Red Hat OpenStack Platform 16.1 NetApp Block Storage Back End Guide

A guide to using a NetApp appliance as a Block Storage back end in Red Hat OpenStack Platform

OpenStack Team
rhos-docs@redhat.com
Abstract

This document describes how to use Director to deploy a NetApp storage appliance as a back end for the Block Storage service in Red Hat OpenStack Platform.
Table of Contents

CHAPTER 1. INTRODUCTION ... 3
CHAPTER 2. PROCESS DESCRIPTION ... 4
CHAPTER 3. DEFINE THE BACK END .. 5
CHAPTER 4. DEPLOY THE CONFIGURED BACK END 13
CHAPTER 5. TEST THE CONFIGURED BACK END 14
CHAPTER 1. INTRODUCTION

This document describes how to use the Director to deploy a NetApp appliance as a back end to the Overcloud’s Block Storage service. The following sections assume that:

- You intend to use only NetApp appliance and drivers for Block Storage back ends
- The OpenStack Overcloud has already been deployed through Director
- The NetApp appliance has already been configured and is ready to be used as a storage repository
- You have the necessary credentials for connecting to the NetApp storage system or proxy server
- You have the username and password of an account with elevated privileges. You can use the same account that was created to deploy the Overcloud; in Creating a Director Installation User, a stack user is created for this purpose.

When Red Hat OpenStack Platform is deployed through the Director, all major Overcloud settings (in particular, the Block Storage service back end) must be defined and orchestrated through the Director as well. This ensures that the settings will persist through any further Overcloud updates.

NOTE

For manual instructions on configuring the Block Storage service to use a NetApp appliance as a back end, see Chapter 4. OpenStack Block Storage Service (from the NetApp OpenStack Deployment and Operations Guide). Manually-configured Block Storage settings will need to be re-applied during updates to the Overcloud, as the Director will overwrite any settings it did not orchestrate.

This document explains how to orchestrate your desired NetApp back end configuration to the Overcloud’s Block Storage service. This document will not discuss the different deployment configurations possible with the NetApp back end. Rather, to learn more about the different available NetApp deployment choices, see Theory of Operation & Deployment Choices (from the NetApp OpenStack Deployment and Operations Guide).

Once you are familiar with the resulting back end configuration you want to deploy (and its corresponding settings), refer to this document for instructions on how to orchestrate it through the Director.

NOTE

At present, the Director only has the integrated components to deploy a single instance of a NetApp back end. As such, this document only describes the deployment of a single back end.

Deploying multiple instances of a NetApp back end requires a custom back end configuration. See the Custom Block Storage Back End Deployment Guide for instructions.
CHAPTER 2. PROCESS DESCRIPTION

Red Hat OpenStack Platform includes all the drivers required for all NetApp appliances supported by the Block Storage service. In addition, the Director also has the puppet manifests, environment files, and Orchestration templates necessary for integrating the NetApp appliance as a back end to the Overcloud.

Configuring the NetApp appliance as a back end involves editing the default environment file and including it in the Overcloud deployment. This file is available locally on the Undercloud, and can be edited to suit your environment.

After editing this file, invoke it through the Director. Doing so ensures that it will persist through future Overcloud updates. The following sections describe this process in greater detail.
CHAPTER 3. DEFINE THE BACK END

IMPORTANT

This section describes the deployment of a single back end. Deploying multiple instances of a NetApp back end requires a custom back end configuration. See the Custom Block Storage Back End Deployment Guide for instructions.

With a director deployment, the easiest way to define the NetApp appliance as a Block Storage back end is through the integrated NetApp environment file. This file is located in the following path of the undercloud node:

```
/usr/share/openstack-tripleo-heat-templates/environments/cinder-netapp-config.yaml
```

Copy this file to a local path where you can edit and invoke it later. For example, to copy it to `~/templates/`:

```
$ cp /usr/share/openstack-tripleo-heat-templates/environments/cinder-netapp-config.yaml ~/templates/
```

