3. DEPLOYMENT LIMITS ... 6
 1.4. DATABASE SIZE MANAGEMENT .. 7
 1.5. CERTIFIED DRIVERS AND PLUG-INS .. 7
 1.6. CERTIFIED GUEST OPERATING SYSTEMS 7
 1.7. PRODUCT CERTIFICATION CATALOG ... 7
 1.8. BARE METAL PROVISIONING OPERATING SYSTEMS 7
 1.9. HYPERVISOR SUPPORT .. 7
 1.10. CONTENT DELIVERY NETWORK (CDN) REPOSITORIES 7
 1.10.1. Undercloud repositories .. 8
 1.10.2. Overcloud repositories .. 10
 1.11. PRODUCT SUPPORT .. 15

CHAPTER 2. TOP NEW FEATURES ... 16
 2.1. COMPUTE .. 16
 2.2. DISTRIBUTED COMPUTE NODES (DCN) .. 16
 2.3. EDGE COMPUTING .. 16
 2.4. NETWORKING ... 16
 2.5. STORAGE ... 18
 2.6. BARE METAL SERVICE .. 18
 2.7. CLOUDOPS .. 19
 2.8. NETWORK FUNCTIONS VIRTUALIZATION .. 19
 2.9. TECHNOLOGY PREVIEWS ... 19

CHAPTER 3. RELEASE INFORMATION ... 21
 3.1. RED HAT OPENSTACK PLATFORM 16.1 GA 21
 3.1.1. Bug Fix ... 21
 3.1.2. Enhancements ... 23
 3.1.3. Technology Preview ... 25
 3.1.4. Rebase: Bug Fixes and Enhancements 27
 3.1.5. Release Notes ... 27
 3.1.6. Known Issues ... 30
 3.1.7. Removed Functionality ... 34
 3.2. RED HAT OPENSTACK PLATFORM 16.1.1 MAINTENANCE RELEASE – AUGUST 27, 2020 34
 3.2.1. Bug Fix ... 34
 3.2.2. Enhancements ... 36
 3.2.3. Technology Preview ... 36
 3.2.4. Known Issues ... 36
 3.3. RED HAT OPENSTACK PLATFORM 16.1.2 MAINTENANCE RELEASE – OCTOBER 27, 2020 37
 3.3.1. Bug Fix ... 37
 3.3.2. Enhancements ... 43
 3.3.3. Technology Preview ... 45
 3.3.4. Release Notes ... 46
 3.3.5. Known Issues ... 48
 3.4. RED HAT OPENSTACK PLATFORM 16.1.3 MAINTENANCE RELEASE – DECEMBER 15, 2020 50
 3.4.1. Advisory List .. 50
3.4.2. Bug Fix
3.4.3. Enhancements
3.4.4. Release Notes
3.4.5. Known Issues

3.5. RED HAT OPENSTACK PLATFORM 16.1.4 MAINTENANCE RELEASE - MARCH 17, 2021
3.5.1. Advisory List
3.5.2. Bug Fixes
3.5.3. Enhancements
3.5.4. Release Notes
3.5.5. Known Issues

3.6. RED HAT OPENSTACK PLATFORM 16.1.5 MAINTENANCE RELEASE - MARCH 31, 2021
3.6.1. Advisory List

3.7. RED HAT OPENSTACK PLATFORM 16.1.6 MAINTENANCE RELEASE - MAY 27, 2021
3.7.1. Advisory List
3.7.2. Bug Fix
3.7.3. Release Notes

CHAPTER 4. TECHNICAL NOTES

4.1. RHEA-2020:3148 — RED HAT OPENSTACK PLATFORM 16.1 GENERAL AVAILABILITY ADVISORY
4.2. RHBA-2020:3542 — RED HAT OPENSTACK PLATFORM 16.1.1 GENERAL AVAILABILITY ADVISORY
4.3. RHSA-2020:4283 — RED HAT OPENSTACK PLATFORM 16.1.2 GENERAL AVAILABILITY ADVISORY
4.4. RHEA-2020:4284 — RED HAT OPENSTACK PLATFORM 16.1.2 GENERAL AVAILABILITY ADVISORY
4.5. RHBA-2021:0817 — RED HAT OPENSTACK PLATFORM 16.1.4 DIRECTOR BUG FIX ADVISORY
4.6. RHBA-2021:2097 — RED HAT OPENSTACK PLATFORM 16.1.6 DIRECTOR BUG FIX ADVISORY
MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the enormity of this endeavor, these changes will be implemented gradually over several upcoming releases. For more details, see our CTO Chris Wright’s message.
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Tell us how we can make it better.

Using the Direct Documentation Feedback (DDF) function

Use the Add Feedback DDF function for direct comments on specific sentences, paragraphs, or code blocks.

1. View the documentation in the Multi-page HTML format.

2. Ensure that you see the Feedback button in the upper right corner of the document.

3. Highlight the part of text that you want to comment on.

4. Click Add Feedback.

5. Complete the Add Feedback field with your comments.

6. Optional: Add your email address so that the documentation team can contact you for clarification on your issue.

7. Click Submit.
CHAPTER 1. INTRODUCTION

1.1. ABOUT THIS RELEASE

This release of Red Hat OpenStack Platform is based on the OpenStack "Train" release. It includes additional features, known issues, and resolved issues specific to Red Hat OpenStack Platform.

Only changes specific to Red Hat OpenStack Platform are included in this document. The release notes for the OpenStack "Train" release itself are available at the following location: https://releases.openstack.org/train/index.html.

Red Hat OpenStack Platform uses components from other Red Hat products. For specific information pertaining to the support of these components, see https://access.redhat.com/site/support/policy/updates/openstack/platform/.

To evaluate Red Hat OpenStack Platform, sign up at http://www.redhat.com/openstack/.

NOTE

The Red Hat Enterprise Linux High Availability Add-On is available for Red Hat OpenStack Platform use cases. For more details about the add-on, see http://www.redhat.com/products/enterprise-linux-add-ons/high-availability/. For details about the package versions to use in combination with Red Hat OpenStack Platform, see https://access.redhat.com/site/solutions/509783.

1.2. REQUIREMENTS

This version of Red Hat OpenStack Platform runs on the most recent fully supported release of Red Hat Enterprise Linux 8.2.

The Red Hat OpenStack Platform dashboard is a web-based interface that allows you to manage OpenStack resources and services.

The dashboard for this release supports the latest stable versions of the following web browsers:

- Chrome
- Mozilla Firefox
- Mozilla Firefox ESR
- Internet Explorer 11 and later (with Compatibility Mode disabled)

NOTE

You can use Internet Explorer 11 to display the dashboard but expect a degradation of some functionalities because the browser is no longer maintained.

1.3. DEPLOYMENT LIMITS

For a list of deployment limits for Red Hat OpenStack Platform, see Deployment Limits for Red Hat OpenStack Platform.
1.4. DATABASE SIZE MANAGEMENT

For recommended practices on maintaining the size of the MariaDB databases in your Red Hat OpenStack Platform environment, see Database Size Management for Red Hat Enterprise Linux OpenStack Platform.

1.5. CERTIFIED DRIVERS AND PLUG-INS

For a list of the certified drivers and plug-ins in Red Hat OpenStack Platform, see Component, Plug-In, and Driver Support in Red Hat OpenStack Platform.

1.6. CERTIFIED GUEST OPERATING SYSTEMS

For a list of the certified guest operating systems in Red Hat OpenStack Platform, see Certified Guest Operating Systems in Red Hat OpenStack Platform and Red Hat Enterprise Virtualization.

1.7. PRODUCT CERTIFICATION CATALOG

For a list of the Red Hat Official Product Certification Catalog, see Product Certification Catalog.

1.8. BARE METAL PROVISIONING OPERATING SYSTEMS

For a list of the guest operating systems that can be installed on bare metal nodes in Red Hat OpenStack Platform through Bare Metal Provisioning (ironic), see Supported Operating Systems Deployable With Bare Metal Provisioning (ironic).

1.9. HYPERVISOR SUPPORT

This release of the Red Hat OpenStack Platform is supported only with the libvirt driver (using KVM as the hypervisor on Compute nodes).

This release of the Red Hat OpenStack Platform runs with Bare Metal Provisioning.

Bare Metal Provisioning has been fully supported since the release of Red Hat OpenStack Platform 7 (Kilo). Bare Metal Provisioning allows you to provision bare-metal machines using common technologies (such as PXE and IPMI) to cover a wide range of hardware while supporting pluggable drivers to allow the addition of vendor-specific functionality.

Red Hat does not provide support for other Compute virtualization drivers such as the deprecated VMware "direct-to-ESX" hypervisor or non-KVM libvirt hypervisors.

1.10. CONTENT DELIVERY NETWORK (CDN) REPOSITORIES

This section describes the repositories required to deploy Red Hat OpenStack Platform 16.1.

You can install Red Hat OpenStack Platform 16.1 through the Content Delivery Network (CDN) using subscription-manager. For more information, see Preparing the undercloud.
WARNING
Some packages in the Red Hat OpenStack Platform software repositories conflict with packages provided by the Extra Packages for Enterprise Linux (EPEL) software repositories. The use of Red Hat OpenStack Platform on systems with the EPEL software repositories enabled is unsupported.

1.10.1. Undercloud repositories
Red Hat OpenStack Platform 16.1 runs on Red Hat Enterprise Linux 8.2. As a result, you must lock the content from these repositories to the respective Red Hat Enterprise Linux version.

NOTE
If you synchronize repositories with Red Hat Satellite, you can enable specific versions of the Red Hat Enterprise Linux repositories. However, the repository remains the same despite the version you choose. For example, you can enable the 8.2 version of the BaseOS repository, but the repository name is still `rhel-8-for-x86_64-baseos-eus-rpms` despite the specific version you choose.

WARNING
Any repositories outside the ones specified here are not supported. Unless recommended, do not enable any other products or repositories outside the ones listed in the following tables or else you might encounter package dependency issues. Do not enable Extra Packages for Enterprise Linux (EPEL).

Core repositories
The following table lists core repositories for installing the undercloud.

<table>
<thead>
<tr>
<th>Name</th>
<th>Repository</th>
<th>Description of requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - BaseOS (RPMs) Extended Update Support (EUS)</td>
<td><code>rhel-8-for-x86_64-baseos-eus-rpms</code></td>
<td>Base operating system repository for x86_64 systems.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs)</td>
<td><code>rhel-8-for-x86_64-appstream-eus-rpms</code></td>
<td>Contains Red Hat OpenStack Platform dependencies.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - High Availability (RPMs) Extended Update Support (EUS)</td>
<td><code>rhel-8-for-x86_64-highavailability-eus-rpms</code></td>
<td>High availability tools for Red Hat Enterprise Linux. Used for Controller node high availability.</td>
</tr>
</tbody>
</table>
Name | Repository | Description of requirement
--- | --- | ---
Red Hat Ansible Engine 2.9 for RHEL 8 x86_64 (RPMs) | ansible-2.9-for-rhel-8-x86_64-rpms | Ansible Engine for Red Hat Enterprise Linux. Used to provide the latest version of Ansible.
Advanced Virtualization for RHEL 8 x86_64 (RPMs) | advanced-virt-for-rhel-8-x86_64-rpms | Provides virtualization packages for OpenStack Platform.
Red Hat Satellite Tools for RHEL 8 Server RPMs x86_64 | satellite-tools-6.5-for-rhel-8-x86_64-rpms | Tools for managing hosts with Red Hat Satellite 6.
Red Hat OpenStack Platform 16.1 for RHEL 8 (RPMs) | openstack-16.1-for-rhel-8-x86_64-rpms | Core Red Hat OpenStack Platform repository, which contains packages for Red Hat OpenStack Platform director.
Red Hat Fast Datapath for RHEL 8 (RPMS) | fast-datapath-for-rhel-8-x86_64-rpms | Provides Open vSwitch (OVS) packages for OpenStack Platform.

Ceph repositories
The following table lists Ceph Storage related repositories for the undercloud.

### Name	Repository	Description of Requirement
Red Hat Ceph Storage Tools 4 for RHEL 8 x86_64 (RPMs) | rhceph-4-tools-for-rhel-8-x86_64-rpms | Provides tools for nodes to communicate with the Ceph Storage cluster. The undercloud requires the **ceph-ansible** package from this repository if you plan to use Ceph Storage in your overcloud or if you want to integrate with an existing Ceph Storage cluster.

IBM POWER repositories
The following table contains a list of repositories for Red Hat Openstack Platform on POWER PC architecture. Use these repositories in place of equivalents in the Core repositories.

### Name	Repository	Description of requirement
Red Hat Enterprise Linux for IBM Power, little endian - BaseOS (RPMs) | rhel-8-for-ppc64le-baseos-rpms | Base operating system repository for ppc64le systems.
<table>
<thead>
<tr>
<th>Name</th>
<th>Repository</th>
<th>Description of requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8 for IBM Power, little endian - AppStream (RPMs)</td>
<td>rhel-8-for-ppc64le-appstream-rpms</td>
<td>Contains Red Hat OpenStack Platform dependencies.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for IBM Power, little endian - High Availability (RPMs)</td>
<td>rhel-8-for-ppc64le-highavailability-rpms</td>
<td>High availability tools for Red Hat Enterprise Linux. Used for Controller node high availability.</td>
</tr>
<tr>
<td>Red Hat Fast Datapath for RHEL 8 IBM Power, little endian (RPMS)</td>
<td>fast-datapath-for-rhel-8-ppc64le-rpms</td>
<td>Provides Open vSwitch (OVS) packages for OpenStack Platform.</td>
</tr>
<tr>
<td>Red Hat Ansible Engine 2.8 for RHEL 8 IBM Power, little endian (RPMs)</td>
<td>ansible-2.8-for-rhel-8-ppc64le-rpms</td>
<td>Ansible Engine for Red Hat Enterprise Linux. Provides the latest version of Ansible.</td>
</tr>
<tr>
<td>Red Hat OpenStack Platform 16.1 for RHEL 8 (RPMs)</td>
<td>openstack-16.1-for-rhel-8-ppc64le-rpms</td>
<td>Core Red Hat OpenStack Platform repository for ppc64le systems.</td>
</tr>
</tbody>
</table>

1.10.2. Overcloud repositories

Red Hat OpenStack Platform 16.1 runs on Red Hat Enterprise Linux 8.2. As a result, you must lock the content from these repositories to the respective Red Hat Enterprise Linux version.

NOTE

If you synchronize repositories with Red Hat Satellite, you can enable specific versions of the Red Hat Enterprise Linux repositories. However, the repository remains the same despite the version you choose. For example, you can enable the 8.2 version of the BaseOS repository, but the repository name is still `rhel-8-for-x86_64-baseos-eus-rpms` despite the specific version you choose.

WARNING

Any repositories outside the ones specified here are not supported. Unless recommended, do not enable any other products or repositories outside the ones listed in the following tables or else you might encounter package dependency issues. Do not enable Extra Packages for Enterprise Linux (EPEL).

Controller node repositories

The following table lists core repositories for Controller nodes in the overcloud.
Compute node repositories

The following table lists core repositories for Compute nodes in the overcloud.

<table>
<thead>
<tr>
<th>Name</th>
<th>Repository</th>
<th>Description of requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - BaseOS (RPMs)</td>
<td>rhel-8-for-x86_64-baseos-eus-rpms</td>
<td>Base operating system repository for x86_64 systems.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs)</td>
<td>rhel-8-for-x86_64-appstream-eus-rpms</td>
<td>Contains Red Hat OpenStack Platform dependencies.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - High Availability (RPMs)</td>
<td>rhel-8-for-x86_64-highavailability-eus-rpms</td>
<td>High availability tools for Red Hat Enterprise Linux.</td>
</tr>
<tr>
<td>Red Hat Ansible Engine 2.9 for RHEL 8 x86_64 (RPMs)</td>
<td>ansible-2.9-for-rhel-8-x86_64-rpms</td>
<td>Ansible Engine for Red Hat Enterprise Linux. Used to provide the latest version of Ansible.</td>
</tr>
<tr>
<td>Advanced Virtualization for RHEL 8 x86_64 (RPMs)</td>
<td>advanced-virt-for-rhel-8-x86_64-rpms</td>
<td>Provides virtualization packages for OpenStack Platform.</td>
</tr>
<tr>
<td>Red Hat OpenStack Platform 16.1 for RHEL 8 (RPMs)</td>
<td>openstack-16.1-for-rhel-8-x86_64-rpms</td>
<td>Core Red Hat OpenStack Platform repository.</td>
</tr>
<tr>
<td>Red Hat Fast Datapath for RHEL 8 (RPMS)</td>
<td>fast-datapath-for-rhel-8-x86_64-rpms</td>
<td>Provides Open vSwitch (OVS) packages for OpenStack Platform.</td>
</tr>
<tr>
<td>Red Hat Ceph Storage Tools 4 for RHEL 8 x86_64 (RPMs)</td>
<td>rhceph-4-tools-for-rhel-8-x86_64-rpms</td>
<td>Tools for Red Hat Ceph Storage 4 for Red Hat Enterprise Linux 8.</td>
</tr>
<tr>
<td>Red Hat Ceph Storage MON 4 for RHEL 8 x86_64 (RPMs)</td>
<td>rhceph-4-mon-for-rhel-8-x86_64-rpms</td>
<td>Repository for Ceph Storage Monitor daemon. Installed on Controller nodes in OpenStack environments using Ceph Storage nodes.</td>
</tr>
<tr>
<td>Red Hat Satellite Tools for RHEL 8 Server RPMs x86_64</td>
<td>satellite-tools-6.5-for-rhel-8-x86_64-rpms</td>
<td>Tools for managing hosts with Red Hat Satellite 6.</td>
</tr>
</tbody>
</table>
Name | Repository | Description of requirement
---|---|---
Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs) | rhel-8-for-x86_64-appstream-eus-rpms | Contains Red Hat OpenStack Platform dependencies.
Red Hat Enterprise Linux 8 for x86_64 - High Availability (RPMs) Extended Update Support (EUS) | rhel-8-for-x86_64-highavailability-eus-rpms | High availability tools for Red Hat Enterprise Linux.
Red Hat Ansible Engine 2.9 for RHEL 8 x86_64 (RPMs) | ansible-2.9-for-rhel-8-x86_64-rpms | Ansible Engine for Red Hat Enterprise Linux. Used to provide the latest version of Ansible.
Advanced Virtualization for RHEL 8 x86_64 (RPMs) | advanced-virt-for-rhel-8-x86_64-rpms | Provides virtualization packages for OpenStack Platform.
Red Hat OpenStack Platform 16.1 for RHEL 8 (RPMs) | openstack-16.1-for-rhel-8-x86_64-rpms | Core Red Hat OpenStack Platform repository.
Red Hat Fast Datapath for RHEL 8 (RPMS) | fast-datapath-for-rhel-8-x86_64-rpms | Provides Open vSwitch (OVS) packages for OpenStack Platform.
Red Hat Ceph Storage Tools 4 for RHEL 8 x86_64 (RPMs) | rceph-4-tools-for-rhel-8-x86_64-rpms | Tools for Red Hat Ceph Storage 4 for Red Hat Enterprise Linux 8.
Red Hat Satellite Tools for RHEL 8 Server RPMs x86_64 | satellite-tools-6.5-for-rhel-8-x86_64-rpms | Tools for managing hosts with Red Hat Satellite 6.

Real Time Compute repositories

The following table lists repositories for Real Time Compute (RTC) functionality.

<table>
<thead>
<tr>
<th>Name</th>
<th>Repository</th>
<th>Description of requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - Real Time (RPMs)</td>
<td>rhel-8-for-x86_64-rt-rpms</td>
<td>Repository for Real Time KVM (RT-KVM). Contains packages to enable the real time kernel. Enable this repository for all Compute nodes targeted for RT-KVM. NOTE: You need a separate subscription to a Red Hat OpenStack Platform for Real Time SKU to access this repository.</td>
</tr>
</tbody>
</table>
Ceph Storage node repositories

The following table lists Ceph Storage related repositories for the overcloud.

<table>
<thead>
<tr>
<th>Name</th>
<th>Repository</th>
<th>Description of requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - BaseOS (RPMs)</td>
<td>rhel-8-for-x86_64-baseos-rpms</td>
<td>Base operating system repository for x86_64 systems.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs)</td>
<td>rhel-8-for-x86_64-appstream-rpms</td>
<td>Contains Red Hat OpenStack Platform dependencies.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for x86_64 - High Availability (RPMs)</td>
<td>rhel-8-for-x86_64-highavailability-rpms</td>
<td>High availability tools for Red Hat Enterprise Linux.</td>
</tr>
<tr>
<td>Red Hat Ansible Engine 2.9 for RHEL 8 x86_64 (RPMs)</td>
<td>ansible-2.9-for-rhel-8-x86_64-rpms</td>
<td>Ansible Engine for Red Hat Enterprise Linux. Used to provide the latest version of Ansible.</td>
</tr>
<tr>
<td>Red Hat OpenStack Platform 16.1 Director Deployment Tools for RHEL 8 x86_64 (RPMs)</td>
<td>openstack-16.1-deployment-tools-for-rhel-8-x86_64-rpms</td>
<td>Packages to help director configure Ceph Storage nodes. This repository is included with standalone Ceph Storage subscriptions. If you use a combined OpenStack Platform and Ceph Storage subscription, use the openstack-16.1-for-rhel-8-x86_64-rpms repository.</td>
</tr>
</tbody>
</table>
Red Hat OpenStack Platform 16.1 for RHEL 8 (RPMs)

openstack-16.1-for-rhel-8-x86_64-rpms

Packages to help director configure Ceph Storage nodes. This repository is included with combined OpenStack Platform and Ceph Storage subscriptions. If you use a standalone Ceph Storage subscription, use the openstack-16.1-deployment-tools-for-rhel-8-x86_64-rpms repository.

Red Hat Ceph Storage OSD 4 for RHEL 8 x86_64 (RPMs)
rhceph-4-osd-for-rhel-8-x86_64-rpms

(For Ceph Storage Nodes) Repository for Ceph Object Storage daemon. Installed on Ceph Storage nodes.

Red Hat Ceph Storage MON 4 for RHEL 8 x86_64 (RPMs)
rhceph-4-mon-for-rhel-8-x86_64-rpms

(For Ceph Storage Nodes) Repository for Ceph Monitor daemon. Installed on standalone Ceph MON nodes.

Red Hat Ceph Storage Tools 4 for RHEL 8 x86_64 (RPMs)
rhceph-4-tools-for-rhel-8-x86_64-rpms

Provides tools for nodes to communicate with the Ceph Storage cluster.

IBM POWER repositories
The following table lists repositories for Openstack Platform on POWER PC architecture. Use these repositories in place of equivalents in the Core repositories.

<table>
<thead>
<tr>
<th>Name</th>
<th>Repository</th>
<th>Description of requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux for IBM Power, little endian - BaseOS (RPMs)</td>
<td>rhel-8-for-ppc64le-baseos-rpms</td>
<td>Base operating system repository for ppc64le systems.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for IBM Power, little endian - AppStream (RPMs)</td>
<td>rhel-8-for-ppc64le-appstream-rpms</td>
<td>Contains Red Hat OpenStack Platform dependencies.</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux 8 for IBM Power, little endian - High Availability (RPMs)</td>
<td>rhel-8-for-ppc64le-highavailability-rpms</td>
<td>High availability tools for Red Hat Enterprise Linux. Used for Controller node high availability.</td>
</tr>
<tr>
<td>Name</td>
<td>Repository</td>
<td>Description of requirement</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Red Hat Fast Datapath for RHEL 8 IBM Power, little endian (RPMS)</td>
<td>fast-datapath-for-rhel-8-ppc64le-rpms</td>
<td>Provides Open vSwitch (OVS) packages for OpenStack Platform.</td>
</tr>
<tr>
<td>Red Hat Ansible Engine 2.8 for RHEL 8 IBM Power, little endian (RPMs)</td>
<td>ansible-2.8-for-rhel-8-ppc64le-rpms</td>
<td>Ansible Engine for Red Hat Enterprise Linux. Used to provide the latest version of Ansible.</td>
</tr>
<tr>
<td>Red Hat OpenStack Platform 16.1 for RHEL 8 (RPMs)</td>
<td>openstack-16.1-for-rhel-8-ppc64le-rpms</td>
<td>Core Red Hat OpenStack Platform repository for ppc64le systems.</td>
</tr>
</tbody>
</table>

1.11. PRODUCT SUPPORT

Available resources include:

Customer Portal

The Red Hat Customer Portal offers a wide range of resources to help guide you through planning, deploying, and maintaining your Red Hat OpenStack Platform deployment. Facilities available via the Customer Portal include:

- Product documentation
- Knowledge base articles and solutions
- Technical briefs
- Support case management

Access the Customer Portal at https://access.redhat.com/.

Mailing Lists

Red Hat provides these public mailing lists that are relevant to Red Hat OpenStack Platform users:

- The **rhsa-announce** mailing list provides notification of the release of security fixes for all Red Hat products, including Red Hat OpenStack Platform.

CHAPTER 2. TOP NEW FEATURES

This section provides an overview of the top new features in this release of Red Hat OpenStack Platform.

2.1. COMPUTE

This section outlines the top new features for the Compute service.

Tenant-isolated host aggregates using the Placement service
You can use the Placement service to provide tenant isolation by creating host aggregates that only specific tenants can launch instances on. For more information, see Creating a project-isolated host aggregate.

File-backed memory
You can configure instances to use a local storage device as the memory backing device.

2.2. DISTRIBUTED COMPUTE NODES (DCN)

This section outlines the top new features for Distributed Compute Nodes (DCN).

Multi-stack for Distributed Compute Node (DCN)
In Red Hat OpenStack Platform 16.1, you can partition a single overcloud deployment into multiple heat stacks in the undercloud to separate deployment and management operations within a DCN deployment. You can deploy and manage each site in a DCN deployment independently with a distinct heat stack.

2.3. EDGE COMPUTING

This section outlines the top new features for edge computing.

Edge features added in Red Hat OpenStack Platform 16.1.2
Edge support is now available for Ansible-based transport layer security everywhere (TLS), Key Manager service (barbican), and routed provider networks. You can now use an Ansible playbook to pre-cache glance images for edge sites.

2.4. NETWORKING

This section outlines the top new features for the Networking service.

HA support for the Load-balancing service (octavia)
In Red Hat OpenStack Platform 16.1, you can make Load-balancing service (octavia) instances highly available when you implement an active-standby topology and use the amphora provider driver. For more information, see Enabling active-standby topology for Load-balancing service instances in the Using Octavia for Load Balancing-as-a-Service guide.

Load-balancing service (octavia) support for UDP traffic
You can use the Red Hat OpenStack Platform Load-balancing service (octavia) to balance network traffic on UDP ports. For more information, see Creating a UDP load balancer with a health monitor in the Using Octavia for Load Balancing-as-a-Service guide.

Routed provider networks
Starting in Red Hat OpenStack Platform 16.1.1, you can deploy routed provider networks using the
ML2/OVS or the SR-IOV mechanism drivers. Routed provider networks are common in edge distributed compute node (DCN) and spine-leaf routed data center deployments. They enable a single provider network to represent multiple layer 2 networks (broadcast domains) or network segments, permitting the operator to present only one network to users. For more information, see Deploying routed provider networks in the Networking Guide.

SR-IOV with native OVN DHCP in ML2/OVN deployments

Starting in Red Hat OpenStack Platform 16.1.1, you can use SR-IOV with native OVN DHCP (no need for neutron DHCP) in ML2/OVN deployments. For more information, see Enabling SR-IOV with ML2/OVN and Native OVN DHCP and Limits of the ML2/OVN mechanism driver in the Networking Guide.

Northbound path MTU discovery support for jumbo frames

Red Hat OpenStack Platform 16.1.2 introduces MTU discovery to support UDP jumbo frames. After receiving a jumbo UDP frame that exceeds the MTU of the external network, ML2/OVN routers return ICMP “fragmentation needed” packets back to the sending VM. The sending application can then break the payload into smaller packets. Previously, the inability to return ICMP “fragmentation needed” packets resulted in packet loss. For more information about the necessary configuration steps, see Configuring ML2/OVN northbound path MTU discovery for jumbo frame fragmentation in the Advanced Overcloud Customization guide.

Note that in east/west traffic OVN does not support fragmentation of packets that are larger than the smallest MTU on the east/west path.

Example

- VM1 is on Network1 with an MTU of 1300.
- VM2 is on Network2 with an MTU of 1200.
- A ping in either direction between VM1 and VM2 with a size of 1171 or less succeeds. A ping with a size greater than 1171 results in 100 percent packet loss. See https://bugzilla.redhat.com/show_bug.cgi?id=1891591.

Load-balancing service instance (amphora) log offloading

By default, Load-balancing service instances (amphorae) store logs on the local machine in the systemd journal. However, starting in Red Hat OpenStack Platform 16.1.2, you can specify that amphorae offload logs to syslog receivers to aggregate both administrative and tenant traffic flow logs. Log offloading enables administrators to go to one location for logs, and retain logs when amphorae are rotated. For more information, see Basics of offloading Load-balancing service instance (amphora) logs in the Using Octavia for Load Balancing-as-a-Service guide.

OVN provider driver for the Load-balancing service (octavia)

Red Hat OpenStack Platform (RHOSP) 16.1.2 introduces full support for the Open Virtual Network (OVN) load-balancing provider, which is a lightweight load-balancer with a basic feature set. Typically used for east-west, layer 4 network traffic, OVN provisions fast and consumes less resources than a full-featured load-balancing provider such as amphora.

NOTE

Health check functionality is not implemented for the OVN provider driver.

On RHOSP deployments that use the ML2/OVN neutron plug-in, RHOSP director automatically enables the OVN provider driver in the Load-balancing service (octavia), without requiring additional installation or configuration steps. As with all RHOSP deployments, the default load-balancing
provider driver, amphora, remains enabled and fully supported. For more information, see Creating an OVN load balancer in the Using Octavia for Load Balancing-as-a-Service guide.

In-place migration from ML2/OVS to ML2/OVN

RHOSP 16.1.1 reintroduces in-place migration of non-NFV deployments from the ML2/OVS mechanism driver to the ML2/OVN mechanism driver. If your existing Red Hat OpenStack Platform (RHOSP) deployment uses the ML2/OVS mechanism driver, you should start now to evaluate the benefits and feasibility of replacing the OVS driver with the ML2/OVN mechanism driver as described in Migrating from ML2/OVS to ML2/OVN.

NOTE

Red Hat requires that you file a preemptive support case before attempting a migration from ML2/OVS to ML2/OVN. Red Hat does not support migrations without the preemptive support case.

2.5. STORAGE

This section outlines the top new features for the Storage service.

Storage at the Edge with Distributed Compute Nodes (DCN)

In Red Hat OpenStack Platform 16.1, you can deploy storage at the edge with Distributed Compute Nodes. The following features have been added to support this architecture:

- Image Service (glance) multi-stores with RBD.
- Image Service multi-store image import tooling.
- Block Storage Service (cinder) A/A at the edge.
- Support for director deployments with multiple Ceph clusters.

Support for Manila CephFS Native

In Red Hat OpenStack Platform 16.1, the Shared Filesystems service (manila) fully supports the Native CephFS driver.

FileStore to BlueStore OSD migration

Starting in Red Hat OpenStack Platform 16.1.2, an Ansible driven workflow migrates Ceph OSDs from FileStore to BlueStore. This means that customers who are using direct-deployed Ceph Storage can complete the Framework for Upgrades (OSP13 to OSP16.1) process.

In-use RBD volume migration

Starting in Red Hat OpenStack Platform 16.1.2, you can migrate or retype RBD in-use cinder volumes from one Ceph pool to another within the same Ceph cluster. See https://bugzilla.redhat.com/show_bug.cgi?id=1293440.

2.6. BARE METAL SERVICE

This section outlines the top new features for the Bare Metal (ironic) service.

Policy-based routing

With this enhancement, you can use policy-based routing for OpenStack nodes to configure multiple
route tables and routing rules with `os-net-config`. Policy-based routing uses route tables where, on a host with multiple links, you can send traffic through a particular interface depending on the source address. You can also define route rules for each interface.

2.7. CLOUDOPS

This section outlines the top new features and changes for the CloudOps components.

Native multiple cloud support

In Service Telemetry Framework (STF) 1.1, multiple cloud support is native in the Service Telemetry Operator. This is provided by the new `clouds` parameter.

Custom SmartGateway objects

In STF 1.1, the Smart Gateway Operator can directly manage custom SmartGateway objects. You can use the `clouds` parameter to configure STF-managed cloud instances. You can set the `clouds` object to an empty set to indicate the Service Telemetry Operator will not manage SmartGateway objects.

SNMP traps

In STF 1.1, delivery of SNMP traps via Alertmanager webhooks has been implemented.

2.8. NETWORK FUNCTIONS VIRTUALIZATION

This section outlines the top new features for Network Functions Virtualization (NFV).

Hyper-converged Infrastructure (HCI) deployments with OVS-DPDK

Red Hat OpenStack Platform 16.1 includes support for hyper-converged infrastructure (HCI) deployments with OVS-DPDK. In an HCI architecture, overcloud nodes with Compute and Ceph Storage services are co-located and configured for optimized resource usage.

Open vSwitch (OVS) hardware offload with OVS-ML2

In Red Hat OpenStack Platform 16.1, the OVS switching function has been offloaded to the SmartNIC hardware. This enhancement reduces the processing resources required, and accelerates the datapath. In Red Hat OpenStack Platform 16.1, this feature has graduated from Technology Preview and is now fully supported. See Configuring OVS hardware offload in the Network Functions Virtualization Planning and Configuration Guide.

2.9. TECHNOLOGY PREVIEWS

This section provides an overview of the top new technology previews in this release of Red Hat OpenStack Platform.

NOTE

For more information on the support scope for features marked as technology previews, see Technology Preview Features Support Scope.

Persistent memory for instances

As a cloud administrator, you can create and configure persistent memory name spaces on Compute nodes that have NVDIMM hardware. Your cloud users can use these nodes to create instances that use the persistent memory name spaces to provide vPMEM.

Memory encryption for instances
As a cloud administrator, you can now configure SEV-capable Compute nodes to provide cloud users the ability to create instances with memory encryption enabled. For more information, see Configuring SEV-capable Compute nodes to provide memory encryption for instances.

Undercloud minion

This release contains the ability to install undercloud minions. An undercloud minion provides additional heat-engine and ironic-conductor services on a separate host. These additional services support the undercloud with orchestration and provisioning operations. The distribution of undercloud operations across multiple hosts provides more resources to run an overcloud deployment, which can result in potentially faster and larger deployments.

Deploying bare metal over IPv6 with director

If you have IPv6 nodes and infrastructure, you can configure the undercloud and the provisioning network to use IPv6 instead of IPv4 so that director can provision and deploy Red Hat OpenStack Platform onto IPv6 nodes. For more information, see Configuring the undercloud for bare metal provisioning over IPv6 and Configuring a custom IPv6 provisioning network. In RHOSP 16.1.2 this feature has graduated from Technology Preview to full support.

Nova-less provisioning

In Red Hat OpenStack Platform 16.1, you can separate the provisioning and deployment stages of your deployment into distinct steps:

1. Provision your bare metal nodes.
 a. Create a node definition file in yaml format.
 b. Run the provisioning command, including the node definition file.

2. Deploy your overcloud.
 a. Run the deployment command, including the heat environment file that the provisioning command generates.

The provisioning process provisions your nodes and generates a heat environment file that contains various node specifications, including node count, predictive node placement, custom images, and custom NICs. When you deploy your overcloud, include this file in the deployment command.
CHAPTER 3. RELEASE INFORMATION

These release notes highlight technology preview items, recommended practices, known issues, and deprecated functionality that you should consider when you deploy this release of Red Hat OpenStack Platform. Notes for updates released during the support lifecycle of this Red Hat OpenStack Platform release appear in the advisory text associated with each update.

3.1. RED HAT OPENSTACK PLATFORM 16.1 GA

These release notes highlight technology preview items, recommended practices, known issues, and deprecated functionality to be taken into consideration when deploying this release of Red Hat OpenStack Platform.

3.1.1. Bug Fix

These bugs were fixed in this release of Red Hat OpenStack Platform:

BZ#1853275

Before this update, director did not set the `noout` flag on Red Hat Ceph Storage OSDs before running a Leapp upgrade. As a result, additional time was required for the OSDs to rebalance after the upgrade.

With this update, director sets the `noout` flag before the Leapp upgrade, which accelerates the upgrade process. Director also unsets the `noout` flag after the Leapp upgrade.

BZ#1594033

Before this update, the latest volume attributes were not updated during poll, and the volume data was incorrect on the display screen. With this update, volume attributes update correctly during poll and the correct volume data appears on the display screen.

BZ#1792477

Before this update, the overcloud deployment process did not create the TLS certificate necessary for the Block Storage Service (cinder) to run in active/active mode. As a result, cinder services failed during start-up. With this update, the deployment process creates the TLS certificate correctly and cinder can run in active/active mode with TLS-everywhere.

BZ#1803989

Before this update, it was not possible to deploy the overcloud in a Distributed Compute Node (DCN) or spine-leaf configuration with stateless IPv6 on the control plane. Deployments in this scenario failed during ironic node server provisioning. With this update, you can now deploy successfully with stateless IPv6 on the control plane.

BZ#1804079

Before this update, the etcd service was not configured properly to run in a container. As a result, an error occurred when the service tried to create the TLS certificate. With this update, the etcd service runs in a container and can create the TLS certificate.

BZ#1813391

With this update, PowerMax configuration options are correct for iSCSI and FC drivers. For more information, see https://docs.openstack.org/cinder/latest/configuration/block-storage/drivers/dell-emc-powermax-driver.html

BZ#1813393

PowerMax configuration options have changed since Newton. This update includes the latest PowerMax configuration options and supports both iSCSI and FC drivers. The `CinderPowermaxBackend` parameter also supports multiple back ends.
CinderPowermaxBackendName supports a list of back ends, and you can use the new
CinderPowermaxMultiConfig parameter to specify parameter values for each back end. For
example syntax, see environments/cinder-dell EMC-powermax-config.yaml.

BZ#1814166

With this update, the Red Hat Ceph Storage dashboard uses Ceph 4.1 and a Grafana container based
on **ceph4-rhel8**.

BZ#1815305

Before this update, in DCN + HCI deployments with an IPv6 internal API network, the cinder and etcd
services were configured with malformed etcd URIs, and the cinder and etcd services failed on
starup.
With this update, the IPv6 addresses in the etcd URI are correct and the cinder and etcd services
start successfully.

BZ#1815928

Before this update, in deployments with an IPv6 internal API network, the Block Storage Service
(cinder) and Compute Service (nova) were configured with a malformed glance-api endpoint URI. As
a result, cinder and nova services located in a DCN or Edge deployment could not access the Image
Service (glance).
With this update, the IPv6 addresses in the glance-api endpoint URI are correct and the cinder and
nova services at Edge sites can access the Image Service successfully.

BZ#1826741

Before this update, the Block Storage service (cinder) assigned the default volume type in a **volume
create** request, ignoring alternative methods of specifying the volume type.
With this update, the Block Storage service performs as expected:

- If you specify a **source_volid** in the request, the volume type that the Block Storage service
 sets is the volume type of the source volume.

- If you specify a **snapshot_id** in the request, the volume type is inferred from the volume
 type of the snapshot.

- If you specify an **imageRef** in the request, and the image has a **cinder_img_volume_type**
 image property, the volume type is inferred from the value of the image property.
 Otherwise, the Block Storage service sets the volume type is the default volume type that
 you configure. If you do not configure a volume type, the Block Storage service uses the
 system default volume type, **DEFAULT**.

When you specify a volume type explicitly in the **volume create** request, the Block Storage
service uses the type that you specify.

BZ#1827721

Before this update, there were no retries and no timeout when downloading a final instance image
with the direct deploy interface in ironic. As a result, the deployment could fail if the server that hosts
the image fails to respond.
With this update, the image download process attempts 2 retries and has a connection timeout of 60
seconds.

BZ#1831893
A regression was introduced in ipmitool-1.8.18-11 that caused IPMI access to take over 2 minutes for certain BMCs that did not support the “Get Cipher Suites”. As a result, introspection could fail and deployments could take much longer than previously.

With this update, ipmitool retries are handled differently, introspection passes, and deployments succeed.

NOTE

This issue with ipmitool is resolved in ipmitool-1.8.18-17.

BZ#1832720

Before this update, stale neutron-haproxy-qdhcp-* containers remained after you deleted the related network. With this update, all related containers are cleaned correctly when you delete a network.

BZ#1832920

Before this update, the ExtraConfigPre per_node script was not compatible with Python 3. As a result, the overcloud deployment failed at the step TASK [Run deployment NodeSpecificDeployment] with the message SyntaxError: invalid syntax.

With this update, the ExtraConfigPre per_node script is compatible with Python 3 and you can provision custom per_node hieradata.

BZ#1845079

Before this update, the data structure format that the ceph osd stat -f json command returns changed. As a result, the validation to stop the deployment unless a certain percentage of Red Hat Ceph Storage (RHCS) OSDs are running did not function correctly, and stopped the deployment regardless of how many OSDs were running.

With this update, the new version of openstack-tripleo-validations computes the percentage of running RHCS OSDs correctly and the deployment stops early if a percentage of RHCS OSDs are not running. You can use the parameter CephOsdPercentageMin to customize the percentage of RHCS OSDs that must be running. The default value is 66%. Set this parameter to 0 to disable the validation.

BZ#1850991

Before this update, the Red Hat Ceph Storage dashboard listener was created in the HA Proxy configuration, even if the dashboard is disabled. As a result, upgrades of OpenStack with Ceph could fail. +include::sect-RHOSP_161_z5_advisory_list.adoc[] With this update, the service definition has been updated to distinguish the Ceph MGR service from the dashboard service so that the dashboard service is not configured if it is not enabled and upgrades are successful.

BZ#1853433

Before this update, the Leapp upgrade could fail if you had any NFS shares mounted. Specifically, the nodes that run the Compute Service (nova) or the Image Service (glance) services hung if they used an NFS mount.

With this update, before the Leapp upgrade, director unmounts /var/lib/nova/instances, /var/lib/glance/images, and any Image Service staging area that you define with the GlanceNodeStagingUri parameter.