Afterwards, open the copy (`~/templates/cinder-netapp-config.yaml`) and edit it as you see fit. The following snippet displays the default contents of this file:

```
# A heat environment file which can be used to enable a
# a Cinder NetApp backend, configured via puppet
resource_registry:
  OS::TripleO::Services::CinderBackendNetApp: ./puppet/services/cinder-backend-netapp.yaml

parameter_defaults:
  CinderEnableNetappBackend: true
  CinderNetappBackendName: 'tripleo_netapp'
  CinderNetappLogin: "
  CinderNetappPassword: "
  CinderNetappServerHostname: "
  CinderNetappServerPort: '80'
  CinderNetappSizeMultiplier: '1.2'
  CinderNetappStorageFamily: 'ontap_cluster'
  CinderNetappStorageProtocol: 'nfs'
  CinderNetappTransportType: 'http'
  CinderNetappVfiler: "
  CinderNetappVolumeList: "
  CinderNetappVserver: "
  CinderNetappPartnerBackendName: "
  CinderNetappNfsShares: "
  CinderNetappNfsSharesConfig: '/etc/cinder/shares.conf'
  CinderNetappNfsMountOptions: "
  CinderNetappCopyOffloadToolPath: "
  CinderNetappControllerIps: "
  CinderNetappSaPassword: "
  CinderNetappStoragePools: "
  CinderNetappEseriesHostType: 'linux_dm_mp'
  CinderNetappWebservicePath: '/devmgr/v2'
```
NOTE

There are several director heat parameters that control whether an NFS back end or a NetApp NFS Block Storage back end supports a NetApp feature called NAS secure:

- CinderNetappNasSecureFileOperations
- CinderNetappNasSecureFilePermissions
- CinderNasSecureFileOperations
- CinderNasSecureFilePermissions

Red Hat does not recommend that you enable the feature, because it interferes with normal volume operations. Director disables the feature by default, and Red Hat OpenStack Platform does not support it.

1 The OS::TripleO::Services::CinderBackendNetApp parameter in the resource_registry section refers to a composable service template named cinder-backend-netapp.yaml. This is the template that the Director should use to load the necessary resources for configuring the back end. By default, the parameter specifies the path to cinder-backend-netapp.yaml relatively. As such, update this parameter with the absolute path to the file:

```
resource_registry:
  OS::TripleO::Services::CinderBackendNetApp: /usr/share/openstack-tripleo-heat-templates/puppet/services/cinder-backend-netapp.yaml
```

2 The parameter_defaults section contains your back end definition. Specifically, it contains the parameters that director passes to the resources defined in cinder-backend-netapp.yaml.

3 The CinderEnableNetappBackend: true line instructs director to use the puppet manifests necessary for the default configuration of a NetApp back end. This includes defining the volume driver that the Block Storage service should use (specifically, cinder.volume.drivers.netapp.common.NetAppDriver).

To define your NetApp back end, edit the settings in the parameter_defaults section as you see fit. The following table explains each parameter and lists its corresponding cinder.conf setting.

NOTE

For more about variables, see the corresponding reference in NetApp OpenStack Docs for your NetApp appliance.