3.1.2. Enhancements

This release of Red Hat OpenStack Platform features the following enhancements:

BZ#1440926
With this enhancement, you can configure Red Hat OpenStack Platform to use an external, pre-existing Ceph RadosGW cluster. You can manage this cluster externally as an object-store for OpenStack guests.

BZ#1575512
With this enhancement, you can control multicast over the external networks and avoid cluster autoforming over external networks instead of only the internal networks.

BZ#1598716
With this enhancement, you can use director to deploy the Image Service (glance) with multiple image stores. For example, in a Distributed Compute Node (DCN) or Edge deployment, you can store images at each site.

BZ#1617923
With this update, the Validation Framework CLI is fully operational. Specifically, the `openstack tripleo validator` command now includes all of the CLI options necessary to list, run, and show validations, either by validation name or by group.

BZ#1676989
With this enhancement, you can use ATOS HSM deployment with HA mode.

BZ#1686001
With this enhancement, you can revert Block Storage (cinder) volumes to the most recent snapshot, if supported by the driver. This method of reverting a volume is more efficient than cloning from a snapshot and attaching a new volume.

BZ#1698527
With this update, the OVS switching function has been offloaded to the SmartNIC hardware. This enhancement reduces the processing resources required, and accelerates the datapath. In Red Hat OpenStack Platform 16.1, this feature has graduated from Technology Preview and is now fully supported. See Configuring OVS hardware offload in the Network Functions Virtualization Planning and Configuration Guide.

BZ#1701416
With this enhancement, HTTP traffic that travels from the HAProxy load balancer to Red Hat Ceph Storage RadosGW instances is encrypted.

BZ#1740946
With this update, you can deploy pre-provisioned nodes with TLS using the new 'tripleo-ipa' method.

BZ#1767581
With this enhancement, you can use the `--limit`, `--skip-tags`, and `--tags` Ansible options in the `openstack overcloud deploy` command. This is particularly useful when you want to run the deployment on specific nodes, for example, during scale-up operations.

BZ#1793525
When you deploy Red Hat Ceph Storage with director, you can define and configure Ceph device classes and map these classes to specific pools for varying workloads.

BZ#1807841
With this update, the `swift_rsync` container runs in unprivileged mode. This makes the `swift_rsync` container more secure.

BZ#1811490
With this enhancement, there are new options in the `openstack tripleo container image push` command that you can use to provide credentials for the source registry. The new options are `--source-username` and `--source-password`.
Before this update, you could not provide credentials when pushing a container image from a source registry that requires authentication. Instead, the only mechanism to push the container was to pull the image manually and push from the local system.

BZ#1814278

With this enhancement, you can use policy-based routing for Red Hat OpenStack Platform nodes to configure multiple route tables and routing rules with `os-net-config`. Policy-based routing uses route tables where, on a host with multiple links, you can send traffic through a particular interface depending on the source address. You can also define route rules for each interface.

BZ#1819016

With this update, the `container_images_file` parameter is now a required option in the `undercloud.conf` file. You must set this parameter before you install the undercloud. With the recent move to use registry.redhat.io as the container source, you must authenticate when you fetch containers. For the undercloud, the `container_images_file` is the recommended option to provide the credentials when you perform the installation. Before this update, if this parameter was not set, the deployment failed with authentication errors when trying to fetch containers.

BZ#1823932

With this enhancement, FreeIPA has DNS entries for the undercloud and overcloud nodes. DNS PTR records are necessary to generate certain types of certificates, particularly certificates for cinder active/active environments with etcd. You can disable this functionality with the `IdMModifyDNS` parameter in an environment file.

BZ#1834185

With this enhancement, you can manage vPMEM with two new parameters `NovaPMEMMappings` and `NovaPMEMNamespaces`. Use `NovaPMEMMappings` to set the nova configuration option `pmem_namespaces` that reflects mappings between vPMEM and physical PMEM namespaces.

Use `NovaPMEMNamespaces` to create and manage physical PMEM namespaces that you use as a back end for vPMEM.

BZ#1858023

This update includes support for hyper-coverged infrastructure (HCI) deployments with OVS-DPDK. In an HCI architecture, overcloud nodes with Compute and Ceph Storage services are co-located and configured for optimized resource usage.

3.1.3. Technology Preview

The items listed in this section are provided as Technology Previews. For further information on the scope of Technology Preview status, and the associated support implications, refer to https://access.redhat.com/support/offerings/techpreview/.

BZ#1603440

DNS-as-a-Service (designate) returns to technology preview status in Red Hat OpenStack Platform 16.1.

BZ#1623977

In Red Hat OpenStack Platform 16.1, you can configure Load-balancing service (octavia) instances to forward traffic flow and administrative logs from inside the amphora to a syslog server.

BZ#1666684
In Red Hat OpenStack Platform 16.1, a technology preview is available for SR-IOV to work with OVN and the Networking service (neutron) driver without requiring the Networking service DCHP agent. When virtual machines boot on hypervisors that support SR-IOV NICs, the local OVN controllers can reply to the DHCP, internal DNS, and IPv6 router solicitation requests from the virtual machine.

BZ#1671811

In Red Hat OpenStack Platform 16.1 there is a technology preview for routed provider networks with the ML2/OVS mechanism driver. You can use a routed provider network to enable a single provider network to represent multiple layer 2 networks (broadcast domains) or segments so that the operator can present only one network to users. This is a common network type in Edge DCN deployments and Spine-Leaf routed datacenter deployments.

Because Nova scheduler is not segment-aware, you must map each leaf, rack segment, or DCN edge site to a Nova host-aggregate or availability zone. If the deployments require DHCP or the metadata service, you must also define a Nova availability zone for each edge site or segment.

Known Limitations:

- Supported with ML2/OVS only. Not supported with OVN (RFE Bug 1797664)

- Nova scheduler is not segment-aware. For successful nova scheduling, map each segment or edge site to a Nova host-aggregate or availability zone. Currently there are only 2 instance boot options available [RFE Bug 1761903]
 - Boot an instance with port-id and no IP address (differ IP address assignment and specify Nova AZ (segment or edge site)
 - Boot with network-id and specify Nova AZ (segment or edge site)

- Because Nova scheduler is not segment-aware, Cold/Live migration works only when you specify the destination Nova availability zone (segment or edge site) [RFE Bug 1761903]

- North-south routing with central SNAT or Floating IP is not supported [RFE Bug 1848474]

- When using SR-IOV or PCI pass-through, physical network (physnet) names must be the same in central and remote sites or segments. You cannot reuse segment-ids (Bug 1839097)

For more information, see https://docs.openstack.org/neutron/train/admin/config-routed-networks.html.

BZ#1676631

In Red Hat OpenStack Platform 16.1, the Open Virtual Network (OVN) provider driver for the Load-balancing service (octavia) is in technology preview.

BZ#1703958

This update includes support for both TCP and UDP protocols on the same load-balancer listener for OVN Provider driver.

BZ#1758424

With this update, when using Image Service (glance) multi stores, the image owner can delete an Image copy from a specific store.

BZ#1801721

In Red Hat OpenStack Platform 16.1, the Load-balancing service (Octavia) has a technology preview for UDP protocol.

BZ#1848582
With this release, a technology preview has been added for the Shared File Systems service (manila) for IPv6 to work in the CephFS NFS driver. This feature requires Red Hat Ceph Storage 4.1.

3.1.4. Rebase: Bug Fixes and Enhancements

These items are rebases of bug fixes and enhancements included in this release of Red Hat OpenStack Platform:

BZ#1738449

collectd 5.11 contains bug fixes and new plugins. For more information, see https://github.com/collectd/collectd/releases.

3.1.5. Release Notes

This section outlines important details about the release, including recommended practices and notable changes to Red Hat OpenStack Platform. You must take this information into account to ensure the best possible outcomes for your deployment.

BZ#1225775

The Image Service (glance) now supports multi stores with the Ceph RBD driver.

BZ#1546996

With this release, networking-ovn now supports QoS bandwidth limitation and DSCP marking rules with the neutron QoS API.

BZ#1654408

For glance image conversion, the glancedirect method is not enabled by default. To enable this feature, set enabled_import_methods to [glance-direct,web-download] or [glance-direct] in the DEFAULT section of the glance-api.conf file.

The Image Service (glance) must have a staging area when you use the glancedirect import method. Set the node_staging_uri option in the DEFAULT section of the glance-api.conf file to file://<absolute-directory-path>. This path must be on a shared file system that is available to all Image Service API nodes.

BZ#1700402

Director can now deploy the Block Storage Service in an active/active mode. This deployment scenario is supported only for Edge use cases.

BZ#1710465

When you upgrade from Red Hat OpenStack Platform (RHOSP) 13 DCN to RHOSP 16.1 DCN, it is not possible to migrate from the single stack RHOSP 13 deployment into a multi-stack RHOSP 16.1 deployment. The RHOSP 13 stack continues to be managed as a single stack in the Orchestration service (heat) even after you upgrade to RHOSP 16.1.

After you upgrade to RHOSP 16.1, you can deploy new DCN sites as new stacks. For more information, see the multi-stack documentation for RHOSP 16.1 DCN.

BZ#1758416

In Red Hat OpenStack Platform 16.1, you can use the Image service (glance) to copy existing image data into multiple stores with a single command. This removes the need for the operator to copy data manually and update image locations.

BZ#1758420

In Red Hat OpenStack Platform 16.1, you can use the Image Service (glance) to copy existing image data into multiple stores with a single command. This removes the need for the operator to copy data manually and update image locations.
Before this update, during Red Hat Ceph Storage (RHCS) deployment, Red Hat OpenStack Platform (RHOSP) director generated the CephClusterFSID by passing the desired FSID to ceph-ansible and used the Python uuid1() function. With this update, director uses the Python uuid4() function, which generates UUIDs more randomly.

With this release, a new feature has been added for the Shared File Systems service (manila) for IPv6 to work in the CephFS NFS driver. This feature requires Red Hat Ceph Storage 4.1.

Red Hat OpenStack Platform 16.1 includes the following PowerMax Driver updates:

Feature updates:

- PowerMax Driver - Unisphere storage group/array tagging support
- PowerMax Driver - Short host name and port group name override
- PowerMax Driver - SRDF Enhancement
- PowerMax Driver - Support of Multiple Replication
- Bug fixes:
 - PowerMax Driver - Debug Metadata Fix
 - PowerMax Driver - Volume group delete failure
 - PowerMax Driver - Setting minimum Unisphere version to 9.1.0.5
 - PowerMax Driver - Unmanage Snapshot Delete Fix
 - PowerMax Driver - RDF clean snapvx target fix
 - PowerMax Driver - Get Manageable Volumes Fix
 - PowerMax Driver - Print extend volume info
 - PowerMax Driver - Legacy volume not found
 - PowerMax Driver - Safeguarding retype to some in-use replicated modes
 - PowerMax Driver - Replication array serial check
 - PowerMax Driver - Support of Multiple Replication
 - PowerMax Driver - Update single underscores
 - PowerMax Driver - SRDF Replication Fixes
 - PowerMax Driver - Replication Metadata Fix
 - PowerMax Driver - Limit replication devices
 - PowerMax Driver - Allowing for default volume type in group
 - PowerMax Driver - Version comparison correction
 - PowerMax Driver - Detach RepConfig logging & Retype rename remote fix
• PowerMax Driver - Manage volume emulation check
• PowerMax Driver - Deletion of group with volumes
• PowerMax Driver - PowerMax Pools Fix
• PowerMax Driver - RDF status validation
• PowerMax Driver - Concurrent live migrations failure
• PowerMax Driver - Live migrate remove rep vol from sg
• PowerMax Driver - U4P failover lock not released on exception
• PowerMax Driver - Compression Change Bug Fix

BZ#1810045
The Shared Filesystems service (manila) fully supports the Native CephFS driver. This driver was previously in Tech Preview status, but is now fully supported.

BZ#1846039
The sg-bridge container uses the sg-bridge RPM to provide an AMQP1-to-unix socket interface for sg-core. Both components are part of the Service Telemetry Framework.
This is the initial release of the sg-bridge component.

BZ#1852084
Red Hat OpenStack Platform 16.1 includes tripleo-heat-templates support for VXFlexOS Volume Backend.

BZ#1852087
Red Hat OpenStack Platform 16.1 includes support for SC Cinder Backend. The SC Cinder back end now supports both iSCSI and FC drivers, and can also support multiple back ends. You can use the CinderSclBackendName parameter to list back ends, and the CinderSclMultiConfig parameter to specify parameter values for each back end. For an example configuration file, see environments/cinder-dellvec-sc-config.yaml.

BZ#1855096
The NetApp Backend Guide for the Shared File Systems service (manila) has been removed from the Red Hat OpenStack product documentation pages. This content is now hosted within the NetApp OpenStack documentation suite: https://netapp-openstack-dev.github.io/openstack-docs/train/manila/configuration/manila_config_files/section_rhosp_director_configuration.html

BZ#1858352
If you want to upgrade from Red Hat OpenStack Platform (RHOSP) 13 and Red Hat Ceph Storage (RHCS) 3 with filestore to RHOSP 16.1 and RHCS 4, you cannot migrate to bluestore after the upgrade. You can run RHCS 4 with filestore until a fix is available. For more information, see https://bugzilla.redhat.com/show_bug.cgi?id=1854973.

BZ#1858938
The sg-bridge and sg-core container images provide a new data path for collectd metrics into the Service Telemetry Framework.
The sg-bridge component provides an AMQP1 to unix socket translation to the sg-core, resulting in a 500% performance increase over the legacy Smart Gateway component.

This is the initial release of the sg-bridge and sg-core container image components.
NOTE
The legacy Smart Gateway is still the data path for Ceilometer metrics, Ceilometer
events, and collectd events.

3.1.6. Known Issues
These known issues exist in Red Hat OpenStack Platform at this time:

BZ#1508449
OVN serves DHCP as an openflow controller with ovn-controller directly on Compute nodes.
However, SR-IOV instances are attached directly to the network through the VF/PF and so SR-IOV
instances cannot receive DHCP responses.
Workaround: Change
```
OS::TripleO::Services::NeutronDhcpAgent
```
to
```
OS::TripleO::Services::NeutronDhcpAgent: deployment/neutron/neutron-dhcp-container-
puppet.yaml
```

BZ#1574431
Currently, quota commands do not work as expected in the Block Storage service (cinder). With the
Block Storage CLI, you can successfully create quota entries and the CLI does not check for a valid
project ID. Quota entries that the CLI creates without valid project IDs are dummy records that
contain invalid data. Until this issue is fixed, if you are a CLI user, you must specify a valid project ID
when you create quota entries and monitor Block Storage for dummy records.

BZ#1797047
The Shared File System service (manila) access-list feature requires Red Hat Ceph Storage (RHCS)
4.1 or later. RHCS 4.0 has a packaging issue that means you cannot use the Shared File System
service access-list with RHCS 4.0. You can still use share creation, however, the share is unusable
without access-list. Consequently, customers who use RHCS 4.0 cannot use the Shared File System
service with CephFS via NFS. For more information, see

BZ#1828889
There is a known issue where the OVN mechanism driver does not use the Networking Service
(neutron) database, but relies on the OVN database instead. As a result, the SR-IOV agent is
registered in the Networking Service database because it is outside of OVN. There is currently no
workaround for this issue.

BZ#1837316
The keepalived instance in the Red Hat OpenStack Platform Load-balancing service (octavia)
instance (amphora) can abnormally terminate and interrupt UDP traffic. The cause of this issue is
that the timeout value for the UDP health monitor is too small.
Workaround: specify a new timeout value that is greater than two seconds:
```
$ openstack
loadbalancer healthmonitor set --timeout 3 <health_monitor_id>
```

For more information, search for "loadbalancer healthmonitor" in the Command Line Interface
Reference.

BZ#1840640
There is an incomplete definition for TLS in the Orchestration service (heat) when you update from
16.0 to 16.1, and the update fails.
To prevent this failure, you must set the following parameter and value:
```
InternalTLSCAFile: ".
```
There is a known issue when you update from 16.0 to 16.1 with Public TLS or TLS-Everywhere. The parameter InternalTLSCAFile provides the location of the CA cert bundle for the overcloud instance. Upgrades and updates fail if this parameter is not set correctly. With new deployments, heat sets this parameter correctly, but if you upgrade a deployment that uses old heat templates, then the defaults might not be correct.

Workaround: Set the InternalTLSCAFile parameter to an empty string "" so that the undercloud uses the certificates in the default trust store.

BZ#1846557

There is a known issue when upgrading from RHOSP 13 to RHOSP 16.1. The value of HostnameFormatDefault has changed from %stackname%-compute-%index% to %stackname%-novacompute-%index%. This change in default value can result in duplicate service entries and have further impacts on operations such as live migration. Workaround: If you upgrade from RHOSP 13 to RHOSP 16.1, you must override the HostnameFormatDefault value to configure the previous default value to ensure that the previous hostname format is retained. If you upgrade from RHOSP 15 or RHOSP 16.0, no action is required.

BZ#1847463

The output format of tripleo-ansible-inventory changed in RHOSP 16.1. As a result, the generate-inventory step fails. Workaround: Create the inventory manually.

NOTE

It is not possible to migrate from ML2/OVS to ML2/OVN in RHOSP 16.1.

BZ#1848180

There is a known issue where a heat parameter InternalTLSCAFile is used during deployment when the undercloud contacts the external (public) endpoint to create initial resources and projects. If the internal and public interfaces have certificates from different Certificate Authorities (CAs), the deployment fails. Either the undercloud fails to contact the keystone public interface, or the internal interfaces receive malformed configuration.

This scenario affects deployments with TLS Everywhere, when the IPA server supplies the internal interfaces but the public interfaces have a certificate that the operator supplies. This also prevents ‘brown field’ deployments, where deployments with existing public certificates attempt to redeploy and configure TLS Everywhere.

There is currently no workaround for this defect.

BZ#1848462

Currently, on ML2/OVS and DVR configurations, Open vSwitch (OVS) routes ICMPv6 traffic incorrectly, causing network outages on tenant networks. At this time, there is no workaround for this issue. If you have clouds that rely heavily on IPv6 and might experience issues caused by blocked ICMP traffic, such as pings, do not update to RHOSP 16.1 until this issue is fixed.

BZ#1849235

If you do not set the UpgradeLevelNovaCompute parameter to "", live migrations are not possible when you upgrade from RHOSP 13 to RHOSP 16.

BZ#1850192

There is a known issue in the Block Storage Service (cinder) due to the following conditions:
Red Hat OpenStack Platform 16.1 supports running the cinder-volume service in active/active (A/A) mode at DCN/Edge sites. The control plane still runs active/passive under pacemaker.

When running A/A, cinder uses the tripleo etcd service for its lock manager.

When the deployment includes TLS-everywhere (TLS-e), internal API traffic between cinder and etcd, as well as the etcd inter-node traffic should use TLS. RHOSP 16.1 does not support TLS-e in a way that supports the Block Storage Service and etcd with TLS. However, you can configure etcd not to use TLS, even if you configure and enable TLS-e. As a result, TLS is everywhere except for etcd traffic:

- TLS-Everywhere protects traffic in the Block Storage Service
- Only the traffic between the Block Storage Service and etcd, and the etcd inter-node traffic is not protected
- The traffic is limited to Block Storage Service use of etcd for its Distributed Lock Manager (DLM). This traffic contains reference to Block Storage Service object IDs, for example, volume IDs and snapshot IDs, but does not contain any user or tenant credentials. This limitation will be removed in a RHOSP 16.1 update. For more information, see BZ#1848153.

BZ#1852541

There is a known issue with the Object Storage service (swift). If you use pre-deployed nodes, you might encounter the following error message in /var/log/containers/stdouts/swift_rsync.log: "failed to create pid file /var/run/rsyncd.pid: File exists"

Workaround: Enter the following command on all Controller nodes that are pre-deployed:

```
for d in $(podman inspect swift_rsync | jq ".[].GraphDriver.Data.UpperDir") /var/lib/config-data/puppet-generated/swift; do sed -i -e '/pid file/d' $d/etc/rsyncd.conf; done
```

BZ#1852801

When you update or upgrade python3-tripleclient, Ansible does not receive the update or upgrade and Ansible or ceph-ansible tasks fail.

When you update or upgrade, ensure that Ansible also receives the update so that playbook tasks can run successfully.

BZ#1854334

There is a known issue with the OVN filter packets that ovn-controller generates. Router Advertisements that receive ACL processing in OVN are dropped if there is no explicit ACL rule to allow this traffic.

Workaround: Enter the following command to create a security rule:

```
openstack security group rule create --ethertype IPv6 --protocol icmp --icmp-type 134 <SECURITY_GROUP>
```

BZ#1855423, BZ#1856901

There are some known limitations for Mellanox ConnectX-5 adapter cards in VF LAG mode in OVS OFFLOAD deployments, SRIOV Switchdev mode.

You might encounter the following known issues and limitations when you use the Mellanox ConnectX-5 adapter cards with the virtual function (VF) link aggregation group (LAG) configuration in an OVS OFFLOAD deployment, SRIOV Switchdev mode:
When at least one VF of any physical function (PF) is still bound or attached to a virtual machine (VM), an internal firmware error occurs when attempting to disable single-root input/output virtualization (SR-IOV) and when unbinding PF using a function such as `ifdown` and `ip link`. To work around the problem, unbind or detach VFs before you perform these actions:

1. Shut down and detach any VMs.
2. Remove VF LAG BOND interface from OVS.
3. Unbind each configured VF:
   ```bash
   # echo <VF PCIe BDF> > /sys/bus/pci/drivers/mlx5_core/unbind
   ```
4. Disable SR-IOV for each PF:
   ```bash
   # echo 0 > /sys/class/net/<PF>/device/sriov_numvfs
   ```

When the `NUM_OF_VFS` parameter configured in the Firmware configuration (using the `mstconfig` tool) is higher than 64, VF LAG mode while deploying OVS OFFLOAD, SRIOV switchdev mode is not supported. Currently, there is no workaround available.

BZ#1856999

The Ceph Dashboard currently does not work with the TLS Everywhere framework because the `dashboard_protocol` parameter was incorrectly omitted from the heat template. As a result, backends fail to appear when HAproxy is started.

As a temporary solution, create a new environment file that contains the `dashboard_protocol` parameter and include the environment file in your overcloud deployment with the `-e` option:

```yaml
parameter_defaults:
  CephAnsibleExtraConfig:
    dashboard_protocol: 'https'
```

This solution introduces ceph-ansible bug. For more information, see https://bugzilla.redhat.com/show_bug.cgi?id=1860815.

BZ#1859702

There is a known issue where, after an ungraceful shutdown, Ceph containers might not start automatically on system reboot.

Workaround: Remove the old container IDs manually with the `podman rm` command. For more information, see https://bugzilla.redhat.com/show_bug.cgi?id=1858865#c2.

BZ#1861363

OSP 16.0 introduced full support for live migration of pinned instances. Due to a bug in this feature, instances with a real-time CPU policy and more than one real-time CPU cannot migrate successfully. As a result, live migration of real-time instances is not possible. There is currently no workaround.

BZ#1861370

There is a known issue where enabling the `realtime-virtual-host` tuned profile inside guest virtual machines degrades throughput and displays non-deterministic performance. `ovs-dpdk` PMDs are pinned incorrectly to housekeeping CPUs.

Workaround: Use the `cpu-partitioning` tuned profile inside guest virtual machines, write a post-deployment script to update the `tuned.conf` file, and reboot the node:

```bash
ps_blacklist=ksoftirqd.\*;rcuc.\*;rcub.\*;ktimersoftd.\*;\*pmd.\*;\*PMD.\*;\*DPDK.\*;\*qemu-kvm.\*
```
3.1.7. Removed Functionality

BZ#1832405

In this release of Red Hat OpenStack Platform, you can no longer customize the Red Hat Ceph Storage cluster admin keyring secret. Instead, the admin keyring secret is generated randomly during initial deployment.

3.2. RED HAT OPENSTACK PLATFORM 16.1.1 MAINTENANCE RELEASE - AUGUST 27, 2020

These release notes highlight technology preview items, recommended practices, known issues, and deprecated functionality to be taken into consideration when deploying this release of Red Hat OpenStack Platform.

3.2.1. Bug Fix

These bugs were fixed in this release of Red Hat OpenStack Platform:

BZ#1845726

This director enhancement automatically installs the Leapp utility on overcloud nodes to prepare for OpenStack upgrades. https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/release_notes/index This enhancement includes two new Heat parameters: LeappRepoinitCommand and LeappInitCommand. In addition, if you have the following repository defaults, you do not need to pass UpgradeLeappCommandOptions values.

```
--enablerepo rhel-8-for-x86_64-baseos-eus-rpms --enablerepo rhel-8-for-x86_64-appstream-eus-rpms --enablerepo rhel-8-for-x86_64-highavailability-eus-rpm1866372s --enablerepo advanced-virt-for-rhel-8-x86_64-rpms --enablerepo ansible-2.9-for-rhel-8-x86_64-rpms --enablerepo fast-datapath-for-rhel-8-x86_64-rpms
```

BZ#1847463

This update fixes a bug that caused the **generate-inventory** step to fail during in-place migration from ML2/OVS to ML2/OVN.

Note that in the Red Hat OpenStack Platform 16.1.0 (GA release), migration from ML2/OVS to ML2/OVN was not supported. As of Red Hat OpenStack Platform 16.1.1, in-place migration is supported for non-NFV deployments, with various exceptions, limitations, and requirements as described in "Migrating from ML2/OVS to ML2/OVN." [1]

BZ#1850991

Before this update, the Red Hat Ceph Storage Dashboard listener was created in the HA Proxy configuration, even if the Dashboard is disabled. As a result, upgrades of Red Hat OpenStack Platform (RHOSP) with Ceph could fail.

With this update, the service definition has been updated to distinguish the Ceph MGR service from the Dashboard service so that the Dashboard service is not configured if it is not enabled and upgrades are successful.

BZ#1851914

The overcloud deployment steps included an older Ansible syntax that tagged the **tripleo-bootstrap** and **tripleo-ssh-known-hosts** roles as **common_roles**. This older syntax caused Ansible to run tasks
tagged with the `common_roles` when Ansible did not use the `common_roles` tag. This syntax resulted in errors during the 13 to 16.1 `system_upgrade` process. This update uses a newer syntax to tag the `tripleo-bootstrap` and `tripleo-ssh-known-hosts` roles as `common_roles`. Errors do not appear during the 13 to 16.1 `system_upgrade` process and you no longer include the `--playbook upgrade_steps_playbook.yaml` option to the `system_upgrade` process as a workaround.

BZ#1852620

This update fixes a bug that prevented the successful deployment of transport layer security (TLS) everywhere with public TLS certifications.

BZ#1852868

This update fixes a Red Hat 1868620 Ceph Storage (RHCS) version compatibility issue that caused failures during upgrades from Red Hat OpenStack platform 13 to 16.1. Before this fix, validations performed during the upgrade worked with RHCS3 clusters but not RHCS4 clusters. Now the validation works with both RHCS3 and RHCS4 clusters.

BZ#1853275

Before this update, director did not set the `noout` flag on Red Hat Ceph Storage OSDs before running a Leapp upgrade. As a result, additional time was required for the OSDs to rebalance after the upgrade.

With this update, director sets the `noout` flag before the Leapp upgrade, which accelerates the upgrade process. Director also unsets the `noout` flag after the Leapp upgrade.

BZ#1853433

Before this update, the Leapp upgrade could fail if you had any NFS shares mounted. Specifically, the nodes that run the Compute Service (nova) or the Image Service (glance) services hung if they used an NFS mount.

With this update, before the Leapp upgrade, director unmounts `/var/lib/nova/instances`, `/var/lib/glance/images`, and any Image Service staging area that you define with the `GlanceNodeStagingUri` parameter.

BZ#1858673

This update fixes a GRUB parameter naming convention that led to unpredictable behaviors on compute nodes during leapp upgrades. Previously, the presence of the obsolete “TRIPELO” prefix on GRUB parameters caused problems.

The file `/etc/default/grub` has been updated with GRUB for the tripleo kernel args parameter so that leapp can upgrade it correctly. This is done by adding "upgrade_tasks" to the service "OS::TripleO::Services::BootParams", which is a new service added to all roles in the roles_data.yaml file.

BZ#1866372

This update fixes a problem that caused baremetal nodes to become non-responsive during Leapp upgrades. Previously, Leapp did not process transient interfaces like SR-IOV virtual functions (VF) during migration. As a result, Leapp did not find the VF interfaces during the upgrade, and nodes entered an unrecoverable state.

Now the service "OS::TripleO::Services::NeutronSriovAgent" sets the physical function (PF) to remove all VFs, and migrates workloads before the upgrade. After the successful Leapp upgrade, os-net-config runs again with the "--no-activate" flag to re-establish the VFs.
3.2.2. Enhancements

This release of Red Hat OpenStack Platform features the following enhancements:

BZ#1666684

In this release, you can use SR-IOV in an ML2/OVN deployment with native OVN DHCP. SR-IOV in an ML2/OVN deployment no longer requires the Networking service (neutron) DHCP agent. When virtual machines boot on hypervisors that support SR-IOV NICs, the OVN controllers on the controller or network nodes can reply to the DHCP, internal DNS, and IPv6 router solicitation requests from the virtual machine.

This feature was available as a technology preview in RHOSP 16.1.0. Now it is a supported feature.

The following limitations apply to the feature in this release:

- All external ports are scheduled on a single gateway node because there is only one HA Chassis Group for all of the ports.
- North/south routing on VF(direct) ports on VLAN tenant networks does not work with SR-IOV because the external ports are not colocated with the logical router’s gateway ports. See https://bugs.launchpad.net/neutron/+bug/1875852.

BZ#1671811

In the first maintenance release of Red Hat OpenStack Platform 16.1 there is support for routed provider networks using the ML2/OVS and SR-IOV mechanism drivers.

You can use a routed provider network to enable a single provider network to represent multiple layer 2 networks (broadcast domains) or segments so that the operator can present only one network to users. This is a common network type in edge DCN and spine-leaf routed data center deployments.

For more information, see https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/networking_guide/index#deploy-routed-prov-networks.[context].

3.2.3. Technology Preview

The items listed in this section are provided as Technology Previews. For further information on the scope of Technology Preview status, and the associated support implications, refer to https://access.redhat.com/support/offerings/techpreview/.

BZ#1703958

This update includes support for both TCP and UDP protocols on the same load-balancer listener for OVN Provider driver.

BZ#1801721

In Red Hat OpenStack Platform 16.1, the Load-balancing service (Octavia) has a technology preview for UDP protocol.

3.2.4. Known Issues

These known issues exist in Red Hat OpenStack Platform at this time:

BZ#1849235
If you do not set the `UpgradeLevelNovaCompute` parameter to ", live migrations are not possible when you upgrade from RHOSP 13 to RHOSP 16.

BZ#1861363

OSP 16.0 introduced full support for live migration of pinned instances. Due to a bug in this feature, instances with a real-time CPU policy and more than one real-time CPU cannot migrate successfully. As a result, live migration of real-time instances is not possible. There is currently no workaround.

BZ#1866562

Currently, you cannot scale down or delete compute nodes if Red Hat OpenStack Platform is deployed with TLS-e using tripleo-ipa. This is because the cleanup role, traditionally delegated to the undercloud as localhost, is now being invoked from the mistral container.

For more information, see https://access.redhat.com/solutions/5336241

BZ#1867458

A Leapp issue causes failure of fast forward upgrades from Red Hat OpenStack (RHOSP) platform 13 to RHOSP 16.

A Leapp upgrade from RHEL 7 to RHEL 8 removes all older RHOSP packages and performs an operating system upgrade and reboot. Because Leapp installs os-net-config package at the "overcloud upgrade run" stage, os-net-config-sriov executable is not available for sriov_config service to configure virtual functions (VF) and switchdev mode after reboot. As a result, VFs are not configured and switchdevmode is not applied on the physical function (PF) interfaces.

As a workaround, manually create the VFs, apply switchdevmode to the VF interface, and restart the VF interface.

3.3. RED HAT OPENSTACK PLATFORM 16.1.2 MAINTENANCE RELEASE - OCTOBER 27, 2020

These release notes highlight technology preview items, recommended practices, known issues, and deprecated functionality to be taken into consideration when deploying this release of Red Hat OpenStack Platform.

3.3.1. Bug Fix

These bugs were fixed in this release of Red Hat OpenStack Platform:

BZ#1721361

This update includes the following bug fix patches related to fully qualified domain names (FQDN).

- **Kaminario Fix unique_fqdn_network option**

 Previously, the Kaminario driver accepted the unique_fqdn_network configuration option in the specific driver section. When this option was moved, a regression was introduced: the parameter was now only used if it was defined in the shared configuration group.

 This patch fixes the regression and makes it possible to define the option in the shared configuration group as well as the driver specific section.

- **HPE 3PAR Support duplicated FQDN in network**

 The 3PAR driver uses the FQDN of the node that is doing the attach as an unique identifier to map the volume.
Because the FQDN is not always unique, in some environments the same FQDN can be found in different systems. In those cases, if both try to attach volumes, the second system will fail.

For example, this could happen in a QA environment where VMs share names like controller.localdomain and compute-0.localdomain.

This patch adds the `unique_fqdn_network` configuration option to the 3PAR driver to prevent failures caused by name duplication between systems. (BZ#1721361)

BZ#1792500

Inadequate timeout values can cause an overcloud deployment to fail after four hours. To prevent these timeout failures, set the following undercloud and overcloud timeout parameters:

- **Undercloud timeouts (seconds):**

 Example

  ```
  parameter_defaults:
  TokenExpiration: 86400
  ZaqarWsTimeout: 86400
  ```

- **Overcloud deploy timeouts (minutes):**

 Example

  ```
  $ openstack overcloud deploy --timeout 1440
  ```

 The timeouts are now set.

BZ#1826741

Before this update, the Block Storage service (cinder) assigned the default volume type in a `volume create` request, ignoring alternative methods of specifying the volume type. With this update, the Block Storage service performs as expected:

- If you specify a `source_volid` in the request, the volume type that the Block Storage service sets is the volume type of the source volume.

- If you specify a `snapshot_id` in the request, the volume type is inferred from the volume type of the snapshot.

- If you specify an `imageRef` in the request, and the image has a `cinder_img_volume_type` image property, the volume type is inferred from the value of the image property. Otherwise, the Block Storage service sets the volume type as the default volume type that you configure. If you do not configure a volume type, the Block Storage service uses the system default volume type, `DEFAULT`.

 When you specify a volume type explicitly in the `volume create` request, the Block Storage service uses the type that you specify.

BZ#1843789

Before this update, when you created a volume from a snapshot, the operation could fail because the Block Storage service (cinder) would try to assign the default volume type to the new volume instead of inferring the correct volume type from the snapshot. With this update, you no longer have to
specify the volume type when you create a volume.

BZ#1848420

This update makes it possible to run the Brocade FCZM driver in RHOSP 16. The Brocade FCZM vendor chose not to update the driver for Python 3, and discontinued support of the driver past the Train release of OpenStack [1]. Red Hat OpenStack (RHOSP) 16 uses Python 3.6.

The upstream Cinder community assumed the maintenance of the Brocade FCZM driver on a best-effort basis, and the bugs that prevented the Brocade FCZM from running in a Python 3 environment (and hence in RHOSP 16) have been fixed.

[1] https://docs.broadcom.com/doc/12397527

BZ#1855112

This update increases the speed of stack updates in certain cases. Previously, stack update performance was degraded when the Ansible --limit option was not passed to ceph-ansible. During a stack update, ceph-ansible sometimes made idempotent updates on nodes even if the --limit argument was used.

Now director intercepts the Ansible --limit option and passes it to the ceph-ansible execution. The --limit option passed to commands starting with 'openstack overcloud deploy' is passed to the ceph-ansible execution to reduce the time required for stack updates.

IMPORTANT

Always include the undercloud in the limit list when using this feature with ceph-ansible.

BZ#1855751

Before this update, to successfully run a leapp upgrade during the Framework for Upgrades upgrade (FFU) from RHOSP 13 to RHOSP 16.1, the node where the Red Hat Enterprise Linux upgrade was occurring had to have the PermitRootLogin field defined in the ssh config file (/etc/ssh/sshd_config). With this update, the Orchestration service (heat) no longer requires you to modify /etc/ssh/sshd_config with the PermitRootLogin field.

BZ#1862213

This update fixes a problem that caused volume attachments to fail on a VxFlexOS cinder backend. Previously, attempts to attach a volume on a VxFlexOS cinder backend failed because the cinder driver for the VxFlexOS back end did not include all of the information required to connect to the volume.

The VxFlexOS cinder driver has been updated to include all the information required in order to connect to a volume. The attachments now work correctly.

BZ#1868620

This update fixes incorrect parameter names in Dell EMC Storage Templates.

BZ#1869346

This update fixes an incompatibility that caused VxFlex volume detachment attempts to fail. A recent change in VxFlex cinder volume credentialing methods was not backward compatible with pre-existing volume attachments. If a VxFlex volume attachment was made before the credentialing method change, attempts to detach the volume failed.
Now the detachments do not fail.

BZ#1872211

This update modifies `get_device_info` to use lsscsi to get \([H:C:T:L]\) values, making it possible to support more than 255 logical unit numbers (LUNs) and host logical unit (HLU) ID values. Previously, `get_device_info` used sg_scan to get these values, with a limit of 255.

You can get two device types with `get_device_info`:

- o /dev/disk/by-path/xxx, which is a symlink to /dev/sdX
- o /dev/sdX

 sg_scan can process any device name, but lsscsi only shows /dev/sdx names.

If the device is a symlink, `get_device_info` uses the device name that the device links to. Otherwise `get_device_info` uses the device name directly.

Then `get_devix_ce_info` gets the device info \([H:C:T:L]\) by comparing the device name with the last column of lsscsi output.

BZ#1873329

This update fixes a bug that prevented the distributed compute nodes (DCN) compute service from accessing the glance service. Previously, distributed compute nodes were configured with a glance endpoint URI that specified an IP address, even when deployed with internal transport layer security (TLS). Because TLS requires the endpoint URI to specify a fully qualified domain name (FQDN), the compute service could not access the glance service.

Now, when deployed with internal TLS, DCN services are configured with glance endpoint URI that specifies a FQDN, and the DCN compute service can access the glance service.

BZ#1879190

This bug fix enables you to boot an instance from an encrypted volume when that volume was created from an image that in turn was created by uploading an encrypted volume to the Image Service as an image.

These bugs were fixed in this release of Red Hat OpenStack Platform:

BZ#1721361

This update includes the following bug fix patches related to fully qualified domain names (FQDN).

- **Kaminario Fix unique_fqdn_network option**

 Previously, the Kaminario driver accepted the unique_fqdn_network configuration option in the specific driver section. When this option was moved, a regression was introduced: the parameter was now only used if it was defined in the shared configuration group.

 This patch fixes the regression and makes it possible to define the option in the shared configuration group as well as the driver specific section.

- **HPE 3PAR Support duplicated FQDN in network**

 The 3PAR driver uses the FQDN of the node that is doing the attach as an unique identifier to map the volume.
Because the FQDN is not always unique, in some environments the same FQDN can be found in different systems. In those cases, if both try to attach volumes, the second system will fail.

For example, this could happen in a QA environment where VMs share names like controller.localdomain and compute-0.localdomain.

This patch adds the **unique_fqdn_network** configuration option to the 3PAR driver to prevent failures caused by name duplication between systems. (BZ#1721361)

BZ#1792500

Inadequate timeout values can cause an overcloud deployment to fail after four hours. To prevent these timeout failures, set the following undercloud and overcloud timeout parameters:

- **Undercloud timeouts (seconds):**

 Example

  ```
  parameter_defaults:
  TokenExpiration: 86400
  ZaqarWsTimeout: 86400
  ```

- **Overcloud deploy timeouts (minutes):**

 Example

  ```
  $ openstack overcloud deploy --timeout 1440
  ```

 The timeouts are now set.

BZ#1826741

Before this update, the Block Storage service (cinder) assigned the default volume type in a **volume create** request, ignoring alternative methods of specifying the volume type.

With this update, the Block Storage service performs as expected:

- If you specify a **source_volid** in the request, the volume type that the Block Storage service sets is the volume type of the source volume.

- If you specify a **snapshot_id** in the request, the volume type is inferred from the volume type of the snapshot.

- If you specify an **imageRef** in the request, and the image has a **cinder_img_volume_type** image property, the volume type is inferred from the value of the image property. Otherwise, the Block Storage service sets the volume type is the default volume type that you configure. If you do not configure a volume type, the Block Storage service uses the system default volume type, **DEFAULT**.

 When you specify a volume type explicitly in the **volume create** request, the Block Storage service uses the type that you specify.

BZ#1843789

Before this update, when you created a volume from a snapshot, the operation could fail because the Block Storage service (cinder) would try to assign the default volume type to the new volume instead of inferring the correct volume type from the snapshot. With this update, you no longer have to
specify the volume type when you create a volume.

BZ#1848420

This update makes it possible to run the Brocade FCZM driver in RHOSP 16. The Brocade FCZM vendor chose not to update the driver for Python 3, and discontinued support of the driver past the Train release of OpenStack [1]. Red Hat OpenStack (RHOSP) 16 uses Python 3.6.

The upstream Cinder community assumed the maintenance of the Brocade FCZM driver on a best-effort basis, and the bugs that prevented the Brocade FCZM from running in a Python 3 environment (and hence in RHOSP 16) have been fixed.

[1] https://docs.broadcom.com/doc/12397527

BZ#1855112

This update increases the speed of stack updates in certain cases. Previously, stack update performance was degraded when the Ansible --limit option was not passed to ceph-ansible. During a stack update, ceph-ansible sometimes made idempotent updates on nodes even if the --limit argument was used.

Now director intercepts the Ansible --limit option and passes it to the ceph-ansible execution. The --limit option passed to commands starting with 'openstack overcloud deploy' is passed to the ceph-ansible execution to reduce the time required for stack updates.

IMPORTANT

Always include the undercloud in the limit list when using this feature with ceph-ansible.

BZ#1855751

Before this update, to successfully run a leapp upgrade during the Framework for Upgrades upgrade (FFU) from RHOSP 13 to RHOSP 16.1, the node where the Red Hat Enterprise Linux upgrade was occurring had to have the **PermitRootLogin** field defined in the ssh config file (**/etc/ssh/sshd_config**).

With this update, the Orchestration service (heat) no longer requires you to modify **/etc/ssh/sshd_config** with the **PermitRootLogin** field.