Table 3.1. NetApp universal back end settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>cinder.conf setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CinderNetappBackendName</td>
<td>volume_backend_name</td>
<td>(Required) An arbitrary name to identify the volume back end. The cinder-netapp-config.yaml file uses the name tripleo_netapp by default.</td>
</tr>
</tbody>
</table>
Parameter | cinder.conf setting | Description
--- | --- | ---
CinderNetappLogin | netapp_login | *(Required)* Administrative account name used to access the back end or its proxy server. For this parameter, you can use an account with cluster-level administrative permissions (namely, `admin`) or a **cluster-scoped account**. For more information about cluster-scoped accounts, see [ONTAP Configuration](from NetApp OpenStack Docs) with the appropriate privileges.
CinderNetappPassword | netapp_password | *(Required)* The corresponding password of CinderNetappLogin.
CinderNetappServerHostname | netapp_server_hostname | *(Required)* The storage system or proxy server (for E-Series). The value of this option should be the IP address or hostname of either the cluster management logical interface (LIF) or Storage Virtual Machine (SVM) LIF.
CinderNetappServerPort | netapp_server_port | *(Optional)* The TCP port that the Block Storage service should use to communicate with the NetApp back end. If not specified, Data ONTAP drivers will use **80** for HTTP and **443** for HTTPS; E-Series will use **8080** for HTTP and **8443** for HTTPS.
CinderNetappSizeMultiplier | netapp_size_multiplier | *(Deprecated)* During volume creation, the quantity to be multiplied to the requested volume size to ensure that the NetApp back end has enough space.
Table 3.2. NetApp settings for clustered DATA ONTAP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>cinder.conf setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CinderNetappStorageFamily</td>
<td>netapp_storage_family</td>
<td>(Optional) The storage family type used on the back end device. Use <code>ontap_cluster</code> for clustered Data ONTAP or <code>eseries</code> for E-Series. NOTE: Support for <code>ontap_7mode</code> for Data ONTAP operating in 7-Mode is deprecated.</td>
</tr>
<tr>
<td>CinderNetappStorageProtocol</td>
<td>netapp_storage_protocol</td>
<td>(Required) The storage protocol to be used. Use either <code>nfs</code>, <code>iscsi</code>, or <code>fc</code>.</td>
</tr>
<tr>
<td>CinderNetappTransportType</td>
<td>netapp_transport_type</td>
<td>(Required) Transport protocol to be used for communicating with the back end. Valid options include <code>http</code> and <code>https</code>.</td>
</tr>
</tbody>
</table>

The following setting is only valid for clustered Data ONTAP (as in, with `CinderNetappStorageFamily` set to `ontap_cluster`).

Table 3.3. NetApp settings for DATA ONTAP operating in 7-Mode

<table>
<thead>
<tr>
<th>Parameter</th>
<th>cinder.conf setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CinderNetappVserver</td>
<td>netapp_vserver</td>
<td>(Required) Specifies which the name of the SVM where volume provisioning should occur. This refers to a single SVM on the storage cluster.</td>
</tr>
</tbody>
</table>

The following settings are only valid with Data ONTAP operating in 7-Mode (as in, with `CinderNetappStorageFamily` set to `ontap_7mode`).
The following settings are only valid with the E-Series family of devices (as in, with `CinderNetappStorageFamily` set to `eseries`).

Table 3.4. NetApp settings for E-Series

<table>
<thead>
<tr>
<th>Parameter</th>
<th>cinder.conf setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CinderNetappControllerIps</td>
<td>netapp_controller_ip</td>
<td>(Required) A comma-separated list of controller management IPs/hostnames to which provisioning should be restricted.</td>
</tr>
<tr>
<td>CinderNetappVolumeList</td>
<td>netapp_volume_list</td>
<td>(Optional) The vFiler unit on which provisioning of volumes will be done. Use this option only when you want to use the MultiStore feature on the NetApp back end.</td>
</tr>
<tr>
<td>CinderNetappPartnerBackendName</td>
<td>netapp_partner_backend_name</td>
<td>(Required) This specifies another back end that acts as the second half of a high-availability (HA) pair. Both back ends must refer to each other's <code>volume_backend_name</code> in their respective back end definitions.</td>
</tr>
</tbody>
</table>

This option is only valid when using the Fibre Channel protocol (as in, with `CinderNetappStorageProtocol` set to `fc`). For more information, see [NetApp Unified Driver for Data ONTAP operating in 7-Mode with Fibre Channel](#) in the [NetApp OpenStack Deployment and Operations Guide](#).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>cinder.conf setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CinderNetappSaPassword</td>
<td>netapp_sa_password</td>
<td>(Optional) Password to the NetApp E-Series storage array.</td>
</tr>
<tr>
<td>CinderNetappStoragePools</td>
<td>netapp_storage_pools</td>
<td>(Removed) A comma-separated list of disk pools to which provisioning should be restricted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do not edit this parameter, as it now refers to an unavailable driver option.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This option is only valid when using the Fibre Channel or iSCSI protocols (as in, with CinderNetappStorageProtocol set to either <code>fc</code> or <code>iscsi</code>).</td>
</tr>
<tr>
<td>CinderNetappEseriesHostType</td>
<td>netapp_eseries_host_type</td>
<td>(Removed) Defines the type of operating system for all initiators that can access a LUN. This information is used when mapping LUNs to individual hosts or groups of hosts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do not edit this parameter, as it now refers to an unavailable driver option.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This information is used when mapping LUNs to individual hosts or groups of hosts. For a list of valid OS types, see Values for specifying host type OS for E-Series Storage Systems in the NetApp OpenStack Deployment and Operations Guide</td>
</tr>
</tbody>
</table>
The following settings are only valid when using the NFS protocol (as in, with `CinderNetappStorageProtocol` set to `nfs`). For more information, see NetApp Unified Driver for Clustered Data ONTAP with NFS or NetApp Unified Driver for Data ONTAP operating in 7-Mode with NFS (both from the NetApp OpenStack Deployment and Operations Guide).