BZ#1862213

This update fixes a problem that caused volume attachments to fail on a VxFlexOS cinder backend. Previously, attempts to attach a volume on a VxFlexOS cinder backend failed because the cinder driver for the VxFlexOS back end did not include all of the information required to connect to the volume.

The VxFlexOS cinder driver has been updated to include all the information required in order to connect to a volume. The attachments now work correctly.

BZ#1868620

This update fixes incorrect parameter names in Dell EMC Storage Templates.

BZ#1869346

This update fixes an incompatibility that caused VxFlex volume detachment attempts to fail. A recent change in VxFlex cinder volume credentialing methods was not backward compatible with pre-existing volume attachments. If a VxFlex volume attachment was made before the credentialing method change, attempts to detach the volume failed.
Now the detachments do not fail.

BZ#1872211

This update modifies `get_device_info` to use lsscsi to get \[H:C:T:L\] values, making it possible to support more than 255 logical unit numbers (LUNs) and host logical unit (HLU) ID values. Previously, `get_device_info` used sg_scan to get these values, with a limit of 255.

You can get two device types with `get_device_info`:

- o /dev/disk/by-path/xxx, which is a symlink to /dev/sdX
- o /dev/sdX
 sg_scan can process any device name, but lsscsi only shows /dev/sdx names.

If the device is a symlink, `get_device_info` uses the device name that the device links to. Otherwise `get_device_info` uses the device name directly.

Then `getdevix ce_info` gets the device info \[H:C:T:L\] by comparing the device name with the last column of lsscsi output.

BZ#1873329

This update fixes a bug that prevented the distributed compute nodes (DCN) compute service from accessing the glance service. Previously, distributed compute nodes were configured with a glance endpoint URI that specified an IP address, even when deployed with internal transport layer security (TLS). Because TLS requires the endpoint URI to specify a fully qualified domain name (FQDN), the compute service could not access the glance service.

Now, when deployed with internal TLS, DCN services are configured with glance endpoint URI that specifies a FQDN, and the DCN compute service can access the glance service.

BZ#1879190

This bug fix enables you to boot an instance from an encrypted volume when that volume was created from an image that in turn was created by uploading an encrypted volume to the Image Service as an image.

3.3.2. Enhancements

This release of Red Hat OpenStack Platform features the following enhancements:

BZ#1293440

This update enables you to migrate or retype RBD in-use cinder volumes from one Ceph pool to another within the same Ceph cluster. For more information, see Basic volume usage and configuration in the Storage Guide.

BZ#1628811

This update adds NIC partitioning support on Intel and Mellanox NICs.

BZ#1668213

This update introduces support for encrypted images with keys managed by the Key Manager service (barbican). For some secure workflows in which at-rest data must remain encrypted, you can upload carefully prepared encrypted images into the Image service (glance) for consumption by the Block Storage service (cinder).
In Red Hat OpenStack Platform 16.1, the Open Virtual Network (OVN) provider driver for the Load-balancing service (octavia) is fully supported.

When using multiple stores in the Image Service (glance), the image owner can delete an image copy from a specific store. In Red Hat OpenStack Platform 16.1.2, this feature moves from Technology Preview to full support.

This update adds support for encrypted volumes and images on distributed compute nodes (DCN). DCN nodes can now access the Key Manager service (barbican) running in the central control plane.

NOTE

This feature adds a new Key Manager client service to all DCN roles. To implement the feature, regenerate the `roles.yaml` file used for the DCN site’s deployment.

For example:

```
$ openstack overcloud roles generate DistributedComputeHCI DistributedComputeHCIScaleOut -o ~/dcn0/roles_data.yaml
```

Use the appropriate path to the roles data file.

With this enhancement, FreeIPA has DNS entries for the undercloud and overcloud nodes. DNS PTR records are necessary to generate certain types of certificates, particularly certificates for cinder active/active environments with etcd. You can disable this functionality with the `IdMModifyDNS` parameter in an environment file.

Previously, it was not possible to upgrade to TLS Everywhere in an existing deployment. With this update, you can secure the in-flight connections between internal OpenStack services without reinstallation.

You can use Atos Hardware Security Module (HSM) appliances in high availability (HA) mode with the Key Manager service (barbican). In Red Hat OpenStack Platform 16.1.2, this feature moves from Technology Preview to full support.

This release adds support for the Dell EMC PowerStore driver for the Block Storage service (cinder) back end.

This enhancement adds a new driver for the Dell EMC PowerStore to support Block Storage service back end servers.

This enhancement adds a new driver for the Dell EMC PowerStore to support Block Storage service back end servers.

This update introduces support of TLS Everywhere with Triple IPA for Distributed Compute Nodes (DCN).
The update introduces support of Networking service (neutron) routed provider networks with Distributed Compute Nodes (DCN).

Red Hat OpenStack Platform (RHOSP) 16.1 includes support for deploying the overcloud on an IPv6 provisioning network. For more information, see Configuring a custom IPv6 provisioning network, in the Bare Metal Provisioning guide. In RHOSP 16.1.2 this feature has graduated from Technology Preview to full support.

Red Hat OpenStack Platform (RHOSP) 16.1 includes support for bare metal provisioning over an IPv6 provisioning network for BMaaS (Bare Metal as-a-Service) tenants. In RHOSP 16.1.2, this feature has graduated from Technology Preview to full support.

3.3.3. Technology Preview

The items listed in this section are provided as Technology Previews. For further information on the scope of Technology Preview status, and the associated support implications, refer to https://access.redhat.com/support/offerings/techpreview/.

This update includes support for both TCP and UDP protocols on the same load-balancer listener for OVN Provider driver.

RHOSP 16.1.2 introduces a technology preview of the AMD EPYC 2 (Rome) platform with the UEFI setting NPS (Numa Per Socket) set to 1. Other values of NPS (2 or 4) are used in DPDK benchmarks to reach the platform peak performances, without OpenStack, on bare metal.

Red Hat continues to evaluate the operational trade-off of NPS=2 or NPS=4 with OpenStack. This configuration exposes multiple Numa nodes per socket.

Red Hat OpenStack Platform 16.1.2 introduces a technology preview of OVN and OVS-DPDK colocated with SR-IOV on the same hypervisor. For related issues, see:

https://bugzilla.redhat.com/show_bug.cgi?id=1575512 and
https://bugzilla.redhat.com/show_bug.cgi?id=1575512

Red Hat OpenStack Platform 16.1.2 introduces a technology preview of OVN with OVS TC Flower.
Red Hat OpenStack Platform 16.1.2 introduces a technology preview of OVN with OVS TC Flower-based offloads.
Note that VXLAN is not supported by OVN for regular inter-chassis communication. Thus, VXLAN with Hardware offload using OVN is not supported. See https://bugzilla.redhat.com/show_bug.cgi?id=1881704.

3.3.4. Release Notes

This section outlines important details about the release, including recommended practices and notable changes to Red Hat OpenStack Platform. You must take this information into account to ensure the best possible outcomes for your deployment.

BZ#1790756
With this release, a new feature has been added for the Shared File Systems service (manila) for IPv6 to work in the CephFS NFS driver. This feature requires Red Hat Ceph Storage 4.1.

BZ#1808583
Red Hat OpenStack Platform 16.1 includes the following PowerMax Driver updates:

Feature updates:
- PowerMax Driver - Unisphere storage group/array tagging support
- PowerMax Driver - Short host name and port group name override
- PowerMax Driver - SRDF Enhancement
- PowerMax Driver - Support of Multiple Replication

Bug fixes:
- PowerMax Driver - Debug Metadata Fix
- PowerMax Driver - Volume group delete failure
- PowerMax Driver - Setting minimum Unisphere version to 9.1.0.5
- PowerMax Driver - Unmanage Snapshot Delete Fix
- PowerMax Driver - RDF clean snapvx target fix
- PowerMax Driver - Get Manageable Volumes Fix
- PowerMax Driver - Print extend volume info
- PowerMax Driver - Legacy volume not found
- PowerMax Driver - Safeguarding retype to some in-use replicated modes
- PowerMax Driver - Replication array serial check
- PowerMax Driver - Support of Multiple Replication
- PowerMax Driver - Update single underscores
- PowerMax Driver - SRDF Replication Fixes
- PowerMax Driver - Replication Metadata Fix
In this update, the Red Hat OpenStack Platform (RHOSP) Orchestration service (heat) now enables you to deploy multiple Dell EMC XtremIO back ends with any combination of storage protocols for the Block Storage service (cinder).

A new heat parameter, `CinderXtremioStorageProtocol`, now enables you to choose between Fibre Channel (FC) or iSCSI storage protocols.

A new heat template enables you to deploy more than one Xtremio back end.

Previously, RHOSP director only supported one iSCSI back end for the Block Storage service. (The legacy iSCSI-only heat template will be deprecated in a future RHOSP release).

Red Hat OpenStack Platform 16.1.2 includes Orchestration service (heat) template support for the VXFlexOS driver for Block Storage service (cinder) back ends.

Red Hat OpenStack Platform 16.1.2 includes support for Dell EMC Storage Center (SC) back ends for the Block Storage service (cinder). The SC back end driver now supports both iSCSI and FC protocols, and can also support multiple back ends. You can use the `CinderScBackendName` parameter to list back ends, and the `CinderScMultiConfig` parameter to specify parameter values for each back end. For an example configuration file, see `environments/cinder-dellemc-sc-config.yaml`.

PowerMax configuration options have changed after Red Hat OpenStack Platform 10 (newton). This update includes the latest PowerMax configuration options and supports both iSCSI and FC protocols.

The `CinderPowermaxBackend` parameter also supports multiple back ends. The `CinderPowermaxBackendName` supports a list of back ends, and you can use the new `CinderPowermaxMultiConfig` parameter to specify parameter values for each back end. For example syntax, see `environments/cinder-dellemc-powermax-config.yaml`.
BZ#1853450
Red Hat OpenStack Platform 16.1.2 includes Puppet support (puppet-cinder module) for the VXFlexOS driver for Block Storage service (cinder) back ends.

BZ#1853454
Red Hat OpenStack Platform 16.1.2 includes Puppet support (puppet-tripleo module) for the VXFlexOS driver for Block Storage service (cinder) back ends.

BZ#1877688
This update safeguards against potential package content conflict after content was moved from openstack-tripleo-validations to another package.

3.3.5. Known Issues

These known issues exist in Red Hat OpenStack Platform at this time:

BZ#1547074
Transmission of jumbo UDP frames on ML2/OVN routers depends on a kernel release that is not yet available.
After receiving a jumbo UDP frame that exceeds the maximum transmission unit of the external network, ML2/OVN routers can return ICMP “fragmentation needed” packets back to the sending VM, where the sending application can break the payload into smaller packets. To determine the packet size, this feature depends on discovery of MTU limits along the south-to-north path.

South-to-north path MTU discovery requires kernel-4.18.0-193.20.1.el8_2, which is scheduled for availability in a future release. To track availability of the kernel version, see https://bugzilla.redhat.com/show_bug.cgi?id=1860169.

BZ#1623977
When you enable Load-balancing service instance (amphora) log offloading, both the administrative logs and the tenant logs are written to the same file (octavia-amphora.log). This is a known issue caused by an incorrect default value for the Orchestration service (heat) parameter, OctaviaTenantLogFacility. As a workaround, perform the following steps:
Set OctaviaTenantLogFacility to zero (0) in a custom environment file and run the openstack overcloud deploy command:

```
parameter_defaults:
    OctaviaLogOffload: true
    OctaviaTenantLogFacility: 0
...
```

For more information, see Modifying the overcloud environment

BZ#1733577
A known issue causes the migration of Ceph OSDs from FileStore to BlueStore to fail. In use cases where the osd_objectstore parameter was not set explicitly when you deployed Red Hat OpenStack Platform 13 with Red Hat Ceph Storage 3, the migration exits without converting any OSDs and falsely reports that the OSDs are already using BlueStore. For more information about the known issue, see https://bugzilla.redhat.com/show_bug.cgi?id=1875777
As a workaround, perform the following steps:

1. Include the following content in an environment file:
parameter_defaults:
- CephAnsibleExtraConfig:
 - osd_objectstore: filestore

2. Perform a stack update with the `overcloud deploy --stack-only` command, and include the new or existing environment file that contains the `osd_objectstore` parameter. In the following example, this environment file is `<osd_objectstore_environment_file>`. Also include any other environment files that you included during the converge step of the upgrade:

```bash
$ openstack overcloud deploy --stack-only \
  -e <osd_objectstore_environment_file> \
  -e <converge_step_environment_files>
```


Result: The FileStore to BlueStore playbook triggers the conversion process, and removes and re-creates the OSDs successfully.

BZ#1828889

There is a known issue where the OVN mechanism driver does not use the Networking service (neutron) database, but relies on the OVN database instead. As a result, the SR-IOV agent is registered in the Networking service database because it is outside of OVN. There is currently no workaround for this issue.

BZ#1837316

The keepalived instance in the Red Hat OpenStack Platform Load-balancing service (octavia) instance (amphora) can abnormally terminate and interrupt UDP traffic. The cause of this issue is that the timeout value for the UDP health monitor is too small.

Workaround: specify a new timeout value that is greater than two seconds:

```bash
$ openstack loadbalancer healthmonitor set --timeout 3 <heath_monitor_id>
```

For more information, search for "loadbalancer healthmonitor" in the Command Line Interface Reference.

BZ#1848462

Currently, on ML2/OVS and distributed virtual router (DVR) configurations, Open vSwitch (OVS) routes ICMPv6 traffic incorrectly, causing network outages on tenant networks. At this time, there is no workaround for this issue. If you have clouds that rely heavily on IPv6 and might experience issues caused by blocked ICMP traffic, such as pings, do not update to Red Hat OpenStack Platform 16.1 until this issue is fixed.

BZ#1861370

Enabling the `realtime-virtual-host` tuned profile inside guest virtual machines degrades throughput and displays non-deterministic performance. `ovs-dpdk` PMDs are pinned incorrectly to housekeeping CPUs.

As a workaround, use the `cpu-partitioning` tuned profile inside guest virtual machines, write a post-deployment script to update the `tuned.conf` file, and reboot the node:

```bash
ps_blacklist=ksoftirqd.*;rcuc.*;rcub.*;ktimersoftd.*;.*pmd.*;.*PMD.*;^DPDK;.*qemu-kvm.*
```
Currently, you cannot scale down or delete compute nodes if Red Hat OpenStack Platform is deployed with TLS Everywhere using tripleo-ipa. This is because the cleanup role, traditionally delegated to the undercloud as localhost, is now being invoked from the Workflow service (mistral) container.
For more information, see https://access.redhat.com/solutions/5336241

3.4. RED HAT OPENSTACK PLATFORM 16.1.3 MAINTENANCE RELEASE - DECEMBER 15, 2020

These release notes highlight bug fixes, recommended practices, known issues, and deprecated functionality to be taken into consideration when deploying this release of Red Hat OpenStack Platform.

3.4.1. Advisory List
This release includes the following advisories:

- **RHSA-2020:5411**
 Moderate: python-django-horizon security update

- **RHSA-2020:5412**
 Moderate: python-XStatic-jQuery224 security update

- **RHEA-2020:5413**
 Red Hat OpenStack Platform 16.1.3 bug fix and enhancement advisory

- **RHEA-2020:5414**
 Red Hat OpenStack Platform 16.1.3 director images bug fix advisory

- **RHEA-2020:5415**
 Red Hat OpenStack Platform 16.1.3 containers bug fix advisory

3.4.2. Bug Fix
This bug was fixed in this release of Red Hat OpenStack Platform:

- **BZ#1878492**
 Before this update, director maintained Identity service (keystone) catalog entries for Block Storage service’s (cinder) deprecated v1 API volume service, and the legacy Identity service endpoints were not compatible with recent enhancements to director’s endpoint validations. As a result, stack updates failed if a legacy volume service was present in the Identity service catalog. With this update, director automatically removes the legacy volume service and its associated endpoints. Stack updates no longer fail Identity service endpoint validation.

3.4.3. Enhancements
This release of Red Hat OpenStack Platform features the following enhancements:

- **BZ#1808577**
 This update supports the creation of volumes with tiering policy. There are four supported values:

 - **StartHighThenAuto** (default)
• Auto
• HighestAvailable
• LowestAvailable

BZ#1862541
This enhancement adds a new driver for the Dell EMC PowerStore to support Block Storage service back end servers. The new driver supports the FC and iSCSI protocols, and includes these features:

• Volume create and delete
• Volume attach and detach
• Snapshot create and delete
• Create volume from snapshot
• Get statistics on volumes
• Copy images to volumes
• Copy volumes to images
• Clone volumes
• Extend volumes
• Revert volumes to snapshots

BZ#1809930
With this enhancement, the `OvsDpdkCoreList` parameter is now optional. If you set `OvsDpdkCoreList`, you pin the `ovs-vswitchd` non-pmd threads to the first core that you list in the parameter. If you exclude `OvsDpdkCoreList`, you enable the `ovs-vswitchd` non-pmd threads to use any non-isolated cores.

3.4.4. Release Notes

This section outlines important details about the release, including recommended practices and notable changes to Red Hat OpenStack Platform. You must take this information into account to ensure the best possible outcomes for your deployment.

BZ#1856404
In this release, the `collectd-libpod-stats` plugin collects CPU and memory metrics for containers running in the overcloud.

BZ#1867222
With this release, the VxFlex OS driver is renamed to PowerFlex. Names of configuration options have been changed and removed. The `ScaleIO` name and related `sio_` configuration options have been deprecated.

BZ#1867225
In this release, VxFlex OS driver is rebranded to PowerFlex.

3.4.5. Known Issues
These known issues exist in Red Hat OpenStack Platform at this time:

BZ#1261083
Currently, LVM filter is not set unless at least one device is listed in the `LVMFilterAllowlist` parameter.
Workaround: Set the `LVMFilterAllowdisk` parameter to contain at least one device, for example, the root disk. The LVM filter is set in `/etc/lvm/lvm.conf`.

BZ#1852541
There is a known issue with the Object Storage service (swift). If you use pre-deployed nodes, you might encounter the following error message in `/var/log/containers/stdouts/swift_rsync.log`:
"failed to create pid file /var/run/rsyncd.pid: File exists"

Workaround: Enter the following command on all pre-deployed Controller nodes:

```
for d in $(podman inspect swift_rsync | jq '.[].GraphDriver.Data.UpperDir') /var/lib/config-data/puppet-generated/swift; do sed -i -e '/pid file/d' $d/etc/rsyncd.conf; done
```

BZ#1856999
The Ceph Dashboard currently does not work with the TLS Everywhere framework because the `dashboard_protocol` parameter was incorrectly omitted from the heat template. As a result, backends fail to appear when HAproxy is started.
As a temporary solution, create a new environment file that contains the `dashboard_protocol` parameter and include the environment file in your overcloud deployment with the `-e` option:

```
parameter_defaults:
  CephAnsibleExtraConfig:
    dashboard_protocol: 'https'
```

This solution introduces a ceph-ansible bug. For more information, see https://bugzilla.redhat.com/show_bug.cgi?id=1860815.

BZ#1879418
It is a known issue that the `openstack overcloud status` command might not return the correct status for a given stack name when multiple stacks exist. Instead, the status of the most recently deployed stack is always returned, regardless of the stack name. This can lead to failure reported for all stacks when it is only the most recently deployed stack that has failed.
Workaround: The true status of the deployment must be clear. For example, `openstack stack list` shows any overcloud deployment failures in the heat stage and the ansible deployment logs show failures in the config download stage.

BZ#1880979
Currently, a change in OSP13 puppet module kmod has resulted in the wrong module setting for `systemd-modules-load.service`. This is not an issue in OSP13 but results in failure during deployment in fast forward upgrade on OSP16.1.
Workaround: Enter the following command:

```
rm -f /etc/modules-load.d/nf_conntrack_proto_sctp.conf
```

BZ#1789822
Replacement of an overcloud Controller might cause swift rings to become inconsistent across nodes. This results in decreased availability of Object Storage service.
Workaround: Log in to the previously existing Controller node using SSH, deploy the updated rings, and restart the Object Storage containers:

```bash
(undercloud) [stack@undercloud-0 ~]$ source stackrc
(undercloud) [stack@undercloud-0 ~]$ nova list

...  
| 3fab687e-99c2-4e66-805f-3106fb41d868 | controller-1 | ACTIVE | - | Running | ctlplane=192.168.24.17 |
| a87276ea-8682-4f27-9426-6b272955b486 | controller-2 | ACTIVE | - | Running | ctlplane=192.168.24.38 |
| a000b156-9adc-4d37-8169-c1af7800788b | controller-3 | ACTIVE | - | Running | ctlplane=192.168.24.35 |
+
(undercloud) [stack@undercloud-0 ~]$ for ip in 192.168.24.17 192.168.24.38 192.168.24.35; do ssh $ip 'sudo podman restart swift_copy_rings ; sudo podman restart $(sudo podman ps -a --format="{{.Names}}" --filter="name=swift_*")'; done
```

BZ#1895887

After upgrading with the Leapp utility, Compute with OVS-DPDK workload does not function properly. To workaround this issue, perform one of the following steps:

- Remove the `/etc/modules-load.d/vfio-pci.conf` file before Compute upgrade.

or

- Restart `ovs-vswitchd` service on the Compute node after upgrade.

3.5. RED HAT OPENSTACK PLATFORM 16.1.4 MAINTENANCE RELEASE
- MARCH 17, 2021

These release notes highlight bug fixes, recommended practices, known issues, and deprecated functionality to be taken into consideration when deploying this release of Red Hat OpenStack Platform.

3.5.1. Advisory List

This release includes the following advisories:

RHSA-2021:0915
- Moderate: Red Hat OpenStack Platform 16.1.4 (python-django) security update

RHSA-2021:0916
- Moderate: Red Hat OpenStack Platform 16.1.4 (etcd) security update

RHBA-2021:0817
- Red Hat OpenStack Platform 16.1.4 director bug fix advisory

RHEA-2021:0918
- Red Hat OpenStack Platform 16.1.4 director images bug fix advisory

RHEA-2021:0919
- Red Hat OpenStack Platform 16.1.4 containers bug fix advisory

3.5.2. Bug Fixes
These bugs were fixed in this release of Red Hat OpenStack Platform:

BZ#1728142
Before this update, the --server option was being ignored when passed with the cinder service-get-log command, which resulted in the logs for all hosts being returned instead of just the logs for a specific host. With this update, using the --server option correctly filters the logs for the specified host.

BZ#1828889
Before this update, the OVN mechanism driver did not correctly merge its agent list with those stored in the Networking (neutron) service database. With this update, the results from the OVN and Networking service database are merged before the API returns the result.

BZ#1847907
The 'all_tenants' key passed with a volume transfer request is removed because the database is unable to parse it. Removing this key allows the user to show the detail of a specific volume transfer by using the transfer name. Before this update, the 'all_tenants' key was removed only for admin users, which meant that non-admin users were unable to show volume transfers by using the transfer name. With this update, the 'all_tenants' key is now also removed for non-admins, allowing non-admins to show volume transfers by using the transfer name.

BZ#1874936
Before this update, TLS-E on pre-provisioned nodes failed with the message: "--server cannot be used without providing --domain". With this update, the IDM domain name is detected by first resolving "ipa-ca" through DNS, then doing a reverse DNS lookup on the resulting IP address. It might be necessary to add the PTR record, which is required for the reverse lookup, manually.

BZ#1881476
Before this update, if a user configured the ContainerImagePrepare parameter to use a custom tag, such as 'tag: "latest"' or 'tag: "16.1"', instead of the standard 'tag_from_label: "[version]--[release]"', the containers did not update to the latest container images.
With this update, the container images are always fetched anytime a user runs a deployment action, including updates, and the image ID is checked against the running container to see if it needs to be rebuilt to consume the latest image. Containers are now always refreshed during deployment actions and restarted if they are updated.

NOTE
This is a change from previous versions where the deployment checked only that the image existed rather than always fetching the image. If a user is reusing tags, for example, "latest", the containers might be updated on nodes if you perform actions such as scaling out. It is not recommended to use "latest" unless you are controlling container tags by using a Satellite server deployment.

BZ#1884556
Before this update, you were required to use the openstack overcloud external-upgrade run --tags online_upgrade command to perform online database updates when upgrading from RHOSP 15 to RHOSP 16.1. With this update, you can now use the openstack overcloud external-update run --tags online_upgrade command.

BZ#1889228
Before this update, cloned encrypted volumes were inaccessible when using the Block Storage (cinder) service with the Key Manager (barbican) service. With this update, cloned encrypted volumes are now accessible when using the Block Storage service with the Key Manager service.

BZ#1898484
Before this update, the connection data created by an iSCSI/LVM Block Storage back end was not stored persistently, which resulted in volumes not being accessible after a reboot. With this update, the connection data is stored persistently, and the volumes are accessible after a system reboot.

BZ#1899761

Before this update, when deployed at an edge site the Image (glance) service was not configured to access the Key Manager (barbican) service running on the central site’s control plane. This resulted in the Image services running on edge sites being unable to access encryption keys stored in the Key Manager service.

With this update, Image services running on edge sites are now configured to access the encryption keys stored in the Key Manager service.

BZ#1901157

Before this update, in-place upgrades from Red Hat OpenStack Platform 13 to 16.1 in a TLS everywhere environment used an incorrect rabbitmq password for the novajoin container. This caused the novajoin container on the undercloud to function incorrectly, which caused any overcloud node that ran an upgrade to fail with the following error:

```
2020-11-24 20:01:31.569 7 ERROR join     (class_id, method_id), ConnectionError)
2020-11-24 20:01:31.569 7 ERROR join amqp.exceptions.AccessRefused: (0, 0): (403)
ACCESS_REFUSED - Login was refused using authentication mechanism AMQPLAIN. For detail see the broker logfile.
```

With this update, the upgrade from RHOSP 13 to 16.1 uses the correct rabbitmq password in a TLS everywhere environment so that the framework for upgrades can complete successfully.

BZ#1902142

Before this update, when you configured the `collectd::plugin::virt::hostname_format` parameter with multiple values, director wrapped the values in double quotes. This caused the virt plugin to fail to load. With this update, when configuring `collectd::plugin::virt::hostname_format`, director no longer wraps multiple values in double quotes.

BZ#1906698

Before this update, live migration failed when upgrading a TLS everywhere environment with local ephemeral storage and `UseTLSTransportForNbd` set to “False”. This occurred because the default value of the `UseTLSTransportForNbd` configuration had changed from “False” in RHOSP 13 to “True” in RHOSP 16.x, which resulted in the correct certifications not being included in the QEMU process containers.

With this update, director checks the configuration of the previously deployed environment for `global_config_settings` and uses it to ensure that the `UseTLSTransportForNbd` state stays the same in the upgrade as on previous deployment. If `global_config_settings` exists in the configuration file, then director checks the configuration of the `use_tls_for_nbd` key. If `global_config_settings` does not exist, director evaluates the hieradata key `nova::compute::libvirt::qemu::nbd_tls`. Keeping the `UseTLSTransportForNbd` state the same in the upgraded deployment as on previous deployment ensures that live migration works.

BZ#1909795

Before this update, a rebase in python-network-runner from 0.1.7 to 0.2.2 in OSP 16.1.3 caused ML2 Networking using Ansible to no longer function.

With this update, python-networking-ansible is reverted to 0.1.7, and Ansible networking returns to a functioning state.
For more information, see https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/bare_metal_provisioning/ml2-networking-ansible.

BZ#1910854
Before this update, the Block Storage (cinder) NEC back end driver occasionally returned invalid data when initializing a volume connection, which could cause live migration to fail. With this update, the NEC driver has been fixed to reliably return valid connection data. Live migration no longer fails due to invalid volume connection data.

BZ#1921735
Before this update, the Block Storage (cinder) service would always assign newly created volumes with the default volume type, even when the volume was created from another source, such as an image, snapshot or another volume. This resulted in volumes created from another source having a different volume type from the volume type of the source.
With this update, the default volume type is assigned only after determining whether it should be assigned based on the volume type of the source. The volume type of volumes created from another source now match the volume type of the source.

BZ#1929275
Before this update, instances that were created on a RHOSP 13 environment with PowerFlex, VxFlex and ScaleIO volume attachments failed restarting after an upgrade to RHOSP 16.x. This was because the RHOSP 16.x Compute service uses a new PowerFlex driver connection property to access volume attachments, which is not present in the connection properties of volumes attached to instances running on a RHOSP 13 environment. With this update, the error is no longer thrown if this connection property is missing, and instances with PowerFlex volume attachments created on a RHOSP 13 environment continue to function correctly after upgrading to RHOSP 16.x.

3.5.3. Enhancements
This release of Red Hat OpenStack Platform features the following enhancements:

BZ#1459187
Red Hat OpenStack Platform (RHOSP) 16.1 includes support for deploying the overcloud on an IPv6 provisioning network. For more information, see Configuring a custom IPv6 provisioning network in the Bare Metal Provisioning guide. In RHOSP 16.1.2 this feature graduated from Technology Preview to full support.

BZ#1474394
Red Hat OpenStack Platform (RHOSP) 16.1 includes support for bare metal provisioning over an IPv6 provisioning network for BMaaS (Bare Metal as-a-Service) tenants. In RHOSP 16.1.2, this feature has graduated from Technology Preview to full support.

BZ#1575512
With this enhancement, you can control multicast over the external networks and avoid cluster autoforming over external networks instead of only the internal networks.

BZ#1640742
With this enhancement, you can configure NVDIMM Compute nodes to provide persistent memory for instances. Using this feature, you can make the PMEM available to instances as virtual PMEM (vPMEM) by creating and configuring PMEM namespaces on Compute nodes that have NVDIMM hardware. Cloud users can then create instances that request vPMEM when they need the instance content to be retained after it is shut down.
Note: Due to the availability of daxio package only for x86_64 architecture, this feature is supported only on x86_64 Compute nodes.
BZ#1793595
With this enhancement, you can deploy the Red Hat Ceph Storage (RHCS) Dashboard on edge sites in a distributed compute node (DCN) architecture.

BZ#1834185
With this enhancement, you can manage vPMEM with two new parameters `NovaPMEMMappings` and `NovaPMEMNamespaces`.

- Use `NovaPMEMMappings` to set the nova configuration option `pmem_namespaces` that reflects mappings between vPMEM and physical PMEM namespaces.
- Use `NovaPMEMNamespaces` to create and manage physical PMEM namespaces that you use as a back end for vPMEM.

BZ#1844615
This enhancement adds support for using Open Virtual Network (OVN) with Network Functions Virtualization infrastructure (NFVi) for new deployments. This includes support for the following features:

- OVN with OVS-DPDK
- OVN with SR-IOV
- OVN with OVS TC Flower offload

Note: Migration from ML2/OVS to ML2/OVN is not yet supported for NFV deployments.

BZ#1846019
This enhancement adds support for vlan transparency in the ML2/OVN mechanism driver with vlan and geneve network type drivers.

With vlan transparency, you can manage vlan tags by using instances on Networking (neutron) service networks. You can create vlan interfaces on an instance and use any vlan tag without affecting other networks. The Networking service is not aware of these vlan tags.

Notes:

- When using vlan transparency on a vlan type network, the inner and outer ethertype of the packets is 802.1Q (0x8100).
- The ML2/OVN mechanism driver does not support vlan transparency on flat provider networks.

BZ#1878191
With this enhancement, you can configure the format of the plugin instance for the collectd virt plugin by using the `ExtraConfig` parameter `collectd::plugin::virt::plugin_instance_format`. This allows more granular metadata to be exposed in the metrics label for virtual machine instances, such as on which host the instance is running.

BZ#1882058
This enhancement adds support for heterogeneous storage configurations at the edge. Operators can now deploy edge sites with storage and sites without storage within the same DCN deployment.

BZ#1891828
The Block Storage backup service sometimes needs access to files on the host that would otherwise not be available in the container running the service. This enhancement adds the `CinderBackupOptVolumes` parameter, which you can use to specify additional container volume
mounts for the Block Storage backup service.

3.5.4. Release Notes

This section outlines important details about the release, including recommended practices and notable changes to Red Hat OpenStack Platform. You must take this information into account to ensure the best possible outcomes for your deployment.

BZ#1870199

The `virt-admin` tool is now available for you to use to capture logs for reporting RHOSP bugs. This tool is useful for troubleshooting all libvirt and QEMU problems, as the logs provide the communications between libvirt and QEMU on the Compute nodes. You can use `virt-admin` to set the libvirt and QEMU debug log filters dynamically, without having to restart the `nova_libvirt` container.

Perform the following steps to enable libvirt and QEMU log filters on a Compute node:

1. Log in to the `nova_libvirt` container on the Compute node:
   ```bash
   $ sudo podman exec -it nova_libvirt /bin/bash
   ```

2. Specify the name and location of the log file to send `virt-admin` output to:
   ```bash
   $ virt-admin daemon-log-outputs "1:file:/var/log/libvirt/libvirtd.log"
   ```

3. Configure the filters you want to collect logs for:
   ```bash
   $ virt-admin daemon-log-filters \
   ```

 NOTE

 When debugging issues with live migration, you must configure these filters on all source and destination Compute nodes.

4. Repeat your test. After debugging is complete, upload the `libvird.log` to a bug.

5. Disable the libvirt and QEMU log filters on the Compute nodes:
   ```bash
   $ virt-admin daemon-log-filters ""
   ```

6. To confirm that the filters are removed, enter the following command:
   ```bash
   $ virt-admin daemon-log-filters
   ```

 This command returns an empty list when you have successfully removed the filters.

3.5.5. Known Issues

These known issues exist in Red Hat OpenStack Platform at this time:

BZ#1866479
There is currently a known issue with the mechanism that ensures the subscribed environments have the right DNF module stream set. The Advanced Virtualization repository is not always available in the subscription that the Ceph nodes use, which causes the upgrade or update of a Ceph node to fail when you try to enable virt:8.2. For more information on the known issue, see https://bugzilla.redhat.com/show_bug.cgi?id=1923887.

Workaround:

Override the DnfStreams parameter in the upgrade or update environment file to prevent the Ceph upgrade from failing:

```yaml
parameter_defaults:
  ...
  DnfStreams: [{'module': 'container-tools', 'stream': '2.0'}]
```

NOTE
The Advanced Virtualization DNF stream is not enforced when you use this workaround.

BZ#1925078
Systems that use UEFI boot and a UEFI bootloader in OSPI3 might run into an UEFI issue that results in:

- `/etc/fstab` not being updated
- `grub-install` used incorrectly on EFI system

If your systems use UEFI, contact Red Hat Technical Support. For more information, see the Red Hat Knowledgebase solution FFU 13 to 16.1: Leapp fails to update the kernel on UEFI based systems and `/etc/fstab` does not contain the EFI partition.

BZ#1933268
There are currently known issues related to `[workarounds]/disable_native_luksv1` and `[workarounds]/rbd_volume_local_attach` configuration options. These options are provided only as a temporary workaround for known performance regressions within libgcrypt and librdb. These workaround options will be removed once the regressions are resolved in the underlying RHEL release used by RHOSP.

There are caveats associated with using either of these workaround options. Failure to adhere to these caveats can cause issues with RDB encrypted volumes. The caveats are as follows:

- A support exception must be granted from CEE before enabling these workaround options in your environment. A support exception is required to allow Red Hat to track use of the workaround and to help you remove these workaround options in the future when they are disabled.
- You must enable the workaround options across all Compute nodes in a given environment or host aggregate.
- No move operations are supported between Compute nodes that have these workarounds enabled and those that do not have these workarounds enabled.
- All existing instances on a Compute node that you want to enable these workarounds on must be stopped or migrated off the node before you enable the workarounds. You can restart the instances when the Compute service has been restarted with the workarounds enabled.
If you use a Red Hat Ceph Storage subscription and have configured director to use the overcloud-minimal image for Red Hat Ceph Storage nodes, the upgrade of the operating system for Red Hat Ceph Storage nodes might fail due to a Leapp limitation. To avoid this issue, after the system_upgrade run step, you must log in to the Red Hat Ceph Storage node to unset the RHEL minor release version, update to the latest available RHEL minor release version, and reboot the node.

If you use Red Hat Satellite Server to host RPM content for the Leapp upgrade, you must add the following 8.2 repositories to the Content View that you use:

- Red Hat Enterprise Linux 8 for x86_64 - AppStream (RPMs)

 rhel-8-for-x86_64-appstream-rpms
 x86_64 8.2

- Red Hat Enterprise Linux 8 for x86_64 - BaseOS (RPMs)

 rhel-8-for-x86_64-baseos-rpms
 x86_64 8.2

For more information, see https://bugzilla.redhat.com/show_bug.cgi?id=1936419

There is currently a known issue in ceph-ansible that prevents an ansible playbook from finishing successfully when it is used to deploy or update a Ceph Ganesha container that is configured to use an external, unmanaged Ceph cluster. This issue causes deployments, minor updates, or major upgrades of overclouds that use Ceph Ganesha with the Shared File Systems service (manila), and that are configured to use an external Ceph cluster, to fail.

Workaround:

If you conduct an upgrade or minor update to the overcloud, use ceph-ansible version 4.0.49.1 or later if your environment is configured to use Ceph Ganesha with the Shared File Systems service and an external Ceph cluster. Under these conditions, do not attempt the upgrade with a version of ceph-ansible earlier than 4.0.49.1 installed on the undercloud.

3.6. RED HAT OPENSTACK PLATFORM 16.1.5 MAINTENANCE RELEASE - MARCH 31, 2021

3.6.1. Advisory List

This release includes the following advisories:

RHBA-2021:1052
 Red Hat OpenStack Platform 16.1.5 bug fix and enhancement advisory

RHBA-2021:1053
 Red Hat OpenStack Platform 16.1.5 containers bug fix advisory

RHBA-2021:1054
3.7. RED HAT OPENSTACK PLATFORM 16.1.6 MAINTENANCE RELEASE
- MAY 27, 2021

These release notes highlight technology preview items, recommended practices, known issues, and deprecated functionality to be taken into consideration when deploying this release of Red Hat OpenStack Platform.

3.7.1. Advisory List

This release includes the following advisories:

RHBA-2021:2097::Red Hat OpenStack Platform 16.1.6 bug fix and enhancement advisory
RHSA-2021:2116::Moderate: Red Hat OpenStack Platform 16.1.6 (python-httplib2) security update
RHBA-2021:2117::Red Hat OpenStack Platform 16.1.6 containers bug fix advisory
RHBA-2021:2118::Red Hat OpenStack Platform 16.1.6 director images bug fix advisory
RHSA-2021:2119::Important: Red Hat OpenStack Platform 16.1.6 (tripleo-ansible) security update

3.7.2. Bug Fix

These bugs were fixed in this release of Red Hat OpenStack Platform:

BZ#1843788
This update fixes a bug that prevented cinder list from listing volumes when multiple filters were passed.

BZ#1868543
This update makes it possible to use OS::Heat:Delay resources in heat templates. Previously, a variable naming conflict caused an assertion error during attempted completion of an OS::Heat::Delay resource. A variable was renamed to eliminate the conflict.

BZ#1872314

When an instance is created, the Compute (nova) service sanitizes the instance display name to generate a valid host name when DNS integration is enabled in the Networking (neutron) service. Before this update, the sanitization did not replace periods (‘.’) in instance names, for example, ‘rhel-8.4’. This could result in display names being recognized as Fully Qualified Domain Names (FQDNs) which produced invalid host names. When instance names contained periods and DNS integration was enabled in the Networking service, the Networking service rejected the invalid host name, which resulted in a failure to create the instance and a HTTP 500 server error from the Compute service.

With this update, periods are now replaced by hyphens in instance names to prevent host names being parsed as FQDNs. You can continue to use free-form strings for instance display names.

BZ#1895045

This update fixes a bug that caused failure of validations before openstack undercloud upgrade in some cases. Before this upgrade, a lack of permissions needed to access the requested logging directory sometimes resulted in the following failures:

- Failure to log validation results
• Failure of the validation run
• Failure of artifacts collection from validation.
 This update adds a fallback logging directory. Validation results are logged and artifacts collected.

BZ#1905231
This update adds CHAP support to the Dell EMC PowerStore driver.

BZ#1910855
In prior releases, cinder NEC driver backups failed when the object was a snapshot. This occurred because the snapshot argument does not have the volume_attachment attribute. With this update, backups no longer refer to the volume_attachment attribute when the argument is snapshot.

BZ#1936419
This update fixes a configuration problem that caused Leapp upgrades to stop and fail while executing on a CephStorage node.
Previously, CephStorage nodes were incorrectly configured to consume OpenStack highavailability, advanced-virt, and fast-datapath repos during Leapp upgrades.

Now UpgradeLeappCommand options is configurable on a per-node basis, and uses the correct default for CephStorage nodes, and Leapp upgrades succeed for CephStorage nodes.

BZ#1939398
In prior releases, the SolidFire driver created a duplicate volume whenever it retried an API request. This led to unexpected behavior due to the accumulation of unused volumes.
With this update, the Block Storage service (cinder) checks for existing volume names before it creates a volume. When Block Storage service detects a read timeout, it immediately checks for volume creation to prevent invalid API calls. This update also adds the sf_volume_create_timeout option for the SolidFire driver so that you can set an appropriate timeout value for your environment.

BZ#1947474
This update fixes an issue that caused some API calls, such as create snapshot, to fail with an xNotPrimary error during workload re-balancing operations.
When SolidFire is under heavy load or being upgraded, the SolidFire cluster might re-balance cluster workload by automatically moving connections from primary to secondary nodes. Previously, some API calls failed with an xNotPrimary error during these workload balance operations and were not retried.

This update fixes the issue by adding the xNotPrimary exception to the SolidFire driver list of retryable exceptions.

3.7.3. Release Notes
This section outlines important details about the release, including recommended practices and notable changes to Red Hat OpenStack Platform. You must take this information into account to ensure the best possible outcomes for your deployment.

BZ#1546996
With this release, networking-ovn now supports QoS bandwidth limitation and DSCP marking rules with the Networking Service (neutron) QoS API.
CHAPTER 4. TECHNICAL NOTES

This chapter supplements the information contained in the text of Red Hat OpenStack Platform "Train" errata advisories released through the Content Delivery Network.

4.1. RHEA-2020:3148 – RED HAT OPENSTACK PLATFORM 16.1 GENERAL AVAILABILITY ADVISORY

The bugs contained in this section are addressed by advisory RHBA-2020:3148. Further information about this advisory is available at link: https://access.redhat.com/errata/RHBA-2020:3148.html.