Table 3.5. NetApp settings for NFS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>cinder.conf setting</th>
<th>Description</th>
</tr>
</thead>
</table>
| CinderNetappNfsShares | None | *(Required)* Comma-separated list of Data LIFs exported from the NetApp ONTAP device to be mounted by the Controller nodes. This list gets written to the location defined by `CinderNetappNfsSharesConfig`. For example:

 `CinderNetappNfsShares:
 \'192.168.67.1:/cinder1,192.168.67.2:/cinder2,192.168.67.2:/cinder3,192.168.67.2:/archived_data\'` |
<p>| CinderNetappNfsSharesConfig| nfs_shares_config | (Required) Absolute path to the NFS exports file. This file contains a list of available NFS shares to be used as a back end. |
| CinderNetappNfsMountOptions| nfs_mount_options | (Optional) Comma-separated list of mount options you want to pass to the NFS client. For more information about valid options, see <code>man mount</code> |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>cinder.conf setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CinderNetappCopyOffloadToolPath</td>
<td>netapp_copyoffload_tool_path</td>
<td>(Optional) Specifies the path of the NetApp copy offload tool binary. This binary (available from the NetApp Support portal) must have the Execute permissions set, as the <code>openstack-cinder-volume</code> process will need to execute this file. This option is only valid with Clustered Data ONTAP (as in, with CinderNetappStorageFamily set to <code>ontap_cluster</code>). For more information, see NetApp Unified Driver for Clustered Data ONTAP with NFS in the NetApp OpenStack Deployment and Operations Guide.</td>
</tr>
</tbody>
</table>
CHAPTER 4. DEPLOY THE CONFIGURED BACK END

The Director installation uses a non-root user to execute commands, which includes orchestrating the deployment of the Block Storage back end. In Creating a Director Installation User, a user named stack is created for this purpose. This user is configured with elevated privileges.

Log in as the stack user to the Undercloud. Then, deploy the NetApp back end (defined in the edited ~/templates/cinder-netapp-config.yaml) by running the following:

```
$ openstack overcloud deploy --templates -e ~/templates/cinder-netapp-config.yaml
```

IMPORTANT

If you passed any extra environment files when you created the overcloud, pass them again here using the \(-e\) option to avoid making undesired changes to the overcloud. For more information, see Modifying the overcloud environment in the Director Installation and Usage guide.
CHAPTER 5. TEST THE CONFIGURED BACK END

After deploying the back end, test whether you can successfully create volumes on it. Doing so will require loading the necessary environment variables first. These variables are defined in /home/stack/overcloudrc by default.

To load these variables, run the following command as the stack user:

```
$ source /home/stack/overcloudrc
```

NOTE

For more information, see Accessing the Overcloud.

You should now be logged in to the Controller node. From there, you can create a *volume type*, which can be used to specify the back end you want to use (in this case, the newly-defined back end in Chapter 3, Define the Back End). This is required in an OpenStack deployment where you have other back ends enabled (preferably, also through Director).

To create a volume type named netapp, run:

```
$ cinder type-create netapp
```

Next, map this volume type to the back end defined in Chapter 3, Define the Back End, Given the back end name *tripleo_netapp* (as defined through the CinderNetappBackendName parameter, in Chapter 3, Define the Back End, run:

```
$ cinder type-key netapp set volume_backend_name=tripleo_netapp
```

You should now be able to create a 2GB volume on the newly defined back end by invoking its volume type. To do so, run:

```
$ cinder create --volume-type netapp 2
```