Changes to the ansible-role-atos-hsm component:

- With this enhancement, you can use ATOS HSM deployment with HA mode. (BZ#1676989)

Changes to the collectd component:

- collectd 5.11 contains bug fixes and new plugins. For more information, see https://github.com/collectd/collectd/releases. (BZ#1738449)

Changes to the openstack-cinder component:

- With this enhancement, you can revert Block Storage (cinder) volumes to the most recent snapshot, if supported by the driver. This method of reverting a volume is more efficient than cloning from a snapshot and attaching a new volume. (BZ#1686001)
- Director can now deploy the Block Storage Service in an active/active mode. This deployment scenario is supported only for Edge use cases. (BZ#1700402)
- This update includes the following enhancements:
 - Support for revert-to-snapshot in VxFlex OS driver
 - Support for volume migration in VxFlex OS driver
 - Support for OpenStack volume replication v2.1 in VxFlex OS driver
 - Support for VxFlex OS 3.5 in the VxFlex OS driver

Changes to the openstack-designate component:

- DNS-as-a-Service (designate) returns to technology preview status in Red Hat OpenStack Platform 16.1. (BZ#1603440)

Changes to the openstack-glance component:

- The Image Service (glance) now supports multi stores with the Ceph RBD driver. (BZ#1225775)
- In Red Hat OpenStack Platform 16.1, you can use the Image service (glance) to copy existing image data into multiple stores with a single command. This removes the need for the operator to copy data manually and update image locations. (BZ#1758416)
- In Red Hat OpenStack Platform 16.1, you can use the Image Service (glance) to copy existing image data into multiple stores with a single command. This removes the need for the operator to copy data manually and update image locations. (BZ#1758420)
With this update, when using Image Service (glance) multi stores, the image owner can delete an Image copy from a specific store. (BZ#1758424)

Changes to the openstack-ironic component:

- A regression was introduced in ipmitool-1.8.18-11 that caused IPMI access to take over 2 minutes for certain BMCs that did not support the "Get Cipher Suites". As a result, introspection could fail and deployments could take much longer than previously.
 With this update, ipmitool retries are handled differently, introspection passes, and deployments succeed.

 NOTE
 This issue with ipmitool is resolved in ipmitool-1.8.18-17. (BZ#1831893)

Changes to the openstack-ironic-python-agent component:

- Before this update, there were no retries and no timeout when downloading a final instance image with the direct deploy interface in ironic. As a result, the deployment could fail if the server that hosts the image fails to respond.
 With this update, the image download process attempts 2 retries and has a connection timeout of 60 seconds. (BZ#1827721)

Changes to the openstack-neutron component:

- Before this update, it was not possible to deploy the overcloud in a Distributed Compute Node (DCN) or spine-leaf configuration with stateless IPv6 on the control plane. Deployments in this scenario failed during ironic node server provisioning. With this update, you can now deploy successfully with stateless IPv6 on the control plane. (BZ#1803989)

Changes to the openstack-tripleo-common component:

- When you update or upgrade `python3-tripleoclient`, Ansible does not receive the update or upgrade and Ansible or `ceph-ansible` tasks fail. When you update or upgrade, ensure that Ansible also receives the update so that playbook tasks can run successfully. (BZ#1852801)

- With this update, the Red Hat Ceph Storage dashboard uses Ceph 4.1 and a Grafana container based on `ceph4-rhel8`. (BZ#1814166)

- Before this update, during Red Hat Ceph Storage (RHCS) deployment, Red Hat OpenStack Platform (RHOSP) director generated the CephClusterFSID by passing the desired FSID to ceph-ansible and used the Python uuid1() function. With this update, director uses the Python uuid4() function, which generates UUIDs more randomly. (BZ#1784640)

Changes to the openstack-tripleo-heat-templates component:

- There is an incomplete definition for TLS in the Orchestration service (heat) when you update from 16.0 to 16.1, and the update fails.
 To prevent this failure, you must set the following parameter and value: `InternalTLSCAFile: "`. (BZ#1840640)

- With this enhancement, you can configure Red Hat OpenStack Platform to use an external, pre-existing Ceph RadosGW cluster. You can manage this cluster externally as an object-store for OpenStack guests. (BZ#1440926)
With this enhancement, you can use director to deploy the Image Service (glance) with multiple image stores. For example, in a Distributed Compute Node (DCN) or Edge deployment, you can store images at each site. (BZ#1598716)

With this enhancement, HTTP traffic that travels from the HAProxy load balancer to Red Hat Ceph Storage RadosGW instances is encrypted. (BZ#1701416)

With this update, you can deploy pre-provisioned nodes with TLSv using the new 'tripleo-ipa' method. (BZ#1740946)

Before this update, in deployments with an IPv6 internal API network, the Block Storage Service (cinder) and Compute Service (nova) were configured with a malformed glance-api endpoint URI. As a result, cinder and nova services located in a DCN or Edge deployment could not access the Image Service (glance). With this update, the IPv6 addresses in the glance-api endpoint URI are correct and the cinder and nova services at Edge sites can access the Image Service successfully. (BZ#1815928)

With this enhancement, FreeIPA has DNS entries for the undercloud and overcloud nodes. DNS PTR records are necessary to generate certain types of certificates, particularly certificates for cinder active/active environments with etcd. You can disable this functionality with the IdMModifyDNS parameter in an environment file. (BZ#1823932)

In this release of Red Hat OpenStack Platform, you can no longer customize the Red Hat Ceph Storage cluster admin keyring secret. Instead, the admin keyring secret is generated randomly during initial deployment. (BZ#1832405)

Before this update, stale neutron-haproxy-qdhcp-* containers remained after you deleted the related network. With this update, all related containers are cleaned correctly when you delete a network. (BZ#1832720)

Before this update, the ExtraConfigPre per_node script was not compatible with Python 3. As a result, the overcloud deployment failed at the step TASK [Run deployment NodeSpecificDeployment] with the message SyntaxError: invalid syntax. With this update, the ExtraConfigPre per_node script is compatible with Python 3 and you can provision custom per_node hieradata. (BZ#1832920)

With this update, the swift_rsync container runs in unprivileged mode. This makes the swift_rsync container more secure. (BZ#1807841)

PowerMax configuration options have changed since Newton. This update includes the latest PowerMax configuration options and supports both iSCSI and FC drivers. The CinderPowermaxBackend parameter also supports multiple back ends. CinderPowermaxBackendName supports a list of back ends, and you can use the new CinderPowermaxMultiConfig parameter to specify parameter values for each back end. For example syntax, see environments/cinder-dellemc-powermax-config.yaml. (BZ#1813393)

Support for Xtremio Cinder Backend
Updated the Xtremio cinder backend to support both iSCSI and FC drivers. It is also enhanced to support multiple backends. (BZ#1852082)

Red Hat OpenStack Platform 16.1 includes tripleo-heat-templates support for VXFlexOS Volume Backend. (BZ#1852084)

Red Hat OpenStack Platform 16.1 includes support for SC Cinder Backend. The SC Cinder back end now supports both iSCSI and FC drivers, and can also support multiple back ends. You can use the CinderScBackendName parameter to list back ends, and the CinderScMultiConfig option...
parameter to specify parameter values for each back end. For an example configuration file, see environments/cinder-dellemc-sc-config.yaml. (BZ#1852087)

- PowerMax configuration options have changed since Newton. This update includes the latest PowerMax configuration options and supports both iSCSI and FC drivers. The **CinderPowermaxBackend** parameter also supports multiple back ends. **CinderPowermaxBackendName** supports a list of back ends, and you can use the new **CinderPowermaxMultiConfig** parameter to specify parameter values for each back end. For example syntax, see environments/cinder-dellemc-powermax-config.yaml. (BZ#1852088)

Changes to the openstack-tripleo-validations component:

- Before this update, the data structure format that the `ceph osd stat -f json` command returns changed. As a result, the validation to stop the deployment unless a certain percentage of Red Hat Ceph Storage (RHCS) OSDs are running did not function correctly, and stopped the deployment regardless of how many OSDs were running.

 With this update, the new version of openstack-tripleo-validations computes the percentage of running RHCS OSDs correctly and the deployment stops early if a percentage of RHCS OSDs are not running. You can use the parameter **CephOsdPercentageMin** to customize the percentage of RHCS OSDs that must be running. The default value is 66%. Set this parameter to 0 to disable the validation. (BZ#1845079)

Changes to the puppet-cinder component:

- With this update, PowerMax configuration options are correct for iSCSI and FC drivers. For more information, see https://docs.openstack.org/cinder/latest/configuration/block-storage/drivers/dell-emc-powermax-driver.html (BZ#1813391)

Changes to the puppet-tripleo component:

- Before this update, the etcd service was not configured properly to run in a container. As a result, an error occurred when the service tried to create the TLS certificate. With this update, the etcd service runs in a container and can create the TLS certificate. (BZ#1804079)

Changes to the python-cinderclient component:

- Before this update, the latest volume attributes were not updated during poll, and the volume data was incorrect on the display screen. With this update, volume attributes update correctly during poll and the correct volume data appears on the display screen. (BZ#1594033)

Changes to the python-tripleoclient component:

- With this enhancement, you can use the `--limit`, `--skip-tags`, and `--tags` Ansible options in the openstack overcloud deploy command. This is particularly useful when you want to run the deployment on specific nodes, for example, during scale-up operations. (BZ#1767581)

- With this enhancement, there are new options in the openstack tripleo container image push command that you can use to provide credentials for the source registry. The new options are `--source-username` and `--source-password`. Before this update, you could not provide credentials when pushing a container image from a source registry that requires authentication. Instead, the only mechanism to push the container was to pull the image manually and push from the local system. (BZ#1811490)

- With this update, the **container_images_file** parameter is now a required option in the undercloud.conf file. You must set this parameter before you install the undercloud. With the recent move to use registry.redhat.io as the container source, you must authenticate when you fetch containers. For the undercloud, the **container_images_file** is the
recommended option to provide the credentials when you perform the installation. Before this update, if this parameter was not set, the deployment failed with authentication errors when trying to fetch containers. (BZ#1819016)

4.2. RHBA-2020:3542 — RED HAT OPENSTACK PLATFORM 16.1.1
GENERAL AVAILABILITY ADVISORY

The bugs contained in this section are addressed by advisory RHBA-2020:3542. Further information about this advisory is available at link: https://access.redhat.com/errata/RHBA-2020:3542.html.

Changes to the openstack-tripleo component:

- The overcloud deployment steps included an older Ansible syntax that tagged the tripleo-bootstrap and tripleo-ssh-known-hosts roles as common_roles. This older syntax caused Ansible to run tasks tagged with the common_roles when Ansible did not use the common_roles tag. This syntax resulted in errors during the 13 to 16.1 system_upgrade process.

This update uses a newer syntax to tag the tripleo-bootstrap and tripleo-ssh-known-hosts roles as common_roles. Errors do not appear during the 13 to 16.1 system_upgrade process and you no longer include the --playbook upgrade_steps_playbook.yaml option to the system_upgrade process as a workaround. (BZ#1851914)

Changes to the openstack-tripleo-heat-templates component:

- This update fixes a GRUB parameter naming convention that led to unpredictable behaviors on compute nodes during leapp upgrades.

Previously, the presence of the obsolete “TRIPELO” prefix on GRUB parameters caused problems.

The file /etc/default/grub has been updated with GRUB for the tripleo kernel args parameter so that leapp can upgrade it correctly. This is done by adding "upgrade_tasks" to the service "OS::TripleO::Services::BootParams", which is a new service added to all roles in the roles_data.yaml file. (BZ#1858673)

- This update fixes a problem that caused baremetal nodes to become non-responsive during Leapp upgrades.

Previously, Leapp did not process transient interfaces like SR-IOV virtual functions (VF) during migration. As a result, Leapp did not find the VF interfaces during the upgrade, and nodes entered an unrecoverable state.

Now the service "OS::TripleO::Services::NeutronSriovAgent" sets the physical function (PF) to remove all VFs, and migrates workloads before the upgrade. After the successful Leapp upgrade, os-net-config runs again with the "--no-activate" flag to re-establish the VFs. (BZ#1866372)

- This director enhancement automatically installs the Leapp utility on overcloud nodes to prepare for OpenStack upgrades. This enhancement includes two new Heat parameters: LeappRepolInitCommand and LeapplInitCommand. In addition, if you have the following repository defaults, you do not need to pass UpgradeLeappCommandOptions values.

--enablerepo rhel-8-for-x86_64-baseos-eus-rpms --enablerepo rhel-8-for-x86_64-appstream-eus-rpms --enablerepo rhel-8-for-x86_64-highavailability-eus-rpms --enablerepo advanced-virt-for-rhel-8-x86_64-rpms --enablerepo ansible-2.9-for-rhel-8-x86_64-rpms --enablerepo fast-datapath-for-rhel-8-x86_64-rpms

(BZ#1845726)
If you do not set the **UpgradeLevelNovaCompute** parameter to ", live migrations are not possible when you upgrade from RHOSP 13 to RHOSP 16. (BZ#1849235)

This update fixes a bug that prevented the successful deployment of transport layer security (TLS) everywhere with public TLS certifications. (BZ#1852620)

Before this update, director did not set the **noout** flag on Red Hat Ceph Storage OSDs before running a Leapp upgrade. As a result, additional time was required for the the OSDs to rebalance after the upgrade.

With this update, director sets the **noout** flag before the Leapp upgrade, which accelerates the upgrade process. Director also unsets the **noout** flag after the Leapp upgrade. (BZ#1853275)

Before this update, the Leapp upgrade could fail if you had any NFS shares mounted. Specifically, the nodes that run the Compute Service (nova) or the Image Service (glance) services hung if they used an NFS mount.

With this update, before the Leapp upgrade, director unmounts /var/lib/nova/instances, /var/lib/glance/images, and any Image Service staging area that you define with the **GlanceNodeStagingUri** parameter. (BZ#1853433)

Changes to the openstack-tripleo-validations component:

- This update fixes a Red Hat Ceph Storage (RHCS) version compatibility issue that caused failures during upgrades from Red Hat OpenStack platform 13 to 16.1. Before this fix, validations performed during the upgrade worked with RHCS3 clusters but not RHCS4 clusters. Now the validation works with both RHCS3 and RHCS4 clusters. (BZ#1852868)

Changes to the puppet-tripleo component:

- Before this update, the Red Hat Ceph Storage dashboard listener was created in the HA Proxy configuration, even if the dashboard is disabled. As a result, upgrades of OpenStack with Ceph could fail.

 With this update, the service definition has been updated to distinguish the Ceph MGR service from the dashboard service so that the dashboard service is not configured if it is not enabled and upgrades are successful. (BZ#1850991)

4.3. RHSA-2020:4283 – RED HAT OPENSTACK PLATFORM 16.1.2 GENERAL AVAILABILITY ADVISORY

The bugs contained in this section are addressed by advisory RHSA-2020:4283. Further information about this advisory is available at link: https://access.redhat.com/errata/RHSA-2020:4283.html.

Bug Fix(es):

- This update includes the following bug fix patches related to fully qualified domain names (FQDN).
 - **Kaminario Fix unique_fqdn_network option**

 Previously, the Kaminario driver accepted the unique_fqdn_network configuration option in the specific driver section. When this option was moved, a regression was introduced: the parameter was now only used if it was defined in the shared configuration group.

 This patch fixes the regression and makes it possible to define the option in the shared configuration group as well as the driver specific section.
 - **HPE 3PAR Support duplicated FQDN in network**
The 3PAR driver uses the FQDN of the node that is doing the attach as an unique identifier to map the volume.

Because the FQDN is not always unique, in some environments the same FQDN can be found in different systems. In those cases, if both try to attach volumes, the second system will fail.

For example, this could happen in a QA environment where VMs share names like controller-.localdomain and compute-0.localdomain.

This patch adds the `unique_fqdn_network` configuration option to the 3PAR driver to prevent failures caused by name duplication between systems. (BZ#1721361) (BZ#1721361)

- This update makes it possible to run the Brocade FCZM driver in RHOSP 16. The Brocade FCZM vendor chose not to update the driver for Python 3, and discontinued support of the driver past the Train release of OpenStack [1]. Red Hat OpenStack (RHOSP) 16 uses Python 3.6.

The upstream Cinder community assumed the maintenance of the Brocade FCZM driver on a best-effort basis, and the bugs that prevented the Brocade FCZM from running in a Python 3 environment (and hence in RHOSP 16) have been fixed.

[1] https://docs.broadcom.com/doc/12397527 (BZ#1848420)

- This update fixes a problem that caused volume attachments to fail on a VxFlexOS cinder backend. Previously, attempts to attach a volume on a VxFlexOS cinder backend failed because the cinder driver for the VxFlexOS back end did not include all of the information required to connect to the volume.

The VxFlexOS cinder driver has been updated to include all the information required in order to connect to a volume. The attachments now work correctly. (BZ#1862213)

- This enhancement introduces support for the revert-to-snapshot feature with the Block Storage (cinder) RBD driver. (BZ#1702234)

- Red Hat OpenStack Platform 16.1 includes the following PowerMax Driver updates:

 Feature updates:
 - PowerMax Driver - Unisphere storage group/array tagging support
 - PowerMax Driver - Short host name and port group name override
 - PowerMax Driver - SRDF Enhancement
 - PowerMax Driver - Support of Multiple Replication

 Bug fixes:
 - PowerMax Driver - Debug Metadata Fix
 - PowerMax Driver - Volume group delete failure
 - PowerMax Driver - Setting minimum Unisphere version to 9.1.0.5
 - PowerMax Driver - Unmanage Snapshot Delete Fix
 - PowerMax Driver - RDF clean snapvx target fix
Before this update, the Block Storage service (cinder) assigned the default volume type in a `volume create` request, ignoring alternative methods of specifying the volume type. With this update, the Block Storage service performs as expected:

- If you specify a `source_volid` in the request, the volume type that the Block Storage service sets is the volume type of the source volume.

- If you specify a `snapshot_id` in the request, the volume type is inferred from the volume type of the snapshot.

- If you specify an `imageRef` in the request, and the image has a `cinder_img_volume_type` image property, the volume type is inferred from the value of the image property. Otherwise, Block Storage service sets the volume type is the default volume type that you configure. If you do not configure a volume type, the Block Storage service uses the system default volume type, `DEFAULT`.
When you specify a volume type explicitly in the `volume create` request, the Block Storage service uses the type that you specify. (BZ#1826741)

- Before this update, when you created a volume from a snapshot, the operation could fail because the Block Storage service (cinder) would try to assign the default volume type to the new volume instead of inferring the correct volume type from the snapshot. With this update, you no longer have to specify the volume type when you create a volume. (BZ#1843789)

- This enhancement adds a new driver for the Dell EMC PowerStore to support Block Storage service back end servers. The new driver supports the FC and iSCSI protocols, and includes these features:
 - Volume create and delete
 - Volume attach and detach
 - Snapshot create and delete
 - Create volume from snapshot
 - Get statistics on volumes
 - Copy images to volumes
 - Copy volumes to images
 - Clone volumes
 - Extend volumes
 - Revert volumes to snapshots (BZ#1862541)

4.4. RHEA-2020:4284 — RED HAT OPENSTACK PLATFORM 16.1.2
GENERAL AVAILABILITY ADVISORY

The bugs contained in this section are addressed by advisory RHEA-2020:4284. Further information about this advisory is available at link: https://access.redhat.com/errata/RHEA-2020:4284.html.

Changes to the openstack-nova component:

- This bug fix enables you to boot an instance from an encrypted volume when that volume was created from an image that in turn was created by uploading an encrypted volume to the Image Service as an image. (BZ#1879190)

Changes to the openstack-octavia component:

- The keepalived instance in the Red Hat OpenStack Platform Load-balancing service (octavia) instance (amphora) can abnormally terminate and interrupt UDP traffic. The cause of this issue is that the timeout value for the UDP health monitor is too small. Workaround: specify a new timeout value that is greater than two seconds: `$ openstack loadbalancer healthmonitor set --timeout 3 <health_monitor_id>`

 For more information, search for “loadbalancer healthmonitor” in the Command Line Interface Reference. (BZ#1837316)

Changes to the openstack-tripleo-heat-templates component:
A known issue causes the migration of Ceph OSDs from Filestore to Bluestore to fail. In use cases where the `osd_objectstore` parameter was not set explicitly when you deployed OSP13 with RHCS3, the migration exits without converting any OSDs and falsely reports that the OSDs are already using Bluestore. For more information about the known issue, see https://bugzilla.redhat.com/show_bug.cgi?id=1875777

As a workaround, perform the following steps:

1. Include the following content in an environment file:

```yaml
parameter_defaults:
  CephAnsibleExtraConfig:
    osd_objectstore: filestore
```

2. Perform a stack update with the `overcloud deploy --stack-only` command, and include the new or existing environment file that contains the `osd_objectstore` parameter. In the following example, this environment file is `<osd_objectstore_environment_file>`. Also include any other environment files that you included during the converge step of the upgrade:

```bash
$ openstack overcloud deploy --stack-only \
  -e <osd_objectstore_environment_file> \
  -e <converge_step_environment_files>
```


 Result: The Filestore to Bluestore playbook triggers the conversion process, and removes and re-creates the OSDs successfully. (BZ#1733577)

- Inadequate timeout values can cause an overcloud deployment to fail after four hours. To prevent these timeout failures, set the following undercloud and overcloud timeout parameters:

- **Undercloud timeouts (seconds):**

 Example

  ```yaml
  parameter_defaults:
    TokenExpiration: 86400
    ZaqarWsTimeout: 86400
  ```

- **Overcloud deploy timeouts (minutes):**

 Example

  ```bash
  $ openstack overcloud deploy --timeout 1440
  ```

 The timeouts are now set. (BZ#1792500)

- Currently, you cannot scale down or delete compute nodes if Red Hat OpenStack Platform is deployed with TLS-e using tripleo-ipa. This is because the cleanup role, traditionally delegated to the undercloud as localhost, is now being invoked from the mistral container.

 For more information, see https://access.redhat.com/solutions/5336241 (BZ#1866562)
This update fixes a bug that prevented the distributed compute nodes (DCN) compute service from accessing the glance service. Previously, distributed compute nodes were configured with a glance endpoint URI that specified an IP address, even when deployed with internal transport layer security (TLS). Because TLS requires the endpoint URI to specify a fully qualified domain name (FQDN), the compute service could not access the glance service.

Now, when deployed with internal TLS, DCN services are configured with glance endpoint URI that specifies a FQDN, and the DCN compute service can access the glance service. (BZ#1873329)

This update introduces support of Distributed Compute Nodes TLS everywhere with Triple IPA. (BZ#1874847)

The update introduces support of Neutron routed provider networks with RH-OSP Distributed Compute Nodes (BZ#1874863)

This update adds support for encrypted volumes and images on distributed compute nodes (DCN). DCN nodes can now access the Key Manager service (barbican) running in the central control plane.

NOTE

This feature adds a new Key Manager client service to all DCN roles. To implement the feature, regenerate the `roles.yaml` file used for the DCN site's deployment.

For example:

```bash
$ openstack overcloud roles generate DistributedComputeHCI DistributedComputeHCI ScaleOut -o ~/dcn0/roles_data.yaml
```

Use the appropriate path to the roles data file. (BZ#1852851)

Before this update, to successfully run a leapp upgrade during the fast forward upgrade (FFU) from RHOSP 13 to RHOSP16.1, the node where the Red Hat Enterprise Linux upgrade was occurring had to have the `PermitRootLogin` field defined in the ssh config file (`/etc/ssh/sshd_config`). With this update, the Orchestration service (heat) no longer requires you to modify `/etc/ssh/sshd_config` with the `PermitRootLogin` field. (BZ#1855751)

This enhancement adds a new driver for the Dell EMC PowerStore to support Block Storage service back end servers. (BZ#1862547)

Changes to the openstack-tripleo-validations component:

- This update safeguards against potential package content conflict after content was moved from `openstack-tripleo-validations` to another package. (BZ#1877688)

Changes to the puppet-cinder component:

- This release adds support for the Dell EMC PowerStore Cinder Backend Driver. (BZ#1862545)

Changes to the puppet-tripleo component:
• This enhancement adds a new driver for the Dell EMC PowerStore to support Block Storage service back end servers. (BZ#1862546)

• This update fixes incorrect parameter names in Dell EMC Storage Templates. (BZ#1868620)

Changes to the python-networking-ovn component:

• Transmission of jumbo UDP frames on ML2/OVN routers depends on a kernel release that is not yet available.
 After receiving a jumbo UDP frame that exceeds the maximum transmission unit of the external network, ML2/OVN routers can return ICMP "fragmentation needed" packets back to the sending VM, where the sending application can break the payload into smaller packets. To determine the packet size, this feature depends on discovery of MTU limits along the south-to-north path.

 South-to-north path MTU discovery requires kernel-4.18.0-193.20.1.el8_2, which is scheduled for availability in a future release. To track availability of the kernel version, see https://bugzilla.redhat.com/show_bug.cgi?id=1860169. (BZ#1547074)

Changes to the python-os-brick component:

• This update modifies get_device_info to use lsscsi to get [H:C:T:L] values, making it possible to support more than 255 logical unit numbers (LUNs) and host logical unit (HLU) ID values. Previously, get_device_info used sg_scan to get these values, with a limit of 255.

 You can get two device types with get_device_info:

 o /dev/disk/by-path/xxx, which is a symlink to /dev/sdX

 o /dev/sdX

 sg_scan can process any device name, but lsscsi only shows /dev/sdx names.

 If the device is a symlink, get_device_info uses the device name that the device links to. Otherwise get_device_info uses the device name directly.

 Then get_device_info gets the device info '[H:C:T:L]' by comparing the device name with the last column of lsscsi output. (BZ#1872211)

• This update fixes an incompatibility that caused VxFlex volume detachment attempts to fail. A recent change in VxFlex cinder volume credentialing methods was not backward compatible with pre-existing volume attachments. If a VxFlex volume attachment was made before the credentialing method change, attempts to detach the volume failed.

 Now the detachments do not fail. (BZ#1869346)

Changes to the python-tripleoclient component:

• The entry in /etc/hosts for the undercloud duplicates anytime the Compute stack is updated on the undercloud and overcloud nodes. This occurs for split-stack deployments where the Controllers and Compute nodes are divided into multiple stacks.
 Other indications of this problem are the following:

 o mysql reporting errors about packets exceeding their maximum size.

 o The Orchestration service (heat) warning that templates are exceeding their maximum size.

 o The Workflow service (mistral) warning that fields are exceeding their maximum size. As a
workaround, in the file generated by running the `openstack overcloud export` command that is included in the Compute stack, under **ExtraHostFileEntries**, remove the erroneous entry for the undercloud. (BZ#1876153)

Changes to the tripleo-ansible component:

- This update increases the speed of stack updates in certain cases. Previously, stack update performance was degraded when the Ansible `--limit` option was not passed to ceph-ansible. During a stack update, ceph-ansible sometimes made idempotent updates on nodes even if the `--limit` argument was used.

Now director intercepts the Ansible `--limit` option and passes it to the ceph-ansible execution. The `--limit` option passed to commands starting with 'openstack overcloud' deploy is passed to the ceph-ansible execution to reduce the time required for stack updates.

IMPORTANT

Always include the undercloud in the limit list when using this feature with ceph-ansible. (BZ#1855112)

4.5. RHBA-2021:0817 — RED HAT OPENSTACK PLATFORM 16.1.4 DIRECTORY BUG FIX ADVISORY

The bugs contained in this section are addressed by advisory RHBA-2021:0817. Further information about this advisory is available at link: `https://access.redhat.com/errata/RHBA-2021:0817.html`.

Changes to the openstack-cinder component:

- Before this update, cloned encrypted volumes were inaccessible when using the Block Storage (cinder) service with the Key Manager (barbican) service. With this update, cloned encrypted volumes are now accessible when using the Block Storage service with the Key Manager service. (BZ#1889228)

- The 'all_tenants' key passed with a volume transfer request is removed because the database is unable to parse it. Removing this key allows the user to show the detail of a specific volume transfer by using the transfer name. Before this update, the 'all_tenants' key was removed only for admin users, which meant that non-admin users were unable to show volume transfers by using the transfer name. With this update, the 'all_tenants' key is now also removed for non-admins, allowing non-admins to show volume transfers by using the transfer name. (BZ#1847907)

- Before this update, the Block Storage (cinder) NEC back end driver occasionally returned invalid data when initializing a volume connection, which could cause live migration to fail. With this update, the NEC driver has been fixed to reliably return valid connection data. Live migration no longer fails due to invalid volume connection data. (BZ#1910854)

- Before this update, the Block Storage (cinder) service would always assign newly created volumes with the default volume type, even when the volume was created from another source, such as an image, snapshot or another volume. This resulted in volumes created from another source having a different volume type from the volume type of the source. With this update, the default volume type is assigned only after determining whether it should be assigned based on the volume type of the source. The volume type of volumes created from another source now match the volume type of the source. (BZ#1921735)

- Before this update, the `--server` option was being ignored when passed with the `cinder`
service-get-log command, which resulted in the logs for all hosts being returned instead of just the logs for a specific host. With this update, using the --server option correctly filters the logs for the specified host. (BZ#1728142)

Changes to the openstack-tripleo-common component:

- The virt-admin tool is now available for you to use to capture logs for reporting RHOSP bugs. This tool is useful for troubleshooting all libvirt and QEMU problems, as the logs provide the communications between libvirt and QEMU on the Compute nodes. You can use virt-admin to set the libvirt and QEMU debug log filters dynamically, without having to restart the nova_libvirt container.

Perform the following steps to enable libvirt and QEMU log filters on a Compute node:

1. Log in to the nova_libvirt container on the Compute node:

```
$ sudo podman exec -it nova_libvirt /bin/bash
```

2. Specify the name and location of the log file to send virt-admin output to:

```
$ virt-admin daemon-log-outputs "1:file:/var/log/libvirt/libvirtd.log"
```

3. Configure the filters you want to collect logs for:

```
$ virt-admin daemon-log-filters \
```

NOTE

When debugging issues with live migration, you must configure these filters on all source and destination Compute nodes.

4. Repeat your test. After debugging is complete, upload the libvirtd.log to a bug.

5. Disable the libvirt and QEMU log filters on the Compute nodes:

```
$ virt-admin daemon-log-filters ""
```

6. To confirm that the filters are removed, enter the following command:

```
$ virt-admin daemon-log-filters
```

This command returns an empty list when you have successfully removed the filters.

(BZ#1870199)

Changes to the openstack-tripleo-heat-templates component:

- Before this update, in-place upgrades from Red Hat OpenStack Platform 13 to 16.1 in a TLS everywhere environment used an incorrect rabbitmq password for the novajoin container. This caused the novajoin container on the undercloud to function incorrectly, which caused any overcloud node that ran an upgrade to fail with the following error:

```
```
With this update, the upgrade from RHOSP 13 to 16.1 uses the correct rabbitmq password in a TLS everywhere environment so that the framework for upgrades can complete successfully. (BZ#1901157)

• With this enhancement, you can deploy the Red Hat Ceph Storage (RHCS) Dashboard on edge sites in a distributed compute node (DCN) architecture. (BZ#1793595)

• With this enhancement, you can manage vPMEM with two new parameters `NovaPMEMMappings` and `NovaPMEMNamespaces`.

 • Use `NovaPMEMMappings` to set the nova configuration option `pmem_namespaces` that reflects mappings between vPMEM and physical PMEM namespaces.

 • Use `NovaPMEMNamespaces` to create and manage physical PMEM namespaces that you use as a back end for vPMEM. (BZ#1834185)

• There is currently a known issue with the mechanism that ensures the subscribed environments have the right DNF module stream set. The Advanced Virtualization repository is not always available in the subscription that the Ceph nodes use, which causes the upgrade or update of a Ceph node to fail when you try to enable virt:8.2.

 Workaround:

 Override the `DnfStreams` parameter in the upgrade or update environment file to prevent the Ceph upgrade from failing:

  ```
  parameter_defaults:
    ...
    DnfStreams: [{'module': 'container-tools', 'stream': '2.0'}]
  ```

 NOTE

 The Advanced Virtualization DNF stream is not enforced when you use this workaround.

 For more information, see https://bugzilla.redhat.com/show_bug.cgi?id=1923887. (BZ#1866479)

• This enhancement adds support for heterogeneous storage configurations at the edge. Operators can now deploy edge sites with storage and sites without storage within the same DCN deployment. (BZ#1882058)

• The Block Storage backup service sometimes needs access to files on the host that would otherwise not be available in the container running the service. This enhancement adds the `CinderBackupOptVolumes` parameter, which you can use to specify additional container volume mounts for the Block Storage backup service. (BZ#1891828)

• Before this update, TLS-E on pre-provisioned nodes failed with the message: "--server cannot be used without providing --domain". With this update, the IDM domain name is detected by first resolving "ipa-ca" through DNS, then doing a reverse DNS lookup on the resulting IP
address. It might be necessary to add the PTR record, which is required for the reverse lookup, manually. (BZ#1874936)

- Before this update, you were required to use the `openstack overcloud external-upgrade run -tags online_upgrade` command to perform online database updates when upgrading from RHOSP 15 to RHOSP 16.1. With this update, you can now use the `openstack overcloud external-update run --tags online_upgrade` command. (BZ#1884556)

- Before this update, if you had `NovaComputeEnableKsm` enabled and you were using Red Hat Subscription Management to register the overcloud Compute nodes, the `qemu-kvm-common` package failed to install. This was because the configuration was sometimes applied before the Compute nodes were registered to the required repositories. With this update, `NovaComputeEnableKsm` is enabled only after the Compute nodes are registered to the required repositories by using Red Hat Subscription Management, which ensures that the `qemu-kvm-common` package is successfully installed. (BZ#1895894)

- Before this update, the connection data created by an iSCSI/LVM Block Storage back end was not stored persistently, which resulted in volumes not being accessible after a reboot. With this update, the connection data is stored persistently, and the volumes are accessible after a system reboot. (BZ#1898484)

- Before this update, when deployed at an edge site the Image (glance) service was not configured to access the Key Manager (barbican) service running on the central site’s control plane. This resulted in the Image services running on edge sites being unable to access encryption keys stored in the Key Manager service. With this update, Image services running on edge sites are now configured to access the encryption keys stored in the Key Manager service. (BZ#1899761)

Changes to the puppet-collectd component:

- With this enhancement, you can configure the format of the plugin instance for the collectd virt plugin by using the `ExtraConfig` parameter `collectd::plugin::virt::plugin_instance_format`. This allows more granular metadata to be exposed in the metrics label for virtual machine instances, such as on which host the instance is running. (BZ#1878191)

- Before this update, when you configured the `collectd::plugin::virt::hostname_format` parameter with multiple values, director wrapped the values in double quotes. This caused the virt plugin to fail to load. With this update, when configuring `collectd::plugin::virt::hostname_format`, director no longer wraps multiple values in double quotes. (BZ#1902142)

Changes to the python-network-runner component:

- Before this update, a rebase in python-network-runner from 0.1.7 to 0.2.2 in OSP 16.1.3 caused ML2 Networking using Ansible to no longer function. With this update, python-networking-ansible is reverted to 0.1.7, and Ansible networking returns to a functioning state. For more information, see https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/bare_metal_provisioning/ml2-networking-ansible. (BZ#1909795)

Changes to the python-networking-ovn component:

- With this enhancement, you can control multicast over the external networks and avoid cluster autoforming over external networks instead of only the internal networks. (BZ#1575512)
Before this update, the OVN mechanism driver did not correctly merge its agent list with those stored in the Networking (neutron) service database. With this update, the results from the OVN and Networking service database are merged before the API returns the result. (BZ#1828889)

This enhancement adds support for vlan transparency in the ML2/OVN mechanism driver with vlan and geneve network type drivers. With vlan transparency, you can manage vlan tags by using instances on Networking (neutron) service networks. You can create vlan interfaces on an instance and use any vlan tag without affecting other networks. The Networking service is not aware of these vlan tags.

NOTE

When using vlan transparency on a vlan type network, the inner and outer ethertype of the packets is 802.1Q (0x8100).

The ML2/OVN mechanism driver does not support vlan transparency on flat provider networks. (BZ#1846019)

Changes to the python-os-brick component:

Before this update, instances that were created on a RHOSP 13 environment with PowerFlex, VxFlex and ScaleIO volume attachments failed restarting after an upgrade to RHOSP 16.x. This was because the RHOSP 16.x Compute service uses a new PowerFlex driver connection property to access volume attachments, which is not present in the connection properties of volumes attached to instances running on a RHOSP 13 environment. With this update, the error is no longer thrown if this connection property is missing, and instances with PowerFlex volume attachments created on a RHOSP 13 environment continue to function correctly after upgrading to RHOSP 16.x.

Changes to the python-paunch component:

Before this update, if a user configured the `ContainerImagePrepare` parameter to use a custom tag, such as `tag: "latest"` or `tag: "16.1"`, instead of the standard `tag_from_label: "{version}-{release}"`, the containers did not update to the latest container images. With this update, the container images are always fetched anytime a user runs a deployment action, including updates, and the image ID is checked against the running container to see if it needs to be rebuilt to consume the latest image. Containers are now always refreshed during deployment actions and restarted if they are updated.

NOTE

This is a change from previous versions where the deployment checked only that the image existed rather than always fetching the image. If a user is reusing tags, for example, "latest", the containers might be updated on nodes if you perform actions such as scaling out. It is not recommended to use "latest" unless you are controlling container tags by using a Satellite server deployment.

(BZ#1881476)

Changes to the python-tripleoclient component:

Before this update, live migration failed when upgrading a TLS everywhere environment with local ephemeral storage and `UseTLSTransportForNbd` set to "False". This occurred because the default value of the `UseTLSTransportForNbd` configuration had changed from "False" in
RHOSP 13 to "True" in RHOSP 16.x, which resulted in the correct certifications not being included in the QEMU process containers.

With this update, director checks the configuration of the previously deployed environment for global_config_settings and uses it to ensure that the UseTLSTransportForNbd state stays the same in the upgrade as on previous deployment. If global_config_settings exists in the configuration file, then director checks the configuration of the use_tls_for_nbd key. If global_config_settings does not exist, the director evaluates the hieradata key nova::compute::libvirt::qemu::nbd_tls. Keeping the UseTLSTransportForNbd state the same in the upgraded deployment as on previous deployment ensures that live migration works. (BZ#1906698)

4.6. RHBA-2021:2097 — RED HAT OPENSTACK PLATFORM 16.1.6 DIRECTOR BUG FIX ADVISORY

Changes to the openstack-cinder component:

- In prior releases, the SolidFire driver created a duplicate volume whenever it retried an API request. This led to unexpected behavior due to the accumulation of unused volumes. With this update, the Block Storage service (cinder) checks for existing volume names before it creates a volume. When Block Storage service detects a read timeout, it immediately checks for volume creation to prevent invalid API calls. This update also adds the sf_volume_create_timeout option for the SolidFire driver so that you can set an appropriate timeout value for your environment. (BZ#1939398)

- This update fixes a bug that prevented cinder list from listing volumes when multiple filters were passed. (BZ#1843788)

- This update adds CHAP support to the Dell EMC PowerStore driver. (BZ#1905231)

- In prior releases, cinder NEC driver backups failed when the object was a snapshot. This occurred because the snapshot argument does not have the volume_attachment attribute. With this update, backups no longer refer to the volume_attachment attribute when the argument is snapshot. (BZ#1910855)

- This update fixes an issue that caused some API calls, such as create snapshot, to fail with an xNotPrimary error during workload re-balancing operations. When SolidFire is under heavy load or being upgraded, the SolidFire cluster might re-balance cluster workload by automatically moving connections from primary to secondary nodes. Previously, some API calls failed with an xNotPrimary error during these workload balance operations and were not retried.

 This update fixes the issue by adding the xNotPrimary exception to the SolidFire driver list of retryable exceptions. (BZ#1947474)

Changes to the openstack-heat component:

- This update makes it possible to use OS::Heat:Delay resources in heat templates. Previously, a variable naming conflict caused an assertion error during attempted completion of an OS::Heat::Delay resource. A variable was renamed to eliminate the conflict. (BZ#1868543)

Changes to the openstack-nova component:

- When an instance is created, the Compute (nova) service sanitizes the instance display name to generate a valid host name when DNS integration is enabled in the Networking (neutron) service.

 Before this update, the sanitization did not replace periods (\'\.') in instance names, for example,
'rhel-8.4'. This could result in display names being recognized as Fully Qualified Domain Names (FQDNs) which produced invalid host names. When instance names contained periods and DNS integration was enabled in the Networking service, the Networking service rejected the invalid host name, which resulted in a failure to create the instance and a HTTP 500 server error from the Compute service.

With this update, periods are now replaced by hyphens in instance names to prevent host names being parsed as FQDNs. You can continue to use free-form strings for instance display names. (BZ#1872314)

Changes to the openstack-tripleo-common component:

- This update modifies the registry metadata creator to handle containers with and without namespaces in their URI. On the undercloud you can now manage containers that comply with the following formats:
 undercloud_host:port/namespace/container:tag undercloud_host:port/container:tag

 Red Hat does not support more complex namespaces, such as
 undercloud_host:port/name/space/container:tag, when pushing to the undercloud.
 (BZ#1919445)

Changes to the openstack-tripleo-heat-templates component:

- After upgrading with the Leapp utility, Compute with OVS-DPDK workload does not function properly. Choose one of the following workaround options:

 remove /etc/modules-load.d/vfio-pci.conf, before compute upgrade

 restart compute ovs after compute upgrade. (BZ#1895887)

- This update fixes a configuration problem that caused Leapp upgrades to stop and fail while executing on a CephStorage node.
 Previously, CephStorage nodes were incorrectly configured to consume OpenStack highavailability, advanced-virt, and fast-datapath repos during Leapp upgrades.

 Now UpgradeLeappCommand options is configurable on a per-node basis, and uses the correct default for CephStorage nodes, and Leapp upgrades succeed for CephStorage nodes. (BZ#1936419)

Changes to the validations-common component:

- This update fixes a bug that caused failure of validations before openstack undercloud upgrade in some cases. Before this upgrade, a lack of permissions needed to access the requested logging directory sometimes resulted in the following failures:

 - Failure to log validation results
 - Failure of the validation run
 - Failure of artifacts collection from validation.

 This update adds a fallback logging directory. Validation results are logged and artifacts collected. (BZ#1895045)